WorldWideScience

Sample records for maximum daily temperature

  1. Modeling maximum daily temperature using a varying coefficient regression model

    Science.gov (United States)

    Han Li; Xinwei Deng; Dong-Yum Kim; Eric P. Smith

    2014-01-01

    Relationships between stream water and air temperatures are often modeled using linear or nonlinear regression methods. Despite a strong relationship between water and air temperatures and a variety of models that are effective for data summarized on a weekly basis, such models did not yield consistently good predictions for summaries such as daily maximum temperature...

  2. Operational forecasting of daily temperatures in the Valencia Region. Part I: maximum temperatures in summer.

    Science.gov (United States)

    Gómez, I.; Estrela, M.

    2009-09-01

    Extreme temperature events have a great impact on human society. Knowledge of summer maximum temperatures is very useful for both the general public and organisations whose workers have to operate in the open, e.g. railways, roadways, tourism, etc. Moreover, summer maximum daily temperatures are considered a parameter of interest and concern since persistent heat-waves can affect areas as diverse as public health, energy consumption, etc. Thus, an accurate forecasting of these temperatures could help to predict heat-wave conditions and permit the implementation of strategies aimed at minimizing the negative effects that high temperatures have on human health. The aim of this work is to evaluate the skill of the RAMS model in determining daily maximum temperatures during summer over the Valencia Region. For this, we have used the real-time configuration of this model currently running at the CEAM Foundation. To carry out the model verification process, we have analysed not only the global behaviour of the model for the whole Valencia Region, but also its behaviour for the individual stations distributed within this area. The study has been performed for the summer forecast period of 1 June - 30 September, 2007. The results obtained are encouraging and indicate a good agreement between the observed and simulated maximum temperatures. Moreover, the model captures quite well the temperatures in the extreme heat episodes. Acknowledgement. This work was supported by "GRACCIE" (CSD2007-00067, Programa Consolider-Ingenio 2010), by the Spanish Ministerio de Educación y Ciencia, contract number CGL2005-03386/CLI, and by the Regional Government of Valencia Conselleria de Sanitat, contract "Simulación de las olas de calor e invasiones de frío y su regionalización en la Comunidad Valenciana" ("Heat wave and cold invasion simulation and their regionalization at Valencia Region"). The CEAM Foundation is supported by the Generalitat Valenciana and BANCAIXA (Valencia, Spain).

  3. Application of Markov chain model to daily maximum temperature for thermal comfort in Malaysia

    International Nuclear Information System (INIS)

    Nordin, Muhamad Asyraf bin Che; Hassan, Husna

    2015-01-01

    The Markov chain’s first order principle has been widely used to model various meteorological fields, for prediction purposes. In this study, a 14-year (2000-2013) data of daily maximum temperatures in Bayan Lepas were used. Earlier studies showed that the outdoor thermal comfort range based on physiologically equivalent temperature (PET) index in Malaysia is less than 34°C, thus the data obtained were classified into two state: normal state (within thermal comfort range) and hot state (above thermal comfort range). The long-run results show the probability of daily temperature exceed TCR will be only 2.2%. On the other hand, the probability daily temperature within TCR will be 97.8%

  4. Evaluation of empirical relationships between extreme rainfall and daily maximum temperature in Australia

    Science.gov (United States)

    Herath, Sujeewa Malwila; Sarukkalige, Ranjan; Nguyen, Van Thanh Van

    2018-01-01

    Understanding the relationships between extreme daily and sub-daily rainfall events and their governing factors is important in order to analyse the properties of extreme rainfall events in a changing climate. Atmospheric temperature is one of the dominant climate variables which has a strong relationship with extreme rainfall events. In this study, a temperature-rainfall binning technique is used to evaluate the dependency of extreme rainfall on daily maximum temperature. The Clausius-Clapeyron (C-C) relation was found to describe the relationship between daily maximum temperature and a range of rainfall durations from 6 min up to 24 h for seven Australian weather stations, the stations being located in Adelaide, Brisbane, Canberra, Darwin, Melbourne, Perth and Sydney. The analysis shows that the rainfall - temperature scaling varies with location, temperature and rainfall duration. The Darwin Airport station shows a negative scaling relationship, while the other six stations show a positive relationship. To identify the trend in scaling relationship over time the same analysis is conducted using data covering 10 year periods. Results indicate that the dependency of extreme rainfall on temperature also varies with the analysis period. Further, this dependency shows an increasing trend for more extreme short duration rainfall and a decreasing trend for average long duration rainfall events at most stations. Seasonal variations of the scale changing trends were analysed by categorizing the summer and autumn seasons in one group and the winter and spring seasons in another group. Most of 99th percentile of 6 min, 1 h and 24 h rain durations at Perth, Melbourne and Sydney stations show increasing trend for both groups while Adelaide and Darwin show decreasing trend. Furthermore, majority of scaling trend of 50th percentile are decreasing for both groups.

  5. New England observed and predicted August stream/river temperature maximum positive daily rate of change points

    Data.gov (United States)

    U.S. Environmental Protection Agency — The shapefile contains points with associated observed and predicted August stream/river temperature maximum positive daily rate of change in New England based on a...

  6. New England observed and predicted July stream/river temperature maximum positive daily rate of change points

    Data.gov (United States)

    U.S. Environmental Protection Agency — The shapefile contains points with associated observed and predicted July stream/river temperature maximum positive daily rate of change in New England based on a...

  7. New England observed and predicted July maximum negative stream/river temperature daily rate of change points

    Data.gov (United States)

    U.S. Environmental Protection Agency — The shapefile contains points with associated observed and predicted July stream/river temperature maximum negative daily rate of change in New England based on a...

  8. Climate Prediction Center (CPC) U.S. Daily Maximum Air Temperature Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Observational reports of daily air temperature (1200 UTC to 1200 UTC) are made by members of the NWS Automated Surface Observing Systems (ASOS) network; NWS...

  9. Merging daily sea surface temperature data from multiple satellites using a Bayesian maximum entropy method

    Science.gov (United States)

    Tang, Shaolei; Yang, Xiaofeng; Dong, Di; Li, Ziwei

    2015-12-01

    Sea surface temperature (SST) is an important variable for understanding interactions between the ocean and the atmosphere. SST fusion is crucial for acquiring SST products of high spatial resolution and coverage. This study introduces a Bayesian maximum entropy (BME) method for blending daily SSTs from multiple satellite sensors. A new spatiotemporal covariance model of an SST field is built to integrate not only single-day SSTs but also time-adjacent SSTs. In addition, AVHRR 30-year SST climatology data are introduced as soft data at the estimation points to improve the accuracy of blended results within the BME framework. The merged SSTs, with a spatial resolution of 4 km and a temporal resolution of 24 hours, are produced in the Western Pacific Ocean region to demonstrate and evaluate the proposed methodology. Comparisons with in situ drifting buoy observations show that the merged SSTs are accurate and the bias and root-mean-square errors for the comparison are 0.15°C and 0.72°C, respectively.

  10. New England observed and predicted August stream/river temperature maximum daily rate of change points

    Data.gov (United States)

    U.S. Environmental Protection Agency — The shapefile contains points with associated observed and predicted August stream/river temperature maximum negative rate of change in New England based on a...

  11. Estimating daily minimum, maximum, and mean near surface air temperature using hybrid satellite models across Israel.

    Science.gov (United States)

    Rosenfeld, Adar; Dorman, Michael; Schwartz, Joel; Novack, Victor; Just, Allan C; Kloog, Itai

    2017-11-01

    Meteorological stations measure air temperature (Ta) accurately with high temporal resolution, but usually suffer from limited spatial resolution due to their sparse distribution across rural, undeveloped or less populated areas. Remote sensing satellite-based measurements provide daily surface temperature (Ts) data in high spatial and temporal resolution and can improve the estimation of daily Ta. In this study we developed spatiotemporally resolved models which allow us to predict three daily parameters: Ta Max (day time), 24h mean, and Ta Min (night time) on a fine 1km grid across the state of Israel. We used and compared both the Aqua and Terra MODIS satellites. We used linear mixed effect models, IDW (inverse distance weighted) interpolations and thin plate splines (using a smooth nonparametric function of longitude and latitude) to first calibrate between Ts and Ta in those locations where we have available data for both and used that calibration to fill in neighboring cells without surface monitors or missing Ts. Out-of-sample ten-fold cross validation (CV) was used to quantify the accuracy of our predictions. Our model performance was excellent for both days with and without available Ts observations for both Aqua and Terra (CV Aqua R 2 results for min 0.966, mean 0.986, and max 0.967; CV Terra R 2 results for min 0.965, mean 0.987, and max 0.968). Our research shows that daily min, mean and max Ta can be reliably predicted using daily MODIS Ts data even across Israel, with high accuracy even for days without Ta or Ts data. These predictions can be used as three separate Ta exposures in epidemiology studies for better diurnal exposure assessment. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Comparative Study of Regional Estimation Methods for Daily Maximum Temperature (A Case Study of the Isfahan Province

    Directory of Open Access Journals (Sweden)

    Ghamar Fadavi

    2016-02-01

    Full Text Available Introduction: As the statistical time series are in short period and the meteorological station are not distributed well in mountainous area determining of climatic criteria are complex. Therefore, in recent years interpolation methods for establishment of continuous climatic data have been considered. Continuous daily maximum temperature data are a key factor for climate-crop modeling which is fundamental for water resources management, drought, and optimal use from climatic potentials of different regions. The main objective of this study is to evaluate different interpolation methods for estimation of regional maximum temperature in the Isfahan province. Materials and Methods: Isfahan province has about 937,105 square kilometers, between 30 degree and 43 minutes to 34 degree and 27 minutes North latitude equator line and 49 degree and 36 minutes to 55 degree and 31 minutes east longitude Greenwich. It is located in the center of Iran and it's western part extend to eastern footage of the Zagros mountain range. It should be mentioned that elevation range of meteorological stations are between 845 to 2490 in the study area. This study was done using daily maximum temperature data of 1992 and 2007 years of synoptic and climatology stations of I.R. of Iran meteorological organization (IRIMO. In order to interpolate temperature data, two years including 1992 and 2007 with different number of meteorological stations have been selected the temperature data of thirty meteorological stations (17 synoptic and 13 climatologically stations for 1992 year and fifty four meteorological stations (31 synoptic and 23 climatologically stations for 2007 year were used from Isfahan province and neighboring provinces. In order to regionalize the point data of daily maximum temperature, the interpolation methods, including inverse distance weighted (IDW, Kriging, Co-Kriging, Kriging-Regression, multiple regression and Spline were used. Therefore, for this allocated

  13. Estimation of daily maximum and minimum air temperatures in urban landscapes using MODIS time series satellite data

    Science.gov (United States)

    Yoo, Cheolhee; Im, Jungho; Park, Seonyoung; Quackenbush, Lindi J.

    2018-03-01

    Urban air temperature is considered a significant variable for a variety of urban issues, and analyzing the spatial patterns of air temperature is important for urban planning and management. However, insufficient weather stations limit accurate spatial representation of temperature within a heterogeneous city. This study used a random forest machine learning approach to estimate daily maximum and minimum air temperatures (Tmax and Tmin) for two megacities with different climate characteristics: Los Angeles, USA, and Seoul, South Korea. This study used eight time-series land surface temperature (LST) data from Moderate Resolution Imaging Spectroradiometer (MODIS), with seven auxiliary variables: elevation, solar radiation, normalized difference vegetation index, latitude, longitude, aspect, and the percentage of impervious area. We found different relationships between the eight time-series LSTs with Tmax/Tmin for the two cities, and designed eight schemes with different input LST variables. The schemes were evaluated using the coefficient of determination (R2) and Root Mean Square Error (RMSE) from 10-fold cross-validation. The best schemes produced R2 of 0.850 and 0.777 and RMSE of 1.7 °C and 1.2 °C for Tmax and Tmin in Los Angeles, and R2 of 0.728 and 0.767 and RMSE of 1.1 °C and 1.2 °C for Tmax and Tmin in Seoul, respectively. LSTs obtained the day before were crucial for estimating daily urban air temperature. Estimated air temperature patterns showed that Tmax was highly dependent on the geographic factors (e.g., sea breeze, mountains) of the two cities, while Tmin showed marginally distinct temperature differences between built-up and vegetated areas in the two cities.

  14. Comparison of the Spatiotemporal Variability of Temperature, Precipitation, and Maximum Daily Spring Flows in Two Watersheds in Quebec Characterized by Different Land Use

    Directory of Open Access Journals (Sweden)

    Ali A. Assani

    2016-01-01

    Full Text Available We compared the spatiotemporal variability of temperatures and precipitation with that of the magnitude and timing of maximum daily spring flows in the geographically adjacent L’Assomption River (agricultural and Matawin River (forested watersheds during the period from 1932 to 2013. With regard to spatial variability, fall, winter, and spring temperatures as well as total precipitation are higher in the agricultural watershed than in the forested one. The magnitude of maximum daily spring flows is also higher in the first watershed as compared with the second, owing to substantial runoff, given that the amount of snow that gives rise to these flows is not significantly different in the two watersheds. These flows occur early in the season in the agricultural watershed because of the relatively high temperatures. With regard to temporal variability, minimum temperatures increased over time in both watersheds. Maximum temperatures in the fall only increased in the agricultural watershed. The amount of spring rain increased over time in both watersheds, whereas total precipitation increased significantly in the agricultural watershed only. However, the amount of snow decreased in the forested watershed. The magnitude of maximum daily spring flows increased over time in the forested watershed.

  15. Estimating Daily Maximum and Minimum Land Air Surface Temperature Using MODIS Land Surface Temperature Data and Ground Truth Data in Northern Vietnam

    Directory of Open Access Journals (Sweden)

    Phan Thanh Noi

    2016-12-01

    Full Text Available This study aims to evaluate quantitatively the land surface temperature (LST derived from MODIS (Moderate Resolution Imaging Spectroradiometer MOD11A1 and MYD11A1 Collection 5 products for daily land air surface temperature (Ta estimation over a mountainous region in northern Vietnam. The main objective is to estimate maximum and minimum Ta (Ta-max and Ta-min using both TERRA and AQUA MODIS LST products (daytime and nighttime and auxiliary data, solving the discontinuity problem of ground measurements. There exist no studies about Vietnam that have integrated both TERRA and AQUA LST of daytime and nighttime for Ta estimation (using four MODIS LST datasets. In addition, to find out which variables are the most effective to describe the differences between LST and Ta, we have tested several popular methods, such as: the Pearson correlation coefficient, stepwise, Bayesian information criterion (BIC, adjusted R-squared and the principal component analysis (PCA of 14 variables (including: LST products (four variables, NDVI, elevation, latitude, longitude, day length in hours, Julian day and four variables of the view zenith angle, and then, we applied nine models for Ta-max estimation and nine models for Ta-min estimation. The results showed that the differences between MODIS LST and ground truth temperature derived from 15 climate stations are time and regional topography dependent. The best results for Ta-max and Ta-min estimation were achieved when we combined both LST daytime and nighttime of TERRA and AQUA and data from the topography analysis.

  16. Evaluation of daily maximum and minimum 2-m temperatures as simulated with the Regional Climate Model COSMO-CLM over Africa

    Directory of Open Access Journals (Sweden)

    Stefan Krähenmann

    2013-07-01

    Full Text Available The representation of the diurnal 2-m temperature cycle is challenging because of the many processes involved, particularly land-atmosphere interactions. This study examines the ability of the regional climate model COSMO-CLM (version 4.8 to capture the statistics of daily maximum and minimum 2-m temperatures (Tmin/Tmax over Africa. The simulations are carried out at two different horizontal grid-spacings (0.22° and 0.44°, and are driven by ECMWF ERA-Interim reanalyses as near-perfect lateral boundary conditions. As evaluation reference, a high-resolution gridded dataset of daily maximum and minimum temperatures (Tmin/Tmax for Africa (covering the period 2008–2010 is created using the regression-kriging-regression-kriging (RKRK algorithm. RKRK applies, among other predictors, the remotely sensed predictors land surface temperature and cloud cover to compensate for the missing information about the temperature pattern due to the low station density over Africa. This dataset allows the evaluation of temperature characteristics like the frequencies of Tmin/Tmax, the diurnal temperature range, and the 90th percentile of Tmax. Although the large-scale patterns of temperature are reproduced well, COSMO-CLM shows significant under- and overestimation of temperature at regional scales. The hemispheric summers are generally too warm and the day-to-day temperature variability is overestimated over northern and southern extra-tropical Africa. The average diurnal temperature range is underestimated by about 2°C across arid areas, yet overestimated by around 2°C over the African tropics. An evaluation based on frequency distributions shows good model performance for simulated Tmin (the simulated frequency distributions capture more than 80% of the observed ones, but less well performance for Tmax (capture below 70%. Further, over wide parts of Africa a too large fraction of daily Tmax values exceeds the observed 90th percentile of Tmax, particularly

  17. Evaluation of daily maximum and minimum 2-m temperatures as simulated with the regional climate model COSMO-CLM over Africa

    Energy Technology Data Exchange (ETDEWEB)

    Kraehenmann, Stefan; Kothe, Steffen; Ahrens, Bodo [Frankfurt Univ. (Germany). Inst. for Atmospheric and Environmental Sciences; Panitz, Hans-Juergen [Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen (Germany)

    2013-10-15

    The representation of the diurnal 2-m temperature cycle is challenging because of the many processes involved, particularly land-atmosphere interactions. This study examines the ability of the regional climate model COSMO-CLM (version 4.8) to capture the statistics of daily maximum and minimum 2-m temperatures (Tmin/Tmax) over Africa. The simulations are carried out at two different horizontal grid-spacings (0.22 and 0.44 ), and are driven by ECMWF ERA-Interim reanalyses as near-perfect lateral boundary conditions. As evaluation reference, a high-resolution gridded dataset of daily maximum and minimum temperatures (Tmin/Tmax) for Africa (covering the period 2008-2010) is created using the regression-kriging-regression-kriging (RKRK) algorithm. RKRK applies, among other predictors, the remotely sensed predictors land surface temperature and cloud cover to compensate for the missing information about the temperature pattern due to the low station density over Africa. This dataset allows the evaluation of temperature characteristics like the frequencies of Tmin/Tmax, the diurnal temperature range, and the 90{sup th} percentile of Tmax. Although the large-scale patterns of temperature are reproduced well, COSMO-CLM shows significant under- and overestimation of temperature at regional scales. The hemispheric summers are generally too warm and the day-to-day temperature variability is overestimated over northern and southern extra-tropical Africa. The average diurnal temperature range is underestimated by about 2 C across arid areas, yet overestimated by around 2 C over the African tropics. An evaluation based on frequency distributions shows good model performance for simulated Tmin (the simulated frequency distributions capture more than 80% of the observed ones), but less well performance for Tmax (capture below 70%). Further, over wide parts of Africa a too large fraction of daily Tmax values exceeds the observed 90{sup th} percentile of Tmax, particularly across

  18. TRENDS IN ESTIMATED MIXING DEPTH DAILY MAXIMUMS

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, R; Amy DuPont, A; Robert Kurzeja, R; Matt Parker, M

    2007-11-12

    Mixing depth is an important quantity in the determination of air pollution concentrations. Fireweather forecasts depend strongly on estimates of the mixing depth as a means of determining the altitude and dilution (ventilation rates) of smoke plumes. The Savannah River United States Forest Service (USFS) routinely conducts prescribed fires at the Savannah River Site (SRS), a heavily wooded Department of Energy (DOE) facility located in southwest South Carolina. For many years, the Savannah River National Laboratory (SRNL) has provided forecasts of weather conditions in support of the fire program, including an estimated mixing depth using potential temperature and turbulence change with height at a given location. This paper examines trends in the average estimated mixing depth daily maximum at the SRS over an extended period of time (4.75 years) derived from numerical atmospheric simulations using two versions of the Regional Atmospheric Modeling System (RAMS). This allows for differences to be seen between the model versions, as well as trends on a multi-year time frame. In addition, comparisons of predicted mixing depth for individual days in which special balloon soundings were released are also discussed.

  19. Climate Prediction Center (CPC) US daily temperature analyses

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. daily temperature analyses are maps depicting various temperature quantities utilizing daily maximum and minimum temperature data across the US. Maps are...

  20. Extreme Maximum Land Surface Temperatures.

    Science.gov (United States)

    Garratt, J. R.

    1992-09-01

    There are numerous reports in the literature of observations of land surface temperatures. Some of these, almost all made in situ, reveal maximum values in the 50°-70°C range, with a few, made in desert regions, near 80°C. Consideration of a simplified form of the surface energy balance equation, utilizing likely upper values of absorbed shortwave flux (1000 W m2) and screen air temperature (55°C), that surface temperatures in the vicinity of 90°-100°C may occur for dry, darkish soils of low thermal conductivity (0.1-0.2 W m1 K1). Numerical simulations confirm this and suggest that temperature gradients in the first few centimeters of soil may reach 0.5°-1°C mm1 under these extreme conditions. The study bears upon the intrinsic interest of identifying extreme maximum temperatures and yields interesting information regarding the comfort zone of animals (including man).

  1. Environmental Monitoring, Water Quality - Total Maximum Daily Load (TMDL)

    Data.gov (United States)

    NSGIC Education | GIS Inventory — The Clean Water Act Section 303(d) establishes the Total Maximum Daily Load (TMDL) program. The purpose of the TMDL program is to identify sources of pollution and...

  2. Water Quality Assessment and Total Maximum Daily Loads Information (ATTAINS)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Water Quality Assessment TMDL Tracking And Implementation System (ATTAINS) stores and tracks state water quality assessment decisions, Total Maximum Daily Loads...

  3. Long-term trends of daily maximum and minimum temperatures for the major cities of South Korea and their implications on human health

    Czech Academy of Sciences Publication Activity Database

    Choi, B. C.; Kim, J.; Lee, D. G.; Kyselý, Jan

    2007-01-01

    Roč. 17, č. 2 (2007), s. 171-183 ISSN N R&D Projects: GA ČR GC205/07/J044 Institutional research plan: CEZ:AV0Z30420517 Keywords : Temperature trends * Biometeorology * Climate change * Global warming * Human health * Temperature extremes * Urbanization Subject RIV: DG - Athmosphere Sciences, Meteorology

  4. Maximum vehicle cabin temperatures under different meteorological conditions

    Science.gov (United States)

    Grundstein, Andrew; Meentemeyer, Vernon; Dowd, John

    2009-05-01

    A variety of studies have documented the dangerously high temperatures that may occur within the passenger compartment (cabin) of cars under clear sky conditions, even at relatively low ambient air temperatures. Our study, however, is the first to examine cabin temperatures under variable weather conditions. It uses a unique maximum vehicle cabin temperature dataset in conjunction with directly comparable ambient air temperature, solar radiation, and cloud cover data collected from April through August 2007 in Athens, GA. Maximum cabin temperatures, ranging from 41-76°C, varied considerably depending on the weather conditions and the time of year. Clear days had the highest cabin temperatures, with average values of 68°C in the summer and 61°C in the spring. Cloudy days in both the spring and summer were on average approximately 10°C cooler. Our findings indicate that even on cloudy days with lower ambient air temperatures, vehicle cabin temperatures may reach deadly levels. Additionally, two predictive models of maximum daily vehicle cabin temperatures were developed using commonly available meteorological data. One model uses maximum ambient air temperature and average daily solar radiation while the other uses cloud cover percentage as a surrogate for solar radiation. From these models, two maximum vehicle cabin temperature indices were developed to assess the level of danger. The models and indices may be useful for forecasting hazardous conditions, promoting public awareness, and to estimate past cabin temperatures for use in forensic analyses.

  5. NOAA Daily Optimum Interpolation Sea Surface Temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA 1/4° daily Optimum Interpolation Sea Surface Temperature (or daily OISST) is an analysis constructed by combining observations from different platforms...

  6. Maximum Temperature Detection System for Integrated Circuits

    Science.gov (United States)

    Frankiewicz, Maciej; Kos, Andrzej

    2015-03-01

    The paper describes structure and measurement results of the system detecting present maximum temperature on the surface of an integrated circuit. The system consists of the set of proportional to absolute temperature sensors, temperature processing path and a digital part designed in VHDL. Analogue parts of the circuit where designed with full-custom technique. The system is a part of temperature-controlled oscillator circuit - a power management system based on dynamic frequency scaling method. The oscillator cooperates with microprocessor dedicated for thermal experiments. The whole system is implemented in UMC CMOS 0.18 μm (1.8 V) technology.

  7. Daily temperature variations on Mars

    Science.gov (United States)

    Ditteon, R.

    1982-01-01

    It is noted that for approximately 32% of the Martian surface area no values of thermal inertia or albedo can fit the thermal observations. These temperature anomalies do not correlate with elevation, geologic units, morphology, or atmospheric dust content. All regions having a Lambert albedo less than 0.18 can be well fit with the standard thermal model, but all areas with albedo greater than 0.28 are anomalous. A strong inverse correlation is seen between the magnitude of the anomaly and the thermal inertia. This correlation is seen as indicating that some surface property is responsible for the anomaly. In the anomalous region the temperatures are observed to be warmer in the morning and cooler late in the afternoon and to decrease more slowly during the night than the Viking model temperatures. It is believed that of all the physical processes likely to occur on Mars but not included in the Viking thermal model, only a layered soil can explain the observations. A possible explanation of the layering deduced from the infrared thermal mapper observations is a layer of aeolian deposited dust about one thermal skin depth thick (1 to 4 cm), covering a duricrust.

  8. Nowcasting daily minimum air and grass temperature

    Science.gov (United States)

    Savage, M. J.

    2016-02-01

    Site-specific and accurate prediction of daily minimum air and grass temperatures, made available online several hours before their occurrence, would be of significant benefit to several economic sectors and for planning human activities. Site-specific and reasonably accurate nowcasts of daily minimum temperature several hours before its occurrence, using measured sub-hourly temperatures hours earlier in the morning as model inputs, was investigated. Various temperature models were tested for their ability to accurately nowcast daily minimum temperatures 2 or 4 h before sunrise. Temperature datasets used for the model nowcasts included sub-hourly grass and grass-surface (infrared) temperatures from one location in South Africa and air temperature from four subtropical sites varying in altitude (USA and South Africa) and from one site in central sub-Saharan Africa. Nowcast models used employed either exponential or square root functions to describe the rate of nighttime temperature decrease but inverted so as to determine the minimum temperature. The models were also applied in near real-time using an open web-based system to display the nowcasts. Extrapolation algorithms for the site-specific nowcasts were also implemented in a datalogger in an innovative and mathematically consistent manner. Comparison of model 1 (exponential) nowcasts vs measured daily minima air temperatures yielded root mean square errors (RMSEs) <1 °C for the 2-h ahead nowcasts. Model 2 (also exponential), for which a constant model coefficient ( b = 2.2) was used, was usually slightly less accurate but still with RMSEs <1 °C. Use of model 3 (square root) yielded increased RMSEs for the 2-h ahead comparisons between nowcasted and measured daily minima air temperature, increasing to 1.4 °C for some sites. For all sites for all models, the comparisons for the 4-h ahead air temperature nowcasts generally yielded increased RMSEs, <2.1 °C. Comparisons for all model nowcasts of the daily grass

  9. Daily extreme temperature multifractals in Catalonia (NE Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Burgueño, A. [Departament d' Astronomia i Meteorologia, Universitat de Barcelona, Barcelona (Spain); Lana, X., E-mail: francisco.javier.lana@upc.edu [Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Barcelona (Spain); Serra, C. [Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Barcelona (Spain); Martínez, M.D. [Departament de Física Aplicada, Universitat Politècnica de Catalunya, Barcelona (Spain)

    2014-02-01

    The multifractal character of the daily extreme temperatures in Catalonia (NE Spain) is analyzed by means of the multifractal detrended fluctuation analysis (MF-DFA) applied to 65 thermometric records covering years 1950–2004. Although no clear spatial patterns of the multifractal spectrum parameters appear, factor scores deduced from Principal Component analysis indicate some signs of spatial gradients. Additionally, the daily extreme temperature series are classified depending on their complex time behavior, through four multifractal parameters (Hurst exponent, Hölder exponent with maximum spectrum, spectrum asymmetry and spectrum width). As a synthesis of the three last parameters, a basic measure of complexity is proposed through a normalized Complexity Index. Its regional behavior is found to be free of geographical dependences. This index represents a new step towards the description of the daily extreme temperatures complexity.

  10. Daily extreme temperature multifractals in Catalonia (NE Spain)

    International Nuclear Information System (INIS)

    Burgueño, A.; Lana, X.; Serra, C.; Martínez, M.D.

    2014-01-01

    The multifractal character of the daily extreme temperatures in Catalonia (NE Spain) is analyzed by means of the multifractal detrended fluctuation analysis (MF-DFA) applied to 65 thermometric records covering years 1950–2004. Although no clear spatial patterns of the multifractal spectrum parameters appear, factor scores deduced from Principal Component analysis indicate some signs of spatial gradients. Additionally, the daily extreme temperature series are classified depending on their complex time behavior, through four multifractal parameters (Hurst exponent, Hölder exponent with maximum spectrum, spectrum asymmetry and spectrum width). As a synthesis of the three last parameters, a basic measure of complexity is proposed through a normalized Complexity Index. Its regional behavior is found to be free of geographical dependences. This index represents a new step towards the description of the daily extreme temperatures complexity.

  11. Gridded 5km GHCN-Daily Temperature and Precipitation Dataset, Version 1

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Gridded 5km GHCN-Daily Temperature and Precipitation Dataset (nClimGrid) consists of four climate variables derived from the GHCN-D dataset: maximum temperature,...

  12. CDC WONDER: Daily Air Temperatures and Heat Index

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Daily Air Temperature and Heat Index data available on CDC WONDER are county-level daily average air temperatures and heat index measures spanning the years...

  13. Climate Prediction Center(CPC)Daily U.S. Precipitation and Temperature Summary

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Daily U.S. minimum and maximum temperatures in whole degrees Fahrenheit and reported and estimated precipitation amounts in hundredths of inches(ex 100 is 1.00...

  14. A combined stochastic analysis of mean daily temperature and diurnal temperature range

    Science.gov (United States)

    Sirangelo, B.; Caloiero, T.; Coscarelli, R.; Ferrari, E.

    2018-03-01

    In this paper, a stochastic model, previously proposed for the maximum daily temperature, has been improved for the combined analysis of mean daily temperature and diurnal temperature range. In particular, the procedure applied to each variable sequentially performs the deseasonalization, by means of truncated Fourier series expansions, and the normalization of the temperature data, with the use of proper transformation functions. Then, a joint stochastic analysis of both the climatic variables has been performed by means of a FARIMA model, taking into account the stochastic dependency between the variables, namely introducing a cross-correlation between the standardized noises. The model has been applied to five daily temperature series of southern Italy. After the application of a Monte Carlo simulation procedure, the return periods of the joint behavior of the mean daily temperature and the diurnal temperature range have been evaluated. Moreover, the annual maxima of the temperature excursions in consecutive days have been analyzed for the synthetic series. The results obtained showed different behaviors probably linked to the distance from the sea and to the latitude of the station.

  15. Estimate of annual daily maximum rainfall and intense rain equation for the Formiga municipality, MG, Brazil

    Directory of Open Access Journals (Sweden)

    Giovana Mara Rodrigues Borges

    2016-11-01

    Full Text Available Knowledge of the probabilistic behavior of rainfall is extremely important to the design of drainage systems, dam spillways, and other hydraulic projects. This study therefore examined statistical models to predict annual daily maximum rainfall as well as models of heavy rain for the city of Formiga - MG. To do this, annual maximum daily rainfall data were ranked in decreasing order that best describes the statistical distribution by exceedance probability. Daily rainfall disaggregation methodology was used for the intense rain model studies and adjusted with Intensity-Duration-Frequency (IDF and Exponential models. The study found that the Gumbel model better adhered to the data regarding observed frequency as indicated by the Chi-squared test, and that the exponential model best conforms to the observed data to predict intense rains.

  16. Daily Air Temperature and Electricity Load in Spain.

    Science.gov (United States)

    Valor, Enric; Meneu, Vicente; Caselles, Vicente

    2001-08-01

    Weather has a significant impact on different sectors of the economy. One of the most sensitive is the electricity market, because power demand is linked to several weather variables, mainly the air temperature. This work analyzes the relationship between electricity load and daily air temperature in Spain, using a population-weighted temperature index. The electricity demand shows a significant trend due to socioeconomic factors, in addition to daily and monthly seasonal effects that have been taken into account to isolate the weather influence on electricity load. The results indicate that the relationship is nonlinear, showing a `comfort interval' of ±3°C around 18°C and two saturation points beyond which the electricity load no longer increases. The analysis has also revealed that the sensitivity of electricity load to daily air temperature has increased along time, in a higher degree for summer than for winter, although the sensitivity in the cold season is always more significant than in the warm season. Two different temperature-derived variables that allow a better characterization of the observed relationship have been used: the heating and cooling degree-days. The regression of electricity data on them defines the heating and cooling demand functions, which show correlation coefficients of 0.79 and 0.87, and predicts electricity load with standard errors of estimate of ±4% and ±2%, respectively. The maximum elasticity of electricity demand is observed at 7 cooling degree-days and 9 heating degree-days, and the saturation points are reached at 11 cooling degree-days and 13 heating degree-days, respectively. These results are helpful in modeling electricity load behavior for predictive purposes.

  17. Asymetric change of daily temperature range: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Kukla, G. [ed.] [Columbia Univ., Palisades, NY (United States). Lamont-Doherty Earth Observatory; Karl, T.R. [ed.] [National Climatic Data Center, Asheville, NC (United States); Riches, M.R. [ed.] [USDOE, Washington, DC (United States)

    1994-04-01

    This report is a compilation of abstracts of papers presented at the MINIMAX workshop. Topics include; temperature fluxes, influence of clouds on temperature, anthropogenic influences on temperature flux, and carbon dioxide and aerosol induced greenhouse effect.

  18. Asymetric change of daily temperature range: Proceedings

    International Nuclear Information System (INIS)

    Kukla, G.; Riches, M.R.

    1994-04-01

    This report is a compilation of abstracts of papers presented at the MINIMAX workshop. Topics include; temperature fluxes, influence of clouds on temperature, anthropogenic influences on temperature flux, and carbon dioxide and aerosol induced greenhouse effect

  19. Accurate computations of monthly average daily extraterrestrial irradiation and the maximum possible sunshine duration

    International Nuclear Information System (INIS)

    Jain, P.C.

    1985-12-01

    The monthly average daily values of the extraterrestrial irradiation on a horizontal plane and the maximum possible sunshine duration are two important parameters that are frequently needed in various solar energy applications. These are generally calculated by solar scientists and engineers each time they are needed and often by using the approximate short-cut methods. Using the accurate analytical expressions developed by Spencer for the declination and the eccentricity correction factor, computations for these parameters have been made for all the latitude values from 90 deg. N to 90 deg. S at intervals of 1 deg. and are presented in a convenient tabular form. Monthly average daily values of the maximum possible sunshine duration as recorded on a Campbell Stoke's sunshine recorder are also computed and presented. These tables would avoid the need for repetitive and approximate calculations and serve as a useful ready reference for providing accurate values to the solar energy scientists and engineers

  20. Linear and regressive stochastic models for prediction of daily maximum ozone values at Mexico City atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Bravo, J. L [Instituto de Geofisica, UNAM, Mexico, D.F. (Mexico); Nava, M. M [Instituto Mexicano del Petroleo, Mexico, D.F. (Mexico); Gay, C [Centro de Ciencias de la Atmosfera, UNAM, Mexico, D.F. (Mexico)

    2001-07-01

    We developed a procedure to forecast, with 2 or 3 hours, the daily maximum of surface ozone concentrations. It involves the adjustment of Autoregressive Integrated and Moving Average (ARIMA) models to daily ozone maximum concentrations at 10 monitoring atmospheric stations in Mexico City during one-year period. A one-day forecast is made and it is adjusted with the meteorological and solar radiation information acquired during the first 3 hours before the occurrence of the maximum value. The relative importance for forecasting of the history of the process and of meteorological conditions is evaluated. Finally an estimate of the daily probability of exceeding a given ozone level is made. [Spanish] Se aplica un procedimiento basado en la metodologia conocida como ARIMA, para predecir, con 2 o 3 horas de anticipacion, el valor maximo de la concentracion diaria de ozono. Esta basado en el calculo de autorregresiones y promedios moviles aplicados a los valores maximos de ozono superficial provenientes de 10 estaciones de monitoreo atmosferico en la Ciudad de Mexico y obtenidos durante un ano de muestreo. El pronostico para un dia se ajusta con la informacion meteorologica y de radiacion solar correspondiente a un periodo que antecede con al menos tres horas la ocurrencia esperada del valor maximo. Se compara la importancia relativa de la historia del proceso y de las condiciones meteorologicas previas para el pronostico. Finalmente se estima la probabilidad diaria de que un nivel normativo o preestablecido para contingencias de ozono sea rebasado.

  1. A comparison of climatological observing windows and their impact on detecting daily temperature extrema

    Science.gov (United States)

    Žaknić-Ćatović, Ana; Gough, William A.

    2018-04-01

    Climatological observing window (COW) is defined as a time frame over which continuous or extreme air temperature measurements are collected. A 24-h time interval, ending at 00UTC or shifted to end at 06UTC, has been associated with difficulties in characterizing daily temperature extrema. A fixed 24-h COW used to obtain the temperature minima leads to potential misidentification due to fragmentation of "nighttime" into two subsequent nighttime periods due to the time discretization interval. The correct identification of air temperature extrema is achievable using a COW that identifies daily minimum over a single nighttime period and maximum over a single daytime period, as determined by sunrise and sunset. Due to a common absence of hourly air temperature observations, the accuracy of the mean temperature estimation is dependent on the accuracy of determination of diurnal air temperature extrema. Qualitative and quantitative criteria were used to examine the impact of the COW on detecting daily air temperature extrema. The timing of the 24-h observing window occasionally affects the determination of daily extrema through a mischaracterization of the diurnal minima and by extension can lead to errors in determining daily mean temperature. Hourly air temperature data for the time period from year 1987 to 2014, obtained from Toronto Buttonville Municipal Airport weather station, were used in analysis of COW impacts on detection of daily temperature extrema and calculation of annual temperature averages based on such extrema.

  2. Estimation and prediction of maximum daily rainfall at Sagar Island using best fit probability models

    Science.gov (United States)

    Mandal, S.; Choudhury, B. U.

    2015-07-01

    Sagar Island, setting on the continental shelf of Bay of Bengal, is one of the most vulnerable deltas to the occurrence of extreme rainfall-driven climatic hazards. Information on probability of occurrence of maximum daily rainfall will be useful in devising risk management for sustaining rainfed agrarian economy vis-a-vis food and livelihood security. Using six probability distribution models and long-term (1982-2010) daily rainfall data, we studied the probability of occurrence of annual, seasonal and monthly maximum daily rainfall (MDR) in the island. To select the best fit distribution models for annual, seasonal and monthly time series based on maximum rank with minimum value of test statistics, three statistical goodness of fit tests, viz. Kolmogorove-Smirnov test (K-S), Anderson Darling test ( A 2 ) and Chi-Square test ( X 2) were employed. The fourth probability distribution was identified from the highest overall score obtained from the three goodness of fit tests. Results revealed that normal probability distribution was best fitted for annual, post-monsoon and summer seasons MDR, while Lognormal, Weibull and Pearson 5 were best fitted for pre-monsoon, monsoon and winter seasons, respectively. The estimated annual MDR were 50, 69, 86, 106 and 114 mm for return periods of 2, 5, 10, 20 and 25 years, respectively. The probability of getting an annual MDR of >50, >100, >150, >200 and >250 mm were estimated as 99, 85, 40, 12 and 03 % level of exceedance, respectively. The monsoon, summer and winter seasons exhibited comparatively higher probabilities (78 to 85 %) for MDR of >100 mm and moderate probabilities (37 to 46 %) for >150 mm. For different recurrence intervals, the percent probability of MDR varied widely across intra- and inter-annual periods. In the island, rainfall anomaly can pose a climatic threat to the sustainability of agricultural production and thus needs adequate adaptation and mitigation measures.

  3. Table for monthly average daily extraterrestrial irradiation on horizontal surface and the maximum possible sunshine duration

    International Nuclear Information System (INIS)

    Jain, P.C.

    1984-01-01

    The monthly average daily values of the extraterrestrial irradiation on a horizontal surface (H 0 ) and the maximum possible sunshine duration are two important parameters that are frequently needed in various solar energy applications. These are generally calculated by scientists each time they are needed and by using the approximate short-cut methods. Computations for these values have been made once and for all for latitude values of 60 deg. N to 60 deg. S at intervals of 1 deg. and are presented in a convenient tabular form. Values of the maximum possible sunshine duration as recorded on a Campbell Stoke's sunshine recorder are also computed and presented. These tables should avoid the need for repetition and approximate calculations and serve as a useful ready reference for solar energy scientists and engineers. (author)

  4. Maximum And Minimum Temperature Trends In Mexico For The Last 31 Years

    Science.gov (United States)

    Romero-Centeno, R.; Zavala-Hidalgo, J.; Allende Arandia, M. E.; Carrasco-Mijarez, N.; Calderon-Bustamante, O.

    2013-05-01

    Based on high-resolution (1') daily maps of the maximum and minimum temperatures in Mexico, an analysis of the last 31-year trends is performed. The maps were generated using all the available information from more than 5,000 stations of the Mexican Weather Service (Servicio Meteorológico Nacional, SMN) for the period 1979-2009, along with data from the North American Regional Reanalysis (NARR). The data processing procedure includes a quality control step, in order to eliminate erroneous daily data, and make use of a high-resolution digital elevation model (from GEBCO), the relationship between air temperature and elevation by means of the average environmental lapse rate, and interpolation algorithms (linear and inverse-distance weighting). Based on the monthly gridded maps for the mentioned period, the maximum and minimum temperature trends calculated by least-squares linear regression and their statistical significance are obtained and discussed.

  5. Daily temperature and precipitation data for 223 USSR Stations

    Energy Technology Data Exchange (ETDEWEB)

    Razuvaev, V.N.; Apasova, E.G.; Martuganov, R.A. [Research Institute of Hydrometeorological Information, Obninsk (Russian Federation); Vose, R.S. [Univ. of Tennessee, Knoxville, TN (United States); Steurer, P.M. [National Climatic Data Center, Asheville, NC (United States)

    1993-11-01

    On- May 23, 1972, the United States and the USSR established a bilateral initiative known as the Agreement on Protection of the Environment. Given recent interest in possible greenhouse gas-induced climate change, Working Group VIII (Influence of Environmental Changes on Climate) has become particularly useful to the scientific communities of both nations. Among its many achievements, Working Group VIII has been instrumental in the exchange of climatological information between the principal climate data centers of each country [i.e., the National Climatic Data Center (NCDC) in Asheville, North Carolina, and the Research Institute of Hydrometeorological Information in Obninsk, Russia]. Considering the relative lack of climate records previously available for the USSR, data obtained via this bilateral exchange are particularly valuable to researchers outside the former Soviet Union. To expedite the dissemination of these data, NOAA`s Climate and Global Change Program funded the Carbon Dioxide Information Analysis Center (CDIAC) and NCDC to distribute one of the more useful archives acquired through this exchange: a 223-station daily data set covering the period 1881-1989. This data set contains: (1) daily mean, minimum, and maximum temperature data; (2) daily precipitation data; (3) station inventory information (WMO No., name, coordinates, and elevation); (4) station history information (station relocation and rain gauge replacement dates); and (5) quality assurance information (i.e., flag codes that were assigned as a result of various data checks). The data set is available, free of charge, as a Numeric Data Package (NDP) from CDIAC. The NDP consists of 18 data files and a printed document which describes both the data files and the 223-station network in detail.

  6. STATIONARITY OF ANNUAL MAXIMUM DAILY STREAMFLOW TIME SERIES IN SOUTH-EAST BRAZILIAN RIVERS

    Directory of Open Access Journals (Sweden)

    Jorge Machado Damázio

    2015-08-01

    Full Text Available DOI: 10.12957/cadest.2014.18302The paper presents a statistical analysis of annual maxima daily streamflow between 1931 and 2013 in South-East Brazil focused in detecting and modelling non-stationarity aspects. Flood protection for the large valleys in South-East Brazil is provided by multiple purpose reservoir systems built during 20th century, which design and operation plans has been done assuming stationarity of historical flood time series. Land cover changes and rapidly-increasing level of atmosphere greenhouse gases of the last century may be affecting flood regimes in these valleys so that it can be that nonstationary modelling should be applied to re-asses dam safety and flood control operation rules at the existent reservoir system. Six annual maximum daily streamflow time series are analysed. The time series were plotted together with fitted smooth loess functions and non-parametric statistical tests are performed to check the significance of apparent trends shown by the plots. Non-stationarity is modelled by fitting univariate extreme value distribution functions which location varies linearly with time. Stationarity and non-stationarity modelling are compared with the likelihood ratio statistic. In four of the six analyzed time series non-stationarity modelling outperformed stationarity modelling.Keywords: Stationarity; Extreme Value Distributions; Flood Frequency Analysis; Maximum Likelihood Method.

  7. Daily rhythmicity of body temperature in the dog.

    Science.gov (United States)

    Refinetti, R; Piccione, G

    2003-08-01

    Research over the past 50 years has demonstrated the existence of circadian or daily rhythmicity in the body core temperature of a large number of mammalian species. However, previous studies have failed to identify daily rhythmicity of body temperature in dogs. We report here the successful recording of daily rhythms of rectal temperature in female Beagle dogs. The low robustness of the rhythms (41% of maximal robustness) and the small range of excursion (0.5 degrees C) are probably responsible for previous failures in detecting rhythmicity in dogs.

  8. Mid-depth temperature maximum in an estuarine lake

    Science.gov (United States)

    Stepanenko, V. M.; Repina, I. A.; Artamonov, A. Yu; Gorin, S. L.; Lykossov, V. N.; Kulyamin, D. V.

    2018-03-01

    The mid-depth temperature maximum (TeM) was measured in an estuarine Bol’shoi Vilyui Lake (Kamchatka peninsula, Russia) in summer 2015. We applied 1D k-ɛ model LAKE to the case, and found it successfully simulating the phenomenon. We argue that the main prerequisite for mid-depth TeM development is a salinity increase below the freshwater mixed layer, sharp enough in order to increase the temperature with depth not to cause convective mixing and double diffusion there. Given that this condition is satisfied, the TeM magnitude is controlled by physical factors which we identified as: radiation absorption below the mixed layer, mixed-layer temperature dynamics, vertical heat conduction and water-sediments heat exchange. In addition to these, we formulate the mechanism of temperature maximum ‘pumping’, resulting from the phase shift between diurnal cycles of mixed-layer depth and temperature maximum magnitude. Based on the LAKE model results we quantify the contribution of the above listed mechanisms and find their individual significance highly sensitive to water turbidity. Relying on physical mechanisms identified we define environmental conditions favouring the summertime TeM development in salinity-stratified lakes as: small-mixed layer depth (roughly, ~wind and cloudless weather. We exemplify the effect of mixed-layer depth on TeM by a set of selected lakes.

  9. Genetic Analysis of Daily Maximum Milking Speed by a Random Walk Model in Dairy Cows

    DEFF Research Database (Denmark)

    Karacaören, Burak; Janss, Luc; Kadarmideen, Haja

    Data were obtained from dairy cows stationed at research farm ETH Zurich for maximum milking speed. The main aims of this paper are a) to evaluate if the Wood curve is suitable to model mean lactation curve b) to predict longitudinal breeding values by random regression and random walk models of ...... filter applications: random walk model could give online prediction of breeding values. Hence without waiting for whole lactation records, genetic evaluation could be made when the daily or monthly data is available......Data were obtained from dairy cows stationed at research farm ETH Zurich for maximum milking speed. The main aims of this paper are a) to evaluate if the Wood curve is suitable to model mean lactation curve b) to predict longitudinal breeding values by random regression and random walk models...... of maximum milking speed. Wood curve did not provide a good fit to the data set. Quadratic random regressions gave better predictions compared with the random walk model. However random walk model does not need to be evaluated for different orders of regression coefficients. In addition with the Kalman...

  10. Device for determining the maximum temperature of an environment

    International Nuclear Information System (INIS)

    Cartier, Louis.

    1976-01-01

    This invention concerns a device for determining the maximum temperature of an environment. Its main characteristic is a central cylindrical rod on which can slide two identical tubes, the facing ends of which are placed end to end and the far ends are shaped to provide a sliding friction along the rod. The rod and tubes are fabricated in materials of which the linear expansion factors are different in value. The far ends are composed of tongs of which the fingers, fitted with claws, bear on the central rod. Because of this arrangement of the device the two tubes, placed end to end on being fitted, can expand under the effect of a rise in the temperature of the environment into which the device is introduced, with the result that there occurs an increase in the distance between the two far ends. This distance is maximal when the device is raised to its highest temperature. The far ends are shaped to allow the tubes to slide under the effect of expansion but to prevent sliding in the opposite direction when the device is taken back into the open air and the temperature drops to within ambient temperature. It follows that the tubes tend to return to their initial length and the ends that were placed end to end when fitted now have a gap between them. The measurement of this gap makes it possible to know the maximal temperature sought [fr

  11. EXTREME MAXIMUM AND MINIMUM AIR TEMPERATURE IN MEDİTERRANEAN COASTS IN TURKEY

    Directory of Open Access Journals (Sweden)

    Barbaros Gönençgil

    2016-01-01

    Full Text Available In this study, we determined extreme maximum and minimum temperatures in both summer and winter seasons at the stations in the Mediterranean coastal areas of Turkey.In the study, the data of 24 meteorological stations for the daily maximum and minimumtemperatures of the period from 1970–2010 were used. From this database, a set of four extreme temperature indices applied warm (TX90 and cold (TN10 days and warm spells (WSDI and cold spell duration (CSDI. The threshold values were calculated for each station to determine the temperatures that were above and below the seasonal norms in winter and summer. The TX90 index displays a positive statistically significant trend, while TN10 display negative nonsignificant trend. The occurrence of warm spells shows statistically significant increasing trend while the cold spells shows significantly decreasing trend over the Mediterranean coastline in Turkey.

  12. Increasing the maximum daily operation time of MNSR reactor by modifying its cooling system

    International Nuclear Information System (INIS)

    Khamis, I.; Hainoun, A.; Al Halbi, W.; Al Isa, S.

    2006-08-01

    thermal-hydraulic natural convection correlations have been formulated based on a thorough analysis and modeling of the MNSR reactor. The model considers detailed description of the thermal and hydraulic aspects of cooling in the core and vessel. In addition, determination of pressure drop was made through an elaborate balancing of the overall pressure drop in the core against the sum of all individual channel pressure drops employing an iterative scheme. Using this model, an accurate estimation of various timely core-averaged hydraulic parameters such as generated power, hydraulic diameters, flow cross area, ... etc. for each one of the ten-fuel circles in the core can be made. Furthermore, distribution of coolant and fuel temperatures, including maximum fuel temperature and its location in the core, can now be determined. Correlation among core-coolant average temperature, reactor power, and core-coolant inlet temperature, during both steady and transient cases, have been established and verified against experimental data. Simulating various operating condition of MNSR, good agreement is obtained for at different power levels. Various schemes of cooling have been investigated for the purpose of assessing potential benefits on the operational characteristics of the syrian MNSR reactor. A detailed thermal hydraulic model for the analysis of MNSR has been developed. The analysis shows that an auxiliary cooling system, for the reactor vessel or installed in the pool which surrounds the lower section of the reactor vessel, will significantly offset the consumption of excess reactivity due to the negative reactivity temperature coefficient. Hence, the maximum operating time of the reactor is extended. The model considers detailed description of the thermal and hydraulic aspects of cooling the core and its surrounding vessel. Natural convection correlations have been formulated based on a thorough analysis and modeling of the MNSR reactor. The suggested 'micro model

  13. Economic total maximum daily load for watershed-based pollutant trading.

    Science.gov (United States)

    Zaidi, A Z; deMonsabert, S M

    2015-04-01

    Water quality trading (WQT) is supported by the US Environmental Protection Agency (USEPA) under the framework of its total maximum daily load (TMDL) program. An innovative approach is presented in this paper that proposes post-TMDL trade by calculating pollutant rights for each pollutant source within a watershed. Several water quality trading programs are currently operating in the USA with an objective to achieve overall pollutant reduction impacts that are equivalent or better than TMDL scenarios. These programs use trading ratios for establishing water quality equivalence among pollutant reductions. The inbuilt uncertainty in modeling the effects of pollutants in a watershed from both the point and nonpoint sources on receiving waterbodies makes WQT very difficult. A higher trading ratio carries with it increased mitigation costs, but cannot ensure the attainment of the required water quality with certainty. The selection of an applicable trading ratio, therefore, is not a simple process. The proposed approach uses an Economic TMDL optimization model that determines an economic pollutant reduction scenario that can be compared with actual TMDL allocations to calculate selling/purchasing rights for each contributing source. The methodology is presented using the established TMDLs for the bacteria (fecal coliform) impaired Muddy Creek subwatershed WAR1 in Rockingham County, Virginia, USA. Case study results show that an environmentally and economically superior trading scenario can be realized by using Economic TMDL model or any similar model that considers the cost of TMDL allocations.

  14. Bayesian modeling of the assimilative capacity component of nutrient total maximum daily loads

    Science.gov (United States)

    Faulkner, B. R.

    2008-08-01

    Implementing stream restoration techniques and best management practices to reduce nonpoint source nutrients implies enhancement of the assimilative capacity for the stream system. In this paper, a Bayesian method for evaluating this component of a total maximum daily load (TMDL) load capacity is developed and applied. The joint distribution of nutrient retention metrics from a literature review of 495 measurements was used for Monte Carlo sampling with a process transfer function for nutrient attenuation. Using the resulting histograms of nutrient retention, reference prior distributions were developed for sites in which some of the metrics contributing to the transfer function were measured. Contributing metrics for the prior include stream discharge, cross-sectional area, fraction of storage volume to free stream volume, denitrification rate constant, storage zone mass transfer rate, dispersion coefficient, and others. Confidence of compliance (CC) that any given level of nutrient retention has been achieved is also determined using this approach. The shape of the CC curve is dependent on the metrics measured and serves in part as a measure of the information provided by the metrics to predict nutrient retention. It is also a direct measurement, with a margin of safety, of the fraction of export load that can be reduced through changing retention metrics. For an impaired stream in western Oklahoma, a combination of prior information and measurement of nutrient attenuation was used to illustrate the proposed approach. This method may be considered for TMDL implementation.

  15. Statistical downscaling of daily temperature in Central Europe

    Czech Academy of Sciences Publication Activity Database

    Huth, Radan

    2002-01-01

    Roč. 15, - (2002), s. 1731-1742 ISSN 0894-8755 R&D Projects: GA ČR GA205/99/1561; GA AV ČR IAA3042903 Institutional research plan: CEZ:AV0Z3042911 Keywords : statistical downscaling * daily temperature * Central Europe Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 3.250, year: 2002

  16. Future changes over the Himalayas: Maximum and minimum temperature

    Science.gov (United States)

    Dimri, A. P.; Kumar, D.; Choudhary, A.; Maharana, P.

    2018-03-01

    An assessment of the projection of minimum and maximum air temperature over the Indian Himalayan region (IHR) from the COordinated Regional Climate Downscaling EXperiment- South Asia (hereafter, CORDEX-SA) regional climate model (RCM) experiments have been carried out under two different Representative Concentration Pathway (RCP) scenarios. The major aim of this study is to assess the probable future changes in the minimum and maximum climatology and its long-term trend under different RCPs along with the elevation dependent warming over the IHR. A number of statistical analysis such as changes in mean climatology, long-term spatial trend and probability distribution function are carried out to detect the signals of changes in climate. The study also tries to quantify the uncertainties associated with different model experiments and their ensemble in space, time and for different seasons. The model experiments and their ensemble show prominent cold bias over Himalayas for present climate. However, statistically significant higher warming rate (0.23-0.52 °C/decade) for both minimum and maximum air temperature (Tmin and Tmax) is observed for all the seasons under both RCPs. The rate of warming intensifies with the increase in the radiative forcing under a range of greenhouse gas scenarios starting from RCP4.5 to RCP8.5. In addition to this, a wide range of spatial variability and disagreements in the magnitude of trend between different models describes the uncertainty associated with the model projections and scenarios. The projected rate of increase of Tmin may destabilize the snow formation at the higher altitudes in the northern and western parts of Himalayan region, while rising trend of Tmax over southern flank may effectively melt more snow cover. Such combined effect of rising trend of Tmin and Tmax may pose a potential threat to the glacial deposits. The overall trend of Diurnal temperature range (DTR) portrays increasing trend across entire area with

  17. Estimating total maximum daily loads with the Stochastic Empirical Loading and Dilution Model

    Science.gov (United States)

    Granato, Gregory; Jones, Susan Cheung

    2017-01-01

    The Massachusetts Department of Transportation (DOT) and the Rhode Island DOT are assessing and addressing roadway contributions to total maximum daily loads (TMDLs). Example analyses for total nitrogen, total phosphorus, suspended sediment, and total zinc in highway runoff were done by the U.S. Geological Survey in cooperation with FHWA to simulate long-term annual loads for TMDL analyses with the stochastic empirical loading and dilution model known as SELDM. Concentration statistics from 19 highway runoff monitoring sites in Massachusetts were used with precipitation statistics from 11 long-term monitoring sites to simulate long-term pavement yields (loads per unit area). Highway sites were stratified by traffic volume or surrounding land use to calculate concentration statistics for rural roads, low-volume highways, high-volume highways, and ultraurban highways. The median of the event mean concentration statistics in each traffic volume category was used to simulate annual yields from pavement for a 29- or 30-year period. Long-term average yields for total nitrogen, phosphorus, and zinc from rural roads are lower than yields from the other categories, but yields of sediment are higher than for the low-volume highways. The average yields of the selected water quality constituents from high-volume highways are 1.35 to 2.52 times the associated yields from low-volume highways. The average yields of the selected constituents from ultraurban highways are 1.52 to 3.46 times the associated yields from high-volume highways. Example simulations indicate that both concentration reduction and flow reduction by structural best management practices are crucial for reducing runoff yields.

  18. An ecological function and services approach to total maximum daily load (TMDL) prioritization.

    Science.gov (United States)

    Hall, Robert K; Guiliano, David; Swanson, Sherman; Philbin, Michael J; Lin, John; Aron, Joan L; Schafer, Robin J; Heggem, Daniel T

    2014-04-01

    Prioritizing total maximum daily load (TMDL) development starts by considering the scope and severity of water pollution and risks to public health and aquatic life. Methodology using quantitative assessments of in-stream water quality is appropriate and effective for point source (PS) dominated discharge, but less so in watersheds with mostly nonpoint source (NPS) related impairments. For NPSs, prioritization in TMDL development and implementation of associated best management practices should focus on restoration of ecosystem physical functions, including how restoration effectiveness depends on design, maintenance and placement within the watershed. To refine the approach to TMDL development, regulators and stakeholders must first ask if the watershed, or ecosystem, is at risk of losing riparian or other ecologically based physical attributes and processes. If so, the next step is an assessment of the spatial arrangement of functionality with a focus on the at-risk areas that could be lost, or could, with some help, regain functions. Evaluating stream and wetland riparian function has advantages over the traditional means of water quality and biological assessments for NPS TMDL development. Understanding how an ecosystem functions enables stakeholders and regulators to determine the severity of problem(s), identify source(s) of impairment, and predict and avoid a decline in water quality. The Upper Reese River, Nevada, provides an example of water quality impairment caused by NPS pollution. In this river basin, stream and wetland riparian proper functioning condition (PFC) protocol, water quality data, and remote sensing imagery were used to identify sediment sources, transport, distribution, and its impact on water quality and aquatic resources. This study found that assessments of ecological function could be used to generate leading (early) indicators of water quality degradation for targeting pollution control measures, while traditional in-stream water

  19. Maximum surface level and temperature histories for Hanford waste tanks

    International Nuclear Information System (INIS)

    Flanagan, B.D.; Ha, N.D.; Huisingh, J.S.

    1994-01-01

    Radioactive defense waste resulting from the chemical processing of spent nuclear fuel has been accumulating at the Hanford Site since 1944. This waste is stored in underground waste-storage tanks. The Hanford Site Tank Farm Facilities Interim Safety Basis (ISB) provides a ready reference to the safety envelope for applicable tank farm facilities and installations. During preparation of the ISB, tank structural integrity concerns were identified as a key element in defining the safety envelope. These concerns, along with several deficiencies in the technical bases associated with the structural integrity issues and the corresponding operational limits/controls specified for conduct of normal tank farm operations are documented in the ISB. Consequently, a plan was initiated to upgrade the safety envelope technical bases by conducting Accelerated Safety Analyses-Phase 1 (ASA-Phase 1) sensitivity studies and additional structural evaluations. The purpose of this report is to facilitate the ASA-Phase 1 studies and future analyses of the single-shell tanks (SSTs) and double-shell tanks (DSTs) by compiling a quantitative summary of some of the past operating conditions the tanks have experienced during their existence. This report documents the available summaries of recorded maximum surface levels and maximum waste temperatures and references other sources for more specific data

  20. Impact of soil moisture on extreme maximum temperatures in Europe

    Directory of Open Access Journals (Sweden)

    Kirien Whan

    2015-09-01

    Full Text Available Land-atmosphere interactions play an important role for hot temperature extremes in Europe. Dry soils may amplify such extremes through feedbacks with evapotranspiration. While previous observational studies generally focused on the relationship between precipitation deficits and the number of hot days, we investigate here the influence of soil moisture (SM on summer monthly maximum temperatures (TXx using water balance model-based SM estimates (driven with observations and temperature observations. Generalized extreme value distributions are fitted to TXx using SM as a covariate. We identify a negative relationship between SM and TXx, whereby a 100 mm decrease in model-based SM is associated with a 1.6 °C increase in TXx in Southern-Central and Southeastern Europe. Dry SM conditions result in a 2–4 °C increase in the 20-year return value of TXx compared to wet conditions in these two regions. In contrast with SM impacts on the number of hot days (NHD, where low and high surface-moisture conditions lead to different variability, we find a mostly linear dependency of the 20-year return value on surface-moisture conditions. We attribute this difference to the non-linear relationship between TXx and NHD that stems from the threshold-based calculation of NHD. Furthermore the employed SM data and the Standardized Precipitation Index (SPI are only weakly correlated in the investigated regions, highlighting the importance of evapotranspiration and runoff for resulting SM. Finally, in a case study for the hot 2003 summer we illustrate that if 2003 spring conditions in Southern-Central Europe had been as dry as in the more recent 2011 event, temperature extremes in summer would have been higher by about 1 °C, further enhancing the already extreme conditions which prevailed in that year.

  1. New results on the mid-latitude midnight temperature maximum

    Science.gov (United States)

    Mesquita, Rafael L. A.; Meriwether, John W.; Makela, Jonathan J.; Fisher, Daniel J.; Harding, Brian J.; Sanders, Samuel C.; Tesema, Fasil; Ridley, Aaron J.

    2018-04-01

    Fabry-Perot interferometer (FPI) measurements of thermospheric temperatures and winds show the detection and successful determination of the latitudinal distribution of the midnight temperature maximum (MTM) in the continental mid-eastern United States. These results were obtained through the operation of the five FPI observatories in the North American Thermosphere Ionosphere Observing Network (NATION) located at the Pisgah Astronomic Research Institute (PAR) (35.2° N, 82.8° W), Virginia Tech (VTI) (37.2° N, 80.4° W), Eastern Kentucky University (EKU) (37.8° N, 84.3° W), Urbana-Champaign (UAO) (40.2° N, 88.2° W), and Ann Arbor (ANN) (42.3° N, 83.8° W). A new approach for analyzing the MTM phenomenon is developed, which features the combination of a method of harmonic thermal background removal followed by a 2-D inversion algorithm to generate sequential 2-D temperature residual maps at 30 min intervals. The simultaneous study of the temperature data from these FPI stations represents a novel analysis of the MTM and its large-scale latitudinal and longitudinal structure. The major finding in examining these maps is the frequent detection of a secondary MTM peak occurring during the early evening hours, nearly 4.5 h prior to the timing of the primary MTM peak that generally appears after midnight. The analysis of these observations shows a strong night-to-night variability for this double-peaked MTM structure. A statistical study of the behavior of the MTM events was carried out to determine the extent of this variability with regard to the seasonal and latitudinal dependence. The results show the presence of the MTM peak(s) in 106 out of the 472 determinable nights (when the MTM presence, or lack thereof, can be determined with certainty in the data set) selected for analysis (22 %) out of the total of 846 nights available. The MTM feature is seen to appear slightly more often during the summer (27 %), followed by fall (22 %), winter (20 %), and spring

  2. 76 FR 549 - Clean Water Act Section 303(d): Notice for the Establishment of the Total Maximum Daily Load...

    Science.gov (United States)

    2011-01-05

    ... Establishment of the Total Maximum Daily Load (TMDL) for the Chesapeake Bay AGENCY: Environmental Protection... that when met will assure the attainment and maintenance of all applicable water quality standards for... productive estuaries in the world. Despite significant efforts by federal, state, and local governments and...

  3. 40 CFR 130.7 - Total maximum daily loads (TMDL) and individual water quality-based effluent limitations.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Total maximum daily loads (TMDL) and individual water quality-based effluent limitations. 130.7 Section 130.7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.7 Total...

  4. Prediction of Daily Global Solar Radiation by Daily Temperatures and Artificial Neural Networks in Different Climates

    Directory of Open Access Journals (Sweden)

    S. I Saedi

    2018-03-01

    Full Text Available Introduction Global solar radiation is the sum of direct, diffuse, and reflected solar radiation. Weather forecasts, agricultural practices, and solar equipment development are three major fields that need proper information about solar radiation. Furthermore, sun in regarded as a huge source of renewable and clean energy which can be used in numerous applications to get rid of environmental impacts of non-renewable fossil fuels. Therefore, easy and fast estimation of daily global solar radiation would play an effective role is these affairs. Materials and Methods This study aimed at predicting the daily global solar radiation by means of artificial neural network (ANN method, based on easy-to-gain weather data i.e. daily mean, minimum and maximum temperatures. Having a variety of climates with long-term valid weather data, Washington State, located at the northwestern part of USA was chosen for this purpose. It has a total number of 19 weather stations to cover all the State climates. First, a station with the largest number of valid historical weather data (Lind was chosen to develop, validate, and test different ANN models. Three training algorithms i.e. Levenberg – Marquardt (LM, Scaled Conjugate Gradient (SCG, and Bayesian regularization (BR were tested in one and two hidden layer networks each with up to 20 neurons to derive six best architectures. R, RMSE, MAPE, and scatter plots were considered to evaluate each network in all steps. In order to investigate the generalizability of the best six models, they were tested in other Washington State weather stations. The most accurate and general models was evaluated in an Iran sample weather station which was chosen to be Mashhad. Results and Discussion The variation of MSE for the three training functions in one hidden layer models for Lind station indicated that SCG converged weights and biases in shorter time than LM, and LM did that faster than BR. It means that SCG provided the fastest

  5. United States Historical Climatology Network Daily Temperature and Precipitation Data (1871-1997)

    Energy Technology Data Exchange (ETDEWEB)

    Easterling, D.R.

    2002-10-28

    This document describes a database containing daily observations of maximum and minimum temperature, precipitation amount, snowfall amount, and snow depth from 1062 observing stations across the contiguous US. This database is an expansion and update of the original 138-station database previously released by the Carbon Dioxide Information Analysis Center (CDIAC) as CDIAC numeric data package NDP-042. These 1062 stations are a subset of the 1221-station US Historical Climatology Network (HCN), a monthly database compiled by the National Climatic Data Center (Asheville, North Carolina) that has been widely used in analyzing US climate. Data from 1050 of these daily records extend into the 1990s, while 990 of these extend through 1997. Most station records are essentially complete for at least 40 years; the latest beginning year of record is 1948. Records from 158 stations begin prior to 1900, with that of Charleston, South Carolina beginning the earliest (1871). The daily resolution of these data makes them extremely valuable for studies attempting to detect and monitor long-term climatic changes on a regional scale. Studies using daily data may be able to detect changes in regional climate that would not be apparent from analysis of monthly temperature and precipitation data. Such studies may include analyses of trends in maximum and minimum temperatures, temperature extremes, daily temperature range, precipitation ''event size'' frequency, and the magnitude and duration of wet and dry periods. The data are also valuable in areas such as regional climate model validation and climate change impact assessment. This database is available free of charge from CDIAC as a numeric data package (NDP).

  6. Trends and variability of daily temperature extremes during 1960-2012 in the Yangtze River Basin, China

    Science.gov (United States)

    The variability of temperature extremes has been the focus of attention during the past few decades, and may exert a great influence on the global hydrologic cycle and energy balance through thermal forcing. Based on daily minimum and maximum temperature observed by the China Meteorological Administ...

  7. Assessment of extreme value distributions for maximum temperature in the Mediterranean area

    Science.gov (United States)

    Beck, Alexander; Hertig, Elke; Jacobeit, Jucundus

    2015-04-01

    Extreme maximum temperatures highly affect the natural as well as the societal environment Heat stress has great effects on flora, fauna and humans and culminates in heat related morbidity and mortality. Agriculture and different industries are severely affected by extreme air temperatures. Even more under climate change conditions, it is necessary to detect potential hazards which arise from changes in the distributional parameters of extreme values, and this is especially relevant for the Mediterranean region which is characterized as a climate change hot spot. Therefore statistical approaches are developed to estimate these parameters with a focus on non-stationarities emerging in the relationship between regional climate variables and their large-scale predictors like sea level pressure, geopotential heights, atmospheric temperatures and relative humidity. Gridded maximum temperature data from the daily E-OBS dataset (Haylock et al., 2008) with a spatial resolution of 0.25° x 0.25° from January 1950 until December 2012 are the predictands for the present analyses. A s-mode principal component analysis (PCA) has been performed in order to reduce data dimension and to retain different regions of similar maximum temperature variability. The grid box with the highest PC-loading represents the corresponding principal component. A central part of the analyses is the model development for temperature extremes under the use of extreme value statistics. A combined model is derived consisting of a Generalized Pareto Distribution (GPD) model and a quantile regression (QR) model which determines the GPD location parameters. The QR model as well as the scale parameters of the GPD model are conditioned by various large-scale predictor variables. In order to account for potential non-stationarities in the predictors-temperature relationships, a special calibration and validation scheme is applied, respectively. Haylock, M. R., N. Hofstra, A. M. G. Klein Tank, E. J. Klok, P

  8. Spatial variability of maximum annual daily rain under different return periods at the Rio de Janeiro state, Brazil

    Directory of Open Access Journals (Sweden)

    Roriz Luciano Machado

    2010-01-01

    Full Text Available Knowledge of maximum daily rain and its return period in a region is an important tool to soil conservation, hydraulic engineering and preservation of road projects. The objective of this work was to evaluate the spatial variability of maximum annual daily rain considering different return periods, at the Rio de Janeiro State. The data set was composed by historical series of 119 rain gauges, for 36 years of observation. The return periods, estimated by Gumbel distribution, were 2, 5, 10, 25, 50 and 100 years. The spatial variability of the return periods was evaluated by semivariograms. All the return periods presented spatial dependence, with exponential and spherical model fitted to the experimental semivariograms. The parameters of the fitted semivariogram model were very similar; however, it was observed the presence of higher nugget effects for semivariograms of longer return periods. The values of maximum annual daily average rain in all the return periods increased from north to south and from countryside to the coast. In the region between the Serra do Mar range and the coast, besides increasing in magnitude, an increase in the spatial variability of the studied values with increasing return periods was also noticed. This behavior is probably caused by the orographic effect. The interpolated maps were more erratic for higher return periods and at the North, Northeast and Coastal Plain regions, in which the installation of new pluviometric stations are recommended.

  9. Investigation of Breakpoint and Trend of Daily Air Temperature Range for Mashhad, Iran

    Directory of Open Access Journals (Sweden)

    shideh shams

    2017-01-01

    Full Text Available Introduction: Air temperature as an important climatic factor can influence variability and distribution of other climatic parameters. Therefore, tracking the changes in air temperature is a popular procedure in climate change studies.. According to the national academy in the last decade, global temperature has raised 0.4 to 0.8⁰C. Instrumental records show that, with the exception of 1998, the 10 warmest year (during the last 150 years, occurred since 2000, and 2014 was the warmest year. Investigation of maximum and minimum air temperature temporal trend indicates that these two parameters behave differently over time. It has been shown that the minimum air temperature raises noticeably more than the maximum air temperature, which causes a reduction in the difference of maximum and minimum daily air temperature (daily temperature range, DTR. There are several factors that have an influence on reducing DTR such as: Urban development, farms’ irrigation and desertification. It has been shown that DTR reduction occurs mostly during winter and is less frequent during summer, which shows the season’s effect on the temperature trend. Considering the significant effects of the climatological factors on economic and agricultural management issues, the aim of this study is to investigate daily air temperature range for yearly, seasonal and monthly time scales, using available statistical methods. Materials and Methods: Daily maximum and minimum air temperature records (from 1950 to 2010 were obtained from Mashhad Meteorological Organization. In order to control the quality of daily Tmax and Tmin data, four different types of quality controls were applied. First of all, gross errors were checked. In this step maximum and minimum air temperature data exceeding unlikely air temperature values, were eliminated from data series. Second, data tolerance was checked by searching for periods longer than a certain number of consecutive days with exactly the

  10. Investigation on maximum transition temperature of phonon mediated superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Fusui, L; Yi, S; Yinlong, S [Physics Department, Beijing University (CN)

    1989-05-01

    Three model effective phonon spectra are proposed to get plots of {ital T}{sub {ital c}}-{omega} adn {lambda}-{omega}. It can be concluded that there is no maximum limit of {ital T}{sub {ital c}} in phonon mediated superconductivity for reasonable values of {lambda}. The importance of high frequency LO phonon is also emphasized. Some discussions on high {ital T}{sub {ital c}} are given.

  11. Maximum weight of greenhouse effect to global temperature variation

    International Nuclear Information System (INIS)

    Sun, Xian; Jiang, Chuangye

    2007-01-01

    Full text: The global average temperature has risen by 0.74 0 C since the late 19th century. Many studies have concluded that the observed warming in the last 50 years may be attributed to increasing concentrations of anthropogenic greenhouse gases. But some scientists have a different point of view. Global climate change is affected not only by anthropogenic activities, but also constraints in climate system natural factors. How much is the influencing weight of C02's greenhouse effects to the global temperature variation? Does global climate continue warming or decreasing in the next 20 years? They are two hot spots in global climate change. The multi-timescales analysis method - Empirical mode decomposition (EMD) is used to diagnose global annual mean air temperature dataset for land surface provided by IPCC and atmospheric content of C02 provided by the Carbon Dioxide Information Analysis Center (CDIAC) during 1881-2002. The results show that: Global temperature variation contains quasi-periodic oscillations on four timescales (3 yr, 6 yr, 20 yr and 60 yr, respectively) and a century-scale warming trend. The variance contribution of IMF1-IMF4 and trend is 17.55%, 11.34%, 6.77%, 24.15% and 40.19%, respectively. The trend and quasi-60 yr oscillation of temperature variation are the most prominent; C02's greenhouse effect on global temperature variation is mainly century-scale trend. The contribution of C02 concentration to global temperature variability is not more than 40.19%, whereas 59.81% contribution to global temperature variation is non-greenhouse effect. Therefore, it is necessary to re-study the dominant factors that induce the global climate change; It has been noticed that on the periods of 20 yr and 60 yr oscillation, the global temperature is beginning to decreased in the next 20 years. If the present C02 concentration is maintained, the greenhouse effect will be too small to countercheck the natural variation in global climate cooling in the next 20

  12. A Comparative Frequency Analysis of Maximum Daily Rainfall for a SE Asian Region under Current and Future Climate Conditions

    Directory of Open Access Journals (Sweden)

    Velautham Daksiya

    2017-01-01

    Full Text Available The impact of changing climate on the frequency of daily rainfall extremes in Jakarta, Indonesia, is analysed and quantified. The study used three different models to assess the changes in rainfall characteristics. The first method involves the use of the weather generator LARS-WG to quantify changes between historical and future daily rainfall maxima. The second approach consists of statistically downscaling general circulation model (GCM output based on historical empirical relationships between GCM output and station rainfall. Lastly, the study employed recent statistically downscaled global gridded rainfall projections to characterize climate change impact rainfall structure. Both annual and seasonal rainfall extremes are studied. The results show significant changes in annual maximum daily rainfall, with an average increase as high as 20% in the 100-year return period daily rainfall. The uncertainty arising from the use of different GCMs was found to be much larger than the uncertainty from the emission scenarios. Furthermore, the annual and wet seasonal analyses exhibit similar behaviors with increased future rainfall, but the dry season is not consistent across the models. The GCM uncertainty is larger in the dry season compared to annual and wet season.

  13. A European daily high-resolution gridded dataset of surface temperature and precipitation for 1950-2006

    NARCIS (Netherlands)

    Haylock, M.; Hofstra, N.; Klein Tank, A.; Klok, L.; Jones, P.; New, M.

    2008-01-01

    We present a European land-only daily high-resolution gridded data set for precipitation and minimum, maximum, and mean surface temperature for the period 1950–2006. This data set improves on previous products in its spatial resolution and extent, time period, number of contributing stations, and

  14. Estimation of Daily Air Temperature Based on MODIS Land Surface Temperature Products over the Corn Belt in the US

    Directory of Open Access Journals (Sweden)

    Linglin Zeng

    2015-01-01

    Full Text Available Air temperature (Ta is a key input in a wide range of agroclimatic applications. Moderate Resolution Imaging Spectroradiometer (MODIS Ts (Land Surface Temperature (LST products are widely used to estimate daily Ta. However, only daytime LST (Ts-day or nighttime LST (Ts-night data have been used to estimate Tmax/Tmin (daily maximum or minimum air temperature, respectively. The relationship between Tmax and Ts-night, and the one between Tmin and Ts-day has not been studied. In this study, both the ability of Ts-night data to estimate Tmax and the ability of Ts-day data to estimate Tmin were tested and studied in the Corn Belt during the growing season (May–September from 2008 to 2012, using MODIS daily LST products from both Terra and Aqua. The results show that using Ts-night for estimating Tmax could result in a higher accuracy than using Ts-day for a similar estimate. Combining Ts-day and Ts-night, the estimation of Tmax was improved by 0.19–1.85, 0.37–1.12 and 0.26–0.93 °C for crops, deciduous forest and developed areas, respectively, when compared with using only Ts-day or Ts-night data. The main factors influencing the Ta estimation errors spatially and temporally were analyzed and discussed, such as satellite overpassing time, air masses, irrigation, etc.

  15. Evaluation and projection of daily temperature percentiles from statistical and dynamical downscaling methods

    Directory of Open Access Journals (Sweden)

    A. Casanueva

    2013-08-01

    Full Text Available The study of extreme events has become of great interest in recent years due to their direct impact on society. Extremes are usually evaluated by using extreme indicators, based on order statistics on the tail of the probability distribution function (typically percentiles. In this study, we focus on the tail of the distribution of daily maximum and minimum temperatures. For this purpose, we analyse high (95th and low (5th percentiles in daily maximum and minimum temperatures on the Iberian Peninsula, respectively, derived from different downscaling methods (statistical and dynamical. First, we analyse the performance of reanalysis-driven downscaling methods in present climate conditions. The comparison among the different methods is performed in terms of the bias of seasonal percentiles, considering as observations the public gridded data sets E-OBS and Spain02, and obtaining an estimation of both the mean and spatial percentile errors. Secondly, we analyse the increments of future percentile projections under the SRES A1B scenario and compare them with those corresponding to the mean temperature, showing that their relative importance depends on the method, and stressing the need to consider an ensemble of methodologies.

  16. Decadal trends in Red Sea maximum surface temperature.

    Science.gov (United States)

    Chaidez, V; Dreano, D; Agusti, S; Duarte, C M; Hoteit, I

    2017-08-15

    Ocean warming is a major consequence of climate change, with the surface of the ocean having warmed by 0.11 °C decade -1 over the last 50 years and is estimated to continue to warm by an additional 0.6 - 2.0 °C before the end of the century 1 . However, there is considerable variability in the rates experienced by different ocean regions, so understanding regional trends is important to inform on possible stresses for marine organisms, particularly in warm seas where organisms may be already operating in the high end of their thermal tolerance. Although the Red Sea is one of the warmest ecosystems on earth, its historical warming trends and thermal evolution remain largely understudied. We characterized the Red Sea's thermal regimes at the basin scale, with a focus on the spatial distribution and changes over time of sea surface temperature maxima, using remotely sensed sea surface temperature data from 1982 - 2015. The overall rate of warming for the Red Sea is 0.17 ± 0.07 °C decade -1 , while the northern Red Sea is warming between 0.40 and 0.45 °C decade -1 , all exceeding the global rate. Our findings show that the Red Sea is fast warming, which may in the future challenge its organisms and communities.

  17. Decadal trends in Red Sea maximum surface temperature

    KAUST Repository

    Chaidez, Veronica

    2017-08-09

    Ocean warming is a major consequence of climate change, with the surface of the ocean having warmed by 0.11 °C decade-1 over the last 50 years and is estimated to continue to warm by an additional 0.6 - 2.0 °C before the end of the century1. However, there is considerable variability in the rates experienced by different ocean regions, so understanding regional trends is important to inform on possible stresses for marine organisms, particularly in warm seas where organisms may be already operating in the high end of their thermal tolerance. Although the Red Sea is one of the warmest ecosystems on earth, its historical warming trends and thermal evolution remain largely understudied. We characterized the Red Sea\\'s thermal regimes at the basin scale, with a focus on the spatial distribution and changes over time of sea surface temperature maxima, using remotely sensed sea surface temperature data from 1982 - 2015. The overall rate of warming for the Red Sea is 0.17 ± 0.07 °C decade-1, while the northern Red Sea is warming between 0.40 and 0.45 °C decade-1, all exceeding the global rate. Our findings show that the Red Sea is fast warming, which may in the future challenge its organisms and communities.

  18. Decadal trends in Red Sea maximum surface temperature

    KAUST Repository

    Chaidez, Veronica; Dreano, Denis; Agusti, Susana; Duarte, Carlos M.; Hoteit, Ibrahim

    2017-01-01

    Ocean warming is a major consequence of climate change, with the surface of the ocean having warmed by 0.11 °C decade-1 over the last 50 years and is estimated to continue to warm by an additional 0.6 - 2.0 °C before the end of the century1. However, there is considerable variability in the rates experienced by different ocean regions, so understanding regional trends is important to inform on possible stresses for marine organisms, particularly in warm seas where organisms may be already operating in the high end of their thermal tolerance. Although the Red Sea is one of the warmest ecosystems on earth, its historical warming trends and thermal evolution remain largely understudied. We characterized the Red Sea's thermal regimes at the basin scale, with a focus on the spatial distribution and changes over time of sea surface temperature maxima, using remotely sensed sea surface temperature data from 1982 - 2015. The overall rate of warming for the Red Sea is 0.17 ± 0.07 °C decade-1, while the northern Red Sea is warming between 0.40 and 0.45 °C decade-1, all exceeding the global rate. Our findings show that the Red Sea is fast warming, which may in the future challenge its organisms and communities.

  19. Waste Load Allocation Based on Total Maximum Daily Load Approach Using the Charged System Search (CSS Algorithm

    Directory of Open Access Journals (Sweden)

    Elham Faraji

    2016-03-01

    Full Text Available In this research, the capability of a charged system search algorithm (CSS in handling water management optimization problems is investigated. First, two complex mathematical problems are solved by CSS and the results are compared with those obtained from other metaheuristic algorithms. In the last step, the optimization model developed by the CSS algorithm is applied to the waste load allocation in rivers based on the total maximum daily load (TMDL concept. The results are presented in Tables and Figures for easy comparison. The study indicates the superiority of the CSS algorithm in terms of its speed and performance over the other metaheuristic algorithms while its precision in water management optimization problems is verified.

  20. ANALYSIS OF THE STATISTICAL BEHAVIOUR OF DAILY MAXIMUM AND MONTHLY AVERAGE RAINFALL ALONG WITH RAINY DAYS VARIATION IN SYLHET, BANGLADESH

    Directory of Open Access Journals (Sweden)

    G. M. J. HASAN

    2014-10-01

    Full Text Available Climate, one of the major controlling factors for well-being of the inhabitants in the world, has been changing in accordance with the natural forcing and manmade activities. Bangladesh, the most densely populated countries in the world is under threat due to climate change caused by excessive use or abuse of ecology and natural resources. This study checks the rainfall patterns and their associated changes in the north-eastern part of Bangladesh mainly Sylhet city through statistical analysis of daily rainfall data during the period of 1957 - 2006. It has been observed that a good correlation exists between the monthly mean and daily maximum rainfall. A linear regression analysis of the data is found to be significant for all the months. Some key statistical parameters like the mean values of Coefficient of Variability (CV, Relative Variability (RV and Percentage Inter-annual Variability (PIV have been studied and found to be at variance. Monthly, yearly and seasonal variation of rainy days also analysed to check for any significant changes.

  1. Spatio-Temporal Convergence of Maximum Daily Light-Use Efficiency Based on Radiation Absorption by Canopy Chlorophyll

    Science.gov (United States)

    Zhang, Yao; Xiao, Xiangming; Wolf, Sebastian; Wu, Jin; Wu, Xiaocui; Gioli, Beniamino; Wohlfahrt, Georg; Cescatti, Alessandro; van der Tol, Christiaan; Zhou, Sha; Gough, Christopher M.; Gentine, Pierre; Zhang, Yongguang; Steinbrecher, Rainer; Ardö, Jonas

    2018-04-01

    Light-use efficiency (LUE), which quantifies the plants' efficiency in utilizing solar radiation for photosynthetic carbon fixation, is an important factor for gross primary production estimation. Here we use satellite-based solar-induced chlorophyll fluorescence as a proxy for photosynthetically active radiation absorbed by chlorophyll (APARchl) and derive an estimation of the fraction of APARchl (fPARchl) from four remotely sensed vegetation indicators. By comparing maximum LUE estimated at different scales from 127 eddy flux sites, we found that the maximum daily LUE based on PAR absorption by canopy chlorophyll (ɛmaxchl), unlike other expressions of LUE, tends to converge across biome types. The photosynthetic seasonality in tropical forests can also be tracked by the change of fPARchl, suggesting the corresponding ɛmaxchl to have less seasonal variation. This spatio-temporal convergence of LUE derived from fPARchl can be used to build simple but robust gross primary production models and to better constrain process-based models.

  2. Development of total maximum daily loads for bacteria impaired watershed using the comprehensive hydrology and water quality simulation model.

    Science.gov (United States)

    Kim, Sang M; Brannan, Kevin M; Zeckoski, Rebecca W; Benham, Brian L

    2014-01-01

    The objective of this study was to develop bacteria total maximum daily loads (TMDLs) for the Hardware River watershed in the Commonwealth of Virginia, USA. The TMDL program is an integrated watershed management approach required by the Clean Water Act. The TMDLs were developed to meet Virginia's water quality standard for bacteria at the time, which stated that the calendar-month geometric mean concentration of Escherichia coli should not exceed 126 cfu/100 mL, and that no single sample should exceed a concentration of 235 cfu/100 mL. The bacteria impairment TMDLs were developed using the Hydrological Simulation Program-FORTRAN (HSPF). The hydrology and water quality components of HSPF were calibrated and validated using data from the Hardware River watershed to ensure that the model adequately simulated runoff and bacteria concentrations. The calibrated and validated HSPF model was used to estimate the contributions from the various bacteria sources in the Hardware River watershed to the in-stream concentration. Bacteria loads were estimated through an extensive source characterization process. Simulation results for existing conditions indicated that the majority of the bacteria came from livestock and wildlife direct deposits and pervious lands. Different source reduction scenarios were evaluated to identify scenarios that meet both the geometric mean and single sample maximum E. coli criteria with zero violations. The resulting scenarios required extreme and impractical reductions from livestock and wildlife sources. Results from studies similar to this across Virginia partially contributed to a reconsideration of the standard's applicability to TMDL development.

  3. Mapping Daily and Maximum Flood Extents at 90-m Resolution During Hurricanes Harvey and Irma Using Passive Microwave Remote Sensing

    Science.gov (United States)

    Galantowicz, J. F.; Picton, J.; Root, B.

    2017-12-01

    Passive microwave remote sensing can provided a distinct perspective on flood events by virtue of wide sensor fields of view, frequent observations from multiple satellites, and sensitivity through clouds and vegetation. During Hurricanes Harvey and Irma, we used AMSR2 (Advanced Microwave Scanning Radiometer 2, JAXA) data to map flood extents starting from the first post-storm rain-free sensor passes. Our standard flood mapping algorithm (FloodScan) derives flooded fraction from 22-km microwave data (AMSR2 or NASA's GMI) in near real time and downscales it to 90-m resolution using a database built from topography, hydrology, and Global Surface Water Explorer data and normalized to microwave data footprint shapes. During Harvey and Irma we tested experimental versions of the algorithm designed to map the maximum post-storm flood extent rapidly and made a variety of map products available immediately for use in storm monitoring and response. The maps have several unique features including spanning the entire storm-affected area and providing multiple post-storm updates as flood water shifted and receded. From the daily maps we derived secondary products such as flood duration, maximum flood extent (Figure 1), and flood depth. In this presentation, we describe flood extent evolution, maximum extent, and local details as detected by the FloodScan algorithm in the wake of Harvey and Irma. We compare FloodScan results to other available flood mapping resources, note observed shortcomings, and describe improvements made in response. We also discuss how best-estimate maps could be updated in near real time by merging FloodScan products and data from other remote sensing systems and hydrological models.

  4. Experimental application of the "total maximum daily load" approach as a tool for WFD implementation in temporary rivers

    Science.gov (United States)

    Lo Porto, A.; De Girolamo, A. M.; Santese, G.

    2012-04-01

    In this presentation, the experience gained in the first experimental use in the UE (as far as we know) of the concept and methodology of the "Total Maximum Daily Load" (TMDL) is reported. The TMDL is an instrument required in the Clean Water Act in U.S.A for the management of water bodies classified impaired. The TMDL calculates the maximum amount of a pollutant that a waterbody can receive and still safely meet water quality standards. It permits to establish a scientifically-based strategy on the regulation of the emission loads control according to the characteristic of the watershed/basin. The implementation of the TMDL is a process analogous to the Programmes of Measures required by the WFD, the main difference being the analysis of the linkage between loads of different sources and the water quality of water bodies. The TMDL calculation was used in this study for the Candelaro River, a temporary Italian river, classified impaired in the first steps of the implementation of the WFD. A specific approach based on the "Load Duration Curves" was adopted for the calculation of nutrient TMDLs due to the more robust approach specific for rivers featuring large changes in river flow compared to the classic approach based on average long term flow conditions. This methodology permits to establish the maximum allowable loads across to the different flow conditions of a river. This methodology enabled: to evaluate the allowable loading of a water body; to identify the sources and estimate their loads; to estimate the total loading that the water bodies can receives meeting the water quality standards established; to link the effects of point and diffuse sources on the water quality status and finally to individuate the reduction necessary for each type of sources. The loads reductions were calculated for nitrate, total phosphorus and ammonia. The simulated measures showed a remarkable ability to reduce the pollutants for the Candelaro River. The use of the Soil and

  5. Impacts of Land Cover and Seasonal Variation on Maximum Air Temperature Estimation Using MODIS Imagery

    Directory of Open Access Journals (Sweden)

    Yulin Cai

    2017-03-01

    Full Text Available Daily maximum surface air temperature (Tamax is a crucial factor for understanding complex land surface processes under rapid climate change. Remote detection of Tamax has widely relied on the empirical relationship between air temperature and land surface temperature (LST, a product derived from remote sensing. However, little is known about how such a relationship is affected by the high heterogeneity in landscapes and dynamics in seasonality. This study aims to advance our understanding of the roles of land cover and seasonal variation in the estimation of Tamax using the MODIS (Moderate Resolution Imaging Spectroradiometer LST product. We developed statistical models to link Tamax and LST in the middle and lower reaches of the Yangtze River in China for five major land-cover types (i.e., forest, shrub, water, impervious surface, cropland, and grassland and two seasons (i.e., growing season and non-growing season. Results show that the performance of modeling the Tamax-LST relationship was highly dependent on land cover and seasonal variation. Estimating Tamax over grasslands and water bodies achieved superior performance; while uncertainties were high over forested lands that contained extensive heterogeneity in species types, plant structure, and topography. We further found that all the land-cover specific models developed for the plant non-growing season outperformed the corresponding models developed for the growing season. Discrepancies in model performance mainly occurred in the vegetated areas (forest, cropland, and shrub, suggesting an important role of plant phenology in defining the statistical relationship between Tamax and LST. For impervious surfaces, the challenge of capturing the high spatial heterogeneity in urban settings using the low-resolution MODIS data made Tamax estimation a difficult task, which was especially true in the growing season.

  6. Stochastic modelling of the monthly average maximum and minimum temperature patterns in India 1981-2015

    Science.gov (United States)

    Narasimha Murthy, K. V.; Saravana, R.; Vijaya Kumar, K.

    2018-04-01

    The paper investigates the stochastic modelling and forecasting of monthly average maximum and minimum temperature patterns through suitable seasonal auto regressive integrated moving average (SARIMA) model for the period 1981-2015 in India. The variations and distributions of monthly maximum and minimum temperatures are analyzed through Box plots and cumulative distribution functions. The time series plot indicates that the maximum temperature series contain sharp peaks in almost all the years, while it is not true for the minimum temperature series, so both the series are modelled separately. The possible SARIMA model has been chosen based on observing autocorrelation function (ACF), partial autocorrelation function (PACF), and inverse autocorrelation function (IACF) of the logarithmic transformed temperature series. The SARIMA (1, 0, 0) × (0, 1, 1)12 model is selected for monthly average maximum and minimum temperature series based on minimum Bayesian information criteria. The model parameters are obtained using maximum-likelihood method with the help of standard error of residuals. The adequacy of the selected model is determined using correlation diagnostic checking through ACF, PACF, IACF, and p values of Ljung-Box test statistic of residuals and using normal diagnostic checking through the kernel and normal density curves of histogram and Q-Q plot. Finally, the forecasting of monthly maximum and minimum temperature patterns of India for the next 3 years has been noticed with the help of selected model.

  7. Effects of temperature and photoperiod on daily activity rhythms of Lutzomyia longipalpis (Diptera: Psychodidae).

    Science.gov (United States)

    Rivas, Gustavo B S; de Souza, Nataly Araujo; Peixoto, Alexandre A; Bruno, Rafaela V

    2014-06-19

    Insect vectors have been established as models in Chronobiology for many decades, and recent studies have demonstrated a close relationship between the circadian clock machinery, daily rhythms of activity and vectorial capacity. Lutzomyia longipalpis, the primary vector of Leishmania (Leishmania) infantum in the New World, is reported to have crepuscular/nocturnal activity in the wild. However, most of these studies applied hourly CDC trap captures, which is a good indicative of L. longipalpis behaviour, but has limited accuracy due to the inability to record the daily activity of a single insect during consecutive days. In addition, very little is known about the activity pattern of L. longipalpis under seasonal variations of average temperature and day length in controlled laboratory conditions. We recorded the locomotor activity of L. longipalpis males under different artificial regimes of temperature and photoperiod. First, in order to test the effects of temperature on the activity, sandflies were submitted to regimes of light/dark cycles similar to the equinox photoperiod (LD 12:12) combined with different constant temperatures (20°C, 25°C and 30°C). In addition, we recorded sandfly locomotor activity under a mild constant temperature (25°C with different day length regimes: 8 hours, 12 hours and 16 hours). L. longipalpis exhibited more activity at night, initiating dusk-related activity (onset time) at higher rather than lower temperatures. In parallel, changes of photoperiod affected anticipation as well as all the patterns of activity (onset, peak and offset time). However, under LD 16:08, sandflies presented the earliest values of maximum peak and offset times, contrary to other regimes. Herein, we showed that light and temperature modulate L. longipalpis behaviour under controlled laboratory conditions, suggesting that sandflies might use environmental information to sustain their crepuscular/nocturnal activity, as well as other important aspects as

  8. New England observed and predicted Julian day of maximum growing season stream/river temperature points

    Data.gov (United States)

    U.S. Environmental Protection Agency — The shapefile contains points with associated observed and predicted Julian day of maximum growing season stream/river temperatures in New England based on a spatial...

  9. New England observed and predicted growing season maximum stream/river temperature points

    Data.gov (United States)

    U.S. Environmental Protection Agency — The shapefile contains points with associated observed and predicted growing season maximum stream/river temperatures in New England based on a spatial statistical...

  10. Measurement of the temperature of density maximum of water solutions using a convective flow technique

    OpenAIRE

    Cawley, M.F.; McGlynn, D.; Mooney, P.A.

    2006-01-01

    A technique is described which yields an accurate measurement of the temperature of density maximum of fluids which exhibit such anomalous behaviour. The method relies on the detection of changes in convective flow in a rectangular cavity containing the test fluid.The normal single-cell convection which occurs in the presence of a horizontal temperature gradient changes to a double cell configuration in the vicinity of the density maximum, and this transition manifests itself in changes in th...

  11. Near-Real-Time DMSP SSM/I-SSMIS Daily Polar Gridded Brightness Temperatures

    Data.gov (United States)

    National Aeronautics and Space Administration — The Near-Real-Time DMSP SSM/I-SSMIS Daily Polar Gridded Brightness Temperature product provides near-real-time brightness temperatures for both the Northern and...

  12. Using spatially detailed water-quality data and solute-transport modeling to improve support total maximum daily load development

    Science.gov (United States)

    Walton-Day, Katherine; Runkel, Robert L.; Kimball, Briant A.

    2012-01-01

    Spatially detailed mass-loading studies and solute-transport modeling using OTIS (One-dimensional Transport with Inflow and Storage) demonstrate how natural attenuation and loading from distinct and diffuse sources control stream water quality and affect load reductions predicted in total maximum daily loads (TMDLs). Mass-loading data collected during low-flow from Cement Creek (a low-pH, metal-rich stream because of natural and mining sources, and subject to TMDL requirements) were used to calibrate OTIS and showed spatially variable effects of natural attenuation (instream reactions) and loading from diffuse (groundwater) and distinct sources. OTIS simulations of the possible effects of TMDL-recommended remediation of mine sites showed less improvement to dissolved zinc load and concentration (14% decrease) than did the TMDL (53-63% decrease). The TMDL (1) assumed conservative transport, (2) accounted for loads removed by remediation by subtracting them from total load at the stream mouth, and (3) did not include diffuse-source loads. In OTIS, loads were reduced near their source; the resulting concentration was decreased by natural attenuation and increased by diffuse-source loads during downstream transport. Thus, by not including natural attenuation and loading from diffuse sources, the TMDL overestimated remediation effects at low flow. Use of the techniques presented herein could improve TMDLs by incorporating these processes during TMDL development.

  13. Recurrence quantification analysis of extremes of maximum and minimum temperature patterns for different climate scenarios in the Mesochora catchment in Central-Western Greece

    Science.gov (United States)

    Panagoulia, Dionysia; Vlahogianni, Eleni I.

    2018-06-01

    A methodological framework based on nonlinear recurrence analysis is proposed to examine the historical data evolution of extremes of maximum and minimum daily mean areal temperature patterns over time under different climate scenarios. The methodology is based on both historical data and atmospheric General Circulation Model (GCM) produced climate scenarios for the periods 1961-2000 and 2061-2100 which correspond to 1 × CO2 and 2 × CO2 scenarios. Historical data were derived from the actual daily observations coupled with atmospheric circulation patterns (CPs). The dynamics of the temperature was reconstructed in the phase-space from the time series of temperatures. The statistically comparing different temperature patterns were based on some discriminating statistics obtained by the Recurrence Quantification Analysis (RQA). Moreover, the bootstrap method of Schinkel et al. (2009) was adopted to calculate the confidence bounds of RQA parameters based on a structural preserving resampling. The overall methodology was implemented to the mountainous Mesochora catchment in Central-Western Greece. The results reveal substantial similarities between the historical maximum and minimum daily mean areal temperature statistical patterns and their confidence bounds, as well as the maximum and minimum temperature patterns in evolution under the 2 × CO2 scenario. A significant variability and non-stationary behaviour characterizes all climate series analyzed. Fundamental differences are produced from the historical and maximum 1 × CO2 scenarios, the maximum 1 × CO2 and minimum 1 × CO2 scenarios, as well as the confidence bounds for the two CO2 scenarios. The 2 × CO2 scenario reflects the strongest shifts in intensity, duration and frequency in temperature patterns. Such transitions can help the scientists and policy makers to understand the effects of extreme temperature changes on water resources, economic development, and health of ecosystems and hence to proceed to

  14. Review of revised Klamath River Total Maximum Daily Load models from Link River Dam to Keno Dam, Oregon

    Science.gov (United States)

    Rounds, Stewart A.; Sullivan, Annett B.

    2013-01-01

    Flow and water-quality models are being used to support the development of Total Maximum Daily Load (TMDL) plans for the Klamath River downstream of Upper Klamath Lake (UKL) in south-central Oregon. For riverine reaches, the RMA-2 and RMA-11 models were used, whereas the CE-QUAL-W2 model was used to simulate pooled reaches. The U.S. Geological Survey (USGS) was asked to review the most upstream of these models, from Link River Dam at the outlet of UKL downstream through the first pooled reach of the Klamath River from Lake Ewauna to Keno Dam. Previous versions of these models were reviewed in 2009 by USGS. Since that time, important revisions were made to correct several problems and address other issues. This review documents an assessment of the revised models, with emphasis on the model revisions and any remaining issues. The primary focus of this review is the 19.7-mile Lake Ewauna to Keno Dam reach of the Klamath River that was simulated with the CE-QUAL-W2 model. Water spends far more time in the Lake Ewauna to Keno Dam reach than in the 1-mile Link River reach that connects UKL to the Klamath River, and most of the critical reactions affecting water quality upstream of Keno Dam occur in that pooled reach. This model review includes assessments of years 2000 and 2002 current conditions scenarios, which were used to calibrate the model, as well as a natural conditions scenario that was used as the reference condition for the TMDL and was based on the 2000 flow conditions. The natural conditions scenario included the removal of Keno Dam, restoration of the Keno reef (a shallow spot that was removed when the dam was built), removal of all point-source inputs, and derivation of upstream boundary water-quality inputs from a previously developed UKL TMDL model. This review examined the details of the models, including model algorithms, parameter values, and boundary conditions; the review did not assess the draft Klamath River TMDL or the TMDL allocations

  15. Operational forecasting of daily temperatures in the Valencia Region. Part II: minimum temperatures in winter.

    Science.gov (United States)

    Gómez, I.; Estrela, M.

    2009-09-01

    Extreme temperature events have a great impact on human society. Knowledge of minimum temperatures during winter is very useful for both the general public and organisations whose workers have to operate in the open, e.g. railways, roadways, tourism, etc. Moreover, winter minimum temperatures are considered a parameter of interest and concern since persistent cold-waves can affect areas as diverse as public health, energy consumption, etc. Thus, an accurate forecasting of these temperatures could help to predict cold-wave conditions and permit the implementation of strategies aimed at minimizing the negative effects that low temperatures have on human health. The aim of this work is to evaluate the skill of the RAMS model in determining daily minimum temperatures during winter over the Valencia Region. For this, we have used the real-time configuration of this model currently running at the CEAM Foundation. To carry out the model verification process, we have analysed not only the global behaviour of the model for the whole Valencia Region, but also its behaviour for the individual stations distributed within this area. The study has been performed for the winter forecast period from 1 December 2007 - 31 March 2008. The results obtained are encouraging and indicate a good agreement between the observed and simulated minimum temperatures. Moreover, the model captures quite well the temperatures in the extreme cold episodes. Acknowledgement. This work was supported by "GRACCIE" (CSD2007-00067, Programa Consolider-Ingenio 2010), by the Spanish Ministerio de Educación y Ciencia, contract number CGL2005-03386/CLI, and by the Regional Government of Valencia Conselleria de Sanitat, contract "Simulación de las olas de calor e invasiones de frío y su regionalización en la Comunidad Valenciana" ("Heat wave and cold invasion simulation and their regionalization at Valencia Region"). The CEAM Foundation is supported by the Generalitat Valenciana and BANCAIXA (Valencia

  16. Changes in Indices of Daily Temperature and Precipitation Extremes ...

    African Journals Online (AJOL)

    It's a known fact that climate change will bring about increases in the occurrence of weather extreme events such as elevated temperature, drought, and floods; most especially in areas classified as hotspots to climate change – such as northwest Nigeria. This study investigates trends in extreme temperature and ...

  17. A space and time scale-dependent nonlinear geostatistical approach for downscaling daily precipitation and temperature

    KAUST Repository

    Jha, Sanjeev Kumar; Mariethoz, Gregoire; Evans, Jason; McCabe, Matthew; Sharma, Ashish

    2015-01-01

    precipitation and daily temperature over several years. Here, the training image consists of daily rainfall and temperature outputs from the Weather Research and Forecasting (WRF) model at 50 km and 10 km resolution for a twenty year period ranging from 1985

  18. MSU (Microwave Sounding Unit) Daily Troposphere Temperatures and Precipitation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set consists of two MSU tropospheric temperatures levels and precipitation which are described in detail below. The NOAA satellites contributing to this...

  19. A Hybrid Maximum Power Point Search Method Using Temperature Measurements in Partial Shading Conditions

    Directory of Open Access Journals (Sweden)

    Mroczka Janusz

    2014-12-01

    Full Text Available Photovoltaic panels have a non-linear current-voltage characteristics to produce the maximum power at only one point called the maximum power point. In the case of the uniform illumination a single solar panel shows only one maximum power, which is also the global maximum power point. In the case an irregularly illuminated photovoltaic panel many local maxima on the power-voltage curve can be observed and only one of them is the global maximum. The proposed algorithm detects whether a solar panel is in the uniform insolation conditions. Then an appropriate strategy of tracking the maximum power point is taken using a decision algorithm. The proposed method is simulated in the environment created by the authors, which allows to stimulate photovoltaic panels in real conditions of lighting, temperature and shading.

  20. Maximum Smoke Temperature in Non-Smoke Model Evacuation Region for Semi-Transverse Tunnel Fire

    OpenAIRE

    B. Lou; Y. Qiu; X. Long

    2017-01-01

    Smoke temperature distribution in non-smoke evacuation under different mechanical smoke exhaust rates of semi-transverse tunnel fire were studied by FDS numerical simulation in this paper. The effect of fire heat release rate (10MW 20MW and 30MW) and exhaust rate (from 0 to 160m3/s) on the maximum smoke temperature in non-smoke evacuation region was discussed. Results show that the maximum smoke temperature in non-smoke evacuation region decreased with smoke exhaust rate. Plug-holing was obse...

  1. Performance analysis and comparison of an Atkinson cycle coupled to variable temperature heat reservoirs under maximum power and maximum power density conditions

    International Nuclear Information System (INIS)

    Wang, P.-Y.; Hou, S.-S.

    2005-01-01

    In this paper, performance analysis and comparison based on the maximum power and maximum power density conditions have been conducted for an Atkinson cycle coupled to variable temperature heat reservoirs. The Atkinson cycle is internally reversible but externally irreversible, since there is external irreversibility of heat transfer during the processes of constant volume heat addition and constant pressure heat rejection. This study is based purely on classical thermodynamic analysis methodology. It should be especially emphasized that all the results and conclusions are based on classical thermodynamics. The power density, defined as the ratio of power output to maximum specific volume in the cycle, is taken as the optimization objective because it considers the effects of engine size as related to investment cost. The results show that an engine design based on maximum power density with constant effectiveness of the hot and cold side heat exchangers or constant inlet temperature ratio of the heat reservoirs will have smaller size but higher efficiency, compression ratio, expansion ratio and maximum temperature than one based on maximum power. From the view points of engine size and thermal efficiency, an engine design based on maximum power density is better than one based on maximum power conditions. However, due to the higher compression ratio and maximum temperature in the cycle, an engine design based on maximum power density conditions requires tougher materials for engine construction than one based on maximum power conditions

  2. Daily Cycle of Air Temperature and Surface Temperature in Stone Forest

    Science.gov (United States)

    Wang, K.; Li, Y.; Wang, X.; Yuan, M.

    2013-12-01

    Urbanization is one of the most profound human activities that impact on climate change. In cities, where are highly artificial areas, the conflict between human activity and natural climate is particularly prominent. Urban areas always have the larger area of impervious land, the higher consumption of greenhouse gases, more emissions of anthropogenic heat and air pollution, all contribute to the urban warming phenomena. Understanding the mechanisms causing a variety of phenomena involved in the urban warming is critical to distinguish the anthropogenic effect and natural variation in the climate change. However, the exact dynamics of urban warming were poorly understood, and effective control strategies are not available. Here we present a study of the daily cycle of air temperature and surface temperature in Stone Forest. The specific heat of the stones in the Stone Forest and concrete of the man-made structures within the cities are approximate. Besides, the height of the Stone Forest and the height of buildings within the city are also similar. As a scenic area, the Stone Forest is being preserved and only opened for sightseeing. There is no anthropogenic heat, as well air pollution within the Stone Forest. The thermal environment in Stone Forest can be considered to be a simulation of thermal environment in the city, which can reveal the effect of man-made structures on urban thermal environment. We conducted the field studies and numerical analysis in the Stone Forest for 4 typical urban morphology and environment scenarios, including high-rise compact cities, low-rise sparse cities, garden cities and isolated single stone. Air temperature and relative humidity were measured every half an hour in 15 different locations, which within different spatial distribution of stones and can represent the four urban scenarios respectively. At the same time, an infrared camera was used to take thermal images and get the hourly surface temperatures of stones and

  3. Estimating Daily Global Evapotranspiration Using Penman–Monteith Equation and Remotely Sensed Land Surface Temperature

    Directory of Open Access Journals (Sweden)

    Roozbeh Raoufi

    2017-11-01

    Full Text Available Daily evapotranspiration (ET is modeled globally for the period 2000–2013 based on the Penman–Monteith equation with radiation and vapor pressures derived using remotely sensed Land Surface Temperature (LST from the MODerate resolution Imaging Spectroradiometer (MODIS on the Aqua and Terra satellites. The ET for a given land area is based on four surface conditions: wet/dry and vegetated/non-vegetated. For each, the ET resistance terms are based on land cover, leaf area index (LAI and literature values. The vegetated/non-vegetated fractions of the land surface are estimated using land cover, LAI, a simplified version of the Beer–Lambert law for describing light transition through vegetation and newly derived light extension coefficients for each MODIS land cover type. The wet/dry fractions of the land surface are nonlinear functions of LST derived humidity calibrated using in-situ ET measurements. Results are compared to in-situ measurements (average of the root mean squared errors and mean absolute errors for 39 sites are 0.81 mm day−1 and 0.59 mm day−1, respectively and the MODIS ET product, MOD16, (mean bias during 2001–2013 is −0.2 mm day−1. Although the mean global difference between MOD16 and ET estimates is only 0.2 mm day−1, local temperature derived vapor pressures are the likely contributor to differences, especially in energy and water limited regions. The intended application for the presented model is simulating ET based on long-term climate forecasts (e.g., using only minimum, maximum and mean daily or monthly temperatures.

  4. Maximum temperature accounts for annual soil CO2 efflux in temperate forests of Northern China

    Science.gov (United States)

    Zhou, Zhiyong; Xu, Meili; Kang, Fengfeng; Jianxin Sun, Osbert

    2015-01-01

    It will help understand the representation legality of soil temperature to explore the correlations of soil respiration with variant properties of soil temperature. Soil temperature at 10 cm depth was hourly logged through twelve months. Basing on the measured soil temperature, soil respiration at different temporal scales were calculated using empirical functions for temperate forests. On monthly scale, soil respiration significantly correlated with maximum, minimum, mean and accumulated effective soil temperatures. Annual soil respiration varied from 409 g C m−2 in coniferous forest to 570 g C m−2 in mixed forest and to 692 g C m−2 in broadleaved forest, and was markedly explained by mean soil temperatures of the warmest day, July and summer, separately. These three soil temperatures reflected the maximum values on diurnal, monthly and annual scales. In accordance with their higher temperatures, summer soil respiration accounted for 51% of annual soil respiration across forest types, and broadleaved forest also had higher soil organic carbon content (SOC) and soil microbial biomass carbon content (SMBC), but a lower contribution of SMBC to SOC. This added proof to the findings that maximum soil temperature may accelerate the transformation of SOC to CO2-C via stimulating activities of soil microorganisms. PMID:26179467

  5. Daily and seasonal temperatures in the burrows of African rodent ...

    African Journals Online (AJOL)

    1987-03-02

    Mar 2, 1987 ... temperature extremes, containing a nest and a bolt-hole. (Jarvis & Sale 1971; Davies & Jarvis 1986; Lovegrove &. Painting 1987). In the burrow systems of Cryptomys damarensis we have found nests as deep as 2,5 m below ground. Dissimilarities in ..... The live-trap in which it was confined was shaded ...

  6. Local warming: daily temperature change influences belief in global warming.

    Science.gov (United States)

    Li, Ye; Johnson, Eric J; Zaval, Lisa

    2011-04-01

    Although people are quite aware of global warming, their beliefs about it may be malleable; specifically, their beliefs may be constructed in response to questions about global warming. Beliefs may reflect irrelevant but salient information, such as the current day's temperature. This replacement of a more complex, less easily accessed judgment with a simple, more accessible one is known as attribute substitution. In three studies, we asked residents of the United States and Australia to report their opinions about global warming and whether the temperature on the day of the study was warmer or cooler than usual. Respondents who thought that day was warmer than usual believed more in and had greater concern about global warming than did respondents who thought that day was colder than usual. They also donated more money to a global-warming charity if they thought that day seemed warmer than usual. We used instrumental variable regression to rule out some alternative explanations.

  7. Trends in extreme daily temperatures and humidex index in the United Arab Emirates over 1948-2014.

    Science.gov (United States)

    Yang, H. W.; Ouarda, T.

    2015-12-01

    This study deals with the analysis of the characteristics of extreme temperature events in the Middle East, using NCEP reanalysis gridded data, for the summer (May-October) and winter (November-April) seasons. Trends in the occurrences of three types of heat spells during 1948-2014 are studied by both Linear Regression (LR) and Mann-Kendall (MK) test. Changes in the diurnal temperature range (DTR) are also investigated. To better understand the effects of heat spells on public health, the Humidex, a combination index of ambient temperature and relative humidity, is also used. Using percentile threshold, temperature (Humidex) Type-A and Type-B heat spells are defined respectively by daily maximum and minimum temperature (Humidex). Type-C heat spells are defined as the joint occurrence of Type-A and Type-B heat spells at the same time. In the Middle East, it is found that no coherent trend in temperature Type-A heat spells is observed. However, the occurrences of temperature Type-B and C heat spells have consistently increased since 1948. For Humidex heat spells, coherently increased activities of all three types of heat spells are observed in the area. During the summer, the magnitude of the positive trends in Humidex heat spells are generally stronger than temperature heat spells. More than half of the locations in the area show significantly negative DTR trends in the summer, but the trends vary according to the region in the winter. Annual mean temperature has increased an average by 0.5°C, but it is mainly associated with the daily minimum temperature which has warmed up by 0.84°C.Daily maximum temperature showed no significant trends. The warming is hence stronger in minimum temperatures than in maximum temperatures resulting in a decrease in DTR by 0.16 °C per decade. This study indicates hence that the UAE has not become hotter, but it has become less cold during 1948 to 2014.

  8. Influence of aliphatic amides on the temperature of maximum density of water

    International Nuclear Information System (INIS)

    Torres, Andrés Felipe; Romero, Carmen M.

    2017-01-01

    Highlights: • The addition of amides decreases the temperature of maximum density of water suggesting a disruptive effect on water structure. • The amides in aqueous solution do not follow the Despretz equation in the concentration range considered. • The temperature shift Δθ as a function of molality is represented by a second order equation. • The Despretz constants were determined considering the dilute concentration region for each amide solution. • Solute disrupting effect of amides becomes smaller as its hydrophobic character increases. - Abstract: The influence of dissolved substances on the temperature of the maximum density of water has been studied in relation to their effect on water structure as they can change the equilibrium between structured and unstructured species of water. However, most work has been performed using salts and the studies with small organic solutes such as amides are scarce. In this work, the effect of acetamide, propionamide and butyramide on the temperature of maximum density of water was determined from density measurements using a magnetic float densimeter. Densities of aqueous solutions were measured within the temperature range from T = (275.65–278.65) K at intervals of 0.50 K in the concentration range between (0.10000 and 0.80000) mol·kg −1 . The temperature of maximum density was determined from the experimental results. The effect of the three amides is to decrease the temperature of maximum density of water and the change does not follow the Despretz equation. The results are discussed in terms of solute-water interactions and the disrupting effect of amides on water structure.

  9. The relationship between incoming solar radiation and daily air temperature

    International Nuclear Information System (INIS)

    Kpeglo, Daniel Kwasi

    2013-07-01

    Solar radiation is the ultimate source of energy for the planet. To predict the values of temperature and instant solar radiation when equipment are not readily available from obtained equations, a good knowledge and understanding of the disposition and distribution of solar radiation is a requirement for modelling earth’s weather and climate change variables. A pyranometer (CM3) in series with a PHYWE amplifier and a voltmeter were experimentally set-up and used to study the amount of solar radiation received at the Physics Department of the University of Ghana during the day. The temperature of the study area as well as the Relative Humidity was also recorded. Data was collected over a period of one month (from 2nd to 24th April, 2012). Days for which rain was recorded were ignored because rain could damage the pyranometer. The data obtained by the set-up were therefore used to compare with data obtained by a wireless weather station (Davis Vintage Pro). The data from these separate set-ups indicated that a perfect correlation existed between the solar radiation and temperature of the place. The data obtained by the experimental set-up was split into two separate sessions as morning and evening sessions. It was observed that the experimental set-up had a good correlation with that of the weather station on a particular day 11th April, 2012. The various Regression Coefficient (R"2) values for morning session were respectively R"2 = 0.96 and R"2 = 0.95 with their respective equations as I_W =136.22T_W - 40623 and I_p = 2.3198T_p - 678.14. The evening session also had good Regression Coefficient values of R"2 = 0.81 and R"2 = 0.97 with equations of 2.1098T_p - 625 and I_W = 161.31T_w - 4876.9. Similar analysis of the data from the separate set-ups gave a better correlation for that of the experimental set-up than that of the wireless station. The range of values of Regression Coefficient (R"2) for the experimental set-up was between 0.82 − 0.99 for the morning

  10. Trends in mean maximum temperature, mean minimum temperature and mean relative humidity for Lautoka, Fiji during 2003 – 2013

    Directory of Open Access Journals (Sweden)

    Syed S. Ghani

    2017-12-01

    Full Text Available The current work observes the trends in Lautoka’s temperature and relative humidity during the period 2003 – 2013, which were analyzed using the recently updated data obtained from Fiji Meteorological Services (FMS. Four elements, mean maximum temperature, mean minimum temperature along with diurnal temperature range (DTR and mean relative humidity are investigated. From 2003–2013, the annual mean temperature has been enhanced between 0.02 and 0.080C. The heating is more in minimum temperature than in maximum temperature, resulting in a decrease of diurnal temperature range. The statistically significant increase was mostly seen during the summer months of December and January. Mean Relative Humidity has also increased from 3% to 8%. The bases of abnormal climate conditions are also studied. These bases were defined with temperature or humidity anomalies in their appropriate time sequences. These established the observed findings and exhibited that climate has been becoming gradually damper and heater throughout Lautoka during this period. While we are only at an initial phase in the probable inclinations of temperature changes, ecological reactions to recent climate change are already evidently noticeable. So it is proposed that it would be easier to identify climate alteration in a small island nation like Fiji.

  11. Spatio-temporal prediction of daily temperatures using time-series of MODIS LST images

    NARCIS (Netherlands)

    Hengl, T.; Heuvelink, G.B.M.; Percec Tadic, M.; Pebesma, E.J.

    2012-01-01

    A computational framework to generate daily temperature maps using time-series of publicly available MODIS MOD11A2 product Land Surface Temperature (LST) images (1 km resolution; 8-day composites) is illustrated using temperature measurements from the national network of meteorological stations

  12. Spatio-temporal interpolation of daily temperatures for global land areas at 1 km resolution

    NARCIS (Netherlands)

    Kilibarda, M.; Hengl, T.; Heuvelink, G.B.M.; Graler, B.; Pebesma, E.; Tadic, M.P.; Bajat, B.

    2014-01-01

    Combined Global Surface Summary of Day and European Climate Assessment and Dataset daily meteorological data sets (around 9000 stations) were used to build spatio-temporal geostatistical models and predict daily air temperature at ground resolution of 1km for the global land mass. Predictions in

  13. New England observed and predicted July stream/river temperature daily range points

    Data.gov (United States)

    U.S. Environmental Protection Agency — The shapefile contains points with associated observed and predicted July stream/river temperature daily ranges in New England based on a spatial statistical network...

  14. New England observed and predicted August stream/river temperature daily range points

    Data.gov (United States)

    U.S. Environmental Protection Agency — The shapefile contains points with associated observed and predicted August stream/river temperature daily ranges in New England based on a spatial statistical...

  15. Climate Prediction Center (CPC) U.S. Daily Minimum Air Temperature Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Observational reports of daily air temperature (1200 UTC to 1200 UTC) are made by members of the NWS Automated Surface Observing Systems (ASOS) network; NWS...

  16. TAO/TRITON, RAMA, and PIRATA Buoys, Daily, 1977-present, Sea Surface Temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has daily Sea Surface Temperature (SST) data from the TAO/TRITON (Pacific Ocean, https://www.pmel.noaa.gov/gtmba/ ), RAMA (Indian Ocean,...

  17. Large temperature variability in the southern African tropics since the Last Glacial Maximum

    NARCIS (Netherlands)

    Powers, L.A.; Johnson, T.C.; Werne, J.P.; Castañeda, I.S.; Hopmans, E.; Sinninghe Damsté, J.S.; Schouten, S.

    2005-01-01

    The role of the tropics in global climate change is actively debated, particularly in regard to the timing and magnitude of thermal and hydrological response. Continuous, high-resolution temperature records through the Last Glacial Maximum (LGM) from tropical oceans have provided much insight

  18. A space and time scale-dependent nonlinear geostatistical approach for downscaling daily precipitation and temperature

    KAUST Repository

    Jha, Sanjeev Kumar

    2015-07-21

    A geostatistical framework is proposed to downscale daily precipitation and temperature. The methodology is based on multiple-point geostatistics (MPS), where a multivariate training image is used to represent the spatial relationship between daily precipitation and daily temperature over several years. Here, the training image consists of daily rainfall and temperature outputs from the Weather Research and Forecasting (WRF) model at 50 km and 10 km resolution for a twenty year period ranging from 1985 to 2004. The data are used to predict downscaled climate variables for the year 2005. The result, for each downscaled pixel, is daily time series of precipitation and temperature that are spatially dependent. Comparison of predicted precipitation and temperature against a reference dataset indicates that both the seasonal average climate response together with the temporal variability are well reproduced. The explicit inclusion of time dependence is explored by considering the climate properties of the previous day as an additional variable. Comparison of simulations with and without inclusion of time dependence shows that the temporal dependence only slightly improves the daily prediction because the temporal variability is already well represented in the conditioning data. Overall, the study shows that the multiple-point geostatistics approach is an efficient tool to be used for statistical downscaling to obtain local scale estimates of precipitation and temperature from General Circulation Models. This article is protected by copyright. All rights reserved.

  19. Daily temperature records from a mesonet in the foothills of the Canadian Rocky Mountains, 2005–2010

    Directory of Open Access Journals (Sweden)

    W. H. Wood

    2018-03-01

    Full Text Available Near-surface air temperatures were monitored from 2005 to 2010 in a mesoscale network of 230 sites in the foothills of the Rocky Mountains in southwestern Alberta, Canada. The monitoring network covers a range of elevations from 890 to 2880 m above sea level and an area of about 18 000 km2, sampling a variety of topographic settings and surface environments with an average spatial density of one station per 78 km2. This paper presents the multiyear temperature dataset from this study, with minimum, maximum, and mean daily temperature data available at https://doi.org/10.1594/PANGAEA.880611. In this paper, we describe the quality control and processing methods used to clean and filter the data and assess its accuracy. Overall data coverage for the study period is 91 %. We introduce a weather-system-dependent gap-filling technique to estimate the missing 9 % of data. Monthly and seasonal distributions of minimum, maximum, and mean daily temperature lapse rates are shown for the region.

  20. Daily temperature records from a mesonet in the foothills of the Canadian Rocky Mountains, 2005-2010

    Science.gov (United States)

    Wood, Wendy H.; Marshall, Shawn J.; Whitehead, Terri L.; Fargey, Shannon E.

    2018-03-01

    Near-surface air temperatures were monitored from 2005 to 2010 in a mesoscale network of 230 sites in the foothills of the Rocky Mountains in southwestern Alberta, Canada. The monitoring network covers a range of elevations from 890 to 2880 m above sea level and an area of about 18 000 km2, sampling a variety of topographic settings and surface environments with an average spatial density of one station per 78 km2. This paper presents the multiyear temperature dataset from this study, with minimum, maximum, and mean daily temperature data available at https://doi.org/10.1594/PANGAEA.880611" target="_blank">https://doi.org/10.1594/PANGAEA.880611. In this paper, we describe the quality control and processing methods used to clean and filter the data and assess its accuracy. Overall data coverage for the study period is 91 %. We introduce a weather-system-dependent gap-filling technique to estimate the missing 9 % of data. Monthly and seasonal distributions of minimum, maximum, and mean daily temperature lapse rates are shown for the region.

  1. Statistical assessment of changes in extreme maximum temperatures over Saudi Arabia, 1985-2014

    Science.gov (United States)

    Raggad, Bechir

    2018-05-01

    In this study, two statistical approaches were adopted in the analysis of observed maximum temperature data collected from fifteen stations over Saudi Arabia during the period 1985-2014. In the first step, the behavior of extreme temperatures was analyzed and their changes were quantified with respect to the Expert Team on Climate Change Detection Monitoring indices. The results showed a general warming trend over most stations, in maximum temperature-related indices, during the period of analysis. In the second step, stationary and non-stationary extreme-value analyses were conducted for the temperature data. The results revealed that the non-stationary model with increasing linear trend in its location parameter outperforms the other models for two-thirds of the stations. Additionally, the 10-, 50-, and 100-year return levels were found to change with time considerably and that the maximum temperature could start to reappear in the different T-year return period for most stations. This analysis shows the importance of taking account the change over time in the estimation of return levels and therefore justifies the use of the non-stationary generalized extreme value distribution model to describe most of the data. Furthermore, these last findings are in line with the result of significant warming trends found in climate indices analyses.

  2. Trends in Mean Annual Minimum and Maximum Near Surface Temperature in Nairobi City, Kenya

    Directory of Open Access Journals (Sweden)

    George Lukoye Makokha

    2010-01-01

    Full Text Available This paper examines the long-term urban modification of mean annual conditions of near surface temperature in Nairobi City. Data from four weather stations situated in Nairobi were collected from the Kenya Meteorological Department for the period from 1966 to 1999 inclusive. The data included mean annual maximum and minimum temperatures, and was first subjected to homogeneity test before analysis. Both linear regression and Mann-Kendall rank test were used to discern the mean annual trends. Results show that the change of temperature over the thirty-four years study period is higher for minimum temperature than maximum temperature. The warming trends began earlier and are more significant at the urban stations than is the case at the sub-urban stations, an indication of the spread of urbanisation from the built-up Central Business District (CBD to the suburbs. The established significant warming trends in minimum temperature, which are likely to reach higher proportions in future, pose serious challenges on climate and urban planning of the city. In particular the effect of increased minimum temperature on human physiological comfort, building and urban design, wind circulation and air pollution needs to be incorporated in future urban planning programmes of the city.

  3. Dynamic Performance of Maximum Power Point Trackers in TEG Systems Under Rapidly Changing Temperature Conditions

    Science.gov (United States)

    Man, E. A.; Sera, D.; Mathe, L.; Schaltz, E.; Rosendahl, L.

    2016-03-01

    Characterization of thermoelectric generators (TEG) is widely discussed and equipment has been built that can perform such analysis. One method is often used to perform such characterization: constant temperature with variable thermal power input. Maximum power point tracking (MPPT) methods for TEG systems are mostly tested under steady-state conditions for different constant input temperatures. However, for most TEG applications, the input temperature gradient changes, exposing the MPPT to variable tracking conditions. An example is the exhaust pipe on hybrid vehicles, for which, because of the intermittent operation of the internal combustion engine, the TEG and its MPPT controller are exposed to a cyclic temperature profile. Furthermore, there are no guidelines on how fast the MPPT must be under such dynamic conditions. In the work discussed in this paper, temperature gradients for TEG integrated in several applications were evaluated; the results showed temperature variation up to 5°C/s for TEG systems. Electrical characterization of a calcium-manganese oxide TEG was performed at steady-state for different input temperatures and a maximum temperature of 401°C. By using electrical data from characterization of the oxide module, a solar array simulator was emulated to perform as a TEG. A trapezoidal temperature profile with different gradients was used on the TEG simulator to evaluate the dynamic MPPT efficiency. It is known that the perturb and observe (P&O) algorithm may have difficulty accurately tracking under rapidly changing conditions. To solve this problem, a compromise must be found between the magnitude of the increment and the sampling frequency of the control algorithm. The standard P&O performance was evaluated experimentally by using different temperature gradients for different MPPT sampling frequencies, and efficiency values are provided for all cases. The results showed that a tracking speed of 2.5 Hz can be successfully implemented on a TEG

  4. Uninterrupted thermoelectric energy harvesting using temperature-sensor-based maximum power point tracking system

    International Nuclear Information System (INIS)

    Park, Jae-Do; Lee, Hohyun; Bond, Matthew

    2014-01-01

    Highlights: • Feedforward MPPT scheme for uninterrupted TEG energy harvesting is suggested. • Temperature sensors are used to avoid current measurement or source disconnection. • MPP voltage reference is generated based on OCV vs. temperature differential model. • Optimal operating condition is maintained using hysteresis controller. • Any type of power converter can be used in the proposed scheme. - Abstract: In this paper, a thermoelectric generator (TEG) energy harvesting system with a temperature-sensor-based maximum power point tracking (MPPT) method is presented. Conventional MPPT algorithms for photovoltaic cells may not be suitable for thermoelectric power generation because a significant amount of time is required for TEG systems to reach a steady state. Moreover, complexity and additional power consumption in conventional circuits and periodic disconnection of power source are not desirable for low-power energy harvesting applications. The proposed system can track the varying maximum power point (MPP) with a simple and inexpensive temperature-sensor-based circuit without instantaneous power measurement or TEG disconnection. This system uses TEG’s open circuit voltage (OCV) characteristic with respect to temperature gradient to generate a proper reference voltage signal, i.e., half of the TEG’s OCV. The power converter controller maintains the TEG output voltage at the reference level so that the maximum power can be extracted for the given temperature condition. This feedforward MPPT scheme is inherently stable and can be implemented without any complex microcontroller circuit. The proposed system has been validated analytically and experimentally, and shows a maximum power tracking error of 1.15%

  5. The Effects of Data Gaps on the Calculated Monthly Mean Maximum and Minimum Temperatures in the Continental United States: A Spatial and Temporal Study.

    Science.gov (United States)

    Stooksbury, David E.; Idso, Craig D.; Hubbard, Kenneth G.

    1999-05-01

    Gaps in otherwise regularly scheduled observations are often referred to as missing data. This paper explores the spatial and temporal impacts that data gaps in the recorded daily maximum and minimum temperatures have on the calculated monthly mean maximum and minimum temperatures. For this analysis 138 climate stations from the United States Historical Climatology Network Daily Temperature and Precipitation Data set were selected. The selected stations had no missing maximum or minimum temperature values during the period 1951-80. The monthly mean maximum and minimum temperatures were calculated for each station for each month. For each month 1-10 consecutive days of data from each station were randomly removed. This was performed 30 times for each simulated gap period. The spatial and temporal impact of the 1-10-day data gaps were compared. The influence of data gaps is most pronounced in the continental regions during the winter and least pronounced in the southeast during the summer. In the north central plains, 10-day data gaps during January produce a standard deviation value greater than 2°C about the `true' mean. In the southeast, 10-day data gaps in July produce a standard deviation value less than 0.5°C about the mean. The results of this study will be of value in climate variability and climate trend research as well as climate assessment and impact studies.

  6. The EUSTACE project: delivering global, daily information on surface air temperature

    Science.gov (United States)

    Ghent, D.; Rayner, N. A.

    2017-12-01

    Day-to-day variations in surface air temperature affect society in many ways; however, daily surface air temperature measurements are not available everywhere. A global daily analysis cannot be achieved with measurements made in situ alone, so incorporation of satellite retrievals is needed. To achieve this, in the EUSTACE project (2015-2018, https://www.eustaceproject.eu) we have developed an understanding of the relationships between traditional (land and marine) surface air temperature measurements and retrievals of surface skin temperature from satellite measurements, i.e. Land Surface Temperature, Ice Surface Temperature, Sea Surface Temperature and Lake Surface Water Temperature. Here we discuss the science needed to produce a fully-global daily analysis (or ensemble of analyses) of surface air temperature on the centennial scale, integrating different ground-based and satellite-borne data types. Information contained in the satellite retrievals is used to create globally-complete fields in the past, using statistical models of how surface air temperature varies in a connected way from place to place. This includes developing new "Big Data" analysis methods as the data volumes involved are considerable. We will present recent progress along this road in the EUSTACE project, i.e.: • identifying inhomogeneities in daily surface air temperature measurement series from weather stations and correcting for these over Europe; • estimating surface air temperature over all surfaces of Earth from surface skin temperature retrievals; • using new statistical techniques to provide information on higher spatial and temporal scales than currently available, making optimum use of information in data-rich eras. Information will also be given on how interested users can become involved.

  7. Effects of fasting on maximum thermogenesis in temperature-acclimated rats

    Science.gov (United States)

    Wang, L. C. H.

    1981-09-01

    To further investigate the limiting effect of substrates on maximum thermogenesis in acute cold exposure, the present study examined the prevalence of this effect at different thermogenic capabilities consequent to cold- or warm-acclimation. Male Sprague-Dawley rats (n=11) were acclimated to 6, 16 and 26‡C, in succession, their thermogenic capabilities after each acclimation temperature were measured under helium-oxygen (21% oxygen, balance helium) at -10‡C after overnight fasting or feeding. Regardless of feeding conditions, both maximum and total heat production were significantly greater in 6>16>26‡C-acclimated conditions. In the fed state, the total heat production was significantly greater than that in the fasted state at all acclimating temperatures but the maximum thermogenesis was significant greater only in the 6 and 16‡C-acclimated states. The results indicate that the limiting effect of substrates on maximum and total thermogenesis is independent of the magnitude of thermogenic capability, suggesting a substrate-dependent component in restricting the effective expression of existing aerobic metabolic capability even under severe stress.

  8. Temperature dependence of attitude sensor coalignments on the Solar Maximum Mission (SMM)

    Science.gov (United States)

    Pitone, D. S.; Eudell, A. H.; Patt, F. S.

    1990-01-01

    The temperature correlation of the relative coalignment between the fine-pointing sun sensor and fixed-head star trackers measured on the Solar Maximum Mission (SMM) is analyzed. An overview of the SMM, including mission history and configuration, is given. Possible causes of the misalignment variation are discussed, with focus placed on spacecraft bending due to solar-radiation pressure, electronic or mechanical changes in the sensors, uncertainty in the attitude solutions, and mounting-plate expansion and contraction due to thermal effects. Yaw misalignment variation from the temperature profile is assessed, and suggestions for spacecraft operations are presented, involving methods to incorporate flight measurements of the temperature-versus-alignment function and its variance in operational procedures and the spacecraft structure temperatures in the attitude telemetry record.

  9. THE MAXIMUM EFFECT OF DEEP LAKES ON TEMPERATURE PROFILES – DETERMINATION OF THE GEOTHERMAL GRADIENT

    Directory of Open Access Journals (Sweden)

    Eppelbaum L. V.

    2009-07-01

    Full Text Available Understanding the climate change processes on the basis of geothermal observations in boreholes is an important and at the same time high-intricate problem. Many non-climatic effects could cause changes in ground surface temperatures. In this study we investigate the effects of deep lakes on the borehole temperature profilesobserved within or in the vicinity of the lakes. We propose a method based on utilization of Laplace equation with nonuniform boundary conditions. The proposed method makes possible to estimate the maximum effect of deep lakes (here the term "deep lake" means that long term mean annual temperature of bottom sediments can beconsidered as a constant value on the borehole temperature profiles. This method also allows one to estimate an accuracy of the determination of the geothermal gradient.

  10. 75 FR 26956 - Clean Water Act Section 303(d): Availability of Los Angeles Area Lakes Total Maximum Daily Loads...

    Science.gov (United States)

    2010-05-13

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9146-6] Clean Water Act Section 303(d): Availability of Los...: Notice of availability. SUMMARY: This action announces the availability of EPA proposed total maximum... nutrient, mercury, chlordane, dieldrin, DDT, PCB, and trash impairments pursuant to Clean Water Act Section...

  11. Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum

    Science.gov (United States)

    Sluijs, A.; Schouten, S.; Pagani, M.; Woltering, M.; Brinkhuis, H.; Damste, J.S.S.; Dickens, G.R.; Huber, M.; Reichart, G.-J.; Stein, R.; Matthiessen, J.; Lourens, L.J.; Pedentchouk, N.; Backman, J.; Moran, K.; Clemens, S.; Cronin, T.; Eynaud, F.; Gattacceca, J.; Jakobsson, M.; Jordan, R.; Kaminski, M.; King, J.; Koc, N.; Martinez, N.C.; McInroy, D.; Moore, T.C.; O'Regan, M.; Onodera, J.; Palike, H.; Rea, B.; Rio, D.; Sakamoto, T.; Smith, D.C.; St John, K.E.K.; Suto, I.; Suzuki, N.; Takahashi, K.; Watanabe, M. E.; Yamamoto, M.

    2006-01-01

    The Palaeocene/Eocene thermal maximum, ???55 million years ago, was a brief period of widespread, extreme climatic warming, that was associated with massive atmospheric greenhouse gas input. Although aspects of the resulting environmental changes are well documented at low latitudes, no data were available to quantify simultaneous changes in the Arctic region. Here we identify the Palaeocene/Eocene thermal maximum in a marine sedimentary sequence obtained during the Arctic Coring Expedition. We show that sea surface temperatures near the North Pole increased from ???18??C to over 23??C during this event. Such warm values imply the absence of ice and thus exclude the influence of ice-albedo feedbacks on this Arctic warming. At the same time, sea level rose while anoxic and euxinic conditions developed in the ocean's bottom waters and photic zone, respectively. Increasing temperature and sea level match expectations based on palaeoclimate model simulations, but the absolute polar temperatures that we derive before, during and after the event are more than 10??C warmer than those model-predicted. This suggests that higher-than-modern greenhouse gas concentrations must have operated in conjunction with other feedback mechanisms-perhaps polar stratospheric clouds or hurricane-induced ocean mixing-to amplify early Palaeogene polar temperatures. ?? 2006 Nature Publishing Group.

  12. Observed Trends in Indices of Daily Precipitation and Temperature Extremes in Rio de Janeiro State (brazil)

    Science.gov (United States)

    Silva, W. L.; Dereczynski, C. P.; Cavalcanti, I. F.

    2013-05-01

    One of the main concerns of contemporary society regarding prevailing climate change is related to possible changes in the frequency and intensity of extreme events. Strong heat and cold waves, droughts, severe floods, and other climatic extremes have been of great interest to researchers because of its huge impact on the environment and population, causing high monetary damages and, in some cases, loss of life. The frequency and intensity of extreme events associated with precipitation and air temperature have been increased in several regions of the planet in recent years. These changes produce serious impacts on human activities such as agriculture, health, urban planning and development and management of water resources. In this paper, we analyze the trends in indices of climatic extremes related to daily precipitation and maximum and minimum temperatures at 22 meteorological stations of the National Institute of Meteorology (INMET) in Rio de Janeiro State (Brazil) in the last 50 years. The present trends are evaluated using the software RClimdex (Canadian Meteorological Service) and are also subjected to statistical tests. Preliminary results indicate that periods of drought are getting longer in Rio de Janeiro State, except in the North/Northwest area. In "Vale do Paraíba", "Região Serrana" and "Região dos Lagos" the increase of consecutive dry days is statistically significant. However, we also detected an increase in the total annual rainfall all over the State (taxes varying from +2 to +8 mm/year), which are statistically significant at "Região Serrana". Moreover, the intensity of heavy rainfall is also growing in most of Rio de Janeiro, except in "Costa Verde". The trends of heavy rainfall indices show significant increase in the "Metropolitan Region" and in "Região Serrana", factor that increases the vulnerability to natural disasters in these areas. With respect to temperature, it is found that the frequency of hot (cold) days and nights is

  13. Meteorological Reference Years of Daily Mean Temperature during the Slighting Time

    International Nuclear Information System (INIS)

    Marchante Jimenez, M.; Ramirez Santigosa, L.; Navarro Fernandez, A.; Mora Lopez, L.; Sidrach de Cardona Ortin, M.

    2002-01-01

    In this work the characterization of the daily mean temperature during the sunlight time has been analyzed. An algorithm for the hourly series generation from extreme daily values has been applied to evaluate the daily mean temperature during the sunlight time. A generic algorithm has been enhanced as a function of the sunrise time. This algorithm allows taking into account the fractions related to the sunrise and sunset hours. This methodology has been applied in data from 45 Spanish stations, uniformly distributed in the Iberian Peninsula. Data for a period of 14 years has been used in most of locations, and once the interest variable has been calculated, the meteorological reference year of the daily mean temperature during the sunlight time has been evaluated in each stations. The next step is the evaluation of the daily mean temperature during the sunlight time in any point into the zone of evaluation, not only in the measured stations. From the result data in each measured station, an geographic information system has been used in order to calculate the interpolation, obtaining maps with a data each 5 km. for each of the 365 days of the year. Then, this results can be superposed with the solar radiation evaluation obtaining the input data for the sizing of the photovoltaic grid connected system in any point of the Spanish geography. (Author) 64 refs

  14. The Hengill geothermal area, Iceland: Variation of temperature gradients deduced from the maximum depth of seismogenesis

    Science.gov (United States)

    Foulger, G. R.

    1995-04-01

    Given a uniform lithology and strain rate and a full seismic data set, the maximum depth of earthquakes may be viewed to a first order as an isotherm. These conditions are approached at the Hengill geothermal area S. Iceland, a dominantly basaltic area. The likely strain rate calculated from thermal and tectonic considerations is 10 -15 s -1, and temperature measurements from four drill sites within the area indicate average, near-surface geothermal gradients of up to 150 °C km -1 throughout the upper 2 km. The temperature at which seismic failure ceases for the strain rates likely at the Hengill geothermal area is determined by analogy with oceanic crust, and is about 650 ± 50 °C. The topographies of the top and bottom of the seismogenic layer were mapped using 617 earthquakes located highly accurately by performing a simultaneous inversion for three-dimensional structure and hypocentral parameters. The thickness of the seismogenic layer is roughly constant and about 3 km. A shallow, aseismic, low-velocity volume within the spreading plate boundary that crosses the area occurs above the top of the seismogenic layer and is interpreted as an isolated body of partial melt. The base of the seismogenic layer has a maximum depth of about 6.5 km beneath the spreading axis and deepens to about 7 km beneath a transform zone in the south of the area. Beneath the high-temperature part of the geothermal area, the maximum depth of earthquakes may be as shallow as 4 km. The geothermal gradient below drilling depths in various parts of the area ranges from 84 ± 9 °Ckm -1 within the low-temperature geothermal area of the transform zone to 138 ± 15 °Ckm -1 below the centre of the high-temperature geothermal area. Shallow maximum depths of earthquakes and therefore high average geothermal gradients tend to correlate with the intensity of the geothermal area and not with the location of the currently active spreading axis.

  15. Daily rhythms of blood pressure, heart rate, and body temperature in fed and fasted male dogs.

    Science.gov (United States)

    Piccione, G; Caola, G; Refinetti, R

    2005-10-01

    Daily or circadian rhythmicity in physiological processes has been described in a large number of species of birds and mammals. However, in dogs, most studies have either failed to detect rhythmicity or have found that rhythmicity reflects merely an acute exogenous effect of feeding rather than an autonomous rhythmic process. In the present study, we investigated the rhythmicity of body temperature, blood pressure, and heart rate in dogs fed daily as well as in dogs deprived of food for 60 h. Our results document clear rhythmicity in all three parameters and demonstrate that the rhythmicity is independent of the feeding schedule. The failure of various previous investigations to document daily rhythmicity in dogs is probably due to lack of experimental rigour rather than to weakness of daily rhythmicity in dogs.

  16. Automatic Control of Reactor Temperature and Power Distribution for a Daily Load following Operation

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Keuk Jong; Kim, Han Gon [Korea Hydro and Nuclear Power Institute, Daejeon (Korea, Republic of)

    2010-10-15

    An automatic control method of reactor power and power distribution was developed for a daily load following operation of APR1400. This method used a model predictive control (MPC) methodology having second-order plant data. And it utilized a reactor power ratio and axial shape index as control variables. However, the reactor regulating system of APR1400 is operated by the difference between the average temperature of the reactor core and the reference temperature, which is proportional to the turbine load. Thus, this paper reports on the model predictive control methodology using fourth-order plant data and a reactor temperature instead of the reactor power shape. The purpose of this study is to develop a revised automatic controller and analyze the behavior of the nuclear reactor temperature (Tavg) and the axial shape index (ASI) using the MPC method during a daily load following operation

  17. Daily number of fractures is associated with road temperature in an urban area

    DEFF Research Database (Denmark)

    Jantzen, Christopher; Jørgensen, Henrik L; Thomsen, Morten

    2014-01-01

    winters. MATERIAL AND METHODS: Retrospective data collection was conducted on all patients treated at Bispebjerg Hospital, Denmark, for a humeral, ankle, distal radius or hip fracture during the periods October to April 2009/2010 and 2010/2011. Patients were grouped according to age into the following......,938 fractures) were treated during the study periods. The daily number of distal radius, humeral and ankle fractures increased significantly with decreasing road surface temperature and the presence of IA. For hip fractures no significant association was found. Decreasing temperature was associated......INTRODUCTION: Different factors related to winter are known to influence the fracture incidence, but little is known about the effect of road surface temperature. This study examines the association between road surface temperature and the daily number of fractures in an urban area during two...

  18. International Surface Temperature Initiative (ISTI) Global Land Surface Temperature Databank - Stage 2 Daily

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The global land surface temperature databank contains monthly timescale mean, max, and min temperature for approximately 40,000 stations globally. It was developed...

  19. International Surface Temperature Initiative (ISTI) Global Land Surface Temperature Databank - Stage 1 Daily

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The global land surface temperature databank contains monthly timescale mean, max, and min temperature for approximately 40,000 stations globally. It was developed...

  20. Probing Ionic Liquid Aqueous Solutions Using Temperature of Maximum Density Isotope Effects

    Directory of Open Access Journals (Sweden)

    Mohammad Tariq

    2013-03-01

    Full Text Available This work is a new development of an extensive research program that is investigating for the first time shifts in the temperature of maximum density (TMD of aqueous solutions caused by ionic liquid solutes. In the present case we have compared the shifts caused by three ionic liquid solutes with a common cation—1-ethyl-3-methylimidazolium coupled with acetate, ethylsulfate and tetracyanoborate anions—in normal and deuterated water solutions. The observed differences are discussed in terms of the nature of the corresponding anion-water interactions.

  1. Association between daily environmental temperature and suicide mortality in Korea (2001-2005).

    Science.gov (United States)

    Kim, Yoonhee; Kim, Ho; Kim, Dong-Sik

    2011-04-30

    Little attention has been paid to whether temperature is associated with suicide and to whether suicide seasonality appears in Asian countries as shown in Western countries, even though suicide rates in Korea have increased steadily. The goal of the present study was to examine the association between daily temperature and daily suicide rate in Korea, taking gender, age, and education level into account. Data were analyzed using a generalized additive model, adjusting for confounding factors such as sunshine, relative humidity, holidays, and long-term trends. Suicide rates were higher in spring and summer than other seasons. We observed a 1.4% increase (95% confidence interval=1.0-1.7%) in suicide with each 1°C-increase in daily mean temperature. The suicide risks related to the temperature for males, elderly people, and those with less education were higher than for females, younger people, and those with more education, respectively. These findings have confirmed that temperature is associated with suicide in Korea and further our understanding of more susceptible groups, the effects of gender, age, and education level. Therefore, temperature, one of the meteorological factors, is an important risk factor on suicide. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  2. AMSR-E/Aqua Daily L3 6.25 km 89 GHz Brightness Temperature (Tb) Polar Grids V002

    Data.gov (United States)

    National Aeronautics and Space Administration — The AMSR-E/Aqua Level-3 6.25 km daily sea ice product includes 89.0 GHz brightness temperature averages (daily, ascending, and descending) on a 6.25 km polar...

  3. Verification of surface minimum, mean, and maximum temperature forecasts in Calabria for summer 2008

    Directory of Open Access Journals (Sweden)

    S. Federico

    2011-02-01

    Full Text Available Since 2005, one-hour temperature forecasts for the Calabria region (southern Italy, modelled by the Regional Atmospheric Modeling System (RAMS, have been issued by CRATI/ISAC-CNR (Consortium for Research and Application of Innovative Technologies/Institute for Atmospheric and Climate Sciences of the National Research Council and are available online at http://meteo.crati.it/previsioni.html (every six hours. Beginning in June 2008, the horizontal resolution was enhanced to 2.5 km. In the present paper, forecast skill and accuracy are evaluated out to four days for the 2008 summer season (from 6 June to 30 September, 112 runs. For this purpose, gridded high horizontal resolution forecasts of minimum, mean, and maximum temperatures are evaluated against gridded analyses at the same horizontal resolution (2.5 km.

    Gridded analysis is based on Optimal Interpolation (OI and uses the RAMS first-day temperature forecast as the background field. Observations from 87 thermometers are used in the analysis system. The analysis error is introduced to quantify the effect of using the RAMS first-day forecast as the background field in the OI analyses and to define the forecast error unambiguously, while spatial interpolation (SI analysis is considered to quantify the statistics' sensitivity to the verifying analysis and to show the quality of the OI analyses for different background fields.

    Two case studies, the first one with a low (less than the 10th percentile root mean square error (RMSE in the OI analysis, the second with the largest RMSE of the whole period in the OI analysis, are discussed to show the forecast performance under two different conditions. Cumulative statistics are used to quantify forecast errors out to four days. Results show that maximum temperature has the largest RMSE, while minimum and mean temperature errors are similar. For the period considered

  4. A regional neural network model for predicting mean daily river water temperature

    Science.gov (United States)

    Wagner, Tyler; DeWeber, Jefferson Tyrell

    2014-01-01

    Water temperature is a fundamental property of river habitat and often a key aspect of river resource management, but measurements to characterize thermal regimes are not available for most streams and rivers. As such, we developed an artificial neural network (ANN) ensemble model to predict mean daily water temperature in 197,402 individual stream reaches during the warm season (May–October) throughout the native range of brook trout Salvelinus fontinalis in the eastern U.S. We compared four models with different groups of predictors to determine how well water temperature could be predicted by climatic, landform, and land cover attributes, and used the median prediction from an ensemble of 100 ANNs as our final prediction for each model. The final model included air temperature, landform attributes and forested land cover and predicted mean daily water temperatures with moderate accuracy as determined by root mean squared error (RMSE) at 886 training sites with data from 1980 to 2009 (RMSE = 1.91 °C). Based on validation at 96 sites (RMSE = 1.82) and separately for data from 2010 (RMSE = 1.93), a year with relatively warmer conditions, the model was able to generalize to new stream reaches and years. The most important predictors were mean daily air temperature, prior 7 day mean air temperature, and network catchment area according to sensitivity analyses. Forest land cover at both riparian and catchment extents had relatively weak but clear negative effects. Predicted daily water temperature averaged for the month of July matched expected spatial trends with cooler temperatures in headwaters and at higher elevations and latitudes. Our ANN ensemble is unique in predicting daily temperatures throughout a large region, while other regional efforts have predicted at relatively coarse time steps. The model may prove a useful tool for predicting water temperatures in sampled and unsampled rivers under current conditions and future projections of climate

  5. Effect of daily fluctuations in ambient temperature on reproductive failure traits of Landrace and Yorkshire sows under Thai tropical environmental conditions.

    Science.gov (United States)

    Jaichansukkit, Teerapong; Suwanasopee, Thanathip; Koonawootrittriron, Skorn; Tummaruk, Padet; Elzo, Mauricio A

    2017-03-01

    The aim of this study was to determine the effects of daily ranges and maximum ambient temperatures, and other risk factors on reproductive failure of Landrace (L) and Yorkshire (Y) sows under an open-house system in Thailand. Daily ambient temperatures were added to information on 35,579 litters from 5929 L sows and 1057 Y sows from three commercial herds. The average daily temperature ranges (ADT) and the average daily maximum temperatures (PEAK) in three gestation periods from the 35th day of gestation to parturition were classified. The considered reproductive failure traits were the occurrences of mummified fetuses (MM), stillborn piglets (STB), and piglet death losses (PDL) and an indicator trait for number of piglets born alive below the population mean (LBA). A multiple logistic regression model included farrowing herd-year-season (HYS), breed group of sow (BG), parity group (PAR), number of total piglets born (NTB), ADT1, ADT2, ADT3, PEAK1, PEAK2, and PEAK3 as fixed effects, while random effects were animal, repeated observations, and residual. Yorkshire sows had a higher occurrence of LBA than L sows (P = 0.01). The second to fifth parities sows had lower reproductive failures than other parities. The NTB regression coefficients of log-odds were positive (P reproductive failures, particularly late in gestation, producers would need to closely monitor their temperature management strategies.

  6. Global view of F-region electron density and temperature at solar maximum

    International Nuclear Information System (INIS)

    Brace, L.H.; Theis, R.F.; Hoegy, W.R.

    1982-01-01

    Dynamics Explorer-2 is permitting the first measurements of the global structure of the F-regions at very high levels of solar activity (S>200). Selected full orbits of Langmuir probe measurements of electron temperature, T/sub e/, and density, N/sub e/, are shown to illustrate this global structure and some of the ionospheric features that are the topic of other papers in this issue. The ionospheric thermal structure is of particular interest because T/sub e/ is a sensitive indicator of the coupling of magnetospheric energy into the upper atmosphere. A comparison of these heating effects with those observed at solar minimum shows that the magnetospheric sources are more important at solar maximum, as might have been expected. Heating at the cusp, the auroral oval and the plasma-pause is generally both greater and more variable. Electron cooling rate calculations employing low latitude measurements indicate that solar extreme ultraviolet heating of the F region at solar maximum is enhanced by a factor that is greater than the increase in solar flux. Some of this enhanced electron heating arises from the increase in electron heating efficiency at the higher N/sub e/ of solar maximum, but this appears insufficient to completely resolve the discrepancy

  7. Temperature of maximum density and excess thermodynamics of aqueous mixtures of methanol

    Energy Technology Data Exchange (ETDEWEB)

    González-Salgado, D.; Zemánková, K. [Departamento de Física Aplicada, Universidad de Vigo, Campus del Agua, Edificio Manuel Martínez-Risco, E-32004 Ourense (Spain); Noya, E. G.; Lomba, E. [Instituto de Química Física Rocasolano, CSIC, Calle Serrano 119, E-28006 Madrid (Spain)

    2016-05-14

    In this work, we present a study of representative excess thermodynamic properties of aqueous mixtures of methanol over the complete concentration range, based on extensive computer simulation calculations. In addition to test various existing united atom model potentials, we have developed a new force-field which accurately reproduces the excess thermodynamics of this system. Moreover, we have paid particular attention to the behavior of the temperature of maximum density (TMD) in dilute methanol mixtures. The presence of a temperature of maximum density is one of the essential anomalies exhibited by water. This anomalous behavior is modified in a non-monotonous fashion by the presence of fully miscible solutes that partly disrupt the hydrogen bond network of water, such as methanol (and other short chain alcohols). In order to obtain a better insight into the phenomenology of the changes in the TMD of water induced by small amounts of methanol, we have performed a new series of experimental measurements and computer simulations using various force fields. We observe that none of the force-fields tested capture the non-monotonous concentration dependence of the TMD for highly diluted methanol solutions.

  8. Influence of temperature on daily locomotor activity in the crab Uca pugilator.

    Directory of Open Access Journals (Sweden)

    Audrey M Mat

    Full Text Available Animals living in the intertidal zone are exposed to prominent temperature changes. To cope with the energetic demands of environmental thermal challenges, ectotherms rely mainly on behavioral responses, which may change depending on the time of the day and seasonally. Here, we analyze how temperature shapes crabs' behavior at 2 different times of the year and show that a transition from constant cold (13.5°C to constant warm (17.5°C water temperature leads to increased locomotor activity levels throughout the day in fiddler crabs (Uca pugilator collected during the summer. In contrast, the same transition in environmental temperature leads to a decrease in the amplitude of the daily locomotor activity rhythm in crabs collected during the winter. In other words, colder temperatures during the cold season favor a more prominent diurnal behavior. We interpret this winter-summer difference in the response of daily locomotor activity to temperature changes within the framework of the circadian thermoenergetics hypothesis, which predicts that a less favorable energetic balance would promote a more diurnal activity pattern. During the winter, when the energetic balance is likely less favorable, crabs would save energy by being more active during the expected high-temperature phase of the day-light phase-and less during the expected low-temperature phase of the day-dark phase. Our results suggest that endogenous rhythms in intertidal ectotherms generate adaptive behavioral programs to cope with thermoregulatory demands of the intertidal habitat.

  9. Estimating the daily global solar radiation spatial distribution from diurnal temperature ranges over the Tibetan Plateau in China

    International Nuclear Information System (INIS)

    Pan, Tao; Wu, Shaohong; Dai, Erfu; Liu, Yujie

    2013-01-01

    Highlights: ► Bristow–Campbell model was calibrated and validated over the Tibetan Plateau. ► Develop a simple method to rasterise the daily global solar radiation and get gridded information. ► The daily global solar radiation spatial distribution over the Tibetan Plateau was estimated. - Abstract: Daily global solar radiation is fundamental to most ecological and biophysical processes because it plays a key role in the local and global energy budget. However, gridded information about the spatial distribution of solar radiation is limited. This study aims to parameterise the Bristow–Campbell model for the daily global solar radiation estimation in the Tibetan Plateau and propose a method to rasterise the daily global solar radiation. Observed daily solar radiation and diurnal temperature data from eleven stations over the Tibetan Plateau during 1971–2010 were used to calibrate and validate the Bristow–Campbell radiation model. The extra-terrestrial radiation and clear sky atmospheric transmittance were calculated on a Geographic Information System (GIS) platform. Results show that the Bristow–Campbell model performs well after adjusting the parameters, the average Pearson’s correlation coefficients (r), Nash–Sutcliffe equation (NSE), ratio of the root mean square error to the standard deviation of measured data (RSR), and root mean-square error (RMSE) of 11 stations are 0.85, 2.81 MJ m −2 day −1 , 0.3 and 0.77 respectively. Gridded maximum and minimum average temperature data were obtained using Parameter-elevation Regressions on Independent Slopes Model (PRISM) and validated by the Chinese Ecosystem Research Network (CERN) stations’ data. The spatial daily global solar radiation distribution pattern was estimated and analysed by combining the solar radiation model (Bristow–Campbell model) and meteorological interpolation model (PRISM). Based on the overall results, it can be concluded that a calibrated Bristow–Campbell performs well

  10. The daily rhythm of body temperature, heart and respiratory rate in newborn dogs.

    Science.gov (United States)

    Piccione, Giuseppe; Giudice, Elisabetta; Fazio, Francesco; Mortola, Jacopo P

    2010-08-01

    We asked whether, during the postnatal period, the daily patterns of body temperature (Tb), heart rate (HR) and breathing frequency (f) begin and develop in synchrony. To this end, measurements of HR, f and Tb were performed weekly, on two consecutive days, for the first two postnatal months on puppies of three breeds of dogs (Rottweiler, Cocker Spaniel and Carlino dogs) with very different birth weights and postnatal growth patterns. Ambient conditions and feeding habits were constant for all puppies. The results indicated that (1) the 24-h average Tb increased and average HR and f decreased with growth, (2) the daily rhythms in Tb were apparent by 4 weeks, irrespective of the puppy's growth pattern, (3) the daily rhythm of Tb in the puppy was not necessarily following that of the mother; in fact, it could anticipate it. (4) The daily rhythms in HR and f were not apparent for the whole study period. We conclude that in neonatal dogs the onset of the daily rhythms of Tb has no obvious relationship with body size or rate of growth and is not cued by the maternal Tb rhythm. The daily rhythms of HR and f do not appear before 2 months of age. Hence, they are not in synchrony with those of Tb.

  11. Relationship between plants in Europe and surface temperatures of the Atlantic Ocean during the glacial maximum

    Energy Technology Data Exchange (ETDEWEB)

    Van Campo, M

    1984-01-01

    In Europe and North America, the deciduous forest, whether or not mixed with conifers, prevails within boundaries which coincide with the 12 and 18/sup 0/C isotherms of Ocean surface temperatures in August; within Europe this forest points to the limit of the Atlantic influence and bevels out as it is squeezed between coniferous forest to the NE (thermic boundary) and steppe to the SE (hydric boundary). During the glacial age this forest disappeared from its main European area and remained only in mountain refuges. Thus, the temperature of the eastern Atlantic surface waters, off Europe, control the nature of its vegetation. Variations in the pollen curve of pines, birches, Artemisia, Chenopodiaceae and Ephedra are accounted for by the climatic variations in southern Europe before 13,000 yr BP. It is seen that a very arid climate culminated at about 15,000 yr BP. It corresponds to the most active iceberg calving which considerably lowered the Ocean surface temperature far to the south. In spite of the increasing summer temperatures, this temperature remained as cold as it was during the glacial maximum. The result is the lowest evaporation from the Ocean hence a minimum of clouds and a minimum of rain. The end of the first phase of the deglaciation at +/- 13,000 yr BP corresponds to a warming up of the Ocean surface bringing about increased evaporation, hence rains over the continent. The evolution of the vegetation in Europe at the end of the glacial times from south of the ice sheet down to the Mediterranean, depends as much, if not more, on rains than on temperatures.

  12. Statistical analysis of yearly series of maximum daily rainfall in Spain. Analisis estadistico de las series anuales de maximas lluvias diarias en Espaa

    Energy Technology Data Exchange (ETDEWEB)

    Ferrer Polo, J.; Ardiles Lopez, K. L. (CEDEX, Ministerio de Obras Publicas, Transportes y Medio ambiente, Madrid (Spain))

    1994-01-01

    Work on the statistical modelling of maximum daily rainfalls is presented, with a view to estimating the quantiles for different return periods. An index flood approach has been adopted in which the local quantiles are a result of rescaling a regional law using the mean of each series of values, that is utilized as a local scale factor. The annual maximum series have been taken from 1.545 meteorological stations over a 30 year period, and these have been classified into 26 regions defined according to meteorological criteria, the homogeneity of wich has been checked by means of a statistical analysis of the coefficients of variation of the samples,using the. An estimation has been made of the parameters for the following four distribution models: Two Component Extreme Value (TCEV); General Extreme Value (GEV); Log-Pearson III (LP3); and SQRT-Exponential Type Distribution of Maximum. The analysis of the quantiles obtained reveals slight differences in the results thus detracting from the importance of the model selection. The last of the above-mentioned distribution has been finally chosen, on the basis of the following: it is defined with fewer parameters it is the only that was proposed specifically for the analysis of daily rainfall maximums; it yields more conservative results than the traditional Gumbel distribution for the high return periods; and it is capable of providing a good description of the main sampling statistics concerning the right-hand tail of the distribution, a fact that has been checked with Montecarlo's simulation techniques. The choice of a distribution model with only two parameters has led to the selection of the regional coefficient of variation as the only determining parameter for the regional quantiles. This has permitted the elimination of the quantiles discontinuity of the classical regional approach, thus smoothing the values of that coefficient by means of an isoline plan on a national scale.

  13. Monitoring to assess progress toward meeting the Assabet River, Massachusetts, phosphorus total maximum daily load - Aquatic macrophyte biomass and sediment-phosphorus flux

    Science.gov (United States)

    Zimmerman, Marc J.; Qian, Yu; Yong Q., Tian

    2011-01-01

    floating macrophytes accumulated behind bridge constrictions and dams; in 2008, high flows during the early part of the growing season carried floating macrophytes past bridges and over dams, minimizing accumulations. Samples of Lemna were collected and weighed to provide an estimate of Lemna biomass based on areal coverage during the summer growing seasons at eight sites in the five impoundments. Average estimated biomass during 2007 was approximately twice the 2008 biomass in each of the areas monitored. In 2007, in situ hyperspectral and high-resolution, multispectral data from the IKONOS satellite were obtained to evaluate the feasibility of using remote sensing to monitor the extent of aquatic plant growth in Assabet River impoundments. Three vegetation indices based on light reflectance were used to develop metrics with which the hyperspectral and satellite data were compared. The results of the comparisons confirmed that the high-resolution satellite imagery could differentiate among the common aquatic-plant associations found in the impoundments. The use of satellite imagery could counterbalance emphasis on the subjective judgment of a human observer, and airborne hyperspectral data can provide higher resolution imagery than multispectral satellite data. In 2007 and 2008, the potential for sediment flux of phosphorus was examined in free-flowing reaches of the river and in the two largest impoundments-Hudson and Ben Smith. These studies were undertaken to determine in situ flux rates prior to the implementation of the Assabet River Total Maximum Daily Load (TMDL) for phosphorus and to compare these rates with those used in the development and evaluation of the TMDL. Water samples collected from a chamber placed on the river bottom were analyzed for total phosphorus and orthophosphorus. Ambient dissolved oxygen concentrations and seasonal temperature differences appeared to affect the rates of sequestration and sediment release of phosphorus. When dissolved oxygen

  14. Spatio-temporal prediction of daily temperatures using time-series of MODIS LST images

    Science.gov (United States)

    Hengl, Tomislav; Heuvelink, Gerard B. M.; Perčec Tadić, Melita; Pebesma, Edzer J.

    2012-01-01

    A computational framework to generate daily temperature maps using time-series of publicly available MODIS MOD11A2 product Land Surface Temperature (LST) images (1 km resolution; 8-day composites) is illustrated using temperature measurements from the national network of meteorological stations (159) in Croatia. The input data set contains 57,282 ground measurements of daily temperature for the year 2008. Temperature was modeled as a function of latitude, longitude, distance from the sea, elevation, time, insolation, and the MODIS LST images. The original rasters were first converted to principal components to reduce noise and filter missing pixels in the LST images. The residual were next analyzed for spatio-temporal auto-correlation; sum-metric separable variograms were fitted to account for zonal and geometric space-time anisotropy. The final predictions were generated for time-slices of a 3D space-time cube, constructed in the R environment for statistical computing. The results show that the space-time regression model can explain a significant part of the variation in station-data (84%). MODIS LST 8-day (cloud-free) images are unbiased estimator of the daily temperature, but with relatively low precision (±4.1°C); however their added value is that they systematically improve detection of local changes in land surface temperature due to local meteorological conditions and/or active heat sources (urban areas, land cover classes). The results of 10-fold cross-validation show that use of spatio-temporal regression-kriging and incorporation of time-series of remote sensing images leads to significantly more accurate maps of temperature than if plain spatial techniques were used. The average (global) accuracy of mapping temperature was ±2.4°C. The regression-kriging explained 91% of variability in daily temperatures, compared to 44% for ordinary kriging. Further software advancement—interactive space-time variogram exploration and automated retrieval

  15. A new global reconstruction of temperature changes at the Last Glacial Maximum

    Directory of Open Access Journals (Sweden)

    J. D. Annan

    2013-02-01

    Full Text Available Some recent compilations of proxy data both on land and ocean (MARGO Project Members, 2009; Bartlein et al., 2011; Shakun et al., 2012, have provided a new opportunity for an improved assessment of the overall climatic state of the Last Glacial Maximum. In this paper, we combine these proxy data with the ensemble of structurally diverse state of the art climate models which participated in the PMIP2 project (Braconnot et al., 2007 to generate a spatially complete reconstruction of surface air (and sea surface temperatures. We test a variety of approaches, and show that multiple linear regression performs well for this application. Our reconstruction is significantly different to and more accurate than previous approaches and we obtain an estimated global mean cooling of 4.0 ± 0.8 °C (95% CI.

  16. The Hengill geothermal area, Iceland: variation of temperature gradients deduced from the maximum depth of seismogenesis

    Science.gov (United States)

    Foulger, G.R.

    1995-01-01

    Given a uniform lithology and strain rate and a full seismic data set, the maximum depth of earthquakes may be viewed to a first order as an isotherm. These conditions are approached at the Hengill geothermal area, S. Iceland, a dominantly basaltic area. The temperature at which seismic failure ceases for the strain rates likely at the Hengill geothermal area is determined by analogy with oceanic crust, and is about 650 ?? 50??C. The topographies of the top and bottom of the seismogenic layer were mapped using 617 earthquakes. The thickness of the seismogenic layer is roughly constant and about 3 km. A shallow, aseismic, low-velocity volume within the spreading plate boundary that crosses the area occurs above the top of the seismogenic layer and is interpreted as an isolated body of partial melt. The base of the seismogenic layer has a maximum depth of about 6.5 km beneath the spreading axis and deepens to about 7 km beneath a transform zone in the south of the area. -from Author

  17. Effect of glycine, DL-alanine and DL-2-aminobutyric acid on the temperature of maximum density of water

    International Nuclear Information System (INIS)

    Romero, Carmen M.; Torres, Andres Felipe

    2015-01-01

    Highlights: • Effect of α-amino acids on the temperature of maximum density of water is presented. • The addition of α-amino acids decreases the temperature of maximum density of water. • Despretz constants suggest that the amino acids behave as water structure breakers. • Despretz constants decrease as the number of CH 2 groups of the amino acid increase. • Solute disrupting effect becomes smaller as its hydrophobic character increases. - Abstract: The effect of glycine, DL-alanine and DL-2-aminobutyric acid on the temperature of maximum density of water was determined from density measurements using a magnetic float densimeter. Densities of aqueous solutions were measured within the temperature range from T = (275.65 to 278.65) K at intervals of T = 0.50 K over the concentration range between (0.0300 and 0.1000) mol · kg −1 . A linear relationship between density and concentration was obtained for all the systems in the temperature range considered. The temperature of maximum density was determined from the experimental results. The effect of the three amino acids is to decrease the temperature of maximum density of water and the decrease is proportional to molality according to Despretz equation. The effect of the amino acids on the temperature of maximum density decreases as the number of methylene groups of the alkyl chain becomes larger. The results are discussed in terms of (solute + water) interactions and the effect of amino acids on water structure

  18. Simulating daily water temperatures of the Klamath River under dam removal and climate change scenarios

    Science.gov (United States)

    Perry, Russell W.; Risley, John C.; Brewer, Scott J.; Jones, Edward C.; Rondorf, Dennis W.

    2011-01-01

    A one-dimensional daily averaged water temperature model was used to simulate Klamath River temperatures for two management alternatives under historical climate conditions and six future climate scenarios. The analysis was conducted for the Secretarial Determination on removal of four hydroelectric dams on the Klamath River. In 2012, the Secretary of the Interior will determine if dam removal and implementation of the Klamath Basin Restoration Agreement (KBRA) (Klamath Basin Restoration Agreement, 2010) will advance restoration of salmonid fisheries and is in the public interest. If the Secretary decides dam removal is appropriate, then the four dams are scheduled for removal in 2020.

  19. MODIS/Aqua Land Surface Temperature/3-Band Emissivity Daily L3 Global 1km SIN Grid Day V006

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS/Aqua Land Surface Temperature/3-Band Emissivity Daily L3 Global 1km SIN Grid Day (MYD21A1D.006). A new suite of MODIS Land Surface Temperature (LST) and...

  20. MODIS/Terra Land Surface Temperature/3-Band Emissivity Daily L3 Global 1km SIN Grid Night V006

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS/Terra Land Surface Temperature/3-Band Emissivity Daily L3 Global 1km SIN Grid Night (MOD21A1N.006). A new suite of MODIS Land Surface Temperature (LST) and...

  1. MODIS/Aqua Land Surface Temperature/3-Band Emissivity Daily L3 Global 1km SIN Grid Night V006

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS/Aqua Land Surface Temperature/3-Band Emissivity Daily L3 Global 1km SIN Grid Night (MYD21A1N.006). A new suite of MODIS Land Surface Temperature (LST) and...

  2. MODIS/Terra Land Surface Temperature/3-Band Emissivity Daily L3 Global 1km SIN Grid Day V006

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS/Terra Land Surface Temperature/3-Band Emissivity Daily L3 Global 1km SIN Grid Day (MOD21A1D.006). A new suite of MODIS Land Surface Temperature (LST) and...

  3. Arctic daily temperature and precipitation extremes: Observed and simulated physical behavior

    Science.gov (United States)

    Glisan, Justin Michael

    Simulations using a six-member ensemble of Pan-Arctic WRF (PAW) were produced on two Arctic domains with 50-km resolution to analyze precipitation and temperature extremes for various periods. The first study used a domain developed for the Regional Arctic Climate Model (RACM). Initial simulations revealed deep atmospheric circulation biases over the northern Pacific Ocean, manifested in pressure, geopotential height, and temperature fields. Possible remedies to correct these large biases, such as modifying the physical domain or using different initial/boundary conditions, were unsuccessful. Spectral (interior) nudging was introduced as a way of constraining the model to be more consistent with observed behavior. However, such control over numerical model behavior raises concerns over how much nudging may affect unforced variability and extremes. Strong nudging may reduce or filter out extreme events, since the nudging pushes the model toward a relatively smooth, large-scale state. The question then becomes---what is the minimum spectral nudging needed to correct biases while not limiting the simulation of extreme events? To determine this, we use varying degrees of spectral nudging, using WRF's standard nudging as a reference point during January and July 2007. Results suggest that there is a marked lack of sensitivity to varying degrees of nudging. Moreover, given that nudging is an artificial forcing applied in the model, an important outcome of this work is that nudging strength apparently can be considerably smaller than WRF's standard strength and still produce reliable simulations. In the remaining studies, we used the same PAW setup to analyze daily precipitation extremes simulated over a 19-year period on the CORDEX Arctic domain for winter and summer. We defined these seasons as the three-month period leading up to and including the climatological sea ice maximum and minimum, respectively. Analysis focused on four North American regions defined using

  4. Evaluation of parameters effect on the maximum fuel temperature in the core thermal and hydraulic design of HTTR

    International Nuclear Information System (INIS)

    Fujimoto, Nozomu; Maruyama, Soh; Sudo, Yukio; Fujii, Sadao; Niguma, Yoshinori.

    1988-10-01

    This report presents the results of quantitative evaluation on the effects of the dominant parameters on the maximum fuel temperature in the core thermal hydraulic design of the High Temperature Engineering Test Reactor(HTTR) of 30 MW in thermal power, 950 deg C in reactor outlet coolant temperature and 40 kg/cm 2 G in coolant pressure. The dominant parameters investigated are 1) Gap conductance. 2) Effect of eccertricity of fuel compacts in graphite sleeve. 3) Effect of spacer ribs on heat transfer coefficients. 4) Contact probability of fuel compact and graphite sleeve. 5) Validity of uniform radial power density in the fuel compacts. 6) Effect of impurity gas on gap conductance. 7) Effect of FP gas on gap conductance. The effects of these items on the maximum fuel temperature were quantitalively identified as hot spot factors. A probability of the appearance of the maximum fuel temperature was also evaluated in this report. (author)

  5. New results on equatorial thermospheric winds and the midnight temperature maximum

    Directory of Open Access Journals (Sweden)

    J. Meriwether

    2008-03-01

    Full Text Available Optical observations of thermospheric winds and temperatures determined with high resolution measurements of Doppler shifts and Doppler widths of the OI 630-nm equatorial nightglow emission have been made with improved accuracy at Arequipa, Peru (16.4° S, 71.4° W with an imaging Fabry-Perot interferometer. An observing procedure previously used at Arecibo Observatory was applied to achieve increased spatial and temporal sampling of the thermospheric wind and temperature with the selection of eight azimuthal directions, equally spaced from 0 to 360°, at a zenith angle of 60°. By assuming the equivalence of longitude and local time, the data obtained using this technique is analyzed to determine the mean neutral wind speeds and mean horizontal gradients of the wind field in the zonal and meridional directions. The new temperature measurements obtained with the improved instrumental accuracy clearly show the midnight temperature maximum (MTM peak with amplitudes of 25 to 200 K in all directions observed for most nights. The horizontal wind field maps calculated from the mean winds and gradients show the MTM peak is always preceded by an equatorward wind surge lasting 1–2 h. The results also show for winter events a meridional wind abatement seen after the MTM peak. On one occasion, near the September equinox, a reversal was observed during the poleward transit of the MTM over Arequipa. Analysis inferring vertical winds from the observed convergence yielded inconsistent results, calling into question the validity of this calculation for the MTM structure at equatorial latitudes during solar minimum. Comparison of the observations with the predictions of the NCAR general circulation model indicates that the model fails to reproduce the observed amplitude by a factor of 5 or more. This is attributed in part to the lack of adequate spatial resolution in the model as the MTM phenomenon takes place within a scale of 300–500 km and ~45 min in

  6. Temperature-dependent daily variability of precipitable water in special sensor microwave/imager observations

    Science.gov (United States)

    Gutowski, William J.; Lindemulder, Elizabeth A.; Jovaag, Kari

    1995-01-01

    We use retrievals of atmospheric precipitable water from satellite microwave observations and analyses of near-surface temperature to examine the relationship between these two fields on daily and longer time scales. The retrieval technique producing the data used here is most effective over the open ocean, so the analysis focuses on the southern hemisphere's extratropics, which have an extensive ocean surface. For both the total and the eddy precipitable water fields, there is a close correspondence between local variations in the precipitable water and near-surface temperature. The correspondence appears particularly strong for synoptic and planetary scale transient eddies. More specifically, the results support a typical modeling assumption that transient eddy moisture fields are proportional to transient eddy temperature fields under the assumption f constant relative humidity.

  7. Verification of average daily maximum permissible concentration of styrene in the atmospheric air of settlements under the results of epidemiological studies of the children’s population

    Directory of Open Access Journals (Sweden)

    М.А. Zemlyanova

    2015-03-01

    Full Text Available We presented the materials on the verification of the average daily maximum permissible concentration of styrene in the atmospheric air of settlements performed under the results of own in-depth epidemiological studies of children’s population according to the principles of the international risk assessment practice. It was established that children in the age of 4–7 years when exposed to styrene at the level above 1.2 of threshold level value for continuous exposure develop the negative exposure effects in the form of disorders of hormonal regulation, pigmentary exchange, antioxidative activity, cytolysis, immune reactivity and cytogenetic disbalance which contribute to the increased morbidity of diseases of the central nervous system, endocrine system, respiratory organs, digestion and skin. Based on the proved cause-and-effect relationships between the biomarkers of negative effects and styrene concentration in blood it was demonstrated that the benchmark styrene concentration in blood is 0.002 mg/dm3. The justified value complies with and confirms the average daily styrene concentration in the air of settlements at the level of 0.002 mg/m3 accepted in Russia which provides the safety for the health of population (1 threshold level value for continuous exposure.

  8. Effect modification of the association between temperature variability and daily cardiovascular mortality by air pollutants in three Chinese cities.

    Science.gov (United States)

    Luo, Kai; Li, Runkui; Wang, Zongshuang; Zhang, Ruiming; Xu, Qun

    2017-11-01

    There is limited evidence showing the mortality effects of temperature variability (TV) on cardiovascular diseases. The joint effects between TV and air pollutants are also less well-established. This study aims to assess the effect modification of TV-cardiovascular mortality by air pollutants in three Chinese cities (Beijing, Nanjing and Chengdu). Data of daily mortality, air pollutants and meteorological factors from 2008 to 2011 was collected from each city. TV was calculated as the standard deviation of daily maximum and minimum temperatures over exposure days. The city-specific effect estimates of TV on cardiovascular mortality were calculated using a quasi-Poisson regression model, adjusting for potential confounders (e.g., seasonality and temperature). An interaction term of TV and a three-level air pollutants stratum indicator was included in the models. Effect modifications by air pollutants were assessed by comparing the estimates of TV's effect between pollutant stratums and calculating the corresponding 95% confidential interval of the differences. Multivariate meta-analysis was conducted to obtain the pooled estimates. The data showed that TV was associated with increased risk of cardiovascular mortality, especially for longer TV exposure days (0-8 days, TV08). This association was still observed after adjusting for air pollutants on current day or the previous two days. Stronger estimates were observed in females, but no significant difference between males and females was detected, indicating the absence of evidence of effect modification by gender. Estimates of TV-cardiovascular mortality varied across two season periods (warm and cool season) and age groups, but the evidence of effect modification by age and seasons was absent. Regarding the effect modification of TV-cardiovascular mortality association by air pollutants, a significant effect modification was identified for PM 10, but not for NO 2 and SO 2 in the whole population for all TV

  9. The maximum allowable temperature of zircaloy-2 fuel cladding under dry storage conditions

    International Nuclear Information System (INIS)

    Mayuzumi, M.; Yoshiki, S.; Yasuda, T.; Nakatsuka, M.

    1990-09-01

    Japan plans to reprocess and reutilise the spent nuclear fuel from nuclear power generation. However, the temporary storage of spent fuel is assuming increasing importance as a means of ensuring flexibility in the nuclear fuel cycle. Our investigations of various methods of storage have shown that casks are the most suitable means of storing small quantities of spent fuel of around 500 t, and research and development are in progress to establish dry storage technology for such casks. The soundness of fuel cladding is being investigated. The most important factor in evaluating soundness in storage under inert gas as currently envisaged is creep deformation and rupture, and a number of investigations have been made of the creep behaviour of cladding. The present study was conducted on the basis of existing in-house results in collaboration with Nippon Kakunenryo Kaihatsu KK (Nippon Nuclear Fuel Department Co.), which has hot lab facilities. Tests were run on the creep deformation behaviour of irradiated cladding, and the maximum allowable temperature during dry storage was investigated. (author)

  10. Modelling the occurrence of heat waves in maximum and minimum temperatures over Spain and projections for the period 2031-60

    Science.gov (United States)

    Abaurrea, J.; Asín, J.; Cebrián, A. C.

    2018-02-01

    The occurrence of extreme heat events in maximum and minimum daily temperatures is modelled using a non-homogeneous common Poisson shock process. It is applied to five Spanish locations, representative of the most common climates over the Iberian Peninsula. The model is based on an excess over threshold approach and distinguishes three types of extreme events: only in maximum temperature, only in minimum temperature and in both of them (simultaneous events). It takes into account the dependence between the occurrence of extreme events in both temperatures and its parameters are expressed as functions of time and temperature related covariates. The fitted models allow us to characterize the occurrence of extreme heat events and to compare their evolution in the different climates during the observed period. This model is also a useful tool for obtaining local projections of the occurrence rate of extreme heat events under climate change conditions, using the future downscaled temperature trajectories generated by Earth System Models. The projections for 2031-60 under scenarios RCP4.5, RCP6.0 and RCP8.5 are obtained and analysed using the trajectories from four earth system models which have successfully passed a preliminary control analysis. Different graphical tools and summary measures of the projected daily intensities are used to quantify the climate change on a local scale. A high increase in the occurrence of extreme heat events, mainly in July and August, is projected in all the locations, all types of event and in the three scenarios, although in 2051-60 the increase is higher under RCP8.5. However, relevant differences are found between the evolution in the different climates and the types of event, with a specially high increase in the simultaneous ones.

  11. A hierarchical model of daily stream temperature using air-water temperature synchronization, autocorrelation, and time lags

    Directory of Open Access Journals (Sweden)

    Benjamin H. Letcher

    2016-02-01

    Full Text Available Water temperature is a primary driver of stream ecosystems and commonly forms the basis of stream classifications. Robust models of stream temperature are critical as the climate changes, but estimating daily stream temperature poses several important challenges. We developed a statistical model that accounts for many challenges that can make stream temperature estimation difficult. Our model identifies the yearly period when air and water temperature are synchronized, accommodates hysteresis, incorporates time lags, deals with missing data and autocorrelation and can include external drivers. In a small stream network, the model performed well (RMSE = 0.59°C, identified a clear warming trend (0.63 °C decade−1 and a widening of the synchronized period (29 d decade−1. We also carefully evaluated how missing data influenced predictions. Missing data within a year had a small effect on performance (∼0.05% average drop in RMSE with 10% fewer days with data. Missing all data for a year decreased performance (∼0.6 °C jump in RMSE, but this decrease was moderated when data were available from other streams in the network.

  12. Testing the performance of three nonlinear methods of time seriesanalysis for prediction and downscaling of European daily temperatures

    Directory of Open Access Journals (Sweden)

    J. Miksovsky

    2005-01-01

    Full Text Available We investigated the usability of the method of local linear models (LLM, multilayer perceptron neural network (MLP NN and radial basis function neural network (RBF NN for the construction of temporal and spatial transfer functions between different meteorological quantities, and compared the obtained results both mutually and to the results of multiple linear regression (MLR. The tested methods were applied for the short-term prediction of daily mean temperatures and for the downscaling of NCEP/NCAR reanalysis data, using series of daily mean, minimum and maximum temperatures from 25 European stations as predictands. None of the tested nonlinear methods was recognized to be distinctly superior to the others, but all nonlinear techniques proved to be better than linear regression in the majority of the cases. It is also discussed that the most frequently used nonlinear method, the MLP neural network, may not be the best choice for processing the climatic time series - LLM method or RBF NNs can offer a comparable or slightly better performance and they do not suffer from some of the practical disadvantages of MLPs. Aside from comparing the performance of different methods, we paid attention to geographical and seasonal variations of the results. The forecasting results showed that the nonlinear character of relations between climate variables is well apparent over most of Europe, in contrast to rather weak nonlinearity in the Mediterranean and North Africa. No clear large-scale geographical structure of nonlinearity was identified in the case of downscaling. Nonlinearity also seems to be noticeably stronger in winter than in summer in most locations, for both forecasting and downscaling.

  13. A Gridded Daily Min/Max Temperature Dataset With 0.1° Resolution for the Yangtze River Valley and its Error Estimation

    Science.gov (United States)

    Xiong, Qiufen; Hu, Jianglin

    2013-05-01

    The minimum/maximum (Min/Max) temperature in the Yangtze River valley is decomposed into the climatic mean and anomaly component. A spatial interpolation is developed which combines the 3D thin-plate spline scheme for climatological mean and the 2D Barnes scheme for the anomaly component to create a daily Min/Max temperature dataset. The climatic mean field is obtained by the 3D thin-plate spline scheme because the relationship between the decreases in Min/Max temperature with elevation is robust and reliable on a long time-scale. The characteristics of the anomaly field tend to be related to elevation variation weakly, and the anomaly component is adequately analyzed by the 2D Barnes procedure, which is computationally efficient and readily tunable. With this hybridized interpolation method, a daily Min/Max temperature dataset that covers the domain from 99°E to 123°E and from 24°N to 36°N with 0.1° longitudinal and latitudinal resolution is obtained by utilizing daily Min/Max temperature data from three kinds of station observations, which are national reference climatological stations, the basic meteorological observing stations and the ordinary meteorological observing stations in 15 provinces and municipalities in the Yangtze River valley from 1971 to 2005. The error estimation of the gridded dataset is assessed by examining cross-validation statistics. The results show that the statistics of daily Min/Max temperature interpolation not only have high correlation coefficient (0.99) and interpolation efficiency (0.98), but also the mean bias error is 0.00 °C. For the maximum temperature, the root mean square error is 1.1 °C and the mean absolute error is 0.85 °C. For the minimum temperature, the root mean square error is 0.89 °C and the mean absolute error is 0.67 °C. Thus, the new dataset provides the distribution of Min/Max temperature over the Yangtze River valley with realistic, successive gridded data with 0.1° × 0.1° spatial resolution and

  14. Climate applications for NOAA 1/4° Daily Optimum Interpolation Sea Surface Temperature

    Science.gov (United States)

    Boyer, T.; Banzon, P. V. F.; Liu, G.; Saha, K.; Wilson, C.; Stachniewicz, J. S.

    2015-12-01

    Few sea surface temperature (SST) datasets from satellites have the long temporal span needed for climate studies. The NOAA Daily Optimum Interpolation Sea Surface Temperature (DOISST) on a 1/4° grid, produced at National Centers for Environmental Information, is based primarily on SSTs from the Advanced Very High Resolution Radiometer (AVHRR), available from 1981 to the present. AVHRR data can contain biases, particularly when aerosols are present. Over the three decade span, the largest departure of AVHRR SSTs from buoy temperatures occurred during the Mt Pinatubo and El Chichon eruptions. Therefore, in DOISST, AVHRR SSTs are bias-adjusted to match in situ SSTs prior to interpolation. This produces a consistent time series of complete SST fields that is suitable for modelling and investigating local climate phenomena like El Nino or the Pacific warm blob in a long term context. Because many biological processes and animal distributions are temperature dependent, there are also many ecological uses of DOISST (e.g., coral bleaching thermal stress, fish and marine mammal distributions), thereby providing insights into resource management in a changing ocean. The advantages and limitations of using DOISST for different applications will be discussed.

  15. Soil temperature synchronisation improves estimation of daily variation of ecosystem respiration in Sphagnum peatlands

    Science.gov (United States)

    D'Angelo, Benoît; Gogo, Sébastien; Le Moing, Franck; Jégou, Fabrice; Guimbaud, Christophe; Laggoun, Fatima

    2015-04-01

    Ecosystem respiration (ER) is a key process in the global C cycle and thus, plays an important role in the climate regulation. Peatlands contain a third of the world soil C in spite of their relatively low global area (3% of land area). Although these ecosystems represent potentially a significant source of C under global change, they are still not taken into account accordingly in global climatic models. Therefore, ER variations have to be accounted for, especially by estimating its dependence to temperature.s The relationship between ER and temperature often relies only on one soil temperature depth and the latter is generally taken in the first 10 centimetres. Previous studies showed that the temperature dependence of ER depends on the depth at which the temperature is recorded. The depth selection for temperature measurement is thus a predominant issue. A way to deal with this is to analyse the time-delay between ER and temperature. The aim of this work is to assess whether using synchronised data in models leads to a better ER daily variation estimation than using non-synchronised data. ER measurements were undertaken in 2013 in 4 Sphagnum peatlands across France: La Guette (N 47°19'44', E 2°17'04', 154m) in July, Landemarais (N 48°26'30', E -1°10'54', 145m) in August, Frasne (N 46°49'35', E 6°10'20', 836m) in September, and Bernadouze (N 42°48'09', E 1°25'24', 1500m) in October. A closed method chamber was used to measure ER hourly during 72 hours in each of the 4 replicates installed in each site. Average ER ranged from 1.75 μmol m-2 s-1 to 6.13 μmol m-2 s-1. A weather station was used to record meteorological data and soil temperature profiles (5, 10, 20 and 30 cm). Synchronised data were determined for each depth by selecting the time-delay leading to the best correlation between ER and soil temperature. The data were used to simulate ER according to commonly used equations: linear, exponential with Q10, Arrhenius, Lloyd and Taylor. Models

  16. Effect of temperature dependent properties on MHD convection of water near its density maximum in a square cavity

    International Nuclear Information System (INIS)

    Sivasankaran, S.; Hoa, C.J.

    2008-01-01

    Natural convection of water near its density maximum in the presence of magnetic field in a cavity with temperature dependent properties is studied numerically. The viscosity and thermal conductivity of the water is varied with reference temperature and calculated by cubic polynomial. The finite volume method is used to solve the governing equations. The results are presented graphically in the form of streamlines, isotherms and velocity vectors and are discussed for various combinations of reference temperature parameter, Rayleigh number, density inversion parameter and Hartmann number. It is observed that flow and temperature field are affected significantly by changing the reference temperature parameter for temperature dependent thermal conductivity and both temperature dependent viscosity and thermal conductivity cases. There is no significant effect on fluid flow and temperature distributions for temperature dependent viscosity case when changing the values of reference temperature parameter. The average heat transfer rate considering temperature-dependent viscosity are higher than considering temperature-dependent thermal conductivity and both temperature-dependent viscosity and thermal conductivity. The average Nusselt number decreases with an increase of Hartmann number. It is observed that the density inversion of water leaves strong effects on fluid flow and heat transfer due to the formation of bi-cellular structure. The heat transfer rate behaves non-linearly with density inversion parameter. The direction of external magnetic field also affect the fluid flow and heat transfer. (authors)

  17. Discriminating low frequency components from long range persistent fluctuations in daily atmospheric temperature variability

    Directory of Open Access Journals (Sweden)

    V. Cuomo

    2009-07-01

    Full Text Available This study originated from recent results reported in literature, which support the existence of long-range (power-law persistence in atmospheric temperature fluctuations on monthly and inter-annual scales. We investigated the results of Detrended Fluctuation Analysis (DFA carried out on twenty-two historical daily time series recorded in Europe in order to evaluate the reliability of such findings in depth. More detailed inspections emphasized systematic deviations from power-law and high statistical confidence for functional form misspecification. Rigorous analyses did not support scale-free correlation as an operative concept for Climate modelling, as instead suggested in literature. In order to understand the physical implications of our results better, we designed a bivariate Markov process, parameterised on the basis of the atmospheric observational data by introducing a slow dummy variable. The time series generated by this model, analysed both in time and frequency domains, tallied with the real ones very well. They accounted for both the deceptive scaling found in literature and the correlation details enhanced by our analysis. Our results seem to evidence the presence of slow fluctuations from another climatic sub-system such as ocean, which inflates temperature variance up to several months. They advise more precise re-analyses of temperature time series before suggesting dynamical paradigms useful for Climate modelling and for the assessment of Climate Change.

  18. Reconstruction of Daily Sea Surface Temperature Based on Radial Basis Function Networks

    Directory of Open Access Journals (Sweden)

    Zhihong Liao

    2017-11-01

    Full Text Available A radial basis function network (RBFN method is proposed to reconstruct daily Sea surface temperatures (SSTs with limited SST samples. For the purpose of evaluating the SSTs using this method, non-biased SST samples in the Pacific Ocean (10°N–30°N, 115°E–135°E are selected when the tropical storm Hagibis arrived in June 2014, and these SST samples are obtained from the Reynolds optimum interpolation (OI v2 daily 0.25° SST (OISST products according to the distribution of AVHRR L2p SST and in-situ SST data. Furthermore, an improved nearest neighbor cluster (INNC algorithm is designed to search for the optimal hidden knots for RBFNs from both the SST samples and the background fields. Then, the reconstructed SSTs from the RBFN method are compared with the results from the OI method. The statistical results show that the RBFN method has a better performance of reconstructing SST than the OI method in the study, and that the average RMSE is 0.48 °C for the RBFN method, which is quite smaller than the value of 0.69 °C for the OI method. Additionally, the RBFN methods with different basis functions and clustering algorithms are tested, and we discover that the INNC algorithm with multi-quadric function is quite suitable for the RBFN method to reconstruct SSTs when the SST samples are sparsely distributed.

  19. Probabilistic measures of climate change vulnerability, adaptation action benefits, and related uncertainty from maximum temperature metric selection

    Science.gov (United States)

    DeWeber, Jefferson T.; Wagner, Tyler

    2018-01-01

    Predictions of the projected changes in species distributions and potential adaptation action benefits can help guide conservation actions. There is substantial uncertainty in projecting species distributions into an unknown future, however, which can undermine confidence in predictions or misdirect conservation actions if not properly considered. Recent studies have shown that the selection of alternative climate metrics describing very different climatic aspects (e.g., mean air temperature vs. mean precipitation) can be a substantial source of projection uncertainty. It is unclear, however, how much projection uncertainty might stem from selecting among highly correlated, ecologically similar climate metrics (e.g., maximum temperature in July, maximum 30‐day temperature) describing the same climatic aspect (e.g., maximum temperatures) known to limit a species’ distribution. It is also unclear how projection uncertainty might propagate into predictions of the potential benefits of adaptation actions that might lessen climate change effects. We provide probabilistic measures of climate change vulnerability, adaptation action benefits, and related uncertainty stemming from the selection of four maximum temperature metrics for brook trout (Salvelinus fontinalis), a cold‐water salmonid of conservation concern in the eastern United States. Projected losses in suitable stream length varied by as much as 20% among alternative maximum temperature metrics for mid‐century climate projections, which was similar to variation among three climate models. Similarly, the regional average predicted increase in brook trout occurrence probability under an adaptation action scenario of full riparian forest restoration varied by as much as .2 among metrics. Our use of Bayesian inference provides probabilistic measures of vulnerability and adaptation action benefits for individual stream reaches that properly address statistical uncertainty and can help guide conservation

  20. Probabilistic measures of climate change vulnerability, adaptation action benefits, and related uncertainty from maximum temperature metric selection.

    Science.gov (United States)

    DeWeber, Jefferson T; Wagner, Tyler

    2018-06-01

    Predictions of the projected changes in species distributions and potential adaptation action benefits can help guide conservation actions. There is substantial uncertainty in projecting species distributions into an unknown future, however, which can undermine confidence in predictions or misdirect conservation actions if not properly considered. Recent studies have shown that the selection of alternative climate metrics describing very different climatic aspects (e.g., mean air temperature vs. mean precipitation) can be a substantial source of projection uncertainty. It is unclear, however, how much projection uncertainty might stem from selecting among highly correlated, ecologically similar climate metrics (e.g., maximum temperature in July, maximum 30-day temperature) describing the same climatic aspect (e.g., maximum temperatures) known to limit a species' distribution. It is also unclear how projection uncertainty might propagate into predictions of the potential benefits of adaptation actions that might lessen climate change effects. We provide probabilistic measures of climate change vulnerability, adaptation action benefits, and related uncertainty stemming from the selection of four maximum temperature metrics for brook trout (Salvelinus fontinalis), a cold-water salmonid of conservation concern in the eastern United States. Projected losses in suitable stream length varied by as much as 20% among alternative maximum temperature metrics for mid-century climate projections, which was similar to variation among three climate models. Similarly, the regional average predicted increase in brook trout occurrence probability under an adaptation action scenario of full riparian forest restoration varied by as much as .2 among metrics. Our use of Bayesian inference provides probabilistic measures of vulnerability and adaptation action benefits for individual stream reaches that properly address statistical uncertainty and can help guide conservation actions. Our

  1. Dynamic Performance of Maximum Power Point Trackers in TEG Systems Under Rapidly Changing Temperature Conditions

    DEFF Research Database (Denmark)

    Man, E. A.; Sera, D.; Mathe, L.

    2016-01-01

    of the intermittent operation of the internal combustion engine, the TEG and its MPPT controller are exposed to a cyclic temperature profile. Furthermore, there are no guidelines on how fast the MPPT must be under such dynamic conditions. In the work discussed in this paper, temperature gradients for TEG integrated...

  2. Influence of maximum water temperature on occurrence of Lahontan cutthroat trout within streams

    Science.gov (United States)

    J. Dunham; R. Schroeter; B. Rieman

    2003-01-01

    We measured water temperature at 87 sites in six streams in two different years (1998 and 1999) to test for association with the occurrence of Lahontan cutthroat trout Oncorhynchus clarki henshawi. Because laboratory studies suggest that Lahontan cutthroat trout begin to show signs of acute stress at warm (>22°C) temperatures, we focused on the...

  3. A field studies and modeling approach to develop organochlorine pesticide and PCB total maximum daily load calculations: Case study for Echo Park Lake, Los Angeles, CA

    Energy Technology Data Exchange (ETDEWEB)

    Vasquez, V.R., E-mail: vrvasquez@ucla.edu [Environmental Science and Engineering Program, University of California, Los Angeles, Los Angeles, CA 90095-1496 (United States); Curren, J., E-mail: janecurren@yahoo.com [Environmental Science and Engineering Program, University of California, Los Angeles, Los Angeles, CA 90095-1496 (United States); Lau, S.-L., E-mail: simlin@ucla.edu [Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, CA 90095-1496 (United States); Stenstrom, M.K., E-mail: stenstro@seas.ucla.edu [Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, CA 90095-1496 (United States); Suffet, I.H., E-mail: msuffet@ucla.edu [Environmental Science and Engineering Program, University of California, Los Angeles, Los Angeles, CA 90095-1496 (United States)

    2011-09-01

    Echo Park Lake is a small lake in Los Angeles, CA listed on the USA Clean Water Act Section 303(d) list of impaired water bodies for elevated levels of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in fish tissue. A lake water and sediment sampling program was completed to support the development of total maximum daily loads (TMDL) to address the lake impairment. The field data indicated quantifiable levels of OCPs and PCBs in the sediments, but lake water data were all below detection levels. The field sediment data obtained may explain the contaminant levels in fish tissue using appropriate sediment-water partitioning coefficients and bioaccumulation factors. A partition-equilibrium fugacity model of the whole lake system was used to interpret the field data and indicated that half of the total mass of the pollutants in the system are in the sediments and the other half is in soil; therefore, soil erosion could be a significant pollutant transport mode into the lake. Modeling also indicated that developing and quantifying the TMDL depends significantly on the analytical detection level for the pollutants in field samples and on the choice of octanol-water partitioning coefficient and bioaccumulation factors for the model. - Research highlights: {yields} Fugacity model using new OCP and PCB field data supports lake TMDL calculations. {yields} OCP and PCB levels in lake sediment were found above levels for impairment. {yields} Relationship between sediment data and available fish tissue data evaluated. {yields} Model provides approximation of contaminant sources and sinks for a lake system. {yields} Model results were sensitive to analytical detection and quantification levels.

  4. New England SPARROW Water-Quality Modeling to Assist with the Development of Total Maximum Daily Loads in the Connecticut River Basin

    Science.gov (United States)

    Moore, R. B.; Robinson, K. W.; Simcox, A. C.; Johnston, C. M.

    2002-05-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Environmental Protection Agency (USEPA) and the New England Interstate Water Pollution Control Commission (NEWIPCC), is currently preparing a water-quality model, called SPARROW, to assist in the regional total maximum daily load (TMDL) studies in New England. A model is required to provide estimates of nutrient loads and confidence intervals at unmonitored stream reaches. SPARROW (Spatially Referenced Regressions on Watershed Attributes) is a spatially detailed, statistical model that uses regression equations to relate total phosphorus and nitrogen (nutrient) stream loads to pollution sources and watershed characteristics. These statistical relations are then used to predict nutrient loads in unmonitored streams. The New England SPARROW model is based on a hydrologic network of 42,000 stream reaches and associated watersheds. Point source data are derived from USEPA's Permit Compliance System (PCS). Information about nonpoint sources is derived from data such as fertilizer use, livestock wastes, and atmospheric deposition. Watershed characteristics include land use, streamflow, time-of-travel, stream density, percent wetlands, slope of the land surface, and soil permeability. Preliminary SPARROW results are expected in Spring 2002. The New England SPARROW model is proposed for use in the TMDL determination for nutrients in the Connecticut River Basin, upstream of Connecticut. The model will be used to estimate nitrogen loads from each of the upstream states to Long Island Sound. It will provide estimates and confidence intervals of phosphorus and nitrogen loads, area-weighted yields of nutrients by watershed, sources of nutrients, and the downstream movement of nutrients. This information will be used to (1) understand ranges in nutrient levels in surface waters, (2) identify the environmental factors that affect nutrient levels in streams, (3) evaluate monitoring efforts for better determination of

  5. Daily temperature changes and variability in ENSEMBLES regional models predictions: Evaluation and intercomparison for the Ebro Valley (NE Iberia)

    KAUST Repository

    El Kenawy, Ahmed M.; Ló pez-Moreno, Juan Ignacio; McCabe, Matthew; Brunsell, Nathaniel A.; Vicente-Serrano, Sergio M.

    2014-01-01

    We employ a suite of regional climate models (RCMs) to assess future changes in summer (JJA) maximum temperature (Tmax) over the Ebro basin, the largest hydrological division in the Iberian Peninsula. Under the A1B emission scenario, future changes

  6. Estimation of daily minimum land surface air temperature using MODIS data in southern Iran

    Science.gov (United States)

    Didari, Shohreh; Norouzi, Hamidreza; Zand-Parsa, Shahrokh; Khanbilvardi, Reza

    2017-11-01

    Land surface air temperature (LSAT) is a key variable in agricultural, climatological, hydrological, and environmental studies. Many of their processes are affected by LSAT at about 5 cm from the ground surface (LSAT5cm). Most of the previous studies tried to find statistical models to estimate LSAT at 2 m height (LSAT2m) which is considered as a standardized height, and there is not enough study for LSAT5cm estimation models. Accurate measurements of LSAT5cm are generally acquired from meteorological stations, which are sparse in remote areas. Nonetheless, remote sensing data by providing rather extensive spatial coverage can complement the spatiotemporal shortcomings of meteorological stations. The main objective of this study was to find a statistical model from the previous day to accurately estimate spatial daily minimum LSAT5cm, which is very important in agricultural frost, in Fars province in southern Iran. Land surface temperature (LST) data were obtained using the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Aqua and Terra satellites at daytime and nighttime periods with normalized difference vegetation index (NDVI) data. These data along with geometric temperature and elevation information were used in a stepwise linear model to estimate minimum LSAT5cm during 2003-2011. The results revealed that utilization of MODIS Aqua nighttime data of previous day provides the most applicable and accurate model. According to the validation results, the accuracy of the proposed model was suitable during 2012 (root mean square difference ( RMSD) = 3.07 °C, {R}_{adj}^2 = 87 %). The model underestimated (overestimated) high (low) minimum LSAT5cm. The accuracy of estimation in the winter time was found to be lower than the other seasons ( RMSD = 3.55 °C), and in summer and winter, the errors were larger than in the remaining seasons.

  7. Chronic air pollution and social deprivation as modifiers of the association between high temperature and daily mortality.

    Science.gov (United States)

    Benmarhnia, Tarik; Oulhote, Youssef; Petit, Claire; Lapostolle, Annabelle; Chauvin, Pierre; Zmirou-Navier, Denis; Deguen, Séverine

    2014-06-18

    Heat and air pollution are both associated with increases in mortality. However, the interactive effect of temperature and air pollution on mortality remains unsettled. Similarly, the relationship between air pollution, air temperature, and social deprivation has never been explored. We used daily mortality data from 2004 to 2009, daily mean temperature variables and relative humidity, for Paris, France. Estimates of chronic exposure to air pollution and social deprivation at a small spatial scale were calculated and split into three strata. We developed a stratified Poisson regression models to assess daily temperature and mortality associations, and tested the heterogeneity of the regression coefficients of the different strata. Deaths due to ambient temperature were calculated from attributable fractions and mortality rates were estimated. We found that chronic air pollution exposure and social deprivation are effect modifiers of the association between daily temperature and mortality. We found a potential interactive effect between social deprivation and chronic exposure with regards to air pollution in the mortality-temperature relationship. Our results may have implications in considering chronically polluted areas as vulnerable in heat action plans and in the long-term measures to reduce the burden of heat stress especially in the context of climate change.

  8. Maximum Efficiency of Thermoelectric Heat Conversion in High-Temperature Power Devices

    Directory of Open Access Journals (Sweden)

    V. I. Khvesyuk

    2016-01-01

    Full Text Available Modern trends in development of aircraft engineering go with development of vehicles of the fifth generation. The features of aircrafts of the fifth generation are motivation to use new high-performance systems of onboard power supply. The operating temperature of the outer walls of engines is of 800–1000 K. This corresponds to radiation heat flux of 10 kW/m2 . The thermal energy including radiation of the engine wall may potentially be converted into electricity. The main objective of this paper is to analyze if it is possible to use a high efficiency thermoelectric conversion of heat into electricity. The paper considers issues such as working processes, choice of materials, and optimization of thermoelectric conversion. It presents the analysis results of operating conditions of thermoelectric generator (TEG used in advanced hightemperature power devices. A high-temperature heat source is a favorable factor for the thermoelectric conversion of heat. It is shown that for existing thermoelectric materials a theoretical conversion efficiency can reach the level of 15–20% at temperatures up to 1500 K and available values of Ioffe parameter being ZT = 2–3 (Z is figure of merit, T is temperature. To ensure temperature regime and high efficiency thermoelectric conversion simultaneously it is necessary to have a certain match between TEG power, temperature of hot and cold surfaces, and heat transfer coefficient of the cooling system. The paper discusses a concept of radiation absorber on the TEG hot surface. The analysis has demonstrated a number of potentialities for highly efficient conversion through using the TEG in high-temperature power devices. This work has been implemented under support of the Ministry of Education and Science of the Russian Federation; project No. 1145 (the programme “Organization of Research Engineering Activities”.

  9. Strong impacts of daily minimum temperature on the green-up date and summer greenness of the Tibetan Plateau.

    Science.gov (United States)

    Shen, Miaogen; Piao, Shilong; Chen, Xiaoqiu; An, Shuai; Fu, Yongshuo H; Wang, Shiping; Cong, Nan; Janssens, Ivan A

    2016-09-01

    Understanding vegetation responses to climate change on the Tibetan Plateau (TP) helps in elucidating the land-atmosphere energy exchange, which affects air mass movement over and around the TP. Although the TP is one of the world's most sensitive regions in terms of climatic warming, little is known about how the vegetation responds. Here, we focus on how spring phenology and summertime greenness respond to the asymmetric warming, that is, stronger warming during nighttime than during daytime. Using both in situ and satellite observations, we found that vegetation green-up date showed a stronger negative partial correlation with daily minimum temperature (Tmin ) than with maximum temperature (Tmax ) before the growing season ('preseason' henceforth). Summer vegetation greenness was strongly positively correlated with summer Tmin , but negatively with Tmax . A 1-K increase in preseason Tmin advanced green-up date by 4 days (P greenness by 3.6% relative to the mean greenness during 2000-2004 (P green-up date (P > 0.10) and higher summer Tmax even reduced greenness by 2.6% K(-1) (P greenness were probably due to the accompanying decline in water availability. The dominant enhancing effect of nighttime warming indicates that climatic warming will probably have stronger impact on TP ecosystems than on apparently similar Arctic ecosystems where vegetation is controlled mainly by Tmax . Our results are crucial for future improvements of dynamic vegetation models embedded in the Earth System Models which are being used to describe the behavior of the Asian monsoon. The results are significant because the state of the vegetation on the TP plays an important role in steering the monsoon. © 2016 John Wiley & Sons Ltd.

  10. Experimental program to determine maximum temperatures for dry storage of spent fuel

    International Nuclear Information System (INIS)

    Knox, C.A.; Gilbert, E.R.; White, G.D.

    1985-02-01

    Although air is used as a cover gas in some dry storage facilities, other facilities use inert cover gases which must be monitored to assure inertness of the atmosphere. Thus qualifying air as a cover gas is attractive for the dry storage of spent fuels. At sufficiently high temperatures, air can react with spent fuel (UO 2 ) at the site of cladding breaches that formed during reactor irradiation or during dry storage. The reaction rate is temperature dependent; hence the rates can be maintained at acceptable levels if temperatures are low. Tests with spent fuel are being conducted at Pacific Northwest Laboratory (PNL) to determine the allowable temperatures for storage of spent fuel in air. Tests performed with nonirradiated UO 2 pellets indicated that moisture, surface condition, gamma radiation, gadolinia content of the fuel pellet, and temperature are important variables. Tests were then initiated on spent fuel to develop design data under simulated dry storage conditions. Tests have been conducted at 200 and 230 0 C on spent fuel in air and 275 0 C in moist nitrogen. The results for nonirradiated UO 2 and published data for irradiated fuel indicate that above 230 0 C, oxidation rates are unacceptably high for extended storage in air. The tests with spent fuel will be continued for approximately three years to enable reliable extrapolations to be made for extended storage in air and inert gases with oxidizing constituents. 6 refs., 6 figs., 3 tabs

  11. THE MAXIMUM EFFECT OF DEEP LAKES ON TEMPERATURE PROFILES – DETERMINATION OF THE GEOTHERMAL GRADIENT

    OpenAIRE

    Eppelbaum L. V.; Kutasov I. M.; Balobaev V. T.

    2009-01-01

    Understanding the climate change processes on the basis of geothermal observations in boreholes is an important and at the same time high-intricate problem. Many non-climatic effects could cause changes in ground surface temperatures. In this study we investigate the effects of deep lakes on the borehole temperature profilesobserved within or in the vicinity of the lakes. We propose a method based on utilization of Laplace equation with nonuniform boundary conditions. The proposed method make...

  12. Temperature of the Icelandic crust: Inferred from electrical conductivity, temperature surface gradient, and maximum depth of earthquakes

    Science.gov (United States)

    Björnsson, Axel

    2008-02-01

    Two different models of the structure of the Icelandic crust have been presented. One is the thin-crust model with a 10-15 km thick crust beneath the axial rift zones, with an intermediate layer of partially molten basalt at the base of the crust and on the top of an up-domed asthenosphere. The thick-crust model assumes a 40 km thick and relatively cold crust beneath central Iceland. The most important and crucial parameter to distinguish between these different models is the temperature distribution with depth. Three methods are used to estimate the temperature distribution with depth. First, the surface temperature gradient measured in shallow wells drilled outside geothermal areas. Second, the thickness of the seismogenic zone which is associated with a 750 °C isothermal surface. Third, the depth to a layer with high electrical conductivity which is associated with partially molten basalt with temperature around 1100 °C at the base of the crust. Combination of these data shows that the temperature gradient can be assumed to be nearly linear from the surface down to the base of the crust. These results are strongly in favour of the thin-crust model. The scattered deep seismic reflectors interpreted as Moho in the thick-crust model could be caused by phase transitions or reflections from melt pockets in the mantle.

  13. Oral temperatures of the elderly in nursing homes in summer and winter in relation to activities of daily living

    Science.gov (United States)

    Nakamura, K.; Tanaka, Masatoshi; Motohashi, Yutaka; Maeda, Akira

    This study was conducted to clarify the seasonal difference in body temperature in summer and winter, and to document the thermal environment of the elderly living in nursing homes. The subjects were 57 healthy elderly people aged >=63 years living in two nursing homes in Japan. One of the homes was characterized by subjects with low levels of activities of daily living (ADL). Oral temperatures were measured in the morning and afternoon, with simultaneous recording of ambient temperature and relative humidity. Oral temperatures in summer were higher than in winter, with statistically significant differences (Pchanges in ambient temperature.

  14. County-Level Climate Uncertainty for Risk Assessments: Volume 4 Appendix C - Historical Maximum Near-Surface Air Temperature.

    Energy Technology Data Exchange (ETDEWEB)

    Backus, George A.; Lowry, Thomas Stephen; Jones, Shannon M; Walker, La Tonya Nicole; Roberts, Barry L; Malczynski, Leonard A.

    2017-06-01

    This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plus two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconomic impacts. The full report is contained in 27 volumes.

  15. Experimental determination of a critical temperature for maximum anaerobic digester biogas production

    CSIR Research Space (South Africa)

    Sichilalu, S

    2017-08-01

    Full Text Available fission of methanogenic bacteria. The temperature was varied over time over several days and the biogas production is recorded every after 24 hours(1 day) . Based on the experiment setup, the results show a higher biogas production proportional to the rise...

  16. Ion permeability of the cytoplasmic membrane limits the maximum growth temperature of bacteria and archaea

    NARCIS (Netherlands)

    van de Vossenberg, J.L C M; Ubbink-Kok, T.; Elferink, M.G.L.; Driessen, A.J.M.; Konings, W.N

    1995-01-01

    Protons and sodium ions are the most commonly used coupling ions in energy transduction in bacteria and archaea. At their growth temperature, the permeability of the cytoplasmic membrane of thermophilic bacteria to protons is high compared with that of sodium ions. In some thermophiles, sodium is

  17. Responses of antennal campaniform sensilla to rapid temperature changes in ground beetles of the tribe platynini with different habitat preferences and daily activity rhythms.

    Science.gov (United States)

    Must, Anne; Merivee, Enno; Luik, Anne; Mänd, Marika; Heidemaa, Mikk

    2006-05-01

    Responses of temperature sensitive (cold) cells from the antenna of ground beetles (tribe Platynini) were compared in species with different ecological preferences and daily activity rhythms. Action potential rates were characterized at various temperatures (ranges 23-39 degrees C) and during rapid changes in it (Deltat=0.5-15 degrees C). The stationary firing frequencies were nearly twice as high in eurythermic open field ground beetles Agonum muelleri and Anchomenus dorsalis (firing rates ranging from 22 to 47imp/s) than in a stenothermic forest species Platynus assimilis. In the eurythermic species, the firing rate did not significantly depend on temperature (Anchomenus dorsalis range of 23-27 degrees C and Agonum muelleri range of 23-33 degrees C) but plots of firing rate versus temperature showed rapid declines when lethally high temperatures were approached. In contrast, a nearly linear decline of the firing rate/temperature curve was observed in Platynus assimilis. Responses to rapid temperature decreases were also considerably higher in eurythermic species. Both the peak frequency of the initial burst (maximum 420-650Hz) as well as the sustained discharge in the first 4s of the response were higher than in Platynus assimilis. Long silent periods, lasting up to several seconds, that occurred at the beginning of the response to rapid warming were significantly shorter in Agonum muelleri and Anchomenus dorsalis compared to Platynus assimilis. These findings suggest that the responses of thermoreceptors to temperature changes may be correlated with specific ecological preferences.

  18. Seasonal maximum temperature prediction skill over Southern Africa: 1- vs 2-tiered forecasting systems

    CSIR Research Space (South Africa)

    Lazenby, MJ

    2011-09-01

    Full Text Available TEMPERATURE PREDICTION SKILL OVER SOUTHERN AFRICA: 1- VS. 2-TIERED FORECASTING SYSTEMS Melissa J. Lazenby University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa Willem A. Landman Council for Scientific and Industrial....J., Tyson, P.D. and Tennant, W.J., 2001. Retro-active skill of multi- tiered forecasts of summer rainfall over southern Africa. International Journal of Climatology, 21, 1- 19. Mason, S.J. and Graham, N.E., 2002. Areas beneath the relative operating...

  19. Comparing daily temperature averaging methods: the role of surface and atmosphere variables in determining spatial and seasonal variability

    Science.gov (United States)

    Bernhardt, Jase; Carleton, Andrew M.

    2018-05-01

    The two main methods for determining the average daily near-surface air temperature, twice-daily averaging (i.e., [Tmax+Tmin]/2) and hourly averaging (i.e., the average of 24 hourly temperature measurements), typically show differences associated with the asymmetry of the daily temperature curve. To quantify the relative influence of several land surface and atmosphere variables on the two temperature averaging methods, we correlate data for 215 weather stations across the Contiguous United States (CONUS) for the period 1981-2010 with the differences between the two temperature-averaging methods. The variables are land use-land cover (LULC) type, soil moisture, snow cover, cloud cover, atmospheric moisture (i.e., specific humidity, dew point temperature), and precipitation. Multiple linear regression models explain the spatial and monthly variations in the difference between the two temperature-averaging methods. We find statistically significant correlations between both the land surface and atmosphere variables studied with the difference between temperature-averaging methods, especially for the extreme (i.e., summer, winter) seasons (adjusted R2 > 0.50). Models considering stations with certain LULC types, particularly forest and developed land, have adjusted R2 values > 0.70, indicating that both surface and atmosphere variables control the daily temperature curve and its asymmetry. This study improves our understanding of the role of surface and near-surface conditions in modifying thermal climates of the CONUS for a wide range of environments, and their likely importance as anthropogenic forcings—notably LULC changes and greenhouse gas emissions—continues.

  20. Extended Kalman Filtering to estimate temperature and irradiation for maximum power point tracking of a photovoltaic module

    International Nuclear Information System (INIS)

    Docimo, D.J.; Ghanaatpishe, M.; Mamun, A.

    2017-01-01

    This paper develops an algorithm for estimating photovoltaic (PV) module temperature and effective irradiation level. The power output of a PV system depends directly on both of these states. Estimating the temperature and irradiation allows for improved state-based control methods while eliminating the need of additional sensors. Thermal models and irradiation estimators have been developed in the literature, but none incorporate feedback for estimation. This paper outlines an Extended Kalman Filter for temperature and irradiation estimation. These estimates are, in turn, used within a novel state-based controller that tracks the maximum power point of the PV system. Simulation results indicate this state-based controller provides up to an 8.5% increase in energy produced per day as compared to an impedance matching controller. A sensitivity analysis is provided to examine the impact state estimate errors have on the ability to find the optimal operating point of the PV system. - Highlights: • Developed a temperature and irradiation estimator for photovoltaic systems. • Designed an Extended Kalman Filter to handle model and measurement uncertainty. • Developed a state-based controller for maximum power point tracking (MPPT). • Validated combined estimator/controller algorithm for different weather conditions. • Algorithm increases energy captured up to 8.5% over traditional MPPT algorithms.

  1. Determination of maximum water temperature within the spent fuel pool of Angra Nuclear Power Plant - Unit 3

    Energy Technology Data Exchange (ETDEWEB)

    Werner, F.L., E-mail: fernanda.werner@poli.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Departamento de Engenharia Nuclear; Alves, A.S.M., E-mail: asergi@eletronuclear.gov.br [Eletrobras Termonuclear (Eletronuclear), Rio de Janeiro, RJ (Brazil); Frutuoso e Melo, P.F., E-mail: frutuoso@nuclear.ufrj.br [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    In this paper, a mathematical model for the determination of the maximum water temperature within the spent fuel pool of Angra Nuclear Power Plant – Unit 3 was developed. The model was obtained from the boundary layer analysis and the application of Navier-Stokes equation to a vertical flat plate immersed in a water flow under free convection regime. Both types of pressure loss coefficients through the flow channel were considers in the modeling, the form coefficient for fuel assemblies (FAs) and the loss due to rod friction. The resulting equations enabled the determination of a mixed water temperature below the storage racks (High Density Storage Racks) as well as the estimation of a temperature gradient through the racks. The model was applied to the authorized operation of the plant (power operation, plant outage and upset condition) and faulted conditions (loss of coolant accidents and external events). The results obtained are in agreement with Brazilian and international standards. (author)

  2. Determination of maximum water temperature within the spent fuel pool of Angra Nuclear Power Plant - Unit 3

    International Nuclear Information System (INIS)

    Werner, F.L.; Frutuoso e Melo, P.F.

    2017-01-01

    In this paper, a mathematical model for the determination of the maximum water temperature within the spent fuel pool of Angra Nuclear Power Plant – Unit 3 was developed. The model was obtained from the boundary layer analysis and the application of Navier-Stokes equation to a vertical flat plate immersed in a water flow under free convection regime. Both types of pressure loss coefficients through the flow channel were considers in the modeling, the form coefficient for fuel assemblies (FAs) and the loss due to rod friction. The resulting equations enabled the determination of a mixed water temperature below the storage racks (High Density Storage Racks) as well as the estimation of a temperature gradient through the racks. The model was applied to the authorized operation of the plant (power operation, plant outage and upset condition) and faulted conditions (loss of coolant accidents and external events). The results obtained are in agreement with Brazilian and international standards. (author)

  3. [Risk of deaths from cardiovascular diseases in Polish urban population associated with changes in maximal daily temperature].

    Science.gov (United States)

    Rabczenko, Daniel; Wojtyniak, Bogdan; Kuchcik, Magdalena; Seroka, Wojciech

    2009-01-01

    The paper presents results of analysis of short-term effect of changes in maximal daily temperature on daily mortality from cardiovascular diseases in warm season in years 1999-2006. Analysis was carried out in six large Polish cities--Katowice, Kraków, Łódź, Poznań, Warszawa and Wrocław. Generalized additive models were used in the analysis. Potential confounding factors--long term changes of mortality, day of week and other meteorological factors (atmospheric pressure, humidity, mean wind speed) were taken into account during model building process. Analysis was done for two age groups--0-69 and 70 years and older. Significant, positive association between daily maximal temperature and risk of death from cardiovascular diseases was found only in older age group.

  4. Computed estimates of maximum temperature elevations in fetal tissues during transabdominal pulsed Doppler examinations.

    Science.gov (United States)

    Bly, S H; Vlahovich, S; Mabee, P R; Hussey, R G

    1992-01-01

    Measured characteristics of ultrasonic fields were obtained in submissions from manufacturers of diagnostic ultrasound equipment for devices operating in pulsed Doppler mode. Simple formulae were used with these data to generate upper limits to fetal temperature elevations, delta Tlim, during a transabdominal pulsed Doppler examination. A total of 236 items were analyzed, each item being a console/transducer/operating-mode/intended-use combination, for which the spatial-peak temporal-average intensity, ISPTA, was greater than 500 mW cm-2. The largest calculated delta Tlim values were approximately 1.5, 7.1 and 8.7 degrees C for first-, second- and third-trimester examinations, respectively. The vast majority of items yielded delta Tlim values which were less than 1 degree C in the first trimester. For second- and third-trimester examinations, where heating of fetal bone determines delta Tlim, most delta Tlim values were less than 4 degrees C. The clinical significance of the results is discussed.

  5. The Impacts of Maximum Temperature and Climate Change to Current and Future Pollen Distribution in Skopje, Republic of Macedonia

    Directory of Open Access Journals (Sweden)

    Vladimir Kendrovski

    2012-02-01

    Full Text Available BACKGROUND. The goal of the present paper was to assess the impact of current and future burden of the ambient temperature to pollen distributions in Skopje. METHODS. In the study we have evaluated a correlation between the concentration of pollen grains in the atmosphere of Skopje and maximum temperature, during the vegetation period of 1996, 2003, 2007 and 2009 as a current burden in context of climate change. For our analysis we have selected 9 representative of each phytoallergen group (trees, grasses, weeds. The concentration of pollen grains has been monitored by a Lanzoni volumetric pollen trap. The correlation between the concentration of pollen grains in the atmosphere and selected meteorological variable from weekly monitoring has been studied with the help of linear regression and correlation coefficients. RESULTS. The prevalence of the sensibilization of standard pollen allergens in Skopje during the some period shows increasing from 16,9% in 1996 to 19,8% in 2009. We detect differences in onset of flowering, maximum and end of the length of seasons for pollen. The pollen distributions and risk increases in 3 main periods: early spring, spring and summer which are the main cause of allergies during these seasons. The largest increase of air temperature due to climate change in Skopje is expected in the summer season. CONCLUSION. The impacts of climate change by increasing of the temperature in the next decades very likely will include impacts on pollen production and differences in current pollen season. [TAF Prev Med Bull 2012; 11(1.000: 35-40

  6. Reconstructing temperatures in the Maritime Alps, Italy, since the Last Glacial Maximum using cosmogenic noble gas paleothermometry

    Science.gov (United States)

    Tremblay, Marissa; Spagnolo, Matteo; Ribolini, Adriano; Shuster, David

    2016-04-01

    The Gesso Valley, located in the southwestern-most, Maritime portion of the European Alps, contains an exceptionally well-preserved record of glacial advances during the late Pleistocene and Holocene. Detailed geomorphic mapping, geochronology of glacial deposits, and glacier reconstructions indicate that glaciers in this Mediterranean region responded to millennial scale climate variability differently than glaciers in the interior of the European Alps. This suggests that the Mediterranean Sea somehow modulated the climate of this region. However, since glaciers respond to changes in temperature and precipitation, both variables were potentially influenced by proximity to the Sea. To disentangle the competing effects of temperature and precipitation changes on glacier size, we are constraining past temperature variations in the Gesso Valley since the Last Glacial Maximum (LGM) using cosmogenic noble gas paleothermometry. The cosmogenic noble gases 3He and 21Ne experience diffusive loss from common minerals like quartz and feldspars at Earth surface temperatures. Cosmogenic noble gas paleothermometry utilizes this open-system behavior to quantitatively constrain thermal histories of rocks during exposure to cosmic ray particles at the Earth's surface. We will present measurements of cosmogenic 3He in quartz sampled from moraines in the Gesso Valley with LGM, Bühl stadial, and Younger Dryas ages. With these 3He measurements and experimental data quantifying the diffusion kinetics of 3He in quartz, we will provide a preliminary temperature reconstruction for the Gesso Valley since the LGM. Future work on samples from younger moraines in the valley system will be used to fill in details of the more recent temperature history.

  7. Method to support Total Maximum Daily Load development using hydrologic alteration as a surrogate to address aquatic life impairment in New Jersey streams

    Science.gov (United States)

    Kennen, Jonathan G.; Riskin, Melissa L.; Reilly, Pamela A.; Colarullo, Susan J.

    2013-01-01

    More than 300 ambient monitoring sites in New Jersey have been identified by the New Jersey Department of Environmental Protection (NJDEP) in its integrated water-quality monitoring and assessment report (that is, the 305(b) Report on general water quality and 303(d) List of waters that do not support their designated uses) as being impaired with respect to aquatic life; however, no unambiguous stressors (for example, nutrients or bacteria) have been identified. Because of the indeterminate nature of the broad range of possible impairments, surrogate measures that more holistically encapsulate the full suite of potential environmental stressors need to be developed. Streamflow alteration resulting from anthropogenic changes in the landscape is one such surrogate. For example, increases in impervious surface cover (ISC) commonly cause increases in surface runoff, which can result in “flashy” hydrology and other changes in the stream corridor that are associated with streamflow alteration. The NJDEP has indicated that methodologies to support a hydrologically based Total Maximum Daily Load (hydro-TMDL) need to be developed in order to identify hydrologic targets that represent a minimal percent deviation from a baseline condition (“minimally altered”) as a surrogate measure to meet criteria in support of designated uses. The primary objective of this study was to develop an applicable hydro-TMDL approach to address aquatic-life impairments associated with hydrologic alteration for New Jersey streams. The U.S. Geological Survey, in cooperation with the NJDEP, identified 51 non- to moderately impaired gaged streamflow sites in the Raritan River Basin for evaluation. Quantile regression (QR) analysis was used to compare flow and precipitation records and identify baseline hydrographs at 37 of these sites. At sites without an appropriately long period of record (POR) or where a baseline hydrograph could not be identified with QR, a rainfall-runoff model was used

  8. Downscaling RCP8.5 daily temperatures and precipitation in Ontario using localized ensemble optimal interpolation (EnOI) and bias correction

    Science.gov (United States)

    Deng, Ziwang; Liu, Jinliang; Qiu, Xin; Zhou, Xiaolan; Zhu, Huaiping

    2017-10-01

    A novel method for daily temperature and precipitation downscaling is proposed in this study which combines the Ensemble Optimal Interpolation (EnOI) and bias correction techniques. For downscaling temperature, the day to day seasonal cycle of high resolution temperature of the NCEP climate forecast system reanalysis (CFSR) is used as background state. An enlarged ensemble of daily temperature anomaly relative to this seasonal cycle and information from global climate models (GCMs) are used to construct a gain matrix for each calendar day. Consequently, the relationship between large and local-scale processes represented by the gain matrix will change accordingly. The gain matrix contains information of realistic spatial correlation of temperature between different CFSR grid points, between CFSR grid points and GCM grid points, and between different GCM grid points. Therefore, this downscaling method keeps spatial consistency and reflects the interaction between local geographic and atmospheric conditions. Maximum and minimum temperatures are downscaled using the same method. For precipitation, because of the non-Gaussianity issue, a logarithmic transformation is used to daily total precipitation prior to conducting downscaling. Cross validation and independent data validation are used to evaluate this algorithm. Finally, data from a 29-member ensemble of phase 5 of the Coupled Model Intercomparison Project (CMIP5) GCMs are downscaled to CFSR grid points in Ontario for the period from 1981 to 2100. The results show that this method is capable of generating high resolution details without changing large scale characteristics. It results in much lower absolute errors in local scale details at most grid points than simple spatial downscaling methods. Biases in the downscaled data inherited from GCMs are corrected with a linear method for temperatures and distribution mapping for precipitation. The downscaled ensemble projects significant warming with amplitudes of 3

  9. Improving Estimations of Spatial Distribution of Soil Respiration Using the Bayesian Maximum Entropy Algorithm and Soil Temperature as Auxiliary Data.

    Directory of Open Access Journals (Sweden)

    Junguo Hu

    Full Text Available Soil respiration inherently shows strong spatial variability. It is difficult to obtain an accurate characterization of soil respiration with an insufficient number of monitoring points. However, it is expensive and cumbersome to deploy many sensors. To solve this problem, we proposed employing the Bayesian Maximum Entropy (BME algorithm, using soil temperature as auxiliary information, to study the spatial distribution of soil respiration. The BME algorithm used the soft data (auxiliary information effectively to improve the estimation accuracy of the spatiotemporal distribution of soil respiration. Based on the functional relationship between soil temperature and soil respiration, the BME algorithm satisfactorily integrated soil temperature data into said spatial distribution. As a means of comparison, we also applied the Ordinary Kriging (OK and Co-Kriging (Co-OK methods. The results indicated that the root mean squared errors (RMSEs and absolute values of bias for both Day 1 and Day 2 were the lowest for the BME method, thus demonstrating its higher estimation accuracy. Further, we compared the performance of the BME algorithm coupled with auxiliary information, namely soil temperature data, and the OK method without auxiliary information in the same study area for 9, 21, and 37 sampled points. The results showed that the RMSEs for the BME algorithm (0.972 and 1.193 were less than those for the OK method (1.146 and 1.539 when the number of sampled points was 9 and 37, respectively. This indicates that the former method using auxiliary information could reduce the required number of sampling points for studying spatial distribution of soil respiration. Thus, the BME algorithm, coupled with soil temperature data, can not only improve the accuracy of soil respiration spatial interpolation but can also reduce the number of sampling points.

  10. Improving Estimations of Spatial Distribution of Soil Respiration Using the Bayesian Maximum Entropy Algorithm and Soil Temperature as Auxiliary Data.

    Science.gov (United States)

    Hu, Junguo; Zhou, Jian; Zhou, Guomo; Luo, Yiqi; Xu, Xiaojun; Li, Pingheng; Liang, Junyi

    2016-01-01

    Soil respiration inherently shows strong spatial variability. It is difficult to obtain an accurate characterization of soil respiration with an insufficient number of monitoring points. However, it is expensive and cumbersome to deploy many sensors. To solve this problem, we proposed employing the Bayesian Maximum Entropy (BME) algorithm, using soil temperature as auxiliary information, to study the spatial distribution of soil respiration. The BME algorithm used the soft data (auxiliary information) effectively to improve the estimation accuracy of the spatiotemporal distribution of soil respiration. Based on the functional relationship between soil temperature and soil respiration, the BME algorithm satisfactorily integrated soil temperature data into said spatial distribution. As a means of comparison, we also applied the Ordinary Kriging (OK) and Co-Kriging (Co-OK) methods. The results indicated that the root mean squared errors (RMSEs) and absolute values of bias for both Day 1 and Day 2 were the lowest for the BME method, thus demonstrating its higher estimation accuracy. Further, we compared the performance of the BME algorithm coupled with auxiliary information, namely soil temperature data, and the OK method without auxiliary information in the same study area for 9, 21, and 37 sampled points. The results showed that the RMSEs for the BME algorithm (0.972 and 1.193) were less than those for the OK method (1.146 and 1.539) when the number of sampled points was 9 and 37, respectively. This indicates that the former method using auxiliary information could reduce the required number of sampling points for studying spatial distribution of soil respiration. Thus, the BME algorithm, coupled with soil temperature data, can not only improve the accuracy of soil respiration spatial interpolation but can also reduce the number of sampling points.

  11. Clarifying the role of fire heat and daily temperature fluctuations as germination cues for Mediterranean Basin obligate seeders.

    Science.gov (United States)

    Santana, Victor M; Baeza, M Jaime; Blanes, M Carmen

    2013-01-01

    This study aims to determine the role that both direct effects of fire and subsequent daily temperature fluctuations play in the seed bank dynamics of obligate seeders from the Mediterranean Basin. The short yet high soil temperatures experienced due to passage of fire are conflated with the lower, but longer, temperatures experienced by daily fluctuations which occur after removing vegetation. These germination cues are able to break seed dormancy, but it is difficult to assess their specific level of influence because they occur consecutively after summer fires, just before the flush of germination in the wet season (autumn). By applying experimental fires, seed treatments were imposed that combined fire exposure/non-fire exposure with exposure to microhabitats under a gradient of disturbance (i.e. gaps opened by fire, mechanical brushing and intact vegetation). The seeds used were representative of the main families of obligate seeders (Ulex parviflorus, Cistus albidus and Rosmarinus officinalis). Specifically, an assessment was made of (1) the proportion of seeds killed by fire, (2) seedling emergence under field conditions and (3) seeds which remained ungerminated in soil. For the three species studied, the factors that most influenced seedling emergence and seeds remaining ungerminated were microhabitats with higher temperature fluctuations after fire (gaps opened by fire and brushing treatments). The direct effect of fire decreased the seedling emergence of U. parviflorus and reduced the proportion of seeds of R. officinalis remaining ungerminated. The relevance of depleting vegetation (and subsequent daily temperature fluctuation in summer) suggests that studies focusing on lower temperature thresholds for breaking seed dormancy are required. This fact also supports the hypothesis that the seeding capacity in Mediterranean Basin obligate seeders may have evolved as a response to a wide range of disturbances, and not exclusively to fire.

  12. Effects of Resveratrol on Daily Rhythms of Locomotor Activity and Body Temperature in Young and Aged Grey Mouse Lemurs

    Directory of Open Access Journals (Sweden)

    Fabien Pifferi

    2013-01-01

    Full Text Available In several species, resveratrol, a polyphenolic compound, activates sirtuin proteins implicated in the regulation of energy balance and biological clock processes. To demonstrate the effect of resveratrol on clock function in an aged primate, young and aged mouse lemurs (Microcebus murinus were studied over a 4-week dietary supplementation with resveratrol. Spontaneous locomotor activity and daily variations in body temperature were continuously recorded. Reduction in locomotor activity onset and changes in body temperature rhythm in resveratrol-supplemented aged animals suggest an improved synchronisation on the light-dark cycle. Resveratrol could be a good candidate to restore the circadian rhythms in the elderly.

  13. Documentation of a daily mean stream temperature module—An enhancement to the Precipitation-Runoff Modeling System

    Science.gov (United States)

    Sanders, Michael J.; Markstrom, Steven L.; Regan, R. Steven; Atkinson, R. Dwight

    2017-09-15

    A module for simulation of daily mean water temperature in a network of stream segments has been developed as an enhancement to the U.S. Geological Survey Precipitation Runoff Modeling System (PRMS). This new module is based on the U.S. Fish and Wildlife Service Stream Network Temperature model, a mechanistic, one-dimensional heat transport model. The new module is integrated in PRMS. Stream-water temperature simulation is activated by selection of the appropriate input flags in the PRMS Control File and by providing the necessary additional inputs in standard PRMS input files.This report includes a comprehensive discussion of the methods relevant to the stream temperature calculations and detailed instructions for model input preparation.

  14. Daily temperature and precipitation extremes in the Baltic Sea region derived from the BaltAn65+ reanalysis

    Science.gov (United States)

    Toll, Velle; Post, Piia

    2018-04-01

    Daily 2-m temperature and precipitation extremes in the Baltic Sea region for the time period of 1965-2005 is studied based on data from the BaltAn65 + high resolution atmospheric reanalysis. Moreover, the ability of regional reanalysis to capture extremes is analysed by comparing the reanalysis data to gridded observations. The shortcomings in the simulation of the minimum temperatures over the northern part of the region and in the simulation of the extreme precipitation over the Scandinavian mountains in the BaltAn65+ reanalysis data are detected and analysed. Temporal trends in the temperature and precipitation extremes in the Baltic Sea region, with the largest increases in temperature and precipitation in winter, are detected based on both gridded observations and the BaltAn65+ reanalysis data. However, the reanalysis is not able to capture all of the regional trends in the extremes in the observations due to the shortcomings in the simulation of the extremes.

  15. Modeling daily soil temperature over diverse climate conditions in Iran—a comparison of multiple linear regression and support vector regression techniques

    Science.gov (United States)

    Delbari, Masoomeh; Sharifazari, Salman; Mohammadi, Ehsan

    2018-02-01

    The knowledge of soil temperature at different depths is important for agricultural industry and for understanding climate change. The aim of this study is to evaluate the performance of a support vector regression (SVR)-based model in estimating daily soil temperature at 10, 30 and 100 cm depth at different climate conditions over Iran. The obtained results were compared to those obtained from a more classical multiple linear regression (MLR) model. The correlation sensitivity for the input combinations and periodicity effect were also investigated. Climatic data used as inputs to the models were minimum and maximum air temperature, solar radiation, relative humidity, dew point, and the atmospheric pressure (reduced to see level), collected from five synoptic stations Kerman, Ahvaz, Tabriz, Saghez, and Rasht located respectively in the hyper-arid, arid, semi-arid, Mediterranean, and hyper-humid climate conditions. According to the results, the performance of both MLR and SVR models was quite well at surface layer, i.e., 10-cm depth. However, SVR performed better than MLR in estimating soil temperature at deeper layers especially 100 cm depth. Moreover, both models performed better in humid climate condition than arid and hyper-arid areas. Further, adding a periodicity component into the modeling process considerably improved the models' performance especially in the case of SVR.

  16. Recent trends in pre-monsoon daily temperature extremes over India

    Indian Academy of Sciences (India)

    e-mail: kotha@tropmet.res.in. Extreme climate and weather events are increasingly being recognized as key aspects of climate change. Pre-monsoon season ... change in day-to-day magnitude of fluctuations of pre-monsoon maximum and minimum tempera- tures. ... by high exceedence counts during drought periods.

  17. The estimation of phenological thresholds of Saffron cultivation in Isfahan province based on the daily temperature statistics

    Directory of Open Access Journals (Sweden)

    Gholamabbas Fallahghalhary

    2015-04-01

    Full Text Available In this research, the statistics of daily temperature of meteorology stations for estimating the probable occurrence of the first and last frost temperature, the phonological thresholds of saffron and its flowering and irrigation dates were explored. Furthermore, by applying different methods, the probabilities of the attained dates in different probability levels were fit in Smada software. The estimated probability level of 95 percent, as the optimum date, was donated for the entire Isfahan province in ArcGIS9/3 software environment using the interpolation method of Cokriging. The time of occurrence of minimum temperatures is under the influence of the geographical and height condition of each region and the first fall season frost occurs in high regions of the eastern half of Isfahan province at the beginning of November and in the low-lying eastern regions in the late December. The occurrence of daily temperature is changeable from the first half of October and the second half of November. From the west to the east of Isfahan, the time of occurrence of this threshold has a delay of about one month. The optimum flowering date of saffron, based on climatic conditions, is from the first half of October to the late of November. By considering the flowering date and daily temperature requirement of saffron, the irrigation date prior to flowering continues from the second half of September in the western parts and the beginning of November in the eastern regions. From the perspective of thermal condition, the western, central, northern and eastern parts of Isfahan province are more suited to the cultivation and development of saffron product. The amount of water requirement in the study area based on evapotranspiration and crop coefficients of saffron occurred in the mid-season, late season and Initial.

  18. The Threshold Temperature and Lag Effects on Daily Excess Mortality in Harbin, China: A Time Series Analysis

    Directory of Open Access Journals (Sweden)

    Hanlu Gao

    2017-04-01

    Full Text Available Background: A large number of studies have reported the relationship between ambient temperature and mortality. However, few studies have focused on the effects of high temperatures on cardio-cerebrovascular diseases mortality (CCVDM and their acute events (ACCVDM. Objective: To assess the threshold temperature and time lag effects on daily excess mortality in Harbin, China. Methods: A generalized additive model (GAM with a Poisson distribution was used to investigate the relative risk of mortality for each 1 °C increase above the threshold temperature and their time lag effects in Harbin, China. Results: High temperature threshold was 26 °C in Harbin. Heat effects were immediate and lasted for 0–6 and 0–4 days for CCVDM and ACCVDM, respectively. The acute cardiovascular disease mortality (ACVDM seemed to be more sensitive to temperature than cardiovascular disease mortality (CVDM with higher death risk and shorter time lag effects. The lag effects lasted longer for cerebrovascular disease mortality (CBDM than CVDM; so did ACBDM compared to ACVDM. Conclusion: Hot temperatures increased CCVDM and ACCVDM in Harbin, China. Public health intervention strategies for hot temperatures adaptation should be concerned.

  19. Observed changes in extremes of daily rainfall and temperature in Jemma Sub-Basin, Upper Blue Nile Basin, Ethiopia

    Science.gov (United States)

    Worku, Gebrekidan; Teferi, Ermias; Bantider, Amare; Dile, Yihun T.

    2018-02-01

    Climate variability has been a threat to the socio-economic development of Ethiopia. This paper examined the changes in rainfall, minimum, and maximum temperature extremes of Jemma Sub-Basin of the Upper Blue Nile Basin for the period of 1981 to 2014. The nonparametric Mann-Kendall, seasonal Mann-Kendall, and Sen's slope estimator were used to estimate annual trends. Ten rainfall and 12 temperature indices were used to study changes in rainfall and temperature extremes. The results showed an increasing trend of annual and summer rainfall in more than 78% of the stations and a decreasing trend of spring rainfall in most of the stations. An increase in rainfall extreme events was detected in the majority of the stations. Several rainfall extreme indices showed wetting trends in the sub-basin, whereas limited indices indicated dryness in most of the stations. Annual maximum and minimum temperature and extreme temperature indices showed warming trend in the sub-basin. Presence of extreme rainfall and a warming trend of extreme temperature indices may suggest signs of climate change in the Jemma Sub-Basin. This study, therefore, recommended the need for exploring climate induced risks and implementing appropriate climate change adaptation and mitigation strategies.

  20. Optimisation of sea surface current retrieval using a maximum cross correlation technique on modelled sea surface temperature

    Science.gov (United States)

    Heuzé, Céline; Eriksson, Leif; Carvajal, Gisela

    2017-04-01

    Using sea surface temperature from satellite images to retrieve sea surface currents is not a new idea, but so far its operational near-real time implementation has not been possible. Validation studies are too region-specific or uncertain, due to the errors induced by the images themselves. Moreover, the sensitivity of the most common retrieval method, the maximum cross correlation, to the three parameters that have to be set is unknown. Using model outputs instead of satellite images, biases induced by this method are assessed here, for four different seas of Western Europe, and the best of nine settings and eight temporal resolutions are determined. For all regions, tracking a small 5 km pattern from the first image over a large 30 km region around its original location on a second image, separated from the first image by 6 to 9 hours returned the most accurate results. Moreover, for all regions, the problem is not inaccurate results but missing results, where the velocity is too low to be picked by the retrieval. The results are consistent both with limitations caused by ocean surface current dynamics and with the available satellite technology, indicating that automated sea surface current retrieval from sea surface temperature images is feasible now, for search and rescue operations, pollution confinement or even for more energy efficient and comfortable ship navigation.

  1. Apparent molal volumes of HMT and TATD in aqueous solutions around the temperature of maximum density of water

    International Nuclear Information System (INIS)

    Clavijo Penagos, J.A.; Blanco, L.H.

    2012-01-01

    Highlights: ►V φ for HMT and TATD in aqueous solutions around the temperature of maximum density of water are reported. ► V φ is linear in m form m = 0.025 for all the aqueous solutions investigated. ► Variation of V ¯ 2 ∞ with T obeys a second grade polynomial trend. ► The solutes are classified as structure breakers according to Hepler’s criterion. - Abstract: Apparent molal volumes V φ have been determined from density measurements for several aqueous solutions of 1,3,5,7-tetraazatricyclo[3.3.1.1(3,7)]decane (HMT) and 1,3,6,8-tetraazatricyclo[4.4.1.1(3,8)]dodecane (TATD) at T = (275.15, 275.65, 276.15, 276.65, 277.15, 277.65 and 278.15) K as function of composition. The infinite dilution partial molar volumes of solutes in aqueous solution are evaluated through extrapolation. Interactions of the solutes with water are discussed in terms of the effect of the temperature on the volumetric properties and the structure of the solutes. The results are interpreted in terms of water structure-breaking or structure forming character of the solutes.

  2. NOAA Optimum Interpolation 1/4 Degree Daily Sea Surface Temperature (OISST) Analysis, Version 2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This high-resolution sea surface temperature (SST) analysis product was developed using an optimum interpolation (OI) technique. The SST analysis has a spatial grid...

  3. Estimation of Land Surface Temperature through Blending MODIS and AMSR-E Data with the Bayesian Maximum Entropy Method

    Directory of Open Access Journals (Sweden)

    Xiaokang Kou

    2016-01-01

    Full Text Available Land surface temperature (LST plays a major role in the study of surface energy balances. Remote sensing techniques provide ways to monitor LST at large scales. However, due to atmospheric influences, significant missing data exist in LST products retrieved from satellite thermal infrared (TIR remotely sensed data. Although passive microwaves (PMWs are able to overcome these atmospheric influences while estimating LST, the data are constrained by low spatial resolution. In this study, to obtain complete and high-quality LST data, the Bayesian Maximum Entropy (BME method was introduced to merge 0.01° and 0.25° LSTs inversed from MODIS and AMSR-E data, respectively. The result showed that the missing LSTs in cloudy pixels were filled completely, and the availability of merged LSTs reaches 100%. Because the depths of LST and soil temperature measurements are different, before validating the merged LST, the station measurements were calibrated with an empirical equation between MODIS LST and 0~5 cm soil temperatures. The results showed that the accuracy of merged LSTs increased with the increasing quantity of utilized data, and as the availability of utilized data increased from 25.2% to 91.4%, the RMSEs of the merged data decreased from 4.53 °C to 2.31 °C. In addition, compared with the filling gap method in which MODIS LST gaps were filled with AMSR-E LST directly, the merged LSTs from the BME method showed better spatial continuity. The different penetration depths of TIR and PMWs may influence fusion performance and still require further studies.

  4. Spatial-temporal changes of maximum and minimum temperatures in the Wei River Basin, China: Changing patterns, causes and implications

    Science.gov (United States)

    Liu, Saiyan; Huang, Shengzhi; Xie, Yangyang; Huang, Qiang; Leng, Guoyong; Hou, Beibei; Zhang, Ying; Wei, Xiu

    2018-05-01

    Due to the important role of temperature in the global climate system and energy cycles, it is important to investigate the spatial-temporal change patterns, causes and implications of annual maximum (Tmax) and minimum (Tmin) temperatures. In this study, the Cloud model were adopted to fully and accurately analyze the changing patterns of annual Tmax and Tmin from 1958 to 2008 by quantifying their mean, uniformity, and stability in the Wei River Basin (WRB), a typical arid and semi-arid region in China. Additionally, the cross wavelet analysis was applied to explore the correlations among annual Tmax and Tmin and the yearly sunspots number, Arctic Oscillation, Pacific Decadal Oscillation, and soil moisture with an aim to determine possible causes of annual Tmax and Tmin variations. Furthermore, temperature-related impacts on vegetation cover and precipitation extremes were also examined. Results indicated that: (1) the WRB is characterized by increasing trends in annual Tmax and Tmin, with a more evident increasing trend in annual Tmin, which has a higher dispersion degree and is less uniform and stable than annual Tmax; (2) the asymmetric variations of Tmax and Tmin can be generally explained by the stronger effects of solar activity (primarily), large-scale atmospheric circulation patterns, and soil moisture on annual Tmin than on annual Tmax; and (3) increasing annual Tmax and Tmin have exerted strong influences on local precipitation extremes, in terms of their duration, intensity, and frequency in the WRB. This study presents new analyses of Tmax and Tmin in the WRB, and the findings may help guide regional agricultural production and water resources management.

  5. New considerations regarding the risk assessment on Tartrazine An update toxicological assessment, intolerance reactions and maximum theoretical daily intake in France.

    Science.gov (United States)

    Elhkim, Mostafa Ould; Héraud, Fanny; Bemrah, Nawel; Gauchard, Françoise; Lorino, Tristan; Lambré, Claude; Frémy, Jean Marc; Poul, Jean-Michel

    2007-04-01

    Tartrazine is an artificial azo dye commonly used in human food and pharmaceutical products. Since the last assessment carried out by the JECFA in 1964, many new studies have been conducted, some of which have incriminated tartrazine in food intolerance reactions. The aims of this work are to update the hazard characterization and to revaluate the safety of tartrazine. Our bibliographical review of animal studies confirms the initial hazard assessment conducted by the JECFA, and accordingly the ADI established at 7.5mg/kg bw. From our data, in France, the estimated maximum theoretical intake of tartrazine in children is 37.2% of the ADI at the 97.5th percentile. It may therefore be concluded that from a toxicological point of view, tartrazine does not represent a risk for the consumer. It appears more difficult to show a clear relationship between ingestion of tartrazine and the development of intolerance reactions in patients. These reactions primarily occur in patients who also suffer from recurrent urticaria or asthma. The link between tartrazine consumption and these reactions is often overestimated, and the pathogenic mechanisms remain poorly understood. The prevalence of tartrazine intolerance is estimated to be less than 0.12% in the general population. Generally, the population at risk is aware of the importance of food labelling, with the view of avoiding consumption of tartrazine. However, it has to be mentioned that products such as ice creams, desserts, cakes and fine bakery are often sold loose without any labelling.

  6. ARIMA representation for daily solar irradiance and surface air temperature time series

    Science.gov (United States)

    Kärner, Olavi

    2009-06-01

    Autoregressive integrated moving average (ARIMA) models are used to compare long-range temporal variability of the total solar irradiance (TSI) at the top of the atmosphere (TOA) and surface air temperature series. The comparison shows that one and the same type of the model is applicable to represent the TSI and air temperature series. In terms of the model type surface air temperature imitates closely that for the TSI. This may mean that currently no other forcing to the climate system is capable to change the random walk type variability established by the varying activity of the rotating Sun. The result should inspire more detailed examination of the dependence of various climate series on short-range fluctuations of TSI.

  7. Mapping of Daily Mean Air Temperature in Agricultural Regions Using Daytime and Nighttime Land Surface Temperatures Derived from TERRA and AQUA MODIS Data

    Directory of Open Access Journals (Sweden)

    Ran Huang

    2015-07-01

    Full Text Available Air temperature is one of the most important factors in crop growth monitoring and simulation. In the present study, we estimated and mapped daily mean air temperature using daytime and nighttime land surface temperatures (LSTs derived from TERRA and AQUA MODIS data. Linear regression models were calibrated using LSTs from 2003 to 2011 and validated using LST data from 2012 to 2013, combined with meteorological station data. The results show that these models can provide a robust estimation of measured daily mean air temperature and that models that only accounted for meteorological data from rural regions performed best. Daily mean air temperature maps were generated from each of four MODIS LST products and merged using different strategies that combined the four MODIS products in different orders when data from one product was unavailable for a pixel. The annual average spatial coverage increased from 20.28% to 55.46% in 2012 and 28.31% to 44.92% in 2013.The root-mean-square and mean absolute errors (RMSE and MAE for the optimal image merging strategy were 2.41 and 1.84, respectively. Compared with the least-effective strategy, the RMSE and MAE decreased by 17.2% and 17.8%, respectively. The interpolation algorithm uses the available pixels from images with consecutive dates in a sliding-window mode. The most appropriate window size was selected based on the absolute spatial bias in the study area. With an optimal window size of 33 × 33 pixels, this approach increased data coverage by up to 76.99% in 2012 and 89.67% in 2013.

  8. Trends and periodicity of daily temperature and precipitation extremes during 1960-2013 in Hunan Province, central south China

    Science.gov (United States)

    Chen, Ajiao; He, Xinguang; Guan, Huade; Cai, Yi

    2018-04-01

    In this study, the trends and periodicity in climate extremes are examined in Hunan Province over the period 1960-2013 on the basis of 27 extreme climate indices calculated from daily temperature and precipitation records at 89 meteorological stations. The results show that in the whole province, temperature extremes exhibit a warming trend with more than 50% stations being statistically significant for 7 out of 16 temperature indices, and the nighttime temperature increases faster than the daytime temperature at the annual scale. The changes in most extreme temperature indices show strongly coherent spatial patterns. Moreover, the change rates of almost all temperature indices in north Hunan are greater than those of other regions. However, the statistically significant changes in indices of extreme precipitation are observed at fewer stations than in extreme temperature indices, forming less spatially coherent patterns. Positive trends in indices of extreme precipitation show that the amount and intensity of extreme precipitation events are generally increasing in both annual and seasonal scales, whereas the significant downward trend in consecutive wet days indicates that the precipitation becomes more even over the study period. Analysis of changes in probability distributions of extreme indices for 1960-1986 and 1987-2013 also demonstrates a remarkable shift toward warmer condition and increasing tendency in the amount and intensity of extreme precipitation during the past decades. The variations in extreme climate indices exhibit inconstant frequencies in the wavelet power spectrum. Among the 16 temperature indices, 2 of them show significant 1-year periodic oscillation and 7 of them exhibit significant 4-year cycle during some certain periods. However, significant periodic oscillations can be found in all of the precipitation indices. Wet-day precipitation and three absolute precipitation indices show significant 1-year cycle and other seven provide

  9. Daily changes in temperature, not the circadian clock, regulate growth rate in Brachypodium distachyon.

    Directory of Open Access Journals (Sweden)

    Dominick A Matos

    Full Text Available Plant growth is commonly regulated by external cues such as light, temperature, water availability, and internal cues generated by the circadian clock. Changes in the rate of growth within the course of a day have been observed in the leaves, stems, and roots of numerous species. However, the relative impact of the circadian clock on the growth of grasses has not been thoroughly characterized. We examined the influence of diurnal temperature and light changes, and that of the circadian clock on leaf length growth patterns in Brachypodium distachyon using high-resolution time-lapse imaging. Pronounced changes in growth rate were observed under combined photocyles and thermocycles or with thermocycles alone. A considerably more rapid growth rate was observed at 28°C than 12°C, irrespective of the presence or absence of light. In spite of clear circadian clock regulated gene expression, plants exhibited no change in growth rate under conditions of constant light and temperature, and little or no effect under photocycles alone. Therefore, temperature appears to be the primary cue influencing observed oscillations in growth rate and not the circadian clock or photoreceptor activity. Furthermore, the size of the leaf meristem and final cell length did not change in response to changes in temperature. Therefore, the nearly five-fold difference in growth rate observed across thermocycles can be attributed to proportionate changes in the rate of cell division and expansion. A better understanding of the growth cues in B. distachyon will further our ability to model metabolism and biomass accumulation in grasses.

  10. A binary genetic programing model for teleconnection identification between global sea surface temperature and local maximum monthly rainfall events

    Science.gov (United States)

    Danandeh Mehr, Ali; Nourani, Vahid; Hrnjica, Bahrudin; Molajou, Amir

    2017-12-01

    The effectiveness of genetic programming (GP) for solving regression problems in hydrology has been recognized in recent studies. However, its capability to solve classification problems has not been sufficiently explored so far. This study develops and applies a novel classification-forecasting model, namely Binary GP (BGP), for teleconnection studies between sea surface temperature (SST) variations and maximum monthly rainfall (MMR) events. The BGP integrates certain types of data pre-processing and post-processing methods with conventional GP engine to enhance its ability to solve both regression and classification problems simultaneously. The model was trained and tested using SST series of Black Sea, Mediterranean Sea, and Red Sea as potential predictors as well as classified MMR events at two locations in Iran as predictand. Skill of the model was measured in regard to different rainfall thresholds and SST lags and compared to that of the hybrid decision tree-association rule (DTAR) model available in the literature. The results indicated that the proposed model can identify potential teleconnection signals of surrounding seas beneficial to long-term forecasting of the occurrence of the classified MMR events.

  11. The maximum temperature of a thermodynamic cycle effect on weight-dimensional characteristics of the NPP energy blocks with air cooling

    International Nuclear Information System (INIS)

    Bezborodov, Yu.A.; Bubnov, V.P.; Nesterenko, V.B.

    1982-01-01

    The cycle maximum temperature effect on the properties of individual apparatuses and total NPP energy blocks characteristics has been investigated. Air, nitrogen, helium and chemically reacting system N 2 O 4 +2NO+O 2 have been considered as coolants. The conducted investigations have shown that maximum temperature of thermodynamical cycle affects considerably both the weight-dimensional characteristics of individual elements of NPP and total characteristics of NPP energy block. Energy blocks of NPP with air cooling wherein dissociating nitrogen tetroxide is used as working body, have better indexes on the majority of characteristics in comparison with blocks with air, nitrogen and helium cooling. If technical restrictions are to be taken into account (thermal resistance of metals, coolant decomposition under high temperatures, etc.) then dissociating nitrogen tetroxide should be recommended as working body and maximum cycle temperature in the range from 500 up to 600 deg C

  12. Preliminary assessment of a water-quality monitoring program for total maximum daily loads in Johnson County, Kansas, January 2015 through June 2016

    Science.gov (United States)

    Rasmussen, Teresa J.; Paxson, Chelsea R.

    2017-08-25

    Municipalities in Johnson County in northeastern Kansas are required to implement stormwater management programs to reduce pollutant discharges, protect water quality, and comply with applicable water-quality regulations in accordance with National Pollutant Discharge Elimination System permits for stormwater discharge. To this end, municipalities collect grab samples at streams entering and leaving their jurisdiction to determine levels of excessive nutrients, sediment, and fecal bacteria to characterize pollutants and understand the factors affecting them.In 2014, the U.S. Geological Survey and the Johnson County Stormwater Management Program, with input from the Kansas Department of Health and Environment, initiated a 5-year monitoring program to satisfy minimum sampling requirements for each municipality as described by new stormwater permits issued to Johnson County municipalities. The purpose of this report is to provide a preliminary assessment of the monitoring program. The monitoring program is described, a preliminary assessment of the monitoring program design is provided using water-quality data collected during the first 2 years of the program, and the ability of the current monitoring network and sampling plan to provide data sufficient to quantify improvements in water quality resulting from implemented and planned best management practices is evaluated. The information in this initial report may be used to evaluate changes in data collection methods while data collection is still ongoing that may lead to improved data utility.Discrete water-quality samples were collected at 27 sites and analyzed for nutrients, Escherichia coli (E. coli) bacteria, total suspended solids, and suspended-sediment concentration. In addition, continuous water-quality data (water temperature, pH, dissolved oxygen, specific conductance, turbidity, and nitrate plus nitrite) were collected at one site to characterize variability and provide a basis for comparison to discrete

  13. Evaluation of CORDEX-Arctic daily precipitation and temperature-based climate indices over Canadian Arctic land areas

    Science.gov (United States)

    Diaconescu, Emilia Paula; Mailhot, Alain; Brown, Ross; Chaumont, Diane

    2018-03-01

    This study focuses on the evaluation of daily precipitation and temperature climate indices and extremes simulated by an ensemble of 12 Regional Climate Model (RCM) simulations from the ARCTIC-CORDEX experiment with surface observations in the Canadian Arctic from the Adjusted Historical Canadian Climate Dataset. Five global reanalyses products (ERA-Interim, JRA55, MERRA, CFSR and GMFD) are also included in the evaluation to assess their potential for RCM evaluation in data sparse regions. The study evaluated the means and annual anomaly distributions of indices over the 1980-2004 dataset overlap period. The results showed that RCM and reanalysis performance varied with the climate variables being evaluated. Most RCMs and reanalyses were able to simulate well climate indices related to mean air temperature and hot extremes over most of the Canadian Arctic, with the exception of the Yukon region where models displayed the largest biases related to topographic effects. Overall performance was generally poor for indices related to cold extremes. Likewise, only a few RCM simulations and reanalyses were able to provide realistic simulations of precipitation extreme indicators. The multi-reanalysis ensemble provided superior results to individual datasets for climate indicators related to mean air temperature and hot extremes, but not for other indicators. These results support the use of reanalyses as reference datasets for the evaluation of RCM mean air temperature and hot extremes over northern Canada, but not for cold extremes and precipitation indices.

  14. Effects of the midnight temperature maximum observed in the thermosphere-ionosphere over the northeast of Brazil

    Science.gov (United States)

    Figueiredo, Cosme Alexandre O. B.; Buriti, Ricardo A.; Paulino, Igo; Meriwether, John W.; Makela, Jonathan J.; Batista, Inez S.; Barros, Diego; Medeiros, Amauri F.

    2017-08-01

    The midnight temperature maximum (MTM) has been observed in the lower thermosphere by two Fabry-Pérot interferometers (FPIs) at São João do Cariri (7.4° S, 36.5° W) and Cajazeiras (6.9° S, 38.6° W) during 2011, when the solar activity was moderate and the solar flux was between 90 and 155 SFU (1 SFU = 10-22 W m-2 Hz-1). The MTM is studied in detail using measurements of neutral temperature, wind and airglow relative intensity of OI630.0 nm (referred to as OI6300), and ionospheric parameters, such as virtual height (h'F), the peak height of the F2 region (hmF2), and critical frequency of the F region (foF2), which were measured by a Digisonde instrument (DPS) at Eusébio (3.9° S, 38.4° W; geomagnetic coordinates 7.31° S, 32.40° E for 2011). The MTM peak was observed mostly along the year, except in May, June, and August. The amplitudes of the MTM varied from 64 ± 46 K in April up to 144 ± 48 K in October. The monthly temperature average showed a phase shift in the MTM peak around 0.25 h in September to 2.5 h in December before midnight. On the other hand, in February, March, and April the MTM peak occurred around midnight. International Reference Ionosphere 2012 (IRI-2012) model was compared to the neutral temperature observations and the IRI-2012 model failed in reproducing the MTM peaks. The zonal component of neutral wind flowed eastward the whole night; regardless of the month and the magnitude of the zonal wind, it was typically within the range of 50 to 150 m s-1 during the early evening. The meridional component of the neutral wind changed its direction over the months: from November to February, the meridional wind in the early evening flowed equatorward with a magnitude between 25 and 100 m s-1; in contrast, during the winter months, the meridional wind flowed to the pole within the range of 0 to -50 m s-1. Our results indicate that the reversal (changes in equator to poleward flow) or abatement of the meridional winds is an important factor in

  15. The global SMOS Level 3 daily soil moisture and brightness temperature maps

    Directory of Open Access Journals (Sweden)

    A. Al Bitar

    2017-06-01

    Full Text Available The objective of this paper is to present the multi-orbit (MO surface soil moisture (SM and angle-binned brightness temperature (TB products for the SMOS (Soil Moisture and Ocean Salinity mission based on a new multi-orbit algorithm. The Level 3 algorithm at CATDS (Centre Aval de Traitement des Données SMOS makes use of MO retrieval to enhance the robustness and quality of SM retrievals. The motivation of the approach is to make use of the longer temporal autocorrelation length of the vegetation optical depth (VOD compared to the corresponding SM autocorrelation in order to enhance the retrievals when an acquisition occurs at the border of the swath. The retrieval algorithm is implemented in a unique operational processor delivering multiple parameters (e.g. SM and VOD using multi-angular dual-polarisation TB from MO. A subsidiary angle-binned TB product is provided. In this study the Level 3 TB V310 product is showcased and compared to SMAP (Soil Moisture Active Passive TB. The Level 3 SM V300 product is compared to the single-orbit (SO retrievals from the Level 2 SM processor from ESA with aligned configuration. The advantages and drawbacks of the Level 3 SM product (L3SM are discussed. The comparison is done on a global scale between the two datasets and on the local scale with respect to in situ data from AMMA-CATCH and USDA ARS Watershed networks. The results obtained from the global analysis show that the MO implementation enhances the number of retrievals: up to 9 % over certain areas. The comparison with the in situ data shows that the increase in the number of retrievals does not come with a decrease in quality, but rather at the expense of an increased time lag in product availability from 6 h to 3.5 days, which can be a limiting factor for applications like flood forecast but reasonable for drought monitoring and climate change studies. The SMOS L3 soil moisture and L3 brightness temperature products are delivered using an

  16. A rapid method for measuring maximum density temperatures in water and aqueous solutions for the study of quantum zero point energy effects in these liquids

    International Nuclear Information System (INIS)

    Deeney, F A; O'Leary, J P

    2008-01-01

    The connection between quantum zero point fluctuations and a density maximum in water and in liquid He 4 has recently been established. Here we present a description of a simple and rapid method of determining the temperatures at which maximum densities in water and aqueous solutions occur. The technique is such as to allow experiments to be carried out in one session of an undergraduate laboratory thereby introducing students to the concept of quantum zero point energy

  17. Maximum daily rainfall in South Korea

    Indian Academy of Sciences (India)

    and Dongseok Choi. 2. 1. School of Mathematics, University of Manchester, Manchester M60 1QD, UK. ... This paper provides the first application of extreme value distributions to rainfall data from South Korea. 1. ..... protection. This paper only ...

  18. Temperature based daily incoming solar radiation modeling based on gene expression programming, neuro-fuzzy and neural network computing techniques.

    Science.gov (United States)

    Landeras, G.; López, J. J.; Kisi, O.; Shiri, J.

    2012-04-01

    The correct observation/estimation of surface incoming solar radiation (RS) is very important for many agricultural, meteorological and hydrological related applications. While most weather stations are provided with sensors for air temperature detection, the presence of sensors necessary for the detection of solar radiation is not so habitual and the data quality provided by them is sometimes poor. In these cases it is necessary to estimate this variable. Temperature based modeling procedures are reported in this study for estimating daily incoming solar radiation by using Gene Expression Programming (GEP) for the first time, and other artificial intelligence models such as Artificial Neural Networks (ANNs), and Adaptive Neuro-Fuzzy Inference System (ANFIS). Traditional temperature based solar radiation equations were also included in this study and compared with artificial intelligence based approaches. Root mean square error (RMSE), mean absolute error (MAE) RMSE-based skill score (SSRMSE), MAE-based skill score (SSMAE) and r2 criterion of Nash and Sutcliffe criteria were used to assess the models' performances. An ANN (a four-input multilayer perceptron with ten neurons in the hidden layer) presented the best performance among the studied models (2.93 MJ m-2 d-1 of RMSE). A four-input ANFIS model revealed as an interesting alternative to ANNs (3.14 MJ m-2 d-1 of RMSE). Very limited number of studies has been done on estimation of solar radiation based on ANFIS, and the present one demonstrated the ability of ANFIS to model solar radiation based on temperatures and extraterrestrial radiation. By the way this study demonstrated, for the first time, the ability of GEP models to model solar radiation based on daily atmospheric variables. Despite the accuracy of GEP models was slightly lower than the ANFIS and ANN models the genetic programming models (i.e., GEP) are superior to other artificial intelligence models in giving a simple explicit equation for the

  19. Daily changes of radon concentration in soil gas under influence of atmospheric factors: room temperature, soil surface temperature and relative humidity

    Energy Technology Data Exchange (ETDEWEB)

    Lara, Evelise G.; Oliveira, Arno Heeren de, E-mail: evelise.lara@gmail.com, E-mail: heeren@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Rocha, Zildete; Rios, Francisco Javier, E-mail: rochaz@cdtn.br, E-mail: javier@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    This work aims at relating the daily change in the radon concentration in soil gas in a Red Yellow Acrisol (SiBCS) under influence of atmospheric factors: room temperature, soil surface temperature and relative humidity. The {sup 226}Ra, {sup 232}Th, U content and permeability were also performed. The measurements of radon soil gas were carried out by using an AlphaGUARD monitor. The {sup 226}Ra activity concentration was made by Gamma Spectrometry (HPGe); the permeability was carried out using the RADON-JOK permeameter and ICP-MS analysis to {sup 232}Th and U content. The soil permeability is 5.0 x 10{sup -12}, which is considered average. The {sup 226}Ra (22.2 ± 0.3 Bq.m{sup -3}); U content (73.4 ± 3.6 Bq.kg{sup -1}) and {sup 232}Th content (55.3 ± 4.0 Bq.kg{sup -1}) were considered above of average concentrations, according to mean values for soils typical (~ 35.0 Bq.kg{sup -1}) by UNSCEAR. The results showed a difference of 26.0% between the highest and the lowest concentration of radon in soil gas: at midnight (15.5 ± 1.0 kBq.m{sup -3}) and 3:00 pm, the highest mean radon concentration (21.0 ± 1.0 kBq.m{sup -3}). The room temperature and surface soil temperature showed equivalent behavior and the surface soil temperature slightly below room temperature during the entire monitoring time. Nevertheless, the relative humidity showed the highest cyclical behavior, showing a higher relationship with the radon concentration in soil gas. (author)

  20. Daily changes of radon concentration in soil gas under influence of atmospheric factors: room temperature, soil surface temperature and relative humidity

    International Nuclear Information System (INIS)

    Lara, Evelise G.; Oliveira, Arno Heeren de

    2015-01-01

    This work aims at relating the daily change in the radon concentration in soil gas in a Red Yellow Acrisol (SiBCS) under influence of atmospheric factors: room temperature, soil surface temperature and relative humidity. The 226 Ra, 232 Th, U content and permeability were also performed. The measurements of radon soil gas were carried out by using an AlphaGUARD monitor. The 226 Ra activity concentration was made by Gamma Spectrometry (HPGe); the permeability was carried out using the RADON-JOK permeameter and ICP-MS analysis to 232 Th and U content. The soil permeability is 5.0 x 10 -12 , which is considered average. The 226 Ra (22.2 ± 0.3 Bq.m -3 ); U content (73.4 ± 3.6 Bq.kg -1 ) and 232 Th content (55.3 ± 4.0 Bq.kg -1 ) were considered above of average concentrations, according to mean values for soils typical (~ 35.0 Bq.kg -1 ) by UNSCEAR. The results showed a difference of 26.0% between the highest and the lowest concentration of radon in soil gas: at midnight (15.5 ± 1.0 kBq.m -3 ) and 3:00 pm, the highest mean radon concentration (21.0 ± 1.0 kBq.m -3 ). The room temperature and surface soil temperature showed equivalent behavior and the surface soil temperature slightly below room temperature during the entire monitoring time. Nevertheless, the relative humidity showed the highest cyclical behavior, showing a higher relationship with the radon concentration in soil gas. (author)

  1. Effects of the midnight temperature maximum observed in the thermosphere–ionosphere over the northeast of Brazil

    Directory of Open Access Journals (Sweden)

    C. A. O. B. Figueiredo

    2017-08-01

    Full Text Available The midnight temperature maximum (MTM has been observed in the lower thermosphere by two Fabry–Pérot interferometers (FPIs at São João do Cariri (7.4° S, 36.5° W and Cajazeiras (6.9° S, 38.6° W during 2011, when the solar activity was moderate and the solar flux was between 90 and 155 SFU (1 SFU  =  10−22 W m−2 Hz−1. The MTM is studied in detail using measurements of neutral temperature, wind and airglow relative intensity of OI630.0 nm (referred to as OI6300, and ionospheric parameters, such as virtual height (h′F, the peak height of the F2 region (hmF2, and critical frequency of the F region (foF2, which were measured by a Digisonde instrument (DPS at Eusébio (3.9° S, 38.4° W; geomagnetic coordinates 7.31° S, 32.40° E for 2011. The MTM peak was observed mostly along the year, except in May, June, and August. The amplitudes of the MTM varied from 64 ± 46 K in April up to 144 ± 48 K in October. The monthly temperature average showed a phase shift in the MTM peak around 0.25 h in September to 2.5 h in December before midnight. On the other hand, in February, March, and April the MTM peak occurred around midnight. International Reference Ionosphere 2012 (IRI-2012 model was compared to the neutral temperature observations and the IRI-2012 model failed in reproducing the MTM peaks. The zonal component of neutral wind flowed eastward the whole night; regardless of the month and the magnitude of the zonal wind, it was typically within the range of 50 to 150 m s−1 during the early evening. The meridional component of the neutral wind changed its direction over the months: from November to February, the meridional wind in the early evening flowed equatorward with a magnitude between 25 and 100 m s−1; in contrast, during the winter months, the meridional wind flowed to the pole within the range of 0 to −50 m s−1. Our results indicate that the reversal (changes

  2. Increasing minimum daily temperatures are associated with enhanced pesticide use in cultivated soybean along a latitudinal gradient in the mid-western United States.

    Directory of Open Access Journals (Sweden)

    Lewis H Ziska

    Full Text Available Assessments of climate change and food security often do not consider changes to crop production as a function of altered pest pressures. Evaluation of potential changes may be difficult, in part, because management practices are routinely utilized in situ to minimize pest injury. If so, then such practices, should, in theory, also change with climate, although this has never been quantified. Chemical (pesticide applications remain the primary means of managing pests in industrialized countries. While a wide range of climate variables can influence chemical use, minimum daily temperature (lowest 24 h recorded temperature in a given year can be associated with the distribution and thermal survival of many agricultural pests in temperate regions. The current study quantifies average pesticide applications since 1999 for commercial soybean grown over a 2100 km North-South latitudinal transect for seven states that varied in minimum daily temperature (1999-2013 from -28.6°C (Minnesota to -5.1°C (Louisiana. Although soybean yields (per hectare did not vary by state, total pesticide applications (kg of active ingredient, ai, per hectare increased from 4.3 to 6.5 over this temperature range. Significant correlations were observed between minimum daily temperatures and kg of ai for all pesticide classes. This suggested that minimum daily temperature could serve as a proxy for pesticide application. Longer term temperature data (1977-2013 indicated greater relative increases in minimum daily temperatures for northern relative to southern states. Using these longer-term trends to determine short-term projections of pesticide use (to 2023 showed a greater comparative increase in herbicide use for soybean in northern; but a greater increase in insecticide and fungicide use for southern states in a warmer climate. Overall, these data suggest that increases in pesticide application rates may be a means to maintain soybean production in response to rising

  3. Core Body and Skin Temperature in Type 1 Narcolepsy in Daily Life; Effects of Sodium Oxybate and Prediction of Sleep Attacks

    NARCIS (Netherlands)

    van der Heide, Astrid; Werth, Esther; Donjacour, Claire E H M; Reijntjes, Robert H A M; Lammers, Gert Jan; Van Someren, Eus J W; Baumann, Christian R; Fronczek, Rolf

    2016-01-01

    STUDY OBJECTIVES: Previous laboratory studies in narcolepsy patients showed altered core body and skin temperatures, which are hypothesised to be related to a disturbed sleep wake regulation. In this ambulatory study we assessed temperature profiles in normal daily life, and whether sleep attacks

  4. Daily temperature changes and variability in ENSEMBLES regional models predictions: Evaluation and intercomparison for the Ebro Valley (NE Iberia)

    KAUST Repository

    El Kenawy, Ahmed M.

    2014-12-18

    We employ a suite of regional climate models (RCMs) to assess future changes in summer (JJA) maximum temperature (Tmax) over the Ebro basin, the largest hydrological division in the Iberian Peninsula. Under the A1B emission scenario, future changes in both mean values and their corresponding time varying percentiles were examined by comparing the control period (1971-2000) with two future time slices: 2021-2050 and 2071-2100. Here, the rationale is to assess how lower/upper tails of temperature distributions will change in the future and whether these changes will be consistent with those of the mean. The model validation results demonstrate significant differences among the models in terms of their capability to representing the statistical characteristics (e.g., mean, skewness and asymmetry) of the observed climate. The results also indicate that the current substantial warming observed in the Ebro basin is expected to continue during the 21st century, with more intense warming occurring at higher altitudes and in areas with greater distance from coastlines. All models suggest that the region will experience significant positive changes in both the cold and warm tails of temperature distributions. However, the results emphasize that future changes in the lower and upper tails of the summer Tmax distribution may not follow the same warming rate as the mean condition. In particular, the projected changes in the warm tail of the summer Tmax are shown to be significantly larger than changes in both mean values and the cold tail, especially at the end of the 21st century. The finding suggests that much of the changes in the summer Tmax percentiles will be driven by a shift in the entire distribution of temperature rather than only changes in the central tendency. Better understanding of the possible implications of future climate systems provides information useful for vulnerability assessments and the development of local adaptation strategies for multi

  5. Determination of hot spot factors for calculation of the maximum fuel temperatures in the core thermal and hydraulic design of HTTR

    International Nuclear Information System (INIS)

    Maruyama, Soh; Yamashita, Kiyonobu; Fujimoto, Nozomu; Murata, Isao; Shindo, Ryuichi; Sudo, Yukio

    1988-12-01

    The Japan Atomic Energy Research Institute (JAERI) has been designing the High Temperature Engineering Test Reactor (HTTR), which is 30 MW in thermal power, 950deg C in reactor outlet coolant temperature and 40 kg/cm 2 G in primary coolant pressure. This report summarizes the hot spot factors and their estimated values used in the evaluation of the maximum fuel temperature which is one of the major items in the core thermal and hydraulic design of the HTTR. The hot spot factors consist of systematic factors and random factors. They were identified and their values adopted in the thermal and hydraulic design were determined considering the features of the HTTR. (author)

  6. Task 08/41, Low temperature loop at the RA reactor, Review IV - Maximum temperature values in the samples without forced cooling; Zadatak 08/41, Niskotemperaturna petlja u reaktoru 'RA', Pregled IV - Maksimalne temperature u uzorcima bez prinudnog hladjenja

    Energy Technology Data Exchange (ETDEWEB)

    Zaric, Z [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1961-12-15

    The quantity of heat generated in the sample was calculated in the Review III. In stationary regime the heat is transferred through the air layer between the sample and the wall of the channel to the heavy water of graphite. Certain value of maximum temperature t{sub 0} is achieved in the sample. The objective of this review is determination of this temperature. [Serbo-Croat] Kolicina toplote generisana u uzorku, izracunata u pregledu III, u ravnoteznom stanju odvodi se kroz vazdusni sloj izmedju uzorka i zida kanala na tesku vodu odnosno grafit, pri cemu se u uzorku dostize izvesna maksimalna temperatura t{sub 0}. Odredjivanje ove temperature je predmet ovog pregleda.

  7. Effects of temperature variation between neighbouring days on daily hospital visits for childhood asthma: a time-series analysis.

    Science.gov (United States)

    Li, K; Ni, H; Yang, Z; Wang, Y; Ding, S; Wen, L; Yang, H; Cheng, J; Su, H

    2016-07-01

    To identify the relationship between temperature variation between neighbouring days (TVN) and hospital visits for childhood asthma in age- and sex-specific groups. An ecological design was used to explore the effect of TVN on hospital visits for childhood asthma. A Poisson generalised linear regression model combined with a distributed lag non-linear model was used to analyse the association between TVN and hospital visits for childhood asthma. All hospital visits for childhood asthma from June 2010 to July 2013 were included (n = 17,022). Daily climate data were obtained from Hefei Meteorological Bureau. A significant correlation was found between TVN and hospital visits for childhood asthma in age- and sex-specific groups. For different gender groups, the effect of TVN on childhood asthma was the greatest at 3 and 5 days lag for males and females. For different age groups, the effect of TVN on childhood asthma was the greatest at 1 and 5 days lag for 0-4 years and 5-14 years children, respectively. A 1 °C increase in TVN was associated with a 4.2% (95% confidence interval 0.9-7.6%) increase in hospital visits for childhood asthma. TVN is associated with hospital visits for childhood asthma. Once the temperature change rapidly, guardians will be urged to pay more attention to their children's health, which may reduce the morbidity of childhood asthma. Copyright © 2016 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  8. Daily estimates of the migrating tide and zonal mean temperature in the mesosphere and lower thermosphere derived from SABER data

    Science.gov (United States)

    Ortland, David A.

    2017-04-01

    Satellites provide a global view of the structure in the fields that they measure. In the mesosphere and lower thermosphere, the dominant features in these fields at low zonal wave number are contained in the zonal mean, quasi-stationary planetary waves, and tide components. Due to the nature of the satellite sampling pattern, stationary, diurnal, and semidiurnal components are aliased and spectral methods are typically unable to separate the aliased waves over short time periods. This paper presents a data processing scheme that is able to recover the daily structure of these waves and the zonal mean state. The method is validated by using simulated data constructed from a mechanistic model, and then applied to Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) temperature measurements. The migrating diurnal tide extracted from SABER temperatures for 2009 has a seasonal variability with peak amplitude (20 K at 95 km) in February and March and minimum amplitude (less than 5 K at 95 km) in early June and early December. Higher frequency variability includes a change in vertical structure and amplitude during the major stratospheric warming in January. The migrating semidiurnal tide extracted from SABER has variability on a monthly time scale during January through March, minimum amplitude in April, and largest steady amplitudes from May through September. Modeling experiments were performed that show that much of the variability on seasonal time scales in the migrating tides is due to changes in the mean flow structure and the superposition of the tidal responses to water vapor heating in the troposphere and ozone heating in the stratosphere and lower mesosphere.

  9. Temperature reconstruction and volcanic eruption signal from tree-ring width and maximum latewood density over the past 304 years in the southeastern Tibetan Plateau.

    Science.gov (United States)

    Li, Mingqi; Huang, Lei; Yin, Zhi-Yong; Shao, Xuemei

    2017-11-01

    This study presents a 304-year mean July-October maximum temperature reconstruction for the southeastern Tibetan Plateau based on both tree-ring width and maximum latewood density data. The reconstruction explained 58% of the variance in July-October maximum temperature during the calibration period (1958-2005). On the decadal scale, we identified two prominent cold periods during AD 1801-1833 and 1961-2003 and two prominent warm periods during AD 1730-1800 and 1928-1960, which are consistent with other reconstructions from the nearby region. Based on the reconstructed temperature series and volcanic eruption chronology, we found that most extreme cold years were in good agreement with major volcanic eruptions, such as 1816 after the Tambora eruption in 1815. Also, clusters of volcanic eruptions probably made the 1810s the coldest decade in the past 300 years. Our results indicated that fingerprints of major volcanic eruptions can be found in the reconstructed temperature records, while the responses of regional climate to these eruption events varied in space and time in the southeastern Tibetan Plateau.

  10. A Hybrid Framework to Bias Correct and Empirically Downscale Daily Temperature and Precipitation from Regional Climate Models

    Science.gov (United States)

    Tan, P.; Abraham, Z.; Winkler, J. A.; Perdinan, P.; Zhong, S. S.; Liszewska, M.

    2013-12-01

    Bias correction and statistical downscaling are widely used approaches for postprocessing climate simulations generated by global and/or regional climate models. The skills of these approaches are typically assessed in terms of their ability to reproduce historical climate conditions as well as the plausibility and consistency of the derived statistical indicators needed by end users. Current bias correction and downscaling approaches often do not adequately satisfy the two criteria of accurate prediction and unbiased estimation. To overcome this limitation, a hybrid regression framework was developed to both minimize prediction errors and preserve the distributional characteristics of climate observations. Specifically, the framework couples the loss functions of standard (linear or nonlinear) regression methods with a regularization term that penalizes for discrepancies between the predicted and observed distributions. The proposed framework can also be extended to generate physically-consistent outputs across multiple response variables, and to incorporate both reanalysis-driven and GCM-driven RCM outputs into a unified learning framework. The effectiveness of the framework is demonstrated using daily temperature and precipitation simulations from the North American Regional Climate Change Program (NARCCAP) . The accuracy of the framework is comparable to standard regression methods, but, unlike the standard regression methods, the proposed framework is able to preserve many of the distribution properties of the response variables, akin to bias correction approaches such as quantile mapping and bivariate geometric quantile mapping.

  11. Meteorological Reference Years of Daily Mean Temperature during the Sunlight Time; Anos Tipos de Temperaturas Medias Diarias durante las Horas de Sol

    Energy Technology Data Exchange (ETDEWEB)

    Marchante Jimenez, M.; Ramirez Santigosa, L.N.; Mora Lopez, L.; Sidrach de Cardona Ortin, M.

    2002-07-01

    In this work the characterization of the daily mean temperature during the sunlight time has been analyzed. An algorithm for the hourly series generation from extreme daily values has been applied to evaluate the daily mean temperature during the sunlight time. A generic algorithm has been enounced as a function of the sunrise time. This algorithm allows taking into account the fractions related to the sunrise and sunset hours. This methodology has been applied in data from 45 Spanish stations, uniformly distributed in the Iberian Peninsula. Data for a period of 14 years has been used in most of locations, and once the interest variable has been calculated, the meteorological reference year of the daily mean temperature during the sunlight time has been evaluated in each stations. The next step is the evaluation of the daily mean temperature during the sunlight time in any point into the zone of evaluation, not only in the measured stations. >From the result data in each measured station, an geographic information system has been used in order to calculate the interpolation, obtaining maps with a data each 5 km for each of the 365 days of the year. Then, this results can be superposed with the solar radiation evaluation obtaining the input data for the sizing of the photovoltaic grid connected system in any point of the Spanish geography. (Author) 8 refs.

  12. Estimativa do total de horas abaixo de determinada temperatura-base através das medidas diárias da temperatura do ar Number of hours below any base temperature estimated by daily measurements of air temperature

    Directory of Open Access Journals (Sweden)

    Luiz B. Angelocci

    1979-01-01

    Full Text Available São propostas equações matemáticas para estimar o total diário de horas abaixo de determinada temperatura-base, em certo período, utilizando-se somente dos valores diários das temperaturas máxima, mínima e das 21 horas (hora local. A comparação entre os totais diários e mensais de "horas de frio" estimados pelas equações propostas e os observados através de termogramas, para várias localidades do Estado de São Paulo, mostrou boa concordância entre os métodos de cálculo. O modelo proposto dispensa o uso de registros contínuos de temperatura. As vantagens de tal estimativa residem na maior disponibilidade de registros de temperaturas máximas, mínimas e das 21 horas, permitindo maior densidade de pontos em trabalhos de zoneamento agroclimático e de cartografia, além da eliminação do processo de cotação de termogramas.Mathematical equations are proposed to estimate the daily number of hours in which the air temperature remains below a determined treshold value. The equations require only daily values of maximum, minimum and 9 p.m. local time temperature, measured inside the meteorological shelter. This technique is suitable for machine computation thus avoiding the tremendous task of quantifying a large number of thermograms. This fact permits the utilization of a greater number of stations in studies of crop zonation and cartography. Good correlations were obtained between estimated and observed data of the daily and monthly total number of hours below 7°C, 13°C and 17°C, for five stations in the State of São Paulo, Brazil, showing relative accuracy of the proposed equations.

  13. Effect of Temperature on Wettability and Optimum Wetting Conditions for Maximum Oil Recovery in Carbonate Reservoir System

    DEFF Research Database (Denmark)

    Sohal, Muhammad Adeel Nassar; Thyne, Geoffrey; Søgaard, Erik Gydesen

    2017-01-01

    The additional oil recovery from fractured & oil-wet carbonates by ionically modified water is principally based on changing wettability and often attributed to an improvement in water wetness. The influence of different parameters like dilution of salinity, potential anions, temperature, pressure......, lithology, pH, oil acid and base numbers to improve water wetting has been tested in recovery experiments. In these studies temperature is mainly investigated to observe the reactivity of potential anions (SO42-, PO33-, and BO33-) at different concentrations. But the influence of systematically increasing...... and 100 times. It was observed that as temperature increased the water-wetness decreased for seawater and seawater dilutions, however, the presence of elevated sulfate can somewhat counter this trend as sulfate increased oil wetting....

  14. [Relationship between daily mean temperature and emergency department visits for respiratory diseases: a time-series analysis].

    Science.gov (United States)

    Mo, Yun-zheng; Zheng, Ya-an; Tao, Hui; Xu, Mei-mei; Li, Guo-xing; Dong, Feng-ming; Liu, Jun-han; Pan, Xiao-chuan

    2012-06-18

    To quantitatively evaluate the influences of daily mean air temperature (DMT) on Emergency Department Visits (EDVs) for the respiratory diseases. The EDV data from medical records for respiratory diseases in Peking University Third Hospital between January 2004 and June 2009 were collected. The data of the air pollutants (SO(2), NO(2) and PM(10)) and meteorological factors at the same time periods were also collected from the local authorities of Beijing. Time-series analysis and generalized additive models (GAM) were used to explore the exposurrre-response relationship between DMT and EDVs for respiratory diseases. A total of 35 073 patients [males 14 707(41.93%,14 707/35 073), females 19 122(54.52%,19 122/35 073) and gender missing 1 244(3.55%, 1 244/35 073)] EDVs for respiratory diseases were included. The relationship between DMT and EDVs for the respiratory diseases was mainly of "V" shape, the optimum temperature(OT) was about 4 °C and the effect of DMT was significant with a 0-3 day lag structure for most of the models. When DMT≤OT, each 1°C decrease in DMT corresponded to 3.75% (95% CI of RR: 0.938 3-0.965 3), 3.10% (95% CI of RR:0.949 2-0.989 1), 4.09% (95% CI of RR:0.940 7-0.977 8) increase of EDVs for the overall, male, and female, respectively. When DMT>OT, the value caused by each increase in 1°C in DMT was 1.54% (95% CI of RR:1.006 6-1.024 3), 1.80% (95% CI of RR:1.005 3-1.030 9), and 1.51 (95% CI of RR:1.003 2- 1.027 2), respectively. The effect was statistically significant within the 0-3 day lag. When DMT≤OT, the effect was stronger for the older people, while the effect was strongest for the 45-59 years old people. The relationship between DMT and EDVs for respiratory diseases is mainly of "V" type, with an optimum temperature of 4 °C.Both DMT decrease when DMT≤OT and increase when DMT>OT correspond to different increase of EDVs for respiratory diseases. Low DMT has stronger effect than high DMT. Different age group and gender have

  15. Test Plan to Determine the Maximum Surface Temperatures for a Plutonium Storage Cubicle with Horizontal 3013 Canisters

    International Nuclear Information System (INIS)

    HEARD, F.J.

    2000-01-01

    A simulated full-scale plutonium storage cubicle with 22 horizontally positioned and heated 3013 canisters is proposed to confirm the effectiveness of natural circulation. Temperature and airflow measurements will be made for different heat generation and cubicle door configurations. Comparisons will be made to computer based thermal Hydraulic models

  16. Impacts of projected maximum temperature extremes for C21 by an ensemble of regional climate models on cereal cropping systems in the Iberian Peninsula

    Directory of Open Access Journals (Sweden)

    M. Ruiz-Ramos

    2011-12-01

    Full Text Available Crops growing in the Iberian Peninsula may be subjected to damagingly high temperatures during the sensitive development periods of flowering and grain filling. Such episodes are considered important hazards and farmers may take insurance to offset their impact. Increases in value and frequency of maximum temperature have been observed in the Iberian Peninsula during the 20th century, and studies on climate change indicate the possibility of further increase by the end of the 21st century. Here, impacts of current and future high temperatures on cereal cropping systems of the Iberian Peninsula are evaluated, focusing on vulnerable development periods of winter and summer crops. Climate change scenarios obtained from an ensemble of ten Regional Climate Models (multimodel ensemble combined with crop simulation models were used for this purpose and related uncertainty was estimated. Results reveal that higher extremes of maximum temperature represent a threat to summer-grown but not to winter-grown crops in the Iberian Peninsula. The study highlights the different vulnerability of crops in the two growing seasons and the need to account for changes in extreme temperatures in developing adaptations in cereal cropping systems. Finally, this work contributes to clarifying the causes of high-uncertainty impact projections from previous studies.

  17. Long-term patterns of air temperatures, daily temperature range, precipitation, grass-reference evapotranspiration and aridity index in the USA Great Plains: Part I. Spatial trends

    Science.gov (United States)

    Kukal, M.; Irmak, S.

    2016-11-01

    Due to their substantial spatio-temporal behavior, long-term quantification and analyses of important hydrological variables are essential for practical applications in water resources planning, evaluating the water use of agricultural crop production and quantifying crop evapotranspiration patterns and irrigation management vs. hydrologic balance relationships. Observed data at over 800 sites across the Great Plains of USA, comprising of 9 states and 2,307,410 km2 of surface area, which is about 30% of the terrestrial area of the USA, were used to quantify and map large-scale and long-term (1968-2013) spatial trends of air temperatures, daily temperature range (DTR), precipitation, grass-reference evapotranspiration (ETo) and aridity index (AI) at monthly, growing season and annual time steps. Air temperatures had a strong north to south increasing trend, with annual average varying from -1 to 24 °C, and growing season average temperature varying from 8 to 30 °C. DTR gradually decreased from western to eastern parts of the region, with a regional annual and growing season averages of 14.25 °C and 14.79 °C, respectively. Precipitation had a gradual shift towards higher magnitudes from west to east, with the average annual and growing season (May-September) precipitation ranging from 163 to 1486 mm and from 98 to 746 mm, respectively. ETo had a southwest-northeast decreasing trend, with regional annual and growing season averages of 1297 mm and 823 mm, respectively. AI increased from west to east, indicating higher humidity (less arid) towards the east, with regional annual and growing season averages of 0.49 and 0.44, respectively. The spatial datasets and maps for these important climate variables can serve as valuable background for climate change and hydrologic studies in the Great Plains region. Through identification of priority areas from the developed maps, efforts of the concerned personnel and agencies and resources can be diverted towards development

  18. Evaluating the use of sharpened land surface temperature for daily evapotranspiration estimation over irrigated crops in arid lands

    KAUST Repository

    Rosas, Jorge

    2014-12-01

    Satellite remote sensing provides data on land surface characteristics, useful for mapping land surface energy fluxes and evapotranspiration (ET). Land-surface temperature (LST) derived from thermal infrared (TIR) satellite data has been reliably used as a remote indicator of ET and surface moisture status. However, TIR imagery usually operates at a coarser resolution than that of shortwave sensors on the same satellite platform, making it sometimes unsuitable for monitoring of field-scale crop conditions. This study applies the data mining sharpener (DMS; Gao et al., 2012) technique to data from the Moderate Resolution Imaging Spectroradiometer (MODIS), which sharpens the 1 km thermal data down to the resolution of the optical data (250-500 m) based on functional LST and reflectance relationships established using a flexible regression tree approach. The DMS approach adopted here has been enhanced/refined for application over irrigated farming areas located in harsh desert environments in Saudi Arabia. The sharpened LST data is input to an integrated modeling system that uses the Atmosphere-Land Exchange Inverse (ALEXI) model and associated flux disaggregation scheme (DisALEXI) in conjunction with model reanalysis data and remotely sensed data from polar orbiting (MODIS) and geostationary (MSG; Meteosat Second Generation) satellite platforms to facilitate daily estimates of evapotranspiration. Results are evaluated against available flux tower observations over irrigated maize near Riyadh in Saudi Arabia. Successful monitoring of field-scale changes in surface fluxes are of importance towards an efficient water use in areas where fresh water resources are scarce and poorly monitored. Gao, F.; Kustas, W.P.; Anderson, M.C. A Data Mining Approach for Sharpening Thermal Satellite Imagery over Land. Remote Sens. 2012, 4, 3287-3319.

  19. Temperature effect on the inter-micellar collision and maximum packaging volume fraction in water/AOT/isooctane micro-emulsions

    International Nuclear Information System (INIS)

    Guettari, Moez; Ben Naceur, Imen; Kassab, Ghazi; Tajouri, Tahar

    2016-01-01

    We have studied the viscosity behaviour of water/AOT/isooctane micro-emulsions as a function of the volume fraction of the dispersed phase over a temperature range from the (298.15 to 328.15) K. For all the studied temperature range, a sharp increase of the viscosities is observed when the droplets concentration was varied. Several equations based on hard sphere model were examined to explain the behaviours of micro-emulsions under temperature and concentration effects. According to these equations, the shape factor and the inter-particle interaction parameters were found to be dependent on temperature which is in contradiction with experimental results reported in the literature. A modified Vand equation, taking into account the inter-particle collision time, is used to interpret the results obtained. This deviation is attributed to the aggregation of the droplets which becomes important by increasing temperature. The maximum packaging volume fraction of particles Φ_d_m and the intrinsic viscosity [η] were determined according to the Krieger and Dougherty equation through the temperature range studied. These two parameters were shown to be dependent on temperature but their product was found to be constant and close to 2 as reported in theory.

  20. A collection of sub-daily pressure and temperature observations for the early instrumental period with a focus on the “year without a summer” 1816

    Czech Academy of Sciences Publication Activity Database

    Brugnara, Y.; Auchmann, R.; Broennimann, S.; Allan, R. J.; Auer, I.; Barriendos, M.; Bergström, H.; Bhend, J.; Brázdil, Rudolf; Compo, G. S.; Cornes, R. C.; Dominguez-Castro, F.; van Engelen, A. F. V.; Filipiak, J.; Holopainen, J.; Jourdain, S.; Kunz, M.; Luterbacher, J.; Maugeri, M.; Mercalli, L.; Moberg, A.; Mock, C. J.; Pichard, G.; Řezníčková, Ladislava; van der Schrier, G.; Slonosky, V.; Ustrnul, Z.; Valente, M. A.; Wypych, A.; Yin, X.

    2015-01-01

    Roč. 11, č. 8 (2015), s. 1027-1047 ISSN 1814-9324 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : daily-air temperature * sea-level pressure * volcanic eruptions * climate Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 3.638, year: 2015

  1. Effect of daily temperature range on respiratory health in Argentina and its modification by impaired socio-economic conditions and PM_1_0 exposures

    International Nuclear Information System (INIS)

    Carreras, Hebe; Zanobetti, Antonella; Koutrakis, Petros

    2015-01-01

    Epidemiological investigations regarding temperature influence on human health have focused on mortality rather than morbidity. In addition, most information comes from developed countries despite the increasing evidence that climate change will have devastating impacts on disadvantaged populations living in developing countries. In the present study, we assessed the impact of daily temperature range on upper and lower respiratory infections in Cordoba, Argentina, and explored the effect modification of socio-economic factors and influence of airborne particles We found that temperature range is a strong risk factor for admissions due to both upper and lower respiratory infections, particularly in elderly individuals, and that these effects are more pronounced in sub-populations with low education level or in poor living conditions. These results indicate that socio-economic factors are strong modifiers of the association between temperature variability and respiratory morbidity, thus they should be considered in risk assessments. - Highlights: • Daily temperature range is a strong risk factor for respiratory infections. • Low education level and poor living conditions are strong modifiers of this relationship. • In Cordoba city higher risk for respiratory infections were observed during summertime. - Daily temperature range is a strong risk factor for respiratory infections, particularly for populations with low educational level or poor living conditions.

  2. Effect of in-pile degradation of the meat thermal conductivity on the maximum temperature of the plate-type U-Mo dispersion fuels

    International Nuclear Information System (INIS)

    Medvedev, Pavel G.

    2009-01-01

    Effect of in-pile degradation of thermal conductivity on the maximum temperature of the plate-type research reactor fuels has been assessed using the steady-state heat conduction equation and assuming convection cooling. It was found that due to very low meat thickness, characteristic for this type of fuel, the effect of thermal conductivity degradation on the maximum fuel temperature is minor. For example, the fuel plate featuring 0.635 mm thick meat operating at heat flux of 600 W/cm2 would experience only a 20 C temperature rise if the meat thermal conductivity degrades from 0.8 W/cm-s to 0.3 W/cm-s. While degradation of meat thermal conductivity in dispersion-type U-Mo fuel can be very substantial due to formation of interaction layer between the particles and the matrix, and development of fission gas filled porosity, this simple analysis demonstrates that this phenomenon is unlikely to significantly affect the temperature-based safety margin of the fuel during normal operation.

  3. New climatic targets against global warming: will the maximum 2 °C temperature rise affect estuarine benthic communities?

    Science.gov (United States)

    Crespo, Daniel; Grilo, Tiago Fernandes; Baptista, Joana; Coelho, João Pedro; Lillebø, Ana Isabel; Cássio, Fernanda; Fernandes, Isabel; Pascoal, Cláudia; Pardal, Miguel Ângelo; Dolbeth, Marina

    2017-06-20

    The Paris Agreement signed by 195 countries in 2015 sets out a global action plan to avoid dangerous climate change by limiting global warming to remain below 2 °C. Under that premise, in situ experiments were run to test the effects of 2 °C temperature increase on the benthic communities in a seagrass bed and adjacent bare sediment, from a temperate European estuary. Temperature was artificially increased in situ and diversity and ecosystem functioning components measured after 10 and 30 days. Despite some warmness effects on the analysed components, significant impacts were not verified on macro and microfauna structure, bioturbation or in the fluxes of nutrients. The effect of site/habitat seemed more important than the effects of the warmness, with the seagrass habitat providing more homogenous results and being less impacted by warmness than the adjacent bare sediment. The results reinforce that most ecological responses to global changes are context dependent and that ecosystem stability depends not only on biological diversity but also on the availability of different habitats and niches, highlighting the role of coastal wetlands. In the context of the Paris Agreement it seems that estuarine benthic ecosystems will be able to cope if global warming remains below 2 °C.

  4. Surface temperature evolution and the location of maximum and average surface temperature of a lithium-ion pouch cell under variable load profiles

    DEFF Research Database (Denmark)

    Goutam, Shovon; Timmermans, Jean-Marc; Omar, Noshin

    2014-01-01

    This experimental work attempts to determine the surface temperature evolution of large (20 Ah-rated capacity) commercial Lithium-Ion pouch cells for the application of rechargeable energy storage of plug in hybrid electric vehicles and electric vehicles. The cathode of the cells is nickel...

  5. Direct and indirect toxicity of the fungicide pyraclostrobin to Hyalella azteca and effects on leaf processing under realistic daily temperature regimes

    International Nuclear Information System (INIS)

    Willming, Morgan M.; Maul, Jonathan D.

    2016-01-01

    Fungicides in aquatic environments can impact non-target bacterial and fungal communities and the invertebrate detritivores responsible for the decomposition of allochthonous organic matter. Additionally, in some aquatic systems daily water temperature fluctuations may influence these processes and alter contaminant toxicity, but such temperature fluctuations are rarely examined in conjunction with contaminants. In this study, the shredding amphipod Hyalella azteca was exposed to the fungicide pyraclostrobin in three experiments. Endpoints included mortality, organism growth, and leaf processing. One experiment was conducted at a constant temperature (23 °C), a fluctuating temperature regime (18–25 °C) based on field-collected data from the S. Llano River, Texas, or an adjusted fluctuating temperature regime (20–26 °C) based on possible climate change predictions. Pyraclostrobin significantly reduced leaf shredding and increased H. azteca mortality at concentrations of 40 μg/L or greater at a constant 23 °C and decreased leaf shredding at concentrations of 15 μg/L or greater in the fluctuating temperatures. There was a significant interaction between temperature treatment and pyraclostrobin concentration on H. azteca mortality, body length, and dry mass under direct aqueous exposure conditions. In an indirect exposure scenario in which only leaf material was exposed to pyraclostrobin, H. azteca did not preferentially feed on or avoid treated leaf disks compared to controls. This study describes the influence of realistic temperature variation on fungicide toxicity to shredding invertebrates, which is important for understanding how future alterations in daily temperature regimes due to climate change may influence the assessment of ecological risk of contaminants in aquatic ecosystems. - Highlights: • Pyraclostrobin was directly toxic to Hyalella azteca and reduced leaf processing. • Indirect exposure via leaf material did not change H

  6. Further studies of the stability of LiF:Mg,Cu,P (GR-200) at maximum readout temperatures between 240oC and 280oC

    International Nuclear Information System (INIS)

    Oster, L.; Horowitz, Y.S.; Horowitz, A.

    1996-01-01

    It has recently been shown that LiF:Mg,Cu,P (GR-200) can be read out to temperatures as high as 270 o C for 12 s with negligible loss in sensitivity. In the present work the long-term sensitivity of GR-200 was studied at readout temperatures between 240 o C and 280 o C. The idea was that the readout temperatures above 240 o C might initiate reaction processes which influence the sensitivity only after long-term storage. No difference was found in the behaviour of GR-200 chips with 80 accumulated readouts to 240 o C or 270 o C and after storage of up to four months. Slight losses in sensitivity of 4% for 240 o C and 10% for 270 o C are observed after 80 readouts during four months storage. However, at a maximum readout temperature of 280 o C, a 33% loss in sensitivity after 80 cycles is observed. In conclusion it is found that GR-200 can be read out at temperatures as high as 270 o C with negligible loss in sensitivity (less than 0.1% per readout following an initialisation procedure of 1 readout) and acceptable residual signal (0.6%). (author)

  7. Simulation of the maximum yield of sugar cane at different altitudes: effect of temperature on the conversion of radiation into biomass

    International Nuclear Information System (INIS)

    Martine, J.F.; Siband, P.; Bonhomme, R.

    1999-01-01

    To minimize the production costs of sugar cane, for the diverse sites of production found in La Réunion, an improved understanding of the influence of temperature on the dry matter radiation quotient is required. Existing models simulate poorly the temperature-radiation interaction. A model of sugar cane growth has been fitted to the results from two contrasting sites (mean temperatures: 14-30 °C; total radiation: 10-25 MJ·m -2 ·d -1 ), on a ratoon crop of cv R570, under conditions of non-limiting resources. Radiation interception, aerial biomass, the fraction of millable stems, and their moisture content, were measured. The time-courses of the efficiency of radiation interception differed between sites. As a function of the sum of day-degrees, they were similar. The dry matter radiation quotient was related to temperature. The moisture content of millable stems depended on the day-degree sum. On the other hand, the leaf/stem ratio was independent of temperature. The relationships established enabled the construction of a simple model of yield potential. Applied to a set of sites representing the sugar cane growing area of La Réunion, it gave a good prediction of maximum yields. (author) [fr

  8. Controls on seasonal patterns of maximum ecosystem carbon uptake and canopy-scale photosynthetic light response: contributions from both temperature and photoperiod.

    Science.gov (United States)

    Stoy, Paul C; Trowbridge, Amy M; Bauerle, William L

    2014-02-01

    Most models of photosynthetic activity assume that temperature is the dominant control over physiological processes. Recent studies have found, however, that photoperiod is a better descriptor than temperature of the seasonal variability of photosynthetic physiology at the leaf scale. Incorporating photoperiodic control into global models consequently improves their representation of the seasonality and magnitude of atmospheric CO2 concentration. The role of photoperiod versus that of temperature in controlling the seasonal variability of photosynthetic function at the canopy scale remains unexplored. We quantified the seasonal variability of ecosystem-level light response curves using nearly 400 site years of eddy covariance data from over eighty Free Fair-Use sites in the FLUXNET database. Model parameters describing maximum canopy CO2 uptake and the initial slope of the light response curve peaked after peak temperature in about 2/3 of site years examined, emphasizing the important role of temperature in controlling seasonal photosynthetic function. Akaike's Information Criterion analyses indicated that photoperiod should be included in models of seasonal parameter variability in over 90% of the site years investigated here, demonstrating that photoperiod also plays an important role in controlling seasonal photosynthetic function. We also performed a Granger causality analysis on both gross ecosystem productivity (GEP) and GEP normalized by photosynthetic photon flux density (GEP n ). While photoperiod Granger-caused GEP and GEP n in 99 and 92% of all site years, respectively, air temperature Granger-caused GEP in a mere 32% of site years but Granger-caused GEP n in 81% of all site years. Results demonstrate that incorporating photoperiod may be a logical step toward improving models of ecosystem carbon uptake, but not at the expense of including enzyme kinetic-based temperature constraints on canopy-scale photosynthesis.

  9. Systematic investigation of gridding-related scaling effects on annual statistics of daily temperature and precipitation maxima: A case study for south-east Australia

    OpenAIRE

    Francia B. Avila; Siyan Dong; Kaah P. Menang; Jan Rajczak; Madeleine Renom; Markus G. Donat; Lisa V. Alexander

    2015-01-01

    Using daily station observations over the period 1951–2013 in a region of south-east Australia, we systematically compare how the horizontal resolution, interpolation method and order of operation in generating gridded data sets affect estimates of annual extreme indices of temperature and precipitation maxima (hottest and wettest days). Three interpolation methods (natural neighbors, cubic spline and angular distance weighting) are used to calculate grids at five different horizontal gridded...

  10. Direct and indirect toxicity of the fungicide pyraclostrobin to Hyalella azteca and effects on leaf processing under realistic daily temperature regimes.

    Science.gov (United States)

    Willming, Morgan M; Maul, Jonathan D

    2016-04-01

    Fungicides in aquatic environments can impact non-target bacterial and fungal communities and the invertebrate detritivores responsible for the decomposition of allochthonous organic matter. Additionally, in some aquatic systems daily water temperature fluctuations may influence these processes and alter contaminant toxicity, but such temperature fluctuations are rarely examined in conjunction with contaminants. In this study, the shredding amphipod Hyalella azteca was exposed to the fungicide pyraclostrobin in three experiments. Endpoints included mortality, organism growth, and leaf processing. One experiment was conducted at a constant temperature (23 °C), a fluctuating temperature regime (18-25 °C) based on field-collected data from the S. Llano River, Texas, or an adjusted fluctuating temperature regime (20-26 °C) based on possible climate change predictions. Pyraclostrobin significantly reduced leaf shredding and increased H. azteca mortality at concentrations of 40 μg/L or greater at a constant 23 °C and decreased leaf shredding at concentrations of 15 μg/L or greater in the fluctuating temperatures. There was a significant interaction between temperature treatment and pyraclostrobin concentration on H. azteca mortality, body length, and dry mass under direct aqueous exposure conditions. In an indirect exposure scenario in which only leaf material was exposed to pyraclostrobin, H. azteca did not preferentially feed on or avoid treated leaf disks compared to controls. This study describes the influence of realistic temperature variation on fungicide toxicity to shredding invertebrates, which is important for understanding how future alterations in daily temperature regimes due to climate change may influence the assessment of ecological risk of contaminants in aquatic ecosystems. Copyright © 2016. Published by Elsevier Ltd.

  11. Damages detection in cylindrical metallic specimens by means of statistical baseline models and updated daily temperature profiles

    Science.gov (United States)

    Villamizar-Mejia, Rodolfo; Mujica-Delgado, Luis-Eduardo; Ruiz-Ordóñez, Magda-Liliana; Camacho-Navarro, Jhonatan; Moreno-Beltrán, Gustavo

    2017-05-01

    In previous works, damage detection of metallic specimens exposed to temperature changes has been achieved by using a statistical baseline model based on Principal Component Analysis (PCA), piezodiagnostics principle and taking into account temperature effect by augmenting the baseline model or by using several baseline models according to the current temperature. In this paper a new approach is presented, where damage detection is based in a new index that combine Q and T2 statistical indices with current temperature measurements. Experimental tests were achieved in a carbon-steel pipe of 1m length and 1.5 inches diameter, instrumented with piezodevices acting as actuators or sensors. A PCA baseline model was obtained to a temperature of 21º and then T2 and Q statistical indices were obtained for a 24h temperature profile. Also, mass adding at different points of pipe between sensor and actuator was used as damage. By using the combined index the temperature contribution can be separated and a better differentiation of damages respect to undamaged cases can be graphically obtained.

  12. Daily indoor-to-outdoor temperature and humidity relationships: a sample across seasons and diverse climatic regions.

    Science.gov (United States)

    Nguyen, Jennifer L; Dockery, Douglas W

    2016-02-01

    The health consequences of heat and cold are usually evaluated based on associations with outdoor measurements collected at a nearby weather reporting station. However, people in the developed world spend little time outdoors, especially during extreme temperature events. We examined the association between indoor and outdoor temperature and humidity in a range of climates. We measured indoor temperature, apparent temperature, relative humidity, dew point, and specific humidity (a measure of moisture content in air) for one calendar year (2012) in a convenience sample of eight diverse locations ranging from the equatorial region (10 °N) to the Arctic (64 °N). We then compared the indoor conditions to outdoor values recorded at the nearest airport weather station. We found that the shape of the indoor-to-outdoor temperature and humidity relationships varied across seasons and locations. Indoor temperatures showed little variation across season and location. There was large variation in indoor relative humidity between seasons and between locations which was independent of outdoor airport measurements. On the other hand, indoor specific humidity, and to a lesser extent dew point, tracked with outdoor, airport measurements both seasonally and between climates, across a wide range of outdoor temperatures. These results suggest that, in general, outdoor measures of actual moisture content in air better capture indoor conditions than outdoor temperature and relative humidity. Therefore, in studies where water vapor is among the parameters of interest for examining weather-related health effects, outdoor measurements of actual moisture content can be more reliably used as a proxy for indoor exposure than the more commonly examined variables of temperature and relative humidity.

  13. Adaptation of the pituitary-adrenal axis to daily repeated forced swim exposure in rats is dependent on the temperature of water.

    Science.gov (United States)

    Rabasa, Cristina; Delgado-Morales, Raúl; Gómez-Román, Almudena; Nadal, Roser; Armario, Antonio

    2013-11-01

    Comparison of exposure to certain predominantly emotional stressors reveals a qualitatively similar neuroendocrine response profile as well as a reduction of physiological responses after daily repeated exposure (adaptation). However, particular physical components of the stressor may interfere with adaptation. As defective adaptation to stress can enhance the probability to develop pathologies, we studied in adult male rats (n = 10/group) swimming behavior (struggling, immobility and mild swim) and physiological responses (ACTH, corticosterone and rectal temperature) to daily repeated exposure to forced swim (20 min, 13 d) at 25 or 36 °C (swim25 or swim36). Rats were repeatedly blood-sampled by tail-nick and hormones measured by radioimmunoassay. Some differences were observed between the two swim temperature groups after the first exposure to forced swim: (a) active behaviors were greater in swim25 than swim36 groups; (b) swim25 but not swim36 caused hypothermia; and (c) swim36 elicited the same ACTH response as swim25, but plasma corticosterone concentration was lower for swim36 at 30 min post-swim. After daily repeated exposure, adaptation in ACTH secretion was observed with swim36 already on day 4, whereas with swim25 adaptation was not observed until day 13 and was of lower magnitude. Nevertheless, after repeated exposure to swim25 a partial protection from hypothermia was observed and the two swim conditions resulted in progressive reduction of active behaviors. Thus, daily repeated swim at 25 °C impairs adaptation of the hypothalamic-pituitary-adrenal axis as compared to swim at 36 °C, supporting the hypothesis that certain physical components of predominantly emotional stressors can interfere with the process of adaptation.

  14. Fluoride concentration level in rural area in Poldasht city and daily fluoride intake based on drinking water consumption with temperature.

    Science.gov (United States)

    Mohammadi, Ali Akbar; Yousefi, Mahmood; Mahvi, Amir Hossein

    2017-08-01

    Long-term exposure to high level of fluoride can caused several adverse effects on human health including dental and skeletal fluorosis. We investigated all the drinking water source located in rural areas of Poldasht city, west Azerbaijan Province, North West Iran between 2014 and 2015. Fluoride concentration of water samples was measured by SPADNS method. We found that in the villages of Poldasht the average of fluoride concentration in drinking water sources (well, and the river) was in the range mg/l 0.28-10.23. The average daily received per 2 l of drinking water is in the range mg/l 0.7-16.6 per day per person. Drinking water demands cause fluorosis in the villages around the area residents and based on the findings of this study writers are announced suggestions below in order to take care of the health of area residents.

  15. Thermogravimetric analysis and kinetic modeling of low-transition-temperature mixtures pretreated oil palm empty fruit bunch for possible maximum yield of pyrolysis oil.

    Science.gov (United States)

    Yiin, Chung Loong; Yusup, Suzana; Quitain, Armando T; Uemura, Yoshimitsu; Sasaki, Mitsuru; Kida, Tetsuya

    2018-05-01

    The impacts of low-transition-temperature mixtures (LTTMs) pretreatment on thermal decomposition and kinetics of empty fruit bunch (EFB) were investigated by thermogravimetric analysis. EFB was pretreated with the LTTMs under different duration of pretreatment which enabled various degrees of alteration to their structure. The TG-DTG curves showed that LTTMs pretreatment on EFB shifted the temperature and rate of decomposition to higher values. The EFB pretreated with sucrose and choline chloride-based LTTMs had attained the highest mass loss of volatile matter (78.69% and 75.71%) after 18 h of pretreatment. For monosodium glutamate-based LTTMs, the 24 h pretreated EFB had achieved the maximum mass loss (76.1%). Based on the Coats-Redfern integral method, the LTTMs pretreatment led to an increase in activation energy of the thermal decomposition of EFB from 80.00 to 82.82-94.80 kJ/mol. The activation energy was mainly affected by the demineralization and alteration in cellulose crystallinity after LTTMs pretreatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Changes in Extreme Maximum Temperature Events and Population Exposure in China under Global Warming Scenarios of 1.5 and 2.0°C: Analysis Using the Regional Climate Model COSMO-CLM

    Science.gov (United States)

    Zhan, Mingjin; Li, Xiucang; Sun, Hemin; Zhai, Jianqing; Jiang, Tong; Wang, Yanjun

    2018-02-01

    We used daily maximum temperature data (1986-2100) from the COSMO-CLM (COnsortium for Small-scale MOdeling in CLimate Mode) regional climate model and the population statistics for China in 2010 to determine the frequency, intensity, coverage, and population exposure of extreme maximum temperature events (EMTEs) with the intensity-area-duration method. Between 1986 and 2005 (reference period), the frequency, intensity, and coverage of EMTEs are 1330-1680 times yr-1, 31.4-33.3°C, and 1.76-3.88 million km2, respectively. The center of the most severe EMTEs is located in central China and 179.5-392.8 million people are exposed to EMTEs annually. Relative to 1986-2005, the frequency, intensity, and coverage of EMTEs increase by 1.13-6.84, 0.32-1.50, and 15.98%-30.68%, respectively, under 1.5°C warming; under 2.0°C warming, the increases are 1.73-12.48, 0.64-2.76, and 31.96%-50.00%, respectively. It is possible that both the intensity and coverage of future EMTEs could exceed the most severe EMTEs currently observed. Two new centers of EMTEs are projected to develop under 1.5°C warming, one in North China and the other in Southwest China. Under 2.0°C warming, a fourth EMTE center is projected to develop in Northwest China. Under 1.5 and 2.0°C warming, population exposure is projected to increase by 23.2%-39.2% and 26.6%-48%, respectively. From a regional perspective, population exposure is expected to increase most rapidly in Southwest China. A greater proportion of the population in North, Northeast, and Northwest China will be exposed to EMTEs under 2.0°C warming. The results show that a warming world will lead to increases in the intensity, frequency, and coverage of EMTEs. Warming of 2.0°C will lead to both more severe EMTEs and the exposure of more people to EMTEs. Given the probability of the increased occurrence of more severe EMTEs than in the past, it is vitally important to China that the global temperature increase is limited within 1.5°C.

  17. Analysis of a resistance-energy balance method for estimating daily evaporation from wheat plots using one-time-of-day infrared temperature observations

    Science.gov (United States)

    Choudhury, B. J.; Idso, S. B.; Reginato, R. J.

    1986-01-01

    Accurate estimates of evaporation over field-scale or larger areas are needed in hydrologic studies, irrigation scheduling, and meteorology. Remotely sensed surface temperature might be used in a model to calculate evaporation. A resistance-energy balance model, which combines an energy balance equation, the Penman-Monteith (1981) evaporation equation, and van den Honert's (1948) equation for water extraction by plant roots, is analyzed for estimating daily evaporation from wheat using postnoon canopy temperature measurements. Additional data requirements are half-hourly averages of solar radiation, air and dew point temperatures, and wind speed, along with reasonable estimates of canopy emissivity, albedo, height, and leaf area index. Evaporation fluxes were measured in the field by precision weighing lysimeters for well-watered and water-stressed wheat. Errors in computed daily evaporation were generally less than 10 percent, while errors in cumulative evaporation for 10 clear sky days were less than 5 percent for both well-watered and water-stressed wheat. Some results from sensitivity analysis of the model are also given.

  18. Technical basis for the reduction of the maximum temperature TGA-MS analysis of oxide samples from the 3013 destructive examination program

    International Nuclear Information System (INIS)

    Scogin, J. H.

    2016-01-01

    Thermogravimetric analysis with mass spectroscopy of the evolved gas (TGA-MS) is used to quantify the moisture content of materials in the 3013 destructive examination (3013 DE) surveillance program. Salts frequently present in the 3013 DE materials volatilize in the TGA and condense in the gas lines just outside the TGA furnace. The buildup of condensate can restrict the flow of purge gas and affect both the TGA operations and the mass spectrometer calibration. Removal of the condensed salts requires frequent maintenance and subsequent calibration runs to keep the moisture measurements by mass spectroscopy within acceptable limits, creating delays in processing samples. In this report, the feasibility of determining the total moisture from TGA-MS measurements at a lower temperature is investigated. A temperature of the TGA-MS analysis which reduces the complications caused by the condensation of volatile materials is determined. Analysis shows that an excellent prediction of the presently measured total moisture value can be made using only the data generated up to 700 °C and there is a sound physical basis for this estimate. It is recommended that the maximum temperature of the TGA-MS determination of total moisture for the 3013 DE program be reduced from 1000 °C to 700 °C. It is also suggested that cumulative moisture measurements at 550 °C and 700°C be substituted for the measured value of total moisture in the 3013 DE database. Using these raw values, any of predictions of the total moisture discussed in this report can be made.

  19. Treponema pallidum 3-Phosphoglycerate Mutase Is a Heat-Labile Enzyme That May Limit the Maximum Growth Temperature for the Spirochete

    Science.gov (United States)

    Benoit, Stéphane; Posey, James E.; Chenoweth, Matthew R.; Gherardini, Frank C.

    2001-01-01

    In the causative agent of syphilis, Treponema pallidum, the gene encoding 3-phosphoglycerate mutase, gpm, is part of a six-gene operon (tro operon) that is regulated by the Mn-dependent repressor TroR. Since substrate-level phosphorylation via the Embden-Meyerhof pathway is the principal way to generate ATP in T. pallidum and Gpm is a key enzyme in this pathway, Mn could exert a regulatory effect on central metabolism in this bacterium. To study this, T. pallidum gpm was cloned, Gpm was purified from Escherichia coli, and antiserum against the recombinant protein was raised. Immunoblots indicated that Gpm was expressed in freshly extracted infective T. pallidum. Enzyme assays indicated that Gpm did not require Mn2+ while 2,3-diphosphoglycerate (DPG) was required for maximum activity. Consistent with these observations, Mn did not copurify with Gpm. The purified Gpm was stable for more than 4 h at 25°C, retained only 50% activity after incubation for 20 min at 34°C or 10 min at 37°C, and was completely inactive after 10 min at 42°C. The temperature effect was attenuated when 1 mM DPG was added to the assay mixture. The recombinant Gpm from pSLB2 complemented E. coli strain PL225 (gpm) and restored growth on minimal glucose medium in a temperature-dependent manner. Increasing the temperature of cultures of E. coli PL225 harboring pSLB2 from 34 to 42°C resulted in a 7- to 11-h period in which no growth occurred (compared to wild-type E. coli). These data suggest that biochemical properties of Gpm could be one contributing factor to the heat sensitivity of T. pallidum. PMID:11466272

  20. Technical basis for the reduction of the maximum temperature TGA-MS analysis of oxide samples from the 3013 destructive examination program

    Energy Technology Data Exchange (ETDEWEB)

    Scogin, J. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-03-24

    Thermogravimetric analysis with mass spectroscopy of the evolved gas (TGA-MS) is used to quantify the moisture content of materials in the 3013 destructive examination (3013 DE) surveillance program. Salts frequently present in the 3013 DE materials volatilize in the TGA and condense in the gas lines just outside the TGA furnace. The buildup of condensate can restrict the flow of purge gas and affect both the TGA operations and the mass spectrometer calibration. Removal of the condensed salts requires frequent maintenance and subsequent calibration runs to keep the moisture measurements by mass spectroscopy within acceptable limits, creating delays in processing samples. In this report, the feasibility of determining the total moisture from TGA-MS measurements at a lower temperature is investigated. A temperature of the TGA-MS analysis which reduces the complications caused by the condensation of volatile materials is determined. Analysis shows that an excellent prediction of the presently measured total moisture value can be made using only the data generated up to 700 °C and there is a sound physical basis for this estimate. It is recommended that the maximum temperature of the TGA-MS determination of total moisture for the 3013 DE program be reduced from 1000 °C to 700 °C. It is also suggested that cumulative moisture measurements at 550 °C and 700°C be substituted for the measured value of total moisture in the 3013 DE database. Using these raw values, any of predictions of the total moisture discussed in this report can be made.

  1. Living on the edge: Daily, seasonal and annual body temperature patterns of Arabian oryx in Saudi Arabia.

    Directory of Open Access Journals (Sweden)

    S Streicher

    Full Text Available Heterothermy, the ability to allow body temperature (Tb to fluctuate, has been proposed as an adaptive mechanism that enables large ungulates to cope with the high environmental temperatures and lack of free water experienced in arid environments. By storing heat during the daytime and dissipating it during the night, arid-adapted ungulates may reduce evaporative water loss and conserve water. Adaptive heterothermy in large ungulates should be particularly pronounced in hot environments with severely limited access to free water. In the current study we investigated the effects of environmental temperature (ambient, Ta and soil, Ts and water stress on the Tb of wild, free-ranging Arabian oryx (Oryx leucoryx in two different sites in Saudi Arabia, Mahazat as-Sayd (MS and Uruq Bani Ma'arid (UBM. Using implanted data loggers wet took continuous Tb readings every 10 minutes for an entire calendar year and determined the Tb amplitude as well as the heterothermy index (HI. Both differed significantly between sites but contrary to our expectations they were greater in MS despite its lower environmental temperatures and higher rainfall. This may be partially attributable to a higher activity in an unfamiliar environment for translocated animals in UBM. As expected Tb amplitude and HI were greatest during summer. Only minor sex differences were apparent that may be attributable to sex-specific investment into reproduction (e.g. male-male competition during rut. Our results suggest that the degree of heterothermy is not only driven by extrinsic factors (e.g. environmental temperatures and water availability, but may also be affected by intrinsic factors (e.g. sex and/or behaviour.

  2. Seasonal microbial and nutrient responses during a 5-year reduction in the daily temperature range of soil in a Chihuahuan Desert ecosystem.

    Science.gov (United States)

    van Gestel, Natasja C; Dhungana, Nirmala; Tissue, David T; Zak, John C

    2016-01-01

    High daily temperature range of soil (DTRsoil) negatively affects soil microbial biomass and activity, but its interaction with seasonal soil moisture in regulating ecosystem function remains unclear. For our 5-year field study in the Chihuahuan Desert, we suspended shade cloth 15 cm above the soil surface to reduce daytime temperature and increase nighttime soil temperature compared to unshaded plots, thereby reducing DTRsoil (by 5 ºC at 0.2 cm depth) without altering mean temperatures. Microbial biomass production was primarily regulated by seasonal precipitation with the magnitude of the response dependent on DTRsoil. Reduced DTRsoil more consistently increased microbial biomass nitrogen (MBN; +38%) than microbial biomass carbon (MBC) with treatment responses being similar in spring and summer. Soil respiration depended primarily on soil moisture with responses to reduced DTRsoil evident only in wetter summer soils (+53%) and not in dry spring soils. Reduced DTRsoil had no effect on concentrations of dissolved organic C, soil organic matter (SOM), nor soil inorganic N (extractable NO3 (-)-N + NH4 (+)-N). Higher MBN without changes in soil inorganic N suggests faster N cycling rates or alternate sources of N. If N cycling rates increased without a change to external N inputs (atmospheric N deposition or N fixation), then productivity in this desert system, which is N-poor and low in SOM, could be negatively impacted with continued decreases in daily temperature range. Thus, the future N balance in arid ecosystems, under conditions of lower DTR, seems linked to future precipitation regimes through N deposition and regulation of soil heat load dynamics.

  3. A Novel Hybrid Data-Driven Model for Daily Land Surface Temperature Forecasting Using Long Short-Term Memory Neural Network Based on Ensemble Empirical Mode Decomposition

    Directory of Open Access Journals (Sweden)

    Xike Zhang

    2018-05-01

    Full Text Available Daily land surface temperature (LST forecasting is of great significance for application in climate-related, agricultural, eco-environmental, or industrial studies. Hybrid data-driven prediction models using Ensemble Empirical Mode Composition (EEMD coupled with Machine Learning (ML algorithms are useful for achieving these purposes because they can reduce the difficulty of modeling, require less history data, are easy to develop, and are less complex than physical models. In this article, a computationally simple, less data-intensive, fast and efficient novel hybrid data-driven model called the EEMD Long Short-Term Memory (LSTM neural network, namely EEMD-LSTM, is proposed to reduce the difficulty of modeling and to improve prediction accuracy. The daily LST data series from the Mapoling and Zhijaing stations in the Dongting Lake basin, central south China, from 1 January 2014 to 31 December 2016 is used as a case study. The EEMD is firstly employed to decompose the original daily LST data series into many Intrinsic Mode Functions (IMFs and a single residue item. Then, the Partial Autocorrelation Function (PACF is used to obtain the number of input data sample points for LSTM models. Next, the LSTM models are constructed to predict the decompositions. All the predicted results of the decompositions are aggregated as the final daily LST. Finally, the prediction performance of the hybrid EEMD-LSTM model is assessed in terms of the Mean Square Error (MSE, Mean Absolute Error (MAE, Mean Absolute Percentage Error (MAPE, Root Mean Square Error (RMSE, Pearson Correlation Coefficient (CC and Nash-Sutcliffe Coefficient of Efficiency (NSCE. To validate the hybrid data-driven model, the hybrid EEMD-LSTM model is compared with the Recurrent Neural Network (RNN, LSTM and Empirical Mode Decomposition (EMD coupled with RNN, EMD-LSTM and EEMD-RNN models, and their comparison results demonstrate that the hybrid EEMD-LSTM model performs better than the other

  4. A Novel Hybrid Data-Driven Model for Daily Land Surface Temperature Forecasting Using Long Short-Term Memory Neural Network Based on Ensemble Empirical Mode Decomposition.

    Science.gov (United States)

    Zhang, Xike; Zhang, Qiuwen; Zhang, Gui; Nie, Zhiping; Gui, Zifan; Que, Huafei

    2018-05-21

    Daily land surface temperature (LST) forecasting is of great significance for application in climate-related, agricultural, eco-environmental, or industrial studies. Hybrid data-driven prediction models using Ensemble Empirical Mode Composition (EEMD) coupled with Machine Learning (ML) algorithms are useful for achieving these purposes because they can reduce the difficulty of modeling, require less history data, are easy to develop, and are less complex than physical models. In this article, a computationally simple, less data-intensive, fast and efficient novel hybrid data-driven model called the EEMD Long Short-Term Memory (LSTM) neural network, namely EEMD-LSTM, is proposed to reduce the difficulty of modeling and to improve prediction accuracy. The daily LST data series from the Mapoling and Zhijaing stations in the Dongting Lake basin, central south China, from 1 January 2014 to 31 December 2016 is used as a case study. The EEMD is firstly employed to decompose the original daily LST data series into many Intrinsic Mode Functions (IMFs) and a single residue item. Then, the Partial Autocorrelation Function (PACF) is used to obtain the number of input data sample points for LSTM models. Next, the LSTM models are constructed to predict the decompositions. All the predicted results of the decompositions are aggregated as the final daily LST. Finally, the prediction performance of the hybrid EEMD-LSTM model is assessed in terms of the Mean Square Error (MSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Root Mean Square Error (RMSE), Pearson Correlation Coefficient (CC) and Nash-Sutcliffe Coefficient of Efficiency (NSCE). To validate the hybrid data-driven model, the hybrid EEMD-LSTM model is compared with the Recurrent Neural Network (RNN), LSTM and Empirical Mode Decomposition (EMD) coupled with RNN, EMD-LSTM and EEMD-RNN models, and their comparison results demonstrate that the hybrid EEMD-LSTM model performs better than the other five

  5. Comparison of regional and seasonal changes and trends in daily surface temperature extremes over India and its subregions

    Science.gov (United States)

    Dimri, A. P.

    2018-04-01

    Regional changes in surface meteorological variables are one of the key issues affecting the Indian subcontinent especially in recent decades. These changes impact agriculture, health, water, etc., hence important to assess and investigate these changes. The Indian subcontinent is characterized by heterogeneous temperature regimes at regional and seasonal scales. The India Meteorological Department (IMD) observations are limited to recent decades as far as its spatial distribution is concerned. In particular, over Hilly region, these observations are sporadic. Due to variable topography and heterogeneous land use/land cover, it is complex to substantiate impacts. The European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim (ERA-I) reanalysis not only covers a larger spatial domain but also provides a greater number of inputs than IMD. This study used ERA-I in conjunction with IMD gridded data to provide a comparative assessment of changing temperature patterns over India and its subregions at both regional and seasonal scales. Warming patterns are observed in both ERA-I and IMD data sets. Cold nights decrease during winter; warm days increase and warm spell duration increased during winter could become a cause of concern for society, agriculture, socio-economic reasons, and health. Increasing warm days over the hilly regions may affect the corresponding snow cover and thus river hydrology and glaciological dynamics. Such changes during monsoon are slower, which could be attributed to moisture availability to dampen the temperature changes. On investigation and comparison thereon, the present study provisions usages of ERA-I-based indices for various impact and adaptation studies.

  6. Daily activity of the housefly, Musca domestica, is influenced by temperature independent of 3’UTR period gene splicing

    Czech Academy of Sciences Publication Activity Database

    Bazalová, Olga; Doležel, David

    2017-01-01

    Roč. 7, č. 8 (2017), s. 2637-2649 ISSN 2160-1836 R&D Projects: GA ČR(CZ) GA17-01003S EU Projects: European Commission(XE) 316304 - MODBIOLIN Institutional support: RVO:60077344 Keywords : temperature compensation of circadian rhythms * locomotor activity * transcription Subject RIV: ED - Physiology OBOR OECD: Biology (theoretical, mathematical, thermal, cryobiology, biological rhythm), Evolutionary biology Impact factor: 2.861, year: 2016 http://www.g3journal.org/content/early/2017/06/15/g3.117.042374

  7. Glacier Melt Detection in Complex Terrain Using New AMSR-E Calibrated Enhanced Daily EASE-Grid 2.0 Brightness Temperature (CETB) Earth System Data Record

    Science.gov (United States)

    Ramage, J. M.; Brodzik, M. J.; Hardman, M.

    2016-12-01

    Passive microwave (PM) 18 GHz and 36 GHz horizontally- and vertically-polarized brightness temperatures (Tb) channels from the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) have been important sources of information about snow melt status in glacial environments, particularly at high latitudes. PM data are sensitive to the changes in near-surface liquid water that accompany melt onset, melt intensification, and refreezing. Overpasses are frequent enough that in most areas multiple (2-8) observations per day are possible, yielding the potential for determining the dynamic state of the snow pack during transition seasons. AMSR-E Tb data have been used effectively to determine melt onset and melt intensification using daily Tb and diurnal amplitude variation (DAV) thresholds. Due to mixed pixels in historically coarse spatial resolution Tb data, melt analysis has been impractical in ice-marginal zones where pixels may be only fractionally snow/ice covered, and in areas where the glacier is near large bodies of water: even small regions of open water in a pixel severely impact the microwave signal. We use the new enhanced-resolution Calibrated Passive Microwave Daily EASE-Grid 2.0 Brightness Temperature (CETB) Earth System Data Record product's twice daily obserations to test and update existing snow melt algorithms by determining appropriate melt thresholds for both Tb and DAV for the CETB 18 and 36 GHz channels. We use the enhanced resolution data to evaluate melt characteristics along glacier margins and melt transition zones during the melt seasons in locations spanning a wide range of melt scenarios, including the Patagonian Andes, the Alaskan Coast Range, and the Russian High Arctic icecaps. We quantify how improvement of spatial resolution from the original 12.5 - 25 km-scale pixels to the enhanced resolution of 3.125 - 6.25 km improves the ability to evaluate melt timing across boundaries and transition zones in diverse glacial environments.

  8. MOnthly TEmperature DAtabase of Spain 1951-2010: MOTEDAS (2): The Correlation Decay Distance (CDD) and the spatial variability of maximum and minimum monthly temperature in Spain during (1981-2010).

    Science.gov (United States)

    Cortesi, Nicola; Peña-Angulo, Dhais; Simolo, Claudia; Stepanek, Peter; Brunetti, Michele; Gonzalez-Hidalgo, José Carlos

    2014-05-01

    One of the key point in the develop of the MOTEDAS dataset (see Poster 1 MOTEDAS) in the framework of the HIDROCAES Project (Impactos Hidrológicos del Calentamiento Global en España, Spanish Ministery of Research CGL2011-27574-C02-01) is the reference series for which no generalized metadata exist. In this poster we present an analysis of spatial variability of monthly minimum and maximum temperatures in the conterminous land of Spain (Iberian Peninsula, IP), by using the Correlation Decay Distance function (CDD), with the aim of evaluating, at sub-regional level, the optimal threshold distance between neighbouring stations for producing the set of reference series used in the quality control (see MOTEDAS Poster 1) and the reconstruction (see MOREDAS Poster 3). The CDD analysis for Tmax and Tmin was performed calculating a correlation matrix at monthly scale between 1981-2010 among monthly mean values of maximum (Tmax) and minimum (Tmin) temperature series (with at least 90% of data), free of anomalous data and homogenized (see MOTEDAS Poster 1), obtained from AEMEt archives (National Spanish Meteorological Agency). Monthly anomalies (difference between data and mean 1981-2010) were used to prevent the dominant effect of annual cycle in the CDD annual estimation. For each station, and time scale, the common variance r2 (using the square of Pearson's correlation coefficient) was calculated between all neighbouring temperature series and the relation between r2 and distance was modelled according to the following equation (1): Log (r2ij) = b*°dij (1) being Log(rij2) the common variance between target (i) and neighbouring series (j), dij the distance between them and b the slope of the ordinary least-squares linear regression model applied taking into account only the surrounding stations within a starting radius of 50 km and with a minimum of 5 stations required. Finally, monthly, seasonal and annual CDD values were interpolated using the Ordinary Kriging with a

  9. Recent Intensified Winter Coldness in the Mid-High Latitudes of Eurasia and Its Relationship with Daily Extreme Low Temperature Variability

    Directory of Open Access Journals (Sweden)

    Chuhan Lu

    2016-01-01

    Full Text Available Observational records in recent decades show a large-scale decrease in the cold-season temperature variance in the Northern Hemisphere midlatitudes under continuous global warming. However, severe low temperature events in winter frequently occurred in midlatitude Eurasia (MEA in the last decade. Here, we define a new coldness intensity (CI index for the near-surface based on the amplitude of daily anomalously cold temperatures in winter to demonstrate the CI of the variability of low temperature extremes. The results show that a sign-consistent mode dominates the CI variation in MEA, with a marked intensification during the last decade via empirical orthogonal function (EOF analysis. This leading mode is significantly related to the frequency of winter extreme events. The associated circulations are characterized by a remarkable anomalous anticyclone in Northwest Eurasia, which induced substantial cold advection in MEA. The widespread intensified CI in MEA is closely linked with strong surface anticyclones and synoptic blocking in the mid-high latitudes (25°E–85°E. Coincidently, positive phase shifts of the first two leading modes of the extratropical circulation, which feature similar blocking-like anomalies in the northwestern Eurasian subarctic, jointly play an important role in the recent frequency of severe winters.

  10. The effect of simulated heat-shock and daily temperature fluctuations on seed germination of four species from fire-prone ecosystems

    Directory of Open Access Journals (Sweden)

    Talita Zupo

    2016-01-01

    Full Text Available ABSTRACT Seed germination in many species from fire-prone ecosystems may be triggered by heat shock and/or temperature fluctuation, and how species respond to such fire-related cues is important to understand post-fire regeneration strategies. Thus, we tested how heat shock and daily temperature fluctuations affect the germination of four species from fire-prone ecosystems; two from the Cerrado and two from the Mediterranean Basin. Seeds of all four species were subjected to four treatments: Fire (F, temperature fluctuations (TF, fire+temperature fluctuations (F+TF and control (C. After treatments, seeds were put to germinate for 60 days at 25ºC (dark. Responses differed according to species and native ecosystem. Germination percentage for the Cerrado species did not increase with any of the treatments, while germination of one Mediterranean species increased with all treatments and the other only with treatments that included fire. Although the Cerrado species did not respond to the treatments used in this study, their seeds survived the exposure to heat shock, which suggests they possess tolerance to fire. Fire frequency in the Cerrado is higher than that in Mediterranean ecosystems, thus traits related to fire-resistance would be more advantageous than traits related to post-fire recruitment, which are widespread among Mediterranean species.

  11. Micro-scale heterogeneity in water temperature | Dallas | Water SA

    African Journals Online (AJOL)

    Micro-scale heterogeneity in water temperature was examined in 6 upland sites in the Western Cape, South Africa. Hourly water temperature data converted to daily data showed that greatest differences were apparent in daily maximum temperatures between shallow- and deep-water biotopes during the warmest period of ...

  12. Short-term, daily exposure to cold temperature may be an efficient way to prevent muscle atrophy and bone loss in a microgravity environment

    Science.gov (United States)

    Deng, Claudia; Wang, Ping; Zhang, Xiangming; Wang, Ya

    2015-04-01

    Microgravity induces less pressure on muscle/bone, which is a major reason for muscle atrophy as well as bone loss. Currently, physical exercise is the only countermeasure used consistently in the U.S. human space program to counteract the microgravity-induced skeletal muscle atrophy and bone loss. However, the routinely almost daily time commitment is significant and represents a potential risk to the accomplishment of other mission operational tasks. Therefore, development of more efficient exercise programs (with less time) to prevent astronauts from muscle atrophy and bone loss are needed. Consider the two types of muscle contraction: exercising forces muscle contraction and prevents microgravity-induced muscle atrophy/bone loss, which is a voluntary response through the motor nervous system; and cold temperature exposure-induced muscle contraction is an involuntary response through the vegetative nervous system, we formed a new hypothesis. The main purpose of this pilot study was to test our hypothesis that exercise at 4 °C is more efficient than at room temperature to prevent microgravity-induced muscle atrophy/bone loss and, consequently reduces physical exercise time. Twenty mice were divided into two groups with or without daily short-term (10 min × 2, at 12 h interval) cold temperature (4 °C) exposure for 30 days. The whole bodyweight, muscle strength and bone density were measured after terminating the experiments. The results from the one-month pilot study support our hypothesis and suggest that it would be reasonable to use more mice, in a microgravity environment and observe for a longer period to obtain a conclusion. We believe that the results from such a study will help to develop efficient exercise, which will finally benefit astronauts' heath and NASA's missions.

  13. Daily rhythms of cloacal temperature in broiler chickens of different age groups administered with zinc gluconate and probiotic during the hot-dry season.

    Science.gov (United States)

    Aluwong, Tagang; Sumanu, Victory O; Ayo, Joseph O; Ocheja, Benjamin O; Zakari, Friday O; Minka, Ndazo S

    2017-06-01

    The aim of the experiment was to evaluate effects of zinc gluconate (ZnGlu) and probiotic administration on the daily rhythm of cloacal temperature ( t cloacal ) in broiler chickens of different age groups during the hot-dry season. One-day-old broiler chicks ( n  = 60) were divided into groups I-IV of 15 chicks per group, and treated for 35 days: Group I (control) was given deionized water; Group II, ZnGlu (50 mg/kg); Group III, probiotic (4.125 × 10 6  cfu/100 mL), and Group IV, ZnGlu (50 mg/kg) + probiotic (4.125 × 10 6  cfu/100 mL). Air dry-bulb temperature ( t db ), relative humidity (RH), and temperature-humidity index (THI) inside the pen, and t cloacal of each broiler chick were obtained bihourly over a 24-h period; on days 21, 28, and 35 of the study. Values of t db (32.10 ± 0.49°C), RH (49.94 ± 1.91%), and THI (38.85 ± 0.42) obtained were outside the thermoneutral zone for broiler chickens, and suggested that the birds were subjected to heat stress. Application of the periodic model showed disruption of daily rhythm of t cloacal in broilers on day 21, which was synchronized by probiotic administration. The administration of probiotics or ZnGlu + probiotics to a greater extent decreased the mesor and amplitude, delayed the acrophases of t cloacal in broilers, especially at day 35, as compared to the controls. Overall, the t cloacal values in broiler chickens administered with probiotic alone (41.25 ± 0.05°C) and ZnGlu + probiotic (41.52 ± 0.05°C) were lower ( P  probiotic alone synchronized t cloacal of the birds at day 21, and, in addition, decreased t cloacal response most, followed by its coadministration with ZnGlu, the antioxidants may be beneficial in modulating daily rhythmicity of t cloacal and alleviating adverse effects of heat stress on broiler chickens during the hot-dry season. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the

  14. A comparison of PMIP2 model simulations and the MARGO proxy reconstruction for tropical sea surface temperatures at last glacial maximum

    Energy Technology Data Exchange (ETDEWEB)

    Otto-Bliesner, Bette L.; Brady, E.C. [National Center for Atmospheric Research, Climate and Global Dynamics Division, Boulder, CO (United States); Schneider, Ralph; Weinelt, M. [Christian-Albrechts Universitaet, Institut fuer Geowissenschaften, Kiel (Germany); Kucera, M. [Eberhard-Karls Universitaet Tuebingen, Institut fuer Geowissenschaften, Tuebingen (Germany); Abe-Ouchi, A. [The University of Tokyo, Center for Climate System Research, Kashiwa (Japan); Bard, E. [CEREGE, College de France, CNRS, Universite Aix-Marseille, Aix-en-Provence (France); Braconnot, P.; Kageyama, M.; Marti, O.; Waelbroeck, C. [Unite mixte CEA-CNRS-UVSQ, Laboratoire des Sciences du Climat et de l' Environnement, Gif-sur-Yvette Cedex (France); Crucifix, M. [Universite Catholique de Louvain, Institut d' Astronomie et de Geophysique Georges Lemaitre, Louvain-la-Neuve (Belgium); Hewitt, C.D. [Met Office Hadley Centre, Exeter (United Kingdom); Paul, A. [Bremen University, Department of Geosciences, Bremen (Germany); Rosell-Mele, A. [Universitat Autonoma de Barcelona, ICREA and Institut de Ciencia i Tecnologia Ambientals, Barcelona (Spain); Weber, S.L. [Royal Netherlands Meteorological Institute (KNMI), De Bilt (Netherlands); Yu, Y. [Chinese Academy of Sciences, LASG, Institute of Atmospheric Physics, Beijing (China)

    2009-05-15

    Results from multiple model simulations are used to understand the tropical sea surface temperature (SST) response to the reduced greenhouse gas concentrations and large continental ice sheets of the last glacial maximum (LGM). We present LGM simulations from the Paleoclimate Modelling Intercomparison Project, Phase 2 (PMIP2) and compare these simulations to proxy data collated and harmonized within the Multiproxy Approach for the Reconstruction of the Glacial Ocean Surface Project (MARGO). Five atmosphere-ocean coupled climate models (AOGCMs) and one coupled model of intermediate complexity have PMIP2 ocean results available for LGM. The models give a range of tropical (defined for this paper as 15 S-15 N) SST cooling of 1.0-2.4 C, comparable to the MARGO estimate of annual cooling of 1.7{+-}1 C. The models simulate greater SST cooling in the tropical Atlantic than tropical Pacific, but interbasin and intrabasin variations of cooling are much smaller than those found in the MARGO reconstruction. The simulated tropical coolings are relatively insensitive to season, a feature also present in the MARGO transferred-based estimates calculated from planktonic foraminiferal assemblages for the Indian and Pacific Oceans. These assemblages indicate seasonality in cooling in the Atlantic basin, with greater cooling in northern summer than northern winter, not captured by the model simulations. Biases in the simulations of the tropical upwelling and thermocline found in the preindustrial control simulations remain for the LGM simulations and are partly responsible for the more homogeneous spatial and temporal LGM tropical cooling simulated by the models. The PMIP2 LGM simulations give estimates for the climate sensitivity parameter of 0.67 -0.83 C per Wm{sup -2}, which translates to equilibrium climate sensitivity for doubling of atmospheric CO{sub 2} of 2.6-3.1 C. (orig.)

  15. Fragile-to-fragile liquid transition at Tg and stable-glass phase nucleation rate maximum at the Kauzmann temperature TK

    International Nuclear Information System (INIS)

    Tournier, Robert F.

    2014-01-01

    An undercooled liquid is unstable. The driving force of the glass transition at T g is a change of the undercooled-liquid Gibbs free energy. The classical Gibbs free energy change for a crystal formation is completed including an enthalpy saving. The crystal growth critical nucleus is used as a probe to observe the Laplace pressure change Δp accompanying the enthalpy change −V m ×Δp at T g where V m is the molar volume. A stable glass–liquid transition model predicts the specific heat jump of fragile liquids at T≤T g , the Kauzmann temperature T K where the liquid entropy excess with regard to crystal goes to zero, the equilibrium enthalpy between T K and T g , the maximum nucleation rate at T K of superclusters containing magic atom numbers, and the equilibrium latent heats at T g and T K . Strong-to-fragile and strong-to-strong liquid transitions at T g are also described and all their thermodynamic parameters are determined from their specific heat jumps. The existence of fragile liquids quenched in the amorphous state, which do not undergo liquid–liquid transition during heating preceding their crystallization, is predicted. Long ageing times leading to the formation at T K of a stable glass composed of superclusters containing up to 147 atom, touching and interpenetrating, are evaluated from nucleation rates. A fragile-to-fragile liquid transition occurs at T g without stable-glass formation while a strong glass is stable after transition

  16. Creating a seamless 1 km resolution daily land surface temperature dataset for urban and surrounding areas in the conterminous United States

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaoma; Zhou, Yuyu; Asrar, Ghassem R.; Zhu, Zhengyuan

    2018-03-01

    High spatiotemporal land surface temperature (LST) datasets are increasingly needed in a variety of fields such as ecology, hydrology, meteorology, epidemiology, and energy systems. Moderate Resolution Imaging Spectroradiometer (MODIS) LST is one of such high spatiotemporal datasets that are widely used. But, it has large amount of missing values primarily because of clouds. Gapfilling the missing values is an important approach to create high spatiotemporal LST datasets. However current gapfilling methods have limitations in terms of accuracy and time required to assemble the data over large areas (e.g., national and continental levels). In this study, we developed a 3-step hybrid method by integrating a combination of daily merging, spatiotemporal gapfilling, and temporal interpolation methods, to create a high spatiotemporal LST dataset using the four daily LST observations from the two MODIS instruments on Terra and Aqua satellites. We applied this method in urban and surrounding areas for the conterminous U.S. in 2010. The evaluation of the gapfilled LST product indicates that its root mean squared error (RMSE) to be 3.3K for mid-daytime (1:30 pm) and 2.7K for mid-13 nighttime (1:30 am) observations. The method can be easily extended to other years and regions and is also applicable to other satellite products. This seamless daily (mid-daytime and mid-nighttime) LST product with 1 km spatial resolution is of great value for studying effects of urbanization (e.g., urban heat island) and the related impacts on people, ecosystems, energy systems and other infrastructure for cities.

  17. Enhancing Extreme Heat Health-Related Intervention and Preparedness Activities Using Remote Sensing Analysis of Daily Surface Temperature, Surface Observation Networks and Ecmwf Reanalysis

    Science.gov (United States)

    Garcia, R. L.; Booth, J.; Hondula, D.; Ross, K. W.; Stuyvesant, A.; Alm, G.; Baghel, E.

    2015-12-01

    Extreme heat causes more human fatalities in the United States than any other natural disaster, elevating the concern of heat-related mortality. Maricopa County Arizona is known for its high heat index and its sprawling metropolitan complex which makes this region a perfect candidate for human health research. Individuals at higher risk are unequally spatially distributed, leaving the poor, homeless, non-native English speakers, elderly, and the socially isolated vulnerable to heat events. The Arizona Department of Health Services, Arizona State University and NASA DEVELOP LaRC are working to establish a more effective method of placing hydration and cooling centers in addition to enhancing the heat warning system to aid those with the highest exposure. Using NASA's Earth Observation Systems from Aqua and Terra satellites, the daily spatial variability within the UHI was quantified over the summer heat seasons from 2005 - 2014, effectively establishing a remotely sensed surface temperature climatology for the county. A series of One-way Analysis of Variance revealed significant differences between daily surface temperature averages of the top 30% of census tracts within the study period. Furthermore, synoptic upper tropospheric circulation patterns were classified to relate surface weather types and heat index. The surface weather observation networks were also reviewed for analyzing the veracity of the other methods. The results provide detailed information regarding nuances within the UHI effect and will allow pertinent recommendations regarding the health department's adaptive capacity. They also hold essential components for future policy decision-making regarding appropriate locations for cooling centers and efficient warning systems.

  18. User's Guide, software for reduction and analysis of daily weather and surface-water data: Tools for time series analysis of precipitation, temperature, and streamflow data

    Science.gov (United States)

    Hereford, Richard

    2006-01-01

    The software described here is used to process and analyze daily weather and surface-water data. The programs are refinements of earlier versions that include minor corrections and routines to calculate frequencies above a threshold on an annual or seasonal basis. Earlier versions of this software were used successfully to analyze historical precipitation patterns of the Mojave Desert and the southern Colorado Plateau regions, ecosystem response to climate variation, and variation of sediment-runoff frequency related to climate (Hereford and others, 2003; 2004; in press; Griffiths and others, 2006). The main program described here (Day_Cli_Ann_v5.3) uses daily data to develop a time series of various statistics for a user specified accounting period such as a year or season. The statistics include averages and totals, but the emphasis is on the frequency of occurrence in days of relatively rare weather or runoff events. These statistics are indices of climate variation; for a discussion of climate indices, see the Climate Research Unit website of the University of East Anglia (http://www.cru.uea.ac.uk/projects/stardex/) and the Climate Change Indices web site (http://cccma.seos.uvic.ca/ETCCDMI/indices.html). Specifically, the indices computed with this software are the frequency of high intensity 24-hour rainfall, unusually warm temperature, and unusually high runoff. These rare, or extreme events, are those greater than the 90th percentile of precipitation, streamflow, or temperature computed for the period of record of weather or gaging stations. If they cluster in time over several decades, extreme events may produce detectable change in the physical landscape and ecosystem of a given region. Although the software has been tested on a variety of data, as with any software, the user should carefully evaluate the results with their data. The programs were designed for the range of precipitation, temperature, and streamflow measurements expected in the semiarid

  19. Hubungan antara Perubahan Suhu Udara Harian, Perilaku Petani dan Keankeragaman Serangga Penyerbuk di Desa Serang Kecamatan Karangreja, Kabupaten Purbalingga Jawa Tengah (The relationship between the Air Temperature Change Daily, Farmer Behavior, and Diver

    Directory of Open Access Journals (Sweden)

    Dwi YULIANI

    2015-10-01

    Full Text Available Global warming has threatened Indonesian’s agricultural sector and put the sectorvulnerable to climate change. The changes affect the daily air temperature changes, farmerbehavior, and the diversity of insect pollinators. The study aims to determine the daily changes inair temperature, farmer behavior, and diversity of pollinating insects in the village of Serang,Karangreja, Purbalingga, Central Java; and to analyze the relationship between daily airtemperature changes, farmer behavior, and insect pollinators diversity. The research employedsurvey methods. Samples for the daily air temperature measurement were taken purposeviley. Thediversity of insect pollinators on the three farming type and respondens were selected radmonlywith total respondent 99. The results showed that the average daily air temperature in chili farms ishigher than that in tomato and strawberry farm; farmers have a good knowledge about theenvironmental degradation of agriculture land, good attitude and awareness in maintaining andimproving the quality of agriculture, but they have negative behaviour in the use of excessiveinsecticides. Species richness of insect pollinators in tomato farm is higher than that in chili andstrawberry farm. A good knowledge, good attitude, and bad behaviour are closely related to thedaily air temperature and insect pollinators.

  20. Apparent temperature and cause-specific mortality in copenhagen, denmark: a case-crossover analysis

    DEFF Research Database (Denmark)

    Wichmann, Janine; Andersen, Zorana Jovanovic; Ketzel, Matthias

    2011-01-01

    Temperature, a key climate change indicator, is expected to increase substantially in the Northern Hemisphere, with potentially grave implications for human health. This study is the first to investigate the association between the daily 3-hour maximum apparent temperature (Tapp...

  1. Maximum power point tracking

    International Nuclear Information System (INIS)

    Enslin, J.H.R.

    1990-01-01

    A well engineered renewable remote energy system, utilizing the principal of Maximum Power Point Tracking can be m ore cost effective, has a higher reliability and can improve the quality of life in remote areas. This paper reports that a high-efficient power electronic converter, for converting the output voltage of a solar panel, or wind generator, to the required DC battery bus voltage has been realized. The converter is controlled to track the maximum power point of the input source under varying input and output parameters. Maximum power point tracking for relative small systems is achieved by maximization of the output current in a battery charging regulator, using an optimized hill-climbing, inexpensive microprocessor based algorithm. Through practical field measurements it is shown that a minimum input source saving of 15% on 3-5 kWh/day systems can easily be achieved. A total cost saving of at least 10-15% on the capital cost of these systems are achievable for relative small rating Remote Area Power Supply systems. The advantages at larger temperature variations and larger power rated systems are much higher. Other advantages include optimal sizing and system monitor and control

  2. Little Cross-Feeding of the Mycorrhizal Networks Shared Between C3-Panicum bisulcatum and C4-Panicum maximum Under Different Temperature Regimes

    Directory of Open Access Journals (Sweden)

    Veronika Řezáčová

    2018-04-01

    Full Text Available Common mycorrhizal networks (CMNs formed by arbuscular mycorrhizal fungi (AMF interconnect plants of the same and/or different species, redistributing nutrients and draining carbon (C from the different plant partners at different rates. Here, we conducted a plant co-existence (intercropping experiment testing the role of AMF in resource sharing and exploitation by simplified plant communities composed of two congeneric grass species (Panicum spp. with different photosynthetic metabolism types (C3 or C4. The grasses had spatially separated rooting zones, conjoined through a root-free (but AMF-accessible zone added with 15N-labeled plant (clover residues. The plants were grown under two different temperature regimes: high temperature (36/32°C day/night or ambient temperature (25/21°C day/night applied over 49 days after an initial period of 26 days at ambient temperature. We made use of the distinct C-isotopic composition of the two plant species sharing the same CMN (composed of a synthetic AMF community of five fungal genera to estimate if the CMN was or was not fed preferentially under the specific environmental conditions by one or the other plant species. Using the C-isotopic composition of AMF-specific fatty acid (C16:1ω5 in roots and in the potting substrate harboring the extraradical AMF hyphae, we found that the C3-Panicum continued feeding the CMN at both temperatures with a significant and invariable share of C resources. This was surprising because the growth of the C3 plants was more susceptible to high temperature than that of the C4 plants and the C3-Panicum alone suppressed abundance of the AMF (particularly Funneliformis sp. in its roots due to the elevated temperature. Moreover, elevated temperature induced a shift in competition for nitrogen between the two plant species in favor of the C4-Panicum, as demonstrated by significantly lower 15N yields of the C3-Panicum but higher 15N yields of the C4-Panicum at elevated as

  3. Task 0715: Army Chesapeake Bay Total Maximum Daily Load Pilots

    Science.gov (United States)

    2011-05-01

    NDCEE/CTC The NDCEE is operated by: Office of the Assistant Sec etary of the Army for Installations, E ergy and Enviro ment Technology Transition...stockpiles of soils and sands; – Air emissions with deposition potential; – Construction projects; – Existence of septic systems/sewage holding tanks

  4. Clean Water Act Approved Total Maximum Daily Load (TMDL) Documents

    Data.gov (United States)

    U.S. Environmental Protection Agency — Information from Approved and Established TMDL Documents as well as TMDLs that have been Withdrawn. This includes the pollutants identified in the TMDL Document, the...

  5. Thermal dimensioning of the deep repository. Influence of canister spacing, canister power, rock thermal properties and nearfield design on the maximum canister surface temperature

    International Nuclear Information System (INIS)

    Hoekmark, Harald; Faelth, Billy

    2003-12-01

    The report addresses the problem of the minimum spacing required between neighbouring canisters in the deep repository. That spacing is calculated for a number of assumptions regarding the conditions that govern the temperature in the nearfield and at the surfaces of the canisters. The spacing criterion is that the temperature at the canister surfaces must not exceed 100 deg C .The results are given in the form of nomographic charts, such that it is in principle possible to determine the spacing as soon as site data, i.e. the initial undisturbed rock temperature and the host rock heat transport properties, are available. Results of canister spacing calculations are given for the KBS-3V concept as well as for the KBS-3H concept. A combination of numerical and analytical methods is used for the KBS-3H calculations, while the KBS-3V calculations are purely analytical. Both methods are described in detail. Open gaps are assigned equivalent heat conductivities, calculated such that the conduction across the gaps will include also the heat transferred by radiation. The equivalent heat conductivities are based on the emissivities of the different gap surfaces. For the canister copper surface, the emissivity is determined by back-calculation of temperatures measured in the Prototype experiment at Aespoe HRL. The size of the different gaps and the emissivity values are of great importance for the results and will be investigated further in the future

  6. The last glacial maximum

    Science.gov (United States)

    Clark, P.U.; Dyke, A.S.; Shakun, J.D.; Carlson, A.E.; Clark, J.; Wohlfarth, B.; Mitrovica, J.X.; Hostetler, S.W.; McCabe, A.M.

    2009-01-01

    We used 5704 14C, 10Be, and 3He ages that span the interval from 10,000 to 50,000 years ago (10 to 50 ka) to constrain the timing of the Last Glacial Maximum (LGM) in terms of global ice-sheet and mountain-glacier extent. Growth of the ice sheets to their maximum positions occurred between 33.0 and 26.5 ka in response to climate forcing from decreases in northern summer insolation, tropical Pacific sea surface temperatures, and atmospheric CO2. Nearly all ice sheets were at their LGM positions from 26.5 ka to 19 to 20 ka, corresponding to minima in these forcings. The onset of Northern Hemisphere deglaciation 19 to 20 ka was induced by an increase in northern summer insolation, providing the source for an abrupt rise in sea level. The onset of deglaciation of the West Antarctic Ice Sheet occurred between 14 and 15 ka, consistent with evidence that this was the primary source for an abrupt rise in sea level ???14.5 ka.

  7. Density and viscosity study of nicotinic acid and nicotinamide in dilute aqueous solutions at and around the temperature of the maximum density of water

    International Nuclear Information System (INIS)

    Dhondge, Sudhakar S.; Dahasahasra, Prachi N.; Paliwal, Lalitmohan J.; Deshmukh, Dinesh W.

    2014-01-01

    Highlights: • Volumetric and transport behaviour of aqueous solutions of important vitamins are reported. • Various interactions of nicotinic acid and nicotinamide with water have been reported. • The temperature dependence of interactions between solute and solvent is discussed. • The study indicates that nicotinamide is more hydrated as compared to nicotinic acid. - Abstract: In the present study, we report experimental densities (ρ) and viscosities (η) of aqueous solutions of nicotinic acid and nicotinamide within the concentration range (0 to 0.1) mol · kg −1 at T = (275.15, 277.15 and 279.15) K. These parameters are then used to obtain thermodynamic and transport functions such as apparent molar volume of solute (V ϕ ), limiting apparent molar volume of solute (V ϕ 0 ), limiting apparent molar expansivity of solute (E ϕ 0 ), coefficient of thermal expansion (α ∗ ), Jones–Dole equation viscosity A, B and D coefficients, temperature derivative of B coefficient i.e. (dB/dT) and hydration number (n H ), etc. The activation parameters of viscous flow for the binary mixtures have been determined and discussed in terms of Eyring’s transition state theory. These significant parameters are helpful to study the structure promoting or destroying tendency of solute and various interactions present in (nicotinic acid + water) and (nicotinamide + water) binary mixtures

  8. Daily and seasonal limits of time and temperature to activity of degus Limitaciones diarias y estacionales de tiempo y temperatura sobre la actividad de degus

    Directory of Open Access Journals (Sweden)

    G.J. KENAGY

    2002-09-01

    Full Text Available We present an analysis of behavioral flexibility in a day-active caviomorph rodent, the degu, Octodon degus, in response to temporal (daily and seasonal, spatial, and thermal heterogeneity of its environment. We quantified activity and foraging behavior in a population, together with thermal conditions, in an open habitat in the seasonally hot and arid matorral of central Chile. Summer activity was bimodal, with a gap of more than 8 h between the morning bout of 2.5 h of intensive foraging and the afternoon bout of 2 h. More than half of the 4.5 h of summer activity occurred in the shade of early morning or late afternoon when the sun was below the local skyline. Autumn and spring activity were also bimodal, but with greater proportions of activity under direct solar radiation, and with a shorter midday gap between the two major bouts. Winter activity was unimodal and all occurred under direct solar radiation. In summer, autumn, and spring the activity of degus was curtailed as our index of operative temperature, Te, moved above 40 ºC. We used a single measurement of Te (measured in a thermal mannequin representing degu size, shape and surface properties as an index of the interactive effects of solar radiation and convection on body temperature. At the winter solstice (June, when degus remained fully exposed to solar radiation throughout the day, Te generally remained below 30 ºC. Flexibility in the timing of surface activity allows degus to maintain thermal homeostasis and energy balance throughout the year. Degus shift the times of daily onset and end of activity and the number of major bouts (unimodal or bimodal over the course of the year. They remain active on the surface under a much narrower range or "window" of thermal conditions than those that occur over the entire broad range of the day and yearPresentamos un análisis de la flexibilidad conductual en la actividad diaria del degu (Octodon degus, un roedor caviomorfo, en respuesta a

  9. A portable storage maximum thermometer

    International Nuclear Information System (INIS)

    Fayart, Gerard.

    1976-01-01

    A clinical thermometer storing the voltage corresponding to the maximum temperature in an analog memory is described. End of the measurement is shown by a lamp switch out. The measurement time is shortened by means of a low thermal inertia platinum probe. This portable thermometer is fitted with cell test and calibration system [fr

  10. Approximate maximum parsimony and ancestral maximum likelihood.

    Science.gov (United States)

    Alon, Noga; Chor, Benny; Pardi, Fabio; Rapoport, Anat

    2010-01-01

    We explore the maximum parsimony (MP) and ancestral maximum likelihood (AML) criteria in phylogenetic tree reconstruction. Both problems are NP-hard, so we seek approximate solutions. We formulate the two problems as Steiner tree problems under appropriate distances. The gist of our approach is the succinct characterization of Steiner trees for a small number of leaves for the two distances. This enables the use of known Steiner tree approximation algorithms. The approach leads to a 16/9 approximation ratio for AML and asymptotically to a 1.55 approximation ratio for MP.

  11. Sharp Reduction in Maximum LEU Fuel Temperatures during Loss of Coolant Accidents in a PBMR DPP-400 core by means of Optimised Placement of Neutron Poisons: Implications for Pu fuel-cycles

    International Nuclear Information System (INIS)

    Serfontein, Dawid E.

    2013-01-01

    The optimisation of the power profiles by means of placing an optimised distribution of neutron poison concentrations in the central reflector resulted in a large reduction in the maximum DLOFC temperature, which may produce far reaching safety and licensing benefits. Unfortunately this came at the expense of losing the ability to execute effective load following. The neutron poisons also caused a large reduction of 22% in the average burn-up of the fuel. Further optimisation is required to counter this reduction in burn-up

  12. Maximum permissible dose

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    This chapter presents a historic overview of the establishment of radiation guidelines by various national and international agencies. The use of maximum permissible dose and maximum permissible body burden limits to derive working standards is discussed

  13. Estimation of daily solar radiation from routinely observed meteorological data in Chongqing, China

    International Nuclear Information System (INIS)

    Li Maofen; Liu Hongbin; Guo Pengtao; Wu Wei

    2010-01-01

    Solar radiation is a very important and major variable in crop simulation models. However, it is measured at a very limited number of meteorological stations worldwide. Models were developed to estimate daily solar radiation in Chongqing, one of the most important agricultural areas in China. Several routinely observed meteorological variables including daily maximum and minimum temperatures, daily mean dew point temperature, fog and rainfall had been obtained, investigated and analyzed from 1986 to 2000 for Chongqing. The monthly mean daily solar radiation at this location ranged from a maximum of 15.082 MJ m -2 day -1 in August and a minimum of 3.042 MJ m -2 day -1 in December. A newly developed model that included all selected variables proved the best method with a RMSE value of 2.522 MJ m -2 day -1 . The best performed models for different seasons were further evaluated according to divide-and-conquer principle. The model using all selected variables provided the best estimates of daily solar radiation in winter and autumn with RMSE values of 1.491 and 2.037 MJ m -2 day -1 , respectively. The method involving temperatures and rainfall information could be used to estimate daily solar radiation in summer with a RMSE value of 3.163 MJ m -2 day -1 . The model using temperature, rainfall and dew point data performed better than other models in spring with a RMSE value of 2.910 MJ m -2 day -1 .

  14. Simulation of Daily Weather Data Using Theoretical Probability Distributions.

    Science.gov (United States)

    Bruhn, J. A.; Fry, W. E.; Fick, G. W.

    1980-09-01

    A computer simulation model was constructed to supply daily weather data to a plant disease management model for potato late blight. In the weather model Monte Carlo techniques were employed to generate daily values of precipitation, maximum temperature, minimum temperature, minimum relative humidity and total solar radiation. Each weather variable is described by a known theoretical probability distribution but the values of the parameters describing each distribution are dependent on the occurrence of rainfall. Precipitation occurrence is described by a first-order Markov chain. The amount of rain, given that rain has occurred, is described by a gamma probability distribution. Maximum and minimum temperature are simulated with a trivariate normal probability distribution involving maximum temperature on the previous day, maximum temperature on the current day and minimum temperature on the current day. Parameter values for this distribution are dependent on the occurrence of rain on the previous day. Both minimum relative humidity and total solar radiation are assumed to be normally distributed. The values of the parameters describing the distribution of minimum relative humidity is dependent on rainfall occurrence on the previous day and current day. Parameter values for total solar radiation are dependent on the occurrence of rain on the current day. The assumptions made during model construction were found to be appropriate for actual weather data from Geneva, New York. The performance of the weather model was evaluated by comparing the cumulative frequency distributions of simulated weather data with the distributions of actual weather data from Geneva, New York and Fort Collins, Colorado. For each location, simulated weather data were similar to actual weather data in terms of mean response, variability and autocorrelation. The possible applications of this model when used with models of other components of the agro-ecosystem are discussed.

  15. GLERL Great Lakes Air Temperature/Degree Day Climatology, 1897-1983

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Daily maximum and minimum temperatures for 25 stations around the Great Lakes, 1897 to 1983, were given to NSIDC by the NOAA Great Lakes Environmental Research...

  16. Neoendemic ground beetles and private tree haplotypes: two independent proxies attest a moderate last glacial maximum summer temperature depression of 3-4 °C for the southern Tibetan Plateau

    Science.gov (United States)

    Schmidt, Joachim; Opgenoorth, Lars; Martens, Jochen; Miehe, Georg

    2011-07-01

    Previous findings regarding the Last Glacial Maximum LGM summer temperature depression (maxΔT in July) on the Tibetan Plateau varied over a large range (between 0 and 9 °C). Geologic proxies usually provided higher values than palynological data. Because of this wide temperature range, it was hitherto impossible to reconstruct the glacial environment of the Tibetan Plateau. Here, we present for the first time data indicating that local neoendemics of modern species groups are promising proxies for assessing the LGM temperature depression in Tibet. We used biogeographical and phylogenetic data from small, wingless edaphous ground beetles of the genus Trechus, and from private juniper tree haplotypes. The derived values of the maxΔT in July ranged between 3 and 4 °C. Our data support previous findings that were based on palynological data. At the same time, our data are spatially more specific as they are not bound to specific archives. Our study shows that the use of modern endemics enables a detailed mapping of local LGM conditions in High Asia. A prerequisite for this is an extensive biogeographical and phylogenetic exploration of the area and the inclusion of additional endemic taxa and evolutionary lines.

  17. Aplicação do método da carga máxima total diária (CMTD para a amônia no Rio Atibaia, região de Campinas/Paulínia - SP Application of ammonia total maximum daily load (TMDL to Atibaia River, Campinas/Paulínia region - São Paulo state

    Directory of Open Access Journals (Sweden)

    Gilberto Silvério da Silva

    2007-06-01

    Full Text Available Neste estudo foram avaliadas a capacidade de suporte e o estado de degradação do Rio Atibaia, considerando a ameaça para a vida aquática pela presença da Amônia, a qual representa um dos principais riscos às comunidades aquáticas no Rio Atibaia. Com este objetivo foi aplicado o método da Carga Máxima Total Diária (CMTD, da Agência de Proteção Ambiental dos Estados Unidos (EPA. Os resultados revelaram que as cargas de Amônia aumentavam progressivamente ao longo do Rio Atibaia, principalmente devido às fontes pontuais. As cargas de Amônia diárias assumiram valores de 30 a 5000 kg NH3. A capacidade de suporte das águas Rio Atibaia, para proteger a vida aquática contra os efeitos tóxicos da Amônia, tem sido violadas em trechos próximos à sua foz. A degradação dessas águas foi mais intensa na estação seca. Este trabalho mostrou que o esgoto doméstico não-tratado de uma população aproximada de 250 mil habitantes da cidade de Campinas, via Ribeirão Anhumas, é a principal fonte de Amônia na bacia do Rio Atibaia, apesar do grande número de indústrias ali presentes.This study evaluated the tolerance capacity and the impairment state of the Atibaia River, considering the threat to aquatic life by the presence of Ammonia, which represents one of the main risks to the aquatic communities in the Atibaia River. With this aim, the method Total Maximum Daily Load (TMDL, from the United States Environmental Protection Agency (EPA, was applied. The results revealed that the Ammonia loads increased progressively through the Atibaia River, especially due to the point sources. The daily Ammonia loads assumed values that ranged from 30 to 5000 kg NH3. The tolerance capacity of the waters of the Atibaia River, to protect aquatic life against the toxic effects of the Ammonia, has been violated in reaches near its mouth. The impairment of these waters was more intense during the dry season. This study showed that the domestic sewer

  18. Extreme summer temperatures in Iberia: health impacts and associated synoptic conditions

    OpenAIRE

    Garcia-Herrera , R.; Diaz , J.; Trigo , R. M.; Hernández , E.

    2005-01-01

    This paper examines the effect of extreme summer temperatures on daily mortality in two large cities of Iberia: Lisbon (Portugal) and Madrid (Spain). Daily mortality and meteorological variables are analysed using the same methodology based on Box-Jenkins models. Results reveal that in both cases there is a triggering effect on mortality when maximum daily temperature exceeds a given threshold (34°C in Lisbon and 36°C in Madrid). The impact of most intense heat events is very ...

  19. Maximum Acceleration Recording Circuit

    Science.gov (United States)

    Bozeman, Richard J., Jr.

    1995-01-01

    Coarsely digitized maximum levels recorded in blown fuses. Circuit feeds power to accelerometer and makes nonvolatile record of maximum level to which output of accelerometer rises during measurement interval. In comparison with inertia-type single-preset-trip-point mechanical maximum-acceleration-recording devices, circuit weighs less, occupies less space, and records accelerations within narrower bands of uncertainty. In comparison with prior electronic data-acquisition systems designed for same purpose, circuit simpler, less bulky, consumes less power, costs and analysis of data recorded in magnetic or electronic memory devices. Circuit used, for example, to record accelerations to which commodities subjected during transportation on trucks.

  20. Daily torpor and hibernation in birds and mammals

    Science.gov (United States)

    RUF, THOMAS; GEISER, FRITZ

    2014-01-01

    Many birds and mammals drastically reduce their energy expenditure during times of cold exposure, food shortage, or drought, by temporarily abandoning euthermia, i.e., the maintenance of high body temperatures. Traditionally, two different types of heterothermy, i.e., hypometabolic states associated with low body temperatures (torpor), have been distinguished: Daily torpor, which lasts less than 24 h and is accompanied by continued foraging, versus hibernation, with torpor bouts lasting consecutive days to several weeks in animals that usually do not forage but rely on energy stores, either food caches or body energy reserves. This classification of torpor types has been challenged however, suggesting that these phenotypes may merely represent the extremes in a continuum of traits. Here, we investigate whether variables of torpor in 214 species, 43 birds and 171 mammals form a continuum or a bimodal distribution. We use Gaussian-mixture cluster analysis as well as phylogenetically informed regressions to quantitatively assess the distinction between hibernation and daily torpor and to evaluate the impact of body mass and geographical distribution of species on torpor traits. Cluster analysis clearly confirmed the classical distinction between daily torpor and hibernation. Overall, heterothermic endotherms are small on average, but hibernators are significantly heavier than daily heterotherms and also are distributed at higher average latitudes (~35°) than daily heterotherms (~25°). Variables of torpor for an average 30-g heterotherm differed significantly between daily heterotherms and hibernators. Average maximum torpor bout duration was >30-fold longer, and mean torpor bout duration >25-fold longer in hibernators. Mean minimum body temperature differed by ~13°C, and the mean minimum torpor metabolic rate was ~35% of the BMR in daily heterotherms but only 6% of basal metabolic rate in hibernators. Consequently, our analysis strongly supports the view that

  1. Maximum Quantum Entropy Method

    OpenAIRE

    Sim, Jae-Hoon; Han, Myung Joon

    2018-01-01

    Maximum entropy method for analytic continuation is extended by introducing quantum relative entropy. This new method is formulated in terms of matrix-valued functions and therefore invariant under arbitrary unitary transformation of input matrix. As a result, the continuation of off-diagonal elements becomes straightforward. Without introducing any further ambiguity, the Bayesian probabilistic interpretation is maintained just as in the conventional maximum entropy method. The applications o...

  2. Maximum power demand cost

    International Nuclear Information System (INIS)

    Biondi, L.

    1998-01-01

    The charging for a service is a supplier's remuneration for the expenses incurred in providing it. There are currently two charges for electricity: consumption and maximum demand. While no problem arises about the former, the issue is more complicated for the latter and the analysis in this article tends to show that the annual charge for maximum demand arbitrarily discriminates among consumer groups, to the disadvantage of some [it

  3. Daily and seasonal variability of pH, dissolved oxygen, temperature, and specific conductance in the Colorado River between the forebay of Glen Canyon, Dam and Lees Ferry, northeastern Arizona, 1998-99

    Science.gov (United States)

    Flynn, Marilyn E.; Hart, Robert J.; Marzolf, G. Richard; Bowser, Carl J.

    2001-01-01

    The productivity of the trout fishery in the tailwater reach of the Colorado River downstream from Glen Canyon Dam depends on the productivity of lower trophic levels. Photosynthesis and respiration are basic biological processes that control productivity and alter pH and oxygen concentration. During 1998?99, data were collected to aid in the documentation of short- and long-term trends in these basic ecosystem processes in the Glen Canyon reach. Dissolved-oxygen, temperature, and specific-conductance profile data were collected monthly in the forebay of Glen Canyon Dam to document the status of water chemistry in the reservoir. In addition, pH, dissolved-oxygen, temperature, and specific-conductance data were collected at five sites in the Colorado River tailwater of Glen Canyon Dam to document the daily, seasonal, and longitudinal range of variation in water chemistry that could occur annually within the Glen Canyon reach.

  4. Efectos de los extremos térmicos sobre la mortalidad diaria en Castilla-La Mancha: evolución temporal 1975-2003 Effects of temperature extremes on daily mortality in Castile-La Mancha (Spain: trends from 1975 to 2003

    Directory of Open Access Journals (Sweden)

    Isidro J. Mirón

    2010-04-01

    Full Text Available Objetivos: Determinar la evolución y la distribución geográfica de la temperatura umbral de disparo de la mortalidad por extremos térmicos en Castilla-La Mancha entre 1975 y 2003. Métodos: El análisis se divide en tres periodos (1975-1984, 1985-1994 y 1995-2003 para cada provincia de la región. Se modeliza la mortalidad diaria por causas orgánicas (variable dependiente utilizando procedimientos ARIMA. Los residuos diarios de mortalidad resultantes se relacionan con las temperaturas máximas diarias agrupadas en intervalos de 2ºC, obteniendo una temperatura umbral por frío o por calor si esos residuos aumentan de forma significativa (pObjectives: To determine time trends and the geographical distribution of mortality trigger temperature thresholds due to extreme temperatures in Castile-La Mancha (central Spain between 1975 and 2003. Methods: The analysis was divided into three periods (1975-1984, 1985-1994 and 1995-2003 for each province of the region. Daily mortality due to organic causes (dependent variable was modelled using autoregressive integrated moving average (ARIMA procedures. The resulting residual series was related to the maximum temperature series grouped in 2ºC intervals to obtain a threshold temperature for cold or heat when the residuals rose significantly (p<0,05 above the mean residual mortality value of the corresponding study period. Results: Mortality trigger temperature thresholds decreased over time in Castile- La Mancha. In Toledo, the trigger temperature diminished from 40ºC to 38ºC. In Cuenca and Guadalajara, threshold temperatures for heat events were obtained in the last few decades but not in the first. These thresholds varied from the 92nd percentile in Cuenca to the 98th percentile in Albacete in the last decade. No threshold temperatures for cold spells were observed in any province or period. Conclusions: Castile-La Mancha registered an upward trend in the relationship between high temperatures and

  5. Physics in daily life

    CERN Document Server

    Hermans, Jo

    2012-01-01

    This book provides answers to everyday questions that any curious mind would ask, like : Why is water blue ? What makes ice so slippery ? How do we localize sound ? How do we keep our body temperature so nice and constant ? How do we survive the sauna at 90 C ? Why do large raindrops fall faster than small ones, and what exactly is their speed ? The answers are given in an accessible and playful way, and are illustrated with funny cartoons. In this book forty "Physics in Daily Life" columns, which appeared earlier in Europhysics News, are brought together in one inspiring volume. As well as being a source of enjoyment and satisfying insights for anyone with some physics background, it also serves as a very good teaching tool for science students. This booklet is a feast of erudition and humour.

  6. The GOCF/AWAP system - forecasting temperature extremes

    International Nuclear Information System (INIS)

    Fawcett, Robert; Hume, Timothy

    2010-01-01

    Gridded hourly temperature forecasts from the Bureau of Meteorology's Gridded Operational Consensus Forecasting (GOCF) system are combined in real time with the Australian Water Availability Project (AWAP) gridded daily temperature analyses to produce gridded daily maximum and minimum temperature forecasts with lead times from one to five days. These forecasts are compared against the historical record of AWAP daily temperature analyses (1911 to present), to identify regions where record or near-record temperatures are predicted to occur. This paper describes the GOCF/AWAP system, showing how the daily maximum and minimum temperature forecasts are prepared from the hourly forecasts, and how they are bias-corrected in real time using the AWAP analyses, against which they are subsequently verified. Using monthly climatologies of long-term daily mean, standard deviation and all-time highest and lowest on record, derived forecast products (for both maximum and minimum temperature) include ordinary and standardised anomalies, 'forecast - highest on record' and 'forecast - lowest on record'. Compensation for the climatological variation across the country is achieved in these last two products, which provide the necessary guidance as to whether or not record-breaking temperatures are expected, by expressing the forecast departure from the previous record in both 0 C and standard deviations.

  7. NOAA Daily 25km Global Optimally Interpolated Sea Surface Temperature (OISST) in situ and AVHRR analysis supplemented with AVHRR Pathfinder Version 5.0 climatological SST for inland and coastal pixels, 1981-09-01 through 2010-12-31 (NODC Accession 0071180)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains the daily 25km global Optimally Interpolated Sea Surface Temperature (OISST) in situ and AVHRR analysis, supplemented with AVHRR Pathfinder...

  8. Maximum likely scale estimation

    DEFF Research Database (Denmark)

    Loog, Marco; Pedersen, Kim Steenstrup; Markussen, Bo

    2005-01-01

    A maximum likelihood local scale estimation principle is presented. An actual implementation of the estimation principle uses second order moments of multiple measurements at a fixed location in the image. These measurements consist of Gaussian derivatives possibly taken at several scales and/or ...

  9. Robust Maximum Association Estimators

    NARCIS (Netherlands)

    A. Alfons (Andreas); C. Croux (Christophe); P. Filzmoser (Peter)

    2017-01-01

    textabstractThe maximum association between two multivariate variables X and Y is defined as the maximal value that a bivariate association measure between one-dimensional projections αX and αY can attain. Taking the Pearson correlation as projection index results in the first canonical correlation

  10. Artificial Intelligence Techniques for Predicting and Mapping Daily Pan Evaporation

    Science.gov (United States)

    Arunkumar, R.; Jothiprakash, V.; Sharma, Kirty

    2017-09-01

    In this study, Artificial Intelligence techniques such as Artificial Neural Network (ANN), Model Tree (MT) and Genetic Programming (GP) are used to develop daily pan evaporation time-series (TS) prediction and cause-effect (CE) mapping models. Ten years of observed daily meteorological data such as maximum temperature, minimum temperature, relative humidity, sunshine hours, dew point temperature and pan evaporation are used for developing the models. For each technique, several models are developed by changing the number of inputs and other model parameters. The performance of each model is evaluated using standard statistical measures such as Mean Square Error, Mean Absolute Error, Normalized Mean Square Error and correlation coefficient (R). The results showed that daily TS-GP (4) model predicted better with a correlation coefficient of 0.959 than other TS models. Among various CE models, CE-ANN (6-10-1) resulted better than MT and GP models with a correlation coefficient of 0.881. Because of the complex non-linear inter-relationship among various meteorological variables, CE mapping models could not achieve the performance of TS models. From this study, it was found that GP performs better for recognizing single pattern (time series modelling), whereas ANN is better for modelling multiple patterns (cause-effect modelling) in the data.

  11. Managing Daily Life

    Science.gov (United States)

    ... Duchenne / Managing Daily Life Print Email Managing Daily Life Environmental accessibility As the person with Duchenne starts ... such as wider doorways and ramps, can make life easier once the person with Duchenne cannot climb ...

  12. Daily Weather Records

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These daily weather records were compiled from a subset of stations in the Global Historical Climatological Network (GHCN)-Daily dataset. A weather record is...

  13. The effects of graded levels of calorie restriction: III. Impact of short term calorie and protein restriction on mean daily body temperature and torpor use in the C57BL/6 mouse

    Science.gov (United States)

    Mitchell, Sharon E.; Delville, Camille; Konstantopedos, Penelope; Derous, Davina; Green, Cara L.; Chen, Luonan; Han, Jing-Dong J.; Wang, Yingchun; Promislow, Daniel E.L.; Douglas, Alex; Lusseau, David; Speakman, John R.

    2015-01-01

    A commonly observed response in mammals to calorie restriction (CR) is reduced body temperature (Tb). We explored how the Tb of male C57BL/6 mice responded to graded CR (10 to 40%), compared to the response to equivalent levels of protein restriction (PR) over 3 months. Under CR there was a dynamic change in daily Tb over the first 30–35 days, which stabilized thereafter until day 70 after which a further decline was noted. The time to reach stability was dependent on restriction level. Body mass negatively correlated with Tb under ad libitum feeding and positively correlated under CR. The average Tb over the last 20 days was significantly related to the levels of body fat, structural tissue, leptin and insulin-like growth factor-1. Some mice, particularly those under higher levels of CR, showed periods of daily torpor later in the restriction period. None of the changes in Tb under CR were recapitulated by equivalent levels of PR. We conclude that changes in Tb under CR are a response only to the shortfall in calorie intake. The linear relationship between average Tb and the level of restriction supports the idea that Tb changes are an integral aspect of the lifespan effect. PMID:26286956

  14. Responses of Yield Characteristics to High Temperature During Flowering Stage in Hybrid Rice Guodao 6

    Directory of Open Access Journals (Sweden)

    Guan-fu FU

    2008-09-01

    Full Text Available By sowing at different dates during 2005 and 2006 both in paddy fields and greenhouse, a super hybrid rice combination Guodao 6 and a conventional hybrid rice combination Xieyou 46 (as control were used to analyze the differences in heat injury index, seed setting rate, grain yield and its components. Guodao 6 showed more stable yield and spikelet fertility, and lower heat injury index than Xieyou 46. Further studies indicated that the spikelet sterility is positively correlated with the average daily temperature and the maximum daily temperature, with the coefficients of 0.8604 and 0.9850 (P<0.05 respectively in Guodao 6. The effect of high temperature injury on seed setting caused by maximum daily temperature was lower than that by average daily temperature during the grain filling stage.

  15. Maximum entropy methods

    International Nuclear Information System (INIS)

    Ponman, T.J.

    1984-01-01

    For some years now two different expressions have been in use for maximum entropy image restoration and there has been some controversy over which one is appropriate for a given problem. Here two further entropies are presented and it is argued that there is no single correct algorithm. The properties of the four different methods are compared using simple 1D simulations with a view to showing how they can be used together to gain as much information as possible about the original object. (orig.)

  16. Differences between true mean temperatures and means calculated with four different approaches: a case study from three Croatian stations

    Science.gov (United States)

    Bonacci, Ognjen; Željković, Ivana

    2018-01-01

    Different countries use varied methods for daily mean temperature calculation. None of them assesses precisely the true daily mean temperature, which is defined as the integral of continuous temperature measurements in a day. Of special scientific as well as practical importance is to find out how temperatures calculated by different methods and approaches deviate from the true daily mean temperature. Five mean daily temperatures were calculated (T0, T1, T2, T3, T4) using five different equations. The mean of 24-h temperature observations during the calendar day is accepted to represent the true, daily mean T0. The differences Δ i between T0 and four other mean daily temperatures T1, T2, T3, and T4 were calculated and analysed. In the paper, analyses were done with hourly data measured in a period from 1 January 1999 to 31 December 2014 (149,016 h, 192 months and 16 years) at three Croatian meteorological stations. The stations are situated in distinct climatological areas: Zagreb Grič in a mild climate, Zavižan in the cold mountain region and Dubrovnik in the hot Mediterranean. Influence of fog on the temperature is analysed. Special attention is given to analyses of extreme (maximum and minimum) daily differences occurred at three analysed stations. Selection of the fixed local hours, which is in use for calculation of mean daily temperature, plays a crucial role in diminishing of bias from the true daily temperature.

  17. Maximum Entropy Fundamentals

    Directory of Open Access Journals (Sweden)

    F. Topsøe

    2001-09-01

    Full Text Available Abstract: In its modern formulation, the Maximum Entropy Principle was promoted by E.T. Jaynes, starting in the mid-fifties. The principle dictates that one should look for a distribution, consistent with available information, which maximizes the entropy. However, this principle focuses only on distributions and it appears advantageous to bring information theoretical thinking more prominently into play by also focusing on the "observer" and on coding. This view was brought forward by the second named author in the late seventies and is the view we will follow-up on here. It leads to the consideration of a certain game, the Code Length Game and, via standard game theoretical thinking, to a principle of Game Theoretical Equilibrium. This principle is more basic than the Maximum Entropy Principle in the sense that the search for one type of optimal strategies in the Code Length Game translates directly into the search for distributions with maximum entropy. In the present paper we offer a self-contained and comprehensive treatment of fundamentals of both principles mentioned, based on a study of the Code Length Game. Though new concepts and results are presented, the reading should be instructional and accessible to a rather wide audience, at least if certain mathematical details are left aside at a rst reading. The most frequently studied instance of entropy maximization pertains to the Mean Energy Model which involves a moment constraint related to a given function, here taken to represent "energy". This type of application is very well known from the literature with hundreds of applications pertaining to several different elds and will also here serve as important illustration of the theory. But our approach reaches further, especially regarding the study of continuity properties of the entropy function, and this leads to new results which allow a discussion of models with so-called entropy loss. These results have tempted us to speculate over

  18. Maximum permissible voltage of YBCO coated conductors

    Energy Technology Data Exchange (ETDEWEB)

    Wen, J.; Lin, B.; Sheng, J.; Xu, J.; Jin, Z. [Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai (China); Hong, Z., E-mail: zhiyong.hong@sjtu.edu.cn [Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai (China); Wang, D.; Zhou, H.; Shen, X.; Shen, C. [Qingpu Power Supply Company, State Grid Shanghai Municipal Electric Power Company, Shanghai (China)

    2014-06-15

    Highlights: • We examine three kinds of tapes’ maximum permissible voltage. • We examine the relationship between quenching duration and maximum permissible voltage. • Continuous I{sub c} degradations under repetitive quenching where tapes reaching maximum permissible voltage. • The relationship between maximum permissible voltage and resistance, temperature. - Abstract: Superconducting fault current limiter (SFCL) could reduce short circuit currents in electrical power system. One of the most important thing in developing SFCL is to find out the maximum permissible voltage of each limiting element. The maximum permissible voltage is defined as the maximum voltage per unit length at which the YBCO coated conductors (CC) do not suffer from critical current (I{sub c}) degradation or burnout. In this research, the time of quenching process is changed and voltage is raised until the I{sub c} degradation or burnout happens. YBCO coated conductors test in the experiment are from American superconductor (AMSC) and Shanghai Jiao Tong University (SJTU). Along with the quenching duration increasing, the maximum permissible voltage of CC decreases. When quenching duration is 100 ms, the maximum permissible of SJTU CC, 12 mm AMSC CC and 4 mm AMSC CC are 0.72 V/cm, 0.52 V/cm and 1.2 V/cm respectively. Based on the results of samples, the whole length of CCs used in the design of a SFCL can be determined.

  19. Probable maximum flood control

    International Nuclear Information System (INIS)

    DeGabriele, C.E.; Wu, C.L.

    1991-11-01

    This study proposes preliminary design concepts to protect the waste-handling facilities and all shaft and ramp entries to the underground from the probable maximum flood (PMF) in the current design configuration for the proposed Nevada Nuclear Waste Storage Investigation (NNWSI) repository protection provisions were furnished by the United States Bureau of Reclamation (USSR) or developed from USSR data. Proposed flood protection provisions include site grading, drainage channels, and diversion dikes. Figures are provided to show these proposed flood protection provisions at each area investigated. These areas are the central surface facilities (including the waste-handling building and waste treatment building), tuff ramp portal, waste ramp portal, men-and-materials shaft, emplacement exhaust shaft, and exploratory shafts facility

  20. Introduction to maximum entropy

    International Nuclear Information System (INIS)

    Sivia, D.S.

    1988-01-01

    The maximum entropy (MaxEnt) principle has been successfully used in image reconstruction in a wide variety of fields. We review the need for such methods in data analysis and show, by use of a very simple example, why MaxEnt is to be preferred over other regularizing functions. This leads to a more general interpretation of the MaxEnt method, and its use is illustrated with several different examples. Practical difficulties with non-linear problems still remain, this being highlighted by the notorious phase problem in crystallography. We conclude with an example from neutron scattering, using data from a filter difference spectrometer to contrast MaxEnt with a conventional deconvolution. 12 refs., 8 figs., 1 tab

  1. Solar maximum observatory

    International Nuclear Information System (INIS)

    Rust, D.M.

    1984-01-01

    The successful retrieval and repair of the Solar Maximum Mission (SMM) satellite by Shuttle astronauts in April 1984 permitted continuance of solar flare observations that began in 1980. The SMM carries a soft X ray polychromator, gamma ray, UV and hard X ray imaging spectrometers, a coronagraph/polarimeter and particle counters. The data gathered thus far indicated that electrical potentials of 25 MeV develop in flares within 2 sec of onset. X ray data show that flares are composed of compressed magnetic loops that have come too close together. Other data have been taken on mass ejection, impacts of electron beams and conduction fronts with the chromosphere and changes in the solar radiant flux due to sunspots. 13 references

  2. Introduction to maximum entropy

    International Nuclear Information System (INIS)

    Sivia, D.S.

    1989-01-01

    The maximum entropy (MaxEnt) principle has been successfully used in image reconstruction in a wide variety of fields. The author reviews the need for such methods in data analysis and shows, by use of a very simple example, why MaxEnt is to be preferred over other regularizing functions. This leads to a more general interpretation of the MaxEnt method, and its use is illustrated with several different examples. Practical difficulties with non-linear problems still remain, this being highlighted by the notorious phase problem in crystallography. He concludes with an example from neutron scattering, using data from a filter difference spectrometer to contrast MaxEnt with a conventional deconvolution. 12 refs., 8 figs., 1 tab

  3. Functional Maximum Autocorrelation Factors

    DEFF Research Database (Denmark)

    Larsen, Rasmus; Nielsen, Allan Aasbjerg

    2005-01-01

    MAF outperforms the functional PCA in concentrating the interesting' spectra/shape variation in one end of the eigenvalue spectrum and allows for easier interpretation of effects. Conclusions. Functional MAF analysis is a useful methods for extracting low dimensional models of temporally or spatially......Purpose. We aim at data where samples of an underlying function are observed in a spatial or temporal layout. Examples of underlying functions are reflectance spectra and biological shapes. We apply functional models based on smoothing splines and generalize the functional PCA in......\\verb+~+\\$\\backslash\\$cite{ramsay97} to functional maximum autocorrelation factors (MAF)\\verb+~+\\$\\backslash\\$cite{switzer85,larsen2001d}. We apply the method to biological shapes as well as reflectance spectra. {\\$\\backslash\\$bf Methods}. MAF seeks linear combination of the original variables that maximize autocorrelation between...

  4. Regularized maximum correntropy machine

    KAUST Repository

    Wang, Jim Jing-Yan; Wang, Yunji; Jing, Bing-Yi; Gao, Xin

    2015-01-01

    In this paper we investigate the usage of regularized correntropy framework for learning of classifiers from noisy labels. The class label predictors learned by minimizing transitional loss functions are sensitive to the noisy and outlying labels of training samples, because the transitional loss functions are equally applied to all the samples. To solve this problem, we propose to learn the class label predictors by maximizing the correntropy between the predicted labels and the true labels of the training samples, under the regularized Maximum Correntropy Criteria (MCC) framework. Moreover, we regularize the predictor parameter to control the complexity of the predictor. The learning problem is formulated by an objective function considering the parameter regularization and MCC simultaneously. By optimizing the objective function alternately, we develop a novel predictor learning algorithm. The experiments on two challenging pattern classification tasks show that it significantly outperforms the machines with transitional loss functions.

  5. Regularized maximum correntropy machine

    KAUST Repository

    Wang, Jim Jing-Yan

    2015-02-12

    In this paper we investigate the usage of regularized correntropy framework for learning of classifiers from noisy labels. The class label predictors learned by minimizing transitional loss functions are sensitive to the noisy and outlying labels of training samples, because the transitional loss functions are equally applied to all the samples. To solve this problem, we propose to learn the class label predictors by maximizing the correntropy between the predicted labels and the true labels of the training samples, under the regularized Maximum Correntropy Criteria (MCC) framework. Moreover, we regularize the predictor parameter to control the complexity of the predictor. The learning problem is formulated by an objective function considering the parameter regularization and MCC simultaneously. By optimizing the objective function alternately, we develop a novel predictor learning algorithm. The experiments on two challenging pattern classification tasks show that it significantly outperforms the machines with transitional loss functions.

  6. Estimating wheat and maize daily evapotranspiration using artificial neural network

    Science.gov (United States)

    Abrishami, Nazanin; Sepaskhah, Ali Reza; Shahrokhnia, Mohammad Hossein

    2018-02-01

    In this research, artificial neural network (ANN) is used for estimating wheat and maize daily standard evapotranspiration. Ten ANN models with different structures were designed for each crop. Daily climatic data [maximum temperature (T max), minimum temperature (T min), average temperature (T ave), maximum relative humidity (RHmax), minimum relative humidity (RHmin), average relative humidity (RHave), wind speed (U 2), sunshine hours (n), net radiation (Rn)], leaf area index (LAI), and plant height (h) were used as inputs. For five structures of ten, the evapotranspiration (ETC) values calculated by ETC = ET0 × K C equation (ET0 from Penman-Monteith equation and K C from FAO-56, ANNC) were used as outputs, and for the other five structures, the ETC values measured by weighing lysimeter (ANNM) were used as outputs. In all structures, a feed forward multiple-layer network with one or two hidden layers and sigmoid transfer function and BR or LM training algorithm was used. Favorite network was selected based on various statistical criteria. The results showed the suitable capability and acceptable accuracy of ANNs, particularly those having two hidden layers in their structure in estimating the daily evapotranspiration. Best model for estimation of maize daily evapotranspiration is «M»ANN1 C (8-4-2-1), with T max, T min, RHmax, RHmin, U 2, n, LAI, and h as input data and LM training rule and its statistical parameters (NRMSE, d, and R2) are 0.178, 0.980, and 0.982, respectively. Best model for estimation of wheat daily evapotranspiration is «W»ANN5 C (5-2-3-1), with T max, T min, Rn, LAI, and h as input data and LM training rule, its statistical parameters (NRMSE, d, and R 2) are 0.108, 0.987, and 0.981 respectively. In addition, if the calculated ETC used as the output of the network for both wheat and maize, higher accurate estimation was obtained. Therefore, ANN is suitable method for estimating evapotranspiration of wheat and maize.

  7. Solar maximum mission

    International Nuclear Information System (INIS)

    Ryan, J.

    1981-01-01

    By understanding the sun, astrophysicists hope to expand this knowledge to understanding other stars. To study the sun, NASA launched a satellite on February 14, 1980. The project is named the Solar Maximum Mission (SMM). The satellite conducted detailed observations of the sun in collaboration with other satellites and ground-based optical and radio observations until its failure 10 months into the mission. The main objective of the SMM was to investigate one aspect of solar activity: solar flares. A brief description of the flare mechanism is given. The SMM satellite was valuable in providing information on where and how a solar flare occurs. A sequence of photographs of a solar flare taken from SMM satellite shows how a solar flare develops in a particular layer of the solar atmosphere. Two flares especially suitable for detailed observations by a joint effort occurred on April 30 and May 21 of 1980. These flares and observations of the flares are discussed. Also discussed are significant discoveries made by individual experiments

  8. Daily storage management of hydroelectric facilities

    NARCIS (Netherlands)

    Chappin, E.J.L.; Ferrero, M.; Lazzeroni, P.; Lukszo, Z.; Olivero, M.; Repetto, M.

    2012-01-01

    This work presents a management procedure for hydroelectric facilities with daily storage. The water storage gives an additional degree of freedom allowing to shift in time power production when it is more convenient and to work at the maximum efficiency of hydraulic turbine. The management is

  9. Maximum power analysis of photovoltaic module in Ramadi city

    Energy Technology Data Exchange (ETDEWEB)

    Shahatha Salim, Majid; Mohammed Najim, Jassim [College of Science, University of Anbar (Iraq); Mohammed Salih, Salih [Renewable Energy Research Center, University of Anbar (Iraq)

    2013-07-01

    Performance of photovoltaic (PV) module is greatly dependent on the solar irradiance, operating temperature, and shading. Solar irradiance can have a significant impact on power output of PV module and energy yield. In this paper, a maximum PV power which can be obtain in Ramadi city (100km west of Baghdad) is practically analyzed. The analysis is based on real irradiance values obtained as the first time by using Soly2 sun tracker device. Proper and adequate information on solar radiation and its components at a given location is very essential in the design of solar energy systems. The solar irradiance data in Ramadi city were analyzed based on the first three months of 2013. The solar irradiance data are measured on earth's surface in the campus area of Anbar University. Actual average data readings were taken from the data logger of sun tracker system, which sets to save the average readings for each two minutes and based on reading in each one second. The data are analyzed from January to the end of March-2013. Maximum daily readings and monthly average readings of solar irradiance have been analyzed to optimize the output of photovoltaic solar modules. The results show that the system sizing of PV can be reduced by 12.5% if a tracking system is used instead of fixed orientation of PV modules.

  10. Apparent temperature and cause-specific emergency hospital admissions in Greater Copenhagen, Denmark

    DEFF Research Database (Denmark)

    Wichmann, Janine; Andersen, Zorana; Ketzel, Matthias

    2011-01-01

    One of the key climate change factors, temperature, has potentially grave implications for human health. We report the first attempt to investigate the association between the daily 3-hour maximum apparent temperature (Tapp(max)) and respiratory (RD), cardiovascular (CVD), and cerebrovascular (CBD...

  11. Lightship Daily Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Observations taken on board lightships along the United States coasts from 1936 - 1983. Generally 4-6 observations daily. Also includes deck logs, which give...

  12. DailyMed

    Data.gov (United States)

    U.S. Department of Health & Human Services — DailyMed provides high quality information about marketed drugs. This information includes FDA labels (package inserts). This Web site provides health information...

  13. Daily Weather Maps

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Several different government offices have published the Daily weather maps over its history. The publication has also gone by different names over time. The U.S....

  14. Effect of temperature and temperature fluctuation on thermophilic anaerobic digestion of cattle manure.

    Science.gov (United States)

    El-Mashad, Hamed M; Zeeman, Grietje; van Loon, Wilko K P; Bot, Gerard P A; Lettinga, Gatze

    2004-11-01

    The influence of temperature, 50 and 60 degrees C, at hydraulic retention times (HRTs) of 20 and 10 days, on the performance of anaerobic digestion of cow manure has been investigated in completely stirred tank reactors (CSTRs). Furthermore, the effect of both daily downward and daily upward temperature fluctuations has been studied. In the daily downward temperature fluctuation regime the temperatures of each reactor was reduced by 10 degrees C for 10 h while in the daily upward fluctuation regime the temperature of each reactor was increased 10 degrees C for 5 h. The results show that the methane production rate at 60 degrees C is lower than that at 50 degrees C at all experimental conditions of imposed HRT except when downward temperature fluctuations were applied at an HRT of 10 days. It also was found that the free ammonia concentration not only affects the acetate-utilising bacteria but also the hydrolysis and acidification process. The upward temperature fluctuation affects the maximum specific methanogenesis activity more severely as compared to imposed downward temperature fluctuations. The results clearly reveal the possibility of using available solar energy at daytime to heat up the reactor(s) without the need of heat storage during nights, especially at an operational temperature of 50 degrees C and at a 20 days HRT, and without the jeopardising of the overheating.

  15. Effect of temperature and temperature fluctuation on thermophilic anaerobic digestion of cattle manure

    Energy Technology Data Exchange (ETDEWEB)

    El-Mashad, H.M. [Mansoura University, El-Mansoura (Egypt). Faculty of Agriculture, Department of Agricultural Engineering; Zeeman, G.; Van Loon, W.K.P.; Bot, G.P.A.; Lettinga, G. [Wageningen University Agrotechnion (Netherlands). Department of Agrotechnology and Food Sciences

    2004-11-01

    The influence of temperature, 50 and 60 {sup o}C, at hydraulic retention times (HRTs) of 20 and 10 days, on the performance of anaerobic digestion of cow manure has been investigated in completely stirred tank reactors (CSTRs). Furthermore, the effect of both daily downward and daily upward temperature fluctuations has been studied. In the daily downward temperature fluctuation regime the temperatures of each reactor was reduced by 10 {sup o}C for 10 h while in the daily upward fluctuation regime the temperature of each reactor was increased 10 {sup o}C for 5 h. The results show that the methane production rate at 60 {sup o}C is lower than that at 50 {sup o}C at all experimental conditions of imposed HRT except when downward temperature fluctuations were applied at an HRT of 10 days. It also was found that the free ammonia concentration not only affects the acetate-utilising bacteria but also the hydrolysis and acidification process. The upward temperature fluctuation affects the maximum specific methanogenesis activity more severely as compared to imposed downward temperature fluctuations. The results clearly reveal the possibility of using available solar energy at daytime to heat up the reactor(s) without the need of heat storage during nights, especially at an operational temperature of 50 {sup o}C and at a 20 days HRT, and without the jeopardising of the overheating. (author)

  16. Mortality impact of extreme winter temperatures

    Science.gov (United States)

    Díaz, Julio; García, Ricardo; López, César; Linares, Cristina; Tobías, Aurelio; Prieto, Luis

    2005-01-01

    During the last few years great attention has been paid to the evaluation of the impact of extreme temperatures on human health. This paper examines the effect of extreme winter temperature on mortality in Madrid for people older than 65, using ARIMA and GAM models. Data correspond to 1,815 winter days over the period 1986 1997, during which time a total of 133,000 deaths occurred. The daily maximum temperature (Tmax) was shown to be the best thermal indicator of the impact of climate on mortality. When total mortality was considered, the maximum impact occured 7 8 days after a temperature extreme; for circulatory diseases the lag was between 7 and 14 days. When respiratory causes were considered, two mortality peaks were evident at 4 5 and 11 days. When the impact of winter extreme temperatures was compared with that associated with summer extremes, it was found to occur over a longer term, and appeared to be more indirect.

  17. Chronic daily headaches

    Directory of Open Access Journals (Sweden)

    Fayyaz Ahmed

    2012-01-01

    Full Text Available Chronic Daily Headache is a descriptive term that includes disorders with headaches on more days than not and affects 4% of the general population. The condition has a debilitating effect on individuals and society through direct cost to healthcare and indirectly to the economy in general. To successfully manage chronic daily headache syndromes it is important to exclude secondary causes with comprehensive history and relevant investigations; identify risk factors that predict its development and recognise its sub-types to appropriately manage the condition. Chronic migraine, chronic tension-type headache, new daily persistent headache and medication overuse headache accounts for the vast majority of chronic daily headaches. The scope of this article is to review the primary headache disorders. Secondary headaches are not discussed except medication overuse headache that often accompanies primary headache disorders. The article critically reviews the literature on the current understanding of daily headache disorders focusing in particular on recent developments in the treatment of frequent headaches.

  18. Generating daily weather data for ecosystem modelling in the Congo River Basin

    Science.gov (United States)

    Petritsch, Richard; Pietsch, Stephan A.

    2010-05-01

    Daily weather data are an important constraint for diverse applications in ecosystem research. In particular, temperature and precipitation are the main drivers for forest ecosystem productivity. Mechanistic modelling theory heavily relies on daily values for minimum and maximum temperatures, precipitation, incident solar radiation and vapour pressure deficit. Although the number of climate measurement stations increased during the last centuries, there are still regions with limited climate data. For example, in the WMO database there are only 16 stations located in Gabon with daily weather measurements. Additionally, the available time series are heavily affected by measurement errors or missing values. In the WMO record for Gabon, on average every second day is missing. Monthly means are more robust and may be estimated over larger areas. Therefore, a good alternative is to interpolate monthly mean values using a sparse network of measurement stations, and based on these monthly data generate daily weather data with defined characteristics. The weather generator MarkSim was developed to produce climatological time series for crop modelling in the tropics. It provides daily values for maximum and minimum temperature, precipitation and solar radiation. The monthly means can either be derived from the internal climate surfaces or prescribed as additional inputs. We compared the generated outputs observations from three climate stations in Gabon (Lastourville, Moanda and Mouilla) and found that maximum temperature and solar radiation were heavily overestimated during the long dry season. This is due to the internal dependency of the solar radiation estimates to precipitation. With no precipitation a cloudless sky is assumed and thus high incident solar radiation and a large diurnal temperature range. However, in reality it is cloudy in the Congo River Basin during the long dry season. Therefore, we applied a correction factor to solar radiation and temperature range

  19. Global Historical Climatology Network - Daily (GHCN-Daily), Version 3

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Historical Climatology Network - Daily (GHCN-Daily) dataset integrates daily climate observations from approximately 30 different data sources. Version 3...

  20. Daily MUR SST, Interim near-real-time (nrt) product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A daily, global Sea Surface Temperature (SST) data set is produced at 1-km (MUR, or Multi-scale ultra-high resolution Temperature) by the JPL sciengists Drs. Mike...

  1. Credal Networks under Maximum Entropy

    OpenAIRE

    Lukasiewicz, Thomas

    2013-01-01

    We apply the principle of maximum entropy to select a unique joint probability distribution from the set of all joint probability distributions specified by a credal network. In detail, we start by showing that the unique joint distribution of a Bayesian tree coincides with the maximum entropy model of its conditional distributions. This result, however, does not hold anymore for general Bayesian networks. We thus present a new kind of maximum entropy models, which are computed sequentially. ...

  2. Drivers of Intra-Summer Seasonality and Daily Variability of Coastal Low Cloudiness in California Subregions

    Science.gov (United States)

    Schwartz, R. E.; Iacobellis, S.; Gershunov, A.; Williams, P.; Cayan, D. R.

    2014-12-01

    Summertime low cloud intrusion into the terrestrial west coast of North America impacts human, ecological, and logistical systems. Over a broad region of the West Coast, summer (May - September) coastal low cloudiness (CLC) varies coherently on interannual to interdecadal timescales and has been found to be organized by North Pacific sea surface temperature. Broad-scale studies of low stratiform cloudiness over ocean basins also find that the season of maximum low stratus corresponds to the season of maximum lower tropospheric stability (LTS) or estimated inversion strength. We utilize a 18-summer record of CLC derived from NASA/NOAA Geostationary Operational Environmental Satellite (GOES) at 4km resolution over California (CA) to make a more nuanced spatial and temporal examination of intra-summer variability in CLC and its drivers. We find that uniform spatial coherency over CA is not apparent for intra-summer variability in CLC. On monthly to daily timescales, at least two distinct subregions of coastal California (CA) can be identified, where relationships between meteorology and stratus variability appear to change throughout summer in each subregion. While north of Point Conception and offshore the timing of maximum CLC is closely coincident with maximum LTS, in the Southern CA Bight and northern Baja region, maximum CLC occurs up to about a month before maximum LTS. It appears that summertime CLC in this southern region is not as strongly related as in the northern region to LTS. In particular, although the relationship is strong in May and June, starting in July the daily relationship between LTS and CLC in the south begins to deteriorate. Preliminary results indicate a moderate association between decreased CLC in the south and increased precipitable water content above 850 hPa on daily time scales beginning in July. Relationships between daily CLC variability and meteorological variables including winds, inland temperatures, relative humidity, and

  3. A globally calibrated scheme for generating daily meteorology from monthly statistics: Global-WGEN (GWGEN) v1.0

    Science.gov (United States)

    Sommer, Philipp S.; Kaplan, Jed O.

    2017-10-01

    While a wide range of Earth system processes occur at daily and even subdaily timescales, many global vegetation and other terrestrial dynamics models historically used monthly meteorological forcing both to reduce computational demand and because global datasets were lacking. Recently, dynamic land surface modeling has moved towards resolving daily and subdaily processes, and global datasets containing daily and subdaily meteorology have become available. These meteorological datasets, however, cover only the instrumental era of the last approximately 120 years at best, are subject to considerable uncertainty, and represent extremely large data files with associated computational costs of data input/output and file transfer. For periods before the recent past or in the future, global meteorological forcing can be provided by climate model output, but the quality of these data at high temporal resolution is low, particularly for daily precipitation frequency and amount. Here, we present GWGEN, a globally applicable statistical weather generator for the temporal downscaling of monthly climatology to daily meteorology. Our weather generator is parameterized using a global meteorological database and simulates daily values of five common variables: minimum and maximum temperature, precipitation, cloud cover, and wind speed. GWGEN is lightweight, modular, and requires a minimal set of monthly mean variables as input. The weather generator may be used in a range of applications, for example, in global vegetation, crop, soil erosion, or hydrological models. While GWGEN does not currently perform spatially autocorrelated multi-point downscaling of daily weather, this additional functionality could be implemented in future versions.

  4. Fundamental statistical relationships between monthly and daily meteorological variables: Temporal downscaling of weather based on a global observational dataset

    Science.gov (United States)

    Sommer, Philipp; Kaplan, Jed

    2016-04-01

    Accurate modelling of large-scale vegetation dynamics, hydrology, and other environmental processes requires meteorological forcing on daily timescales. While meteorological data with high temporal resolution is becoming increasingly available, simulations for the future or distant past are limited by lack of data and poor performance of climate models, e.g., in simulating daily precipitation. To overcome these limitations, we may temporally downscale monthly summary data to a daily time step using a weather generator. Parameterization of such statistical models has traditionally been based on a limited number of observations. Recent developments in the archiving, distribution, and analysis of "big data" datasets provide new opportunities for the parameterization of a temporal downscaling model that is applicable over a wide range of climates. Here we parameterize a WGEN-type weather generator using more than 50 million individual daily meteorological observations, from over 10'000 stations covering all continents, based on the Global Historical Climatology Network (GHCN) and Synoptic Cloud Reports (EECRA) databases. Using the resulting "universal" parameterization and driven by monthly summaries, we downscale mean temperature (minimum and maximum), cloud cover, and total precipitation, to daily estimates. We apply a hybrid gamma-generalized Pareto distribution to calculate daily precipitation amounts, which overcomes much of the inability of earlier weather generators to simulate high amounts of daily precipitation. Our globally parameterized weather generator has numerous applications, including vegetation and crop modelling for paleoenvironmental studies.

  5. The Daily Selection

    DEFF Research Database (Denmark)

    Skjold, Else

    2015-01-01

    In this PhD thesis, The Daily Selection, I will be addressing the overall question of how research on wardrobes can contribute to a more effective connection between the production and the consumption of dress objects. The thesis builds on exemplary studies of people in their wardrobes....... As such, the parts, when taken as a whole, represent an evolving process through which my overall research questions are being filtered and reflected. My scholarly approach builds on the fusing of fashion and dress research and design research, in this way closing a gap between dress practice as...

  6. Radiation in daily life

    International Nuclear Information System (INIS)

    Mora Rodriguez, P.

    1999-01-01

    The medical community benefits on a daily basis from the ionizing radiations used in the diagnosis and treatment of disease. The doses received in the medical field are only a small fraction of the total radiation received in a year. This bibliographic review has several objectives. The first one is to present the different components of natural radiation (background radiation). Secondly, it will introduce many consumer products that contain radioactive sources and expose our bodies. Third, arguments to diminish the radiation phobia will be presented and finally an easy to understand dosimetric magnitude will be introduced for the physician, the technologist and the patient. (author) [es

  7. Weak scale from the maximum entropy principle

    Science.gov (United States)

    Hamada, Yuta; Kawai, Hikaru; Kawana, Kiyoharu

    2015-03-01

    The theory of the multiverse and wormholes suggests that the parameters of the Standard Model (SM) are fixed in such a way that the radiation of the S3 universe at the final stage S_rad becomes maximum, which we call the maximum entropy principle. Although it is difficult to confirm this principle generally, for a few parameters of the SM, we can check whether S_rad actually becomes maximum at the observed values. In this paper, we regard S_rad at the final stage as a function of the weak scale (the Higgs expectation value) vh, and show that it becomes maximum around vh = {{O}} (300 GeV) when the dimensionless couplings in the SM, i.e., the Higgs self-coupling, the gauge couplings, and the Yukawa couplings are fixed. Roughly speaking, we find that the weak scale is given by vh ˜ T_{BBN}2 / (M_{pl}ye5), where ye is the Yukawa coupling of electron, T_BBN is the temperature at which the Big Bang nucleosynthesis starts, and M_pl is the Planck mass.

  8. Particle Swarm Optimization Based of the Maximum Photovoltaic ...

    African Journals Online (AJOL)

    Photovoltaic electricity is seen as an important source of renewable energy. The photovoltaic array is an unstable source of power since the peak power point depends on the temperature and the irradiation level. A maximum peak power point tracking is then necessary for maximum efficiency. In this work, a Particle Swarm ...

  9. Evaluation of different methods to estimate daily reference evapotranspiration in ungauged basins in Southern Brazil

    Science.gov (United States)

    Ribeiro Fontoura, Jessica; Allasia, Daniel; Herbstrith Froemming, Gabriel; Freitas Ferreira, Pedro; Tassi, Rutineia

    2016-04-01

    Evapotranspiration is a key process of hydrological cycle and a sole term that links land surface water balance and land surface energy balance. Due to the higher information requirements of the Penman-Monteith method and the existing data uncertainty, simplified empirical methods for calculating potential and actual evapotranspiration are widely used in hydrological models. This is especially important in Brazil, where the monitoring of meteorological data is precarious. In this study were compared different methods for estimating evapotranspiration for Rio Grande do Sul, the Southernmost State of Brazil, aiming to suggest alternatives to the recommended method (Penman-Monteith-FAO 56) for estimate daily reference evapotranspiration (ETo) when meteorological data is missing or not available. The input dataset included daily and hourly-observed data from conventional and automatic weather stations respectively maintained by the National Weather Institute of Brazil (INMET) from the period of 1 January 2007 to 31 January 2010. Dataset included maximum temperature (Tmax, °C), minimum temperature (Tmin, °C), mean relative humidity (%), wind speed at 2 m height (u2, m s-1), daily solar radiation (Rs, MJ m- 2) and atmospheric pressure (kPa) that were grouped at daily time-step. Was tested the Food and Agriculture Organization of the United Nations (FAO) Penman-Monteith method (PM) at its full form, against PM assuming missing several variables not normally available in Brazil in order to calculate daily reference ETo. Missing variables were estimated as suggested in FAO56 publication or from climatological means. Furthermore, PM was also compared against the following simplified empirical methods: Hargreaves-Samani, Priestley-Taylor, Mccloud, McGuiness-Bordne, Romanenko, Radiation-Temperature, Tanner-Pelton. The statistical analysis indicates that even if just Tmin and Tmax are available, it is better to use PM estimating missing variables from syntetic data than

  10. Maximum Entropy in Drug Discovery

    Directory of Open Access Journals (Sweden)

    Chih-Yuan Tseng

    2014-07-01

    Full Text Available Drug discovery applies multidisciplinary approaches either experimentally, computationally or both ways to identify lead compounds to treat various diseases. While conventional approaches have yielded many US Food and Drug Administration (FDA-approved drugs, researchers continue investigating and designing better approaches to increase the success rate in the discovery process. In this article, we provide an overview of the current strategies and point out where and how the method of maximum entropy has been introduced in this area. The maximum entropy principle has its root in thermodynamics, yet since Jaynes’ pioneering work in the 1950s, the maximum entropy principle has not only been used as a physics law, but also as a reasoning tool that allows us to process information in hand with the least bias. Its applicability in various disciplines has been abundantly demonstrated. We give several examples of applications of maximum entropy in different stages of drug discovery. Finally, we discuss a promising new direction in drug discovery that is likely to hinge on the ways of utilizing maximum entropy.

  11. Maximum likelihood estimation for integrated diffusion processes

    DEFF Research Database (Denmark)

    Baltazar-Larios, Fernando; Sørensen, Michael

    We propose a method for obtaining maximum likelihood estimates of parameters in diffusion models when the data is a discrete time sample of the integral of the process, while no direct observations of the process itself are available. The data are, moreover, assumed to be contaminated...... EM-algorithm to obtain maximum likelihood estimates of the parameters in the diffusion model. As part of the algorithm, we use a recent simple method for approximate simulation of diffusion bridges. In simulation studies for the Ornstein-Uhlenbeck process and the CIR process the proposed method works...... by measurement errors. Integrated volatility is an example of this type of observations. Another example is ice-core data on oxygen isotopes used to investigate paleo-temperatures. The data can be viewed as incomplete observations of a model with a tractable likelihood function. Therefore we propose a simulated...

  12. A Maximum Radius for Habitable Planets.

    Science.gov (United States)

    Alibert, Yann

    2015-09-01

    We compute the maximum radius a planet can have in order to fulfill two constraints that are likely necessary conditions for habitability: 1- surface temperature and pressure compatible with the existence of liquid water, and 2- no ice layer at the bottom of a putative global ocean, that would prevent the operation of the geologic carbon cycle to operate. We demonstrate that, above a given radius, these two constraints cannot be met: in the Super-Earth mass range (1-12 Mearth), the overall maximum that a planet can have varies between 1.8 and 2.3 Rearth. This radius is reduced when considering planets with higher Fe/Si ratios, and taking into account irradiation effects on the structure of the gas envelope.

  13. New daily persistent headache

    Directory of Open Access Journals (Sweden)

    Alok Tyagi

    2012-01-01

    Full Text Available New daily persistent headache (NDPH is a chronic headache developing in a person who does not have a past history of headaches. The headache begins acutely and reaches its peak within 3 days. It is important to exclude secondary causes, particularly headaches due to alterations in cerebrospinal fluid (CSF pressure and volume. A significant proportion of NDPH sufferers may have intractable headaches that are refractory to treatment. The condition is best viewed as a syndrome rather than a diagnosis. The headache can mimic chronic migraine and chronic tension-type headache, and it is also important to exclude secondary causes, particularly headaches due to alterations in CSF pressure and volume. A large proportion of NDPH sufferers have migrainous features to their headache and should be managed with treatments used for treating migraine. A small group of NDPH sufferers may have intractable headaches that are refractory to treatment.

  14. Making Daily Mobility

    DEFF Research Database (Denmark)

    Jensen, Ole B.; Wind, Simon

    elucidate aspects of urban everyday mobility that can be utilized in policy and planning perspectives. This knowledge can aid construction of generalized qualitative scenarios that together with quantitative transport models can serve as wider knowledge foundation in decision making process.......In 2012 the average daily transportation distance for every Dane were 40 km (TU Data). Realising how much of life is spend thinking about, planning and performing mobility practices it becomes evident that it is much more than an instrumental physical phenomenon – it has great repercussions on life......, social networks, understanding of places and ultimately ourselves and others. To successfully accomplish everyday life, households have to cope with large number of different activities and mobility in relation to their children, work, social life, obligations, expectations, needs and wishes. Drawing...

  15. Characteristics of sub-daily precipitation extremes in observed data and regional climate model simulations

    Science.gov (United States)

    Beranová, Romana; Kyselý, Jan; Hanel, Martin

    2018-04-01

    The study compares characteristics of observed sub-daily precipitation extremes in the Czech Republic with those simulated by Hadley Centre Regional Model version 3 (HadRM3) and Rossby Centre Regional Atmospheric Model version 4 (RCA4) regional climate models (RCMs) driven by reanalyses and examines diurnal cycles of hourly precipitation and their dependence on intensity and surface temperature. The observed warm-season (May-September) maxima of short-duration (1, 2 and 3 h) amounts show one diurnal peak in the afternoon, which is simulated reasonably well by RCA4, although the peak occurs too early in the model. HadRM3 provides an unrealistic diurnal cycle with a nighttime peak and an afternoon minimum coinciding with the observed maximum for all three ensemble members, which suggests that convection is not captured realistically. Distorted relationships of the diurnal cycles of hourly precipitation to daily maximum temperature in HadRM3 further evidence that underlying physical mechanisms are misrepresented in this RCM. Goodness-of-fit tests indicate that generalised extreme value distribution is an applicable model for both observed and RCM-simulated precipitation maxima. However, the RCMs are not able to capture the range of the shape parameter estimates of distributions of short-duration precipitation maxima realistically, leading to either too many (nearly all for HadRM3) or too few (RCA4) grid boxes in which the shape parameter corresponds to a heavy tail. This means that the distributions of maxima of sub-daily amounts are distorted in the RCM-simulated data and do not match reality well. Therefore, projected changes of sub-daily precipitation extremes in climate change scenarios based on RCMs not resolving convection need to be interpreted with caution.

  16. Evaluating comfort with varying temperatures: a graphic design tool

    Energy Technology Data Exchange (ETDEWEB)

    Evans, J.M. [Research Centre Habitat and Energy, Faculty of Architecture, Design and Urbanism, University of Buenos Aires, Ciudad Universitaria (Argentina)

    2002-07-01

    This paper considers the need to define comfort of indoor and outdoor spaces in relation to the daily variations of temperature. A graphical tool is presented, which indicates the daily swings of temperature, shown as a single point on a graph representing the average temperature and the maximum temperature swing. This point can be compared with the comfort zones for different activity levels, such as sedentary activity, sleeping, indoor and outdoor circulation according to the design proposals for different spaces. The graph allows the representation of climatic variables, the definition of comfort zones, the selection of bio climatic design resources and the evaluation of indoor temperatures, measured in actual buildings or obtained from computer simulations. The development of the graph is explained and examples given with special emphasis on the use of thermal mass. (author)

  17. Maximum stellar iron core mass

    Indian Academy of Sciences (India)

    60, No. 3. — journal of. March 2003 physics pp. 415–422. Maximum stellar iron core mass. F W GIACOBBE. Chicago Research Center/American Air Liquide ... iron core compression due to the weight of non-ferrous matter overlying the iron cores within large .... thermal equilibrium velocities will tend to be non-relativistic.

  18. Maximum entropy beam diagnostic tomography

    International Nuclear Information System (INIS)

    Mottershead, C.T.

    1985-01-01

    This paper reviews the formalism of maximum entropy beam diagnostic tomography as applied to the Fusion Materials Irradiation Test (FMIT) prototype accelerator. The same formalism has also been used with streak camera data to produce an ultrahigh speed movie of the beam profile of the Experimental Test Accelerator (ETA) at Livermore. 11 refs., 4 figs

  19. Maximum entropy beam diagnostic tomography

    International Nuclear Information System (INIS)

    Mottershead, C.T.

    1985-01-01

    This paper reviews the formalism of maximum entropy beam diagnostic tomography as applied to the Fusion Materials Irradiation Test (FMIT) prototype accelerator. The same formalism has also been used with streak camera data to produce an ultrahigh speed movie of the beam profile of the Experimental Test Accelerator (ETA) at Livermore

  20. Neutron spectra unfolding with maximum entropy and maximum likelihood

    International Nuclear Information System (INIS)

    Itoh, Shikoh; Tsunoda, Toshiharu

    1989-01-01

    A new unfolding theory has been established on the basis of the maximum entropy principle and the maximum likelihood method. This theory correctly embodies the Poisson statistics of neutron detection, and always brings a positive solution over the whole energy range. Moreover, the theory unifies both problems of overdetermined and of underdetermined. For the latter, the ambiguity in assigning a prior probability, i.e. the initial guess in the Bayesian sense, has become extinct by virtue of the principle. An approximate expression of the covariance matrix for the resultant spectra is also presented. An efficient algorithm to solve the nonlinear system, which appears in the present study, has been established. Results of computer simulation showed the effectiveness of the present theory. (author)

  1. Edificio Daily Mirror

    Directory of Open Access Journals (Sweden)

    Williams, Owen

    1963-07-01

    Full Text Available The building has 18 levels. The Press occupies the 4 basement floors. The ground floor is taken up with the entrance hall, and an indoor carriage way. A snack bar and the telephone operators are situated on the second floor. The production department and the medical services are located on the third storey, whilst the fourth is occupied by the offices and library. The fifth floor is the beginning of the higher section of the building. This floor and up to including the 11th floor are devoted to office space, except for the 10th storey, which contains the office apartments of the directors and the Council Chamber. Equipment related to various services of the building is housed on the 12th storey. Finally, this tall building constitutes a fine landmark in the London skyline. The Daily Mirror building is outstanding for the appropriate nature, the completeness and the quality of its installations, which thus provide the most widely read paper in the world with outstandingly efficient offices.Este edificio consta de 18 plantas. El cuerpo de Prensa se aloja en los cuatro sótanos; los vestíbulos de entrada y una calzada interior para vehículos se hallan en la planta baja; la primera alberga un snack-bar y centralita telefónica; la segunda, el departamento de producción y centro de asistencia médica, y la tercera, las oficinas y biblioteca principales. La cuarta planta señala el comienzo del bloque alto; esta planta, junto con las quinta, sexta, séptima, octava y décima, están dedicadas a oficinas. La novena contiene las oficinas-apartamentos de los directores y salas de Consejo, y la undécima, la maquinaria para las diversas instalaciones del edificio. La elevada torre constituye un grandioso hito de referencia en esta zona de Londres. El «Daily Mirror» se distingue por el acierto, número y perfección de sus instalaciones, que proporcionan, al periódico de mayor actualidad mundial, las más adecuadas y amplias oficinas modernas.

  2. Spatial distribution of unidirectional trends in temperature and temperature extremes in Pakistan

    Science.gov (United States)

    Khan, Najeebullah; Shahid, Shamsuddin; Ismail, Tarmizi bin; Wang, Xiao-Jun

    2018-06-01

    Pakistan is one of the most vulnerable countries of the world to temperature extremes due to its predominant arid climate and geographic location in the fast temperature rising zone. Spatial distribution of the trends in annual and seasonal temperatures and temperature extremes over Pakistan has been assessed in this study. The gauge-based gridded daily temperature data of Berkeley Earth Surface Temperature (BEST) having a spatial resolution of 1° × 1° was used for the assessment of trends over the period 1960-2013 using modified Mann-Kendall test (MMK), which can discriminate the multi-decadal oscillatory variations from secular trends. The results show an increase in the annual average of daily maximum and minimum temperatures in 92 and 99% area of Pakistan respectively at 95% level of confidence. The annual temperature is increasing faster in southern high-temperature region compared to other parts of the country. The minimum temperature is rising faster (0.17-0.37 °C/decade) compared to maximum temperature (0.17-0.29 °C/decade) and therefore declination of diurnal temperature range (DTR) (- 0.15 to - 0.08 °C/decade) in some regions. The annual numbers of both hot and cold days are increasing in whole Pakistan except in the northern sub-Himalayan region. Heat waves are on the rise, especially in the hot Sindh plains and the Southern coastal region, while the cold waves are becoming lesser in the northern cold region. Obtained results contradict with the findings of previous studies on temperature trends, which indicate the need for reassessment of climatic trends in Pakistan using the MMK test to understand the anthropogenic impacts of climate change.

  3. A fuzzy recommendation system for daily water intake

    OpenAIRE

    Bin Dai; Rung-Ching Chen; Shun-Zhi Zhu; Chung-Yi Huang

    2016-01-01

    Water is one of the most important constituents of the human body. Daily consumption of water is thus necessary to protect human health. Daily water consumption is related to several factors such as age, ambient temperature, and degree of physical activity. These factors are generally difficult to express with exact numerical values. The main objective of this article is to build a daily water intake recommendation system using fuzzy methods. This system will use age, physical activity, and a...

  4. Willingness to Pay Survey for Chesapeake Bay Total Maximum Daily Load

    Science.gov (United States)

    A stated preference survey to collect data on households’ use of Chesapeake Bay and its watershed, and of their preferences for a variety of water quality improvements likely to follow from pollution reduction programs.

  5. Daily surface water temperature data collected from bucket casts from pier at Leigh Marine Laboratory, Auckland, New Zealand from 1967-01-01 to 2011-04-30 (NCEI Accession 0127323)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collected seawater temperatures at the Leigh Marine Laboratory. Dataset contains an archive of material to 2011. The location of the laboratory is lat: -36.26929,...

  6. On Maximum Entropy and Inference

    Directory of Open Access Journals (Sweden)

    Luigi Gresele

    2017-11-01

    Full Text Available Maximum entropy is a powerful concept that entails a sharp separation between relevant and irrelevant variables. It is typically invoked in inference, once an assumption is made on what the relevant variables are, in order to estimate a model from data, that affords predictions on all other (dependent variables. Conversely, maximum entropy can be invoked to retrieve the relevant variables (sufficient statistics directly from the data, once a model is identified by Bayesian model selection. We explore this approach in the case of spin models with interactions of arbitrary order, and we discuss how relevant interactions can be inferred. In this perspective, the dimensionality of the inference problem is not set by the number of parameters in the model, but by the frequency distribution of the data. We illustrate the method showing its ability to recover the correct model in a few prototype cases and discuss its application on a real dataset.

  7. Heat Convection at the Density Maximum Point of Water

    Science.gov (United States)

    Balta, Nuri; Korganci, Nuri

    2018-01-01

    Water exhibits a maximum in density at normal pressure at around 4° degree temperature. This paper demonstrates that during cooling, at around 4 °C, the temperature remains constant for a while because of heat exchange associated with convective currents inside the water. Superficial approach implies it as a new anomaly of water, but actually it…

  8. Rainfall and temperatures during the 1991/92 drought in the Kruger National Park

    Directory of Open Access Journals (Sweden)

    N. Zambatis

    1995-08-01

    Full Text Available Rainfall and temperatures during the 1991/92 drought, the severest in the recorded history of the Kruger National Park (KNP, are described. Mean total rainfall for the KNP was 235.6 mm (44.1 of the long- term mean, with a median of 239.9 mm. The num- ber of days on which rain occurred also decreased significantly from a mean annual total of 48.3 to a mean of 24.2 in 1991/92. Daily maximum, minimum and average temperatures for some months increased significantly, as did the number of days within certain maximum temperature range classes.

  9. Maximum Water Hammer Sensitivity Analysis

    OpenAIRE

    Jalil Emadi; Abbas Solemani

    2011-01-01

    Pressure waves and Water Hammer occur in a pumping system when valves are closed or opened suddenly or in the case of sudden failure of pumps. Determination of maximum water hammer is considered one of the most important technical and economical items of which engineers and designers of pumping stations and conveyance pipelines should take care. Hammer Software is a recent application used to simulate water hammer. The present study focuses on determining significance of ...

  10. Maximum Gene-Support Tree

    Directory of Open Access Journals (Sweden)

    Yunfeng Shan

    2008-01-01

    Full Text Available Genomes and genes diversify during evolution; however, it is unclear to what extent genes still retain the relationship among species. Model species for molecular phylogenetic studies include yeasts and viruses whose genomes were sequenced as well as plants that have the fossil-supported true phylogenetic trees available. In this study, we generated single gene trees of seven yeast species as well as single gene trees of nine baculovirus species using all the orthologous genes among the species compared. Homologous genes among seven known plants were used for validation of the finding. Four algorithms—maximum parsimony (MP, minimum evolution (ME, maximum likelihood (ML, and neighbor-joining (NJ—were used. Trees were reconstructed before and after weighting the DNA and protein sequence lengths among genes. Rarely a gene can always generate the “true tree” by all the four algorithms. However, the most frequent gene tree, termed “maximum gene-support tree” (MGS tree, or WMGS tree for the weighted one, in yeasts, baculoviruses, or plants was consistently found to be the “true tree” among the species. The results provide insights into the overall degree of divergence of orthologous genes of the genomes analyzed and suggest the following: 1 The true tree relationship among the species studied is still maintained by the largest group of orthologous genes; 2 There are usually more orthologous genes with higher similarities between genetically closer species than between genetically more distant ones; and 3 The maximum gene-support tree reflects the phylogenetic relationship among species in comparison.

  11. LCLS Maximum Credible Beam Power

    International Nuclear Information System (INIS)

    Clendenin, J.

    2005-01-01

    The maximum credible beam power is defined as the highest credible average beam power that the accelerator can deliver to the point in question, given the laws of physics, the beam line design, and assuming all protection devices have failed. For a new accelerator project, the official maximum credible beam power is determined by project staff in consultation with the Radiation Physics Department, after examining the arguments and evidence presented by the appropriate accelerator physicist(s) and beam line engineers. The definitive parameter becomes part of the project's safety envelope. This technical note will first review the studies that were done for the Gun Test Facility (GTF) at SSRL, where a photoinjector similar to the one proposed for the LCLS is being tested. In Section 3 the maximum charge out of the gun for a single rf pulse is calculated. In Section 4, PARMELA simulations are used to track the beam from the gun to the end of the photoinjector. Finally in Section 5 the beam through the matching section and injected into Linac-1 is discussed

  12. Summer outdoor temperature and occupational heat-related illnesses in Quebec (Canada)

    International Nuclear Information System (INIS)

    Adam-Poupart, Ariane; Smargiassi, Audrey; Busque, Marc-Antoine; Duguay, Patrice; Fournier, Michel; Zayed, Joseph; Labrèche, France

    2014-01-01

    Background: Predicted rise in global mean temperature and intensification of heat waves associated with climate change present an increasing challenge for occupational health and safety. Although important scientific knowledge has been gathered on the health effects of heat, very few studies have focused on quantifying the association between outdoor heat and mortality or morbidity among workers. Objective: To quantify the association between occupational heat-related illnesses and exposure to summer outdoor temperatures. Methods: We modeled 259 heat-related illnesses compensated by the Workers' Compensation Board of Quebec between May and September, from 1998 to 2010, with maximum daily summer outdoor temperatures in 16 health regions of Quebec (Canada) using generalized linear models with negative binomial distributions, and estimated the pooled effect sizes for all regions combined, by sex and age groups, and for different time lags with random-effect models for meta-analyses. Results: The mean daily compensation count was 0.13 for all regions of Quebec combined. The relationship between daily counts of compensations and maximum daily temperatures was log-linear; the pooled incidence rate ratio (IRR) of daily heat-related compensations per 1 °C increase in daily maximum temperatures was 1.419 (95% CI 1.326 to 1.520). Associations were similar for men and women and by age groups. Increases in daily maximum temperatures at lags 1 and 2 and for two and three-day lag averages were also associated with increases in daily counts of compensations (IRRs of 1.206 to 1.471 for every 1 °C increase in temperature). Conclusion: This study is the first to quantify the association between occupational heat-related illnesses and exposure to summer temperatures in Canada. The model (risk function) developed in this study could be useful to improve the assessment of future impacts of predicted summer outdoor temperatures on workers and vulnerable groups, particularly in

  13. Summer outdoor temperature and occupational heat-related illnesses in Quebec (Canada)

    Energy Technology Data Exchange (ETDEWEB)

    Adam-Poupart, Ariane [Department of Environmental and Occupational Health, School of Public Health, Université de Montréal, Montreal, QC (Canada); Smargiassi, Audrey [Department of Environmental and Occupational Health, School of Public Health, Université de Montréal, Montreal, QC (Canada); Institut national de santé publique du Québec (INSPQ), Montreal, QC (Canada); Busque, Marc-Antoine; Duguay, Patrice [Institut de recherche Robert-Sauvé en santé et en sécurité du travail (IRSST), Montreal, QC (Canada); Fournier, Michel [Direction de santé publique, Agence de la santé et des services sociaux de Montréal, Montreal, QC (Canada); Zayed, Joseph [Department of Environmental and Occupational Health, School of Public Health, Université de Montréal, Montreal, QC (Canada); Institut de recherche Robert-Sauvé en santé et en sécurité du travail (IRSST), Montreal, QC (Canada); Labrèche, France, E-mail: labreche.france@irsst.qc.ca [Department of Environmental and Occupational Health, School of Public Health, Université de Montréal, Montreal, QC (Canada); Institut de recherche Robert-Sauvé en santé et en sécurité du travail (IRSST), Montreal, QC (Canada)

    2014-10-15

    Background: Predicted rise in global mean temperature and intensification of heat waves associated with climate change present an increasing challenge for occupational health and safety. Although important scientific knowledge has been gathered on the health effects of heat, very few studies have focused on quantifying the association between outdoor heat and mortality or morbidity among workers. Objective: To quantify the association between occupational heat-related illnesses and exposure to summer outdoor temperatures. Methods: We modeled 259 heat-related illnesses compensated by the Workers' Compensation Board of Quebec between May and September, from 1998 to 2010, with maximum daily summer outdoor temperatures in 16 health regions of Quebec (Canada) using generalized linear models with negative binomial distributions, and estimated the pooled effect sizes for all regions combined, by sex and age groups, and for different time lags with random-effect models for meta-analyses. Results: The mean daily compensation count was 0.13 for all regions of Quebec combined. The relationship between daily counts of compensations and maximum daily temperatures was log-linear; the pooled incidence rate ratio (IRR) of daily heat-related compensations per 1 °C increase in daily maximum temperatures was 1.419 (95% CI 1.326 to 1.520). Associations were similar for men and women and by age groups. Increases in daily maximum temperatures at lags 1 and 2 and for two and three-day lag averages were also associated with increases in daily counts of compensations (IRRs of 1.206 to 1.471 for every 1 °C increase in temperature). Conclusion: This study is the first to quantify the association between occupational heat-related illnesses and exposure to summer temperatures in Canada. The model (risk function) developed in this study could be useful to improve the assessment of future impacts of predicted summer outdoor temperatures on workers and vulnerable groups, particularly in

  14. Validation of China-wide interpolated daily climate variables from 1960 to 2011

    Science.gov (United States)

    Yuan, Wenping; Xu, Bing; Chen, Zhuoqi; Xia, Jiangzhou; Xu, Wenfang; Chen, Yang; Wu, Xiaoxu; Fu, Yang

    2015-02-01

    Temporally and spatially continuous meteorological variables are increasingly in demand to support many different types of applications related to climate studies. Using measurements from 600 climate stations, a thin-plate spline method was applied to generate daily gridded climate datasets for mean air temperature, maximum temperature, minimum temperature, relative humidity, sunshine duration, wind speed, atmospheric pressure, and precipitation over China for the period 1961-2011. A comprehensive evaluation of interpolated climate was conducted at 150 independent validation sites. The results showed superior performance for most of the estimated variables. Except for wind speed, determination coefficients ( R 2) varied from 0.65 to 0.90, and interpolations showed high consistency with observations. Most of the estimated climate variables showed relatively consistent accuracy among all seasons according to the root mean square error, R 2, and relative predictive error. The interpolated data correctly predicted the occurrence of daily precipitation at validation sites with an accuracy of 83 %. Moreover, the interpolation data successfully explained the interannual variability trend for the eight meteorological variables at most validation sites. Consistent interannual variability trends were observed at 66-95 % of the sites for the eight meteorological variables. Accuracy in distinguishing extreme weather events differed substantially among the meteorological variables. The interpolated data identified extreme events for the three temperature variables, relative humidity, and sunshine duration with an accuracy ranging from 63 to 77 %. However, for wind speed, air pressure, and precipitation, the interpolation model correctly identified only 41, 48, and 58 % of extreme events, respectively. The validation indicates that the interpolations can be applied with high confidence for the three temperatures variables, as well as relative humidity and sunshine duration based

  15. Estimating minimum and maximum air temperature using MODIS ...

    Indian Academy of Sciences (India)

    in a wide range of applications in areas of ecology, hydrology ... stations, thus attracting researchers to make use ... simpler because of the lack of solar radiation effect .... water from the snow packed Himalayan region to ... tribution System (LAADS) webdata archive cen- ..... ing due to greenhouse gases is different for the air.

  16. Climate Change: A New Metric to Measure Changes in the Frequency of Extreme Temperatures using Record Data

    Science.gov (United States)

    Munasinghe, L.; Jun, T.; Rind, D. H.

    2012-01-01

    Consensus on global warming is the result of multiple and varying lines of evidence, and one key ramification is the increase in frequency of extreme climate events including record high temperatures. Here we develop a metric- called "record equivalent draws" (RED)-based on record high (low) temperature observations, and show that changes in RED approximate changes in the likelihood of extreme high (low) temperatures. Since we also show that this metric is independent of the specifics of the underlying temperature distributions, RED estimates can be aggregated across different climates to provide a genuinely global assessment of climate change. Using data on monthly average temperatures across the global landmass we find that the frequency of extreme high temperatures increased 10-fold between the first three decades of the last century (1900-1929) and the most recent decade (1999-2008). A more disaggregated analysis shows that the increase in frequency of extreme high temperatures is greater in the tropics than in higher latitudes, a pattern that is not indicated by changes in mean temperature. Our RED estimates also suggest concurrent increases in the frequency of both extreme high and extreme low temperatures during 2002-2008, a period when we observe a plateauing of global mean temperature. Using daily extreme temperature observations, we find that the frequency of extreme high temperatures is greater in the daily minimum temperature time-series compared to the daily maximum temperature time-series. There is no such observable difference in the frequency of extreme low temperatures between the daily minimum and daily maximum.

  17. Comparison of artificial intelligence methods and empirical equations to estimate daily solar radiation

    Science.gov (United States)

    Mehdizadeh, Saeid; Behmanesh, Javad; Khalili, Keivan

    2016-08-01

    In the present research, three artificial intelligence methods including Gene Expression Programming (GEP), Artificial Neural Networks (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS) as well as, 48 empirical equations (10, 12 and 26 equations were temperature-based, sunshine-based and meteorological parameters-based, respectively) were used to estimate daily solar radiation in Kerman, Iran in the period of 1992-2009. To develop the GEP, ANN and ANFIS models, depending on the used empirical equations, various combinations of minimum air temperature, maximum air temperature, mean air temperature, extraterrestrial radiation, actual sunshine duration, maximum possible sunshine duration, sunshine duration ratio, relative humidity and precipitation were considered as inputs in the mentioned intelligent methods. To compare the accuracy of empirical equations and intelligent models, root mean square error (RMSE), mean absolute error (MAE), mean absolute relative error (MARE) and determination coefficient (R2) indices were used. The results showed that in general, sunshine-based and meteorological parameters-based scenarios in ANN and ANFIS models presented high accuracy than mentioned empirical equations. Moreover, the most accurate method in the studied region was ANN11 scenario with five inputs. The values of RMSE, MAE, MARE and R2 indices for the mentioned model were 1.850 MJ m-2 day-1, 1.184 MJ m-2 day-1, 9.58% and 0.935, respectively.

  18. Generic maximum likely scale selection

    DEFF Research Database (Denmark)

    Pedersen, Kim Steenstrup; Loog, Marco; Markussen, Bo

    2007-01-01

    in this work is on applying this selection principle under a Brownian image model. This image model provides a simple scale invariant prior for natural images and we provide illustrative examples of the behavior of our scale estimation on such images. In these illustrative examples, estimation is based......The fundamental problem of local scale selection is addressed by means of a novel principle, which is based on maximum likelihood estimation. The principle is generally applicable to a broad variety of image models and descriptors, and provides a generic scale estimation methodology. The focus...

  19. Generalized additive model of air pollution to daily mortality

    International Nuclear Information System (INIS)

    Kim, J.; Yang, H.E.

    2005-01-01

    The association of air pollution with daily mortality due to cardiovascular disease, respiratory disease, and old age (65 or older) in Seoul, Korea was investigated in 1999 using daily values of TSP, PM10, O 3 , SO 2 , NO 2 , and CO. Generalized additive Poisson models were applied to allow for the highly flexible fitting of daily trends in air pollution as well as nonlinear association with meteorological variables such as temperature, humidity, and wind speed. To estimate the effect of air pollution and weather on mortality, LOESS smoothing was used in generalized additive models. The findings suggest that air pollution levels affect significantly the daily mortality. (orig.)

  20. Daily variation of urban heat island effect and its correlations to urban greenery: A case study of Adelaide

    Directory of Open Access Journals (Sweden)

    Ali Soltani

    2017-12-01

    Full Text Available Urban structure and landscape cause an artificial temperature increase in cities, known as the urban heat island effect. The magnitude of such urban–rural temperature difference varies in daily and seasonal basis. Daily patterns of urban heat accumulation in Adelaide is under investigation. In this paper, East–West air temperature profile of Adelaide metropolitan area was mapped in 60 journeys alongside a straight cross route connecting Adelaide Hills to the West Beach under clear sky between 26 July and 15 August 2013. The most intense urban–rural temperature differences of 5.9 °C occurred during midnight in Adelaide. However, maximum urban heat variation occurred during the late afternoon when the near-surface urban heat fluctuates by 2 °C between the CBD East and Western Parklands. During summer heatwaves, the afternoon heat stress limits public life vibrancy in Adelaide. Increased urban greenery can facilitate resilience to heat by providing shadow and evaporative cooling. A better understanding of daily urban heat variations and the cooling effect of urban greenery assists urban policy making and public life management in the context of climate change.

  1. Soil surface temperatures reveal moderation of the urban heat island effect by trees and shrubs

    DEFF Research Database (Denmark)

    Edmondson, Jill L; Stott, Iain; Davies, Zoe G

    2016-01-01

    months increased by 0.6 °C over the 5 km from the city outskirts to the centre. Trees and shrubs in non-domestic greenspace reduced mean maximum daily soil surface temperatures in the summer by 5.7 °C compared to herbaceous vegetation, but tended to maintain slightly higher temperatures in winter. Trees...... in domestic gardens, which tend to be smaller, were less effective at reducing summer soil surface temperatures. Our findings reveal that the UHI effects soil temperatures at a city-wide scale, and that in their moderating urban soil surface temperature extremes, trees and shrubs may help to reduce...

  2. Daily transactional and transformational leadership and daily employee engament

    NARCIS (Netherlands)

    Breevaart, K.; Bakker, A.B.; Hetland, Jorn; Demerouti, E.; Olsen, O.K.; Espevik, R.

    2014-01-01

    This diary study adds to the leadership literature by examining the daily influence of transformational leadership, contingent reward, and active management-by-exception (MBE active) on followers' daily work engagement. We compare the unique contribution of these leadership behaviours and focus on

  3. Coordenadas geográficas na estimativa das temperaturas máxima e média decendiais do ar no Estado do Rio Grande do Sul Geographic coordinates in the ten-day maximum and mean air temperature estimation in the State of Rio Grande do Sul, Brazil

    Directory of Open Access Journals (Sweden)

    Alberto Cargnelutti Filho

    2008-12-01

    Full Text Available A partir dos dados referentes à temperatura máxima média decendial (Tx e à temperatura média decendial (Tm do ar de 41 municípios do Estado do Rio Grande do Sul, de 1945 a 1974, este trabalho teve como objetivo verificar se a Tx e a Tm podem ser estimadas em função da altitude, latitude e longitude. Para cada um dos 36 decêndios do ano, realizou-se análise de correlação e estimaram-se os parâmetros do modelo das equações de regressão linear múltipla, considerando Tx e Tm como variável dependente e altitude, latitude e longitude como variáveis independentes. Na validação dos modelos de estimativa da Tx e Tm, usou-se o coeficiente de correlação linear de Pearson, entre a Tx e a Tm estimada e a Tx e a Tm observada em dez municípios do Estado, com dados da série de observações meteorológicas de 1975 a 2004. A temperatura máxima média decendial e a temperatura média decendial podem ser estimadas por meio da altitude, latitude e longitude, em qualquer local e decêndio, no Estado do Rio Grande do Sul.The objective of this research was to estimate ten-day maximum (Tx and mean (Tm air temperature using altitude and the geographic coordinates latitude and longitude for the Rio Grande do Sul State, Brazil. Normal ten-day maximum and mean air temperature of 41 counties in the State of Rio Grande do Sul, from 1945 to 1974 were used. Correlation analysis and parameters estimate of multiple linear regression equations were performed using Tx and Tm as dependent variable and altitude, latitude and longitude as independent variables, for the 36 ten-day periods of the year. Pearson's linear correlation coefficient between estimated and observed Tx and Tm, calculated for tem counties using data of were used as independent data sets. The ten-day maximum and mean air temperature may be estimated from the altitude and the geographic coordinates latitude and longitude in the State of Rio Grande do Sul.

  4. DAILY STEM GROWTH PATTERN IN IRRIGATED APPLE ORCHARDS FROM ARGES COUNTY IN RELATION TO CLIMATE CHANGES

    Directory of Open Access Journals (Sweden)

    E. Chitu

    2012-01-01

    Full Text Available In terms of climate change manifested in the last 30 years in Romania (1982-2011, average data for 29 localities and characterized by a significant increase in maximum and minimum temperatures, especially in the summer months and increased rainfall deficit, fruit trees farm efficiency is becoming increasingly dependent on strict control of water management through irrigation systems. Thus, the maximum air temperatures experienced average growth trend per decade of 0.88°C, 0.82°C and 0.70°C in June, July and August, respectively, and minimum of 0.61°C, 0.67°C and 0.75°C, in the same months. In this context, ensuring continuous easily accessible soil water content to the root system of the trees, in correlation with plant consumption, has become the most widely used measure to mitigate the negative effects of rising temperatures and rainfall deficits. One of the most accurate methods of water stress early diagnosis and monitoring in a very short step of the fruit trees growth processes is the measurement of trunk diameter variations (SDV with electronic dendrometers. To highlight the advantages of applying the method to irrigated apple (Malus domestica Borkh. plantations from the southern Romania, we have organized two experiences with Redix and Braeburn cvs. grafted on M9 in 2009-2012 period. For measurements were used DEX 100 (Dynamax dendrometers and GP1 dataloggers (Delta-T Devices. It was found that all SDV-derived indices (maximum daily shrinkage (MDS, daily recovery (DR and daily growth (DG of the trees trunk between two successive days may be used for early diagnosis of water and temperature stress. DG was significantly negatively influenced by MDS in both cultivars and in all months of the year, except in September. The Redix cv. DG was inhibited only by the MDS values greater than 0.36 mm. DG is a much less sensitive indicator of water and heat trees stress than MDS. Emergence of water stress was highlighted by two indicators: soil

  5. A fuzzy recommendation system for daily water intake

    Directory of Open Access Journals (Sweden)

    Bin Dai

    2016-05-01

    Full Text Available Water is one of the most important constituents of the human body. Daily consumption of water is thus necessary to protect human health. Daily water consumption is related to several factors such as age, ambient temperature, and degree of physical activity. These factors are generally difficult to express with exact numerical values. The main objective of this article is to build a daily water intake recommendation system using fuzzy methods. This system will use age, physical activity, and ambient temperature as the input factors and daily water intake values as the output factor. The reasoning mechanism of the fuzzy system can calculate the recommended value of daily water intake. Finally, the system will compare the actual recommended values with our system to determine the usefulness. The experimental results show that this recommendation system is effective in actual application.

  6. Coupling diffusion and maximum entropy models to estimate thermal inertia

    Science.gov (United States)

    Thermal inertia is a physical property of soil at the land surface related to water content. We have developed a method for estimating soil thermal inertia using two daily measurements of surface temperature, to capture the diurnal range, and diurnal time series of net radiation and specific humidi...

  7. Efeito de níveis de água, coberturas do solo e condições ambientais na temperatura do solo e no cultivo de morangueiro em ambiente protegido e a céu aberto Effect of water levels, soil covers and enviroment in maximum soil temperature in strawberry crop in field and greenhouse

    Directory of Open Access Journals (Sweden)

    Regina C. de M. Pires

    2004-12-01

    Full Text Available A temperatura do solo é um importante parâmetro no cultivo do morangueiro, pois interfere no desenvolvimento vegetativo, na sanidade e na produção. O objetivo do presente trabalho foi avaliar o efeito de diferentes níveis de água, coberturas de canteiro em campo aberto e em ambiente protegido, na temperatura máxima do solo no cultivo do morangueiro. Foram realizados dois experimentos: um em cultivo protegido e outro a campo aberto, em Atibaia - SP, em esquema fatorial 2 x 3 (coberturas do solo e níveis de irrigação, em blocos ao acaso, com cinco repetições. As coberturas de solo utilizadas foram filmes de polietileno preto e transparente. A irrigação localizada foi aplicada por gotejo sempre que o potencial de água no solo atingisse -0,010 (N1, -0,035 (N2 e -0,070 (N3 MPa, em tensiômetros instalados a 10 cm de profundidade. A temperatura do solo foi avaliada por termógrafos, sendo os sensores instalados a 5 cm de profundidade. Houve influência do ambiente de cultivo, da cobertura do solo e dos níveis de irrigação na temperatura máxima do solo. A temperatura do solo sob diferentes coberturas dependeu não somente das características físicas do plástico, como também da forma de instalação no canteiro. A temperatura máxima do solo aumentou com a diminuição do potencial da água no solo, no momento da irrigação.The soil temperature is an important parameter in strawberry crop, because, it interferes in vegetative development, plant health conditions and yield. The aim of this work was to evaluate the effect of different water levels, soil covers in field conditions and greenhouse in maximum soil temperature in strawberry crop. Two experiments were accomplished, one in greenhouse and other in field conditions, at Atibaia - SP, Brazil. The experimental design was a factorial 2 x 3 (soil covers and water levels, with 5 repetitions. The soil covers were clear and black plastics. The trickle irrigation was applied

  8. On the maximum Q in feedback controlled subignited plasmas

    International Nuclear Information System (INIS)

    Anderson, D.; Hamnen, H.; Lisak, M.

    1990-01-01

    High Q operation in feedback controlled subignited fusion plasma requires the operating temperature to be close to the ignition temperature. In the present work we discuss technological and physical effects which may restrict this temperature difference. The investigation is based on a simplified, but still accurate, 0=D analytical analysis of the maximum Q of a subignited system. Particular emphasis is given to sawtooth ocsillations which complicate the interpretation of diagnostic neutron emission data into plasma temperatures and may imply an inherent lower bound on the temperature deviation from the ignition point. The estimated maximum Q is found to be marginal (Q = 10-20) from the point of view of a fusion reactor. (authors)

  9. Maximum organic carbon limits at different melter feed rates (U)

    International Nuclear Information System (INIS)

    Choi, A.S.

    1995-01-01

    This report documents the results of a study to assess the impact of varying melter feed rates on the maximum total organic carbon (TOC) limits allowable in the DWPF melter feed. Topics discussed include: carbon content; feed rate; feed composition; melter vapor space temperature; combustion and dilution air; off-gas surges; earlier work on maximum TOC; overview of models; and the results of the work completed

  10. System for memorizing maximum values

    Science.gov (United States)

    Bozeman, Richard J., Jr.

    1992-08-01

    The invention discloses a system capable of memorizing maximum sensed values. The system includes conditioning circuitry which receives the analog output signal from a sensor transducer. The conditioning circuitry rectifies and filters the analog signal and provides an input signal to a digital driver, which may be either linear or logarithmic. The driver converts the analog signal to discrete digital values, which in turn triggers an output signal on one of a plurality of driver output lines n. The particular output lines selected is dependent on the converted digital value. A microfuse memory device connects across the driver output lines, with n segments. Each segment is associated with one driver output line, and includes a microfuse that is blown when a signal appears on the associated driver output line.

  11. Remarks on the maximum luminosity

    Science.gov (United States)

    Cardoso, Vitor; Ikeda, Taishi; Moore, Christopher J.; Yoo, Chul-Moon

    2018-04-01

    The quest for fundamental limitations on physical processes is old and venerable. Here, we investigate the maximum possible power, or luminosity, that any event can produce. We show, via full nonlinear simulations of Einstein's equations, that there exist initial conditions which give rise to arbitrarily large luminosities. However, the requirement that there is no past horizon in the spacetime seems to limit the luminosity to below the Planck value, LP=c5/G . Numerical relativity simulations of critical collapse yield the largest luminosities observed to date, ≈ 0.2 LP . We also present an analytic solution to the Einstein equations which seems to give an unboundedly large luminosity; this will guide future numerical efforts to investigate super-Planckian luminosities.

  12. Maximum mutual information regularized classification

    KAUST Repository

    Wang, Jim Jing-Yan

    2014-09-07

    In this paper, a novel pattern classification approach is proposed by regularizing the classifier learning to maximize mutual information between the classification response and the true class label. We argue that, with the learned classifier, the uncertainty of the true class label of a data sample should be reduced by knowing its classification response as much as possible. The reduced uncertainty is measured by the mutual information between the classification response and the true class label. To this end, when learning a linear classifier, we propose to maximize the mutual information between classification responses and true class labels of training samples, besides minimizing the classification error and reducing the classifier complexity. An objective function is constructed by modeling mutual information with entropy estimation, and it is optimized by a gradient descend method in an iterative algorithm. Experiments on two real world pattern classification problems show the significant improvements achieved by maximum mutual information regularization.

  13. Scintillation counter, maximum gamma aspect

    International Nuclear Information System (INIS)

    Thumim, A.D.

    1975-01-01

    A scintillation counter, particularly for counting gamma ray photons, includes a massive lead radiation shield surrounding a sample-receiving zone. The shield is disassembleable into a plurality of segments to allow facile installation and removal of a photomultiplier tube assembly, the segments being so constructed as to prevent straight-line access of external radiation through the shield into radiation-responsive areas. Provisions are made for accurately aligning the photomultiplier tube with respect to one or more sample-transmitting bores extending through the shield to the sample receiving zone. A sample elevator, used in transporting samples into the zone, is designed to provide a maximum gamma-receiving aspect to maximize the gamma detecting efficiency. (U.S.)

  14. Maximum mutual information regularized classification

    KAUST Repository

    Wang, Jim Jing-Yan; Wang, Yi; Zhao, Shiguang; Gao, Xin

    2014-01-01

    In this paper, a novel pattern classification approach is proposed by regularizing the classifier learning to maximize mutual information between the classification response and the true class label. We argue that, with the learned classifier, the uncertainty of the true class label of a data sample should be reduced by knowing its classification response as much as possible. The reduced uncertainty is measured by the mutual information between the classification response and the true class label. To this end, when learning a linear classifier, we propose to maximize the mutual information between classification responses and true class labels of training samples, besides minimizing the classification error and reducing the classifier complexity. An objective function is constructed by modeling mutual information with entropy estimation, and it is optimized by a gradient descend method in an iterative algorithm. Experiments on two real world pattern classification problems show the significant improvements achieved by maximum mutual information regularization.

  15. Temperature Observation Time and Type Influence Estimates of Heat-Related Mortality in Seven U.S. Cities.

    Science.gov (United States)

    Davis, Robert E; Hondula, David M; Patel, Anjali P

    2016-06-01

    Extreme heat is a leading weather-related cause of mortality in the United States, but little guidance is available regarding how temperature variable selection impacts heat-mortality relationships. We examined how the strength of the relationship between daily heat-related mortality and temperature varies as a function of temperature observation time, lag, and calculation method. Long time series of daily mortality counts and hourly temperature for seven U.S. cities with different climates were examined using a generalized additive model. The temperature effect was modeled separately for each hour of the day (with up to 3-day lags) along with different methods of calculating daily maximum, minimum, and mean temperature. We estimated the temperature effect on mortality for each variable by comparing the 99th versus 85th temperature percentiles, as determined from the annual time series. In three northern cities (Boston, MA; Philadelphia, PA; and Seattle, WA) that appeared to have the greatest sensitivity to heat, hourly estimates were consistent with a diurnal pattern in the heat-mortality response, with strongest associations for afternoon or maximum temperature at lag 0 (day of death) or afternoon and evening of lag 1 (day before death). In warmer, southern cities, stronger associations were found with morning temperatures, but overall the relationships were weaker. The strongest temperature-mortality relationships were associated with maximum temperature, although mean temperature results were comparable. There were systematic and substantial differences in the association between temperature and mortality based on the time and type of temperature observation. Because the strongest hourly temperature-mortality relationships were not always found at times typically associated with daily maximum temperatures, temperature variables should be selected independently for each study location. In general, heat-mortality was more closely coupled to afternoon and maximum

  16. Logistiline Daily Service / Paavo Kangur

    Index Scriptorium Estoniae

    Kangur, Paavo, 1966-

    2005-01-01

    Sügisel ostis Leedu endise majandusministri Valetntinas Milaknise firma Daily Service ära kõik bürootarvetemüüja Reval Impexi aktsiad. 300 miljoni kroonise aastakäibega firma Eesti tütarettevõte prognoosib oma tänavuseks käibeks 31,2 miljonit krooni. Lisa: Daily Service'i struktuur

  17. Observed changes in seasonal heat waves and warm temperature extremes in the Romanian Carpathians

    Science.gov (United States)

    Micu, Dana; Birsan, Marius-Victor; Dumitrescu, Alexandru; Cheval, Sorin

    2015-04-01

    Extreme high temperature have a large impact on environment and human activities, especially in high elevation areas particularly sensitive to the recent climate warming. The climate of the Romanian Carpathians became warmer particularly in winter, spring and summer, exibiting a significant increasing frequency of warm extremes. The paper investigates the seasonal changes in the frequency, duration and intensity of heat waves in relation to the shifts in the daily distribution of maximum temperatures over a 50-year period of meteorological observations (1961-2010). The paper uses the heat wave definition recommended by the Expert Team on Climate Change Detection and Indices (ETCCDI) and exploits the gridded daily dataset of maximum temperature at 0.1° resolution (~10 km) developed in the framework of the CarpatClim project (www.carpatclim.eu). The seasonal changes in heat waves behavior were identified using the Mann-Kendall non-parametric trend test. The results suggest an increase in heat wave frequency and a lengthening of intervals affected by warm temperature extremes all over the study region, which are explained by the shifts in the upper (extreme) tail of the daily maximum temperature distribution in most seasons. The trends are consistent across the region and are well correlated to the positive phases of the East Atlantic Oscillation. Our results are in good agreement with the previous temperature-related studies concerning the Carpathian region. This study was realized within the framework of the project GENCLIM, financed by UEFISCDI, code PN-II 151/2014.

  18. Trends in indices for extremes in daily air temperature over Utah, USA Tendências de indices de extremos para temperatura do ar diária sobre Utah, EUA

    Directory of Open Access Journals (Sweden)

    Carlos Antonio Costa dos Santos

    2011-03-01

    Full Text Available The main objective of this study was to obtain analysis of the trends in eleven annual extreme indices of temperature for Utah, United State of America (USA. The analyses have been obtained for 28 meteorological stations, in general, for the period of 1930 to 2006, characterizing a long-term period and with high quality data. The software used to process the data was the RClimdex 1.0. The analysis has identified that the temperature increased in Utah during the last century, evidencing the importance of the ongoing research on climate change in many parts of the world.O principal objetivo desse estudo foi analisar as tendências de onze indices de extremos climáticos baseados em dados diários de temperatura do ar, obtidos a partir de 28 estações meteorológicas localizadas em Utah, Estados Unidos da America (EUA. Em geral, os dados foram coletados entre 1930 e 2006, apresentando coerente resolução temporal e espacial. O software utilizado no processamento dos dados foi o RClimdex 1.0. As análises dos índices extremos mostraram que a temperatura aumentou em Utah durante o último século, evidenciando a importância das pesquisas sobre mudanças climáticas em diferentes partes do mundo.

  19. Probability Distribution and Projected Trends of Daily Precipitation in China

    Institute of Scientific and Technical Information of China (English)

    CAO; Li-Ge; ZHONG; Jun; SU; Bu-Da; ZHAI; Jian-Qing; Macro; GEMMER

    2013-01-01

    Based on observed daily precipitation data of 540 stations and 3,839 gridded data from the high-resolution regional climate model COSMO-Climate Limited-area Modeling(CCLM)for 1961–2000,the simulation ability of CCLM on daily precipitation in China is examined,and the variation of daily precipitation distribution pattern is revealed.By applying the probability distribution and extreme value theory to the projected daily precipitation(2011–2050)under SRES A1B scenario with CCLM,trends of daily precipitation series and daily precipitation extremes are analyzed.Results show that except for the western Qinghai-Tibetan Plateau and South China,distribution patterns of the kurtosis and skewness calculated from the simulated and observed series are consistent with each other;their spatial correlation coefcients are above 0.75.The CCLM can well capture the distribution characteristics of daily precipitation over China.It is projected that in some parts of the Jianghuai region,central-eastern Northeast China and Inner Mongolia,the kurtosis and skewness will increase significantly,and precipitation extremes will increase during 2011–2050.The projected increase of maximum daily rainfall and longest non-precipitation period during flood season in the aforementioned regions,also show increasing trends of droughts and floods in the next 40 years.

  20. Outgoing Longwave Radiation Daily Climate Data Record (OLR Daily CDR)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The product contains the 1-degree by 1-degree daily mean outgoing longwave radiation flux at the top of the atmosphere derived from HIRS radiance observations...

  1. Daily and Sub-daily Precipitation for the Former USSR

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset is a compilation of in situ daily and hourly meteorological observations for the former USSR initially obtained within the framework of several joint...

  2. Maximum entropy and Bayesian methods

    International Nuclear Information System (INIS)

    Smith, C.R.; Erickson, G.J.; Neudorfer, P.O.

    1992-01-01

    Bayesian probability theory and Maximum Entropy methods are at the core of a new view of scientific inference. These 'new' ideas, along with the revolution in computational methods afforded by modern computers allow astronomers, electrical engineers, image processors of any type, NMR chemists and physicists, and anyone at all who has to deal with incomplete and noisy data, to take advantage of methods that, in the past, have been applied only in some areas of theoretical physics. The title workshops have been the focus of a group of researchers from many different fields, and this diversity is evident in this book. There are tutorial and theoretical papers, and applications in a very wide variety of fields. Almost any instance of dealing with incomplete and noisy data can be usefully treated by these methods, and many areas of theoretical research are being enhanced by the thoughtful application of Bayes' theorem. Contributions contained in this volume present a state-of-the-art overview that will be influential and useful for many years to come

  3. Return levels of temperature extremes in southern Pakistan

    Science.gov (United States)

    Zahid, Maida; Blender, Richard; Lucarini, Valerio; Caterina Bramati, Maria

    2017-12-01

    Southern Pakistan (Sindh) is one of the hottest regions in the world and is highly vulnerable to temperature extremes. In order to improve rural and urban planning, it is useful to gather information about the recurrence of temperature extremes. In this work, return levels of the daily maximum temperature Tmax are estimated, as well as the daily maximum wet-bulb temperature TWmax extremes. We adopt the peaks over threshold (POT) method, which has not yet been used for similar studies in this region. Two main datasets are analyzed: temperatures observed at nine meteorological stations in southern Pakistan from 1980 to 2013, and the ERA-Interim (ECMWF reanalysis) data for the nearest corresponding locations. The analysis provides the 2-, 5-, 10-, 25-, 50-, and 100-year return levels (RLs) of temperature extremes. The 90 % quantile is found to be a suitable threshold for all stations. We find that the RLs of the observed Tmax are above 50 °C at northern stations and above 45 °C at the southern stations. The RLs of the observed TWmax exceed 35 °C in the region, which is considered as a limit of survivability. The RLs estimated from the ERA-Interim data are lower by 3 to 5 °C than the RLs assessed for the nine meteorological stations. A simple bias correction applied to ERA-Interim data improves the RLs remarkably, yet discrepancies are still present. The results have potential implications for the risk assessment of extreme temperatures in Sindh.

  4. Daily fluctuations in radon concentration in a Cordoba factory complex

    International Nuclear Information System (INIS)

    Germanier, A.; Perez, R.; Rubio, M.

    1998-01-01

    Full text: This work shows the fluctuations of indoor radon concentration in some rooms placed inside a Cordoba Factory Complex. The measurements were performed by Victoreen Radon Monitor. The system was shaped to sample single radon concentration values after one hour integration. It utilizes a passive diffusion chamber and a silicon diffused junction detector. A portion of decay products will plate-out onto the detector and emit alpha particles into the depletion region of a diffused junction detector. The alpha energy is deposited in the detector in the form of ionization which generates a charge pulse. Only alpha pulses of an energy level similar Po-218 and Po-214 are detected. The study of the meteorological parameters shows that the daily fluctuations of the radon concentration respond to the transport and dispersion processes of radon gas through the air. Air temperature, wind's direction and speed are found to be fundamentals parameters in the observed time behavior. The meteorological data were obtained by a portable station (Davis Weathe Monitor II). The radon concentration present a maximum value (1850 Bq/m 3 ) at the night and a minimum value (150 Bq/m 3 ) at the day. (author) [es

  5. Maximum entropy principal for transportation

    International Nuclear Information System (INIS)

    Bilich, F.; Da Silva, R.

    2008-01-01

    In this work we deal with modeling of the transportation phenomenon for use in the transportation planning process and policy-impact studies. The model developed is based on the dependence concept, i.e., the notion that the probability of a trip starting at origin i is dependent on the probability of a trip ending at destination j given that the factors (such as travel time, cost, etc.) which affect travel between origin i and destination j assume some specific values. The derivation of the solution of the model employs the maximum entropy principle combining a priori multinomial distribution with a trip utility concept. This model is utilized to forecast trip distributions under a variety of policy changes and scenarios. The dependence coefficients are obtained from a regression equation where the functional form is derived based on conditional probability and perception of factors from experimental psychology. The dependence coefficients encode all the information that was previously encoded in the form of constraints. In addition, the dependence coefficients encode information that cannot be expressed in the form of constraints for practical reasons, namely, computational tractability. The equivalence between the standard formulation (i.e., objective function with constraints) and the dependence formulation (i.e., without constraints) is demonstrated. The parameters of the dependence-based trip-distribution model are estimated, and the model is also validated using commercial air travel data in the U.S. In addition, policy impact analyses (such as allowance of supersonic flights inside the U.S. and user surcharge at noise-impacted airports) on air travel are performed.

  6. Local Times of Galactic Cosmic Ray Intensity Maximum and Minimum in the Diurnal Variation

    Directory of Open Access Journals (Sweden)

    Su Yeon Oh

    2006-06-01

    Full Text Available The Diurnal variation of galactic cosmic ray (GCR flux intensity observed by the ground Neutron Monitor (NM shows a sinusoidal pattern with the amplitude of 1sim 2 % of daily mean. We carried out a statistical study on tendencies of the local times of GCR intensity daily maximum and minimum. To test the influences of the solar activity and the location (cut-off rigidity on the distribution in the local times of maximum and minimum GCR intensity, we have examined the data of 1996 (solar minimum and 2000 (solar maximum at the low-latitude Haleakala (latitude: 20.72 N, cut-off rigidity: 12.91 GeV and the high-latitude Oulu (latitude: 65.05 N, cut-off rigidity: 0.81 GeV NM stations. The most frequent local times of the GCR intensity daily maximum and minimum come later about 2sim3 hours in the solar activity maximum year 2000 than in the solar activity minimum year 1996. Oulu NM station whose cut-off rigidity is smaller has the most frequent local times of the GCR intensity maximum and minimum later by 2sim3 hours from those of Haleakala station. This feature is more evident at the solar maximum. The phase of the daily variation in GCR is dependent upon the interplanetary magnetic field varying with the solar activity and the cut-off rigidity varying with the geographic latitude.

  7. Lightship Daily Observations - NARA Collection

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Observations taken on board lightships along the United States coasts from 1893 - 1943. Generally 4-6 observations daily. Also includes deck logs, which give...

  8. Allegheny County Jail Daily Census

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — A daily census of the inmates at the Allegheny County Jail (ACJ). Includes gender, race, age at booking, and current age. The records for each month contain a...

  9. Last Glacial Maximum Salinity Reconstruction

    Science.gov (United States)

    Homola, K.; Spivack, A. J.

    2016-12-01

    It has been previously demonstrated that salinity can be reconstructed from sediment porewater. The goal of our study is to reconstruct high precision salinity during the Last Glacial Maximum (LGM). Salinity is usually determined at high precision via conductivity, which requires a larger volume of water than can be extracted from a sediment core, or via chloride titration, which yields lower than ideal precision. It has been demonstrated for water column samples that high precision density measurements can be used to determine salinity at the precision of a conductivity measurement using the equation of state of seawater. However, water column seawater has a relatively constant composition, in contrast to porewater, where variations from standard seawater composition occur. These deviations, which affect the equation of state, must be corrected for through precise measurements of each ion's concentration and knowledge of apparent partial molar density in seawater. We have developed a density-based method for determining porewater salinity that requires only 5 mL of sample, achieving density precisions of 10-6 g/mL. We have applied this method to porewater samples extracted from long cores collected along a N-S transect across the western North Atlantic (R/V Knorr cruise KN223). Density was determined to a precision of 2.3x10-6 g/mL, which translates to salinity uncertainty of 0.002 gms/kg if the effect of differences in composition is well constrained. Concentrations of anions (Cl-, and SO4-2) and cations (Na+, Mg+, Ca+2, and K+) were measured. To correct salinities at the precision required to unravel LGM Meridional Overturning Circulation, our ion precisions must be better than 0.1% for SO4-/Cl- and Mg+/Na+, and 0.4% for Ca+/Na+, and K+/Na+. Alkalinity, pH and Dissolved Inorganic Carbon of the porewater were determined to precisions better than 4% when ratioed to Cl-, and used to calculate HCO3-, and CO3-2. Apparent partial molar densities in seawater were

  10. Maximum Parsimony on Phylogenetic networks

    Science.gov (United States)

    2012-01-01

    Background Phylogenetic networks are generalizations of phylogenetic trees, that are used to model evolutionary events in various contexts. Several different methods and criteria have been introduced for reconstructing phylogenetic trees. Maximum Parsimony is a character-based approach that infers a phylogenetic tree by minimizing the total number of evolutionary steps required to explain a given set of data assigned on the leaves. Exact solutions for optimizing parsimony scores on phylogenetic trees have been introduced in the past. Results In this paper, we define the parsimony score on networks as the sum of the substitution costs along all the edges of the network; and show that certain well-known algorithms that calculate the optimum parsimony score on trees, such as Sankoff and Fitch algorithms extend naturally for networks, barring conflicting assignments at the reticulate vertices. We provide heuristics for finding the optimum parsimony scores on networks. Our algorithms can be applied for any cost matrix that may contain unequal substitution costs of transforming between different characters along different edges of the network. We analyzed this for experimental data on 10 leaves or fewer with at most 2 reticulations and found that for almost all networks, the bounds returned by the heuristics matched with the exhaustively determined optimum parsimony scores. Conclusion The parsimony score we define here does not directly reflect the cost of the best tree in the network that displays the evolution of the character. However, when searching for the most parsimonious network that describes a collection of characters, it becomes necessary to add additional cost considerations to prefer simpler structures, such as trees over networks. The parsimony score on a network that we describe here takes into account the substitution costs along the additional edges incident on each reticulate vertex, in addition to the substitution costs along the other edges which are

  11. Fractal Dimension and Maximum Sunspot Number in Solar Cycle

    Directory of Open Access Journals (Sweden)

    R.-S. Kim

    2006-09-01

    Full Text Available The fractal dimension is a quantitative parameter describing the characteristics of irregular time series. In this study, we use this parameter to analyze the irregular aspects of solar activity and to predict the maximum sunspot number in the following solar cycle by examining time series of the sunspot number. For this, we considered the daily sunspot number since 1850 from SIDC (Solar Influences Data analysis Center and then estimated cycle variation of the fractal dimension by using Higuchi's method. We examined the relationship between this fractal dimension and the maximum monthly sunspot number in each solar cycle. As a result, we found that there is a strong inverse relationship between the fractal dimension and the maximum monthly sunspot number. By using this relation we predicted the maximum sunspot number in the solar cycle from the fractal dimension of the sunspot numbers during the solar activity increasing phase. The successful prediction is proven by a good correlation (r=0.89 between the observed and predicted maximum sunspot numbers in the solar cycles.

  12. Relationships Among Nightly Sleep Quality, Daily Stress, and Daily Affect.

    Science.gov (United States)

    Blaxton, Jessica M; Bergeman, Cindy S; Whitehead, Brenda R; Braun, Marcia E; Payne, Jessic D

    2017-05-01

    We explored the prospective, microlevel relationship between nightly sleep quality (SQ) and the subsequent day's stress on positive (PA) and negative affect (NA) as well as the moderating relationships between nightly SQ, subsequent stress, and subsequent PA on NA. We investigated whether age moderated these relationships. We collected 56 days of sleep, stress, and affect data using daily diary questionnaires (N = 552). We used multilevel modeling to assess relationships at the between- and within-person levels. Daily increases in SQ and decreases in stress interacted to predict higher daily PA and lower daily NA. Better SQ in older adults enhanced the benefits of PA on the stress-NA relationship more during times of low stress, whereas better sleep in younger adults enhanced the benefits of PA more during times of high stress. Between-person effects were stronger predictors of well-being outcomes than within-person variability. The combination of good SQ and higher PA buffered the impact of stress on NA. The moderating impact of age suggests that sleep and stress play different roles across adulthood. Targeting intervention and prevention strategies to improve SQ and enhance PA could disrupt the detrimental relationship between daily stress and NA. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Uncertainty Assessment of the NASA Earth Exchange Global Daily Downscaled Climate Projections (NEX-GDDP) Dataset

    Science.gov (United States)

    Wang, Weile; Nemani, Ramakrishna R.; Michaelis, Andrew; Hashimoto, Hirofumi; Dungan, Jennifer L.; Thrasher, Bridget L.; Dixon, Keith W.

    2016-01-01

    The NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP) dataset is comprised of downscaled climate projections that are derived from 21 General Circulation Model (GCM) runs conducted under the Coupled Model Intercomparison Project Phase 5 (CMIP5) and across two of the four greenhouse gas emissions scenarios (RCP4.5 and RCP8.5). Each of the climate projections includes daily maximum temperature, minimum temperature, and precipitation for the periods from 1950 through 2100 and the spatial resolution is 0.25 degrees (approximately 25 km x 25 km). The GDDP dataset has received warm welcome from the science community in conducting studies of climate change impacts at local to regional scales, but a comprehensive evaluation of its uncertainties is still missing. In this study, we apply the Perfect Model Experiment framework (Dixon et al. 2016) to quantify the key sources of uncertainties from the observational baseline dataset, the downscaling algorithm, and some intrinsic assumptions (e.g., the stationary assumption) inherent to the statistical downscaling techniques. We developed a set of metrics to evaluate downscaling errors resulted from bias-correction ("quantile-mapping"), spatial disaggregation, as well as the temporal-spatial non-stationarity of climate variability. Our results highlight the spatial disaggregation (or interpolation) errors, which dominate the overall uncertainties of the GDDP dataset, especially over heterogeneous and complex terrains (e.g., mountains and coastal area). In comparison, the temporal errors in the GDDP dataset tend to be more constrained. Our results also indicate that the downscaled daily precipitation also has relatively larger uncertainties than the temperature fields, reflecting the rather stochastic nature of precipitation in space. Therefore, our results provide insights in improving statistical downscaling algorithms and products in the future.

  14. [Response of indica rice spikelet differentiation and degeneration to air temperature and solar radiation of different sowing dates].

    Science.gov (United States)

    Wang, Ya Liang; Zhang, Yu Ping; Xiang, Jing; Wang, Lei; Chen, Hui Zhe; Zhang, Yi Kai; Zhang, Wen Qian; Zhu, De Feng

    2017-11-01

    In this study, three rice varieties, including three-line hybrid indica rice Wuyou308 and Tianyouhuazhan, and inbred indica rice Huanghuazhan were used to investigate the effects of air temperature and solar radiation on rice growth duration and spikelet differentiation and degeneration. Ten sowing-date treatments were conducted in this field experiment. The results showed that the growth duration of three indica rice varieties were more sensitive to air temperature than to day-length. With average temperature increase of 1 ℃, panicle initiation advanced 1.5 days, but the panicle growth duration had no significant correlation with the temperature and day-length. The number of spikelets and differentiated spikelets revealed significant differences among different sowing dates. Increases in average temperature, maximum temperature, minimum temperature, effective accumulated temperature, temperature gap and the solar radiation benefited dry matter accumulation and spikelet differentiation of all varieties. With increases of effective accumulated temperature, diurnal temperature gap and solar radiation by 50 ℃, 1 ℃, 50 MJ·m -2 during panicle initiation stage, the number of differentiated spikelets increased 10.5, 14.3, 17.1 respectively. The rate of degenerated spikelets had a quadratic correlation with air temperature, extreme high and low temperature aggravated spikelets degeneration, and low temperature stress made worse effect than high temperature stress. The rate of spikelet degeneration dramatically rose with the temperature falling below the critical temperature, the critical effective accumulated temperature, daily average temperature, daily maximum temperature and minimum temperature during panicle initiation were 550-600 ℃, 24.0-26.0 ℃, 32.0-34.0 ℃, 21.0-23.0 ℃, respectively. In practice, the natural condition of appropriate high temperature, large diurnal temperature gap and strong solar radiation were conducive to spikelet differentiation

  15. Beat the Deviations in Estimating Maximum Power of Thermoelectric Modules

    DEFF Research Database (Denmark)

    Gao, Junling; Chen, Min

    2013-01-01

    Under a certain temperature difference, the maximum power of a thermoelectric module can be estimated by the open-circuit voltage and the short-circuit current. In practical measurement, there exist two switch modes, either from open to short or from short to open, but the two modes can give...... different estimations on the maximum power. Using TEG-127-2.8-3.5-250 and TEG-127-1.4-1.6-250 as two examples, the difference is about 10%, leading to some deviations with the temperature change. This paper analyzes such differences by means of a nonlinear numerical model of thermoelectricity, and finds out...... that the main cause is the influence of various currents on the produced electromotive potential. A simple and effective calibration method is proposed to minimize the deviations in specifying the maximum power. Experimental results validate the method with improved estimation accuracy....

  16. Climate change web picker. A tool bridging daily climate needs in process based modelling in forestry and agriculture

    International Nuclear Information System (INIS)

    Palma, J.H.N.

    2017-01-01

    Aim of study: Climate data is a need for different types of modeling assessments, especially those involving process based modeling focusing on climate change impacts. However, there is a scarcity of tools delivering easy access to climate datasets to use in biological related modeling. This study aimed at the development of a tool that could provide an user-friendly interface to facilitate access to climate datasets, that are used to supply climate scenarios for the International Panel on Climate Change. Area of study: The tool provides daily datasets across Europe, and also parts of northern Africa Material and Methods: The tool uses climatic datasets generated from third party sources (IPCC related) while a web based interface was developed in JavaScript to ease the access to the datasets Main Results: The interface delivers daily (or monthly) climate data from a user-defined location in Europe for 7 climate variables: minimum and maximum temperature, precipitation, radiation, minimum and maximum relative humidity and wind speed). The time frame ranges from 1951 to 2100, providing the basis to use the data for climate change impact assessments. The tool is free and publicly available at http://www.isa.ulisboa.pt/proj/clipick/. Research Highlights: A new and easy-to-use tool is suggested that will promote the use of climate change scenarios across Europe, especially when daily time steps are needed. CliPick eases the communication between climatic and modelling communities such as agriculture and forestry.

  17. Climate change web picker. A tool bridging daily climate needs in process based modelling in forestry and agriculture

    Energy Technology Data Exchange (ETDEWEB)

    Palma, J.H.N.

    2017-11-01

    Aim of study: Climate data is a need for different types of modeling assessments, especially those involving process based modeling focusing on climate change impacts. However, there is a scarcity of tools delivering easy access to climate datasets to use in biological related modeling. This study aimed at the development of a tool that could provide an user-friendly interface to facilitate access to climate datasets, that are used to supply climate scenarios for the International Panel on Climate Change. Area of study: The tool provides daily datasets across Europe, and also parts of northern Africa Material and Methods: The tool uses climatic datasets generated from third party sources (IPCC related) while a web based interface was developed in JavaScript to ease the access to the datasets Main Results: The interface delivers daily (or monthly) climate data from a user-defined location in Europe for 7 climate variables: minimum and maximum temperature, precipitation, radiation, minimum and maximum relative humidity and wind speed). The time frame ranges from 1951 to 2100, providing the basis to use the data for climate change impact assessments. The tool is free and publicly available at http://www.isa.ulisboa.pt/proj/clipick/. Research Highlights: A new and easy-to-use tool is suggested that will promote the use of climate change scenarios across Europe, especially when daily time steps are needed. CliPick eases the communication between climatic and modelling communities such as agriculture and forestry.

  18. Probabilistic maximum-value wind prediction for offshore environments

    DEFF Research Database (Denmark)

    Staid, Andrea; Pinson, Pierre; Guikema, Seth D.

    2015-01-01

    statistical models to predict the full distribution of the maximum-value wind speeds in a 3 h interval. We take a detailed look at the performance of linear models, generalized additive models and multivariate adaptive regression splines models using meteorological covariates such as gust speed, wind speed......, convective available potential energy, Charnock, mean sea-level pressure and temperature, as given by the European Center for Medium-Range Weather Forecasts forecasts. The models are trained to predict the mean value of maximum wind speed, and the residuals from training the models are used to develop...... the full probabilistic distribution of maximum wind speed. Knowledge of the maximum wind speed for an offshore location within a given period can inform decision-making regarding turbine operations, planned maintenance operations and power grid scheduling in order to improve safety and reliability...

  19. Parametric optimization of thermoelectric elements footprint for maximum power generation

    DEFF Research Database (Denmark)

    Rezania, A.; Rosendahl, Lasse; Yin, Hao

    2014-01-01

    The development studies in thermoelectric generator (TEG) systems are mostly disconnected to parametric optimization of the module components. In this study, optimum footprint ratio of n- and p-type thermoelectric (TE) elements is explored to achieve maximum power generation, maximum cost......-performance, and variation of efficiency in the uni-couple over a wide range of the heat transfer coefficient on the cold junction. The three-dimensional (3D) governing equations of the thermoelectricity and the heat transfer are solved using the finite element method (FEM) for temperature dependent properties of TE...... materials. The results, which are in good agreement with the previous computational studies, show that the maximum power generation and the maximum cost-performance in the module occur at An/Ap

  20. Modeling the survivability of brucella to exposure of Ultraviolet radiation and temperature

    Science.gov (United States)

    Howe, R.

    Accumulated summation of daily Ultra Violet-B (UV-B = 290? to 320 ? ) data? from The USDA Ultraviolet Radiation Monitoring Program show good correlation (R^2 = 77%) with daily temperature data during the five month period from February through June, 1998. Exposure of disease organisms, such as brucella to the effects of accumulated UV-B radiation, can be modeled for a 5 month period from February through June, 1998. Estimates of a lethal dosage for brucell of UV-B in the environment is dependent on minimum/maximum temperature and Solar Zenith Angle for the time period. The accumulated increase in temperature over this period also effects the decomposition of an aborted fetus containing brucella. Decomposition begins at some minimum daily temperature at 27 to 30 degrees C and peaks at 39 to 40C. It is useful to view the summation of temperature as a threshold for other bacteria growth, so that accumulated temperature greater than some value causes decomposition through competition with other bacteria and brucella die from the accumulated effects of UV-B, temperature and organism competition. Results of a study (Cook 1998) to determine survivability of brucellosis in the environment through exposure of aborted bovine fetuses show no one cause can be attributed to death of the disease agent. The combination of daily increase in temperature and accumulated UV-B radiation reveal an inverse correlation to survivability data and can be modeled as an indicator of brucella survivability in the environment in arid regions.

  1. Maximum power point tracker based on fuzzy logic

    International Nuclear Information System (INIS)

    Daoud, A.; Midoun, A.

    2006-01-01

    The solar energy is used as power source in photovoltaic power systems and the need for an intelligent power management system is important to obtain the maximum power from the limited solar panels. With the changing of the sun illumination due to variation of angle of incidence of sun radiation and of the temperature of the panels, Maximum Power Point Tracker (MPPT) enables optimization of solar power generation. The MPPT is a sub-system designed to extract the maximum power from a power source. In the case of solar panels power source. the maximum power point varies as a result of changes in its electrical characteristics which in turn are functions of radiation dose, temperature, ageing and other effects. The MPPT maximum the power output from panels for a given set of conditions by detecting the best working point of the power characteristic and then controls the current through the panels or the voltage across them. Many MPPT methods have been reported in literature. These techniques of MPPT can be classified into three main categories that include: lookup table methods, hill climbing methods and computational methods. The techniques vary according to the degree of sophistication, processing time and memory requirements. The perturbation and observation algorithm (hill climbing technique) is commonly used due to its ease of implementation, and relative tracking efficiency. However, it has been shown that when the insolation changes rapidly, the perturbation and observation method is slow to track the maximum power point. In recent years, the fuzzy controllers are used for maximum power point tracking. This method only requires the linguistic control rules for maximum power point, the mathematical model is not required and therefore the implementation of this control method is easy to real control system. In this paper, we we present a simple robust MPPT using fuzzy set theory where the hardware consists of the microchip's microcontroller unit control card and

  2. Two-dimensional maximum entropy image restoration

    International Nuclear Information System (INIS)

    Brolley, J.E.; Lazarus, R.B.; Suydam, B.R.; Trussell, H.J.

    1977-07-01

    An optical check problem was constructed to test P LOG P maximum entropy restoration of an extremely distorted image. Useful recovery of the original image was obtained. Comparison with maximum a posteriori restoration is made. 7 figures

  3. Temperature and moisture regimes in the Enterprise Forest, 1970--1973

    International Nuclear Information System (INIS)

    Crow, T.R.; Buech, R.R.

    1977-01-01

    Within the Enterprise Radiation Forest, measurements of ambient air temperature, humidity, and precipitation were taken from 1970 through 1973. Temperature and moisture stresses that could alter the responses of organisms to gamma radiation were not evident during irradiation (1972) or during the recovery year 1973. Changes in microclimatic regimes as a result of the destruction of vegetation by gamma radiation were also assessed. Although differences in temperature and vapor-pressure deficit (VPD) were small when considering monthly means, mean maximum and mean minimum temperature and standardized plots of mean daily temperature and mean daily VPD indicated greater extremes in the newly created open environment than under the forest canopy. These relationships parallel those reported in comparisons of open environments to forested environments

  4. Maximum Power Point Tracking Based on Sliding Mode Control

    Directory of Open Access Journals (Sweden)

    Nimrod Vázquez

    2015-01-01

    Full Text Available Solar panels, which have become a good choice, are used to generate and supply electricity in commercial and residential applications. This generated power starts with the solar cells, which have a complex relationship between solar irradiation, temperature, and output power. For this reason a tracking of the maximum power point is required. Traditionally, this has been made by considering just current and voltage conditions at the photovoltaic panel; however, temperature also influences the process. In this paper the voltage, current, and temperature in the PV system are considered to be a part of a sliding surface for the proposed maximum power point tracking; this means a sliding mode controller is applied. Obtained results gave a good dynamic response, as a difference from traditional schemes, which are only based on computational algorithms. A traditional algorithm based on MPPT was added in order to assure a low steady state error.

  5. Receiver function estimated by maximum entropy deconvolution

    Institute of Scientific and Technical Information of China (English)

    吴庆举; 田小波; 张乃铃; 李卫平; 曾融生

    2003-01-01

    Maximum entropy deconvolution is presented to estimate receiver function, with the maximum entropy as the rule to determine auto-correlation and cross-correlation functions. The Toeplitz equation and Levinson algorithm are used to calculate the iterative formula of error-predicting filter, and receiver function is then estimated. During extrapolation, reflective coefficient is always less than 1, which keeps maximum entropy deconvolution stable. The maximum entropy of the data outside window increases the resolution of receiver function. Both synthetic and real seismograms show that maximum entropy deconvolution is an effective method to measure receiver function in time-domain.

  6. Maximum Power from a Solar Panel

    Directory of Open Access Journals (Sweden)

    Michael Miller

    2010-01-01

    Full Text Available Solar energy has become a promising alternative to conventional fossil fuel sources. Solar panels are used to collect solar radiation and convert it into electricity. One of the techniques used to maximize the effectiveness of this energy alternative is to maximize the power output of the solar collector. In this project the maximum power is calculated by determining the voltage and the current of maximum power. These quantities are determined by finding the maximum value for the equation for power using differentiation. After the maximum values are found for each time of day, each individual quantity, voltage of maximum power, current of maximum power, and maximum power is plotted as a function of the time of day.

  7. Relationships Between Excessive Heat and Daily Mortality over the Coterminous U.S

    Science.gov (United States)

    Crosson, William L.; Al-Hamdan, Mohammad Z.; Estes, Maury G., Jr.; Estes, Sue M.; Quattrochi, Dale A.

    2015-01-01

    In the United States, extreme heat is the most deadly weather-related hazard. In the face of a warming climate and urbanization, it is very likely that extreme heat events (EHEs) will become more common and more severe in the U.S. Using National Land Data Assimilation System (NLDAS) meteorological reanalysis data, we have developed several measures of extreme heat to enable assessments of the impacts of heat on public health over the coterminous U.S. These measures include daily maximum and minimum air temperatures, daily maximum heat indices and a new heat stress variable called Net Daily Heat Stress (NDHS) that gives an integrated measure of heat stress (and relief) over the course of a day. All output has been created on the NLDAS 1/8 degree (approximately 12 km) grid and aggregated to the county level, which is the preferred geographic scale of analysis for public health researchers. County-level statistics have been made available through the Centers for Disease Control and Prevention (CDC) via the Wide-ranging Online Data for Epidemiologic Research (WONDER) system. We have examined the relationship between excessive heat events, as defined in eight different ways from the various daily heat metrics, and heat-related and all-cause mortality defined in CDC's National Center for Health Statistics 'Multiple Causes of Death 1999-2010' dataset. To do this, we linked daily, county-level heat mortality counts with EHE occurrence based on each of the eight EHE definitions by region and nationally for the period 1999-2010. The objectives of this analysis are to determine (1) whether heat-related deaths can be clearly tied to excessive heat events, (2) what time lags are critical for predicting heat-related deaths, and (3) which of the heat metrics correlates best with mortality in each US region. Results show large regional differences in the correlations between heat and mortality. Also, the heat metric that provides the best indicator of mortality varied by region

  8. A simple method to downscale daily wind statistics to hourly wind data

    OpenAIRE

    Guo, Zhongling

    2013-01-01

    Wind is the principal driver in the wind erosion models. The hourly wind speed data were generally required for precisely wind erosion modeling. In this study, a simple method to generate hourly wind speed data from daily wind statistics (daily average and maximum wind speeds together or daily average wind speed only) was established. A typical windy location with 3285 days (9 years) measured hourly wind speed data were used to validate the downscaling method. The results showed that the over...

  9. On polar daily geomagnetic variation

    Directory of Open Access Journals (Sweden)

    Paola De Michelis

    2015-11-01

    Full Text Available The aim of this work is to investigate the nature of the daily magnetic field perturbations produced by ionospheric and magnetospheric currents at high latitudes. We analyse the hourly means of the X and Y geomagnetic field components recorded by a meridian chain of permanent geomagnetic observatories in the polar region of the Northern Hemisphere during a period of four years (1995-1998 around the solar minimum. We apply a mathematical method, known as natural orthogonal component (NOC, which is capable of characterizing the dominant modes of the geomagnetic field daily variability through a set of empirical orthogonal functions (EOFs. Using the first two modes we reconstruct a two-dimensional equivalent current representation of the ionospheric electric currents, which contribute substantially to the geomagnetic daily variations. The obtained current structures resemble the equivalent current patterns of DP2 and DP1. We characterize these currents by studying their evolution with the geomagnetic activity level and by analysing their dependence on the interplanetary magnetic field. The obtained results support the idea of a coexistence of two main processes during all analysed period although one of them, the directly driven process, represents the dominant component of the geomagnetic daily variation.

  10. Daily Physical Activity Survey Report

    Science.gov (United States)

    Alberta Education, 2008

    2008-01-01

    The intent of the Daily Physical Activity (DPA) Survey was to gather school-level information from teachers and principals regarding their perceptions of DPA, thus providing a greater understanding of DPA implementation in grades 1 to 9. This study aimed to help identify the many variables that influence the attainment of the DPA outcomes and…

  11. Discontinuity of maximum entropy inference and quantum phase transitions

    International Nuclear Information System (INIS)

    Chen, Jianxin; Ji, Zhengfeng; Yu, Nengkun; Zeng, Bei; Li, Chi-Kwong; Poon, Yiu-Tung; Shen, Yi; Zhou, Duanlu

    2015-01-01

    In this paper, we discuss the connection between two genuinely quantum phenomena—the discontinuity of quantum maximum entropy inference and quantum phase transitions at zero temperature. It is shown that the discontinuity of the maximum entropy inference of local observable measurements signals the non-local type of transitions, where local density matrices of the ground state change smoothly at the transition point. We then propose to use the quantum conditional mutual information of the ground state as an indicator to detect the discontinuity and the non-local type of quantum phase transitions in the thermodynamic limit. (paper)

  12. Trends in extreme temperature and precipitation in Muscat, Oman

    Directory of Open Access Journals (Sweden)

    L. N. Gunawardhana

    2014-09-01

    Full Text Available Changes in frequency and intensity of weather events often result in more frequent and intensive disasters such as flash floods and persistent droughts. In Oman, changes in precipitation and temperature have already been detected, although a comprehensive analysis to determine long-term trends is yet to be conducted. We analysed daily precipitation and temperature records in Muscat, the capital city of Oman, mainly focusing on extremes. A set of climate indices, defined in the RClimDex software package, were derived from the longest available daily series (precipitation over the period 1977–2011 and temperature over the period 1986–2011. Results showed significant changes in temperature extremes associated with cooling. Annual maximum value of daily maximum temperature (TX, on average, decreased by 1°C (0.42°C/10 year. Similarly, the annual minimum value of daily minimum temperature (TN decreased by 1.5°C (0.61°C/10 year, which, on average, cooled at a faster rate than the maximum temperature. Consequently, the annual count of days when TX > 45°C (98th percentile decreased from 8 to 3, by 5 days. Similarly, the annual count of days when TN < 15°C (2nd percentile increased from 5 to 15, by 10 days. Annual total precipitation averaged over the period 1977–2011 is 81 mm, which shows a tendency toward wetter conditions with a 6 mm/10 year rate. There is also a significant tendency for stronger precipitation extremes according to many indices. The contribution from very wet days to the annual precipitation totals steadily increases with significance at 75% level. When The General Extreme Value (GEV probability distribution is fitted to annual maximum 1-day precipitation, the return level of a 10-year return period in 1995–2011 was estimated to be 95 mm. This return level in the recent decade is about 70% higher than the return level for the period of 1977–1994. These results indicate that the long-term wetting signal apparent in total

  13. Evaluation of extreme temperature events in northern Spain based on process control charts

    Science.gov (United States)

    Villeta, M.; Valencia, J. L.; Saá, A.; Tarquis, A. M.

    2018-02-01

    Extreme climate events have recently attracted the attention of a growing number of researchers because these events impose a large cost on agriculture and associated insurance planning. This study focuses on extreme temperature events and proposes a new method for their evaluation based on statistical process control tools, which are unusual in climate studies. A series of minimum and maximum daily temperatures for 12 geographical areas of a Spanish region between 1931 and 2009 were evaluated by applying statistical process control charts to statistically test whether evidence existed for an increase or a decrease of extreme temperature events. Specification limits were determined for each geographical area and used to define four types of extreme anomalies: lower and upper extremes for the minimum and maximum anomalies. A new binomial Markov extended process that considers the autocorrelation between extreme temperature events was generated for each geographical area and extreme anomaly type to establish the attribute control charts for the annual fraction of extreme days and to monitor the occurrence of annual extreme days. This method was used to assess the significance of changes and trends of extreme temperature events in the analysed region. The results demonstrate the effectiveness of an attribute control chart for evaluating extreme temperature events. For example, the evaluation of extreme maximum temperature events using the proposed statistical process control charts was consistent with the evidence of an increase in maximum temperatures during the last decades of the last century.

  14. changes in indices of daily temperature and precipitation extremes

    African Journals Online (AJOL)

    Dr A.B.Ahmed

    increased risk of more intense, more frequent and longer-lasting heat waves in a ... present climate will experience the greatest increase in heat wave severity in ... often cause population displacement, and diseases outbreaks are very peculiar .... Most of the definitions for the indices were presented in the work of Peterson ...

  15. Changes of the Temperature and Precipitation Extremes on Homogenized Data

    Directory of Open Access Journals (Sweden)

    LAKATOS, Mónika

    2007-01-01

    Full Text Available Climate indices to detect changes have been defined in several international projects onclimate change. Climate index calculations require at least daily resolution of time series withoutinhomogeneities, such as transfer of stations, changes in observation practice. In many cases thecharacteristics of the estimated linear trends, calculated from the original and from the homogenizedtime series are significantly different. The ECA&D (European Climate Assessment & Dataset indicesand some other special temperature and precipitation indices of own development were applied to theClimate Database of the Hungarian Meteorological Service. Long term daily maximum, minimum anddaily mean temperature data series and daily precipitation sums were examined. The climate indexcalculation processes were tested on original observations and on homogenized daily data fortemperature; in the case of precipitation a complementation process was performed to fill in the gapsof missing data. Experiences of comparing the climate index calculation results, based on original andcomplemented-homogenized data, are reported in this paper. We present the preliminary result ofclimate index calculations also on gridded (interpolated daily data.

  16. Regionalised spatiotemporal rainfall and temperature models for flood studies in the Basque Country, Spain

    Directory of Open Access Journals (Sweden)

    P. Cowpertwait

    2013-02-01

    Full Text Available A spatiotemporal point process model of rainfall is fitted to data taken from three homogeneous regions in the Basque Country, Spain. The model is the superposition of two spatiotemporal Neyman–Scott processes, in which rain cells are modelled as discs with radii that follow exponential distributions. In addition, the model includes a parameter for the radius of storm discs, so that rain only occurs when both a cell and a storm disc overlap a point. The model is fitted to data for each month, taken from each of the three homogeneous regions, using a modified method of moments procedure that ensures a smooth seasonal variation in the parameter estimates.

    Daily temperature data from 23 sites are used to fit a stochastic temperature model. A principal component analysis of the maximum daily temperatures across the sites indicates that 92% of the variance is explained by the first component, implying that this component can be used to account for spatial variation. A harmonic equation with autoregressive error terms is fitted to the first principal component. The temperature model is obtained by regressing the maximum daily temperature on the first principal component, an indicator variable for the region, and altitude. This, together with scaling and a regression model of temperature range, enables hourly temperatures to be predicted. Rainfall is included as an explanatory variable but has only a marginal influence when predicting temperatures.

    A distributed model (TETIS; Francés et al., 2007 is calibrated for a selected catchment. Five hundred years of data are simulated using the rainfall and temperature models and used as input to the calibrated TETIS model to obtain simulated discharges to compare with observed discharges. Kolmogorov–Smirnov tests indicate that there is no significant difference in the distributions of observed and simulated maximum flows at the same sites, thus supporting the use of the spatiotemporal

  17. The circadian rhythm of core body temperature (Part I: The use of modern telemetry systems to monitor core body temperature variability

    Directory of Open Access Journals (Sweden)

    Słomko Joanna

    2016-06-01

    Full Text Available The best known daily rhythms in humans include: the sleep-wake rhythm, the circadian core body temperature variability, daily fluctuations in arterial blood pressure and heartbeat frequency, and daily changes in hormone secretion: e.g. melatonin, cortisol, growth hormone, prolactin. The core body temperature in humans has a characteristic sinusoidal course, with the maximum value occurring between 3:00-5:00 pm and the minimum between 3:00-5:00 am. Analysis of literature indicates that the obtained results concerning core body temperature are to a large extent influenced by the type of method applied in the measurement. Depending on test protocols, we may apply various methodologies to measuring core body temperature. One of the newest methods of measuring internal and external body temperature consists in the utilisation of remote temperature sensors transmitting the obtained value via a radio signal. The advantages of this method includes the ability to perform: continuous core temperature measurement, observe dynamic changes in core body temperature occurring in circadian rhythm and the repeatability and credibility of the obtained results, which is presented in numerous scientific reports.

  18. Observability of market daily volatility

    Science.gov (United States)

    Petroni, Filippo; Serva, Maurizio

    2016-02-01

    We study the price dynamics of 65 stocks from the Dow Jones Composite Average from 1973 to 2014. We show that it is possible to define a Daily Market Volatility σ(t) which is directly observable from data. This quantity is usually indirectly defined by r(t) = σ(t) ω(t) where the r(t) are the daily returns of the market index and the ω(t) are i.i.d. random variables with vanishing average and unitary variance. The relation r(t) = σ(t) ω(t) alone is unable to give an operative definition of the index volatility, which remains unobservable. On the contrary, we show that using the whole information available in the market, the index volatility can be operatively defined and detected.

  19. Dayak and Their Daily Life

    Directory of Open Access Journals (Sweden)

    Hamid Darmadi

    2017-03-01

    Full Text Available This article titled "Dayak and Daily Life" This paper aims to reveal the Dayak and in their daily life. Dayak is a native of Borneo has its own characteristics. Dayak, divided into 405 sub-sub clans [1]. Each sub Dayak both Indonesia and Malaysia are identical. Dayak customs and culture comes from the word "Power" which means upstream, to refer to people who live in inland areas or in the interior of Borneo. In the arsenal of art and culture, Dayak has many similarities such as; saber, chopsticks, beliong, betang, cupai, renjung, empajang and others. Dayak indigenous religion is Kaharingan which is the original religion born of the cultural ancestors of the Dayaks. Most of the Dayak people still adhere to the belief of the existence of unseen objects in certain places such as rocks, large trees, planting gardens in the forest, lakes, pools, and others are believed to have "magical powers". Daily life of the Dayaks in general farming, farming. When will open farming land, farming they held ritual.

  20. Revealing the Maximum Strength in Nanotwinned Copper

    DEFF Research Database (Denmark)

    Lu, L.; Chen, X.; Huang, Xiaoxu

    2009-01-01

    boundary–related processes. We investigated the maximum strength of nanotwinned copper samples with different twin thicknesses. We found that the strength increases with decreasing twin thickness, reaching a maximum at 15 nanometers, followed by a softening at smaller values that is accompanied by enhanced...

  1. Modelling maximum canopy conductance and transpiration in ...

    African Journals Online (AJOL)

    There is much current interest in predicting the maximum amount of water that can be transpired by Eucalyptus trees. It is possible that industrial waste water may be applied as irrigation water to eucalypts and it is important to predict the maximum transpiration rates of these plantations in an attempt to dispose of this ...

  2. Estimation of surface air temperature over central and eastern Eurasia from MODIS land surface temperature

    International Nuclear Information System (INIS)

    Shen Suhung; Leptoukh, Gregory G

    2011-01-01

    Surface air temperature (T a ) is a critical variable in the energy and water cycle of the Earth–atmosphere system and is a key input element for hydrology and land surface models. This is a preliminary study to evaluate estimation of T a from satellite remotely sensed land surface temperature (T s ) by using MODIS-Terra data over two Eurasia regions: northern China and fUSSR. High correlations are observed in both regions between station-measured T a and MODIS T s . The relationships between the maximum T a and daytime T s depend significantly on land cover types, but the minimum T a and nighttime T s have little dependence on the land cover types. The largest difference between maximum T a and daytime T s appears over the barren and sparsely vegetated area during the summer time. Using a linear regression method, the daily maximum T a were estimated from 1 km resolution MODIS T s under clear-sky conditions with coefficients calculated based on land cover types, while the minimum T a were estimated without considering land cover types. The uncertainty, mean absolute error (MAE), of the estimated maximum T a varies from 2.4 °C over closed shrublands to 3.2 °C over grasslands, and the MAE of the estimated minimum T a is about 3.0 °C.

  3. Association of elevated ambient temperature with death from cocaine overdose.

    Science.gov (United States)

    Auger, Nathalie; Bilodeau-Bertrand, Marianne; Labesse, Maud Emmanuelle; Kosatsky, Tom

    2017-09-01

    Ecologic data suggest that elevated outdoor temperature is correlated with mortality rates from cocaine overdose. Using non-aggregated death records, we studied the association of hot temperatures with risk of death from cocaine overdose. We carried out a case-crossover study of all deaths from cocaine or other drug overdose between the months of May and September, from 2000 through 2013 in Quebec, Canada. We used conditional logistic regression to estimate odds ratios (OR) and 95% confidence intervals (CI) for the association between maximum outdoor temperature and death from cocaine or other drug overdose. The main outcome measure was death from cocaine overdose as a function of maximum temperature the day of death and the days immediately preceding death. There were 316 deaths from cocaine overdose and 446 from other drug overdoses during the study. Elevated temperature the preceding week was associated with the likelihood of death from cocaine but not other drug overdose. Compared with 20°C, a maximum weekly temperature of 30°C was associated with an OR of 2.07 for death from cocaine overdose (95% CI 1.15-3.73), but an OR of 1.03 for other drug overdoses (95% CI 0.60-1.75). Associations for cocaine overdose were present with maximum daily temperature the day of and each of the three days preceding death. Elevated ambient temperature is associated with the risk of death from cocaine overdose. Public health practitioners and drug users should be aware of the added risk of mortality when cocaine is used during hot days. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Linkage Between Hourly Precipitation Events and Atmospheric Temperature Changes over China during the Warm Season

    Science.gov (United States)

    Miao, Chiyuan; Sun, Qiaohong; Borthwick, Alistair G. L.; Duan, Qingyun

    2016-01-01

    We investigated changes in the temporospatial features of hourly precipitation during the warm season over mainland China. The frequency and amount of hourly precipitation displayed latitudinal zonation, especially for light and moderate precipitation, which showed successive downward change over time in northeastern and southern China. Changes in the precipitation amount resulted mainly from changes in frequency rather than changes in intensity. We also evaluated the linkage between hourly precipitation and temperature variations and found that hourly precipitation extreme was more sensitive to temperature than other categories of precipitation. A strong dependency of hourly precipitation on temperature occurred at temperatures colder than the median daily temperature; in such cases, regression slopes were greater than the Clausius-Clapeyron (C-C) relation of 7% per degree Celsius. Regression slopes for 31.6%, 59.8%, 96.9%, and 99.1% of all stations were greater than 7% per degree Celsius for the 75th, 90th, 99th, and 99.9th percentiles for precipitation, respectively. The mean regression slopes within the 99.9th percentile of precipitation were three times the C-C rate. Hourly precipitation showed a strong negative relationship with daily maximum temperature and the diurnal temperature range at most stations, whereas the equivalent correlation for daily minimum temperature was weak. PMID:26931350

  5. Chronic and Daily Stressors Along With Negative Affect Interact to Predict Daily Tiredness.

    Science.gov (United States)

    Hartsell, Elizabeth N; Neupert, Shevaun D

    2017-11-01

    The present study examines the within-person relationship of daily stressors and tiredness and whether this depends on daily negative affect and individual differences in chronic stress. One hundred sixteen older adult participants were recruited via Amazon's Mechanical Turk for a 9-day daily diary study. Daily tiredness, daily stressors, and negative affect were measured each day, and chronic stress was measured at baseline. Daily stressors, daily negative affect, and chronic stress interacted to predict daily tiredness. People with high chronic stress who experienced an increase in daily negative affect were the most reactive to daily stressors in terms of experiencing an increase in daily tiredness. We also found that people with low levels of chronic stress were the most reactive to daily stressors when they experienced low levels of daily negative affect. Our results highlight the need for individualized and contextualized approaches to combating daily tiredness in older adults.

  6. The Impact of Rising Temperatures on Aircraft Takeoff Performance

    Science.gov (United States)

    Coffel, E.; Horton, R. M.; Thompson, T. R.

    2017-12-01

    Steadily rising mean and extreme temperatures as a result of climate change will likely impact the air transportation system over the coming decades. As air temperatures rise at constant pressure, air density declines, resulting in less lift generation by an aircraft wing at a given airspeed and potentially imposing a weight restriction on departing aircraft. This study presents a general model to project future weight restrictions across a fleet of aircraft with different takeoff weights operating at a variety of airports. We construct performance models for five common commercial aircraft and 19 major airports around the world and use projections of daily temperatures from the CMIP5 model suite under the RCP 4.5 and RCP 8.5 emissions scenarios to calculate required hourly weight restriction. We find that on average, 10-30% of annual flights departing at the time of daily maximum temperature may require some weight restriction below their maximum takeoff weights, with mean restrictions ranging from 0.5 to 4% of total aircraft payload and fuel capacity by mid- to late century. Both mid-sized and large aircraft are affected, and airports with short runways and high tempera- tures, or those at high elevations, will see the largest impacts. Our results suggest that weight restriction may impose a non-trivial cost on airlines and impact aviation operations around the world and that adaptation may be required in aircraft design, airline schedules, and/or runway lengths.

  7. Digital daily cycles of individuals

    DEFF Research Database (Denmark)

    Aledavood, Talayeh; Jørgensen, Sune Lehmann; Saramäki, Jari

    2015-01-01

    Humans, like almost all animals, are phase-locked to the diurnal cycle. Most of us sleep at night and are active through the day. Because we have evolved to function with this cycle, the circadian rhythm is deeply ingrained and even detectable at the biochemical level. However, within the broader...... day-night pattern, there are individual differences: e.g., some of us are intrinsically morning-active, while others prefer evenings. In this article, we look at digital daily cycles: circadian patterns of activity viewed through the lens of auto-recorded data of communication and online activity. We...

  8. Transcription through the eye of a needle: daily and annual cyclic gene expression variation in Douglas-fir needles.

    Science.gov (United States)

    Cronn, Richard; Dolan, Peter C; Jogdeo, Sanjuro; Wegrzyn, Jill L; Neale, David B; St Clair, J Bradley; Denver, Dee R

    2017-07-24

    Perennial growth in plants is the product of interdependent cycles of daily and annual stimuli that induce cycles of growth and dormancy. In conifers, needles are the key perennial organ that integrates daily and seasonal signals from light, temperature, and water availability. To understand the relationship between seasonal cycles and seasonal gene expression responses in conifers, we examined diurnal and circannual needle mRNA accumulation in Douglas-fir (Pseudotsuga menziesii) needles at diurnal and circannual scales. Using mRNA sequencing, we sampled 6.1 × 10 9 reads from 19 trees and constructed a de novo pan-transcriptome reference that includes 173,882 tree-derived transcripts. Using this reference, we mapped RNA-Seq reads from 179 samples that capture daily and annual variation. We identified 12,042 diurnally-cyclic transcripts, 9299 of which showed homology to annotated genes from other plant genomes, including angiosperm core clock genes. Annual analysis revealed 21,225 circannual transcripts, 17,335 of which showed homology to annotated genes from other plant genomes. The timing of maximum gene expression is associated with light intensity at diurnal scales and photoperiod at annual scales, with approximately half of transcripts reaching maximum expression +/- 2 h from sunrise and sunset, and +/- 20 days from winter and summer solstices. Comparisons with published studies from other conifers shows congruent behavior in clock genes with Japanese cedar (Cryptomeria), and a significant preservation of gene expression patterns for 2278 putative orthologs from Douglas-fir during the summer growing season, and 760 putative orthologs from spruce (Picea) during the transition from fall to winter. Our study highlight the extensive diurnal and circannual transcriptome variability demonstrated in conifer needles. At these temporal scales, 29% of expressed transcripts show a significant diurnal cycle, and 58.7% show a significant circannual cycle. Remarkably

  9. MXLKID: a maximum likelihood parameter identifier

    International Nuclear Information System (INIS)

    Gavel, D.T.

    1980-07-01

    MXLKID (MaXimum LiKelihood IDentifier) is a computer program designed to identify unknown parameters in a nonlinear dynamic system. Using noisy measurement data from the system, the maximum likelihood identifier computes a likelihood function (LF). Identification of system parameters is accomplished by maximizing the LF with respect to the parameters. The main body of this report briefly summarizes the maximum likelihood technique and gives instructions and examples for running the MXLKID program. MXLKID is implemented LRLTRAN on the CDC7600 computer at LLNL. A detailed mathematical description of the algorithm is given in the appendices. 24 figures, 6 tables

  10. The benefit of daily photoprotection.

    Science.gov (United States)

    Seité, Sophie; Fourtanier, Anny M A

    2008-05-01

    It is now recognized that both ultraviolet (UV)-A and UVB wavelengths participate in the generation of photodamaged human skin during sun exposure. During usual daily activities, an appropriate protection against solar UV exposure should prevent clinical, cellular, and molecular changes potentially leading to photoaging. This study was designed to evaluate in human beings the protection afforded by a day cream containing a photostable combination of UVB and UVA filters and thus protect against the UV-induced skin alterations. In solar-simulated radiation exposed and unprotected skin sites we observed melanization. The epidermis revealed a significant increase in stratum corneum and stratum granulosum thickness. In the dermis, an enhanced expression of tenascin and a reduced expression of type I procollagen were evidenced just below the dermoepidermal junction. Although no change in elastic fibers in exposed buttock skin was seen, a slightly increased deposit of lysozyme and alpha-1 antitrypsin on elastin fibers was observed using immunofluorescence techniques. A day cream with photoprotection properties was shown to prevent all of the above-described alterations. This study was performed on a limited number of patients (n = 12) with specific characteristics (20-35 years old and skin type II and III). Two dermal alterations were evaluated by visual assessment and not by computer-assisted image analysis quantification. Our in vivo results demonstrate the benefits of daily photoprotection using a day cream containing appropriate broad-spectrum sunscreens, which prevent solar UV-induced skin damages.

  11. Maximum total organic carbon limit for DWPF melter feed

    International Nuclear Information System (INIS)

    Choi, A.S.

    1995-01-01

    DWPF recently decided to control the potential flammability of melter off-gas by limiting the total carbon content in the melter feed and maintaining adequate conditions for combustion in the melter plenum. With this new strategy, all the LFL analyzers and associated interlocks and alarms were removed from both the primary and backup melter off-gas systems. Subsequently, D. Iverson of DWPF- T ampersand E requested that SRTC determine the maximum allowable total organic carbon (TOC) content in the melter feed which can be implemented as part of the Process Requirements for melter feed preparation (PR-S04). The maximum TOC limit thus determined in this study was about 24,000 ppm on an aqueous slurry basis. At the TOC levels below this, the peak concentration of combustible components in the quenched off-gas will not exceed 60 percent of the LFL during off-gas surges of magnitudes up to three times nominal, provided that the melter plenum temperature and the air purge rate to the BUFC are monitored and controlled above 650 degrees C and 220 lb/hr, respectively. Appropriate interlocks should discontinue the feeding when one or both of these conditions are not met. Both the magnitude and duration of an off-gas surge have a major impact on the maximum TOC limit, since they directly affect the melter plenum temperature and combustion. Although the data obtained during recent DWPF melter startup tests showed that the peak magnitude of a surge can be greater than three times nominal, the observed duration was considerably shorter, on the order of several seconds. The long surge duration assumed in this study has a greater impact on the plenum temperature than the peak magnitude, thus making the maximum TOC estimate conservative. Two models were used to make the necessary calculations to determine the TOC limit

  12. Maximum neutron flux in thermal reactors

    International Nuclear Information System (INIS)

    Strugar, P.V.

    1968-12-01

    Direct approach to the problem is to calculate spatial distribution of fuel concentration if the reactor core directly using the condition of maximum neutron flux and comply with thermal limitations. This paper proved that the problem can be solved by applying the variational calculus, i.e. by using the maximum principle of Pontryagin. Mathematical model of reactor core is based on the two-group neutron diffusion theory with some simplifications which make it appropriate from maximum principle point of view. Here applied theory of maximum principle are suitable for application. The solution of optimum distribution of fuel concentration in the reactor core is obtained in explicit analytical form. The reactor critical dimensions are roots of a system of nonlinear equations and verification of optimum conditions can be done only for specific examples

  13. Maximum allowable load on wheeled mobile manipulators

    International Nuclear Information System (INIS)

    Habibnejad Korayem, M.; Ghariblu, H.

    2003-01-01

    This paper develops a computational technique for finding the maximum allowable load of mobile manipulator during a given trajectory. The maximum allowable loads which can be achieved by a mobile manipulator during a given trajectory are limited by the number of factors; probably the dynamic properties of mobile base and mounted manipulator, their actuator limitations and additional constraints applied to resolving the redundancy are the most important factors. To resolve extra D.O.F introduced by the base mobility, additional constraint functions are proposed directly in the task space of mobile manipulator. Finally, in two numerical examples involving a two-link planar manipulator mounted on a differentially driven mobile base, application of the method to determining maximum allowable load is verified. The simulation results demonstrates the maximum allowable load on a desired trajectory has not a unique value and directly depends on the additional constraint functions which applies to resolve the motion redundancy

  14. Maximum phytoplankton concentrations in the sea

    DEFF Research Database (Denmark)

    Jackson, G.A.; Kiørboe, Thomas

    2008-01-01

    A simplification of plankton dynamics using coagulation theory provides predictions of the maximum algal concentration sustainable in aquatic systems. These predictions have previously been tested successfully against results from iron fertilization experiments. We extend the test to data collect...

  15. Maximum-Likelihood Detection Of Noncoherent CPM

    Science.gov (United States)

    Divsalar, Dariush; Simon, Marvin K.

    1993-01-01

    Simplified detectors proposed for use in maximum-likelihood-sequence detection of symbols in alphabet of size M transmitted by uncoded, full-response continuous phase modulation over radio channel with additive white Gaussian noise. Structures of receivers derived from particular interpretation of maximum-likelihood metrics. Receivers include front ends, structures of which depends only on M, analogous to those in receivers of coherent CPM. Parts of receivers following front ends have structures, complexity of which would depend on N.

  16. Intent to Quit among Daily and Non-Daily College Student Smokers

    Science.gov (United States)

    Pinsker, E. A.; Berg, C. J.; Nehl, E. J.; Prokhorov, A. V.; Buchanan, T. S.; Ahluwalia, J. S.

    2013-01-01

    Given the high prevalence of young adult smoking, we examined (i) psychosocial factors and substance use among college students representing five smoking patterns and histories [non-smokers, quitters, native non-daily smokers (i.e. never daily smokers), converted non-daily smokers (i.e. former daily smokers) and daily smokers] and (ii) smoking…

  17. Realistic sampling of anisotropic correlogram parameters for conditional simulation of daily rainfields

    Science.gov (United States)

    Gyasi-Agyei, Yeboah

    2018-01-01

    This paper has established a link between the spatial structure of radar rainfall, which more robustly describes the spatial structure, and gauge rainfall for improved daily rainfield simulation conditioned on the limited gauged data for regions with or without radar records. A two-dimensional anisotropic exponential function that has parameters of major and minor axes lengths, and direction, is used to describe the correlogram (spatial structure) of daily rainfall in the Gaussian domain. The link is a copula-based joint distribution of the radar-derived correlogram parameters that uses the gauge-derived correlogram parameters and maximum daily temperature as covariates of the Box-Cox power exponential margins and Gumbel copula. While the gauge-derived, radar-derived and the copula-derived correlogram parameters reproduced the mean estimates similarly using leave-one-out cross-validation of ordinary kriging, the gauge-derived parameters yielded higher standard deviation (SD) of the Gaussian quantile which reflects uncertainty in over 90% of cases. However, the distribution of the SD generated by the radar-derived and the copula-derived parameters could not be distinguished. For the validation case, the percentage of cases of higher SD by the gauge-derived parameter sets decreased to 81.2% and 86.6% for the non-calibration and the calibration periods, respectively. It has been observed that 1% reduction in the Gaussian quantile SD can cause over 39% reduction in the SD of the median rainfall estimate, actual reduction being dependent on the distribution of rainfall of the day. Hence the main advantage of using the most correct radar correlogram parameters is to reduce the uncertainty associated with conditional simulations that rely on SD through kriging.

  18. Attitude sensor alignment calibration for the solar maximum mission

    Science.gov (United States)

    Pitone, Daniel S.; Shuster, Malcolm D.

    1990-01-01

    An earlier heuristic study of the fine attitude sensors for the Solar Maximum Mission (SMM) revealed a temperature dependence of the alignment about the yaw axis of the pair of fixed-head star trackers relative to the fine pointing Sun sensor. Here, new sensor alignment algorithms which better quantify the dependence of the alignments on the temperature are developed and applied to the SMM data. Comparison with the results from the previous study reveals the limitations of the heuristic approach. In addition, some of the basic assumptions made in the prelaunch analysis of the alignments of the SMM are examined. The results of this work have important consequences for future missions with stringent attitude requirements and where misalignment variations due to variations in the temperature will be significant.

  19. Recreating Daily life in Pompeii

    Directory of Open Access Journals (Sweden)

    Nadia Magnenat-Thalmann

    2010-05-01

    Full Text Available We propose an integrated Mixed Reality methodology for recreating ancient daily life that features realistic simulations of animated virtual human actors (clothes, body, skin, face who augment real environments and re-enact staged storytelling dramas. We aim to go further from traditional concepts of static cultural artifacts or rigid geometrical and 2D textual augmentations and allow for 3D, interactive, augmented historical character-based event representations in a mobile and wearable setup. This is the main contribution of the described work as well as the proposed extensions to AR Enabling technologies: a VR/AR character simulation kernel framework with real-time, clothed virtual humans that are dynamically superimposed on live camera input, animated and acting based on a predefined, historically correct scenario. We demonstrate such a real-time case study on the actual site of ancient Pompeii.

  20. Impact of diurnal temperature fluctuations on larval settlement and growth of the reef coral Pocillopora damicornis

    Science.gov (United States)

    Jiang, Lei; Sun, You-Fang; Zhang, Yu-Yang; Zhou, Guo-Wei; Li, Xiu-Bao; McCook, Laurence J.; Lian, Jian-Sheng; Lei, Xin-Ming; Liu, Sheng; Cai, Lin; Qian, Pei-Yuan; Huang, Hui

    2017-12-01

    Diurnal fluctuations in seawater temperature are ubiquitous on tropical reef flats. However, the effects of such dynamic temperature variations on the early stages of corals are poorly understood. In this study, we investigated the responses of larvae and new recruits of Pocillopora damicornis to two constant temperature treatments (29 and 31 °C) and two diurnally fluctuating treatments (28-31 and 30-33 °C with daily means of 29 and 31 °C, respectively) simulating the 3 °C diel oscillations at 3 m depth on the Luhuitou fringing reef (Sanya, China). Results showed that the thermal stress on settlement at 31 °C was almost negated by the fluctuating treatment. Further, neither elevated temperature nor temperature fluctuations caused bleaching responses in recruits, while the maximum excitation pressure over photosystem II (PSII) was reduced under fluctuating temperatures. Although early growth and development were highly stimulated at 31 °C, oscillations of 3 °C had little effects on budding and lateral growth at either mean temperature. Nevertheless, daytime encounters with the maximum temperature of 33 °C in fluctuating 31 °C elicited a notable reduction in calcification compared to constant 31 °C. These results underscore the complexity of the effects caused by diel temperature fluctuations on early stages of corals and suggest that ecologically relevant temperature variability could buffer warming stress on larval settlement and dampen the positive effects of increased temperatures on coral growth.

  1. Microprocessor-controlled step-down maximum-power-point tracker for photovoltaic systems

    Science.gov (United States)

    Mazmuder, R. K.; Haidar, S.

    1992-12-01

    An efficient maximum power point tracker (MPPT) has been developed and can be used with a photovoltaic (PV) array and a load which requires lower voltage than the PV array voltage to be operated. The MPPT makes the PV array to operate at maximum power point (MPP) under all insolation and temperature, which ensures the maximum amount of available PV power to be delivered to the load. The performance of the MPPT has been studied under different insolation levels.

  2. Study of forecasting maximum demand of electric power

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, B.C.; Hwang, Y.J. [Korea Energy Economics Institute, Euiwang (Korea, Republic of)

    1997-08-01

    As far as the past performances of power supply and demand in Korea is concerned, one of the striking phenomena is that there have been repeated periodic surpluses and shortages of power generation facilities. Precise assumption and prediction of power demands is the basic work in establishing a supply plan and carrying out the right policy since facilities investment of the power generation industry requires a tremendous amount of capital and a long construction period. The purpose of this study is to study a model for the inference and prediction of a more precise maximum demand under these backgrounds. The non-parametric model considered in this study, paying attention to meteorological factors such as temperature and humidity, does not have a simple proportionate relationship with the maximum power demand, but affects it through mutual complicated nonlinear interaction. I used the non-parametric inference technique by introducing meteorological effects without importing any literal assumption on the interaction of temperature and humidity preliminarily. According to the analysis result, it is found that the non-parametric model that introduces the number of tropical nights which shows the continuity of the meteorological effect has better prediction power than the linear model. The non- parametric model that considers both the number of tropical nights and the number of cooling days at the same time is a model for predicting maximum demand. 7 refs., 6 figs., 9 tabs.

  3. CDC WONDER: Daily Fine Particulate Matter

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Daily Fine Particulate Matter data available on CDC WONDER are geographically aggregated daily measures of fine particulate matter in the outdoor air, spanning...

  4. Global Daily Climatology Network: Kazakhstan subset

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset is a compilation of in situ daily meteorological observations for Kazakhstan within the framework of joint efforts to create Global Daily Climatology...

  5. Maximum-Entropy Inference with a Programmable Annealer

    Science.gov (United States)

    Chancellor, Nicholas; Szoke, Szilard; Vinci, Walter; Aeppli, Gabriel; Warburton, Paul A.

    2016-03-01

    Optimisation problems typically involve finding the ground state (i.e. the minimum energy configuration) of a cost function with respect to many variables. If the variables are corrupted by noise then this maximises the likelihood that the solution is correct. The maximum entropy solution on the other hand takes the form of a Boltzmann distribution over the ground and excited states of the cost function to correct for noise. Here we use a programmable annealer for the information decoding problem which we simulate as a random Ising model in a field. We show experimentally that finite temperature maximum entropy decoding can give slightly better bit-error-rates than the maximum likelihood approach, confirming that useful information can be extracted from the excited states of the annealer. Furthermore we introduce a bit-by-bit analytical method which is agnostic to the specific application and use it to show that the annealer samples from a highly Boltzmann-like distribution. Machines of this kind are therefore candidates for use in a variety of machine learning applications which exploit maximum entropy inference, including language processing and image recognition.

  6. Monitoring daily and sub-daily variations in crustal strain with seismic arrays

    Science.gov (United States)

    Mao, S.; Campillo, M.; van der Hilst, R. D.; Brenguier, F.; Hillers, G.

    2017-12-01

    We demonstrate that we can monitor deformation of the shallow crust (with hourly temporal resolution) directly with seismic waves, by measuring relative seismic wave speed changes (dv/v) due to relatively known periodical forcing (tides and changes in atmospheric temperature) at Piton de la Fournaise Volcano (PdF), La Réunion. We use ambient seismic noise recorded (for one month) at VolcArray, an experiment with three arrays of 49 vertical-component geophones deployed on a 7x7 grid of approximately 80 m spacing. Through noise-based coda wave interferometry we infer for each array the average relative changes in propagation speed of seismic waves (dv/v) as a function of time, which relate to temporal changes in medium properties within 100m depth. The variations in dv/v ( 0.05%) on time-scales longer than a day are best explained by effects of precipitation on pore pressure. In contrast, the (weaker) daily and sub-daily fluctuations of dv/v ( 0.01%) are likely to be caused by tidal and thermal effects. We verify that the inferred variations of dv/v are unrelated to spatiotemporal changes of noise wavefields. We further compare the power spectrum of dv/v with spectra of simulated tide-induced volumetric strain, temperature records, very broadband (VBB) seismograms, and borehole tilt records. In all five types of data, dominant peaks are found at around diurnal, semi-diurnal, and ter-diurnal frequencies. A comparison of phase and spectra of the data suggests that the tidal and thermal effects on dv/v are of similar magnitude but vary with frequency. Theoretical modeling of tide- and temperature-induced strain in different frequency bands agrees with the relative magnitude of the two effects on dv/v from passive monitoring.

  7. Thermoelectric cooler concepts and the limit for maximum cooling

    International Nuclear Information System (INIS)

    Seifert, W; Hinsche, N F; Pluschke, V

    2014-01-01

    The conventional analysis of a Peltier cooler approximates the material properties as independent of temperature using a constant properties model (CPM). Alternative concepts have been published by Bian and Shakouri (2006 Appl. Phys. Lett. 89 212101), Bian (et al 2007 Phys. Rev. B 75 245208) and Snyder et al (2012 Phys. Rev. B 86 045202). While Snyder's Thomson cooler concept results from a consideration of compatibility, the method of Bian et al focuses on the redistribution of heat. Thus, both approaches are based on different principles. In this paper we compare the new concepts to CPM and we reconsider the limit for maximum cooling. The results provide a new perspective on maximum cooling. (paper)

  8. Design and Implementation of Photovoltaic Maximum Power Point Tracking Controller

    Directory of Open Access Journals (Sweden)

    Fawaz S. Abdullah

    2018-03-01

    Full Text Available  The power supplied by any solar array depends upon the environmental conditions as weather conditions (temperature and radiation intensity and the incident angle of the radiant source. The work aims to study the maximum power tracking schemes that used to compare the system performance without and with different types of controllers. The maximum power points of the solar panel under test studied and compared with two controller's types.  The first controller is the proportional- integral - derivative controller type and the second is the perturbation and observation algorithm controller. The associated converter system is a microcontroller based type, whereas the results studied and compared of greatest power point of the Photovoltaic panels under the different two controllers. The experimental tests results compared with simulation results to verify accurate performance.

  9. Maximum gravitational redshift of white dwarfs

    International Nuclear Information System (INIS)

    Shapiro, S.L.; Teukolsky, S.A.

    1976-01-01

    The stability of uniformly rotating, cold white dwarfs is examined in the framework of the Parametrized Post-Newtonian (PPN) formalism of Will and Nordtvedt. The maximum central density and gravitational redshift of a white dwarf are determined as functions of five of the nine PPN parameters (γ, β, zeta 2 , zeta 3 , and zeta 4 ), the total angular momentum J, and the composition of the star. General relativity predicts that the maximum redshifts is 571 km s -1 for nonrotating carbon and helium dwarfs, but is lower for stars composed of heavier nuclei. Uniform rotation can increase the maximum redshift to 647 km s -1 for carbon stars (the neutronization limit) and to 893 km s -1 for helium stars (the uniform rotation limit). The redshift distribution of a larger sample of white dwarfs may help determine the composition of their cores

  10. Maximum entropy analysis of EGRET data

    DEFF Research Database (Denmark)

    Pohl, M.; Strong, A.W.

    1997-01-01

    EGRET data are usually analysed on the basis of the Maximum-Likelihood method \\cite{ma96} in a search for point sources in excess to a model for the background radiation (e.g. \\cite{hu97}). This method depends strongly on the quality of the background model, and thus may have high systematic unce...... uncertainties in region of strong and uncertain background like the Galactic Center region. Here we show images of such regions obtained by the quantified Maximum-Entropy method. We also discuss a possible further use of MEM in the analysis of problematic regions of the sky....

  11. The Maximum Resource Bin Packing Problem

    DEFF Research Database (Denmark)

    Boyar, J.; Epstein, L.; Favrholdt, L.M.

    2006-01-01

    Usually, for bin packing problems, we try to minimize the number of bins used or in the case of the dual bin packing problem, maximize the number or total size of accepted items. This paper presents results for the opposite problems, where we would like to maximize the number of bins used...... algorithms, First-Fit-Increasing and First-Fit-Decreasing for the maximum resource variant of classical bin packing. For the on-line variant, we define maximum resource variants of classical and dual bin packing. For dual bin packing, no on-line algorithm is competitive. For classical bin packing, we find...

  12. Shower maximum detector for SDC calorimetry

    International Nuclear Information System (INIS)

    Ernwein, J.

    1994-01-01

    A prototype for the SDC end-cap (EM) calorimeter complete with a pre-shower and a shower maximum detector was tested in beams of electrons and Π's at CERN by an SDC subsystem group. The prototype was manufactured from scintillator tiles and strips read out with 1 mm diameter wave-length shifting fibers. The design and construction of the shower maximum detector is described, and results of laboratory tests on light yield and performance of the scintillator-fiber system are given. Preliminary results on energy and position measurements with the shower max detector in the test beam are shown. (authors). 4 refs., 5 figs

  13. Topics in Bayesian statistics and maximum entropy

    International Nuclear Information System (INIS)

    Mutihac, R.; Cicuttin, A.; Cerdeira, A.; Stanciulescu, C.

    1998-12-01

    Notions of Bayesian decision theory and maximum entropy methods are reviewed with particular emphasis on probabilistic inference and Bayesian modeling. The axiomatic approach is considered as the best justification of Bayesian analysis and maximum entropy principle applied in natural sciences. Particular emphasis is put on solving the inverse problem in digital image restoration and Bayesian modeling of neural networks. Further topics addressed briefly include language modeling, neutron scattering, multiuser detection and channel equalization in digital communications, genetic information, and Bayesian court decision-making. (author)

  14. Density estimation by maximum quantum entropy

    International Nuclear Information System (INIS)

    Silver, R.N.; Wallstrom, T.; Martz, H.F.

    1993-01-01

    A new Bayesian method for non-parametric density estimation is proposed, based on a mathematical analogy to quantum statistical physics. The mathematical procedure is related to maximum entropy methods for inverse problems and image reconstruction. The information divergence enforces global smoothing toward default models, convexity, positivity, extensivity and normalization. The novel feature is the replacement of classical entropy by quantum entropy, so that local smoothing is enforced by constraints on differential operators. The linear response of the estimate is proportional to the covariance. The hyperparameters are estimated by type-II maximum likelihood (evidence). The method is demonstrated on textbook data sets

  15. The estimation of probable maximum precipitation: the case of Catalonia.

    Science.gov (United States)

    Casas, M Carmen; Rodríguez, Raül; Nieto, Raquel; Redaño, Angel

    2008-12-01

    A brief overview of the different techniques used to estimate the probable maximum precipitation (PMP) is presented. As a particular case, the 1-day PMP over Catalonia has been calculated and mapped with a high spatial resolution. For this purpose, the annual maximum daily rainfall series from 145 pluviometric stations of the Instituto Nacional de Meteorología (Spanish Weather Service) in Catalonia have been analyzed. In order to obtain values of PMP, an enveloping frequency factor curve based on the actual rainfall data of stations in the region has been developed. This enveloping curve has been used to estimate 1-day PMP values of all the 145 stations. Applying the Cressman method, the spatial analysis of these values has been achieved. Monthly precipitation climatological data, obtained from the application of Geographic Information Systems techniques, have been used as the initial field for the analysis. The 1-day PMP at 1 km(2) spatial resolution over Catalonia has been objectively determined, varying from 200 to 550 mm. Structures with wavelength longer than approximately 35 km can be identified and, despite their general concordance, the obtained 1-day PMP spatial distribution shows remarkable differences compared to the annual mean precipitation arrangement over Catalonia.

  16. Daily physical activity and its relation to aerobic fitness in children aged 8-11 years

    DEFF Research Database (Denmark)

    Dencker, Magnus; Thorsson, Ola; Karlsson, Magnus K.

    2006-01-01

    and fitness in children has been published, where fitness has been assessed by direct measurement of maximum oxygen uptake and related to daily physical activity intensities by accelerometers. We examined 248 children (140 boys and 108 girls), aged 7.9-11.1 years. Maximum workload and maximal oxygen uptake...... in vigorous physical activity were calculated. VO2PEAK was correlated with mean accelerometer counts (r=0.23 for boys and r=0.23 for girls, both Pactivity (r=0.32 for boys, r=0.30 for girls, both P...Abstract  A positive relationship between daily physical activity and aerobic fitness exists in adults. Studies in children have given conflicting results, possibly because of differences in methods used to assess daily physical activity and fitness. No study regarding daily physical activity...

  17. Evaluating the applicability of using daily forecasts from seasonal prediction systems (SPSs) for agriculture: a case study of Nepal's Terai with the NCEP CFSv2

    Science.gov (United States)

    Jha, Prakash K.; Athanasiadis, Panos; Gualdi, Silvio; Trabucco, Antonio; Mereu, Valentina; Shelia, Vakhtang; Hoogenboom, Gerrit

    2018-03-01

    Ensemble forecasts from dynamic seasonal prediction systems (SPSs) have the potential to improve decision-making for crop management to help cope with interannual weather variability. Because the reliability of crop yield predictions based on seasonal weather forecasts depends on the quality of the forecasts, it is essential to evaluate forecasts prior to agricultural applications. This study analyses the potential of Climate Forecast System version 2 (CFSv2) in predicting the Indian summer monsoon (ISM) for producing meteorological variables relevant to crop modeling. The focus area was Nepal's Terai region, and the local hindcasts were compared with weather station and reanalysis data. The results showed that the CFSv2 model accurately predicts monthly anomalies of daily maximum and minimum air temperature (Tmax and Tmin) as well as incoming total surface solar radiation (Srad). However, the daily climatologies of the respective CFSv2 hindcasts exhibit significant systematic biases compared to weather station data. The CFSv2 is less capable of predicting monthly precipitation anomalies and simulating the respective intra-seasonal variability over the growing season. Nevertheless, the observed daily climatologies of precipitation fall within the ensemble spread of the respective daily climatologies of CFSv2 hindcasts. These limitations in the CFSv2 seasonal forecasts, primarily in precipitation, restrict the potential application for predicting the interannual variability of crop yield associated with weather variability. Despite these limitations, ensemble averaging of the simulated yield using all CFSv2 members after applying bias correction may lead to satisfactory yield predictions.

  18. Nonsymmetric entropy and maximum nonsymmetric entropy principle

    International Nuclear Information System (INIS)

    Liu Chengshi

    2009-01-01

    Under the frame of a statistical model, the concept of nonsymmetric entropy which generalizes the concepts of Boltzmann's entropy and Shannon's entropy, is defined. Maximum nonsymmetric entropy principle is proved. Some important distribution laws such as power law, can be derived from this principle naturally. Especially, nonsymmetric entropy is more convenient than other entropy such as Tsallis's entropy in deriving power laws.

  19. Maximum speed of dewetting on a fiber

    NARCIS (Netherlands)

    Chan, Tak Shing; Gueudre, Thomas; Snoeijer, Jacobus Hendrikus

    2011-01-01

    A solid object can be coated by a nonwetting liquid since a receding contact line cannot exceed a critical speed. We theoretically investigate this forced wetting transition for axisymmetric menisci on fibers of varying radii. First, we use a matched asymptotic expansion and derive the maximum speed

  20. Maximum potential preventive effect of hip protectors

    NARCIS (Netherlands)

    van Schoor, N.M.; Smit, J.H.; Bouter, L.M.; Veenings, B.; Asma, G.B.; Lips, P.T.A.M.

    2007-01-01

    OBJECTIVES: To estimate the maximum potential preventive effect of hip protectors in older persons living in the community or homes for the elderly. DESIGN: Observational cohort study. SETTING: Emergency departments in the Netherlands. PARTICIPANTS: Hip fracture patients aged 70 and older who