Conductivity maximum in a charged colloidal suspension
Bastea, S
2009-01-27
Molecular dynamics simulations of a charged colloidal suspension in the salt-free regime show that the system exhibits an electrical conductivity maximum as a function of colloid charge. We attribute this behavior to two main competing effects: colloid effective charge saturation due to counterion 'condensation' and diffusion slowdown due to the relaxation effect. In agreement with previous observations, we also find that the effective transported charge is larger than the one determined by the Stern layer and suggest that it corresponds to the boundary fluid layer at the surface of the colloidal particles.
Narrow band interference cancelation in OFDM: Astructured maximum likelihood approach
Sohail, Muhammad Sadiq
2012-06-01
This paper presents a maximum likelihood (ML) approach to mitigate the effect of narrow band interference (NBI) in a zero padded orthogonal frequency division multiplexing (ZP-OFDM) system. The NBI is assumed to be time variant and asynchronous with the frequency grid of the ZP-OFDM system. The proposed structure based technique uses the fact that the NBI signal is sparse as compared to the ZP-OFDM signal in the frequency domain. The structure is also useful in reducing the computational complexity of the proposed method. The paper also presents a data aided approach for improved NBI estimation. The suitability of the proposed method is demonstrated through simulations. © 2012 IEEE.
Design for maximum band-gaps in beam structures
Olhoff, Niels; Niu, Bin; Cheng, Gengdong
2012-01-01
This paper aims to extend earlier optimum design results for transversely vibrating Bernoulli-Euler beams by determining new optimum band-gap beam structures for (i) different combinations of classical boundary conditions, (ii) much larger values of the orders n and n-1 of adjacent upper and lowe...
Graphene Nanoribbon Conductance Model in Parabolic Band Structure
Mohammad Taghi Ahmadi
2010-01-01
Full Text Available Many experimental measurements have been done on GNR conductance. In this paper, analytical model of GNR conductance is presented. Moreover, comparison with published data which illustrates good agreement between them is studied. Conductance of GNR as a one-dimensional device channel with parabolic band structures near the charge neutrality point is improved. Based on quantum confinement effect, the conductance of GNR in parabolic part of the band structure, also the temperature-dependent conductance which displays minimum conductance near the charge neutrality point are calculated. Graphene nanoribbon (GNR with parabolic band structure near the minimum band energy terminates Fermi-Dirac integral base method on band structure study. While band structure is parabola, semiconducting GNRs conductance is a function of Fermi-Dirac integral which is based on Maxwell approximation in nondegenerate limit especially for a long channel.
Effective soil hydraulic conductivity predicted with the maximum power principle
Westhoff, Martijn; Erpicum, Sébastien; Archambeau, Pierre; Pirotton, Michel; Zehe, Erwin; Dewals, Benjamin
2016-04-01
Drainage of water in soils happens for a large extent through preferential flowpaths, but these subsurface flowpaths are extremely difficult to observe or parameterize in hydrological models. To potentially overcome this problem, thermodynamic optimality principles have been suggested to predict effective parametrization of these (sub-grid) structures, such as the maximum entropy production principle or the equivalent maximum power principle. These principles have been successfully applied to predict heat transfer from the Equator to the Poles, or turbulent heat fluxes between the surface and the atmosphere. In these examples, the effective flux adapts itself to its boundary condition by adapting its effective conductance through the creation of e.g. convection cells. However, flow through porous media, such as soils, can only quickly adapt its effective flow conductance by creation of preferential flowpaths, but it is unknown if this is guided by the aim to create maximum power. Here we show experimentally that this is indeed the case: In the lab, we created a hydrological analogue to the atmospheric model dealing with heat transport between Equator and poles. The experimental setup consists of two freely draining reservoirs connected with each other by a confined aquifer. By adding water to only one reservoir, a potential difference will build up until a steady state is reached. From the steady state potential difference and the observed flow through the aquifer, and effective hydraulic conductance can be determined. This observed conductance does correspond to the one maximizing power of the flux through the confined aquifer. Although this experiment is done in an idealized setting, it opens doors for better parameterizing hydrological models. Furthermore, it shows that hydraulic properties of soils are not static, but they change with changing boundary conditions. A potential limitation to the principle is that it only applies to steady state conditions
Conduction Band of the Photographic Compound AgCl
Boer, P.K. de; Groot, R.A. de
1999-01-01
Electronic structure calculations on the photographic compound AgCl are reported. It is shown that the conduction band has a large Cl-4s character, contrary to the common picture of the conduction band being derived from Ag-5s states. Possible consequences for the photographic process are discussed.
Conduction Band of the Photographic Compound AgCl
Boer, P.K. de; Groot, R.A. de
1999-01-01
Electronic structure calculations on the photographic compound AgCl are reported. It is shown that the conduction band has a large Cl-4s character, contrary to the common picture of the conduction band being derived from Ag-5s states. Possible consequences for the photographic process are discussed.
Fukuyama, H. [Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577 (Japan)
2006-07-03
Interband effects of magnetic field on orbital susceptibility and Hall conductivity have been theoretically studied with special reference to single crystal bismuth (Bi), whose energy bands near the band-edges are similar to those of Dirac electrons. It has long been known that orbital susceptibilty in Bi has a maximum when the Fermi energy is located in the band-gap and then the density of states at the Fermi energy is vanishing. This implies that the magnetic field induces persistent current even in the insulating state. On the other hand, weak-field Hall conductivity, which reflects transport current, has turned out to be vanishing if the Fermi energy is in the band-gap. Interesting possibility has been pointed out of the inter-band contributions to the Hall conductivity once the Fermi energy lies slightly in the energy band. (Abstract Copyright [2006], Wiley Periodicals, Inc.)
Conduction bands and invariant energy gaps in alkali bromides
Boer, P.K. de; Groot, R.A. de
1998-01-01
Electronic structure calculations of the alkali bromides LiBr, NaBr, KBr, RbBr and CsBr are reported. It is shown that the conduction band has primarily bromine character. The size of the band gaps of bromides and alkali halides in general is reinterpreted.
Revisiting the Valence and Conduction Band Size Dependence of PbS Quantum Dot Thin Films
Miller, Elisa M.; Kroupa, Daniel M.; Zhang, Jianbing; Schulz, Philip; Marshall, Ashley R.; Kahn, Antoine; Lany, Stephan; Luther, Joseph M.; Beard, Matthew C.; Perkins, Craig L.; van de Lagemaat, Jao
2016-03-22
We use a high signal-to-noise X-ray photoelectron spectrum of bulk PbS, GW calculations, and a model assuming parabolic bands to unravel the various X-ray and ultraviolet photoelectron spectral features of bulk PbS as well as determine how to best analyze the valence band region of PbS quantum dot (QD) films. X-ray and ultraviolet photoelectron spectroscopy (XPS and UPS) are commonly used to probe the difference between the Fermi level and valence band maximum (VBM) for crystalline and thin-film semiconductors. However, we find that when the standard XPS/UPS analysis is used for PbS, the results are often unrealistic due to the low density of states at the VBM. Instead, a parabolic band model is used to determine the VBM for the PbS QD films, which is based on the bulk PbS experimental spectrum and bulk GW calculations. Our analysis highlights the breakdown of the Brillioun zone representation of the band diagram for large band gap, highly quantum confined PbS QDs. We have also determined that in 1,2-ethanedithiol-treated PbS QD films the Fermi level position is dependent on the QD size; specifically, the smallest band gap QD films have the Fermi level near the conduction band minimum and the Fermi level moves away from the conduction band for larger band gap PbS QD films. This change in the Fermi level within the QD band gap could be due to changes in the Pb:S ratio. In addition, we use inverse photoelectron spectroscopy to measure the conduction band region, which has similar challenges in the analysis of PbS QD films due to a low density of states near the conduction band minimum.
Tunable Band Gap and Conductivity Type of ZnSe/Si Core-Shell Nanowire Heterostructures
Yijie Zeng
2014-10-01
Full Text Available The electronic properties of zincblende ZnSe/Si core-shell nanowires (NWs with a diameter of 1.1–2.8 nm are calculated by means of the first principle calculation. Band gaps of both ZnSe-core/Si-shell and Si-core/ZnSe-shell NWs are much smaller than those of pure ZnSe or Si NWs. Band alignment analysis reveals that the small band gaps of ZnSe/Si core-shell NWs are caused by the interface state. Fixing the ZnSe core size and enlarging the Si shell would turn the NWs from intrinsic to p-type, then to metallic. However, Fixing the Si core and enlarging the ZnSe shell would not change the band gap significantly. The partial charge distribution diagram shows that the conduction band maximum (CBM is confined in Si, while the valence band maximum (VBM is mainly distributed around the interface. Our findings also show that the band gap and conductivity type of ZnSe/Si core-shell NWs can be tuned by the concentration and diameter of the core-shell material, respectively.
Tunable Band Gap and Conductivity Type of ZnSe/Si Core-Shell Nanowire Heterostructures.
Zeng, Yijie; Xing, Huaizhong; Fang, Yanbian; Huang, Yan; Lu, Aijiang; Chen, Xiaoshuang
2014-10-31
The electronic properties of zincblende ZnSe/Si core-shell nanowires (NWs) with a diameter of 1.1-2.8 nm are calculated by means of the first principle calculation. Band gaps of both ZnSe-core/Si-shell and Si-core/ZnSe-shell NWs are much smaller than those of pure ZnSe or Si NWs. Band alignment analysis reveals that the small band gaps of ZnSe/Si core-shell NWs are caused by the interface state. Fixing the ZnSe core size and enlarging the Si shell would turn the NWs from intrinsic to p-type, then to metallic. However, Fixing the Si core and enlarging the ZnSe shell would not change the band gap significantly. The partial charge distribution diagram shows that the conduction band maximum (CBM) is confined in Si, while the valence band maximum (VBM) is mainly distributed around the interface. Our findings also show that the band gap and conductivity type of ZnSe/Si core-shell NWs can be tuned by the concentration and diameter of the core-shell material, respectively.
Characterization of the valence and conduction bands in Si nanocrystals
van Buuren, T.; Terminello, L.; Chase, L.; Callcott, T.; Grush, M.
1998-03-01
Silicon nanocrystals with a mean diameter between 1 and 4 nm were produced by thermal evaporation of Si in Ar buffer gas and deposited on a substrate. The size-distribution and diameter of the clusters were characterized by atomic force microscopy. The valence and conduction band edges of the Si nanocrystals were measured in-situ using soft x-ray emission (SXE) and absorption (XAS) spectroscopies. The valence band of the smallest Si nanocrystals is shifted by much as 0.7 eV relative to bulk Si. Significant changes in the shape of the spectra are also observed between the Si nanocrytals and bulk Si. We interpret the shift and changes in the spectra of the valence band as resulting from an altered electronic band structure in the confined Si structures. A smaller but proportional shift of the conduction band to higher energy is also observed in the XAS spectra of the silicon nanostructures. We compare the experimentally measured bandgap to recent electronic structure calculations and find, that the experimentally measured bandgap is smaller than that predicted by theory. Work supported by the U.S. Department of Energy, BES-Materials Sciences, under Contract W-7405-ENG-48.
Osterloh, Frank E
2014-10-02
The Shockley-Queisser analysis provides a theoretical limit for the maximum energy conversion efficiency of single junction photovoltaic cells. But besides the semiconductor bandgap no other semiconductor properties are considered in the analysis. Here, we show that the maximum conversion efficiency is limited further by the excited state entropy of the semiconductors. The entropy loss can be estimated with the modified Sackur-Tetrode equation as a function of the curvature of the bands, the degeneracy of states near the band edges, the illumination intensity, the temperature, and the band gap. The application of the second law of thermodynamics to semiconductors provides a simple explanation for the observed high performance of group IV, III-V, and II-VI materials with strong covalent bonding and for the lower efficiency of transition metal oxides containing weakly interacting metal d orbitals. The model also predicts efficient energy conversion with quantum confined and molecular structures in the presence of a light harvesting mechanism.
Genetic algorithm-based wide-band deterministic maximum likelihood direction finding algorithm
无
2005-01-01
The wide-band direction finding is one of hit and difficult task in array signal processing. This paper generalizes narrow-band deterministic maximum likelihood direction finding algorithm to the wideband case, and so constructions an object function, then utilizes genetic algorithm for nonlinear global optimization. Direction of arrival is estimated without preprocessing of array data and so the algorithm eliminates the effect of pre-estimate on the final estimation. The algorithm is applied on uniform linear array and extensive simulation results prove the efficacy of the algorithm. In the process of simulation, we obtain the relation between estimation error and parameters of genetic algorithm.
Spin-Polarized Electron Emission from Superlattices with Zero Conduction Band Offset
Clendenin, James E
1998-11-09
Electron spin polarization as high as 86% has been reproducibly obtained from strained Al{sub x}In{sub y}Ga{sub 1-x-y}As/GaAs superlattice with minimal conduction band offset at the heterointerfaces. The modulation doping of the SL provides high polarization and high quantum yield at the polarization maximum. The position of the maximum can be easily tuned to an excitation wavelength by choice of the SL composition. Further improvement of the emitter parameters can be expected with additional optimization of the SL structure parameters.
Conductivity measurements in a shear-banding wormlike micellar system.
Photinos, Panos J; López-González, M R; Hoven, Corey V; Callaghan, Paul T
2010-07-01
Shear banding in the cetylpyridinium chloride/sodium salicylate micellar system is investigated using electrical conductivity measurements parallel to the velocity and parallel to the vorticity in a cylindrical Couette cell. The measurements show that the conductivity parallel to the velocity (vorticity) increases (decreases) monotonically with applied shear rate. The shear-induced anisotropy is over one order of magnitude lower than the anisotropy of the N(c) nematic phase. The steady-state conductivity measurements indicate that the anisotropy of the shear induced low-viscosity (high shear rate) phase is not significantly larger than the anisotropy of the high viscosity (low shear rate) phase. We estimate that the micelles in the shear induced low viscosity band are relatively short, with a characteristic length to diameter ratio of 5-15. The relaxation behavior following the onset of shear is markedly different above and below the first critical value γ1, in agreement with results obtained by other methods. The transient measurements show that the overall anisotropy of the sample decreases as the steady state is approached, i.e., the micellar length/the degree of order decrease.
Indoor Ultra-Wide Band Network Adjustment using Maximum Likelihood Estimation
Koppanyi, Z.; Toth, C. K.
2014-11-01
This study is the part of our ongoing research on using ultra-wide band (UWB) technology for navigation at the Ohio State University. Our tests have indicated that the UWB two-way time-of-flight ranges under indoor circumstances follow a Gaussian mixture distribution that may be caused by the incompleteness of the functional model. In this case, to adjust the UWB network from the observed ranges, the maximum likelihood estimation (MLE) may provide a better solution for the node coordinates than the widely-used least squares approach. The prerequisite of the maximum likelihood method is to know the probability density functions. The 30 Hz sampling rate of the UWB sensors enables to estimate these functions between each node from the samples in static positioning mode. In order to prove the MLE hypothesis, an UWB network has been established in a multi-path density environment for test data acquisition. The least squares and maximum likelihood coordinate solutions are determined and compared, and the results indicate that better accuracy can be achieved with maximum likelihood estimation.
Determination of Conduction and Valence Band Electronic Structure of LaTiOx Ny Thin Film.
Pichler, Markus; Szlachetko, Jakub; Castelli, Ivano E; Marzari, Nicola; Döbeli, Max; Wokaun, Alexander; Pergolesi, Daniele; Lippert, Thomas
2017-05-09
The nitrogen substitution into the oxygen sites of several oxide materials leads to a reduction of the band gap to the visible-light energy range, which makes these oxynitride semiconductors potential photocatalysts for efficient solar water splitting. Oxynitrides typically show a different crystal structure compared to the pristine oxide material. As the band gap is correlated to both the chemical composition and the crystal structure, it is not trivial to distinguish which modifications of the electronic structure induced by the nitrogen substitution are related to compositional and/or structural effects. Here, X-ray emission and absorption spectroscopy are used to investigate the electronic structures of orthorhombic perovskite LaTiOx Ny thin films in comparison with films of the pristine oxide LaTiOx with similar orthorhombic structure and cationic oxidation state. Experiment and theory show the expected upward shift in energy of the valence band maximum that reduces the band gap as a consequence of the nitrogen incorporation. This study also shows that the conduction band minimum, typically considered almost unaffected by nitrogen substitution, undergoes a significant downward shift in energy. For a rational design of oxynitride photocatalysts, the observed changes of both the unoccupied and occupied electronic states have to be taken into account to justify the total band-gap narrowing induced by the nitrogen incorporation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Singh, Avanish Pratap; Anoop Kumar, S.; Chandra, Amita; Dhawan, S. K.
2011-06-01
β-Naphthalene sulphonic acid (β-NSA) doped polyaniline (PANI)-flyash (FA) composites have been prepared by chemical oxidative polymerization route whose conductivity lies in the range 2.37-21.49 S/cm. The temperature dependence of electrical conductivity has also been recorded which shows that composites follow Mott's 3D-VRH model. SEM images demonstrate that β-NSA leads to the formation of the tubular structure with incorporated flyash phase. TGA studies show the improvement in thermal stability of composites with increase in loading level of flyash. Complex parameters i.e. permittivity (ɛ* = ɛ'- iɛ″) and permeability (μ*=μ'- iμ″) of PANI-FA composites have been calculated from experimental scattering parameters (S11 & S21) using theoretical calculations given in Nicholson-Ross and Weir algorithms. The microwave absorption properties of the composites have been studied in X-band (8.2 - 12.4 GHz) & Ku-Band (12.4 - 18 GHz) frequency range. The maximum shielding effectiveness observed was 32dB, which strongly depends on dielectric loss and volume fraction of flyash in PANI matrix.
Avanish Pratap Singh
2011-06-01
Full Text Available β–Naphthalene sulphonic acid (β–NSA doped polyaniline (PANI–flyash (FA composites have been prepared by chemical oxidative polymerization route whose conductivity lies in the range 2.37–21.49 S/cm. The temperature dependence of electrical conductivity has also been recorded which shows that composites follow Mott's 3D–VRH model. SEM images demonstrate that β–NSA leads to the formation of the tubular structure with incorporated flyash phase. TGA studies show the improvement in thermal stability of composites with increase in loading level of flyash. Complex parameters i.e. permittivity (ɛ* = ɛ′- iɛ″ and permeability (μ*=μ′- iμ″ of PANI-FA composites have been calculated from experimental scattering parameters (S11 & S21 using theoretical calculations given in Nicholson–Ross and Weir algorithms. The microwave absorption properties of the composites have been studied in X-band (8.2 – 12.4 GHz & Ku–Band (12.4 – 18 GHz frequency range. The maximum shielding effectiveness observed was 32dB, which strongly depends on dielectric loss and volume fraction of flyash in PANI matrix.
Yong, Zhengdong; Gong, Chengsheng; He, Sailing
2016-01-01
Plasmonics offer an exciting way to mediate the interaction between light and matter, allowing strong field enhancement and confinement, large absorption and scattering at resonance. However, simultaneous realization of ultra-narrow band perfect absorption and electromagnetic field enhancement is challenging due to the intrinsic high optical losses and radiative damping in metals. Here, we propose an all-metal plasmonic absorber with an absorption bandwidth less than 8nm and polarization insensitive absorptivity exceeding 99%. Unlike traditional Metal-Dielectric-Metal configurations, we demonstrate that the narrowband perfect absorption and field enhancement are ascribed to the vertical gap plasmonic mode in the deep subwavelength scale, which has a high quality factor of 120 and mode volume of about 10^-4*({\\lambda}/n)^3 . Based on the coupled mode theory, we verify that the diluted field enhancement is proportional to the absorption, and thus perfect absorption is critical to maximum field enhancement. In a...
Yong, Zhengdong; Zhang, Senlin; Gong, Chensheng; He, Sailing
2016-04-01
Plasmonics offer an exciting way to mediate the interaction between light and matter, allowing strong field enhancement and confinement, large absorption and scattering at resonance. However, simultaneous realization of ultra-narrow band perfect absorption and electromagnetic field enhancement is challenging due to the intrinsic high optical losses and radiative damping in metals. Here, we propose an all-metal plasmonic absorber with an absorption bandwidth less than 8 nm and polarization insensitive absorptivity exceeding 99%. Unlike traditional Metal-Dielectric-Metal configurations, we demonstrate that the narrowband perfect absorption and field enhancement are ascribed to the vertical gap plasmonic mode in the deep subwavelength scale, which has a high quality factor of 120 and mode volume of about 10-4 × (λres/n)3. Based on the coupled mode theory, we verify that the diluted field enhancement is proportional to the absorption, and thus perfect absorption is critical to maximum field enhancement. In addition, the proposed perfect absorber can be operated as a refractive index sensor with a sensitivity of 885 nm/RIU and figure of merit as high as 110. It provides a new design strategy for narrow band perfect absorption and local field enhancement, and has potential applications in biosensors, filters and nonlinear optics.
Westhoff, M.; Erpicum, S.; Archambeau, P.; Pirotton, M.; Zehe, E.; Dewals, B.
2015-12-01
Power can be performed by a system driven by a potential difference. From a given potential difference, the power that can be subtracted is constraint by the Carnot limit, which follows from the first and second laws of thermodynamics. If the system is such that the flux producing power (with power being the flux times its driving potential difference) also influences the potential difference, a maximum in power can be obtained as a result of the trade-off between the flux and the potential difference. This is referred to as the maximum power principle. It has already been shown that the atmosphere operates close to this maximum power limit when it comes to heat transport from the Equator to the poles, or vertically, from the surface to the atmospheric boundary layer. To reach this state of maximum power, the effective thermal conductivity of the atmosphere is adapted by the creation of convection cells. The aim of this study is to test if the soil's effective hydraulic conductivity also adapts in such a way that it produces maximum power. However, the soil's hydraulic conductivity adapts differently; for example by the creation of preferential flow paths. Here, this process is simulated in a lab experiment, which focuses on preferential flow paths created by piping. In the lab, we created a hydrological analogue to the atmospheric model dealing with heat transport between Equator and poles, with the aim to test if the effective hydraulic conductivity of the sand bed can be predicted with the maximum power principle. The experimental setup consists of two freely draining reservoir connected with each other by a confined aquifer. By adding water to only one reservoir, a potential difference will build up until a steady state is reached. The results will indicate whether the maximum power principle does apply for groundwater flow and how it should be applied. Because of the different way of adaptation of flow conductivity, the results differ from that of the
Cofer, R. Shayne
1998-01-01
Investigates effects of short-term conducting gesture instruction on seventh-grade band students' recognition of and performance response to musical conducting gestures. Indicates that short-term conducting-gesture instruction has a positive, statistically significant impact on recognition of and performance response to conducting gestures.…
Multi-ion conduction bands in a simple model of calcium ion channels
Kaufman, I; Tindjong, R; McClintock, P V E; Eisenberg, R S
2012-01-01
We report self-consistent Brownian dynamics simulations of a simple electrostatic model of the selectivity filters (SF) of calcium ion channels. They reveal regular structure in the conductance and selectivity as functions of the fixed negative charge Qf at the SF. This structure comprises distinct regions of high conductance (conduction bands) M0, M1, M2 separated by regions of zero-conductance (stop-bands). Two of these conduction bands, M1 and M2, demonstrate high calcium selectivity and prominent anomalous mole fraction effects and can be identified with the L-type and RyR calcium channels.
The conduction bands of MgO, MgS and HfO2
Boer, P.K. de; Groot, R.A. de
1998-01-01
Electronic structure calculations for MgO, MgS and HfO2 are reported. It is shown that the conduction bands of MgO and MgS have predominantly anion character, contrary to the common picture of the conduction band being derived from cation states. In transition metal oxides, unoccupied anion states a
Liu, Yao; Chen, Yuehua; Tan, Kezhu; Xie, Hong; Wang, Liguo; Yan, Xiaozhen; Xie, Wu; Xu, Zhen
2016-12-01
Band selection is considered to be an important processing step in handling hyperspectral data. In this work, we selected informative bands according to the maximal relevance minimal redundancy (MRMR) criterion based on neighborhood mutual information. Two measures MRMR difference and MRMR quotient were defined and a forward greedy search for band selection was constructed. The performance of the proposed algorithm, along with a comparison with other methods (neighborhood dependency measure based algorithm, genetic algorithm and uninformative variable elimination algorithm), was studied using the classification accuracy of extreme learning machine (ELM) and random forests (RF) classifiers on soybeans’ hyperspectral datasets. The results show that the proposed MRMR algorithm leads to promising improvement in band selection and classification accuracy.
Lebens-Higgins, Z.; Scanlon, D. O.; Paik, H.; Sallis, S.; Nie, Y.; Uchida, M.; Quackenbush, N. F.; Wahila, M. J.; Sterbinsky, G. E.; Arena, Dario A.; Woicik, J. C.; Schlom, D. G.; Piper, L. F. J.
2016-01-01
We have directly measured the band gap renormalization associated with the Moss-Burstein shift in the perovskite transparent conducting oxide (TCO), La-doped BaSnO _{3} , using hard x-ray photoelectron spectroscopy. We determine that the band gap renormalization is almost entirely associated with the evolution of the conduction band. Our experimental results are supported by hybrid density functional theory supercell calculations. We determine that unlike conventional TCOs where interactions with the dopant orbitals are important, the band gap renormalization in La - BaSnO _{3} is driven purely by electrostatic interactions.
Lebens-Higgins, Z; Scanlon, D O; Paik, H; Sallis, S; Nie, Y; Uchida, M; Quackenbush, N F; Wahila, M J; Sterbinsky, G E; Arena, Dario A; Woicik, J C; Schlom, D G; Piper, L F J
2016-01-15
We have directly measured the band gap renormalization associated with the Moss-Burstein shift in the perovskite transparent conducting oxide (TCO), La-doped BaSnO_{3}, using hard x-ray photoelectron spectroscopy. We determine that the band gap renormalization is almost entirely associated with the evolution of the conduction band. Our experimental results are supported by hybrid density functional theory supercell calculations. We determine that unlike conventional TCOs where interactions with the dopant orbitals are important, the band gap renormalization in La-BaSnO_{3} is driven purely by electrostatic interactions.
Iden, Sascha C.; Peters, Andre; Durner, Wolfgang
2015-11-01
The prediction of unsaturated hydraulic conductivity from the soil water retention curve by pore-bundle models is a cost-effective and widely applied technique. One problem for conductivity predictions from retention functions with continuous derivatives, i.e. continuous water capacity functions, is that the hydraulic conductivity curve exhibits a sharp drop close to water saturation if the pore-size distribution is wide. So far this artifact has been ignored or removed by introducing an explicit air-entry value into the capillary saturation function. However, this correction leads to a retention function which is not continuously differentiable. We present a new parameterization of the hydraulic properties which uses the original saturation function (e.g. of van Genuchten) and introduces a maximum pore radius only in the pore-bundle model. In contrast to models using an explicit air entry, the resulting conductivity function is smooth and increases monotonically close to saturation. The model concept can easily be applied to any combination of retention curve and pore-bundle model. We derive closed-form expressions for the unimodal and multimodal van Genuchten-Mualem models and apply the model concept to curve fitting and inverse modeling of a transient outflow experiment. Since the new model retains the smoothness and continuous differentiability of the retention model and eliminates the sharp drop in conductivity close to saturation, the resulting hydraulic functions are physically more reasonable and ideal for numerical simulations with the Richards equation or multiphase flow models.
Iden, Sascha; Peters, Andre; Durner, Wolfgang
2017-04-01
Soil hydraulic properties are required to solve the Richards equation, the most widely applied model for variably-saturated flow. While the experimental determination of the water retention curve does not pose significant challenges, the measurement of unsaturated hydraulic conductivity is time consuming and costly. The prediction of the unsaturated hydraulic conductivity curve from the soil water retention curve by pore-bundle models is a cost-effective and widely applied technique. A well-known problem of conductivity prediction for retention functions with wide pore-size distributions is the sharp drop in conductivity close to water saturation. This problematic behavior is well known for the van Genuchten model if the shape parameter n assumes values smaller than about 1.3. So far, the workaround for this artefact has been to introduce an explicit air-entry value into the capillary saturation function. However, this correction leads to a retention function which is not continuously differentiable and thus a discontinuous water capacity function. We present an improved parametrization of the hydraulic properties which uses the original capillary saturation function and introduces a maximum pore radius only in the pore-bundle model. Closed-form equations for the hydraulic conductivity function were derived for the unimodal and multimodal retention functions of van Genuchten and have been tested by sensitivity analysis and applied in curve fitting and inverse modeling of multistep outflow experiments. The resulting hydraulic conductivity function is smooth, increases monotonically close to saturation, and eliminates the sharp drop in conductivity close to saturation. Furthermore, the new model retains the smoothness and continuous differentiability of the water retention curve. We conclude that the resulting soil hydraulic functions are physically more reasonable than the ones predicted by previous approaches, and are thus ideally suited for numerical simulations
Identification of the feature that causes the I-band secondary maximum of a type Ia supernova
Jack, D; Hauschildt, P H
2015-01-01
We obtained a time series of spectra covering the secondary maximum in the I-band of the bright Type Ia supernova 2014J in M82 with the TIGRE telescope. Comparing the observations with theoretical models calculated with the time dependent extension of the PHOENIX code, we identify the feature that causes the secondary maximum in the I-band light curve. Fe II 3d6(3D)4s-3d6(5D)4p and similar high excitation transitions produce a blended feature at 7500 {\\AA}, which causes the rise of the light curve towards the secondary maximum. The series of observed spectra of SN 2014J and archival data of SN 2011fe confirm this conclusion. We further studied the plateau phase of the Rband light curve of SN 2014J and searched for features which contribute to the flux. The theoretical models do not clearly indicate a new feature that may cause the Rband plateau phase. However, Co II features in the range of 6500 - 7000 {\\AA} and the Fe II feature of the I-band are clearly seen in the theoretical spectra, but do not appear to ...
Improved incremental conductance method for maximum power point tracking using cuk converter
M. Saad Saoud
2014-03-01
Full Text Available The Algerian government relies on a strategy focused on the development of inexhaustible resources such as solar and uses to diversify energy sources and prepare the Algeria of tomorrow: about 40% of the production of electricity for domestic consumption will be from renewable sources by 2030, Therefore it is necessary to concentrate our forces in order to reduce the application costs and to increment their performances, Their performance is evaluated and compared through theoretical analysis and digital simulation. This paper presents simulation of improved incremental conductance method for maximum power point tracking (MPPT using DC-DC cuk converter. This improved algorithm is used to track MPPs because it performs precise control under rapidly changing Atmospheric conditions, Matlab/ Simulink were employed for simulation studies.
Valence and conduction band structure of the quasi-two-dimensional semiconductor Sn S2
Racke, David A.; Neupane, Mahesh R.; Monti, Oliver L. A.
2016-02-01
We present the momentum-resolved photoemission spectroscopy of both the valence and the conduction band region in the quasi-two-dimensional van der Waals-layered indirect band gap semiconductor Sn S2 . Using a combination of angle-resolved ultraviolet photoemission and angle-resolved two-photon photoemission (AR-2PPE) spectroscopy, we characterize the band structure of bulk Sn S2 . Comparison with density functional theory calculations shows excellent quantitative agreement in the valence band region and reveals several localized bands that likely originate from defects such as sulfur vacancies. Evidence for a moderate density of defects is also observed by AR-2PPE in the conduction band region, leading to localized bands not present in the computational results. The energetic structure and dispersion of the conduction bands is captured well by the computational treatment, with some quantitative discrepancies remaining. Our results provide a broader understanding of the electronic structure of Sn S2 in particular and van der Waals-layered semiconductors in general.
Transient mid-IR study of electron dynamics in TiO2 conduction band.
Sá, Jacinto; Friedli, Peter; Geiger, Richard; Lerch, Philippe; Rittmann-Frank, Mercedes H; Milne, Christopher J; Szlachetko, Jakub; Santomauro, Fabio G; van Bokhoven, Jeroen A; Chergui, Majed; Rossi, Michel J; Sigg, Hans
2013-04-07
The dynamics of TiO2 conduction band electrons were followed with a novel broadband synchrotron-based transient mid-IR spectroscopy setup. The lifetime of conduction band electrons was found to be dependent on the injection method used. Direct band gap excitation results in a lifetime of 2.5 ns, whereas indirect excitation at 532 nm via Ru-N719 dye followed by injection from the dye into TiO2 results in a lifetime of 5.9 ns.
A.F.C. Infantosi
2006-12-01
Full Text Available The present study proposes to apply magnitude-squared coherence (MSC to the somatosensory evoked potential for identifying the maximum driving response band. EEG signals, leads [Fpz'-Cz'] and [C3'-C4'], were collected from two groups of normal volunteers, stimulated at the rate of 4.91 (G1: 26 volunteers and 5.13 Hz (G2: 18 volunteers. About 1400 stimuli were applied to the right tibial nerve at the motor threshold level. After applying the anti-aliasing filter, the signals were digitized and then further low-pass filtered (200 Hz, 6th order Butterworth and zero-phase. Based on the rejection of the null hypothesis of response absence (MSC(f > 0.0060 with 500 epochs and the level of significance set at a = 0.05, the beta and gamma bands, 15-66 Hz, were identified as the maximum driving response band. Taking both leads together ("logical-OR detector", with a false-alarm rate of a = 0.05, and hence a = 0.0253 for each derivation, the detection exceeded 70% for all multiples of the stimulation frequency within this range. Similar performance was achieved for MSC of both leads but at 15, 25, 35, and 40 Hz. Moreover, the response was detected in [C3'-C4'] at 35.9 Hz and in [Fpz'-Cz'] at 46.2 Hz for all members of G2. Using the "logical-OR detector" procedure, the response was detected at the 7th multiple of the stimulation frequency for the series as a whole (considering both groups. Based on these findings, the MSC technique may be used for monitoring purposes.
Espino, Susana; Schenk, H Jochen
2011-01-01
The maximum specific hydraulic conductivity (k(max)) of a plant sample is a measure of the ability of a plants' vascular system to transport water and dissolved nutrients under optimum conditions. Precise measurements of k(max) are needed in comparative studies of hydraulic conductivity, as well as for measuring the formation and repair of xylem embolisms. Unstable measurements of k(max) are a common problem when measuring woody plant samples and it is commonly observed that k(max) declines from initially high values, especially when positive water pressure is used to flush out embolisms. This study was designed to test five hypotheses that could potentially explain declines in k(max) under positive pressure: (i) non-steady-state flow; (ii) swelling of pectin hydrogels in inter-vessel pit membranes; (iii) nucleation and coalescence of bubbles at constrictions in the xylem; (iv) physiological wounding responses; and (v) passive wounding responses, such as clogging of the xylem by debris. Prehydrated woody stems from Laurus nobilis (Lauraceae) and Encelia farinosa (Asteraceae) collected from plants grown in the Fullerton Arboretum in Southern California, were used to test these hypotheses using a xylem embolism meter (XYL'EM). Treatments included simultaneous measurements of stem inflow and outflow, enzyme inhibitors, stem-debarking, low water temperatures, different water degassing techniques, and varied concentrations of calcium, potassium, magnesium, and copper salts in aqueous measurement solutions. Stable measurements of k(max) were observed at concentrations of calcium, potassium, and magnesium salts high enough to suppress bubble coalescence, as well as with deionized water that was degassed using a membrane contactor under strong vacuum. Bubble formation and coalescence under positive pressure in the xylem therefore appear to be the main cause for declining k(max) values. Our findings suggest that degassing of water is essential for achieving stable and
Band gap and conductivity variations of ZnO thin films by doping with Aluminium
Vattappalam, Sunil C.; Thomas, Deepu; T, Raju Mathew; Augustine, Simon; Mathew, Sunny
2015-02-01
Zinc Oxide thin films were prepared by Successive Ionic layer adsorption and reaction technique(SILAR). Aluminium was doped for different doping concentrations from 3 at.% to 12 at.% in steps of 3 at.%. Conductivity of the samples were taken at different temperatures. UV Spectrograph of the samples were taken and the band gap of each sample was found from the data. It was observed that as the doping concentration of Aluminium increases, the band gap of the samples decreases and concequently conductivity of the samples increases.
Band gap and conductivity variations of ZnO nano structured thin films annealed under Vacuum
Vattappalam, Sunil C.; Thomas, Deepu; T, Raju Mathew; Augustine, Simon; Mathew, Sunny
2015-02-01
Zinc Oxide thin films were prepared by Successive Ionic layer adsorption and reaction technique(SILAR). The samples were annealed under vacuum and conductivity of the samples were taken at different temperatures. UV Spectrograph of the samples were taken and the band gap of each sample was found from the data. All the results were compared with that of the sample annealed under air. It was observed that the band gap decreases and concequently conductivity of the samples increases when the samples are annealed under vacuum.
Theory of thermal conductivity in a multi-band superconductor : Application to pnictides
Mishra, Vivek; Vorontsov, A. B.; Hirschfeld, P. J.; Vekhter, I.
2010-03-01
We calculate low temperature thermal conductivity within a two band model for newly discovered ferro-pnictide superconductors. We consider three different cases, sign changing s-wave state, highly anisotropic s-wave state and a state with order parameter nodes on one band. To include the effect of disorder, we have performed fully self-consistent T-matrix approximation including both intraband and interband impurity scatterings. We also study the behavior of the low temperature thermal conductivity under applied magnetic field using a recently developed variant of the Brandt-Pesch-Tewordt approximation, and compare our results with latest experimental data.
Conduction band edge effective mass of La-doped BaSnO3
James Allen, S.; Raghavan, Santosh; Schumann, Timo; Law, Ka-Ming; Stemmer, Susanne
2016-06-01
BaSnO3 has attracted attention as a promising material for applications requiring wide band gap, high electron mobility semiconductors, and moreover possesses the same perovskite crystal structure as many functional oxides. A key parameter for these applications and for the interpretation of its properties is the conduction band effective mass. We measure the plasma frequency of La-doped BaSnO3 thin films by glancing incidence, parallel-polarized resonant reflectivity. Using the known optical dielectric constant and measured electron density, the resonant frequency determines the band edge electron mass to be 0.19 ± 0.01. The results allow for testing band structure calculations and transport models.
OPTICAL BAND GAP AND CONDUCTIVITY MEASUREMENTS OF POLYPYRROLE-CHITOSAN COMPOSITE THIN FILMS
Mahnaz M.Abdi; H.N.M.Ekramul Mahmud; Luqman Chuah Abdullah; Anuar Kassim; Mohamad Zaki Ab.Rahman; Josephine Liew Ying Chyi
2012-01-01
Electrical conductivity and optical properties of polypyrrole-chitosan (PPy-CHI) conducting polymer composites have been investigated to determine the optical transition characteristics and energy band gap of composite films.The two electrode method and Ⅰ-Ⅴ characteristic technique were used to measure the conductivity of the PPy-CHI thin films,and the optical band gap was obtained from their ultraviolet absorption edges.Depending upon experimental parameter,the optical band gap (Eg) was found within 1.30-2.32 eV as estimated from optical absorption data.The band gap of the composite films decreased as the CHI content increased.The room temperature electrical conductivity of PPy-CHI thin films was found in the range of 5.84 × 10-7-15.25 × 10-7 S.cm-1 depending on the chitosan content.The thermogravimetry analysis (TGA)showed that the CHI can improve the thermal stability of PPy-CHI composite films.
Kondo effect and impurity band conduction in Co:TiO2 magnetic semiconductor
Ramaneti, R.; Lodder, J.C.; Jansen, R.
2007-01-01
The nature of charge carriers and their interaction with local magnetic moments in an oxide magnetic semiconductor is established. For cobalt-doped anatase TiO2 films, we demonstrate conduction in a metallic donor-impurity band. Moreover, we observe a clear signature of the Kondo effect in electrica
Conduction band offset determination between strained CdSe and ZnSe layers using DLTS
Rangel-Kuoppa, Victor-Tapio
2013-12-01
The conduction band offset between strained CdSe layers embedded in unintentionally n-type doped ZnSe is measured and reported. Two samples, consisting of thirty Ultra Thin Quantum Wells (UTQWs) of CdSe embedded in ZnSe, grown by Atomic Layer Epitaxy, are used for this study. The thicknesses of the UTQWs are one and three monolayers (MLs) in each sample, respectively. As expected, the sample with one ML UTQWs does not show any energy level in the UTQWs due to the small thickness of the UTQWs, while the thickness of the sample with 3 ML UTQWs is large enough to form an energy level inside the UTQWs. This energy level appears as a majority trap with an activation energy of 223.58 ± 9.54 meV. This corresponds to UTQWs with barrier heights (the conduction band offset) between 742 meV and 784 meV. These values suggest that the band gap misfit between strained CdSe and ZnSe is around 70.5 to 74 % in the conduction band.
Conduction band offset determination between strained CdSe and ZnSe layers using DLTS
Rangel-Kuoppa, Victor-Tapio [Institute of Semiconductor and Solid State Physics, Johannes Kepler Universität, A-4040 Linz (Austria)
2013-12-04
The conduction band offset between strained CdSe layers embedded in unintentionally n-type doped ZnSe is measured and reported. Two samples, consisting of thirty Ultra Thin Quantum Wells (UTQWs) of CdSe embedded in ZnSe, grown by Atomic Layer Epitaxy, are used for this study. The thicknesses of the UTQWs are one and three monolayers (MLs) in each sample, respectively. As expected, the sample with one ML UTQWs does not show any energy level in the UTQWs due to the small thickness of the UTQWs, while the thickness of the sample with 3 ML UTQWs is large enough to form an energy level inside the UTQWs. This energy level appears as a majority trap with an activation energy of 223.58 ± 9.54 meV. This corresponds to UTQWs with barrier heights (the conduction band offset) between 742 meV and 784 meV. These values suggest that the band gap misfit between strained CdSe and ZnSe is around 70.5 to 74 % in the conduction band.
Device Physics Analysis of Parasitic Conduction Band Barrier Formation in SiGe HBTs
Roenker, K. P.; Alterovitz, S. A.
2000-01-01
This paper presents a physics-based model describing the current-induced formation of a parasitic barrier in the conduction band at the base collector heterojunction in npn SiGe heterojunction bipolar transistors (HBTs). Due to the valence band discontinuity DELTA E(sub v), hole injection into the collector at the onset of base pushout is impeded, which gives rise to formation of a barrier to electron transport which degrades the device's high frequency performance. In this paper, we present results from an analytical model for the height of the barrier calculated from the device's structure as a function of the collector junction bias and collector current density.
Diana E. Proffit
2010-11-01
Full Text Available Doping limits, band gaps, work functions and energy band alignments of undoped and donor-doped transparent conducting oxides Zn0, In2O3, and SnO2 as accessed by X-ray and ultraviolet photoelectron spectroscopy (XPS/UPS are summarized and compared. The presented collection provides an extensive data set of technologically relevant electronic properties of photovoltaic transparent electrode materials and illustrates how these relate to the underlying defect chemistry, the dependence of surface dipoles on crystallographic orientation and/or surface termination, and Fermi level pinning.
Jain, Abhinav; Rojas-Sanchez, Juan-Carlos; Cubukcu, Murat; Peiro, Julian; Le Breton, Jean-Christophe; Vergnaud, Céline; Augendre, Emmanuel; Vila, Laurent; Attané, Jean-Philippe; Gambarelli, Serge; Jaffrès, Henri; George, Jean-Marie; Jamet, Matthieu
2013-04-01
Electrical spin injection into semiconductors paves the way for exploring new phenomena in the area of spin physics and new generations of spintronic devices. However the exact role of interface states in the electrical spin injection mechanism from a magnetic tunnel junction into a semiconductor is still under debate. Here we demonstrate a clear transition from spin accumulation into interface states to spin injection in the conduction band of n-Si and n-Ge using a CoFeB/MgO tunnel contact. We observe spin signal amplification at low temperature due to spin accumulation into interface states followed by a clear transition towards spin injection in the conduction band from approximately 150 K up to room temperature. In this regime, the spin signal is reduced down to a value compatible with the standard spin diffusion model. More interestingly, in the case of germanium, we demonstrate a significant modulation of the spin signal by applying a back-gate voltage to the conduction channel. We also observe the inverse spin Hall effect in Ge by spin pumping from the CoFeB electrode. Both observations are consistent with spin accumulation in the Ge conduction band.
U.S. Environmental Protection Agency — Data includes chemical and biological samples from Ecoregion 69 in West Virginia. eco69_dupchem.csv: 1. Station-year with at least 6 conductivity samples, one in the...
Study on Band Structure of YbB6 and Analysis of Its Optical Conductivity Spectrum
无
2007-01-01
The electronic structure of YbB6 crystal was studied by means of density functional (GGA+U) method.The calculations were performed by FLAPW method.The high accurate band structure was achieved.The correlation between the feature of the band structure and the Yb-B6 bonding in YbB6 was analyzed.On this basis, some optical constants of YbB6 such as reflectivity, dielectric function, optical conductivity, and energy-loss function were calculated.The results are in good agreement with the experiments.The real part of the optical conductivity spectrum and the energy-loss function spectrum were analyzed in detail.The assignments of the spectra were carried out to correlate the spectral peaks with the interband electronic transitions, which justify the reasonable part of previous empirical assignments and renew the missed or incorrect ones.
Sabino, Fernando P; Nunes Oliveira, Luiz; Wei, Su-Huai; Da Silva, Juarez L F
2017-03-01
The optical band gap, extracted from absorption measurements, defines the figure of merit for transparent conducting oxides (TCOs). In many oxides, such as [Formula: see text] or [Formula: see text], inversion symmetry introduces a selection rule that blocks transitions from the valence-band maximum to the conduction-band minimum. This raises the absorption threshold and enlarges the optical gap relative to the fundamental band gap. Here, we present density-functional computations identifying two optical gaps, either of which can be detected, depending on the optical light intensity. Under strong illumination, weak transitions from [Formula: see text]-points near the valence-band maximum contribute significantly to the absorption spectrum and define an optical gap matching the fundamental gap. Low optical intensities by contrast give prominence to the large optical gap determined by the selection rule. While experimental conditions have favored observation of the former optical gap in [Formula: see text], in contrast, absorption measurements in [Formula: see text] have focused on the latter. Our findings explain the disparity between the optical and fundamental gaps in bixbyite [Formula: see text] and predict that, measured under low illumination, the optical gap for rutile [Formula: see text] will increase, from 3.60 eV to 4.34 eV.
Banding and electronic structures of metal azides——Sensitivity and conductivity
肖鹤鸣; 李永富
1995-01-01
By using both DV-Xα and EH-CO methods, the calculation studies of the structure-property relationships of a series of metal azides, of their clusters’ electronic structures in ground and excited states, of their systems with cation vacancy and the doped Pb(N3)2, as well as their crystal band structures have been conducted. The results show that the sensitivity of ionic-type metal azides varies with the degree of difficulty of electronic transition of the losing charge on N3. A metal azide with cation vacancies has a greater sensitivity than the perfect one. When doped with monovalent metal ions, lead azide’s sensitivity increased; when with trivalent ones, its sensitivity decreased; when with divalent ones, little of it changed. Compared with heavy metal azides. an alkali metal azide has a larger band gap, a smaller band width and a greater transition energy of frontier electron with a smaller amount of losing charge on N3, and thus has lower sensitivity and conductivity than heavy metal azides.
Controlling the conduction band offset for highly efficient ZnO nanorods based perovskite solar cell
Dong, Juan; Shi, Jiangjian; Li, Dongmei; Luo, Yanhong; Meng, Qingbo, E-mail: qbmeng@iphy.ac.cn [Key Laboratory for Renewable Energy, Chinese Academy of Sciences, Beijing 100190 (China); Beijing Key Laboratory for New Energy Materials and Devices, Beijing 100190 (China); Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)
2015-08-17
The mechanism of charge recombination at the interface of n-type electron transport layer (n-ETL) and perovskite absorber on the carrier properties in the perovskite solar cell is theoretically studied. By solving the one dimensional diffusion equation with different boundary conditions, it reveals that the interface charge recombination in the perovskite solar cell can be suppressed by adjusting the conduction band offset (ΔE{sub C}) at ZnO ETL/perovskite absorber interface, thus leading to improvements in cell performance. Furthermore, Mg doped ZnO nanorods ETL has been designed to control the energy band levels. By optimizing the doping amount of Mg, the conduction band minimum of the Mg doped ZnO ETL has been raised up by 0.29 eV and a positive ΔE{sub C} of about 0.1 eV is obtained. The photovoltage of the cell is thus significantly increased due to the relatively low charge recombination.
Poolton, H.R.J.; Ozanyan, K.B.; Wallinga, J.
2002-01-01
Most natural feldspars contain many charged impurities, and display a range of bond angles, distributed about the ideal. These effects can lead to complications in the structure of the conduction band, giving rise to a tail of energy states (below the high-mobility conduction band) through which ...
Yu, Huogen; Irie, Hiroshi; Hashimoto, Kazuhito
2010-05-26
Through the use of a strategy that involves narrowing the TiO(2) band gap by shifting its conduction band positively and utilizing the catalytic activity of photoproduced Cu(I) for oxygen reduction, a novel visible-light-sensitive TiO(2) photocatalyst, Cu(II)-grafted Ti(1-3x)W(x)Ga(2x)O(2), was designed and synthesized. The Cu(II)/Ti(1-3x)W(x)Ga(2x)O(2) photocatalyst produced high activity under visible-light irradiation. In fact, it decomposed 2-propanol to CO(2) via acetone under visible light (>400 nm) with a high quantum efficiency of 13%. The turnover number for this reaction exceeded 22, indicating that it functioned catalytically.
Slice imaging of the UV photodissociation of CH2BrCl from the maximum of the first absorption band.
Chicharro, D V; Marggi Poullain, S; González-Vázquez, J; Bañares, L
2017-07-07
The photodissociation dynamics of bromochloromethane (CH2BrCl) have been investigated at the maximum of the first absorption band, at the excitation wavelengths 203 and 210 nm, using the slice imaging technique in combination with a probe detection of bromine-atom fragments, Br((2)P3/2) and Br*((2)P1/2), via (2 + 1) resonance enhanced multiphoton ionization. Translational energy distributions and angular distributions reported for both Br((2)P3/2) and Br*((2)P1/2) fragments show two contributions for the Br((2)P3/2) channel and a single contribution for the Br*((2)P1/2) channel. High level ab initio calculations have been performed in order to elucidate the dissociation mechanisms taking place. The computed absorption spectrum and potential energy curves indicate the main contribution of the populated 4A″, 5A', and 6A' excited states leading to a C-Br cleavage. Consistently with the results, the single contribution for the Br*((2)P1/2) channel has been attributed to direct dissociation through the 6A' state as well as an indirect dissociation of the 5A' state requiring a 5A' → 4A' reverse non-adiabatic crossing. Similarly, a faster contribution for the Br((2)P3/2) channel characterized by a similar energy partitioning and anisotropy than those for the Br*((2)P1/2) channel is assigned to a direct dissociation through the 5A' state, while the slower component appears to be due to the direct dissociation on the 4A″ state.
Optical conductivity and resistivity in the two-band Emery model
Minh-Tien, Tran
1994-01-01
The temperature- and frequency-dependent conductivity due to the scattering of oxygen holes by antiferromagnetic spin fluctuations of the copper spins in the two-band Emergy model is calculated. Using the dynamic spin susceptibility obtained in the mean-field Schwinger boson approach, the resistivity obeys a near linear temperature dependence at high temperatures, whereas at low temperatures a quadratic behaviour holds. At the same time, the optical conductivity contains the Drude peak around zero frequency, whereas the scattering rate of quasiparticle appears to be proportional to frequency. Our results are essentially in agreement with experiments, at least qualitatively, and support the conclusion that the normal-state basal-plane resistivity and optical conductivity of high- Tc superconductors may be explained by two-dimensional spin-fluctuation scattering in the Fermi-liquid picture.
Optimization of stomatal conductance for maximum carbon gain under dynamic soil moisture
Manzoni, Stefano; Vico, Giulia; Palmroth, Sari; Porporato, Amilcare; Katul, Gabriel
2013-12-01
Optimization theories explain a variety of forms and functions in plants. At the leaf scale, it is often hypothesized that carbon gain is maximized, thus providing a quantifiable objective for a mathematical definition of optimality conditions. Eco-physiological trade-offs and limited resource availability introduce natural bounds to this optimization process. In particular, carbon uptake from the atmosphere is inherently linked to water losses from the soil as water is taken up by roots and evaporated. Hence, water availability in soils constrains the amount of carbon that can be taken up and assimilated into new biomass. The problem of maximizing photosynthesis at a given water availability by modifying stomatal conductance, the plant-controlled variable to be optimized, has been traditionally formulated for short time intervals over which soil moisture changes can be neglected. This simplification led to a mathematically open solution, where the undefined Lagrange multiplier of the optimization (equivalent to the marginal water use efficiency, λ) is then heuristically determined via data fitting. Here, a set of models based on different assumptions that account for soil moisture dynamics over an individual dry-down are proposed so as to provide closed analytical expressions for the carbon gain maximization problem. These novel solutions link the observed variability in λ over time, across soil moisture changes, and at different atmospheric CO2 concentrations to water use strategies ranging from intensive, in which all soil water is consumed by the end of the dry-down period, to more conservative, in which water stress is avoided by reducing transpiration.
Transition from parabolic to ring-shaped valence band maximum in few-layer GaS, GaSe, and InSe
Rybkovskiy, Dmitry V.; Osadchy, Alexander V.; Obraztsova, Elena D.
2014-12-01
By performing first-principles electronic structure calculations in frames of density functional theory we study the dependence of the valence band shape on the thickness of few-layer III-VI crystals (GaS, GaSe, and InSe). We estimate the critical thickness of transition from the bulklike parabolic to the ring-shaped valence band. Direct supercell calculations show that the ring-shaped extremum of the valence band appears in β -GaS and β -GaSe at a thickness below 6 tetralayers (˜4.6 nm ) and 8 tetralayers (˜6.4 nm ), respectively. Zone-folding calculations estimate the β -InSe critical thickness to be equal to 28 tetralayers (˜24.0 nm ). The origin of the ring-shaped valence band maximum can be understood in terms of k.p theory, which provides a link between the curvature of the energy bands and the distance between them. We explain the dependence of the band shape on the thickness, as well as the transition between two types of extremes, by the k -dependent orbital composition of the topmost valence band. We show that in the vicinity of critical thickness the effective mass of holes in III-VI compounds depends strongly on the number of tetralayers.
Olar, Tetiana; Manoharan, Archana; Draxl, Claudia; Calvet, Wolfram; Ümsur, Bünyamin; Parvan, Vladimir; Chacko, Binoy; Xie, Haibing; Saucedo, Edgardo; Valle-Rios, Laura Elisa; Neldner, Kai; Schorr, Susan; Lux-Steiner, Martha Ch; Lauermann, Iver
2017-10-01
Thin film solar cells based on the kesterite material with the general composition Cu2ZnSn(Se,S)4 can be a substitute for the more common chalcopyrites (Cu(In,Ga)(Se,S)2) with a similar band gap range. When replacing the anion sulfide with selenide, the optical band gap of kesterite changes from 1.5 to 1 eV. Here we report on a study of the valence band maximum and conduction band minimum energies of kesterites with either S or Se as the anion. Knowing these positions is crucial for the design of solar cells in order to match the bands of the absorber material with those of the subsequent functional layers like buffer or window layer. Their relative positions were studied using photoelectron spectroscopy of the valence band edge and x-ray absorption spectroscopy of the cations Cu, Zn, and Sn, respectively. The experimental results are interpreted and confirmed in terms of calculations based on density-functional theory and the GW approach of the many-body theory.
Observation of electron excitation into silicon conduction band by slow-ion surface neutralization
Shchemelinin, S
2016-01-01
Bare reverse biased silicon photodiodes were exposed to 3eV He+, Ne+, Ar+, N2+, N+ and H2O+ ions. In all cases an increase of the reverse current through the diode was observed. This effect and its dependence on the ionization energy of the incident ions and on other factors are qualitatively explained in the framework of Auger-type surface neutralization theory. Amplification of the ion-induced charge was observed with an avalanche photodiode under high applied bias. The observed effect can be considered as ion-induced internal potential electron emission into the conduction band of silicon. To the best of our knowledge, no experimental evidence of such effect was previously reported. Possible applications are discussed.
Disorder-free localization around the conduction band edge of crossing and kinked silicon nanowires
Keleş, Ümit; ćakan, Aslı; Bulutay, Ceyhun
2015-02-01
We explore ballistic regime quantum transport characteristics of oxide-embedded crossing and kinked silicon nanowires (NWs) within a large-scale empirical pseudopotential electronic structure framework, coupled to the Kubo-Greenwood transport analysis. A real-space wave function study is undertaken and the outcomes are interpreted together with the findings of ballistic transport calculations. This reveals that ballistic transport edge lies tens to hundreds of millielectron volts above the lowest unoccupied molecular orbital, with a substantial number of localized states appearing in between, as well as above the former. We show that these localized states are not due to the oxide interface, but rather core silicon-derived. They manifest the wave nature of electrons brought to foreground by the reflections originating from NW junctions and bends. Hence, we show that the crossings and kinks of even ultraclean Si NWs possess a conduction band tail without a recourse to atomistic disorder.
Disorder-free localization around the conduction band edge of crossing and kinked silicon nanowires
Keleş, Ümit; Çakan, Aslı; Bulutay, Ceyhun, E-mail: bulutay@fen.bilkent.edu.tr [Department of Physics, Bilkent University, Bilkent, Ankara 06800 (Turkey)
2015-02-14
We explore ballistic regime quantum transport characteristics of oxide-embedded crossing and kinked silicon nanowires (NWs) within a large-scale empirical pseudopotential electronic structure framework, coupled to the Kubo-Greenwood transport analysis. A real-space wave function study is undertaken and the outcomes are interpreted together with the findings of ballistic transport calculations. This reveals that ballistic transport edge lies tens to hundreds of millielectron volts above the lowest unoccupied molecular orbital, with a substantial number of localized states appearing in between, as well as above the former. We show that these localized states are not due to the oxide interface, but rather core silicon-derived. They manifest the wave nature of electrons brought to foreground by the reflections originating from NW junctions and bends. Hence, we show that the crossings and kinks of even ultraclean Si NWs possess a conduction band tail without a recourse to atomistic disorder.
A simple model for conduction band states of nitride-based double heteroestructures
Gaggero-Sager, L M; Mora-Ramos, M E, E-mail: lgaggero@uaem.m [Facultad de Ciencias, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico)
2009-05-01
In this work we propose an analytical expression for the approximate modeling of the potential energy function describing conduction band bending in III-V nitride quantum wells. It is an alternative approach to the self-consistent Poisson-Schoedinger calculation. The model considers the influence of the many electron system and the built-in electric field inside the well. Hartree and exchange contributions are included along the lines of a local-density Thomas-Fermi-based theory. The effects due to the modulated doping in the barriers is also considered. We report the calculation of the energy spectrum as a function of several input parameters: alloy composition in the barriers, barrier doping concentration, and quantum well width. Our results could be of usefulness in the study of optoelectronic properties in this kind of systems.
Taeseong Woo
2017-05-01
Full Text Available A quantitative diagnosis using magnetic resonance imaging (MRI can be disturbed by radiofrequency (RF field inhomogeneity induced by the conductive implants. This inhomogeneity causes a local decrease of the signal intensity around the conductor, resulting in a deterioration of the accurate quantification. In a previous study, we developed an MRI imaging method using a two-dimensional selective excitation pulse (2D pulse to mitigate signal inhomogeneity induced by metallic implants. In this paper, the effect of 2D pulse was evaluated quantitatively by numerical simulation and MRI experiments. We introduced two factors for evaluation, spatial resolution and maximum compensation factor. Numerical simulations were performed with two groups. One group was composed of four models with different signal loss width, to evaluate the spatial resolution of the 2D pulse. The other group is also composed of four models with different amounts of signal loss for evaluating maximum compensation factor. In MRI experiments, we prepared phantoms containing conductors, which have different electrical conductivities related with the amounts of signal intensity decrease. The recovery of signal intensity was observed by 2D pulses, in both numerical simulations and experiments.
Fluctuation conductivity in two-band superconductor SmFeAsO0.8F0.2
Askerzade I.N.
2015-09-01
Full Text Available In this study we have calculated the fluctuation conductivity near critical temperature of SmFeAsO0.8F0.2 superconductor using two-band Ginzburg-Landau theory. It was illustrated that in the absence of external magnetic field, the two-band model reduced to a single effective band theory with modified temperature dependences. The calculations revealed three-dimensional character of fluctuations of conductivity in the new Fe-based superconductor SmFeAsO0.8F0.2. It has been shown that such a model is in good agreement with experimental data for this compound.
Westhoff, Martijn; Zehe, Erwin; Erpicum, Sébastien; Archambeau, Pierre; Pirotton, Michel; Dewals, Benjamin
2015-04-01
The Maximum Entropy Production (MEP) principle is a conjecture assuming that a medium is organized in such a way that maximum power is subtracted from a gradient driving a flux (with power being a flux times its driving gradient). This maximum power is also known as the Carnot limit. It has already been shown that the atmosphere operates close to this Carnot limit when it comes to heat transport from the Equator to the poles, or vertically, from the surface to the atmospheric boundary layer. To reach this state close to the Carnot limit, the effective thermal conductivity of the atmosphere is adapted by the creation of convection cells (e.g. wind). The aim of this study is to test if the soil's effective hydraulic conductivity also adapts itself in such a way that it operates close to the Carnot limit. The big difference between atmosphere and soil is the way of adaptation of its resistance. The soil's hydraulic conductivity is either changed by weathering processes, which is a very slow process, or by creation of preferential flow paths. In this study the latter process is simulated in a lab experiment, where we focus on the preferential flow paths created by piping. Piping is the process of backwards erosion of sand particles subject to a large pressure gradient. Since this is a relatively fast process, it is suitable for being tested in the lab. In the lab setup a horizontal sand bed connects two reservoirs that both drain freely at a level high enough to keep the sand bed always saturated. By adding water to only one reservoir, a horizontal pressure gradient is maintained. If the flow resistance is small, a large gradient develops, leading to the effect of piping. When pipes are being formed, the effective flow resistance decreases; the flow through the sand bed increases and the pressure gradient decreases. At a certain point, the flow velocity is small enough to stop the pipes from growing any further. In this steady state, the effective flow resistance of
Bourgeois-Hope, P; Chi, S; Bonn, D A; Liang, R; Hardy, W N; Wolf, T; Meingast, C; Doiron-Leyraud, N; Taillefer, Louis
2016-08-26
The thermal conductivity κ of the iron-based superconductor FeSe was measured at temperatures down to 75 mK in magnetic fields up to 17 T. In a zero magnetic field, the electronic residual linear term in the T=0 K limit, κ_{0}/T, is vanishingly small. The application of a magnetic field B causes an exponential increase in κ_{0}/T initially. Those two observations show that there are no zero-energy quasiparticles that carry heat and therefore no nodes in the superconducting gap of FeSe. The full field dependence of κ_{0}/T has the classic two-step shape of a two-band superconductor: a first rise at very low field, with a characteristic field B^{⋆}≪B_{c2}, and then a second rise up to the upper critical field B_{c2}. This shows that the superconducting gap is very small (but finite) on one of the pockets in the Fermi surface of FeSe. We estimate that the minimum value of the gap, Δ_{min}, is an order of magnitude smaller than the maximum value, Δ_{max}.
Polarization-induced electrical conductivity in ultra-wide band gap AlGaN alloys
Armstrong, Andrew M.; Allerman, Andrew A.
2016-11-01
Unintentionally doped (UID) AlGaN epilayers graded over Al compositions of 80%-90% and 80%-100% were grown by metal organic vapor phase epitaxy and were electrically characterized using contactless sheet resistance (Rsh) and capacitance-voltage (C-V) measurements. Strong electrical conductivity in the UID graded AlGaN epilayers resulted from polarization-induced doping and was verified by the low resistivity of 0.04 Ω cm for the AlGaN epilayer graded over 80%-100% Al mole fraction. A free electron concentration (n) of 4.8 × 1017 cm-3 was measured by C-V for Al compositions of 80%-100%. Average electron mobility ( μ ¯ ) was calculated from Rsh and n data for three ranges of Al composition grading, and it was found that UID AlGaN graded from 88%-96% had μ ¯ = 509 cm2/V s. The combination of very large band gap energy, high μ ¯ , and high n for UID graded AlGaN epilayers make them attractive as a building block for high voltage power electronic devices such as Schottky diodes and field effect transistors.
Calculated effect of conduction-band offset on CuInSe{sub 2} solar-cell performance
Liu, X.; Sites, J.R. [Physics Department, Colorado State University, Fort Collins, Colorado 80523 (United States)
1996-01-01
The band diagram and resulting current-voltage curves for CuInSe{sub 2} solar cells are calculated as functions of conduction-band offset using ADEPT software with and without an indium-rich intermediate layer. In the absence of the intermediate layer, current-voltage curves for CdS/CuInSe{sub 2} solar cells show only a weak dependence on conduction-band offset over a wide range from approximately {minus}0.5 eV to 0.4 eV at room temperature. An indium rich {ital n}-type intermediate layer with 1.3 eV band gap and thickness smaller than the depletion width can increase the open-circuit voltage as much as 30{percent} at large positive band offsets. The highest efficiency, however, is increased by a more modest 6{percent}. Again the cell parameters are relatively flat, but over a somewhat narrower conduction-band offset range. {copyright} {ital 1996 American Institute of Physics.}
H.T. Cao; Z.L. Pei; X.B. Zhang; J. Gong; C. Sun; L.S. Wen
2005-01-01
Al and Mn co-doped-ZnO films have been prepared at room temperature by DC reactive magnetron sputtering technique. The optical absorption coefficient, apparent and fundamental band gap, and work function of the films have been investigated using optical spectroscopy, band structure analyses and ultraviolet photoelectron spectroscopy (UPS). ZnO films have direct allowed transition band structure, which has been confirmed by the character of the optical absorption coefficient. The apparent band gap has been found directly proportional to N2/3, showing that the effect of Burstein-Moss shift on the band gap variations dominates over the many-body effect. With only standard cleaning protocols, the work function of ZnO: (Al, Mn) and ZnO: Al films have been measured to be 4.26 and 4.21eV, respectively. The incorporation of Mn element into the matrix of ZnO, as a relatively deep donor, can remove some electrons from the conduction band and deplete the density of occupied states at the Fermi energy, which causes a loss in measured photoemission intensity and an increase in the surface work function. Based on the band gap and work function results, the energy band diagram of the ZnO: (Al, Mn)film near its surface is also given.
El Ghazi, Haddou; Jorio, Anouar; Zorkani, Izeddine
2014-11-01
Linear, third-order nonlinear and total optical absorption coefficients of intra-conduction band 1s-1p transition with hydrogenic shallow-donor impurity in wurtzite (In,Ga)N/GaN spherical quantum dot are reported. Hydrostatic pressure effect is investigated within the framework of single band effective-mass approximation using a combination of Quantum Genetic Algorithm (QGA) and Hartree-Fock-Roothaan (HFR) method. The results show that the pressure has a great influence on optical absorption coefficients of QDs. A blue-shift of the resonant peak is observed while the maximum of the amplitude of optical absorption coefficients decreases under hydrostatic pressure effect. A good agreement is shown compared with results of the finding.
Simakov, Evgenya I.; Kurennoy, Sergey S.; O'Hara, James F.; Olivas, Eric R.; Shchegolkov, Dmitry Yu.
2014-02-01
We present a design of a superconducting rf photonic band gap (SRF PBG) accelerator cell with specially shaped rods in order to reduce peak surface magnetic fields and improve the effectiveness of the PBG structure for suppression of higher order modes (HOMs). The ability of PBG structures to suppress long-range wakefields is especially beneficial for superconducting electron accelerators for high power free-electron lasers (FELs), which are designed to provide high current continuous duty electron beams. Using PBG structures to reduce the prominent beam-breakup phenomena due to HOMs will allow significantly increased beam-breakup thresholds. As a result, there will be possibilities for increasing the operation frequency of SRF accelerators and for the development of novel compact high-current accelerator modules for the FELs.
Söderström, P A; Regan, P H; Algora, A; de Angelis, G; Ashley, S F; Aydin, S; Bazzacco, D; Casperson, R J; Catford, W N; Cederkäll, J; Chapman, R; Corradi, L; Fahlander, C; Farnea, E; Fioretto, E; Freeman, S J; Gadea, A; Gelletly, W; Gottardo, A; Grodner, E; He, C Y; Jones, G A; Keyes, K; Labiche, M; Liang, X; Liu, Z; Lunardi, S; Muarginean, N; Mason, P; Menegazzo, R; Mengoni, D; Montagnoli, G; Napoli, D; Ollier, J; Pietri, S; Podolyák, Z; Pollarolo, G; Recchia, F; Şahin, E; Scarlassara, F; Silvestri, R; Smith, J F; Spohr, K M; Steer, S J; Stefanini, A M; Szilner, S; Thompson, N J; Tveten, G M; Ur, C A; Valiente-Dobón, J J; Werner, V; Williams, S J; Xu, F R; Zhu, J Y
2010-01-01
The yrast sequence of the neutron-rich dysprosium isotope Dy-168 has been studied using multi-nucleon transfer reactions following the collision of a 460-MeV Se-82 beam and a Er-170 target. The reaction products were identified using the PRISMA magnetic spectrometer and the gamma rays detected using the CLARA HPGe-detector array. The 2+ and 4+ members of the previously measured ground state rotational band of Dy-168 was confirmed and the yrast band extended up to 10+. A tentative candidate for the 4+ to 2+ transition in Dy-170 was also identified. The data on this and lighter even-even dysprosium isotopes are interpreted in terms of Total Routhian Surface calculations and the evolution of collectivity approaching the proton-neutron valence product maximum is discussed.
Determination of conduction and valence band electronic structure of anatase and rutile TiO2
Jakub Szlachetko; Katarzyna Michalow-Mauke; Maarten Nachtegaal; Jacinto Sá
2014-03-01
Electronic structures of rutile and anatase polymorph of TiO2 were determined by resonant inelastic X-ray scattering measurements and FEFF9.0 calculations. Difference between crystalline structures led to shifts in the rutile Ti -band to lower energy with respect to anatase, i.e., decrease in band gap. Anatase possesses localized states located in the band gap where electrons can be trapped, which are almost absent in the rutile structure. This could well explain the reported longer lifetimes in anatase. It was revealed that HR-XAS is insufficient to study in-depth unoccupied states of investigated materials because it overlooks the shallow traps.
McDonald, James G.; Groth, Clinton P. T.
2013-09-01
The ability to predict continuum and transition-regime flows by hyperbolic moment methods offers the promise of several advantages over traditional techniques. These methods offer an extended range of physical validity as compared with the Navier-Stokes equations and can be used for the prediction of many non-equilibrium flows with a lower expense than particle-based methods. Also, the hyperbolic first-order nature of the resulting partial differential equations leads to mathematical and numerical advantages. Moment equations generated through an entropy-maximization principle are particularly attractive due to their apparent robustness; however, their application to practical situations involving viscous, heat-conducting gases has been hampered by several issues. Firstly, the lack of closed-form expressions for closing fluxes leads to numerical expense as many integrals of distribution functions must be computed numerically during the course of a flow computation. Secondly, it has been shown that there exist physically realizable moment states for which the entropy-maximizing problem on which the method is based cannot be solved. Following a review of the theory surrounding maximum-entropy moment closures, this paper shows that both of these problems can be addressed in practice, at least for a simplified one-dimensional gas, and that the resulting flow predictions can be surprisingly good. The numerical results described provide significant motivations for the extension of these ideas to the fully three-dimensional case.
Cesaroni, Claudio; Spogli, Luca; Alfonsi, Lucilla; De Franceschi, Giorgiana; Ciraolo, Luigi; Francisco Galera Monico, Joao; Scotto, Carlo; Romano, Vincenzo; Aquino, Marcio; Bougard, Bruno
2015-12-01
This work presents a contribution to the understanding of the ionospheric triggering of L-band scintillation in the region over São Paulo state in Brazil, under high solar activity. In particular, a climatological analysis of Global Navigation Satellite Systems (GNSS) data acquired in 2012 is presented to highlight the relationship between intensity and variability of the total electron content (TEC) gradients and the occurrence of ionospheric scintillation. The analysis is based on the GNSS data acquired by a dense distribution of receivers and exploits the integration of a dedicated TEC calibration technique into the Ground Based Scintillation Climatology (GBSC), previously developed at the Istituto Nazionale di Geofisica e Vulcanologia. Such integration enables representing the local ionospheric features through climatological maps of calibrated TEC and TEC gradients and of amplitude scintillation occurrence. The disentanglement of the contribution to the TEC variations due to zonal and meridional gradients conveys insight into the relation between the scintillation occurrence and the morphology of the TEC variability. The importance of the information provided by the TEC gradients variability and the role of the meridional TEC gradients in driving scintillation are critically described.
A mourning dove banding project conducted in Adams County, Illinois, in 1963
US Fish and Wildlife Service, Department of the Interior — This study is a description of a Mourning Dove banding project carried out by personnel of the Gardner Unit of the Mark Twain National Wildlife Refuge. The project...
X-ray absorption and reflection as probes of the GaN conduction bands: Theory and experiments
Lambrecht, W.R.L.; Rashkeev, S.N.; Segall, B. [Case Western Reserve Univ., Cleveland, OH (United States)] [and others
1997-04-01
X-ray absorption measurements are a well-known probe of the unoccupied states in a material. The same information can be obtained by using glancing angle X-ray reflectivity. In spite of several existing band structure calculations of the group III nitrides and previous optical studies in UV range, a direct probe of their conduction band densities of states is of interest. The authors performed a joint experimental and theoretical investigation using both of these experimental techniques for wurtzite GaN.
Band gap and conductivity evaluation of carbon nanotube with hematite for green ammonia synthesis
Rehman, Zia Ur; Yahya, Noorhana; Shafie, A'fza; Soleimani, Hassan; Alqasim, Bilal Hassan; Irfan, Muhammad; Qureshi, Saima
2016-11-01
To understand the change in number of electrons, band gap and total energy in the catalyst simulation was performed using Cambridge Serial Total Energy Package (CASTEP). Two catalyst were taken into consideration namely carbon nanotubes (CNTs) and hematite adjacent with CNTs. The simulation based study of the adsorption of hydrogen and nitrogen with reference to change in number of electron and band-gap of carbon nano tubes and hematite mixed with carbon nanotubes was not reported in literature. For this reason carbon nanotubes band gap for different chirality and number of walls was calculated through simulation. After that simulation for number of electrons, band gap and average total energy of CNTs alone and a mixture hematite with CNTs was performed before and after adsorption of hydrogen and nitrogen. From simulation the number of electrons were found to be doubled for hematite mixed with CNTs and average total energy was also increased as compared to similar parameter for CNTs without hematite. In conclusion the hematite with carbon nanotubes is preferred candidate for ammonia synthesis using magnetic induction method. Ammonia synthesis was done using MIM. Ammonia yield was quantified by Kjaldal method.
Zhong Shi
2016-01-01
Full Text Available The anomalous Hall effect (AHE and magneto-crystalline anisotropy (MCA are investigated in epitaxial NixFe1−x thin films grown on MgO (001 substrates. The scattering independent term b of anomalous Hall conductivity shows obvious correlation with cubic magneto-crystalline anisotropy K1. When nickel content x decreasing, both b and K1 vary continuously from negative to positive, changing sign at about x = 0.85. Ab initio calculations indicate NixFe1−x has more abundant band structures than pure Ni due to the tuning of valence electrons (band fillings, resulting in the increased b and K1. This remarkable correlation between b and K1 can be attributed to the effect of band filling near the Fermi surface.
Shi, Zhong; Jiang, Hang-Yu; Zhou, Shi-Ming, E-mail: shiming@tongji.edu.cn [Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology & Pohl Institute of Solid State Physics, School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China); Hou, Yan-Liang; Ye, Quan-Lin [Department of Physics, Hangzhou Normal University, Hangzhou 310036 (China); Su Si, Ming [Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China)
2016-01-15
The anomalous Hall effect (AHE) and magneto-crystalline anisotropy (MCA) are investigated in epitaxial Ni{sub x}Fe{sub 1−x} thin films grown on MgO (001) substrates. The scattering independent term b of anomalous Hall conductivity shows obvious correlation with cubic magneto-crystalline anisotropy K{sub 1}. When nickel content x decreasing, both b and K{sub 1} vary continuously from negative to positive, changing sign at about x = 0.85. Ab initio calculations indicate Ni{sub x}Fe{sub 1−x} has more abundant band structures than pure Ni due to the tuning of valence electrons (band fillings), resulting in the increased b and K{sub 1}. This remarkable correlation between b and K{sub 1} can be attributed to the effect of band filling near the Fermi surface.
Nature of the band gap and origin of the conductivity of PbO2 revealed by theory and experiment.
Scanlon, David O; Kehoe, Aoife B; Watson, Graeme W; Jones, Martin O; David, William I F; Payne, David J; Egdell, Russell G; Edwards, Peter P; Walsh, Aron
2011-12-09
Lead dioxide has been used for over a century in the lead-acid battery. Many fundamental questions concerning PbO2 remain unanswered, principally: (i) is the bulk material a metal or a semiconductor, and (ii) what is the source of the high levels of conductivity? We calculate the electronic structure and defect physics of PbO2, using a hybrid density functional, and show that it is an n-type semiconductor with a small indirect band gap of ∼0.2 eV. The origin of electron carriers in the undoped material is found to be oxygen vacancies, which forms a donor state resonant in the conduction band. A dipole-forbidden band gap combined with a large carrier induced Moss-Burstein shift results in a large effective optical band gap. The model is supported by neutron diffraction, which reveals that the oxygen sublattice is only 98.4% occupied, thus confirming oxygen substoichiometry as the electron source.
Endres, James; Egger, David A.; Kulbak, Michael; Kerner, Ross A.; Zhao, Lianfeng; Silver, Scott H.; Hodes, Gary; Rand, Barry P.; Cahen, David; Kronik, Leeor; Kahn, Antoine
2016-01-01
We report valence and conduction band densities of states measured via ultraviolet and inverse photoemission spectroscopies on three metal halide perovskites, specifically methylammonium lead iodide and bromide and cesium lead bromide (MAPbI3, MAPbBr3, CsPbBr3), grown at two different institutions on different substrates. These are compared with theoretical densities of states (DOS) calculated via density functional theory. The qualitative agreement achieved between experiment and theory lead...
Conduction band mass determinations for n-type InGaAs/InAlAs single quantum wells
Jones, E.D.; Reno, J.L. [Sandia National Labs., Albuquerque, NM (United States); Kotera, Nobuo [Kyushu Inst. of Tech., Iizuka, Fukuoka (Japan); Wang, Y. [Florida State Univ., Tallahassee, FL (United States). National High Magnetic Field Lab.
1998-05-01
The authors report the measurement of the conduction band mass in n-type single 27-ML-wide InGaAs/InAlAs quantum well lattice matched to InP using two methods: (1) Magnetoluminescence spectroscopy and (2) far-infrared cyclotron resonance. The magnetoluminescence method utilizes Landau level transitions between 0 and 14 T at 1.4 K. The far infrared cyclotron resonance measurements were made at 4.2 K and to fields as large up to 18 T. The 2D-carrier density N{sub 2D} = 3 {times} 10{sup 11} cm{sup {minus}2} at low temperatures. The magnetoluminescence technique yielded an effective conduction-band mass of m{sub c} = 0.062m{sub 0} while the far infrared cyclotron resonance measurements gave m{sub c} = 0.056m{sub 0}, where m{sub 0} is the free electron mass. Both measurements show no evidence for any significant conduction-band nonparabolicity.
Effect of particle size on band gap and DC electrical conductivity of TiO2 nanomaterial
Avinash, B. S.; Chaturmukha, V. S.; Jayanna, H. S.; Naveen, C. S.; Rajeeva, M. P.; Harish, B. M.; Suresh, S.; Lamani, Ashok R.
2016-05-01
Materials reduced to the Nano scale can exhibit different properties compared to what they exhibit on a micro scale, enabling unique applications. When TiO2 is reduced to Nano scale it shows unique properties, of which the electrical aspect is highly important. This paper presents increase in the energy gap and decrease in conductivity with decrease in particle size of pure Nano TiO2 synthesized by hydrolysis and peptization of titanium isopropoxide. Aqueous solution with various pH and peptizing the resultant suspension will form Nano TiO2 at different particle sizes. As the pH of the solution is made acidic reduction in the particle size is observed. And it is confirmed from XRD using Scherer formula and SEM, as prepared samples are studied for UV absorbance, and DC conductivity from room temperature to 400°C. From the tauc plot it was observed, and calculated the energy band gap increases as the particle size decreases and shown TiO2 is direct band gap. From Arrhenius plot clearly we encountered, decrease in the conductivity for the decrease in particle size due to hopping of charge carriers and it is evident that, we can tailor the band gap by varying particle size.
Conductance of Conjugated Molecular Wires: Length Dependence, Anchoring Groups, and Band Alignment
Peng, Guowen; Strange, Mikkel; Thygesen, Kristian Sommer
2009-01-01
The conductance of π-conjugated molecular wires bonded to gold electrodes at zero bias is studied using density functional theory combined with nonequilibrium Green’s function method. For all systems considered, we find that the conductance length dependence follows the simple exponential law...
Umarji, Govind; Qureshi, Nilam; Gosavi, Suresh; Mulik, Uttam; Kulkarni, Atul; Kim, Taesung; Amalnerkar, Dinesh
2017-02-01
In conventional thick-film technology, there are often problems associated with poor edges, rough surfaces, and reproducibility due to process limitations, especially for high-frequency applications. These difficulties can be circumvented by using thin-film technology, but process cost and complexity remain major concerns. In this context, photopatternable thick-film technology can offer a viable alternative due to its Newtonian rheology, which can facilitate formation of the required sharp edges. We present herein a unique attempt to formulate a photopatternable silver paste with organic (photosensitive polymer) to inorganic (silver and glass) ratio of 30:70, developed in-house by us for fabrication of thick-film-based ring resonator and band-pass filter components. The ring resonator and band-pass component structures were realized by exposing screen-printed film to ultraviolet light at wavelength of 315 nm to 400 nm for 30 s to crosslink the photosensitive polymer. The pattern was subsequently developed using 1% sodium carbonate aqueous solution. For comparison, conventional silver and silver-palladium thick films were produced using in-house formulations. The surface topology and microstructural features were examined by stereomicroscopy and scanning electron microscopy. The smoothness and edge definition of the film were assessed by profilometry. The resistivity of the samples was observed and remained in the range from 3.4 μΩ cm to 3.6 μΩ cm. The electrical properties were compared by measuring the insertion loss characteristics. The results revealed that the ring resonator fabricated using the photopatternable silver paste exhibited better high-frequency properties compared with components based on conventional silver or silver-palladium paste, especially in terms of the resonant frequency of 10.1 GHz (versus 10 GHz designed) with bandwidth of 80 MHz. Additionally, the band-pass filter fabricated using the photopatternable silver paste displayed better
Rauba, J.M.C.; Strange, Mikkel; Thygesen, Kristian Sommer
2008-01-01
We present density-functional theory calculations for the geometry and conductance of 4,4-bipyridine (BPD) nanojunctions with Au and Pt electrodes. The fact that transport takes place via bipyridine's lowest unoccupied molecular orbital (LUMO) suggests that the Au-BPD junction should have larger...... conductance than the Pt-BPD junction due to the smaller work function of Au as compared to Pt. On the other hand, coupling to the local d band is stronger in the case of Pt and this broadens the LUMO resonance. We find that these effects largely outbalance each other leading to conductances of 0.01G(0) and 0.......02G(0) for the Au and Pt contacts, respectively (G(0)=2e(2)/h is the conductance quantum). The effect of coupling to the electrodes is investigated by means of the group orbital which makes precise the concept of the local band. The construction allows us to explain and rationalize the first...
Dang, Hung T; Mravlje, Jernej; Georges, Antoine; Millis, Andrew J
2015-09-04
Density functional plus dynamical mean field calculations are used to show that in transition metal oxides, rotational and tilting (GdFeO(3)-type) distortions of the ideal cubic perovskite structure produce a multiplicity of low-energy optical transitions which affect the conductivity down to frequencies of the order of 1 or 2 mV (terahertz regime), mimicking non-Fermi-liquid effects even in systems with a strictly Fermi-liquid self-energy. For CaRuO(3), a material whose measured electromagnetic response in the terahertz frequency regime has been interpreted as evidence for non-Fermi-liquid physics, the combination of these band structure effects and a renormalized Fermi-liquid self-energy accounts for the low frequency optical response which had previously been regarded as a signature of exotic physics. Signatures of deviations from Fermi-liquid behavior at higher frequencies (∼100 meV) are discussed.
Loewer, M.; Günther, T.; Igel, J.; Kruschwitz, S.; Martin, T.; Wagner, N.
2017-09-01
We combined two completely different methods measuring the frequency-dependent electrical properties of moist porous materials in order to receive an extraordinary large frequency spectrum. In the low-frequency (LF) range, complex electrical resistivity between 1 mHz and 45 kHz was measured for three different soils and sandstone, using the spectral induced polarization (SIP) method with a four electrode cell. In the high-frequency (HF) radio to microwave range, complex dielectric permittivity was measured between 1 MHz and 10 GHz for the same samples using dielectric spectroscopy by means of the coaxial transmission line technique. The combined data sets cover 13 orders of magnitude and were transferred into their equivalent expressions: the complex effective dielectric permittivity and the complex effective electrical conductivity. We applied the Kramers-Kronig relation in order to justify the validity of the data combination. A new phenomenological model that consists of both dielectric permittivity and electrical conductivity terms in a Debye- and Cole-Cole-type manner was fitted to the spectra. The combined permittivity and conductivity model accounts for the most common representations of the physical quantities with respect to the individual measuring method. A maximum number of four relaxation processes was identified in the analysed frequency range. Among these are the free water and different interfacial relaxation processes, the Maxwell-Wagner effect, the counterion relaxation in the electrical double layer and the direct-current electrical conductivity. There is evidence that free water relaxation does not affect the electrical response in the SIP range. Moreover, direct current conductivity contribution (bulk and interface) dominates the losses in the HF range. Interfacial relaxation processes with relaxations in the HF range are broadly distributed down to the LF range. The slowest observed process in the LF range has a minor contribution to the HF
Altarawneh, M M
2012-09-01
We present a new technique to perform radio frequency (rf) contactless conductivity measurements in pulsed magnetic fields to probe different ground states in condensed matter physics. The new method utilizes a simple analog band-stop filter circuit implemented in a radio frequency transmission setup to perform contactless conductivity measurements. The new method is more sensitive than the other methods (e.g., the tunnel diode oscillator and the proximity detector oscillator) due to more sensitive dependence of the circuit resonance frequency on the tank circuit inductance (not the transmission line). More important, the new method is more robust than other methods when used to perform measurements in very high magnetic fields, works for a wide range of temperatures (i.e., 300 K-1.4 K) and is less sensitive to noise and mechanical vibrations during pulse magnet operation. The new technique was successfully applied to measure the Shubnikov-de Haas effect in Bi(2)Se(3) in pulsed magnetic fields of up to 60 T.
Bourgeois-Hope, Patrick; Badoux, Sven; Doiron-Leyraud, Nicolas; Taillefer, Louis; Chi, Shun; Liang, Ruixing; Hardy, Walter; Bonn, Doug
The thermal conductivity κ of the iron-based superconductor FeSe was measured at temperatures down to 50 mK in magnetic fields up to 17 T. In zero magnetic field, the residual linear term in the T = 0 limit, κ0 / T , is vanishingly small. Application of a magnetic field H causes no increase in κ0 / T initially. Those two facts show that there are no zero-energy quasiparticles that carry heat and therefore no nodes in the superconducting gap of FeSe. The full field dependence of κ0 / T has the classic shape of a two-band superconductor, such as MgB2. It rises initially with a characteristic field H* ~=Hc 2 / 25 , and then more slowly up to Hc 2 = 14 T. We interpret this in terms of a small gap ΔA ~=Δ0 / 5 on some part of the Fermi surface, with a large gap ΔB =Δ0 in the region that controls Hc 2.
Conduction band offset engineering in wide-bandgap Ag(In,Ga)Se2 solar cells by hybrid buffer layer
Umehara, Takeshi; Zulkifly, Faris Akira Bin Mohd; Nakada, Kazuyoshi; Yamada, Akira
2017-08-01
Ag(In,Ga)Se2 (AIGS) is one of the promising candidates for the top cell absorber in the tandem structure. However, the conversion efficiency of AIGS solar cells is still lower than that required for the top cell. In this study, to improve the conversion efficiency of AIGS solar cells, we controlled the conduction band offset (CBO) at the buffer layer/ZnO and buffer layer/AIGS interfaces. The reduction in interface recombination at the CdS buffer layer/AIGS interface was achieved by introducing a ZnS(O,OH) buffer layer instead of a CdS buffer layer, although the fill factor (FF) decreased markedly because the CBO at the ZnS(O,OH)/ZnO interface prevented the electron flow under a forward bias. We found that the introduction of a CdS/ZnS(O,OH) hybrid buffer layer is efficient in controlling the CBO at both the buffer layer/AIGS and buffer layer/ZnO interfaces and improving the solar cell conversion efficiency.
Dahal, Dipendra; Gumbs, Godfrey
2017-01-01
A remarkable property of intrinsic graphene is that upon doping, electrons and holes travel through the monolayer thick material with constant velocity which does not depend on energy up to about 0.3 eV (Dirac fermions), as though the electrons and holes are massless particles and antiparticles which move at the Fermi velocity vF. Consequently, there is Klein tunneling at a p-n junction, in which there is no backscattering at normal incidence of massless Dirac fermions. However, this process yielding perfect transmission at normal incidence is expected to be affected when the group velocity of the charge carriers is energy dependent and there is non-zero effective mass for the target particle. We investigate how away from normal incidence the combined effect of incident electron energy ɛ and band gap parameter Δ can determine whether a p-n junction would allow focusing of an electron beam by behaving like a Veselago lens with negative refractive index. We demonstrate that there is a specific region in ɛ - Δ space where the index of refraction is negative, i.e., where monolayer graphene behaves as a metamaterial. Outside this region, the refractive index may be positive or there may be no refraction at all. We compute the ballistic conductance across a p-n junction as a function of Δ and ɛ and compare our results with those for a single electrostatic potential barrier and multiple barriers.
S Panda; B Panda
2012-05-01
The effect of conduction band nonparabolicity on the linear and nonlinear optical properties such as absorption coefﬁcients, and changes in the refractive index are calculated in the Al0.3Ga0.7As/GaAs heterostructure-based symmetric rectangular quantum well under applied hydrostatic pressure and electric ﬁeld. The electron envelope functions and energies are calculated in the effective mass equation including the conduction band nonparabolicity. The linear and nonlinear optical properties have been calculated in the density matrix formalism with two-level approximation. The conduction band nonparabolicity shifts the positions of the optical properties and decreases their strength compared to those without this correction. Both the optical properties are enhanced with the applied hydrostatic pressure. While the absorption coefﬁcients are bleached under the combined effect of high pressure and electric ﬁeld, the bleaching effect is reduced when nonparabolicity is included.
Qiu, Xiaoqing; Miyauchi, Masahiro; Yu, Huogen; Irie, Hiroshi; Hashimoto, Kazuhito
2010-11-03
Band-gap narrowing is generally considered to be a primary method in the design of visible-light-active photocatalysts because it can decrease the photo threshold to lower energies. However, controlling the valence band by up-shifting the top of the band or inducing localized levels above the band results in quantum efficiencies under visible light much lower than those under UV irradiation (such as those reported for N-doped TiO(2): Science 2001, 293, 269. J. Phys. Chem. B 2003, 107, 5483). Herein, we report a systematic study on a novel, visible-light-driven photocatalyst based on conduction band control and surface ion modification. Cu(II)-(Sr(1-y)Na(y))(Ti(1-x)Mo(x))O(3) photocatalysts were prepared by a soft chemical method in combination with an impregnation technique. It is found that Mo(6+) as well as Na(+) doping in the SrTiO(3) can lower the bottom of the conduction band and effectively extend the absorption edge to the visible light region. The Cu(II) clusters grafted on the surface act as a co-catalyst to efficiently reduce the oxygen molecules, thus consuming the excited electrons. Consequently, photocatalytic decomposition of gaseous 2-propanol into CO(2) is achieved, that is, CH(3)CHOHCH(3) + (9)/(2)O(2) → 3CO(2) + H(2)O. For Cu(II)-(Sr(1-y)Na(y))(Ti(1-x)Mo(x))O(3) at x = 2.0% under visible light irradiation, the maximum CO(2) generation rate can reach 0.148 μmol/h; the quantum efficiency under visible light is calculated to be 14.5%, while it is 10% under UV light irradiation. Our results suggest that high visible light photocatalytic efficiency can be achieved by combining conduction band control and surface ion modification, which provides a new approach for rational design and development of high-performance photocatalysts.
Potter, Andrew C; Lee, Patrick A
2014-03-21
In mean-field descriptions of nodal d-wave superconductors, generic edges exhibit dispersionless Majorana fermion bands at zero energy. These states give rise to an extensive ground-state degeneracy, and are protected by time-reversal symmetry. We argue that the infinite density of states of these flat bands make them inherently unstable to interactions, and show that repulsive interactions lead to edge ferromagnetism which splits the flat bands. This edge ferromagnetism offers an explanation for the observation of the splitting of zero-bias peaks in edge tunneling in high-Tc cuprate superconductors. We argue that this mechanism for splitting is more likely than previously proposed scenarios and describe its experimental consequences.
Binet, Laurent; Sharma, Suchinder K.; Gourier, Didier
2016-09-01
Cr3+-doped zinc gallate ZnGa2O4 is a red-near infrared (IR) long persistent phosphor that can be excited by orange-red light, in the transparency window of living tissues. With this property, persistent luminescence nanoparticles were recently used for in vivo optical imaging of tumors in mice. In order to understand the origin of the excitability of persistent luminescence by visible light in this material, a Q-band ENDOR investigation of 71/69Ga and 53Cr nuclei was performed in ZnGa2O4:Cr3+ to get information on the interaction of Cr3+ with valence and conduction bands. The positive electron spin density at Ga nuclei revealed a dominant interaction of the 4A2 ground state of Cr3+ with the valence band, and a weaker interaction with the conduction band. The latter may occur only in the excited 2E and 4T2 states of Cr3+. It is proposed that when these two interactions are present, pairs of electrons and holes can be generated from excited Cr3+ in distorted sites undergoing local electric field produced by neighboring defects with opposite charges.
Smoliner, J.; Christanell, R.; Hauser, M.; Gornik, E.; Weimann, G.
1987-06-01
Oscillatory structure is observed in the dI/dV characteristics of conventional GaAs/GaAlAs high electron mobility transistor samples at liquid-helium temperature, which can be explained using a Fowler-Nordheim tunneling theory. The position of the oscillations allows a determination of the conduction-band discontinuity, and the depth of the deep donor levels in the GaAlAs for high aluminum concentrations. The fit of the data gives a value of Delta Ec/Delta Eg = 0.61 + or - 0.04 for aluminum concentration 30, 36, and 40 percent. The deep donor level in the GaAlAs was determined to be 130 meV below the conduction band.
Singh, Mukesh [Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039 (India); Yadav, Asha [Centre for Energy, Indian Institute of Technology Guwahati, Guwahati 781039 (India); Kumar, Shailendra [Indus Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Agarwal, Pratima, E-mail: pratima@iitg.ernet.in [Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039 (India); Centre for Energy, Indian Institute of Technology Guwahati, Guwahati 781039 (India)
2015-01-30
Highlights: • Controllable electrical properties of GO from insulator to semimetal behavior with different reduction temperatures. • High conductivity ∼40 S/cm for GO reduced at 400 °C. • Tunable band gap of GO with different reduction temperatures. • A systematic decrease the fraction of sp{sup 3} as compared to sp{sup 2} with increase in reduction temperature. - Abstract: Temperature dependent electrical conductivity of as prepared and thermally reduced graphene oxide (GO) thin films was measured in the range 300–520 K. As prepared GO films show very low conductivity ∼6.8 × 10{sup −6} S/cm at 300 K, which increases slowly till 370 K. A sharp increase in conductivity is observed in the temperature range 370–440 K, beyond which conductivity is thermally activated with activation energy 0.26 eV. Reduced GO films show an increase in conductivity at 300 K with increase in reduction temperature. GO films reduced at 400 °C exhibit high conductivity ∼40 S/cm at 300 K, with very low activation energy 0.05 eV in the measured temperature range 300–520 K. The increase in conductivity after thermal reduction is due to an increase in the ratio sp{sup 2}/sp{sup 3} bonded carbon atoms. The band gap of as prepared GO is 3.20 eV and it is decreased by approximately 0.4 eV in the case of thermally reduced GO at 400 °C in comparison to as prepared GO.
Design of an L-band normally conducting RF gun cavity for high peak and average RF power
Paramonov, V.; Philipp, S.; Rybakov, I.; Skassyrskaya, A.; Stephan, F.
2017-05-01
To provide high quality electron bunches for linear accelerators used in free electron lasers and particle colliders, RF gun cavities operate with extreme electric fields, resulting in a high pulsed RF power. The main L-band superconducting linacs of such facilities also require a long RF pulse length, resulting in a high average dissipated RF power in the gun cavity. The newly developed cavity based on the proven advantages of the existing DESY RF gun cavities, underwent significant changes. The shape of the cells is optimized to reduce the maximal surface electric field and RF loss power. Furthermore, the cavity is equipped with an RF probe to measure the field amplitude and phase. The elaborated cooling circuit design results in a lower temperature rise on the cavity RF surface and permits higher dissipated RF power. The paper presents the main solutions and results of the cavity design.
Analysis of the experimental data for impurity-band conduction in Mn-doped InSb
Kajikawa, Yasutomo [Department of Electric and Control Systems Engineering, Interdisciplinary Faculty of Science and Engineering, Shimane University, Matsue (Japan)
2017-01-15
The experimental data of the temperature-dependent Hall-effect measurements on Mn-doped p -type InSb samples, which exhibit the anomalous sign reversal of the Hall coefficient to negative at low temperatures, have been analyzed on the basis of the nearest-neighbor hopping model in an impurity band. It is shown that the anomalous sign reversal of the Hall coefficient to negative can be well explained with assuming the hopping Hall factor in the form of A{sub hop} = (k{sub B}T/J{sub 3}) exp(K{sub NNH}T{sub 3}/T) with the negative sign of J{sub 3}. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Parmar, Narendra S.; Yim, Haena; Choi, Ji-Won
2017-03-01
Stable p-type conduction in ZnO has been a long time obstacle in utilizing its full potential such as in opto-electronic devices. We designed a unique experimental set-up in the laboratory for high Na-doping by thermal diffusion in the bulk ZnO single crystals. SIMS measurement shows that Na concentration increases by 3 orders of magnitude, to ~3 × 1020 cm‑3 as doping temperature increases to 1200 °C. Electronic infrared absorption was measured for Na-acceptors. Absorption bands were observed near (0.20–0.24) eV. Absorption bands blue shifted by 0.04 eV when doped at 1200 °C giving rise to shallow acceptor level. NaZn band movements as a function of doping temperature are also seen in Photoluminescence emission (PL), Photoluminescence excitation (PLE) and UV-Vis transmission measurements. Variable temperature Hall measurements show stable p-type conduction with hole binding energy ~0.18 eV in ZnO samples that were Na-doped at 1200 °C.
Nandy, S; Maiti, U N; Ghosh, C K; Chattopadhyay, K K
2009-03-18
Stoichiometric NiO, a Mott-Hubbard insulator at room temperature, shows p-type electrical conduction due to the introduction of Ni(2+) vacancies (V(Ni)('')) and self-doping of Ni(3+) ions in the presence of excess oxygen. The electrical conductivity of this important material is low and not sufficient for active device fabrication. Al doped NiO thin films were synthesized by radio frequency (RF) magnetron sputtering on glass substrates at a substrate temperature of 250 °C in an oxygen + argon atmosphere in order to enhance the p-type electrical conductivity. X-ray diffraction studies confirmed the correct phase formation and also oriented growth of NiO thin films. Al doping was confirmed by x-ray photoelectron spectroscopic studies. The structural, electrical and optical properties of the films were investigated as a function of Al doping (0-4 wt%) in the target. The room temperature electrical conductivity increased from 0.01-0.32 S cm (-1) for 0-4% Al doping. With increasing Al doping, above the Mott critical carrier density, energy band gap shrinkage was observed. This was explained by the shift of the band edges due to the existence of exchange and correlation energies amongst the electron-electron and hole-hole systems and also by the interaction between the impurity quasi-particle system.
Increased conductivities of Cr doped Al{sub 2−x}Cr{sub x}O{sub 3} powders due to band gap narrowing
Badar, Nurhanna [Centre for Nanomaterials Research, Institute of Science, Level 3 Block C, Universiti Teknologi MARA, Shah Alam, Selangor 40450 (Malaysia); School of Physics and Materials Studies, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor 40450 (Malaysia); Kamarulzaman, Norlida, E-mail: norlyk@salam.uitm.edu.my [Centre for Nanomaterials Research, Institute of Science, Level 3 Block C, Universiti Teknologi MARA, Shah Alam, Selangor 40450 (Malaysia); School of Physics and Materials Studies, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor 40450 (Malaysia); Rusdi, Roshidah; Abdul Aziz, Nor Diyana [Centre for Nanomaterials Research, Institute of Science, Level 3 Block C, Universiti Teknologi MARA, Shah Alam, Selangor 40450 (Malaysia); School of Physics and Materials Studies, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor 40450 (Malaysia); Kun Fun, Hoong [School of Physics, Universiti Sains Malaysia, 11800 Penang (Malaysia); Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451 (Saudi Arabia)
2014-03-15
A high Cr content in the synthesized Al{sub 2−x}Cr{sub x}O{sub 3} materials was achieved via a new synthesis route, the self propagating combustion method, for investigation of the effect of Cr substitution on the electrical, optical band gap and structural characteristics of the modified Al{sub 2}O{sub 3} materials. X-ray diffraction (XRD) results showed that all the samples were pure and that Cr was successfully substituted in the crystal lattice. The cell parameters and volume are linearly dependent on the Cr content. AC impedance spectroscopy results show that conductivity of the Cr doped samples increases exponentially with Cr content. This is attributed to band gap narrowing of the Al{sub 2−x}Cr{sub x}O{sub 3} powders as obtained from UV–visible spectrophotometric studies.
Zhang, Jiawei; Song, Lirong; Pedersen, Steffen Hindborg; Yin, Hao; Hung, Le Thanh; Iversen, Bo Brummerstedt
2017-01-01
Widespread application of thermoelectric devices for waste heat recovery requires low-cost high-performance materials. The currently available n-type thermoelectric materials are limited either by their low efficiencies or by being based on expensive, scarce or toxic elements. Here we report a low-cost n-type material, Te-doped Mg3Sb1.5Bi0.5, that exhibits a very high figure of merit zT ranging from 0.56 to 1.65 at 300-725 K. Using combined theoretical prediction and experimental validation, we show that the high thermoelectric performance originates from the significantly enhanced power factor because of the multi-valley band behaviour dominated by a unique near-edge conduction band with a sixfold valley degeneracy. This makes Te-doped Mg3Sb1.5Bi0.5 a promising candidate for the low- and intermediate-temperature thermoelectric applications.
George, N. J.; Atat, J. G.; Umoren, E. B.; Etebong, Isong
2017-06-01
Electrical geophysical applications exploit a petrophysical relationship governing the electrical properties of rocks/sediments when field data are coupled with laboratory data. Given the robust analytical techniques of electrical method and the interrelationship with laboratory measurements, it seems natural to classify, and hence simplify, the spatially aggregated conductivity information on the basis of rock/sediment lithology. This provides a unique link between lithological sediment/rock parameters and the physical parameters controlling bulk conductivity. In this work vertical electrical sounding (VES) technique employing Schlumberger configuration integrated with sediment and water analysis have been used to determine the conductivity of argillaceous bands of aquifer sands (fine- coarse sands) in Eastern Obolo Local Government Area (EOLGA). The analysis of the data shows that the aquifer systems composing of fine sands, siltstones and coarse sand have bulk and pore-water resistivities ranging from 40.1-2049.4 Ω m (average = 995.18 Ω m) to 2.7-256.9 Ω m (average = 91.2 Ω m) respectively. These ranges respectively correspond to porosity and formation factor of (19.5-40.6%; average = 29.2%) and (7.1-19.7%; average = 12.95%). Within the limit of experimental errors clearly specified in the work, the intrinsic (clay-free) formation factor (Fi) was estimated to be 16.34 while the intrinsic porosity and the conductivity of the pore-scale clay (σA) were respectively estimated to be 20.4% and 3.2679 mS/m. Accounting for this conductivity magnitude of argillaceous bands from bulk conductivity (σb) of aquifer sands makes the aquifer systems in the area to be consistent with Archie's law that is valid only in clay-free sandy formation. The graphical deductions and contour distribution of parameters realised from data processing could be used to derive input parameters for contaminant migration modelling and to improve the quality of model in the study area.
Ismet Kaya; Ali Bilici
2009-01-01
The oxidative polycondensation reaction conditions of 4-[(2-hydroxyl-l-naphthyl)methylene]aminobenzoic acid (4-HNMABA) with H2O2,air O2 and NaOCl were studied in an aqueous alkaline medium between 40℃ and 90℃.The structure of oligo {4-[(2-hydroxyl-1-naphthyl)methylene]aminobenzoic acid} (O-4-HNMABA) was characterized by using 1H-NMR,13C-NMR,FT-IR,UV-Vis,size exclusion chromatography (SEC) and elemental analysis techniques.At the optimum reaction conditions,the yield of O-4-HNMABA was found to be 70% for H2O2 oxidant,94% for air O2 oxidant and 87% for NaOCl oxidant.According to the SEC analysis,the number-average molecular weight (Mn),weight-average molecular weight (Mw) and polydispersity index (PDI) values of O-4-HNMABA were found to be 850,1350 and 1.59,using H2O2,1800,2200 and 1.22,using air O2 and 2200,3000 and 1.36,using NaOCl,respectively.TGA-DTA analyses showed that O-4-HNMABA was more stable than 4-HNMABA.The highest occupied molecular orbital,the lowest unoccupied molecular orbital and electrochemical energy gaps ( Eg) of 4-HNMABA and O-4-HNMABA were found to be -6.34,-6.56; -2.67,-3.04; 3.67 and 3.52 eV,respectively,by cyclic voltammetry (CV).According to UV-Vis measurements,optical band gaps (E,g) of 4-HNMABA and O-4-HNMABA were found to be 3.12 and 3.03 eV,respectively.
Jian Zhao
2017-01-01
Full Text Available Partial shading (PS is an unavoidable condition which significantly reduces the efficiency and stability of a photovoltaic (PV system. With PS, the system usually exhibits multiple-peak output power characteristics, but single-peak is also possible under special PS conditions. In fact it is shown that the partial shading condition (PSC is the necessary but not sufficient condition for multiple-peak. Based on circuit analysis, this paper shows that the number of peak points can be determined by short-circuit currents and maximum-power point currents of all the arrays in series. Then the principle is established based on which the number of the peak points is to be determined. Furthermore, based on the dynamic characteristic of solar array, this paper establishes the rule for determination of the relative position of the global maximum power point (GMPP. In order to track the GMPP within an appropriate period, a reliable technique and the corresponding computer algorithm are developed for GMPP tracking (GMPPT control. It exploits a definable nonlinear relation has been found between variable environmental parameters and the output current of solar arrays at every maximum power point, obtained based on the dynamic performance corresponding to PSC. Finally, the proposed method is validated with MATLAB®/Simulink® simulations and actual experiments. It is shown that the GMPPT of a PV generation system is indeed realized efficiently in a realistic environment with partial shading conditions.
Band offsets at the CdS/CuInSe[sub 2] heterojunction
Wei, S.; Zunger, A. (National Renewable Energy Laboratory, Golden, Colorado 80401 (United States))
1993-11-01
The traditional explanation for the successful electron-hole separation in CdS/CuInSe[sub 2] solar cells rests on the assumption of a type-II band lineup: The conduction-band minimum is assumed to be on the CdS window while the valence-band maximum is assumed to be localized on the CuInSe[sub 2] absorber. This picture of negative conduction-band offset [Delta][ital E][sub [ital c
Kinkhabwala, Ali
2013-01-01
The most fundamental problem in statistics is the inference of an unknown probability distribution from a finite number of samples. For a specific observed data set, answers to the following questions would be desirable: (1) Estimation: Which candidate distribution provides the best fit to the observed data?, (2) Goodness-of-fit: How concordant is this distribution with the observed data?, and (3) Uncertainty: How concordant are other candidate distributions with the observed data? A simple unified approach for univariate data that addresses these traditionally distinct statistical notions is presented called "maximum fidelity". Maximum fidelity is a strict frequentist approach that is fundamentally based on model concordance with the observed data. The fidelity statistic is a general information measure based on the coordinate-independent cumulative distribution and critical yet previously neglected symmetry considerations. An approximation for the null distribution of the fidelity allows its direct conversi...
Brennan, Thomas P.
2013-11-21
Atomic layer deposition (ALD) was used to grow subnanometer indium oxide recombination barriers in a solid-state dye-sensitized solar cell (DSSC) based on the spiro-OMeTAD hole-transport material (HTM) and the WN1 donor-π-acceptor organic dye. While optimal device performance was achieved after 3-10 ALD cycles, 15 ALD cycles (∼2 Å of In2O 3) was observed to be optimal for increasing open-circuit voltage (VOC) with an average improvement of over 100 mV, including one device with an extremely high VOC of 1.00 V. An unexpected phenomenon was observed after 15 ALD cycles: the increasing VOC trend reversed, and after 30 ALD cycles VOC dropped by over 100 mV relative to control devices without any In2O3. To explore possible causes of the nonmonotonic behavior resulting from In2O3 barrier layers, we conducted several device measurements, including transient photovoltage experiments and capacitance measurements, as well as density functional theory (DFT) studies. Our results suggest that the VOC gains observed in the first 20 ALD cycles are due to both a surface dipole that pulls up the TiO2 conduction band and recombination suppression. After 30 ALD cycles, however, both effects are reversed: the surface dipole of the In2O3 layer reverses direction, lowering the TiO 2 conduction band, and mid-bandgap states introduced by In 2O3 accelerate recombination, leading to a reduced V OC. © 2013 American Chemical Society.
N.J. George
2017-06-01
Full Text Available Electrical geophysical applications exploit a petrophysical relationship governing the electrical properties of rocks/sediments when field data are coupled with laboratory data. Given the robust analytical techniques of electrical method and the interrelationship with laboratory measurements, it seems natural to classify, and hence simplify, the spatially aggregated conductivity information on the basis of rock/sediment lithology. This provides a unique link between lithological sediment/rock parameters and the physical parameters controlling bulk conductivity. In this work vertical electrical sounding (VES technique employing Schlumberger configuration integrated with sediment and water analysis have been used to determine the conductivity of argillaceous bands of aquifer sands (fine- coarse sands in Eastern Obolo Local Government Area (EOLGA. The analysis of the data shows that the aquifer systems composing of fine sands, siltstones and coarse sand have bulk and pore-water resistivities ranging from 40.1–2049.4 Ω m (average = 995.18 Ω m to 2.7–256.9 Ω m (average = 91.2 Ω m respectively. These ranges respectively correspond to porosity and formation factor of (19.5–40.6%; average = 29.2% and (7.1–19.7%; average = 12.95%. Within the limit of experimental errors clearly specified in the work, the intrinsic (clay-free formation factor (Fi was estimated to be 16.34 while the intrinsic porosity and the conductivity of the pore-scale clay (σA were respectively estimated to be 20.4% and 3.2679 mS/m. Accounting for this conductivity magnitude of argillaceous bands from bulk conductivity (σb of aquifer sands makes the aquifer systems in the area to be consistent with Archie’s law that is valid only in clay-free sandy formation. The graphical deductions and contour distribution of parameters realised from data processing could be used to derive input parameters for contaminant migration modelling and to improve the
Taoka, Noriyuki; Yokoyama, Masafumi; Kim, Sang Hyeon; Suzuki, Rena; Iida, Ryo; Takenaka, Mitsuru; Takagi, Shinichi
2016-11-01
We investigated the influences of the AC response with interface/bulk-oxide traps near the conduction band (CB) and a low effective density of states (DOS) on the accumulation capacitance C acc of an n-type InGaAs metal–oxide–semiconductor (MOS) capacitor. We found that the capacitance associated with the interface traps inside the CB significantly increases C acc compared to the C acc value constrained by a low DOS. These results indicate that accurate characterization inside the CB and considering the capacitance due to the interface traps inside the CB in the MOS capacitance–voltage curves are indispensable for accurate characterization of InGaAs MOS interface properties.
Litvinov, Vladimir [P.N. Lebedev Physical Institute RAS, Leninsky pr. 53, 119991 Moscow (Russian Federation); Ryazan State Radioengineering University, Gagarina 59/1, 390005 Ryazan (Russian Federation); Kozlovsky, Vladimir; Sannikov, Denis; Sviridov, Dmitry [P.N. Lebedev Physical Institute RAS, Leninsky pr. 53, 119991 Moscow (Russian Federation); Milovanova, Oksana; Rybin, Nikolay [Ryazan State Radioengineering University, Gagarina 59/1, 390005 Ryazan (Russian Federation)
2010-06-15
ZnCdS/ZnSSe SQW structure were investigated by current deep level transient spectroscopy (DLTS) with Laplace transform cooperated with atomic force microscopy (AFM) for the first time. Cathodoluminescence (CL) measurements were carried out also. Basing on Laplace current DLTS with AFM and CL data we estimated the conduction band offset of the ZnCdS/ZnSSe interface in the different regions of the structure. Size of the investigated region was commensurable with the diameter of cantilever tip. We demonstrated that Laplace current DLTS-spectrometer switched in the circuit of an AFM cantilever may be used for an investigation of nanostructures. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Hwang, Yeon-Taek; Chung, Wan-Ho; Jang, Yong-Rae; Kim, Hak-Sung
2016-04-06
In this work, an intensive plasmonic flash light sintering technique was developed by using a band-pass light filter matching the plasmonic wavelength of the copper nanoparticles. The sintering characteristics, such as resistivity and microstructure, of the copper nanoink films were studied as a function of the range of the wavelength employed in the flash white light sintering. The flash white light irradiation conditions (e.g., wavelength range, irradiation energy, pulse number, on-time, and off-time) were optimized to obtain a high conductivity of the copper nanoink films without causing damage to the polyimide substrate. The wavelength range corresponding to the plasmonic wavelength of the copper nanoparticles could efficiently sinter the copper nanoink and enhance its conductivity. Ultimately, the sintered copper nanoink films under optimal light sintering conditions showed the lowest resistivity (6.97 μΩ·cm), which was only 4.1 times higher than that of bulk copper films (1.68 μΩ·cm).
Sonal Singhal; A K Saxena; S Dasgupta
2007-10-01
The electron drift mobility in conduction band of GaAs has been calculated before, but for the first time, we have made attempts to estimate the electron mobilities in higher energy L and X minima. We have also calculated the value of mobility of two-dimensional electron gas needed to predict hetero-structure device characteristics using GaAs. Best scattering parameters have been derived by close comparison between experimental and theoretical mobilities. Room temperature electron mobilities in , L and X valleys are found to be nearly 9094, 945 and 247 cm2 /V-s respectively. For the above valleys, the electron masses, deformation potentials and polar phonon temperatures have been determined to be (0.067, 0.22, 0.39m 0 ), (8.5, 9.5, 6.5 eV), and (416, 382, 542 K) as best values, respectively. The 2-DEG electron mobility in minimum increases to 1.54 × 106 from 1.59 × 105 cm2 /V-s (for impurity concentration of 1014 cm-3) at 10 K. Similarly, the 2-DEG electron mobility values in L and X minima are estimated to be 2.28 × 105 and 1.44 × 105 cm2 /V-s at 10 K, which are about ∼ 4.5 and ∼ 3.9 times higher than normal value with impurity scattering present.
Hernandez-Garcia, C; Asova, G; Bakr, M; Boonpornprasert, P; Good, J; Gross, M; Huck, H; Isaev, I; Kalantaryan, D; Khojoyan, M; Kourkafas, G; Lishilin, O; Malyutin, D; Melkumyan, D; Oppelt, A; Otevrel, M; Pathak, G; Renier, Y; Rublack, T; Stephan, F; Vashchenko, G; Zhao, Q
2016-01-01
This paper discusses the behavior of electron bunch charge produced in an L-band normal conducting radio frequency cavity (RF gun) from Cs2Te photocathodes illuminated with ps-long UV laser pulses when the laser transverse distribution consists of a flat-top core with Gaussian-like decaying halo. The produced charge shows a linear dependence at low laser pulse energies as expected in the quantum efficiency limited emission regime, while its dependence on laser pulse energy is observed to be much weaker for higher values, due to space charge limited emission. However, direct plug-in of experimental parameters into the space charge tracking code ASTRA yields lower output charge in the space charge limited regime compared to measured values. The rate of increase of the produced charge at high laser pulse energies close to the space charge limited emission regime seems to be proportional to the amount of halo present in the radial laser profile since the charge from the core has saturated already. By utilizing co...
Estimation of the band gap of InPO4
Wager, J. F.; Wilmsen, C. W.; Kazmerski, L. L.
1983-04-01
The band gap of a thin layer of InPO4 was estimated to be 4.5 eV using a novel approach employing ultraviolet photoelectron spectroscopy and electron energy loss spectroscopy. The technique measures the conduction-band minimum and valence-band maximum referenced to the In 4d core line energy. Since this technique is highly surface sensitive, it can be used to measure the band gap of a thin layer. This parameter is difficult to measure in such layers using conventional techniques.
Substrate-induced Band Gap Renormalization in Semiconducting Carbon Nanotubes
Lanzillo, Nicholas A.; Kharche, Neerav; Nayak, Saroj K.
2014-01-01
The quasiparticle band gaps of semiconducting carbon nanotubes (CNTs) supported on a weakly-interacting hexagonal boron nitride (h-BN) substrate are computed using density functional theory and the GW Approximation. We find that the direct band gaps of the (7,0), (8,0) and (10,0) carbon nanotubes are renormalized to smaller values in the presence of the dielectric h-BN substrate. The decrease in the band gap is the result of a polarization-induced screening effect, which alters the correlation energy of the frontier CNT orbitals and stabilizes valence band maximum and conduction band minimum. The value of the band gap renormalization is on the order of 0.25 to 0.5 eV in each case. Accounting for polarization-induced band gap changes is crucial in comparing computed values with experiment, since nanotubes are almost always grown on substrates. PMID:24402238
Salvinelli, Gabriele; Drera, Giovanni; Baratto, Camilla; Braga, Antonio; Sangaletti, Luigi
2015-01-14
An angle-resolved photoemission spectroscopy study allowed us to identify cation interdiffusion and stoichiometry gradients at the interface between a nanosized TiO2 blocking layer and a transparent conductive Cd-Sn oxide substrate. A stoichiometry gradient for the Sn cations is already found in the bare Cd-Sn oxide layer. When TiO2 ultrathin layers are deposited by RF sputtering on the Cd-Sn oxide layer, Ti is found to partially replace Sn, resulting in a Cd-Sn-Ti mixed oxide layer with a thickness ranging from 0.85 to 3.3 nm. The band gap profile across the junction has been reconstructed for three TiO2 layers, resulting in a valence band offset decrease (and a conduction band offset increase) with the blocking layer thickness. The results are related to the cell efficiencies in terms of charge injection and recombination processes.
Sali, A.; Kharbach, J.; Rezzouk, A.; Ouazzani Jamil, M.
2017-04-01
Basing on the numerical Finite Element Method (FEM), we have investigated the influences of polaronic mass and conduction band non-parabolicity on the binding energy of the ground state of an on-center hydrogenic donor impurity in a spherical GaAs / Ga1 - x AlxAs quantum dot structure. The calculations have been made with a realistic potential barrier height in the framework of the effective mass approximation including the combined effect of hydrostatic pressure and temperature. The donor binding energy is computed as a function of dot size, Al concentration x , hydrostatic pressure and temperature both in the absence and presence of polaronic mass and conduction band non-parabolicity effects. We have taken into account the electronic effective mass, dielectric constant, and conduction band offset between the dot and barriers varying with pressure and temperature. It has been found that the binding energy is strongly affected by the effect of polaronic mass and conduction band non-parabolicity for narrow quantum dot and large Al concentration x. The results show again that the donor binding energy increases linearly with the pressure in direct gap regime and its variation is larger for narrower dots only and drops slightly with the temperature. A good agreement is obtained with the existing literature values.
Syed Mahboob; G Prasad; G S Kumar
2006-08-01
Electrical conduction studies on Ba(Nd0.2Ti0.6Nb0.2)O3 ceramic samples prepared through conventional and microwave sintering route are presented in this paper. D.C. and a.c. conductivities of these samples as a function of temperature from 300–900 K have been studied. Two types of conduction processes are evident from the frequency dependant conductivity plots, i.e. low-frequency conduction due to short-range hopping and high-frequency conduction due to the localized relaxation (reorientational) hopping mechanism. Grain and grain boundary contributions to the conductivity in these samples are obtained from impedance/admittance measurements via equivalent circuit modelling.
Jianxin Lu
2014-11-01
Full Text Available The memory structures Pt/Al2O3/(TiO2x(Al2O31−x/Al2O3/p-Si(nominal composition x = 0.05, 0.50 and 0.70 were fabricated by using rf-magnetron sputtering and atomic layer deposition techniques, in which the dielectric constant and the bottom of the conduction band of the high-k composite (TiO2x(Al2O31−x were adjusted by controlling the partial composition of Al2O3. With the largest dielectric constant and the lowest deviation from the bottom of the conduction band of Si, (TiO20.7(Al2O30.3 memory devices show the largest memory window of 7.54 V, the fast programming/erasing speed and excellent endurance and retention characteristics, which were ascribed to the special structural design, proper combination of dielectric constant and band alignment in the high-k composite (TiO20.7(Al2O30.3.
Duque, C.A. [Instituto de Fisica, Universidad de Antioquia, AA 1226, Medellin (Colombia); Lopez, S.Y. [Facultad de Educacion, Universidad de Antioquia, AA 1226, Medellin (Colombia); Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, C.P. 62210, Cuernavaca (Mexico)
2007-06-15
Mixing between {gamma} and X valleys of the conduction band in GaAs-Ga{sub 1-x}Al{sub x}As quantum wells is investigated taken into account the effect of applied hydrostatic pressure. This effect is introduced via the pressure-dependent values of the corresponding energy gaps and the main band parameters. The mixing is considered along the lines of a phenomenological model. Variation of the confined ground state in the well as a function of the pressure is reported. The dependencies of the variationally calculated binding energy of a donor impurity with the hydrostatic pressure and well width are also presented. It is shown that the inclusion of the {gamma}-X mixing explains the non-linear behavior in the photoluminescence peak of confined exciton states that has been observed for pressures above 20 kbar. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, C.P. 62209, Cuernavaca, MOR (Mexico); Inst. de Ciencia de Materiales de Madrid, CSIC, Sor Juana Ines de la Cruz 3, 28049 Madrid (Spain); Lopez, S.Y. [Fac. de Educacion, Universidad de Antioquia, AA 1226, Medellin (Colombia); Duque, C.A. [Inst. de Fisica, Universidad de Antioquia, AA 1226, Medellin (Colombia); Velasco, V.R. [Inst. de Ciencia de Materiales de Madrid, CSIC, Sor Juana Ines de la Cruz 3, 28049 Madrid (Spain)
2007-07-01
Using a variational procedure within the effective mass approximation, the mixing between the {gamma} and X conduction band valleys in GaAs-Ga{sub 1-x}Al{sub x}As quantum wells is investigated by taking into account the effect of applied hydrostatic pressure. Some optical properties such as donor and/or acceptor binding energy and impurity-related transition energies are calculated and comparisons with available experimental data are presented. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Structures, energy bands and conductivities of （Me3NEt）[Pd（dmit）2]2 and （NEt4）[Pd（dmit）2]2
方奇; 张斌; 雷虹; 孙岳明; 刘陟; 麦松威
2002-01-01
The electrical conductive molecular crystals (Me3NEt)[Pd(dmit)2]2 and (NEt4)[Pd (dmit)2]2 (dmit = 4,5-dimercapto-1,3-dithiole-2-thione) have been prepared, and their crystal structures and conductivity-temperature curves have been determined. The fact that the conductivity at room temperature of (Me3NEt)[Pd(dmit)2]2 (a = 58 Ω· cm-1) is much higher than that of (NEt4)-[Pd(dmit)2]2(cr= 2.2 Q~1 ?cm’1) has been rationally explained by the results of energy band calculations. (MeNEt3)[Pd(dmit)2]2 belongs to monoclinic system, P21/m space group and (NEt4)[Pd (dmit)2]2 belongs to triclinic system, P1 space group. The structural conducting component of the crystals is the planar coordinative anion [Pd(dmit)2]05- which forms the face-to-face dimmer [Pd(dmit)2]2-. These dimers have been further constructed to be a kind of two-dimensional (2-D)conductive molecular sheet by means of S…S intermolecular interactions. The tiny difference of the above 2-D molecular sheets of the two title crystals has resulted in one
The complex band structure for armchair graphene nanoribbons
Zhang Liu-Jun; Xia Tong-Sheng
2010-01-01
Using a tight binding transfer matrix method, we calculate the complex band structure of armchair graphene nanoribbons. The real part of the complex band structure calculated by the transfer matrix method fits well with the bulk band structure calculated by a Hermitian matrix. The complex band structure gives extra information on carrier's decay behaviour. The imaginary loop connects the conduction and valence band, and can profoundly affect the characteristics of nanoscale electronic device made with graphene nanoribbons. In this work, the complex band structure calculation includes not only the first nearest neighbour interaction, but also the effects of edge bond relaxation and the third nearest neighbour interaction. The band gap is classified into three classes. Due to the edge bond relaxation and the third nearest neighbour interaction term, it opens a band gap for N= 3M-1. The band gap is almost unchanged for N = 3M + 1, but decreased for N = 3M. The maximum imaginary wave vector length provides additional information about the electrical characteristics of graphene nmaoribbons, and is also classified into three classes.
Maximum Autocorrelation Factorial Kriging
Nielsen, Allan Aasbjerg; Conradsen, Knut; Pedersen, John L.
2000-01-01
This paper describes maximum autocorrelation factor (MAF) analysis, maximum autocorrelation factorial kriging, and its application to irregularly sampled stream sediment geochemical data from South Greenland. Kriged MAF images are compared with kriged images of varimax rotated factors from...
Bende, Attila; Bogár, Ferenc; Ladik, János
The1 Hartree-Fock crystal orbital (CO) method in its linear combination of atomic orbitals form was applied to determine the band structure of histone proteins taking 0.041e charge transfer per nucleotide base from the PO4- groups of poly(guanilic acid) to the arginine, and lysine side chains in histones (see text). Assuming that there are infinite COs, perpendicular to the main chain, formed by the amide groups of one segment of the protein chain bound together by H-bonds with the C dbond O groups of another segment of the chain, we have calculated the band structure. From this, we have determined the mobility using the deformation potential approximation. Multiplying this with the mobile electron concentration due to the charge transfer between the PO4- groups of DNA and the positive side chains in histones, we have obtained for the direct current (D.C.) electron conductivity sigmafib = 1.07 × 10-9 Omega-1 cm for a single fiber and after division by the cross-section of 9.10 × 10-16 cm2, sigmaspec = 1.18 × 106 Omega-1 cm-1 for the specific conductivity.
Morphologies of omega band auroras
Sato, Natsuo; Yukimatu, Akira Sessai; Tanaka, Yoshimasa; Hori, Tomoaki
2017-08-01
We examined the morphological signatures of 315 omega band aurora events observed using the Time History of Events and Macroscale Interactions during Substorm ground-based all-sky imager network over a period of 8 years. We find that omega bands can be classified into the following three subtypes: (1) classical (O-type) omega bands, (2) torch or tongue (T-type) omega bands, and (3) combinations of classical and torch or tongue (O/T-type) omega bands. The statistical results show that T-type bands occur the most frequently (45%), followed by O/T-type bands (35%) and O-type bands (18%). We also examined the morphologies of the omega bands during their formation, from the growth period to the declining period through the maximum period. Interestingly, the omega bands are not stable, but rather exhibit dynamic changes in shape, intensity, and motion. They grow from small-scale bumps (seeds) at the poleward boundary of preexisting east-west-aligned auroras, rather than via the rotation or shear motion of preexisting east-west-aligned auroras, and do not exhibit any shear motion during the periods of auroral activity growth. Furthermore, the auroral luminosity is observed to increase during the declining period, and the total time from the start of the growth period to the end of the declining period is found to be about 20 min. Such dynamical signatures may be important in determining the mechanism responsible for omega band formation.
Maximum Autocorrelation Factorial Kriging
Nielsen, Allan Aasbjerg; Conradsen, Knut; Pedersen, John L.; Steenfelt, Agnete
2000-01-01
This paper describes maximum autocorrelation factor (MAF) analysis, maximum autocorrelation factorial kriging, and its application to irregularly sampled stream sediment geochemical data from South Greenland. Kriged MAF images are compared with kriged images of varimax rotated factors from an ordinary non-spatial factor analysis, and they are interpreted in a geological context. It is demonstrated that MAF analysis contrary to ordinary non-spatial factor analysis gives an objective discrimina...
Olson, Cathy Applefeld
2011-01-01
After nearly a decade as band director at St. James High School in St. James, Missouri, Derek Limback knows that the key to building a successful program is putting the program itself above everything else. Limback strives to augment not only his students' musical prowess, but also their leadership skills. Key to his philosophy is instilling a…
k.p theory of freestanding narrow band gap semiconductor nanowires
Luo, Ning; Liao, Gaohua; Xu, H. Q.
2016-12-01
We report on a theoretical study of the electronic structures of freestanding nanowires made from narrow band gap semiconductors GaSb, InSb and InAs. The nanowires are described by the eight-band k.p Hamiltonians and the band structures are computed by means of the finite element method in a mixture basis consisting of linear triangular elements inside the nanowires and constrained Hermite triangular elements near the boundaries. The nanowires with two crystallographic orientations, namely the [001] and [111] orientations, and with different cross-sectional shapes are considered. For each orientation, the nanowires of the three narrow band gap semiconductors are found to show qualitatively similar characteristics in the band structures. However, the nanowires oriented along the two different crystallographic directions are found to show different characteristics in the valence bands. In particular, it is found that all the conduction bands show simple, good parabolic dispersions in both the [001]- and [111]-oriented nanowires, while the top valence bands show double-maximum structures in the [001]-oriented nanowires, but single-maximum structures in the [111]-oriented nanowires. The wave functions and spinor distributions of the band states in these nanowires are also calculated. It is found that significant mixtures of electron and hole states appear in the bands of these narrow band gap semiconductor nanowires. The wave functions exhibit very different distribution patterns in the nanowires oriented along the [001] direction and the nanowires oriented along the [111] direction. It is also shown that single-band effective mass theory could not reproduce all the band state wave functions presented in this work.
Maximum likely scale estimation
Loog, Marco; Pedersen, Kim Steenstrup; Markussen, Bo
2005-01-01
A maximum likelihood local scale estimation principle is presented. An actual implementation of the estimation principle uses second order moments of multiple measurements at a fixed location in the image. These measurements consist of Gaussian derivatives possibly taken at several scales and/or ...
Navinder Singh
2005-01-01
A model calculation is given for the energy relaxation of a non-equilibrium distribution of hot electrons (holes) prepared in the conduction (valence) band of a polar indirect band-gap semiconductor, which has been subjected to homogeneous photoexcitation by a femtosecond laser pulse. The model assumes that the pulsed photoexcitation creates two distinct but spatially interpenetrating electron and hole non-equilibrium subsystems that initially relax non-radiatively through the electron (hole)–phonon processes towards the conduction (valence) band minimum (maximum), and finally radiatively through the phonon-assisted electron–hole recombination across the band-gap, which is a relatively slow process. This leads to an accumulation of electrons (holes) at the conduction (valence) band minimum (maximum). The resulting peaking of the carrier density and the entire evolution of the hot electron (hole) distribution has been calculated. The latter may be time resolved by a pump-probe study. The model is particularly applicable to a divided (nanometric) polar indirect band-gap semiconductor with a low carrier concentration and strong electron–phonon coupling, where the usual two-temperature model [1–4] may not be appropriate.
Maximum information photoelectron metrology
Hockett, P; Wollenhaupt, M; Baumert, T
2015-01-01
Photoelectron interferograms, manifested in photoelectron angular distributions (PADs), are a high-information, coherent observable. In order to obtain the maximum information from angle-resolved photoionization experiments it is desirable to record the full, 3D, photoelectron momentum distribution. Here we apply tomographic reconstruction techniques to obtain such 3D distributions from multiphoton ionization of potassium atoms, and fully analyse the energy and angular content of the 3D data. The PADs obtained as a function of energy indicate good agreement with previous 2D data and detailed analysis [Hockett et. al., Phys. Rev. Lett. 112, 223001 (2014)] over the main spectral features, but also indicate unexpected symmetry-breaking in certain regions of momentum space, thus revealing additional continuum interferences which cannot otherwise be observed. These observations reflect the presence of additional ionization pathways and, most generally, illustrate the power of maximum information measurements of th...
Band calculation of lonsdaleite Ge
Chen, Pin-Shiang; Fan, Sheng-Ting; Lan, Huang-Siang; Liu, Chee Wee
2017-01-01
The band structure of Ge in the lonsdaleite phase is calculated using first principles. Lonsdaleite Ge has a direct band gap at the Γ point. For the conduction band, the Γ valley is anisotropic with the low transverse effective mass on the hexagonal plane and the large longitudinal effective mass along the c axis. For the valence band, both heavy-hole and light-hole effective masses are anisotropic at the Γ point. The in-plane electron effective mass also becomes anisotropic under uniaxial tensile strain. The strain response of the heavy-hole mass is opposite to the light hole.
Electronic Band Structures of TiO2 with Heavy Nitrogen Doping
XUE Jinbo; LI Qi; LIANG Wei; SHANG Jianku
2008-01-01
The first-principles density-functional calculation was conducted to investigate the electronic band structures of titanium dioxide with heavy nitrogen doping (TiO2-xNx).The calculation results indicate that when x≤0.25,isolated N 2p states appear above the valence-band maximum of TiO2 without a band-gap narrowing between O 2p and Ti 3d states.When x≥0.50,an obvious band gap narrowing between O 2p and Ti 3d states was observed along with the existence of isolated N 2p states above the valence-band of TiO2,indicating that the mechanism proposed by Asahi et al operates under heavy nitrogen doping condition.
Maximum Likelihood Associative Memories
Gripon, Vincent; Rabbat, Michael
2013-01-01
Associative memories are structures that store data in such a way that it can later be retrieved given only a part of its content -- a sort-of error/erasure-resilience property. They are used in applications ranging from caches and memory management in CPUs to database engines. In this work we study associative memories built on the maximum likelihood principle. We derive minimum residual error rates when the data stored comes from a uniform binary source. Second, we determine the minimum amo...
Maximum likely scale estimation
Loog, Marco; Pedersen, Kim Steenstrup; Markussen, Bo
2005-01-01
A maximum likelihood local scale estimation principle is presented. An actual implementation of the estimation principle uses second order moments of multiple measurements at a fixed location in the image. These measurements consist of Gaussian derivatives possibly taken at several scales and....../or having different derivative orders. Although the principle is applicable to a wide variety of image models, the main focus here is on the Brownian model and its use for scale selection in natural images. Furthermore, in the examples provided, the simplifying assumption is made that the behavior...... of the measurements is completely characterized by all moments up to second order....
F. TopsÃƒÂ¸e
2001-09-01
Full Text Available Abstract: In its modern formulation, the Maximum Entropy Principle was promoted by E.T. Jaynes, starting in the mid-fifties. The principle dictates that one should look for a distribution, consistent with available information, which maximizes the entropy. However, this principle focuses only on distributions and it appears advantageous to bring information theoretical thinking more prominently into play by also focusing on the "observer" and on coding. This view was brought forward by the second named author in the late seventies and is the view we will follow-up on here. It leads to the consideration of a certain game, the Code Length Game and, via standard game theoretical thinking, to a principle of Game Theoretical Equilibrium. This principle is more basic than the Maximum Entropy Principle in the sense that the search for one type of optimal strategies in the Code Length Game translates directly into the search for distributions with maximum entropy. In the present paper we offer a self-contained and comprehensive treatment of fundamentals of both principles mentioned, based on a study of the Code Length Game. Though new concepts and results are presented, the reading should be instructional and accessible to a rather wide audience, at least if certain mathematical details are left aside at a rst reading. The most frequently studied instance of entropy maximization pertains to the Mean Energy Model which involves a moment constraint related to a given function, here taken to represent "energy". This type of application is very well known from the literature with hundreds of applications pertaining to several different elds and will also here serve as important illustration of the theory. But our approach reaches further, especially regarding the study of continuity properties of the entropy function, and this leads to new results which allow a discussion of models with so-called entropy loss. These results have tempted us to speculate over
Regularized maximum correntropy machine
Wang, Jim Jing-Yan
2015-02-12
In this paper we investigate the usage of regularized correntropy framework for learning of classifiers from noisy labels. The class label predictors learned by minimizing transitional loss functions are sensitive to the noisy and outlying labels of training samples, because the transitional loss functions are equally applied to all the samples. To solve this problem, we propose to learn the class label predictors by maximizing the correntropy between the predicted labels and the true labels of the training samples, under the regularized Maximum Correntropy Criteria (MCC) framework. Moreover, we regularize the predictor parameter to control the complexity of the predictor. The learning problem is formulated by an objective function considering the parameter regularization and MCC simultaneously. By optimizing the objective function alternately, we develop a novel predictor learning algorithm. The experiments on two challenging pattern classification tasks show that it significantly outperforms the machines with transitional loss functions.
Theoretical Study of One-Intermediate Band Quantum Dot Solar Cell
Abou El-Maaty Aly
2014-01-01
Full Text Available The intermediate bands (IBs between the valence and conduction bands play an important role in solar cells. Because the smaller energy photons than the bandgap energy can be used to promote charge carriers transfer to the conduction band and thereby the total output current increases while maintaining a large open circuit voltage. In this paper, the influence of the new band on the power conversion efficiency for the structure of the quantum dots intermediate band solar cell (QDIBSC is theoretically investigated and studied. The time-independent Schrödinger equation is used to determine the optimum width and location of the intermediate band. Accordingly, achievement of maximum efficiency by changing the width of quantum dots and barrier distances is studied. Theoretical determination of the power conversion efficiency under the two different ranges of QD width is presented. From the obtained results, the maximum power conversion efficiency is about 70.42% for simple cubic quantum dot crystal under full concentration light. It is strongly dependent on the width of quantum dots and barrier distances.
Band Gap Narrowing and Widening of ZnO Nanostructures and Doped Materials.
Kamarulzaman, Norlida; Kasim, Muhd Firdaus; Rusdi, Roshidah
2015-12-01
Band gap change in doped ZnO is an observed phenomenon that is very interesting from the fundamental point of view. This work is focused on the preparation of pure and single phase nanostructured ZnO and Cu as well as Mn-doped ZnO for the purpose of understanding the mechanisms of band gap narrowing in the materials. ZnO, Zn0.99Cu0.01O and Zn0.99Mn0.01O materials were prepared using a wet chemistry method, and X-ray diffraction (XRD) results showed that all samples were pure and single phase. UV-visible spectroscopy showed that materials in the nanostructured state exhibit band gap widening with respect to their micron state while for the doped compounds exhibited band gap narrowing both in the nano and micron states with respect to the pure ZnO materials. The degree of band gap change was dependent on the doped elements and crystallite size. X-ray photoelectron spectroscopy (XPS) revealed that there were shifts in the valence bands. From both UV-visible and XPS spectroscopy, it was found that the mechanism for band gap narrowing was due to the shifting of the valance band maximum and conduction band minimum of the materials. The mechanisms were different for different samples depending on the type of dopant and dimensional length scales of the crystallites.
... of function of an arm or a leg. Congenital bands affecting the hand often cause the most problems. Alternative Names Pseudo-ainhum; Streeter dysplasia; Amniotic band sequence; Amniotic constriction bands; Constriction band ...
Equalized near maximum likelihood detector
2012-01-01
This paper presents new detector that is used to mitigate intersymbol interference introduced by bandlimited channels. This detector is named equalized near maximum likelihood detector which combines nonlinear equalizer and near maximum likelihood detector. Simulation results show that the performance of equalized near maximum likelihood detector is better than the performance of nonlinear equalizer but worse than near maximum likelihood detector.
Cheeseman, Peter; Stutz, John
2005-01-01
A long standing mystery in using Maximum Entropy (MaxEnt) is how to deal with constraints whose values are uncertain. This situation arises when constraint values are estimated from data, because of finite sample sizes. One approach to this problem, advocated by E.T. Jaynes [1], is to ignore this uncertainty, and treat the empirically observed values as exact. We refer to this as the classic MaxEnt approach. Classic MaxEnt gives point probabilities (subject to the given constraints), rather than probability densities. We develop an alternative approach that assumes that the uncertain constraint values are represented by a probability density {e.g: a Gaussian), and this uncertainty yields a MaxEnt posterior probability density. That is, the classic MaxEnt point probabilities are regarded as a multidimensional function of the given constraint values, and uncertainty on these values is transmitted through the MaxEnt function to give uncertainty over the MaXEnt probabilities. We illustrate this approach by explicitly calculating the generalized MaxEnt density for a simple but common case, then show how this can be extended numerically to the general case. This paper expands the generalized MaxEnt concept introduced in a previous paper [3].
Valence band hybridization in N-rich GaN1-xAsx alloys
Wu, J.; Walukiewicz, W.; Yu, K.M.; Denlinger, J.D.; Shan, W.; Ager III, J.W.; Kimura, A.; Tang, H.F.; Kuech, T.F.
2004-05-04
We have used photo-modulated transmission and optical absorption spectroscopies to measure the composition dependence of interband optical transitions in N-rich GaN{sub 1-x}As{sub x} alloys with x up to 0.06. The direct bandgap gradually decreases as x increases. In the dilute x limit, the observed band gap approaches 2.8 eV; this limiting value is attributed to a transition between the As localized level, which has been previously observed in As-doped GaN at 0.6 eV above the valence band maximum in As-doped GaN, and the conduction band minimum. The structure of the valence band of GaN{sub 1-x}As{sub x} is explained by the hybridization of the localized As states with the extended valence band states of GaN matrix. The hybridization is directly confirmed by soft x-ray emission experiments. To describe the electronic structure of the GaN{sub 1-x}As{sub x} alloys in the entire composition range a linear interpolation is used to combine the effects of valence band hybridization in N-rich alloys with conduction band anticrossing in As-rich alloys.
Micromechanics of shear banding
Gilman, J.J.
1992-08-01
Shear-banding is one of many instabilities observed during the plastic flow of solids. It is a consequence of the dislocation mechanism which makes plastic flow fundamentally inhomogeneous, and is exacerbated by local adiabatic heating. Dislocation lines tend to be clustered on sets of neighboring glide planes because they are heterogeneously generated; especially through the Koehler multiple-cross-glide mechanism. Factors that influence their mobilities also play a role. Strain-hardening decreases the mobilities within shear bands thereby tending to spread (delocalize) them. Strain-softening has the inverse effect. This paper reviews the micro-mechanisms of these phenomena. It will be shown that heat production is also a consequence of the heterogeneous nature of the microscopic flow, and that dislocation dipoles play an important role. They are often not directly observable, but their presence may be inferred from changes in thermal conductivity. It is argued that after deformation at low temperatures dipoles are distributed a la Pareto so there are many more small than large ones. Instability at upper yield point, the shapes of shear-band fronts, and mechanism of heat generation are also considered. It is shown that strain-rate acceleration plays a more important role than strain-rate itself in adiabatic instability.
Holographic Multi-Band Superconductor
Huang, Ching-Yu; Maity, Debaprasad
2011-01-01
We propose a gravity dual for the holographic superconductor with multi-band carriers. Moreover, the currents of these carriers are unified under a global non-Abelian symmetry, which is dual to the bulk non-Abelian gauge symmetry. We study the phase diagram of our model, and find it qualitatively agrees with the one for the realistic 2-band superconductor, such as MgB2. We also evaluate the holographic conductivities and find the expected mean-field like behaviors in some cases. However, for a wide range of the parameter space, we also find the non-mean-field like behavior with negative conductivities.
HYBASE : HYperspectral BAnd SElection
Schwering, P.B.W.; Bekman, H.H.P.T.; Seijen, H.H. van
2009-01-01
Band selection is essential in the design of multispectral sensor systems. This paper describes the TNO hyperspectral band selection tool HYBASE. It calculates the optimum band positions given the number of bands and the width of the spectral bands. HYBASE is used to assess the minimum number of spe
Sun, Jindong; Feng, Zhaozhong; Leakey, Andrew D B; Zhu, Xinguang; Bernacchi, Carl J; Ort, Donald R
2014-09-01
The responses of CO2 assimilation to [CO2] (A/Ci) were investigated at two developmental stages (R5 and R6) and in several soybean cultivars grown under two levels of CO2, the ambient level of 370 μbar versus the elevated level of 550 μbar. The A/Ci data were analyzed and compared by either the combined iterations or the separated iterations of the Rubisco-limited photosynthesis (Ac) and/or the RuBP-limited photosynthesis (Aj) using various curve-fitting methods: the linear 2-segment model; the non-rectangular hyperbola model; the rectangular hyperbola model; the constant rate of electron transport (J) method and the variable J method. Inconsistency was found among the various methods for the estimation of the maximum rate of carboxylation (Vcmax), the mitochondrial respiration rate in the light (Rd) and mesophyll conductance (gm). The analysis showed that the inconsistency was due to inconsistent estimates of gm values that decreased with an instantaneous increase in [CO2], and varied with the transition Ci cut-off between Rubisco-limited photosynthesis and RuBP-regeneration-limited photosynthesis, and due to over-parameters for non-linear curve-fitting with gm included. We proposed an alternate solution to A/Ci curve-fitting for estimates of Vcmax, Rd, Jmax and gm with the various A/Ci curve-fitting methods. The study indicated that down-regulation of photosynthetic capacity by elevated [CO2] and leaf aging was due to partially the decrease in the maximum rates of carboxylation and partially the decrease in gm. Mesophyll conductance lowered photosynthetic capacity by 18% on average for the case of soybean plants.
Zheyuan Du
2016-06-01
Full Text Available Land subsidence is a global issue and researchers from all over the world are keen to know the causes of deformation and its further influences. This paper reports the findings from time series InSAR (TS-InSAR results over the Southern Coalfield, Australia using both ALOS-1 PALSAR (Phased Array type L-band Synthetic Aperture Radar and ENVISAT ASAR (Advanced Synthetic Aperture Radar datasets. TS-InSAR has been applied to both rural and urban areas with great success, but very few of them have been applied to regions affected by underground mining activities. The TS-InSAR analysis exploited in this paper is based on GEOS-ATSA, and Measurement Point (MP pixels are selected according to different geophysical features. Three experiment sites with different geological settings within the study zone are analysed: (1 Wollongong city, which is a relatively stable area; (2 Tahmoor town, a small town affected by underground mining activities; and (3 the Appin underground mining site, a region containing multiple underground mining activities. The TS-InSAR results show that the performance of both C-band and L-band is equally good over Wollongong, where the subsidence gradient is not significant and most subsidence rates are between −10 mm∙yr−1 to 10 mm∙yr−1. However, over the Tahmoor and Appin sites, difference in performances has been observed. Since the maximum displacement gradients that can be detected are different for L-band and C-band-based TS-InSAR methods, some rapid changes could cause the TS-InSAR to fail to estimate the correct displacements. It is well known that L-band can perform better than C-band, especially in underground mining regions and mining-affected regions where the deformation rate is much higher than city areas because of its wavelength. Statistical analyses are also conducted to further prove the above statement.
Effect of Dopant Concentrations on Conversion Efficiency of SiC-Based Intermediate Band Solar Cells
Heidarzadeh, H.; Rostami, A.; Dolatyari, M.; Rostami, G.
It was recognized that the introducing of a narrow metallic band states in the crystal structure of semiconductors make materials that they can be used as intermediate band materials for improving the power conversion efficiency of high band gap single junction solar cells. In these structures intermediate bands would serve as a "stepping stone" for photons with different energies to excite electrons from the valence to the conduction bands. Low-energy photons can be captured by this method that would pass through a conventional solar cell. An optimal IBSC (intermediate band solar cells) has a total band gap of about 1.95 eV and 3C-SiC has the closest band gap to this value (band gap of 2.2 eV). Excellent electronic properties of 3C-SiC such as high electron mobility and saturated electron drift velocity and its suitable band gap makes it an important alternative material for light harvesting technologies instead of conventional semiconductors like silicon. In this condition detailed balance analysis predicts a limiting efficiency of more than 55 % for an optimized, single junction intermediate band solar cell that it is higher than efficiency of an optimized two junction tandem solar cell. In this study we have analyzed Fe doped 3C-SiC by ab initio calculations for Fe concentration of 1.05, 1.85, 3.22, and 5.55 %. The results show conversion efficiency for designed solar cell change with altering in Fe contents. The maximum efficiency has been obtained for crystals with 3 % Fe3+ as dopant in 3C-SiC structure.
Atomic-Monolayer MoS2 Band-to-Band Tunneling Field-Effect Transistor
Lan, Yann Wen
2016-09-05
The experimental observation of band-to-band tunneling in novel tunneling field-effect transistors utilizing a monolayer of MoS2 as the conducting channel is demonstrated. Our results indicate that the strong gate-coupling efficiency enabled by two-dimensional materials, such as monolayer MoS2, results in the direct manifestation of a band-to-band tunneling current and an ambipolar transport.
Detailed balance limit efficiency of silicon intermediate band solar cells
Cao Quan; Ma Zhi-Hua; Xue Chun-Lai; Zuo Yu-Hua; Wang Qi-Ming
2011-01-01
The detailed balance method is used to study the potential of the intermediate band solar cell (IBSC),which can improve the efficiency of the Si-based solar cell with a bandgap between 1.1 eV to 1.7 eV. It shows that a crystalline silicon solar cell with an intermediate band located at 0.36 eV below the conduction band or above the valence band can reach a limiting efficiency of 54% at the maximum light concentration,improving greatly than 40.7% of the Shockley-Queisser limit for the single junction Si solar cell. The simulation also shows that the limiting efficiency of the siliconbased solar cell increases as the bandgap increases from 1.1 eV to 1.7 eV,and the amorphous Si solar cell with a bandgap of 1.7 eV exhibits a radiative limiting efficiency of 62.47%,having a better potential.
Band gap engineering via doping: A predictive approach
Andriotis, Antonis N., E-mail: andriot@iesl.forth.gr [Institute of Electronic Structure and Laser, FORTH, P.O. Box 1527, 71110 Heraklio, Crete (Greece); Menon, Madhu, E-mail: super250@uky.edu [Department of Physics and Astronomy and Center for Computational Sciences, University of Kentucky, Lexington, Kentucky 40506 (United States)
2015-03-28
We employ an extension of Harrison's theory at the tight binding level of approximation to develop a predictive approach for band gap engineering involving isovalent doping of wide band gap semiconductors. Our results indicate that reasonably accurate predictions can be achieved at qualitative as well as quantitative levels. The predictive results were checked against ab initio ones obtained at the level of DFT/SGGA + U approximation. The minor disagreements between predicted and ab initio results can be attributed to the electronic processes not incorporated in Harrison's theory. These include processes such as the conduction band anticrossing [Shan et al., Phys. Rev. Lett. 82, 1221 (1999); Walukiewicz et al., Phys. Rev. Lett. 85, 1552 (2000)] and valence band anticrossing [Alberi et al., Phys. Rev. B 77, 073202 (2008); Appl. Phys. Lett. 92, 162105 (2008); Appl. Phys. Lett. 91, 051909 (2007); Phys. Rev. B 75, 045203 (2007)], as well as the multiorbital rehybridization. Another cause of disagreement between the results of our predictive approach and the ab initio ones is shown to be the result of the shift of Fermi energy within the impurity band formed at the edge of the valence band maximum due to rehybridization. The validity of our approach is demonstrated with example applications for the systems GaN{sub 1−x}Sb{sub x}, GaP{sub 1−x}Sb{sub x}, AlSb{sub 1−x}P{sub x}, AlP{sub 1−x}Sb{sub x}, and InP{sub 1−x}Sb{sub x}.
Anomalous coherence peak in the microwave conductivity of c-axis oriented MgB2 thin films.
Jin, B B; Dahm, T; Gubin, A I; Choi, Eun-Mi; Kim, Hyun Jung; Lee, Sung-Ik; Kang, W N; Klein, N
2003-09-19
The temperature dependence of the real part of the microwave complex conductivity at 17.9 GHz obtained from surface impedance measurements of two c-axis oriented MgB2 thin films reveals a pronounced maximum at a temperature around 0.6 times the critical temperature. Calculations in the frame of a two-band model based on Bardeen-Cooper-Schrieffer (BCS) theory suggest that this maximum corresponds to an anomalous coherence peak resembling the two-gap nature of MgB2. Our model assumes there is no interband impurity scattering and a weak interband pairing interaction, as suggested by band structure calculations. In addition, the observation of a coherence peak indicates that the pi band is in the dirty limit and dominates the total conductivity of our films.
... Conduct disorder is often linked to attention-deficit disorder . Conduct disorder also can be an early sign of ... child or teen has a history of conduct disorder behaviors. A physical examination and blood tests can help ...
Influence of maximum decking charge on intensity of blasting vibration
无
2006-01-01
Based on the character of short-time non-stationary random signal, the relationship between the maximum decking charge and energy distribution of blasting vibration signals was investigated by means of the wavelet packet method. Firstly, the characteristics of wavelet transform and wavelet packet analysis were described. Secondly, the blasting vibration signals were analyzed by wavelet packet based on software MATLAB, and the change of energy distribution curve at different frequency bands were obtained. Finally, the law of energy distribution of blasting vibration signals changing with the maximum decking charge was analyzed. The results show that with the increase of decking charge, the ratio of the energy of high frequency to total energy decreases, the dominant frequency bands of blasting vibration signals tend towards low frequency and blasting vibration does not depend on the maximum decking charge.
Mickael Lozac'h, Shigenori Ueda, Shitao Liu, Hideki Yoshikawa, Sang Liwen, Xinqiang Wang, Bo Shen, Kazuaki Sakoda, Keisuke Kobayashi and Masatomo Sumiya
2013-01-01
Full Text Available Core-level and valence band spectra of InxGa1−xN films were measured using hard x-ray photoemission spectroscopy (HX-PES. Fine structure, caused by the coupling of the localized Ga 3d and In 4d with N 2s states, was experimentally observed in the films. Because of the large detection depth of HX-PES (~20 nm, the spectra contain both surface and bulk information due to the surface band bending. The InxGa1−xN films (x = 0–0.21 exhibited upward surface band bending, and the valence band maximum was shifted to lower binding energy when the mole fraction of InN was increased. On the other hand, downward surface band bending was confirmed for an InN film with low carrier density despite its n-type conduction. Although the Fermi level (EF near the surface of the InN film was detected inside the conduction band as reported previously, it can be concluded that EF in the bulk of the film must be located in the band gap below the conduction band minimum.
OECD Maximum Residue Limit Calculator
With the goal of harmonizing the calculation of maximum residue limits (MRLs) across the Organisation for Economic Cooperation and Development, the OECD has developed an MRL Calculator. View the calculator.
Band structure of semiconductors
Tsidilkovski, I M
2013-01-01
Band Structure of Semiconductors provides a review of the theoretical and experimental methods of investigating band structure and an analysis of the results of the developments in this field. The book presents the problems, methods, and applications in the study of band structure. Topics on the computational methods of band structure; band structures of important semiconducting materials; behavior of an electron in a perturbed periodic field; effective masses and g-factors for the most commonly encountered band structures; and the treatment of cyclotron resonance, Shubnikov-de Haas oscillatio
Conductance of graphene-based double-barrier nanostructures
Setare, M R [Department of Campus of Bijar, University of Kurdistan, Bijar (Iran, Islamic Republic of); Jahani, D, E-mail: Rezakord@ipm.co, E-mail: Dariush110@gmail.co [Department of Physics, Razi University, Kermanshah (Iran, Islamic Republic of)
2010-12-22
The effect of a mass gap on the conductance of graphene double-barrier heterojunctions is studied. By obtaining the 2D expression for the electronic transport of the low energy excitations of pure graphene through double-barrier systems, it is found that the conductivity of these structures does not depend on the type of charge carriers in the zones of the electric field. However, a finite induced gap in the graphene spectrum makes conductivity dependent on the energy band index. We also discuss a few controversies concerning double-barrier systems stemming from an improper choice of the scattering angle. Then it is observed that, for some special values of the incident energy and potential's height, graphene junctions behave like left-handed materials, resulting in a maximum value for the conductivity.
袁野; 徐闰; 徐海涛; 洪峰; 徐飞; 王林军
2015-01-01
The electronic structures of cubic structure of ABX3(A=CH3NH3, Cs;B=Sn, Pb;X=Cl, Br, I) are analyzed by den-sity functional theory using the Perdew–Burke–Ernzerhof exchange–correlation functional and using the Heyd–Scuseria–Ernzerhof hybrid functional. The valence band maximum (VBM) is found to be made up by an antibonding hybridization of B s and X p states, whereas bands made up by theπ antibonding of B p and X p states dominates the conduction band minimum (CBM). The changes of VBM, CBM, and band gap with ion B and X are then systematically summarized. The natural band offsets of ABX3 are partly given. We also found for all the ABX3 perovskite materials in this study, the bandgap increases with an increasing lattice parameter. This phenomenon has good consistency with the experimental results.
Maximum margin Bayesian network classifiers.
Pernkopf, Franz; Wohlmayr, Michael; Tschiatschek, Sebastian
2012-03-01
We present a maximum margin parameter learning algorithm for Bayesian network classifiers using a conjugate gradient (CG) method for optimization. In contrast to previous approaches, we maintain the normalization constraints on the parameters of the Bayesian network during optimization, i.e., the probabilistic interpretation of the model is not lost. This enables us to handle missing features in discriminatively optimized Bayesian networks. In experiments, we compare the classification performance of maximum margin parameter learning to conditional likelihood and maximum likelihood learning approaches. Discriminative parameter learning significantly outperforms generative maximum likelihood estimation for naive Bayes and tree augmented naive Bayes structures on all considered data sets. Furthermore, maximizing the margin dominates the conditional likelihood approach in terms of classification performance in most cases. We provide results for a recently proposed maximum margin optimization approach based on convex relaxation. While the classification results are highly similar, our CG-based optimization is computationally up to orders of magnitude faster. Margin-optimized Bayesian network classifiers achieve classification performance comparable to support vector machines (SVMs) using fewer parameters. Moreover, we show that unanticipated missing feature values during classification can be easily processed by discriminatively optimized Bayesian network classifiers, a case where discriminative classifiers usually require mechanisms to complete unknown feature values in the data first.
Maximum Entropy in Drug Discovery
Chih-Yuan Tseng
2014-07-01
Full Text Available Drug discovery applies multidisciplinary approaches either experimentally, computationally or both ways to identify lead compounds to treat various diseases. While conventional approaches have yielded many US Food and Drug Administration (FDA-approved drugs, researchers continue investigating and designing better approaches to increase the success rate in the discovery process. In this article, we provide an overview of the current strategies and point out where and how the method of maximum entropy has been introduced in this area. The maximum entropy principle has its root in thermodynamics, yet since Jaynes’ pioneering work in the 1950s, the maximum entropy principle has not only been used as a physics law, but also as a reasoning tool that allows us to process information in hand with the least bias. Its applicability in various disciplines has been abundantly demonstrated. We give several examples of applications of maximum entropy in different stages of drug discovery. Finally, we discuss a promising new direction in drug discovery that is likely to hinge on the ways of utilizing maximum entropy.
Complex band structure and superlattice electronic states
Schulman, J. N.; McGill, T. C.
1981-04-01
The complex band structures of the bulk materials which constitute the alternating layer (001) semiconductor-semiconductor superlattice are investigated. The complex bands near the center of the Brillouin zone in the [001] direction are studied in detail. The decay lengths of superlattice states whose energies lie in the bulk band gaps of one of the semiconductors are determined from the dispersion curves of these bands for imaginary k-->. This method is applied using a tight-binding band-structure calculation to two superlattices: the AlAs-GaAs superlattice and the CdTe-HgTe superlattice. The decay lengths of AlAs-GaAs superlattice conduction-band minimum states are found to be substantially shorter than those for the CdTe-HgTe superlattice. These differences in the decay of the states in the two superlattices result in differences in the variation of the conduction-band effective masses with the thickness of the AlAs and CdTe layers. The conduction-band effective masses increase more rapidly with AlAs thickness in the AlAs-GaAs superlattice than with CdTe thickness in the CdTe-HgTe superlattice.
Band parameters of phosphorene
Lew Yan Voon, L. C.; Wang, J.; Zhang, Y.;
2015-01-01
Phosphorene is a two-dimensional nanomaterial with a direct band-gap at the Brillouin zone center. In this paper, we present a recently derived effective-mass theory of the band structure in the presence of strain and electric field, based upon group theory. Band parameters for this theory...
Low Power Band to Band Tunnel Transistors
2010-12-15
the E-field and tunneling at the source- pocket junction you form a parasitic NPN + transistor and the injection mechanism of carriers into the...hypothesis that the 1000 ° C, 5s anneal split lead to a very wide pocket and the accidental formation of a NPN + transistor , while the 1000 ° C, 1s anneal...Low Power Band to Band Tunnel Transistors Anupama Bowonder Electrical Engineering and Computer Sciences University of California at Berkeley
Controllable magnitude and anisotropy of the electrical conductivity of Hf3C2O2 MXene
Zha, Xian-Hu; Zhou, Jie; Luo, Kan; Lang, Jiajian; Huang, Qing; Zhou, Xiaobing; Francisco, Joseph S.; He, Jian; Du, Shiyu
2017-04-01
Hf3C2O2, a new MXene member synthesized recently, was predicted to be a semi-metal with high mechanical strength. Based on the unique electronic structure, the energy bands and electrical conductivities of the MXene under various strains are comprehensively investigated in this paper. Biaxial and two orthogonal uniaxial strains in both compressive and tensile manners are studied. Results from this study suggest that Hf3C2O2 shows a transition between semi-metal and semi-conductor under both biaxial and uniaxial strains. A compressive strain generally induces a larger energy overlap between the conduction band minimum and the valance band maximum, while a tensile strain reduces the energy band overlap and even opens a band gap. As a consequence, the magnitude of electrical conductivity decreases drastically from compressive to tensile strains applied. Moreover, the uniaxial strains are determined to be efficient in manipulating the anisotropy of the electrical conductivity. These data imply that the Hf3C2O2 MXene is a promising candidate material for devices such as strain sensors.
Greenslade, Thomas B., Jr.
1985-01-01
Discusses a series of experiments performed by Thomas Hope in 1805 which show the temperature at which water has its maximum density. Early data cast into a modern form as well as guidelines and recent data collected from the author provide background for duplicating Hope's experiments in the classroom. (JN)
Abolishing the maximum tension principle
Dabrowski, Mariusz P
2015-01-01
We find the series of example theories for which the relativistic limit of maximum tension $F_{max} = c^2/4G$ represented by the entropic force can be abolished. Among them the varying constants theories, some generalized entropy models applied both for cosmological and black hole horizons as well as some generalized uncertainty principle models.
Abolishing the maximum tension principle
Mariusz P. Da̧browski
2015-09-01
Full Text Available We find the series of example theories for which the relativistic limit of maximum tension Fmax=c4/4G represented by the entropic force can be abolished. Among them the varying constants theories, some generalized entropy models applied both for cosmological and black hole horizons as well as some generalized uncertainty principle models.
The current science of gastric banding: an overview of pressure-volume theory in band adjustments.
Fried, Martin
2008-01-01
Laparoscopic adjustable gastric banding (LAGB) is a safe and effective bariatric operation for the treatment of morbid obesity. Optimized long-term weight loss and reduced complications may be facilitated by development of a standardized, accurate, band-fill measurement methodology for use in postoperative LAGB adjustments. A summary of the primary in vitro, theoretical, and in vivo studies of pressure-volume theory relative to gastric banding was undertaken. LAGBs range in mechanisms of action from low-pressure/high-volume to high-pressure/low-volume. Use of both basic and dynamic pressure data obtained experimentally and clinically with a low-pressure/high-volume (LP/HV) band as a research tool revealed that intra-band pressures remained very low even when the band balloon was filled to its maximum fill volume; in contrast, when a high-pressure/low-volume (HP/LV) band was filled, it exhibited a pressure curve markedly steeper and of greater amplitude than that of the LP/HV band. Theoretical calculations of the differences between the bands in terms of the pressures they exerted on a bolus of food passing through a stoma found that the pressure created by the HP/LV band against the gastric wall was >100% higher than that applied by the LP/HV band; these mathematical results were verified by using invasive manometry in 35 patients undergoing band adjustment. In clinical testing, basic band pressure, band volume, and dynamic pressure data (that demonstrated esophageal motility patterns at the stoma during bolus passage) were gathered and correlated. As identified by intra-band pressure readings, a zone of disruptive peristaltic activity that obstructed bolus passage through the stoma was observed; slightly beneath this zone, it was hypothesized that successful patient adjustments might be carried out. The manometrically delineated measure of mean band pressure sufficient to exert a significant yet not disruptive restriction (i.e., 20 mm Hg; mean volume of 5.4 m
Calculation of tunable type-II band alignments in InAsxSbyP1-x-y/InAs heterojunctions
Shim, Kyurhee
2016-01-01
The energy band gaps of the alloy InAsxSbyP1-x-y are calculated using the correlated function expansion (CFE) technique over the entire composition space x and y, for which the CFE band gap composition contour for the mid-infrared (MIR) spectral region of 2 (0.62)-5 µm (0.25 eV) is presented. The composition dependence of the valence-band maximum (VBM) is obtained using the universal tight binding (UTB) method, and the corresponding conduction-band minimum (CBM) can be computed from the difference between the band gap and the VBM. By organizing the relative positions of the VBM and CBM between the quaternary alloy InAsSbP and the binary compound InAs, the band alignments and band types of InAsSbP/InAs heterojunctions (HJs) along the lattice-matching conditions x and y [i.e., y = 0.311(1 - x)] are determined. It is found that the VBMs of the alloy InAsxSbyP1-x-y are located within the band gap of InAs, whereas the CBMs of the alloy lie outside the band gap of InAs over the entire composition range. This implies that the InAsxSbyP1-x-y/InAs HJs exhibit composition-tunable, type-II (staggered) band alignments. In addition, the conduction-band offset (CBO) and valence-band offset (VBO) of InAsSbP/InAs HJs both present the upward bowing trend, with the CBO curves appearing sharp and the VBO curves appearing smooth.
Fermi level stabilization and band edge energies in Cd{sub x}Zn{sub 1−x}O alloys
Detert, Douglas M.; Tom, Kyle B.; Dubon, Oscar D. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Materials Science and Engineering, University of California, Berkeley, California 94720 (United States); Battaglia, Corsin; Javey, Ali [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720 (United States); Denlinger, Jonathan D. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Lim, Sunnie H. N. [Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Anders, André [Accelerator and Fusion Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Yu, Kin M.; Walukiewicz, Wladek [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)
2014-06-21
We have measured the band edge energies of Cd{sub x}Zn{sub 1−x}O thin films as a function of composition by three independent techniques: we determine the Fermi level stabilization energy by pinning the Fermi level with ion irradiation, measure the binding energy of valence band states and core levels by X-ray photoelectron spectroscopy, and probe shifts in the conduction band and valence band density of states using soft X-ray absorption and emission spectroscopy, respectively. The three techniques find consensus in explaining the origin of compositional trends in the optical-bandgap narrowing upon Cd incorporation in wurtzite ZnO and widening upon Zn incorporation in rocksalt CdO. The conduction band minimum is found to be stationary for both wurtzite and rocksalt alloys, and a significant upward rise of the valence band maximum accounts for the majority of these observed bandgap changes. Given these band alignments, alloy disorder scattering is found to play a negligible role in decreasing the electron mobility for all alloys. These band alignment details, combined with the unique optical and electrical properties of the two phase regimes, make CdZnO alloys attractive candidates for photoelectrochemical water splitting applications.
COMPARISON BETWEEN FORMULAS OF MAXIMUM SHIP SQUAT
PETRU SERGIU SERBAN
2016-06-01
Full Text Available Ship squat is a combined effect of ship’s draft and trim increase due to ship motion in limited navigation conditions. Over time, researchers conducted tests on models and ships to find a mathematical formula that can define squat. Various forms of calculating squat can be found in the literature. Among those most commonly used are of Barrass, Millward, Eryuzlu or ICORELS. This paper presents a comparison between the squat formulas to see the differences between them and which one provides the most satisfactory results. In this respect a cargo ship at different speeds was considered as a model for maximum squat calculations in canal navigation conditions.
Enhanced transmittance of a dual pass-band metamaterial filter
Wang, XiaoZhi; Zhu, Honghui; Liu, Zhigang
2017-03-01
A broad pass-band metamaterial-based optical filter is experimentally and numerically studied. The designed structure consists of periodically arranged composite metallic arrays and dielectric layer that exhibits transmission responses composed of two flat pass-bands. The coupling of localized surface plasmon (LSP) modes results in the low-frequency pass-band, while the internal surface plasmon polaritons (ISPPs) between the upper and lower metal layers leads to the high-frequency pass-band. Structural parameters (L and R) are experimentally considered from the viewpoint of exploiting their effects on the pass-bands and resonance frequencies. The bandwidths of these pass-bands both can reach to maximums by optimization of these structural parameters. In addition, the two pass-bands can be modulated to be a single pass-band with a bandwidth of 10.7 THz by optimizing L and R simultaneously.
Toward an Impurity Band PV: Dynamics of Carriers Generated via Sub-band gap Photons
Sullivan, Joseph; Simmons, Christie; Akey, Austin; Aziz, Michael; Buonassisi, Tonio
2013-03-01
Intermediate band solar cells are a pathway to cells that surpass the Shockley-Queisser limit by enabling the utilization of sub-band gap photons. A proposed method for fabricating an intermediate band material is to use impurities that introduce electronic levels within the band gap. At sufficiently high dopant concentrations, band formation may lead to a suppression of Shockley-Reed-Hall recombination, an idea known as ``lifetime recovery''. We investigate a proposed intermediate band material, silicon hyper-doped with sulfur. This material system exhibits strong sub-band gap optical absorption and metallic conductivity at sufficiently high sulfur concentrations, which makes it a strong candidate for an impurity-band material. We employ low-temperature photoconductivity using sub-band gap light to estimate the trapping rate of electrons in the conduction band. We vary the sulfur concentration near the critical value for the metal-insulator transition to test the idea of ``lifetime recovery'' in the S:Si system.
Maximum Genus of Strong Embeddings
Er-ling Wei; Yan-pei Liu; Han Ren
2003-01-01
The strong embedding conjecture states that any 2-connected graph has a strong embedding on some surface. It implies the circuit double cover conjecture: Any 2-connected graph has a circuit double cover.Conversely, it is not true. But for a 3-regular graph, the two conjectures are equivalent. In this paper, a characterization of graphs having a strong embedding with exactly 3 faces, which is the strong embedding of maximum genus, is given. In addition, some graphs with the property are provided. More generally, an upper bound of the maximum genus of strong embeddings of a graph is presented too. Lastly, it is shown that the interpolation theorem is true to planar Halin graph.
Remizov, Ivan D
2009-01-01
In this note, we represent a subdifferential of a maximum functional defined on the space of all real-valued continuous functions on a given metric compact set. For a given argument, $f$ it coincides with the set of all probability measures on the set of points maximizing $f$ on the initial compact set. This complete characterization lies in the heart of several important identities in microeconomics, such as Roy's identity, Sheppard's lemma, as well as duality theory in production and linear programming.
The Testability of Maximum Magnitude
Clements, R.; Schorlemmer, D.; Gonzalez, A.; Zoeller, G.; Schneider, M.
2012-12-01
Recent disasters caused by earthquakes of unexpectedly large magnitude (such as Tohoku) illustrate the need for reliable assessments of the seismic hazard. Estimates of the maximum possible magnitude M at a given fault or in a particular zone are essential parameters in probabilistic seismic hazard assessment (PSHA), but their accuracy remains untested. In this study, we discuss the testability of long-term and short-term M estimates and the limitations that arise from testing such rare events. Of considerable importance is whether or not those limitations imply a lack of testability of a useful maximum magnitude estimate, and whether this should have any influence on current PSHA methodology. We use a simple extreme value theory approach to derive a probability distribution for the expected maximum magnitude in a future time interval, and we perform a sensitivity analysis on this distribution to determine if there is a reasonable avenue available for testing M estimates as they are commonly reported today: devoid of an appropriate probability distribution of their own and estimated only for infinite time (or relatively large untestable periods). Our results imply that any attempt at testing such estimates is futile, and that the distribution is highly sensitive to M estimates only under certain optimal conditions that are rarely observed in practice. In the future we suggest that PSHA modelers be brutally honest about the uncertainty of M estimates, or must find a way to decrease its influence on the estimated hazard.
Alternative Multiview Maximum Entropy Discrimination.
Chao, Guoqing; Sun, Shiliang
2016-07-01
Maximum entropy discrimination (MED) is a general framework for discriminative estimation based on maximum entropy and maximum margin principles, and can produce hard-margin support vector machines under some assumptions. Recently, the multiview version of MED multiview MED (MVMED) was proposed. In this paper, we try to explore a more natural MVMED framework by assuming two separate distributions p1( Θ1) over the first-view classifier parameter Θ1 and p2( Θ2) over the second-view classifier parameter Θ2 . We name the new MVMED framework as alternative MVMED (AMVMED), which enforces the posteriors of two view margins to be equal. The proposed AMVMED is more flexible than the existing MVMED, because compared with MVMED, which optimizes one relative entropy, AMVMED assigns one relative entropy term to each of the two views, thus incorporating a tradeoff between the two views. We give the detailed solving procedure, which can be divided into two steps. The first step is solving our optimization problem without considering the equal margin posteriors from two views, and then, in the second step, we consider the equal posteriors. Experimental results on multiple real-world data sets verify the effectiveness of the AMVMED, and comparisons with MVMED are also reported.
Extended photoresponse and multi-band luminescence of ZnO/ZnSe core/shell nanorods.
Yang, Qin; Cai, Hua; Hu, Zhigao; Duan, Zhihua; Yang, Xu; Sun, Jian; Xu, Ning; Wu, Jiada
2014-01-15
Aligned ZnO/ZnSe core/shell nanorods (NRs) with type-II energy band alignment were fabricated by pulsed laser deposition of ZnSe on the surfaces of hydrothermally grown ZnO NRs. The obtained ZnO/ZnSe core/shell NRs are composed of wurtzite ZnO cores and zinc blende ZnSe shells. The bare ZnO NRs are capable of emitting strong ultraviolet (UV) near band edge (NBE) emission at 325-nm light excitation, while the ZnSe shells greatly suppress the emission from the ZnO cores. High-temperature processing results in an improvement in the structures of the ZnO cores and the ZnSe shells and significant changes in the optical properties of ZnO/ZnSe core/shell NRs. The fabricated ZnO/ZnSe core/shell NRs show optical properties corresponding to the two excitonic band gaps of wurtzite ZnO and zinc blende ZnSe and the effective band gap between the conduction band minimum of ZnO and the valence band maximum ZnSe. An extended photoresponse much wider than those of the constituting ZnO and ZnSe and a multi-band photoluminescence including the UV NBE emission of ZnO and the blue NBE emission of ZnSe are observed.
Banded vs Bonded Space Maintainers: Finding Better Way Out
Setia, Vikas; Kumar Pandit, Inder; Srivastava, Nikhil; Gugnani, Neeraj; Gupta, Monika
2014-01-01
ABSTRACT Objectives: Of this in vivo study was to evaluate various space maintainers in terms of survival rate, gingival health and presence of caries. Design: A total of 60 extraction sites in the age group of 4 to 9 years were divided into four groups and different space maintainers were placed in them viz (conventional band and loop, prefabricated band with custom made loop, Ribbond, Super splint). Results: Prefabricated bands with custom made loop showed maximum success rates (84.6%), whi...
Influence of the ``second gap'' on the optical absorption of transparent conducting oxides
Ha, Viet-Anh; Waroquiers, David; Rignanese, Gian-Marco; Hautier, Geoffroy
Transparent conducting oxides (TCOs) are critical to many technologies (e.g., thin-film solar cells, flat-panel displays or organic light-emitting diodes). TCOs are heavily doped (n or p-type) oxides that satisfy many design criteria such as high transparency to visible light (i.e., a band gap > 3 eV), high concentration and mobility of carriers (leading to high conductivity), ... In such (highly doped) systems, optical transitions from the conduction band minimum to higher energy bands in n-type or from lower energy bands to the valence band maximum in p-type are possible and can degrade transparency. In fact, it has been claimed that a high energy (> 3eV) for any of these transitions made possible by doping, commonly referred as a high ``second gap'', is a necessary design criterion for high performance TCOs. Here, we study the influence of this second gap on the transparency of doped TCOs by using ab initio calculations within the random phase approximation (RPA) for several well-known p-type and n-type TCOs. Our work highlights how the second gap affects the transparency of doped TCOs, shining light on more accurate design criteria for high performance TCOs.
Cacti with maximum Kirchhoff index
Wang, Wen-Rui; Pan, Xiang-Feng
2015-01-01
The concept of resistance distance was first proposed by Klein and Randi\\'c. The Kirchhoff index $Kf(G)$ of a graph $G$ is the sum of resistance distance between all pairs of vertices in $G$. A connected graph $G$ is called a cactus if each block of $G$ is either an edge or a cycle. Let $Cat(n;t)$ be the set of connected cacti possessing $n$ vertices and $t$ cycles, where $0\\leq t \\leq \\lfloor\\frac{n-1}{2}\\rfloor$. In this paper, the maximum kirchhoff index of cacti are characterized, as well...
Generic maximum likely scale selection
Pedersen, Kim Steenstrup; Loog, Marco; Markussen, Bo
2007-01-01
The fundamental problem of local scale selection is addressed by means of a novel principle, which is based on maximum likelihood estimation. The principle is generally applicable to a broad variety of image models and descriptors, and provides a generic scale estimation methodology. The focus...... on second order moments of multiple measurements outputs at a fixed location. These measurements, which reflect local image structure, consist in the cases considered here of Gaussian derivatives taken at several scales and/or having different derivative orders....
Hershey, David R.; Sand, Susan
1993-01-01
Explains how electrical conductivity (EC) can be used to measure ion concentration in solutions. Describes instrumentation for the measurement, temperature dependence and EC, and the EC of common substances. (PR)
Skirka, Nicholas; Hume, Donald
2007-01-01
This article discusses how to use stretch bands for improving total body fitness and quality of life. A stretch band exercise program offers a versatile and inexpensive option to motivate participants to exercise. The authors suggest practical exercises that can be used in physical education to improve or maintain muscular strength and endurance,…
PIJNACKER, LP; FERWERDA, MA
1995-01-01
Banding techniques were carried out on metaphase chromosomes of zebrafish (Danio rerio) embryos. The karyotypes with the longest chromosomes consist of 12 metacentrics, 26 submetacentrics, and 12 subtelocentrics (2n = 50). All centromeres are C-band positive. Eight chromosomes have a pericentric C-b
Economics and Maximum Entropy Production
Lorenz, R. D.
2003-04-01
Price differentials, sales volume and profit can be seen as analogues of temperature difference, heat flow and work or entropy production in the climate system. One aspect in which economic systems exhibit more clarity than the climate is that the empirical and/or statistical mechanical tendency for systems to seek a maximum in production is very evident in economics, in that the profit motive is very clear. Noting the common link between 1/f noise, power laws and Self-Organized Criticality with Maximum Entropy Production, the power law fluctuations in security and commodity prices is not inconsistent with the analogy. There is an additional thermodynamic analogy, in that scarcity is valued. A commodity concentrated among a few traders is valued highly by the many who do not have it. The market therefore encourages via prices the spreading of those goods among a wider group, just as heat tends to diffuse, increasing entropy. I explore some empirical price-volume relationships of metals and meteorites in this context.
Fisher, Kevin; Chang, Chein-I
2009-01-01
Progressive band selection (PBS) reduces spectral redundancy without significant loss of information, thereby reducing hyperspectral image data volume and processing time. Used onboard a spacecraft, it can also reduce image downlink time. PBS prioritizes an image's spectral bands according to priority scores that measure their significance to a specific application. Then it uses one of three methods to select an appropriate number of the most useful bands. Key challenges for PBS include selecting an appropriate criterion to generate band priority scores, and determining how many bands should be retained in the reduced image. The image's Virtual Dimensionality (VD), once computed, is a reasonable estimate of the latter. We describe the major design details of PBS and test PBS in a land classification experiment.
Planar Tri-Band Antenna Design
M. Pokorny
2008-04-01
Full Text Available The paper briefly uncovers techniques used for a design of compact planar antennas in order to achieve the wideband and the multi-band capability. The main topic is aimed to the multi-objective optimization using genetic algorithms. A quarter-wavelength planar inverted-F antenna (PIFA using a slot and shorted parasitic patches is chosen to cover GSM900, GSM1800 and ISM2400 bands. A global multi-objective optimization uses a binary genetic algorithm with a composite objective function to tune this antenna. The impedance match and the direction of maximum gain are desired parameters to improve.
A colored leg banding technique for Amazona parrots
Meyers, J.M.
1995-01-01
A technique for individual identification of Amazona was developed using plastic leg bands. Bands were made from 5- and 7-mm-wide strips of laminated PVC coiled 2.5 times with an inside diameter 4-5 mm gt the maximum diameter of the parrot's leg. Seventeen parrots were captured in Puerto Rico, marked with individual plastic leg bands, and observed for 204-658 d with only one lost or damaged plastic band. Plastic leg bands did not cause injury to or calluses on parrots' legs. The plastic material used for making leg bands was available in 18 colors in 1994, which would allow unique marking of 306 individuals using one plastic leg band on each leg.
Bi-directional evolutionary optimization for photonic band gap structures
Meng, Fei [Centre for Innovative Structures and Materials, School of Civil, Environmental and Chemical Engineering, RMIT University, GPO Box 2476, Melbourne, VIC 3001 (Australia); School of Civil Engineering, Central South University, Changsha 410075 (China); Huang, Xiaodong, E-mail: huang.xiaodong@rmit.edu.au [Centre for Innovative Structures and Materials, School of Civil, Environmental and Chemical Engineering, RMIT University, GPO Box 2476, Melbourne, VIC 3001 (Australia); Key Laboratory of Advanced Technology for Vehicle Body Design & Manufacture, Hunan University, Changsha, 410082 (China); Jia, Baohua [Centre for Micro-Photonics, Faculty of Engineering & Industrial Science, Swinburne University of Technology, PO Box 218, Hawthorn, VIC 3122 (Australia)
2015-12-01
Toward an efficient and easy-implement optimization for photonic band gap structures, this paper extends the bi-directional evolutionary structural optimization (BESO) method for maximizing photonic band gaps. Photonic crystals are assumed to be periodically composed of two dielectric materials with the different permittivity. Based on the finite element analysis and sensitivity analysis, BESO starts from a simple initial design without any band gap and gradually re-distributes dielectric materials within the unit cell so that the resulting photonic crystal possesses a maximum band gap between two specified adjacent bands. Numerical examples demonstrated the proposed optimization algorithm can successfully obtain the band gaps from the first to the tenth band for both transverse magnetic and electric polarizations. Some optimized photonic crystals exhibit novel patterns markedly different from traditional designs of photonic crystals.
Quadratic band touching points and flat bands in two-dimensional topological Floquet systems
Du, Liang; Zhou, Xiaoting; Fiete, Gregory A.
2017-01-01
In this paper we theoretically study, using Floquet-Bloch theory, the influence of circularly and linearly polarized light on two-dimensional band structures with Dirac and quadratic band touching points, and flat bands, taking the nearest neighbor hopping model on the kagome lattice as an example. We find circularly polarized light can invert the ordering of this three-band model, while leaving the flat band dispersionless. We find a small gap is also opened at the quadratic band touching point by two-photon and higher order processes. By contrast, linearly polarized light splits the quadratic band touching point (into two Dirac points) by an amount that depends only on the amplitude and polarization direction of the light, independent of the frequency, and generally renders dispersion to the flat band. The splitting is perpendicular to the direction of the polarization of the light. We derive an effective low-energy theory that captures these key results. Finally, we compute the frequency dependence of the optical conductivity for this three-band model and analyze the various interband contributions of the Floquet modes. Our results suggest strategies for optically controlling band structure and interaction strength in real systems.
Objects of maximum electromagnetic chirality
Fernandez-Corbaton, Ivan
2015-01-01
We introduce a definition of the electromagnetic chirality of an object and show that it has an upper bound. The upper bound is attained if and only if the object is transparent for fields of one handedness (helicity). Additionally, electromagnetic duality symmetry, i.e. helicity preservation upon scattering, turns out to be a necessary condition for reciprocal scatterers to attain the upper bound. We use these results to provide requirements for the design of such extremal scatterers. The requirements can be formulated as constraints on the polarizability tensors for dipolar scatterers or as material constitutive relations. We also outline two applications for objects of maximum electromagnetic chirality: A twofold resonantly enhanced and background free circular dichroism measurement setup, and angle independent helicity filtering glasses.
Maximum mutual information regularized classification
Wang, Jim Jing-Yan
2014-09-07
In this paper, a novel pattern classification approach is proposed by regularizing the classifier learning to maximize mutual information between the classification response and the true class label. We argue that, with the learned classifier, the uncertainty of the true class label of a data sample should be reduced by knowing its classification response as much as possible. The reduced uncertainty is measured by the mutual information between the classification response and the true class label. To this end, when learning a linear classifier, we propose to maximize the mutual information between classification responses and true class labels of training samples, besides minimizing the classification error and reducing the classifier complexity. An objective function is constructed by modeling mutual information with entropy estimation, and it is optimized by a gradient descend method in an iterative algorithm. Experiments on two real world pattern classification problems show the significant improvements achieved by maximum mutual information regularization.
The strong maximum principle revisited
Pucci, Patrizia; Serrin, James
In this paper we first present the classical maximum principle due to E. Hopf, together with an extended commentary and discussion of Hopf's paper. We emphasize the comparison technique invented by Hopf to prove this principle, which has since become a main mathematical tool for the study of second order elliptic partial differential equations and has generated an enormous number of important applications. While Hopf's principle is generally understood to apply to linear equations, it is in fact also crucial in nonlinear theories, such as those under consideration here. In particular, we shall treat and discuss recent generalizations of the strong maximum principle, and also the compact support principle, for the case of singular quasilinear elliptic differential inequalities, under generally weak assumptions on the quasilinear operators and the nonlinearities involved. Our principal interest is in necessary and sufficient conditions for the validity of both principles; in exposing and simplifying earlier proofs of corresponding results; and in extending the conclusions to wider classes of singular operators than previously considered. The results have unexpected ramifications for other problems, as will develop from the exposition, e.g. two point boundary value problems for singular quasilinear ordinary differential equations (Sections 3 and 4); the exterior Dirichlet boundary value problem (Section 5); the existence of dead cores and compact support solutions, i.e. dead cores at infinity (Section 7); Euler-Lagrange inequalities on a Riemannian manifold (Section 9); comparison and uniqueness theorems for solutions of singular quasilinear differential inequalities (Section 10). The case of p-regular elliptic inequalities is briefly considered in Section 11.
Experimental Studies of Band-Structure Properties in Bloch Transistors
Flees, Daniel J.
1998-03-01
One of the most striking features in small SIS tunnel junctions is the energy-band structure produced by Josephson coupling and charging effects. These energy bands are analogous to Bloch bands in crystalline solids. The superconducting single-electron (Bloch) transistor is the simplest system in which the energy bands can be readily studied. It consists of a superconducting island coupled to a source and drain through two small tunnel junctions. The elastic tunneling of Cooper-Pairs onto the island mixes the discrete charge states of the island. The shapes of the resulting energy bands can be modified by changing the electrostatic energies of these charge states with a voltage applied to a capacitively coupled gate. The maximum zero-voltage current (supercurrent) of each band depends upon the shape of the band and so the gate modulates the supercurrent. Each band has a different characteristic supercurrent modulation, with excited bands generally having lower currents. Thus! we can use the reduction in super current associated with a transition to an excited band to begin probing aip.org/journal_cgi/ getabs?KEY=PRLTAO&cvips=PRLTAO000078000025004817000001&gifs=No>band- structure properties such as the band-gap.(Daniel J. Flees, Siyuan Han, and J.E. Lukens, Phys. Rev. Lett. 78), 4817 (1997).
Iliotibial band friction syndrome.
Lavine, Ronald
2010-07-20
Published articles on iliotibial band friction syndrome have been reviewed. These articles cover the epidemiology, etiology, anatomy, pathology, prevention, and treatment of the condition. This article describes (1) the various etiological models that have been proposed to explain iliotibial band friction syndrome; (2) some of the imaging methods, research studies, and clinical experiences that support or call into question these various models; (3) commonly proposed treatment methods for iliotibial band friction syndrome; and (4) the rationale behind these methods and the clinical outcome studies that support their efficacy.
Buitelaar, J.K.; Smeets, K.C.; Herpers, P.; Scheepers, F.; Glennon, J.; Rommelse, N.N.J.
2013-01-01
Conduct disorder (CD) is a frequently occurring psychiatric disorder characterized by a persistent pattern of aggressive and non-aggressive rule breaking antisocial behaviours that lead to considerable burden for the patients themselves, their family and society. This review paper updates diagnostic
Chen, R. H.; Tabatabaeenejad, A.; Moghaddam, M.
2016-12-01
Monitoring the active layer atop permafrost is critical to enhancing our knowledge about the cryopedogenic processes, carbon dynamics, and the extent of permafrost degradation due to climate change. Ground-based measurements of active layer soils have provided high quality in-situ data in recent decades, but are limited by spatial coverage due to the remoteness and inaccessibility of most high-latitude regions. Since August 2014, P-band AirMOSS has flown time-series SAR observations over Northern Alaska to enable regional mapping of active layer properties. In October 2015, L-band UAVSAR also flew with AirMOSS to provide nearly concurrent dual-band SAR data. To retrieve active layer properties, we use a scattering model for layered soils, along with assumptions made from field measurements. This presentation will discuss the assumed soil structures used for different active layer soil conditions (maximum thawed or partially frozen) and the subsurface features which can be observed by low-frequency radars. A physics-based active layer retrieval algorithm is developed to incorporate different vertical resolutions of P- and L-band radars to obtain better characterization of active layer soil profile. The retrieved maps of active layer properties such as active layer thickness (ALT) and soil dielectric profiles will be presented and validated against the ALT measurements conducted at Circumpolar Active Layer Monitoring (CALM) sites in Alaska. Field activities and measurements for further model improvements and validations will also be discussed.
Bonds and bands in semiconductors
Phillips, Jim
2009-01-01
This classic work on the basic chemistry and solid state physics of semiconducting materials is now updated and improved with new chapters on crystalline and amorphous semiconductors. Written by two of the world's pioneering materials scientists in the development of semiconductors, this work offers in a single-volume an authoritative treatment for the learning and understanding of what makes perhaps the world's most important engineered materials actually work. Readers will find: --' The essential principles of chemical bonding, electron energy bands and their relationship to conductive and s
... helps people who have a gastric band stay satisfied longer. This includes things like salad with grilled ... ADAM Health Solutions. About MedlinePlus Site Map FAQs Customer Support Get email updates Subscribe to RSS Follow ...
HYBASE - HYperspectral BAnd SElection tool
Schwering, P.B.W.; Bekman, H.H.P.T.; Seijen, H.H. van
2008-01-01
Band selection is essential in the design of multispectral sensor systems. This paper describes the TNO hyperspectral band selection tool HYBASE. It calculates the optimum band positions given the number of bands and the width of the spectral bands. HYBASE is used to calculate the minimum number of
Ochipa, C; Rothi, L J; Heilman, K M
1994-01-01
A left hemisphere damaged patient with ideomotor apraxia is described, whose performance on pantomime to verbal command was superior to pantomime imitation. His reception of these same gestures (gesture naming) was spared. This syndrome has been named conduction apraxia. To account for this selective impaired performance on gesture imitation, a separation of the representations for gesture production and reception is proposed and a non-lexical gesture processing route for gesture imitation is suggested. Images PMID:7931387
Ochipa, C; Rothi, L J; Heilman, K M
1994-01-01
A left hemisphere damaged patient with ideomotor apraxia is described, whose performance on pantomime to verbal command was superior to pantomime imitation. His reception of these same gestures (gesture naming) was spared. This syndrome has been named conduction apraxia. To account for this selective impaired performance on gesture imitation, a separation of the representations for gesture production and reception is proposed and a non-lexical gesture processing route for gesture imitation is...
Xu, Kaiqiang; Xu, Difa; Zhang, Xiangchao; Luo, Zhuo; Wang, Yutang; Zhang, Shiying
2017-01-01
Element doping is a promising strategy to improve the photo-response and photocatalytic activity of semiconductor photocatalyst with a wide band gap. To reduce the band gap of LiInO2 that is considered as a novel photocatalyst, nitrogen-doped LiInO2 (N-LiInO2) is successfully fabricated by treating LiInO2 and urea at 200 °C. It is found that interstitial instead of substitutional configurations are formed in the crystal structure of N-LiInO2 due to the low-treating temperature and rich-oxygen conditions. The interstitial N-doping forms a doping state with 0.6 eV above the valence band maximum and a defect state with 0.1 eV below the conduction band minimum, reducing the band gap of LiInO2 from 3.5 to 2.8 eV. N-LiInO2 exhibits higher photocatalytic activity towards methylene blue (MB) degradation under 380 nm light irradiation, which is 1.4 times that of pure LiInO2. The enhanced photocatalytic activity of N-LiInO2 is attributed to the extended light absorption and the improved charge carrier separation, which result in more reactive species participating in the photcatalytic process. This work provides a further understanding on tuning the band structure of semiconductor photocatalyst by N-doping strategies.
Maximum entropy production in daisyworld
Maunu, Haley A.; Knuth, Kevin H.
2012-05-01
Daisyworld was first introduced in 1983 by Watson and Lovelock as a model that illustrates how life can influence a planet's climate. These models typically involve modeling a planetary surface on which black and white daisies can grow thus influencing the local surface albedo and therefore also the temperature distribution. Since then, variations of daisyworld have been applied to study problems ranging from ecological systems to global climate. Much of the interest in daisyworld models is due to the fact that they enable one to study self-regulating systems. These models are nonlinear, and as such they exhibit sensitive dependence on initial conditions, and depending on the specifics of the model they can also exhibit feedback loops, oscillations, and chaotic behavior. Many daisyworld models are thermodynamic in nature in that they rely on heat flux and temperature gradients. However, what is not well-known is whether, or even why, a daisyworld model might settle into a maximum entropy production (MEP) state. With the aim to better understand these systems, this paper will discuss what is known about the role of MEP in daisyworld models.
Maximum stellar iron core mass
F W Giacobbe
2003-03-01
An analytical method of estimating the mass of a stellar iron core, just prior to core collapse, is described in this paper. The method employed depends, in part, upon an estimate of the true relativistic mass increase experienced by electrons within a highly compressed iron core, just prior to core collapse, and is signiﬁcantly different from a more typical Chandrasekhar mass limit approach. This technique produced a maximum stellar iron core mass value of 2.69 × 1030 kg (1.35 solar masses). This mass value is very near to the typical mass values found for neutron stars in a recent survey of actual neutron star masses. Although slightly lower and higher neutron star masses may also be found, lower mass neutron stars are believed to be formed as a result of enhanced iron core compression due to the weight of non-ferrous matter overlying the iron cores within large stars. And, higher mass neutron stars are likely to be formed as a result of fallback or accretion of additional matter after an initial collapse event involving an iron core having a mass no greater than 2.69 × 1030 kg.
Maximum Matchings via Glauber Dynamics
Jindal, Anant; Pal, Manjish
2011-01-01
In this paper we study the classic problem of computing a maximum cardinality matching in general graphs $G = (V, E)$. The best known algorithm for this problem till date runs in $O(m \\sqrt{n})$ time due to Micali and Vazirani \\cite{MV80}. Even for general bipartite graphs this is the best known running time (the algorithm of Karp and Hopcroft \\cite{HK73} also achieves this bound). For regular bipartite graphs one can achieve an $O(m)$ time algorithm which, following a series of papers, has been recently improved to $O(n \\log n)$ by Goel, Kapralov and Khanna (STOC 2010) \\cite{GKK10}. In this paper we present a randomized algorithm based on the Markov Chain Monte Carlo paradigm which runs in $O(m \\log^2 n)$ time, thereby obtaining a significant improvement over \\cite{MV80}. We use a Markov chain similar to the \\emph{hard-core model} for Glauber Dynamics with \\emph{fugacity} parameter $\\lambda$, which is used to sample independent sets in a graph from the Gibbs Distribution \\cite{V99}, to design a faster algori...
2011-01-10
...: Establishing Maximum Allowable Operating Pressure or Maximum Operating Pressure Using Record Evidence, and... facilities of their responsibilities, under Federal integrity management (IM) regulations, to perform... system, especially when calculating Maximum Allowable Operating Pressure (MAOP) or Maximum Operating...
The Sherpa Maximum Likelihood Estimator
Nguyen, D.; Doe, S.; Evans, I.; Hain, R.; Primini, F.
2011-07-01
A primary goal for the second release of the Chandra Source Catalog (CSC) is to include X-ray sources with as few as 5 photon counts detected in stacked observations of the same field, while maintaining acceptable detection efficiency and false source rates. Aggressive source detection methods will result in detection of many false positive source candidates. Candidate detections will then be sent to a new tool, the Maximum Likelihood Estimator (MLE), to evaluate the likelihood that a detection is a real source. MLE uses the Sherpa modeling and fitting engine to fit a model of a background and source to multiple overlapping candidate source regions. A background model is calculated by simultaneously fitting the observed photon flux in multiple background regions. This model is used to determine the quality of the fit statistic for a background-only hypothesis in the potential source region. The statistic for a background-plus-source hypothesis is calculated by adding a Gaussian source model convolved with the appropriate Chandra point spread function (PSF) and simultaneously fitting the observed photon flux in each observation in the stack. Since a candidate source may be located anywhere in the field of view of each stacked observation, a different PSF must be used for each observation because of the strong spatial dependence of the Chandra PSF. The likelihood of a valid source being detected is a function of the two statistics (for background alone, and for background-plus-source). The MLE tool is an extensible Python module with potential for use by the general Chandra user.
Vestige: Maximum likelihood phylogenetic footprinting
Maxwell Peter
2005-05-01
Full Text Available Abstract Background Phylogenetic footprinting is the identification of functional regions of DNA by their evolutionary conservation. This is achieved by comparing orthologous regions from multiple species and identifying the DNA regions that have diverged less than neutral DNA. Vestige is a phylogenetic footprinting package built on the PyEvolve toolkit that uses probabilistic molecular evolutionary modelling to represent aspects of sequence evolution, including the conventional divergence measure employed by other footprinting approaches. In addition to measuring the divergence, Vestige allows the expansion of the definition of a phylogenetic footprint to include variation in the distribution of any molecular evolutionary processes. This is achieved by displaying the distribution of model parameters that represent partitions of molecular evolutionary substitutions. Examination of the spatial incidence of these effects across regions of the genome can identify DNA segments that differ in the nature of the evolutionary process. Results Vestige was applied to a reference dataset of the SCL locus from four species and provided clear identification of the known conserved regions in this dataset. To demonstrate the flexibility to use diverse models of molecular evolution and dissect the nature of the evolutionary process Vestige was used to footprint the Ka/Ks ratio in primate BRCA1 with a codon model of evolution. Two regions of putative adaptive evolution were identified illustrating the ability of Vestige to represent the spatial distribution of distinct molecular evolutionary processes. Conclusion Vestige provides a flexible, open platform for phylogenetic footprinting. Underpinned by the PyEvolve toolkit, Vestige provides a framework for visualising the signatures of evolutionary processes across the genome of numerous organisms simultaneously. By exploiting the maximum-likelihood statistical framework, the complex interplay between mutational
2008-01-01
The Thermal and Electrical Conductivity Probe (TECP) for NASA's Phoenix Mars Lander took measurements in Martian soil and in the air. The needles on the end of the instrument were inserted into the Martian soil, allowing TECP to measure the propagation of both thermal and electrical energy. TECP also measured the humidity in the surrounding air. The needles on the probe are 15 millimeters (0.6 inch) long. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.
Disorder effects on the band structure of ZnGeN2: Role of exchange defects
Skachkov, Dmitry; Quayle, Paul C.; Kash, Kathleen; Lambrecht, Walter R. L.
2016-11-01
The role of exchange defects on the band structure of ZnGeN2 is investigated. Exchange defects are defined through the exchange of cations Zn and Ge starting from the ideal P n a 21 crystal structure, which obeys the local octet rule. Each such exchange creates several nitrogen-centered tetrahedra which violate the local octet rule, although overall charge neutrality is preserved. We study several distributions of exchange defects, some with all antisites making up the exchange defect close to each other and with increasing numbers of exchange defects, and others where the two types of antisites ZnGe and GeZn are kept separated from each other. We also compare the results for these models with a fully random distribution of Zn and Ge on the cation sites. We show that for a single-nearest-neighbor exchange defect, the band gap is narrowed by about 0.5 eV due to two effects: (1) the ZnGe antisites form filled acceptor states just above and merging with the valence-band maximum (VBM) of perfect crystal ZnGeN2 and (2) the GeZn antisites form a resonance in the conduction band which lowers the conduction-band minimum (CBM). When more exchange defects are created, these acceptor states broaden into bands which can lower the gap further. When tetrahedra occur surrounded completely by four Zn atoms, states even deeper in the gap are found localized all near these tetrahedra, forming a separate intermediate band. Finally, for phase-segregated ZnGe and GeZn, the gap is significantly more reduced, but no separate band is found to occur. The ZnGe acceptorlike states now form a percolating defect band which is significantly wider and hence reaches deeper into the gap. In all cases, the wave functions near the top of the new VBM remain, to some extent, localized near the ZnGe sites. For a fully random case, the gap is even more severely reduced by almost 3 eV. The total energy of the system increases with the number of octet-rule-violating tetrahedra and the energy cost per
Sizable band gap in organometallic topological insulator
Derakhshan, V.; Ketabi, S. A.
2017-01-01
Based on first principle calculation when Ceperley-Alder and Perdew-Burke-Ernzerh type exchange-correlation energy functional were adopted to LSDA and GGA calculation, electronic properties of organometallic honeycomb lattice as a two-dimensional topological insulator was calculated. In the presence of spin-orbit interaction bulk band gap of organometallic lattice with heavy metals such as Au, Hg, Pt and Tl atoms were investigated. Our results show that the organometallic topological insulator which is made of Mercury atom shows the wide bulk band gap of about ∼120 meV. Moreover, by fitting the conduction and valence bands to the band-structure which are produced by Density Functional Theory, spin-orbit interaction parameters were extracted. Based on calculated parameters, gapless edge states within bulk insulating gap are indeed found for finite width strip of two-dimensional organometallic topological insulators.
Cassagne, D.
Photonic band gap materials Photonic band gap materials are periodic dielectric structures that control the propagation of electromagnetic waves. We describe the plane wave method, which allows to calculate the band structures of photonic crystals. By symmetry analysis and a perturbative approach, we predict the appearance of the low energy photonic band gaps of hexagonal structures. We propose new two-dimensional structures called graphite and boron nitride. Using a transfer matrix method, we calculate the transmission of the graphite structure and we show the crucial role of the coupling with external modes. We study the appearance of allowed modes in the photonic band gap by the introduction of localized defects in the periodicity. Finally, we discuss the properties of opals formed by self-organized silica microspheres, which are very promising for the fabrication of three-dimensional photonic crystals. Les matériaux à bandes interdites photoniques sont des structures diélectriques périodiques qui contrôlent la propagation des ondes électromagnétiques. Nous décrivons la méthode des ondes planes qui permet de calculer les structures de bandes des cristaux photoniques. Par une analyse de la symétrie et une approche perturbative, nous précisons les conditions d'existence des bandes interdites de basse énergie. Nous proposons de nouvelles structures bidimensionnelles appelées graphite et nitrure de bore. Grâce à une méthode de matrices de transfert, nous calculons la transmission de la structure graphite et nous mettons en évidence le rôle fondamental du couplage avec les modes extérieurs. Nous étudions l'apparition de modes permis dans la bande interdite grâce à l'introduction de défauts dans la périodicité. Enfin, nous discutons les propriétés des opales constituées de micro-billes de silice auto-organisées, qui sont très prometteuses pour la fabrication de cristaux photoniques tridimensionnels.
夏海廷; 匡小军; 王春海; 李文先; 荆西平; 赵飞; 岳振星
2011-01-01
用固相反应合成了乌青铜型钛酸盐陶瓷BaNd2Ti4O12,并用电化学阻抗和微波介质谐振测试表征了不同热处理和钽掺杂对电导和微波介电损耗的影响.电导率随退火气氛(空气,氧气和氮气)的变化与缺陷反应平衡2Oxo—2V**o+O2↑+2e'和TixTie′←→Ti'Ti随氧分压的变化一致,表明BaNd2Ti4O12具有∏型导电性质.在空气和氧气中退火有利于减少包括Vxo,Ti'Ti和弱束缚电子在内的本征缺陷因而降低电导.而在低氧分压的氮气中进行退火处理,增加了缺陷的浓度,同时提高了电导率.在空气/氧气/氮气中的退火处理对微波介电损耗没有明显的影响,表明本征缺陷对微波介电损耗的影响可以忽略.空气退火处理样品的电导率和微波介电损耗低于空气淬火处理的样品:其中电导的变化与缺陷反应平衡相关,但空气退火降低微波介电损耗可能与退火消除晶格热应力有关.五价钽的掺杂降低了电导但增大了微波介电损耗.本研究表明空气退火处理能有效地改善BaNd2Ti4O12陶瓷的品质因子Q×f,其值提高了约12％.%Tungsten-bronze type titanate BaNd2Ti4O12 ceramics were synthesized by solid state reactions.The conductivity and microwave dielectric loss of the samples that were thermally treated under various conditions and Ta-doped were investigated by electrochemical impedance measurement and microwave dielectric resonator measurement.The variation in conductivity with annealing atmospheres of air,O2,and N2 was consistent with the defect equilibriums 2Oxo←→2V**o +O2↑+2e′ and Ti'Ti+e′←→Ti'Ti suggesting n-type conductance for BaNd2Ti4O12.Thermal treatment in air/O2 was found to favor the elimination of the native defects Vxo,Ti′Ti and weakly bound electrons thus decreasing the conductivity.Thermal treatment in a N2atmosphere,which had a low oxygen partial pressure,increased the defect content and the conductivity.Thermal treatment in air/O2/N2
Band Anticrossing in Dilute Germanium Carbides Using Hybrid Functionals
Stephenson, Chad A; Qi, Meng; Penninger, Michael; Schneider, William; Wistey, Mark A
2014-01-01
Dilute germanium carbides (Ge1-xCx) offer a direct bandgap for compact silicon photonics, but widely varying results have been reported. This work uses ab initio simulations with HSE06 hybrid functionals and spin-orbit coupling to study the band structure behavior in the absence of defects. Contrary to Vegard's law, the conduction band minimum at k=0 is consistently found to decrease with increasing C content, while L and X valleys remain nearly unchanged. A vanishing bandgap was observed for all alloys with x>0.017. Conduction bands deviate from a constant-potential band anticrossing model except near the center of the Brillouin zone.
郭立帅
2012-01-01
The properties of band - gap of one - dimensional doped photonic crystal are studied by using numerical- ly method based on the transfer matrix method. The result shows that a narrow conduction band appears in the cen- tre of forbidden band in one - dimensional doped photonic crystal. The depth of conduction band appears in the centre of forbidden band has a maximum, which was caused by the number of layers of the second half of impurity where the first one was fixed. It shows that the forbidden band center＇s conduction band depth was still biggest by means of changing basic level thickness.%基于传输矩阵法,数值研究了掺杂一维光子晶体带隙特征。研究表明：一维掺杂光晶体禁带中心位置出现一个极窄的导带,当杂质前半部分层数给定时,后半部分总存在一个层数,使得禁带中心导带的深度达到最大,在此基础上通过改变基本层厚度发现,禁带中心的导带深度仍然最大,我们可以通过改变基本层厚度厚度,让特定波长的光顺利通过。
Postnov, D. E.; Neganova, A Y; Sosnovtseva, Olga
2015-01-01
, the underlying mechanisms are debated. Here, we focus on dynamical aspects of the problem hypothesizing the existence of a bistability-powered mechanism for regenerative pulse transmission along the endothelium. Bistability implies that the cell can have two different stable resting potentials and can switch......Conducted vasodilation is part of the physiological response to increasing metabolic demand of the tissue. Similar responses can be elicited by focal electrical or chemical stimulation. Some evidence suggests an endothelial pathway for nondecremental transmission of hyperpolarizing pulses. However...... a theoretical analysis as well as numerical simulations of both single- and multiunit bistable systems mimicking endothelial cells to investigate the self-consistence and stability of the proposed mechanism. We find that the individual cell may switch readily between two stable potentials. An array of coupled...
Distribution Free Prediction Bands
Lei, Jing
2012-01-01
We study distribution free, nonparametric prediction bands with a special focus on their finite sample behavior. First we investigate and develop different notions of finite sample coverage guarantees. Then we give a new prediction band estimator by combining the idea of "conformal prediction" (Vovk et al. 2009) with nonparametric conditional density estimation. The proposed estimator, called COPS (Conformal Optimized Prediction Set), always has finite sample guarantee in a stronger sense than the original conformal prediction estimator. Under regularity conditions the estimator converges to an oracle band at a minimax optimal rate. A fast approximation algorithm and a data driven method for selecting the bandwidth are developed. The method is illustrated first in simulated data. Then, an application shows that the proposed method gives desirable prediction intervals in an automatic way, as compared to the classical linear regression modeling.
Mesoscopic colonization of a spectral band
Bertola, M; Mo, M Y
2009-01-01
We consider the unitary matrix model in the limit where the size of the matrices become infinite and in the critical situation when a new spectral band is about to emerge. In previous works the number of expected eigenvalues in a neighborhood of the band was fixed and finite, a situation that was termed "birth of a cut" or "first colonization". We now consider the transitional regime where this microscopic population in the new band grows without bounds but at a slower rate than the size of the matrix. The local population in the new band organizes in a "mesoscopic" regime, in between the macroscopic behavior of the full system and the previously studied microscopic one. The mesoscopic colony may form a finite number of new bands, with a maximum number dictated by the degree of criticality of the original potential. We describe the delicate scaling limit that realizes/controls the mesoscopic colony. The method we use is the steepest descent analysis of the Riemann-Hilbert problem that is satisfied by the asso...
Louw, Maryke; Deary, Clare
2014-02-01
The aim of this literature review was to identify the biomechanical variables involved in the aetiology of iliotibial band syndrome (ITBS) in distance runners. An electronic search was conducted using the terms "iliotibial band" and "iliotibial tract". The results showed that runners with a history of ITBS appear to display decreased rear foot eversion, tibial internal rotation and hip adduction angles at heel strike while having greater maximum internal rotation angles at the knee and decreased total abduction and adduction range of motion at the hip during stance phase. They further appear to experience greater invertor moments at their feet, decreased abduction and flexion velocities at their hips and to reach maximum hip flexion angles earlier than healthy controls. Maximum normalised braking forces seem to be decreased in these athletes. The literature is inconclusive with regards to muscle strength deficits in runners with a history of ITBS. Prospective research suggested that greater internal rotation at the knee joint and increased adduction angles of the hip may play a role in the aetiology of ITBS and that the strain rate in the iliotibial bands of these runners may be increased compared to healthy controls. A clear biomechanical cause for ITBS could not be devised due to the lack of prospective research.
Begaud, Xavier
2013-01-01
Ultra Wide Band Technology (UWB) has reached a level of maturity that allows us to offer wireless links with either high or low data rates. These wireless links are frequently associated with a location capability for which ultimate accuracy varies with the inverse of the frequency bandwidth. Using time or frequency domain waveforms, they are currently the subject of international standards facilitating their commercial implementation. Drawing up a complete state of the art, Ultra Wide Band Antennas is aimed at students, engineers and researchers and presents a summary of internationally recog
Mclyman, C. W. T. (Inventor)
1974-01-01
A banded transformer core formed by positioning a pair of mated, similar core halves on a supporting pedestal. The core halves are encircled with a strap, selectively applying tension whereby a compressive force is applied to the core edge for reducing the innate air gap. A dc magnetic field is employed in supporting the core halves during initial phases of the banding operation, while an ac magnetic field subsequently is employed for detecting dimension changes occurring in the air gaps as tension is applied to the strap.
Fang, D. Q., E-mail: fangdqphy@mail.xjtu.edu.cn; Zhang, S. L. [MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Science, Xi’an Jiaotong University, Xi’an 710049 (China)
2016-01-07
The band offsets of the ZnO/anatase TiO{sub 2} and GaN/ZnO heterojunctions are calculated using the density functional theory/generalized gradient approximation (DFT/GGA)-1/2 method, which takes into account the self-energy corrections and can give an approximate description to the quasiparticle characteristics of the electronic structure of semiconductors. We present the results of the ionization potential (IP)-based and interfacial offset-based band alignments. In the interfacial offset-based band alignment, to get the natural band offset, we use the surface calculations to estimate the change of reference level due to the interfacial strain. Based on the interface models and GGA-1/2 calculations, we find that the valence band maximum and conduction band minimum of ZnO, respectively, lie 0.64 eV and 0.57 eV above those of anatase TiO{sub 2}, while lie 0.84 eV and 1.09 eV below those of GaN, which agree well with the experimental data. However, a large discrepancy exists between the IP-based band offset and the calculated natural band offset, the mechanism of which is discussed. Our results clarify band alignment of the ZnO/anatase TiO{sub 2} heterojunction and show good agreement with the GW calculations for the GaN/ZnO heterojunction.
Stadler, Christina
2014-05-01
The diagnosis conduct disorder (CD) is characterized by aggressive (e.g., physical aggression) as well as nonaggressive symptoms (e.g., violation of rules, truancy). Conclusions regarding the course and prognosis, or recommendations for effective interventions, seem not to be equally valid for the whole patient group. DSM-IV-TR included subtyping age-of-onset as a prognostic criterion, even though the evidence base for subtyping from age of onset was rather sparse. The relevant literature on CD has grown substantially since the publication of DSM-IV-TR in 1994. For the new DSM-5 edition, some important issues were discussed, for example, consideration of personality traits, female-specific or dimensional criteria, and adding a childhood-limited subtype (Moffitt et al., 2008). Nevertheless, the diagnostic protocol for CD was not changed in the most parts in the new edition of the DSM-5; the addition of a CD specifier with limited emotions is the most relevant change. On the basis of the existing evidence base, this review discusses whether the modifications in DSM-5 are helpful for fulfilling the requirements of a reliable and valid psychiatric classification.
Arca, Elisabetta; McInerney, Michael A.; Shvets, Igor V.
2016-06-01
The realization of transparent electronic and optoelectronic devices requires the use of transparent p-n junctions. In this context, understanding the band alignment at the interface between the p- and n-components represents a fundamental step towards the realization of high performance devices. In this work, the band alignment at the interface between Al-doped ZnO (AZO) and Ni-doped Cr2O3 has been analysed. The formation and evolution of the core levels as the interface progressively forms have been followed by means of x-ray Photoelectron Spectroscopy, x-ray diffraction and x-ray reflectivity. A type two (staggered) band alignment was identified, with the valence band offset and conduction band offset found to be 2.6 eV and 2.5 eV, respectively. The electrical behaviour will be discussed in terms of the position of the bands, the presence of band bending and the expected built-in potential and how these can be engineered in order to achieve the maximum performance for this hetero-structure.
Band alignment of B0.14Al0.86N/Al0.7Ga0.3N heterojunction
Sun, Haiding
2017-09-21
Owing to large bandgaps of BAlN and AlGaN alloys, their heterojunctions have the potential to be used in deep ultraviolet and power electronic device applications. However, the band alignment of such junctions has not been identified. In this work, we investigated the band-offset parameters of a BAlN/AlGaN heterojunction grown by metalorganic vapor phase epitaxy. These specific compositions were chosen to ensure a sufficiently large band offset for deep ultraviolet and power electronic applications. High resolution transmission electron microscopy confirmed the high structural quality of the heterojunction with an abrupt interface and uniform element distribution. We employed high resolution X-ray photoemission spectroscopy to measure the core level binding energies of B 1s and Ga 2p with respect to the valence band maximum of BAlN and AlGaN layers, respectively. Then, we measured the energy separation between the B 1s and Ga 2p core levels at the interface of the heterojunction. The valence band offset was determined to be 0.40 ± 0.05 eV. As a consequence, we identified a staggered-gap (type-II) heterojunction with the conduction band offset of 1.10 ± 0.05 eV. The determination of the band alignment of the BAlN/AlGaN heterojunction facilitates the design of optical and electronic devices based on such junctions.
Darya V. Radziuk
2011-03-01
Full Text Available The conductivity mechanism is studied in the LiCF3SO3-doped polyethylene oxide by monitoring the vibrations of sulfate groups and mobility of Li+ ion along the polymeric chain at different EO/Li molar ratios in the temperature range from 16 to 90 °С. At the high EO/Li ratio (i.e., 30, the intensity of bands increases and a triplet appears at 1,045 cm−1, indicating the presence of free anions, ionic pairs and aggregates. The existence of free ions in the polymeric electrolyte is also proven by the red shift of bands in Raman spectra and a band shift to the low frequency Infra-red region at 65 < T < 355 °С. Based on quantum mechanical modeling, (method MNDO/d, the energies (minimum and maximum correspond to the most probable and stable positions of Li+ along the polymeric chain. At room temperature, Li+ ion overcomes the intermediate state (minimum energy through non-operating transitions (maximum energy due to permanent intrapolymeric rotations (rotation of C, H and O atoms around each other. In solid electrolyte (Li2SO4 the mobility of Li+ ions increases in the temperature range from 20 to 227 °С, yielding higher conductivity. The results of the present work can be practically applied to a wide range of compact electronic devices, which are based on polymeric or solid electrolytes.
Exceptionally large banded spherulites
Lagasse, R. R.
1994-07-01
This article concerns the crystallization of maleic anhydride from a blend containing 2 wt% of poly(acrylonitrile). High speed photography and temperature measurements during the crystallization as well as X-ray diffraction from the blend after crystallization are consistent with a banded spherulitic morphology.
Colloquium: Topological band theory
Bansil, A.; Lin, Hsin; Das, Tanmoy
2016-04-01
The first-principles band theory paradigm has been a key player not only in the process of discovering new classes of topologically interesting materials, but also for identifying salient characteristics of topological states, enabling direct and sharpened confrontation between theory and experiment. This review begins by discussing underpinnings of the topological band theory, which involve a layer of analysis and interpretation for assessing topological properties of band structures beyond the standard band theory construct. Methods for evaluating topological invariants are delineated, including crystals without inversion symmetry and interacting systems. The extent to which theoretically predicted properties and protections of topological states have been verified experimentally is discussed, including work on topological crystalline insulators, disorder and interaction driven topological insulators (TIs), topological superconductors, Weyl semimetal phases, and topological phase transitions. Successful strategies for new materials discovery process are outlined. A comprehensive survey of currently predicted 2D and 3D topological materials is provided. This includes binary, ternary, and quaternary compounds, transition metal and f -electron materials, Weyl and 3D Dirac semimetals, complex oxides, organometallics, skutterudites, and antiperovskites. Also included is the emerging area of 2D atomically thin films beyond graphene of various elements and their alloys, functional thin films, multilayer systems, and ultrathin films of 3D TIs, all of which hold exciting promise of wide-ranging applications. This Colloquium concludes by giving a perspective on research directions where further work will broadly benefit the topological materials field.
DUAL BAND MONOPOLE ANTENNA DESIGN
P. Jithu
2013-06-01
Full Text Available The WLAN and Bluetooth applications become popular in mobile devices, integrating GSM and ISM bands operation in one compact antenna, can reduce the size of mobile devices. Recently, lot many investigations are carried out in designing a dual band antennas with operating frequencies in GSM band and in ISM band for mobile devices. Printed monopoles are under this investigation. In this paper, dual-band printed monopoles are presented to operate at GSM band i.e. 900 MHz and ISM band i.e. 2.4 GHz. We intend to observe the antenna characteristics on the network analyzer and verify the theoretical results with the practical ones.
Bahk, Je-Hyeong; Shakouri, Ali
2016-04-01
We present detailed theoretical predictions on the enhancement of the thermoelectric figure of merit by minority carrier blocking with heterostructure barriers in bulk narrow-band-gap semiconductors. Bipolar carrier transport, which is often significant in a narrow-band-gap material, is detrimental to the thermoelectric energy conversion efficiency as it suppresses the Seebeck coefficient and increases the thermal conductivity. When the minority carriers are selectively prevented from participating in conduction while the transport of majority carriers is relatively unaffected by one-sided heterobarriers, the thermoelectric figure of merit can be drastically enhanced. Thermoelectric transport properties such as Seebeck coefficient, electrical conductivity, and electronic thermal conductivity including the bipolar term are calculated with and without the barriers based on the near-equilibrium Boltzmann transport equations under the relaxation time approximation to investigate the effects of minority carrier barriers on the thermoelectric figure of merit. For this, we provide details of carrier transport modeling and fitting results of experimental data for three important material systems, B i2T e3 -based alloys, M g2S i1 -xS nx , and S i1 -xG ex , that represent, respectively, near-room-temperature (300 K-500 K), midtemperature (600 K-900 K), and high-temperature (>1000 K ) applications. Theoretical maximum enhancement of thermoelectric figure of merit that can be achieved by minority carrier blocking is quantified and discussed for each of these semiconductors.
Receiver function estimated by maximum entropy deconvolution
吴庆举; 田小波; 张乃铃; 李卫平; 曾融生
2003-01-01
Maximum entropy deconvolution is presented to estimate receiver function, with the maximum entropy as the rule to determine auto-correlation and cross-correlation functions. The Toeplitz equation and Levinson algorithm are used to calculate the iterative formula of error-predicting filter, and receiver function is then estimated. During extrapolation, reflective coefficient is always less than 1, which keeps maximum entropy deconvolution stable. The maximum entropy of the data outside window increases the resolution of receiver function. Both synthetic and real seismograms show that maximum entropy deconvolution is an effective method to measure receiver function in time-domain.
Nápoles, Jessica; Silvey, Brian A.
2017-01-01
The purpose of this study was to examine participants' (college band and choral musicians, N = 143) perceptions of conductor clarity and expressivity after viewing band and choral directors conducting with or without a baton. One band and one choral conductor each prepared and conducted two excerpts of Guy Forbes's "O Nata Lux", a piece…
Band structure approach to the resonant x-ray scattering
Elfimov, I. S.; Skorikov, N. A.; Anisimov, V. I.; Sawatzky, G.A.
2001-01-01
We study the resonance behaviour of the forbidden 600 and 222 x-ray Bragg peaks in Ge using LDA band structure methods. These Bragg peaks remain forbidden in the resonant dipole scattering approximation even taking into account the non local nature of the band states. However they become allowed at resonance if the eigenstates of the unoccupied conduction band involve a hybridization of p like and d like atomic states. We show that the energy dependence of the resonant behaviour, including th...
Maximum Power from a Solar Panel
Michael Miller
2010-01-01
Full Text Available Solar energy has become a promising alternative to conventional fossil fuel sources. Solar panels are used to collect solar radiation and convert it into electricity. One of the techniques used to maximize the effectiveness of this energy alternative is to maximize the power output of the solar collector. In this project the maximum power is calculated by determining the voltage and the current of maximum power. These quantities are determined by finding the maximum value for the equation for power using differentiation. After the maximum values are found for each time of day, each individual quantity, voltage of maximum power, current of maximum power, and maximum power is plotted as a function of the time of day.
Yasin, Siti Mariah Mohd; Ibrahim, Suriani; Johan, Mohd Rafie
2014-01-01
New solid polymer electrolytes (SPE) based on poly(ethylene oxide) (PEO) doped with lithium trifluoromethanesulfonate (LiCF3SO3), dibutyl phthalate (DBP) plasticizer, and zirconium oxide (ZrO2) nanoparticles were prepared by solution-casting technique. The conductivity was enhanced by addition of dibutyl phthalate (DBP) plasticizer and ZrO2 nanofiller with maximum conductivity (1.38 × 10(-4) Scm(-1)). The absorption edge and band gap values showed decreases upon addition of LiSO3CF3, DBP, and ZrO2 due to the formation of localized states in the SPE and the degree of disorder in the films increased.
Diffuse interstellar absorption bands
XIANG FuYuan; LIANG ShunLin; LI AiGen
2009-01-01
The diffuse interstellar bands (DIBs) are a large number of absorption bands that are superposed on the interstellar extinction curve and are of interstellar origin. Since the discovery of the first two DIBs in the 1920s, the exact nature of DIBs still remains unclear. This article reviews the history of the detec-tions of DIBs in the Milky Way and external galaxies, the major observational characteristics of DIBs, the correlations or anti-correlations among DIBs or between DIBs and other interstellar features (e.g. the prominent 2175 Angstrom extinction bump and the far-ultraviolet extinction rise), and the proposed candidate carriers. Whether they are also present in circumstellar environments is also discussed.
Diffuse interstellar absorption bands
无
2009-01-01
The diffuse interstellar bands(DIBs) are a large number of absorption bands that are superposed on the interstellar extinction curve and are of interstellar origin. Since the discovery of the first two DIBs in the 1920s,the exact nature of DIBs still remains unclear. This article reviews the history of the detections of DIBs in the Milky Way and external galaxies,the major observational characteristics of DIBs,the correlations or anti-correlations among DIBs or between DIBs and other interstellar features(e.g. the prominent 2175 Angstrom extinction bump and the far-ultraviolet extinction rise),and the proposed candidate carriers. Whether they are also present in circumstellar environments is also discussed.
Research on Community Bands: Past, Present, and Future
Rohwer, Debbie
2016-01-01
The purpose of this review of literature was to synthesize findings of studies investigating community bands. This review of literature centers on research that has been conducted on community bands in status studies, historical/cultural studies, pedagogical studies, health and wellness studies, and intergenerational studies. The last section of…
First Principle Calculation for the Electronic Bands and Absorption of CdTe1-xSbx
WANG Long; HUANG Zheng; MA Huan-feng; QIANG Wei-rong; PAN Min
2010-01-01
The lattice parameters for the derivatives of cadmium telluride, CdTe1-xSbx, with the zinc blend crystal structure are calculated using the generalized gradient approximation method; which is based on the density functional theory (DFT). The effects of antimony (Sb) on the lattices, electric bands, electronic state density, absorption spectroscopy, and band gap between the valence band maximum (VBM) and the conduction band minimum (CBM) of CdTe1-xSbx are discussed. The results show that the antimonic atoms in the lattice are advantageous in promoting the hole concentration and conductivities of CdTe1-xSbx. The increase of the Sb content in CdTe1-xSbx reduces the interaction among Cd, Te, and Sb; resulting in a decreased binding energy within CdTe1-xSbx as well as an increase in the electronic gap. Also discussed are the mechanics for the lattice phase change of CdTe1-xSbx at x=0.5.
Serre, J.; Ghazali, A.; Gold, A.
1989-04-01
We have investigated in quantum wells (QW's) and heterostructures (HS's) the modification of the electronic structure near the band edge, which is induced by selective doping. The density of states has been calculated as a function of the relevant parameters, namely, carrier and impurity concentrations (and depletion concentrations for HS's), QW width, and impurity position. Using a multiple-scattering method which includes a finite-range screened potential and impurity concentration to all orders, we have succeeded in obtaining ground-state and excited-state impurity bands (IB's). We observed these bands merging gradually with the lowest conduction subband as the impurity concentration is increased, leading to the formation of a band tail into the energy gap. Other main results obtained for different values of the parameters are the binding energy for a single impurity, the widths and energy shifts of ground- and excited-state IB's, and the contribution of the electron-impurity interaction to the gap shrinkage in the band-tail regime. Our results are compared with experiments and other theories.
The inverse maximum dynamic flow problem
BAGHERIAN; Mehri
2010-01-01
We consider the inverse maximum dynamic flow (IMDF) problem.IMDF problem can be described as: how to change the capacity vector of a dynamic network as little as possible so that a given feasible dynamic flow becomes a maximum dynamic flow.After discussing some characteristics of this problem,it is converted to a constrained minimum dynamic cut problem.Then an efficient algorithm which uses two maximum dynamic flow algorithms is proposed to solve the problem.
Modulation transfer functions at Ka band
Hesany, Vahid; Sistani, Bita; Salam, Asif; Haimov, Samuel; Gogineni, Prasad; Moore, Richard K.
The modulation transfer function (MTF) is often used to describe the modulation of the radar signal by the long waves. MTFs were measured at 35 GHz (Ka band) with a switched-beam vector slope gauge/scatterometer on the research platform NORDSEE as part of the SAXON-FPN experiment. Three independent measurements of the scattering were available for each height measurement. This provided the opportunity to average the time series to reduce the effects of fading noise and sea spikes, or, alternatively, to append the time series to achieve more degrees of freedom in the spectral estimates. For upwind measurements, the phase of the VV-polarized Ka-band MTF was always positive, which implies that the maximum of the radar return originates from the forward face of the long-scale waves. This phase increases with increasing wind speed. The magnitude of the MTF decreases with increasing wind speed.
Waterfowl banding, Innoko and Iditarod Rivers, Alaska, 1954
US Fish and Wildlife Service, Department of the Interior — Pintail, widgeon, shoveler, green-winged teal, mallard, white-fronted goose, and lesser Canada goose are mentioned. Banding conducted in July. Logistics, methods,...
Chackrabarti, Santosh; Zargar, Rayees A.; Bansal, Jyoti; Zaker, Tho-alfiqar A.; Hafiz, A. K.
2016-08-01
The temperature dependent spectral shifts in 658 nm AlGaInP multiple quantum well (MQW) red laser diodes due to band gap narrowing at room temperatures (5 °Csbnd 45 °C) is reported. The density of states effective mass approximation and the conduction band effective mass approximation are employed to formulate the carrier concentrations. The spectral shift mechanism is explored with a threshold current density of 42.28 kA/cm2 and a good characteristic temperature of 149 K. The photoluminescence (PL) peak intensity shifts towards the higher wavelength(red shift) and the full width at half maximum (FWHM) increases with the increase in temperature. The band gap narrowing value determined by a simple formula amounts to 67.4 meV and displays N1/3 dependence at higher densities. The carrier density dependence conveys that the red shift of the spectral emission is due to band gap narrowing.
Сomparative analysis of wind correlation lidar sounding range in UV, visible band and near IR bands
S. E. Ivanov
2014-01-01
Full Text Available The paper presents a comparative analysis of the sounding range of wind correlation lidar in ultraviolet, visible, and near infrared spectral bands. It shows that a visible spectral band is the most advanced one to provide a maximum sounding range of wind correlation lidar in earth atmosphere. If there are specific requirements for wind correlation lidar, for example, a requirement is that a wind correlation lidar should operate at the eye-safe laser sounding wavelength then the efficient work of wind correlation lidar may be maintained in ultraviolet and near infrared spectral bands with the sounding range reduced a little bit.
Maximum permissible voltage of YBCO coated conductors
Wen, J.; Lin, B.; Sheng, J.; Xu, J.; Jin, Z. [Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai (China); Hong, Z., E-mail: zhiyong.hong@sjtu.edu.cn [Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai (China); Wang, D.; Zhou, H.; Shen, X.; Shen, C. [Qingpu Power Supply Company, State Grid Shanghai Municipal Electric Power Company, Shanghai (China)
2014-06-15
Highlights: • We examine three kinds of tapes’ maximum permissible voltage. • We examine the relationship between quenching duration and maximum permissible voltage. • Continuous I{sub c} degradations under repetitive quenching where tapes reaching maximum permissible voltage. • The relationship between maximum permissible voltage and resistance, temperature. - Abstract: Superconducting fault current limiter (SFCL) could reduce short circuit currents in electrical power system. One of the most important thing in developing SFCL is to find out the maximum permissible voltage of each limiting element. The maximum permissible voltage is defined as the maximum voltage per unit length at which the YBCO coated conductors (CC) do not suffer from critical current (I{sub c}) degradation or burnout. In this research, the time of quenching process is changed and voltage is raised until the I{sub c} degradation or burnout happens. YBCO coated conductors test in the experiment are from American superconductor (AMSC) and Shanghai Jiao Tong University (SJTU). Along with the quenching duration increasing, the maximum permissible voltage of CC decreases. When quenching duration is 100 ms, the maximum permissible of SJTU CC, 12 mm AMSC CC and 4 mm AMSC CC are 0.72 V/cm, 0.52 V/cm and 1.2 V/cm respectively. Based on the results of samples, the whole length of CCs used in the design of a SFCL can be determined.
Quasiparticle band structure of antiferromagnetic Eu Te
Mathi Jaya, S.; Nolting, W. [Humboldt-Universitaet zu Berlin, Institut fuer Physik, Lehrstuhl Festkoerpertheorie, Invalidenstrasse 110, D-10115 Berlin (Germany)
1997-11-24
The temperature-dependent electronic quasiparticle spectrum of the antiferromagnetic semiconductor Eu Te is derived by use of a combination of a many-body model procedure with a tight-binding-'linear muffin tin orbital' (TB - LMTO) band structure calculation. The central part is the d-f model for a single band electron ('test electron') being exchange coupled to the anti ferromagnetically ordered localized moments of the Eu ions. The single-electron Bloch energies of the d-f model are taken from a TB-LMTO calculation for paramagnetic Eu Te. The d-f model is evaluated by a recently proposed moment conserving Green function technique to get the temperature-dependent sublattice-quasiparticle band structure (S-QBS) and sublattice-quasiparticle density of states (S-QDOS) of the unoccupied 5 d-6 s energy bands. Unconventional correlation effects and the appearance of characteristic quasiparticles ('magnetic polarons') are worked out in detail. The temperature dependence of the S-QDOS and S-QBS is mainly provoked by the spectral weights of the energy dispersions. Minority- and majority-spin spectra coincide for all temperatures but with different densities of states. Upon cooling from T{sub N} to T = 0 K the lower conduction band edge exhibits a small blue shift of -0.025 eV in accordance with the experiment. Quasiparticle damping manifesting itself in a temperature-dependent broadening of the spectral density peaks arises from spin exchange processes between (5 d-6 s) conduction band electrons and localized 4 f moments. (author)
Surface band-gap narrowing in quantized electron accumulation layers.
King, P D C; Veal, T D; McConville, C F; Zúñiga-Pérez, J; Muñoz-Sanjosé, V; Hopkinson, M; Rienks, E D L; Jensen, M Fuglsang; Hofmann, Ph
2010-06-25
An energy gap between the valence and the conduction band is the defining property of a semiconductor, and the gap size plays a crucial role in the design of semiconductor devices. We show that the presence of a two-dimensional electron gas near to the surface of a semiconductor can significantly alter the size of its band gap through many-body effects caused by its high electron density, resulting in a surface band gap that is much smaller than that in the bulk. Apart from reconciling a number of disparate previous experimental findings, the results suggest an entirely new route to spatially inhomogeneous band-gap engineering.
Maximum power point tracking for optimizing energy harvesting process
Akbari, S.; Thang, P. C.; Veselov, D. S.
2016-10-01
There has been a growing interest in using energy harvesting techniques for powering wireless sensor networks. The reason for utilizing this technology can be explained by the sensors limited amount of operation time which results from the finite capacity of batteries and the need for having a stable power supply in some applications. Energy can be harvested from the sun, wind, vibration, heat, etc. It is reasonable to develop multisource energy harvesting platforms for increasing the amount of harvesting energy and to mitigate the issue concerning the intermittent nature of ambient sources. In the context of solar energy harvesting, it is possible to develop algorithms for finding the optimal operation point of solar panels at which maximum power is generated. These algorithms are known as maximum power point tracking techniques. In this article, we review the concept of maximum power point tracking and provide an overview of the research conducted in this area for wireless sensor networks applications.
Shear bands in a bulk metallic glass after large plastic deformation
Qu, D.D.; Wang, Y.B.; Liao, X.Z.; Shen, J. (Harbin); (Sydney)
2012-10-23
A transmission electron microscopy investigation is conducted to trace shear bands in a Zr{sub 53}Cu{sub 18.7}Ni{sub 12}Al{sub 16.3} bulk metallic glass after experiencing 4% plastic deformation. Shear band initiation, secondary shear band interactions, mature shear band broadening and the interactions of shear bands with shear-induced nanocrystals are captured. Results suggest that the plasticity of the bulk metallic glass is enhanced by complex shear bands and their interactions which accommodate large plastic strain and prevent catastrophic shear band propagation.
47 CFR 15.107 - Conducted limits.
2010-10-01
... 47 Telecommunication 1 2010-10-01 2010-10-01 false Conducted limits. 15.107 Section 15.107... Conducted limits. (a) Except for Class A digital devices, for equipment that is designed to be connected to... power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the...
Bernath, Peter; Carleer, Michel; Fally, Sophie; Jenouvrier, Alain; Vandaele, Ann Carine; Hermans, Christian; Mérienne, Marie-France; Colin, Reginald
1998-11-01
The Wulf bands of oxygen in the 240-290 nm spectral region are caused by collision-induced absorption of the Herzberg III ( A' 3Δu- X3Σ-g) system. These bands had been previously attributed to the oxygen dimer, (O 2) 2. Under atmospheric conditions the Wulf bands are thus the long-wavelength extension of the Herzberg continuum. Absorption of solar radiation by the Wulf bands may be an additional source of NO in the stratosphere.
Semiconductors bonds and bands
Ferry, David K
2013-01-01
As we settle into this second decade of the twenty-first century, it is evident that the advances in micro-electronics have truly revolutionized our day-to-day lifestyle. The technology is built upon semiconductors, materials in which the band gap has been engineered for special values suitable to the particular application. This book, written specifically for a one semester course for graduate students, provides a thorough understanding of the key solid state physics of semiconductors. It describes how quantum mechanics gives semiconductors unique properties that enabled the micro-electronics revolution, and sustain the ever-growing importance of this revolution.
Band engineering of thermoelectric materials.
Pei, Yanzhong; Wang, Heng; Snyder, G J
2012-12-01
Lead chalcogenides have long been used for space-based and thermoelectric remote power generation applications, but recent discoveries have revealed a much greater potential for these materials. This renaissance of interest combined with the need for increased energy efficiency has led to active consideration of thermoelectrics for practical waste heat recovery systems-such as the conversion of car exhaust heat into electricity. The simple high symmetry NaCl-type cubic structure, leads to several properties desirable for thermoelectricity, such as high valley degeneracy for high electrical conductivity and phonon anharmonicity for low thermal conductivity. The rich capabilities for both band structure and microstructure engineering enable a variety of approaches for achieving high thermoelectric performance in lead chalcogenides. This Review focuses on manipulation of the electronic and atomic structural features which makes up the thermoelectric quality factor. While these strategies are well demonstrated in lead chalcogenides, the principles used are equally applicable to most good thermoelectric materials that could enable improvement of thermoelectric devices from niche applications into the mainstream of energy technologies.
Generalised maximum entropy and heterogeneous technologies
Oude Lansink, A.G.J.M.
1999-01-01
Generalised maximum entropy methods are used to estimate a dual model of production on panel data of Dutch cash crop farms over the period 1970-1992. The generalised maximum entropy approach allows a coherent system of input demand and output supply equations to be estimated for each farm in the sam
20 CFR 229.48 - Family maximum.
2010-04-01
... month on one person's earnings record is limited. This limited amount is called the family maximum. The family maximum used to adjust the social security overall minimum rate is based on the employee's Overall..., when any of the persons entitled to benefits on the insured individual's compensation would, except...
The maximum rotation of a galactic disc
Bottema, R
1997-01-01
The observed stellar velocity dispersions of galactic discs show that the maximum rotation of a disc is on average 63% of the observed maximum rotation. This criterion can, however, not be applied to small or low surface brightness (LSB) galaxies because such systems show, in general, a continuously
Duality of Maximum Entropy and Minimum Divergence
Shinto Eguchi
2014-06-01
Full Text Available We discuss a special class of generalized divergence measures by the use of generator functions. Any divergence measure in the class is separated into the difference between cross and diagonal entropy. The diagonal entropy measure in the class associates with a model of maximum entropy distributions; the divergence measure leads to statistical estimation via minimization, for arbitrarily giving a statistical model. The dualistic relationship between the maximum entropy model and the minimum divergence estimation is explored in the framework of information geometry. The model of maximum entropy distributions is characterized to be totally geodesic with respect to the linear connection associated with the divergence. A natural extension for the classical theory for the maximum likelihood method under the maximum entropy model in terms of the Boltzmann-Gibbs-Shannon entropy is given. We discuss the duality in detail for Tsallis entropy as a typical example.
Conductivity and superconductivity in heavily vacant diamond
S A Jafari
2009-08-01
Full Text Available Motivated by the idea of impurity band superconductivity in heavily Boron doped diamond, we investigate the doping of various elements into diamond to address the question, which impurity band can offer a better DOS at the Fermi level. Surprisingly, we find that the vacancy does the best job in producing the largest DOS at the Fermi surface. To investigate the effect of disorder in Anderson localization of the resulting impurity band, we use a simple tight-binding model. Our preliminary study based on the kernel polynomial method shows that the impurity band is already localized at the concentration of 10-3. Around the vacancy concentration of 0.006 the whole spectrum of diamond becomes localized and quantum percolation takes place. Therefore to achieve conducting bands at concentrations on the scale of 5-10 percent, one needs to introduce correlations such as hopping among the vacancies .
Chegel, Raad
2017-04-01
By using the tight binding approximation and Green function method, the electronic structure, density of state, electrical conductivity, heat capacity of BN and BN/graphene bilayers are investigated. The AA-, AB1- and AB2- BN/graphene bilayers have small gap unlike to BN bilayers which are wide band gap semiconductors. Unlike to BN bilayer, the energy gap of graphene/BN bilayers increases with external field. The magnitude of the change in the band gap of BN bilayers is much higher than the graphene/BN bilayers. Near absolute zero, the σ(T) is zero for BN bilayers and it increases with temperature until reaches maximum value then decreases. The BN/graphene bilayers have larger electrical conductivity larger than BN bilayers. For both bilayers, the specific heat capacity has a Schottky anomaly.
Chegel, Raad, E-mail: Raad.chegel@gmail.com
2017-04-15
By using the tight binding approximation and Green function method, the electronic structure, density of state, electrical conductivity, heat capacity of BN and BN/graphene bilayers are investigated. The AA-, AB{sub 1}- and AB{sub 2}- BN/graphene bilayers have small gap unlike to BN bilayers which are wide band gap semiconductors. Unlike to BN bilayer, the energy gap of graphene/BN bilayers increases with external field. The magnitude of the change in the band gap of BN bilayers is much higher than the graphene/BN bilayers. Near absolute zero, the σ(T) is zero for BN bilayers and it increases with temperature until reaches maximum value then decreases. The BN/graphene bilayers have larger electrical conductivity larger than BN bilayers. For both bilayers, the specific heat capacity has a Schottky anomaly.
Electronic structure calculations on helical conducting polymers.
Ripoll, Juan D; Serna, Andrei; Guerra, Doris; Restrepo, Albeiro
2010-10-21
We present a study of the electronic structure and derived properties of polyfurane (PFu), polypyrrol (PPy), and polythiophene (PTh). Two spatial arrangements are considered: trans chain (tc-PFu, tc-PPy, tc-PTh) and cis α-helical (α-PFu, α-PPy, α-PTh). Even at the small sizes considered here, helical conformations appear to be stable. Band gaps of pure, undoped oligomers fall into the semiconductor range. Density of states (DOS) analysis suggest dense valence and conduction bands. Bond length alternation analysis predicts almost complete delocalization of the π clouds in all spatial arrangements. Doping with electron donors or electron-withdrawing impurities reduces all band gaps close to the metallic regime in addition to increasing the DOS for the valence and conduction bands.
Constraints to the flat band potential of hematite photo-electrodes.
Hankin, A; Alexander, J C; Kelsall, G H
2014-08-14
We revisit the fundamental constraints that apply to flat band potential values at semiconductor photo-electrodes. On the physical scale, the Fermi level energy of a non-degenerate semiconductor at the flat band condition, EF(FB), is constrained to a position between the conduction band, EC, and the valence band, EV,: |EC| flat band potentials appear to lie outside these fundamental boundaries. In order to assess the validity of any determined flat band potential, the boundaries set by the conduction band and the valence band must be computed on both scales a priori, where possible. This is accomplished with the aid of an analytical reconstruction of the semiconductor|electrolyte interface in question. To illustrate this approach, we provide a case study based on synthetic hematite, α-Fe2O3. The analysis of this particular semiconductor is motivated by the large variance in the flat band potential values reported in the literature.
Maximum-entropy for the laser fusion problem
Madkour, M.A. [Nansoura Univ. (Egypt). Dept. of Phys.
1996-09-01
The problem of heat flux at the critical surfaces and the surfaces of a pellet of deuterium and tritium (conduction zone) heated by laser have been considered. Ion-electron collisions are only allowed for: i.e. the linear transport equation is used to describe the problem with boundary conditions. The maximum-entropy approach is used to calculate the electron density and temperature across the conduction zone as well as the heat flux. Numerical results are given and compared with those of Rouse and Williams and El-Wakil et al. (orig.).
Band alignment of MAPb(I1-xBrx)3 thin films by vacuum deposition
Zhou, Xianzhong; Ye, Wang; Li, Xiaoli; Zheng, Wei; Lin, Richeng; Huang, Feng; Zhong, Dingyong
2016-12-01
In this work, the mixed bromide iodide lead perovskites CH3NH3Pb(I1-xBrx)3 (0 ≤ x ≤ 0.67) thin films were prepared by co-evaporation of CH3NH3I, PbI2, and PbBr2. The electronic properties of CH3NH3Pb(I1-xBrx)3 thin films were investigated by X-ray and ultraviolet photoelectron spectroscopy in-situ. The results of core level binding energy show that there is no chemical shift of the C1s, N1s, Br3d5, and I3d5 when the Br composition changes, while there is an approximately linear chemical shift of Pb4f7 to higher binding energy as the Br composition increases. The density functional theory calculation reveals that there is more charge transfer from Pb to Br than I, which results in the chemical shift of Pb4f states. On the other hand, the valence band maximum increases as the Br composition increases, while the work function shows no obvious change, because the conduction band is dominated by Pb 6p orbitals while the valence band is dominated by halide p orbitals. Our work demonstrates the adjustability of the energy level alignment of MAPb(I1-xBrx)3 by the Br composition.
Core levels, valence band structure and unoccupied states of clean InN surfaces
Himmerlich, Marcel; Eisenhardt, Anja; Schaefer, Juergen A.; Krischok, Stefan [Institut fuer Physik and Institut fuer Mikro- und Nanotechnologien, TU Ilmenau (Germany)
2008-07-01
In this study we used a surface analytics system directly connected to a MBE growth module to study the surface properties of thin InN films. The samples were prepared by plasma assisted molecular beam epitaxy on GaN/Al{sub 2}O{sub 3}(0001) templates and exhibited a 2 x 2 reconstruction after growth. The prepared samples were analysed by photoelectron spectroscopy as well as electron energy loss spectroscopy (EELS). For the occupied states, a very good agreement to available theoretical calculations is found. Although, the valence band maximum is located at 1.6 eV, indicating strong downward band bending of {proportional_to}0.9 eV, photoemission is detected up to E{sub F}. This indicates that the Fermi level is pinned above the conduction band minimum, as recently predicted. The spin-orbit splitting of the In 4d level at 17.8 eV could be resolved using He II radiation. Furthermore, from the fine structure of the secondary electron cascade peak we extract the energy of different unoccupied states 0 eV to 9 eV above the vacuum level. These measurements enable us to identify features in the InN EELS spectra, with a loss energy larger than 16 eV, as interband transitions from the In 4d level.
What is the band alignment of Cu2ZnSn(S,Se)4 solar cells?
Crovetto, Andrea; Hansen, Ole
2017-01-01
The band alignment at the Cu2ZnSn(S,Se)4/CdS solar cell heterojunction is a controversial issue, as different measurements and calculations point to substantially different conduction band offsets (CBO). As the actual value of the CBO has profound implications on solar cell performance, the aim...... measurement approaches. Interestingly, a rough correlation can be established between the CBO measured at the Cu2ZnSnS4/CdS interface by different groups and their corresponding solar cell efficiency: lower-efficiency cells often have a large "cliff-like" offset, whereas most high-efficiency cells have...... a "spike-like" or nearly flat offset. Control of interdiffusion can be a powerful way to engineer the optimal band alignment in Cu2ZnSnS4/CdS solar cells, but it can be detrimental in Cu2ZnSnSe4/CdS solar cells, as it may increase the CBO above the optimal range for maximum efficiency....
The band gap and band offset in ultrathin oxide-semiconductor heterostructures
Schmeißer, D.; Henkel, K.; Bergholz, M.; Tallarida, M.
2010-03-01
In ultrathin high- k oxide layers knowledge of the band line up and band gap is essential for modeling the transport properties and to learn about a device's long term stability and reliability. However, such data are hard to determine in such ultrathin layers and usually are extrapolated from values for bulk samples or are taken from the literature. In our in situ approach we use electron energy loss spectroscopy, valence band photoelectron spectroscopy, X-ray absorption spectroscopy, and resonant inelastic X-ray scattering to obtain the loss function and the valence and conduction band densities of states. From such data we derive the values of the band offsets and of the band gap. We discuss the ability of this combination of different techniques for the analysis of such complex ultrathin dielectric systems and discuss in detail the properties of the native oxide in SiO 2/Si(001) and SiO 2/3C-SiC(001).
Density of states in a two-dimensional electron gas: Impurity bands and band tails
Gold, A.; Serre, J.; Ghazali, A.
1988-03-01
We calculate the density of states of a two-dimensional electron gas in the presence of charged impurities within Klauder's best multiple-scattering approach. The silicon metal-oxide-semiconductor (MOS) system with impurities at the interface is studied in detail. The finite extension of the electron wave function into the bulk is included as well as various dependences of the density of states on the electron, the depletion, and the impurity densities. The transition from an impurity band at low impurity concentration to a band tail at high impurity concentration is found to take place at a certain impurity concentration. If the screening parameter of the electron gas is decreased, the impurity band shifts to lower energy. For low impurity density we find excited impurity bands. Our theory at least qualitatively explains conductivity and infrared-absorption experiments on impurity bands in sodium-doped MOS systems and deep band tails in the gap observed for high doping levels in these systems.
Parsons, Zackary
2017-01-01
The Wide Band Artificial Pulsar (WBAP) is an instrument verification device designed and built by the National Radio Astronomy Observatory (NRAO) in Green Bank, West Virgina. The site currently operates the Green Bank Ultimate Pulsar Processing Instrument (GUPPI) and the Versatile Green Bank Astronomical Spectrometer (VEGAS) digital backends for their radio telescopes. The commissioning and continued support for these sophisticated backends has demonstrated a need for a device capable of producing an accurate artificial pulsar signal. The WBAP is designed to provide a very close approximation to an actual pulsar signal. This presentation is intended to provide an overview of the current hardware and software implementations and to also share the current results from testing using the WBAP.
Zhao, Chuan-Zhen; Fu, Qiang; Wei, Tong; Wang, Sha-Sha; Lu, Ke-Qing
2017-03-01
The physical mechanism for the band gap evolution of the strained In x Ga1- x N y Sb z As1- y- z alloy is investigated. It is found that In x Ga1- x N y Sb z As1- y- z alloy with small N and Sb contents can be considered as an alloy formed by adding N and Sb atoms in the host material In x Ga1- x As. Under this condition, the band gap evolution of In x Ga1- x N y Sb z As1- y- z is due to three factors. One is the intraband coupling interactions within the conduction band and separately within the valence band of the host material, another is the coupling interaction between the Sb level and the D valence band maximum of the host material, and the other is the coupling interaction between the N level and the D conduction band minimum of the host material. Based on the physical mechanism for the band gap evolution of In x Ga1- x N y Sb z As1- y- z , a model is developed. The model can describe the band gap energy of the strained In x Ga1- x N y Sb z As1- y- z alloy well.
Band structures of TiO2 doped with N, C and B*
2006-01-01
This study on the band structures and charge densities of nitrogen (N)-, carbon (C)- and boron (B)-doped titanium dioxide (TiO2) by first-principles simulation with the CASTEP code (Segall et al., 2002) showed that the three 2p bands of impurity atom are located above the valence-band maximum and below the Ti 3d bands, and that along with the decreasing of impurity atomic number, the fluctuations become more intensive. We cannot observe obvious band-gap narrowing in our result. Therefore, the...
High-power X- and Ka-band Gallium Nitride Amplifiers with Exceptional Efficiency Project
National Aeronautics and Space Administration — Achieving very high-power amplification with maximum efficiency at X- and Ka-band is challenging using solid-state technology. Gallium Arsenide (GaAs) has been the...
A dual method for maximum entropy restoration
Smith, C. B.
1979-01-01
A simple iterative dual algorithm for maximum entropy image restoration is presented. The dual algorithm involves fewer parameters than conventional minimization in the image space. Minicomputer test results for Fourier synthesis with inadequate phantom data are given.
Maximum Throughput in Multiple-Antenna Systems
Zamani, Mahdi
2012-01-01
The point-to-point multiple-antenna channel is investigated in uncorrelated block fading environment with Rayleigh distribution. The maximum throughput and maximum expected-rate of this channel are derived under the assumption that the transmitter is oblivious to the channel state information (CSI), however, the receiver has perfect CSI. First, we prove that in multiple-input single-output (MISO) channels, the optimum transmission strategy maximizing the throughput is to use all available antennas and perform equal power allocation with uncorrelated signals. Furthermore, to increase the expected-rate, multi-layer coding is applied. Analogously, we establish that sending uncorrelated signals and performing equal power allocation across all available antennas at each layer is optimum. A closed form expression for the maximum continuous-layer expected-rate of MISO channels is also obtained. Moreover, we investigate multiple-input multiple-output (MIMO) channels, and formulate the maximum throughput in the asympt...
Photoemission spectromicroscopy with MAXIMUM at Wisconsin
Ng, W.; Ray-Chaudhuri, A.K.; Cole, R.K.; Wallace, J.; Crossley, S.; Crossley, D.; Chen, G.; Green, M.; Guo, J.; Hansen, R.W.C.; Cerrina, F.; Margaritondo, G. (Dept. of Electrical Engineering, Dept. of Physics and Synchrotron Radiation Center, Univ. of Wisconsin, Madison (USA)); Underwood, J.H.; Korthright, J.; Perera, R.C.C. (Center for X-ray Optics, Accelerator and Fusion Research Div., Lawrence Berkeley Lab., CA (USA))
1990-06-01
We describe the development of the scanning photoemission spectromicroscope MAXIMUM at the Wisoncsin Synchrotron Radiation Center, which uses radiation from a 30-period undulator. The article includes a discussion of the first tests after the initial commissioning. (orig.).
Maximum-likelihood method in quantum estimation
Paris, M G A; Sacchi, M F
2001-01-01
The maximum-likelihood method for quantum estimation is reviewed and applied to the reconstruction of density matrix of spin and radiation as well as to the determination of several parameters of interest in quantum optics.
Intermediate-band Photometry of Type Ia Supernovae
Wang, X; Zhang, T; Li, Z; Wang, Xiaofeng; Zhou, Xu; Zhang, Tianmeng; Li, Zongwei
2004-01-01
We present optical light curves of five Type Ia supernovae (2002er, 2002fk, 2003cg, 2003du, 2003fk). The photometric observations were performed in a set of intermediate-band filters. SNe 2002er, 2003du appear to be normal SN Ia events with similar light curve shapes, while SN 2003kf shows the behavior of a brighter SN Ia with slower decline rate after maximum. The light curves of SN 2003cg is unusual; they show a fast rise and dramatic decline near maximum and do not display secondary peak at longer wavelengths during 15-30 days after maximum light. This suggests that SN 2003cg is likely to be an intrinsically subluminous, 91bg-like SN Ia. Exploration of SN Ia feature lines through intermediate-band photometry is briefly discussed.
Juan C. Colado, Xavier Garcia-Masso, N. Travis Triplett, Joaquin Calatayud, Jorge Flandez, David Behm, Michael E. Rogers
2014-12-01
Full Text Available The construct and concurrent validity of the Thera-Band Perceived Exertion Scale for Resistance Exercise with elastic bands (EB was examined. Twenty subjects performed two separate sets of 15 repetitions of both frontal and lateral raise exercise over two sessions. The criterion variables were myoelectric activity and heart rate. One set was performed with an elastic band grip width that permitted 15 maximum repetitions in the selected exercise, and another set was performed with a grip width 50% more than the 15RM grip. Following the final repetition of each set, active muscle (AM and overall body (O ratings of perceived exertion (RPE were collected from the Thera-Band® resistance exercise scale and the OMNI-Resistance Exercise Scale of perceived exertion with Thera-Band® resistance bands (OMNI-RES EB. Construct validity was established by correlating the RPE from the OMNI-RES EB with the Thera-Band RPE scale using regression analysis. The results showed significant differences (p ≤ 0.05 in myoelectric activity, heart rate, and RPE scores between the low- and high-intensity sets. The intraclass correlation coefficient for active muscles and overall RPE scale scores was 0.67 and 0.58, respectively. There was a positive linear relationship between the RPE from the OMNI-RES EB and the Thera-Band scale. Validity coefficients for the RPE AM were r2 = 0.87 and ranged from r2 = 0.76 to 0.85 for the RPE O. Therefore, the Thera-Band Perceived Exertion Scale for Resistance Exercise can be used for monitoring elastic band exercise intensity. This would allow the training dosage to be better controlled within and between sessions. Moreover, the construct and concurrent validity indicates that the OMNI-RES EB measures similar properties of exertion as the Thera-Band RPE scale during elastic resistance exercise.
The maximum entropy technique. System's statistical description
Belashev, B Z
2002-01-01
The maximum entropy technique (MENT) is applied for searching the distribution functions of physical values. MENT takes into consideration the demand of maximum entropy, the characteristics of the system and the connection conditions, naturally. It is allowed to apply MENT for statistical description of closed and open systems. The examples in which MENT had been used for the description of the equilibrium and nonequilibrium states and the states far from the thermodynamical equilibrium are considered
19 CFR 114.23 - Maximum period.
2010-04-01
... 19 Customs Duties 1 2010-04-01 2010-04-01 false Maximum period. 114.23 Section 114.23 Customs... CARNETS Processing of Carnets § 114.23 Maximum period. (a) A.T.A. carnet. No A.T.A. carnet with a period of validity exceeding 1 year from date of issue shall be accepted. This period of validity cannot be...
Maximum-Likelihood Detection Of Noncoherent CPM
Divsalar, Dariush; Simon, Marvin K.
1993-01-01
Simplified detectors proposed for use in maximum-likelihood-sequence detection of symbols in alphabet of size M transmitted by uncoded, full-response continuous phase modulation over radio channel with additive white Gaussian noise. Structures of receivers derived from particular interpretation of maximum-likelihood metrics. Receivers include front ends, structures of which depends only on M, analogous to those in receivers of coherent CPM. Parts of receivers following front ends have structures, complexity of which would depend on N.
Analysis of single band and dual band graphene based patch antenna for terahertz region
George, Jemima Nissiyah; Madhan, M. Ganesh
2017-10-01
A microstrip patch antenna is designed using a very thin layer of graphene as the radiating patch, which is fed by a microstrip transmission line. The graphene based patch is designed on a silicon substrate having a dielectric constant of 11.9, to radiate at a single frequency of 2.6 THz. Further, this antenna is made to resonate at dual frequencies of 2.48 THz and 3.35 THz, by changing the substrate height, which is reported for the first time. Various antenna parameters such as return loss, VSWR, gain, efficiency and bandwidth are also determined for the single and dual band operation. For the single band operation, a bandwidth of 145.4 GHz and an efficiency of 92% was achieved. For dual band operation, a maximum bandwidth of 140.5 GHz was obtained at 3.35 THz and an efficiency of 87.3% was obtained at the first resonant frequency of 2.48 THz. The absorption cross section of the antenna is also analysed for various substrate heights and has maximum peaks at the corresponding resonating frequencies. The simulation has been carried out by using a full wave electromagnetic simulator based on FDTD method.
SEXUAL DIMORPHISM OF MAXIMUM FEMORAL LENGTH
Pandya A M
2011-04-01
Full Text Available Sexual identification from the skeletal parts has medico legal and anthropological importance. Present study aims to obtain values of maximum femoral length and to evaluate its possible usefulness in determining correct sexual identification. Study sample consisted of 184 dry, normal, adult, human femora (136 male & 48 female from skeletal collections of Anatomy department, M. P. Shah Medical College, Jamnagar, Gujarat. Maximum length of femur was considered as maximum vertical distance between upper end of head of femur and the lowest point on femoral condyle, measured with the osteometric board. Mean Values obtained were, 451.81 and 417.48 for right male and female, and 453.35 and 420.44 for left male and female respectively. Higher value in male was statistically highly significant (P< 0.001 on both sides. Demarking point (D.P. analysis of the data showed that right femora with maximum length more than 476.70 were definitely male and less than 379.99 were definitely female; while for left bones, femora with maximum length more than 484.49 were definitely male and less than 385.73 were definitely female. Maximum length identified 13.43% of right male femora, 4.35% of right female femora, 7.25% of left male femora and 8% of left female femora. [National J of Med Res 2011; 1(2.000: 67-70
Energies of 4f^N and 4f^N-15d States Relative to Host Bands in Rare-earth-doped Fluorides
Thiel, C. W.; Joubert, M.-F.; Tkachuk, A.
2005-03-01
Energies of 4f^N states relative to crystal band states were measured for rare-earth ions in the optical host materials LiYF4, Na0.4Y0.6F2.2, and LaF3 using x-ray photoemission spectroscopy. Spectra were modeled to determine the valence band maximum and 4f^ electron binding energies in each material. These results were combined with 4f^N to 4f^N-15d transition energies to determine 5d binding energies for the lowest levels of excited 4f^N-15d configurations. While 4f^N ground-state energies vary within several eV of the valence band maximum for different rare-earth ions in each host, the lowest 4f^N-15d states have similar energies and are several eV below the bottom of the conduction band. A simple model accurately described 4f^N and 4f^N-15d binding energies across the entire series of rare-earth ions. These results improve the understanding of optical materials for lasers, phosphors, and spectral hole burning applications for optical signal processing and data storage.
Handick, Evelyn; Reinhard, Patrick; Alsmeier, Jan-Hendrik; Köhler, Leonard; Pianezzi, Fabian; Krause, Stefan; Gorgoi, Mihaela; Ikenaga, Eiji; Koch, Norbert; Wilks, Regan G; Buecheler, Stephan; Tiwari, Ayodhya N; Bär, Marcus
2015-12-16
Direct and inverse photoemission were used to study the impact of alkali fluoride postdeposition treatments on the chemical and electronic surface structure of Cu(In,Ga)Se2 (CIGSe) thin films used for high-efficiency flexible solar cells. We find a large surface band gap (E(g)(Surf), up to 2.52 eV) for a NaF/KF-postdeposition treated (PDT) absorber significantly increases compared to the CIGSe bulk band gap and to the Eg(Surf) of 1.61 eV found for an absorber treated with NaF only. Both the valence band maximum (VBM) and the conduction band minimum shift away from the Fermi level. Depth-dependent photoemission measurements reveal that the VBM decreases with increasing surface sensitivity for both samples; this effect is more pronounced for the NaF/KF-PDT CIGSe sample. The observed electronic structure changes can be linked to the recent breakthroughs in CIGSe device efficiencies.
Tuning the Band Gap of Cu₂ZnSn(S,Se)₄ Thin Films via Lithium Alloying.
Yang, Yanchun; Kang, Xiaojiao; Huang, Lijian; Pan, Daocheng
2016-03-02
Alkali metal doping plays a crucial role in fabricating high-performance Cu(In,Ga)(S,Se)2 and Cu2ZnSn(S,Se)4 (CZTSSe) thin film solar cells. In this study, we report the first experimental observation and characterizations of the alloyed Li(x)Cu(2-x)ZnSn(S,Se)4 thin films. It is found that Cu(+) ions in Cu2ZnSn(S,Se)4 thin films can be substituted with Li(+) ions, forming homogeneous Li(x)Cu(2-x)ZnSn(S,Se)4 (0 ≤ x ≤ 0.29) alloyed thin films. Consequently, the band gap, conduction band minimum, and valence band maximum of Li(x)Cu(2-x)ZnSn(S,Se)4 thin films are profoundly affected by Li/Cu ratios. The band alignment at the Li(x)Cu(2-x)ZnSn(S,Se)4/CdS interface can be tuned by changing the Li/Cu ratio. We found that the photovoltaic parameters of the Li(x)Cu(2-x)ZnSn(S,Se)4 solar cell devices are strongly influenced by the Li/Cu ratios. Besides, the lattice constant, carrier concentration, and crystal growth of Li(x)Cu(2-x)ZnSn(S,Se)4 thin films were studied in detail.
Multi-band model of quantum electron devices
Unlu, Mehmet Burcin
Wigner function equations for multi-band quantum devices are presented in this presentation. These quantum transport equations are derived from the equations of motion of non-equilibrium Green's function with the generalized Kadanoff Baym ansatz, and the multi-band k.p Hamiltonian including the spin-orbit interaction. The results are applied to a two-band resonant inter-band tunneling structure. A Wigner function representation is developed for the quantum transport theory of the conduction band electrons in Rashba effect resonant tunneling structures with a phonon bath. In narrow band gap heterostructures, spin splitting occurs mainly as a result of inversion asymmetry in the spatial dependence of the potential or as a result of external electric field. This "zero magnetic field spin splitting" is due to the Rashba term in the effective mass Hamiltonian. A theoretical study of the spin-dependent resonant tunneling structure based on multi-band non-equilibrium Green's functions is also presented in this work. Again, the quantum transport equations are derived using multiband non-equilibrium Green's function formulation in generalized Kadanoff-Baym ansatz. Finally, numerical results are presented based on the multi-band Wigner-Poisson code. This code is able to simulate multi-band resonant tunneling structures.
Superfluidity in topologically nontrivial flat bands.
Peotta, Sebastiano; Törmä, Päivi
2015-11-20
Topological invariants built from the periodic Bloch functions characterize new phases of matter, such as topological insulators and topological superconductors. The most important topological invariant is the Chern number that explains the quantized conductance of the quantum Hall effect. Here we provide a general result for the superfluid weight Ds of a multiband superconductor that is applicable to topologically nontrivial bands with nonzero Chern number C. We find that the integral over the Brillouin-zone of the quantum metric, an invariant calculated from the Bloch functions, gives the superfluid weight in a flat band, with the bound Ds⩾|C|. Thus, even a flat band can carry finite superfluid current, provided the Chern number is nonzero. As an example, we provide Ds for the time-reversal invariant attractive Harper-Hubbard model that can be experimentally tested in ultracold gases. In general, our results establish that a topologically nontrivial flat band is a promising concept for increasing the critical temperature of the superconducting transition.
O. Amm
2005-02-01
Full Text Available We present ground-based electromagnetic data from the MIRACLE and BEAR networks and satellite optical observations from the UVI and PIXIE instruments on the Polar satellite of an omega band event over Northern Scandinavia on 26 June 1998, which occured close to the morning side edge of a substorm auroral bulge. Our analysis of the data concentrates on one omega band period from 03:18-03:27 UT, for which we use the method of characteristics combined with an analysis of the UVI and PIXIE data to derive a time series of instantaneous, solely data-based distributions of the mesoscale ionospheric electrodynamic parameters with a 1-min time resolution. In addition, the AMIE method is used to derive global Hall conductance patterns. Our results show that zonally alternating regions of enhanced ionospheric conductances ("tongues" up to ~60S and low conductance regions are associated with the omega bands. The tongues have a poleward extension of ~400km from their base and a zonal extension of ~380km. While they are moving coherently eastward with a velocity of ~770ms^{-1}, the structures are not strictly stationary. The current system of the omega band can be described as a superposition of two parts: one consists of anticlockwise rotating Hall currents around the tongues, along with Pedersen currents, with a negative divergence in their centers. The sign of this system is reversing in the low conductance areas. It causes the characteristic ground magnetic signature. The second part consists of zonally aligned current wedges of westward flowing Hall currents and is mostly magnetically invisible below the ionosphere. This system dominates the field-aligned current (FAC pattern and causes alternating upward and downward FAC at the flanks of the tongues with maximum upward FAC of ~25µA m^{-2}. The total FAC of ~2MA are comparable to the ones diverted inside a westward traveling surge. Throughout the event, the overwhelming part of the FAC
Training Concept, Evolution Time, and the Maximum Entropy Production Principle
Alexey Bezryadin
2016-04-01
Full Text Available The maximum entropy production principle (MEPP is a type of entropy optimization which demands that complex non-equilibrium systems should organize such that the rate of the entropy production is maximized. Our take on this principle is that to prove or disprove the validity of the MEPP and to test the scope of its applicability, it is necessary to conduct experiments in which the entropy produced per unit time is measured with a high precision. Thus we study electric-field-induced self-assembly in suspensions of carbon nanotubes and realize precise measurements of the entropy production rate (EPR. As a strong voltage is applied the suspended nanotubes merge together into a conducting cloud which produces Joule heat and, correspondingly, produces entropy. We introduce two types of EPR, which have qualitatively different significance: global EPR (g-EPR and the entropy production rate of the dissipative cloud itself (DC-EPR. The following results are obtained: (1 As the system reaches the maximum of the DC-EPR, it becomes stable because the applied voltage acts as a stabilizing thermodynamic potential; (2 We discover metastable states characterized by high, near-maximum values of the DC-EPR. Under certain conditions, such efficient entropy-producing regimes can only be achieved if the system is allowed to initially evolve under mildly non-equilibrium conditions, namely at a reduced voltage; (3 Without such a “training” period the system typically is not able to reach the allowed maximum of the DC-EPR if the bias is high; (4 We observe that the DC-EPR maximum is achieved within a time, Te, the evolution time, which scales as a power-law function of the applied voltage; (5 Finally, we present a clear example in which the g-EPR theoretical maximum can never be achieved. Yet, under a wide range of conditions, the system can self-organize and achieve a dissipative regime in which the DC-EPR equals its theoretical maximum.
Band gap opening in graphene: a short theoretical study
Sahu, Sivabrata; Rout, G. C.
2017-03-01
Graphene, being a gapless semiconductor, cannot be used in pristine form for nano-electronic applications. Therefore, it is essential to generate a finite gap in the energy dispersion at Dirac point. We present here the tight-binding model Hamiltonian taking into account of various interactions for tuning band gap in graphene. The model Hamiltonian describes the hopping of the π-electrons up to third nearest-neighbours, substrate effects, Coulomb interaction at two sub-lattices, electron-phonon interaction in graphene-on-substrates and high phonon frequency vibrations, besides the bi-layer graphene. We have solved the Hamiltonian using Zubarev's double time single particle Green's function technique. The quasi-particle energies, electron band dispersions, the expression for effective band gap and the density of states (DOS) are calculated numerically. The results are discussed by varying different model parameters of the system. It is observed that the electron DOS and band dispersion exhibit linear energy dependence near Dirac point for nearest-neighbour hopping integral. However, the second and third nearest-neighbour hoppings provide asymmetry in DOS. The band dispersions exhibit wider band gaps with stronger substrate effect. The modified gap in graphene-on-substrate attains its maximum value for Coulomb interaction energy U_{C} = 1.7 t1 . The critical Coulomb interaction is enhanced to U_{C} = 2.5 t1 to produce maximum band gap in the presence of electron-phonon interaction and phonon vibration. The bi-layer graphene exhibits Mexican hat type band gap near Dirac point for transverse gating potential. The other conclusions for the present work are described in the text.
Cluster banding heat source model
Zhang Liguo; Ji Shude; Yang Jianguo; Fang Hongyuan; Li Yafan
2006-01-01
Concept of cluster banding heat source model is put forward for the problem of overmany increment steps in the process of numerical simulation of large welding structures, and expression of cluster banding heat source model is deduced based on energy conservation law.Because the expression of cluster banding heat source model deduced is suitable for random weld width, quantitative analysis of welding stress field for large welding structures which have regular welds can be made quickly.
Theoretical Simulation for Identical Bands
CHEN Yong-Jing; CHEN Yong-Shou; GAO Zao-Chun
2004-01-01
@@ The frequency of occurrence of identical bands is studied by analysing a large number of rotational bands calculated with the reflection asymmetric shell model, and the statistical properties of identical bands indicated in all the experimental observations are reproduced within the mean field approximation and beyond mean field treatment, such as angular momentum projection. The distributions of the calculated J(2), Eγ and the fractional change of J(2) are discussed.
Confidence Bands for the Three-Parameter Logistic Item Response Curve.
Lord, Frederic M.; Pashley, Peter J.
A large sample method for obtaining asymptotic simultaneous confidence bands for a three-parameter logistic response curve is described. Simultaneous confidence bands indicate the sampling variation of item response curves relative to a fitted function. A procedure is given which requires as input maximum likelihood parameter estimates and an…
The time variation in infrared water-vapour bands in Mira variables
Matsuura, M; Yamamura, [No Value; Cami, J; Onaka, T; Murakami, H; Yamamura, I.
2002-01-01
The time variation in the water-vapour bands in oxygen-rich Mira variables has been investigated using multi-epoch ISO/SWS spectra of four Mira variables in the 2.5-4.0 mum region. All four stars show H2O bands in absorption around minimum in the visual light curve. At maximum, H2O emission features
Iliotibial band Z-lengthening.
Richards, David P; Alan Barber, F; Troop, Randal L
2003-03-01
Iliotibial band friction syndrome (ITBFS) is a common overuse injury reported to afflict 1.6% to 12% of runners. It results from an inflammatory response secondary to excessive friction that occurs between the lateral femoral epicondyle and the iliotibial band. Initial treatments include rest, anti-inflammatory medication, modalities (ice or heat), stretching, physical therapy, and possibly a cortisone injection. In recalcitrant cases of ITBFS, surgery has been advocated. This report describes a surgical technique of Z-lengthening of the iliotibial band in patients presenting with lateral knee pain localized to the iliotibial band at the lateral femoral epicondyle and Gerdy's tubercle who failed all nonoperative efforts.
Scarless platysmaplasty for platysmal bands
Shiffman Melvin
2004-01-01
Full Text Available Transection of plastysmal bands has required a surgical approach that leaves scars and limits patient activities for a period of time. The author has developed a simple method to transect the platysmal bands under local anesthesia without resorting to skin incisions. The transection is performed with the use of a Vicryl ® suture that is inserted through the skin, around the platysmal band, and then out through the original entry point. A back and forth motion of the suture cuts through the band.
Additive manufacturing of Ka-band antennas for wireless communications
Armendariz, Unai; Rommel, Simon; Rodríguez Páez, Juan Sebastián
2016-01-01
This paper presents the design and fabrication of WR-28 waveguide horn antennas operating in the Ka-band frequency range between 26.5 GHz and 40 GHz through 3D printing. Three different antennas are fabricated from polylactide acid filaments in conductive and non-conductive variants; the latter...
Fixing the U-band photometry of Type Ia supernovae
Krisciunas, Kevin; Espinoza, Juan; Gonzalez, David; Gonzalez, Luis; Gonzalez, Sergio; Hamuy, Mario; Hsiao, Eric Y; Morrell, Nidia; Phillips, Mark M; Suntzeff, Nicholas B
2012-01-01
We present previously unpublished photometry of supernovae 2003gs and 2003hv. Using spectroscopically-derived corrections to the U-band photometry, we reconcile U-band light curves made from imagery with the Cerro Tololo 0.9-m, 1.3-m and Las Campanas 1-m telescopes. Previously, such light curves showed a 0.4 mag spread at one month after maximum light. This gives us hope that a set of corrected ultraviolet light curves of nearby objects can contribute to the full utilization of rest frame U-band data of supernovae at redshift ~0.3 to 0.8. As pointed out recently by Kessler et al. in the context of the Sloan Digital Sky Survey supernova search, if we take the published U-band photometry of nearby Type Ia supernovae at face value, there is a 0.12 mag U-band anomaly in the distance moduli of higher redshift objects. This anomaly led the Sloan survey to eliminate from their analyses all photometry obtained in the rest frame U-band. The Supernova Legacy Survey eliminated observer frame U-band photometry, which is ...
The maximum rotation of a galactic disc
Bottema, R
1997-01-01
The observed stellar velocity dispersions of galactic discs show that the maximum rotation of a disc is on average 63% of the observed maximum rotation. This criterion can, however, not be applied to small or low surface brightness (LSB) galaxies because such systems show, in general, a continuously rising rotation curve until the outermost measured radial position. That is why a general relation has been derived, giving the maximum rotation for a disc depending on the luminosity, surface brightness, and colour of the disc. As a physical basis of this relation serves an adopted fixed mass-to-light ratio as a function of colour. That functionality is consistent with results from population synthesis models and its absolute value is determined from the observed stellar velocity dispersions. The derived maximum disc rotation is compared with a number of observed maximum rotations, clearly demonstrating the need for appreciable amounts of dark matter in the disc region and even more so for LSB galaxies. Matters h...
Maximum permissible voltage of YBCO coated conductors
Wen, J.; Lin, B.; Sheng, J.; Xu, J.; Jin, Z.; Hong, Z.; Wang, D.; Zhou, H.; Shen, X.; Shen, C.
2014-06-01
Superconducting fault current limiter (SFCL) could reduce short circuit currents in electrical power system. One of the most important thing in developing SFCL is to find out the maximum permissible voltage of each limiting element. The maximum permissible voltage is defined as the maximum voltage per unit length at which the YBCO coated conductors (CC) do not suffer from critical current (Ic) degradation or burnout. In this research, the time of quenching process is changed and voltage is raised until the Ic degradation or burnout happens. YBCO coated conductors test in the experiment are from American superconductor (AMSC) and Shanghai Jiao Tong University (SJTU). Along with the quenching duration increasing, the maximum permissible voltage of CC decreases. When quenching duration is 100 ms, the maximum permissible of SJTU CC, 12 mm AMSC CC and 4 mm AMSC CC are 0.72 V/cm, 0.52 V/cm and 1.2 V/cm respectively. Based on the results of samples, the whole length of CCs used in the design of a SFCL can be determined.
Computing Rooted and Unrooted Maximum Consistent Supertrees
van Iersel, Leo
2009-01-01
A chief problem in phylogenetics and database theory is the computation of a maximum consistent tree from a set of rooted or unrooted trees. A standard input are triplets, rooted binary trees on three leaves, or quartets, unrooted binary trees on four leaves. We give exact algorithms constructing rooted and unrooted maximum consistent supertrees in time O(2^n n^5 m^2 log(m)) for a set of m triplets (quartets), each one distinctly leaf-labeled by some subset of n labels. The algorithms extend to weighted triplets (quartets). We further present fast exact algorithms for constructing rooted and unrooted maximum consistent trees in polynomial space. Finally, for a set T of m rooted or unrooted trees with maximum degree D and distinctly leaf-labeled by some subset of a set L of n labels, we compute, in O(2^{mD} n^m m^5 n^6 log(m)) time, a tree distinctly leaf-labeled by a maximum-size subset X of L that all trees in T, when restricted to X, are consistent with.
Maximum magnitude earthquakes induced by fluid injection
McGarr, Arthur F.
2014-01-01
Analysis of numerous case histories of earthquake sequences induced by fluid injection at depth reveals that the maximum magnitude appears to be limited according to the total volume of fluid injected. Similarly, the maximum seismic moment seems to have an upper bound proportional to the total volume of injected fluid. Activities involving fluid injection include (1) hydraulic fracturing of shale formations or coal seams to extract gas and oil, (2) disposal of wastewater from these gas and oil activities by injection into deep aquifers, and (3) the development of enhanced geothermal systems by injecting water into hot, low-permeability rock. Of these three operations, wastewater disposal is observed to be associated with the largest earthquakes, with maximum magnitudes sometimes exceeding 5. To estimate the maximum earthquake that could be induced by a given fluid injection project, the rock mass is assumed to be fully saturated, brittle, to respond to injection with a sequence of earthquakes localized to the region weakened by the pore pressure increase of the injection operation and to have a Gutenberg-Richter magnitude distribution with a b value of 1. If these assumptions correctly describe the circumstances of the largest earthquake, then the maximum seismic moment is limited to the volume of injected liquid times the modulus of rigidity. Observations from the available case histories of earthquakes induced by fluid injection are consistent with this bound on seismic moment. In view of the uncertainties in this analysis, however, this should not be regarded as an absolute physical limit.
Maximum magnitude earthquakes induced by fluid injection
McGarr, A.
2014-02-01
Analysis of numerous case histories of earthquake sequences induced by fluid injection at depth reveals that the maximum magnitude appears to be limited according to the total volume of fluid injected. Similarly, the maximum seismic moment seems to have an upper bound proportional to the total volume of injected fluid. Activities involving fluid injection include (1) hydraulic fracturing of shale formations or coal seams to extract gas and oil, (2) disposal of wastewater from these gas and oil activities by injection into deep aquifers, and (3) the development of enhanced geothermal systems by injecting water into hot, low-permeability rock. Of these three operations, wastewater disposal is observed to be associated with the largest earthquakes, with maximum magnitudes sometimes exceeding 5. To estimate the maximum earthquake that could be induced by a given fluid injection project, the rock mass is assumed to be fully saturated, brittle, to respond to injection with a sequence of earthquakes localized to the region weakened by the pore pressure increase of the injection operation and to have a Gutenberg-Richter magnitude distribution with a b value of 1. If these assumptions correctly describe the circumstances of the largest earthquake, then the maximum seismic moment is limited to the volume of injected liquid times the modulus of rigidity. Observations from the available case histories of earthquakes induced by fluid injection are consistent with this bound on seismic moment. In view of the uncertainties in this analysis, however, this should not be regarded as an absolute physical limit.
Garage Band or GarageBand[R]? Remixing Musical Futures
Vakeva, Lauri
2010-01-01
In this paper, I suggest that it is perhaps time to consider the pedagogy of popular music in more extensive terms than conventional rock band practices have to offer. One direction in which this might lead is the expansion of the informal pedagogy based on a "garage band" model to encompass various modes of digital artistry wherever this artistry…
Pasanai, K.
2016-03-01
The tunneling conductance spectra of a ferromagnetic semimetal/metal junction, where there were electrons and holes with the same spin directions as the essential conducting particle, was theoretically studied based on a scattering approach in a ballistic regime. The main area of interest was to perform a high spin polarization by considering the effect of the interfacial scattering at the interface that was composed of normal and spin-flip scattering, the particle effective mass mismatch on the reflection and transmission probabilities, and spin polarization of conductance. It was found that the spin polarization of conductance decreased with increasing spin-flip scattering. Interestingly, the normal scattering can cause the spin polarization of the conductance to reach a maximum value in the presence of both kinds of scattering. When the particle effective mass mismatch was considered, the spin polarization of conductance was large when the electron effective mass in the valence band was smaller than that in the conduction band. However, in this calculation, the results of a ferromagnetic semimetal/metal junction behaved similarly to those of a ferromagnetic metal/metal junction.
Maximum Multiflow in Wireless Network Coding
Zhou, Jin-Yi; Jiang, Yong; Zheng, Hai-Tao
2012-01-01
In a multihop wireless network, wireless interference is crucial to the maximum multiflow (MMF) problem, which studies the maximum throughput between multiple pairs of sources and sinks. In this paper, we observe that network coding could help to decrease the impacts of wireless interference, and propose a framework to study the MMF problem for multihop wireless networks with network coding. Firstly, a network model is set up to describe the new conflict relations modified by network coding. Then, we formulate a linear programming problem to compute the maximum throughput and show its superiority over one in networks without coding. Finally, the MMF problem in wireless network coding is shown to be NP-hard and a polynomial approximation algorithm is proposed.
Unfolding the band structure of GaAsBi
Maspero, R.; Sweeney, S. J.; Florescu, Marian
2017-02-01
Typical supercell approaches used to investigate the electronic properties of GaAs(1-x)Bi(x) produce highly accurate, but folded, band structures. Using a highly optimized algorithm, we unfold the band structure to an approximate E≤ft(\\mathbf{k}\\right) relation associated with an effective Brillouin zone. The dispersion relations we generate correlate strongly with experimental results, confirming that a regime of band gap energy greater than the spin-orbit-splitting energy is reached at around 10% bismuth fraction. We also demonstrate the effectiveness of the unfolding algorithm throughout the Brillouin zone (BZ), which is key to enabling transition rate calculations, such as Auger recombination rates. Finally, we show the effect of disorder on the effective masses and identify approximate values for the effective mass of the conduction band and valence bands for bismuth concentrations from 0-12%.
The Wiener maximum quadratic assignment problem
Cela, Eranda; Woeginger, Gerhard J
2011-01-01
We investigate a special case of the maximum quadratic assignment problem where one matrix is a product matrix and the other matrix is the distance matrix of a one-dimensional point set. We show that this special case, which we call the Wiener maximum quadratic assignment problem, is NP-hard in the ordinary sense and solvable in pseudo-polynomial time. Our approach also yields a polynomial time solution for the following problem from chemical graph theory: Find a tree that maximizes the Wiener index among all trees with a prescribed degree sequence. This settles an open problem from the literature.
Maximum confidence measurements via probabilistic quantum cloning
Zhang Wen-Hai; Yu Long-Bao; Cao Zhuo-Liang; Ye Liu
2013-01-01
Probabilistic quantum cloning (PQC) cannot copy a set of linearly dependent quantum states.In this paper,we show that if incorrect copies are allowed to be produced,linearly dependent quantum states may also be cloned by the PQC.By exploiting this kind of PQC to clone a special set of three linearly dependent quantum states,we derive the upper bound of the maximum confidence measure of a set.An explicit transformation of the maximum confidence measure is presented.
Maximum floodflows in the conterminous United States
Crippen, John R.; Bue, Conrad D.
1977-01-01
Peak floodflows from thousands of observation sites within the conterminous United States were studied to provide a guide for estimating potential maximum floodflows. Data were selected from 883 sites with drainage areas of less than 10,000 square miles (25,900 square kilometers) and were grouped into regional sets. Outstanding floods for each region were plotted on graphs, and envelope curves were computed that offer reasonable limits for estimates of maximum floods. The curves indicate that floods may occur that are two to three times greater than those known for most streams.
Revealing the Maximum Strength in Nanotwinned Copper
Lu, L.; Chen, X.; Huang, Xiaoxu
2009-01-01
The strength of polycrystalline materials increases with decreasing grain size. Below a critical size, smaller grains might lead to softening, as suggested by atomistic simulations. The strongest size should arise at a transition in deformation mechanism from lattice dislocation activities to grain...... boundary–related processes. We investigated the maximum strength of nanotwinned copper samples with different twin thicknesses. We found that the strength increases with decreasing twin thickness, reaching a maximum at 15 nanometers, followed by a softening at smaller values that is accompanied by enhanced...
The Maximum Resource Bin Packing Problem
Boyar, J.; Epstein, L.; Favrholdt, L.M.
2006-01-01
Usually, for bin packing problems, we try to minimize the number of bins used or in the case of the dual bin packing problem, maximize the number or total size of accepted items. This paper presents results for the opposite problems, where we would like to maximize the number of bins used...... algorithms, First-Fit-Increasing and First-Fit-Decreasing for the maximum resource variant of classical bin packing. For the on-line variant, we define maximum resource variants of classical and dual bin packing. For dual bin packing, no on-line algorithm is competitive. For classical bin packing, we find...
Maximum entropy analysis of EGRET data
Pohl, M.; Strong, A.W.
1997-01-01
EGRET data are usually analysed on the basis of the Maximum-Likelihood method \\cite{ma96} in a search for point sources in excess to a model for the background radiation (e.g. \\cite{hu97}). This method depends strongly on the quality of the background model, and thus may have high systematic unce...... uncertainties in region of strong and uncertain background like the Galactic Center region. Here we show images of such regions obtained by the quantified Maximum-Entropy method. We also discuss a possible further use of MEM in the analysis of problematic regions of the sky....
Revealing the Maximum Strength in Nanotwinned Copper
Lu, L.; Chen, X.; Huang, Xiaoxu
2009-01-01
The strength of polycrystalline materials increases with decreasing grain size. Below a critical size, smaller grains might lead to softening, as suggested by atomistic simulations. The strongest size should arise at a transition in deformation mechanism from lattice dislocation activities to grain...... boundary–related processes. We investigated the maximum strength of nanotwinned copper samples with different twin thicknesses. We found that the strength increases with decreasing twin thickness, reaching a maximum at 15 nanometers, followed by a softening at smaller values that is accompanied by enhanced...
Maximum phytoplankton concentrations in the sea
Jackson, G.A.; Kiørboe, Thomas
2008-01-01
A simplification of plankton dynamics using coagulation theory provides predictions of the maximum algal concentration sustainable in aquatic systems. These predictions have previously been tested successfully against results from iron fertilization experiments. We extend the test to data collected...... in the North Atlantic as part of the Bermuda Atlantic Time Series program as well as data collected off Southern California as part of the Southern California Bight Study program. The observed maximum particulate organic carbon and volumetric particle concentrations are consistent with the predictions...
LITERATURE REVIEW ON MAXIMUM LOADING OF RADIONUCLIDES ON CRYSTALLINE SILICOTITANATE
Adu-Wusu, K.; Pennebaker, F.
2010-10-13
Plans are underway to use small column ion exchange (SCIX) units installed in high-level waste tanks to remove Cs-137 from highly alkaline salt solutions at Savannah River Site. The ion exchange material slated for the SCIX project is engineered or granular crystalline silicotitanate (CST). Information on the maximum loading of radionuclides on CST is needed by Savannah River Remediation for safety evaluations. A literature review has been conducted that culminated in the estimation of the maximum loading of all but one of the radionuclides of interest (Cs-137, Sr-90, Ba-137m, Pu-238, Pu-239, Pu-240, Pu-241, Am-241, and Cm-244). No data was found for Cm-244.
Retrospective biodosimetry with small tooth enamel samples using K-Band and X-Band
Gomez, Jorge A. [Departamento de Fisica, FFCLRP, Universidade de Sao Paulo, 14040-901 Ribeirao Preto, Sao Paulo (Brazil); Kinoshita, Angela [Departamento de Fisica, FFCLRP, Universidade de Sao Paulo, 14040-901 Ribeirao Preto, Sao Paulo (Brazil); Universidade Sagrado Coracao - USC, 17011-160 Bauru, Sao Paulo (Brazil); Leonor, Sergio J. [Departamento de Fisica, FFCLRP, Universidade de Sao Paulo, 14040-901 Ribeirao Preto, Sao Paulo (Brazil); Belmonte, Gustavo C. [Universidade Sagrado Coracao - USC, 17011-160 Bauru, Sao Paulo (Brazil); Baffa, Oswaldo, E-mail: baffa@usp.br [Departamento de Fisica, FFCLRP, Universidade de Sao Paulo, 14040-901 Ribeirao Preto, Sao Paulo (Brazil)
2011-09-15
In an attempt to make the in vitro electron spin resonance (ESR) retrospective dosimetry of the tooth enamel a lesser invasive method, experiments using X-Band and K-Band were performed, aiming to determine conditions that could be used in cases of accidental exposures. First, a small prism from the enamel was removed and ground with an agate mortar and pestle until particles reach a diameter of approximately less than 0.5 mm. This enamel extraction process resulted in lower signal artifact compared with the direct enamel extraction performed with a diamond burr abrasion. The manual grinding of the enamel does not lead to any induced ESR signal artifact, whereas the use of a diamond burr at low speed produces a signal artifact equivalent to the dosimetric signal induced by a dose of 500 mGy of gamma irradiation. A mass of 25 mg of enamel was removed from a sound molar tooth previously irradiated in vitro with a dose of 100 mGy. This amount of enamel was enough to detect the dosimetric signal in a standard X-Band spectrometer. However using a K-Band spectrometer, samples mass between 5 and 10 mg were sufficient to obtain the same sensitivity. An overall evaluation of the uncertainties involved in the process in this and other dosimetric assessments performed at our laboratory indicates that it is possible at K-Band to estimate a 100 mGy dose with 25% accuracy. In addition, the use of K-Band also presented higher sensitivity and allowed the use of smaller sample mass in comparison with X-Band. Finally, the restoration process performed on a tooth after extraction of the 25 mg of enamel is described. This was conducted by dental treatment using photopolymerizable resin which enabled complete recovery of the tooth from the functional and aesthetic viewpoint showing that this procedure can be minimally invasive.
Unified Hamiltonian for conducting polymers
Leitão Botelho, André; Shin, Yongwoo; Li, Minghai; Jiang, Lili; Lin, Xi
2011-11-01
Two transferable physical parameters are incorporated into the Su-Schrieffer-Heeger Hamiltonian to model conducting polymers beyond polyacetylene: the parameter γ scales the electron-phonon coupling strength in aromatic rings and the other parameter ɛ specifies the heterogeneous core charges. This generic Hamiltonian predicts the fundamental band gaps of polythiophene, polypyrrole, polyfuran, poly-(p-phenylene), poly-(p-phenylene vinylene), and polyacenes, and their oligomers of all lengths, with an accuracy exceeding time-dependent density functional theory. Its computational costs for moderate-length polymer chains are more than eight orders of magnitude lower than first-principles approaches.
Banded vs Bonded Space Maintainers: Finding Better Way Out
Kumar Pandit, Inder; Srivastava, Nikhil; Gugnani, Neeraj; Gupta, Monika
2014-01-01
ABSTRACT Objectives: Of this in vivo study was to evaluate various space maintainers in terms of survival rate, gingival health and presence of caries. Design: A total of 60 extraction sites in the age group of 4 to 9 years were divided into four groups and different space maintainers were placed in them viz (conventional band and loop, prefabricated band with custom made loop, Ribbond, Super splint). Results: Prefabricated bands with custom made loop showed maximum success rates (84.6%), while super splint (33.33%) was found to be least successful. In terms of gingival health, prefabricated band with custom made loop reported minimum cases with poor gingival health (27.2%), while maximum cases with poor gingival health (50%) were reported with Super splint. None of the space maintainers developed caries at the end of 9 months. How to cite this article: Setia v, Pandit IK, Srivastava N, Gugnani N, Gupta M. Banded vs Bonded Space Maintainers: Finding Better Way Out. Int J Clin Pediatr Dent 2014;7(2):97-104. PMID:25356008
Krasnykh, A.; Decker, F.-J.; /SLAC; LeClair, R.; /INTA Technologies, Santa Clara
2012-08-28
The S-Band loads on the current SLAC linac RF system were designed, in some cases, 40+ years ago to terminate 2-3 MW peak power into a thin layer of coated Kanthal material as the high power absorber [1]. The technology of the load design was based on a flame-sprayed Kanthal wire method onto a base material. During SLAC linac upgrades, the 24 MW peak klystrons were replaced by 5045 klystrons with 65+ MW peak output power. Additionally, SLED cavities were introduced and as a result, the peak power in the current RF setup has increased up to 240 MW peak. The problem of reliable RF peak power termination and RF load lifetime required a careful study and adequate solution. Results of our studies and three designs of S-Band RF load for the present SLAC RF linac system is discussed. These designs are based on the use of low conductivity materials.
Modeling direct band-to-band tunneling: From bulk to quantum-confined semiconductor devices
Carrillo-Nuñez, H.; Ziegler, A.; Luisier, M.; Schenk, A. [Integrated Systems Laboratory ETH Zürich, Gloriastrasse 35, 8092 Zürich (Switzerland)
2015-06-21
A rigorous framework to study direct band-to-band tunneling (BTBT) in homo- and hetero-junction semiconductor nanodevices is introduced. An interaction Hamiltonian coupling conduction and valence bands (CVBs) is derived using a multiband envelope method. A general form of the BTBT probability is then obtained from the linear response to the “CVBs interaction” that drives the system out of equilibrium. Simple expressions in terms of the one-electron spectral function are developed to compute the BTBT current in two- and three-dimensional semiconductor structures. Additionally, a two-band envelope equation based on the Flietner model of imaginary dispersion is proposed for the same purpose. In order to characterize their accuracy and differences, both approaches are compared with full-band, atomistic quantum transport simulations of Ge, InAs, and InAs-Si Esaki diodes. As another numerical application, the BTBT current in InAs-Si nanowire tunnel field-effect transistors is computed. It is found that both approaches agree with high accuracy. The first one is considerably easier to conceive and could be implemented straightforwardly in existing quantum transport tools based on the effective mass approximation to account for BTBT in nanodevices.
Long Lake banding project, 1965
US Fish and Wildlife Service, Department of the Interior — This report summarizes the results of a banding project on Long Lake in 1965. The dates at the banding site were July 27th through August 8th. As in the past, the...
Quantum conductance of zigzag graphene oxide nanoribbons
Kan, Zhe; Nelson, Christopher; Khatun, Mahfuza, E-mail: mkhatun@bsu.edu [Department of Physics and Astronomy, Center for Computational Nanoscience, Ball State University, Muncie, Indiana 47306 (United States)
2014-04-21
The electronic properties of zigzag graphene oxide nanoribbons (ZGOR) are presented. The results show interesting behaviors which are considerably different from the properties of the perfect graphene nanoribbons (GNRs). The theoretical methods include a Huckel-tight binding approach, a Green's function methodology, and the Landauer formalism. The presence of oxygen on the edge results in band bending, a noticeable change in density of states and thus the conductance. Consequently, the occupation in the valence bands increase for the next neighboring carbon atom in the unit cell. Conductance drops in both the conduction and valence band regions are due to the reduction of allowed k modes resulting from band bending. The asymmetry of the energy band structure of the ZGOR is due to the energy differences of the atoms. The inclusion of a foreign atom's orbital energies changes the dispersion relation of the eigenvalues in energy space. These novel characteristics are important and valuable in the study of quantum transport of GNRs.
Georgobiani, A N; Gruzintsev, A N; Volkov, V T
2002-01-01
The study on the influence of the annealing of ZnO:N films in the maximum pressure atomic oxygen atmosphere is carried out. It is shown that doping of ZnO films by nitrogen acceptors during the growth process can result in formation of hole conductivity only after annealing them in atomic oxygen vapors. The annealing affects both the electrical properties and luminescence of ZnO:N films. Bands that have been caused by nitrogen doping appear in the ultraviolet as well as in he visible regions of photoluminescence spectra
Satellite communications application to Pacific countries above Ku band
Iida, Takashi
1992-01-01
An application of satellite communications above the Ku band to the Pacific region is described, focusing on: (1) Lightsat system and (2) a high capacity satellite system. A small geostationary satellite system using Ku band for the Federated States of Micronesia is shown as an example. A concept of multi-gigabits/second high capacity communications system using two satellites in the Ka band is described. The onboard bit-by-bit processing is very useful in the low link margin environment due to rain attenuation. These topics were obtained by the Asia Pacific Telecommunications Study granted by NASA conducted by the University of Colorado at Boulder.
Analysis of Photovoltaic Maximum Power Point Trackers
Veerachary, Mummadi
The photovoltaic generator exhibits a non-linear i-v characteristic and its maximum power point (MPP) varies with solar insolation. An intermediate switch-mode dc-dc converter is required to extract maximum power from the photovoltaic array. In this paper buck, boost and buck-boost topologies are considered and a detailed mathematical analysis, both for continuous and discontinuous inductor current operation, is given for MPP operation. The conditions on the connected load values and duty ratio are derived for achieving the satisfactory maximum power point operation. Further, it is shown that certain load values, falling out of the optimal range, will drive the operating point away from the true maximum power point. Detailed comparison of various topologies for MPPT is given. Selection of the converter topology for a given loading is discussed. Detailed discussion on circuit-oriented model development is given and then MPPT effectiveness of various converter systems is verified through simulations. Proposed theory and analysis is validated through experimental investigations.
On maximum cycle packings in polyhedral graphs
Peter Recht
2014-04-01
Full Text Available This paper addresses upper and lower bounds for the cardinality of a maximum vertex-/edge-disjoint cycle packing in a polyhedral graph G. Bounds on the cardinality of such packings are provided, that depend on the size, the order or the number of faces of G, respectively. Polyhedral graphs are constructed, that attain these bounds.
Hard graphs for the maximum clique problem
Hoede, Cornelis
1988-01-01
The maximum clique problem is one of the NP-complete problems. There are graphs for which a reduction technique exists that transforms the problem for these graphs into one for graphs with specific properties in polynomial time. The resulting graphs do not grow exponentially in order and number. Gra
Maximum Likelihood Estimation of Search Costs
J.L. Moraga-Gonzalez (José Luis); M.R. Wildenbeest (Matthijs)
2006-01-01
textabstractIn a recent paper Hong and Shum (forthcoming) present a structural methodology to estimate search cost distributions. We extend their approach to the case of oligopoly and present a maximum likelihood estimate of the search cost distribution. We apply our method to a data set of online p
Weak Scale From the Maximum Entropy Principle
Hamada, Yuta; Kawana, Kiyoharu
2015-01-01
The theory of multiverse and wormholes suggests that the parameters of the Standard Model are fixed in such a way that the radiation of the $S^{3}$ universe at the final stage $S_{rad}$ becomes maximum, which we call the maximum entropy principle. Although it is difficult to confirm this principle generally, for a few parameters of the Standard Model, we can check whether $S_{rad}$ actually becomes maximum at the observed values. In this paper, we regard $S_{rad}$ at the final stage as a function of the weak scale ( the Higgs expectation value ) $v_{h}$, and show that it becomes maximum around $v_{h}={\\cal{O}}(300\\text{GeV})$ when the dimensionless couplings in the Standard Model, that is, the Higgs self coupling, the gauge couplings, and the Yukawa couplings are fixed. Roughly speaking, we find that the weak scale is given by \\begin{equation} v_{h}\\sim\\frac{T_{BBN}^{2}}{M_{pl}y_{e}^{5}},\
Weak scale from the maximum entropy principle
Hamada, Yuta; Kawai, Hikaru; Kawana, Kiyoharu
2015-03-01
The theory of the multiverse and wormholes suggests that the parameters of the Standard Model (SM) are fixed in such a way that the radiation of the S3 universe at the final stage S_rad becomes maximum, which we call the maximum entropy principle. Although it is difficult to confirm this principle generally, for a few parameters of the SM, we can check whether S_rad actually becomes maximum at the observed values. In this paper, we regard S_rad at the final stage as a function of the weak scale (the Higgs expectation value) vh, and show that it becomes maximum around vh = {{O}} (300 GeV) when the dimensionless couplings in the SM, i.e., the Higgs self-coupling, the gauge couplings, and the Yukawa couplings are fixed. Roughly speaking, we find that the weak scale is given by vh ˜ T_{BBN}2 / (M_{pl}ye5), where ye is the Yukawa coupling of electron, T_BBN is the temperature at which the Big Bang nucleosynthesis starts, and M_pl is the Planck mass.
Global characterization of the Holocene Thermal Maximum
Renssen, H.; Seppä, H.; Crosta, X.; Goosse, H.; Roche, D.M.V.A.P.
2012-01-01
We analyze the global variations in the timing and magnitude of the Holocene Thermal Maximum (HTM) and their dependence on various forcings in transient simulations covering the last 9000 years (9 ka), performed with a global atmosphere-ocean-vegetation model. In these experiments, we consider the i
Instance Optimality of the Adaptive Maximum Strategy
L. Diening; C. Kreuzer; R. Stevenson
2016-01-01
In this paper, we prove that the standard adaptive finite element method with a (modified) maximum marking strategy is instance optimal for the total error, being the square root of the squared energy error plus the squared oscillation. This result will be derived in the model setting of Poisson’s e
Maximum phonation time: variability and reliability.
Speyer, Renée; Bogaardt, Hans C A; Passos, Valéria Lima; Roodenburg, Nel P H D; Zumach, Anne; Heijnen, Mariëlle A M; Baijens, Laura W J; Fleskens, Stijn J H M; Brunings, Jan W
2010-05-01
The objective of the study was to determine maximum phonation time reliability as a function of the number of trials, days, and raters in dysphonic and control subjects. Two groups of adult subjects participated in this reliability study: a group of outpatients with functional or organic dysphonia versus a group of healthy control subjects matched by age and gender. Over a period of maximally 6 weeks, three video recordings were made of five subjects' maximum phonation time trials. A panel of five experts were responsible for all measurements, including a repeated measurement of the subjects' first recordings. Patients showed significantly shorter maximum phonation times compared with healthy controls (on average, 6.6 seconds shorter). The averaged interclass correlation coefficient (ICC) over all raters per trial for the first day was 0.998. The averaged reliability coefficient per rater and per trial for repeated measurements of the first day's data was 0.997, indicating high intrarater reliability. The mean reliability coefficient per day for one trial was 0.939. When using five trials, the reliability increased to 0.987. The reliability over five trials for a single day was 0.836; for 2 days, 0.911; and for 3 days, 0.935. To conclude, the maximum phonation time has proven to be a highly reliable measure in voice assessment. A single rater is sufficient to provide highly reliable measurements.
Maximum Phonation Time: Variability and Reliability
R. Speyer; H.C.A. Bogaardt; V.L. Passos; N.P.H.D. Roodenburg; A. Zumach; M.A.M. Heijnen; L.W.J. Baijens; S.J.H.M. Fleskens; J.W. Brunings
2010-01-01
The objective of the study was to determine maximum phonation time reliability as a function of the number of trials, days, and raters in dysphonic and control subjects. Two groups of adult subjects participated in this reliability study: a group of outpatients with functional or organic dysphonia v
Maximum likelihood estimation of fractionally cointegrated systems
Lasak, Katarzyna
In this paper we consider a fractionally cointegrated error correction model and investigate asymptotic properties of the maximum likelihood (ML) estimators of the matrix of the cointe- gration relations, the degree of fractional cointegration, the matrix of the speed of adjustment...
Maximum likelihood estimation for integrated diffusion processes
Baltazar-Larios, Fernando; Sørensen, Michael
EM-algorithm to obtain maximum likelihood estimates of the parameters in the diffusion model. As part of the algorithm, we use a recent simple method for approximate simulation of diffusion bridges. In simulation studies for the Ornstein-Uhlenbeck process and the CIR process the proposed method works...
Maximum gain of Yagi-Uda arrays
Bojsen, J.H.; Schjær-Jacobsen, Hans; Nilsson, E.
1971-01-01
Numerical optimisation techniques have been used to find the maximum gain of some specific parasitic arrays. The gain of an array of infinitely thin, equispaced dipoles loaded with arbitrary reactances has been optimised. The results show that standard travelling-wave design methods are not optimum....... Yagi–Uda arrays with equal and unequal spacing have also been optimised with experimental verification....
Uniaxially stressed germanium with fundamental direct band gap
Geiger, R.; Zabel, T.; Marin, E; Gassenq, A.; Hartmann, J.-M.; Widiez, J.; Escalante, J.; Guilloy, K.; Pauc, N.; Rouchon, D.; Diaz, G. Osvaldo; Tardif, S; Rieutord, F.; Duchemin, I.; Niquet, Y. -M.
2015-01-01
We demonstrate the crossover from indirect- to direct band gap in tensile-strained germanium by temperature-dependent photoluminescence. The samples are strained microbridges that enhance a biaxial strain of 0.16% up to 3.6% uniaxial tensile strain. Cooling the bridges to 20 K increases the uniaxial strain up to a maximum of 5.4%. Temperature-dependent photoluminescence reveals the crossover to a fundamental direct band gap to occur between 4.0% and 4.5%. Our data are in good agreement with n...
Hydraulic conductivity of compacted zeolites.
Oren, A Hakan; Ozdamar, Tuğçe
2013-06-01
Hydraulic conductivities of compacted zeolites were investigated as a function of compaction water content and zeolite particle size. Initially, the compaction characteristics of zeolites were determined. The compaction test results showed that maximum dry unit weight (γ(dmax)) of fine zeolite was greater than that of granular zeolites. The γ(dmax) of compacted zeolites was between 1.01 and 1.17 Mg m(-3) and optimum water content (w(opt)) was between 38% and 53%. Regardless of zeolite particle size, compacted zeolites had low γ(dmax) and high w(opt) when compared with compacted natural soils. Then, hydraulic conductivity tests were run on compacted zeolites. The hydraulic conductivity values were within the range of 2.0 × 10(-3) cm s(-1) to 1.1 × 10(-7) cm s(-1). Hydraulic conductivity of all compacted zeolites decreased almost 50 times as the water content increased. It is noteworthy that hydraulic conductivity of compacted zeolite was strongly dependent on the zeolite particle size. The hydraulic conductivity decreased almost three orders of magnitude up to 39% fine content; then, it remained almost unchanged beyond 39%. Only one report was found in the literature on the hydraulic conductivity of compacted zeolite, which is in agreement with the findings of this study.
Band structures of TiO2 doped with N, C and B
无
2006-01-01
This study on the band structures and charge densities of nitrogen (N)-, carbon (C)- and boron (B)-doped titanium dioxide (TiO2) by first-principles simulation with the CASTEP code (Segall et al., 2002) showed that the three 2p bands of impurity atom are located above the valence-band maximum and below the Ti 3d bands, and that along with the decreasing of impurity atomic number, the fluctuations become more intensive. We cannot observe obvious band-gap narrowing in our result.Therefore, the cause of absorption in visible light might be the isolated impurity atom 2p states in band-gap rather than the band-gap narrowing.
Thermopower and thermal conductivity in the Weyl semimetal NbP
Stockert, U.; dos Reis, R. D.; Ajeesh, M. O.; Watzman, S. J.; Schmidt, M.; Shekhar, C.; Heremans, J. P.; Felser, C.; Baenitz, M.; Nicklas, M.
2017-08-01
The Weyl semimetal NbP exhibits an extremely large magnetoresistance and an ultra-high mobility. The large magnetoresistance originates from a combination of the nearly perfect compensation between electron- and hole-type charge carriers and the high mobility, which is relevant to the topological band structure. In this work we report on temperature- and field-dependent thermopower and thermal conductivity experiments on NbP. Additionally, we carried out complementary heat capacity, magnetization, and electrical resistivity measurements. We found a giant adiabatic magnetothermopower with a maximum of 800~μ V~K-1 at 50 K in a field of 9 T. Such large effects have been observed rarely in bulk materials. We further observe pronounced quantum oscillations in both thermal conductivity and thermopower. The obtained frequencies compare well with our heat capacity and magnetization data.
Modified extended Hückel band calculations on conjugated polymers
Hong, Sung Y.; Marynick, Dennis S.
1992-04-01
In order to more accurately predict band gaps, corresponding to π-π* transitions of one-dimensional conducting polymers, the formula for the off-diagonal elements, Hαβij in the extended Hückel (EH) band calculation method was modified according to the form Hαβij=K1(Hααii +Hββjj)exp(-K2Rαβ) Sαβij. Parametrizations for the constants K1 and K2 were performed so as to yield reasonable band gaps for the pure hydrocarbon polymers trans-polyacetylene, poly(para-phenylene), and poly(phenylene vinylene). Since there is a large difference in bond alternations along polymeric chains between ab initio and modified neglect of diatomic overlap optimized geometries, especially for heterocyclic polymers, the valence orbital exponents of oxygen, nitrogen, and sulfur were separately adjusted, depending on the chosen geometry, to reproduce the band gaps of polyfuran, polypyrrole, and polythiophene. It is found that geometrical relaxations in the presence of heteroatoms strongly affect the C1-C4 interactions as well as bond alternations, which in turn affect the band gap. Modified EH band calculations were performed for various polymers. The predicted band gaps had average errors of ca. 10% (less than 0.3 eV) compared to the experimental values, and the method produced band structures consistent with electron-energy-loss spectroscopic observations.
Conductivities in an anisotropic medium
Khimphun, Sunly; Lee, Bum-Hoon; Park, Chanyong
2016-10-01
In order to imitate the anisotropic medium of a condensed matter system, we take into account an Einstein-Maxwell-dilaton-axion model as a dual gravity theory where the anisotropy is caused by different momentum relaxations. This gravity model allows an anisotropic charged black hole solution. On this background, we investigate how the linear responses of vector modes like electric, thermoelectric, and thermal conductivities rely on the anisotropy. We find that the electric conductivity in the low frequency limit shows a Drude peak and that, in the intermediate frequency regime, it reveals the power law behavior. Specifically, when the anisotropy increases, the exponent of the power law becomes smaller. In addition, we find that a critical value for the anisotropy exists at which the dc conductivity reaches to its maximum value.
Conductivities in an anisotropic medium
Khimphun, Sunly; Park, Chanyong
2016-01-01
In order to imitate anisotropic medium of a condensed matter system, we take into account an Einstein-Maxwell-dilaton-axion model as a dual gravity theory where the anisotropy is caused by different momentum relaxations. This gravity model allows an anisotropic charged black hole solution. On this background, we investigate how the linear responses of vector modes like electric, thermoelectric, and thermal conductivities rely on the anisotropy. We find that the electric conductivity in low frequency limit shows a Drude peak and that in the intermediate frequency regime it reveals the power law behavior. Especially, when the anisotropy increases the exponent of the power law becomes smaller. In addition, we find that there exist a critical value for the anisotropy at which the DC conductivity reaches to its maximum value.
Conducted interference, challenges and interference cases
Leferink, Frank Bernardus Johannes
2015-01-01
Conducted interference has become increasingly problematic in the past few years, especially within the 2-150 kHz band. The high penetration of non-linear loads, combined with distributed generation, will influence the voltage profile, i.e. the power quality. New technologies will introduce new type
Conducted interference, challenges and interference cases
Leferink, Frank Bernardus Johannes
2015-01-01
Conducted interference has become increasingly problematic in the past few years, especially within the 2-150 kHz band. The high penetration of non-linear loads, combined with distributed generation, will influence the voltage profile, i.e. the power quality. New technologies will introduce new
A Compact Dual-Band RFID Tag Antenna Mountable on Metallic Objects
Byeonggwi Mun
2015-01-01
Full Text Available A compact (50 × 50 × 4 mm3 dual-band radio frequency identification (RFID tag antenna mountable on metallic objects is proposed for the ultra-high frequency (UHF band (917∼923.5 MHz and the microwave (MW band (2.4∼2.45 GHz. With the proximity-coupled feed loop, the proposed antenna consists of two symmetric planar inverted-F antenna (PIFA elements for the UHF band passive tag and a meander microstrip patch antenna for the MW band active tag. The performance of the proposed antenna is verified by mounting it on the different sizes of the metallic object. Furthermore, the passive tag antenna in the UHF band furthermore may be used for energy harvesting techniques to improve the lifetime of the active tag in the MW band. The measured maximum read range is 5.50 m in the UHF band and 14.15 m in the MW band when the proposed tag antenna is mounted on the metallic objects. The total efficiency for all operating frequency bands is higher than 50%. High isolation (>12 dB between tag antennas in the UHF band and the MW band is achieved.
Microstrip microwave band gap structures
V Subramanian
2008-04-01
Microwave band gap structures exhibit certain stop band characteristics based on the periodicity, impedance contrast and effective refractive index contrast. These structures though formed in one-, two- and three-dimensional periodicity, are huge in size. In this paper, microstrip-based microwave band gap structures are formed by removing the substrate material in a periodic manner. This paper also demonstrates that these structures can serve as a non-destructive characterization tool for materials, a duplexor and frequency selective coupler. The paper presents both experimental results and theoretical simulation based on a commercially available finite element methodology for comparison.
Band head spin assignment of superdeformed bands in 86Zr
Dadwal, Anshul; Mittal, H. M.
2016-11-01
Two parameter expressions for rotational spectra viz. variable moment of inertia (VMI), ab formula and three parameter Harris ω 2 expansion are used to assign the band head spins (I 0) of four rotational superdeformed bands in 86Zr. The least-squares fitting method is employed to obtain the band head spins of these four bands in the A ∼ 80 mass region. Model parameters are extracted by fitting of intraband γ-ray energies, so as to obtain a minimum root-mean-square (rms) deviation between the calculated and the observed transition energies. The calculated transition energies are found to depend sensitively on the assigned spins. Whenever an accurate band head spin is assigned, the calculated transition energies are in agreement with the experimental transition energies. The dynamic moment of inertia is also extracted and its variation with rotational frequency is investigated. Since a better agreement of band head spin with experimental results is found using the VMI model, it is a more powerful tool than the ab formula and Harris ω 2 expansion.
Slow light and band gaps in metallodielectric cylinder arrays.
Shainline, Jeffrey M; Xu, Jimmy
2009-05-25
We consider two-dimensional three-component photonic crystals wherein one component is modeled as a drude-dispersive metal. It is found that the dispersion relation of light in this environment depends critically on the configuration of the metallic and dielectric components. In particular, for the case of an incident electromagnetic wave with electric field vector parallel to the axis of the cylinders it is shown that the presence of dielectric shells covering the metallic cylinders leads to a closing of the structural band gap with increased filling factor, as would be expected for a purely dielectric photonic crystal. For the same polarization, the photonic band structure of an array of metallic shell cylinders with dielectric cores do not show the closing of the structural band gap with increased filling factor of the metallic component. In this geometry, the photonic band structure contains bands with very small values of group velocity with some bands having a maximum of group velocity as small as .05c.
Spectrophotometer spectral bandwidth calibration with absorption bands crystal standard.
Soares, O D; Costa, J L
1999-04-01
A procedure for calibration of a spectral bandwidth standard for high-resolution spectrophotometers is described. Symmetrical absorption bands for a crystal standard are adopted. The method relies on spectral band shape fitting followed by a convolution with the slit function of the spectrophotometer. A reference spectrophotometer is used to calibrate the spectral bandwidth standard. Bandwidth calibration curves for a minimum spectral transmission factor relative to the spectral bandwidth of the reference spectrophotometer are derived for the absorption bands at the wavelength of the band absorption maximum. The family of these calibration curves characterizes the spectral bandwidth standard. We calibrate the spectral bandwidth of a spectrophotometer with respect to the reference spectrophotometer by determining the spectral transmission factor minimum at every calibrated absorption band of the bandwidth standard for the nominal instrument values of the spectral bandwidth. With reference to the standard spectral bandwidth calibration curves, the relation of the spectral bandwidth to the reference spectrophotometer is determined. We determine the discrepancy in the spectrophotometers' spectral bandwidths by averaging the spectral bandwidth discrepancies relative to the standard calibrated values found at the absorption bands considered. A weighted average of the uncertainties is taken.
LANDSAT-4 band 6 data evaluation
1983-01-01
The radiometric integrity of the LANDSAT-D thematic mapper (TM) thermal infrared channel (band 6) data was evaluated to develop improved radiometric preprocessing calibration techniques for removal of atmospheric effects. Primary data analysis was spent in evaluating the line to line and detector to detector variation in the thermal infrared data. The data studied was in the core area of Lake Ontario where very stable temperatures were expected. The detectors and the scan direction were taken as separate parameters and an analysis of variance was conducted. The data indicate that significant variability exists both between detectors and between scan directions.
Model Selection Through Sparse Maximum Likelihood Estimation
Banerjee, Onureena; D'Aspremont, Alexandre
2007-01-01
We consider the problem of estimating the parameters of a Gaussian or binary distribution in such a way that the resulting undirected graphical model is sparse. Our approach is to solve a maximum likelihood problem with an added l_1-norm penalty term. The problem as formulated is convex but the memory requirements and complexity of existing interior point methods are prohibitive for problems with more than tens of nodes. We present two new algorithms for solving problems with at least a thousand nodes in the Gaussian case. Our first algorithm uses block coordinate descent, and can be interpreted as recursive l_1-norm penalized regression. Our second algorithm, based on Nesterov's first order method, yields a complexity estimate with a better dependence on problem size than existing interior point methods. Using a log determinant relaxation of the log partition function (Wainwright & Jordan (2006)), we show that these same algorithms can be used to solve an approximate sparse maximum likelihood problem for...
Maximum-entropy description of animal movement.
Fleming, Chris H; Subaşı, Yiğit; Calabrese, Justin M
2015-03-01
We introduce a class of maximum-entropy states that naturally includes within it all of the major continuous-time stochastic processes that have been applied to animal movement, including Brownian motion, Ornstein-Uhlenbeck motion, integrated Ornstein-Uhlenbeck motion, a recently discovered hybrid of the previous models, and a new model that describes central-place foraging. We are also able to predict a further hierarchy of new models that will emerge as data quality improves to better resolve the underlying continuity of animal movement. Finally, we also show that Langevin equations must obey a fluctuation-dissipation theorem to generate processes that fall from this class of maximum-entropy distributions when the constraints are purely kinematic.
Pareto versus lognormal: a maximum entropy test.
Bee, Marco; Riccaboni, Massimo; Schiavo, Stefano
2011-08-01
It is commonly found that distributions that seem to be lognormal over a broad range change to a power-law (Pareto) distribution for the last few percentiles. The distributions of many physical, natural, and social events (earthquake size, species abundance, income and wealth, as well as file, city, and firm sizes) display this structure. We present a test for the occurrence of power-law tails in statistical distributions based on maximum entropy. This methodology allows one to identify the true data-generating processes even in the case when it is neither lognormal nor Pareto. The maximum entropy approach is then compared with other widely used methods and applied to different levels of aggregation of complex systems. Our results provide support for the theory that distributions with lognormal body and Pareto tail can be generated as mixtures of lognormally distributed units.
Maximum Variance Hashing via Column Generation
Lei Luo
2013-01-01
item search. Recently, a number of data-dependent methods have been developed, reflecting the great potential of learning for hashing. Inspired by the classic nonlinear dimensionality reduction algorithm—maximum variance unfolding, we propose a novel unsupervised hashing method, named maximum variance hashing, in this work. The idea is to maximize the total variance of the hash codes while preserving the local structure of the training data. To solve the derived optimization problem, we propose a column generation algorithm, which directly learns the binary-valued hash functions. We then extend it using anchor graphs to reduce the computational cost. Experiments on large-scale image datasets demonstrate that the proposed method outperforms state-of-the-art hashing methods in many cases.
The Maximum Resource Bin Packing Problem
Boyar, J.; Epstein, L.; Favrholdt, L.M.
2006-01-01
algorithms, First-Fit-Increasing and First-Fit-Decreasing for the maximum resource variant of classical bin packing. For the on-line variant, we define maximum resource variants of classical and dual bin packing. For dual bin packing, no on-line algorithm is competitive. For classical bin packing, we find......Usually, for bin packing problems, we try to minimize the number of bins used or in the case of the dual bin packing problem, maximize the number or total size of accepted items. This paper presents results for the opposite problems, where we would like to maximize the number of bins used...... the competitive ratio of various natural algorithms. We study the general versions of the problems as well as the parameterized versions where there is an upper bound of on the item sizes, for some integer k....
Nonparametric Maximum Entropy Estimation on Information Diagrams
Martin, Elliot A; Meinke, Alexander; Děchtěrenko, Filip; Davidsen, Jörn
2016-01-01
Maximum entropy estimation is of broad interest for inferring properties of systems across many different disciplines. In this work, we significantly extend a technique we previously introduced for estimating the maximum entropy of a set of random discrete variables when conditioning on bivariate mutual informations and univariate entropies. Specifically, we show how to apply the concept to continuous random variables and vastly expand the types of information-theoretic quantities one can condition on. This allows us to establish a number of significant advantages of our approach over existing ones. Not only does our method perform favorably in the undersampled regime, where existing methods fail, but it also can be dramatically less computationally expensive as the cardinality of the variables increases. In addition, we propose a nonparametric formulation of connected informations and give an illustrative example showing how this agrees with the existing parametric formulation in cases of interest. We furthe...
Zipf's law, power laws and maximum entropy
Visser, Matt
2013-04-01
Zipf's law, and power laws in general, have attracted and continue to attract considerable attention in a wide variety of disciplines—from astronomy to demographics to software structure to economics to linguistics to zoology, and even warfare. A recent model of random group formation (RGF) attempts a general explanation of such phenomena based on Jaynes' notion of maximum entropy applied to a particular choice of cost function. In the present paper I argue that the specific cost function used in the RGF model is in fact unnecessarily complicated, and that power laws can be obtained in a much simpler way by applying maximum entropy ideas directly to the Shannon entropy subject only to a single constraint: that the average of the logarithm of the observable quantity is specified.
Zipf's law, power laws, and maximum entropy
Visser, Matt
2012-01-01
Zipf's law, and power laws in general, have attracted and continue to attract considerable attention in a wide variety of disciplines - from astronomy to demographics to economics to linguistics to zoology, and even warfare. A recent model of random group formation [RGF] attempts a general explanation of such phenomena based on Jaynes' notion of maximum entropy applied to a particular choice of cost function. In the present article I argue that the cost function used in the RGF model is in fact unnecessarily complicated, and that power laws can be obtained in a much simpler way by applying maximum entropy ideas directly to the Shannon entropy subject only to a single constraint: that the average of the logarithm of the observable quantity is specified.
Regions of constrained maximum likelihood parameter identifiability
Lee, C.-H.; Herget, C. J.
1975-01-01
This paper considers the parameter identification problem of general discrete-time, nonlinear, multiple-input/multiple-output dynamic systems with Gaussian-white distributed measurement errors. Knowledge of the system parameterization is assumed to be known. Regions of constrained maximum likelihood (CML) parameter identifiability are established. A computation procedure employing interval arithmetic is proposed for finding explicit regions of parameter identifiability for the case of linear systems. It is shown that if the vector of true parameters is locally CML identifiable, then with probability one, the vector of true parameters is a unique maximal point of the maximum likelihood function in the region of parameter identifiability and the CML estimation sequence will converge to the true parameters.
A Maximum Radius for Habitable Planets.
Alibert, Yann
2015-09-01
We compute the maximum radius a planet can have in order to fulfill two constraints that are likely necessary conditions for habitability: 1- surface temperature and pressure compatible with the existence of liquid water, and 2- no ice layer at the bottom of a putative global ocean, that would prevent the operation of the geologic carbon cycle to operate. We demonstrate that, above a given radius, these two constraints cannot be met: in the Super-Earth mass range (1-12 Mearth), the overall maximum that a planet can have varies between 1.8 and 2.3 Rearth. This radius is reduced when considering planets with higher Fe/Si ratios, and taking into account irradiation effects on the structure of the gas envelope.
Maximum entropy deconvolution of the optical jet of 3C 273
Evans, I. N.; Ford, H. C.; Hui, X.
1989-01-01
The technique of maximum entropy image restoration is applied to the problem of deconvolving the point spread function from a deep, high-quality V band image of the optical jet of 3C 273. The resulting maximum entropy image has an approximate spatial resolution of 0.6 arcsec and has been used to study the morphology of the optical jet. Four regularly-spaced optical knots are clearly evident in the data, together with an optical 'extension' at each end of the optical jet. The jet oscillates around its center of gravity, and the spatial scale of the oscillations is very similar to the spacing between the optical knots. The jet is marginally resolved in the transverse direction and has an asymmetric profile perpendicular to the jet axis. The distribution of V band flux along the length of the jet, and accurate astrometry of the optical knot positions are presented.
Maximum Profit Configurations of Commercial Engines
Yiran Chen
2011-01-01
An investigation of commercial engines with finite capacity low- and high-price economic subsystems and a generalized commodity transfer law [n ∝ Δ (P m)] in commodity flow processes, in which effects of the price elasticities of supply and demand are introduced, is presented in this paper. Optimal cycle configurations of commercial engines for maximum profit are obtained by applying optimal control theory. In some special cases, the eventual state—market equilibrium—is solely determined by t...
A stochastic maximum principle via Malliavin calculus
Øksendal, Bernt; Zhou, Xun Yu; Meyer-Brandis, Thilo
2008-01-01
This paper considers a controlled It\\^o-L\\'evy process where the information available to the controller is possibly less than the overall information. All the system coefficients and the objective performance functional are allowed to be random, possibly non-Markovian. Malliavin calculus is employed to derive a maximum principle for the optimal control of such a system where the adjoint process is explicitly expressed.
Tissue radiation response with maximum Tsallis entropy.
Sotolongo-Grau, O; Rodríguez-Pérez, D; Antoranz, J C; Sotolongo-Costa, Oscar
2010-10-08
The expression of survival factors for radiation damaged cells is currently based on probabilistic assumptions and experimentally fitted for each tumor, radiation, and conditions. Here, we show how the simplest of these radiobiological models can be derived from the maximum entropy principle of the classical Boltzmann-Gibbs expression. We extend this derivation using the Tsallis entropy and a cutoff hypothesis, motivated by clinical observations. The obtained expression shows a remarkable agreement with the experimental data found in the literature.
Maximum Estrada Index of Bicyclic Graphs
Wang, Long; Wang, Yi
2012-01-01
Let $G$ be a simple graph of order $n$, let $\\lambda_1(G),\\lambda_2(G),...,\\lambda_n(G)$ be the eigenvalues of the adjacency matrix of $G$. The Esrada index of $G$ is defined as $EE(G)=\\sum_{i=1}^{n}e^{\\lambda_i(G)}$. In this paper we determine the unique graph with maximum Estrada index among bicyclic graphs with fixed order.
Maximum privacy without coherence, zero-error
Leung, Debbie; Yu, Nengkun
2016-09-01
We study the possible difference between the quantum and the private capacities of a quantum channel in the zero-error setting. For a family of channels introduced by Leung et al. [Phys. Rev. Lett. 113, 030512 (2014)], we demonstrate an extreme difference: the zero-error quantum capacity is zero, whereas the zero-error private capacity is maximum given the quantum output dimension.
Automatic maximum entropy spectral reconstruction in NMR.
Mobli, Mehdi; Maciejewski, Mark W; Gryk, Michael R; Hoch, Jeffrey C
2007-10-01
Developments in superconducting magnets, cryogenic probes, isotope labeling strategies, and sophisticated pulse sequences together have enabled the application, in principle, of high-resolution NMR spectroscopy to biomolecular systems approaching 1 megadalton. In practice, however, conventional approaches to NMR that utilize the fast Fourier transform, which require data collected at uniform time intervals, result in prohibitively lengthy data collection times in order to achieve the full resolution afforded by high field magnets. A variety of approaches that involve nonuniform sampling have been proposed, each utilizing a non-Fourier method of spectrum analysis. A very general non-Fourier method that is capable of utilizing data collected using any of the proposed nonuniform sampling strategies is maximum entropy reconstruction. A limiting factor in the adoption of maximum entropy reconstruction in NMR has been the need to specify non-intuitive parameters. Here we describe a fully automated system for maximum entropy reconstruction that requires no user-specified parameters. A web-accessible script generator provides the user interface to the system.
Maximum entropy analysis of cosmic ray composition
Nosek, Dalibor; Vícha, Jakub; Trávníček, Petr; Nosková, Jana
2016-01-01
We focus on the primary composition of cosmic rays with the highest energies that cause extensive air showers in the Earth's atmosphere. A way of examining the two lowest order moments of the sample distribution of the depth of shower maximum is presented. The aim is to show that useful information about the composition of the primary beam can be inferred with limited knowledge we have about processes underlying these observations. In order to describe how the moments of the depth of shower maximum depend on the type of primary particles and their energies, we utilize a superposition model. Using the principle of maximum entropy, we are able to determine what trends in the primary composition are consistent with the input data, while relying on a limited amount of information from shower physics. Some capabilities and limitations of the proposed method are discussed. In order to achieve a realistic description of the primary mass composition, we pay special attention to the choice of the parameters of the sup...
A Maximum Resonant Set of Polyomino Graphs
Zhang Heping
2016-05-01
Full Text Available A polyomino graph P is a connected finite subgraph of the infinite plane grid such that each finite face is surrounded by a regular square of side length one and each edge belongs to at least one square. A dimer covering of P corresponds to a perfect matching. Different dimer coverings can interact via an alternating cycle (or square with respect to them. A set of disjoint squares of P is a resonant set if P has a perfect matching M so that each one of those squares is M-alternating. In this paper, we show that if K is a maximum resonant set of P, then P − K has a unique perfect matching. We further prove that the maximum forcing number of a polyomino graph is equal to the cardinality of a maximum resonant set. This confirms a conjecture of Xu et al. [26]. We also show that if K is a maximal alternating set of P, then P − K has a unique perfect matching.
The maximum rate of mammal evolution
Evans, Alistair R.; Jones, David; Boyer, Alison G.; Brown, James H.; Costa, Daniel P.; Ernest, S. K. Morgan; Fitzgerald, Erich M. G.; Fortelius, Mikael; Gittleman, John L.; Hamilton, Marcus J.; Harding, Larisa E.; Lintulaakso, Kari; Lyons, S. Kathleen; Okie, Jordan G.; Saarinen, Juha J.; Sibly, Richard M.; Smith, Felisa A.; Stephens, Patrick R.; Theodor, Jessica M.; Uhen, Mark D.
2012-03-01
How fast can a mammal evolve from the size of a mouse to the size of an elephant? Achieving such a large transformation calls for major biological reorganization. Thus, the speed at which this occurs has important implications for extensive faunal changes, including adaptive radiations and recovery from mass extinctions. To quantify the pace of large-scale evolution we developed a metric, clade maximum rate, which represents the maximum evolutionary rate of a trait within a clade. We applied this metric to body mass evolution in mammals over the last 70 million years, during which multiple large evolutionary transitions occurred in oceans and on continents and islands. Our computations suggest that it took a minimum of 1.6, 5.1, and 10 million generations for terrestrial mammal mass to increase 100-, and 1,000-, and 5,000-fold, respectively. Values for whales were down to half the length (i.e., 1.1, 3, and 5 million generations), perhaps due to the reduced mechanical constraints of living in an aquatic environment. When differences in generation time are considered, we find an exponential increase in maximum mammal body mass during the 35 million years following the Cretaceous-Paleogene (K-Pg) extinction event. Our results also indicate a basic asymmetry in macroevolution: very large decreases (such as extreme insular dwarfism) can happen at more than 10 times the rate of increases. Our findings allow more rigorous comparisons of microevolutionary and macroevolutionary patterns and processes.
Minimal Length, Friedmann Equations and Maximum Density
Awad, Adel
2014-01-01
Inspired by Jacobson's thermodynamic approach[gr-qc/9504004], Cai et al [hep-th/0501055,hep-th/0609128] have shown the emergence of Friedmann equations from the first law of thermodynamics. We extend Akbar--Cai derivation [hep-th/0609128] of Friedmann equations to accommodate a general entropy-area law. Studying the resulted Friedmann equations using a specific entropy-area law, which is motivated by the generalized uncertainty principle (GUP), reveals the existence of a maximum energy density closed to Planck density. Allowing for a general continuous pressure $p(\\rho,a)$ leads to bounded curvature invariants and a general nonsingular evolution. In this case, the maximum energy density is reached in a finite time and there is no cosmological evolution beyond this point which leaves the big bang singularity inaccessible from a spacetime prospective. The existence of maximum energy density and a general nonsingular evolution is independent of the equation of state and the spacial curvature $k$. As an example w...
Maximum saliency bias in binocular fusion
Lu, Yuhao; Stafford, Tom; Fox, Charles
2016-07-01
Subjective experience at any instant consists of a single ("unitary"), coherent interpretation of sense data rather than a "Bayesian blur" of alternatives. However, computation of Bayes-optimal actions has no role for unitary perception, instead being required to integrate over every possible action-percept pair to maximise expected utility. So what is the role of unitary coherent percepts, and how are they computed? Recent work provided objective evidence for non-Bayes-optimal, unitary coherent, perception and action in humans; and further suggested that the percept selected is not the maximum a posteriori percept but is instead affected by utility. The present study uses a binocular fusion task first to reproduce the same effect in a new domain, and second, to test multiple hypotheses about exactly how utility may affect the percept. After accounting for high experimental noise, it finds that both Bayes optimality (maximise expected utility) and the previously proposed maximum-utility hypothesis are outperformed in fitting the data by a modified maximum-salience hypothesis, using unsigned utility magnitudes in place of signed utilities in the bias function.
The maximum rate of mammal evolution
Evans, Alistair R.; Jones, David; Boyer, Alison G.; Brown, James H.; Costa, Daniel P.; Ernest, S. K. Morgan; Fitzgerald, Erich M. G.; Fortelius, Mikael; Gittleman, John L.; Hamilton, Marcus J.; Harding, Larisa E.; Lintulaakso, Kari; Lyons, S. Kathleen; Okie, Jordan G.; Saarinen, Juha J.; Sibly, Richard M.; Smith, Felisa A.; Stephens, Patrick R.; Theodor, Jessica M.; Uhen, Mark D.
2012-01-01
How fast can a mammal evolve from the size of a mouse to the size of an elephant? Achieving such a large transformation calls for major biological reorganization. Thus, the speed at which this occurs has important implications for extensive faunal changes, including adaptive radiations and recovery from mass extinctions. To quantify the pace of large-scale evolution we developed a metric, clade maximum rate, which represents the maximum evolutionary rate of a trait within a clade. We applied this metric to body mass evolution in mammals over the last 70 million years, during which multiple large evolutionary transitions occurred in oceans and on continents and islands. Our computations suggest that it took a minimum of 1.6, 5.1, and 10 million generations for terrestrial mammal mass to increase 100-, and 1,000-, and 5,000-fold, respectively. Values for whales were down to half the length (i.e., 1.1, 3, and 5 million generations), perhaps due to the reduced mechanical constraints of living in an aquatic environment. When differences in generation time are considered, we find an exponential increase in maximum mammal body mass during the 35 million years following the Cretaceous–Paleogene (K–Pg) extinction event. Our results also indicate a basic asymmetry in macroevolution: very large decreases (such as extreme insular dwarfism) can happen at more than 10 times the rate of increases. Our findings allow more rigorous comparisons of microevolutionary and macroevolutionary patterns and processes. PMID:22308461
Maximum-biomass prediction of homofermentative Lactobacillus.
Cui, Shumao; Zhao, Jianxin; Liu, Xiaoming; Chen, Yong Q; Zhang, Hao; Chen, Wei
2016-07-01
Fed-batch and pH-controlled cultures have been widely used for industrial production of probiotics. The aim of this study was to systematically investigate the relationship between the maximum biomass of different homofermentative Lactobacillus and lactate accumulation, and to develop a prediction equation for the maximum biomass concentration in such cultures. The accumulation of the end products and the depletion of nutrients by various strains were evaluated. In addition, the minimum inhibitory concentrations (MICs) of acid anions for various strains at pH 7.0 were examined. The lactate concentration at the point of complete inhibition was not significantly different from the MIC of lactate for all of the strains, although the inhibition mechanism of lactate and acetate on Lactobacillus rhamnosus was different from the other strains which were inhibited by the osmotic pressure caused by acid anions at pH 7.0. When the lactate concentration accumulated to the MIC, the strains stopped growing. The maximum biomass was closely related to the biomass yield per unit of lactate produced (YX/P) and the MIC (C) of lactate for different homofermentative Lactobacillus. Based on the experimental data obtained using different homofermentative Lactobacillus, a prediction equation was established as follows: Xmax - X0 = (0.59 ± 0.02)·YX/P·C.
The maximum rate of mammal evolution.
Evans, Alistair R; Jones, David; Boyer, Alison G; Brown, James H; Costa, Daniel P; Ernest, S K Morgan; Fitzgerald, Erich M G; Fortelius, Mikael; Gittleman, John L; Hamilton, Marcus J; Harding, Larisa E; Lintulaakso, Kari; Lyons, S Kathleen; Okie, Jordan G; Saarinen, Juha J; Sibly, Richard M; Smith, Felisa A; Stephens, Patrick R; Theodor, Jessica M; Uhen, Mark D
2012-03-13
How fast can a mammal evolve from the size of a mouse to the size of an elephant? Achieving such a large transformation calls for major biological reorganization. Thus, the speed at which this occurs has important implications for extensive faunal changes, including adaptive radiations and recovery from mass extinctions. To quantify the pace of large-scale evolution we developed a metric, clade maximum rate, which represents the maximum evolutionary rate of a trait within a clade. We applied this metric to body mass evolution in mammals over the last 70 million years, during which multiple large evolutionary transitions occurred in oceans and on continents and islands. Our computations suggest that it took a minimum of 1.6, 5.1, and 10 million generations for terrestrial mammal mass to increase 100-, and 1,000-, and 5,000-fold, respectively. Values for whales were down to half the length (i.e., 1.1, 3, and 5 million generations), perhaps due to the reduced mechanical constraints of living in an aquatic environment. When differences in generation time are considered, we find an exponential increase in maximum mammal body mass during the 35 million years following the Cretaceous-Paleogene (K-Pg) extinction event. Our results also indicate a basic asymmetry in macroevolution: very large decreases (such as extreme insular dwarfism) can happen at more than 10 times the rate of increases. Our findings allow more rigorous comparisons of microevolutionary and macroevolutionary patterns and processes.
Boundary condition effects on maximum groundwater withdrawal in coastal aquifers.
Lu, Chunhui; Chen, Yiming; Luo, Jian
2012-01-01
Prevention of sea water intrusion in coastal aquifers subject to groundwater withdrawal requires optimization of well pumping rates to maximize the water supply while avoiding sea water intrusion. Boundary conditions and the aquifer domain size have significant influences on simulating flow and concentration fields and estimating maximum pumping rates. In this study, an analytical solution is derived based on the potential-flow theory for evaluating maximum groundwater pumping rates in a domain with a constant hydraulic head landward boundary. An empirical correction factor, which was introduced by Pool and Carrera (2011) to account for mixing in the case with a constant recharge rate boundary condition, is found also applicable for the case with a constant hydraulic head boundary condition, and therefore greatly improves the usefulness of the sharp-interface analytical solution. Comparing with the solution for a constant recharge rate boundary, we find that a constant hydraulic head boundary often yields larger estimations of the maximum pumping rate and when the domain size is five times greater than the distance between the well and the coastline, the effect of setting different landward boundary conditions becomes insignificant with a relative difference between two solutions less than 2.5%. These findings can serve as a preliminary guidance for conducting numerical simulations and designing tank-scale laboratory experiments for studying groundwater withdrawal problems in coastal aquifers with minimized boundary condition effects.
LIBOR troubles: Anomalous movements detection based on maximum entropy
Bariviera, Aurelio F.; Martín, María T.; Plastino, Angelo; Vampa, Victoria
2016-05-01
According to the definition of the London Interbank Offered Rate (LIBOR), contributing banks should give fair estimates of their own borrowing costs in the interbank market. Between 2007 and 2009, several banks made inappropriate submissions of LIBOR, sometimes motivated by profit-seeking from their trading positions. In 2012, several newspapers' articles began to cast doubt on LIBOR integrity, leading surveillance authorities to conduct investigations on banks' behavior. Such procedures resulted in severe fines imposed to involved banks, who recognized their financial inappropriate conduct. In this paper, we uncover such unfair behavior by using a forecasting method based on the Maximum Entropy principle. Our results are robust against changes in parameter settings and could be of great help for market surveillance.
Reflecting and Polarizing Properties of Conductive Fabrics in Ultra-High Frequency Range
Oleg Kiprijanovič
2015-09-01
Full Text Available The system based on ultra-wide band (UWB signals was employed for qualitative estimation of attenuating, reflecting and polarizing properties of conductive fabrics, capable to prevent local static charge accumulation. Pulsed excitation of triangle monopole antenna of 6.5 cm height by rectangular electric pulses induced radiation of UWB signals with spectral density of power having maximum in ultra-high frequency (UHF range. The same antenna was used for the radiated signal receiving. Filters and amplifiers of different passband were employed to divide UHF range into subranges of 0.3-0.55 GHz, 0.55-1 GHz, 1-2 GHz and 2-4 GHz bands. The free space method, when conductive fabric samples of 50x50 cm2 were placed between transmitting and receiving antennas, was used to imitate a practical application. Received wideband signals corresponding to the defined range were detected by unbiased detectors. The fabrics made of two types of warps, containing different threads with conductive yarns, were investigated. It was estimated attenuation and reflective properties of the fabrics when electric field is collinear or perpendicular to thread direction. In the UHF range it was revealed good reflecting properties of the fabrics containing metallic component in the threads. The system has advantages but not without a certain shortcoming. Adapting it for specific tasks should lead to more effective usage, including yet unused properties of the UWB signals.
Composite fermions for fractionally filled Chern bands
Shankar, R.
2012-02-01
We consider fractionally filled bands with a non-zero Chern index that exhibit the Fractional Quantum Hall Effect in zero external fieldootnotetextR. Roy and S. Sondhi, Physics 4, 46 (2011) and papers reviewed therein. a possibility supported by numerical work.ootnotetextIbid. Analytic treatments are complicated by a non-constant Berry flux and the absence of Composite Fermions (CF), which would not only single out preferred fractions, but also allow us compute numerous response functions at nonzero frequencies, wavelengths and temperature using either Chern-Simons field theory or our Hamiltonian formalism.ootnotetextG. Murthy and R. Shankar, Rev. Mod. Phys., 75, 1101, (2003) We describe a way to introduce CF's by embedding the Chern band in an auxiliary problem involving Landau levels. The embedded band can be designed to approximate a prescribed Chern density in k space which determines the commutation relations of the charge densities and hence preserve all dynamical and algebraic aspects of the original problem. We find some states for which the filling fraction and dimensionless Hall conductance are not equal. The approach extends to two-dimensional time-reversal invariant topological insulators and to composite bosons.
First-principle study on the effect of high Ag–2N co-doping on the conductivity of ZnO
Wenxue Zhang; Yuxing Bai; Cheng He; Xiaolei Wu
2015-06-01
The geometric structure, band structure (BS) and density of state (DOS) of pure and p-type co-doping wurtzite ZnO have been investigated by the first-principle ultrasoft pseudopotential method with the generalized gradient approximation. These structures induce fully occupied defect states above the valence-band maximum of doped ZnO. The calculation results show that in the range of high doping concentration, when the co-doping concentration is more than a certain value, the conductivity decreased with the increase of co-doping concentration of Ag–2N in ZnO. Our findings suggest that co-doping of Ag–2N could efficiently enhance the N dopant solubility and is likely to yield better p-type conductivity.
Magnard, Christophe; Small, David; Meier, Erich
2015-01-01
The phase estimation of cross-track multibaseline synthetic aperture interferometric data is usually thought to be very efficiently achieved using the maximum likelihood (ML) method. The suitability of this method is investigated here as applied to airborne single pass multibaseline data. Experimental interferometric data acquired with a Ka-band sensor were processed using (a) a ML method that fuses the complex data from all receivers and (b) a coarse-to-fine method that only uses the interme...
Kernel principal component and maximum autocorrelation factor analyses for change detection
Nielsen, Allan Aasbjerg; Canty, Morton John
2009-01-01
in Nevada acquired on successive passes of the Landsat-5 satellite in August-September 1991. The six-band images (the thermal band is omitted) with 1,000 by 1,000 28.5 m pixels were first processed with the iteratively re-weighted MAD (IR-MAD) algorithm in order to discriminate change. Then the MAD image......Principal component analysis (PCA) has often been used to detect change over time in remotely sensed images. A commonly used technique consists of finding the projections along the eigenvectors for data consisting of pair-wise (perhaps generalized) differences between corresponding spectral bands...... covering the same geographical region acquired at two different time points. In this paper kernel versions of the principal component and maximum autocorrelation factor (MAF) transformations are used to carry out the analysis. An example is based on bi-temporal Landsat-5 TM imagery over irrigation fields...
Direction of Arrival Estimation of Wide-Band Emitters
Hojati, Shahram
Most published algorithms for DOA (Direction of Arrival) estimation of incoming signals by spatially dispersed electromagnetic or acoustic sources rely on the narrow -band approximation. This approach is inadequate from at least two standpoints. First, the approximation breaks down in many practical situation of interest; and, second, it inhibits the exploitation of intrinsic degrees of freedom of wide-band emitters to achieve additional improvements in angular resolution. In this dissertation the direction of arrival estimation problem is examined without employing the customary narrow-band restriction. A class of algorithms that has been successfully employed for DOA estimation of narrow-band signals exploits the eigenstructure of the array correlation matrix. Although they are sub-optimum, these algorithms enjoy substantial computational advantages over the optimum maximum likelihood approaches. It is shown that the frequency domain representation of the array output leads to a spectral coherence matrix that exhibits an eigenstructure similar to the correlation matrix used under the narrow-band approximation. As a consequence, narrow-band eigenbased algorithms can be adopted to DOA estimation without restrictions on signal bandwidth. The Spectral Coherence Technique (SCT) is applied in conjunction with the MUSIC, the Root-Music and a modified form of the Pisarenko algorithms to DOA estimation of wide -band emitters using linear arrays. Simulation indicate that all three algorithms afford comparable performance: the variance of the angle of arrival estimate decreases approximately inversely with the signal time bandwidth product. They differ, however, with regard to computational efficiency. In particular, the wide-band version of the algorithm MUSIC requires substantially more processing time than either the Pisarenko or the Root-Music algorithms. These algorithms also yield comparable performance to an alternative approach using frequency segmentation (Wi
Electron heat conductivity of epitaxial graphene on silicon carbide
Alisultanov, Z. Z.; Meilanov, R. P.
2016-08-01
The diagonal component of the electron heat conductivity tensor of epitaxial graphene formed in a semiconductor has been investigated within a simple analytical model. It is shown that the heat conductivity sharply changes at a chemical potential close to the substrate band gap edge. Low-temperature expressions for the heat conductivity are derived.
Wang, Zefang; Zhao, Liang; Mak, Kin Fai; Shan, Jie
2017-02-01
We study the electronic band structure in the K/K' valleys of the Brillouin zone of monolayer WSe2 and MoSe2 by optical reflection and photoluminescence spectroscopy on dual-gated field-effect devices. Our experiment reveals the distinct spin polarization in the conduction bands of these compounds by a systematic study of the doping dependence of the A and B excitonic resonances. Electrons in the highest-energy valence band and the lowest-energy conduction band have antiparallel spins in monolayer WSe2, and parallel spins in monolayer MoSe2. The spin splitting is determined to be hundreds of meV for the valence bands and tens of meV for the conduction bands, which are in good agreement with first principles calculations. These values also suggest that both n- and p-type WSe2 and MoSe2 can be relevant for spin- and valley-based applications
GROWTH ANALYSIS AND ASSESSMENT OF PIG’S BIOLOGICAL MAXIMUM
Dragutin Vincek
2010-06-01
Full Text Available The aim of this study was to determine a mathematical model which can be used to describe the growth of domestic animals in an attempt to predict the optimal time of slaughter/weight or the development of body parts or tissues and estimate the biological maximum. The study was conducted on 60 pigs (30 barrows and 30 gilts in the interval between the age of 49 and 215 days. By applying the generalized logistic function, the growth of live weight and tissues were described. The observed gilts reached the inflection point in approximately 121 days (I = 70.7 kg. The point at which the interval of intensive growth starts was at the age of approximately 42 days, (TB=17.35 kg and the saturation point the pigs reached at the age of 200.5 days (TC=126.74 kg. The estimated biological maximum weight of gilts was 179.79 kg. The barrows reached the inflection point in approximately 149 days (I=92.2 kg. The point at which the intensive interval of growth starts was estimated at the age of approximately 52 days (TB=22.93 kg, and the saturation point the barrows reached at the age of 245 days (TC=164.8 kg. The estimated biological maximum weight of barrows was 233.25 kg. Muscle tissue of gilts reached the inflection point (I = 28.46 kg in approximately 110 days. The point at which the interval of intensive growth of muscle tissue starts (TB=6.06 kg was estimated at approximately 53 days, and the saturation point of growth (TC=52.25 kg the muscle tissue of gilts reached at the age of 162 days. The estimated maximum biological growth of muscle tissue in gilts was 75.79 kg. The muscle tissue of barrows reached the inflection point (I=28.78 kg in approximately 118 days, the point at which the interval of intensive growth starts (TB=6.36 kg at the age of approximately 35 days. The saturation point of muscle tissue growth in barrows (TC=52.51 kg was reached at the age of 202 days. The estimated maximum biological growth of muscle tissue in barrows was 75.74 kg. The
Relativistic Band Structure and Fermi Surface of PdTe2 by the LMTO Method
Jan, J. P.; Skriver, Hans Lomholt
1977-01-01
The energy bands of the trigonal layer compound PdTe2 have been calculated, using the relativistic linear muffin-tin orbitals method. The bandstructure is separated into three distinct regions with low-lying Te 5s bands, conduction bands formed by Pd 4d and Te 5p states, and high-lying bands formed...... by Pd 5p, Te 6s and Te 5d states. Density of states and joint density of states have been calculated from the bands determined over the appropriate irreducible zone. The Fermi surface consists of two closed sheets in band 11 and band 13, and sheets in band 12 connected to one another by tubes...
Strongly correlated impurity band superconductivity in diamond: X-ray spectroscopic evidence
G. Baskaran
2006-01-01
Full Text Available In a recent X-ray absorption study in boron doped diamond, Nakamura et al. have seen a well isolated narrow boron impurity band in non-superconducting samples and an additional narrow band at the chemical potential in a superconducting sample. We interpret the beautiful spectra as evidence for upper Hubbard band of a Mott insulating impurity band and an additional metallic 'mid-gap band' of a conducting 'self-doped' Mott insulator. This supports the basic framework of a recent theory of the present author of strongly correlated impurity band superconductivity (impurity band resonating valence bond, IBRVB theory in a template of a wide-gap insulator, with no direct involvement of valence band states.
DC electrical conductivity study of cerium doped conducting glass systems
Barde, R. V.; Waghuley, S. A.
2013-06-01
The glass samples of composition 60V2O5-5P2O5-(35-x)B2O3-xCeO2, (1 ≤ x ≤ 5) were prepared by the conventional melt quench method. The samples were characterized by X-ray diffraction and thermo gravimetric-differential thermal analysis. The glass transition temperature and crystallization temperature determined from TG-DTA analysis. The DC electrical conductivity has been carried out in the temperature range 303-473 K. The maximum conductivity and minimum activation energy were found to be 0.039 Scm-1 and 0.15 eV at 473 K for x=1, respectively.
Interrelation of Aromaticity and Conductivity of Graphene Dots/Antidots and Related Nanostructures
2016-01-01
It is illustrated and computationally verified by ab initio density functional theory and simple but powerful order-of-magnitude arguments, based on deformation energy ΔEdef in relation to the uncertainty principle, that the conductivity and aromaticity of graphene and graphene-based structures, such as graphene dots, antidots, and nanoribbons, are negatively interrelated for π aromatic structures, in agreement with recent experimental data. However, for σ aromaticity, the interrelation could be positive, especially for extended periodic structures. We predict that the conductivity of rectangular graphene dots and antidots, is anisotropic with much larger magnitude along the direction perpendicular to the zigzag edges, compared to the conductivity in direction parallel to them. The same is true for the polarizability and electron mobility. This is directly connected with the much higher aromaticity around the armchair edges compared to the aromaticity near the zigzag edges. Furthermore, contrary to what would be expected on the basis of simple arguments for defect states, we predict that antidot patterning could significantly improve the conductivity (sometimes by 1 order of magnitude) in one or both directions, depending on their number, arrangement, and passivation. For narrow atomically precise armchair nanoribbons (AGNRs) of finite length, both conductivity and energy gaps are dominated by lateral and longitudinal quantum confinement, which decrease with increasing length (for a given width), leading to a peculiar behavior of monotonically increasing “maximum conductivity” as the band gaps monotonically decrease. The electron distribution at the band edges of the AGNRs, in agreement with recent experimental data are well-localized at the zigzag edges. Using the concept of gap-determining LUMO–HOMO frontier states to avoid HOMOs and LUMOs localized at the zigzag edges, we can predict with very high accuracy the recently measured band gaps of AGNRs of
Maximum power operation of interacting molecular motors
Golubeva, Natalia; Imparato, Alberto
2013-01-01
We study the mechanical and thermodynamic properties of different traffic models for kinesin which are relevant in biological and experimental contexts. We find that motor-motor interactions play a fundamental role by enhancing the thermodynamic efficiency at maximum power of the motors......, as compared to the non-interacting system, in a wide range of biologically compatible scenarios. We furthermore consider the case where the motor-motor interaction directly affects the internal chemical cycle and investigate the effect on the system dynamics and thermodynamics....
Maximum a posteriori decoder for digital communications
Altes, Richard A. (Inventor)
1997-01-01
A system and method for decoding by identification of the most likely phase coded signal corresponding to received data. The present invention has particular application to communication with signals that experience spurious random phase perturbations. The generalized estimator-correlator uses a maximum a posteriori (MAP) estimator to generate phase estimates for correlation with incoming data samples and for correlation with mean phases indicative of unique hypothesized signals. The result is a MAP likelihood statistic for each hypothesized transmission, wherein the highest value statistic identifies the transmitted signal.
Kernel-based Maximum Entropy Clustering
JIANG Wei; QU Jiao; LI Benxi
2007-01-01
With the development of Support Vector Machine (SVM),the "kernel method" has been studied in a general way.In this paper,we present a novel Kernel-based Maximum Entropy Clustering algorithm (KMEC).By using mercer kernel functions,the proposed algorithm is firstly map the data from their original space to high dimensional space where the data are expected to be more separable,then perform MEC clustering in the feature space.The experimental results show that the proposed method has better performance in the non-hyperspherical and complex data structure.
The sun and heliosphere at solar maximum.
Smith, E J; Marsden, R G; Balogh, A; Gloeckler, G; Geiss, J; McComas, D J; McKibben, R B; MacDowall, R J; Lanzerotti, L J; Krupp, N; Krueger, H; Landgraf, M
2003-11-14
Recent Ulysses observations from the Sun's equator to the poles reveal fundamental properties of the three-dimensional heliosphere at the maximum in solar activity. The heliospheric magnetic field originates from a magnetic dipole oriented nearly perpendicular to, instead of nearly parallel to, the Sun's rotation axis. Magnetic fields, solar wind, and energetic charged particles from low-latitude sources reach all latitudes, including the polar caps. The very fast high-latitude wind and polar coronal holes disappear and reappear together. Solar wind speed continues to be inversely correlated with coronal temperature. The cosmic ray flux is reduced symmetrically at all latitudes.
Maximum entropy signal restoration with linear programming
Mastin, G.A.; Hanson, R.J.
1988-05-01
Dantzig's bounded-variable method is used to express the maximum entropy restoration problem as a linear programming problem. This is done by approximating the nonlinear objective function with piecewise linear segments, then bounding the variables as a function of the number of segments used. The use of a linear programming approach allows equality constraints found in the traditional Lagrange multiplier method to be relaxed. A robust revised simplex algorithm is used to implement the restoration. Experimental results from 128- and 512-point signal restorations are presented.
Multi-Channel Maximum Likelihood Pitch Estimation
Christensen, Mads Græsbøll
2012-01-01
In this paper, a method for multi-channel pitch estimation is proposed. The method is a maximum likelihood estimator and is based on a parametric model where the signals in the various channels share the same fundamental frequency but can have different amplitudes, phases, and noise characteristics....... This essentially means that the model allows for different conditions in the various channels, like different signal-to-noise ratios, microphone characteristics and reverberation. Moreover, the method does not assume that a certain array structure is used but rather relies on a more general model and is hence...
Maximum entropy PDF projection: A review
Baggenstoss, Paul M.
2017-06-01
We review maximum entropy (MaxEnt) PDF projection, a method with wide potential applications in statistical inference. The method constructs a sampling distribution for a high-dimensional vector x based on knowing the sampling distribution p(z) of a lower-dimensional feature z = T (x). Under mild conditions, the distribution p(x) having highest possible entropy among all distributions consistent with p(z) may be readily found. Furthermore, the MaxEnt p(x) may be sampled, making the approach useful in Monte Carlo methods. We review the theorem and present a case study in model order selection and classification for handwritten character recognition.
CORA: Emission Line Fitting with Maximum Likelihood
Ness, Jan-Uwe; Wichmann, Rainer
2011-12-01
CORA analyzes emission line spectra with low count numbers and fits them to a line using the maximum likelihood technique. CORA uses a rigorous application of Poisson statistics. From the assumption of Poissonian noise, the software derives the probability for a model of the emission line spectrum to represent the measured spectrum. The likelihood function is used as a criterion for optimizing the parameters of the theoretical spectrum and a fixed point equation is derived allowing an efficient way to obtain line fluxes. CORA has been applied to an X-ray spectrum with the Low Energy Transmission Grating Spectrometer (LETGS) on board the Chandra observatory.
Dynamical maximum entropy approach to flocking
Cavagna, Andrea; Giardina, Irene; Ginelli, Francesco; Mora, Thierry; Piovani, Duccio; Tavarone, Raffaele; Walczak, Aleksandra M.
2014-04-01
We derive a new method to infer from data the out-of-equilibrium alignment dynamics of collectively moving animal groups, by considering the maximum entropy model distribution consistent with temporal and spatial correlations of flight direction. When bird neighborhoods evolve rapidly, this dynamical inference correctly learns the parameters of the model, while a static one relying only on the spatial correlations fails. When neighbors change slowly and the detailed balance is satisfied, we recover the static procedure. We demonstrate the validity of the method on simulated data. The approach is applicable to other systems of active matter.
Maximum Temperature Detection System for Integrated Circuits
Frankiewicz, Maciej; Kos, Andrzej
2015-03-01
The paper describes structure and measurement results of the system detecting present maximum temperature on the surface of an integrated circuit. The system consists of the set of proportional to absolute temperature sensors, temperature processing path and a digital part designed in VHDL. Analogue parts of the circuit where designed with full-custom technique. The system is a part of temperature-controlled oscillator circuit - a power management system based on dynamic frequency scaling method. The oscillator cooperates with microprocessor dedicated for thermal experiments. The whole system is implemented in UMC CMOS 0.18 μm (1.8 V) technology.
Zipf's law and maximum sustainable growth
Malevergne, Y; Sornette, D
2010-01-01
Zipf's law states that the number of firms with size greater than S is inversely proportional to S. Most explanations start with Gibrat's rule of proportional growth but require additional constraints. We show that Gibrat's rule, at all firm levels, yields Zipf's law under a balance condition between the effective growth rate of incumbent firms (which includes their possible demise) and the growth rate of investments in entrant firms. Remarkably, Zipf's law is the signature of the long-term optimal allocation of resources that ensures the maximum sustainable growth rate of an economy.
Band-structure engineering in conjugated 2D polymers.
Gutzler, Rico
2016-10-26
Conjugated polymers find widespread application in (opto)electronic devices, sensing, and as catalysts. Their common one-dimensional structure can be extended into the second dimension to create conjugated planar sheets of covalently linked molecules. Extending π-conjugation into the second dimension unlocks a new class of semiconductive polymers which as a consequence of their unique electronic properties can find usability in numerous applications. In this article the theoretical band structures of a set of conjugated 2D polymers are compared and information on the important characteristics band gap and valence/conduction band dispersion is extracted. The great variance in these characteristics within the investigated set suggests 2D polymers as exciting materials in which band-structure engineering can be used to tailor sheet-like organic materials with desired electronic properties.
Multidimensional Heat Conduction
Rode, Carsten
1998-01-01
Analytical theory of multidimensional heat conduction. General heat conduction equation in three dimensions. Steay state, analytical solutions. The Laplace equation. Method of separation of variables. Principle of superposition. Shape factors. Transient, multidimensional heat conduction....
Band bending and electrical transport at chemically modified silicon surfaces
Lopinski, Greg; Ward, Tim; Hul'Ko, Oleksa; Boukherroub, Rabah
2002-03-01
High resolution electron energy loss spectroscopy (HREELS) and electrical transport measurements have been used to investigate how various chemical modifications give rise to band bending and alter the conductivity of Si(111) surfaces. HREELS is a sensitive probe of band bending through observations of the low frequency free carrier plasmon mode. For hydrogen terminated surfaces, prepared by the standard etch in ammonium flouride, HREELS measurements on both n and n+ substrates are consistent with nearly flat bands. Chlorination of these surfaces results in substantial upward band bending due to the strong electron withdrawing nature of the chlorine, driving the surface into inversion. The presence of this inversion layer on high resistivity n-type samples is observed through a substantial enhancement of the surface conductivity (relative to the H-terminated surface), as well as through broadening of the quasi-elastic peak in the HREELS measurements. We have also begun to examine organically modified silicon surfaces, prepared by various wet chemical reactions with the H-terminated surface. Decyl modified Si(111) surfaces are seen to exhibit a small degree of band bending, attributed to extrinsic defect states cause by a small degree of oxidation accompanying the modification reaction. The prospects of using conductivity as an in-situ monitor of the rate of these reactions will be discussed.
Li, Guiying; Lu, Dengsheng; Moran, Emilio; Dutra, Luciano; Batistella, Mateus
2012-06-01
This paper explores the use of ALOS (Advanced Land Observing Satellite) PALSARL-band (Phased Array type L-band Synthetic Aperture Radar) and RADARSAT-2 C-band data for land-cover classification in a tropical moist region. Transformed divergence was used to identify potential textural images which were calculated with the gray-level co-occurrence matrix method. The standard deviation of selected textural images and correlation coefficients between them were then used to determine the best combination of texture images for land-cover classification. Classification results based on different scenarios with maximum likelihood classifier were compared. Based on the identified best scenarios, different classification algorithms - maximum likelihood classifier, classification tree analysis, Fuzzy ARTMAP (a neural-network method), k-nearest neighbor, object-based classification, and support vector machine were compared for examining which algorithm was suitable for land-cover classification in the tropical moist region. This research indicates that the combination of radiometric images and their textures provided considerably better classification accuracies than individual datasets. The L-band data provided much better land-cover classification than C-band data but neither L-band nor C-band was suitable for fine land-cover classification system, no matter which classification algorithm was used. L-band data provided reasonably good classification accuracies for coarse land-cover classification system such as forest, succession, agropasture, water, wetland, and urban with an overall classification accuracy of 72.2%, but C-band data provided only 54.7%. Compared to the maximum likelihood classifier, both classification tree analysis and Fuzzy ARTMAP provided better performances, object-based classification and support vector machine had similar performances, and k-nearest neighbor performed poorly. More research should address the use of multitemporal radar data and the
Accurate structural correlations from maximum likelihood superpositions.
Douglas L Theobald
2008-02-01
Full Text Available The cores of globular proteins are densely packed, resulting in complicated networks of structural interactions. These interactions in turn give rise to dynamic structural correlations over a wide range of time scales. Accurate analysis of these complex correlations is crucial for understanding biomolecular mechanisms and for relating structure to function. Here we report a highly accurate technique for inferring the major modes of structural correlation in macromolecules using likelihood-based statistical analysis of sets of structures. This method is generally applicable to any ensemble of related molecules, including families of nuclear magnetic resonance (NMR models, different crystal forms of a protein, and structural alignments of homologous proteins, as well as molecular dynamics trajectories. Dominant modes of structural correlation are determined using principal components analysis (PCA of the maximum likelihood estimate of the correlation matrix. The correlations we identify are inherently independent of the statistical uncertainty and dynamic heterogeneity associated with the structural coordinates. We additionally present an easily interpretable method ("PCA plots" for displaying these positional correlations by color-coding them onto a macromolecular structure. Maximum likelihood PCA of structural superpositions, and the structural PCA plots that illustrate the results, will facilitate the accurate determination of dynamic structural correlations analyzed in diverse fields of structural biology.
Maximum entropy production and the fluctuation theorem
Dewar, R C [Unite EPHYSE, INRA Centre de Bordeaux-Aquitaine, BP 81, 33883 Villenave d' Ornon Cedex (France)
2005-05-27
Recently the author used an information theoretical formulation of non-equilibrium statistical mechanics (MaxEnt) to derive the fluctuation theorem (FT) concerning the probability of second law violating phase-space paths. A less rigorous argument leading to the variational principle of maximum entropy production (MEP) was also given. Here a more rigorous and general mathematical derivation of MEP from MaxEnt is presented, and the relationship between MEP and the FT is thereby clarified. Specifically, it is shown that the FT allows a general orthogonality property of maximum information entropy to be extended to entropy production itself, from which MEP then follows. The new derivation highlights MEP and the FT as generic properties of MaxEnt probability distributions involving anti-symmetric constraints, independently of any physical interpretation. Physically, MEP applies to the entropy production of those macroscopic fluxes that are free to vary under the imposed constraints, and corresponds to selection of the most probable macroscopic flux configuration. In special cases MaxEnt also leads to various upper bound transport principles. The relationship between MaxEnt and previous theories of irreversible processes due to Onsager, Prigogine and Ziegler is also clarified in the light of these results. (letter to the editor)
Thermodynamic hardness and the maximum hardness principle
Franco-Pérez, Marco; Gázquez, José L.; Ayers, Paul W.; Vela, Alberto
2017-08-01
An alternative definition of hardness (called the thermodynamic hardness) within the grand canonical ensemble formalism is proposed in terms of the partial derivative of the electronic chemical potential with respect to the thermodynamic chemical potential of the reservoir, keeping the temperature and the external potential constant. This temperature dependent definition may be interpreted as a measure of the propensity of a system to go through a charge transfer process when it interacts with other species, and thus it keeps the philosophy of the original definition. When the derivative is expressed in terms of the three-state ensemble model, in the regime of low temperatures and up to temperatures of chemical interest, one finds that for zero fractional charge, the thermodynamic hardness is proportional to T-1(I -A ) , where I is the first ionization potential, A is the electron affinity, and T is the temperature. However, the thermodynamic hardness is nearly zero when the fractional charge is different from zero. Thus, through the present definition, one avoids the presence of the Dirac delta function. We show that the chemical hardness defined in this way provides meaningful and discernible information about the hardness properties of a chemical species exhibiting integer or a fractional average number of electrons, and this analysis allowed us to establish a link between the maximum possible value of the hardness here defined, with the minimum softness principle, showing that both principles are related to minimum fractional charge and maximum stability conditions.
Maximum Likelihood Analysis in the PEN Experiment
Lehman, Martin
2013-10-01
The experimental determination of the π+ -->e+ ν (γ) decay branching ratio currently provides the most accurate test of lepton universality. The PEN experiment at PSI, Switzerland, aims to improve the present world average experimental precision of 3 . 3 ×10-3 to 5 ×10-4 using a stopped beam approach. During runs in 2008-10, PEN has acquired over 2 ×107 πe 2 events. The experiment includes active beam detectors (degrader, mini TPC, target), central MWPC tracking with plastic scintillator hodoscopes, and a spherical pure CsI electromagnetic shower calorimeter. The final branching ratio will be calculated using a maximum likelihood analysis. This analysis assigns each event a probability for 5 processes (π+ -->e+ ν , π+ -->μ+ ν , decay-in-flight, pile-up, and hadronic events) using Monte Carlo verified probability distribution functions of our observables (energies, times, etc). A progress report on the PEN maximum likelihood analysis will be presented. Work supported by NSF grant PHY-0970013.
Single-Band and Dual-Band Infrared Detectors
Ting, David Z. (Inventor); Gunapala, Sarath D. (Inventor); Soibel, Alexander (Inventor); Nguyen, Jean (Inventor); Khoshakhlagh, Arezou (Inventor)
2017-01-01
Bias-switchable dual-band infrared detectors and methods of manufacturing such detectors are provided. The infrared detectors are based on a back-to-back heterojunction diode design, where the detector structure consists of, sequentially, a top contact layer, a unipolar hole barrier layer, an absorber layer, a unipolar electron barrier, a second absorber, a second unipolar hole barrier, and a bottom contact layer. In addition, by substantially reducing the width of one of the absorber layers, a single-band infrared detector can also be formed.
Maximum length sequence and Bessel diffusers using active technologies
Cox, Trevor J.; Avis, Mark R.; Xiao, Lejun
2006-02-01
Active technologies can enable room acoustic diffusers to operate over a wider bandwidth than passive devices, by extending the bass response. Active impedance control can be used to generate surface impedance distributions which cause wavefront dispersion, as opposed to the more normal absorptive or pressure-cancelling target functions. This paper details the development of two new types of active diffusers which are difficult, if not impossible, to make as passive wide-band structures. The first type is a maximum length sequence diffuser where the well depths are designed to be frequency dependent to avoid the critical frequencies present in the passive device, and so achieve performance over a finite-bandwidth. The second is a Bessel diffuser, which exploits concepts developed for transducer arrays to form a hybrid absorber-diffuser. Details of the designs are given, and measurements of scattering and impedance used to show that the active diffusers are operating correctly over a bandwidth of about 100 Hz to 1.1 kHz. Boundary element method simulation is used to show how more application-realistic arrays of these devices would behave.
Adhesives for fixed orthodontic bands.
Millett, Declan T; Glenny, Anne-Marie; Mattick, Rye Cr; Hickman, Joy; Mandall, Nicky A
2016-10-25
Orthodontic treatment involves using fixed or removable appliances (dental braces) to correct the positions of teeth. It has been shown that the quality of treatment result obtained with fixed appliances is much better than with removable appliances. Fixed appliances are, therefore, favoured by most orthodontists for treatment. The success of a fixed orthodontic appliance depends on the metal attachments (brackets and bands) being attached securely to the teeth so that they do not become loose during treatment. Brackets are usually attached to the front and side teeth, whereas bands (metal rings that go round the teeth) are more commonly used on the back teeth (molars). A number of adhesives are available to attach bands to teeth and it is important to understand which group of adhesives bond most reliably, as well as reducing or preventing dental decay during the treatment period. To evaluate the effectiveness of the adhesives used to attach bands to teeth during fixed appliance treatment, in terms of:(1) how often the bands come off during treatment; and(2) whether they protect the banded teeth against decay during fixed appliance treatment. The following electronic databases were searched: Cochrane Oral Health's Trials Register (searched 2 June 2016), Cochrane Central Register of Controlled Trials (CENTRAL; 2016, Issue 5) in the Cochrane Library (searched 2 June 2016), MEDLINE Ovid (1946 to 2 June 2016) and EMBASE Ovid (1980 to 2 June 2016). We searched ClinicalTrials.gov and the World Health Organization International Clinical Trials Registry Platform for ongoing trials. No restrictions were placed on the language or date of publication when searching the electronic databases. Randomised and controlled clinical trials (RCTs and CCTs) (including split-mouth studies) of adhesives used to attach orthodontic bands to molar teeth were selected. Patients with full arch fixed orthodontic appliance(s) who had bands attached to molars were included. All review authors
Correlations in a Band Insulator
Sentef, Michael; Kunes, Jan; Kampf, Arno P.; Werner, Philipp
2010-03-01
Using DMFT we find a discontinuous band-to-Mott insulator transition upon an increase in the local Coulomb repulsion in a covalent band insulator [1,2], defined as a band insulator with partially filled local orbitals. The corresponding band gap is a hybridization gap arising from a particular pattern of hopping integrals. Similar characteristics apply to materials such as FeSi, FeSb2 or CoTiSb [3], some of which exhibit temperature dependent magnetic and transport properties reminiscent of Kondo insulators. Both charge and spin gaps in the covalent band insulator shrink with increasing Coulomb repulsion. At moderate interaction strengths the gap renormalization is well described by a renormalization factor analogous to the quasiparticle weight in a Fermi liquid. [4pt] [1] M. Sentef, J. Kunes, P. Werner, and A.P. Kampf, Phys. Rev. B 80, 155116 (2009) [0pt] [2] A.P. Kampf, M. Kollar, J. Kunes, M. Sentef, and D. Vollhardt, arXiv:0910.5126
William Band at Yenching University
Hu, Danian
2008-04-01
William Band (1906-1993) has been widely remembered by his American colleagues and students as ``a fine physicist and teacher,'' who taught at Washington State University in Pullman between 1949 and 1971 and authored Introduction to Quantum Statistics (1954) and Introduction to Mathematical Physics (1959). Not many, however, knew much about Band's early career, which was very ``uncommon and eventful.'' Born in England, Band graduated from University of Liverpool in 1927 with an MsSc degree in physics. Instead of pursuing his Ph.D. at Cambridge, he chose to teach physics at Yenching University, a prestigious Christian university in Beijing, China. Arriving in 1929, Band established his career at Yenching, where he taught and researched the theory of relativity and quantum mechanics, pioneered the study on low-temperature superconductivity in China, founded the country's first graduate program in physics, and chaired the Physics Department for 10 years until he fled from Yenching upon hearing of the attack on Pearl Harbor. It took him two years to cross Japanese occupied areas under the escort of the Communist force; he left China in early 1945. This presentation will explore Band's motivation to work in China and his contributions to the Chinese physics research and education.
Large acoustic band gaps created by rotating square rods in two-dimensional periodic composites
Li Xiao Ling; Hu He Fei; Zhong Shao; Liu You Yan
2003-01-01
Effects of orientations of square rods on the acoustic band gaps in two-dimensional periodic arrays of rigid solid rods embedded in air are studied. The acoustic band gaps will be opened and enlarged greatly by increasing the rotation angle. For any filling fraction F, the maximum acoustic band gaps appear at the same rotation angle theta = 45 deg. for the cases of F<=0.50, otherwise they will appear at different limit values theta sub c and the largest band gap is achieved at a filling fraction of about F=0.85. This gap-tuning effect will be stronger with increase in filling fraction. This tuning mechanism of band gap suggests a new way to design band gaps of two-dimensional phononic crystals. (rapid communication)
Lake Basin Fetch and Maximum Length/Width
Minnesota Department of Natural Resources — Linear features representing the Fetch, Maximum Length and Maximum Width of a lake basin. Fetch, maximum length and average width are calcuated from the lake polygon...
Study on the Correlation Between Chlorophyll Maximum and Remote Sensing Data
XIU Peng; LIU Yuguang
2006-01-01
Based on the in situ optical measurements in the Bohai Sea of China, which belongs to a typical case-2 water area, we studied the characteristics of DCM (deep chlorophyll maximum) such as its spatial distribution, vertical profile,etc.We found that when the depth of the chlorophyll maximum is comparatively small, even in turbid coastal water regions,there is always a good correlation between the concentrations of chlorophyll maximum and the satellite-received signals in blue-green spectral bands; the correlation is even better than that between the surface chlorophyll concentrations and the satellite-received signals.The strong correlation existing even in turbid coastal water regions indicates that an ocean color model to retrieve the concentration of DCM can be constructed for coastal waters if a comprehensive knowledge of the vertical distribution of chlorophyll concentration in the Bohai Sea of China is available.
Band Anticrossing in Dilute Germanium Carbides Using Hybrid Density Functionals
Stephenson, Chad A.; O'brien, William A.; Qi, Meng; Penninger, Michael; Schneider, William F.; Wistey, Mark A.
2016-04-01
Dilute germanium carbides (Ge1- x C x ) offer a direct bandgap for compact silicon photonics, but widely varying properties have been reported. This work reports improved band structure calculations for Ge1- x C x using ab initio simulations that employ the HSE06 exchange-correlation density functional. Contrary to Vegard's law, the conduction band minimum at Γ is consistently found to decrease with increasing C content, while L and X valleys change much more slowly. The calculated Ge bandgap is within 11% of experimental values. A decrease in energy at the Γ conduction band valley of (170 meV ± 50)/%C is predicted, leading to a direct bandgap for x > 0.008. These results indicate a promising material for Group IV lasers.
Andersen, O. Krogh
1975-01-01
and they specify the boundary conditions on a single MT or atomic sphere in the most convenient way. This method is very well suited for self-consistent calculations. The empty-lattice test is applied to the linear-MTO method and the free-electron energy bands are accurately reproduced. Finally, it is shown how......Two approximate methods for solving the band-structure problem in an efficient and physically transparent way are presented and discussed in detail. The variational principle for the one-electron Hamiltonian is used in both schemes, and the trial functions are linear combinations of energy......-independent augmented plane waves (APW) and muffin-tin orbitals (MTO), respectively. The secular equations are therefore eigenvalue equations, linear in energy. The trial functions are defined with respect to a muffin-tin (MT) potential and the energy bands depend on the potential in the spheres through potential...
P. Kutin
2006-04-01
Full Text Available This paper deals with design and realization of a PLL synthesizer for the microwave XÃ¢ÂˆÂ’band. The synthesizer is intended for use as a local oscillator in a KÃ¢ÂˆÂ’band downconverter. The design goal was to achieve very low phase noise and spurious free signal with a sufficient power level. For that purpose a low phase noise MMIC VCO was used in phase locked loop. The PLL works at half the output frequency, therefore there is a frequency doubler at the output of the PLL. The output signal from the frequency doubler is filtered by a band-pass filter and finally amplified by a single stage amplifier.
Maximum entropy principle and texture formation
Arminjon, M; Arminjon, Mayeul; Imbault, Didier
2006-01-01
The macro-to-micro transition in a heterogeneous material is envisaged as the selection of a probability distribution by the Principle of Maximum Entropy (MAXENT). The material is made of constituents, e.g. given crystal orientations. Each constituent is itself made of a large number of elementary constituents. The relevant probability is the volume fraction of the elementary constituents that belong to a given constituent and undergo a given stimulus. Assuming only obvious constraints in MAXENT means describing a maximally disordered material. This is proved to have the same average stimulus in each constituent. By adding a constraint in MAXENT, a new model, potentially interesting e.g. for texture prediction, is obtained.
MLDS: Maximum Likelihood Difference Scaling in R
Kenneth Knoblauch
2008-01-01
Full Text Available The MLDS package in the R programming language can be used to estimate perceptual scales based on the results of psychophysical experiments using the method of difference scaling. In a difference scaling experiment, observers compare two supra-threshold differences (a,b and (c,d on each trial. The approach is based on a stochastic model of how the observer decides which perceptual difference (or interval (a,b or (c,d is greater, and the parameters of the model are estimated using a maximum likelihood criterion. We also propose a method to test the model by evaluating the self-consistency of the estimated scale. The package includes an example in which an observer judges the differences in correlation between scatterplots. The example may be readily adapted to estimate perceptual scales for arbitrary physical continua.
Maximum Profit Configurations of Commercial Engines
Yiran Chen
2011-06-01
Full Text Available An investigation of commercial engines with finite capacity low- and high-price economic subsystems and a generalized commodity transfer law [n ∝ Δ (P m] in commodity flow processes, in which effects of the price elasticities of supply and demand are introduced, is presented in this paper. Optimal cycle configurations of commercial engines for maximum profit are obtained by applying optimal control theory. In some special cases, the eventual state—market equilibrium—is solely determined by the initial conditions and the inherent characteristics of two subsystems; while the different ways of transfer affect the model in respects of the specific forms of the paths of prices and the instantaneous commodity flow, i.e., the optimal configuration.
Maximum Segment Sum, Monadically (distilled tutorial
Jeremy Gibbons
2011-09-01
Full Text Available The maximum segment sum problem is to compute, given a list of integers, the largest of the sums of the contiguous segments of that list. This problem specification maps directly onto a cubic-time algorithm; however, there is a very elegant linear-time solution too. The problem is a classic exercise in the mathematics of program construction, illustrating important principles such as calculational development, pointfree reasoning, algebraic structure, and datatype-genericity. Here, we take a sideways look at the datatype-generic version of the problem in terms of monadic functional programming, instead of the traditional relational approach; the presentation is tutorial in style, and leavened with exercises for the reader.
Maximum Information and Quantum Prediction Algorithms
McElwaine, J N
1997-01-01
This paper describes an algorithm for selecting a consistent set within the consistent histories approach to quantum mechanics and investigates its properties. The algorithm uses a maximum information principle to select from among the consistent sets formed by projections defined by the Schmidt decomposition. The algorithm unconditionally predicts the possible events in closed quantum systems and ascribes probabilities to these events. A simple spin model is described and a complete classification of all exactly consistent sets of histories formed from Schmidt projections in the model is proved. This result is used to show that for this example the algorithm selects a physically realistic set. Other tentative suggestions in the literature for set selection algorithms using ideas from information theory are discussed.
Maximum process problems in optimal control theory
Goran Peskir
2005-01-01
Full Text Available Given a standard Brownian motion (Btt≥0 and the equation of motion dXt=vtdt+2dBt, we set St=max0≤s≤tXs and consider the optimal control problem supvE(Sτ−Cτ, where c>0 and the supremum is taken over all admissible controls v satisfying vt∈[μ0,μ1] for all t up to τ=inf{t>0|Xt∉(ℓ0,ℓ1} with μ0g∗(St, where s↦g∗(s is a switching curve that is determined explicitly (as the unique solution to a nonlinear differential equation. The solution found demonstrates that the problem formulations based on a maximum functional can be successfully included in optimal control theory (calculus of variations in addition to the classic problem formulations due to Lagrange, Mayer, and Bolza.
Maximum Spectral Luminous Efficacy of White Light
Murphy, T W
2013-01-01
As lighting efficiency improves, it is useful to understand the theoretical limits to luminous efficacy for light that we perceive as white. Independent of the efficiency with which photons are generated, there exists a spectrally-imposed limit to the luminous efficacy of any source of photons. We find that, depending on the acceptable bandpass and---to a lesser extent---the color temperature of the light, the ideal white light source achieves a spectral luminous efficacy of 250--370 lm/W. This is consistent with previous calculations, but here we explore the maximum luminous efficacy as a function of photopic sensitivity threshold, color temperature, and color rendering index; deriving peak performance as a function of all three parameters. We also present example experimental spectra from a variety of light sources, quantifying the intrinsic efficacy of their spectral distributions.
Maximum entropy model for business cycle synchronization
Xi, Ning; Muneepeerakul, Rachata; Azaele, Sandro; Wang, Yougui
2014-11-01
The global economy is a complex dynamical system, whose cyclical fluctuations can mainly be characterized by simultaneous recessions or expansions of major economies. Thus, the researches on the synchronization phenomenon are key to understanding and controlling the dynamics of the global economy. Based on a pairwise maximum entropy model, we analyze the business cycle synchronization of the G7 economic system. We obtain a pairwise-interaction network, which exhibits certain clustering structure and accounts for 45% of the entire structure of the interactions within the G7 system. We also find that the pairwise interactions become increasingly inadequate in capturing the synchronization as the size of economic system grows. Thus, higher-order interactions must be taken into account when investigating behaviors of large economic systems.
Quantum gravity momentum representation and maximum energy
Moffat, J. W.
2016-11-01
We use the idea of the symmetry between the spacetime coordinates xμ and the energy-momentum pμ in quantum theory to construct a momentum space quantum gravity geometry with a metric sμν and a curvature tensor Pλ μνρ. For a closed maximally symmetric momentum space with a constant 3-curvature, the volume of the p-space admits a cutoff with an invariant maximum momentum a. A Wheeler-DeWitt-type wave equation is obtained in the momentum space representation. The vacuum energy density and the self-energy of a charged particle are shown to be finite, and modifications of the electromagnetic radiation density and the entropy density of a system of particles occur for high frequencies.
Video segmentation using Maximum Entropy Model
QIN Li-juan; ZHUANG Yue-ting; PAN Yun-he; WU Fei
2005-01-01
Detecting objects of interest from a video sequence is a fundamental and critical task in automated visual surveillance.Most current approaches only focus on discriminating moving objects by background subtraction whether or not the objects of interest can be moving or stationary. In this paper, we propose layers segmentation to detect both moving and stationary target objects from surveillance video. We extend the Maximum Entropy (ME) statistical model to segment layers with features, which are collected by constructing a codebook with a set of codewords for each pixel. We also indicate how the training models are used for the discrimination of target objects in surveillance video. Our experimental results are presented in terms of the success rate and the segmenting precision.
Analysis of superdeformed rotational bands
Lalazissis, G. A.; Hara, K.
1998-07-01
Available experimental data for the ΔI=2 transition energies in superdeformed bands are analyzed by using an extended one-point formula. The existence of deviations from the smooth behavior is confirmed in many bands. However, we stress that one cannot necessarily speak about regular staggering patterns as they are mostly irregular. We present a simulation of the experimental data in terms of a simple model, which suggests that the irregularities may stem from the presence of irregular kinks in the rotational spectrum. However, at present, where such kinks may come from is an open question.
P. Kutin; Vagner, P.
2006-01-01
This paper deals with design and realization of a PLL synthesizer for the microwave XÃ¢ÂˆÂ’band. The synthesizer is intended for use as a local oscillator in a KÃ¢ÂˆÂ’band downconverter. The design goal was to achieve very low phase noise and spurious free signal with a sufficient power level. For that purpose a low phase noise MMIC VCO was used in phase locked loop. The PLL works at half the output frequency, therefore there is a frequency doubler at the output of the PLL. The output signal ...
Evaluation of pliers' grip spans in the maximum gripping task and sub-maximum cutting task.
Kim, Dae-Min; Kong, Yong-Ku
2016-12-01
A total of 25 males participated to investigate the effects of the grip spans of pliers on the total grip force, individual finger forces and muscle activities in the maximum gripping task and wire-cutting tasks. In the maximum gripping task, results showed that the 50-mm grip span had significantly higher total grip strength than the other grip spans. In the cutting task, the 50-mm grip span also showed significantly higher grip strength than the 65-mm and 80-mm grip spans, whereas the muscle activities showed a higher value at 80-mm grip span. The ratios of cutting force to maximum grip strength were also investigated. Ratios of 30.3%, 31.3% and 41.3% were obtained by grip spans of 50-mm, 65-mm, and 80-mm, respectively. Thus, the 50-mm grip span for pliers might be recommended to provide maximum exertion in gripping tasks, as well as lower maximum-cutting force ratios in the cutting tasks.
Cosmic shear measurement with maximum likelihood and maximum a posteriori inference
Hall, Alex
2016-01-01
We investigate the problem of noise bias in maximum likelihood and maximum a posteriori estimators for cosmic shear. We derive the leading and next-to-leading order biases and compute them in the context of galaxy ellipticity measurements, extending previous work on maximum likelihood inference for weak lensing. We show that a large part of the bias on these point estimators can be removed using information already contained in the likelihood when a galaxy model is specified, without the need for external calibration. We test these bias-corrected estimators on simulated galaxy images similar to those expected from planned space-based weak lensing surveys, with very promising results. We find that the introduction of an intrinsic shape prior mitigates noise bias, such that the maximum a posteriori estimate can be made less biased than the maximum likelihood estimate. Second-order terms offer a check on the convergence of the estimators, but are largely sub-dominant. We show how biases propagate to shear estima...
Yan, Xingxiu; Qiu, Xiandeng; Yan, Zhishuo; Li, Hongjiang; Gong, Yun; Lin, Jianhua
2016-05-01
4-(4-oxopyridin-1(4 H)-yl)phthalic acid (H2L) and three H2L-based metal-organic frameworks (MOFs) formulated as ZnL(DPE)(H2O)·H2O (DPE=(E)-1, 2-di(pyridine -4-yl)ethene) (1), CdL(H2O)2 (2) and CdL (3) were synthesized and structurally characterized by single-crystal X-ray diffraction. The free H2L ligand shows an enol-form and the L2- ligand in the three MOFs exists as the keto-form. Density functional theory (DFT) calculations indicate H2L and the three MOFs possess different band structures. Due to the existence of the N-donor, DPE in MOF 1, the conduction band (CB) minimum and band gap of MOF 1 are much lower than those of H2L. And MOF 1 yielded much larger photocurrent density than H2L upon visible light illumination. Electrochemical impedance spectroscopy (EIS) shows the interfacial charge transfer impedance in the presence of MOF 1 is lower than that in the presence of H2L. The hydrous MOF 2 and the anhydrous MOF 3 are both constructed by Cd(II) and L2-, and they can be reversibly transformed to each other. However, MOFs 2 and 3 possess different CB minimums and VB maximums, and their band gaps are much larger than that of MOF 1.
Unstable Dynamical Properties of Spiral Cloud Bands in Tropical Cyclones
HUANG Hong; ZHANG Ming
2009-01-01
A nondivergent barotropic model (Model 1) and a barotropic primitive equation vortex model (Model 2) are linearized respectively in this paper. Then their perturbation wave spectrums are computed with a normal mode approach to study the instability problem on an appointed tropical cyclone (TC)-like vortex, thereby, the dynamic instability properties of spiral cloud bands of TCs are discussed. The results show that the unstable mode of both models exhibits a spiral band-like structure that propagates away from the vortex outside the radius of maximum winds. The discrete modal instability of the pure vortex Rossby wave can account for the generation of the eyewall and the inner spiral band. The unstable mode in Model 2 has three parts, i.e., eyewall, inner and outer spiral bands. This mode can be interpreted as a mixed vortex Rossby-inertia gravitational wave. The unbalanced property of the wave outside the stagnation radius of the vortex Rossby wave is one of the important reasons for the formation of the outer spiral band in TCs. Accordingly, the outer spiral band can be identified to possess properties of an inertial-gravitational wave.When the formation of unstable inner and outer spiral bands is studied, a barotropic vortex model shall be used. In this model, the most unstable perturbation bears the attributes of either the vortex Rossby wave or the inertial-gravitational wave, depending on the vortex radius. So such perturbations shall be viewed as an unbalanced and unstable mixed wave of these two kinds of waves.
Conductivity Measurements of Silverpastes
M. Dirix
2010-01-01
Full Text Available The development of three-dimensional printed circuit boards requires research on new materials which can easily be deformed. Conducting pastes are well suited for deformation even after they are applied to the dielectric carrier. This paper deals with measurements of the electrical conductivity of these conducting pastes. Two different conductivity measurement techniques are explained and carried out. The resulting measurements give an overview of the conductivity of several measured samples.
E. Kalesaki
2014-01-01
Full Text Available We study theoretically two-dimensional single-crystalline sheets of semiconductors that form a honeycomb lattice with a period below 10 nm. These systems could combine the usual semiconductor properties with Dirac bands. Using atomistic tight-binding calculations, we show that both the atomic lattice and the overall geometry influence the band structure, revealing materials with unusual electronic properties. In rocksalt Pb chalcogenides, the expected Dirac-type features are clouded by a complex band structure. However, in the case of zinc-blende Cd-chalcogenide semiconductors, the honeycomb nanogeometry leads to rich band structures, including, in the conduction band, Dirac cones at two distinct energies and nontrivial flat bands and, in the valence band, topological edge states. These edge states are present in several electronic gaps opened in the valence band by the spin-orbit coupling and the quantum confinement in the honeycomb geometry. The lowest Dirac conduction band has S-orbital character and is equivalent to the π-π^{⋆} band of graphene but with renormalized couplings. The conduction bands higher in energy have no counterpart in graphene; they combine a Dirac cone and flat bands because of their P-orbital character. We show that the width of the Dirac bands varies between tens and hundreds of meV. These systems emerge as remarkable platforms for studying complex electronic phases starting from conventional semiconductors. Recent advancements in colloidal chemistry indicate that these materials can be synthesized from semiconductor nanocrystals.
Maximum hydrogen production from genetically modified microalgae biomass
Vargas, Jose; Kava, Vanessa; Ordonez, Juan
A transient mathematical model for managing microalgae derived H2 production as a source of renewable energy is developed for a well stirred photobioreactor, PBR. The model allows for the determination of microalgae and H2 mass fractions produced by the PBR in time. A Michaelis-Menten expression is proposed for modeling the rate of H2 production, which introduces an expression to calculate the resulting effect on H2 production rate after genetically modifying the microalgae. The indirect biophotolysis process was used. Therefore, an opportunity was found to optimize the aerobic to anaerobic stages time ratio of the cycle for maximum H2 production rate, i.e., the process rhythm. A system thermodynamic optimization is conducted with the model equations to find accurately the optimal system operating rhythm for maximum H2 production rate, and how wild and genetically modified species compare to each other. The maxima found are sharp, showing up to a ~60% variation in hydrogen production rate within 2 days around the optimal rhythm, which highlights the importance of system operation in such condition. Therefore, the model is expected to be useful for design, control and optimization of H2 production. Brazilian National Council of Scientific and Technological Development, CNPq (project 482336/2012-9).
IDENTIFICATION OF IDEOTYPES BY CANONICAL ANALYSIS IN Panicum maximum
Janaina Azevedo Martuscello
2015-04-01
Full Text Available Grouping of genotypes by canonical variable analysis is an important tool in breeding. It allows the grouping of individuals with similar characteristics that are associated with superior agronomic performance and may indicate the ideal profile of a plant for the region. The objective of the present study was to define, by canonical analysis, the agronomic profile of Panicum maximum plants adapted to the Agreste region. The experiment was conducted in a completely randomized design with 28 treatments, 22 genotypes of Panicum maximum, and cultivars Mombasa, Tanzania, Massai, Milenio, BRS Zuri, and BRS Tamani in triplicate in 4-m² plots. Plots were harvested five times and the following traits were evaluated: plant height; total, leaf, and stem; dead dry matter yields; leaf:stem ratio; leaf percentage; and volumetric density of forage. The analysis of canonical variables was performed based on the phenotypic means of the evaluated traits and on the residual variance and covariance matrix. Genotype PM34 showed higher mean leaf dry matter yield under the conditions of the Agreste of Alagoas (on average 53% higher than cultivars Mombasa, Tanzania, Milenio and Massai. It was possible to summarize the variation observed in eight agronomic characteristics in only two canonical variables accounting for 81.44 % of the data variation. The ideotype plant adapted to the conditions of the Agreste should be tall and present high leaf yield, leaf percentage, and leaf:stem ratio, and intermediate values of volumetric density of forage.
Analysis of damage localization for ductile metal in process of shear band propagation
无
2006-01-01
Distribution of localized damage in shear band can' t be predicted theoretically based on classical elastoplastic theory. The average damage variable in shear band was considered to be a non-local variable. Based on non-local theory, an analytical expression for the localized damage in strain-softening region of shear band in the process of shear band propagation was presented using boundary condition and symmetry of local damage variable, etc. The results show that dynamic shear softening modulus, dynamic shear strength and shear elastic modulus influence the distribution of the localized damage in shear band. Internal length of ductile metal only governs the thickness of shear band. In the strain-softening region of shear band, the local damage variable along shear band's tangential and normal directions is non-linear and highly non-uniform. The non-uniformities in the normal and tangential directions of shear band stem from the interactions and interplaying among microstructures and the non-uniform distribution of shear stress, respectively. At the tail of the strain-softening region, the maximum value of local damage variable reaches 1. This means that material at this position fractures completely. At the tip of shear band and upper as well as lower boundaries, no damage occurs. Local damage variable increases as dynamic shear softening modulus decreases or shear elastic modulus increases, leading to difficulty in identification or detection of damage for less ductile metal material at higher strain rates.
The Change in the Maximum Wind Speed and the Impact of it on Agricultural Production
WU Jian-mei; SUN Jin-sen; SUI Gui-ling; XIE Su-he; WANG Meng
2012-01-01
Using the data on the maximum wind speed within ten minutes every month in the period 1971-2009 in Zhucheng City of Shandong Province, we conduct statistical analysis of the maximum wind speed in Zhucheng City. The results show that over thirty-nine years, the annual maximum wind speed in four seasons in Zhucheng City tends to decline. The annual maximum wind speed declines at the rate of 1.45 m/s every 10 years. It falls fastest in winter, with decline rate of 1.73 m/s every 10 years; it is close to the average annual maximum wind speed in spring and autumn, with decline rate of 1.44 m/s and 14.8 m/s every 10 years, respectively; it falls slowest in summer, and the extreme value of the maximum wind speed occurs mainly in spring. The curve of changes in the monthly maximum wind speed in Zhucheng City assumes diminishing shape of "two peaks and one trough". We conduct preliminary analysis of the windy weather situation, and put forth specific defensive measures against the hazards of strong winds in the different periods.
Familial band-shaped keratopathy.
Ticho, U; Lahav, M; Ivry, M
1979-01-01
A brother and sister out of a consanguinous family of four siblings are presented as prototypes of primary band-shaped keratopathy. The disease manifested sever progressive changes of secondary nature over two years of follow-up. Histology and treatment are described.
1999-01-01
An optical fibre having a periodicidal cladding structure provididing a photonic band gap structure with superior qualities. The periodical structure being one wherein high index areas are defined and wherein these are separated using a number of methods. One such method is the introduction...
Metaphyseal bands in osteogenesis imperfecta
Suresh S
2010-01-01
Full Text Available An increasing number of patients with osteogenesis imperfecta are undergoing pamidronate therapy to prevent the incidence of fragility fractures. The authors herein report a child aged 3 years who received five cycles of pamidronate, resulting in metaphyseal bands, known as "zebra lines."
王为成
2001-01-01
Like many people, you may be dreaming of a career(职业) as rock and roll stars. There are two ways to go about getting one. First is the traditional way. Find some friends and form a group. Learn to play the guitar or the drums. Write your own songs. Spend hours arguing about the band name. Then go out on the road.
Piotrowski, W. S.; Raue, J. E.
1984-01-01
Design, development, and tests are described for two single-pole-double-throw latching waveguide ferrite switches: a K-band switch in WR-42 waveguide and a Ka-band switch in WR-28 waveguide. Both switches have structurally simple junctions, mechanically interlocked without the use of bonding materials; they are impervious to the effects of thermal, shock, and vibration stresses. Ferrite material for the Ka-band switch with a proper combination of magnetic and dielectric properties was available and resulted in excellent low loss, wideband performance. The high power handling requirement of the K-band switch limited the choice of ferrite to nickel-zinc compositions with adequate magnetic properties, but with too low relative dielectric constant. The relative dielectric constant determines the junction dimensions for given frequency responses. In this case the too low value unavoidably leads to a larger than optimum junction volume, increasing the insertion loss and restricting the operating bandwidth. Efforts to overcome the materials-related difficulties through the design of a composite junction with increased effective dielectric properties efforts to modify the relative dielectric constant of nickel-zinc ferrite are examined.
Piotrowski, W. S.; Raue, J. E.
1984-05-01
Design, development, and tests are described for two single-pole-double-throw latching waveguide ferrite switches: a K-band switch in WR-42 waveguide and a Ka-band switch in WR-28 waveguide. Both switches have structurally simple junctions, mechanically interlocked without the use of bonding materials; they are impervious to the effects of thermal, shock, and vibration stresses. Ferrite material for the Ka-band switch with a proper combination of magnetic and dielectric properties was available and resulted in excellent low loss, wideband performance. The high power handling requirement of the K-band switch limited the choice of ferrite to nickel-zinc compositions with adequate magnetic properties, but with too low relative dielectric constant. The relative dielectric constant determines the junction dimensions for given frequency responses. In this case the too low value unavoidably leads to a larger than optimum junction volume, increasing the insertion loss and restricting the operating bandwidth. Efforts to overcome the materials-related difficulties through the design of a composite junction with increased effective dielectric properties efforts to modify the relative dielectric constant of nickel-zinc ferrite are examined.
Characterization and Conduction Mechanism of Highly Conductive Vanadate Glass
Tetsuaki Nishida
2015-12-01
Full Text Available This paper reviews recent studies of highly conductive barium iron vanadate glass with a composition of 20 BaO ∙ 10 Fe2O3 ∙ 70 V2O5 (in mol %. Isothermal annealing of the vanadate glass for several ten minutes at a given temperature, higher than glass transition temperature or crystallization temperature, caused an increase in σ. Substitution of CuI (3d10, ZnII (3d10 and CuII (3d9 for FeIII (3d5 was investigated to elucidate the effect of electron configuration on the conductivity (σ. A marked decrease in the activation energy of conduction (Ea was also observed after the annealing. Values of Ea were correlated to the energy gap between the donor level and the conduction band (CB in the n-type semiconductor model. Isothermal annealing of ZnII-substituted vanadate glass (20 BaO ∙ 5 ZnO ∙ 5 Fe2O3 ∙ 70 V2O5 at 450 °C for 30 min showed an increase in σ from 2.5 × 10–6 to 2.1 × 10–1 S cm–1, which was one order of magnitude larger than that of non-substituted vanadate glass (3.4 × 10–2 S cm–1. Under the same annealing condition, σ’s of 2.0 × 10–1 and 3.2 × 10–1 S cm–1 were observed for 20 BaO ∙ 5 Cu2O ∙ 5 Fe2O3 ∙ 70 V2O5 and 20 BaO ∙ 5 CuO ∙ 5 Fe2O3 ∙ 70 V2O5 glasses, respectively. These results demonstrate an increase in the carrier (electron density in the CB, primarily composed of anti-bonding 4s-orbitals.
A strong test of the maximum entropy theory of ecology.
Xiao, Xiao; McGlinn, Daniel J; White, Ethan P
2015-03-01
The maximum entropy theory of ecology (METE) is a unified theory of biodiversity that predicts a large number of macroecological patterns using information on only species richness, total abundance, and total metabolic rate of the community. We evaluated four major predictions of METE simultaneously at an unprecedented scale using data from 60 globally distributed forest communities including more than 300,000 individuals and nearly 2,000 species.METE successfully captured 96% and 89% of the variation in the rank distribution of species abundance and individual size but performed poorly when characterizing the size-density relationship and intraspecific distribution of individual size. Specifically, METE predicted a negative correlation between size and species abundance, which is weak in natural communities. By evaluating multiple predictions with large quantities of data, our study not only identifies a mismatch between abundance and body size in METE but also demonstrates the importance of conducting strong tests of ecological theories.
Effect of defect bands in β-In2S3 thin films
Jayakrishnan, R.; Sebastian, Tina; Sudha kartha, C.; Vijayakumar, K. P.
2012-05-01
Optical absorption studies in β-In2S3 thin films of band gap 2.66 eV, prepared using chemical spray pyrolysis technique, revealed presence of a defect band which could assist absorption of sub band gap photons. Extrinsic photoconductivity under excitation of 2.33 eV was observed in these films. Photoluminescence studies revealed a green emission from the films providing a recombination path to these carriers. Temperature dependence of photoconductivity showed that the states in the defect band were continuously exchanging carriers with the conduction band which caused the photocurrent to show persistent photoconductivity. Temperature dependence of photocurrent revealed existence of shallow traps located ˜24 meV below the conduction band which played vital role in controlling the photosensitivity of the films. Temporal dependence of photoconductivity revealed decay tails which were identified to be the effect of thermal release of carriers form the shallow traps.
Natural and Laboratory-Induced Compaction Bands in Aztec Sandstone
Haimson, B. C.; Lee, H.
2002-12-01
The Aztec sandstone used in this research is from the Valley of Fire State Park area, Nevada. This Jurassic aeolian sandstone is extremely weak (uniaxial compressive strength of 1-2 MPa); porosity averages 26%; grains are subrounded and have a bimodal size distribution (0.1 mm and 0.5 mm); its mineral composition (K. Sternlof, personal comm.) is 93% quartz, 5% k-spar, and 2% kaolinite, Fe carbonate and others; grain bonding is primarily through suturing. Sternlof et al. (EOS, November, 2001) observed substantial exposure of mainly compactive deformation bands in the Aztec sandstone. We studied an SEM image of a compaction band found in a hand sample of the Aztec sandstone. We also conducted a drilling test in a 130x130x180 mm prismatic specimen subjected to a preset far-field true triaxial stress condition (\\sigmah = 15 MPa, \\sigmav = 25 MPa, \\sigmaH = 40 MPa). Drilling of a 20 mm dia. vertical hole created a long fracture-like thin tabular breakout along the \\sigmah springline and perpendicular to \\sigmaH direction. SEM analysis of the zones ahead of the breakout tips revealed narrow bands of presumed debonded intact grains interspersed with grain fragments. We infer that the fragments were formed from multiple splitting or crushing of compacted grains in the band of high compressive stress concentration developed along the \\sigmah springline. SEM images away from the breakout tip surroundings showed no such fragments. SEM study of the natural compaction band showed a similar arrangement of mainly intact grains surrounded by grain fragments. Using the Optimas optical software package, we found the percentage of pore area within the band ahead of the breakout tips to average 17%; outside of this zone it was 23%. In the natural compaction band pore area occupied 8.5% of the band; in the host rock adjacent to the compaction band it averaged 19%. These readings strongly suggest porosity reduction due to compaction in both cases. The close resemblance between the
Electrical conduction properties of Si delta-doped GaAs grown by MBE
Yildiz, A., E-mail: yildizab@gmail.co [Department of Physics, Faculty of Science and Arts, Gazi University, Teknikokular, 06500 Ankara (Turkey); Department of Physics, Faculty of Science and Arts, Ahi Evran University, 40040 Kirsehir (Turkey); Lisesivdin, S.B. [Nanotechnology Research Center, Bilkent University, Bilkent, 06800 Ankara (Turkey); Altuntas, H.; Kasap, M.; Ozcelik, S. [Department of Physics, Faculty of Science and Arts, Gazi University, Teknikokular, 06500 Ankara (Turkey)
2009-11-15
The temperature dependent Hall effect and resistivity measurements of Si delta-doped GaAs are performed in a temperature range of 25-300 K. The temperature dependence of carrier concentration shows a characteristic minimum at about 200 K, which indicates a transition from the conduction band conduction to the impurity band conduction. The temperature dependence of the conductivity results are in agreement with terms due to conduction band conduction and localized state hopping conduction in the impurity band. It is found that the transport properties of Si delta-doped GaAs are mainly governed by the dislocation scattering mechanism at high temperatures. On the other hand, the conductivity follows the Mott variable range hopping conduction (VRH) at low temperatures in the studied structures.
Electronic band structure of a type-Ⅱ 'W' quantum well calculated by an eight-band k·p model
Yu Xiu; Gu Yong-Xian; Wang Qing; Wei Xin; Chen Liang-Hui
2011-01-01
In this paper, we present an investigation of type-Ⅱ 'W' quantum wells for the InAs/Ga1-xInxSb/AlSb family, where 'W' denotes the conduction profile of the material. We focus our attention on using the eight-band k·p model to calculate the band structures within the framework of finite element method. For the sake of clarity, the simulation in this paper is simplified and based on only one period-AlSb/InAs/Ga1-xInxSb/InAs/AlSb. The obtained numerical results include the energy levels and wavefunctions of carriers. We discuss the variations of the electronic properties by changing several important parameters, such as the thickness of either InAs or Ga1-xInxSb layer and the alloy composition in Ga1-xInxSb separately. In the last part, in order to compare the eight-band k·p model, we recalculate the conduction bands of the 'W' structure using the one-band k·p model and then discuss the difference between the two results, showing that conduction bands are strongly coupled with valence bands in the narrow band gap structure. The in-plane energy dispersions, which illustrate the suppression of the Auger recombination process, are also obtained.
Band gap tuning of amorphous Al oxides by Zr alloying
Canulescu, Stela; Jones, N. C.; Borca, C. N.;
2016-01-01
minimum changes non-linearly as well.Fitting of the energy band gap values resulted in a bowing parameter of 2 eV. The band gap bowing of themixed oxides is assigned to the presence of the Zr d-electron states localized below the conduction bandminimum of anodized Al2O3.......The optical band gap and electronic structure of amorphous Al-Zr mixed oxides, with Zr content ranging from4.8 to 21.9% were determined using vacuum ultraviolet (VUV) and X-ray absorption spectroscopy (XAS). Thelight scattering by the nano-porous structure of alumina at low wavelengths...... was estimated based on the Miescattering theory. The dependence of the optical band gap of the Al-Zr mixed oxides on Zr content deviatesfrom linearity and decreases from 7.3 eV for pure anodized Al2O3 to 6.45 eV for Al-Zr mixed oxide with Zrcontent of 21.9%. With increasing Zr content, the conduction band...
Flat-Band Potentials of Molecularly Thin Metal Oxide Nanosheets.
Xu, Pengtao; Milstein, Tyler J; Mallouk, Thomas E
2016-05-11
Exfoliated nanosheets derived from Dion-Jacobson phase layer perovskites (TBAxH1-xA2B3O10, A = Sr, Ca, B = Nb, Ta) were grown layer-by-layer on fluorine-doped tin oxide and gold electrode surfaces. Electrochemical impedance spectra (EIS) of the five-layer nanosheet films in contact with aqueous electrolyte solutions were analyzed by the Mott-Schottky method to obtain flat-band potentials (VFB) of the oxide semiconductors as a function of pH. Despite capacitive contributions from the electrode-solution interface, reliable values could be obtained from capacitance measurements over a limited potential range near VFB. The measured values of VFB shifted -59 mV/pH over the pH range of 4-8 and were in close agreement with the empirical correlation between conduction band-edge potentials and optical band gaps proposed by Matsumoto ( J. Solid State Chem. 1996, 126 (2), 227-234 ). Density functional theory calculations showed that A-site substitution influenced band energies by modulating the strength of A-O bonding, and that subsitution of Ta for Nb on B-sites resulted in a negative shift of the conduction band-edge potential.
From lattice Hamiltonians to tunable band structures by lithographic design
Tadjine, Athmane; Allan, Guy; Delerue, Christophe
2016-08-01
Recently, new materials exhibiting exotic band structures characterized by Dirac cones, nontrivial flat bands, and band crossing points have been proposed on the basis of effective two-dimensional lattice Hamiltonians. Here, we show using atomistic tight-binding calculations that these theoretical predictions could be experimentally realized in the conduction band of superlattices nanolithographed in III-V and II-VI semiconductor ultrathin films. The lithographed patterns consist of periodic lattices of etched cylindrical holes that form potential barriers for the electrons in the quantum well. In the case of honeycomb lattices, the conduction minibands of the resulting artificial graphene host several Dirac cones and nontrivial flat bands. Similar features, but organized in different ways, in energy or in k -space are found in kagome, distorted honeycomb, and Lieb superlattices. Dirac cones extending over tens of meV could be obtained in superlattices with reasonable sizes of the lithographic patterns, for instance in InAs/AlSb heterostructures. Bilayer artificial graphene could be also realized by lithography of a double quantum-well heterostructure. These new materials should be interesting for the experimental exploration of Dirac-based quantum systems, for both fundamental and applied physics.
20 CFR 211.14 - Maximum creditable compensation.
2010-04-01
... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false Maximum creditable compensation. 211.14... CREDITABLE RAILROAD COMPENSATION § 211.14 Maximum creditable compensation. Maximum creditable compensation... Employment Accounts shall notify each employer of the amount of maximum creditable compensation applicable...
49 CFR 230.24 - Maximum allowable stress.
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Maximum allowable stress. 230.24 Section 230.24... Allowable Stress § 230.24 Maximum allowable stress. (a) Maximum allowable stress value. The maximum allowable stress value on any component of a steam locomotive boiler shall not exceed 1/4 of the ultimate...
Theoretical Estimate of Maximum Possible Nuclear Explosion
Bethe, H. A.
1950-01-31
The maximum nuclear accident which could occur in a Na-cooled, Be moderated, Pu and power producing reactor is estimated theoretically. (T.R.H.) 2O82 Results of nuclear calculations for a variety of compositions of fast, heterogeneous, sodium-cooled, U-235-fueled, plutonium- and power-producing reactors are reported. Core compositions typical of plate-, pin-, or wire-type fuel elements and with uranium as metal, alloy, and oxide were considered. These compositions included atom ratios in the following range: U-23B to U-235 from 2 to 8; sodium to U-235 from 1.5 to 12; iron to U-235 from 5 to 18; and vanadium to U-235 from 11 to 33. Calculations were performed to determine the effect of lead and iron reflectors between the core and blanket. Both natural and depleted uranium were evaluated as the blanket fertile material. Reactors were compared on a basis of conversion ratio, specific power, and the product of both. The calculated results are in general agreement with the experimental results from fast reactor assemblies. An analysis of the effect of new cross-section values as they became available is included. (auth)
Proposed principles of maximum local entropy production.
Ross, John; Corlan, Alexandru D; Müller, Stefan C
2012-07-12
Articles have appeared that rely on the application of some form of "maximum local entropy production principle" (MEPP). This is usually an optimization principle that is supposed to compensate for the lack of structural information and measurements about complex systems, even systems as complex and as little characterized as the whole biosphere or the atmosphere of the Earth or even of less known bodies in the solar system. We select a number of claims from a few well-known papers that advocate this principle and we show that they are in error with the help of simple examples of well-known chemical and physical systems. These erroneous interpretations can be attributed to ignoring well-established and verified theoretical results such as (1) entropy does not necessarily increase in nonisolated systems, such as "local" subsystems; (2) macroscopic systems, as described by classical physics, are in general intrinsically deterministic-there are no "choices" in their evolution to be selected by using supplementary principles; (3) macroscopic deterministic systems are predictable to the extent to which their state and structure is sufficiently well-known; usually they are not sufficiently known, and probabilistic methods need to be employed for their prediction; and (4) there is no causal relationship between the thermodynamic constraints and the kinetics of reaction systems. In conclusion, any predictions based on MEPP-like principles should not be considered scientifically founded.
Maximum entropy production and plant optimization theories.
Dewar, Roderick C
2010-05-12
Plant ecologists have proposed a variety of optimization theories to explain the adaptive behaviour and evolution of plants from the perspective of natural selection ('survival of the fittest'). Optimization theories identify some objective function--such as shoot or canopy photosynthesis, or growth rate--which is maximized with respect to one or more plant functional traits. However, the link between these objective functions and individual plant fitness is seldom quantified and there remains some uncertainty about the most appropriate choice of objective function to use. Here, plants are viewed from an alternative thermodynamic perspective, as members of a wider class of non-equilibrium systems for which maximum entropy production (MEP) has been proposed as a common theoretical principle. I show how MEP unifies different plant optimization theories that have been proposed previously on the basis of ad hoc measures of individual fitness--the different objective functions of these theories emerge as examples of entropy production on different spatio-temporal scales. The proposed statistical explanation of MEP, that states of MEP are by far the most probable ones, suggests a new and extended paradigm for biological evolution--'survival of the likeliest'--which applies from biomacromolecules to ecosystems, not just to individuals.
Maximum likelihood continuity mapping for fraud detection
Hogden, J.
1997-05-01
The author describes a novel time-series analysis technique called maximum likelihood continuity mapping (MALCOM), and focuses on one application of MALCOM: detecting fraud in medical insurance claims. Given a training data set composed of typical sequences, MALCOM creates a stochastic model of sequence generation, called a continuity map (CM). A CM maximizes the probability of sequences in the training set given the model constraints, CMs can be used to estimate the likelihood of sequences not found in the training set, enabling anomaly detection and sequence prediction--important aspects of data mining. Since MALCOM can be used on sequences of categorical data (e.g., sequences of words) as well as real valued data, MALCOM is also a potential replacement for database search tools such as N-gram analysis. In a recent experiment, MALCOM was used to evaluate the likelihood of patient medical histories, where ``medical history`` is used to mean the sequence of medical procedures performed on a patient. Physicians whose patients had anomalous medical histories (according to MALCOM) were evaluated for fraud by an independent agency. Of the small sample (12 physicians) that has been evaluated, 92% have been determined fraudulent or abusive. Despite the small sample, these results are encouraging.
Maximum life spiral bevel reduction design
Savage, M.; Prasanna, M. G.; Coe, H. H.
1992-07-01
Optimization is applied to the design of a spiral bevel gear reduction for maximum life at a given size. A modified feasible directions search algorithm permits a wide variety of inequality constraints and exact design requirements to be met with low sensitivity to initial values. Gear tooth bending strength and minimum contact ratio under load are included in the active constraints. The optimal design of the spiral bevel gear reduction includes the selection of bearing and shaft proportions in addition to gear mesh parameters. System life is maximized subject to a fixed back-cone distance of the spiral bevel gear set for a specified speed ratio, shaft angle, input torque, and power. Significant parameters in the design are: the spiral angle, the pressure angle, the numbers of teeth on the pinion and gear, and the location and size of the four support bearings. Interpolated polynomials expand the discrete bearing properties and proportions into continuous variables for gradient optimization. After finding the continuous optimum, a designer can analyze near optimal designs for comparison and selection. Design examples show the influence of the bearing lives on the gear parameters in the optimal configurations. For a fixed back-cone distance, optimal designs with larger shaft angles have larger service lives.
CORA - emission line fitting with Maximum Likelihood
Ness, J.-U.; Wichmann, R.
2002-07-01
The advent of pipeline-processed data both from space- and ground-based observatories often disposes of the need of full-fledged data reduction software with its associated steep learning curve. In many cases, a simple tool doing just one task, and doing it right, is all one wishes. In this spirit we introduce CORA, a line fitting tool based on the maximum likelihood technique, which has been developed for the analysis of emission line spectra with low count numbers and has successfully been used in several publications. CORA uses a rigorous application of Poisson statistics. From the assumption of Poissonian noise we derive the probability for a model of the emission line spectrum to represent the measured spectrum. The likelihood function is used as a criterion for optimizing the parameters of the theoretical spectrum and a fixed point equation is derived allowing an efficient way to obtain line fluxes. As an example we demonstrate the functionality of the program with an X-ray spectrum of Capella obtained with the Low Energy Transmission Grating Spectrometer (LETGS) on board the Chandra observatory and choose the analysis of the Ne IX triplet around 13.5 Å.
Finding maximum JPEG image block code size
Lakhani, Gopal
2012-07-01
We present a study of JPEG baseline coding. It aims to determine the minimum storage needed to buffer the JPEG Huffman code bits of 8-bit image blocks. Since DC is coded separately, and the encoder represents each AC coefficient by a pair of run-length/AC coefficient level, the net problem is to perform an efficient search for the optimal run-level pair sequence. We formulate it as a two-dimensional, nonlinear, integer programming problem and solve it using a branch-and-bound based search method. We derive two types of constraints to prune the search space. The first one is given as an upper-bound for the sum of squares of AC coefficients of a block, and it is used to discard sequences that cannot represent valid DCT blocks. The second type constraints are based on some interesting properties of the Huffman code table, and these are used to prune sequences that cannot be part of optimal solutions. Our main result is that if the default JPEG compression setting is used, space of minimum of 346 bits and maximum of 433 bits is sufficient to buffer the AC code bits of 8-bit image blocks. Our implementation also pruned the search space extremely well; the first constraint reduced the initial search space of 4 nodes down to less than 2 nodes, and the second set of constraints reduced it further by 97.8%.
Maximum likelihood estimates of pairwise rearrangement distances.
Serdoz, Stuart; Egri-Nagy, Attila; Sumner, Jeremy; Holland, Barbara R; Jarvis, Peter D; Tanaka, Mark M; Francis, Andrew R
2017-06-21
Accurate estimation of evolutionary distances between taxa is important for many phylogenetic reconstruction methods. Distances can be estimated using a range of different evolutionary models, from single nucleotide polymorphisms to large-scale genome rearrangements. Corresponding corrections for genome rearrangement distances fall into 3 categories: Empirical computational studies, Bayesian/MCMC approaches, and combinatorial approaches. Here, we introduce a maximum likelihood estimator for the inversion distance between a pair of genomes, using a group-theoretic approach to modelling inversions introduced recently. This MLE functions as a corrected distance: in particular, we show that because of the way sequences of inversions interact with each other, it is quite possible for minimal distance and MLE distance to differently order the distances of two genomes from a third. The second aspect tackles the problem of accounting for the symmetries of circular arrangements. While, generally, a frame of reference is locked, and all computation made accordingly, this work incorporates the action of the dihedral group so that distance estimates are free from any a priori frame of reference. The philosophy of accounting for symmetries can be applied to any existing correction method, for which examples are offered. Copyright © 2017 Elsevier Ltd. All rights reserved.
Multicolor emission from intermediate band semiconductor ZnO1‑xSex
Welna, M.; Baranowski, M.; Linhart, W. M.; Kudrawiec, R.; Yu, K. M.; Mayer, M.; Walukiewicz, W.
2017-03-01
Photoluminescence and photomodulated reflectivity measurements of ZnOSe alloys are used to demonstrate a splitting of the valence band due to the band anticrossing interaction between localized Se states and the extended valence band states of the host ZnO matrix. A strong multiband emission associated with optical transitions from the conduction band to lower E‑ and upper E+ valence subbands has been observed at room temperature. The composition dependence of the optical transition energies is well explained by the electronic band structure calculated using the kp method combined with the band anticrossing model. The observation of the multiband emission is possible because of relatively long recombination lifetimes. Longer than 1 ns lifetimes for holes photoexcited to the lower valence subband offer a potential of using the alloy as an intermediate band semiconductor for solar power conversion applications.
Insulator to semimetallic transition in conducting polymers
Muñoz, W. A.; Singh, Sandeep Kumar; Franco-Gonzalez, J. F.; Linares, M.; Crispin, X.; Zozoulenko, I. V.
2016-11-01
We report a multiscale modeling of electronic structure of a conducting polymer poly(3,4-ethylenedioxythiopehene) (PEDOT) based on a realistic model of its morphology. We show that when the charge carrier concentration increases, the character of the density of states (DOS) gradually evolves from the insulating to the semimetallic, exhibiting a collapse of the gap between the bipolaron and valence bands with the drastic increase of the DOS between the bands. The origin of the observed behavior is attributed to the effect of randomly located counterions giving rise to the states in the gap. These results are discussed in light of recent experiments. The method developed in this work is general and can be applied to study the electronic structure of other conducting polymers.
Boedeker, Peter
2017-01-01
Hierarchical linear modeling (HLM) is a useful tool when analyzing data collected from groups. There are many decisions to be made when constructing and estimating a model in HLM including which estimation technique to use. Three of the estimation techniques available when analyzing data with HLM are maximum likelihood, restricted maximum…
Fiber-wireless links supporting high-capacity W-band channels
Vegas Olmos, Juan José; Tafur Monroy, Idelfonso
2013-01-01
, is seeding the need to use bands located at the millimeter-wave region (30-300 GHz), mainly because of its inherent broadband nature. In our lab, we have conducted extensive research on high-speed photonic-wireless links in the V-band (50-75GHz) and the W-band (75-110GHz). In this paper, we will present our...
Conducting Polymeric Materials
Hvilsted, Søren
2016-01-01
The overall objective of this collection is to provide the most recent developments within the various areas of conducting polymeric materials. The conductivity of polymeric materials is caused by electrically charged particles, ions, protons and electrons. Materials in which electrons...
The Conductivity of Solutions.
Rayner-Canham, Geoff
1993-01-01
Presents historical background and modern explanations for the popular demonstration of showing conductivity of solutions through the insertion of a light-bulb conductivity tester into deionized water and water with salt in it. (PR)
Avoiding vacuum arcs in high gradient normal conducting RF structures
Sjøbæk, Kyrre Ness; Adli, Erik; Grudiev, Alexej; Wuensch, Walter
In order to build the Compact LInear Collider (CLIC), accelerating structures reaching extremely high accelerating gradients are needed. Such structures have been built and tested using normal-conducting copper, powered by X-band RF power and reaching gradients of 100 MV/m and above. One phenomenon that must be avoided in order to reliably reach such gradients, is vacuum arcs or “breakdowns”. This can be accomplished by carefully designing the structure geometry such that high surface fields and large local power flows are avoided. The research presented in this thesis presents a method for optimizing the geometry of accelerating structures so that these breakdowns are made less likely, allowing the structure to operate reliably at high gradients. This was done primarily based on a phenomenological scaling model, which predicted the maximum gradient as a function of the break down rate, pulse length, and field distribution in the structure. The model is written in such a way that it allows direct comparis...
Limits of proton conductivity.
Kreuer, Klaus-Dieter; Wohlfarth, Andreas
2012-10-15
Parasitic current seems to be the cause for the "highest proton conductivity" of a material reported to date. Kreuer and Wohlfarth verify this hypothesis by measuring the conductivity of the same materials after preparing them in a different way. They further explain the limits of proton conductivity and comment on the problems of determining the conductivity of small objects (e.g., whiskers, see picture).
Model of the Interplay of Band J-T Effect with Magnetic Order Mediated by Exchange Interaction
Reddy, G. Gangadhar; Ramakanth, A.; Ghatak, S. K.; Behera, S. N.; Nolting, W.; Rao, T. Venkatappa
2006-01-01
A model calculation is presented with the aim to study the interplay between magnetic and structural transitions. The model consists of an orbitally doubly degenerate conduction band and a periodic array of local moments. The band electrons interact with the local spins via the s-f interaction. The interaction of the band electrons with phonons is introduced by including band Jahn-Teller (J-T) interaction. The model Hamiltonian, including the above terms, is solved for the single particle Gre...
Wang, Yaqin [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Tang, Wu, E-mail: tang@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Zhang, Lan [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Zhao, Junliang [Shanghai Juntech Co. Ltd., 1378 Xingxian Road, Shanghai 201815 (China)
2014-08-28
Ga-doped ZnO (GZO) thin films were deposited on glass substrates by a radio frequency magnetron sputtering technique. The optical properties of the deposited GZO films were evaluated using an optical transmission measurement. The optical band gap increased from 3.32 eV to 3.45 eV with the increasing carrier density from 2.0 × 10{sup 20} cm{sup −3} to 3.24 × 10{sup 20} cm{sup −3}. Based on the experimental results, the optical band gap as a function of carrier density is systematically investigated with four available theoretical models taken into consideration. The blueshift of the optical band gap in GZO films can be well interpreted with a complex model which combines the Burstein–Moss effect, the band gap renormalization effect and the nonparabolic nature of conduction band. In addition, the BM contribution is almost offset by the BGR effect in both conduction band and valence band due to the approximate equality between electron and hole effective masses in GZO films with a nonparabolic conduction band. The tunability of optical band gap in GZO thin films by carrier density offers a number of potential advantages in the development of semiconductor optoelectronic devices. - Highlights: • The effects of electron concentration on optical band gap were analyzed. • The measured optical band gap corresponded well with the calculated ones. • The Burstein–Moss (BM) and band gap renormalization (BGR) effects were considered. • Nonparabolic conduction band parameters were used in theoretical analysis. • The BM effect was offset by the BGR effect in both conduction band and valence band.
Siti Mariah Mohd Yasin
2014-01-01
Full Text Available New solid polymer electrolytes (SPE based on poly(ethylene oxide (PEO doped with lithium trifluoromethanesulfonate (LiCF3SO3, dibutyl phthalate (DBP plasticizer, and zirconium oxide (ZrO2 nanoparticles were prepared by solution-casting technique. The conductivity was enhanced by addition of dibutyl phthalate (DBP plasticizer and ZrO2 nanofiller with maximum conductivity (1.38×10-4 Scm-1. The absorption edge and band gap values showed decreases upon addition of LiSO3CF3, DBP, and ZrO2 due to the formation of localized states in the SPE and the degree of disorder in the films increased.
Xu, G. Q.; Jia, Z. X.; Wen, J.; Deng, H. W.; Fu, Y. C.
2015-04-01
The thermal conductivity of a representative endothermic hydrocarbon aviation kerosene fuel RP-3 was accurately measured using the classical transient hot-wire method at sub- and supercritical pressures. The measured data cover a temperature range of 285 K to 513 K and a pressure range of 0.1 MPa to 5 MPa. The expanded uncertainty of the experiment was less than 3.0 % based on an uncertainty analysis. Furthermore, the measured data were correlated using a polynomial equation to analyze the deviations; 97.6 % of the measured data were within a 2 % error band. The average absolute deviation ( AAD) and maximum absolute deviation ( MAD) of the fitted thermal-conductivity data were 0.209 % and 2.31 % for all values, respectively.
Nonideal anion displacement, band gap variation, and valence band splitting in Cu-In-Se compounds
Reena Philip, Rachel [Solid State Physics Laboratory, Department of Physics, Cochin University of Science and Technology, Kochi-682022 Kerala (India)]. E-mail: reenatara@cusat.ac.in; Pradeep, B. [Solid State Physics Laboratory, Department of Physics, Cochin University of Science and Technology, Kochi-682022 Kerala (India)
2005-01-24
Polycrystalline thin films of ternary chalcopyrite CuInSe{sub 2} and defect compounds CuIn{sub 3}Se{sub 5} and CuIn{sub 5}Se{sub 8} are prepared in vacuum by three-source coevaporation method. Structural and optical characterizations of the films are done using X-ray diffraction (XRD), energy-dispersive X-ray analysis (EDAX), and optical absorbance spectra measurements. With variation in the composition of CuInSe{sub 2}, a change over from p-type to n-type conductivity is observed (as noted by the hot probe method). The deformation parameters and the anion displacements are calculated from the X-ray diffraction data, and the cation-anion bond lengths are deduced. The dependence of band gap variation on nonideal anion displacement in the ternary compounds and the effect of Se-p-Cu-d repulsion on band gap are studied. The threefold optical structure observed in the fundamental absorption region of the absorption spectra is analysed to extract the valence band splitting parameters. Hopfields quasi-cubic model adapted for chalcopyrites with tetragonal deformation is used to determine the crystal field splittings and spin orbit splittings, and the linear hybridization model is used to calculate the percentage of d-orbital and p-orbital contribution to hybridization in the compounds under consideration.
Maximum likelihood molecular clock comb: analytic solutions.
Chor, Benny; Khetan, Amit; Snir, Sagi
2006-04-01
Maximum likelihood (ML) is increasingly used as an optimality criterion for selecting evolutionary trees, but finding the global optimum is a hard computational task. Because no general analytic solution is known, numeric techniques such as hill climbing or expectation maximization (EM), are used in order to find optimal parameters for a given tree. So far, analytic solutions were derived only for the simplest model--three taxa, two state characters, under a molecular clock. Four taxa rooted trees have two topologies--the fork (two subtrees with two leaves each) and the comb (one subtree with three leaves, the other with a single leaf). In a previous work, we devised a closed form analytic solution for the ML molecular clock fork. In this work, we extend the state of the art in the area of analytic solutions ML trees to the family of all four taxa trees under the molecular clock assumption. The change from the fork topology to the comb incurs a major increase in the complexity of the underlying algebraic system and requires novel techniques and approaches. We combine the ultrametric properties of molecular clock trees with the Hadamard conjugation to derive a number of topology dependent identities. Employing these identities, we substantially simplify the system of polynomial equations. We finally use tools from algebraic geometry (e.g., Gröbner bases, ideal saturation, resultants) and employ symbolic algebra software to obtain analytic solutions for the comb. We show that in contrast to the fork, the comb has no closed form solutions (expressed by radicals in the input data). In general, four taxa trees can have multiple ML points. In contrast, we can now prove that under the molecular clock assumption, the comb has a unique (local and global) ML point. (Such uniqueness was previously shown for the fork.).
Carrier Lifetimes in a I I I -V -N Intermediate-Band Semiconductor
Heyman, J. N.; Schwartzberg, A. M.; Yu, K. M.; Luce, A. V.; Dubon, O. D.; Kuang, Y. J.; Tu, C. W.; Walukiewicz, W.
2017-01-01
We use transient absorption spectroscopy to measure carrier lifetimes in the multiband semiconductor GaPyAs1 -x -yNx . These measurements probe the electron populations in the conduction band, intermediate band, and valence band as a function of time after an excitation pulse. Following photoexcitation of GaP0.32As0.67N0.01 , we find that the electron population in the conduction band decays exponentially with a time constant τCB=23 ps . The electron population in the intermediate band exhibits bimolecular recombination with recombination constant r =2 ×10-8 cm3/s . In our experiment, an optical pump pulse excites electrons from the valence band to the intermediate and conduction bands, and the change in interband absorption due to absorption saturation and induced absorption is probed with a delayed white-light pulse. We model the optical properties of our samples using the band anticrossing model to extract carrier densities as a function of time. These results not only identify the short minority-carrier lifetime as a key factor affecting the performance of GaPyAs1 -x -yNx -based intermediate-band solar cells but also provide guidance on ways to address this issue.
Shear-induced porosity bands in a compacting porous medium with damage rheology
Butler, S. L.
2017-03-01
Shear-induced porosity bands have been observed experimentally and have been the subject of a number of theoretical and numerical analyses in which a number of rheological laws governing the partial melt system have been proposed. These bands have been suggested to be important in Earth's interior in focussing melt to Earth's mid-ocean ridges, in reducing the effective viscosity of the asthenosphere, and in affecting seismic and electrical properties. Recently, a linear analysis of the formation of melt bands has been presented in which the viscosity of the solid matrix depends on the grain size and a parameter characterizing the roughness of the grain-liquid interface For some parameter values, this ;damage; rheology mimics the effect of very strongly strain-rate dependent viscosity which can produce low angle bands, similar to those seen in experiments. In the present paper, I show full nonlinear simulations of melt bands with damage rheology. In agreement with the linear analysis, low angle bands are possible when the grain size and grain roughness evolve rapidly compared with the deformation of the sample. The grain size field evolves to form bands where grain-size anticorrelates with porosity. The effective viscosity and electrical conductivity of bands are also investigated. For low angle bands, the effective viscosity relative to the mean viscosity decreases and the electrical conductivity anisotropy increases with strain, indicating significant strain and electrical conduction localization.