WorldWideScience

Sample records for maximum compression ratio

  1. Limiting density ratios in piston-driven compressions

    International Nuclear Information System (INIS)

    Lee, S.

    1985-07-01

    By using global energy and pressure balance applied to a shock model it is shown that for a piston-driven fast compression, the maximum compression ratio is not dependent on the absolute magnitude of the piston power, but rather on the power pulse shape. Specific cases are considered and a maximum density compression ratio of 27 is obtained for a square-pulse power compressing a spherical pellet with specific heat ratio of 5/3. Double pulsing enhances the density compression ratio to 1750 in the case of linearly rising compression pulses. Using this method further enhancement by multiple pulsing becomes obvious. (author)

  2. Determination of Optimum Compression Ratio: A Tribological Aspect

    Directory of Open Access Journals (Sweden)

    L. Yüksek

    2013-12-01

    Full Text Available Internal combustion engines are the primary energy conversion machines both in industry and transportation. Modern technologies are being implemented to engines to fulfill today's low fuel consumption demand. Friction energy consumed by the rubbing parts of the engines are becoming an important parameter for higher fuel efficiency. Rate of friction loss is primarily affected by sliding speed and the load acting upon rubbing surfaces. Compression ratio is the main parameter that increases the peak cylinder pressure and hence normal load on components. Aim of this study is to investigate the effect of compression ratio on total friction loss of a diesel engine. A variable compression ratio diesel engine was operated at four different compression ratios which were "12.96", "15:59", "18:03", "20:17". Brake power and speed was kept constant at predefined value while measuring the in- cylinder pressure. Friction mean effective pressure ( FMEP data were obtained from the in cylinder pressure curves for each compression ratio. Ratio of friction power to indicated power of the engine was increased from 22.83% to 37.06% with varying compression ratio from 12.96 to 20:17. Considering the thermal efficiency , FMEP and maximum in- cylinder pressure optimum compression ratio interval of the test engine was determined as 18.8 ÷ 19.6.

  3. Alvar engine. An engine with variable compression ratio. Experiments and tests

    Energy Technology Data Exchange (ETDEWEB)

    Erlandsson, Olof

    1998-09-01

    This report is focused on tests with Variable Compression Ratio (VCR) engines, according to the Alvar engine principle. Variable compression ratio means an engine design where it is possible to change the nominal compression ratio. The purpose is to increase the fuel efficiency at part load by increasing the compression ratio. At maximum load, and maybe supercharging with for example turbocharger, it is not possible to keep a high compression ratio because of the knock phenomena. Knock is a shock wave caused by self-ignition of the fuel-air mix. If knock occurs, the engine will be exposed to a destructive load. Because of the reasons mentioned it would be an advantage if it would be possible to change the compression ratio continuously when the load changes. The Alvar engine provides a solution for variable compression ratio based on well-known engine components. This paper provides information about efficiency and emission characteristics from tests with two Alvar engines. Results from tests with a phase shift mechanism (for automatic compression ratio control) for the Alvar engine are also reviewed Examination paper. 5 refs, 23 figs, 2 tabs, 5 appendices

  4. Effects of errors in velocity tilt on maximum longitudinal compression during neutralized drift compression of intense beam pulses: I. general description

    Energy Technology Data Exchange (ETDEWEB)

    Kaganovich, Igor D.; Massidda, Scottt; Startsev, Edward A.; Davidson, Ronald C.; Vay, Jean-Luc; Friedman, Alex

    2012-06-21

    Neutralized drift compression offers an effective means for particle beam pulse compression and current amplification. In neutralized drift compression, a linear longitudinal velocity tilt (head-to-tail gradient) is applied to the non-relativistic beam pulse, so that the beam pulse compresses as it drifts in the focusing section. The beam current can increase by more than a factor of 100 in the longitudinal direction. We have performed an analytical study of how errors in the velocity tilt acquired by the beam in the induction bunching module limit the maximum longitudinal compression. It is found that the compression ratio is determined by the relative errors in the velocity tilt. That is, one-percent errors may limit the compression to a factor of one hundred. However, a part of the beam pulse where the errors are small may compress to much higher values, which are determined by the initial thermal spread of the beam pulse. It is also shown that sharp jumps in the compressed current density profile can be produced due to overlaying of different parts of the pulse near the focal plane. Examples of slowly varying and rapidly varying errors compared to the beam pulse duration are studied. For beam velocity errors given by a cubic function, the compression ratio can be described analytically. In this limit, a significant portion of the beam pulse is located in the broad wings of the pulse and is poorly compressed. The central part of the compressed pulse is determined by the thermal spread. The scaling law for maximum compression ratio is derived. In addition to a smooth variation in the velocity tilt, fast-changing errors during the pulse may appear in the induction bunching module if the voltage pulse is formed by several pulsed elements. Different parts of the pulse compress nearly simultaneously at the target and the compressed profile may have many peaks. The maximum compression is a function of both thermal spread and the velocity errors. The effects of the

  5. Envera Variable Compression Ratio Engine

    Energy Technology Data Exchange (ETDEWEB)

    Charles Mendler

    2011-03-15

    the compression ratio can be raised (to as much as 18:1) providing high engine efficiency. It is important to recognize that for a well designed VCR engine cylinder pressure does not need to be higher than found in current production turbocharged engines. As such, there is no need for a stronger crankcase, bearings and other load bearing parts within the VCR engine. The Envera VCR mechanism uses an eccentric carrier approach to adjust engine compression ratio. The crankshaft main bearings are mounted in this eccentric carrier or 'crankshaft cradle' and pivoting the eccentric carrier 30 degrees adjusts compression ratio from 9:1 to 18:1. The eccentric carrier is made up of a casting that provides rigid support for the main bearings, and removable upper bearing caps. Oil feed to the main bearings transits through the bearing cap fastener sockets. The eccentric carrier design was chosen for its low cost and rigid support of the main bearings. A control shaft and connecting links are used to pivot the eccentric carrier. The control shaft mechanism features compression ratio lock-up at minimum and maximum compression ratio settings. The control shaft method of pivoting the eccentric carrier was selected due to its lock-up capability. The control shaft can be rotated by a hydraulic actuator or an electric motor. The engine shown in Figures 3 and 4 has a hydraulic actuator that was developed under the current program. In-line 4-cylinder engines are significantly less expensive than V engines because an entire cylinder head can be eliminated. The cost savings from eliminating cylinders and an entire cylinder head will notably offset the added cost of the VCR and supercharging. Replacing V6 and V8 engines with in-line VCR 4-cylinder engines will provide high fuel economy at low cost. Numerous enabling technologies exist which have the potential to increase engine efficiency. The greatest efficiency gains are realized when the right combination of advanced and new

  6. Eccentric crank variable compression ratio mechanism

    Science.gov (United States)

    Lawrence, Keith Edward [Kobe, JP; Moser, William Elliott [Peoria, IL; Roozenboom, Stephan Donald [Washington, IL; Knox, Kevin Jay [Peoria, IL

    2008-05-13

    A variable compression ratio mechanism for an internal combustion engine that has an engine block and a crankshaft is disclosed. The variable compression ratio mechanism has a plurality of eccentric disks configured to support the crankshaft. Each of the plurality of eccentric disks has at least one cylindrical portion annularly surrounded by the engine block. The variable compression ratio mechanism also has at least one actuator configured to rotate the plurality of eccentric disks.

  7. Effect of compression ratio on performance, combustion and emission characteristics of a dual fuel diesel engine run on raw biogas

    International Nuclear Information System (INIS)

    Bora, Bhaskor J.; Saha, Ujjwal K.; Chatterjee, Soumya; Veer, Vijay

    2014-01-01

    Highlights: • Maximum brake thermal efficiency of 20.04% was obtained in dual fuel mode. • Compression ratio of 18 produced the maximum brake thermal efficiency. • Maximum replacement of diesel was found to be 79.46% at a compression ratio of 18. • CO gets reduced by 26.22% with the increase of compression ratio from 16 to18. • HC gets reduced by 41.97% with the increase of compression ratio from 16 to18. - Abstract: The energy consumption of the world is increasing at a staggering rate due to population explosion. The extensive use of energy has led to fossil fuel depletion and the rise in pollution. Renewable energy holds the key solution to these aforementioned problems. Biogas, one such renewable fuel, can be used in a diesel engine under dual fuel mode for the generation of power. This work attempts to unfold the effect of compression ratio on the performance, combustion and emission characteristics of a dual fuel diesel engine run on raw biogas. For this investigation, a 3.5 kW single cylinder, direct injection, water cooled, variable compression ratio diesel engine is converted into a biogas run dual fuel diesel engine by connecting a venturi gas mixer at the inlet manifold. Experiments have been conducted at various compression ratios (18, 17.5, 17 and 16) and under different loading conditions fixing the standard injection timing at 23° before top dead centre. At 100% load, the brake thermal efficiencies of the dual fuel mode are found to be 20.04%, 18.25%, 17.07% and 16.42% at compression ratios of 18, 17.5, 17 and 16, respectively, whereas at the same load, the diesel mode shows an efficiency of 27.76% at a compression ratio of 17.5. The maximum replacement of the precious fossil fuel is found to be 79.46%, 76.1%, 74% and 72% at compression ratios of 18, 17.5, 17 and 16, respectively at 100% load. For the dual fuel mode, on an average, there is a reduction in carbon monoxide as well as hydrocarbon emission by 26.22% and 41.97% when compression

  8. Potential for using a tyre pyrolysis oil-biodiesel blend in a diesel engine at different compression ratios

    International Nuclear Information System (INIS)

    Sharma, Abhishek; Murugan, S.

    2015-01-01

    Highlights: • The possibility of operating a compression ignition engine with a non petroleum diesel fuel. • A possible solution to replace certain amount of biodiesel by tyre pyrolysis oil in a biodiesel fueled diesel engine. • The optimum compression ratio for engine fueled with biodiesel-tyre pyrolysis oil blend. - Abstract: This study is aimed at investigating effects of varying the compression ratio at optimum injection timing and nozzle opening pressure on the behaviour of a diesel engine, using a non-petroleum fuel, i.e. a blend of 80% biodiesel, and 20% oil obtained from pyrolysis of waste tyres. The engine was subjected to one lower (16.5) and one higher (18.5) compression ratio in addition to the standard compression ratio of 17.5. At the higher compression ratio of 18.5 and full load, shorter ignition delay, maximum cylinder pressure and higher heat release rate were found for the blend, compared to those of the original compression ratio. The increase in the compression ratio from 17.5 to 18.5 for the blend improved the brake thermal efficiency by about 8% compared to that of the original compression ratio at full load. The experimental results indicated that for the blend at a higher compression ratio of 18.5, the brake specific carbon monoxide (BSCO), brake specific hydrocarbon emission (BSHC) and smoke opacity were reduced by about 10.5%, 32%, and 17.4% respectively, than those of the original compression ratio at full load

  9. Effects of errors in velocity tilt on maximum longitudinal compression during neutralized drift compression of intense beam pulses: II. Analysis of experimental data of the Neutralized Drift Compression eXperiment-I (NDCX-I)

    International Nuclear Information System (INIS)

    Massidda, Scott; Kaganovich, Igor D.; Startsev, Edward A.; Davidson, Ronald C.; Lidia, Steven M.; Seidl, Peter; Friedman, Alex

    2012-01-01

    Neutralized drift compression offers an effective means for particle beam focusing and current amplification with applications to heavy ion fusion. In the Neutralized Drift Compression eXperiment-I (NDCX-I), a non-relativistic ion beam pulse is passed through an inductive bunching module that produces a longitudinal velocity modulation. Due to the applied velocity tilt, the beam pulse compresses during neutralized drift. The ion beam pulse can be compressed by a factor of more than 100; however, errors in the velocity modulation affect the compression ratio in complex ways. We have performed a study of how the longitudinal compression of a typical NDCX-I ion beam pulse is affected by the initial errors in the acquired velocity modulation. Without any voltage errors, an ideal compression is limited only by the initial energy spread of the ion beam, ΔΕ b . In the presence of large voltage errors, δU⪢ΔE b , the maximum compression ratio is found to be inversely proportional to the geometric mean of the relative error in velocity modulation and the relative intrinsic energy spread of the beam ions. Although small parts of a beam pulse can achieve high local values of compression ratio, the acquired velocity errors cause these parts to compress at different times, limiting the overall compression of the ion beam pulse.

  10. Density ratios in compressions driven by radiation pressure

    International Nuclear Information System (INIS)

    Lee, S.

    1988-01-01

    It has been suggested that in the cannonball scheme of laser compression the pellet may be considered to be compressed by the 'brute force' of the radiation pressure. For such a radiation-driven compression, an energy balance method is applied to give an equation fixing the radius compression ratio K which is a key parameter for such intense compressions. A shock model is used to yield specific results. For a square-pulse driving power compressing a spherical pellet with a specific heat ratio of 5/3, a density compression ratio Γ of 27 is computed. Double (stepped) pulsing with linearly rising power enhances Γ to 1750. The value of Γ is not dependent on the absolute magnitude of the piston power, as long as this is large enough. Further enhancement of compression by multiple (stepped) pulsing becomes obvious. The enhanced compression increases the energy gain factor G for a 100 μm DT pellet driven by radiation power of 10 16 W from 6 for a square pulse power with 0.5 MJ absorbed energy to 90 for a double (stepped) linearly rising pulse with absorbed energy of 0.4 MJ assuming perfect coupling efficiency. (author)

  11. BENEFITS AND CHALLENGES OF VARIABLE COMPRESSION RATIO AT DIESEL ENGINES

    Directory of Open Access Journals (Sweden)

    Radivoje B Pešić

    2010-01-01

    Full Text Available The compression ratio strongly affects the working process and provides an exceptional degree of control over engine performance. In conventional internal combustion engines, the compression ratio is fixed and their performance is therefore a compromise between conflicting requirements. One fundamental problem is that drive units in the vehicles must successfully operate at variable speeds and loads and in different ambient conditions. If a diesel engine has a fixed compression ratio, a minimal value must be chosen that can achieve a reliable self-ignition when starting the engine in cold start conditions. In diesel engines, variable compression ratio provides control of peak cylinder pressure, improves cold start ability and low load operation, enabling the multi-fuel capability, increase of fuel economy and reduction of emissions. This paper contains both theoretical and experimental investigation of the impact that automatic variable compression ratios has on working process parameters in experimental diesel engine. Alternative methods of implementing variable compression ratio are illustrated and critically examined.

  12. Study by the Prandtl-Glauert method of compressibility effects and critical Mach number for ellipsoids of various aspect ratios and thickness ratios

    Science.gov (United States)

    Hess, Robert V; Gardner, Clifford S

    1947-01-01

    By using the Prandtl-Glauert method that is valid for three-dimensional flow problems, the value of the maximum incremental velocity for compressible flow about thin ellipsoids at zero angle of attack is calculated as a function of the Mach number for various aspect ratios and thickness ratios. The critical Mach numbers of the various ellipsoids are also determined. The results indicate an increase in critical Mach number with decrease in aspect ratio which is large enough to explain experimental results on low-aspect-ratio wings at zero lift.

  13. High-speed and high-ratio referential genome compression.

    Science.gov (United States)

    Liu, Yuansheng; Peng, Hui; Wong, Limsoon; Li, Jinyan

    2017-11-01

    The rapidly increasing number of genomes generated by high-throughput sequencing platforms and assembly algorithms is accompanied by problems in data storage, compression and communication. Traditional compression algorithms are unable to meet the demand of high compression ratio due to the intrinsic challenging features of DNA sequences such as small alphabet size, frequent repeats and palindromes. Reference-based lossless compression, by which only the differences between two similar genomes are stored, is a promising approach with high compression ratio. We present a high-performance referential genome compression algorithm named HiRGC. It is based on a 2-bit encoding scheme and an advanced greedy-matching search on a hash table. We compare the performance of HiRGC with four state-of-the-art compression methods on a benchmark dataset of eight human genomes. HiRGC takes compress about 21 gigabytes of each set of the seven target genomes into 96-260 megabytes, achieving compression ratios of 217 to 82 times. This performance is at least 1.9 times better than the best competing algorithm on its best case. Our compression speed is also at least 2.9 times faster. HiRGC is stable and robust to deal with different reference genomes. In contrast, the competing methods' performance varies widely on different reference genomes. More experiments on 100 human genomes from the 1000 Genome Project and on genomes of several other species again demonstrate that HiRGC's performance is consistently excellent. The C ++ and Java source codes of our algorithm are freely available for academic and non-commercial use. They can be downloaded from https://github.com/yuansliu/HiRGC. jinyan.li@uts.edu.au. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  14. Simulation research on the effect of cooled EGR, supercharging and compression ratio on downsized SI engine knock

    Science.gov (United States)

    Shu, Gequn; Pan, Jiaying; Wei, Haiqiao; Shi, Ning

    2013-03-01

    Knock in spark-ignition(SI) engines severely limits engine performance and thermal efficiency. The researches on knock of downsized SI engine have mainly focused on structural design, performance optimization and advanced combustion modes, however there is little for simulation study on the effect of cooled exhaust gas recirculation(EGR) combined with downsizing technologies on SI engine performance. On the basis of mean pressure and oscillating pressure during combustion process, the effect of different levels of cooled EGR ratio, supercharging and compression ratio on engine dynamic and knock characteristic is researched with three-dimensional KIVA-3V program coupled with pressure wave equation. The cylinder pressure, combustion temperature, ignition delay timing, combustion duration, maximum mean pressure, and maximum oscillating pressure at different initial conditions are discussed and analyzed to investigate potential approaches to inhibiting engine knock while improving power output. The calculation results of the effect of just cooled EGR on knock characteristic show that appropriate levels of cooled EGR ratio can effectively suppress cylinder high-frequency pressure oscillations without obvious decrease in mean pressure. Analysis of the synergistic effect of cooled EGR, supercharging and compression ratio on knock characteristic indicates that under the condition of high supercharging and compression ratio, several times more cooled EGR ratio than that under the original condition is necessarily utilized to suppress knock occurrence effectively. The proposed method of synergistic effect of cooled EGR and downsizing technologies on knock characteristic, analyzed from the aspects of mean pressure and oscillating pressure, is an effective way to study downsized SI engine knock and provides knock inhibition approaches in practical engineering.

  15. BENEFITS AND CHALLENGES OF VARIABLE COMPRESSION RATIO AT DIESEL ENGINES

    OpenAIRE

    Radivoje B Pešić; Saša T Milojević; Stevan P Veinović

    2010-01-01

    The compression ratio strongly affects the working process and provides an exceptional degree of control over engine performance. In conventional internal combustion engines, the compression ratio is fixed and their performance is therefore a compromise between conflicting requirements. One fundamental problem is that drive units in the vehicles must successfully operate at variable speeds and loads and in different ambient conditions. If a diesel engine has a fixed compression ratio, a minim...

  16. A Study on the Effects of Compression Ratio, Engine Speed and Equivalence Ratio on HCCI Combustion of DME

    DEFF Research Database (Denmark)

    Pedersen, Troels Dyhr; Schramm, Jesper

    2007-01-01

    An experimental study has been carried out on the homogeneous charge compression ignition (HCCI) combustion of Dimethyl Ether (DME). The study was performed as a parameter variation of engine speed and compression ratio on excess air ratios of approximately 2.5, 3 and 4. The compression ratio...... was adjusted in steps to find suitable regions of operation, and the effect of engine speed was studied at 1000, 2000 and 3000 RPM. It was found that leaner excess air ratios require higher compression ratios to achieve satisfactory combustion. Engine speed also affects operation significantly....

  17. A Study on the Effects of Compression Ratio, Engine Speed and Equivalence Ratio on HCCI Combustion of DME

    DEFF Research Database (Denmark)

    Pedersen, Troels Dyhr; Schramm, Jesper

    2007-01-01

    An experimental study has been carried out on the homogeneous charge compression ignition (HCCI) combustion of Dimethyl Ether (DME). The study was performed as a parameter variation of engine speed and compression ratio on excess air ratios of approximately 2.5, 3 and 4. The compression ratio was...

  18. Evaluation of compression ratio using JPEG 2000 on diagnostic images in dentistry

    International Nuclear Information System (INIS)

    Jung, Gi Hun; Han, Won Jeong; Yoo, Dong Soo; Kim, Eun Kyung; Choi, Soon Chul

    2005-01-01

    To find out the proper compression ratios without degrading image quality and affecting lesion detectability on diagnostic images used in dentistry compressed with JPEG 2000 algorithm. Sixty Digora peri apical images, sixty panoramic computed radiographic (CR) images, sixty computed tomography (CT) images, and sixty magnetic resonance (MR) images were compressed into JPEG 2000 with ratios of 10 levels from 5:1 to 50:1. To evaluate the lesion detectability, the images were graded with 5 levels (1 : definitely absent ; 2 : probably absent ; 3 : equivocal ; 4 : probably present ; 5 : definitely present), and then receiver operating characteristic analysis was performed using the original image as a gold standard. Also to evaluate subjectively the image quality, the images were graded with 5 levels (1 : definitely unacceptable ; 2 : probably unacceptable ; 3 : equivocal ; 4 : probably acceptable ; 5 : definitely acceptable), and then paired t-test was performed. In Digora, CR panoramic and CT images, compressed images up to ratios of 15:1 showed nearly the same lesion detectability as original images, and in MR images, compressed images did up to ratios of 25:1. In Digora and CR panoramic images, compressed images up to ratios of 5:1 showed little difference between the original and reconstructed images in subjective assessment of image quality. In CT images, compressed images did up to ratios of 10:1 and in MR images up to ratios of 15:1. We considered compression ratios up to 5:1 in Digora and CR panoramic images, up to 10:1 in CT images, up to 15:1 in MR images as clinically applicable compression ratios.

  19. THE EFFECTS OF INCREASE THE COMPRESSION RATIO ON PERFORMANCE OF A DIESEL ENGINE

    Directory of Open Access Journals (Sweden)

    Adnan PARLAK

    2003-02-01

    Full Text Available An optimisation of the Diesel cycle has been performed for power output and thermal efficiency with respect to compression ratio for various extreme temperature ratio. The relation between compression ratio and extreme temperature ratio, which gives optimum performance is derived. As the compression ratio of the diesel engine is increased in comparison to the optimum value of the engine, it is shown that the performance of the engine is decreased. The experimental study agrees with these results. In this study, compression ratio of a single cylinder pre-combustion chamber variable compression ratio Ricardo E6 type engine with the optimum compression ratio of 18.20 was increased to 19.60. As a results of this increase, specific fuel consumption was increased about 8 % and brake thermal efficiency was decreased about 7.5 %.

  20. Minimum Specific Fuel Consumption of a Liquid-Cooled Multicylinder Aircraft Engine as Affected by Compression Ratio and Engine Operating Conditions

    Science.gov (United States)

    Brun, Rinaldo J.; Feder, Melvin S.; Harries, Myron L.

    1947-01-01

    An investigation was conducted on a 12-cylinder V-type liquid-cooled aircraft engine of 1710-cubic-inch displacement to determine the minimum specific fuel consumption at constant cruising engine speed and compression ratios of 6.65, 7.93, and 9.68. At each compression ratio, the effect.of the following variables was investigated at manifold pressures of 28, 34, 40, and 50 inches of mercury absolute: temperature of the inlet-air to the auxiliary-stage supercharger, fuel-air ratio, and spark advance. Standard sea-level atmospheric pressure was maintained at the auxiliary-stage supercharger inlet and the exhaust pressure was atmospheric. Advancing the spark timing from 34 deg and 28 deg B.T.C. (exhaust and intake, respectively) to 42 deg and 36 deg B.T.C. at a compression ratio of 6.65 resulted in a decrease of approximately 3 percent in brake specific fuel consumption. Further decreases in brake specific fuel consumption of 10.5 to 14.1 percent (depending on power level) were observed as the compression ratio was increased from 6.65 to 9.68, maintaining at each compression ratio the spark advance required for maximum torque at a fuel-air ratio of 0.06. This increase in compression ratio with a power output of 0.585 horsepower per cubic inch required a change from . a fuel- lend of 6-percent triptane with 94-percent 68--R fuel at a compression ratio of 6.65 to a fuel blend of 58-percent, triptane with 42-percent 28-R fuel at a compression ratio of 9.68 to provide for knock-free engine operation. As an aid in the evaluation of engine mechanical endurance, peak cylinder pressures were measured on a single-cylinder engine at several operating conditions. Peak cylinder pressures of 1900 pounds per square inch can be expected at a compression ratio of 9.68 and an indicated mean effective pressure of 320 pounds per square inch. The engine durability was considerably reduced at these conditions.

  1. Comprehensive performance analyses and optimization of the irreversible thermodynamic cycle engines (TCE) under maximum power (MP) and maximum power density (MPD) conditions

    International Nuclear Information System (INIS)

    Gonca, Guven; Sahin, Bahri; Ust, Yasin; Parlak, Adnan

    2015-01-01

    This paper presents comprehensive performance analyses and comparisons for air-standard irreversible thermodynamic cycle engines (TCE) based on the power output, power density, thermal efficiency, maximum dimensionless power output (MP), maximum dimensionless power density (MPD) and maximum thermal efficiency (MEF) criteria. Internal irreversibility of the cycles occurred during the irreversible-adiabatic processes is considered by using isentropic efficiencies of compression and expansion processes. The performances of the cycles are obtained by using engine design parameters such as isentropic temperature ratio of the compression process, pressure ratio, stroke ratio, cut-off ratio, Miller cycle ratio, exhaust temperature ratio, cycle temperature ratio and cycle pressure ratio. The effects of engine design parameters on the maximum and optimal performances are investigated. - Highlights: • Performance analyses are conducted for irreversible thermodynamic cycle engines. • Comprehensive computations are performed. • Maximum and optimum performances of the engines are shown. • The effects of design parameters on performance and power density are examined. • The results obtained may be guidelines to the engine designers

  2. An analysis of the efficacy of bag-valve-mask ventilation and chest compression during different compression-ventilation ratios in manikin-simulated paediatric resuscitation.

    Science.gov (United States)

    Kinney, S B; Tibballs, J

    2000-01-01

    The ideal chest compression and ventilation ratio for children during performance of cardiopulmonary resuscitation (CPR) has not been determined. The efficacy of chest compression and ventilation during compression ventilation ratios of 5:1, 10:2 and 15:2 was examined. Eighteen nurses, working in pairs, were instructed to provide chest compression and bag-valve-mask ventilation for 1 min with each ratio in random on a child-sized manikin. The subjects had been previously taught paediatric CPR within the last 3 or 5 months. The efficacy of ventilation was assessed by measurement of the expired tidal volume and the number of breaths provided. The rate of chest compression was guided by a metronome set at 100/min. The efficacy of chest compressions was assessed by measurement of the rate and depth of compression. There was no significant difference in the mean tidal volume or the percentage of effective chest compressions delivered for each compression-ventilation ratio. The number of breaths delivered was greatest with the ratio of 5:1. The percentage of effective chest compressions was equal with all three methods but the number of effective chest compressions was greatest with a ratio of 5:1. This study supports the use of a compression-ventilation ratio of 5:1 during two-rescuer paediatric cardiopulmonary resuscitation.

  3. THE EFFECT OF COMPRESSION RATIO VARIATIONS ON THE ENGINE PERFORMANCE PARAMETRES IN SPARK IGNITION ENGINES

    Directory of Open Access Journals (Sweden)

    Yakup SEKMEN

    2005-01-01

    Full Text Available Performance of the spark ignition engines may be increased by changing the geometrical compression ratio according to the amount of charging in cylinders. The designed geometrical compression ratio can be realized as an effective compression ratio under the full load and full open throttle conditions since the effective compression ratio changes with the amount of charging into the cylinder in spark ignition engines. So, this condition of the spark ignition engines forces designers to change their geometrical compression ratio according to the amount of charging into the cylinder for improvement of performance and fuel economy. In order to improve the combustion efficiency, fuel economy, power output, exhaust emissions at partial loads, compression ratio must be increased; but, under high load and low speed conditions to prevent probable knock and hard running the compression ratio must be decreased gradually. In this paper, relation of the performance parameters to compression ratio such as power, torque, specific fuel consumption, cylindir pressure, exhaust gas temperature, combustion chamber surface area/volume ratio, thermal efficiency, spark timing etc. in spark ignition engines have been investigated and using of engines with variable compression ratio is suggested to fuel economy and more clear environment.

  4. Idealized Compression Ratio for a Screw Briquetting Press

    Directory of Open Access Journals (Sweden)

    Peter Biath

    2012-01-01

    Full Text Available This paper deals with issues in determining the ideal compression ratio for a screw briquetting press. First, the principles of operation and a basic description of the main parts of a screw briquetting press are introduced. The next section describes the pressing space by means of 3D software. The pressing space was created using a Boolean subtract function. The final section of the paper measures the partial volumes of the pressing chamber in CATIA V5 by function of measuring. The measured values are substituted into the formula for the compression ratio, and the resulting evaluations are presented in the diagram in the conclusion of this paper.

  5. A practical method for estimating maximum shear modulus of cemented sands using unconfined compressive strength

    Science.gov (United States)

    Choo, Hyunwook; Nam, Hongyeop; Lee, Woojin

    2017-12-01

    The composition of naturally cemented deposits is very complicated; thus, estimating the maximum shear modulus (Gmax, or shear modulus at very small strains) of cemented sands using the previous empirical formulas is very difficult. The purpose of this experimental investigation is to evaluate the effects of particle size and cement type on the Gmax and unconfined compressive strength (qucs) of cemented sands, with the ultimate goal of estimating Gmax of cemented sands using qucs. Two sands were artificially cemented using Portland cement or gypsum under varying cement contents (2%-9%) and relative densities (30%-80%). Unconfined compression tests and bender element tests were performed, and the results from previous studies of two cemented sands were incorporated in this study. The results of this study demonstrate that the effect of particle size on the qucs and Gmax of four cemented sands is insignificant, and the variation of qucs and Gmax can be captured by the ratio between volume of void and volume of cement. qucs and Gmax of sand cemented with Portland cement are greater than those of sand cemented with gypsum. However, the relationship between qucs and Gmax of the cemented sand is not affected by the void ratio, cement type and cement content, revealing that Gmax of the complex naturally cemented soils with unknown in-situ void ratio, cement type and cement content can be estimated using qucs.

  6. Prediction of the compression ratio for municipal solid waste using decision tree.

    Science.gov (United States)

    Heshmati R, Ali Akbar; Mokhtari, Maryam; Shakiba Rad, Saeed

    2014-01-01

    The compression ratio of municipal solid waste (MSW) is an essential parameter for evaluation of waste settlement and landfill design. However, no appropriate model has been proposed to estimate the waste compression ratio so far. In this study, a decision tree method was utilized to predict the waste compression ratio (C'c). The tree was constructed using Quinlan's M5 algorithm. A reliable database retrieved from the literature was used to develop a practical model that relates C'c to waste composition and properties, including dry density, dry weight water content, and percentage of biodegradable organic waste using the decision tree method. The performance of the developed model was examined in terms of different statistical criteria, including correlation coefficient, root mean squared error, mean absolute error and mean bias error, recommended by researchers. The obtained results demonstrate that the suggested model is able to evaluate the compression ratio of MSW effectively.

  7. Maximum-principle-satisfying space-time conservation element and solution element scheme applied to compressible multifluids

    KAUST Repository

    Shen, Hua; Wen, Chih-Yung; Parsani, Matteo; Shu, Chi-Wang

    2016-01-01

    A maximum-principle-satisfying space-time conservation element and solution element (CE/SE) scheme is constructed to solve a reduced five-equation model coupled with the stiffened equation of state for compressible multifluids. We first derive a sufficient condition for CE/SE schemes to satisfy maximum-principle when solving a general conservation law. And then we introduce a slope limiter to ensure the sufficient condition which is applicative for both central and upwind CE/SE schemes. Finally, we implement the upwind maximum-principle-satisfying CE/SE scheme to solve the volume-fraction-based five-equation model for compressible multifluids. Several numerical examples are carried out to carefully examine the accuracy, efficiency, conservativeness and maximum-principle-satisfying property of the proposed approach.

  8. Maximum-principle-satisfying space-time conservation element and solution element scheme applied to compressible multifluids

    KAUST Repository

    Shen, Hua

    2016-10-19

    A maximum-principle-satisfying space-time conservation element and solution element (CE/SE) scheme is constructed to solve a reduced five-equation model coupled with the stiffened equation of state for compressible multifluids. We first derive a sufficient condition for CE/SE schemes to satisfy maximum-principle when solving a general conservation law. And then we introduce a slope limiter to ensure the sufficient condition which is applicative for both central and upwind CE/SE schemes. Finally, we implement the upwind maximum-principle-satisfying CE/SE scheme to solve the volume-fraction-based five-equation model for compressible multifluids. Several numerical examples are carried out to carefully examine the accuracy, efficiency, conservativeness and maximum-principle-satisfying property of the proposed approach.

  9. Strength and Absorption Rate of Compressed Stabilized Earth Bricks (CSEBs Due to Different Mixture Ratios and Degree of Compaction

    Directory of Open Access Journals (Sweden)

    Abdullah Abd Halid

    2017-01-01

    Full Text Available Compressed Stabilized Earth Brick (CSEB is produced by compressing a mixture of water with three main materials such as Ordinary Portland Cement (OPC, soil, and sand. It becomes popularfor its good strength, better insulation properties, and a sustainable product due to its easy production with low carbon emission and less skilled labour required. Different types of local soils usedwill produce CSEB of different physical properties in terms of its strength, durability, and water absorption rate. This study focuses on laterite soil taken from the surrounding local area in Parit Raja, Johor, and CSEB samples are produced based on prototype brick size 100×50×30 mm. The investigations are based on four different degree of compactions (i.e. 1500, 2000, 2500, and 3000 Psi and three different mix proportion ratios of cement:sand:laterite soil (i.e. 1:1:9, 1:2:8, 1:3:7. A total of 144 CSEB samples have been tested at 7 and 28 days curing periods to determine the compressive strength (BS 3921:1985 and water absorption rate (MS 76:1972. It was found that maximum compressive strength of CSEB was 14.68 N/mm2 for mixture ratio of 1:3:7 at 2500 Psi compaction. Whereas, the minimum strengthis 6.87 N/mm2 for 1:1:9mixture ratio at 1500 Psi. Meanwhile, the lowest water absorption was 12.35% for mixture ratio of 1:2:8 at 3000 Psi; while the 1:1:9 mixture ratio at 1500 Psi gave the highest rate of 16.81%. This study affirms that the sand content in the mixture and the degree of compaction would affect the value of compressive strength and water absorption of CSEB.

  10. Performance analysis and comparison of an Atkinson cycle coupled to variable temperature heat reservoirs under maximum power and maximum power density conditions

    International Nuclear Information System (INIS)

    Wang, P.-Y.; Hou, S.-S.

    2005-01-01

    In this paper, performance analysis and comparison based on the maximum power and maximum power density conditions have been conducted for an Atkinson cycle coupled to variable temperature heat reservoirs. The Atkinson cycle is internally reversible but externally irreversible, since there is external irreversibility of heat transfer during the processes of constant volume heat addition and constant pressure heat rejection. This study is based purely on classical thermodynamic analysis methodology. It should be especially emphasized that all the results and conclusions are based on classical thermodynamics. The power density, defined as the ratio of power output to maximum specific volume in the cycle, is taken as the optimization objective because it considers the effects of engine size as related to investment cost. The results show that an engine design based on maximum power density with constant effectiveness of the hot and cold side heat exchangers or constant inlet temperature ratio of the heat reservoirs will have smaller size but higher efficiency, compression ratio, expansion ratio and maximum temperature than one based on maximum power. From the view points of engine size and thermal efficiency, an engine design based on maximum power density is better than one based on maximum power conditions. However, due to the higher compression ratio and maximum temperature in the cycle, an engine design based on maximum power density conditions requires tougher materials for engine construction than one based on maximum power conditions

  11. Effect Of Compression Ratio On The Performance Of Diesel Engine At Different Loads.

    OpenAIRE

    Abhishek Reddy G; Nirmal Pratap Singh

    2015-01-01

    Variable compression ratio (VCR) technology has long been recognized as a method for improving the automobile engine performance, efficiency, fuel economy with reduced emission. The main feature of the VCR engine is to operate at different compression ratio, by changing the combustion chamber volume, depending on the vehicle performance needs .The need to improve the performance characteristics of the IC Engine has necessitated the present research. Increasing the compression rati...

  12. THE EFFECT OF VARIABLE COMPRESSION RATIO ON FUEL CONSUMPTION IN SPARK IGNITION ENGINES

    Directory of Open Access Journals (Sweden)

    Yakup SEKMEN

    2002-02-01

    Full Text Available Due to lack of energy sources in the world, we are obliged to use our current energy sources in the most efficient way. Therefore, in the automotive industry, research works to manufacture more economic cars in terms of fuelconsumption and environmental friendly cars, at the same time satisfying the required performance have been intensively increasing. Some positive results have been obtained by the studies, aimed to change the compression ratio according to the operating conditions of engine. In spark ignition engines in order to improve the combustion efficiency, fuel economy and exhaust emission in the partial loads, the compression ratio must be increased; but, under the high load and low speed conditions to prevent probable knock and hard running compression ratio must be decreased slightly. In this paper, various research works on the variable compression ratio with spark ignition engines, the effects on fuel economy, power output and thermal efficiency have been investigated. According to the results of the experiments performed with engines having variable compression ratio under the partial and mid-load conditions, an increase in engine power, a decrease in fuel consumption, particularly in partial loads up to 30 percent of fuel economy, and also severe reductions of some exhaust emission values were determined.

  13. Effects of particle exhaust on neutral compression ratios in DIII-D

    International Nuclear Information System (INIS)

    Colchin, R.J.; Maingi, R.; Wade, M.R.; Allen, S.L.; Greenfield, C.M.

    1998-08-01

    In this paper, neutral particles in DIII-D are studied via their compression in the plenum and via particle exhaust. The compression of gas in the plena is examined in terms of the magnetic field configuration and wall conditions. DIII-D compression ratios are observed in the range from 1 to ≥ 1,000. Particle control ultimately depends on the exhaust of neutrals via plenum or wall pumping. Wall pumping or outgassing is calculated by means of a detailed particle balance throughout individual discharges, and its effect on particle control is discussed. It is demonstrated that particle control through wall conditioning leads to lower normalized densities. A two-region model shows that the gas compression ratio (C div = divertor plenum neutral pressure/torus neutral pressure) can be interpreted in relation to gas flows in the torus and divertor including the pumping speed of the plenum cryopumps, plasma pumping, and the pumping or outgassing of the walls

  14. A RCCI operational limits assessment in a medium duty compression ignition engine using an adapted compression ratio

    International Nuclear Information System (INIS)

    Benajes, Jesús; Pastor, José V.; García, Antonio; Boronat, Vicente

    2016-01-01

    Highlights: • RCCI with CR 12.75 reaches up to 80% load fulfilling mechanical limits. • Ultra-low levels in NOx and soot emissions are obtained in the whole engine map. • Ultra-high levels of CO and uHC have been measured overall at low load. • RCCI improves fuel consumption from 25% to 80% engine loads comparing with CDC. - Abstract: Reactivity Controlled Compression Ignition concept offers an ultra-low nitrogen oxide and soot emissions with a high thermal efficiency. This work investigates the capabilities of this low temperature combustion concept to work on the whole map of a medium duty engine proposing strategies to solve its main challenges. In this sense, an extension to high loads of the concept without exceeding mechanical stress as well as a mitigation of carbon oxide and unburned hydrocarbons emissions at low load together with a fuel consumption penalty have been identified as main Reactivity Controlled Compression Ignition drawbacks. For this purpose, a single cylinder engine derived from commercial four cylinders medium-duty engine with an adapted compression ratio of 12.75 is used. Commercial 95 octane gasoline was used as a low reactivity fuel and commercial diesel as a high reactivity fuel. Thus, the study consists of two different parts. Firstly, the work is focused on the development and evaluation of an engine map trying to achieve the maximum possible load without exceeding a pressure rise rate of 15 bar/CAD. The second part holds on improving fuel consumption and carbon oxide and unburned hydrocarbons emissions at low load. Results suggest that it is possible to achieve up to 80% of nominal conventional diesel combustion engine load without overpassing the constraints of pressure rise rate (below 15 bar/CAD) and maximum pressure peak (below 190 bar) while obtaining ultra-low levels of nitrogen oxide and soot emissions. Regarding low load challenges, it has developed a particular methodology sweeping the gasoline-diesel blend together

  15. Energetic and exergetic analyses of a variable compression ratio spark ignition gas engine

    International Nuclear Information System (INIS)

    Javaheri, A.; Esfahanian, V.; Salavati-Zadeh, A.; Darzi, M.

    2014-01-01

    Highlights: • Effects of CR and λ on CNG SI ICE 1st and 2nd law analyses are experimentally studied. • The performance of pure methane and a real CNG are observed and compared. • The ratio of actual to Otto cycle thermal efficiencies is 0.78 for all cases. • At least 25.5% of destructed availability is due to combustion irreversibility. • With decrease in methane content, CNG shows more combustion irreversibility. - Abstract: Considering the significance of obtaining higher efficiencies from internal combustion engines (ICE) along with the growing role of natural gas as a fuel, the present work is set to explore the effects of compression ratio (CR hereafter) and air/fuel equivalence ratio (AFER hereafter) on the energy and exergy potentials in a gas-fueled spark ignition internal combustion engine. Experiments are carried out using a single cylinder, port injection, water cooled, variable compression ratio (VCR hereafter), spark ignition engine at a constant engine speed of 2000 rpm. The study involves CRs of 12, 14 and 16 and 10 AFERs between 0.8 and 1.25. Pure methane is utilized for the analysis. In addition, a natural gas blend with the minimum methane content among Iranian gas sources is also tested in order to investigate the effect of real natural gas on findings. The energy analysis involves input fuel power, indicated power and losses due to high temperature of exhaust gases and their unburned content, blow-by and heat loss. The exergy analysis is carried out for availability input and piston, exhaust, and losses availabilities along with destructed entropy. The analysis indicates an increase in the ratio of thermo-mechanical exhaust availability to fuel availability by CR with a maximum near stoichiometry, whereas it is shown that chemical exhaust exergy is not dependent on CR and reduces with AFER. In addition, it is indicated that the ratio of actual cycle to Otto cycle thermal efficiencies is about constant (about 0.784) with changing CR

  16. Analysis of spastic gait in cervical myelopathy: Linking compression ratio to spatiotemporal and pedobarographic parameters.

    Science.gov (United States)

    Nagai, Taro; Takahashi, Yasuhito; Endo, Kenji; Ikegami, Ryo; Ueno, Ryuichi; Yamamoto, Kengo

    2018-01-01

    Gait dysfunction associated with spasticity and hyperreflexia is a primary symptom in patients with compression of cervical spinal cord. The objective of this study was to link maximum compression ratio (CR) to spatiotemporal/pedobarographic parameters. Quantitative gait analysis was performed by using a pedobarograph in 75 elderly males with a wide range of cervical compression severity. CR values were characterized on T1-weighted magnetic resonance imaging (MRI). Statistical significances in gait analysis parameters (speed, cadence, stride length, step with, and toe-out angle) were evaluated among different CR groups by the non-parametric Kruskal-Wallis test followed by the Mann-Whitney U test using Bonferroni correction. The Spearman test was performed to verify correlations between CR and gait parameters. The Kruskal-Wallis test revealed significant decline in gait speed and stride length and significant increase in toe-out angle with progression of cervical compression myelopathy. The post-hoc Mann-Whitney U test showed significant differences in these parameters between the control group (0.45test revealed that CR was significantly correlated with speed, cadence, stride length, and toe-out angle. Gait speed, stride length, and toe-out angle can serve as useful indexes for evaluating progressive gait abnormality in cervical myelopathy. Our findings suggest that CR≤0.25 is associated with significantly poorer gait performance. Nevertheless, future prospective studies are needed to determine a potential benefit from decompressive surgery in such severe compression patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Speech perception at positive signal-to-noise ratios using adaptive adjustment of time compression.

    Science.gov (United States)

    Schlueter, Anne; Brand, Thomas; Lemke, Ulrike; Nitzschner, Stefan; Kollmeier, Birger; Holube, Inga

    2015-11-01

    Positive signal-to-noise ratios (SNRs) characterize listening situations most relevant for hearing-impaired listeners in daily life and should therefore be considered when evaluating hearing aid algorithms. For this, a speech-in-noise test was developed and evaluated, in which the background noise is presented at fixed positive SNRs and the speech rate (i.e., the time compression of the speech material) is adaptively adjusted. In total, 29 younger and 12 older normal-hearing, as well as 24 older hearing-impaired listeners took part in repeated measurements. Younger normal-hearing and older hearing-impaired listeners conducted one of two adaptive methods which differed in adaptive procedure and step size. Analysis of the measurements with regard to list length and estimation strategy for thresholds resulted in a practical method measuring the time compression for 50% recognition. This method uses time-compression adjustment and step sizes according to Versfeld and Dreschler [(2002). J. Acoust. Soc. Am. 111, 401-408], with sentence scoring, lists of 30 sentences, and a maximum likelihood method for threshold estimation. Evaluation of the procedure showed that older participants obtained higher test-retest reliability compared to younger participants. Depending on the group of listeners, one or two lists are required for training prior to data collection.

  18. Effect of raw material ratios on the compressive strength of magnesium potassium phosphate chemically bonded ceramics

    International Nuclear Information System (INIS)

    Wang, Ai-juan; Yuan, Zhi-long; Zhang, Jiao; Liu, Lin-tao; Li, Jun-ming; Liu, Zheng

    2013-01-01

    The compressive strength of magnesium potassium phosphate chemically bonded ceramics is important in biomedical field. In this work, the compressive strength of magnesium potassium phosphate chemically bonded ceramics was investigated with different liquid-to-solid and MgO-to-KH 2 PO 4 ratios. X-ray diffractometer was applied to characterize its phase composition. The microstructure was imaged using a scanning electron microscope. The results showed that the compressive strength of the chemically bonded ceramics increased with the decrease of liquid-to-solid ratio due to the change of the packing density and the crystallinity of hydrated product. However, with the increase of MgO-to-KH 2 PO 4 weight ratio, its compressive strength increased firstly and then decreased. The low compressive strength in lower MgO-to-KH 2 PO 4 ratio might be explained by the existence of the weak phase KH 2 PO 4 . However, the low value of compressive strength with the higher MgO-to-KH 2 PO 4 ratio might be caused by lack of the joined phase in the hydrated product. Besides, it has been found that the microstructures were different in these two cases by the scanning electron microscope. Colloidal structure appeared for the samples with lower liquid-to-solid and higher MgO-to-KH 2 PO 4 ratios possibly because of the existence of amorphous hydrated products. The optimization of both liquid-to-solid and MgO-to-KH 2 PO 4 ratios was important to improve the compressive strength of magnesium potassium phosphate chemically bonded ceramics. - Highlights: • High packing density and amorphous hydrated phase improved the compressive strength. • Residual KH 2 PO 4 and poor bonding phase lower the compressive strength. • MPCBC fabricated with optimized parameters had the highest compressive strength

  19. Studying the effect of compression ratio on an engine fueled with waste oil produced biodiesel/diesel fuel

    Directory of Open Access Journals (Sweden)

    Mohammed EL_Kassaby

    2013-03-01

    Full Text Available Wasted cooking oil from restaurants was used to produce neat (pure biodiesel through transesterification, and then used to prepare biodiesel/diesel blends. The effect of blending ratio and compression ratio on a diesel engine performance has been investigated. Emission and combustion characteristics was studded when the engine operated using the different blends (B10, B20, B30, and B50 and normal diesel fuel (B0 as well as when varying the compression ratio from 14 to 16 to 18. The result shows that the engine torque for all blends increases as the compression ratio increases. The bsfc for all blends decreases as the compression ratio increases and at all compression ratios bsfc remains higher for the higher blends as the biodiesel percent increase. The change of compression ratio from 14 to 18 resulted in, 18.39%, 27.48%, 18.5%, and 19.82% increase in brake thermal efficiency in case of B10, B20, B30, and B50 respectively. On an average, the CO2 emission increased by 14.28%, the HC emission reduced by 52%, CO emission reduced by 37.5% and NOx emission increased by 36.84% when compression ratio was increased from 14 to 18. In spite of the slightly higher viscosity and lower volatility of biodiesel, the ignition delay seems to be lower for biodiesel than for diesel. On average, the delay period decreased by 13.95% when compression ratio was increased from 14 to 18. From this study, increasing the compression ratio had more benefits with biodiesel than that with pure diesel.

  20. Hige Compression Ratio Turbo Gasoline Engine Operation Using Alcohol Enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Heywood, John [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Jo, Young Suk [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Lewis, Raymond [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Bromberg, Leslie [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Heywood, John [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2016-01-29

    The overall objective of this project was to quantify the potential for improving the performance and efficiency of gasoline engine technology by use of alcohols to suppress knock. Knock-free operation is obtained by direct injection of a second “anti-knock” fuel such as ethanol, which suppresses knock when, with gasoline fuel, knock would occur. Suppressing knock enables increased turbocharging, engine downsizing, and use of higher compression ratios throughout the engine’s operating map. This project combined engine testing and simulation to define knock onset conditions, with different mixtures of gasoline and alcohol, and with this information quantify the potential for improving the efficiency of turbocharged gasoline spark-ignition engines, and the on-vehicle fuel consumption reductions that could then be realized. The more focused objectives of this project were therefore to: Determine engine efficiency with aggressive turbocharging and downsizing and high compression ratio (up to a compression ratio of 13.5:1) over the engine’s operating range; Determine the knock limits of a turbocharged and downsized engine as a function of engine speed and load; Determine the amount of the knock-suppressing alcohol fuel consumed, through the use of various alcohol-gasoline and alcohol-water gasoline blends, for different driving cycles, relative to the gasoline consumed; Determine implications of using alcohol-boosted engines, with their higher efficiency operation, in both light-duty and medium-duty vehicle sectors.

  1. Particular mechanism for continuously varying the compression ratio for an internal combustion engine

    Science.gov (United States)

    Raţiu, S.; Cătălinoiu, R.; Alexa, V.; Miklos, I.; Cioată, V.

    2018-01-01

    Variable compression ratio (VCR) is a technology to adjust the compression ratio of an internal combustion engine while the engine is in operation. The paper proposes the presentation of a particular mechanism allowing the position of the top dead centre to be changed, while the position of the bottom dead centre remains fixed. The kinematics of the mechanism is studied and its trajectories are graphically represented for different positions of operation.

  2. Combustion and Emission Characteristics of Variable Compression Ignition Engine Fueled with Jatropha curcas Ethyl Ester Blends at Different Compression Ratio

    Directory of Open Access Journals (Sweden)

    Rajneesh Kumar

    2014-01-01

    Full Text Available Engine performance and emission characteristics of unmodified biodiesel fueled diesel engines are highly influenced by their ignition and combustion behavior. In this study, emission and combustion characteristics were studied when the engine operated using the different blends (B10, B20, B30, and B40 and normal diesel fuel (B0 as well as when varying the compression ratio from 16.5 : 1 to 17.5 : 1 to 18.5 : 1. The change of compression ratio from 16.5 : 1 to 18.5 : 1 resulted in 27.1%, 27.29%, 26.38%, 28.48%, and 34.68% increase in cylinder pressure for the blends B0, B10, B20, B30, and B40, respectively, at 75% of rated load conditions. Higher peak heat release rate increased by 23.19%, 14.03%, 26.32%, 21.87%, and 25.53% for the blends B0, B10, B20, B30, and B40, respectively, at 75% of rated load conditions, when compression ratio was increased from16.5 : 1 to 18.5 : 1. The delay period decreased by 21.26%, CO emission reduced by 14.28%, and NOx emission increased by 22.84% for B40 blends at 75% of rated load conditions, when compression ratio was increased from 16.5 : 1 to 18.5 : 1. It is concluded that Jatropha oil ester can be used as fuel in diesel engine by blending it with diesel fuel.

  3. DNABIT Compress - Genome compression algorithm.

    Science.gov (United States)

    Rajarajeswari, Pothuraju; Apparao, Allam

    2011-01-22

    Data compression is concerned with how information is organized in data. Efficient storage means removal of redundancy from the data being stored in the DNA molecule. Data compression algorithms remove redundancy and are used to understand biologically important molecules. We present a compression algorithm, "DNABIT Compress" for DNA sequences based on a novel algorithm of assigning binary bits for smaller segments of DNA bases to compress both repetitive and non repetitive DNA sequence. Our proposed algorithm achieves the best compression ratio for DNA sequences for larger genome. Significantly better compression results show that "DNABIT Compress" algorithm is the best among the remaining compression algorithms. While achieving the best compression ratios for DNA sequences (Genomes),our new DNABIT Compress algorithm significantly improves the running time of all previous DNA compression programs. Assigning binary bits (Unique BIT CODE) for (Exact Repeats, Reverse Repeats) fragments of DNA sequence is also a unique concept introduced in this algorithm for the first time in DNA compression. This proposed new algorithm could achieve the best compression ratio as much as 1.58 bits/bases where the existing best methods could not achieve a ratio less than 1.72 bits/bases.

  4. Analysis of Large-Strain Extrusion Machining with Different Chip Compression Ratios

    Directory of Open Access Journals (Sweden)

    Wen Jun Deng

    2012-01-01

    Full Text Available Large-Strain Extrusion Machining (LSEM is a novel-introduced process for deforming materials to very high plastic strains to produce ultra-fine nanostructured materials. Before the technique can be exploited, it is important to understand the deformation behavior of the workpiece and its relationship to the machining parameters and friction conditions. This paper reports finite-element method (FEM analysis of the LSEM process to understand the evolution of temperature field, effective strain, and strain rate under different chip compression ratios. The cutting and thrust forces are also analyzed with respect to time. The results show that LSEM can produce very high strains by changing in the value of chip compression ratio, thereby enabling the production of nanostructured materials. The shape of the chip produced by LSEM can also be geometrically well constrained.

  5. Compression of toroidal plasma by imploding plasma-liner

    International Nuclear Information System (INIS)

    Ikuta, Kazunari.

    1979-07-01

    A new concept of compressing a plasma in a closed magnetic configuration by a version of liner implosion flux compression technique is considered. The liner consists of a dense plasma cylinder, i.e. the plasma-liner. Maximum compression ratio of toroidal plasma is determined just by the initial density ratio of the toroidal plasma to the liner plasma because of the Rayleigh-Taylor instability. A start-up senario of plasma-liner is also proposed with a possible application of this concept to the creation of a burning plasma in reversed field configurations, i.e. burning plasma vortex. (author)

  6. Combustion engine variable compression ratio apparatus and method

    Science.gov (United States)

    Lawrence,; Keith, E [Peoria, IL; Strawbridge, Bryan E [Dunlap, IL; Dutart, Charles H [Washington, IL

    2006-06-06

    An apparatus and method for varying a compression ratio of an engine having a block and a head mounted thereto. The apparatus and method includes a cylinder having a block portion and a head portion, a piston linearly movable in the block portion of the cylinder, a cylinder plug linearly movable in the head portion of the cylinder, and a valve located in the cylinder plug and operable to provide controlled fluid communication with the block portion of the cylinder.

  7. The effect on quality of chest compressions and exhaustion of a compression--ventilation ratio of 30:2 versus 15:2 during cardiopulmonary resuscitation--a randomised trial

    NARCIS (Netherlands)

    Deschilder, Koen; de Vos, Rien; Stockman, Willem

    2007-01-01

    Recent cardio pulmonary resuscitation (CPR) guidelines changed the compression:ventilation ratio in 30:2. To compare the quality of chest compressions and exhaustion using the ratio 30:2 versus 15:2. A prospective, randomised crossover design was used. Subjects were recruited from the H.-Hart

  8. Effect of one-rescuer compression/ventilation ratios on cardiopulmonary resuscitation in infant, pediatric, and adult manikins.

    Science.gov (United States)

    Srikantan, Shoba Krishnan; Berg, Robert A; Cox, Tim; Tice, Lisa; Nadkarni, Vinay M

    2005-05-01

    Optimal chest compression to ventilation ratio (C:V) for one-rescuer cardiopulmonary resuscitation (CPR) is not known, with current American Heart Association recommendations 3:1 for newborns, 5:1 for children, and 15:2 for adults. C:V ratios influence effectiveness of CPR, but memorizing different ratios is educationally cumbersome. We hypothesized that a 10:2 ratio might provide adequate universal application for all age arrest victims. Clinical study. Tertiary care children's hospital. Thirty-five health care providers. Thirty-five health care providers performed 5-min epochs of one-rescuer CPR at C:V ratios of 3:1, 5:1, 10:2, and 15:2 in random order on infant, pediatric, and adult manikins. Compressions were paced at 100/min by metronome. The number of effective compressions and ventilations delivered per minute was recorded by a trained basic life support instructor. Subjective assessments of fatigue (self-report) and exertion (change in rescuer pulse rate compared with baseline) were assessed. Analysis was by repeated measures analysis of variance and paired Student's t-test. Effective infant compressions per minute did not differ by C:V ratio, but ventilations per minute were greater at 3:1 vs. 5:1, 10:2, and 15:2 (p 15:2 (p educational value and technique retention.

  9. Experimental investigation of hydrogen energy share improvement in a compression ignition engine using water injection and compression ratio reduction

    International Nuclear Information System (INIS)

    Chintala, V.; Subramanian, K.A.

    2016-01-01

    Highlights: • Energy efficiency (EE) increased with increase in hydrogen (H_2) energy share. • H_2 energy share increased from 19% to 79% with combined CR reduction and water. • In-cylinder temperature decreased significantly with water addition and CR reduction. • HC, CO, smoke and NO_x emissions with water and CR are lower than base diesel. - Abstract: This study deals with the effect of water addition on enhancement of maximum hydrogen energy share in a compression ignition engine (7.4 kW rated power at 1500 rpm) under dual fuel mode. The specific water consumption (SWC) was varied from 130 to 480 g/kW h in step of 70 g/kW h using manifold and port injection methods. Subsequently, the combined effect of reduction of compression ratio (CR) of the engine (from 19.5:1 (base) to 16.5:1 and 15.4:1) along with water addition on further enhancement of hydrogen energy share is investigated. The hydrogen energy share was limited to 18.8% with conventional dual fuel mode due to knocking. However, the energy share increased to 66.5% with water addition (maximum SWC: 480 g/kW h), and 79% with combined control strategies (SWC of 340 g/kW h and CR reduction to 16.5:1). Thermal efficiency of the engine under water added dual fuel mode is higher than base diesel mode (single fuel mode), but it is lower than the conventional dual fuel mode without water. The efficiency of the engine with reduced CR and water addition is lower than the conventional dual fuel mode, however at the CR of 16.5:1 and SWC of 340 g/kW h, the efficiency is comparable with base diesel mode efficiency. Hydrocarbon, carbon monoxide, smoke, and oxides of nitrogen emissions of the engine with water addition (340 g/kW h) and CR reduction (to 16.5:1) decreased significantly as compared to base diesel mode, but slightly higher than conventional dual fuel mode.

  10. Tamanu oil. An alternative fuel for variable compression ratio engine

    Energy Technology Data Exchange (ETDEWEB)

    Raj, Mohan T. [SASTRA Univ., Thanjavur, Tamilnadu (India). Dept. of Mechanical Engineering; Kandasamy, Murugumohan Kumar K. [Pavendar Bharathidasan College of Engineering and Technology, Trichy, Tamilnadu (India). Dept. of Mechanical Engineering

    2012-11-01

    Biodiesel can be produced from vegetable oils and also from waste fats. Biodiesel is a monoalkyl- ester of long chain fatty acids derived from renewable feedstock such as vegetable oils by transesterification process. The esterified cotton seed oil, pungam oil, rice bran oil, and tamanu oil are chosen as the alternative fuels. Among these oils, tamanu oil is considered for the first time as an alternative fuel. An experiment is conducted to obtain the operating characteristics of the variable compression ratio (VCR) engine run by chosen esterified oils, and the results are compared with esterified tamanu oil. From the comparison of results, it is inferred that the engine performance is improved with significant reduction in emissions for the chosen oils without any engine modification. The effective compression ratio can be fixed based on the experimental results obtained in the engine since the findings of the present research work infer that the biodiesel obtained from tamanu oil is a promising alternative fuel for direct-injection four-stroke VCR engine. (orig.)

  11. The Effect of Alkaline Activator Ratio on the Compressive Strength of Fly Ash-Based Geopolymer Paste

    Science.gov (United States)

    Lăzărescu, A. V.; Szilagyi, H.; Baeră, C.; Ioani, A.

    2017-06-01

    Alkaline activation of fly ash is a particular procedure in which ash resulting from a power plant combined with a specific alkaline activator creates a solid material when dried at a certain temperature. In order to obtain desirable compressive strengths, the mix design of fly ash based geopolymer pastes should be explored comprehensively. To determine the preliminary compressive strength for fly ash based geopolymer paste using Romanian material source, various ratios of Na2SiO3 solution/ NaOH solution were produced, keeping the fly ash/alkaline activator ratio constant. All the mixes were then cured at 70 °C for 24 hours and tested at 2 and 7 days, respectively. The aim of this paper is to present the preliminary compressive strength results for producing fly ash based geopolymer paste using Romanian material sources, the effect of alkaline activators ratio on the compressive strength and studying the directions for future research.

  12. DNABIT Compress – Genome compression algorithm

    Science.gov (United States)

    Rajarajeswari, Pothuraju; Apparao, Allam

    2011-01-01

    Data compression is concerned with how information is organized in data. Efficient storage means removal of redundancy from the data being stored in the DNA molecule. Data compression algorithms remove redundancy and are used to understand biologically important molecules. We present a compression algorithm, “DNABIT Compress” for DNA sequences based on a novel algorithm of assigning binary bits for smaller segments of DNA bases to compress both repetitive and non repetitive DNA sequence. Our proposed algorithm achieves the best compression ratio for DNA sequences for larger genome. Significantly better compression results show that “DNABIT Compress” algorithm is the best among the remaining compression algorithms. While achieving the best compression ratios for DNA sequences (Genomes),our new DNABIT Compress algorithm significantly improves the running time of all previous DNA compression programs. Assigning binary bits (Unique BIT CODE) for (Exact Repeats, Reverse Repeats) fragments of DNA sequence is also a unique concept introduced in this algorithm for the first time in DNA compression. This proposed new algorithm could achieve the best compression ratio as much as 1.58 bits/bases where the existing best methods could not achieve a ratio less than 1.72 bits/bases. PMID:21383923

  13. Influence of Compression Ratio on the Performance and Emission Characteristics of Annona Methyl Ester Operated DI Diesel Engine

    Directory of Open Access Journals (Sweden)

    Senthil Ramalingam

    2014-09-01

    Full Text Available This study aims to find the optimum performance and emission characteristics of single cylinder variable compression ratio (VCR engine with different blends of Annona methyl ester (AME as fuel. The performance parameters such as specific fuel consumption (SFC, brake thermal efficiency (BTE, and emission levels of HC, CO, Smoke, and NOx were compared with the diesel fuel. It is found that, at compression ratio of 17: 1 for A20 blended fuel (20% AME + 80% Diesel shows better performance and lower emission level which is very close to neat diesel fuel. The engine was operated with different values of compression ratio (15, 16, and 17 to find out best possible combination for operating engine with blends of AME. It is also found that the increase of compression ratio increases the BTE and reduces SFC and has lower emission without any engine in design modifications.

  14. Basic life support with four different compression/ventilation ratios in a pig model: the need for ventilation.

    Science.gov (United States)

    Kill, Clemens; Torossian, Alexander; Freisburger, Christian; Dworok, Sebastian; Massmann, Martin; Nohl, Thorsten; Henning, Ronald; Wallot, Pascal; Gockel, Andreas; Steinfeldt, Thorsten; Graf, Jürgen; Eberhart, Leopold; Wulf, Hinnerk

    2009-09-01

    During cardiac arrest the paramount goal of basic life support (BLS) is the oxygenation of vital organs. Current recommendations are to combine chest compressions with ventilation in a fixed ratio of 30:2; however the optimum compression/ventilation ratio is still debatable. In our study we compared four different compression/ventilation ratios and documented their effects on the return of spontaneous circulation (ROSC), gas exchange, cerebral tissue oxygenation and haemodynamics in a pig model. Study was performed on 32 pigs under general anaesthesia with endotracheal intubation. Arterial and central venous lines were inserted. For continuous cerebral tissue oxygenation a Licox PtiO(2) probe was implanted. After 3 min of cardiac arrest (ventricular fibrillation) animals were randomized to a compression/ventilation-ratio 30:2, 100:5, 100:2 or compressions-only. Subsequently 10 min BLS, Advanced Life Support (ALS) was performed (100%O(2), 3 defibrillations, 1mg adrenaline i.v.). Data were analyzed with 2-factorial ANOVA. ROSC was achieved in 4/8 (30:2), 5/8 (100:5), 2/8 (100:2) and 0/8 (compr-only) pigs. During BLS, PaCO(2) increased to 55 mm Hg (30:2), 68 mm Hg (100:5; p=0.0001), 66 mm Hg (100:2; p=0.002) and 72 mm Hg (compr-only; p<0.0001). PaO(2) decreased to 58 mmg (30:2), 40 mm Hg (100:5; p=0.15), 43 mm Hg (100:2; p=0.04) and 26 mm Hg (compr-only; p<0.0001). PtiO(2) baseline values were 12.7, 12.0, 11.1 and 10.0 mm Hg and decreased to 8.1 mm Hg (30:2), 4.1 mm Hg (100:5; p=0.08), 4.3 mm Hg (100:2; p=0.04), and 4.5 mm Hg (compr-only; p=0.69). During BLS, a compression/ventilation-ratio of 100:5 seems to be equivalent to 30:2, while ratios of 100:2 or compressions-only detoriate peripheral arterial oxygenation and reduce the chance for ROSC.

  15. Performance and exhaust emission characteristics of variable compression ratio diesel engine fuelled with esters of crude rice bran oil.

    Science.gov (United States)

    Vasudeva, Mohit; Sharma, Sumeet; Mohapatra, S K; Kundu, Krishnendu

    2016-01-01

    As a substitute to petroleum-derived diesel, biodiesel has high potential as a renewable and environment friendly energy source. For petroleum importing countries the choice of feedstock for biodiesel production within the geographical region is a major influential factor. Crude rice bran oil is found to be good and viable feedstock for biodiesel production. A two step esterification is carried out for higher free fatty acid crude rice bran oil. Blends of 10, 20 and 40 % by vol. crude rice bran biodiesel are tested in a variable compression ratio diesel engine at compression ratio 15, 16, 17 and 18. Engine performance and exhaust emission parameters are examined. Cylinder pressure-crank angle variation is also plotted. The increase in compression ratio from 15 to 18 resulted in 18.6 % decrease in brake specific fuel consumption and 14.66 % increase in brake thermal efficiency on an average. Cylinder pressure increases by 15 % when compression ratio is increased. Carbon monoxide emission decreased by 22.27 %, hydrocarbon decreased by 38.4 %, carbon dioxide increased by 17.43 % and oxides of nitrogen as NOx emission increased by 22.76 % on an average when compression ratio is increased from 15 to 18. The blends of crude rice bran biodiesel show better results than diesel with increase in compression ratio.

  16. EFFECT OF COMPRESSION RATIO ON ENERGY AND EMISSION OF VCR DIESEL ENGINE FUELLED WITH DUAL BLENDS OF BIODIESEL

    Directory of Open Access Journals (Sweden)

    R. D. EKNATH

    2014-10-01

    Full Text Available In recent 10 years biodiesel fuel was studied extensively as an alternative fuel. Most of researchers reported performance and emission of biodiesel and their blends with constant compression ratio. Also all the research was conducted with use of single biodiesel and its blend. Few reports are observed with the use of variable compression ratio and blends of more than one biodiesel. Main aim of the present study is to analyse the effect of compression ratio on the performance and emission of dual blends of biodiesel. In the present study Blends of Jatropha and Karanja with Diesel fuel was tested on single cylinder VCR DI diesel engine for compression ratio 16 and 18. High density of biodiesel fuel causes longer delay period for Jatropha fuel was observed compare with Karanja fuel. However blending of two biodiesel K20J40D results in to low mean gas temperature which is the main reason for low NOx emission.

  17. Knock-Limited Performance of Triptane and 28-R Fuel Blends as Affected by Changes in Compression Ratio and in Engine Operating Variables

    Science.gov (United States)

    Brun, Rinaldo J.; Feder, Melvin S.; Fisher, William F.

    1947-01-01

    A knock-limited performance investigation was conducted on blends of triptane and 28-P fuel with a 12-cylinder, V-type, liquid-cooled aircraft engine of 1710-cubic-inch displacement at three compression ratios: 6.65, 7.93, and 9.68. At each compression ratio, the effect of changes in temperature of the inlet air to the auxiliary-stage supercharger and in fuel-air ratio were investigated at engine speeds of 2280 and. 3000 rpm. The results show that knock-limited engine performance, as improved by the use of triptane, allowed operation at both take-off and cruising power at a compression ratio of 9.68. At an inlet-air temperature of 60 deg F, an engine speed of 3000 rpm ; and a fuel-air ratio of 0,095 (approximately take-off conditions), a knock-limited engine output of 1500 brake horsepower was possible with 100-percent 28-R fuel at a compression ratio of 6.65; 20-percent triptane was required for the same power output at a compression ratio of 7.93, and 75 percent at a compression ratio of 9.68 allowed an output of 1480 brake horsepower. Knock-limited power output was more sensitive to changes in fuel-air ratio as the engine speed was increased from 2280 to 3000 rpm, as the compression ratio is raised from 6.65 to 9.68, or as the inlet-air temperature is raised from 0 deg to 120 deg F.

  18. Application of plasma focus device to compression of toroidal plasma

    International Nuclear Information System (INIS)

    Ikuta, Kazunari

    1980-01-01

    A new concept of compressing a toroidal plasma using a plasma focus device is considered. Maximum compression ratio of toroidal plasma is determined merely by the initial density ratio of the toroidal plasma to a sheet plasma in a focus device because of the Rayleigh-Taylor instability. An initiation senario of plasma-linear is also proposed with a possible application of this concepts to the creation of a burning plasma in reversed field configurations, i.e., burning plasma vortex. (author)

  19. Determination of maximum negative Poisson's ratio for laminated fiber composites

    Energy Technology Data Exchange (ETDEWEB)

    Shokrieh, M.M.; Assadi, A. [Composites Research Laboratory, Mechanical Engineering Department, Center of Excellence in Experimental Solid Mechanics and Dynamics, Iran University of Science and Technology, Tehran 16846-13114 (Iran, Islamic Republic of)

    2011-05-15

    Contrary to isotropic materials, composites always show complicated mechanical behavior under external loadings. In this article, an efficient algorithm is employed to obtain the maximum negative Poisson's ratio for laminated composite plates. We try to simplify the problem based on normalization of parameters and some manufacturing constraints to overlook the additional constraint of the optimization procedure. A genetic algorithm is used to find the optimal thickness of each lamina with a specified fiber direction. It is observed that the laminated composite with the configuration of (15/60/15) has the maximum negative Poisson's ratio. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Maximum Work of Free-Piston Stirling Engine Generators

    Science.gov (United States)

    Kojima, Shinji

    2017-04-01

    Using the method of adjoint equations described in Ref. [1], we have calculated the maximum thermal efficiencies that are theoretically attainable by free-piston Stirling and Carnot engine generators by considering the work loss due to friction and Joule heat. The net work done by the Carnot cycle is negative even when the duration of heat addition is optimized to give the maximum amount of heat addition, which is the same situation for the Brayton cycle described in our previous paper. For the Stirling cycle, the net work done is positive, and the thermal efficiency is greater than that of the Otto cycle described in our previous paper by a factor of about 2.7-1.4 for compression ratios of 5-30. The Stirling cycle is much better than the Otto, Brayton, and Carnot cycles. We have found that the optimized piston trajectories of the isothermal, isobaric, and adiabatic processes are the same when the compression ratio and the maximum volume of the same working fluid of the three processes are the same, which has facilitated the present analysis because the optimized piston trajectories of the Carnot and Stirling cycles are the same as those of the Brayton and Otto cycles, respectively.

  1. Annual performance investigation and economic analysis of heating systems with a compression-assisted air source absorption heat pump

    International Nuclear Information System (INIS)

    Wu, Wei; Shi, Wenxing; Wang, Baolong; Li, Xianting

    2015-01-01

    Highlights: • Optimal compression ratio of CASAHP is obtained for the maximum energy saving rate. • Annual performance is improved by 10–20% compared to ASAHP without compression. • Energy saving rate is 17.7–29.2% and investment is reduced to 30–60% for CASAHP. • Both compression and partial-design enhance the economy with given energy saving. • Payback time is reduced from 12–32 to 3–6 years by compression and partial-design. - Abstract: The compression-assisted air source absorption heat pump (CASAHP) is a promising alternative heating system in severe operating conditions. In this research, parameter studies on the annual performance under various compression ratios (CRs) and source temperatures are performed to achieve the maximum energy saving rates (ESRs). Economic analyses of the CASAHP under different CRs and partial-design ratios are conducted to obtain an optimal design that considers both energy savings and economy improvements. The results show that the optimal CR becomes higher in colder regions and with lower heat source temperatures. For a source temperature of 130 °C, the optimal CR values in all of the cities are within 2.0. For source temperatures from 100 to 130 °C, the maximum ESR is in the range of 17.7–29.2% in the studied cities. The efficiency improvement rate (EIR) caused by compression in a severe source condition can reach 10.0–20.0%. From the viewpoint of economy, the relative investment of CASAHP is reduced to 30–60% with a CR of 2.0–3.0. With a 2–6% sacrifice in ESR, the payback period can be reduced from 12–32 to 5–9 years using compression. Partial-design of the CASAHP can further reduce the payback period to 3–6 years with a partial-design ratio of 50% and a CR of 2.8. Additionally, CRs and partial-design ratios are designed comprehensively by seeking the maximum ESR for a given acceptable payback period

  2. Digitized hand-wrist radiographs: comparison of subjective and software-derived image quality at various compression ratios.

    Science.gov (United States)

    McCord, Layne K; Scarfe, William C; Naylor, Rachel H; Scheetz, James P; Silveira, Anibal; Gillespie, Kevin R

    2007-05-01

    The objectives of this study were to compare the effect of JPEG 2000 compression of hand-wrist radiographs on observer image quality qualitative assessment and to compare with a software-derived quantitative image quality index. Fifteen hand-wrist radiographs were digitized and saved as TIFF and JPEG 2000 images at 4 levels of compression (20:1, 40:1, 60:1, and 80:1). The images, including rereads, were viewed by 13 orthodontic residents who determined the image quality rating on a scale of 1 to 5. A quantitative analysis was also performed by using a readily available software based on the human visual system (Image Quality Measure Computer Program, version 6.2, Mitre, Bedford, Mass). ANOVA was used to determine the optimal compression level (P quality. When we used quantitative indexes, the JPEG 2000 images had lower quality at all compression ratios compared with the original TIFF images. There was excellent correlation (R2 >0.92) between qualitative and quantitative indexes. Image Quality Measure indexes are more sensitive than subjective image quality assessments in quantifying image degradation with compression. There is potential for this software-based quantitative method in determining the optimal compression ratio for any image without the use of subjective raters.

  3. 3:1 compression to ventilation ratio versus continuous chest compression with asynchronous ventilation in a porcine model of neonatal resuscitation.

    Science.gov (United States)

    Schmölzer, Georg M; O'Reilly, Megan; Labossiere, Joseph; Lee, Tze-Fun; Cowan, Shaun; Nicoll, Jessica; Bigam, David L; Cheung, Po-Yin

    2014-02-01

    In contrast to the resuscitation guidelines of children and adults, guidelines on neonatal resuscitation recommend synchronized 90 chest compressions with 30 manual inflations (3:1) per minute in newborn infants. The study aimed to determine if chest compression with asynchronous ventilation improves the recovery of bradycardic asphyxiated newborn piglets compared to 3:1 Compression:Ventilation cardiopulmonary resuscitation (CPR). Term newborn piglets (n=8/group) were anesthetized, intubated, instrumented and exposed to 45-min normocapnic hypoxia followed by asphyxia. Protocolized resuscitation was initiated when heart rate decreased to 25% of baseline. Piglets were randomized to receive resuscitation with either 3:1 compressions to ventilations (3:1C:V CPR group) or chest compressions with asynchronous ventilations (CCaV) or sham. Continuous respiratory parameters (Respironics NM3(®)), cardiac output, mean systemic and pulmonary artery pressures, and regional blood flows were measured. Piglets in 3:1C:V CPR and CCaV CPR groups had similar time to return of spontaneous circulation, survival rates, hemodynamic and respiratory parameters during CPR. The systemic and regional hemodynamic recovery in the subsequent 4h was similar in both groups and significantly lower compared to sham-operated piglets. Newborn piglets resuscitated by CCaV had similar return of spontaneous circulation, survival, and hemodynamic recovery compared to those piglets resuscitated by 3:1 Compression:Ventilation ratio. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. Near-lossless multichannel EEG compression based on matrix and tensor decompositions.

    Science.gov (United States)

    Dauwels, Justin; Srinivasan, K; Reddy, M Ramasubba; Cichocki, Andrzej

    2013-05-01

    A novel near-lossless compression algorithm for multichannel electroencephalogram (MC-EEG) is proposed based on matrix/tensor decomposition models. MC-EEG is represented in suitable multiway (multidimensional) forms to efficiently exploit temporal and spatial correlations simultaneously. Several matrix/tensor decomposition models are analyzed in view of efficient decorrelation of the multiway forms of MC-EEG. A compression algorithm is built based on the principle of “lossy plus residual coding,” consisting of a matrix/tensor decomposition-based coder in the lossy layer followed by arithmetic coding in the residual layer. This approach guarantees a specifiable maximum absolute error between original and reconstructed signals. The compression algorithm is applied to three different scalp EEG datasets and an intracranial EEG dataset, each with different sampling rate and resolution. The proposed algorithm achieves attractive compression ratios compared to compressing individual channels separately. For similar compression ratios, the proposed algorithm achieves nearly fivefold lower average error compared to a similar wavelet-based volumetric MC-EEG compression algorithm.

  5. Modification Design of Petrol Engine for Alternative Fueling using Compressed Natural Gas

    Directory of Open Access Journals (Sweden)

    Eliezer Uchechukwu Okeke

    2013-04-01

    Full Text Available This paper is on the modification design of petrol engine for alternative fuelling using Compressed Natural Gas (CNG. It provides an analytical background in the modification design process. A petrol engine Honda CR-V 2.0 auto which has a compression ratio of 9.8 was selected as case study. In order for this petrol engine to run on CNG, its compression had to be increased. An optimal compression ratio of 11.97 was computed using the standard temperature-specific volume relationship for an isentropic compression process. This computation of compression ratio is based on an inlet air temperature of 30oC (representative of tropical ambient condition and pre-combustion temperature of 540oC (corresponding to the auto-ignition temperature of CNG. Using this value of compression ratio, a dimensional modification Quantity =1.803mm was obtained using simple geometric relationships. This value of 1.803mm is needed to increase the length of the connecting rod, the compression height of the piston or reducing the sealing plate’s thickness. After the modification process, a CNG engine of air standard efficiency 62.7% (this represents a 4.67% increase over the petrol engine, capable of a maximum power of 83.6kW at 6500rpm, was obtained.

  6. Influence of Palm Oil Fuel Ash and W/B Ratios on Compressive Strength, Water Permeability, and Chloride Resistance of Concrete

    Directory of Open Access Journals (Sweden)

    Wachilakorn Sanawung

    2017-01-01

    Full Text Available This research studies the effects of W/B ratios and palm oil fuel ash (POFA on compressive strength, water permeability, and chloride resistance of concrete. POFA was ground until the particles retained on sieve number 325 were less than 5% by weight. POFA was used to partially replace OPC at rates of 15, 25, and 35% by weight of binder. The water to binder (W/B ratios of concrete were 0.40 and 0.50. The compressive strength, water permeability, and chloride resistance of concrete were investigated up to 90 days. The results showed that POFA concrete with W/B ratio of 0.40 had the compressive strengths ranging from 45.8 to 55.9 MPa or 82–94% of OPC concrete at 90 days, while POFA concrete with W/B ratio of 0.50 had the compressive strengths of 33.9–41.9 MPa or 81–94% of OPC concrete. Furthermore, the compressive strength of concrete incorporation of ground POFA at 15% was the same as OPC concrete. The water permeability coefficient and the chloride ion penetration of POFA concrete were lower than OPC concrete when both types of concrete had the same compressive strengths. The findings also indicated that water permeability and chloride ion penetration of POFA concrete were significantly reduced compared to OPC concrete.

  7. An experimental and numerical analysis of the influence of the inlet temperature, equivalence ratio and compression ratio on the HCCI auto-ignition process of Primary Reference Fuels in an engine

    OpenAIRE

    Machrafi, Hatim; Cavadias

    2008-01-01

    In order to understand better the auto-ignition process in an HCCI engine, the influence of some important parameters on the auto-ignition is investigated. The inlet temperature, the equivalence ratio and the compression ratio were varied and their influence on the pressure, the heat release and the ignition delays were measured, The inlet temperature was changed from 25 to 70 degrees C and the equivalence ratio from 0.18 to 0.41, while the compression ratio varied from 6 to 13.5. The fuels t...

  8. The influence of Compression Ratio to Performance of Four Stroke Engine Use of Arak Bali as a Fuel

    Directory of Open Access Journals (Sweden)

    I Dewa Made Krishna Muku

    2012-11-01

    Full Text Available Arak bali is alternative fuel as ethanol. Ethanol has octane number 108. Octane number which was higher can over come adetonation, and can work at higher compression ratio. This experiment has done to now how the effect of compression ratiovariation to the performance four strokes engine by arak bali fuel. This research was done by changing the compressionratio that is 8,8 : 1, 8,9 : 1, 9 : 1 and 9,3 : 1. The change was done by reducing combustion chamber by scrap the cylinderhead. The result, for the used arak bali fuel to the vehicle is, if engine compression ratio to increase can be influence ofengine performance to be increase and engine fuel consumption to be decrease. For premium is, if engine compression ratioto increase to influence of engine performance to be decrease and engine fuel consumption to be increase.

  9. Performance and emission of generator Diesel engine using methyl esters of palm oil and diesel blends at different compression ratio

    Science.gov (United States)

    Aldhaidhawi, M.; Chiriac, R.; Bădescu, V.; Pop, H.; Apostol, V.; Dobrovicescu, A.; Prisecaru, M.; Alfaryjat, A. A.; Ghilvacs, M.; Alexandru, A.

    2016-08-01

    This study proposes engine model to predicate the performance and exhaust gas emissions of a single cylinder four stroke direct injection engine which was fuelled with diesel and palm oil methyl ester of B7 (blends 7% palm oil methyl ester with 93% diesel by volume) and B10. The experiment was conducted at constant engine speed of 3000 rpm and different engine loads operations with compression ratios of 18:1, 20:1 and 22:1. The influence of the compression ratio and fuel typeson specific fuel consumption and brake thermal efficiency has been investigated and presented. The optimum compression ratio which yields better performance has been identified. The result from the present work confirms that biodiesel resulting from palm oil methyl ester could represent a superior alternative to diesel fuel when the engine operates with variable compression ratios. The blends, when used as fuel, result in a reduction of the brake specific fuel consumption and brake thermal efficiency, while NOx emissions was increased when the engine is operated with biodiesel blends.

  10. Artificial Neural Network Model for Predicting Compressive

    Directory of Open Access Journals (Sweden)

    Salim T. Yousif

    2013-05-01

    Full Text Available   Compressive strength of concrete is a commonly used criterion in evaluating concrete. Although testing of the compressive strength of concrete specimens is done routinely, it is performed on the 28th day after concrete placement. Therefore, strength estimation of concrete at early time is highly desirable. This study presents the effort in applying neural network-based system identification techniques to predict the compressive strength of concrete based on concrete mix proportions, maximum aggregate size (MAS, and slump of fresh concrete. Back-propagation neural networks model is successively developed, trained, and tested using actual data sets of concrete mix proportions gathered from literature.    The test of the model by un-used data within the range of input parameters shows that the maximum absolute error for model is about 20% and 88% of the output results has absolute errors less than 10%. The parametric study shows that water/cement ratio (w/c is the most significant factor  affecting the output of the model.     The results showed that neural networks has strong potential as a feasible tool for predicting compressive strength of concrete.

  11. Compression Ratio Ion Mobility Programming (CRIMP) Accumulation and Compression of Billions of Ions for Ion Mobility-Mass Spectrometry Using Traveling Waves in Structures for Lossless Ion Manipulations (SLIM)

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Liulin; Garimella, Venkata BS; Hamid, Ahmed M.; Webb, Ian K.; Attah, Isaac K.; Norheim, Randolph V.; Prost, Spencer A.; Zheng, Xueyun; Sandoval, Jeremy A.; Baker, Erin M.; Ibrahim, Yehia M.; Smith, Richard D.

    2017-05-25

    We report on the implementation of a traveling wave (TW) based compression ratio ion mobility programming (CRIMP) approach within Structures for Lossless Ion Manipulations (SLIM) that enables both greatly enlarged trapped ion charge capacities and also their subsequent efficient compression for use in ion mobility (IM) separations. Ion accumulation is conducted in a long serpentine path TW SLIM region after which CRIMP allows the large ion populations to be ‘squeezed’. The compression process occurs at an interface between two SLIM regions, one operating conventionally and the second having an intermittently pausing or ‘stuttering’ TW, allowing the contents of multiple bins of ions from the first region to be merged into a single bin in the second region. In this initial work stationary voltages in the second region were used to block ions from exiting the first (trapping) region, and the resumption of TWs in the second region allows ions to exit, and the population to also be compressed if CRIMP is applied. In our initial evaluation we show that the number of charges trapped for a 40 s accumulation period was ~5×109, more than two orders of magnitude greater than the previously reported charge capacity using an ion funnel trap. We also show that over 1×109 ions can be accumulated with high efficiency in the present device, and that the extent of subsequent compression is only limited by the space charge capacity of the trapping region. Lower compression ratios allow increased IM peak heights without significant loss of signal, while excessively large compression ratios can lead to ion losses and other artifacts. Importantly, we show that extended ion accumulation in conjunction with CRIMP and multiple passes provides the basis for a highly desirable combination of ultra-high sensitivity and ultra-high resolution IM separations using SLIM.

  12. Stiffness and Poisson ratio in longitudinal compression of fiber yarns in meso-FE modelling of composite reinforcement forming

    Science.gov (United States)

    Wang, D.; Naouar, N.; Vidal-Salle, E.; Boisse, P.

    2018-05-01

    In meso-scale finite element modeling, the yarns of the reinforcement are considered to be solids made of a continuous material in contact with their neighbors. The present paper consider the mechanical behavior of these yarns that can happen for some loadings of the reinforcement. The yarns present a specific mechanical behavior when under longitudinal compression because they are made up of a large number of fibers, Local buckling of the fibers causes the compressive stiffness of the continuous material representing the yarn to be much weaker than when under tension. In addition, longitudinal compression causes an important transverse expansion. It is shown that the transverse expansion can be depicted by a Poisson ratio that remained roughly constant when the yarn length and the compression strain varied. Buckling of the fibers significantly increases the transverse dimensions of the yarn which leads to a large Poisson ratio (up to 12 for a yarn analyzed in the present study). Meso-scale finite element simulations of reinforcements with binder yarns submitted to longitudinal compression showed that these improvements led to results in good agreement with micro-CT analyses.

  13. Compressibility and resiliency properties of wilton type woven carpets produced with different fiber blend ratio

    Science.gov (United States)

    Osman, B.; Esin, S.; Sıdıka Ziba, O.

    2017-10-01

    Carpet is a textile structure that composed of three components: warp (stuffer and chain warp), weft and pile yarns. These textile products are used for areas which will stand up to the use of home, hotel, work place etc. Furthermore, the capable of carpets are related to it’s especially pile performance during use in various areas. During usage, carpets made from various type of raw materials of pile yarn also acts differently that these differentiate determines carpet performance, as well.This study was focused on the compression and resilience behaviour of carpet composed of 100% viscose and 100% acrylic pile yarns and blended pile yarns of blend ratios, 80%/20%, 50%/50% and 20%/80% viscose/acrylic. During the yarn production process, all spinning conditions were kept constant in order to eliminate the yarn production parameters. Five different types of wilton face to face carpet samples were produced from these yarns at the same pile height and pile density on Van de Wiele carpet weaving machine at 110 picks/min machine speed and 1/1 V carpet construction. Compressibility properties of carpets were examined whether blend ratio was statistically significant on carpet resilience or not. The behaviour of pile yarns under pressure is important that leads to understand the growth characteristic which is exposed to decrease and increase loadings during usage of carpet made from these yarns. Results indicated that blend ratio of pile yarns have significance effect on compression behaviour of carpet samples.

  14. Effects of JPEG data compression on magnetic resonance imaging evaluation of small vessels ischemic lesions of the brain

    International Nuclear Information System (INIS)

    Kuriki, Paulo Eduardo de Aguiar; Abdala, Nitamar; Nogueira, Roberto Gomes; Carrete Junior, Henrique; Szejnfeld, Jacob

    2006-01-01

    Objective: to establish the maximum achievable JPEG compression ratio without affecting quantitative and qualitative magnetic resonance imaging analysis of ischemic lesion in small vessels of the brain. Material and method: fifteen DICOM images were converted to JPEG with a compression ratio of 1:10 to 1:60 and were assessed together with the original images by three neuro radiologists. The number, morphology and signal intensity of the lesions were analyzed. Results: lesions were properly identified up to a 1:30 ratio. More lesions were identified with a 1:10 ratio then in the original images. Morphology and edges were properly evaluated up toa 1:40 ratio. Compression did not affect signal. Conclusion: small lesions were identified ( < 2 mm ) and in all compression ratios the JPEG algorithm generated image noise that misled observers to identify more lesions in JPEG images then in DICOM images, thus generating false-positive results.(author)

  15. Chest compression during sustained inflation versus 3:1 chest compression:ventilation ratio during neonatal cardiopulmonary resuscitation: a randomised feasibility trial.

    Science.gov (United States)

    Schmölzer, Georg M; O Reilly, Megan; Fray, Caroline; van Os, Sylvia; Cheung, Po-Yin

    2017-10-07

    Current neonatal resuscitation guidelines recommend 3:1 compression:ventilation (C:V) ratio. Recently, animal studies reported that continuous chest compressions (CC) during a sustained inflation (SI) significantly improved return of spontaneous circulation (ROSC). The approach of CC during SI (CC+SI) has not been examined in the delivery room during neonatal resuscitation. It is a feasibility study to compare CC+SI versus 3:1 C:V ratio during neonatal resuscitation in the delivery room. We hypothesised that during neonatal resuscitation, CC+SI will reduce the time to ROSC. Our aim was to examine if CC+SI reduces ROSC compared with 3:1 C:V CPR in preterm infants rate of 90/min during an SI with a duration of 20 s (CC+SI). After 20 s, the SI was interrupted for 1 s and the next SI was started for another 20 s until ROSC. Infants in the '3:1 group' received CC using 3:1 C:V ratio until ROSC. Overall the mean (SD) time to ROSC was significantly shorter in the CC+SI group with 31 (9) s compared with 138 (72) s in the 3:1 C:V group (p=0.011). CC+SI is feasible in the delivery room. Clinicaltrials.gov NCT02083705, pre-results. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  16. An experimental and numerical analysis of the influence of the inlet temperature, equivalence ratio and compression ratio on the HCCI auto-ignition process of Primary Reference Fuels in an engine

    Energy Technology Data Exchange (ETDEWEB)

    Machrafi, Hatim [UPMC Universite Paris 06, LGPPTS, Ecole Nationale Superieure de Chimie de Paris, 11, rue de Pierre et Marie Curie, 75005 Paris (France); UPMC Universite Paris 06, Institut Jean Le Rond D' Alembert (France); Cavadiasa, Simeon [UPMC Universite Paris 06, Institut Jean Le Rond D' Alembert (France)

    2008-11-15

    In order to understand better the auto-ignition process in an HCCI engine, the influence of some important parameters on the auto-ignition is investigated. The inlet temperature, the equivalence ratio and the compression ratio were varied and their influence on the pressure, the heat release and the ignition delays were measured. The inlet temperature was changed from 25 to 70 C and the equivalence ratio from 0.18 to 0.41, while the compression ratio varied from 6 to 13.5. The fuels that were investigated were PRF40 and n-heptane. These three parameters appeared to decrease the ignition delays, with the inlet temperature having the least influence and the compression ratio the most. A previously experimentally validated reduced surrogate mechanism, for mixtures of n-heptane, iso-octane and toluene, has been used to explain observations of the auto-ignition process. The same kinetic mechanism is used to better understand the underlying chemical and physical phenomena that make the influence of a certain parameter change according to the operating conditions. This can be useful for the control of the auto-ignition process in an HCCI engine. (author)

  17. The use of ZFP lossy floating point data compression in tornado-resolving thunderstorm simulations

    Science.gov (United States)

    Orf, L.

    2017-12-01

    In the field of atmospheric science, numerical models are used to produce forecasts of weather and climate and serve as virtual laboratories for scientists studying atmospheric phenomena. In both operational and research arenas, atmospheric simulations exploiting modern supercomputing hardware can produce a tremendous amount of data. During model execution, the transfer of floating point data from memory to the file system is often a significant bottleneck where I/O can dominate wallclock time. One way to reduce the I/O footprint is to compress the floating point data, which reduces amount of data saved to the file system. In this presentation we introduce LOFS, a file system developed specifically for use in three-dimensional numerical weather models that are run on massively parallel supercomputers. LOFS utilizes the core (in-memory buffered) HDF5 driver and includes compression options including ZFP, a lossy floating point data compression algorithm. ZFP offers several mechanisms for specifying the amount of lossy compression to be applied to floating point data, including the ability to specify the maximum absolute error allowed in each compressed 3D array. We explore different maximum error tolerances in a tornado-resolving supercell thunderstorm simulation for model variables including cloud and precipitation, temperature, wind velocity and vorticity magnitude. We find that average compression ratios exceeding 20:1 in scientifically interesting regions of the simulation domain produce visually identical results to uncompressed data in visualizations and plots. Since LOFS splits the model domain across many files, compression ratios for a given error tolerance can be compared across different locations within the model domain. We find that regions of high spatial variability (which tend to be where scientifically interesting things are occurring) show the lowest compression ratios, whereas regions of the domain with little spatial variability compress

  18. WSNs Microseismic Signal Subsection Compression Algorithm Based on Compressed Sensing

    Directory of Open Access Journals (Sweden)

    Zhouzhou Liu

    2015-01-01

    Full Text Available For wireless network microseismic monitoring and the problems of low compression ratio and high energy consumption of communication, this paper proposes a segmentation compression algorithm according to the characteristics of the microseismic signals and the compression perception theory (CS used in the transmission process. The algorithm will be collected as a number of nonzero elements of data segmented basis, by reducing the number of combinations of nonzero elements within the segment to improve the accuracy of signal reconstruction, while taking advantage of the characteristics of compressive sensing theory to achieve a high compression ratio of the signal. Experimental results show that, in the quantum chaos immune clone refactoring (Q-CSDR algorithm for reconstruction algorithm, under the condition of signal sparse degree higher than 40, to be more than 0.4 of the compression ratio to compress the signal, the mean square error is less than 0.01, prolonging the network life by 2 times.

  19. DFT based spatial multiplexing and maximum ratio transmission for mm-wawe large MIMO

    DEFF Research Database (Denmark)

    Phan-Huy, D.-T.; Tölli, A.; Rajatheva, N.

    2014-01-01

    -SM-MRT). When the DFT-SM scheme alone is used, the data streams are either mapped onto different angles of departures in the case of aligned linear arrays, or mapped onto different orbital angular momentums in the case of aligned circular arrays. Maximum ratio transmission pre-equalizes the channel......By using large point-to-point multiple input multiple output (MIMO), spatial multiplexing of a large number of data streams in wireless communications using millimeter-waves (mm-waves) can be achieved. However, according to the antenna spacing and transmitter-receiver distance, the MIMO channel...... is likely to be ill-conditioned. In such conditions, highly complex schemes such as the singular value decomposition (SVD) are necessary. In this paper, we propose a new low complexity system called discrete Fourier transform based spatial multiplexing (DFT-SM) with maximum ratio transmission (DFT...

  20. Finite Element Analysis of Increasing Column Section and CFRP Reinforcement Method under Different Axial Compression Ratio

    Science.gov (United States)

    Jinghai, Zhou; Tianbei, Kang; Fengchi, Wang; Xindong, Wang

    2017-11-01

    Eight less stirrups in the core area frame joints are simulated by ABAQUS finite element numerical software. The composite reinforcement method is strengthened with carbon fiber and increasing column section, the axial compression ratio of reinforced specimens is 0.3, 0.45 and 0.6 respectively. The results of the load-displacement curve, ductility and stiffness are analyzed, and it is found that the different axial compression ratio has great influence on the bearing capacity of increasing column section strengthening method, and has little influence on carbon fiber reinforcement method. The different strengthening schemes improve the ultimate bearing capacity and ductility of frame joints in a certain extent, composite reinforcement joints strengthening method to improve the most significant, followed by increasing column section, reinforcement method of carbon fiber reinforced joints to increase the minimum.

  1. Class B Fire-Extinguishing Performance Evaluation of a Compressed Air Foam System at Different Air-to-Aqueous Foam Solution Mixing Ratios

    Directory of Open Access Journals (Sweden)

    Dong-Ho Rie

    2016-06-01

    Full Text Available The purpose of this research is to evaluate the fire-extinguishing performance of a compressed air foam system at different mixing ratios of pressurized air. In this system, compressed air is injected into an aqueous solution of foam and then discharged. The experimental device uses an exclusive fire-extinguishing technology with compressed air foam that is produced based on the Canada National Laboratory and UL (Underwriters Laboratories 162 standards, with a 20-unit oil fire model (Class B applied as the fire extinguisher. Compressed air is injected through the air mixture, and results with different air-to-aqueous solution foam ratios of 1:4, 1:7, and 1:10 are studied. In addition, comparison experiments between synthetic surfactant foam and a foam type which forms an aqueous film are carried out at an air-to-aqueous solution foam ratio of 1:4. From the experimental results, at identical discharging flows, it was found that the fire-extinguishing effect of the aqueous film-forming foam is greatest at an air-to-aqueous solution foam ratio of 1:7 and weakest at 1:10. Moreover, the fire-extinguishing effect of the aqueous film-forming foam in the comparison experiments between the aqueous film-forming foam and the synthetic surfactant foam is greatest.

  2. Maximum mass ratio of AM CVn-type binary systems and maximum white dwarf mass in ultra-compact X-ray binaries

    Directory of Open Access Journals (Sweden)

    Arbutina Bojan

    2011-01-01

    Full Text Available AM CVn-type stars and ultra-compact X-ray binaries are extremely interesting semi-detached close binary systems in which the Roche lobe filling component is a white dwarf transferring mass to another white dwarf, neutron star or a black hole. Earlier theoretical considerations show that there is a maximum mass ratio of AM CVn-type binary systems (qmax ≈ 2/3 below which the mass transfer is stable. In this paper we derive slightly different value for qmax and more interestingly, by applying the same procedure, we find the maximum expected white dwarf mass in ultra-compact X-ray binaries.

  3. Statistical analysis of COMPTEL maximum likelihood-ratio distributions: evidence for a signal from previously undetected AGN

    International Nuclear Information System (INIS)

    Williams, O. R.; Bennett, K.; Much, R.; Schoenfelder, V.; Blom, J. J.; Ryan, J.

    1997-01-01

    The maximum likelihood-ratio method is frequently used in COMPTEL analysis to determine the significance of a point source at a given location. In this paper we do not consider whether the likelihood-ratio at a particular location indicates a detection, but rather whether distributions of likelihood-ratios derived from many locations depart from that expected for source free data. We have constructed distributions of likelihood-ratios by reading values from standard COMPTEL maximum-likelihood ratio maps at positions corresponding to the locations of different categories of AGN. Distributions derived from the locations of Seyfert galaxies are indistinguishable, according to a Kolmogorov-Smirnov test, from those obtained from ''random'' locations, but differ slightly from those obtained from the locations of flat spectrum radio loud quasars, OVVs, and BL Lac objects. This difference is not due to known COMPTEL sources, since regions near these sources are excluded from the analysis. We suggest that it might arise from a number of sources with fluxes below the COMPTEL detection threshold

  4. Numerical Investigation of Injection Timing Influence on Fuel Slip and Influence of Compression Ratio on Knock Occurrence in Conventional Dual Fuel Engine

    Directory of Open Access Journals (Sweden)

    Mario Sremec

    2017-12-01

    Full Text Available Compressed natural gas can be used in diesel engine with great benefits, but because of its low reactivity it is usually used in a so called dual fuel combustion process. Optimal parameters for dual fuel engines are not yet investigated thoroughly which is the motivation for this work. In this work, a numerical study performed in a cycle simulation tool (AVL Boost v2013 on the influence of different injection timings on fuel slip into exhaust and influence of compression ratio on knock phenomena in port injected dual fuel engine was conducted. The introduction of natural gas into the intake port of a diesel engine usually results in some fuel slipping into the exhaust port due to valve overlap. By analysing the simulation results, the injection strategy that significantly decreases the natural gas slip is defined. The knock occurrence study showed that the highest allowed compression ratio that will result in knock free operation of the presented engine is 18 for ambient intake condition, while for charged intake conditions the compression ratio should be lowered to 16.

  5. Investigations of effects of pilot injection with change in level of compression ratio in a common rail diesel engine

    Directory of Open Access Journals (Sweden)

    Gajarlawar Nilesh

    2013-01-01

    Full Text Available These day diesel engines are gaining lots of attention as prime movers for various source of transportation. It offers better drive ability, very good low end torque and importantly the lower CO2 emission. Diesel engines are bridging the gap between gasoline and diesel engines. Better noise vibration and harshness levels of gasoline engine are realized to great extent in diesel engine, thanks to common rail direct injection system. Common rail injection system is now well known entity. Its unique advantage is flexible in operation. In common rail injection system, number of injection prior and after main injection at different injection pressure is possible. Due to multiple injections, gain in emission reduction as well as noise has been already experienced and demonstrated by researcher in the past. However, stringent emission norms for diesel engine equipped vehicle demands for further lower emission of oxides of nitrogen (NOx and particulate matter (PM. In the present paper, authors attempted to study the effect of multiple injections in combination with two level of compression ratio. The aim was to study the combustion behavior with the reduced compression ratio which is going to be tried out as low temperature combustion concept in near future. The results were compared with the current level of compression ratio. Experiments were carried out in 2.2L cubic capacity engine with two levels of compression ratios. Pilot injection separation and quantities were varied keeping the main injection, rail pressure, boost pressure and EGR rate constant. Cylinder pressure traces and gross heat release rates were measured and analyzed to understand the combustion behavior.

  6. Thermofluidic compression effects to achieve combustion in a low-compression scramjet engine

    Science.gov (United States)

    Moura, A. F.; Wheatley, V.; Jahn, I.

    2017-12-01

    The compression provided by a scramjet inlet is an important parameter in its design. It must be low enough to limit thermal and structural loads and stagnation pressure losses, but high enough to provide the conditions favourable for combustion. Inlets are typically designed to achieve sufficient compression without accounting for the fluidic, and subsequently thermal, compression provided by the fuel injection, which can enable robust combustion in a low-compression engine. This is investigated using Reynolds-averaged Navier-Stokes numerical simulations of a simplified scramjet engine designed to have insufficient compression to auto-ignite fuel in the absence of thermofluidic compression. The engine was designed with a wide rectangular combustor and a single centrally located injector, in order to reduce three-dimensional effects of the walls on the fuel plume. By varying the injected mass flow rate of hydrogen fuel (equivalence ratios of 0.22, 0.17, and 0.13), it is demonstrated that higher equivalence ratios lead to earlier ignition and more rapid combustion, even though mean conditions in the combustor change by no more than 5% for pressure and 3% for temperature with higher equivalence ratio. By supplementing the lower equivalence ratio with helium to achieve a higher mass flow rate, it is confirmed that these benefits are primarily due to the local compression provided by the extra injected mass. Investigation of the conditions around the fuel plume indicated two connected mechanisms. The higher mass flow rate for higher equivalence ratios generated a stronger injector bow shock that compresses the free-stream gas, increasing OH radical production and promoting ignition. This was observed both in the higher equivalence ratio case and in the case with helium. This earlier ignition led to increased temperature and pressure downstream and, consequently, stronger combustion. The heat release from combustion provided thermal compression in the combustor, further

  7. Compression induced intercellular shaping for some geometric cellular lattices

    Directory of Open Access Journals (Sweden)

    Adonai Gimenez Calbo

    2001-03-01

    Full Text Available The wall perimeter fraction, which contact neighboring cells, was named compression ratio (alpha. A zero compression ratio indicates maximum intercellular (air volume (vG, v/v and neglectable contact among cells, while alpha=1 indicates complete adherence between neighboring cells and no vG in the lattice. The maximum intercellular air volume (beta, v/v, when alpha=0, was 0.593 for triangular, 0.2146 for square and 0,0931 for hexagonal lattices. The equation alpha=1- (vG/beta½ was derived to relate alpha, beta and vG in the studied lattices. The relation (P S=p/alpha between cell turgor (P S and the tissue aggregating pressure (p, defined as the compression to keep in place a layer of cells, was demonstrated using the compression ratio concept. Intercellular deformations of Ipomea batatas L. roots obtained with pressure chamber were used to test alpha, vG, p and P S as a function of compression. Volumetric and transversal elastic extensibilities and the lamella media tearing forces were obtained and alpha constancy was considered as a criteria of cellular shape stability.A fração do perímetro da parede celular em contato com células vizinha foi denominada razão de compressão (alfa. Razão de compressão zero indica volume intercelular (vG, v/v máximo e contato neglível entre as células, enquanto alfa=1 ocorre quando há completa aderência com as células vizinhas (vG=0. O volume (gasoso intercelular máximo (beta, v/v, quando alfa=0, foi 0,593, 0,2146 e 0,0931 para látices triangulares, quadradas e hexagonais. A equação derivada para relacionar alfa, beta and vG nas látices estudadas foi alfa=1- (vG/beta½. A razão de compressão foi em seguida empregada para estabelecer a relação P S=p/alfa entre a pressão de turgescência (P S e a pressão de agregação (p, definida com a compressão para manter uma camada de células no seu lugar. As deformações intercelulares de batata-doce obtidas com procedimentos de c

  8. Radiological Image Compression

    Science.gov (United States)

    Lo, Shih-Chung Benedict

    The movement toward digital images in radiology presents the problem of how to conveniently and economically store, retrieve, and transmit the volume of digital images. Basic research into image data compression is necessary in order to move from a film-based department to an efficient digital -based department. Digital data compression technology consists of two types of compression technique: error-free and irreversible. Error -free image compression is desired; however, present techniques can only achieve compression ratio of from 1.5:1 to 3:1, depending upon the image characteristics. Irreversible image compression can achieve a much higher compression ratio; however, the image reconstructed from the compressed data shows some difference from the original image. This dissertation studies both error-free and irreversible image compression techniques. In particular, some modified error-free techniques have been tested and the recommended strategies for various radiological images are discussed. A full-frame bit-allocation irreversible compression technique has been derived. A total of 76 images which include CT head and body, and radiographs digitized to 2048 x 2048, 1024 x 1024, and 512 x 512 have been used to test this algorithm. The normalized mean -square-error (NMSE) on the difference image, defined as the difference between the original and the reconstructed image from a given compression ratio, is used as a global measurement on the quality of the reconstructed image. The NMSE's of total of 380 reconstructed and 380 difference images are measured and the results tabulated. Three complex compression methods are also suggested to compress images with special characteristics. Finally, various parameters which would effect the quality of the reconstructed images are discussed. A proposed hardware compression module is given in the last chapter.

  9. Experimental evaluation of the effect of compression ratio on performance and emission of SI engine fuelled with gasoline and n-butanol blend at different loads

    Directory of Open Access Journals (Sweden)

    Rinu Thomas

    2016-09-01

    Full Text Available Never ending demand for efficient and less polluting engines have always inspired newer technologies. Extensive study has been done on variable compression ratio, a promising in-cylinder technology, in the recent past. The present work is an experimental investigation to examine the variation of different parameters such as brake thermal efficiency, exhaust gas temperature and emissions with respect to change in compression ratio in a single-cylinder carbureted SI engine at different loads with two different fuels. Experiments were conducted at three different compression ratios (CR = 7:1, 8.5:1 and 10:1. The fuels used in this study are pure gasoline and 20% n-butanol blend (B20 in gasoline. The results showed that brake thermal efficiency increases with CR at all loads. Further, the experimental results showed the scope of improving the part-load efficiency of SI engine by adopting the concept of variable compression ratio (VCR technology, especially when fuels with better anti-knock characteristics are used. The uncertainty analysis of the experiments based on the specifications of the equipment used is also tabulated.

  10. Expandable image compression system: A modular approach

    International Nuclear Information System (INIS)

    Ho, B.K.T.; Lo, S.C.; Huang, H.K.

    1986-01-01

    The full-frame bit-allocation algorithm for radiological image compression can achieve an acceptable compression ratio as high as 30:1. It involves two stages of operation: a two-dimensional discrete cosine transform and pixel quantization in the transformed space with pixel depth kept accountable by a bit-allocation table. The cosine transform hardware design took an expandable modular approach based on the VME bus system with a maximum data transfer rate of 48 Mbytes/sec and a microprocessor (Motorola 68000 family). The modules are cascadable and microprogrammable to perform 1,024-point butterfly operations. A total of 18 stages would be required for transforming a 1,000 x 1,000 image. Multiplicative constants and addressing sequences are to be software loaded into the parameter buffers of each stage prior to streaming data through the processor stages. The compression rate for 1K x 1K images is expected to be faster than one image per sec

  11. Compressibility of soft Iraqi soil stabilized with traditional Iraqi stabilizers (cement and lime

    Directory of Open Access Journals (Sweden)

    Baqir Husam

    2018-01-01

    Full Text Available This study shows an improvement of two types of clay soil brought from different parts of Iraq. The first soil (A from Al - Zaafaraniya site in Baghdad governorate. The second soil (B from Garma Ali site in the Al Basra governorate, Iraq. Soft clayey soils were treated by a combination of sulphate resistance Portland cement (PC and Quicklime (LQ to modify and stability. PC was added in percentages of 2,4,6,8 and 10%, as well as, LQ was added to 2 and 4%, of dry weight. Laboratory tests to determine specific gravity, Atterbergs limits and standard proctor test were conducted. Also, the main objective of this research is the concentrating on compression ratio (CR, the Rebound (Swelling ratio (RR and the stiffness during the modulus of elasticity (Es for treated and natural soils procreation from consolidation test. The results from laboratory tests shows high ability on the enhancing in terms of reduction in plasticity index (greatly increased workability, reduction in compression ratio (CR, reduction in the Rebound (Swelling ratio (RR, increase in the modulus of elasticity (Es. The change in moisture-density relationships resulting in lower maximum dry densities, higher optimum water content, and less variation of dry density from the maximum over a much wider range of water contents.

  12. Thermodynamic analysis of a variable compression ratio diesel engine running with palm oil methyl ester

    International Nuclear Information System (INIS)

    Debnath, Biplab K.; Sahoo, Niranjan; Saha, Ujjwal K.

    2013-01-01

    Highlights: ► Energy and exergy analysis of palm oil methyl ester (POME) run diesel engine. ► Engine was run at various compression ratios (CRs) and injection timings (ITs). ► POME can recover around 26% of the energy supplied by the fuel. ► CR rise and IT change cause shaft energy per unit fuel supply to increase. ► CR of 18 and IT of 20°BTDC reduce more entropy generation. - Abstract: The present work is set to explore the effect of compression ratio (CR) and injection timing (IT) on energy and exergy potential of a palm oil methyl ester (POME) run diesel engine. Experiments are carried out in a single cylinder, direct injection, water cooled variable compression ratio diesel engine at a constant peed of 1500 rpm under a full load of 4.24 bar brake mean effective pressure (BMEP). The study involves four different CRs of 16, 17, 17.5 and 18; and three different ITs of 20°, 23° and 28°BTDC. Here, the CR of 17.5 and IT of 23°BTDC are the standard ones. The energy analysis performed for the experimental data includes shaft power, energy input through fuel, output by cooling water and exhaust, uncounted loss per unit time. Side by side, the effects of varying CR and IT on peak pressure, peak heat release rate, brake thermal efficiency and exhaust gas temperature are also studied. The exergy analysis is carried out for availability input, shaft, cooling water and exhaust availability, availability destruction and entropy generation. It shows that higher values of CR increase the shaft availability and cooling water availability, however, they decrease the exhaust flow availability. The retardation and advancement of IT give similar results. The exergy analysis also shows that with the increase of CR, the injection retardation and advancement increase the shaft availability and exergy efficiency, while it reduces the exergy destruction. The entropy generation is also reduced for the similar CR and IT modifications.

  13. Combustion phasing for maximum efficiency for conventional and high efficiency engines

    International Nuclear Information System (INIS)

    Caton, Jerald A.

    2014-01-01

    Highlights: • Combustion phasing for max efficiency is a function of engine parameters. • Combustion phasing is most affected by heat transfer, compression ratio, burn duration. • Combustion phasing is less affected by speed, load, equivalence ratio and EGR. • Combustion phasing for a high efficiency engine was more advanced. • Exergy destruction during combustion as functions of combustion phasing is reported. - Abstract: The importance of the phasing of the combustion event for internal-combustion engines is well appreciated, but quantitative details are sparse. The objective of the current work was to examine the optimum combustion phasing (based on maximum bmep) as functions of engine design and operating variables. A thermodynamic, engine cycle simulation was used to complete this assessment. As metrics for the combustion phasing, both the crank angle for 50% fuel mass burned (CA 50 ) and the crank angle for peak pressure (CA pp ) are reported as functions of the engine variables. In contrast to common statements in the literature, the optimum CA 50 and CA pp vary depending on the design and operating variables. Optimum, as used in this paper, refers to the combustion timing that provides the maximum bmep and brake thermal efficiency (MBT timing). For this work, the variables with the greatest influence on the optimum CA 50 and CA pp were the heat transfer level, the burn duration and the compression ratio. Other variables such as equivalence ratio, EGR level, engine speed and engine load had a much smaller impact on the optimum CA 50 and CA pp . For the conventional engine, for the conditions examined, the optimum CA 50 varied between about 5 and 11°aTDC, and the optimum CA pp varied between about 9 and 16°aTDC. For a high efficiency engine (high dilution, high compression ratio), the optimum CA 50 was 2.5°aTDC, and the optimum CA pp was 7.8°aTDC. These more advanced values for the optimum CA 50 and CA pp for the high efficiency engine were

  14. Axial Compressive Strength of Foamcrete with Different Profiles and Dimensions

    Directory of Open Access Journals (Sweden)

    Othuman Mydin M.A.

    2014-01-01

    Full Text Available Lightweight foamcrete is a versatile material; primarily consist of a cement based mortar mixed with at least 20% volume of air. High flow ability, lower self-weight, minimal requirement of aggregate, controlled low strength and good thermal insulation properties are a few characteristics of foamcrete. Its dry densities, typically, is below 1600kg/m3 with compressive strengths maximum of 15MPa. The ASTM standard provision specifies a correction factor for concrete strengths of between 14 and 42MPa to compensate for the reduced strength when the aspect height-to-diameter ratio of specimen is less than 2.0, while the CEB-FIP provision specifically mentions the ratio of 150 x 300mm cylinder strength to 150 mm cube strength. However, both provisions requirements do not specifically clarify the applicability and/or modification of the correction factors for the compressive strength of foamcrete. This proposed laboratory work is intended to study the effect of different dimensions and profiles on the axial compressive strength of concrete. Specimens of various dimensions and profiles are cast with square and circular cross-sections i.e., cubes, prisms and cylinders, and to investigate their behavior in compression strength at 7 and 28 days. Hypothetically, compressive strength will decrease with the increase of concrete specimen dimension and concrete specimen with cube profile would yield comparable compressive strength to cylinder (100 x 100 x 100mm cube to 100dia x 200mm cylinder.

  15. Dopant density from maximum-minimum capacitance ratio of implanted MOS structures

    International Nuclear Information System (INIS)

    Brews, J.R.

    1982-01-01

    For uniformly doped structures, the ratio of the maximum to the minimum high frequency capacitance determines the dopant ion density per unit volume. Here it is shown that for implanted structures this 'max-min' dopant density estimate depends upon the dose and depth of the implant through the first moment of the depleted portion of the implant. A a result, the 'max-min' estimate of dopant ion density reflects neither the surface dopant density nor the average of the dopant density over the depletion layer. In particular, it is not clear how this dopant ion density estimate is related to the flatband capacitance. (author)

  16. The density compression ratio of shock fronts associated with coronal mass ejections

    Directory of Open Access Journals (Sweden)

    Kwon Ryun-Young

    2018-01-01

    Full Text Available We present a new method to extract the three-dimensional electron density profile and density compression ratio of shock fronts associated with coronal mass ejections (CMEs observed in white light coronagraph images. We demonstrate the method with two examples of fast halo CMEs (∼2000 km s−1 observed on 2011 March 7 and 2014 February 25. Our method uses the ellipsoid model to derive the three-dimensional geometry and kinematics of the fronts. The density profiles of the sheaths are modeled with double-Gaussian functions with four free parameters, and the electrons are distributed within thin shells behind the front. The modeled densities are integrated along the lines of sight to be compared with the observed brightness in COR2-A, and a χ2 approach is used to obtain the optimal parameters for the Gaussian profiles. The upstream densities are obtained from both the inversion of the brightness in a pre-event image and an empirical model. Then the density ratio and Alfvénic Mach number are derived. We find that the density compression peaks around the CME nose, and decreases at larger position angles. The behavior is consistent with a driven shock at the nose and a freely propagating shock wave at the CME flanks. Interestingly, we find that the supercritical region extends over a large area of the shock and lasts longer (several tens of minutes than past reports. It follows that CME shocks are capable of accelerating energetic particles in the corona over extended spatial and temporal scales and are likely responsible for the wide longitudinal distribution of these particles in the inner heliosphere. Our results also demonstrate the power of multi-viewpoint coronagraphic observations and forward modeling in remotely deriving key shock properties in an otherwise inaccessible regime.

  17. Subjective evaluation of compressed image quality

    Science.gov (United States)

    Lee, Heesub; Rowberg, Alan H.; Frank, Mark S.; Choi, Hyung-Sik; Kim, Yongmin

    1992-05-01

    Lossy data compression generates distortion or error on the reconstructed image and the distortion becomes visible as the compression ratio increases. Even at the same compression ratio, the distortion appears differently depending on the compression method used. Because of the nonlinearity of the human visual system and lossy data compression methods, we have evaluated subjectively the quality of medical images compressed with two different methods, an intraframe and interframe coding algorithms. The evaluated raw data were analyzed statistically to measure interrater reliability and reliability of an individual reader. Also, the analysis of variance was used to identify which compression method is better statistically, and from what compression ratio the quality of a compressed image is evaluated as poorer than that of the original. Nine x-ray CT head images from three patients were used as test cases. Six radiologists participated in reading the 99 images (some were duplicates) compressed at four different compression ratios, original, 5:1, 10:1, and 15:1. The six readers agree more than by chance alone and their agreement was statistically significant, but there were large variations among readers as well as within a reader. The displacement estimated interframe coding algorithm is significantly better in quality than that of the 2-D block DCT at significance level 0.05. Also, 10:1 compressed images with the interframe coding algorithm do not show any significant differences from the original at level 0.05.

  18. Compression ratio of municipal solid waste simulation using artificial neural network and adaptive neurofuzzy system

    Directory of Open Access Journals (Sweden)

    Maryam Mokhtari

    2014-07-01

    Full Text Available The compression ratio of Municipal Solid Waste (MSW is an essential parameter for evaluation of waste settlement. Since it is relatively time-consuming to determine compression ratio from oedometer tests and there exist difficulties associated with working on waste materials, it will be useful to develop models based on waste physical properties. Therefore, present research attempts to develop proper prediction models using ANFIS and ANN models. The compression ratio was modeled as a function of the physical properties of waste including dry unit weight, water content, and biodegradable organic content. A reliable experimental database of oedometer tests, taken from the literature, was employed to train and test the ANN and ANFIS models. The performance of the developed models was investigated according to different statistical criteria (i.e. correlation coefficient, root mean squared error, and mean absolute error recommended by researchers. The final models have demonstrated the correlation coefficients higher than 90% and low error values; so, they have capability for acceptable prediction of municipal solid waste compression ratio. Furthermore, the values of performance measures obtained for ANN and ANFIS models indicate that the ANFIS model performs better than ANN model.   Resumen El índice de compresión de residuos sólidos es un parámetro esencial para la evaluación del asentamiento de un basurero municipal. Debido al desgaste de tiempo para determinar el índice de compresión a partir de pruebas edométricas y debido a las dificultades asociadas al trabajo con materiales desechados es necesario desarrollar modelos basados en las propiedades físicas de los desechos solidos. Además, la presente investigación pretende  desarrollar modelos de predicción apropiados a partir de los esquemas ANFIS y ANN. El índice de comprensión se modeló como una función de propiedades físicas de desechos que incluyen el peso seco de una

  19. FRESCO: Referential compression of highly similar sequences.

    Science.gov (United States)

    Wandelt, Sebastian; Leser, Ulf

    2013-01-01

    In many applications, sets of similar texts or sequences are of high importance. Prominent examples are revision histories of documents or genomic sequences. Modern high-throughput sequencing technologies are able to generate DNA sequences at an ever-increasing rate. In parallel to the decreasing experimental time and cost necessary to produce DNA sequences, computational requirements for analysis and storage of the sequences are steeply increasing. Compression is a key technology to deal with this challenge. Recently, referential compression schemes, storing only the differences between a to-be-compressed input and a known reference sequence, gained a lot of interest in this field. In this paper, we propose a general open-source framework to compress large amounts of biological sequence data called Framework for REferential Sequence COmpression (FRESCO). Our basic compression algorithm is shown to be one to two orders of magnitudes faster than comparable related work, while achieving similar compression ratios. We also propose several techniques to further increase compression ratios, while still retaining the advantage in speed: 1) selecting a good reference sequence; and 2) rewriting a reference sequence to allow for better compression. In addition,we propose a new way of further boosting the compression ratios by applying referential compression to already referentially compressed files (second-order compression). This technique allows for compression ratios way beyond state of the art, for instance,4,000:1 and higher for human genomes. We evaluate our algorithms on a large data set from three different species (more than 1,000 genomes, more than 3 TB) and on a collection of versions of Wikipedia pages. Our results show that real-time compression of highly similar sequences at high compression ratios is possible on modern hardware.

  20. Expandable image compression system: A modular approach

    International Nuclear Information System (INIS)

    Ho, B.K.T.; Chan, K.K.; Ishimitsu, Y.; Lo, S.C.; Huang, H.K.

    1987-01-01

    The full-frame bit allocation algorithm for radiological image compression developed in the authors' laboratory can achieve compression ratios as high as 30:1. The software development and clinical evaluation of this algorithm has been completed. It involves two stages of operations: a two-dimensional discrete cosine transform and pixel quantization in the transform space with pixel depth kept accountable by a bit allocation table. Their design took an expandable modular approach based on the VME bus system which has a maximum data transfer rate of 48 Mbytes per second and a Motorola 68020 microprocessor as the master controller. The transform modules are based on advanced digital signal processor (DSP) chips microprogrammed to perform fast cosine transforms. Four DSP's built into a single-board transform module can process an 1K x 1K image in 1.7 seconds. Additional transform modules working in parallel can be added if even greater speeds are desired. The flexibility inherent in the microcode extends the capabilities of the system to incorporate images of variable sizes. Their design allows for a maximum image size of 2K x 2K

  1. Effect of Variable Compression Ratio on Performance of a Diesel Engine Fueled with Karanja Biodiesel and its Blends

    Science.gov (United States)

    Mishra, Rahul Kumar; soota, Tarun, Dr.; singh, Ranjeet

    2017-08-01

    Rapid exploration and lavish consumption of underground petroleum resources have led to the scarcity of underground fossil fuels moreover the toxic emissions from such fuels are pernicious which have increased the health hazards around the world. So the aim was to find an alternative fuel which would meet the requirements of petroleum or fossil fuels. Biodiesel is a clean, renewable and bio-degradable fuel having several advantages, one of the most important of which is being its eco-friendly and better knocking characteristics than diesel fuel. In this work the performance of Karanja oil was analyzed on a four stroke, single cylinder, water cooled, variable compression ratio diesel engine. The fuel used was 5% - 25% karanja oil methyl ester by volume in diesel. The results such obtained are compared with standard diesel fuel. Several properties i.e. Brake Thermal Efficiency, Brake Specific Fuel Consumptions, Exhaust Gas Temperature are determined at all operating conditions & at variable compression ratio 17 and 17.5.

  2. The 4-parameter Compressible Packing Model (CPM) including a critical cavity size ratio

    Science.gov (United States)

    Roquier, Gerard

    2017-06-01

    The 4-parameter Compressible Packing Model (CPM) has been developed to predict the packing density of mixtures constituted by bidisperse spherical particles. The four parameters are: the wall effect and the loosening effect coefficients, the compaction index and a critical cavity size ratio. The two geometrical interactions have been studied theoretically on the basis of a spherical cell centered on a secondary class bead. For the loosening effect, a critical cavity size ratio, below which a fine particle can be inserted into a small cavity created by touching coarser particles, is introduced. This is the only parameter which requires adaptation to extend the model to other types of particles. The 4-parameter CPM demonstrates its efficiency on frictionless glass beads (300 values), spherical particles numerically simulated (20 values), round natural particles (125 values) and crushed particles (335 values) with correlation coefficients equal to respectively 99.0%, 98.7%, 97.8%, 96.4% and mean deviations equal to respectively 0.007, 0.006, 0.007, 0.010.

  3. MP3 compression of Doppler ultrasound signals.

    Science.gov (United States)

    Poepping, Tamie L; Gill, Jeremy; Fenster, Aaron; Holdsworth, David W

    2003-01-01

    The effect of lossy, MP3 compression on spectral parameters derived from Doppler ultrasound (US) signals was investigated. Compression was tested on signals acquired from two sources: 1. phase quadrature and 2. stereo audio directional output. A total of 11, 10-s acquisitions of Doppler US signal were collected from each source at three sites in a flow phantom. Doppler signals were digitized at 44.1 kHz and compressed using four grades of MP3 compression (in kilobits per second, kbps; compression ratios in brackets): 1400 kbps (uncompressed), 128 kbps (11:1), 64 kbps (22:1) and 32 kbps (44:1). Doppler spectra were characterized by peak velocity, mean velocity, spectral width, integrated power and ratio of spectral power between negative and positive velocities. The results suggest that MP3 compression on digital Doppler US signals is feasible at 128 kbps, with a resulting 11:1 compression ratio, without compromising clinically relevant information. Higher compression ratios led to significant differences for both signal sources when compared with the uncompressed signals. Copyright 2003 World Federation for Ultrasound in Medicine & Biology

  4. Homogeneous Charge Compression Ignition Combustion of Dimethyl Ether

    DEFF Research Database (Denmark)

    Pedersen, Troels Dyhr

    This thesis is based on experimental and numerical studies on the use of dimethyl ether (DME) in the homogeneous charge compression ignition (HCCI) combustion process. The first paper in this thesis was published in 2007 and describes HCCI combustion of pure DME in a small diesel engine. The tests...... were designed to investigate the effect of engine speed, compression ratio and equivalence ratio on the combustion timing and the engine performance. It was found that the required compression ratio depended on the equivalence ratio used. A lower equivalence ratio requires a higher compression ratio...... before the fuel is burned completely, due to lower in-cylinder temperatures and lower reaction rates. The study provided some insight in the importance of operating at the correct compression ratio, as well as the operational limitations and emission characteristics of HCCI combustion. HCCI combustion...

  5. Effect of cement/wood ratios and wood storage conditions on hydration temperature, hydration time, and compressive strength of wood-cement mixtures

    Science.gov (United States)

    Andy W.C. Lee; Zhongli Hong; Douglas R. Phillips; Chung-Yun Hse

    1987-01-01

    This study investigated the effect of cement/wood ratios and wood storage conditions on hydration temperature, hydration time, and compressive strength of wood-cement mixtures made from six wood species: southern pine, white oak, southern red oak, yellow-poplar, sweetgum, and hickory. Cement/wood ratios varied from 13/1 to 4/1. Wood storage conditions consisted of air-...

  6. Compressing Data Cube in Parallel OLAP Systems

    Directory of Open Access Journals (Sweden)

    Frank Dehne

    2007-03-01

    Full Text Available This paper proposes an efficient algorithm to compress the cubes in the progress of the parallel data cube generation. This low overhead compression mechanism provides block-by-block and record-by-record compression by using tuple difference coding techniques, thereby maximizing the compression ratio and minimizing the decompression penalty at run-time. The experimental results demonstrate that the typical compression ratio is about 30:1 without sacrificing running time. This paper also demonstrates that the compression method is suitable for Hilbert Space Filling Curve, a mechanism widely used in multi-dimensional indexing.

  7. Fundamental Interactions in Gasoline Compression Ignition Engines with Fuel Stratification

    Science.gov (United States)

    Wolk, Benjamin Matthew

    ) a 98-species version including nitric oxide formation reactions. Development of reduced mechanisms is necessary because the detailed mechanism is computationally prohibitive in three-dimensional CFD and chemical kinetics simulations. Simulations of Partial Fuel Stratification (PFS), a GCI strategy, have been performed using CONVERGE with the 96-species reduced mechanism developed in this work for a 4-component gasoline surrogate. Comparison is made to experimental data from the Sandia HCCI/GCI engine at a compression ratio 14:1 at intake pressures of 1 bar and 2 bar. Analysis of the heat release and temperature in the different equivalence ratio regions reveals that sequential auto-ignition of the stratified charge occurs in order of increasing equivalence ratio for 1 bar intake pressure and in order of decreasing equivalence ratio for 2 bar intake pressure. Increased low- and intermediate-temperature heat release with increasing equivalence ratio at 2 bar intake pressure compensates for decreased temperatures in higher-equivalence ratio regions due to evaporative cooling from the liquid fuel spray and decreased compression heating from lower values of the ratio of specific heats. The presence of low- and intermediate-temperature heat release at 2 bar intake pressure alters the temperature distribution of the mixture stratification before hot-ignition, promoting the desired sequential auto-ignition. At 1 bar intake pressure, the sequential auto-ignition occurs in the reverse order compared to 2 bar intake pressure and too fast for useful reduction of the maximum pressure rise rate compared to HCCI. Additionally, the premixed portion of the charge auto-ignites before the highest-equivalence ratio regions. Conversely, at 2 bar intake pressure, the premixed portion of the charge auto-ignites last, after the higher-equivalence ratio regions. More importantly, the sequential auto-ignition occurs over a longer time period for 2 bar intake pressure than at 1 bar intake

  8. Experimental study on ultimate strength and strain behavior of concrete under biaxial compressive stresses

    International Nuclear Information System (INIS)

    Onuma, Hiroshi; Aoyagi, Yukio

    1976-01-01

    The purpose of this investigation was to study the ultimate strength failure mode and deformation behavior of concrete under short-term biaxial compressive stresses, as an aid to design and analyze the concrete structures subjected to multiaxial compression such as prestressed or reinforced concrete vessel structures. The experimental work on biaxial compression was carried out on the specimens of three mix proportions and different ages with 10cm x 10cm x 10cm cubic shape in a room controlled at 20 0 C. The results are summarized as follows. (1) To minimize the surface friction between specimens and loading platens, the pads of teflon sheets coated with silicone grease were used. The coefficient of friction was measured and was 3 percent on the average. (2) The test data showed that the strength of the concrete subjected to biaxial compression increased as compared to uniaxial compressive strength, and that the biaxial strength increase was mainly dependent on the ratio of principal stresses, and it was hardly affected by mix proportions and ages. (3) The maximum increase of strength, which occurred at the stress ratio of approximately sigma 2 /sigma 1 = 0.6, was about 27 percent higher than the uniaxial strength of concrete. (4) The ultimate strength in case of biaxial compression could be approximated by the parabolic equation. (Kako, I.)

  9. Investigation of compressive strength of concrete with slag and silica fu

    International Nuclear Information System (INIS)

    Mostofinejad, D.; Mirtalee, K.; Sadeghi, M.

    2002-01-01

    Without doubt, concrete has special place in construction of different types of structures, and used as one of the most important materials in construction industry. Today, with development and modernization of human knowledge in construction industry, it is possible to reach h igh performance concrete . Mechanical properties and durability of high performance concrete is quite better than that of conventional concrete. In present, the use of supplementary cementitious materials, mainly silica fume, fly ash and blast furnace slag has become increasingly common for reasons of economy and technical benefits imparted by these materials. The aim of present research is investigation and comparison compressive strength of concrete specimens due to variation of water to cementitious materials ratio (W/C M), silica fume and slag percent and their proportions as cement replacement. Furthermore, it is intended to determine best combination of these materials with cement in concrete (optimum percent) to reach to maximum compressive strength. In the current study, specimens were made in 0.5,0.4 and 0.3 W/C M ratio contained 0,20,35 and 50 percent of slag as cement replacement, where in each slag replacement percent, 0, 5, 10 and 15 percent of of silica fume were used as cement replacement. Results of the current study show that the combination effect of slag and silica fume replacement in concrete leads to the maximum compressive strength in concrete; also there are some optimum percents for replacement of slag and silica fume to cement to get the best results

  10. Data compression of digital X-ray images from a clinical viewpoint

    International Nuclear Information System (INIS)

    Ando, Yutaka

    1992-01-01

    For the PACS (picture archiving and communication system), large storage capacity recording media and a fast data transfer network are necessary. When the PACS are working, these technology requirements become an large problem. So we need image data compression having a higher recording efficiency media and an improved transmission ratio. There are two kinds of data compression methods, one is reversible compression and other is the irreversible one. By these reversible compression methods, a compressed-expanded image is exactly equal to the original image. The ratio of data compression is about between 1/2 an d1/3. On the other hand, for irreversible data compression, the compressed-expanded image is a distorted image, and we can achieve a high compression ratio by using this method. In the medical field, the discrete cosine transform (DCT) method is popular because of the low distortion and fast performance. The ratio of data compression is actually from 1/10 to 1/20. It is important for us to decide the compression ratio according to the purposes and modality of the image. We must carefully select the ratio of the data compression because the suitable compression ratio alters in the usage of image for education, clinical diagnosis and reference. (author)

  11. Spectral Distortion in Lossy Compression of Hyperspectral Data

    Directory of Open Access Journals (Sweden)

    Bruno Aiazzi

    2012-01-01

    Full Text Available Distortion allocation varying with wavelength in lossy compression of hyperspectral imagery is investigated, with the aim of minimizing the spectral distortion between original and decompressed data. The absolute angular error, or spectral angle mapper (SAM, is used to quantify spectral distortion, while radiometric distortions are measured by maximum absolute deviation (MAD for near-lossless methods, for example, differential pulse code modulation (DPCM, or mean-squared error (MSE for lossy methods, for example, spectral decorrelation followed by JPEG 2000. Two strategies of interband distortion allocation are compared: given a target average bit rate, distortion may be set to be constant with wavelength. Otherwise, it may be allocated proportionally to the noise level of each band, according to the virtually lossless protocol. Comparisons with the uncompressed originals show that the average SAM of radiance spectra is minimized by constant distortion allocation to radiance data. However, variable distortion allocation according to the virtually lossless protocol yields significantly lower SAM in case of reflectance spectra obtained from compressed radiance data, if compared with the constant distortion allocation at the same compression ratio.

  12. Influence of Loudness Compression on Hearing with Bone Anchored Hearing Implants

    OpenAIRE

    Kurz, Anja; Caversaccio, Marco; Kompis, Martin; Flynn, Marc

    2014-01-01

    Bone Anchored Hearing Implants (BAHI) are routinely used in patients with conductive or mixed hearing loss, e.g. if conventional air conduction hearing aids cannot be used. New sound processors and new fitting software now allow the adjustment of parameters such as loudness compression ratios or maximum power output separately. Today it is unclear, how the choice of these parameters influences aided speech understanding in BAHI users. In this prospective experimental study, the effect ...

  13. LZ-Compressed String Dictionaries

    OpenAIRE

    Arz, Julian; Fischer, Johannes

    2013-01-01

    We show how to compress string dictionaries using the Lempel-Ziv (LZ78) data compression algorithm. Our approach is validated experimentally on dictionaries of up to 1.5 GB of uncompressed text. We achieve compression ratios often outperforming the existing alternatives, especially on dictionaries containing many repeated substrings. Our query times remain competitive.

  14. Equivalence ratio and constriction effects on RBCC thrust augmentation

    Science.gov (United States)

    Koupriyanov, M.; Etele, J.

    2011-06-01

    A theoretical analysis of a variable area rocket based combined cycle engine with and without simultaneous mixing and combustion is presented. The flowfield is solved using a steady, quasi-one-dimensional, inviscid control volume formulation with combustion effects included via a generalized equilibrium calculation. Compression augmentation is shown to be sensitive to the equivalence ratio within the primary rocket chamber, where ejector section performance is greatest at both low and high equivalence ratios but near a minimum at stoichiometric conditions. The thrust generated by the RBCC engine compared to that generated by the same rocket in isolation can be increased by as much as 12% at constriction ratios of between 45% and 50%. Thrust augmentation is also shown to vary with equivalence ratio, where for a fixed geometry the maximum thrust is generated at equivalence ratios slightly below unity.

  15. Compressing DNA sequence databases with coil

    Directory of Open Access Journals (Sweden)

    Hendy Michael D

    2008-05-01

    Full Text Available Abstract Background Publicly available DNA sequence databases such as GenBank are large, and are growing at an exponential rate. The sheer volume of data being dealt with presents serious storage and data communications problems. Currently, sequence data is usually kept in large "flat files," which are then compressed using standard Lempel-Ziv (gzip compression – an approach which rarely achieves good compression ratios. While much research has been done on compressing individual DNA sequences, surprisingly little has focused on the compression of entire databases of such sequences. In this study we introduce the sequence database compression software coil. Results We have designed and implemented a portable software package, coil, for compressing and decompressing DNA sequence databases based on the idea of edit-tree coding. coil is geared towards achieving high compression ratios at the expense of execution time and memory usage during compression – the compression time represents a "one-off investment" whose cost is quickly amortised if the resulting compressed file is transmitted many times. Decompression requires little memory and is extremely fast. We demonstrate a 5% improvement in compression ratio over state-of-the-art general-purpose compression tools for a large GenBank database file containing Expressed Sequence Tag (EST data. Finally, coil can efficiently encode incremental additions to a sequence database. Conclusion coil presents a compelling alternative to conventional compression of flat files for the storage and distribution of DNA sequence databases having a narrow distribution of sequence lengths, such as EST data. Increasing compression levels for databases having a wide distribution of sequence lengths is a direction for future work.

  16. Effect of compression ratio, equivalence ratio and engine speed on the performance and emission characteristics of a spark ignition engine using hydrogen as a fuel

    Energy Technology Data Exchange (ETDEWEB)

    Sadiq Al-Baghdadi, M.A.R. [University of Babylon (Iraq). Dept. of Mechanical Engineering

    2004-12-01

    The present energy situation has stimulated active research interest in non-petroleum and non-polluting fuels, particularly for transportation, power generation, and agricultural sectors. Researchers have found that hydrogen presents the best and an unprecedented solution to the energy crises and pollution problems, due to its superior combustion qualities and availability. This paper discusses analytically and provides data on the effect of compression ratio, equivalence ratio and engine speed on the engine performance, emissions and pre-ignition limits of a spark ignition engine operating on hydrogen fuel. These data are important in order to understand the interaction between engine performance and emission parameters, which will help engine designers when designing for hydrogen. (author)

  17. Modelling for Fuel Optimal Control of a Variable Compression Engine

    OpenAIRE

    Nilsson, Ylva

    2007-01-01

    Variable compression engines are a mean to meet the demand on lower fuel consumption. A high compression ratio results in high engine efficiency, but also increases the knock tendency. On conventional engines with fixed compression ratio, knock is avoided by retarding the ignition angle. The variable compression engine offers an extra dimension in knock control, since both ignition angle and compression ratio can be adjusted. The central question is thus for what combination of compression ra...

  18. Approximate maximum parsimony and ancestral maximum likelihood.

    Science.gov (United States)

    Alon, Noga; Chor, Benny; Pardi, Fabio; Rapoport, Anat

    2010-01-01

    We explore the maximum parsimony (MP) and ancestral maximum likelihood (AML) criteria in phylogenetic tree reconstruction. Both problems are NP-hard, so we seek approximate solutions. We formulate the two problems as Steiner tree problems under appropriate distances. The gist of our approach is the succinct characterization of Steiner trees for a small number of leaves for the two distances. This enables the use of known Steiner tree approximation algorithms. The approach leads to a 16/9 approximation ratio for AML and asymptotically to a 1.55 approximation ratio for MP.

  19. Effects of applied stress ratio on the fatigue behavior of additively manufactured porous biomaterials under compressive loading.

    Science.gov (United States)

    de Krijger, Joep; Rans, Calvin; Van Hooreweder, Brecht; Lietaert, Karel; Pouran, Behdad; Zadpoor, Amir A

    2017-06-01

    Additively manufactured (AM) porous metallic biomaterials are considered promising candidates for bone substitution. In particular, AM porous titanium can be designed to exhibit mechanical properties similar to bone. There is some experimental data available in the literature regarding the fatigue behavior of AM porous titanium, but the effect of stress ratio on the fatigue behavior of those materials has not been studied before. In this paper, we study the effect of applied stress ratio on the compression-compression fatigue behavior of selective laser melted porous titanium (Ti-6Al-4V) based on the diamond unit cell. The porous titanium biomaterial is treated as a meta-material in the context of this work, meaning that R-ratios are calculated based on the applied stresses acting on a homogenized volume. After morphological characterization using micro computed tomography and quasi-static mechanical testing, the porous structures were tested under cyclic loading using five different stress ratios, i.e. R = 0.1, 0.3, 0.5, 0.7 and 0.8, to determine their S-N curves. Feature tracking algorithms were used for full-field deformation measurements during the fatigue tests. It was observed that the S-N curves of the porous structures shift upwards as the stress ratio increases. The stress amplitude was the most important factor determining the fatigue life. Constant fatigue life diagrams were constructed and compared with similar diagrams for bulk Ti-6Al-4V. Contrary to the bulk material, there was limited dependency of the constant life diagrams to mean stress. The notches present in the AM biomaterials were the sites of crack initiation. This observation and other evidence suggest that the notches created by the AM process cause the insensitivity of the fatigue life diagrams to mean stress. Feature tracking algorithms visualized the deformation during fatigue tests and demonstrated the root cause of inclined (45°) planes of specimen failure. In conclusion, the R-ratio

  20. Compression of the digitized X-ray images

    International Nuclear Information System (INIS)

    Terae, Satoshi; Miyasaka, Kazuo; Fujita, Nobuyuki; Takamura, Akio; Irie, Goro; Inamura, Kiyonari.

    1987-01-01

    Medical images are using an increased amount of space in the hospitals, while they are not accessed easily. Thus, suitable data filing system and precise data compression will be necessitated. Image quality was evaluated before and after image data compression, using local filing system (MediFile 1000, NEC Co.) and forty-seven modes of compression parameter. For this study X-ray images of 10 plain radiographs and 7 contrast examinations were digitized using a film reader of CCD sensor in MediFile 1000. Those images were compressed into forty-seven kinds of image data to save in an optical disc and then the compressed images were reconstructed. Each reconstructed image was compared with non-compressed images in respect to several regions of our interest by four radiologists. Compression and extension of radiological images were promptly made by employing the local filing system. Image quality was much more affected by the ratio of data compression than by the mode of parameter itself. In another word, the higher compression ratio became, the worse the image quality were. However, image quality was not significantly degraded until the compression ratio was about 15: 1 on plain radiographs and about 8: 1 on contrast studies. Image compression by this technique will be admitted by diagnostic radiology. (author)

  1. Huffman-based code compression techniques for embedded processors

    KAUST Repository

    Bonny, Mohamed Talal

    2010-09-01

    The size of embedded software is increasing at a rapid pace. It is often challenging and time consuming to fit an amount of required software functionality within a given hardware resource budget. Code compression is a means to alleviate the problem by providing substantial savings in terms of code size. In this article we introduce a novel and efficient hardware-supported compression technique that is based on Huffman Coding. Our technique reduces the size of the generated decoding table, which takes a large portion of the memory. It combines our previous techniques, Instruction Splitting Technique and Instruction Re-encoding Technique into new one called Combined Compression Technique to improve the final compression ratio by taking advantage of both previous techniques. The instruction Splitting Technique is instruction set architecture (ISA)-independent. It splits the instructions into portions of varying size (called patterns) before Huffman coding is applied. This technique improves the final compression ratio by more than 20% compared to other known schemes based on Huffman Coding. The average compression ratios achieved using this technique are 48% and 50% for ARM and MIPS, respectively. The Instruction Re-encoding Technique is ISA-dependent. It investigates the benefits of reencoding unused bits (we call them reencodable bits) in the instruction format for a specific application to improve the compression ratio. Reencoding those bits can reduce the size of decoding tables by up to 40%. Using this technique, we improve the final compression ratios in comparison to the first technique to 46% and 45% for ARM and MIPS, respectively (including all overhead that incurs). The Combined Compression Technique improves the compression ratio to 45% and 42% for ARM and MIPS, respectively. In our compression technique, we have conducted evaluations using a representative set of applications and we have applied each technique to two major embedded processor architectures

  2. Tip Speed Ratio Based Maximum Power Tracking Control of Variable Speed Wind Turbines; A Comprehensive Design

    Directory of Open Access Journals (Sweden)

    Murat Karabacak

    2017-08-01

    Full Text Available The most primitive control method of wind turbines used to generate electric energy from wind is the fixed speed control method. With this method, it is not possible that turbine input power is transferred to grid at maximum rate. For this reason, Maximum Power Tracking (MPT schemes are proposed. In order to implement MPT, the propeller has to rotate at a different speed for every different wind speed. This situation has led MPT based systems to be called Variable Speed Wind Turbine (VSWT systems. In VSWT systems, turbine input power can be transferred to grid at rates close to maximum power. When MPT based control of VSWT systems is the case, two important processes come into prominence. These are instantaneously determination and tracking of MPT point. In this study, using a Maximum Power Point Tracking (MPPT method based on tip speed ratio, power available in wind is transferred into grid over a back to back converter at maximum rate via a VSWT system with permanent magnet synchronous generator (PMSG. Besides a physical wind turbine simulator is modelled and simulated. Results show that a time varying MPPT point is tracked with a high performance.

  3. An analysis of cumulative risks based on biomonitoring data for six phthalates using the Maximum Cumulative Ratio

    Science.gov (United States)

    The Maximum Cumulative Ratio (MCR) quantifies the degree to which a single chemical drives the cumulative risk of an individual exposed to multiple chemicals. Phthalates are a class of chemicals with ubiquitous exposures in the general population that have the potential to cause ...

  4. Salary Compression: A Time-Series Ratio Analysis of ARL Position Classifications

    Science.gov (United States)

    Seaman, Scott

    2007-01-01

    Although salary compression has previously been identified in such professional schools as engineering, business, and computer science, there is now evidence of salary compression among Association of Research Libraries members. Using salary data from the "ARL Annual Salary Survey", this study analyzes average annual salaries from 1994-1995…

  5. Theoretical Evaluation of the Maximum Work of Free-Piston Engine Generators

    Science.gov (United States)

    Kojima, Shinji

    2017-01-01

    Utilizing the adjoint equations that originate from the calculus of variations, we have calculated the maximum thermal efficiency that is theoretically attainable by free-piston engine generators considering the work loss due to friction and Joule heat. Based on the adjoint equations with seven dimensionless parameters, the trajectory of the piston, the histories of the electric current, the work done, and the two kinds of losses have been derived in analytic forms. Using these we have conducted parametric studies for the optimized Otto and Brayton cycles. The smallness of the pressure ratio of the Brayton cycle makes the net work done negative even when the duration of heat addition is optimized to give the maximum amount of heat addition. For the Otto cycle, the net work done is positive, and both types of losses relative to the gross work done become smaller with the larger compression ratio. Another remarkable feature of the optimized Brayton cycle is that the piston trajectory of the heat addition/disposal process is expressed by the same equation as that of an adiabatic process. The maximum thermal efficiency of any combination of isochoric and isobaric heat addition/disposal processes, such as the Sabathe cycle, may be deduced by applying the methods described here.

  6. Exergy analysis of an adiabatic compressed air energy storage system using a cascade of phase change materials

    International Nuclear Information System (INIS)

    Tessier, Michael J.; Floros, Michael C.; Bouzidi, Laziz; Narine, Suresh S.

    2016-01-01

    Adiabatic compressed air energy storage is an emerging energy storage technology with excellent power and storage capacities. Currently, efficiencies are approximately 70%, in part due to the issue of heat loss during the compression stage. An exergy analysis is presented on a novel adiabatic compressed air energy storage system design utilizing a cascade of PCMs (phase change materials) for waste heat storage and recovery. The melting temperatures and enthalpies of the PCMs were optimized for this system and were shown to be dependent on the number of PCMs, the number of compression stages, and the maximum compression ratio. Efficiencies of storage and recovery using this approach are predicted to be as high as 85%, a 15% increase over current designs which do not incorporate PCMs. - Highlights: • A compressed air energy storage plant using phase change materials is proposed. • Increasing number of phase change materials increases roundtrip exergy efficiency. • A thermodynamic model allows melting points and latent heats required to be predicted.

  7. Extreme compression for extreme conditions: pilot study to identify optimal compression of CT images using MPEG-4 video compression.

    Science.gov (United States)

    Peterson, P Gabriel; Pak, Sung K; Nguyen, Binh; Jacobs, Genevieve; Folio, Les

    2012-12-01

    This study aims to evaluate the utility of compressed computed tomography (CT) studies (to expedite transmission) using Motion Pictures Experts Group, Layer 4 (MPEG-4) movie formatting in combat hospitals when guiding major treatment regimens. This retrospective analysis was approved by Walter Reed Army Medical Center institutional review board with a waiver for the informed consent requirement. Twenty-five CT chest, abdomen, and pelvis exams were converted from Digital Imaging and Communications in Medicine to MPEG-4 movie format at various compression ratios. Three board-certified radiologists reviewed various levels of compression on emergent CT findings on 25 combat casualties and compared with the interpretation of the original series. A Universal Trauma Window was selected at -200 HU level and 1,500 HU width, then compressed at three lossy levels. Sensitivities and specificities for each reviewer were calculated along with 95 % confidence intervals using the method of general estimating equations. The compression ratios compared were 171:1, 86:1, and 41:1 with combined sensitivities of 90 % (95 % confidence interval, 79-95), 94 % (87-97), and 100 % (93-100), respectively. Combined specificities were 100 % (85-100), 100 % (85-100), and 96 % (78-99), respectively. The introduction of CT in combat hospitals with increasing detectors and image data in recent military operations has increased the need for effective teleradiology; mandating compression technology. Image compression is currently used to transmit images from combat hospital to tertiary care centers with subspecialists and our study demonstrates MPEG-4 technology as a reasonable means of achieving such compression.

  8. Image quality (IQ) guided multispectral image compression

    Science.gov (United States)

    Zheng, Yufeng; Chen, Genshe; Wang, Zhonghai; Blasch, Erik

    2016-05-01

    Image compression is necessary for data transportation, which saves both transferring time and storage space. In this paper, we focus on our discussion on lossy compression. There are many standard image formats and corresponding compression algorithms, for examples, JPEG (DCT -- discrete cosine transform), JPEG 2000 (DWT -- discrete wavelet transform), BPG (better portable graphics) and TIFF (LZW -- Lempel-Ziv-Welch). The image quality (IQ) of decompressed image will be measured by numerical metrics such as root mean square error (RMSE), peak signal-to-noise ratio (PSNR), and structural Similarity (SSIM) Index. Given an image and a specified IQ, we will investigate how to select a compression method and its parameters to achieve an expected compression. Our scenario consists of 3 steps. The first step is to compress a set of interested images by varying parameters and compute their IQs for each compression method. The second step is to create several regression models per compression method after analyzing the IQ-measurement versus compression-parameter from a number of compressed images. The third step is to compress the given image with the specified IQ using the selected compression method (JPEG, JPEG2000, BPG, or TIFF) according to the regressed models. The IQ may be specified by a compression ratio (e.g., 100), then we will select the compression method of the highest IQ (SSIM, or PSNR). Or the IQ may be specified by a IQ metric (e.g., SSIM = 0.8, or PSNR = 50), then we will select the compression method of the highest compression ratio. Our experiments tested on thermal (long-wave infrared) images (in gray scales) showed very promising results.

  9. An Analysis of Cumulative Risks Indicated by Biomonitoring Data of Six Phthalates Using the Maximum Cumulative Ratio

    Science.gov (United States)

    The Maximum Cumulative Ratio (MCR) quantifies the degree to which a single component of a chemical mixture drives the cumulative risk of a receptor.1 This study used the MCR, the Hazard Index (HI) and Hazard Quotient (HQ) to evaluate co-exposures to six phthalates using biomonito...

  10. Effects of JPEG data compression on magnetic resonance imaging evaluation of small vessels ischemic lesions of the brain; Efeitos da compressao de dados JPEG na avaliacao de lesoes vasculares cerebrais isquemicas de pequenos vasos em ressonancia magnetica

    Energy Technology Data Exchange (ETDEWEB)

    Kuriki, Paulo Eduardo de Aguiar; Abdala, Nitamar; Nogueira, Roberto Gomes; Carrete Junior, Henrique; Szejnfeld, Jacob [Universidade Federal de Sao Paulo (UNIFESP/EPM), SP (Brazil). Dept. de Diagnostico por Imagem]. E-mail: paulokuriki@gmail.com

    2006-01-15

    Objective: to establish the maximum achievable JPEG compression ratio without affecting quantitative and qualitative magnetic resonance imaging analysis of ischemic lesion in small vessels of the brain. Material and method: fifteen DICOM images were converted to JPEG with a compression ratio of 1:10 to 1:60 and were assessed together with the original images by three neuro radiologists. The number, morphology and signal intensity of the lesions were analyzed. Results: lesions were properly identified up to a 1:30 ratio. More lesions were identified with a 1:10 ratio then in the original images. Morphology and edges were properly evaluated up toa 1:40 ratio. Compression did not affect signal. Conclusion: small lesions were identified ( < 2 mm ) and in all compression ratios the JPEG algorithm generated image noise that misled observers to identify more lesions in JPEG images then in DICOM images, thus generating false-positive results.(author)

  11. Transfer induced compressive strain in graphene

    DEFF Research Database (Denmark)

    Larsen, Martin Benjamin Barbour Spanget; Mackenzie, David; Caridad, Jose

    2014-01-01

    We have used spatially resolved micro Raman spectroscopy to map the full width at half maximum (FWHM) of the graphene G-band and the 2D and G peak positions, for as-grown graphene on copper catalyst layers, for transferred CVD graphene and for micromechanically exfoliated graphene, in order...... to characterize the effects of a transfer process on graphene properties. Here we use the FWHM(G) as an indicator of the doping level of graphene, and the ratio of the shifts in the 2D and G bands as an indicator of strain. We find that the transfer process introduces an isotropic, spatially uniform, compressive...... strain in graphene, and increases the carrier concentration....

  12. Spark ignition engine performance and emissions in a high compression engine using biogas and methane mixtures without knock occurrence

    Directory of Open Access Journals (Sweden)

    Gómez Montoya Juan Pablo

    2015-01-01

    Full Text Available With the purpose to use biogas in an internal combustion engine with high compression ratio and in order to get a high output thermal efficiency, this investigation used a diesel engine with a maximum output power 8.5 kW, which was converted to spark ignition mode to use it with gaseous fuels. Three fuels were used: Simulated biogas, biogas enriched with 25% and 50% methane by volume. After conversion, the output power of the engine decreased by 17.64% when using only biogas, where 7 kW was the new maximum output power of the engine. The compression ratio was kept at 15.5:1, and knocking did not occur during engine operation. Output thermal efficiency operating the engine in SI mode with biogas enriched with 50% methane was almost the same compared with the engine running in diesel-biogas dual mode at full load and was greater at part loads. The dependence of the diesel pilot was eliminated when biogas was used in the engine converted in SI mode. The optimum condition of experiment for the engine without knocking was using biogas enriched with 50% methane, with 12 degrees of spark timing advance and equivalence ratio of 0.95, larger output powers and higher values of methane concentration lead the engine to knock operation. The presence of CO2 allows operating engines at high compression ratios with normal combustion conditions. Emissions of nitrogen oxides, carbon monoxide and unburnt methane all in g/kWh decreased when the biogas was enriched with 50% methane.

  13. Quality Aware Compression of Electrocardiogram Using Principal Component Analysis.

    Science.gov (United States)

    Gupta, Rajarshi

    2016-05-01

    Electrocardiogram (ECG) compression finds wide application in various patient monitoring purposes. Quality control in ECG compression ensures reconstruction quality and its clinical acceptance for diagnostic decision making. In this paper, a quality aware compression method of single lead ECG is described using principal component analysis (PCA). After pre-processing, beat extraction and PCA decomposition, two independent quality criteria, namely, bit rate control (BRC) or error control (EC) criteria were set to select optimal principal components, eigenvectors and their quantization level to achieve desired bit rate or error measure. The selected principal components and eigenvectors were finally compressed using a modified delta and Huffman encoder. The algorithms were validated with 32 sets of MIT Arrhythmia data and 60 normal and 30 sets of diagnostic ECG data from PTB Diagnostic ECG data ptbdb, all at 1 kHz sampling. For BRC with a CR threshold of 40, an average Compression Ratio (CR), percentage root mean squared difference normalized (PRDN) and maximum absolute error (MAE) of 50.74, 16.22 and 0.243 mV respectively were obtained. For EC with an upper limit of 5 % PRDN and 0.1 mV MAE, the average CR, PRDN and MAE of 9.48, 4.13 and 0.049 mV respectively were obtained. For mitdb data 117, the reconstruction quality could be preserved up to CR of 68.96 by extending the BRC threshold. The proposed method yields better results than recently published works on quality controlled ECG compression.

  14. Effect of Specimen Shape and Size on the Compressive Strength of Foamed Concrete

    Directory of Open Access Journals (Sweden)

    Sudin M.A.S.

    2014-03-01

    Full Text Available Lightweight concrete, in the form of foamed concrete, is a versatile material that primarily consists of a cement based mortar, mixed with at least 20% volume of air. Its dry density is typically below 1600 kg/m3 with a maximum compressive strength of 15MPa. The ASTM standard provision specifies a correction factor for concrete strength of between 14 and 42Mpa, in order to compensate for a reduced strength, when the aspect height-to-diameter ratio of a specimen is less than 2.0. However, the CEB-FIP provision specifically mentions a ratio of 150mm dia. × 300mm cylinder strength to 150 mm cube strength; though, both provision requirements do not specifically clarify the applicability and/or modification of the correction factors for the compressive strength to lightweight concrete (in this case, foamed concrete. The focus of this work is to study the effect of specimen size and shape on the axial compressive strength of concrete. Specimens of various sizes and shapes were cast with square and circular cross-sections i.e., cubes, prisms, and cylinders. Their compression strength behaviours at 7 and 28 days were investigated. The results indicate that, as the CEB-FIP provision specified, even for foamed concrete, 100mm cubes (l/d = 1.0 produce a comparable compressive strength with 100mm dia. × 200mm cylinders (l/d = 2.0.

  15. Dual compression is not an uncommon type of iliac vein compression syndrome.

    Science.gov (United States)

    Shi, Wan-Yin; Gu, Jian-Ping; Liu, Chang-Jian; Lou, Wen-Sheng; He, Xu

    2017-09-01

    Typical iliac vein compression syndrome (IVCS) is characterized by compression of left common iliac vein (LCIV) by the overlying right common iliac artery (RCIA). We described an underestimated type of IVCS with dual compression by right and left common iliac arteries (LCIA) simultaneously. Thirty-one patients with IVCS were retrospectively included. All patients received trans-catheter venography and computed tomography (CT) examinations for diagnosing and evaluating IVCS. Late venography and reconstructed CT were used for evaluating the anatomical relationship among LCIV, RCIA and LCIA. Imaging manifestations as well as demographic data were collected and evaluated by two experienced radiologists. Sole and dual compression were found in 32.3% (n = 10) and 67.7% (n = 21) of 31 patients respectively. No statistical differences existed between them in terms of age, gender, LCIV diameter at the maximum compression point, pressure gradient across stenosis, and the percentage of compression level. On CT and venography, sole compression was commonly presented with a longitudinal compression at the orifice of LCIV while dual compression was usually presented as two types: one had a lengthy stenosis along the upper side of LCIV and the other was manifested by a longitudinal compression near to the orifice of external iliac vein. The presence of dual compression seemed significantly correlated with the tortuous LCIA (p = 0.006). Left common iliac vein can be presented by dual compression. This type of compression has typical manifestations on late venography and CT.

  16. Squeezing of Ion Populations and Peaks in Traveling Wave Ion Mobility Separations and Structures for Lossless Ion Manipulations using Compression Ratio Ion Mobility Programming

    Energy Technology Data Exchange (ETDEWEB)

    Garimella, Venkata BS; Hamid, Ahmed M.; Deng, Liulin; Ibrahim, Yehia M.; Webb, Ian K.; Baker, Erin M.; Prost, Spencer A.; Norheim, Randolph V.; Anderson, Gordon A.; Smith, Richard D.

    2016-11-02

    In this work, we report an approach for spatial and temporal gas phase ion population manipulation, and demonstrate its application for the collapse of the ion distributions in ion mobility (IM) separations into tighter packets providing higher sensitivity measurements in conjunction with mass spectrometry (MS). We do this for ions moving from a conventionally traveling wave (TW)-driven region to a region where the TW is intermittently halted or ‘stuttered’. This approach causes the ion packets spanning a number of TW-created traveling traps (TT) to be redistributed into fewer TT, resulting in spatial compression. The degree of spatial compression is controllable and determined by the ratio of stationary time of the TW in the second region to its moving time. This compression ratio ion mobility programming (CRIMP) approach has been implemented using Structures for Lossless Ion Manipulations (SLIM) in conjunction with MS. CRIMP with the SLIM-MS platform is shown to provide increased peak intensities, reduced peak widths, and improved S/N ratios with MS detection. CRIMP also provides a foundation for extremely long path length and multi-pass IM separations in SLIM providing greatly enhanced IM resolution by reducing the detrimental effects of diffusional peak broadening due to increasing peak widths.

  17. Evaluation of mammogram compression efficiency

    International Nuclear Information System (INIS)

    Przelaskowski, A.; Surowski, P.; Kukula, A.

    2005-01-01

    Lossy image coding significantly improves performance over lossless methods, but a reliable control of diagnostic accuracy regarding compressed images is necessary. The acceptable range of compression ratios must be safe with respect to as many objective criteria as possible. This study evaluates the compression efficiency of digital mammograms in both numerically lossless (reversible) and lossy (irreversible) manner. Effective compression methods and concepts were examined to increase archiving and telediagnosis performance. Lossless compression as a primary applicable tool for medical applications was verified on a set 131 mammograms. Moreover, nine radiologists participated in the evaluation of lossy compression of mammograms. Subjective rating of diagnostically important features brought a set of mean rates given for each test image. The lesion detection test resulted in binary decision data analyzed statistically. The radiologists rated and interpreted malignant and benign lesions, representative pathology symptoms, and other structures susceptible to compression distortions contained in 22 original and 62 reconstructed mammograms. Test mammograms were collected in two radiology centers for three years and then selected according to diagnostic content suitable for an evaluation of compression effects. Lossless compression efficiency of the tested coders varied, but CALIC, JPEG-LS, and SPIHT performed the best. The evaluation of lossy compression effects affecting detection ability was based on ROC-like analysis. Assuming a two-sided significance level of p=0.05, the null hypothesis that lower bit rate reconstructions are as useful for diagnosis as the originals was false in sensitivity tests with 0.04 bpp mammograms. However, verification of the same hypothesis with 0.1 bpp reconstructions suggested their acceptance. Moreover, the 1 bpp reconstructions were rated very similarly to the original mammograms in the diagnostic quality evaluation test, but the

  18. Torque Modeling and Control of a Variable Compression Engine

    OpenAIRE

    Bergström, Andreas

    2003-01-01

    The SAAB variable compression engine is a new engine concept that enables the fuel consumption to be radically cut by varying the compression ratio. A challenge with this new engine concept is that the compression ratio has a direct influence on the output torque, which means that a change in compression ratio also leads to a change in the torque. A torque change may be felt as a jerk in the movement of the car, and this is an undesirable effect since the driver has no control over the compre...

  19. High bit depth infrared image compression via low bit depth codecs

    Science.gov (United States)

    Belyaev, Evgeny; Mantel, Claire; Forchhammer, Søren

    2017-08-01

    Future infrared remote sensing systems, such as monitoring of the Earth's environment by satellites, infrastructure inspection by unmanned airborne vehicles etc., will require 16 bit depth infrared images to be compressed and stored or transmitted for further analysis. Such systems are equipped with low power embedded platforms where image or video data is compressed by a hardware block called the video processing unit (VPU). However, in many cases using two 8-bit VPUs can provide advantages compared with using higher bit depth image compression directly. We propose to compress 16 bit depth images via 8 bit depth codecs in the following way. First, an input 16 bit depth image is mapped into 8 bit depth images, e.g., the first image contains only the most significant bytes (MSB image) and the second one contains only the least significant bytes (LSB image). Then each image is compressed by an image or video codec with 8 bits per pixel input format. We analyze how the compression parameters for both MSB and LSB images should be chosen to provide the maximum objective quality for a given compression ratio. Finally, we apply the proposed infrared image compression method utilizing JPEG and H.264/AVC codecs, which are usually available in efficient implementations, and compare their rate-distortion performance with JPEG2000, JPEG-XT and H.265/HEVC codecs supporting direct compression of infrared images in 16 bit depth format. A preliminary result shows that two 8 bit H.264/AVC codecs can achieve similar result as 16 bit HEVC codec.

  20. Wavelet compression algorithm applied to abdominal ultrasound images

    International Nuclear Information System (INIS)

    Lin, Cheng-Hsun; Pan, Su-Feng; LU, Chin-Yuan; Lee, Ming-Che

    2006-01-01

    We sought to investigate acceptable compression ratios of lossy wavelet compression on 640 x 480 x 8 abdominal ultrasound (US) images. We acquired 100 abdominal US images with normal and abnormal findings from the view station of a 932-bed teaching hospital. The US images were then compressed at quality factors (QFs) of 3, 10, 30, and 50 followed outcomes of a pilot study. This was equal to the average compression ratios of 4.3:1, 8.5:1, 20:1 and 36.6:1, respectively. Four objective measurements were carried out to examine and compare the image degradation between original and compressed images. Receiver operating characteristic (ROC) analysis was also introduced for subjective assessment. Five experienced and qualified radiologists as reviewers blinded to corresponding pathological findings, analysed paired 400 randomly ordered images with two 17-inch thin film transistor/liquid crystal display (TFT/LCD) monitors. At ROC analysis, the average area under curve (Az) for US abdominal image was 0.874 at the ratio of 36.6:1. The compressed image size was only 2.7% for US original at this ratio. The objective parameters showed the higher the mean squared error (MSE) or root mean squared error (RMSE) values, the poorer the image quality. The higher signal-to-noise ratio (SNR) or peak signal-to-noise ratio (PSNR) values indicated better image quality. The average RMSE, PSNR at 36.6:1 for US were 4.84 ± 0.14, 35.45 dB, respectively. This finding suggests that, on the basis of the patient sample, wavelet compression of abdominal US to a ratio of 36.6:1 did not adversely affect diagnostic performance or evaluation error for radiologists' interpretation so as to risk affecting diagnosis

  1. Effect of bronze on the compression of Nb3Sn in multifilamentary conductors

    International Nuclear Information System (INIS)

    Rupp, G.

    1978-01-01

    Nb 3 Sn in multifilamentary conductors is subject to compressive strain as a result of the relatively small thermal contraction of the filaments as compared to bronze. The critical current Isub(c) is consequently degraded. The critical current increases, when an external tensile stress is applied, and passes through a maximum. The ratio of the maximum critical current to the initial critical current increases with the flux density and reaches a value of two at a flux density of 16 T for technical conductors. The strain epsilonsub(m), at which Isub(c) maximum is reached, lies between 0.4% and 0.7% for the conductors investigated and depends on the material parameters. For a constant ratio of bronze to filament cross section this strain epsilonsub(m) is reduced as the Nb 3 Sn layer thickness is increased and can be determined approximately by a graphical method from the stress-strain diagram. Epsilonsub(m) is to a large extent dependent on the metallurgical properties of bronze, which vary to a considerable extent depending upon the heat treatment. (author)

  2. Adiabatic compression of ion rings

    International Nuclear Information System (INIS)

    Larrabee, D.A.; Lovelace, R.V.

    1982-01-01

    A study has been made of the compression of collisionless ion rings in an increasing external magnetic field, B/sub e/ = zB/sub e/(t), by numerically implementing a previously developed kinetic theory of ring compression. The theory is general in that there is no limitation on the ring geometry or the compression ratio, lambdaequivalentB/sub e/ (final)/B/sub e/ (initial)> or =1. However, the motion of a single particle in an equilibrium is assumed to be completely characterized by its energy H and canonical angular momentum P/sub theta/ with the absence of a third constant of the motion. The present computational work assumes that plasma currents are negligible, as is appropriate for a low-temperature collisional plasma. For a variety of initial ring geometries and initial distribution functions (having a single value of P/sub theta/), it is found that the parameters for ''fat'', small aspect ratio rings follow general scaling laws over a large range of compression ratios, 1 3 : The ring radius varies as lambda/sup -1/2/; the average single particle energy as lambda/sup 0.72/; the root mean square energy spread as lambda/sup 1.1/; and the total current as lambda/sup 0.79/. The field reversal parameter is found to saturate at values typically between 2 and 3. For large compression ratios the current density is found to ''hollow out''. This hollowing tends to improve the interchange stability of an embedded low β plasma. The implications of these scaling laws for fusion reactor systems are discussed

  3. Tokamak plasma variations under rapid compression

    International Nuclear Information System (INIS)

    Holmes, J.A.; Peng, Y.K.M.; Lynch, S.J.

    1980-04-01

    Changes in plasmas undergoing large, rapid compressions are examined numerically over the following range of aspect ratios A:3 greater than or equal to A greater than or equal to 1.5 for major radius compressions of circular, elliptical, and D-shaped cross sections; and 3 less than or equal to A less than or equal to 6 for minor radius compressions of circular and D-shaped cross sections. The numerical approach combines the computation of fixed boundary MHD equilibria with single-fluid, flux-surface-averaged energy balance, particle balance, and magnetic flux diffusion equations. It is found that the dependences of plasma current I/sub p/ and poloidal beta anti β/sub p/ on the compression ratio C differ significantly in major radius compressions from those proposed by Furth and Yoshikawa. The present interpretation is that compression to small A dramatically increases the plasma current, which lowers anti β/sub p/ and makes the plasma more paramagnetic. Despite large values of toroidal beta anti β/sub T/ (greater than or equal to 30% with q/sub axis/ approx. = 1, q/sub edge/ approx. = 3), this tends to concentrate more toroidal flux near the magnetic axis, which means that a reduced minor radius is required to preserve the continuity of the toroidal flux function F at the plasma edge. Minor radius compressions to large aspect ratio agree well with the Furth-Yoshikawa scaling laws

  4. Improvement of compressive strength of segmentation of zeolites as absorber of Sr-90 liquid waste using coconut fibres

    International Nuclear Information System (INIS)

    Kasmudin; Kusnanto

    2002-01-01

    The use of the coconut fibres to increase compressive strength of segmentation of zeolites as absorber of Sr-90 liquid waste was studied. The purpose of this research was to find the optimum content and length of fibres that give maximum compressive strength. This research was done with mortar-zeolites specimen of cylinder 2,2 cm diameter and 4,4 cm high, the content of zeolites was 13% volume of specimen, weight ratio of water and cement 0,3, length of fibres 1,5 cm, 2 cm, 2,5 cm, and 3 cm (aspect ratio ± 60, ± 80, ± 100 and ± 120) with the fibres content of each fibre 0%, 0,5%, 0,10%, 0,25%, 0,50%, 0,75%, and 1,00%. Addition of fibres was done with a direction of orientation longitudinal to the specimen. The specimens were tested on 28 days old test specimens. The result showed that addition of coconut fibres until certain content would increase compressive strength. The optimum size of fibres with 92,313 N/MM 2 of compressive strength or increased 119,21% of no fibres specimen were 0,50% of volume and 3 cm in length

  5. Preliminary Investigation of an Underwater Ramjet Powered by Compressed Air

    Science.gov (United States)

    Mottard, Elmo J.; Shoemaker, Charles J.

    1961-01-01

    Part I contains the results of a preliminary experimental investigation of a particular design of an underwater ramjet or hydroduct powered by compressed air. The hydroduct is a propulsion device in which the energy of an expanding gas imparts additional momentum to a stream of water through mixing. The hydroduct model had a fineness ratio of 5.9, a maximum diameter of 3.2 inches, and a ratio of inlet area to frontal area of 0.32. The model was towed at a depth of 1 inch at forward speeds between 20 and 60 feet per second for airflow rates from 0.1 to 0.3 pound per second. Longitudinal force and pressures at the inlet and in the mixing chamber were determined. The hydroduct produced a positive thrust-minus-drag force at every test speed. The force and pressure coefficients were functions primarily of the ratio of weight airflow to free-stream velocity. The maximum propulsive efficiency based on the net internal thrust and an isothermal expansion of the air was approximately 53 percent at a thrust coefficient of 0.10. The performance of the test model may have been influenced by choking of the exit flow. Part II is a theoretical development of an underwater ramjet using air as "fuel." The basic assumption of the theoretical analysis is that a mixture of water and air can be treated as a compressible gas. More information on the properties of air-water mixtures is required to confirm this assumption or to suggest another approach. A method is suggested from which a more complete theoretical development, with the effects of choking included, may be obtained. An exploratory computation, in which this suggested method was used, indicated that the effect of choked flow on the thrust coefficient was minor.

  6. Laboratory test on maximum and minimum void ratio of tropical sand matrix soils

    Science.gov (United States)

    Othman, B. A.; Marto, A.

    2018-04-01

    Sand is generally known as loose granular material which has a grain size finer than gravel and coarser than silt and can be very angular to well-rounded in shape. The present of various amount of fines which also influence the loosest and densest state of sand in natural condition have been well known to contribute to the deformation and loss of shear strength of soil. This paper presents the effect of various range of fines content on minimum void ratio e min and maximum void ratio e max of sand matrix soils. Laboratory tests to determine e min and e max of sand matrix soil were conducted using non-standard method introduced by previous researcher. Clean sand was obtained from natural mining site at Johor, Malaysia. A set of 3 different sizes of sand (fine sand, medium sand, and coarse sand) were mixed with 0% to 40% by weight of low plasticity fine (kaolin). Results showed that generally e min and e max decreased with the increase of fines content up to a minimal value of 0% to 30%, and then increased back thereafter.

  7. Kaner biodiesel production through hybrid reactor and its performance testing on a CI engine at different compression ratios

    Directory of Open Access Journals (Sweden)

    Ashok Kumar Yadav

    2017-06-01

    Full Text Available The present study deals with development of a hybrid reactor for biodiesel production based on the combined hydrodynamic cavitation and mechanical stirring processes. Biodiesel were produced using Kaner Seed Oil (KSO. The experimental results show that hybrid reactor produces 95% biodiesel yield within 45 min for 0.75% of catalyst and 6:1 M ratio which is significantly higher as compared to mechanical stirring or hydrodynamic cavitation alone. Thus biodiesel production process in hybrid reactor is cheap (high yield, efficient (time saving and environmentally friendly (lower% of catalyst. Performance study on engine shows that an increase in compression ratios (from 16 to 18 improves the engine performance using biodiesel blends as compared to petroleum diesel.

  8. Maximum stellar iron core mass

    Indian Academy of Sciences (India)

    60, No. 3. — journal of. March 2003 physics pp. 415–422. Maximum stellar iron core mass. F W GIACOBBE. Chicago Research Center/American Air Liquide ... iron core compression due to the weight of non-ferrous matter overlying the iron cores within large .... thermal equilibrium velocities will tend to be non-relativistic.

  9. Numerical analysis of knock during HCCI in a high compression ratio methanol engine based on LES with detailed chemical kinetics

    International Nuclear Information System (INIS)

    Zhen, Xudong; Wang, Yang

    2015-01-01

    Highlights: • Knock during HCCI in a high compression ratio methanol engine was modeled. • A detailed methanol mechanism was used to simulate the knocking combustion. • Compared with the SI engines, the HCCI knocking combustion burnt faster. • The reaction rate of HCO had two obvious peaks, one was positive, and another was negative. • Compared with the SI engines, the values of the reaction rates of CH 2 O, H 2 O 2 , and HO 2 were higher, and it had negative peaks. - Abstract: In this study, knock during HCCI (homogeneous charge compression ignition) was studied based on LES (large eddy simulation) with methanol chemical kinetics (84-reaction, 21-species) in a high compression ratio methanol engine. The non-knocking and knocking combustion of SI (spark ignition) and HCCI engines were compared. The results showed that the auto-ignition spots were initially occurred near the combustion chamber wall. The knocking combustion burnt faster during HCCI than SI methanol engine. The HCO reaction rate was different from SI engine, it had two obvious peaks, one was positive peak, and another was negative peak. Compared with the SI methanol engine, in addition to the concentration of HCO, the concentrations of the other intermediate products and species such as CO, OH, CH 2 O, H 2 O 2 , HO 2 were increased significantly; the reaction rates of CH 2 O, H 2 O 2 , and HO 2 had negative peaks, and whose values were several times higher than SI methanol engine

  10. Specimen aspect ratio and progressive field strain development of sandstone under uniaxial compression by three-dimensional digital image correlation

    Directory of Open Access Journals (Sweden)

    H. Munoz

    2017-08-01

    Full Text Available The complete stress–strain characteristics of sandstone specimens were investigated in a series of quasi-static monotonic uniaxial compression tests. Strain patterns development during pre- and post-peak behaviours in specimens with different aspect ratios was also examined. Peak stress, post-peak portion of stress–strain, brittleness, characteristics of progressive localisation and field strain patterns development were affected at different extents by specimen aspect ratio. Strain patterns of the rocks were obtained by applying three-dimensional (3D digital image correlation (DIC technique. Unlike conventional strain measurement using strain gauges attached to specimen, 3D DIC allowed not only measuring large strains, but more importantly, mapping the development of field strain throughout the compression test, i.e. in pre- and post-peak regimes. Field strain development in the surface of rock specimen suggests that strain starts localising progressively and develops at a lower rate in pre-peak regime. However, in post-peak regime, strains increase at different rates as local deformations take place at different extents in the vicinity and outside the localised zone. The extent of localised strains together with the rate of strain localisation is associated with the increase in rate of strength degradation. Strain localisation and local inelastic unloading outside the localised zone both feature post-peak regime.

  11. Damage evolution analysis in mortar, during compressive loading using acoustic emission and X-ray tomography: Effects of the sand/cement ratio

    International Nuclear Information System (INIS)

    Elaqra, H.; Godin, N.; Peix, G.; R'Mili, M.; Fantozzi, G.

    2007-01-01

    This paper explores the use of acoustic emission (AE) and X-ray tomography to identify the mechanisms of damage and the fracture process during compressive loading on concrete specimens. Three-dimensional (3D) X-ray tomography image analysis was used to observe defects of virgin mortar specimen under different compressive loads. Cumulative AE events were used to evaluate damage process in real time according to the sand/cement ratio. This work shows that AE and X-ray tomography are complementary nondestructive methods to measure, characterise and locate damage sites in mortar. The effect of the sand proportion on damage and fracture behaviour is studied, in relation with the microstructure of the material

  12. Picosecond chirped pulse compression in single-mode fibers

    International Nuclear Information System (INIS)

    Wenhua Cao; Youwei Zhang

    1995-01-01

    In this paper, the nonlinear propagation of picosecond chirped pulses in single mode fibers has been investigated both analytically and numerically. Results show that downchirped pulses can be compressed owing to normal group-velocity dispersion. The compression ratio depends both on the initial peak power and on the initial frequency chirp of the input pulse. While the compression ratio depends both on the initial peak power and on the initial frequency chirp of the input pulse. While the compression ratio increases with the negative frequency chirp, it decreases with the initial peak power of the input pulse. This means that the self-phase modulation induced nonlinear frequency chirp which is linear and positive (up-chirp) over a large central region of the pulse and tends to cancel the initial negative chirp of the pulse. It is also shown that, as the negative chirped pulse compresses temporally, it synchronously experiences a spectral narrowing

  13. Estimation of fracture conditions of ceramics by thermal shock with laser beams based on the maximum compressive stress criterion

    International Nuclear Information System (INIS)

    Akiyama, Shigeru; Amada, Shigeyasu.

    1992-01-01

    Structural ceramics are attracting attention in the development of space planes, aircraft and nuclear fusion reactors because they have excellent wear-resistant and heat-resistant characteristics. However, in some applications it is anticipated that they will be exposed to very-high-temperature environments of the order of thousands of degrees. Therefore, it is very important to investigate their thermal shock characteristics. In this report, the distributions of temperatures and thermal stresses of cylindrically shaped ceramics under irradiation by laser beams are discussed using the finite-element computer code (MARC) with arbitrary quadrilateral axisymmetric ring elements. The relationships between spot diameters of laser beams and maximum values of compressive thermal stresses are derived for various power densities. From these relationships, a critical fracture curve is obtained, and it is compared with the experimental results. (author)

  14. Signal-to-noise ratio, contrast-to-noise ratio and their trade-offs with resolution in axial-shear strain elastography

    International Nuclear Information System (INIS)

    Thitaikumar, Arun; Krouskop, Thomas A; Ophir, Jonathan

    2007-01-01

    In axial-shear strain elastography, the local axial-shear strain resulting from the application of quasi-static axial compression to an inhomogeneous material is imaged. In this paper, we investigated the image quality of the axial-shear strain estimates in terms of the signal-to-noise ratio (SNR asse ) and contrast-to-noise ratio (CNR asse ) using simulations and experiments. Specifically, we investigated the influence of the system parameters (beamwidth, transducer element pitch and bandwidth), signal processing parameters (correlation window length and axial window shift) and mechanical parameters (Young's modulus contrast, applied axial strain) on the SNR asse and CNR asse . The results of the study show that the CNR asse (SNR asse ) is maximum for axial-shear strain values in the range of 0.005-0.03. For the inclusion/background modulus contrast range considered in this study ( asse (SNR asse ) is maximum for applied axial compressive strain values in the range of 0.005%-0.03%. This suggests that the RF data acquired during axial elastography can be used to obtain axial-shear strain elastograms, since this range is typically used in axial elastography as well. The CNR asse (SNR asse ) remains almost constant with an increase in the beamwidth while it increases as the pitch increases. As expected, the axial shift had only a weak influence on the CNR asse (SNR asse ) of the axial-shear strain estimates. We observed that the differential estimates of the axial-shear strain involve a trade-off between the CNR asse (SNR asse ) and the spatial resolution only with respect to pitch and not with respect to signal processing parameters. Simulation studies were performed to confirm such an observation. The results demonstrate a trade-off between CNR asse and the resolution with respect to pitch

  15. Emittance Growth during Bunch Compression in the CTF-II

    Energy Technology Data Exchange (ETDEWEB)

    Raubenheimer, Tor O

    1999-02-26

    Measurements of the beam emittance during bunch compression in the CLIC Test Facility (CTF-II) are described. The measurements were made with different beam charges and different energy correlations versus the bunch compressor settings which were varied from no compression through the point of full compression and to over-compression. Significant increases in the beam emittance were observed with the maximum emittance occurring near the point of full (maximal) compression. Finally, evaluation of possible emittance dilution mechanisms indicate that coherent synchrotron radiation was the most likely cause.

  16. Compressive Behavior of Fiber-Reinforced Concrete with End-Hooked Steel Fibers

    Directory of Open Access Journals (Sweden)

    Seong-Cheol Lee

    2015-03-01

    Full Text Available In this paper, the compressive behavior of fiber-reinforced concrete with end-hooked steel fibers has been investigated through a uniaxial compression test in which the variables were concrete compressive strength, fiber volumetric ratio, and fiber aspect ratio (length to diameter. In order to minimize the effect of specimen size on fiber distribution, 48 cylinder specimens 150 mm in diameter and 300 mm in height were prepared and then subjected to uniaxial compression. From the test results, it was shown that steel fiber-reinforced concrete (SFRC specimens exhibited ductile behavior after reaching their compressive strength. It was also shown that the strain at the compressive strength generally increased along with an increase in the fiber volumetric ratio and fiber aspect ratio, while the elastic modulus decreased. With consideration for the effect of steel fibers, a model for the stress–strain relationship of SFRC under compression is proposed here. Simple formulae to predict the strain at the compressive strength and the elastic modulus of SFRC were developed as well. The proposed model and formulae will be useful for realistic predictions of the structural behavior of SFRC members or structures.

  17. Compressive Behavior of Fiber-Reinforced Concrete with End-Hooked Steel Fibers.

    Science.gov (United States)

    Lee, Seong-Cheol; Oh, Joung-Hwan; Cho, Jae-Yeol

    2015-03-27

    In this paper, the compressive behavior of fiber-reinforced concrete with end-hooked steel fibers has been investigated through a uniaxial compression test in which the variables were concrete compressive strength, fiber volumetric ratio, and fiber aspect ratio (length to diameter). In order to minimize the effect of specimen size on fiber distribution, 48 cylinder specimens 150 mm in diameter and 300 mm in height were prepared and then subjected to uniaxial compression. From the test results, it was shown that steel fiber-reinforced concrete (SFRC) specimens exhibited ductile behavior after reaching their compressive strength. It was also shown that the strain at the compressive strength generally increased along with an increase in the fiber volumetric ratio and fiber aspect ratio, while the elastic modulus decreased. With consideration for the effect of steel fibers, a model for the stress-strain relationship of SFRC under compression is proposed here. Simple formulae to predict the strain at the compressive strength and the elastic modulus of SFRC were developed as well. The proposed model and formulae will be useful for realistic predictions of the structural behavior of SFRC members or structures.

  18. Performance Characterization and Auto-Ignition Performance of a Rapid Compression Machine

    Directory of Open Access Journals (Sweden)

    Hao Liu

    2014-09-01

    Full Text Available A rapid compression machine (RCM test bench is developed in this study. The performance characterization and auto-ignition performance tests are conducted at an initial temperature of 293 K, a compression ratio of 9.5 to 16.5, a compressed temperature of 650 K to 850 K, a driving gas pressure range of 0.25 MPa to 0.7 MPa, an initial pressure of 0.04 MPa to 0.09 MPa, and a nitrogen dilution ratio of 35% to 65%. A new type of hydraulic piston is used to address the problem in which the hydraulic buffer adversely affects the rapid compression process. Auto-ignition performance tests of the RCM are then performed using a DME–O2–N2 mixture. The two-stage ignition delay and negative temperature coefficient (NTC behavior of the mixture are observed. The effects of driving gas pressure, compression ratio, initial pressure, and nitrogen dilution ratio on the two-stage ignition delay are investigated. Results show that both the first-stage and overall ignition delays tend to increase with increasing driving gas pressure. The driving gas pressure within a certain range does not significantly influence the compressed pressure. With increasing compression ratio, the first-stage ignition delay is shortened, whereas the second-stage ignition delay is extended. With increasing initial pressure, both the first-stage and second-stage ignition delays are shortened. The second-stage ignition delay is shortened to a greater extent than that of the first-stage. With increasing nitrogen dilution ratio, the first-stage ignition delay is shortened, whereas the second-stage is extended. Thus, overall ignition delay presents different trends under various compression ratios and compressed pressure conditions.

  19. Comparison of JPEG and wavelet compression on intraoral digital radiographic images

    International Nuclear Information System (INIS)

    Kim, Eun Kyung

    2004-01-01

    To determine the proper image compression method and ratio without image quality degradation in intraoral digital radiographic images, comparing the discrete cosine transform (DCT)-based JPEG with the wavelet-based JPEG 2000 algorithm. Thirty extracted sound teeth and thirty extracted teeth with occlusal caries were used for this study. Twenty plaster blocks were made with three teeth each. They were radiographically exposed using CDR sensors (Schick Inc., Long Island, USA). Digital images were compressed to JPEG format, using Adobe Photoshop v. 7.0 and JPEG 2000 format using Jasper program with compression ratios of 5 : 1, 9 : 1, 14 : 1, 28 : 1 each. To evaluate the lesion detectability, receiver operating characteristic (ROC) analysis was performed by the three oral and maxillofacial radiologists. To evaluate the image quality, all the compressed images were assessed subjectively using 5 grades, in comparison to the original uncompressed images. Compressed images up to compression ratio of 14: 1 in JPEG and 28 : 1 in JPEG 2000 showed nearly the same the lesion detectability as the original images. In the subjective assessment of image quality, images up to compression ratio of 9 : 1 in JPEG and 14 : 1 in JPEG 2000 showed minute mean paired differences from the original images. The results showed that the clinically acceptable compression ratios were up to 9 : 1 for JPEG and 14 : 1 for JPEG 2000. The wavelet-based JPEG 2000 is a better compression method, comparing to DCT-based JPEG for intraoral digital radiographic images.

  20. CoGI: Towards Compressing Genomes as an Image.

    Science.gov (United States)

    Xie, Xiaojing; Zhou, Shuigeng; Guan, Jihong

    2015-01-01

    Genomic science is now facing an explosive increase of data thanks to the fast development of sequencing technology. This situation poses serious challenges to genomic data storage and transferring. It is desirable to compress data to reduce storage and transferring cost, and thus to boost data distribution and utilization efficiency. Up to now, a number of algorithms / tools have been developed for compressing genomic sequences. Unlike the existing algorithms, most of which treat genomes as one-dimensional text strings and compress them based on dictionaries or probability models, this paper proposes a novel approach called CoGI (the abbreviation of Compressing Genomes as an Image) for genome compression, which transforms the genomic sequences to a two-dimensional binary image (or bitmap), then applies a rectangular partition coding algorithm to compress the binary image. CoGI can be used as either a reference-based compressor or a reference-free compressor. For the former, we develop two entropy-based algorithms to select a proper reference genome. Performance evaluation is conducted on various genomes. Experimental results show that the reference-based CoGI significantly outperforms two state-of-the-art reference-based genome compressors GReEn and RLZ-opt in both compression ratio and compression efficiency. It also achieves comparable compression ratio but two orders of magnitude higher compression efficiency in comparison with XM--one state-of-the-art reference-free genome compressor. Furthermore, our approach performs much better than Gzip--a general-purpose and widely-used compressor, in both compression speed and compression ratio. So, CoGI can serve as an effective and practical genome compressor. The source code and other related documents of CoGI are available at: http://admis.fudan.edu.cn/projects/cogi.htm.

  1. Effect of CT digital image compression on detection of coronary artery calcification

    International Nuclear Information System (INIS)

    Zheng, L.M.; Sone, S.; Itani, Y.; Wang, Q.; Hanamura, K.; Asakura, K.; Li, F.; Yang, Z.G.; Wang, J.C.; Funasaka, T.

    2000-01-01

    Purpose: To test the effect of digital compression of CT images on the detection of small linear or spotted high attenuation lesions such as coronary artery calcification (CAC). Material and methods: Fifty cases with and 50 without CAC were randomly selected from a population that had undergone spiral CT of the thorax for screening lung cancer. CT image data were compressed using JPEG (Joint Photographic Experts Group) or wavelet algorithms at ratios of 10:1, 20:1 or 40:1. Five radiologists reviewed the uncompressed and compressed images on a cathode-ray-tube. Observer performance was evaluated with receiver operating characteristic analysis. Results: CT images compressed at a ratio as high as 20:1 were acceptable for primary diagnosis of CAC. There was no significant difference in the detection accuracy for CAC between JPEG and wavelet algorithms at the compression ratios up to 20:1. CT images were more vulnerable to image blurring on the wavelet compression at relatively lower ratios, and 'blocking' artifacts occurred on the JPEG compression at relatively higher ratios. Conclusion: JPEG and wavelet algorithms allow compression of CT images without compromising their diagnostic value at ratios up to 20:1 in detecting small linear or spotted high attenuation lesions such as CAC, and there was no difference between the two algorithms in diagnostic accuracy

  2. Efficiency and exhaust gas analysis of variable compression ratio spark ignition engine fuelled with alternative fuels

    Energy Technology Data Exchange (ETDEWEB)

    Seshaiah, N. [Mechanical Engineering Department, M.I.T.S, Madanapalle, Angallu-517325, A.P. (India)

    2010-07-01

    Considering energy crises and pollution problems today, investigations have been concentrated on decreasing fuel consumption by using alternative fuels and on lowering the concentration of toxic components in combustion products. In the present work, the variable compression ratio spark ignition engine designed to run on gasoline has been tested with pure gasoline, LPG (Isobutene), and gasoline blended with ethanol 10%, 15%, 25% and 35% by volume. Also, the gasoline mixed with kerosene at 15%, 25% and 35% by volume without any engine modifications has been tested and presented the result. Brake thermal and volumetric efficiency variation with brake load is compared and presented. CO and CO2 emissions have been also compared for all tested fuels.

  3. Harmonic analysis in integrated energy system based on compressed sensing

    International Nuclear Information System (INIS)

    Yang, Ting; Pen, Haibo; Wang, Dan; Wang, Zhaoxia

    2016-01-01

    Highlights: • We propose a harmonic/inter-harmonic analysis scheme with compressed sensing theory. • Property of sparseness of harmonic signal in electrical power system is proved. • The ratio formula of fundamental and harmonic components sparsity is presented. • Spectral Projected Gradient-Fundamental Filter reconstruction algorithm is proposed. • SPG-FF enhances the precision of harmonic detection and signal reconstruction. - Abstract: The advent of Integrated Energy Systems enabled various distributed energy to access the system through different power electronic devices. The development of this has made the harmonic environment more complex. It needs low complexity and high precision of harmonic detection and analysis methods to improve power quality. To solve the shortages of large data storage capacities and high complexity of compression in sampling under the Nyquist sampling framework, this research paper presents a harmonic analysis scheme based on compressed sensing theory. The proposed scheme enables the performance of the functions of compressive sampling, signal reconstruction and harmonic detection simultaneously. In the proposed scheme, the sparsity of the harmonic signals in the base of the Discrete Fourier Transform (DFT) is numerically calculated first. This is followed by providing a proof of the matching satisfaction of the necessary conditions for compressed sensing. The binary sparse measurement is then leveraged to reduce the storage space in the sampling unit in the proposed scheme. In the recovery process, the scheme proposed a novel reconstruction algorithm called the Spectral Projected Gradient with Fundamental Filter (SPG-FF) algorithm to enhance the reconstruction precision. One of the actual microgrid systems is used as simulation example. The results of the experiment shows that the proposed scheme effectively enhances the precision of harmonic and inter-harmonic detection with low computing complexity, and has good

  4. Highly Efficient Compression Algorithms for Multichannel EEG.

    Science.gov (United States)

    Shaw, Laxmi; Rahman, Daleef; Routray, Aurobinda

    2018-05-01

    The difficulty associated with processing and understanding the high dimensionality of electroencephalogram (EEG) data requires developing efficient and robust compression algorithms. In this paper, different lossless compression techniques of single and multichannel EEG data, including Huffman coding, arithmetic coding, Markov predictor, linear predictor, context-based error modeling, multivariate autoregression (MVAR), and a low complexity bivariate model have been examined and their performances have been compared. Furthermore, a high compression algorithm named general MVAR and a modified context-based error modeling for multichannel EEG have been proposed. The resulting compression algorithm produces a higher relative compression ratio of 70.64% on average compared with the existing methods, and in some cases, it goes up to 83.06%. The proposed methods are designed to compress a large amount of multichannel EEG data efficiently so that the data storage and transmission bandwidth can be effectively used. These methods have been validated using several experimental multichannel EEG recordings of different subjects and publicly available standard databases. The satisfactory parametric measures of these methods, namely percent-root-mean square distortion, peak signal-to-noise ratio, root-mean-square error, and cross correlation, show their superiority over the state-of-the-art compression methods.

  5. Evaluation of a new image compression technique

    International Nuclear Information System (INIS)

    Algra, P.R.; Kroon, H.M.; Noordveld, R.B.; DeValk, J.P.J.; Seeley, G.W.; Westerink, P.H.

    1988-01-01

    The authors present the evaluation of a new image compression technique, subband coding using vector quantization, on 44 CT examinations of the upper abdomen. Three independent radiologists reviewed the original images and compressed versions. The compression ratios used were 16:1 and 20:1. Receiver operating characteristic analysis showed no difference in the diagnostic contents between originals and their compressed versions. Subjective visibility of anatomic structures was equal. Except for a few 20:1 compressed images, the observers could not distinguish compressed versions from original images. They conclude that subband coding using vector quantization is a valuable method for data compression in CT scans of the abdomen

  6. Modeling the Plasma Flow in the Inner Heliosheath with a Spatially Varying Compression Ratio

    Energy Technology Data Exchange (ETDEWEB)

    Nicolaou, G. [Swedish Institute of Space Physics, Kiruna (Sweden); Livadiotis, G. [Southwest Research Institute, San Antonio, Texas (United States)

    2017-03-20

    We examine a semi-analytical non-magnetic model of the termination shock location previously developed by Exarhos and Moussas. In their study, the plasma flow beyond the shock is considered incompressible and irrotational, thus the flow potential is analytically derived from the Laplace equation. Here we examine the characteristics of the downstream flow in the heliosheath in order to resolve several inconsistencies existing in the Exarhos and Moussas model. In particular, the model is modified in order to be consistent with the Rankine–Hugoniot jump conditions and the geometry of the termination shock. It is shown that a shock compression ratio varying along the latitude can lead to physically correct results. We describe the new model and present several simplified examples for a nearly spherical, strong termination shock. Under those simplifications, the upstream plasma is nearly adiabatic for large (∼100 AU) heliosheath thickness.

  7. Adiabatic liquid piston compressed air energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Tage [Danish Technological Institute, Aarhus (Denmark); Elmegaard, B. [Technical Univ. of Denmark. DTU Mechanical Engineering, Kgs. Lyngby (Denmark); Schroeder Pedersen, A. [Technical Univ. of Denmark. DTU Energy Conversion, Risoe Campus, Roskilde (Denmark)

    2013-01-15

    ;'Adiabatic Liquid Piston Compressed Air Energy Storage'' (ALP-CAES). The compression ratio of the gas in the vessel (ratio between maximum and minimum pressure) is relatively low; typical values would be < 1,5, whereas the compression ratio in existing CAES systems can be higher than 100, because the air is compressed from atmospheric pressure to the storage pressure. This investigation leads to the conclusion that: 1) The mechanical/electrical efficiency of the ALP-CAES system is significantly higher than existing CAES systems due to a low or nearly absent compression heat loss. Furthermore, pumps/turbines, which use a liquid as a medium, are more efficient than air/gas compressors/turbines. In addition, the demand for fuel during expansion does not occur. 2) The energy density of the ALP-CAES system is much lower than that of existing CAES systems (by a factor of 15-30) leading to a similar increase in investment in pressure vessel volume per stored MWh. Since the pressure vessel constitutes a relatively large fraction of the overall cost of a CAES system, an increase of 15-30 times renders the system economically unfeasible unless the operating conditions and the system design are very carefully selected to compensate the low energy density. Future electricity prices may increase to the extent that the efficiency benefit of ALP-CAES partly compensates the added investment. 3) When comparing ALP-CAES to an adiabatic CAES system, where compression heat is stored in thermal oil, the ALP-CAES system is found only to be competitive under a very specific set of operating/design conditions, including very high operation pressure and the use of very large caverns. 4) New systems are under development, which show an interesting trend in that they use near-isothermal compression and expansion of air (compression/expansion at almost constant temperature), eliminate compression heat loss and still maintain nearly the same level of energy density as existing CAES systems. This

  8. The effect of hydraulic bed movement on the quality of chest compressions.

    Science.gov (United States)

    Park, Maeng Real; Lee, Dae Sup; In Kim, Yong; Ryu, Ji Ho; Cho, Young Mo; Kim, Hyung Bin; Yeom, Seok Ran; Min, Mun Ki

    2017-08-01

    The hydraulic height control systems of hospital beds provide convenience and shock absorption. However, movements in a hydraulic bed may reduce the effectiveness of chest compressions. This study investigated the effects of hydraulic bed movement on chest compressions. Twenty-eight participants were recruited for this study. All participants performed chest compressions for 2min on a manikin and three surfaces: the floor (Day 1), a firm plywood bed (Day 2), and a hydraulic bed (Day 3). We considered 28 participants of Day 1 as control and each 28 participants of Day 2 and Day 3 as study subjects. The compression rates, depths, and good compression ratios (>5-cm compressions/all compressions) were compared between the three surfaces. When we compared the three surfaces, we did not detect a significant difference in the speed of chest compressions (p=0.582). However, significantly lower values were observed on the hydraulic bed in terms of compression depth (p=0.001) and the good compression ratio (p=0.003) compared to floor compressions. When we compared the plywood and hydraulic beds, we did not detect significant differences in compression depth (p=0.351) and the good compression ratio (p=0.391). These results indicate that the movements in our hydraulic bed were associated with a non-statistically significant trend towards lower-quality chest compressions. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Tensile and compressive behavior of Borsic/aluminum

    Science.gov (United States)

    Herakovich, C. T.; Davis, J. G., Jr.; Viswanathan, C. N.

    1977-01-01

    The results of an experimental investigation of the mechanical behavior of Borsic/aluminum are presented. Composite laminates were tested in tension and compression for monotonically increasing load and also for variable loading cycles in which the maximum load was increased in each successive cycle. It is shown that significant strain-hardening, and corresponding increase in yield stress, is exhibited by the metal matrix laminates. For matrix dominated laminates, the current yield stress is essentially identical to the previous maximum stress, and unloading is essentially linear with large permanent strains after unloading. For laminates with fiber dominated behavior, the yield stress increases with increase in the previous maximum stress, but the increase in yield stress does not keep pace with the previous maximum stress. These fiber dominated laminates exhibit smaller nonlinear strains, reversed nonlinear behavior during unloading, and smaller permanent strains after unloading. Compression results from sandwich beams and flat coupons are shown to differ considerably. Results from beam specimens tend to exhibit higher values for modulus, yield stress, and strength.

  10. Compressed Sensing with Rank Deficient Dictionaries

    DEFF Research Database (Denmark)

    Hansen, Thomas Lundgaard; Johansen, Daniel Højrup; Jørgensen, Peter Bjørn

    2012-01-01

    In compressed sensing it is generally assumed that the dictionary matrix constitutes a (possibly overcomplete) basis of the signal space. In this paper we consider dictionaries that do not span the signal space, i.e. rank deficient dictionaries. We show that in this case the signal-to-noise ratio...... (SNR) in the compressed samples can be increased by selecting the rows of the measurement matrix from the column space of the dictionary. As an example application of compressed sensing with a rank deficient dictionary, we present a case study of compressed sensing applied to the Coarse Acquisition (C...

  11. Effect of Kollidon VA®64 particle size and morphology as directly compressible excipient on tablet compression properties.

    Science.gov (United States)

    Chaudhary, R S; Patel, C; Sevak, V; Chan, M

    2018-01-01

    The study evaluates use of Kollidon VA ® 64 and a combination of Kollidon VA ® 64 with Kollidon VA ® 64 Fine as excipient in direct compression process of tablets. The combination of the two grades of material is evaluated for capping, lamination and excessive friability. Inter particulate void space is higher for such excipient due to the hollow structure of the Kollidon VA ® 64 particles. During tablet compression air remains trapped in the blend exhibiting poor compression with compromised physical properties of the tablets. Composition of Kollidon VA ® 64 and Kollidon VA ® 64 Fine is evaluated by design of experiment (DoE). A scanning electron microscopy (SEM) of two grades of Kollidon VA ® 64 exhibits morphological differences between coarse and fine grade. The tablet compression process is evaluated with a mix consisting of entirely Kollidon VA ® 64 and two mixes containing Kollidon VA ® 64 and Kollidon VA ® 64 Fine in ratio of 77:23 and 65:35. A statistical modeling on the results from the DoE trials resulted in the optimum composition for direct tablet compression as combination of Kollidon VA ® 64 and Kollidon VA ® 64 Fine in ratio of 77:23. This combination compressed with the predicted parameters based on the statistical modeling and applying main compression force between 5 and 15 kN, pre-compression force between 2 and 3 kN, feeder speed fixed at 25 rpm and compression range of 45-49 rpm produced tablets with hardness ranging between 19 and 21 kp, with no friability, capping, or lamination issue.

  12. Effect of compression ratio, nozzle opening pressure, engine load, and butanol addition on nanoparticle emissions from a non-road diesel engine.

    Science.gov (United States)

    Maurya, Rakesh Kumar; Saxena, Mohit Raj; Rai, Piyush; Bhardwaj, Aashish

    2018-05-01

    Currently, diesel engines are more preferred over gasoline engines due to their higher torque output and fuel economy. However, diesel engines confront major challenge of meeting the future stringent emission norms (especially soot particle emissions) while maintaining the same fuel economy. In this study, nanosize range soot particle emission characteristics of a stationary (non-road) diesel engine have been experimentally investigated. Experiments are conducted at a constant speed of 1500 rpm for three compression ratios and nozzle opening pressures at different engine loads. In-cylinder pressure history for 2000 consecutive engine cycles is recorded and averaged data is used for analysis of combustion characteristics. An electrical mobility-based fast particle sizer is used for analyzing particle size and mass distributions of engine exhaust particles at different test conditions. Soot particle distribution from 5 to 1000 nm was recorded. Results show that total particle concentration decreases with an increase in engine operating loads. Moreover, the addition of butanol in the diesel fuel leads to the reduction in soot particle concentration. Regression analysis was also conducted to derive a correlation between combustion parameters and particle number emissions for different compression ratios. Regression analysis shows a strong correlation between cylinder pressure-based combustion parameters and particle number emission.

  13. Stress-dislocation interaction mechanism in low-temperature thermo-compression sintering of Ag NPs

    Science.gov (United States)

    Wang, Fuliang; Tang, Zikai; He, Hu

    2018-04-01

    The sintering of metal nanoparticles (NPs) has been widely studied in the field of nanotechnology, and low-temperature sintering has become the industry standard. In this study, a molecular dynamics (MD) model was established to study the sintering behaviour of silver NPs during low-temperature thermo-compression. Primarily, we studied the sintering process, in which the ratio of neck radius to particle radius (x/r) changes. Under a uniaxial pressure, the maximum ratio in the temperature range 420-425 K was 1. According to the change of x/r, the process can be broken down into three stages: the neck-formation stage, neck-growth stage, and neck-stability stage. In addition, the relationship between potential energy, internal stress, and dislocation density during sintering is discussed. The results showed that cycling internal stress played an important role in sintering. Under the uniaxial pressure, the stress-dislocation interaction was found to be the major mechanism for thermo-compression sintering because the plastic deformation product dislocation intensified the diffusion of atoms. Also, the displacement vector, the mean square displacement, and the changing crystal structure during sintering were studied.

  14. Stress-dislocation interaction mechanism in low-temperature thermo-compression sintering of Ag NPs

    Directory of Open Access Journals (Sweden)

    Fuliang Wang

    2018-04-01

    Full Text Available The sintering of metal nanoparticles (NPs has been widely studied in the field of nanotechnology, and low-temperature sintering has become the industry standard. In this study, a molecular dynamics (MD model was established to study the sintering behaviour of silver NPs during low-temperature thermo-compression. Primarily, we studied the sintering process, in which the ratio of neck radius to particle radius (x/r changes. Under a uniaxial pressure, the maximum ratio in the temperature range 420–425 K was 1. According to the change of x/r, the process can be broken down into three stages: the neck-formation stage, neck-growth stage, and neck-stability stage. In addition, the relationship between potential energy, internal stress, and dislocation density during sintering is discussed. The results showed that cycling internal stress played an important role in sintering. Under the uniaxial pressure, the stress-dislocation interaction was found to be the major mechanism for thermo-compression sintering because the plastic deformation product dislocation intensified the diffusion of atoms. Also, the displacement vector, the mean square displacement, and the changing crystal structure during sintering were studied.

  15. Prechamber Compression-Ignition Engine Performance

    Science.gov (United States)

    Moore, Charles S; Collins, John H , Jr

    1938-01-01

    Single-cylinder compression-ignition engine tests were made to investigate the performance characteristics of prechamber type of cylinder head. Certain fundamental variables influencing engine performance -- clearance distribution, size, shape, and direction of the passage connecting the cylinder and prechamber, shape of prechamber, cylinder clearance, compression ratio, and boosting -- were independently tested. Results of motoring and of power tests, including several typical indicator cards, are presented.

  16. Comparison of Different Compression to Ventilation Ratios (2: 1, 3: 1, and 4: 1) during Cardiopulmonary Resuscitation in a Porcine Model of Neonatal Asphyxia.

    Science.gov (United States)

    Pasquin, Matteo P; Cheung, Po-Yin; Patel, Sparsh; Lu, Min; Lee, Tze-Fun; Wagner, Michael; O'Reilly, Megan; Schmölzer, Georg M

    2018-04-12

    High-quality chest compression is essential during neonatal cardiopulmonary resuscitation (CPR). However, the optimal compression to ventilation ratio (C:V) that should be used during neonatal CPR to optimize coronary and cerebral perfusion while providing adequate ventilation remains unknown. We hypothesized that different C:V ratios (e.g., 2: 1 or 4: 1) will reduce the time to return of spontaneous circulation (ROSC) in severely asphyxiated piglets. Thirty-one newborn piglets (1-4 days old) were anesthetized, intubated, instrumented, and exposed to 50-min normocapnic hypoxia followed by asphyxia. Piglets were randomized into 4 groups: 2: 1 (n = 8), 3: 1 (n = 8), 4: 1 (n = 8) C:V ratio, or a sham group (n = 7). Cardiac function, carotid blood flow, cerebral oxygenation, and respiratory parameters were continuously recorded throughout the experiment. Thirty-one piglets were included in the study, and there was no difference in the duration of asphyxia or the degree of asphyxiation (as indicated by pH, PaCO2, and lactate) among the different groups. The median (IQR) time to ROSC was similar between the groups with 127 (82-210), 96 (88-126), and 119 (83-256) s in the 2: 1, 3: 1, and 4: 1 C:V ratio groups, respectively (p = 0.67 between groups). Similarly, there was no difference in 100% oxygen requirement or epinephrine administration between the experimental groups. Different C:V ratios resulted in similar ROSC, mortality, oxygen, and epinephrine administration during resuscitation in a porcine model of neonatal asphyxia. © 2018 S. Karger AG, Basel.

  17. Indentation of elastically soft and plastically compressible solids

    DEFF Research Database (Denmark)

    Needleman, A.; Tvergaard, Viggo; Van der Giessen, E.

    2015-01-01

    rapidly for small deviations from plastic incompressibility and then decreases rather slowly for values of the plastic Poisson's ratio less than 0.25. For both soft elasticity and plastic compressibility, the main reason for the lower values of indentation hardness is related to the reduction......The effect of soft elasticity, i.e., a relatively small value of the ratio of Young's modulus to yield strength and plastic compressibility on the indentation of isotropically hardening elastic-viscoplastic solids is investigated. Calculations are carried out for indentation of a perfectly sticking...... rigid sharp indenter into a cylinder modeling indentation of a half space. The material is characterized by a finite strain elastic-viscoplastic constitutive relation that allows for plastic as well as elastic compressibility. Both soft elasticity and plastic compressibility significantly reduce...

  18. Influence of fuel type, dilution and equivalence ratio on the emission reduction from the auto-ignition in an Homogeneous Charge Compression Ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Machrafi, Hatim [UPMC Universite Paris 06, ENSCP, 11 rue de Pierre et Marie Curie, 75005 Paris (France); UPMC Universite Paris 06, Institut Jean Le Rond D' Alembert, 4 place Jussieu, 75252 Paris cedex 05 (France); Universite Libre de Bruxelles, TIPs - Fluid Physics, CP165/67, 50 Avenue F.D. Roosevelt, 1050 Brussels (Belgium); Cavadias, Simeon [UPMC Universite Paris 06, ENSCP, 11 rue de Pierre et Marie Curie, 75005 Paris (France); UPMC Universite Paris 06, Institut Jean Le Rond D' Alembert, 4 place Jussieu, 75252 Paris cedex 05 (France); Amouroux, Jacques [UPMC Universite Paris 06, ENSCP, 11 rue de Pierre et Marie Curie, 75005 Paris (France)

    2010-04-15

    One technology that seems to be promising for automobile pollution reduction is the Homogeneous Charge Compression Ignition (HCCI). This technology still faces auto-ignition and emission-control problems. This paper focuses on the emission problem, since it is incumbent to realize engines that pollute less. For this purpose, this paper presents results concerning the measurement of the emissions of CO, NO{sub x}, CO{sub 2}, O{sub 2} and hydrocarbons. HCCI conditions are used, with equivalence ratios between 0.26 and 0.54, inlet temperatures of 70 C and 120 C and compression ratios of 10.2 and 13.5, with different fuel types: gasoline, gasoline surrogate, diesel, diesel surrogate and mixtures of n-heptane/toluene. The effect of dilution is considered for gasoline, while the effect of the equivalence ratio is considered for all the fuels. No significant amount of NO{sub x} has been measured. It appeared that the CO, O{sub 2} and hydrocarbon emissions were reduced by decreasing the toluene content of the fuel and by decreasing the dilution. The opposite holds for CO{sub 2}. The reduction of the hydrocarbon emission appears to compete with the reduction of the CO{sub 2} emission. Diesel seemed to produce less CO and hydrocarbons than gasoline when auto-ignited. An example of emission reduction control is presented in this paper. (author)

  19. Compression of Infrared images

    DEFF Research Database (Denmark)

    Mantel, Claire; Forchhammer, Søren

    2017-01-01

    best for bits-per-pixel rates below 1.4 bpp, while HEVC obtains best performance in the range 1.4 to 6.5 bpp. The compression performance is also evaluated based on maximum errors. These results also show that HEVC can achieve a precision of 1°C with an average of 1.3 bpp....

  20. Light-weight reference-based compression of FASTQ data.

    Science.gov (United States)

    Zhang, Yongpeng; Li, Linsen; Yang, Yanli; Yang, Xiao; He, Shan; Zhu, Zexuan

    2015-06-09

    The exponential growth of next generation sequencing (NGS) data has posed big challenges to data storage, management and archive. Data compression is one of the effective solutions, where reference-based compression strategies can typically achieve superior compression ratios compared to the ones not relying on any reference. This paper presents a lossless light-weight reference-based compression algorithm namely LW-FQZip to compress FASTQ data. The three components of any given input, i.e., metadata, short reads and quality score strings, are first parsed into three data streams in which the redundancy information are identified and eliminated independently. Particularly, well-designed incremental and run-length-limited encoding schemes are utilized to compress the metadata and quality score streams, respectively. To handle the short reads, LW-FQZip uses a novel light-weight mapping model to fast map them against external reference sequence(s) and produce concise alignment results for storage. The three processed data streams are then packed together with some general purpose compression algorithms like LZMA. LW-FQZip was evaluated on eight real-world NGS data sets and achieved compression ratios in the range of 0.111-0.201. This is comparable or superior to other state-of-the-art lossless NGS data compression algorithms. LW-FQZip is a program that enables efficient lossless FASTQ data compression. It contributes to the state of art applications for NGS data storage and transmission. LW-FQZip is freely available online at: http://csse.szu.edu.cn/staff/zhuzx/LWFQZip.

  1. Performance and emission characteristics of LPG powered four stroke SI engine under variable stroke length and compression ratio

    International Nuclear Information System (INIS)

    Ozcan, Hakan; Yamin, Jehad A.A.

    2008-01-01

    A computer simulation of a variable stroke length, LPG fuelled, four stroke, single cylinder, water cooled spark ignition engine was done. The engine capacity was varied by varying the stroke length of the engine, which also changed its compression ratio. The simulation model developed was verified with experimental results from the literature for both constant and variable stroke engines. The performance of the engine was simulated at each stroke length/compression ratio combination. The simulation results clearly indicate the advantages and utility of variable stroke engines in fuel economy and power issues. Using the variable stroke technique has significantly improved the engine's performance and emission characteristics within the range studied. The brake torque and power have registered an increase of about 7-54% at low speed and 7-57% at high speed relative to the original engine design and for all stroke lengths and engine speeds studied. The brake specific fuel consumption has registered variations from a reduction of about 6% to an increase of about 3% at low speed and from a reduction of about 6% to an increase of about 8% at high speed relative to the original engine design and for all stroke lengths and engine speeds studied. On the other hand, an increase of pollutants of about 0.65-2% occurred at low speed. Larger stroke lengths resulted in a reduction of the pollutants level of about 1.5% at higher speeds. At lower stroke lengths, on the other hand, an increase of about 2% occurred. Larger stroke lengths resulted in increased exhaust temperature and, hence, make the exhaust valve work under high temperature

  2. Validation of calculated tissue maximum ratio obtained from measured percentage depth dose (PPD) data for high energy photon beam ( 6 MV and 15 MV)

    International Nuclear Information System (INIS)

    Osei, J.E.

    2014-07-01

    During external beam radiotherapy treatments, high doses are delivered to the cancerous cell. Accuracy and precision of dose delivery are primary requirements for effective and efficiency in treatment. This leads to the consideration of treatment parameters such as percentage depth dose (PDD), tissue air ratio (TAR) and tissue phantom ratio (TPR), which show the dose distribution in the patient. Nevertheless, tissue air ratio (TAR) for treatment time calculation, calls for the need to measure in-air-dose rate. For lower energies, measurement is not a problem but for higher energies, in-air measurement is not attainable due to the large build-up material required for the measurement. Tissue maximum ratio (TMR) is the quantity required to replace tissue air ratio (TAR) for high energy photon beam. It is known that tissue maximum ratio (TMR) is an important dosimetric function in radiotherapy treatment. As the calculation methods used to determine tissue maximum ratio (TMR) from percentage depth dose (PDD) were derived by considering the differences between TMR and PDD such as geometry and field size, where phantom scatter or peak scatter factors are used to correct dosimetric variation due to field size difference. The purpose of this study is to examine the accuracy of calculated tissue maximum ratio (TMR) data with measured TMR values for 6 MV and 15 MV photon beam at Sweden Ghana Medical Centre. With the help of the Blue motorize water phantom and the Omni pro-Accept software, Pdd values from which TMRs are calculated were measured at 100 cm source-to-surface distance (SSD) for various square field sizes from 5x5 cm to 40x40 cm and depth of 1.5 cm to 25 cm for 6 MV and 15 MV x-ray beam. With the same field sizes, depths and energies, the TMR values were measured. The validity of the calculated data was determined by making a comparison with values measured experimentally at some selected field sizes and depths. The results show that; the reference depth of maximum

  3. Watermark Compression in Medical Image Watermarking Using Lempel-Ziv-Welch (LZW) Lossless Compression Technique.

    Science.gov (United States)

    Badshah, Gran; Liew, Siau-Chuin; Zain, Jasni Mohd; Ali, Mushtaq

    2016-04-01

    In teleradiology, image contents may be altered due to noisy communication channels and hacker manipulation. Medical image data is very sensitive and can not tolerate any illegal change. Illegally changed image-based analysis could result in wrong medical decision. Digital watermarking technique can be used to authenticate images and detect as well as recover illegal changes made to teleradiology images. Watermarking of medical images with heavy payload watermarks causes image perceptual degradation. The image perceptual degradation directly affects medical diagnosis. To maintain the image perceptual and diagnostic qualities standard during watermarking, the watermark should be lossless compressed. This paper focuses on watermarking of ultrasound medical images with Lempel-Ziv-Welch (LZW) lossless-compressed watermarks. The watermark lossless compression reduces watermark payload without data loss. In this research work, watermark is the combination of defined region of interest (ROI) and image watermarking secret key. The performance of the LZW compression technique was compared with other conventional compression methods based on compression ratio. LZW was found better and used for watermark lossless compression in ultrasound medical images watermarking. Tabulated results show the watermark bits reduction, image watermarking with effective tamper detection and lossless recovery.

  4. Sharpening Sharpe Ratios

    OpenAIRE

    William N. Goetzmann; Jonathan E. Ingersoll Jr.; Matthew I. Spiegel; Ivo Welch

    2002-01-01

    It is now well known that the Sharpe ratio and other related reward-to-risk measures may be manipulated with option-like strategies. In this paper we derive the general conditions for achieving the maximum expected Sharpe ratio. We derive static rules for achieving the maximum Sharpe ratio with two or more options, as well as a continuum of derivative contracts. The optimal strategy has a truncated right tail and a fat left tail. We also derive dynamic rules for increasing the Sharpe ratio. O...

  5. Compression evaluation of surgery video recordings retaining diagnostic credibility (compression evaluation of surgery video)

    Science.gov (United States)

    Duplaga, M.; Leszczuk, M. I.; Papir, Z.; Przelaskowski, A.

    2008-12-01

    Wider dissemination of medical digital video libraries is affected by two correlated factors, resource effective content compression that directly influences its diagnostic credibility. It has been proved that it is possible to meet these contradictory requirements halfway for long-lasting and low motion surgery recordings at compression ratios close to 100 (bronchoscopic procedures were a case study investigated). As the main supporting assumption, it has been accepted that the content can be compressed as far as clinicians are not able to sense a loss of video diagnostic fidelity (a visually lossless compression). Different market codecs were inspected by means of the combined subjective and objective tests toward their usability in medical video libraries. Subjective tests involved a panel of clinicians who had to classify compressed bronchoscopic video content according to its quality under the bubble sort algorithm. For objective tests, two metrics (hybrid vector measure and hosaka Plots) were calculated frame by frame and averaged over a whole sequence.

  6. Compression and rupture cycles as tools for compressibility characterization application to apatitic calcium phosphates

    Energy Technology Data Exchange (ETDEWEB)

    Pontier, C. [S.P.C.T.S., Faculte des Sciences, Limoges (France); G.E.F., Faculte de Pharmacie, Limoges (France); Viana, M.; Chulia, D. [G.E.F., Faculte de Pharmacie, Limoges (France); Champion, E.; Bernache-Assollant, D. [S.P.C.T.S., Faculte des Sciences, Limoges (France)

    2002-07-01

    Measurement of the cycles of compression and rupture helps to understand the phenomena occurring during compaction. Different parameters are deduced from the cycles, such as the packing of the material and energies used during compression. The ratio between the energy of rupture and the energy of compaction defines the efficacy of compaction of the materials. This technique is applied to ceramic materials using apatitic calcium phosphates with a Ca/P molar ratio of 1.5 (apatitic tricalcium phosphate and {beta}-tricalcium phosphate) and 1.667 (stoichiometric hydroxyapatite). The methodology uses a uniaxial instrumented press to plot the cycles of compaction and rupture. The results point out the good compaction and cohesion properties of apatitic tricalcium phosphate, compared to the other apatitic materials. (orig.)

  7. On the low SNR capacity of maximum ratio combining over rician fading channels with full channel state information

    KAUST Repository

    Benkhelifa, Fatma; Rezki, Zouheir; Alouini, Mohamed-Slim

    2013-01-01

    In this letter, we study the ergodic capacity of a maximum ratio combining (MRC) Rician fading channel with full channel state information (CSI) at the transmitter and at the receiver. We focus on the low Signal-to-Noise Ratio (SNR) regime and we show that the capacity scales as L ΩK+L SNRx log(1SNR), where Ω is the expected channel gain per branch, K is the Rician fading factor, and L is the number of diversity branches. We show that one-bit CSI feedback at the transmitter is enough to achieve this capacity using an on-off power control scheme. Our framework can be seen as a generalization of recently established results regarding the fading-channels capacity characterization in the low-SNR regime. © 2012 IEEE.

  8. On the low SNR capacity of maximum ratio combining over rician fading channels with full channel state information

    KAUST Repository

    Benkhelifa, Fatma

    2013-04-01

    In this letter, we study the ergodic capacity of a maximum ratio combining (MRC) Rician fading channel with full channel state information (CSI) at the transmitter and at the receiver. We focus on the low Signal-to-Noise Ratio (SNR) regime and we show that the capacity scales as L ΩK+L SNRx log(1SNR), where Ω is the expected channel gain per branch, K is the Rician fading factor, and L is the number of diversity branches. We show that one-bit CSI feedback at the transmitter is enough to achieve this capacity using an on-off power control scheme. Our framework can be seen as a generalization of recently established results regarding the fading-channels capacity characterization in the low-SNR regime. © 2012 IEEE.

  9. MAP-MRF-Based Super-Resolution Reconstruction Approach for Coded Aperture Compressive Temporal Imaging

    Directory of Open Access Journals (Sweden)

    Tinghua Zhang

    2018-02-01

    Full Text Available Coded Aperture Compressive Temporal Imaging (CACTI can afford low-cost temporal super-resolution (SR, but limits are imposed by noise and compression ratio on reconstruction quality. To utilize inter-frame redundant information from multiple observations and sparsity in multi-transform domains, a robust reconstruction approach based on maximum a posteriori probability and Markov random field (MAP-MRF model for CACTI is proposed. The proposed approach adopts a weighted 3D neighbor system (WNS and the coordinate descent method to perform joint estimation of model parameters, to achieve the robust super-resolution reconstruction. The proposed multi-reconstruction algorithm considers both total variation (TV and ℓ 2 , 1 norm in wavelet domain to address the minimization problem for compressive sensing, and solves it using an accelerated generalized alternating projection algorithm. The weighting coefficient for different regularizations and frames is resolved by the motion characteristics of pixels. The proposed approach can provide high visual quality in the foreground and background of a scene simultaneously and enhance the fidelity of the reconstruction results. Simulation results have verified the efficacy of our new optimization framework and the proposed reconstruction approach.

  10. Maximum mass ratio of am CVn-type binary systems and maximum white dwarf mass in ultra-compact x-ray binaries (addendum - Serb. Astron. J. No. 183 (2011, 63

    Directory of Open Access Journals (Sweden)

    Arbutina B.

    2012-01-01

    Full Text Available We recalculated the maximum white dwarf mass in ultra-compact X-ray binaries obtained in an earlier paper (Arbutina 2011, by taking the effects of super-Eddington accretion rate on the stability of mass transfer into account. It is found that, although the value formally remains the same (under the assumed approximations, for white dwarf masses M2 >~0.1MCh mass ratios are extremely low, implying that the result for Mmax is likely to have little if any practical relevance.

  11. Optimal Chest Compression Rate and Compression to Ventilation Ratio in Delivery Room Resuscitation: Evidence from Newborn Piglets and Neonatal Manikins

    Science.gov (United States)

    Solevåg, Anne Lee; Schmölzer, Georg M.

    2017-01-01

    Cardiopulmonary resuscitation (CPR) duration until return of spontaneous circulation (ROSC) influences survival and neurologic outcomes after delivery room (DR) CPR. High quality chest compressions (CC) improve cerebral and myocardial perfusion. Improved myocardial perfusion increases the likelihood of a faster ROSC. Thus, optimizing CC quality may improve outcomes both by preserving cerebral blood flow during CPR and by reducing the recovery time. CC quality is determined by rate, CC to ventilation (C:V) ratio, and applied force, which are influenced by the CC provider. Thus, provider performance should be taken into account. Neonatal resuscitation guidelines recommend a 3:1 C:V ratio. CCs should be delivered at a rate of 90/min synchronized with ventilations at a rate of 30/min to achieve a total of 120 events/min. Despite a lack of scientific evidence supporting this, the investigation of alternative CC interventions in human neonates is ethically challenging. Also, the infrequent occurrence of extensive CPR measures in the DR make randomized controlled trials difficult to perform. Thus, many biomechanical aspects of CC have been investigated in animal and manikin models. Despite mathematical and physiological rationales that higher rates and uninterrupted CC improve CPR hemodynamics, studies indicate that provider fatigue is more pronounced when CC are performed continuously compared to when a pause is inserted after every third CC as currently recommended. A higher rate (e.g., 120/min) is also more fatiguing, which affects CC quality. In post-transitional piglets with asphyxia-induced cardiac arrest, there was no benefit of performing continuous CC at a rate of 90/min. Not only rate but duty cycle, i.e., the duration of CC/total cycle time, is a known determinant of CC effectiveness. However, duty cycle cannot be controlled with manual CC. Mechanical/automated CC in neonatal CPR has not been explored, and feedback systems are under-investigated in this

  12. Optimized Large-scale CMB Likelihood and Quadratic Maximum Likelihood Power Spectrum Estimation

    Science.gov (United States)

    Gjerløw, E.; Colombo, L. P. L.; Eriksen, H. K.; Górski, K. M.; Gruppuso, A.; Jewell, J. B.; Plaszczynski, S.; Wehus, I. K.

    2015-11-01

    We revisit the problem of exact cosmic microwave background (CMB) likelihood and power spectrum estimation with the goal of minimizing computational costs through linear compression. This idea was originally proposed for CMB purposes by Tegmark et al., and here we develop it into a fully functioning computational framework for large-scale polarization analysis, adopting WMAP as a working example. We compare five different linear bases (pixel space, harmonic space, noise covariance eigenvectors, signal-to-noise covariance eigenvectors, and signal-plus-noise covariance eigenvectors) in terms of compression efficiency, and find that the computationally most efficient basis is the signal-to-noise eigenvector basis, which is closely related to the Karhunen-Loeve and Principal Component transforms, in agreement with previous suggestions. For this basis, the information in 6836 unmasked WMAP sky map pixels can be compressed into a smaller set of 3102 modes, with a maximum error increase of any single multipole of 3.8% at ℓ ≤ 32 and a maximum shift in the mean values of a joint distribution of an amplitude-tilt model of 0.006σ. This compression reduces the computational cost of a single likelihood evaluation by a factor of 5, from 38 to 7.5 CPU seconds, and it also results in a more robust likelihood by implicitly regularizing nearly degenerate modes. Finally, we use the same compression framework to formulate a numerically stable and computationally efficient variation of the Quadratic Maximum Likelihood implementation, which requires less than 3 GB of memory and 2 CPU minutes per iteration for ℓ ≤ 32, rendering low-ℓ QML CMB power spectrum analysis fully tractable on a standard laptop.

  13. Ordinary Cannulated Compression Screws or Headless Cannulated Compression Screws? A Synthetic Bone Biomechanical Research in the Internal Fixation of Vertical Femoral Neck Fracture

    Directory of Open Access Journals (Sweden)

    Baokun Zhang

    2018-01-01

    Full Text Available Purpose. The purpose of this study is to verify whether the headless cannulated compression screw (HCCS has higher biomechanical stability than the ordinary cannulated compression screw (OCCS in the treatment of vertical femoral neck fractures. Materials and Methods. 30 synthetic femur models were equally divided into 2 groups, with 50°, 60°, and 70° Pauwels angle of femoral neck fracture, under 3D printed guiding plates and C-arm fluoroscopic guidance. The femur molds were fixed with three parallel OCCSs as OCCS group and three parallel HCCSs as HCCS group. All specimens were tested for compressive strength and maximum load to failure with a loading rate of 2 mm/min. Results. The result showed that there was no significant difference with the compressive strength in the Pauwels angle of 50° and 60°. However, we observed that the maximum load to failure with the Pauwels angle of 50°, 60°, and 70° and the compressive strength with 70° of HCCS group showed better performance than the OCCS group. Conclusion. HCCS performs with better biomechanical stability than OCCS in the treatment of vertical femoral neck fracture, especially with the Pauwels angle of 70°.

  14. Wave energy devices with compressible volumes.

    Science.gov (United States)

    Kurniawan, Adi; Greaves, Deborah; Chaplin, John

    2014-12-08

    We present an analysis of wave energy devices with air-filled compressible submerged volumes, where variability of volume is achieved by means of a horizontal surface free to move up and down relative to the body. An analysis of bodies without power take-off (PTO) systems is first presented to demonstrate the positive effects a compressible volume could have on the body response. Subsequently, two compressible device variations are analysed. In the first variation, the compressible volume is connected to a fixed volume via an air turbine for PTO. In the second variation, a water column separates the compressible volume from another volume, which is fitted with an air turbine open to the atmosphere. Both floating and bottom-fixed, axisymmetric, configurations are considered, and linear analysis is employed throughout. Advantages and disadvantages of each device are examined in detail. Some configurations with displaced volumes less than 2000 m 3 and with constant turbine coefficients are shown to be capable of achieving 80% of the theoretical maximum absorbed power over a wave period range of about 4 s.

  15. Reconstruction algorithm in compressed sensing based on maximum a posteriori estimation

    International Nuclear Information System (INIS)

    Takeda, Koujin; Kabashima, Yoshiyuki

    2013-01-01

    We propose a systematic method for constructing a sparse data reconstruction algorithm in compressed sensing at a relatively low computational cost for general observation matrix. It is known that the cost of ℓ 1 -norm minimization using a standard linear programming algorithm is O(N 3 ). We show that this cost can be reduced to O(N 2 ) by applying the approach of posterior maximization. Furthermore, in principle, the algorithm from our approach is expected to achieve the widest successful reconstruction region, which is evaluated from theoretical argument. We also discuss the relation between the belief propagation-based reconstruction algorithm introduced in preceding works and our approach

  16. Effect of atomic composition on the compressive strain and electrocatalytic activity of PtCoFe/sulfonated graphene

    Energy Technology Data Exchange (ETDEWEB)

    Lohrasbi, Elaheh [Department of Chemistry, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Javanbakht, Mehran, E-mail: mehranjavanbakht@gmail.com [Department of Chemistry, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Fuel and Solar Cell Lab, Renewable Energy Research Center, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Mozaffari, Sayed Ahmad [Fuel and Solar Cell Lab, Renewable Energy Research Center, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Thin Layer and Nanotechnology Laboratory, Department of Chemical Technology, Iranian Research Organization for Science and Technology (IROST), Tehran (Iran, Islamic Republic of)

    2017-06-15

    Highlights: • SO{sub 3}H-graphene supported PtFeCo alloy nanoparticles were prepared. • Co:Fe atomic ratio plays important role in the electrocatalytic performance. • PtCoFe/SG with 7:3 Co:Fe atomic ratio is optimized for PEMFCs. • Power density of 530 mW cm{sup −2} with 0.1 mg cm{sup −2} Pt loading was obtained at 75 °C. - Abstract: The aim of this work is improvement of the stability and durability of sulfonated graphene supported PtCoFe electrocatalyst (PtCoFe/SG) for application in proton exchange membrane fuel cells (PEMFCs). The durability investigation of PtCoFe/SG is evaluated by a repetitive potential cycling test. The compressive strain in the lattice of PtCoFe/SG towards the electrocatalytic oxygen reduction reaction is studied. The synthesized electrocatalysts are examined physically and electrochemically for their structure, morphology and electrocatalytic performance. It is shown that presence of SO{sub 3}− groups on the graphene cause better adsorption of PtCoFe nanoparticles on the support and increase stability of electrocatalysts. Also, it is shown that Co:Fe atomic ratio in the synthesized electrocatalysts plays important role in their electrocatalytic performance. In the optimum Co:Fe atomic ratio, the compressive strain goes through the ideal value of the binding energy; further increase in Co/Fe atomic fraction introduces the excessive compressive strain and the activity of electrocatalyst decreases. The electrocatalyst synthesized in the optimum conditions is utilized as cathode in PEMFC. The power density of the PEMFC in low metal loading (0.1 mg cm{sup −2} Pt) reaches to a maximum of 530 mW cm{sup −2} at 75 °C. It suggests that PtCoFe/SG with 7:3 Co:Fe atomic ratio promises to improve the power density of PEMFCs.

  17. Effect of atomic composition on the compressive strain and electrocatalytic activity of PtCoFe/sulfonated graphene

    International Nuclear Information System (INIS)

    Lohrasbi, Elaheh; Javanbakht, Mehran; Mozaffari, Sayed Ahmad

    2017-01-01

    Highlights: • SO_3H-graphene supported PtFeCo alloy nanoparticles were prepared. • Co:Fe atomic ratio plays important role in the electrocatalytic performance. • PtCoFe/SG with 7:3 Co:Fe atomic ratio is optimized for PEMFCs. • Power density of 530 mW cm"−"2 with 0.1 mg cm"−"2 Pt loading was obtained at 75 °C. - Abstract: The aim of this work is improvement of the stability and durability of sulfonated graphene supported PtCoFe electrocatalyst (PtCoFe/SG) for application in proton exchange membrane fuel cells (PEMFCs). The durability investigation of PtCoFe/SG is evaluated by a repetitive potential cycling test. The compressive strain in the lattice of PtCoFe/SG towards the electrocatalytic oxygen reduction reaction is studied. The synthesized electrocatalysts are examined physically and electrochemically for their structure, morphology and electrocatalytic performance. It is shown that presence of SO_3− groups on the graphene cause better adsorption of PtCoFe nanoparticles on the support and increase stability of electrocatalysts. Also, it is shown that Co:Fe atomic ratio in the synthesized electrocatalysts plays important role in their electrocatalytic performance. In the optimum Co:Fe atomic ratio, the compressive strain goes through the ideal value of the binding energy; further increase in Co/Fe atomic fraction introduces the excessive compressive strain and the activity of electrocatalyst decreases. The electrocatalyst synthesized in the optimum conditions is utilized as cathode in PEMFC. The power density of the PEMFC in low metal loading (0.1 mg cm"−"2 Pt) reaches to a maximum of 530 mW cm"−"2 at 75 °C. It suggests that PtCoFe/SG with 7:3 Co:Fe atomic ratio promises to improve the power density of PEMFCs.

  18. n-Gram-Based Text Compression

    Science.gov (United States)

    Duong, Hieu N.; Snasel, Vaclav

    2016-01-01

    We propose an efficient method for compressing Vietnamese text using n-gram dictionaries. It has a significant compression ratio in comparison with those of state-of-the-art methods on the same dataset. Given a text, first, the proposed method splits it into n-grams and then encodes them based on n-gram dictionaries. In the encoding phase, we use a sliding window with a size that ranges from bigram to five grams to obtain the best encoding stream. Each n-gram is encoded by two to four bytes accordingly based on its corresponding n-gram dictionary. We collected 2.5 GB text corpus from some Vietnamese news agencies to build n-gram dictionaries from unigram to five grams and achieve dictionaries with a size of 12 GB in total. In order to evaluate our method, we collected a testing set of 10 different text files with different sizes. The experimental results indicate that our method achieves compression ratio around 90% and outperforms state-of-the-art methods. PMID:27965708

  19. n-Gram-Based Text Compression

    Directory of Open Access Journals (Sweden)

    Vu H. Nguyen

    2016-01-01

    Full Text Available We propose an efficient method for compressing Vietnamese text using n-gram dictionaries. It has a significant compression ratio in comparison with those of state-of-the-art methods on the same dataset. Given a text, first, the proposed method splits it into n-grams and then encodes them based on n-gram dictionaries. In the encoding phase, we use a sliding window with a size that ranges from bigram to five grams to obtain the best encoding stream. Each n-gram is encoded by two to four bytes accordingly based on its corresponding n-gram dictionary. We collected 2.5 GB text corpus from some Vietnamese news agencies to build n-gram dictionaries from unigram to five grams and achieve dictionaries with a size of 12 GB in total. In order to evaluate our method, we collected a testing set of 10 different text files with different sizes. The experimental results indicate that our method achieves compression ratio around 90% and outperforms state-of-the-art methods.

  20. Mechanical properties of Concrete with SAP. Part I: Development of compressive strength

    DEFF Research Database (Denmark)

    Hasholt, Marianne Tange; Jespersen, Morten H. Seneka; Jensen, Ole Mejlhede

    2010-01-01

    The development of mechanical properties has been studied in a test program comprising 15 different concrete mixes with 3 different w/c ratios and different additions of superabsorbent polymers (SAP). The degree of hydration is followed for 15 corresponding paste mixes. This paper concerns...... compressive strength. It shows that results agree well with a model based on the following: 1. Concrete compressive strength is proportional to compressive strength of the paste phase 2. Paste strength depends on gel space ratio, as suggested by Powers 3. The influence of air voids created by SAP...... on compressive strength can be accounted for in the same way as when taking the air content into account in Bolomeys formula. The implication of the model is that at low w/c ratios (w/c SAP additions, SAP increases the compressive strength at later ages (from 3 days after casting and onwards...

  1. Observer detection of image degradation caused by irreversible data compression processes

    Science.gov (United States)

    Chen, Ji; Flynn, Michael J.; Gross, Barry; Spizarny, David

    1991-05-01

    Irreversible data compression methods have been proposed to reduce the data storage and communication requirements of digital imaging systems. In general, the error produced by compression increases as an algorithm''s compression ratio is increased. We have studied the relationship between compression ratios and the detection of induced error using radiologic observers. The nature of the errors was characterized by calculating the power spectrum of the difference image. In contrast with studies designed to test whether detected errors alter diagnostic decisions, this study was designed to test whether observers could detect the induced error. A paired-film observer study was designed to test whether induced errors were detected. The study was conducted with chest radiographs selected and ranked for subtle evidence of interstitial disease, pulmonary nodules, or pneumothoraces. Images were digitized at 86 microns (4K X 5K) and 2K X 2K regions were extracted. A full-frame discrete cosine transform method was used to compress images at ratios varying between 6:1 and 60:1. The decompressed images were reprinted next to the original images in a randomized order with a laser film printer. The use of a film digitizer and a film printer which can reproduce all of the contrast and detail in the original radiograph makes the results of this study insensitive to instrument performance and primarily dependent on radiographic image quality. The results of this study define conditions for which errors associated with irreversible compression cannot be detected by radiologic observers. The results indicate that an observer can detect the errors introduced by this compression algorithm for compression ratios of 10:1 (1.2 bits/pixel) or higher.

  2. A New Algorithm for the On-Board Compression of Hyperspectral Images

    Directory of Open Access Journals (Sweden)

    Raúl Guerra

    2018-03-01

    Full Text Available Hyperspectral sensors are able to provide information that is useful for many different applications. However, the huge amounts of data collected by these sensors are not exempt of drawbacks, especially in remote sensing environments where the hyperspectral images are collected on-board satellites and need to be transferred to the earth’s surface. In this situation, an efficient compression of the hyperspectral images is mandatory in order to save bandwidth and storage space. Lossless compression algorithms have been traditionally preferred, in order to preserve all the information present in the hyperspectral cube for scientific purposes, despite their limited compression ratio. Nevertheless, the increment in the data-rate of the new-generation sensors is making more critical the necessity of obtaining higher compression ratios, making it necessary to use lossy compression techniques. A new transform-based lossy compression algorithm, namely Lossy Compression Algorithm for Hyperspectral Image Systems (HyperLCA, is proposed in this manuscript. This compressor has been developed for achieving high compression ratios with a good compression performance at a reasonable computational burden. An extensive amount of experiments have been performed in order to evaluate the goodness of the proposed HyperLCA compressor using different calibrated and uncalibrated hyperspectral images from the AVIRIS and Hyperion sensors. The results provided by the proposed HyperLCA compressor have been evaluated and compared against those produced by the most relevant state-of-the-art compression solutions. The theoretical and experimental evidence indicates that the proposed algorithm represents an excellent option for lossy compressing hyperspectral images, especially for applications where the available computational resources are limited, such as on-board scenarios.

  3. Composite Techniques Based Color Image Compression

    Directory of Open Access Journals (Sweden)

    Zainab Ibrahim Abood

    2017-03-01

    Full Text Available Compression for color image is now necessary for transmission and storage in the data bases since the color gives a pleasing nature and natural for any object, so three composite techniques based color image compression is implemented to achieve image with high compression, no loss in original image, better performance and good image quality. These techniques are composite stationary wavelet technique (S, composite wavelet technique (W and composite multi-wavelet technique (M. For the high energy sub-band of the 3rd level of each composite transform in each composite technique, the compression parameters are calculated. The best composite transform among the 27 types is the three levels of multi-wavelet transform (MMM in M technique which has the highest values of energy (En and compression ratio (CR and least values of bit per pixel (bpp, time (T and rate distortion R(D. Also the values of the compression parameters of the color image are nearly the same as the average values of the compression parameters of the three bands of the same image.

  4. Compression and decompression of digital seismic waveform data for storage and communication

    International Nuclear Information System (INIS)

    Bhadauria, Y.S.; Kumar, Vijai

    1991-01-01

    Two different classes of data compression schemes, namely physical data compression schemes and logical data compression schemes are examined for their use in storage and communication of digital seismic waveform data. In physical data compression schemes, the physical size of the waveform is reduced. One, therefore, gets only a broad picture of the original waveform, when the data are retrieved and the waveform is reconstituted. Coerrelation between original and decompressed waveform varies inversely with the data compresion ratio. In the logical data compression schemes, the data are stored in a logically encoded form. Storage of unnecessary characters like blank space is avoided. On decompression original data are retrieved and compression error is nil. Three algorithms of logical data compression schemes have been developed and studied. These are : 1) optimum formatting schemes, 2) differential bit reduction scheme, and 3) six bit compression scheme. Results of the above three algorithms of logical compression class are compared with those of physical compression schemes reported in literature. It is found that for all types of data, six bit compression scheme gives the highest value of data compression ratio. (author). 6 refs., 8 figs., 1 appendix, 2 tabs

  5. A New Approach for Fingerprint Image Compression

    Energy Technology Data Exchange (ETDEWEB)

    Mazieres, Bertrand

    1997-12-01

    The FBI has been collecting fingerprint cards since 1924 and now has over 200 million of them. Digitized with 8 bits of grayscale resolution at 500 dots per inch, it means 2000 terabytes of information. Also, without any compression, transmitting a 10 Mb card over a 9600 baud connection will need 3 hours. Hence we need a compression and a compression as close to lossless as possible: all fingerprint details must be kept. A lossless compression usually do not give a better compression ratio than 2:1, which is not sufficient. Compressing these images with the JPEG standard leads to artefacts which appear even at low compression rates. Therefore the FBI has chosen in 1993 a scheme of compression based on a wavelet transform, followed by a scalar quantization and an entropy coding : the so-called WSQ. This scheme allows to achieve compression ratios of 20:1 without any perceptible loss of quality. The publication of the FBI specifies a decoder, which means that many parameters can be changed in the encoding process: the type of analysis/reconstruction filters, the way the bit allocation is made, the number of Huffman tables used for the entropy coding. The first encoder used 9/7 filters for the wavelet transform and did the bit allocation using a high-rate bit assumption. Since the transform is made into 64 subbands, quite a lot of bands receive only a few bits even at an archival quality compression rate of 0.75 bit/pixel. Thus, after a brief overview of the standard, we will discuss a new approach for the bit-allocation that seems to make more sense where theory is concerned. Then we will talk about some implementation aspects, particularly for the new entropy coder and the features that allow other applications than fingerprint image compression. Finally, we will compare the performances of the new encoder to those of the first encoder.

  6. Encryption of Stereo Images after Compression by Advanced Encryption Standard (AES

    Directory of Open Access Journals (Sweden)

    Marwah k Hussien

    2018-04-01

    Full Text Available New partial encryption schemes are proposed, in which a secure encryption algorithm is used to encrypt only part of the compressed data. Partial encryption applied after application of image compression algorithm. Only 0.0244%-25% of the original data isencrypted for two pairs of dif-ferent grayscale imageswiththe size (256 ´ 256 pixels. As a result, we see a significant reduction of time in the stage of encryption and decryption. In the compression step, the Orthogonal Search Algorithm (OSA for motion estimation (the dif-ferent between stereo images is used. The resulting disparity vector and the remaining image were compressed by Discrete Cosine Transform (DCT, Quantization and arithmetic encoding. The image compressed was encrypted by Advanced Encryption Standard (AES. The images were then decoded and were compared with the original images. Experimental results showed good results in terms of Peak Signal-to-Noise Ratio (PSNR, Com-pression Ratio (CR and processing time. The proposed partial encryption schemes are fast, se-cure and do not reduce the compression performance of the underlying selected compression methods

  7. Impact of lossy compression on diagnostic accuracy of radiographs for periapical lesions

    Science.gov (United States)

    Eraso, Francisco E.; Analoui, Mostafa; Watson, Andrew B.; Rebeschini, Regina

    2002-01-01

    OBJECTIVES: The purpose of this study was to evaluate the lossy Joint Photographic Experts Group compression for endodontic pretreatment digital radiographs. STUDY DESIGN: Fifty clinical charge-coupled device-based, digital radiographs depicting periapical areas were selected. Each image was compressed at 2, 4, 8, 16, 32, 48, and 64 compression ratios. One root per image was marked for examination. Images were randomized and viewed by four clinical observers under standardized viewing conditions. Each observer read the image set three times, with at least two weeks between each reading. Three pre-selected sites per image (mesial, distal, apical) were scored on a five-scale score confidence scale. A panel of three examiners scored the uncompressed images, with a consensus score for each site. The consensus score was used as the baseline for assessing the impact of lossy compression on the diagnostic values of images. The mean absolute error between consensus and observer scores was computed for each observer, site, and reading session. RESULTS: Balanced one-way analysis of variance for all observers indicated that for compression ratios 48 and 64, there was significant difference between mean absolute error of uncompressed and compressed images (P <.05). After converting the five-scale score to two-level diagnostic values, the diagnostic accuracy was strongly correlated (R (2) = 0.91) with the compression ratio. CONCLUSION: The results of this study suggest that high compression ratios can have a severe impact on the diagnostic quality of the digital radiographs for detection of periapical lesions.

  8. Compression of surface myoelectric signals using MP3 encoding.

    Science.gov (United States)

    Chan, Adrian D C

    2011-01-01

    The potential of MP3 compression of surface myoelectric signals is explored in this paper. MP3 compression is a perceptual-based encoder scheme, used traditionally to compress audio signals. The ubiquity of MP3 compression (e.g., portable consumer electronics and internet applications) makes it an attractive option for remote monitoring and telemedicine applications. The effects of muscle site and contraction type are examined at different MP3 encoding bitrates. Results demonstrate that MP3 compression is sensitive to the myoelectric signal bandwidth, with larger signal distortion associated with myoelectric signals that have higher bandwidths. Compared to other myoelectric signal compression techniques reported previously (embedded zero-tree wavelet compression and adaptive differential pulse code modulation), MP3 compression demonstrates superior performance (i.e., lower percent residual differences for the same compression ratios).

  9. The statitistical evaluation of the uniaxial compressive strength of the Ruskov andesite

    Directory of Open Access Journals (Sweden)

    Krepelka František

    2002-03-01

    Full Text Available The selection of a suitable model of the statistical distribution of the uniaxial compressive strength is discussed in the paper. The uniaxial compressive strength was studied on 180 specimens of the Ruskov andesite. The rate of loading was 1MPa.s-1. The experimental specimens had a prismatic form with a square base; the slightness ratio of specimens was 2:1. Three sets of specimens with a different length of the base edge were studied, namely 50, 30 and 10 mm. The result of the measurement were three sets with 60 values of the uniaxial compressive strength. The basic statistical parameters: the sample mean, the sample standard deviation, the variational interval, the minimum and maximum value, the sample obliqueness coefficient and the sharpness coefficient were evaluated for each collection. Two types of the distribution which can be joined with the real physical fundamentals of the desintegration of rocks ( the normal and the Weibull distribution were tested. The two-parametric Weibull distribution was tested. The basic characteristics of both distributions were evaluated for each set and the accordance of the model distribution with an experimental distribution was tested. The ÷2-test was used for testing. The two-parametric Weibull distribution was selected following the comparison of the test results of both model distributions as a suitable distribution model for the characterization of uniaxial compressive strength of the Ruskov andesite. The two-parametric Weibull distribution showed better results of the goodness-of-fit test. The normal distribution was suitable for two sets; one of the sets showed a negative result of the goodness-of-fit testing. At the uniaxial compressive strength of the Ruskov andesite, a scale effect was registered : the mean value of uniaxial compressive strength decreases with increasing the specimen base edge. This is another argument for using the Weibull distribution as a suitable statistical model of the

  10. Comparing biological networks via graph compression

    Directory of Open Access Journals (Sweden)

    Hayashida Morihiro

    2010-09-01

    Full Text Available Abstract Background Comparison of various kinds of biological data is one of the main problems in bioinformatics and systems biology. Data compression methods have been applied to comparison of large sequence data and protein structure data. Since it is still difficult to compare global structures of large biological networks, it is reasonable to try to apply data compression methods to comparison of biological networks. In existing compression methods, the uniqueness of compression results is not guaranteed because there is some ambiguity in selection of overlapping edges. Results This paper proposes novel efficient methods, CompressEdge and CompressVertices, for comparing large biological networks. In the proposed methods, an original network structure is compressed by iteratively contracting identical edges and sets of connected edges. Then, the similarity of two networks is measured by a compression ratio of the concatenated networks. The proposed methods are applied to comparison of metabolic networks of several organisms, H. sapiens, M. musculus, A. thaliana, D. melanogaster, C. elegans, E. coli, S. cerevisiae, and B. subtilis, and are compared with an existing method. These results suggest that our methods can efficiently measure the similarities between metabolic networks. Conclusions Our proposed algorithms, which compress node-labeled networks, are useful for measuring the similarity of large biological networks.

  11. Bronchoscopic guidance of endovascular stenting limits airway compression.

    Science.gov (United States)

    Ebrahim, Mohammad; Hagood, James; Moore, John; El-Said, Howaida

    2015-04-01

    Bronchial compression as a result of pulmonary artery and aortic arch stenting may cause significant respiratory distress. We set out to limit airway narrowing by endovascular stenting, by using simultaneous flexible bronchoscopy and graduated balloon stent dilatation, or balloon angioplasty to determine maximum safe stent diameter. Between August 2010 and August 2013, patients with suspected airway compression by adjacent vascular structures, underwent CT or a 3D rotational angiogram to evaluate the relationship between the airway and the blood vessels. If these studies showed close proximity of the stenosed vessel and the airway, simultaneous bronchoscopy and graduated stent re-dilation or graduated balloon angioplasty were performed. Five simultaneous bronchoscopy and interventional catheterization procedures were performed in four patients. Median age/weight was 33 (range 9-49) months and 14 (range 7.6-24) kg, respectively. Three had hypoplastic left heart syndrome, and one had coarctation of the aorta (CoA). All had confirmed or suspected left main stem bronchial compression. In three procedures, serial balloon dilatation of a previously placed stent in the CoA was performed and bronchoscopy was used to determine the safest largest diameter. In the other two procedures, balloon testing with simultaneous bronchoscopy was performed to determine the stent size that would limit compression of the adjacent airway. In all cases, simultaneous bronchoscopy allowed selection of an ideal caliber of the stent that optimized vessel diameter while minimizing compression of the adjacent airway. In cases at risk for airway compromise, flexible bronchoscopy is a useful tool to guide endovascular stenting. Maximum safe stent diameter can be determined without risking catastrophic airway compression. © 2014 Wiley Periodicals, Inc.

  12. Cosmic shear measurement with maximum likelihood and maximum a posteriori inference

    Science.gov (United States)

    Hall, Alex; Taylor, Andy

    2017-06-01

    We investigate the problem of noise bias in maximum likelihood and maximum a posteriori estimators for cosmic shear. We derive the leading and next-to-leading order biases and compute them in the context of galaxy ellipticity measurements, extending previous work on maximum likelihood inference for weak lensing. We show that a large part of the bias on these point estimators can be removed using information already contained in the likelihood when a galaxy model is specified, without the need for external calibration. We test these bias-corrected estimators on simulated galaxy images similar to those expected from planned space-based weak lensing surveys, with promising results. We find that the introduction of an intrinsic shape prior can help with mitigation of noise bias, such that the maximum a posteriori estimate can be made less biased than the maximum likelihood estimate. Second-order terms offer a check on the convergence of the estimators, but are largely subdominant. We show how biases propagate to shear estimates, demonstrating in our simple set-up that shear biases can be reduced by orders of magnitude and potentially to within the requirements of planned space-based surveys at mild signal-to-noise ratio. We find that second-order terms can exhibit significant cancellations at low signal-to-noise ratio when Gaussian noise is assumed, which has implications for inferring the performance of shear-measurement algorithms from simplified simulations. We discuss the viability of our point estimators as tools for lensing inference, arguing that they allow for the robust measurement of ellipticity and shear.

  13. On-board image compression for the RAE lunar mission

    Science.gov (United States)

    Miller, W. H.; Lynch, T. J.

    1976-01-01

    The requirements, design, implementation, and flight performance of an on-board image compression system for the lunar orbiting Radio Astronomy Explorer-2 (RAE-2) spacecraft are described. The image to be compressed is a panoramic camera view of the long radio astronomy antenna booms used for gravity-gradient stabilization of the spacecraft. A compression ratio of 32 to 1 is obtained by a combination of scan line skipping and adaptive run-length coding. The compressed imagery data are convolutionally encoded for error protection. This image compression system occupies about 1000 cu cm and consumes 0.4 W.

  14. Soil Compressibility Models for a Wide Stress Range

    KAUST Repository

    Chong, Song-Hun; Santamarina, Carlos

    2016-01-01

    Soil compressibility models with physically correct asymptotic void ratios are required to analyze situations that involve a wide stress range. Previously suggested models and other functions are adapted to satisfy asymptotic void ratios at low

  15. Compressive Detection Using Sub-Nyquist Radars for Sparse Signals

    Directory of Open Access Journals (Sweden)

    Ying Sun

    2016-01-01

    Full Text Available This paper investigates the compression detection problem using sub-Nyquist radars, which is well suited to the scenario of high bandwidths in real-time processing because it would significantly reduce the computational burden and save power consumption and computation time. A compressive generalized likelihood ratio test (GLRT detector for sparse signals is proposed for sub-Nyquist radars without ever reconstructing the signal involved. The performance of the compressive GLRT detector is analyzed and the theoretical bounds are presented. The compressive GLRT detection performance of sub-Nyquist radars is also compared to the traditional GLRT detection performance of conventional radars, which employ traditional analog-to-digital conversion (ADC at Nyquist sampling rates. Simulation results demonstrate that the former can perform almost as well as the latter with a very small fraction of the number of measurements required by traditional detection in relatively high signal-to-noise ratio (SNR cases.

  16. Evaluation of the distortions of the digital chest image caused by the data compression

    International Nuclear Information System (INIS)

    Ando, Yutaka; Kunieda, Etsuo; Ogawa, Koichi; Tukamoto, Nobuhiro; Hashimoto, Shozo; Aoki, Makoto; Kurotani, Kenichi.

    1988-01-01

    The image data compression methods using orthogonal transforms (Discrete cosine transform, Discrete fourier transform, Hadamard transform, Haar transform, Slant transform) were analyzed. From the points of the error and the speed of the data conversion, the discrete cosine transform method (DCT) is superior to the other methods. The block quantization by the DCT for the digital chest image was used. The quality of data compressed and reconstructed images by the score analysis and the ROC curve analysis was examined. The chest image with the esophageal cancer and metastatic lung tumors was evaluated at the 17 checkpoints (the tumor, the vascular markings, the border of the heart and ribs, the mediastinal structures and et al). By our score analysis, the satisfactory ratio of the data compression is 1/5 and 1/10. The ROC analysis using normal chest images superimposed by the artificial coin lesions was made. The ROC curve of the 1/5 compressed ratio is almost as same as the original one. To summarize our study, the image data compression method using the DCT is thought to be useful for the clinical use and the 1/5 compression ratio is a tolerable ratio. (author)

  17. Evaluation of the distortions of the digital chest image caused by the data compression

    Energy Technology Data Exchange (ETDEWEB)

    Ando, Yutaka; Kunieda, Etsuo; Ogawa, Koichi; Tukamoto, Nobuhiro; Hashimoto, Shozo; Aoki, Makoto; Kurotani, Kenichi

    1988-08-01

    The image data compression methods using orthogonal transforms (Discrete cosine transform, Discrete fourier transform, Hadamard transform, Haar transform, Slant transform) were analyzed. From the points of the error and the speed of the data conversion, the discrete cosine transform method (DCT) is superior to the other methods. The block quantization by the DCT for the digital chest image was used. The quality of data compressed and reconstructed images by the score analysis and the ROC curve analysis was examined. The chest image with the esophageal cancer and metastatic lung tumors was evaluated at the 17 checkpoints (the tumor, the vascular markings, the border of the heart and ribs, the mediastinal structures and et al). By our score analysis, the satisfactory ratio of the data compression is 1/5 and 1/10. The ROC analysis using normal chest images superimposed by the artificial coin lesions was made. The ROC curve of the 1/5 compressed ratio is almost as same as the original one. To summarize our study, the image data compression method using the DCT is thought to be useful for the clinical use and the 1/5 compression ratio is a tolerable ratio.

  18. Salary Compression in the Association of Research Libraries

    Science.gov (United States)

    Seaman, Scott

    2005-01-01

    Using salary data from the "ARL Annual Salary Survey," this paper analyzes 2003-2004 salary data for evidence of salary compression. It reviews the concept of salary compression to explain its relationship to market salary rates and salary dispersion within an organization. The analysis utilizes comparison ratios between salaries and years of…

  19. [Correlation analysis of cement leakage with volume ratio of intravertebral bone cement to vertebral body and vertebral body wall incompetence in percutaneous vertebroplasty for osteoporotic vertebral compression fractures].

    Science.gov (United States)

    Liang, De; Ye, Linqiang; Jiang, Xiaobing; Huang, Weiquan; Yao, Zhensong; Tang, Yongchao; Zhang, Shuncong; Jin, Daxiang

    2014-11-01

    To investigate the risk factors of cement leakage in percutaneous vertebroplasty (PVP) for osteoporotic vertebral compression fracture (OVCF). Between March 2011 and March 2012, 98 patients with single level OVCF were treated by PVP, and the clinical data were analyzed retrospectively. There were 13 males and 85 females, with a mean age of 77.2 years (range, 54-95 years). The mean disease duration was 43 days (range, 15-120 days), and the mean T score of bone mineral density (BMD) was -3.8 (range, -6.7- -2.5). Bilateral transpedicular approach was used in all the patients. The patients were divided into cement leakage group and no cement leakage group by occurrence of cement leakage based on postoperative CT. Single factor analysis was used to analyze the difference between 2 groups in T score of BMD, operative level, preoperative anterior compression degree of operative vertebrae, preoperative middle compression degree of operative vertebrae, preoperative sagittal Cobb angle of operative vertebrae, preoperative vertebral body wall incompetence, cement volume, and volume ratio of intravertebral bone cement to vertebral body. All relevant factors were introduced to logistic regression analysis to analyze the risk factors of cement leakage. All procedures were performed successfully. The mean operation time was 40 minutes (range, 30-50 minutes), and the mean volume ratio of intravertebral bone cement to vertebral body was 24.88% (range, 7.84%-38.99%). Back pain was alleviated significantly in all the patients postoperatively. All patients were followed up with a mean time of 8 months (range, 6-12 months). Cement leakage occurred in 49 patients. Single factor analysis showed that there were significant differences in the volume ratio of intravertebral bone cement to vertebral body and preoperative vertebral body wall incompetence between 2 groups (P 0.05). The logistic regression analysis showed that the volume ratio of intravertebral bone cement to vertebral body (P

  20. Chest Compressions during Sustained Inflations Improve Recovery When Compared to a 3:1 Compression:Ventilation Ratio during Cardiopulmonary Resuscitation in a Neonatal Porcine Model of Asphyxia.

    Science.gov (United States)

    Li, Elliott S; Görens, Immanuel; Cheung, Po-Yin; Lee, Tze-Fun; Lu, Min; O'Reilly, Megan; Schmölzer, Georg M

    2017-01-01

    Recently, sustained inflations (SI) during chest compression (CC) (CC+SI) have been suggested as an alternative to the current approach during neonatal resuscitation. No previous study compared CC+SI using CC rates of 90/min to the current 3:1 compression:ventilation ratio (C:V). To determine whether CC+SI versus a 3:1 C:V reduces the time to the return of spontaneous circulation (ROSC) and improves hemodynamic recovery in newborn piglets with asphyxia-induced bradycardia. Term newborn piglets were anesthetized, intubated, instrumented, and exposed to 45-min normocapnic hypoxia followed by asphyxia. Cardiopulmonary resuscitation (CPR) was initiated when the heart rate decreased to 25% of baseline. Piglets were randomized into 3 groups: CC during SI at a rate of 90 CC/min (SI+CC 90, n = 8), a 3:1 C:V using 90 CC and 30 inflations (3:1, n = 8), or a sham group (n = 6). Cardiac function, carotid blood flow, cerebral oxygenation, and respiratory parameters were continuously recorded throughout the experiment. CC+SI significantly reduced the median (IQR) time of ROSC, i.e., 34 s (28-156 s) versus 210 s (72-300 s) in the 3:1 group (p = 0.048). CC+SI also significantly reduced the requirement for 100% oxygen, improved respiratory parameters, and resulted in a similar hemodynamic recovery. CC+SI during CPR significantly improved ROSC in a porcine model of neonatal resuscitation. This is of considerable clinical relevance because improved respiratory and hemodynamic parameters potentially minimize morbidity and mortality in newborn infants. © 2017 S. Karger AG, Basel.

  1. Optimisation algorithms for ECG data compression.

    Science.gov (United States)

    Haugland, D; Heber, J G; Husøy, J H

    1997-07-01

    The use of exact optimisation algorithms for compressing digital electrocardiograms (ECGs) is demonstrated. As opposed to traditional time-domain methods, which use heuristics to select a small subset of representative signal samples, the problem of selecting the subset is formulated in rigorous mathematical terms. This approach makes it possible to derive algorithms guaranteeing the smallest possible reconstruction error when a bounded selection of signal samples is interpolated. The proposed model resembles well-known network models and is solved by a cubic dynamic programming algorithm. When applied to standard test problems, the algorithm produces a compressed representation for which the distortion is about one-half of that obtained by traditional time-domain compression techniques at reasonable compression ratios. This illustrates that, in terms of the accuracy of decoded signals, existing time-domain heuristics for ECG compression may be far from what is theoretically achievable. The paper is an attempt to bridge this gap.

  2. Magnetic field compression using pinch-plasma

    International Nuclear Information System (INIS)

    Koyama, K.; Tanimoto, M.; Matsumoto, Y.; Veno, I.

    1987-01-01

    In a previous report, the method for ultra-high magnetic field compression by using the pinchplasma was discussed. It is summarized as follows. The experiment is performed with the Mather-type plasma focus device tau/sub 1/4/ = 2 μs, I=880 kA at V=20 kV). An initial DC magnetic field is fed by an electromagnet embedded in the inner electrode. The axial component of the magnetic field diverges from the maximum field of 1 kG on the surface of the inner electrode. The density profile deduced from a Mach-Zehnder interferogram with a 2-ns N/sub 2/-laser shows a density dip lasting for 30 ns along the axes. Using the measured density of 8 x 10/sup 18/ cm/sup -3/, the temperature of 1.5 keV and the pressure balance relation, the magnitude of the trapped magnetic field is estimated to be 1.0 MG. The magnitude of the compressed magnetic field is also measured by Faraday rotation in a single-mode quartz fiber and a magnetic pickup soil. A protective polyethylene tube (3-mm o.d.) is used along the central axis through the inner electrode and the discharge chamber. The peak value of the compressed field range from 150 to 190 kG. No signal of the magnetic field appears up to the instance of the maximum pinch

  3. A Study on Homogeneous Charge Compression Ignition Gasoline Engines

    Science.gov (United States)

    Kaneko, Makoto; Morikawa, Koji; Itoh, Jin; Saishu, Youhei

    A new engine concept consisting of HCCI combustion for low and midrange loads and spark ignition combustion for high loads was introduced. The timing of the intake valve closing was adjusted to alter the negative valve overlap and effective compression ratio to provide suitable HCCI conditions. The effect of mixture formation on auto-ignition was also investigated using a direct injection engine. As a result, HCCI combustion was achieved with a relatively low compression ratio when the intake air was heated by internal EGR. The resulting combustion was at a high thermal efficiency, comparable to that of modern diesel engines, and produced almost no NOx emissions or smoke. The mixture stratification increased the local A/F concentration, resulting in higher reactivity. A wide range of combustible A/F ratios was used to control the compression ignition timing. Photographs showed that the flame filled the entire chamber during combustion, reducing both emissions and fuel consumption.

  4. Adiabatic compression of elongated field-reversed configurations

    International Nuclear Information System (INIS)

    Spencer, R.L.; Tuszewski, M.; Linford, R.K.

    1983-01-01

    The adiabatic compression of an elongated field-reversed configuration (FRC) is computed by using a one-dimensional approximation. The one-dimensional results are checked against a two-dimensional equilibrium code. For ratios of FRC separatrix length to separatrix radius greater than about ten, the one-dimensional results are accurate within 10%. To this accuracy, the adiabatic compression of FRC's can be described by simple analytic formulas

  5. A hybrid data compression approach for online backup service

    Science.gov (United States)

    Wang, Hua; Zhou, Ke; Qin, MingKang

    2009-08-01

    With the popularity of Saas (Software as a service), backup service has becoming a hot topic of storage application. Due to the numerous backup users, how to reduce the massive data load is a key problem for system designer. Data compression provides a good solution. Traditional data compression application used to adopt a single method, which has limitations in some respects. For example data stream compression can only realize intra-file compression, de-duplication is used to eliminate inter-file redundant data, compression efficiency cannot meet the need of backup service software. This paper proposes a novel hybrid compression approach, which includes two levels: global compression and block compression. The former can eliminate redundant inter-file copies across different users, the latter adopts data stream compression technology to realize intra-file de-duplication. Several compressing algorithms were adopted to measure the compression ratio and CPU time. Adaptability using different algorithm in certain situation is also analyzed. The performance analysis shows that great improvement is made through the hybrid compression policy.

  6. Molecular dynamics simulations of tension–compression asymmetry in nanocrystalline copper

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Kai, E-mail: kaizhou@aliyun.com; Liu, Bin; Shao, Shaofeng; Yao, Yijun

    2017-04-04

    Molecular dynamics simulations are used to investigate uniaxial tension and compression of nanocrystalline copper with mean grain sizes of 3.8–11.9 nm. The simulation results show an apparent asymmetry in the flow stress, with nanocrystalline copper stronger in compression than in tension. The asymmetry exhibits a maximum at the mean grain size of about 10 nm. The dominant mechanism of the asymmetry depends on the mean grain size. At small grain sizes, grain-boundary based plasticity dominates the asymmetry, while for large grain sizes the asymmetry mainly arises from the pressure dependent dislocation emission from grain boundaries. - Highlights: • The tension–compression asymmetry in strength exhibits a maximum at the mean grain size of about 10 nm. • The main mechanisms govern the asymmetry are grain-boundary mediated plasticity and dislocation based plasticity. • The above-mentioned mechanisms are both grain size and pressure dependent. • The transition of the asymmetry with the mean grain size is not influenced by strain rate.

  7. Compressive buckling of black phosphorene nanotubes: an atomistic study

    Science.gov (United States)

    Nguyen, Van-Trang; Le, Minh-Quy

    2018-04-01

    We investigate through molecular dynamics finite element method with Stillinger-Weber potential the uniaxial compression of armchair and zigzag black phosphorene nanotubes. We focus especially on the effects of the tube’s diameter with fixed length-diameter ratio, effects of the tube’s length for a pair of armchair and zigzag tubes of equal diameters, and effects of the tube’s diameter with fixed lengths. Their Young’s modulus, critical compressive stress and critical compressive strain are studied and discussed for these 3 case studies. Compressive buckling was clearly observed in the armchair nanotubes. Local bond breaking near the boundary occurred in the zigzag ones under compression.

  8. Performance Characterization and Auto-Ignition Performance of a Rapid Compression Machine

    OpenAIRE

    Hao Liu; Hongguang Zhang; Zhicheng Shi; Haitao Lu; Guangyao Zhao; Baofeng Yao

    2014-01-01

    A rapid compression machine (RCM) test bench is developed in this study. The performance characterization and auto-ignition performance tests are conducted at an initial temperature of 293 K, a compression ratio of 9.5 to 16.5, a compressed temperature of 650 K to 850 K, a driving gas pressure range of 0.25 MPa to 0.7 MPa, an initial pressure of 0.04 MPa to 0.09 MPa, and a nitrogen dilution ratio of 35% to 65%. A new type of hydraulic piston is used to address the problem in which the hydraul...

  9. Combustion visualization and experimental study on spark induced compression ignition (SICI) in gasoline HCCI engines

    International Nuclear Information System (INIS)

    Wang Zhi; He Xu; Wang Jianxin; Shuai Shijin; Xu Fan; Yang Dongbo

    2010-01-01

    Spark induced compression ignition (SICI) is a relatively new combustion control technology and a promising combustion mode in gasoline engines with high efficiency. SICI can be divided into two categories, SACI and SI-CI. This paper investigated the SICI combustion process using combustion visualization and engine experiment respectively. Ignition process of SICI was captured by high speed photography in an optical engine with different compression ratios. The results show that SICI is a combustion mode combined with partly flame propagation and main auto-ignition. The spark ignites the local mixture near spark electrodes and the flame propagation occurs before the homogeneous mixture is auto-ignited. The heat release from central burned zone due to the flame propagation increases the in-cylinder pressure and temperature, resulting in the unburned mixture auto-ignition. The SICI combustion process can be divided into three stages of the spark induced stage, the flame propagation stage and the compression ignition stage. The SICI combustion mode is different from the spark ignition (SI) knocking in terms of the combustion and emission characteristics. Furthermore, three typical combustion modes including HCCI, SICI, SI, were compared on a gasoline direct injection engine with higher compression ratio and switchable cam-profiles. The results show that SICI has an obvious combustion characteristic with two-stage heat release and lower pressure rise rate. The SICI combustion mode can be controlled by spark timings and EGR rates and utilized as an effective method for high load extension on the gasoline HCCI engine. The maximum IMEP of 0.82 MPa can be achieved with relatively low NO x emission and high thermal efficiency. The SICI combustion mode can be applied in medium-high load region for high efficiency gasoline engines.

  10. Combustion visualization and experimental study on spark induced compression ignition (SICI) in gasoline HCCI engines

    Energy Technology Data Exchange (ETDEWEB)

    Wang Zhi, E-mail: wangzhi@tsinghua.edu.c [State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084 (China); He Xu; Wang Jianxin; Shuai Shijin; Xu Fan; Yang Dongbo [State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084 (China)

    2010-05-15

    Spark induced compression ignition (SICI) is a relatively new combustion control technology and a promising combustion mode in gasoline engines with high efficiency. SICI can be divided into two categories, SACI and SI-CI. This paper investigated the SICI combustion process using combustion visualization and engine experiment respectively. Ignition process of SICI was captured by high speed photography in an optical engine with different compression ratios. The results show that SICI is a combustion mode combined with partly flame propagation and main auto-ignition. The spark ignites the local mixture near spark electrodes and the flame propagation occurs before the homogeneous mixture is auto-ignited. The heat release from central burned zone due to the flame propagation increases the in-cylinder pressure and temperature, resulting in the unburned mixture auto-ignition. The SICI combustion process can be divided into three stages of the spark induced stage, the flame propagation stage and the compression ignition stage. The SICI combustion mode is different from the spark ignition (SI) knocking in terms of the combustion and emission characteristics. Furthermore, three typical combustion modes including HCCI, SICI, SI, were compared on a gasoline direct injection engine with higher compression ratio and switchable cam-profiles. The results show that SICI has an obvious combustion characteristic with two-stage heat release and lower pressure rise rate. The SICI combustion mode can be controlled by spark timings and EGR rates and utilized as an effective method for high load extension on the gasoline HCCI engine. The maximum IMEP of 0.82 MPa can be achieved with relatively low NO{sub x} emission and high thermal efficiency. The SICI combustion mode can be applied in medium-high load region for high efficiency gasoline engines.

  11. Solar maximum observatory

    International Nuclear Information System (INIS)

    Rust, D.M.

    1984-01-01

    The successful retrieval and repair of the Solar Maximum Mission (SMM) satellite by Shuttle astronauts in April 1984 permitted continuance of solar flare observations that began in 1980. The SMM carries a soft X ray polychromator, gamma ray, UV and hard X ray imaging spectrometers, a coronagraph/polarimeter and particle counters. The data gathered thus far indicated that electrical potentials of 25 MeV develop in flares within 2 sec of onset. X ray data show that flares are composed of compressed magnetic loops that have come too close together. Other data have been taken on mass ejection, impacts of electron beams and conduction fronts with the chromosphere and changes in the solar radiant flux due to sunspots. 13 references

  12. The effects of a multistep intercooled compression process implemented on a solar-driven Braysson heat engine

    International Nuclear Information System (INIS)

    Georgiou, D.P.; Milidonis, K.F.; Georgiou, E.N.

    2015-01-01

    Highlights: • Thermodynamic analysis of a solar driven power plant running on the Braysson cycle. • Isothermal compression is implemented by the use of multistage intercooled compression stages. • The plant’s thermal efficiency is investigated and compared against other cycles. - Abstract: The present study develops the thermodynamic analysis for the cycle of a solar-driven, Braysson cycle based plant in the ideal limit and in the presence of process irreversibilities. The plant cycle differs from the conventional idealized Braysson cycle in that the implementation of the final isothermal compression process is substituted by a multistep intercooled compression. The cycle’s efficiency is analytically formulated after taking into account several loss (irreversibility) sources such as the non-isentropic behavior of the main compressor, the power turbine and the intercooled compressor stages as well as the actual heat transferred through countercurrent heat exchangers. All pressure losses associated with heat exchangers are related to the actual heat transfer load within each exchanger. The analysis develops a parametric evaluation for the effectiveness of the main cycle free variables on the thermal efficiency of the cycle. Such free variables include the working fluid maximum temperature, the compressor pressure ratio and the operating temperature limits of the intercooled compression stages, in addition to the polytropic coefficients of the compressor and power turbine (quasi-) isentropic processes. The results indicate that such a plant may reach efficiency levels above 30%, i.e. exceeding the efficiencies of the conventional Photovoltaic plants by a wide margin

  13. Clinical evaluation of JPEG2000 compression for digital mammography

    Science.gov (United States)

    Sung, Min-Mo; Kim, Hee-Joung; Kim, Eun-Kyung; Kwak, Jin-Young; Yoo, Jae-Kyung; Yoo, Hyung-Sik

    2002-06-01

    Medical images, such as computed radiography (CR), and digital mammographic images will require large storage facilities and long transmission times for picture archiving and communications system (PACS) implementation. American College of Radiology and National Equipment Manufacturers Association (ACR/NEMA) group is planning to adopt a JPEG2000 compression algorithm in digital imaging and communications in medicine (DICOM) standard to better utilize medical images. The purpose of the study was to evaluate the compression ratios of JPEG2000 for digital mammographic images using peak signal-to-noise ratio (PSNR), receiver operating characteristic (ROC) analysis, and the t-test. The traditional statistical quality measures such as PSNR, which is a commonly used measure for the evaluation of reconstructed images, measures how the reconstructed image differs from the original by making pixel-by-pixel comparisons. The ability to accurately discriminate diseased cases from normal cases is evaluated using ROC curve analysis. ROC curves can be used to compare the diagnostic performance of two or more reconstructed images. The t test can be also used to evaluate the subjective image quality of reconstructed images. The results of the t test suggested that the possible compression ratios using JPEG2000 for digital mammographic images may be as much as 15:1 without visual loss or with preserving significant medical information at a confidence level of 99%, although both PSNR and ROC analyses suggest as much as 80:1 compression ratio can be achieved without affecting clinical diagnostic performance.

  14. Image compression using moving average histogram and RBF network

    International Nuclear Information System (INIS)

    Khowaja, S.; Ismaili, I.A.

    2015-01-01

    Modernization and Globalization have made the multimedia technology as one of the fastest growing field in recent times but optimal use of bandwidth and storage has been one of the topics which attract the research community to work on. Considering that images have a lion share in multimedia communication, efficient image compression technique has become the basic need for optimal use of bandwidth and space. This paper proposes a novel method for image compression based on fusion of moving average histogram and RBF (Radial Basis Function). Proposed technique employs the concept of reducing color intensity levels using moving average histogram technique followed by the correction of color intensity levels using RBF networks at reconstruction phase. Existing methods have used low resolution images for the testing purpose but the proposed method has been tested on various image resolutions to have a clear assessment of the said technique. The proposed method have been tested on 35 images with varying resolution and have been compared with the existing algorithms in terms of CR (Compression Ratio), MSE (Mean Square Error), PSNR (Peak Signal to Noise Ratio), computational complexity. The outcome shows that the proposed methodology is a better trade off technique in terms of compression ratio, PSNR which determines the quality of the image and computational complexity. (author)

  15. Fractal Image Compression Based on High Entropy Values Technique

    Directory of Open Access Journals (Sweden)

    Douaa Younis Abbaas

    2018-04-01

    Full Text Available There are many attempts tried to improve the encoding stage of FIC because it consumed time. These attempts worked by reducing size of the search pool for pair range-domain matching but most of them led to get a bad quality, or a lower compression ratio of reconstructed image. This paper aims to present a method to improve performance of the full search algorithm by combining FIC (lossy compression and another lossless technique (in this case entropy coding is used. The entropy technique will reduce size of the domain pool (i. e., number of domain blocks based on the entropy value of each range block and domain block and then comparing the results of full search algorithm and proposed algorithm based on entropy technique to see each of which give best results (such as reduced the encoding time with acceptable values in both compression quali-ty parameters which are C. R (Compression Ratio and PSNR (Image Quality. The experimental results of the proposed algorithm proven that using the proposed entropy technique reduces the encoding time while keeping compression rates and reconstruction image quality good as soon as possible.

  16. Medical image compression and its application to TDIS-FILE equipment

    International Nuclear Information System (INIS)

    Tsubura, Shin-ichi; Nishihara, Eitaro; Iwai, Shunsuke

    1990-01-01

    In order to compress medical images for filing and communication, we have developed a compression algorithm which compresses images with remarkable quality using a high-pass filtering method. Hardware for this compression algorithm was also developed and applied to TDIS (total digital imaging system)-FILE equipment. In the future, hardware based on this algorithm will be developed for various types of diagnostic equipment and PACS. This technique has the following characteristics: (1) significant reduction of artifacts; (2) acceptable quality for clinical evaluation at 15:1 to 20:1 compression ratio; and (3) high-speed processing and compact hardware. (author)

  17. Adiabatic compression of elongated field-reversed configurations

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, R.L.; Tuszewski, M.; Linford, R.K.

    1983-06-01

    The adiabatic compression of an elongated field-reversed configuration (FRC) is computed by using a one-dimensional approximation. The one-dimensional results are checked against a two-dimensional equilibrium code. For ratios of FRC separatrix length to separatrix radius greater than about ten, the one-dimensional results are accurate within 10%. To this accuracy, the adiabatic compression of FRC's can be described by simple analytic formulas.

  18. Aspects of forward scattering from the compression paddle in the dosimetry of mammography

    International Nuclear Information System (INIS)

    Toroi, Paula; Koenoenen, Niina; Timonen, Marjut; Kortesniemi, Mika

    2013-01-01

    The best compression paddle position during air kerma measurement in mammography dosimetry was studied. The amount of forward scattering as a function of the compression paddle distance was measured with different X-ray spectra and different types of paddles and dose meters. The contribution of forward scattering to the air kerma did not present significant dependency on the beam quality or of the compression paddle type. The tested dose meter types detected different amounts of forward scattering due to different internal collimation. When the paddle was adjusted to its maximum clinical distance, the proportion of the detected forward scattering was only 1 % for all dose meter types. The most consistent way of performing air kerma measurements is to position the compression paddle at the maximum distance from the dose meter and use a constant forward scattering factor for all dose meters. Thus, the dosimetric uncertainty due to the forward scatter can be minimised. (authors)

  19. Tensile and compressive failure modes of laminated composites loaded by fatigue with different mean stress

    Science.gov (United States)

    Rotem, Assa

    1990-01-01

    Laminated composite materials tend to fail differently under tensile or compressive load. Under tension, the material accumulates cracks and fiber fractures, while under compression, the material delaminates and buckles. Tensile-compressive fatigue may cause either of these failure modes depending on the specific damage occurring in the laminate. This damage depends on the stress ratio of the fatigue loading. Analysis of the fatigue behavior of the composite laminate under tension-tension, compression-compression, and tension-compression had led to the development of a fatigue envelope presentation of the failure behavior. This envelope indicates the specific failure mode for any stress ratio and number of loading cycles. The construction of the fatigue envelope is based on the applied stress-cycles to failure (S-N) curves of both tensile-tensile and compressive-compressive fatigue. Test results are presented to verify the theoretical analysis.

  20. A new hyperspectral image compression paradigm based on fusion

    Science.gov (United States)

    Guerra, Raúl; Melián, José; López, Sebastián.; Sarmiento, Roberto

    2016-10-01

    The on-board compression of remote sensed hyperspectral images is an important task nowadays. One of the main difficulties is that the compression of these images must be performed in the satellite which carries the hyperspectral sensor. Hence, this process must be performed by space qualified hardware, having area, power and speed limitations. Moreover, it is important to achieve high compression ratios without compromising the quality of the decompress image. In this manuscript we proposed a new methodology for compressing hyperspectral images based on hyperspectral image fusion concepts. The proposed compression process has two independent steps. The first one is to spatially degrade the remote sensed hyperspectral image to obtain a low resolution hyperspectral image. The second step is to spectrally degrade the remote sensed hyperspectral image to obtain a high resolution multispectral image. These two degraded images are then send to the earth surface, where they must be fused using a fusion algorithm for hyperspectral and multispectral image, in order to recover the remote sensed hyperspectral image. The main advantage of the proposed methodology for compressing remote sensed hyperspectral images is that the compression process, which must be performed on-board, becomes very simple, being the fusion process used to reconstruct image the more complex one. An extra advantage is that the compression ratio can be fixed in advanced. Many simulations have been performed using different fusion algorithms and different methodologies for degrading the hyperspectral image. The results obtained in the simulations performed corroborate the benefits of the proposed methodology.

  1. Compression of FASTQ and SAM format sequencing data.

    Directory of Open Access Journals (Sweden)

    James K Bonfield

    Full Text Available Storage and transmission of the data produced by modern DNA sequencing instruments has become a major concern, which prompted the Pistoia Alliance to pose the SequenceSqueeze contest for compression of FASTQ files. We present several compression entries from the competition, Fastqz and Samcomp/Fqzcomp, including the winning entry. These are compared against existing algorithms for both reference based compression (CRAM, Goby and non-reference based compression (DSRC, BAM and other recently published competition entries (Quip, SCALCE. The tools are shown to be the new Pareto frontier for FASTQ compression, offering state of the art ratios at affordable CPU costs. All programs are freely available on SourceForge. Fastqz: https://sourceforge.net/projects/fastqz/, fqzcomp: https://sourceforge.net/projects/fqzcomp/, and samcomp: https://sourceforge.net/projects/samcomp/.

  2. PET image reconstruction with rotationally symmetric polygonal pixel grid based highly compressible system matrix

    International Nuclear Information System (INIS)

    Yu Yunhan; Xia Yan; Liu Yaqiang; Wang Shi; Ma Tianyu; Chen Jing; Hong Baoyu

    2013-01-01

    To achieve a maximum compression of system matrix in positron emission tomography (PET) image reconstruction, we proposed a polygonal image pixel division strategy in accordance with rotationally symmetric PET geometry. Geometrical definition and indexing rule for polygonal pixels were established. Image conversion from polygonal pixel structure to conventional rectangular pixel structure was implemented using a conversion matrix. A set of test images were analytically defined in polygonal pixel structure, converted to conventional rectangular pixel based images, and correctly displayed which verified the correctness of the image definition, conversion description and conversion of polygonal pixel structure. A compressed system matrix for PET image recon was generated by tap model and tested by forward-projecting three different distributions of radioactive sources to the sinogram domain and comparing them with theoretical predictions. On a practical small animal PET scanner, a compress ratio of 12.6:1 of the system matrix size was achieved with the polygonal pixel structure, comparing with the conventional rectangular pixel based tap-mode one. OS-EM iterative image reconstruction algorithms with the polygonal and conventional Cartesian pixel grid were developed. A hot rod phantom was detected and reconstructed based on these two grids with reasonable time cost. Image resolution of reconstructed images was both 1.35 mm. We conclude that it is feasible to reconstruct and display images in a polygonal image pixel structure based on a compressed system matrix in PET image reconstruction. (authors)

  3. A 172 $\\mu$W Compressively Sampled Photoplethysmographic (PPG) Readout ASIC With Heart Rate Estimation Directly From Compressively Sampled Data.

    Science.gov (United States)

    Pamula, Venkata Rajesh; Valero-Sarmiento, Jose Manuel; Yan, Long; Bozkurt, Alper; Hoof, Chris Van; Helleputte, Nick Van; Yazicioglu, Refet Firat; Verhelst, Marian

    2017-06-01

    A compressive sampling (CS) photoplethysmographic (PPG) readout with embedded feature extraction to estimate heart rate (HR) directly from compressively sampled data is presented. It integrates a low-power analog front end together with a digital back end to perform feature extraction to estimate the average HR over a 4 s interval directly from compressively sampled PPG data. The application-specified integrated circuit (ASIC) supports uniform sampling mode (1x compression) as well as CS modes with compression ratios of 8x, 10x, and 30x. CS is performed through nonuniformly subsampling the PPG signal, while feature extraction is performed using least square spectral fitting through Lomb-Scargle periodogram. The ASIC consumes 172  μ W of power from a 1.2 V supply while reducing the relative LED driver power consumption by up to 30 times without significant loss of relevant information for accurate HR estimation.

  4. FRC translation into a compression coil

    International Nuclear Information System (INIS)

    Chrien, R.E.

    1985-01-01

    Several features of the problem of FRC translation into a compression coil are considered. First, the magnitude of the guide field is calculated and found to exceed that which would be applied to a flux conserver. Second, energy conservation is applied to FRC translation from a flux conserver into a compression coil. It is found that a significant temperature decrease is required for translation to be energetically possible. The temperature change depends on the external inductance in the compression circuit. An analogous case is that of a compression region composed of a compound magnet; in this case the temperature change depends on the ratio of inner and outer coil radii. Finally, the kinematics of intermediate translation states are calculated using an ''abrupt transition'' model. It is found, in this model, that the FRC must overcome a potential hill during translation, which requires a small initial velocity

  5. Unstable oscillation of tubular cantilevered beams conveying a compressible fluid

    International Nuclear Information System (INIS)

    Johnson, R.O.; Stoneking, J.E.; Carley, T.G.

    1986-01-01

    This paper is concerned with establishing the conditions of stability of a cantilevered tube conveying a compressible fluid. Solutions to Niordson's eigenvalue problem associated with the equations of motion are computed using Muller's method. The effects on critical velocity of compressibility which are accommodated by specifying the tube aspect ratio and fluid sonic velocity are parametrically studied. Aspect ratio is found to have a more pronounced effect on critical velocity than sonic velocity over the parameter range that was considered. (orig.)

  6. Hyperspectral image compressing using wavelet-based method

    Science.gov (United States)

    Yu, Hui; Zhang, Zhi-jie; Lei, Bo; Wang, Chen-sheng

    2017-10-01

    Hyperspectral imaging sensors can acquire images in hundreds of continuous narrow spectral bands. Therefore each object presented in the image can be identified from their spectral response. However, such kind of imaging brings a huge amount of data, which requires transmission, processing, and storage resources for both airborne and space borne imaging. Due to the high volume of hyperspectral image data, the exploration of compression strategies has received a lot of attention in recent years. Compression of hyperspectral data cubes is an effective solution for these problems. Lossless compression of the hyperspectral data usually results in low compression ratio, which may not meet the available resources; on the other hand, lossy compression may give the desired ratio, but with a significant degradation effect on object identification performance of the hyperspectral data. Moreover, most hyperspectral data compression techniques exploits the similarities in spectral dimensions; which requires bands reordering or regrouping, to make use of the spectral redundancy. In this paper, we explored the spectral cross correlation between different bands, and proposed an adaptive band selection method to obtain the spectral bands which contain most of the information of the acquired hyperspectral data cube. The proposed method mainly consist three steps: First, the algorithm decomposes the original hyperspectral imagery into a series of subspaces based on the hyper correlation matrix of the hyperspectral images between different bands. And then the Wavelet-based algorithm is applied to the each subspaces. At last the PCA method is applied to the wavelet coefficients to produce the chosen number of components. The performance of the proposed method was tested by using ISODATA classification method.

  7. Coupled double-distribution-function lattice Boltzmann method for the compressible Navier-Stokes equations.

    Science.gov (United States)

    Li, Q; He, Y L; Wang, Y; Tao, W Q

    2007-11-01

    A coupled double-distribution-function lattice Boltzmann method is developed for the compressible Navier-Stokes equations. Different from existing thermal lattice Boltzmann methods, this method can recover the compressible Navier-Stokes equations with a flexible specific-heat ratio and Prandtl number. In the method, a density distribution function based on a multispeed lattice is used to recover the compressible continuity and momentum equations, while the compressible energy equation is recovered by an energy distribution function. The energy distribution function is then coupled to the density distribution function via the thermal equation of state. In order to obtain an adjustable specific-heat ratio, a constant related to the specific-heat ratio is introduced into the equilibrium energy distribution function. Two different coupled double-distribution-function lattice Boltzmann models are also proposed in the paper. Numerical simulations are performed for the Riemann problem, the double-Mach-reflection problem, and the Couette flow with a range of specific-heat ratios and Prandtl numbers. The numerical results are found to be in excellent agreement with analytical and/or other solutions.

  8. Generation new MP3 data set after compression

    Science.gov (United States)

    Atoum, Mohammed Salem; Almahameed, Mohammad

    2016-02-01

    The success of audio steganography techniques is to ensure imperceptibility of the embedded secret message in stego file and withstand any form of intentional or un-intentional degradation of secret message (robustness). Crucial to that using digital audio file such as MP3 file, which comes in different compression rate, however research studies have shown that performing steganography in MP3 format after compression is the most suitable one. Unfortunately until now the researchers can not test and implement their algorithm because no standard data set in MP3 file after compression is generated. So this paper focuses to generate standard data set with different compression ratio and different Genre to help researchers to implement their algorithms.

  9. Genetic programs can be compressed and autonomously decompressed in live cells

    Science.gov (United States)

    Lapique, Nicolas; Benenson, Yaakov

    2018-04-01

    Fundamental computer science concepts have inspired novel information-processing molecular systems in test tubes1-13 and genetically encoded circuits in live cells14-21. Recent research has shown that digital information storage in DNA, implemented using deep sequencing and conventional software, can approach the maximum Shannon information capacity22 of two bits per nucleotide23. In nature, DNA is used to store genetic programs, but the information content of the encoding rarely approaches this maximum24. We hypothesize that the biological function of a genetic program can be preserved while reducing the length of its DNA encoding and increasing the information content per nucleotide. Here we support this hypothesis by describing an experimental procedure for compressing a genetic program and its subsequent autonomous decompression and execution in human cells. As a test-bed we choose an RNAi cell classifier circuit25 that comprises redundant DNA sequences and is therefore amenable for compression, as are many other complex gene circuits15,18,26-28. In one example, we implement a compressed encoding of a ten-gene four-input AND gate circuit using only four genetic constructs. The compression principles applied to gene circuits can enable fitting complex genetic programs into DNA delivery vehicles with limited cargo capacity, and storing compressed and biologically inert programs in vivo for on-demand activation.

  10. Curvelet-based compressive sensing for InSAR raw data

    Science.gov (United States)

    Costa, Marcello G.; da Silva Pinho, Marcelo; Fernandes, David

    2015-10-01

    The aim of this work is to evaluate the compression performance of SAR raw data for interferometry applications collected by airborne from BRADAR (Brazilian SAR System operating in X and P bands) using the new approach based on compressive sensing (CS) to achieve an effective recovery with a good phase preserving. For this framework is desirable a real-time capability, where the collected data can be compressed to reduce onboard storage and bandwidth required for transmission. In the CS theory, a sparse unknown signals can be recovered from a small number of random or pseudo-random measurements by sparsity-promoting nonlinear recovery algorithms. Therefore, the original signal can be significantly reduced. To achieve the sparse representation of SAR signal, was done a curvelet transform. The curvelets constitute a directional frame, which allows an optimal sparse representation of objects with discontinuities along smooth curves as observed in raw data and provides an advanced denoising optimization. For the tests were made available a scene of 8192 x 2048 samples in range and azimuth in X-band with 2 m of resolution. The sparse representation was compressed using low dimension measurements matrices in each curvelet subband. Thus, an iterative CS reconstruction method based on IST (iterative soft/shrinkage threshold) was adjusted to recover the curvelets coefficients and then the original signal. To evaluate the compression performance were computed the compression ratio (CR), signal to noise ratio (SNR), and because the interferometry applications require more reconstruction accuracy the phase parameters like the standard deviation of the phase (PSD) and the mean phase error (MPE) were also computed. Moreover, in the image domain, a single-look complex image was generated to evaluate the compression effects. All results were computed in terms of sparsity analysis to provides an efficient compression and quality recovering appropriated for inSAR applications

  11. Dynamic control of a homogeneous charge compression ignition engine

    Science.gov (United States)

    Duffy, Kevin P [Metamora, IL; Mehresh, Parag [Peoria, IL; Schuh, David [Peoria, IL; Kieser, Andrew J [Morton, IL; Hergart, Carl-Anders [Peoria, IL; Hardy, William L [Peoria, IL; Rodman, Anthony [Chillicothe, IL; Liechty, Michael P [Chillicothe, IL

    2008-06-03

    A homogenous charge compression ignition engine is operated by compressing a charge mixture of air, exhaust and fuel in a combustion chamber to an autoignition condition of the fuel. The engine may facilitate a transition from a first combination of speed and load to a second combination of speed and load by changing the charge mixture and compression ratio. This may be accomplished in a consecutive engine cycle by adjusting both a fuel injector control signal and a variable valve control signal away from a nominal variable valve control signal. Thereafter in one or more subsequent engine cycles, more sluggish adjustments are made to at least one of a geometric compression ratio control signal and an exhaust gas recirculation control signal to allow the variable valve control signal to be readjusted back toward its nominal variable valve control signal setting. By readjusting the variable valve control signal back toward its nominal setting, the engine will be ready for another transition to a new combination of engine speed and load.

  12. [Effect of elastic strain rate ratio method and virtual touch tissue quantification on the diagnosis of breast masses].

    Science.gov (United States)

    Gong, LiJie; He, Yan; Tian, Peng; Yan, Yan

    2016-07-01

    To determine the effect of elastic strain rate ratio method and virtual touch tissue quantification (VTQ) on the diagnosis of breast masses.
 Sixty female patients with breast cancer, who received surgical treatment in Daqing Oilfield General Hospital, were enrolled. All patients signed the informed consent paperwork and they were treated by routine ultrasound examination, compression elastography (CE) examination, and VTQ examination in turn. Strain ratio (SR) was checked by CE and shear wave velocity (SWV) value was measured by VTQ. The diagnostic values of different methods were evaluated by receiver operating characteristic (ROC) curves in the diagnosis of benign and malignant breast tumors.
 The maximum diameter and SWV value of the benign tumors were lower than those of the malignant tumors, and the SR ratio of benign masses was higher than that of malignant tumors (Pbreast mass than that used alone.

  13. Compressed air-assisted solvent extraction (CASX) for metal removal.

    Science.gov (United States)

    Li, Chi-Wang; Chen, Yi-Ming; Hsiao, Shin-Tien

    2008-03-01

    A novel process, compressed air-assisted solvent extraction (CASX), was developed to generate micro-sized solvent-coated air bubbles (MSAB) for metal extraction. Through pressurization of solvent with compressed air followed by releasing air-oversaturated solvent into metal-containing wastewater, MSAB were generated instantaneously. The enormous surface area of MSAB makes extraction process extremely fast and achieves very high aqueous/solvent weight ratio (A/S ratio). CASX process completely removed Cr(VI) from acidic electroplating wastewater under A/S ratio of 115 and extraction time of less than 10s. When synthetic wastewater containing Cd(II) of 50mgl(-1) was treated, A/S ratios of higher than 714 and 1190 could be achieved using solvent with extractant/diluent weight ratio of 1:1 and 5:1, respectively. Also, MSAB have very different physical properties, such as size and density, compared to the emulsified solvent droplets, making separation and recovery of solvent from treated effluent very easy.

  14. Behaviour of venous flow rates in intermittent sequential pneumatic compression of the legs using different compression strengths

    International Nuclear Information System (INIS)

    Fassmann-Glaser, I.

    1984-01-01

    A study with 25 patients was performed in order to find out whether intermittent, sequential, pneumatic leg compression is of value in the preventive management of thrombosis due to its effect on the venous flow rates. For this purpose, xenon 133 was injected into one of the foot veins and the flow rate in each case determined for the distance between instep and inguen using different compression strengths, with pressure being exerted on the ankle, calf and thigh. Increased flow rates were already measured at an average pressure value of 34.5 mmHg, while the maximum effect was achieved by exerting a pressure of 92.5 mmHg, which increased the flow rate by 366% as compared to the baseline value. The results point to a significant improvement of the venous flow rates due to intermittent, sequential, pneumatic leg compression and thus provide evidence to prove the value of this method in the prevention of hemostasis and thrombosis. (TRV) [de

  15. Parallel Algorithm for Wireless Data Compression and Encryption

    Directory of Open Access Journals (Sweden)

    Qin Jiancheng

    2017-01-01

    Full Text Available As the wireless network has limited bandwidth and insecure shared media, the data compression and encryption are very useful for the broadcasting transportation of big data in IoT (Internet of Things. However, the traditional techniques of compression and encryption are neither competent nor efficient. In order to solve this problem, this paper presents a combined parallel algorithm named “CZ algorithm” which can compress and encrypt the big data efficiently. CZ algorithm uses a parallel pipeline, mixes the coding of compression and encryption, and supports the data window up to 1 TB (or larger. Moreover, CZ algorithm can encrypt the big data as a chaotic cryptosystem which will not decrease the compression speed. Meanwhile, a shareware named “ComZip” is developed based on CZ algorithm. The experiment results show that ComZip in 64 b system can get better compression ratio than WinRAR and 7-zip, and it can be faster than 7-zip in the big data compression. In addition, ComZip encrypts the big data without extra consumption of computing resources.

  16. HVS scheme for DICOM image compression: Design and comparative performance evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakar, B. [Biomedical and Engineering Division, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu (India)]. E-mail: prabhakarb@iitm.ac.in; Reddy, M. Ramasubba [Biomedical and Engineering Division, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu (India)

    2007-07-15

    Advanced digital imaging technology in medical domain demands efficient and effective DICOM image compression for progressive image transmission and picture archival. Here a compression system, which incorporates sensitivities of HVS coded with SPIHT quantization, is discussed. The weighting factors derived from luminance CSF are used to transform the wavelet subband coefficients to reflect characteristics of HVS in best possible manner. Mannos et al. and Daly HVS models have been used and results are compared. To evaluate the performance, Eskicioglu chart metric is considered. Experiment is done on both Monochrome and Color Dicom images of MRI, CT, OT, and CR, natural and benchmark images. Reconstructed image through our technique showed improvement in visual quality and Eskicioglu chart metric at same compression ratios. Also the Daly HVS model based compression shows better performance perceptually and quantitatively when compared to Mannos et el. model. Further 'bior4.4' wavelet filter provides better results than 'db9' filter for this compression system. Results give strong evidence that under common boundary conditions; our technique achieves competitive visual quality, compression ratio and coding/decoding time, when compared with jpeg2000 (kakadu)

  17. Image data compression in diagnostic imaging. International literature review and workflow recommendation

    International Nuclear Information System (INIS)

    Braunschweig, R.; Kaden, Ingmar; Schwarzer, J.; Sprengel, C.; Klose, K.

    2009-01-01

    Purpose: Today healthcare policy is based on effectiveness. Diagnostic imaging became a ''pace-setter'' due to amazing technical developments (e.g. multislice CT), extensive data volumes, and especially the well defined workflow-orientated scenarios on a local and (inter)national level. To make centralized networks sufficient, image data compression has been regarded as the key to a simple and secure solution. In February 2008 specialized working groups of the DRG held a consensus conference. They designed recommended data compression techniques and ratios. Material und methoden: The purpose of our paper is an international review of the literature of compression technologies, different imaging procedures (e.g. DR, CT etc.), and targets (abdomen, etc.) and to combine recommendations for compression ratios and techniques with different workflows. The studies were assigned to 4 different levels (0-3) according to the evidence. 51 studies were assigned to the highest level 3. Results: We recommend a compression factor of 1: 8 (excluding cranial scans 1:5). For workflow reasons data compression should be based on the modalities (CT, etc.). PACS-based compression is currently possible but fails to maximize workflow benefits. Only the modality-based scenarios achieve all benefits. (orig.)

  18. Image data compression in diagnostic imaging. International literature review and workflow recommendation

    Energy Technology Data Exchange (ETDEWEB)

    Braunschweig, R.; Kaden, Ingmar [Klinik fuer Bildgebende Diagnostik und Interventionsradiologie, BG-Kliniken Bergmannstrost Halle (Germany); Schwarzer, J.; Sprengel, C. [Dept. of Management Information System and Operations Research, Martin-Luther-Univ. Halle Wittenberg (Germany); Klose, K. [Medizinisches Zentrum fuer Radiologie, Philips-Univ. Marburg (Germany)

    2009-07-15

    Purpose: Today healthcare policy is based on effectiveness. Diagnostic imaging became a ''pace-setter'' due to amazing technical developments (e.g. multislice CT), extensive data volumes, and especially the well defined workflow-orientated scenarios on a local and (inter)national level. To make centralized networks sufficient, image data compression has been regarded as the key to a simple and secure solution. In February 2008 specialized working groups of the DRG held a consensus conference. They designed recommended data compression techniques and ratios. Material und methoden: The purpose of our paper is an international review of the literature of compression technologies, different imaging procedures (e.g. DR, CT etc.), and targets (abdomen, etc.) and to combine recommendations for compression ratios and techniques with different workflows. The studies were assigned to 4 different levels (0-3) according to the evidence. 51 studies were assigned to the highest level 3. Results: We recommend a compression factor of 1: 8 (excluding cranial scans 1:5). For workflow reasons data compression should be based on the modalities (CT, etc.). PACS-based compression is currently possible but fails to maximize workflow benefits. Only the modality-based scenarios achieve all benefits. (orig.)

  19. Working characteristics of variable intake valve in compressed air engine.

    Science.gov (United States)

    Yu, Qihui; Shi, Yan; Cai, Maolin

    2014-01-01

    A new camless compressed air engine is proposed, which can make the compressed air energy reasonably distributed. Through analysis of the camless compressed air engine, a mathematical model of the working processes was set up. Using the software MATLAB/Simulink for simulation, the pressure, temperature, and air mass of the cylinder were obtained. In order to verify the accuracy of the mathematical model, the experiments were conducted. Moreover, performance analysis was introduced to design compressed air engine. Results show that, firstly, the simulation results have good consistency with the experimental results. Secondly, under different intake pressures, the highest output power is obtained when the crank speed reaches 500 rpm, which also provides the maximum output torque. Finally, higher energy utilization efficiency can be obtained at the lower speed, intake pressure, and valve duration angle. This research can refer to the design of the camless valve of compressed air engine.

  20. Medical image compression by using three-dimensional wavelet transformation

    International Nuclear Information System (INIS)

    Wang, J.; Huang, H.K.

    1996-01-01

    This paper proposes a three-dimensional (3-D) medical image compression method for computed tomography (CT) and magnetic resonance (MR) that uses a separable nonuniform 3-D wavelet transform. The separable wavelet transform employs one filter bank within two-dimensional (2-D) slices and then a second filter bank on the slice direction. CT and MR image sets normally have different resolutions within a slice and between slices. The pixel distances within a slice are normally less than 1 mm and the distance between slices can vary from 1 mm to 10 mm. To find the best filter bank in the slice direction, the authors use the various filter banks in the slice direction and compare the compression results. The results from the 12 selected MR and CT image sets at various slice thickness show that the Haar transform in the slice direction gives the optimum performance for most image sets, except for a CT image set which has 1 mm slice distance. Compared with 2-D wavelet compression, compression ratios of the 3-D method are about 70% higher for CT and 35% higher for MR image sets at a peak signal to noise ratio (PSNR) of 50 dB. In general, the smaller the slice distance, the better the 3-D compression performance

  1. Refrigerants for Vapour Compression Refrigeration Systems

    Indian Academy of Sciences (India)

    c) Low compression ratio to give high volumetric efficiency and low power ... The normal boiling point5 is also a good indicator of the critical temperature since .... than a few minutes during maintenance and service activities. Freezing point of ...

  2. Application of content-based image compression to telepathology

    Science.gov (United States)

    Varga, Margaret J.; Ducksbury, Paul G.; Callagy, Grace

    2002-05-01

    Telepathology is a means of practicing pathology at a distance, viewing images on a computer display rather than directly through a microscope. Without compression, images take too long to transmit to a remote location and are very expensive to store for future examination. However, to date the use of compressed images in pathology remains controversial. This is because commercial image compression algorithms such as JPEG achieve data compression without knowledge of the diagnostic content. Often images are lossily compressed at the expense of corrupting informative content. None of the currently available lossy compression techniques are concerned with what information has been preserved and what data has been discarded. Their sole objective is to compress and transmit the images as fast as possible. By contrast, this paper presents a novel image compression technique, which exploits knowledge of the slide diagnostic content. This 'content based' approach combines visually lossless and lossy compression techniques, judiciously applying each in the appropriate context across an image so as to maintain 'diagnostic' information while still maximising the possible compression. Standard compression algorithms, e.g. wavelets, can still be used, but their use in a context sensitive manner can offer high compression ratios and preservation of diagnostically important information. When compared with lossless compression the novel content-based approach can potentially provide the same degree of information with a smaller amount of data. When compared with lossy compression it can provide more information for a given amount of compression. The precise gain in the compression performance depends on the application (e.g. database archive or second opinion consultation) and the diagnostic content of the images.

  3. Study of mechanical compression of spin-polarized 3He gas

    International Nuclear Information System (INIS)

    Becker, J.; Heil, W.; Krug, B.; Leduc, M.; Meyerhoff, M.; Nacher, P.J.; Otten, E.W.; Prokscha, T.; Schearer, L.D.; Surkau, R.

    1994-01-01

    We have piloted mechanical compression of spinpolarized 3He by a titanium piston compressor. Questions of materials and design are discussed, followed by a thorough investigation of relaxation sources in the course of compression. The latter are traced mainly to regions with large surface to volume ratio, through which fast passage is demanded, therefore. We conclude from this feasibility study that polarized 3He may be compressed this way up to many bars without serious polarization losses. ((orig.))

  4. Compressive failure with interacting cracks

    International Nuclear Information System (INIS)

    Yang Guoping; Liu Xila

    1993-01-01

    The failure processes in concrete and other brittle materials are just the results of the propagation, coalescence and interaction of many preexisting microcracks or voids. To understand the real behaviour of the brittle materials, it is necessary to bridge the gap from the relatively matured one crack behaviour to the stochastically distributed imperfections, that is, to concern the crack propagation and interaction of microscopic mechanism with macroscopic parameters of brittle materials. Brittle failure in compression has been studied theoretically by Horii and Nemat-Nasser (1986), in which a closed solution was obtained for a preexisting flaw or some special regular flaws. Zaitsev and Wittmann (1981) published a paper on crack propagation in compression, which is so-called numerical concrete, but they did not take account of the interaction among the microcracks. As for the modelling of the influence of crack interaction on fracture parameters, many studies have also been reported. Up till now, some researcher are working on crack interaction considering the ratios of SIFs with and without consideration of the interaction influences, there exist amplifying or shielding effects of crack interaction which are depending on the relative positions of these microcracks. The present paper attempts to simulate the whole failure process of brittle specimen in compression, which includes the complicated coupling effects between the interaction and propagation of randomly distributed or other typical microcrack configurations step by step. The lengths, orientations and positions of microcracks are all taken as random variables. The crack interaction among many preexisting random microcracks is evaluated with the help of a simple interaction matrix (Yang and Liu, 1991). For the subcritically stable propagation of microcracks in mixed mode fracture, fairly known maximum hoop stress criterion is adopted to compute branching lengths and directions at each tip of the crack

  5. 2D-RBUC for efficient parallel compression of residuals

    Science.gov (United States)

    Đurđević, Đorđe M.; Tartalja, Igor I.

    2018-02-01

    In this paper, we present a method for lossless compression of residuals with an efficient SIMD parallel decompression. The residuals originate from lossy or near lossless compression of height fields, which are commonly used to represent models of terrains. The algorithm is founded on the existing RBUC method for compression of non-uniform data sources. We have adapted the method to capture 2D spatial locality of height fields, and developed the data decompression algorithm for modern GPU architectures already present even in home computers. In combination with the point-level SIMD-parallel lossless/lossy high field compression method HFPaC, characterized by fast progressive decompression and seamlessly reconstructed surface, the newly proposed method trades off small efficiency degradation for a non negligible compression ratio (measured up to 91%) benefit.

  6. The maximum percentage of fly ash to replace part of original Portland cement (OPC) in producing high strength concrete

    Science.gov (United States)

    Mallisa, Harun; Turuallo, Gidion

    2017-11-01

    This research investigates the maximum percent of fly ash to replace part of Orginal Portland Cement (OPC) in producing high strength concrete. Many researchers have found that the incorporation of industrial by-products such as fly ash as in producing concrete can improve properties in both fresh and hardened state of concrete. The water-binder ratio was used 0.30. The used sand was medium sand with the maximum size of coarse aggregate was 20 mm. The cement was Type I, which was Bosowa Cement produced by PT Bosowa. The percentages of fly ash to the total of a binder, which were used in this research, were 0, 10, 15, 20, 25 and 30%; while the super platicizer used was typed Naptha 511P. The results showed that the replacement cement up to 25 % of the total weight of binder resulted compressive strength higher than the minimum strength at one day of high-strength concrete.

  7. Embedment of Chlorpheniramine Maleate in Directly Compressed ...

    African Journals Online (AJOL)

    chlorpheniramine maleate (CPM) from its matrix tablets prepared by direct compression. Methods: Different ratios of compritol and kollidon SR (containing 50 % matrix component) in 1:1, 1:2, ... Magnesium stearate and hydrochloric acid were.

  8. Analyzing the Performance of a Dual Loop Organic Rankine Cycle System for Waste Heat Recovery of a Heavy-Duty Compressed Natural Gas Engine

    Directory of Open Access Journals (Sweden)

    Baofeng Yao

    2014-11-01

    Full Text Available A dual loop organic Rankine cycle (DORC system is designed to recover waste heat from a heavy-duty compressed natural gas engine (CNGE, and the performance of the DORC–CNGE combined system is simulated and discussed. The DORC system includes high-temperature (HT and low-temperature (LT cycles. The HT cycle recovers energy from the exhaust gas emitted by the engine, whereas the LT cycle recovers energy from intake air, engine coolant, and the HT cycle working fluid in the preheater. The mathematical model of the system is established based on the first and second laws of thermodynamics. The characteristics of waste heat energy from the CNGE are calculated according to engine test data under various operating conditions. Moreover, the performance of the DORC–CNGE combined system is simulated and analyzed using R245fa as the working fluid. Results show that the maximum net power output and the maximum thermal efficiency of the DORC system are 29.37 kW and 10.81%, respectively, under the rated power output condition of the engine. Compared with the original CNG engine, the maximum power output increase ratio and the maximum brake specific fuel consumption improvement ratio are 33.73% and 25%, respectively, in the DORC–CNGE combined system.

  9. Working Characteristics of Variable Intake Valve in Compressed Air Engine

    Science.gov (United States)

    Yu, Qihui; Shi, Yan; Cai, Maolin

    2014-01-01

    A new camless compressed air engine is proposed, which can make the compressed air energy reasonably distributed. Through analysis of the camless compressed air engine, a mathematical model of the working processes was set up. Using the software MATLAB/Simulink for simulation, the pressure, temperature, and air mass of the cylinder were obtained. In order to verify the accuracy of the mathematical model, the experiments were conducted. Moreover, performance analysis was introduced to design compressed air engine. Results show that, firstly, the simulation results have good consistency with the experimental results. Secondly, under different intake pressures, the highest output power is obtained when the crank speed reaches 500 rpm, which also provides the maximum output torque. Finally, higher energy utilization efficiency can be obtained at the lower speed, intake pressure, and valve duration angle. This research can refer to the design of the camless valve of compressed air engine. PMID:25379536

  10. Working Characteristics of Variable Intake Valve in Compressed Air Engine

    Directory of Open Access Journals (Sweden)

    Qihui Yu

    2014-01-01

    Full Text Available A new camless compressed air engine is proposed, which can make the compressed air energy reasonably distributed. Through analysis of the camless compressed air engine, a mathematical model of the working processes was set up. Using the software MATLAB/Simulink for simulation, the pressure, temperature, and air mass of the cylinder were obtained. In order to verify the accuracy of the mathematical model, the experiments were conducted. Moreover, performance analysis was introduced to design compressed air engine. Results show that, firstly, the simulation results have good consistency with the experimental results. Secondly, under different intake pressures, the highest output power is obtained when the crank speed reaches 500 rpm, which also provides the maximum output torque. Finally, higher energy utilization efficiency can be obtained at the lower speed, intake pressure, and valve duration angle. This research can refer to the design of the camless valve of compressed air engine.

  11. Spinal meningioma: relationship between degree of cord compression and outcome.

    Science.gov (United States)

    Davies, Simon; Gregson, Barbara; Mitchell, Patrick

    2017-04-01

    The aim of this study was to find the relationships between the degree of cord compression as seen on MRIs with persisting cord atrophy after decompression and patient outcomes in spinal meningiomas. We undertook a retrospective analysis of 31 patients' pre- and postoperative MRIs, preoperative functional status and their outcomes at follow-up. The following metrics were analysed; percentage cord area at maximum compression, percentage tumour occupancy and percentage cord occupancy. These were then compared with outcome as measured by the Nurick scale. Of the 31 patients, 27 (87%) had thoracic meningiomas, 3 (10%) cervical and 1 (3%) cervicothoracic. The meningiomas were pathologically classified as grade 1 (29) or grade 2 (2) according to the WHO classification. The average remaining cord cross-sectional area was 61% of the estimated original value. The average tumour occupancy of the canal was 72%. The average cord occupancy of the spinal canal at maximum compression was 20%. No correlation between cord cross-section area and Nurick Scale was seen. On the postoperative scan, the average cord area had increased to 84%. No correlation was seen between this value and outcome. We found that cross-section area measurements on MRI scans have no obvious relationship with function before or after surgery. This is a base for future research into the mechanism of cord recovery and other compressive cord conditions.

  12. Wavelet-Based Watermarking and Compression for ECG Signals with Verification Evaluation

    Directory of Open Access Journals (Sweden)

    Kuo-Kun Tseng

    2014-02-01

    Full Text Available In the current open society and with the growth of human rights, people are more and more concerned about the privacy of their information and other important data. This study makes use of electrocardiography (ECG data in order to protect individual information. An ECG signal can not only be used to analyze disease, but also to provide crucial biometric information for identification and authentication. In this study, we propose a new idea of integrating electrocardiogram watermarking and compression approach, which has never been researched before. ECG watermarking can ensure the confidentiality and reliability of a user’s data while reducing the amount of data. In the evaluation, we apply the embedding capacity, bit error rate (BER, signal-to-noise ratio (SNR, compression ratio (CR, and compressed-signal to noise ratio (CNR methods to assess the proposed algorithm. After comprehensive evaluation the final results show that our algorithm is robust and feasible.

  13. Image quality enhancement in low-light-level ghost imaging using modified compressive sensing method

    Science.gov (United States)

    Shi, Xiaohui; Huang, Xianwei; Nan, Suqin; Li, Hengxing; Bai, Yanfeng; Fu, Xiquan

    2018-04-01

    Detector noise has a significantly negative impact on ghost imaging at low light levels, especially for existing recovery algorithm. Based on the characteristics of the additive detector noise, a method named modified compressive sensing ghost imaging is proposed to reduce the background imposed by the randomly distributed detector noise at signal path. Experimental results show that, with an appropriate choice of threshold value, modified compressive sensing ghost imaging algorithm can dramatically enhance the contrast-to-noise ratio of the object reconstruction significantly compared with traditional ghost imaging and compressive sensing ghost imaging methods. The relationship between the contrast-to-noise ratio of the reconstruction image and the intensity ratio (namely, the average signal intensity to average noise intensity ratio) for the three reconstruction algorithms are also discussed. This noise suppression imaging technique will have great applications in remote-sensing and security areas.

  14. POLYCOMP: Efficient and configurable compression of astronomical timelines

    Science.gov (United States)

    Tomasi, M.

    2016-07-01

    This paper describes the implementation of polycomp, a open-sourced, publicly available program for compressing one-dimensional data series in tabular format. The program is particularly suited for compressing smooth, noiseless streams of data like pointing information, as one of the algorithms it implements applies a combination of least squares polynomial fitting and discrete Chebyshev transforms that is able to achieve a compression ratio Cr up to ≈ 40 in the examples discussed in this work. This performance comes at the expense of a loss of information, whose upper bound is configured by the user. I show two areas in which the usage of polycomp is interesting. In the first example, I compress the ephemeris table of an astronomical object (Ganymede), obtaining Cr ≈ 20, with a compression error on the x , y , z coordinates smaller than 1 m. In the second example, I compress the publicly available timelines recorded by the Low Frequency Instrument (LFI), an array of microwave radiometers onboard the ESA Planck spacecraft. The compression reduces the needed storage from ∼ 6.5 TB to ≈ 0.75 TB (Cr ≈ 9), thus making them small enough to be kept in a portable hard drive.

  15. Lossless medical image compression with a hybrid coder

    Science.gov (United States)

    Way, Jing-Dar; Cheng, Po-Yuen

    1998-10-01

    The volume of medical image data is expected to increase dramatically in the next decade due to the large use of radiological image for medical diagnosis. The economics of distributing the medical image dictate that data compression is essential. While there is lossy image compression, the medical image must be recorded and transmitted lossless before it reaches the users to avoid wrong diagnosis due to the image data lost. Therefore, a low complexity, high performance lossless compression schematic that can approach the theoretic bound and operate in near real-time is needed. In this paper, we propose a hybrid image coder to compress the digitized medical image without any data loss. The hybrid coder is constituted of two key components: an embedded wavelet coder and a lossless run-length coder. In this system, the medical image is compressed with the lossy wavelet coder first, and the residual image between the original and the compressed ones is further compressed with the run-length coder. Several optimization schemes have been used in these coders to increase the coding performance. It is shown that the proposed algorithm is with higher compression ratio than run-length entropy coders such as arithmetic, Huffman and Lempel-Ziv coders.

  16. Application of the bilinear compression function to calorimetry

    CERN Document Server

    Cattaneo, P W

    2000-01-01

    The energy dynamic range required by a calorimeter may exceed, if high speed is also required, the technical limitations of available ADCs. In this case the use of a dynamic compressor matching the energy range to the ADC range may be an adequate solution. The requirement for the compression function is to add an appropriately small quantization error to the calorimeter resolution. The bilinear compression function is easy to realize, it is therefore interesting to study the conditions under which it is adequate and which are the parameters of the compression curve, the slope ratio and the break point, minimizing the additional error due to quantization.

  17. Application of the bilinear compression function to calorimetry

    International Nuclear Information System (INIS)

    Cattaneo, Paolo Walter

    2000-01-01

    The energy dynamic range required by a calorimeter may exceed, if high speed is also required, the technical limitations of available ADCs. In this case the use of a dynamic compressor matching the energy range to the ADC range may be an adequate solution. The requirement for the compression function is to add an appropriately small quantization error to the calorimeter resolution. The bilinear compression function is easy to realize, it is therefore interesting to study the conditions under which it is adequate and which are the parameters of the compression curve, the slope ratio and the break point, minimizing the additional error due to quantization

  18. Uniaxial compression test series on Bullfrog Tuff

    International Nuclear Information System (INIS)

    Price, R.H.; Jones, A.K.; Nimick, K.G.

    1982-04-01

    Nineteen uniaxial compressive experiments were performed on samples of the Bullfrog Member of the Crater Flat Tuff, obtained from drillhole USW-G1 at Yucca Mountain on the Nevada Test Site. The water saturated samples were deformed at a nominal strain rate of 10 -5 sec -1 , atmospheric pressure and room temperature. Resultant unconfined compressive strengths, axial strains to failure, Young's moduli and Poisson's ratios ranged from 4.63 to 153. MPa, .0028 to .0058, 2.03 to 28.9 GPa and .08 to .16, respectively

  19. Wavelet/scalar quantization compression standard for fingerprint images

    Energy Technology Data Exchange (ETDEWEB)

    Brislawn, C.M.

    1996-06-12

    US Federal Bureau of Investigation (FBI) has recently formulated a national standard for digitization and compression of gray-scale fingerprint images. Fingerprints are scanned at a spatial resolution of 500 dots per inch, with 8 bits of gray-scale resolution. The compression algorithm for the resulting digital images is based on adaptive uniform scalar quantization of a discrete wavelet transform subband decomposition (wavelet/scalar quantization method). The FBI standard produces archival-quality images at compression ratios of around 15 to 1 and will allow the current database of paper fingerprint cards to be replaced by digital imagery. The compression standard specifies a class of potential encoders and a universal decoder with sufficient generality to reconstruct compressed images produced by any compliant encoder, allowing flexibility for future improvements in encoder technology. A compliance testing program is also being implemented to ensure high standards of image quality and interchangeability of data between different implementations.

  20. Experimental study on compressive strength of sediment brick masonry

    Science.gov (United States)

    Woen, Ean Lee; Malek, Marlinda Abdul; Mohammed, Bashar S.; Chao-Wei, Tang; Tamunif, Muhammad Thaqif

    2018-02-01

    The effects of pre-wetted unit bricks, mortar type and slenderness ratio of prisms on the compressive strength and failure mode of newly developed sediment brick have been evaluated and compared to clay brick and cement-sand bricks. The results show that pre-wetted sediment brick masonry exhibits higher compressive strength of up to 20% compared to the dry sediment masonry. Using cement-lime mortar leads to lower compressive strength compared to cement mortar. However, the sediment brick masonry with the cement lime mortar exhibit higher compressive strength in comparison with cement mortar masonry. More of diagonal shear cracks have been observed in the failure mode of the sediment bricks masonry compared to clay and cement-sand bricks masonry that show mostly vertical cracks and crushing. The sediment unit bricks display compressive strength in between clay and cement-sand bricks.

  1. HVS-based medical image compression

    Energy Technology Data Exchange (ETDEWEB)

    Kai Xie [Institute of Image Processing and Pattern Recognition, Shanghai Jiaotong University, 200030 Shanghai (China)]. E-mail: xie_kai2001@sjtu.edu.cn; Jie Yang [Institute of Image Processing and Pattern Recognition, Shanghai Jiaotong University, 200030 Shanghai (China); Min Zhuyue [CREATIS-CNRS Research Unit 5515 and INSERM Unit 630, 69621 Villeurbanne (France); Liang Lixiao [Institute of Image Processing and Pattern Recognition, Shanghai Jiaotong University, 200030 Shanghai (China)

    2005-07-01

    Introduction: With the promotion and application of digital imaging technology in the medical domain, the amount of medical images has grown rapidly. However, the commonly used compression methods cannot acquire satisfying results. Methods: In this paper, according to the existed and stated experiments and conclusions, the lifting step approach is used for wavelet decomposition. The physical and anatomic structure of human vision is combined and the contrast sensitivity function (CSF) is introduced as the main research issue in human vision system (HVS), and then the main designing points of HVS model are presented. On the basis of multi-resolution analyses of wavelet transform, the paper applies HVS including the CSF characteristics to the inner correlation-removed transform and quantization in image and proposes a new HVS-based medical image compression model. Results: The experiments are done on the medical images including computed tomography (CT) and magnetic resonance imaging (MRI). At the same bit rate, the performance of SPIHT, with respect to the PSNR metric, is significantly higher than that of our algorithm. But the visual quality of the SPIHT-compressed image is roughly the same as that of the image compressed with our approach. Our algorithm obtains the same visual quality at lower bit rates and the coding/decoding time is less than that of SPIHT. Conclusions: The results show that under common objective conditions, our compression algorithm can achieve better subjective visual quality, and performs better than that of SPIHT in the aspects of compression ratios and coding/decoding time.

  2. HVS-based medical image compression

    International Nuclear Information System (INIS)

    Kai Xie; Jie Yang; Min Zhuyue; Liang Lixiao

    2005-01-01

    Introduction: With the promotion and application of digital imaging technology in the medical domain, the amount of medical images has grown rapidly. However, the commonly used compression methods cannot acquire satisfying results. Methods: In this paper, according to the existed and stated experiments and conclusions, the lifting step approach is used for wavelet decomposition. The physical and anatomic structure of human vision is combined and the contrast sensitivity function (CSF) is introduced as the main research issue in human vision system (HVS), and then the main designing points of HVS model are presented. On the basis of multi-resolution analyses of wavelet transform, the paper applies HVS including the CSF characteristics to the inner correlation-removed transform and quantization in image and proposes a new HVS-based medical image compression model. Results: The experiments are done on the medical images including computed tomography (CT) and magnetic resonance imaging (MRI). At the same bit rate, the performance of SPIHT, with respect to the PSNR metric, is significantly higher than that of our algorithm. But the visual quality of the SPIHT-compressed image is roughly the same as that of the image compressed with our approach. Our algorithm obtains the same visual quality at lower bit rates and the coding/decoding time is less than that of SPIHT. Conclusions: The results show that under common objective conditions, our compression algorithm can achieve better subjective visual quality, and performs better than that of SPIHT in the aspects of compression ratios and coding/decoding time

  3. Mechanisms of anomalous compressibility of vitreous silica

    Science.gov (United States)

    Clark, Alisha N.; Lesher, Charles E.; Jacobsen, Steven D.; Sen, Sabyasachi

    2014-11-01

    The anomalous compressibility of vitreous silica has been known for nearly a century, but the mechanisms responsible for it remain poorly understood. Using GHz-ultrasonic interferometry, we measured longitudinal and transverse acoustic wave travel times at pressures up to 5 GPa in vitreous silica with fictive temperatures (Tf) ranging between 985 °C and 1500 °C. The maximum in ultrasonic wave travel times-corresponding to a minimum in acoustic velocities-shifts to higher pressure with increasing Tf for both acoustic waves, with complete reversibility below 5 GPa. These relationships reflect polyamorphism in the supercooled liquid, which results in a glassy state possessing different proportions of domains of high- and low-density amorphous phases (HDA and LDA, respectively). The relative proportion of HDA and LDA is set at Tf and remains fixed on compression below the permanent densification pressure. The bulk material exhibits compression behavior systematically dependent on synthesis conditions that arise from the presence of floppy modes in a mixture of HDA and LDA domains.

  4. Time-space trade-offs for lempel-ziv compressed indexing

    DEFF Research Database (Denmark)

    Bille, Philip; Ettienne, Mikko Berggren; Gørtz, Inge Li

    2017-01-01

    Given a string S, the compressed indexing problem is to preprocess S into a compressed representation that supports fast substring queries. The goal is to use little space relative to the compressed size of S while supporting fast queries. We present a compressed index based on the Lempel-Ziv 1977...... compression scheme. Let n, and z denote the size of the input string, and the compressed LZ77 string, respectively. We obtain the following time-space trade-offs. Given a pattern string P of length m, we can solve the problem in (i) O (m + occ lg lg n) time using O(z lg(n/z) lg lg z) space, or (ii) (m (1...... best space bound, but has a leading term in the query time of O(m(1 + lgϵ z/lg(n/z))). However, for any polynomial compression ratio, i.e., z = O(n1-δ), for constant δ > 0, this becomes O(m). Our index also supports extraction of any substring of length ℓ in O(ℓ + lg(n/z)) time. Technically, our...

  5. Foamed concrete containing rice husk ash as sand replacement: an experimental study on compressive strength

    Science.gov (United States)

    Rum, R. H. M.; Jaini, Z. M.; Boon, K. H.; Khairaddin, S. A. A.; Rahman, N. A.

    2017-11-01

    This study presents the utilization of rice husk ash (RHA) as sand replacement in foamed concrete. The study focuses on the effect of RHA on the compressive strength of foamed concrete. RHA contains high pozzolanic material that reacts with cementitious to enhance the strength and durability of foamed concrete. RHA also acts as filler causing the foamed concrete to become denser while retaining its unique low density. A total 243 cube specimens was prepared for the compression test. Two sets of mix design were employed at water-cement (W/C) ratio of 0.55, 0.60 and cement-sand ratio of 0.50, 0.33. The results revealed that the presence of RHA as sand replacement resulted in an increase in the compressive strength of foamed concrete. Moreover, 30% to 40% RHA was the optimum content level, contributing to the compressive strength of 18.1 MPa to 22.4 MPa. The W/C ratio and superplasticiser dosage play small roles in improving workability. In contrast, density governs the compressive strength of foamed concrete.

  6. Applications of wavelet-based compression to multidimensional earth science data

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, J.N.; Brislawn, C.M.

    1993-01-01

    A data compression algorithm involving vector quantization (VQ) and the discrete wavelet transform (DWT) is applied to two different types of multidimensional digital earth-science data. The algorithm (WVQ) is optimized for each particular application through an optimization procedure that assigns VQ parameters to the wavelet transform subbands subject to constraints on compression ratio and encoding complexity. Preliminary results of compressing global ocean model data generated on a Thinking Machines CM-200 supercomputer are presented. The WVQ scheme is used in both a predictive and nonpredictive mode. Parameters generated by the optimization algorithm axe reported, as are signal-to-noise ratio (SNR) measurements of actual quantized data. The problem of extrapolating hydrodynamic variables across the continental landmasses in order to compute the DWT on a rectangular grid is discussed. Results are also presented for compressing Landsat TM 7-band data using the WVQ scheme.The formulation of the optimization problem is presented along with SNR measurements of actual quantized data. Postprocessing applications are considered in which the seven spectral bands are clustered into 256 clusters using a k-means algorithm and analyzed using the Los Alamos multispectral data analysis program, SPECTRUM, both before and after being compressed using the WVQ program.

  7. Applications of wavelet-based compression to multidimensional earth science data

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, J.N.; Brislawn, C.M.

    1993-02-01

    A data compression algorithm involving vector quantization (VQ) and the discrete wavelet transform (DWT) is applied to two different types of multidimensional digital earth-science data. The algorithm (WVQ) is optimized for each particular application through an optimization procedure that assigns VQ parameters to the wavelet transform subbands subject to constraints on compression ratio and encoding complexity. Preliminary results of compressing global ocean model data generated on a Thinking Machines CM-200 supercomputer are presented. The WVQ scheme is used in both a predictive and nonpredictive mode. Parameters generated by the optimization algorithm axe reported, as are signal-to-noise ratio (SNR) measurements of actual quantized data. The problem of extrapolating hydrodynamic variables across the continental landmasses in order to compute the DWT on a rectangular grid is discussed. Results are also presented for compressing Landsat TM 7-band data using the WVQ scheme.The formulation of the optimization problem is presented along with SNR measurements of actual quantized data. Postprocessing applications are considered in which the seven spectral bands are clustered into 256 clusters using a k-means algorithm and analyzed using the Los Alamos multispectral data analysis program, SPECTRUM, both before and after being compressed using the WVQ program.

  8. Theoretical modeling of combustion characteristics and performance parameters of biodiesel in DI diesel engine with variable compression ratio

    Energy Technology Data Exchange (ETDEWEB)

    Al-Dawody, Mohamed F.; Bhatti, S.K. [Department of Mechanical Engineering, Andhra University (India)

    2013-07-01

    Increasing of costly and depleting fossil fuels are prompting researchers to use edible as well as non-edible vegetable oils as a promising alternative to petro-diesel fuels. A comprehensive computer code using ''Quick basic'' language was developed for the diesel engine cycle to study the combustion and performance characteristics of a single cylinder, four stroke, direct injection diesel engine with variable compression ratio. The engine operates on diesel fuel and 20% (mass basis) of biodiesel (derived from soybean oil) blended with diesel. Combustion characteristics such as cylinder pressure, heat release fraction, heat transfer and performance characteristics such as brake power; and brake specific fuel consumption (BSFC) were analyzed. On the basis of the first law of thermodynamics the properties at each degree crank angle was calculated. Wiebe function is used to calculate the instantaneous heat release rate. The computed results are validated through the results obtained in the simulation Diesel-rk software.

  9. FRC translation into a compression coil

    International Nuclear Information System (INIS)

    Chrien, R.E.

    1986-01-01

    The equilibrium and translational kinematics of Field-Reversed Configurations (FRCs) in a cylindrical coil which does not conserve flux are problems that arise in connection with adiabatic compressional heating. In this paper, they consider several features of the problem of FRC translation into a compression coil. First, the magnitude of the guide field is calculated and found to exceed that which would be applied to a flux conserver. Second, energy conservation is applied to FRC translation from a flux conserver into a compression coil. It is found that a significant temperature decrease is required for translation to be energetically possible. The temperature change depends on the external inductance in the compression circuit. An analogous case is that of a compression region composed of a compound magnet; in this case the temperature change depends on the ratio of inner and outer coil radii. Finally, the kinematics of intermediate translation states are calculated using an abrupt transition model. It is found, in this model, that the FRC must overcome a potential hill during translation, which requires a small initial velocity

  10. Relationship between weight of rescuer and quality of chest compression during cardiopulmonary resuscitation.

    Science.gov (United States)

    Hasegawa, Tomoyuki; Daikoku, Rie; Saito, Shin; Saito, Yayoi

    2014-06-24

    According to the guidelines for cardiopulmonary resuscitation (CPR), the rotation time for chest compression should be about 2 min. The quality of chest compressions is related to the physical fitness of the rescuer, but this was not considered when determining rotation time. The present study aimed to clarify associations between body weight and the quality of chest compression and physical fatigue during CPR performed by 18 registered nurses (10 male and 8 female) assigned to light and heavy groups according to the average weight for each sex in Japan. Five-minute chest compressions were then performed on a manikin that was placed on the floor. Measurement parameters were compression depth, heart rate, oxygen uptake, integrated electromyography signals, and rating of perceived exertion. Compression depth was evaluated according to the ratio (%) of adequate compressions (at least 5 cm deep). The ratio of adequate compressions decreased significantly over time in the light group. Values for heart rate, oxygen uptake, muscle activity defined as integrated electromyography signals, and rating of perceived exertion were significantly higher for the light group than for the heavy group. Chest compression caused increased fatigue among the light group, which consequently resulted in a gradual fall in the quality of chest compression. These results suggested that individuals with a lower body weight should rotate at 1-min intervals to maintain high quality CPR and thus improve the survival rates and neurological outcomes of victims of cardiac arrest.

  11. ERGC: an efficient referential genome compression algorithm.

    Science.gov (United States)

    Saha, Subrata; Rajasekaran, Sanguthevar

    2015-11-01

    Genome sequencing has become faster and more affordable. Consequently, the number of available complete genomic sequences is increasing rapidly. As a result, the cost to store, process, analyze and transmit the data is becoming a bottleneck for research and future medical applications. So, the need for devising efficient data compression and data reduction techniques for biological sequencing data is growing by the day. Although there exists a number of standard data compression algorithms, they are not efficient in compressing biological data. These generic algorithms do not exploit some inherent properties of the sequencing data while compressing. To exploit statistical and information-theoretic properties of genomic sequences, we need specialized compression algorithms. Five different next-generation sequencing data compression problems have been identified and studied in the literature. We propose a novel algorithm for one of these problems known as reference-based genome compression. We have done extensive experiments using five real sequencing datasets. The results on real genomes show that our proposed algorithm is indeed competitive and performs better than the best known algorithms for this problem. It achieves compression ratios that are better than those of the currently best performing algorithms. The time to compress and decompress the whole genome is also very promising. The implementations are freely available for non-commercial purposes. They can be downloaded from http://engr.uconn.edu/∼rajasek/ERGC.zip. rajasek@engr.uconn.edu. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Image splitting and remapping method for radiological image compression

    Science.gov (United States)

    Lo, Shih-Chung B.; Shen, Ellen L.; Mun, Seong K.

    1990-07-01

    A new decomposition method using image splitting and gray-level remapping has been proposed for image compression, particularly for images with high contrast resolution. The effects of this method are especially evident in our radiological image compression study. In our experiments, we tested the impact of this decomposition method on image compression by employing it with two coding techniques on a set of clinically used CT images and several laser film digitized chest radiographs. One of the compression techniques used was full-frame bit-allocation in the discrete cosine transform domain, which has been proven to be an effective technique for radiological image compression. The other compression technique used was vector quantization with pruned tree-structured encoding, which through recent research has also been found to produce a low mean-square-error and a high compression ratio. The parameters we used in this study were mean-square-error and the bit rate required for the compressed file. In addition to these parameters, the difference between the original and reconstructed images will be presented so that the specific artifacts generated by both techniques can be discerned by visual perception.

  13. A new approach of objective quality evaluation on JPEG2000 lossy-compressed lung cancer CT images

    Science.gov (United States)

    Cai, Weihua; Tan, Yongqiang; Zhang, Jianguo

    2007-03-01

    Image compression has been used to increase the communication efficiency and storage capacity. JPEG 2000 compression, based on the wavelet transformation, has its advantages comparing to other compression methods, such as ROI coding, error resilience, adaptive binary arithmetic coding and embedded bit-stream. However it is still difficult to find an objective method to evaluate the image quality of lossy-compressed medical images so far. In this paper, we present an approach to evaluate the image quality by using a computer aided diagnosis (CAD) system. We selected 77 cases of CT images, bearing benign and malignant lung nodules with confirmed pathology, from our clinical Picture Archiving and Communication System (PACS). We have developed a prototype of CAD system to classify these images into benign ones and malignant ones, the performance of which was evaluated by the receiver operator characteristics (ROC) curves. We first used JPEG 2000 to compress these cases of images with different compression ratio from lossless to lossy, and used the CAD system to classify the cases with different compressed ratio, then compared the ROC curves from the CAD classification results. Support vector machine (SVM) and neural networks (NN) were used to classify the malignancy of input nodules. In each approach, we found that the area under ROC (AUC) decreases with the increment of compression ratio with small fluctuations.

  14. An effective simplified model of composite compression struts for partially-restrained steel frame with reinforced concrete infill walls

    Science.gov (United States)

    Sun, Guohua; Chuang-Sheng, Walter Yang; Gu, Qiang; DesRoches, Reginald

    2018-04-01

    To resolve the issue regarding inaccurate prediction of the hysteretic behavior by micro-based numerical analysis for partially-restrained (PR) steel frames with solid reinforced concrete (RC) infill walls, an innovative simplified model of composite compression struts is proposed on the basis of experimental observation on the cracking distribution, load transferring mechanism, and failure modes of RC infill walls filled in PR steel frame. The proposed composite compression struts model for the solid RC infill walls is composed of α inclined struts and main diagonal struts. The α inclined struts are used to reflect the part of the lateral force resisted by shear connectors along the frame-wall interface, while the main diagonal struts are introduced to take into account the rest of the lateral force transferred along the diagonal direction due to the complicated interaction between the steel frame and RC infill walls. This study derives appropriate formulas for the effective widths of the α inclined strut and main diagonal strut, respectively. An example of PR steel frame with RC infill walls simulating simulated by the composite inclined compression struts model is illustrated. The maximum lateral strength and the hysteresis curve shape obtained from the proposed composite strut model are in good agreement with those from the test results, and the backbone curve of a PR steel frame with RC infill walls can be predicted precisely when the inter-story drift is within 1%. This simplified model can also predict the structural stiffness and the equivalent viscous damping ratio well when the inter-story drift ratio exceeds 0.5%.

  15. Effect of Pressure and Heat Treatments on the Compressive Strength of Reactive Powder Concrete

    Directory of Open Access Journals (Sweden)

    Helmi Masdar

    2018-01-01

    Full Text Available This paper presents the corresponding compressive strength of RPC with variable pressure combined with heating rate, heating duration, and starting time of heating. The treatments applied were 8 MPa static pressure on fresh RPC prims and heat curing at 240 °C in an oven. The compressive strength test was conducted at 7-d and 28-d. The images of RPC morphology were captured on the surface of a fractured specimen using Scanning Electron Microscopy in Secondary Electron detector mode to describe pore filing mechanism after treatments. The results show that a heating rate at 50 °C/hr resulted in the highest compressive strength about 40 % more than those at 10 or 100 °C/hr. A heating duration of 48 hours led to the maximum compressive strength. Heat curing applied 2 days after casting resulted in the maximum compressive. Heat curing had a signicant effect on the compresssive strength due to the acceleration of both reactions (hydration and pozzolanic and the degree of transformation from tobermorite to xonotlite. It is concluded that the optimum condition of treatments is both pressure and heat curing at 2-day after casting with a rate of 50 °C/hr for 48 hours.

  16. Contributions in compression of 3D medical images and 2D images; Contributions en compression d'images medicales 3D et d'images naturelles 2D

    Energy Technology Data Exchange (ETDEWEB)

    Gaudeau, Y

    2006-12-15

    The huge amounts of volumetric data generated by current medical imaging techniques in the context of an increasing demand for long term archiving solutions, as well as the rapid development of distant radiology make the use of compression inevitable. Indeed, if the medical community has sided until now with compression without losses, most of applications suffer from compression ratios which are too low with this kind of compression. In this context, compression with acceptable losses could be the most appropriate answer. So, we propose a new loss coding scheme based on 3D (3 dimensional) Wavelet Transform and Dead Zone Lattice Vector Quantization 3D (DZLVQ) for medical images. Our algorithm has been evaluated on several computerized tomography (CT) and magnetic resonance image volumes. The main contribution of this work is the design of a multidimensional dead zone which enables to take into account correlations between neighbouring elementary volumes. At high compression ratios, we show that it can out-perform visually and numerically the best existing methods. These promising results are confirmed on head CT by two medical patricians. The second contribution of this document assesses the effect with-loss image compression on CAD (Computer-Aided Decision) detection performance of solid lung nodules. This work on 120 significant lungs images shows that detection did not suffer until 48:1 compression and still was robust at 96:1. The last contribution consists in the complexity reduction of our compression scheme. The first allocation dedicated to 2D DZLVQ uses an exponential of the rate-distortion (R-D) functions. The second allocation for 2D and 3D medical images is based on block statistical model to estimate the R-D curves. These R-D models are based on the joint distribution of wavelet vectors using a multidimensional mixture of generalized Gaussian (MMGG) densities. (author)

  17. An Enhanced Run-Length Encoding Compression Method for Telemetry Data

    Directory of Open Access Journals (Sweden)

    Shan Yanhu

    2017-09-01

    Full Text Available The telemetry data are essential in evaluating the performance of aircraft and diagnosing its failures. This work combines the oversampling technology with the run-length encoding compression algorithm with an error factor to further enhance the compression performance of telemetry data in a multichannel acquisition system. Compression of telemetry data is carried out with the use of FPGAs. In the experiments there are used pulse signals and vibration signals. The proposed method is compared with two existing methods. The experimental results indicate that the compression ratio, precision, and distortion degree of the telemetry data are improved significantly compared with those obtained by the existing methods. The implementation and measurement of the proposed telemetry data compression method show its effectiveness when used in a high-precision high-capacity multichannel acquisition system.

  18. On the compressive behavior of an FDM Steward Platform part

    Directory of Open Access Journals (Sweden)

    Nectarios Vidakis

    2017-10-01

    Full Text Available Acrylonitrile–butadiene–styrene (ABS is commonly used material in the fused deposition modeling (FDM process. In this work, ABS and ABS plus parts were built with different building parameters and they were tested according to the ASTM D695 standard. Compression strength results were compared to stock ABS material values. The fracture surfaces of selected specimens were examined under a Scanning Electron Microscope (SEM, to determine the failure mode of the filament strands. Following this a Steward Platform part was tested under compression in a tensile testing machine. The experimental results were employed to develop a finite element model of the Steward Platform part, in order to determine the maximum force the part can withstand. The Finite Element Model results were in good agreement with the values measured in the Steward Platform part compressive tests, demonstrating that the model developed is reliable. In these experiments, it was found that ABS parts build with a larger layer thickness showed lower compressive strength, which ABS plus did not show. ABS specimens on average developed about half the compressive strength of the ABS plus specimens, while the ABS plus specimens showed lower compressive strength values than stock ABS material.

  19. Optimal Chest Compression Rate and Compression to Ventilation Ratio in Delivery Room Resuscitation: Evidence from Newborn Piglets and Neonatal Manikins

    OpenAIRE

    Solev?g, Anne Lee; Schm?lzer, Georg M.

    2017-01-01

    Cardiopulmonary resuscitation (CPR) duration until return of spontaneous circulation (ROSC) influences survival and neurologic outcomes after delivery room (DR) CPR. High quality chest compressions (CC) improve cerebral and myocardial perfusion. Improved myocardial perfusion increases the likelihood of a faster ROSC. Thus, optimizing CC quality may improve outcomes both by preserving cerebral blood flow during CPR and by reducing the recovery time. CC quality is determined by rate, CC to vent...

  20. Component optimization of dairy manure vermicompost, straw, and peat in seedling compressed substrates using simplex-centroid design.

    Science.gov (United States)

    Yang, Longyuan; Cao, Hongliang; Yuan, Qiaoxia; Luoa, Shuai; Liu, Zhigang

    2018-03-01

    Vermicomposting is a promising method to disposal dairy manures, and the dairy manure vermicompost (DMV) to replace expensive peat is of high value in the application of seedling compressed substrates. In this research, three main components: DMV, straw, and peat, are conducted in the compressed substrates, and the effect of individual components and the corresponding optimal ratio for the seedling production are significant. To address these issues, the simplex-centroid experimental mixture design is employed, and the cucumber seedling experiment is conducted to evaluate the compressed substrates. Results demonstrated that the mechanical strength and physicochemical properties of compressed substrates for cucumber seedling can be well satisfied with suitable mixture ratio of the components. Moreover, DMV, straw, and peat) could be determined at 0.5917:0.1608:0.2475 when the weight coefficients of the three parameters (shoot length, root dry weight, and aboveground dry weight) were 1:1:1. For different purpose, the optimum ratio can be little changed on the basis of different weight coefficients. Compressed substrate is lump and has certain mechanical strength, produced by application of mechanical pressure to the seedling substrates. It will not harm seedlings when bedding out the seedlings, since the compressed substrate and seedling are bedded out together. However, there is no one using the vermicompost and agricultural waste components of compressed substrate for vegetable seedling production before. Thus, it is important to understand the effect of individual components to seedling production, and to determine the optimal ratio of components.

  1. Maximum spectral demands in the near-fault region

    Science.gov (United States)

    Huang, Yin-Nan; Whittaker, Andrew S.; Luco, Nicolas

    2008-01-01

    The Next Generation Attenuation (NGA) relationships for shallow crustal earthquakes in the western United States predict a rotated geometric mean of horizontal spectral demand, termed GMRotI50, and not maximum spectral demand. Differences between strike-normal, strike-parallel, geometric-mean, and maximum spectral demands in the near-fault region are investigated using 147 pairs of records selected from the NGA strong motion database. The selected records are for earthquakes with moment magnitude greater than 6.5 and for closest site-to-fault distance less than 15 km. Ratios of maximum spectral demand to NGA-predicted GMRotI50 for each pair of ground motions are presented. The ratio shows a clear dependence on period and the Somerville directivity parameters. Maximum demands can substantially exceed NGA-predicted GMRotI50 demands in the near-fault region, which has significant implications for seismic design, seismic performance assessment, and the next-generation seismic design maps. Strike-normal spectral demands are a significantly unconservative surrogate for maximum spectral demands for closest distance greater than 3 to 5 km. Scale factors that transform NGA-predicted GMRotI50 to a maximum spectral demand in the near-fault region are proposed.

  2. Application of thin-layer Navier-Stokes equations near maximum lift

    Science.gov (United States)

    Anderson, W. K.; Thomas, J. L.; Rumsey, C. L.

    1984-01-01

    The flowfield about a NACA 0012 airfoil at a Mach number of 0.3 and Reynolds number of 1 million is computed through an angle of attack range, up to 18 deg, corresponding to conditions up to and beyond the maximum lift coefficient. Results obtained using the compressible thin-layer Navier-Stokes equations are presented as well as results from the compressible Euler equations with and without a viscous coupling procedure. The applicability of each code is assessed and many thin-layer Navier-Stokes benchmark solutions are obtained which can be used for comparison with other codes intended for use at high angles of attack. Reasonable agreement of the Navier-Stokes code with experiment and the viscous-inviscid interaction code is obtained at moderate angles of attack. An unsteady solution is obtained with the thin-layer Navier-Stokes code at the highest angle of attack considered. The maximum lift coefficient is overpredicted, however, in comparison to experimental data, which is attributed to the presence of a laminar separation bubble near the leading edge not modeled in the computations. Two comparisons with experimental data are also presented at a higher Mach number.

  3. A design approach for systems based on magnetic pulse compression

    International Nuclear Information System (INIS)

    Praveen Kumar, D. Durga; Mitra, S.; Senthil, K.; Sharma, D. K.; Rajan, Rehim N.; Sharma, Archana; Nagesh, K. V.; Chakravarthy, D. P.

    2008-01-01

    A design approach giving the optimum number of stages in a magnetic pulse compression circuit and gain per stage is given. The limitation on the maximum gain per stage is discussed. The total system volume minimization is done by considering the energy storage capacitor volume and magnetic core volume at each stage. At the end of this paper, the design of a magnetic pulse compression based linear induction accelerator of 200 kV, 5 kA, and 100 ns with a repetition rate of 100 Hz is discussed with its experimental results

  4. Asymmetry of the multifidus muscle in lumbar radicular nerve compression

    International Nuclear Information System (INIS)

    Farshad, Mazda; Gerber, Christian; Farshad-Amacker, Nadja A.; Dietrich, Tobias J.; Laufer-Molnar, Viviane; Min, Kan

    2014-01-01

    The multifidus muscle is the only paraspinal lumbar muscle that is innervated by a single nerve root. This study aimes to evaluate if the asymmetry of the multifidus muscle is related to the severity of compression of the nerve root or the duration of radiculopathy. MRI scans of 79 patients with symptomatic single level, unilateral, lumbar radiculopathy were reviewed for this retrospective case series with a nested case-control study. The cross-sectional area (CSA) of the multifidus muscle and the perpendicular distance of the multifidus to the lamina (MLD) were measured bilaterally by two radiologists and set into relation to the severity of nerve compression, duration of radiculopathy and probability of an indication for surgical decompression. In 67 recessal and 12 foraminal symptomatic nerve root compressions, neither the MLD ratio (severe 1.19 ± 0.55 vs less severe nerve compression: 1.12 ± 0.30, p = 0.664) nor the CSA ratio (severe 1 ± 0.16 vs less severe 0.98 ± 0.13, p = 0.577) nor the duration of symptoms significantly correlated with the degree of nerve compression. MR measurements of multifidus were not different in patients with (n = 20) and those without (n = 59) clinical muscle weakness in the extremity caused by nerve root compression. A MLD >1.5 was, however, associated with the probability of an indication for surgical decompression (OR 3, specificity 92 %, PPV 73 %). Asymmetry of the multifidus muscle correlates with neither the severity nor the duration of nerve root compression in the lumbar spine. Severe asymmetry with substantial multifidus atrophy seems associated with the probability of an indication of surgical decompression. (orig.)

  5. Asymmetry of the multifidus muscle in lumbar radicular nerve compression

    Energy Technology Data Exchange (ETDEWEB)

    Farshad, Mazda; Gerber, Christian; Farshad-Amacker, Nadja A.; Dietrich, Tobias J.; Laufer-Molnar, Viviane; Min, Kan [Balgrist University Hospital, University of Zuerich, Zuerich (Switzerland)

    2014-01-15

    The multifidus muscle is the only paraspinal lumbar muscle that is innervated by a single nerve root. This study aimes to evaluate if the asymmetry of the multifidus muscle is related to the severity of compression of the nerve root or the duration of radiculopathy. MRI scans of 79 patients with symptomatic single level, unilateral, lumbar radiculopathy were reviewed for this retrospective case series with a nested case-control study. The cross-sectional area (CSA) of the multifidus muscle and the perpendicular distance of the multifidus to the lamina (MLD) were measured bilaterally by two radiologists and set into relation to the severity of nerve compression, duration of radiculopathy and probability of an indication for surgical decompression. In 67 recessal and 12 foraminal symptomatic nerve root compressions, neither the MLD ratio (severe 1.19 ± 0.55 vs less severe nerve compression: 1.12 ± 0.30, p = 0.664) nor the CSA ratio (severe 1 ± 0.16 vs less severe 0.98 ± 0.13, p = 0.577) nor the duration of symptoms significantly correlated with the degree of nerve compression. MR measurements of multifidus were not different in patients with (n = 20) and those without (n = 59) clinical muscle weakness in the extremity caused by nerve root compression. A MLD >1.5 was, however, associated with the probability of an indication for surgical decompression (OR 3, specificity 92 %, PPV 73 %). Asymmetry of the multifidus muscle correlates with neither the severity nor the duration of nerve root compression in the lumbar spine. Severe asymmetry with substantial multifidus atrophy seems associated with the probability of an indication of surgical decompression. (orig.)

  6. STUDY OF ALTERNATIVE FUELS AND EFFECTS OF COMPRESSION RATIO ON THERMAL EFFICIENCY AND ENGINE POWER

    Directory of Open Access Journals (Sweden)

    Sarjito Sarjito

    2017-01-01

    Full Text Available This paper was a case study during the sabatical program at Kingston University London in February 2007. It has been studied by team of motorsport automotive department Kingston University London and it has been elaborated as a final project on Master Program. This study takes into account some of the issues surrounding the debate about alcohol fuels in Motorsport and the wider automotive sector and is primarily concerned to add data where there seems to be little existing research since Motorsport is a secretive business. Motorsport plays an important part in the automotive industry and is a sport enjoyed worldwide. Racing practice is regarded as using the best available resources and technology as it requires optimal performance. The racing arena gives engineers the opportunity to test valuable technological solutions to prove their merits. Therefore, racing is the natural starting point for introducing new technological solutions to the public and could lead to the wholesale conversion to renewable fuels to meet our automotive energy needs. Alcohol has unique properties that make superior in many ways to ordinary gasoline. The higher knock resistance allows for higher compression ratios to be utilized resulting in higher power outputs and thermal efficiency. The efficient use of energy is of growing concern in all spheres of life and the automotive sector needs to be front runner in these efforts.

  7. Hyperspectral Imagery Throughput and Fusion Evaluation over Compression and Interpolation

    Science.gov (United States)

    2008-07-01

    MSE ⎛ ⎞ = ⎜ ⎟ ⎝ ⎠ (17) The PSNR values and compression ratios are shown in Table 1 and a plot of PSNR against the bits per pixel ( bpp ) is shown...Ratio bpp 59.3 2.9:1 2.76 46.0 9.2:1 0.87 43.2 14.5:1 0.55 40.8 25.0:1 0.32 38.7 34.6:1 0.23 35.5 62.1:1 0.13 Figure 11. PSNR vs. bits per...and a plot of PSNR against the bits per pixel ( bpp ) is shown in Figure 13. The 3D DCT compression yielded better results than the baseline JPEG

  8. DNABIT Compress – Genome compression algorithm

    OpenAIRE

    Rajarajeswari, Pothuraju; Apparao, Allam

    2011-01-01

    Data compression is concerned with how information is organized in data. Efficient storage means removal of redundancy from the data being stored in the DNA molecule. Data compression algorithms remove redundancy and are used to understand biologically important molecules. We present a compression algorithm, “DNABIT Compress” for DNA sequences based on a novel algorithm of assigning binary bits for smaller segments of DNA bases to compress both repetitive and non repetitive DNA sequence. Our ...

  9. The one-dimensional compression method for extraction of pore water from unsaturated tuff and effects on pore-water chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Higgins, J.D.; Burger, P.A. [Colorado School of Mines, Golden, CO (United States); Yang, L.C. [Geological Survey, Denver, CO (United States)

    1997-12-31

    Study of the hydrologic system at Yucca Mountain, Nevada, requires extraction of pore-water samples from unsaturated tuff bedrock. Two generations of compression cells have been designed and tested for extracting representative, unaltered pore-water samples from unsaturated tuff cores. The one-dimensional compression cell has a maximum compressive stress rating of 552 MPa. Results from 86 tests show that the minimum degree of saturation for successful extraction of pore water was about 14% for non welded tuff and about 61% for densely welded tuff. The high-pressure, one-dimensional compression cell has a maximum compressive stress rating of 827 MPa. Results from 109 tests show that the minimum degree of saturation for successful extraction of pore water was about 7.5% for non welded tuff and about 34% for densely welded tuff. Geochemical analyses show that, in general, there is a decrease in ion concentration of pore waters as extraction pressures increase. Only small changes in pore-water composition occur during the one-dimensional extraction test.

  10. A Constitutive Model for Unsaturated soils based on a Compressibility Framework dependent on Suction and Degree of Saturation

    Directory of Open Access Journals (Sweden)

    Sitarenios Panagiotis

    2016-01-01

    Full Text Available The Modified Cam Clay model is extended to account for the behaviour of unsaturated soils using Bishop’s stress. To describe the Loading – Collapse behaviour, the model incorporates a compressibility framework with suction and degree of saturation dependent compression lines. For simplicity, the present paper describes the model in the triaxial stress space with characteristic simulations of constant suction compression and triaxial tests, as well as wetting tests. The model reproduces an evolving post yield compressibility under constant suction compression, and thus, can adequately describe a maximum of collapse.

  11. The relationship between vickers microhardness and compressive strength of functional surface geopolymers

    Science.gov (United States)

    Subaer, Ekaputri, Januari Jaya; Fansuri, Hamzah; Abdullah, Mustafa Al Bakri

    2017-09-01

    An experimental study to investigate the relationship between Vickers microhardness and compressive strength of geopolymers made from metakaolin has been conducted. Samples were prepared by using metakaolin activated with a sodium silicate solution at a different ratio of Si to Al and Na to Al and cured at 70oC for one hour. The resulting geopolymers were stored in an open air for 28 days before conducting any measurement. Bulk density and apparent porosity of the samples were measured by using Archimedes's method. Vickers microhardness measurements were performed on a polished surface of geopolymers with a load ranging from 0.3 - 1.0 kg. The topographic of indented samples were examined by using scanning electron microscopy (SEM). Compressive strength of the resulting geopolymers was measured on the cylindrical samples with a ratio of height to the diameter was 2:1. The results showed that the molar ratios of geopolymers compositions play important roles in the magnitude of bulk density, porosity, Vickers's microhardness as well as the compressive strength. The porosity reduced exponentially the magnitude of the strength of geopolymers. It was found that the relationship between Vickers microhardness and compressive strength was linear. At the request of all authors and with the approval of the proceedings editor, article 020188 titled, "The relationship between vickers microhardness and compressive strength of functional surface geopolymers," is being retracted from the public record due to the fact that it is a duplication of article 020170 published in the same volume.

  12. NIR hyperspectral compressive imager based on a modified Fabry–Perot resonator

    Science.gov (United States)

    Oiknine, Yaniv; August, Isaac; Blumberg, Dan G.; Stern, Adrian

    2018-04-01

    The acquisition of hyperspectral (HS) image datacubes with available 2D sensor arrays involves a time consuming scanning process. In the last decade, several compressive sensing (CS) techniques were proposed to reduce the HS acquisition time. In this paper, we present a method for near-infrared (NIR) HS imaging which relies on our rapid CS resonator spectroscopy technique. Within the framework of CS, and by using a modified Fabry–Perot resonator, a sequence of spectrally modulated images is used to recover NIR HS datacubes. Owing to the innovative CS design, we demonstrate the ability to reconstruct NIR HS images with hundreds of spectral bands from an order of magnitude fewer measurements, i.e. with a compression ratio of about 10:1. This high compression ratio, together with the high optical throughput of the system, facilitates fast acquisition of large HS datacubes.

  13. Two-way shape memory effect induced by repetitive compressive loading cycles

    International Nuclear Information System (INIS)

    Kim, Hyun-Chul; Yoo, Young-Ik; Lee, Jung-Ju

    2009-01-01

    The NiTi alloy can be trained by repetitive loading or heating cycles. As a result of the training, a two-way shape memory effect (TWSME) can be induced. Considerable research has been reported regarding the TWSME trained by tensile loading. However, the TWSME trained by compressive loading has not been investigated nearly as much. In this paper, the TWSME is induced by compressive loading cycles and the two-way shape memory strain is evaluated by using two types of specimen: a solid cylinder type and a tube type. The TWSME trained by compressive loading is different from that trained by tensile loading owing to the severe tension/compression asymmetry as described in previous research. After repetitive compressive loading cycles, strain variation upon cooling is observed, and this result proves that the TWSME is induced by compressive loading cycles. By performing compressive loading cycles, plastic deformation in NiTi alloy occurs more than for tensile loading cycles, which brings about the appearance of TWSME. It can be said that the TWSME is induced by compressive loading cycles more easily. The two-way shape memory strain increases linearly as the maximum strain of compressive loading cycles increases, regardless of the shape and the size of the NiTi alloy; this two-way shape memory strain then shows a tendency towards saturation after some repeated cycles

  14. Screening of Low Clinker Binders, Compressive Strength and Chloride Ingress

    DEFF Research Database (Denmark)

    Geiker, Mette Rica; De Weerdt, Klaartje; Garzón, Sergio Ferreiro

    2017-01-01

    This paper reports an initial screening of potential new binders for concrete with reduced CO2-emission. Mortars cured saturated for 90 days are compared with regard to a) compressive strength of mortars with similar water-to-binder ratio, and b) chloride ingress in similar design strength mortar...... compromising the 90 days compressive strength and resistance to chloride ingress in marine exposure by using selected alternative binders....

  15. Image compression of bone images

    International Nuclear Information System (INIS)

    Hayrapetian, A.; Kangarloo, H.; Chan, K.K.; Ho, B.; Huang, H.K.

    1989-01-01

    This paper reports a receiver operating characteristic (ROC) experiment conducted to compare the diagnostic performance of a compressed bone image with the original. The compression was done on custom hardware that implements an algorithm based on full-frame cosine transform. The compression ratio in this study is approximately 10:1, which was decided after a pilot experiment. The image set consisted of 45 hand images, including normal images and images containing osteomalacia and osteitis fibrosa. Each image was digitized with a laser film scanner to 2,048 x 2,048 x 8 bits. Six observers, all board-certified radiologists, participated in the experiment. For each ROC session, an independent ROC curve was constructed and the area under that curve calculated. The image set was randomized for each session, as was the order for viewing the original and reconstructed images. Analysis of variance was used to analyze the data and derive statistically significant results. The preliminary results indicate that the diagnostic quality of the reconstructed image is comparable to that of the original image

  16. Three dimensional range geometry and texture data compression with space-filling curves.

    Science.gov (United States)

    Chen, Xia; Zhang, Song

    2017-10-16

    This paper presents a novel method to effectively store three-dimensional (3D) data and 2D texture data into a regular 24-bit image. The proposed method uses the Hilbert space-filling curve to map the normalized unwrapped phase map to two 8-bit color channels, and saves the third color channel for 2D texture storage. By further leveraging existing 2D image and video compression techniques, the proposed method can achieve high compression ratios while effectively preserving data quality. Since the encoding and decoding processes can be applied to most of the current 2D media platforms, this proposed compression method can make 3D data storage and transmission available for many electrical devices without requiring special hardware changes. Experiments demonstrate that if a lossless 2D image/video format is used, both original 3D geometry and 2D color texture can be accurately recovered; if lossy image/video compression is used, only black-and-white or grayscale texture can be properly recovered, but much higher compression ratios (e.g., 1543:1 against the ASCII OBJ format) are achieved with slight loss of 3D geometry quality.

  17. A Streaming PCA VLSI Chip for Neural Data Compression.

    Science.gov (United States)

    Wu, Tong; Zhao, Wenfeng; Guo, Hongsun; Lim, Hubert H; Yang, Zhi

    2017-12-01

    Neural recording system miniaturization and integration with low-power wireless technologies require compressing neural data before transmission. Feature extraction is a procedure to represent data in a low-dimensional space; its integration into a recording chip can be an efficient approach to compress neural data. In this paper, we propose a streaming principal component analysis algorithm and its microchip implementation to compress multichannel local field potential (LFP) and spike data. The circuits have been designed in a 65-nm CMOS technology and occupy a silicon area of 0.06 mm. Throughout the experiments, the chip compresses LFPs by 10 at the expense of as low as 1% reconstruction errors and 144-nW/channel power consumption; for spikes, the achieved compression ratio is 25 with 8% reconstruction errors and 3.05-W/channel power consumption. In addition, the algorithm and its hardware architecture can swiftly adapt to nonstationary spiking activities, which enables efficient hardware sharing among multiple channels to support a high-channel count recorder.

  18. Compressive Fatigue in Wood

    DEFF Research Database (Denmark)

    Clorius, Christian Odin; Pedersen, Martin Bo Uhre; Hoffmeyer, Preben

    1999-01-01

    An investigation of fatigue failure in wood subjected to load cycles in compression parallel to grain is presented. Small clear specimens of spruce are taken to failure in square wave formed fatigue loading at a stress excitation level corresponding to 80% of the short term strength. Four...... frequencies ranging from 0.01 Hz to 10 Hz are used. The number of cycles to failure is found to be a poor measure of the fatigue performance of wood. Creep, maximum strain, stiffness and work are monitored throughout the fatigue tests. Accumulated creep is suggested identified with damage and a correlation...

  19. Assessment of maximum available work of a hydrogen fueled compression ignition engine using exergy analysis

    International Nuclear Information System (INIS)

    Chintala, Venkateswarlu; Subramanian, K.A.

    2014-01-01

    This work is aimed at study of maximum available work and irreversibility (mixing, combustion, unburned, and friction) of a dual-fuel diesel engine (H 2 (hydrogen)–diesel) using exergy analysis. The maximum available work increased with H 2 addition due to reduction in irreversibility of combustion because of less entropy generation. The irreversibility of unburned fuel with the H 2 fuel also decreased due to the engine combustion with high temperature whereas there is no effect of H 2 on mixing and friction irreversibility. The maximum available work of the diesel engine at rated load increased from 29% with conventional base mode (without H 2 ) to 31.7% with dual-fuel mode (18% H 2 energy share) whereas total irreversibility of the engine decreased drastically from 41.2% to 39.3%. The energy efficiency of the engine with H 2 increased about 10% with 36% reduction in CO 2 emission. The developed methodology could also be applicable to find the effect and scope of different technologies including exhaust gas recirculation and turbo charging on maximum available work and energy efficiency of diesel engines. - Highlights: • Energy efficiency of diesel engine increases with hydrogen under dual-fuel mode. • Maximum available work of the engine increases significantly with hydrogen. • Combustion and unburned fuel irreversibility decrease with hydrogen. • No significant effect of hydrogen on mixing and friction irreversibility. • Reduction in CO 2 emission along with HC, CO and smoke emissions

  20. Compression Models for Plasma Focus Devices

    International Nuclear Information System (INIS)

    Gonzalez, Jose; Calusse, Alejandro; Ramos, Ruben; Rodriguez Palomino, Luis

    2003-01-01

    Using a numerical model that calculates the dynamics of Plasma Focus devices, we compared the results of three different compression models of the plasma pinch.One of the main objectives in this area is to develop a simplified model to calculate the neutron production of Plasma Focus devices, to study the influence of the main parameters in this neutron yield.The dynamics is thoroughly studied, and the model predicts fairly well values such as maximum currents and times for pinch collapse.Therefore, we evaluate here different models of pinch compression, to try to predict the neutron production with good agreement with the rest of the variables involved.To fulfill this requirement, we have experimental results of neutron production as a function of deuterium filling pressure in the chamber, and typical values of other main variables in the dynamics of the current sheet

  1. Recognizable or Not: Towards Image Semantic Quality Assessment for Compression

    Science.gov (United States)

    Liu, Dong; Wang, Dandan; Li, Houqiang

    2017-12-01

    Traditionally, image compression was optimized for the pixel-wise fidelity or the perceptual quality of the compressed images given a bit-rate budget. But recently, compressed images are more and more utilized for automatic semantic analysis tasks such as recognition and retrieval. For these tasks, we argue that the optimization target of compression is no longer perceptual quality, but the utility of the compressed images in the given automatic semantic analysis task. Accordingly, we propose to evaluate the quality of the compressed images neither at pixel level nor at perceptual level, but at semantic level. In this paper, we make preliminary efforts towards image semantic quality assessment (ISQA), focusing on the task of optical character recognition (OCR) from compressed images. We propose a full-reference ISQA measure by comparing the features extracted from text regions of original and compressed images. We then propose to integrate the ISQA measure into an image compression scheme. Experimental results show that our proposed ISQA measure is much better than PSNR and SSIM in evaluating the semantic quality of compressed images; accordingly, adopting our ISQA measure to optimize compression for OCR leads to significant bit-rate saving compared to using PSNR or SSIM. Moreover, we perform subjective test about text recognition from compressed images, and observe that our ISQA measure has high consistency with subjective recognizability. Our work explores new dimensions in image quality assessment, and demonstrates promising direction to achieve higher compression ratio for specific semantic analysis tasks.

  2. Starting up a programme of atomic piles using compressed gas

    International Nuclear Information System (INIS)

    Horowitz, J.; Yvon, J.

    1959-01-01

    1) An examination of the intellectual and material resources which have directed the French programme towards: a) the natural uranium and plutonium system, b) the use of compressed gas as heat transfer fluid (primary fluid). 2) The parts played in exploring the field by the pile EL2 and G1, EL2 a natural uranium, heavy water and compressed gas pile, G1 a natural uranium, graphite and atmospheric air pile. 3) Development of the neutronics of graphite piles: physical study of G1. 4) The examination of certain problem posed by centres equipped with natural uranium, graphite and compressed carbon dioxide piles: structure, special materials, fluid circuits, maximum efficiency. Economic aspects. 5) Aids to progress: a) piles for testing materials and for tests on canned fuel elements, b) laboratory and calculation facilities. 6) Possible new orientations of compressed gas piles: a) raising of the pressure, b) enriched fuel, c) higher temperatures, d) use of heavy water. (author) [fr

  3. Performance of a Discrete Wavelet Transform for Compressing Plasma Count Data and its Application to the Fast Plasma Investigation on NASA's Magnetospheric Multiscale Mission

    Science.gov (United States)

    Barrie, Alexander C.; Yeh, Penshu; Dorelli, John C.; Clark, George B.; Paterson, William R.; Adrian, Mark L.; Holland, Matthew P.; Lobell, James V.; Simpson, David G.; Pollock, Craig J.; hide

    2015-01-01

    Plasma measurements in space are becoming increasingly faster, higher resolution, and distributed over multiple instruments. As raw data generation rates can exceed available data transfer bandwidth, data compression is becoming a critical design component. Data compression has been a staple of imaging instruments for years, but only recently have plasma measurement designers become interested in high performance data compression. Missions will often use a simple lossless compression technique yielding compression ratios of approximately 2:1, however future missions may require compression ratios upwards of 10:1. This study aims to explore how a Discrete Wavelet Transform combined with a Bit Plane Encoder (DWT/BPE), implemented via a CCSDS standard, can be used effectively to compress count information common to plasma measurements to high compression ratios while maintaining little or no compression error. The compression ASIC used for the Fast Plasma Investigation (FPI) on board the Magnetospheric Multiscale mission (MMS) is used for this study. Plasma count data from multiple sources is examined: resampled data from previous missions, randomly generated data from distribution functions, and simulations of expected regimes. These are run through the compression routines with various parameters to yield the greatest possible compression ratio while maintaining little or no error, the latter indicates that fully lossless compression is obtained. Finally, recommendations are made for future missions as to what can be achieved when compressing plasma count data and how best to do so.

  4. Flash Kα radiography of laser-driven solid sphere compression for fast ignition

    International Nuclear Information System (INIS)

    Sawada, H.; Lee, S.; Nagatomo, H.; Arikawa, Y.; Nishimura, H.; Ueda, T.; Shigemori, K.; Fujioka, S.; Shiroto, T.; Ohnishi, N.; Sunahara, A.; Beg, F. N.; Theobald, W.; Pérez, F.; Patel, P. K.

    2016-01-01

    Time-resolved compression of a laser-driven solid deuterated plastic sphere with a cone was measured with flash Kα x-ray radiography. A spherically converging shockwave launched by nanosecond GEKKO XII beams was used for compression while a flash of 4.51 keV Ti Kα x-ray backlighter was produced by a high-intensity, picosecond laser LFEX (Laser for Fast ignition EXperiment) near peak compression for radiography. Areal densities of the compressed core were inferred from two-dimensional backlit x-ray images recorded with a narrow-band spherical crystal imager. The maximum areal density in the experiment was estimated to be 87 ± 26 mg/cm"2. The temporal evolution of the experimental and simulated areal densities with a 2-D radiation-hydrodynamics code is in good agreement.

  5. Flash Kα radiography of laser-driven solid sphere compression for fast ignition

    Energy Technology Data Exchange (ETDEWEB)

    Sawada, H. [Department of Physics, University of Nevada Reno, Reno, Nevada 89557 (United States); Lee, S.; Nagatomo, H.; Arikawa, Y.; Nishimura, H.; Ueda, T.; Shigemori, K.; Fujioka, S. [Institute of Laser Engineering, Osaka University, Suita, Osaka (Japan); Shiroto, T.; Ohnishi, N. [Department of Aerospace Engineering, Tohoku University, Sendai, Miyagi (Japan); Sunahara, A. [Institute of Laser Technology, Nishi-ku, Osaka (Japan); Beg, F. N. [University of California San Diego, La Jolla, California 92093 (United States); Theobald, W. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Pérez, F. [LULI, Ecole Polytechnique, Palaiseau, Cedex (France); Patel, P. K. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2016-06-20

    Time-resolved compression of a laser-driven solid deuterated plastic sphere with a cone was measured with flash Kα x-ray radiography. A spherically converging shockwave launched by nanosecond GEKKO XII beams was used for compression while a flash of 4.51 keV Ti Kα x-ray backlighter was produced by a high-intensity, picosecond laser LFEX (Laser for Fast ignition EXperiment) near peak compression for radiography. Areal densities of the compressed core were inferred from two-dimensional backlit x-ray images recorded with a narrow-band spherical crystal imager. The maximum areal density in the experiment was estimated to be 87 ± 26 mg/cm{sup 2}. The temporal evolution of the experimental and simulated areal densities with a 2-D radiation-hydrodynamics code is in good agreement.

  6. Prediction of compressibility parameters of the soils using artificial neural network.

    Science.gov (United States)

    Kurnaz, T Fikret; Dagdeviren, Ugur; Yildiz, Murat; Ozkan, Ozhan

    2016-01-01

    The compression index and recompression index are one of the important compressibility parameters to determine the settlement calculation for fine-grained soil layers. These parameters can be determined by carrying out laboratory oedometer test on undisturbed samples; however, the test is quite time-consuming and expensive. Therefore, many empirical formulas based on regression analysis have been presented to estimate the compressibility parameters using soil index properties. In this paper, an artificial neural network (ANN) model is suggested for prediction of compressibility parameters from basic soil properties. For this purpose, the input parameters are selected as the natural water content, initial void ratio, liquid limit and plasticity index. In this model, two output parameters, including compression index and recompression index, are predicted in a combined network structure. As the result of the study, proposed ANN model is successful for the prediction of the compression index, however the predicted recompression index values are not satisfying compared to the compression index.

  7. The effect of shredding and test apparatus size on compressibility and strength parameters of degraded municipal solid waste.

    Science.gov (United States)

    Hossain, M S; Gabr, M A; Asce, F

    2009-09-01

    In many situations, MSW components are processed and shredded before use in laboratory experiments using conventional soil testing apparatus. However, shredding MSW material may affect the target property to be measured. The objective of this study is to contribute to the understanding of the effect of shredding of MSW on the measured compressibility and strength properties. It is hypothesized that measured properties can be correlated to an R-value, the ratio of waste particle size to apparatus size. Results from oedometer tests, conducted on 63.5 mm, 100 mm, 200 mm diameter apparatus, indicated the dependency of the compressibility parameters on R-value. The compressibility parameters are similar for the same R-value even though the apparatus size varies. The results using same apparatus size with variable R-values indicated that shredding of MSW mainly affects initial compression. Creep and biological strain rate of the tested MSW are not significantly affected by R-value. The shear strength is affected by shredding as the light-weight reinforcing materials are shredded into smaller pieces during specimen preparation. For example, the measured friction angles are 32 degrees and 27 degrees for maximum particle sizes of 50 mm and 25 mm, respectively. The larger MSW components in the specimen provide better reinforcing contribution. This conclusion is however dependent on comparing specimen at the same level of degradation since shear strength is also a function of extent of degradation.

  8. Unimode metamaterials exhibiting negative linear compressibility and negative thermal expansion

    International Nuclear Information System (INIS)

    Dudek, Krzysztof K; Attard, Daphne; Caruana-Gauci, Roberto; Grima, Joseph N; Wojciechowski, Krzysztof W

    2016-01-01

    Unimode metamaterials made from rotating rigid triangles are analysed mathematically for their mechanical and thermal expansion properties. It is shown that these unimode systems exhibit positive Poisson’s ratios irrespective of size, shape and angle of aperture, with the Poisson’s ratio exhibiting giant values for certain conformations. When the Poisson’s ratio in one loading direction is larger than +1, the systems were found to exhibit the anomalous property of negative linear compressibility along this direction, that is, the systems expand in this direction when hydrostatically compressed. Also discussed are the thermal expansion properties of these systems under the assumption that the units exhibit increased rotational agitation once subjected to an increase in temperature. The effect of the geometric parameters on the aforementioned thermo-mechanical properties of the system, are discussed, with the aim of identifying negative behaviour. (paper)

  9. CO_2-assisted compression-adsorption hybrid for cooling and desalination

    International Nuclear Information System (INIS)

    Ali, Syed Muztuza; Chakraborty, Anutosh; Leong, Kai Choong

    2017-01-01

    Highlights: • Amalgamation of vapour compression and adsorption. • Thermodynamic frameworks of compression-adsorption hybrid. • 60% improvement in COP as compared with conventional CO_2 cooling system. • Energy recovery from CO_2 is used for cooling and desalination. • Energy from gas cooler accelerates the desalination process. - Abstract: This paper presents a novel compression-adsorption hybrid that symbiotically combines adsorption and CO_2 compression cooling devices. The seemingly low efficiency of each cycle individually is overcome by an amalgamation with the other. Hence, both heat and water vapour refrigerant mass are recovered for continuous cooling and desalination. Two different configurations are presented. The first configuration deals with a two-stage heat recovery system. At the first stage, heat is recovered from the compressed carbon dioxide to drive the adsorption device. The second stage heat recovery system internally exchanges heat between the low pressure and high pressure refrigerants of the CO_2 cycle. The second configuration is proposed with an additional third-stage heat recovery from the gas cooler to the high pressure evaporator of the adsorption cycle. The water vapour mass is recovered from bed-to-bed adsorption at relatively higher pressure. A detailed thermodynamic framework is presented to simulate the performances in terms of COP (coefficient of performance), SCP (specific cooling power), SDWP (specific daily water production), PR (performance ratio) and OCR (overall conversion ratio). It is found that the overall COP is improved by more than 60% as compared to the conventional CO_2 cycle, and in addition, the system generates 12.7 m"3 of desalinated water per tonne of silica gel per day as extra benefits. Furthermore, both the heat and mass recoveries improve the overall conversion ratio, which is almost double as compared to the conventional CO_2 cycle.

  10. A real-time ECG data compression and transmission algorithm for an e-health device.

    Science.gov (United States)

    Lee, SangJoon; Kim, Jungkuk; Lee, Myoungho

    2011-09-01

    This paper introduces a real-time data compression and transmission algorithm between e-health terminals for a periodic ECGsignal. The proposed algorithm consists of five compression procedures and four reconstruction procedures. In order to evaluate the performance of the proposed algorithm, the algorithm was applied to all 48 recordings of MIT-BIH arrhythmia database, and the compress ratio (CR), percent root mean square difference (PRD), percent root mean square difference normalized (PRDN), rms, SNR, and quality score (QS) values were obtained. The result showed that the CR was 27.9:1 and the PRD was 2.93 on average for all 48 data instances with a 15% window size. In addition, the performance of the algorithm was compared to those of similar algorithms introduced recently by others. It was found that the proposed algorithm showed clearly superior performance in all 48 data instances at a compression ratio lower than 15:1, whereas it showed similar or slightly inferior PRD performance for a data compression ratio higher than 20:1. In light of the fact that the similarity with the original data becomes meaningless when the PRD is higher than 2, the proposed algorithm shows significantly better performance compared to the performance levels of other algorithms. Moreover, because the algorithm can compress and transmit data in real time, it can be served as an optimal biosignal data transmission method for limited bandwidth communication between e-health devices.

  11. The FBI compression standard for digitized fingerprint images

    Energy Technology Data Exchange (ETDEWEB)

    Brislawn, C.M.; Bradley, J.N. [Los Alamos National Lab., NM (United States); Onyshczak, R.J. [National Inst. of Standards and Technology, Gaithersburg, MD (United States); Hopper, T. [Federal Bureau of Investigation, Washington, DC (United States)

    1996-10-01

    The FBI has formulated national standards for digitization and compression of gray-scale fingerprint images. The compression algorithm for the digitized images is based on adaptive uniform scalar quantization of a discrete wavelet transform subband decomposition, a technique referred to as the wavelet/scalar quantization method. The algorithm produces archival-quality images at compression ratios of around 15 to 1 and will allow the current database of paper fingerprint cards to be replaced by digital imagery. A compliance testing program is also being implemented to ensure high standards of image quality and interchangeability of data between different implementations. We will review the current status of the FBI standard, including the compliance testing process and the details of the first-generation encoder.

  12. Effect of tension and compression reinforcements on the serviceability of HSC beams with relatively small shear span to depth ratio

    International Nuclear Information System (INIS)

    Maghsoudi, A.A.; Akbarzadeh, B.H.

    2007-01-01

    To investigate the serviceability performance of High-Strength Concrete (HSC) beams, 12 beams (L=2m, b=0.2m, h=0.3m and shear span to depth ratio of 1.8) with different ratios of p and p' (percentage of tensile and compressive steel) were cast and tested under bending. During the test, concrete and steel strains, deflections and crack widths were measured at different locations along each beam. Based on experimental readings and observations, the cracked moment of inertia (Icr) of HSC beams was determined and the results were compared with some selective theoretical methods. Also, the flexural crack widths of the beams were measured and the applicability of ACI, BS and CSA code for normal strength concrete (NSC) was verified for HSC beams tested. The experimental (Icr) exp values of HSC beams were lower than the theoretical (Icr) th values from different codes. It was concluded that the serviceability and post serviceability performance of reinforced concrete structures can be improved using high strength concrete. In general, for almost all HSC tested beams at three crack width (0.1, 0.2, 0.3 mm); the use of ACI equation led to predict 50% of the crack width conservatively (the ratio of ((wcr) th / (wcr) exp) is greater than unity) but the results of the BS equation are conservative while compare to the ACI equation. The use of the CSA equation for the beams of higher and lower reinforcement ratio caused a more conservative and a closer value respectively, to limiting values of CSA. The deflection at initial steel horizontal yield plateau is less than 9 mm which is a sign of excellent deflection performance of HSC beams. (author)

  13. Dataset on predictive compressive strength model for self-compacting concrete.

    Science.gov (United States)

    Ofuyatan, O M; Edeki, S O

    2018-04-01

    The determination of compressive strength is affected by many variables such as the water cement (WC) ratio, the superplasticizer (SP), the aggregate combination, and the binder combination. In this dataset article, 7, 28, and 90-day compressive strength models are derived using statistical analysis. The response surface methodology is used toinvestigate the effect of the parameters: Varying percentages of ash, cement, WC, and SP on hardened properties-compressive strengthat 7,28 and 90 days. Thelevels of independent parameters are determinedbased on preliminary experiments. The experimental values for compressive strengthat 7, 28 and 90 days and modulus of elasticity underdifferent treatment conditions are also discussed and presented.These dataset can effectively be used for modelling and prediction in concrete production settings.

  14. The surface compression of nuclei in relativistic mean-field approach

    International Nuclear Information System (INIS)

    Sharma, M.M.

    1991-01-01

    The surface compression properties of nuclei have been studied in the framework of the relativistic non-linear σ-ω model. Using the Thomas-Fermi approximation for semi-infinite nuclear matter, it is shown that by varying the σ-meson mass one can change the surface compression as relative to the bulk compression. This fact is in contrast with the known properties of the phenomenological Skyrme interactions, where the ratio of the surface to the bulk incompressibility (-K S /K V ) is nearly 1 in the scaling mode of compression. The results suggest that the relativistic mean-field model may provide an interaction with the essential ingredients different from those of the Skyrme interactions. (author) 23 refs., 2 figs., 1 tab

  15. Performance evaluation of breast image compression techniques

    International Nuclear Information System (INIS)

    Anastassopoulos, G.; Lymberopoulos, D.; Panayiotakis, G.; Bezerianos, A.

    1994-01-01

    Novel diagnosis orienting tele working systems manipulate, store, and process medical data through real time communication - conferencing schemes. One of the most important factors affecting the performance of these systems is image handling. Compression algorithms can be applied to the medical images, in order to minimize : a) the volume of data to be stored in the database, b) the demanded bandwidth from the network, c) the transmission costs, and to minimize the speed of the transmitted data. In this paper an estimation of all the factors of the process that affect the presentation of breast images is made, from the time the images are produced from a modality, till the compressed images are stored, or transmitted in a Broadband network (e.g. B-ISDN). The images used were scanned images of the TOR(MAX) Leeds breast phantom, as well as typical breast images. A comparison of seven compression techniques has been done, based on objective criteria such as Mean Square Error (MSE), resolution, contrast, etc. The user can choose the appropriate compression ratio in order to achieve the desired image quality. (authors)

  16. models for predicting compressive strength and water absorption

    African Journals Online (AJOL)

    user

    presents a mathematical model for predicting the compressive strength and water absorption of laterite-quarry dust cement block using ... building and construction of new infrastructure and .... In (6), R is a vector containing the real ratios of the.

  17. Contributions in compression of 3D medical images and 2D images; Contributions en compression d'images medicales 3D et d'images naturelles 2D

    Energy Technology Data Exchange (ETDEWEB)

    Gaudeau, Y

    2006-12-15

    The huge amounts of volumetric data generated by current medical imaging techniques in the context of an increasing demand for long term archiving solutions, as well as the rapid development of distant radiology make the use of compression inevitable. Indeed, if the medical community has sided until now with compression without losses, most of applications suffer from compression ratios which are too low with this kind of compression. In this context, compression with acceptable losses could be the most appropriate answer. So, we propose a new loss coding scheme based on 3D (3 dimensional) Wavelet Transform and Dead Zone Lattice Vector Quantization 3D (DZLVQ) for medical images. Our algorithm has been evaluated on several computerized tomography (CT) and magnetic resonance image volumes. The main contribution of this work is the design of a multidimensional dead zone which enables to take into account correlations between neighbouring elementary volumes. At high compression ratios, we show that it can out-perform visually and numerically the best existing methods. These promising results are confirmed on head CT by two medical patricians. The second contribution of this document assesses the effect with-loss image compression on CAD (Computer-Aided Decision) detection performance of solid lung nodules. This work on 120 significant lungs images shows that detection did not suffer until 48:1 compression and still was robust at 96:1. The last contribution consists in the complexity reduction of our compression scheme. The first allocation dedicated to 2D DZLVQ uses an exponential of the rate-distortion (R-D) functions. The second allocation for 2D and 3D medical images is based on block statistical model to estimate the R-D curves. These R-D models are based on the joint distribution of wavelet vectors using a multidimensional mixture of generalized Gaussian (MMGG) densities. (author)

  18. On the data compression at filmless readout of the streamer chamber information

    International Nuclear Information System (INIS)

    Bajla, I.; Ososkov, G.A.; Prikhod'ko, V.I.

    1980-01-01

    It is supposed that the system of filmless detecting and processing the visual information from ''RISK'' streamer chamber will comprise the effective on-line data compression algorithm. The role of the basic methodological principles of chamber image film processing in Righ Energy Physics for building up such system is analysed. On the basis of this analysis the main requirements are formulated that have to be fulfilled by the compression algorithm. The most important requirement consists in securing the possibility of the input data reprocessing, if problems in the off-line recognition occur. Using a vector system representation of primary data, the on-line data compression philosophy is proposed that embodies the following three principles: universality, parallelism and input data reconstructibility. Excluding of the recognition procedure from the on-line compression algorithm causes the compression factor reduction. The hierarchic structure of the compression algorithm consisting of (1) sorting, (2) filtering, (3) compression for an additional increasing of the compression ratio is proposed

  19. Effect of deformation ratios on grain alignment and magnetic properties of hot pressing/hot deformation Nd-Fe-B magnets

    Science.gov (United States)

    Guo, Zhaohui; Li, Mengyu; Wang, Junming; Jing, Zheng; Yue, Ming; Zhu, Minggang; Li, Wei

    2018-05-01

    The magnetic properties, microstructure and orientation degrees of hot pressing magnet and hot deformation Nd-Fe-B magnets with different deformation ratios have been investigated in this paper. The remanence (Br) and maximum magnetic energy product ((BH)max) were enhanced gradually with the deformation ratio increasing from 0% to 70%, whereas the coercivity (HCj) decreased. The scanning electron microscopy (SEM) images of fractured surfaces parallel to the pressure direction during hot deformation show that the grains tend to extend perpendicularly to the c-axes of Nd2Fe14B grains under the pressure, and the aspect ratios of the grains increase with the increase of deformation ratio. Besides, the compression stress induces the long axis of grains to rotate and the angle (θ) between c-axis and pressure direction decreases. The X-ray diffraction (XRD) patterns reveal that orientation degree improves with the increase of deformation ratio, agreeing well with the SEM results. The hot deformation magnet with a deformation ratio of 70% has the best Br and (BH)max, and the magnetic properties are as followed: Br=1.40 T, HCj=10.73 kOe, (BH)max=42.30 MGOe.

  20. A bioinspired study on the compressive resistance of helicoidal fibre structures.

    Science.gov (United States)

    Tan, Ting; Ribbans, Brian

    2017-10-01

    Helicoidal fibre structures are widely observed in natural materials. In this paper, an integrated experimental and analytical approach was used to investigate the compressive resistance of helicoidal fibre structures. First, helicoidal fibre-reinforced composites were created using three-dimensionally printed helicoids and polymeric matrices, including plain, ring-reinforced and helix-reinforced helicoids. Then, load-displacement curves under monotonic compression tests were collected to measure the compressive strengths of helicoidal fibre composites. Fractographic characterization was performed using an X-ray microtomographer and scanning electron microscope, through which crack propagations in helicoidal structures were illustrated. Finally, mathematical modelling was performed to reveal the essential fibre architectures in the compressive resistance of helicoidal fibre structures. This work reveals that fibre-matrix ratios, helix pitch angles and interlayer rotary angles are critical to the compressive resistance of helicoidal structures.

  1. Experimental Investigation of Compression with Fixed-length Code Quantization for Convergent Access-Mobile Networks

    OpenAIRE

    L. Anet Neto; P. Chanclou; Z. Tayq; B. C. Zabada; F. Saliou; G. Simon

    2016-01-01

    We experimentally assess compression with scalar and vector quantization for fixed-mobile convergent networks. We show that four-dimensional vector quantization allows 73% compression compliant with 3GPP EVM recommendations for transmissions over 25 km SSMF with 1:16 split ratio.

  2. Analysis of the Optimum Usage of Slag for the Compressive Strength of Concrete.

    Science.gov (United States)

    Lee, Han-Seung; Wang, Xiao-Yong; Zhang, Li-Na; Koh, Kyung-Taek

    2015-03-18

    Ground granulated blast furnace slag is widely used as a mineral admixture to replace partial Portland cement in the concrete industry. As the amount of slag increases, the late-age compressive strength of concrete mixtures increases. However, after an optimum point, any further increase in slag does not improve the late-age compressive strength. This optimum replacement ratio of slag is a crucial factor for its efficient use in the concrete industry. This paper proposes a numerical procedure to analyze the optimum usage of slag for the compressive strength of concrete. This numerical procedure starts with a blended hydration model that simulates cement hydration, slag reaction, and interactions between cement hydration and slag reaction. The amount of calcium silicate hydrate (CSH) is calculated considering the contributions from cement hydration and slag reaction. Then, by using the CSH contents, the compressive strength of the slag-blended concrete is evaluated. Finally, based on the parameter analysis of the compressive strength development of concrete with different slag inclusions, the optimum usage of slag in concrete mixtures is determined to be approximately 40% of the total binder content. The proposed model is verified through experimental results of the compressive strength of slag-blended concrete with different water-to-binder ratios and different slag inclusions.

  3. Variable valve timing in a homogenous charge compression ignition engine

    Science.gov (United States)

    Lawrence, Keith E.; Faletti, James J.; Funke, Steven J.; Maloney, Ronald P.

    2004-08-03

    The present invention relates generally to the field of homogenous charge compression ignition engines, in which fuel is injected when the cylinder piston is relatively close to the bottom dead center position for its compression stroke. The fuel mixes with air in the cylinder during the compression stroke to create a relatively lean homogeneous mixture that preferably ignites when the piston is relatively close to the top dead center position. However, if the ignition event occurs either earlier or later than desired, lowered performance, engine misfire, or even engine damage, can result. The present invention utilizes internal exhaust gas recirculation and/or compression ratio control to control the timing of ignition events and combustion duration in homogeneous charge compression ignition engines. Thus, at least one electro-hydraulic assist actuator is provided that is capable of mechanically engaging at least one cam actuated intake and/or exhaust valve.

  4. The Basic Principles and Methods of the System Approach to Compression of Telemetry Data

    Science.gov (United States)

    Levenets, A. V.

    2018-01-01

    The task of data compressing of measurement data is still urgent for information-measurement systems. In paper the basic principles necessary for designing of highly effective systems of compression of telemetric information are offered. A basis of the offered principles is representation of a telemetric frame as whole information space where we can find of existing correlation. The methods of data transformation and compressing algorithms realizing the offered principles are described. The compression ratio for offered compression algorithm is about 1.8 times higher, than for a classic algorithm. Thus, results of a research of methods and algorithms showing their good perspectives.

  5. Lossless compression of hyperspectral images with pre-byte processing and intra-bands correlation

    OpenAIRE

    Sarinova, Assiya; Zamyatin, Alexander; Cabral, Pedro

    2015-01-01

    This paper considers an approach to the compression of hyperspectral remote sensing data by an original multistage algorithm to increase the compression ratio using auxiliary data processing with its byte representation as well as with its intra-bands correlation. A set of the experimental results for the proposed approach of effectiveness estimation and its comparison with the well-known universal and specialized compression algorithms is presented. Este documento se refiere a la compresi...

  6. Uniaxial Negative Thermal Expansion, Negative Linear Compressibility, and Negative Poisson's Ratio Induced by Specific Topology in Zn[Au(CN)2]2.

    Science.gov (United States)

    Wang, Lei; Luo, Hubin; Deng, Shenghua; Sun, Ying; Wang, Cong

    2017-12-18

    The well-known idea of "structure determines properties" can be understood profoundly in the case of hexagonal zinc dicyanometalate. Using density functional theory (DFT) calculations, we show the uniaxial negative thermal expansion (NTE) and negative linear compressibility (NLC) properties of Zn[Au(CN) 2 ] 2 . The temperature dependence of phonon frequencies within the quasi-harmonic approximation (QHA) is investigated. The abnormal phonon hardening (frequency increase on heating) is detected in the ranges of 0-225, 320-345, and 410-430 cm -1 , which can be indicative of the unusual physical properties of Zn[Au(CN) 2 ] 2 . Due to the significance of low-energy phonon frequencies in Zn[Au(CN) 2 ] 2 , in this work, the corresponding vibrational mode of the lowest-frequency optical phonon at the zone center is analyzed. The specific topology of a springlike framework that will produce the effects of a compressed spring on heating and an extended spring under hydrostatic pressure is identified and leads to the coexistence of uniaxial-NTE and NLC behaviors in Zn[Au(CN) 2 ] 2 . The distinguishing phonon group velocity along the a axis and c axis facilitates different responses for both the axes under temperature and hydrostatic pressure field. Through an analysis and visualization of the spatial dependence of elastic tensors, it is found that a negative Poisson's ratio (NPR) is presented in all projection planes due to the specific topology.

  7. Contributions in compression of 3D medical images and 2D images

    International Nuclear Information System (INIS)

    Gaudeau, Y.

    2006-12-01

    The huge amounts of volumetric data generated by current medical imaging techniques in the context of an increasing demand for long term archiving solutions, as well as the rapid development of distant radiology make the use of compression inevitable. Indeed, if the medical community has sided until now with compression without losses, most of applications suffer from compression ratios which are too low with this kind of compression. In this context, compression with acceptable losses could be the most appropriate answer. So, we propose a new loss coding scheme based on 3D (3 dimensional) Wavelet Transform and Dead Zone Lattice Vector Quantization 3D (DZLVQ) for medical images. Our algorithm has been evaluated on several computerized tomography (CT) and magnetic resonance image volumes. The main contribution of this work is the design of a multidimensional dead zone which enables to take into account correlations between neighbouring elementary volumes. At high compression ratios, we show that it can out-perform visually and numerically the best existing methods. These promising results are confirmed on head CT by two medical patricians. The second contribution of this document assesses the effect with-loss image compression on CAD (Computer-Aided Decision) detection performance of solid lung nodules. This work on 120 significant lungs images shows that detection did not suffer until 48:1 compression and still was robust at 96:1. The last contribution consists in the complexity reduction of our compression scheme. The first allocation dedicated to 2D DZLVQ uses an exponential of the rate-distortion (R-D) functions. The second allocation for 2D and 3D medical images is based on block statistical model to estimate the R-D curves. These R-D models are based on the joint distribution of wavelet vectors using a multidimensional mixture of generalized Gaussian (MMGG) densities. (author)

  8. Novel 3D Compression Methods for Geometry, Connectivity and Texture

    Science.gov (United States)

    Siddeq, M. M.; Rodrigues, M. A.

    2016-06-01

    A large number of applications in medical visualization, games, engineering design, entertainment, heritage, e-commerce and so on require the transmission of 3D models over the Internet or over local networks. 3D data compression is an important requirement for fast data storage, access and transmission within bandwidth limitations. The Wavefront OBJ (object) file format is commonly used to share models due to its clear simple design. Normally each OBJ file contains a large amount of data (e.g. vertices and triangulated faces, normals, texture coordinates and other parameters) describing the mesh surface. In this paper we introduce a new method to compress geometry, connectivity and texture coordinates by a novel Geometry Minimization Algorithm (GM-Algorithm) in connection with arithmetic coding. First, each vertex ( x, y, z) coordinates are encoded to a single value by the GM-Algorithm. Second, triangle faces are encoded by computing the differences between two adjacent vertex locations, which are compressed by arithmetic coding together with texture coordinates. We demonstrate the method on large data sets achieving compression ratios between 87 and 99 % without reduction in the number of reconstructed vertices and triangle faces. The decompression step is based on a Parallel Fast Matching Search Algorithm (Parallel-FMS) to recover the structure of the 3D mesh. A comparative analysis of compression ratios is provided with a number of commonly used 3D file formats such as VRML, OpenCTM and STL highlighting the performance and effectiveness of the proposed method.

  9. The Effects of Different Curing Methods on the Compressive Strength of Terracrete

    Directory of Open Access Journals (Sweden)

    O. Alake

    2009-01-01

    Full Text Available This research evaluated the effects of different curing methods on the compressive strength of terracrete. Several tests that included sieve analysis were carried out on constituents of terracrete (granite and laterite to determine their particle size distribution and performance criteria tests to determine compressive strength of terracrete cubes for 7 to 35 days of curing. Sand, foam-soaked, tank and open methods of curing were used and the study was carried out under controlled temperature. Sixty cubes of 100 × 100 × 100mm sized cubes were cast using a mix ratio of 1 part of cement, 1½ part of latrite, and 3 part of coarse aggregate (granite proportioned by weight and water – cement ratio of 0.62. The result of the various compressive strengths of the cubes showed that out of the four curing methods, open method of curing was the best because the cubes gained the highest average compressive strength of 10.3N/mm2 by the 35th day.

  10. Comparison of compressive strength of paving block with a mixture of Sinabung ash and paving block with a mixture of lime

    Science.gov (United States)

    Hastuty, I. P.; Sembiringand Nursyamsi, I. S.

    2018-02-01

    Paving block is one of the material used as the top layer of road structure besides asphalt and concrete paving block is usually made of mixed material such as Portland cement or other adhesive material, water, and aggregate. People nowadays prefer paving block compared to other pavement such as concrete or asphalt. Their interest toward the use of paving block increase because paving block is an eco-friendly construction which is very useful in helping soil water conservation, can be done faster, has easier installation and maintenance, has a variety of shades that increase the aesthetic value, also costs cheaper than the other. Preparation of the specimens with a mixture of Sinabung ash and a mixture of Sinabung ash and lime are implemented with a mixture ratio of cement : sand : stone ash is 1: 2 : 3. The mixture is used as a substitute material by reducing the percentage amount of the weight of the cement with the composition ratio variation based on the comparative volume category of the paving block aggregate, i.e. 0%, 5%, 10%, 15%, 20%, and 25%. The result of this research shows that the maximum compressive strength value is 42.27 Mpa, it was obtained from a mixture of 10% lime with curing time 28 days. The maximum compressive strength value which is obtained from the mixture of sinabung ash is 41.60 Mpa, it was obtained from a mixture of 15% sinabung ash. From the use of these two materials, paving blocks produced are classified as paving blocks quality A and B (350 - 400 Mpa) in accordance to specification from SNI 03-0691-1996.

  11. Magnetic pulse compression circuits for plasma devices

    Energy Technology Data Exchange (ETDEWEB)

    Georgescu, N; Zoita, V; Presura, R [Inst. of Physics and Technology of Radiation Devices, Bucharest (Romania)

    1997-12-31

    Two magnetic pulse compression circuits (MPCC), for two different plasma devices, are presented. The first is a 20 J/pulse, 3-stage circuit designed to trigger a low pressure discharge. The circuit has 16-18 kV working voltage, and 200 nF in each stage. The saturable inductors are realized with toroidal 25 {mu}m strip-wound cores, made of a Fe-Ni alloy, with 1.5 T saturation induction. The total magnetic volume is around 290 cm{sup 3}. By using a 25 kV/1 A thyratron as a primary switch, the time compression is from 3.5 {mu}s to 450 ns, in a short-circuit load. The second magnetic pulser is a 200 J/pulse circuit, designed to drive a high average power plasma focus soft X-ray source, for X-ray microlithography as the main application. The 3-stage pulser should supply a maximum load current of 100 kA with a rise-time of 250 - 300 ns. The maximum pulse voltage applied on the plasma discharge chamber is around 20 - 25 kV. The three saturable inductors in the circuit are made of toroidal strip-wound cores with METGLAS 2605 CO amorphous alloy as the magnetic material. The total, optimized mass of the magnetic material is 34 kg. The maximum repetition rate is limited at 100 Hz by the thyratron used in the first stage of the circuit, the driver supplying to the load about 20 kW average power. (author). 1 tab., 3 figs., 3 refs.

  12. Measuring Poisson Ratios at Low Temperatures

    Science.gov (United States)

    Boozon, R. S.; Shepic, J. A.

    1987-01-01

    Simple extensometer ring measures bulges of specimens in compression. New method of measuring Poisson's ratio used on brittle ceramic materials at cryogenic temperatures. Extensometer ring encircles cylindrical specimen. Four strain gauges connected in fully active Wheatstone bridge self-temperature-compensating. Used at temperatures as low as liquid helium.

  13. Performance evaluation of emerging JPEGXR compression standard for medical images

    International Nuclear Information System (INIS)

    Basit, M.A.

    2012-01-01

    Medical images require loss less compression as a small error due to lossy compression may be considered as a diagnostic error. JPEG XR is the latest image compression standard designed for variety of applications and has a support for lossy and loss less modes. This paper provides in-depth performance evaluation of latest JPEGXR with existing image coding standards for medical images using loss less compression. Various medical images are used for evaluation and ten images of each organ are tested. Performance of JPEGXR is compared with JPEG2000 and JPEGLS using mean square error, peak signal to noise ratio, mean absolute error and structural similarity index. JPEGXR shows improvement of 20.73 dB and 5.98 dB over JPEGLS and JPEG2000 respectively for various test images used in experimentation. (author)

  14. Formation of nanosecond SBS-compressed pulses for pumping an ultra-high power parametric amplifier

    Science.gov (United States)

    Kuz’min, A. A.; Kulagin, O. V.; Rodchenkov, V. I.

    2018-04-01

    Compression of pulsed Nd : glass laser radiation under stimulated Brillouin scattering (SBS) in perfluorooctane is investigated. Compression of 16-ns pulses at a beam diameter of 30 mm is implemented. The maximum compression coefficient is 28 in the optimal range of laser pulse energies from 2 to 4 J. The Stokes pulse power exceeds that of the initial laser pulse by a factor of about 11.5. The Stokes pulse jitter (fluctuations of the Stokes pulse exit time from the compressor) is studied. The rms spread of these fluctuations is found to be 0.85 ns.

  15. Kinetic theory of plasma adiabatic major radius compression in tokamaks

    International Nuclear Information System (INIS)

    Gorelenkova, M.V.; Gorelenkov, N.N.; Azizov, E.A.; Romannikov, A.N.; Herrmann, H.W.

    1998-01-01

    In order to understand the individual charged particle behavior as well as plasma macroparameters (temperature, density, etc.) during the adiabatic major radius compression (R-compression) in a tokamak, a kinetic approach is used. The perpendicular electric field from the Ohm close-quote s law at zero resistivity is made use of in order to describe particle motion during the R-compression. Expressions for both passing and trapped particle energy and pitch angle change are derived for a plasma with high aspect ratio and circular magnetic surfaces. The particle behavior near the passing trapped boundary during the compression is studied to simulate the compression-induced collisional losses of alpha particles. Qualitative agreement is obtained with the alphas loss measurements in deuterium-tritium (D-T) experiments in the Tokamak Fusion Test Reactor (TFTR) [World Survey of Activities in Controlled Fusion Research [Nucl. Fusion special supplement (1991)] (International Atomic Energy Agency, Vienna, 1991)]. The plasma macroparameters evolution at the R-compression is calculated by solving the gyroaveraged drift kinetic equation. copyright 1998 American Institute of Physics

  16. Face compression yield strength of the copper-Inconel composite specimen

    International Nuclear Information System (INIS)

    Horie, T.

    1987-05-01

    A new equation for the face compression yield strength of copper-Inconel composite material has been derived. Elastic-plastic finite element analyses were also made for composite specimens with various aspect ratios to examine the edge effect of the specimen. According to the results of both the new equation and the analyses, the face compression yield strength of the composite should be decreased by about 25% from the value obtained with Becker's equation

  17. Behavior of quenched and tempered steels under high strain rate compression loading

    International Nuclear Information System (INIS)

    Meyer, L.W.; Seifert, K.; Abdel-Malek, S.

    1997-01-01

    Two quenched and tempered steels were tested under compression loading at strain rates of ε = 2.10 2 s -1 and ε = 2.10 3 s -1 . By applying the thermal activation theory, the flow stress at very high strain rates of 10 5 to 10 6 s -1 is derived from low temperature and high strain rate tests. Dynamic true stress - true strain behaviour presents, that stress increases with increasing strain until a maximum, then it decreases. Because of the adiabatic process under dynamic loading the maximum flow stress will occur at a lower strain if the strain rate is increased. Considering strain rate, strain hardening, strain rate hardening and strain softening, a constitutive equation with different additive terms is successfully used to describe the behaviour of material under dynamic compression loading. Results are compared with other models of constitutive equations. (orig.)

  18. Nitro Stretch Probing of a Single Molecular Layer to Monitor Shock Compression with Picosecond Time-Resolution

    Science.gov (United States)

    Berg, Christopher; Lagutchev, Alexei; Fu, Yuanxi; Dlott, Dana

    2011-06-01

    To obtain maximum possible temporal resolution, laser-driven shock compression of a molecular monolayer was studied using vibrational spectroscopy. The stretching transitions of nitro groups bound to aromatic rings was monitored using a nonlinear coherent infrared spectroscopy termed sum-frequency generation, which produced high-quality signals from this very thin layer. To overcome the shock opacity problem, a novel polymer overcoat method allowed us to make the observation window (witness plate) a few micrometers thick. The high signal-to-noise ratios (>100:1) obtained via this spectroscopy allowed us to study detailed behavior of the shocked molecules. To help interpret these vibrational spectra, additional spectra were obtained under conditions of static pressures up to 10 GPa and static temperatures up to 1000 C. Consequently, this experiment represents a significant step in resolving molecular dynamics during shock compression and unloading with both high spatial and temporal resolution. Supported by the Stewardship Sciences Academic Alliance Program from the Carnegie-DOE Alliance Center under grant number DOE CIW 4-3253-13 and the US Air Force Office of Scientific Research under award number FAA9550-09-1-0163.

  19. Intermittent pneumatic compression of legs increases microcirculation in distant skeletal muscle.

    Science.gov (United States)

    Liu, K; Chen, L E; Seaber, A V; Johnson, G W; Urbaniak, J R

    1999-01-01

    Intermittent pneumatic compression has been established as a method of clinically preventing deep vein thrombosis, but the mechanism has not been documented. This study observed the effects of intermittent pneumatic compression of legs on the microcirculation of distant skeletal muscle. The cremaster muscles of 80 male rats were exposed, a specially designed intermittent pneumatic-compression device was applied to both legs for 60 minutes, and the microcirculation of the muscles was assessed by measurement of the vessel diameter in three categories (10-20, 21-40, and 41-70 microm) for 120 minutes. The results showed significant vasodilation in arterial and venous vessels during the application of intermittent pneumatic compression, which disappeared after termination of the compression. The vasodilation reached a maximum 30 minutes after initiation of the compression and could be completely blocked by an inhibitor of nitric oxide synthase, NG-monomethyl-L-arginine (10 micromol/min). A 120-minute infusion of NG-monomethyl-L-arginine, beginning coincident with 60 minutes of intermittent pneumatic compression, resulted in a significant decrease in arterial diameter that remained at almost the same level after termination of the compression. The magnitude of the decrease in diameter in the group treated with intermittent pneumatic compression and NG-monomethyl-L-arginine was comparable with that in the group treated with NG-monomethyl-L-arginine alone. The results imply that the production of nitric oxide is involved in the positive influence of intermittent pneumatic compression on circulation. It is postulated that the rapid increase in venous velocity induced by intermittent pneumatic compression produces strong shear stress on the vascular endothelium, which stimulates an increased release of nitric oxide and thereby causes systemic vasodilation.

  20. INCREASE OF STABILITY AT JPEG COMPRESSION OF THE DIGITAL WATERMARKS EMBEDDED IN STILL IMAGES

    Directory of Open Access Journals (Sweden)

    V. A. Batura

    2015-07-01

    Full Text Available Subject of Research. The paper deals with creation and research of method for increasing stability at JPEG compressing of digital watermarks embedded in still images. Method. A new algorithm of digital watermarking for still images which embeds digital watermark into a still image via modification of frequency coefficients for Hadamard discrete transformation is presented. The choice of frequency coefficients for embedding of a digital watermark is based on existence of sharp change of their values after modification at the maximum compression of JPEG. The choice of blocks of pixels for embedding is based on the value of their entropy. The new algorithm was subjected to the analysis of resistance to an image compression, noising, filtration, change of size, color and histogram equalization. Elham algorithm possessing a good resistance to JPEG compression was chosen for comparative analysis. Nine gray-scale images were selected as objects for protection. Obscurity of the distortions embedded in them was defined on the basis of the peak value of a signal to noise ratio which should be not lower than 43 dB for obscurity of the brought distortions. Resistibility of embedded watermark was determined by the Pearson correlation coefficient, which value should not be below 0.5 for the minimum allowed stability. The algorithm of computing experiment comprises: watermark embedding into each test image by the new algorithm and Elham algorithm; introducing distortions to the object of protection; extracting of embedded information with its subsequent comparison with the original. Parameters of the algorithms were chosen so as to provide approximately the same level of distortions introduced into the images. Main Results. The method of preliminary processing of digital watermark presented in the paper makes it possible to reduce significantly the volume of information embedded in the still image. The results of numerical experiment have shown that the

  1. Active RF Pulse Compression Using An Electrically Controlled Semiconductor Switch

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jiquan; Tantawi, Sami; /SLAC

    2007-01-10

    First we review the theory of active pulse compression systems using resonant delay lines. Then we describe the design of an electrically controlled semiconductor active switch. The switch comprises an active window and an overmoded waveguide three-port network. The active window is based on a four-inch silicon wafer which has 960 PIN diodes. These are spatially combined in an overmoded waveguide. We describe the philosophy and design methodology for the three-port network and the active window. We then present the results of using this device to compress 11.4 GHz RF signals with high compression ratios. We show how the system can be used with amplifier like sources, in which one can change the phase of the source by manipulating the input to the source. We also show how the active switch can be used to compress a pulse from an oscillator like sources, which is not possible with passive pulse compression systems.

  2. Toward a Better Compression for DNA Sequences Using Huffman Encoding.

    Science.gov (United States)

    Al-Okaily, Anas; Almarri, Badar; Al Yami, Sultan; Huang, Chun-Hsi

    2017-04-01

    Due to the significant amount of DNA data that are being generated by next-generation sequencing machines for genomes of lengths ranging from megabases to gigabases, there is an increasing need to compress such data to a less space and a faster transmission. Different implementations of Huffman encoding incorporating the characteristics of DNA sequences prove to better compress DNA data. These implementations center on the concepts of selecting frequent repeats so as to force a skewed Huffman tree, as well as the construction of multiple Huffman trees when encoding. The implementations demonstrate improvements on the compression ratios for five genomes with lengths ranging from 5 to 50 Mbp, compared with the standard Huffman tree algorithm. The research hence suggests an improvement on all such DNA sequence compression algorithms that use the conventional Huffman encoding. The research suggests an improvement on all DNA sequence compression algorithms that use the conventional Huffman encoding. Accompanying software is publicly available (AL-Okaily, 2016 ).

  3. Comparative data compression techniques and multi-compression results

    International Nuclear Information System (INIS)

    Hasan, M R; Ibrahimy, M I; Motakabber, S M A; Ferdaus, M M; Khan, M N H

    2013-01-01

    Data compression is very necessary in business data processing, because of the cost savings that it offers and the large volume of data manipulated in many business applications. It is a method or system for transmitting a digital image (i.e., an array of pixels) from a digital data source to a digital data receiver. More the size of the data be smaller, it provides better transmission speed and saves time. In this communication, we always want to transmit data efficiently and noise freely. This paper will provide some compression techniques for lossless text type data compression and comparative result of multiple and single compression, that will help to find out better compression output and to develop compression algorithms

  4. Research on the compressive strength of basic magnesium salts and cyanide slag solidified body

    Science.gov (United States)

    Tu, Yubo; Han, Peiwei; Ye, Shufeng; Wei, Lianqi; Zhang, Xiaomeng; Fu, Guoyan; Yu, Bo

    2018-02-01

    The solidification of cyanide slag by using basic magnesium salts could reduce pollution and protect the environment. Experiments were carried out to investigate the effects of age, mixing amount of cyanide slag, water cement ratio and molar ratio of MgO to MgSO4 on the compressive strength of basic magnesium salts and cyanide slag solidified body in the present paper. It was found that compressive strength of solidified body increased with the increase of age, and decreased with the increase of mixing amount of cyanide slag and water cement ratio. The molar ratio of MgO to MgSO4 should be controlled in the range from 9 to 11 when the mixing amount of cyanide slag was larger than 80 mass%.

  5. Creep and creep recovery of concrete subjected to triaxial compressive stresses at elevated temperature

    International Nuclear Information System (INIS)

    Ohnuma, Hiroshi; Abe, Hirotoshi

    1979-01-01

    In order to design rationally the vessels made of prestressed concrete for nuclear power stations and to improve the accuracy of high temperature creep analysis, the Central Research Institute of Electric Power Industry had carried out the proving experiments with scale models. In order to improve the accuracy of analysis, it is important to grasp the creep behavior of the concrete subjected to triaxial compressive stresses at high temperature as the basic property of concrete, because actual prestressed concrete vessels are in such conditions. In this paper, the triaxial compression creep test at 60 deg. C using the concrete specimens with same mixing ratio as the scale models is reported. The compressive strength of the concrete at the age of 28 days was 406 kg/cm 2 , and the age of the concrete at the time of loading was 63 days. Creep and creep recovery were measured for 5 months and 2 months, respectively. The creep of concrete due to uniaxial compression increased with temperature rise, and the creep strain at 60 deg. C was 2.54 times as much as that at 20 deg. C. The effective Poisson's ratio in triaxial compression creep was 0.15 on the average, based on the creep strain due to uniaxial compression at 60 deg. C. The creep recovery rate in high temperature, triaxial compression creep was 33% on the average. (Kako, I.)

  6. Combined effects of cooled EGR and a higher geometric compression ratio on thermal efficiency improvement of a downsized boosted spark-ignition direct-injection engine

    International Nuclear Information System (INIS)

    Su, Jianye; Xu, Min; Li, Tie; Gao, Yi; Wang, Jiasheng

    2014-01-01

    Highlights: • Experiments for the effects of cooled EGR and two compression ratios (CR) on fuel efficiency were conducted. • The mechanism for the observed fuel efficiency behaviors by cooled EGR and high CR was clarified. • Cooled EGR offers more fuel efficiency improvement than elevating CR from 9.3 to 10.9. • Combining 18–25% cooled EGR with 10.9 CR lead to 2.1–3.5% brake thermal efficiency improvements. - Abstract: The downsized boosted spark-ignition direct-injection (SIDI) engine has proven to be one of the most promising concepts to improve vehicle fuel economy. However, the boosted engine is typically designed at a lower geometric compression ratio (CR) due to the increased knock tendency in comparison to naturally aspirated engines, limiting the potential of improving fuel economy. On the other hand, cooled exhaust gas recirculation (EGR) has drawn attention due to the potential to suppress knock and improve fuel economy. Combing the effects of boosting, increased CR and cooled EGR to further improve fuel economy within acceptable knock tolerance has been investigated using a 2.0 L downsized boosted SIDI engine over a wide range of engine operating conditions from 1000 rpm to 3000 rpm at low to high loads. To clarify the mechanism of this complicated effects, the first law of thermodynamics analysis was conducted with the inputs from GT-Power® engine simulation. Experiment results indicate that cooled EGR provides more brake thermal efficiency improvement than increasing geometric CR from 9.3 to 10.9. The benefit of brake thermal efficiency from the higher CR is limited to low load conditions. The attributes for improving brake thermal efficiency by cooled EGR include reduced heat transfer loss, reduced pumping work and increased ratio of specific heats for all the engine operating conditions, as well as higher degree of constant volume heat release only for the knock-limited high load conditions. The combined effects of 18–25% cooled EGR

  7. A discussion about maximum uranium concentration in digestion solution of U3O8 type uranium ore concentrate

    International Nuclear Information System (INIS)

    Xia Dechang; Liu Chao

    2012-01-01

    On the basis of discussing the influence of single factor on maximum uranium concentration in digestion solution,the influence degree of some factors such as U content, H 2 O content, mass ratio of P and U was compared and analyzed. The results indicate that the relationship between U content and maximum uranium concentration in digestion solution was direct ratio, while the U content increases by 1%, the maximum uranium concentration in digestion solution increases by 4.8%-5.7%. The relationship between H 2 O content and maximum uranium concentration in digestion solution was inverse ratio, the maximum uranium concentration in digestion solution decreases by 46.1-55.2 g/L while H 2 O content increases by 1%. The relationship between mass ratio of P and U and maximum uranium concentration in digestion solution was inverse ratio, the maximum uranium concentration in digestion solution decreases by 116.0-181.0 g/L while the mass ratio of P and U increase 0.1%. When U content equals 62.5% and the influence of mass ratio of P and U is no considered, the maximum uranium concentration in digestion solution equals 1 578 g/L; while mass ratio of P and U equals 0.35%, the maximum uranium concentration decreases to 716 g/L, the decreased rate is 54.6%, so the mass ratio of P and U in U 3 O 8 type uranium ore concentrate is the main controlling factor. (authors)

  8. Design and development of a digital phase ratio meter

    Energy Technology Data Exchange (ETDEWEB)

    Majee, B C [Reactor Control Division, Bhabha Atomic Research Centre, Mumbai (India); Roy, S B; Meghal, A M [Uranium Extraction Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    Uranium purification at Uranium Metal Plant is being carried out using solvent extraction process. The feed is aqueous uranyl nitrate solution with 2-4% insoluble silica particles. The solvent is tri-butyl phosphate diluted with commercial grade kerosene. Extraction is conducted in a slurry extractor equipment using compressed air as mixing and solution-interstage transferring medium. To ensure the organic continuous mode in the mixer and to avoid stable emulsion formation, organic to aqueous ratio maintained in each mixer is 10 to 12 whereas optimum extraction process requires an overall organic to aqueous ratio of 2. Therefore, a high volume of internal recirculation of organic is being arranged by the air-lift in mixers. For a smooth, continuous efficient extraction, mixer organic to aqueous ratio is a very critical parameter and it is required to be monitored periodically to take corrective actions during the operation by controlling the compressed air flow rate. Trials were conducted to select a suitable method of autocontrol of this phase ratio and a system has been designed for this purpose. (author). 3 figs., 1 tab.

  9. Analysis of target volume motion followed by induced abdominal compression in tomotherapy for prostate cancer

    International Nuclear Information System (INIS)

    Oh, Jeong Hun; Jung, Geon A; Jung, Won Seok; Jo, Jung Young; Kim, Gi Chul; Choi, Tae Kyu

    2014-01-01

    To evaluate the changes of the motion of abdominal cavity between interfraction and intrafraction by using abdominal compression for reducing abdominal motion. 60 MVCT images were obtained before and after tomotherapy from 10 prostate cancer patients over the whole radiotherapy period. Shift values ( X -lateral Y -longitudinal Z -vertical and Roll ) were measured and from it, the correlation of between interfraction set up change and intrafraction target motion was analyzed when applying abdominal compression. The motion changes of interfraction were X- average 0.65±2.32mm, Y-average 1.41±4.83mm, Z-average 0.73± 0.52mm and Roll-average 0.96±0.21mm. The motion changes of intrafraction were X-average 0.15±0.44mm, Y-average 0.13 ±0.44mm, Z-average 0.24±0.64mm and Roll- average 0.1±0.9mm. The average PTV maximum dose difference was minimum for 10% phase and maximum for 70% phase. The average Spain cord maximum dose difference was minimum for 0% phase and maximum for 50% phase. The average difference of V 20 , V 10 , V 5 of Lung show bo certain trend. Abdominal compression can minimize the motion of internal organs and patients. So it is considered to be able to get more ideal dose volume without damage of normal structures from generating margin in small in producing PTV

  10. Indentation of elastically soft and plastically compressible solids

    NARCIS (Netherlands)

    Needleman, A.; Tvergaard, V.; Van der Giessen, E.

    The effect of soft elasticity, i.e., a relatively small value of the ratio of Young's modulus to yield strength and plastic compressibility on the indentation of isotropically hardening elastic-viscoplastic solids is investigated. Calculations are carried out for indentation of a perfectly sticking

  11. EBLAST: an efficient high-compression image transformation 3. application to Internet image and video transmission

    Science.gov (United States)

    Schmalz, Mark S.; Ritter, Gerhard X.; Caimi, Frank M.

    2001-12-01

    A wide variety of digital image compression transforms developed for still imaging and broadcast video transmission are unsuitable for Internet video applications due to insufficient compression ratio, poor reconstruction fidelity, or excessive computational requirements. Examples include hierarchical transforms that require all, or large portion of, a source image to reside in memory at one time, transforms that induce significant locking effect at operationally salient compression ratios, and algorithms that require large amounts of floating-point computation. The latter constraint holds especially for video compression by small mobile imaging devices for transmission to, and compression on, platforms such as palmtop computers or personal digital assistants (PDAs). As Internet video requirements for frame rate and resolution increase to produce more detailed, less discontinuous motion sequences, a new class of compression transforms will be needed, especially for small memory models and displays such as those found on PDAs. In this, the third series of papers, we discuss the EBLAST compression transform and its application to Internet communication. Leading transforms for compression of Internet video and still imagery are reviewed and analyzed, including GIF, JPEG, AWIC (wavelet-based), wavelet packets, and SPIHT, whose performance is compared with EBLAST. Performance analysis criteria include time and space complexity and quality of the decompressed image. The latter is determined by rate-distortion data obtained from a database of realistic test images. Discussion also includes issues such as robustness of the compressed format to channel noise. EBLAST has been shown to perform superiorly to JPEG and, unlike current wavelet compression transforms, supports fast implementation on embedded processors with small memory models.

  12. Algorithm for Compressing Time-Series Data

    Science.gov (United States)

    Hawkins, S. Edward, III; Darlington, Edward Hugo

    2012-01-01

    An algorithm based on Chebyshev polynomials effects lossy compression of time-series data or other one-dimensional data streams (e.g., spectral data) that are arranged in blocks for sequential transmission. The algorithm was developed for use in transmitting data from spacecraft scientific instruments to Earth stations. In spite of its lossy nature, the algorithm preserves the information needed for scientific analysis. The algorithm is computationally simple, yet compresses data streams by factors much greater than two. The algorithm is not restricted to spacecraft or scientific uses: it is applicable to time-series data in general. The algorithm can also be applied to general multidimensional data that have been converted to time-series data, a typical example being image data acquired by raster scanning. However, unlike most prior image-data-compression algorithms, this algorithm neither depends on nor exploits the two-dimensional spatial correlations that are generally present in images. In order to understand the essence of this compression algorithm, it is necessary to understand that the net effect of this algorithm and the associated decompression algorithm is to approximate the original stream of data as a sequence of finite series of Chebyshev polynomials. For the purpose of this algorithm, a block of data or interval of time for which a Chebyshev polynomial series is fitted to the original data is denoted a fitting interval. Chebyshev approximation has two properties that make it particularly effective for compressing serial data streams with minimal loss of scientific information: The errors associated with a Chebyshev approximation are nearly uniformly distributed over the fitting interval (this is known in the art as the "equal error property"); and the maximum deviations of the fitted Chebyshev polynomial from the original data have the smallest possible values (this is known in the art as the "min-max property").

  13. Correlation of the Na2SiO3 to NaOH Ratios and Solid to Liquid Ratios to the Kedah’s Soil Strength

    Directory of Open Access Journals (Sweden)

    Nur Hamzah Hazamaah

    2016-01-01

    Full Text Available Geopolymer was used for the soil stabilization of Kedah’s soil at different ratios of solid to liquid and Na2SiO3 to NaOH in order to achieve the desired compressive strength. The geopolymerization process which produces an aluminosilicate gel was occurred due to the mixing of Kedah’s soil and fly ash with Na2SiO3 and NaOH. Soil stabilization by geopolymer was synthesized by the activation of fly ash and Kedah’s soil with Na2SiO3 and NaOH at different ratios of solid to liquid (1.5, 2.0, 2.5 and 3.0 and Na2SiO3 to NaOH (0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 at a specific constant concentration of NaOH solution of 6M. The compressive strength up to 5.12 MPa was obtained at 3.0 of solid to liquid ratio and 2.5 of Na2SiO3 to NaOH ratio in 7 days curing at room temperature.

  14. Performance evaluation of breast image compression techniques

    Energy Technology Data Exchange (ETDEWEB)

    Anastassopoulos, G; Lymberopoulos, D [Wire Communications Laboratory, Electrical Engineering Department, University of Patras, Greece (Greece); Panayiotakis, G; Bezerianos, A [Medical Physics Department, School of Medicine, University of Patras, Greece (Greece)

    1994-12-31

    Novel diagnosis orienting tele working systems manipulate, store, and process medical data through real time communication - conferencing schemes. One of the most important factors affecting the performance of these systems is image handling. Compression algorithms can be applied to the medical images, in order to minimize : a) the volume of data to be stored in the database, b) the demanded bandwidth from the network, c) the transmission costs, and to minimize the speed of the transmitted data. In this paper an estimation of all the factors of the process that affect the presentation of breast images is made, from the time the images are produced from a modality, till the compressed images are stored, or transmitted in a Broadband network (e.g. B-ISDN). The images used were scanned images of the TOR(MAX) Leeds breast phantom, as well as typical breast images. A comparison of seven compression techniques has been done, based on objective criteria such as Mean Square Error (MSE), resolution, contrast, etc. The user can choose the appropriate compression ratio in order to achieve the desired image quality. (authors). 12 refs, 4 figs.

  15. Dynamic mode decomposition for compressive system identification

    Science.gov (United States)

    Bai, Zhe; Kaiser, Eurika; Proctor, Joshua L.; Kutz, J. Nathan; Brunton, Steven L.

    2017-11-01

    Dynamic mode decomposition has emerged as a leading technique to identify spatiotemporal coherent structures from high-dimensional data. In this work, we integrate and unify two recent innovations that extend DMD to systems with actuation and systems with heavily subsampled measurements. When combined, these methods yield a novel framework for compressive system identification, where it is possible to identify a low-order model from limited input-output data and reconstruct the associated full-state dynamic modes with compressed sensing, providing interpretability of the state of the reduced-order model. When full-state data is available, it is possible to dramatically accelerate downstream computations by first compressing the data. We demonstrate this unified framework on simulated data of fluid flow past a pitching airfoil, investigating the effects of sensor noise, different types of measurements (e.g., point sensors, Gaussian random projections, etc.), compression ratios, and different choices of actuation (e.g., localized, broadband, etc.). This example provides a challenging and realistic test-case for the proposed method, and results indicate that the dominant coherent structures and dynamics are well characterized even with heavily subsampled data.

  16. A soft compressive sensor using dielectric elastomers

    International Nuclear Information System (INIS)

    Zhang, Hongying; Wang, Michael Yu; Li, Jisen; Zhu, Jian

    2016-01-01

    This paper proposes a methodology to design, analyze and fabricate a soft compressive sensor, made of dielectric elastomers that are able to recover from large strain. Each module of the compressive sensor is modeled as a capacitor, comprising a DE membrane sandwiched between two compliant electrodes. When the sensor modules aligned in an array were subject to a compressive load, the induced deformation on the corresponding module resulted in capacitance increase. By detecting the capacitance signal, not only the position but also the magnitude of the compressive load were obtained. We built an analytical model to simulate the mechanical–electrical responses of two common soft sensor structures, namely with and without an embedded air chamber. The simulation results showed that the air embedded prototype improved the sensitivity of the sensor significantly, which was consistent with the experimental results, where the sensitivity is enhanced from 0.05 N −1 to 0.91 N −1 . Furthermore, the effect of the air chamber dimension on the sensitivity is also discussed theoretically and experimentally. It concluded that the detection range increased with the air chamber height over length ratio. (paper)

  17. Experimental study of combustion and emission characteristics of ethanol fuelled port injected homogeneous charge compression ignition (HCCI) combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Maurya, Rakesh Kumar; Agarwal, Avinash Kumar [Engine Research Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208 016 (India)

    2011-04-15

    The homogeneous charge compression ignition (HCCI) is an alternative combustion concept for in reciprocating engines. The HCCI combustion engine offers significant benefits in terms of its high efficiency and ultra low emissions. In this investigation, port injection technique is used for preparing homogeneous charge. The combustion and emission characteristics of a HCCI engine fuelled with ethanol were investigated on a modified two-cylinder, four-stroke engine. The experiment is conducted with varying intake air temperature (120-150 C) and at different air-fuel ratios, for which stable HCCI combustion is achieved. In-cylinder pressure, heat release analysis and exhaust emission measurements were employed for combustion diagnostics. In this study, effect of intake air temperature on combustion parameters, thermal efficiency, combustion efficiency and emissions in HCCI combustion engine is analyzed and discussed in detail. The experimental results indicate that the air-fuel ratio and intake air temperature have significant effect on the maximum in-cylinder pressure and its position, gas exchange efficiency, thermal efficiency, combustion efficiency, maximum rate of pressure rise and the heat release rate. Results show that for all stable operation points, NO{sub x} emissions are lower than 10 ppm however HC and CO emissions are higher. (author)

  18. Foam behavior of solid glass spheres – Zn22Al2Cu composites under compression stresses

    International Nuclear Information System (INIS)

    Aragon-Lezama, J.A.; Garcia-Borquez, A.; Torres-Villaseñor, G.

    2015-01-01

    Solid glass spheres – Zn22Al2Cu composites, having different densities and microstructures, were elaborated and studied under compression. Their elaboration process involves alloy melting, spheres submersion into the liquid alloy and finally air cooling. The achieved composites with densities 2.6884, 2.7936 and 3.1219 g/cm 3 were studied in casting and thermally induced, fine-grain matrix microstructures. Test samples of the composites were compressed at a 10 −3 s −1 strain rate, and their microstructure characterized before and after compression by using optical and scanning electron microscopes. Although they exhibit different compression behavior depending on their density and microstructure, all of them show an elastic region at low strains, reach their maximum stress (σ max ) at hundreds of MPa before the stress fall or collapse up to a lowest yield point (LYP), followed by an important plastic deformation at nearly constant stress (σ p ): beyond this plateau, an extra deformation can be limitedly reached only by a significant stress increase. This behavior under compression stresses is similar to that reported for metal foams, being the composites with fine microstructure which nearest behave to metal foams under this pattern. Nevertheless, the relative values of the elastic modulus, and maximum and plateau stresses do not follow the Ashby equations by changing the relative density. Generally, the studied composites behave as foams under compression, except for their peculiar parameters values (σ max , LYP, and σ p )

  19. Manual compression and reflex syncope in native renal biopsy.

    Science.gov (United States)

    Takeuchi, Yoichi; Ojima, Yoshie; Kagaya, Saeko; Aoki, Satoshi; Nagasawa, Tasuku

    2018-03-14

    Complications associated with diagnostic native percutaneous renal biopsy (PRB) must be minimized. While life threatening major complications has been extensively investigated, there is little discussion regarding minor bleeding complications, such as a transient hypotension, which directly affect patients' quality of life. There is also little evidence supporting the need for conventional manual compression following PRB. Therefore, this study evaluated the relationship between minor and major complications incidence in patients following PRB with or without compression. This single-center, retrospective study included 456 patients (compression group: n = 71; observation group: n = 385). The compression group completed 15 min of manual compression and 4 h of subsequent strict bed rest with abdominal bandage. The observation group completed 2 h of strict bed rest only. The primary outcome of interest was transient symptomatic hypotension (minor event). Of the 456 patients, 26 patients encountered intraoperative and postoperative transient hypotension, which were considered reflex syncope without tachycardia. Univariate analysis showed that symptomatic transient hypotension was significantly associated with compression. This association remained significant, even after adjustment of covariates using multivariate logistic regression analysis (adjusted odds ratio 3.27; 95% confidential interval 1.36-7.82; P = 0.0078). Manual compression and abdominal bandage significantly increased the frequency of reflex syncope during native PRB. It is necessary to consider the potential benefit and risk of compression maneuvers for each patient undergoing this procedure.

  20. Influence of Eco-Friendly Mineral Additives on Early Age Compressive Strength and Temperature Development of High-Performance Concrete

    Science.gov (United States)

    Kaszynska, Maria; Skibicki, Szymon

    2017-12-01

    High-performance concrete (HPC) which contains increased amount of both higher grade cement and pozzolanic additives generates more hydration heat than the ordinary concrete. Prolonged periods of elevated temperature influence the rate of hydration process in result affecting the development of early-age strength and subsequent mechanical properties. The purpose of the presented research is to determine the relationship between the kinetics of the heat generation process and the compressive strength of early-age high performance concrete. All mixes were based on the Portland Cement CEM I 52.5 with between 7.5% to 15% of the cement mass replaced by the silica fume or metakaolin. Two characteristic for HPC water/binder ratios of w/b = 0.2 and w/b = 0.3 were chosen. A superplasticizer was used to maintain a 20-50 mm slump. Compressive strength was determined at 8h, 24h, 3, 7 and 28 days on 10x10x10 cm specimens that were cured in a calorimeter in a constant temperature of T = 20°C. The temperature inside the concrete was monitored continuously for 7 days. The study determined that the early-age strength (t<24h) of concrete with reactive mineral additives is lower than concrete without them. This is clearly visible for concretes with metakaolin which had the lowest compressive strength in early stages of hardening. The amount of the superplasticizer significantly influenced the early-age compressive strength of concrete. Concretes with additives reached the maximum temperature later than the concretes without them.

  1. Study of the Injection Control Strategies of a Compression Ignition Free Piston Engine Linear Generator in a One-Stroke Starting Process

    Directory of Open Access Journals (Sweden)

    Huihua Feng

    2016-06-01

    Full Text Available For a compression ignition (CI free piston engine linear generator (FPLG, injection timing is one of the most important parameters that affect its performance, especially for the one-stroke starting operation mode. In this paper, two injection control strategies are proposed using piston position and velocity signals. It was found experimentally that the injection timing’s influence on the compression ratio, the peak in-cylinder gas pressure and the indicated work (IW is different from that of traditional reciprocating CI engines. The maximum IW of the ignition starting cylinder, say left cylinder (LC and the right cylinder (RC are 132.7 J and 138.1 J, respectively. The thermal-dynamic model for simulating the working processes of the FPLG are built and verified by experimental results. The numerical simulation results show that the running instability and imbalance between LC and RC are the obvious characters when adopting the injection strategy of the velocity feedback. These could be solved by setting different triggering velocity thresholds for the two cylinders. The IW output from the FPLG under this strategy is higher than that of adopting the position feedback strategy, and the maximum IW of the RC could reach 162.3 J. Under this strategy, the prototype is able to achieve better starting conditions and could operate continuously for dozens of cycles.

  2. Uniaxial compression tests on diesel contaminated frozen silty soil specimens

    International Nuclear Information System (INIS)

    Chenaf, D.; Stampli, N.; Bathurst, R.; Chapuis, R.P.

    1999-01-01

    Results of a uniaxial, unconfined compression test on artificial diesel-contaminated and uncontaminated frozen silty soils are discussed. The testing program involved 59 specimens. The results show that for the same fluid content, diesel contamination reduced the strength of the frozen specimens by increasing the unfrozen water content. For example, in specimens containing 50 per cent diesel oil of the fluid content by weight the maximum strength was reduced by 95 per cent compared to the strength of an uncontaminated specimen. Diesel contamination was also shown to contribute to the slippage between soil particles by acting as a lubricant, thus accelerating the loss of compressive strength.13 refs., 18 figs

  3. Medical Image Compression Based on Vector Quantization with Variable Block Sizes in Wavelet Domain

    OpenAIRE

    Jiang, Huiyan; Ma, Zhiyuan; Hu, Yang; Yang, Benqiang; Zhang, Libo

    2012-01-01

    An optimized medical image compression algorithm based on wavelet transform and improved vector quantization is introduced. The goal of the proposed method is to maintain the diagnostic-related information of the medical image at a high compression ratio. Wavelet transformation was first applied to the image. For the lowest-frequency subband of wavelet coefficients, a lossless compression method was exploited; for each of the high-frequency subbands, an optimized vector quantization with vari...

  4. Development of Ultrasonic Pulse Compression Using Golay Codes

    International Nuclear Information System (INIS)

    Kim, Young H.; Kim, Young Gil; Jeong, Peter

    1994-01-01

    Conventional ultrasonic flaw detection system uses a large amplitude narrow pulse to excite a transducer. However, these systems are limited in pulse energy. An excessively large amplitude causes a dielectric breakage of the transducer, and an excessively long pulse causes decrease of the resolution. Using the pulse compression, a long pulse of pseudorandom signal can be used without sacrificing resolution by signal correlation. In the present work, the pulse compression technique was implemented into an ultrasonic system. Golay code was used as a pseudorandom signal in this system, since pair sum of autocorrelations has no sidelobe. The equivalent input pulse of the Golay code was derived to analyze the pulse compression system. Throughout the experiment, the pulse compression technique has demonstrated for its improved SNR(signal to noise ratio) by reducing the system's white noise. And the experimental data also indicated that the SNR enhancement was proportional to the square root of the code length used. The technique seems to perform particularly well with highly energy-absorbent materials such as polymers, plastics and rubbers

  5. LFQC: a lossless compression algorithm for FASTQ files

    Science.gov (United States)

    Nicolae, Marius; Pathak, Sudipta; Rajasekaran, Sanguthevar

    2015-01-01

    Motivation: Next Generation Sequencing (NGS) technologies have revolutionized genomic research by reducing the cost of whole genome sequencing. One of the biggest challenges posed by modern sequencing technology is economic storage of NGS data. Storing raw data is infeasible because of its enormous size and high redundancy. In this article, we address the problem of storage and transmission of large FASTQ files using innovative compression techniques. Results: We introduce a new lossless non-reference based FASTQ compression algorithm named Lossless FASTQ Compressor. We have compared our algorithm with other state of the art big data compression algorithms namely gzip, bzip2, fastqz (Bonfield and Mahoney, 2013), fqzcomp (Bonfield and Mahoney, 2013), Quip (Jones et al., 2012), DSRC2 (Roguski and Deorowicz, 2014). This comparison reveals that our algorithm achieves better compression ratios on LS454 and SOLiD datasets. Availability and implementation: The implementations are freely available for non-commercial purposes. They can be downloaded from http://engr.uconn.edu/rajasek/lfqc-v1.1.zip. Contact: rajasek@engr.uconn.edu PMID:26093148

  6. Efficient Lossy Compression for Compressive Sensing Acquisition of Images in Compressive Sensing Imaging Systems

    Directory of Open Access Journals (Sweden)

    Xiangwei Li

    2014-12-01

    Full Text Available Compressive Sensing Imaging (CSI is a new framework for image acquisition, which enables the simultaneous acquisition and compression of a scene. Since the characteristics of Compressive Sensing (CS acquisition are very different from traditional image acquisition, the general image compression solution may not work well. In this paper, we propose an efficient lossy compression solution for CS acquisition of images by considering the distinctive features of the CSI. First, we design an adaptive compressive sensing acquisition method for images according to the sampling rate, which could achieve better CS reconstruction quality for the acquired image. Second, we develop a universal quantization for the obtained CS measurements from CS acquisition without knowing any a priori information about the captured image. Finally, we apply these two methods in the CSI system for efficient lossy compression of CS acquisition. Simulation results demonstrate that the proposed solution improves the rate-distortion performance by 0.4~2 dB comparing with current state-of-the-art, while maintaining a low computational complexity.

  7. The effect of water binder ratio and fly ash on the properties of foamed concrete

    Science.gov (United States)

    Saloma, Hanafiah, Urmila, Dea

    2017-11-01

    Foamed concrete is a lightweight concrete composed by cement, water, fine aggregate and evenly distributed foam. Foamed concrete is produced by adding foam to the mixture. The function of foam is to create air voids in the mixture, so the weight of the concrete becomes lighter. The foaming agent is diluted in water then given air pressure by foam generator to produce foam. This research utilizes coal combustion, which is fly ash as cementitious material with a percentage of 0%, 10%, 15%, and 20%. The purpose of the research is to examine the effect of water binder ratio 0.425, 0.450, 0.475, and 0.500 using fly ash on the properties of foamed concrete. Fresh concrete tests include slump flow and setting time test while hardened concrete tests include density and compressive strength. The maximum value of slump flow test result is 59.50 cm on FC-20-0.500 mixture with w/b = 0.500 and 20% of fly ash percentage. The results of the setting time tests indicate the fastest initial and final time are 335 and 720 minutes, respectively on FC-0-0.425 mixture with w/b = 0.425 without fly ash. The lowest density is 978.344 kg/m3 on FC-20-0.500 mixture with w/b = 0.500 and 20% of fly ash percentage. The maximum compressive strength value is 4.510 MPa at 28 days on FC-10-0.450 mixture with w/b = 0.450 and 10% of fly ash percentage.

  8. Gmz: a Gml Compression Model for Webgis

    Science.gov (United States)

    Khandelwal, A.; Rajan, K. S.

    2017-09-01

    Geography markup language (GML) is an XML specification for expressing geographical features. Defined by Open Geospatial Consortium (OGC), it is widely used for storage and transmission of maps over the Internet. XML schemas provide the convenience to define custom features profiles in GML for specific needs as seen in widely popular cityGML, simple features profile, coverage, etc. Simple features profile (SFP) is a simpler subset of GML profile with support for point, line and polygon geometries. SFP has been constructed to make sure it covers most commonly used GML geometries. Web Feature Service (WFS) serves query results in SFP by default. But it falls short of being an ideal choice due to its high verbosity and size-heavy nature, which provides immense scope for compression. GMZ is a lossless compression model developed to work for SFP compliant GML files. Our experiments indicate GMZ achieves reasonably good compression ratios and can be useful in WebGIS based applications.

  9. Neutral-beam requirements for compression-boosted ignited tokamak plasmas

    International Nuclear Information System (INIS)

    Cohn, D.R.; Jassby, D.L.; Kreischer, K.

    1977-12-01

    Neutral-beam energies of 200 to 500-keV D 0 may be required to insure adequate penetration into the center of ignition-sized tokamak plasmas. However, the beam energy requirement can be reduced by using a start-up scenario in which the final plasma is formed by major-radius compression of a beam-heated plasma whose density-radius product, na, is determined by satisfactory neutral-beam penetration. ''Compression boosting'' is attractive only for plasmas in which ntau/sub E/ increases with na, because a major-radius compression C increases na by C 3 / 2 . The dependence on C of beam energy and beam power for plasmas which obey ''empirical scaling laws'' of the type ntau/sub E/ varies as (na) 2 is analyzed. The dependences on C of stored magnetic energy and TF-coil power dissipation are also determined. It is found that a compression ratio of 1.5 to attain the ignited plasma permits adequate penetration by 150-keV D 0 beams

  10. 30 CFR 75.1730 - Compressed air; general; compressed air systems.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Compressed air; general; compressed air systems... Compressed air; general; compressed air systems. (a) All pressure vessels shall be constructed, installed... Safety and Health district office. (b) Compressors and compressed-air receivers shall be equipped with...

  11. Full-frame compression of discrete wavelet and cosine transforms

    Science.gov (United States)

    Lo, Shih-Chung B.; Li, Huai; Krasner, Brian; Freedman, Matthew T.; Mun, Seong K.

    1995-04-01

    At the foreground of computerized radiology and the filmless hospital are the possibilities for easy image retrieval, efficient storage, and rapid image communication. This paper represents the authors' continuous efforts in compression research on full-frame discrete wavelet (FFDWT) and full-frame discrete cosine transforms (FFDCT) for medical image compression. Prior to the coding, it is important to evaluate the global entropy in the decomposed space. It is because of the minimum entropy, that a maximum compression efficiency can be achieved. In this study, each image was split into the top three most significant bit (MSB) and the remaining remapped least significant bit (RLSB) images. The 3MSB image was compressed by an error-free contour coding and received an average of 0.1 bit/pixel. The RLSB image was either transformed to a multi-channel wavelet or the cosine transform domain for entropy evaluation. Ten x-ray chest radiographs and ten mammograms were randomly selected from our clinical database and were used for the study. Our results indicated that the coding scheme in the FFDCT domain performed better than in FFDWT domain for high-resolution digital chest radiographs and mammograms. From this study, we found that decomposition efficiency in the DCT domain for relatively smooth images is higher than that in the DWT. However, both schemes worked just as well for low resolution digital images. We also found that the image characteristics of the `Lena' image commonly used in the compression literature are very different from those of radiological images. The compression outcome of the radiological images can not be extrapolated from the compression result based on the `Lena.'

  12. Numerical approach to solar ejector-compression refrigeration system

    Directory of Open Access Journals (Sweden)

    Zheng Hui-Fan

    2016-01-01

    Full Text Available A model was established for solar ejector-compression refrigeration system. The influence of generator temperature, middle-temperature, and evaporator temperature on the performance of the refrigerant system was analyzed. An optimal generator temperature is found for maximal energy efficiency ratio and minimal power consumption.

  13. Chest compression rates and survival following out-of-hospital cardiac arrest.

    Science.gov (United States)

    Idris, Ahamed H; Guffey, Danielle; Pepe, Paul E; Brown, Siobhan P; Brooks, Steven C; Callaway, Clifton W; Christenson, Jim; Davis, Daniel P; Daya, Mohamud R; Gray, Randal; Kudenchuk, Peter J; Larsen, Jonathan; Lin, Steve; Menegazzi, James J; Sheehan, Kellie; Sopko, George; Stiell, Ian; Nichol, Graham; Aufderheide, Tom P

    2015-04-01

    Guidelines for cardiopulmonary resuscitation recommend a chest compression rate of at least 100 compressions/min. A recent clinical study reported optimal return of spontaneous circulation with rates between 100 and 120/min during cardiopulmonary resuscitation for out-of-hospital cardiac arrest. However, the relationship between compression rate and survival is still undetermined. Prospective, observational study. Data is from the Resuscitation Outcomes Consortium Prehospital Resuscitation IMpedance threshold device and Early versus Delayed analysis clinical trial. Adults with out-of-hospital cardiac arrest treated by emergency medical service providers. None. Data were abstracted from monitor-defibrillator recordings for the first five minutes of emergency medical service cardiopulmonary resuscitation. Multiple logistic regression assessed odds ratio for survival by compression rate categories (compression fraction and depth, first rhythm, and study site. Compression rate data were available for 10,371 patients; 6,399 also had chest compression fraction and depth data. Age (mean±SD) was 67±16 years. Chest compression rate was 111±19 per minute, compression fraction was 0.70±0.17, and compression depth was 42±12 mm. Circulation was restored in 34%; 9% survived to hospital discharge. After adjustment for covariates without chest compression depth and fraction (n=10,371), a global test found no significant relationship between compression rate and survival (p=0.19). However, after adjustment for covariates including chest compression depth and fraction (n=6,399), the global test found a significant relationship between compression rate and survival (p=0.02), with the reference group (100-119 compressions/min) having the greatest likelihood for survival. After adjustment for chest compression fraction and depth, compression rates between 100 and 120 per minute were associated with greatest survival to hospital discharge.

  14. Study of ignition in a high compression ratio SI (spark ignition) methanol engine using LES (large eddy simulation) with detailed chemical kinetics

    International Nuclear Information System (INIS)

    Zhen, Xudong; Wang, Yang

    2013-01-01

    Methanol has been recently used as an alternative to conventional fuels for internal combustion engines in order to satisfy some environmental and economical concerns. In this paper, the ignition in a high compression ratio SI (spark ignition) methanol engine was studied by using LES (large eddy simulation) with detailed chemical kinetics. A 21-species, 84-reaction methanol mechanism was adopted to simulate the auto-ignition process of the methanol/air mixture. The MIT (minimum ignition temperature) and MIE (minimum ignition energy) are two important properties for designing safety standards and understanding the ignition process of combustible mixtures. The effects of the flame kernel size, flame kernel temperature and equivalence ratio were also examined on MIT, MIE and IDP (ignition delay period). The methanol mechanism was validated by experimental test. The simulated results showed that the flame kernel size, temperature and energy dramatically affected the values of the MIT, MIE and IDP for a methanol/air mixture, the value of the ignition delay period was not only related to the flame kernel energy, but also to the flame kernel temperature. - Highlights: • We used LES (large eddy simulation) coupled with detailed chemical kinetics to simulate methanol ignition. • The flame kernel size and temperature affected the minimum ignition temperature. • The flame kernel temperature and energy affected the ignition delay period. • The equivalence ratio of methanol–air mixture affected the ignition delay period

  15. Effect of data compression on diagnostic accuracy in digital hand and chest radiography

    Science.gov (United States)

    Sayre, James W.; Aberle, Denise R.; Boechat, Maria I.; Hall, Theodore R.; Huang, H. K.; Ho, Bruce K. T.; Kashfian, Payam; Rahbar, Guita

    1992-05-01

    Image compression is essential to handle a large volume of digital images including CT, MR, CR, and digitized films in a digital radiology operation. The full-frame bit allocation using the cosine transform technique developed during the last few years has been proven to be an excellent irreversible image compression method. This paper describes the effect of using the hardware compression module on diagnostic accuracy in hand radiographs with subperiosteal resorption and chest radiographs with interstitial disease. Receiver operating characteristic analysis using 71 hand radiographs and 52 chest radiographs with five observers each demonstrates that there is no statistical significant difference in diagnostic accuracy between the original films and the compressed images with a compression ratio as high as 20:1.

  16. Soil Compressibility Models for a Wide Stress Range

    KAUST Repository

    Chong, Song-Hun

    2016-03-03

    Soil compressibility models with physically correct asymptotic void ratios are required to analyze situations that involve a wide stress range. Previously suggested models and other functions are adapted to satisfy asymptotic void ratios at low and high stress levels; all updated models involve four parameters. Compiled consolidation data for remolded and natural clays are used to test the models and to develop correlations between model parameters and index properties. Models can adequately fit soil compression data for a wide range of stresses and soil types; in particular, models that involve the power of the stress σ\\'β display higher flexibility to capture the brittle response of some natural soils. The use of a single continuous function avoids numerical discontinuities or the need for ad hoc procedures to determine the yield stress. The tangent stiffness-readily computed for all models-should not be mistaken for the small-strain constant-fabric stiffness. © 2016 American Society of Civil Engineers.

  17. Medical image compression based on vector quantization with variable block sizes in wavelet domain.

    Science.gov (United States)

    Jiang, Huiyan; Ma, Zhiyuan; Hu, Yang; Yang, Benqiang; Zhang, Libo

    2012-01-01

    An optimized medical image compression algorithm based on wavelet transform and improved vector quantization is introduced. The goal of the proposed method is to maintain the diagnostic-related information of the medical image at a high compression ratio. Wavelet transformation was first applied to the image. For the lowest-frequency subband of wavelet coefficients, a lossless compression method was exploited; for each of the high-frequency subbands, an optimized vector quantization with variable block size was implemented. In the novel vector quantization method, local fractal dimension (LFD) was used to analyze the local complexity of each wavelet coefficients, subband. Then an optimal quadtree method was employed to partition each wavelet coefficients, subband into several sizes of subblocks. After that, a modified K-means approach which is based on energy function was used in the codebook training phase. At last, vector quantization coding was implemented in different types of sub-blocks. In order to verify the effectiveness of the proposed algorithm, JPEG, JPEG2000, and fractal coding approach were chosen as contrast algorithms. Experimental results show that the proposed method can improve the compression performance and can achieve a balance between the compression ratio and the image visual quality.

  18. The application of sparse linear prediction dictionary to compressive sensing in speech signals

    Directory of Open Access Journals (Sweden)

    YOU Hanxu

    2016-04-01

    Full Text Available Appling compressive sensing (CS,which theoretically guarantees that signal sampling and signal compression can be achieved simultaneously,into audio and speech signal processing is one of the most popular research topics in recent years.In this paper,K-SVD algorithm was employed to learn a sparse linear prediction dictionary regarding as the sparse basis of underlying speech signals.Compressed signals was obtained by applying random Gaussian matrix to sample original speech frames.Orthogonal matching pursuit (OMP and compressive sampling matching pursuit (CoSaMP were adopted to recovery original signals from compressed one.Numbers of experiments were carried out to investigate the impact of speech frames length,compression ratios,sparse basis and reconstruction algorithms on CS performance.Results show that sparse linear prediction dictionary can advance the performance of speech signals reconstruction compared with discrete cosine transform (DCT matrix.

  19. Optimum mix for fly ash geopolymer binder based on workability and compressive strength

    Science.gov (United States)

    Arafa, S. A.; Ali, A. Z. M.; Awal, A. S. M. A.; Loon, L. Y.

    2018-04-01

    The request of concrete is increasing every day for sustaining the necessity of development of structure. The production of OPC not only consumes big amount of natural resources and energy, but also emit significant quantity of CO2 to the atmosphere. Therefore, it is necessary to find alternatives like Geopolymer to make the concrete environment friendly. Geopolymer is an inorganic alumino-silicate compound, produced from fly ash. This paper describes the experimental work conducted by casting 40 geopolymer paste mixes, and was cured at 80°C for 24 h to evaluate the effect of various parameters affecting the workability and compressive strength. Alkaline solution to fly ash ratio and sodium hydroxide (NaOH) concentration were chosen as the key parameters of strength and workability. Laboratory investigation with different percentage of sodium hydroxide concentration and different alkaline liquid to fly ash ratio reveals that the optimum ratios are 10 M, AL/FA=0.5. It has generally been found that the workability decreased and the compressive strength increased with an increase in the concentration of sodium hydroxide solution. However, workability was increased and the compressive strength was decreased with the increase in the ratio of fly ash to alkaline solution.

  20. Electronic topological transitions in Zn under compression

    Science.gov (United States)

    Kechin, Vladimir V.

    2001-01-01

    The electronic structure of hcp Zn under pressure up to 10 GPa has been calculated self-consistently by means of the scalar relativistic tight-binding linear muffin-tin orbital method. The calculations show that three electronic topological transitions (ETT's) occur in Zn when the c/a axial ratio diminishes under compression. One transition occurs at c/a~=1.82 when the ``needles'' appear around the symmetry point K of the Brillouin zone. The other two transitions occur at c/a~=3, when the ``butterfly'' and ``cigar'' appear simultaneously both around the L point. It has been shown that these ETT's are responsible for a number of anomalies observed in Zn at compression.

  1. Extraction of OAEs During Multi-Frequency ASSR Recordings With the Goal to Estimate Peripheral Compression

    DEFF Research Database (Denmark)

    Epp, Bastian; Sanchez, Raul

    of the cochlear nonlinearity. A recent study (Encina Llamas et al., ARO2014) showed, that compressive inputoutput functions with slopes similar to proposed compression ratios of cochlear level-growth functions can be found using ASSR obtained by stimulation with multiple sinusoidally-amplitude-modulated (SAM...

  2. A novel method for estimating soil precompression stress from uniaxial confined compression tests

    DEFF Research Database (Denmark)

    Lamandé, Mathieu; Schjønning, Per; Labouriau, Rodrigo

    2017-01-01

    . Stress-strain curves were obtained by performing uniaxial, confined compression tests on undisturbed soil cores for three soil types at three soil water potentials. The new method performed better than the Gompertz fitting method in estimating precompression stress. The values of precompression stress...... obtained from the new method were linearly related to the maximum stress experienced by the soil samples prior to the uniaxial, confined compression test at each soil condition with a slope close to 1. Precompression stress determined with the new method was not related to soil type or dry bulk density......The concept of precompression stress is used for estimating soil strength of relevance to fieldtraffic. It represents the maximum stress experienced by the soil. The most recently developed fitting method to estimate precompression stress (Gompertz) is based on the assumption of an S-shape stress...

  3. The wavelet/scalar quantization compression standard for digital fingerprint images

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, J.N.; Brislawn, C.M.

    1994-04-01

    A new digital image compression standard has been adopted by the US Federal Bureau of Investigation for use on digitized gray-scale fingerprint images. The algorithm is based on adaptive uniform scalar quantization of a discrete wavelet transform image decomposition and is referred to as the wavelet/scalar quantization standard. The standard produces archival quality images at compression ratios of around 20:1 and will allow the FBI to replace their current database of paper fingerprint cards with digital imagery.

  4. A novel ECG data compression method based on adaptive Fourier decomposition

    Science.gov (United States)

    Tan, Chunyu; Zhang, Liming

    2017-12-01

    This paper presents a novel electrocardiogram (ECG) compression method based on adaptive Fourier decomposition (AFD). AFD is a newly developed signal decomposition approach, which can decompose a signal with fast convergence, and hence reconstruct ECG signals with high fidelity. Unlike most of the high performance algorithms, our method does not make use of any preprocessing operation before compression. Huffman coding is employed for further compression. Validated with 48 ECG recordings of MIT-BIH arrhythmia database, the proposed method achieves the compression ratio (CR) of 35.53 and the percentage root mean square difference (PRD) of 1.47% on average with N = 8 decomposition times and a robust PRD-CR relationship. The results demonstrate that the proposed method has a good performance compared with the state-of-the-art ECG compressors.

  5. Compression of computer generated phase-shifting hologram sequence using AVC and HEVC

    Science.gov (United States)

    Xing, Yafei; Pesquet-Popescu, Béatrice; Dufaux, Frederic

    2013-09-01

    With the capability of achieving twice the compression ratio of Advanced Video Coding (AVC) with similar reconstruction quality, High Efficiency Video Coding (HEVC) is expected to become the newleading technique of video coding. In order to reduce the storage and transmission burden of digital holograms, in this paper we propose to use HEVC for compressing the phase-shifting digital hologram sequences (PSDHS). By simulating phase-shifting digital holography (PSDH) interferometry, interference patterns between illuminated three dimensional( 3D) virtual objects and the stepwise phase changed reference wave are generated as digital holograms. The hologram sequences are obtained by the movement of the virtual objects and compressed by AVC and HEVC. The experimental results show that AVC and HEVC are efficient to compress PSDHS, with HEVC giving better performance. Good compression rate and reconstruction quality can be obtained with bitrate above 15000kbps.

  6. Design of a compressed air energy storage system for hydrostatic wind turbines

    Directory of Open Access Journals (Sweden)

    Ammar E. Ali

    2018-03-01

    Full Text Available Integration of Compressed Air Energy Storage (CAES system with a wind turbine is critical in optimally harvesting wind energy given the fluctuating nature of power demands. Here we consider the design of a CAES for a wind turbine with hydrostatic powertrain. The design parameters of the CAES are determined based on simulation of the integrated system model for a combination of these parameter values, namely the compression ratios of the air compressors and the expanders and the air tank size. The results of the simulations were used to choose the best design parameters, which would produce the best stable performance through increased energy output of the integrated CAES and wind turbine based on the intermittent wind profile. Simulation results for a 600 kW rated power wind turbine with integrated CAES indicate that increasing the tank size and compression ratio will improve the overall power quality through increased energy output up to a limit beyond which the power quality exhibits only marginal improvement.

  7. Health and efficiency in trimix versus air breathing in compressed air workers.

    Science.gov (United States)

    Van Rees Vellinga, T P; Verhoeven, A C; Van Dijk, F J H; Sterk, W

    2006-01-01

    The Western Scheldt Tunneling Project in the Netherlands provided a unique opportunity to evaluate the effects of trimix usage on the health of compressed air workers and the efficiency of the project. Data analysis addressed 318 exposures to compressed air at 3.9-4.4 bar gauge and 52 exposures to trimix (25% oxygen, 25% helium, and 50% nitrogen) at 4.6-4.8 bar gauge. Results revealed three incidents of decompression sickness all of which involved the use of compressed air. During exposure to compressed air, the effects of nitrogen narcosis were manifested in operational errors and increased fatigue among the workers. When using trimix, less effort was required for breathing, and mandatory decompression times for stays of a specific duration and maximum depth were considerably shorter. We conclude that it might be rational--for both medical and operational reasons--to use breathing gases with lower nitrogen fractions (e.g., trimix) for deep-caisson work at pressures exceeding 3 bar gauge, although definitive studies are needed.

  8. Does team lifting increase the variability in peak lumbar compression in ironworkers?

    Science.gov (United States)

    Faber, Gert; Visser, Steven; van der Molen, Henk F; Kuijer, P Paul F M; Hoozemans, Marco J M; Van Dieën, Jaap H; Frings-Dresen, Monique H W

    2012-01-01

    Ironworkers frequently perform heavy lifting tasks in teams of two or four workers. Team lifting could potentially lead to a higher variation in peak lumbar compression forces than lifts performed by one worker, resulting in higher maximal peak lumbar compression forces. This study compared single-worker lifts (25-kg, iron bar) to two-worker lifts (50-kg, two iron bars) and to four-worker lifts (100-kg, iron lattice). Inverse dynamics was used to calculate peak lumbar compression forces. To assess the variability in peak lumbar loading, all three lifting tasks were performed six times. Results showed that the variability in peak lumbar loading was somewhat higher in the team lifts compared to the single-worker lifts. However, despite this increased variability, team lifts did not result in larger maximum peak lumbar compression forces. Therefore, it was concluded that, from a biomechanical point of view, team lifting does not result in an additional risk for low back complaints in ironworkers.

  9. Loss of interface pressure in various compression bandage systems over seven days.

    Science.gov (United States)

    Protz, Kerstin; Heyer, Kristina; Verheyen-Cronau, Ida; Augustin, Matthias

    2014-01-01

    Manufacturers' instructions of multi-component compression bandage systems inform that these products can remain up to 7 days during the therapy of venous leg ulcer. This implies that the pressure needed will be sustained during this time. The present research investigated the persistence of pressure of compression systems over 7 days. All 6 compression systems available in Germany at the time of the trial were tested on 35 volunteering persons without signs of venous leg disease. Bandaging with short-stretch bandages was included for comparison. Pressure was measured by using PicoPress®. Initially, all products showed sufficient resting pressure of 40 mm Hg checked with a pressure monitor, except for one system in which the pressure fell by at least 23.8%, the maximum being 47.5% over a period of 7 days. The currently available compression systems are not fit to keep the required pressure. Optimized products need to be developed.

  10. Block-Based Compressed Sensing for Neutron Radiation Image Using WDFB

    Directory of Open Access Journals (Sweden)

    Wei Jin

    2015-01-01

    Full Text Available An ideal compression method for neutron radiation image should have high compression ratio while keeping more details of the original image. Compressed sensing (CS, which can break through the restrictions of sampling theorem, is likely to offer an efficient compression scheme for the neutron radiation image. Combining wavelet transform with directional filter banks, a novel nonredundant multiscale geometry analysis transform named Wavelet Directional Filter Banks (WDFB is constructed and applied to represent neutron radiation image sparsely. Then, the block-based CS technique is introduced and a high performance CS scheme for neutron radiation image is proposed. By performing two-step iterative shrinkage algorithm the problem of L1 norm minimization is solved to reconstruct neutron radiation image from random measurements. The experiment results demonstrate that the scheme not only improves the quality of reconstructed image obviously but also retains more details of original image.

  11. Using compression calorimetry to characterize powder compaction behavior of pharmaceutical materials.

    Science.gov (United States)

    Buckner, Ira S; Friedman, Ross A; Wurster, Dale Eric

    2010-02-01

    The process by which pharmaceutical powders are compressed into cohesive compacts or tablets has been studied using a compression calorimeter. Relating the various thermodynamic results to relevant physical processes has been emphasized. Work, heat, and internal energy change values have been determined with the compression calorimeter for common pharmaceutical materials. A framework of equations has been proposed relating the physical processes of friction, reversible deformation, irreversible deformation, and inter-particle bonding to the compression calorimetry values. The results indicate that irreversible deformation dominated many of the thermodynamic values, especially the net internal energy change following the compression-decompression cycle. The relationships between the net work and the net heat from the complete cycle were very clear indicators of predominating deformation mechanisms. Likewise, the ratio of energy stored as internal energy to the initial work input distinguished the materials according to their brittle or plastic deformation tendencies. (c) 2009 Wiley-Liss, Inc. and the American Pharmacists Association.

  12. Effect of JPEG2000 mammogram compression on microcalcifications segmentation

    International Nuclear Information System (INIS)

    Georgiev, V.; Arikidis, N.; Karahaliou, A.; Skiadopoulos, S.; Costaridou, L.

    2012-01-01

    The purpose of this study is to investigate the effect of mammographic image compression on the automated segmentation of individual microcalcifications. The dataset consisted of individual microcalcifications of 105 clusters originating from mammograms of the Digital Database for Screening Mammography. A JPEG2000 wavelet-based compression algorithm was used for compressing mammograms at 7 compression ratios (CRs): 10:1, 20:1, 30:1, 40:1, 50:1, 70:1 and 100:1. A gradient-based active contours segmentation algorithm was employed for segmentation of microcalcifications as depicted on original and compressed mammograms. The performance of the microcalcification segmentation algorithm on original and compressed mammograms was evaluated by means of the area overlap measure (AOM) and distance differentiation metrics (d mean and d max ) by comparing automatically derived microcalcification borders to manually defined ones by an expert radiologist. The AOM monotonically decreased as CR increased, while d mean and d max metrics monotonically increased with CR increase. The performance of the segmentation algorithm on original mammograms was (mean±standard deviation): AOM=0.91±0.08, d mean =0.06±0.05 and d max =0.45±0.20, while on 40:1 compressed images the algorithm's performance was: AOM=0.69±0.15, d mean =0.23±0.13 and d max =0.92±0.39. Mammographic image compression deteriorates the performance of the segmentation algorithm, influencing the quantification of individual microcalcification morphological properties and subsequently affecting computer aided diagnosis of microcalcification clusters. (authors)

  13. Acute Thoracolumbar Spinal Cord Injury: Relationship of Cord Compression to Neurological Outcome.

    Science.gov (United States)

    Skeers, Peta; Battistuzzo, Camila R; Clark, Jillian M; Bernard, Stephen; Freeman, Brian J C; Batchelor, Peter E

    2018-02-21

    Spinal cord injury in the cervical spine is commonly accompanied by cord compression and urgent surgical decompression may improve neurological recovery. However, the extent of spinal cord compression and its relationship to neurological recovery following traumatic thoracolumbar spinal cord injury is unclear. The purpose of this study was to quantify maximum cord compression following thoracolumbar spinal cord injury and to assess the relationship among cord compression, cord swelling, and eventual clinical outcome. The medical records of patients who were 15 to 70 years of age, were admitted with a traumatic thoracolumbar spinal cord injury (T1 to L1), and underwent a spinal surgical procedure were examined. Patients with penetrating injuries and multitrauma were excluded. Maximal osseous canal compromise and maximal spinal cord compression were measured on preoperative mid-sagittal computed tomography (CT) scans and T2-weighted magnetic resonance imaging (MRI) by observers blinded to patient outcome. The American Spinal Injury Association (ASIA) Impairment Scale (AIS) grades from acute hospital admission (≤24 hours of injury) and rehabilitation discharge were used to measure clinical outcome. Relationships among spinal cord compression, canal compromise, and initial and final AIS grades were assessed via univariate and multivariate analyses. Fifty-three patients with thoracolumbar spinal cord injury were included in this study. The overall mean maximal spinal cord compression (and standard deviation) was 40% ± 21%. There was a significant relationship between median spinal cord compression and final AIS grade, with grade-A patients (complete injury) exhibiting greater compression than grade-C and D patients (incomplete injury) (p compression as independently influencing the likelihood of complete spinal cord injury (p compression. Greater cord compression is associated with an increased likelihood of severe neurological deficits (complete injury) following

  14. The stability of clay using mount Sinabung ash with unconfined compression test (uct) value

    Science.gov (United States)

    Puji Hastuty, Ika; Roesyanto; Hutauruk, Ronny; Simanjuntak, Oberlyn

    2018-03-01

    The soil has a important role as a highway’s embankment material (sub grade). Soil conditions are very different in each location because the scientifically soil is a very complex and varied material and the located on the field is very loose or very soft, so it is not suitable for construction, then the soil should be stabilized. The additive material commonly used for soil stabilization includes cement, lime, fly ash, rice husk ash, and others. This experiment is using the addition of volcanic ash. The purpose of this study was to determine the Index Properties and Compressive Strength maximum value with Unconfined Compression Test due to the addition of volcanic ash as a stabilizing agent along with optimum levels of the addition. The result showed that the original soil sample has Water Content of 14.52%; the Specific Weight of 2.64%; Liquid limit of 48.64% and Plasticity Index of 29.82%. Then, the Compressive Strength value is 1.40 kg/cm2. According to USCS classification, the soil samples categorized as the (CL) type while based on AASHTO classification, the soil samples are including as the type of A-7-6. After the soil is stabilized with a variety of volcanic ash, can be concluded that the maximum value occurs at mixture variation of 11% Volcanic Ash with Unconfined Compressive Strength value of 2.32 kg/cm2.

  15. Compression force and radiation dose in the Norwegian Breast Cancer Screening Program

    Energy Technology Data Exchange (ETDEWEB)

    Waade, Gunvor G.; Sanderud, Audun [Department of Life Sciences and Health, Faculty of Health Sciences, Oslo and Akershus University College of Applied Sciences, P.O. 4 St. Olavs Plass, 0130 Oslo (Norway); Hofvind, Solveig, E-mail: solveig.hofvind@kreftregisteret.no [Department of Life Sciences and Health, Faculty of Health Sciences, Oslo and Akershus University College of Applied Sciences, P.O. 4 St. Olavs Plass, 0130 Oslo (Norway); The Cancer Registry of Norway, P.O. 5313 Majorstuen, 0304 Oslo (Norway)

    2017-03-15

    Highlights: • Compression force and radiation dose for 17 951 screening mammograms were analyzed. • Large variations in mean applied compression force between the breast centers. • Limited associations between compression force and radiation dose. - Abstract: Purpose: Compression force is used in mammography to reduce breast thickness and by that decrease radiation dose and improve image quality. There are no evidence-based recommendations regarding the optimal compression force. We analyzed compression force and radiation dose between screening centers in the Norwegian Breast Cancer Screening Program (NBCSP), as a first step towards establishing evidence-based recommendations for compression force. Materials and methods: The study included information from 17 951 randomly selected screening examinations among women screened with equipment from four different venors at fourteen breast centers in the NBCSP, January-March 2014. We analyzed the applied compression force and radiation dose used on craniocaudal (CC) and mediolateral-oblique (MLO) view on left breast, by breast centers and vendors. Results: Mean compression force used in the screening program was 116N (CC: 108N, MLO: 125N). The maximum difference in mean compression force between the centers was 63N for CC and 57N for MLO. Mean radiation dose for each image was 1.09 mGy (CC: 1.04mGy, MLO: 1.14mGy), varying from 0.55 mGy to 1.31 mGy between the centers. Compression force alone had a negligible impact on radiation dose (r{sup 2} = 0.8%, p = < 0.001). Conclusion: We observed substantial variations in mean compression forces between the breast centers. Breast characteristics and differences in automated exposure control between vendors might explain the low association between compression force and radiation dose. Further knowledge about different automated exposure controls and the impact of compression force on dose and image quality is needed to establish individualised and evidence

  16. SeqCompress: an algorithm for biological sequence compression.

    Science.gov (United States)

    Sardaraz, Muhammad; Tahir, Muhammad; Ikram, Ataul Aziz; Bajwa, Hassan

    2014-10-01

    The growth of Next Generation Sequencing technologies presents significant research challenges, specifically to design bioinformatics tools that handle massive amount of data efficiently. Biological sequence data storage cost has become a noticeable proportion of total cost in the generation and analysis. Particularly increase in DNA sequencing rate is significantly outstripping the rate of increase in disk storage capacity, which may go beyond the limit of storage capacity. It is essential to develop algorithms that handle large data sets via better memory management. This article presents a DNA sequence compression algorithm SeqCompress that copes with the space complexity of biological sequences. The algorithm is based on lossless data compression and uses statistical model as well as arithmetic coding to compress DNA sequences. The proposed algorithm is compared with recent specialized compression tools for biological sequences. Experimental results show that proposed algorithm has better compression gain as compared to other existing algorithms. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Foam behavior of solid glass spheres – Zn22Al2Cu composites under compression stresses

    Energy Technology Data Exchange (ETDEWEB)

    Aragon-Lezama, J.A., E-mail: alja@correo.azc.uam.mx [Departamento de Materiales, Universidad Autónoma Metropolitana-A, Avenida San Pablo 180, Colonia Reynosa Tamaulipas, 02200 México, D.F., México (Mexico); Garcia-Borquez, A., E-mail: a.garciaborquez@yahoo.com.mx [Ciencia de Materiales, ESFM – Instituto Politécnico Nacional, Edif. 9, Unid. Prof. A. Lopez Mateos, Colonia Lindavista, 07738 México, D.F., México (Mexico); Torres-Villaseñor, G., E-mail: gtorres@unam.mx [Departamento de Metálicos y Cerámicos, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apdo., P 70-360, México, D.F., México (Mexico)

    2015-06-25

    Solid glass spheres – Zn22Al2Cu composites, having different densities and microstructures, were elaborated and studied under compression. Their elaboration process involves alloy melting, spheres submersion into the liquid alloy and finally air cooling. The achieved composites with densities 2.6884, 2.7936 and 3.1219 g/cm{sup 3} were studied in casting and thermally induced, fine-grain matrix microstructures. Test samples of the composites were compressed at a 10{sup −3} s{sup −1} strain rate, and their microstructure characterized before and after compression by using optical and scanning electron microscopes. Although they exhibit different compression behavior depending on their density and microstructure, all of them show an elastic region at low strains, reach their maximum stress (σ{sub max}) at hundreds of MPa before the stress fall or collapse up to a lowest yield point (LYP), followed by an important plastic deformation at nearly constant stress (σ{sub p}): beyond this plateau, an extra deformation can be limitedly reached only by a significant stress increase. This behavior under compression stresses is similar to that reported for metal foams, being the composites with fine microstructure which nearest behave to metal foams under this pattern. Nevertheless, the relative values of the elastic modulus, and maximum and plateau stresses do not follow the Ashby equations by changing the relative density. Generally, the studied composites behave as foams under compression, except for their peculiar parameters values (σ{sub max}, LYP, and σ{sub p})

  18. Thermophysical properties of multi-shock compressed dense argon.

    Science.gov (United States)

    Chen, Q F; Zheng, J; Gu, Y J; Chen, Y L; Cai, L C; Shen, Z J

    2014-02-21

    In contrast to the single shock compression state that can be obtained directly via experimental measurements, the multi-shock compression states, however, have to be calculated with the aid of theoretical models. In order to determine experimentally the multiple shock states, a diagnostic approach with the Doppler pins system (DPS) and the pyrometer was used to probe multiple shocks in dense argon plasmas. Plasma was generated by a shock reverberation technique. The shock was produced using the flyer plate impact accelerated up to ∼6.1 km/s by a two-stage light gas gun and introduced into the plenum argon gas sample, which was pre-compressed from the environmental pressure to about 20 MPa. The time-resolved optical radiation histories were determined using a multi-wavelength channel optical transience radiance pyrometer. Simultaneously, the particle velocity profiles of the LiF window was measured with multi-DPS. The states of multi-shock compression argon plasma were determined from the measured shock velocities combining the particle velocity profiles. We performed the experiments on dense argon plasmas to determine the principal Hugonoit up to 21 GPa, the re-shock pressure up to 73 GPa, and the maximum measure pressure of the fourth shock up to 158 GPa. The results are used to validate the existing self-consistent variational theory model in the partial ionization region and create new theoretical models.

  19. Computational simulation of breast compression based on segmented breast and fibroglandular tissues on magnetic resonance images

    Energy Technology Data Exchange (ETDEWEB)

    Shih, Tzu-Ching [Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, 40402, Taiwan (China); Chen, Jeon-Hor; Nie Ke; Lin Muqing; Chang, Daniel; Nalcioglu, Orhan; Su, Min-Ying [Tu and Yuen Center for Functional Onco-Imaging and Radiological Sciences, University of California, Irvine, CA 92697 (United States); Liu Dongxu; Sun Lizhi, E-mail: shih@mail.cmu.edu.t [Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697 (United States)

    2010-07-21

    This study presents a finite element-based computational model to simulate the three-dimensional deformation of a breast and fibroglandular tissues under compression. The simulation was based on 3D MR images of the breast, and craniocaudal and mediolateral oblique compression, as used in mammography, was applied. The geometry of the whole breast and the segmented fibroglandular tissues within the breast were reconstructed using triangular meshes by using the Avizo (registered) 6.0 software package. Due to the large deformation in breast compression, a finite element model was used to simulate the nonlinear elastic tissue deformation under compression, using the MSC.Marc (registered) software package. The model was tested in four cases. The results showed a higher displacement along the compression direction compared to the other two directions. The compressed breast thickness in these four cases at a compression ratio of 60% was in the range of 5-7 cm, which is a typical range of thickness in mammography. The projection of the fibroglandular tissue mesh at a compression ratio of 60% was compared to the corresponding mammograms of two women, and they demonstrated spatially matched distributions. However, since the compression was based on magnetic resonance imaging (MRI), which has much coarser spatial resolution than the in-plane resolution of mammography, this method is unlikely to generate a synthetic mammogram close to the clinical quality. Whether this model may be used to understand the technical factors that may impact the variations in breast density needs further investigation. Since this method can be applied to simulate compression of the breast at different views and different compression levels, another possible application is to provide a tool for comparing breast images acquired using different imaging modalities--such as MRI, mammography, whole breast ultrasound and molecular imaging--that are performed using different body positions and under

  20. Compression and expansion in central collisions

    International Nuclear Information System (INIS)

    Danielewicz, P.

    1997-01-01

    Dynamics of central collisions of heavy nuclei in the energy range from few tens of MeV/nucleon to a couple of GeV/nucleon is discussed. As the beam energy increases and/or the impact parameter decreases, the maximum compression increases. It is argued that the hydrodynamic behaviour of matter sets in the vicinity of balance energy. At higher energies shock fronts are observed to form within head-on reaction simulations, perpendicular to beam axis and separating hot compressed matter from cold. In the semi-central reactions a weak tangential discontinuity develops in-between these fronts. The hot compressed matter exposed to the vacuum in directions parallel to the shock front begin to expand collectively into these directions. The expansion affects particle angular distributions and mean energy components and further shapes of spectra and mean energies of particles emitted into any one direction. The variation of slopes and the relative yields measured within the FOPI collaboration are in a general agreement with the results of simulations. As to the FOPI data on stopping, they are consistent with the preference for transverse over the longitudinal motion in the head-on Au + Au collisions. Unfortunately, though, the data can not be used to decide directly on that preference due to acceptance cuts. Tied to the spatial and temporal changes in the reactions are changes in the entropy per nucleon. (authors)

  1. Effect of image compression and scaling on automated scoring of immunohistochemical stainings and segmentation of tumor epithelium

    Directory of Open Access Journals (Sweden)

    Konsti Juho

    2012-03-01

    Full Text Available Abstract Background Digital whole-slide scanning of tissue specimens produces large images demanding increasing storing capacity. To reduce the need of extensive data storage systems image files can be compressed and scaled down. The aim of this article is to study the effect of different levels of image compression and scaling on automated image analysis of immunohistochemical (IHC stainings and automated tumor segmentation. Methods Two tissue microarray (TMA slides containing 800 samples of breast cancer tissue immunostained against Ki-67 protein and two TMA slides containing 144 samples of colorectal cancer immunostained against EGFR were digitized with a whole-slide scanner. The TMA images were JPEG2000 wavelet compressed with four compression ratios: lossless, and 1:12, 1:25 and 1:50 lossy compression. Each of the compressed breast cancer images was furthermore scaled down either to 1:1, 1:2, 1:4, 1:8, 1:16, 1:32, 1:64 or 1:128. Breast cancer images were analyzed using an algorithm that quantitates the extent of staining in Ki-67 immunostained images, and EGFR immunostained colorectal cancer images were analyzed with an automated tumor segmentation algorithm. The automated tools were validated by comparing the results from losslessly compressed and non-scaled images with results from conventional visual assessments. Percentage agreement and kappa statistics were calculated between results from compressed and scaled images and results from lossless and non-scaled images. Results Both of the studied image analysis methods showed good agreement between visual and automated results. In the automated IHC quantification, an agreement of over 98% and a kappa value of over 0.96 was observed between losslessly compressed and non-scaled images and combined compression ratios up to 1:50 and scaling down to 1:8. In automated tumor segmentation, an agreement of over 97% and a kappa value of over 0.93 was observed between losslessly compressed images and

  2. A lossless multichannel bio-signal compression based on low-complexity joint coding scheme for portable medical devices.

    Science.gov (United States)

    Kim, Dong-Sun; Kwon, Jin-San

    2014-09-18

    Research on real-time health systems have received great attention during recent years and the needs of high-quality personal multichannel medical signal compression for personal medical product applications are increasing. The international MPEG-4 audio lossless coding (ALS) standard supports a joint channel-coding scheme for improving compression performance of multichannel signals and it is very efficient compression method for multi-channel biosignals. However, the computational complexity of such a multichannel coding scheme is significantly greater than that of other lossless audio encoders. In this paper, we present a multichannel hardware encoder based on a low-complexity joint-coding technique and shared multiplier scheme for portable devices. A joint-coding decision method and a reference channel selection scheme are modified for a low-complexity joint coder. The proposed joint coding decision method determines the optimized joint-coding operation based on the relationship between the cross correlation of residual signals and the compression ratio. The reference channel selection is designed to select a channel for the entropy coding of the joint coding. The hardware encoder operates at a 40 MHz clock frequency and supports two-channel parallel encoding for the multichannel monitoring system. Experimental results show that the compression ratio increases by 0.06%, whereas the computational complexity decreases by 20.72% compared to the MPEG-4 ALS reference software encoder. In addition, the compression ratio increases by about 11.92%, compared to the single channel based bio-signal lossless data compressor.

  3. Performance and emission characteristics of a turbocharged spark-ignition hydrogen-enriched compressed natural gas engine under wide open throttle operating conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Fanhua; Wang, Mingyue; Jiang, Long; Deng, Jiao; Chen, Renzhe; Naeve, Nashay; Zhao, Shuli [State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084 (China)

    2010-11-15

    This paper investigates the effect of various hydrogen ratios in HCNG (hydrogen-enriched compressed natural gas) fuels on performance and emission characteristics at wide open throttle operating conditions using a turbocharged spark-ignition natural gas engine. The experimental data was taken at hydrogen fractions of 0%, 30% and 55% by volume and was conducted under different excess air ratio ({lambda}) at MBT operating conditions. It is found that under various {lambda}, the addition of hydrogen can significantly reduce CO, CH{sub 4} emissions and the NO{sub x} emission remain at an acceptable level when ignition timing is optimized. Using the same excess air ratio, as more hydrogen is added the power, exhaust temperatures and max cylinder pressure decrease slowly until the mixture's lower heating value remains unchanged with the hydrogen enrichment, then they rise gradually. In addition, the early flame development period and the flame propagation duration are both shorter, and the indicated thermal efficiency and maximum heat release rate both increase with more hydrogen addition. (author)

  4. SU-D-BRA-06: Duodenal Interfraction Motion with Abdominal Compression

    International Nuclear Information System (INIS)

    Witztum, A; Holyoake, D; Warren, S; Partridge, M; Hawkins, M

    2016-01-01

    Purpose: To quantify the effect of abdominal compression on duodenal motion during pancreatic radiotherapy. Methods: Seven patients treated for pancreatic cancer were selected for analysis. Four patients were treated with abdominal compression and three without. The duodenum was contoured by the same physician on each CBCT (five CBCTs for patients with compression, four for non-compression patients). CBCTs were rigidly registered using a soft tissue match and contours were copied to the delivered plans which were all radical (BED > 50 Gy). The distance between the duodenum on the planning CT and each CBCT was quantified by calculating the root mean square (RMS) distance. The DVHs of each abdominal compression patient was converted to an EQD2 DVH (alpha/beta = 10) using an in-house tool and volumes receiving at least 25, 35, 45, and 50 Gy were recorded. Results: The maximum variation in duodenal volumes on the CBCTs for the four abdominal compression patients were 19.1 cm 3 (32.8%), 19.1 cm 3 (20.6%), 19.9 cm 3 (14.3%), and 12.9 cm 3 (27.3%) compared to 15.2 cm 3 (17.6%), 34.7 cm 3 (83.4%), and 56 cm 3 (60.2%) for non-compression patients. The average RMS distance between the duodenum on the planning CT and each CBCT for all abdominal compression patients was 0.3 cm compared to 0.7 cm for non-compressed patients. The largest (and average) difference between the planning CT and CBCTs in volume of duodenum receiving more than 25, 35, 45 and 50 Gy for abdominal compression patients was 11% (5%), 9% (3%), 9% (2%), and 6% (1%). Conclusion: Abdominal compression reduces variation in volume and absolute position of the duodenum throughout treatment. This is seen as an improvement but does not eliminate the need to consider dosimetric effects of motion. Abdominal compression is particularly useful in SBRT when only a few fractions are delivered. Alon Witztum is supported by an MRC/Gray Institute DPhil Studentship. Daniel Holyoake is supported by a CRUK/Nuffield Clinical

  5. SU-D-BRA-06: Duodenal Interfraction Motion with Abdominal Compression

    Energy Technology Data Exchange (ETDEWEB)

    Witztum, A; Holyoake, D; Warren, S; Partridge, M; Hawkins, M [CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford (United Kingdom)

    2016-06-15

    Purpose: To quantify the effect of abdominal compression on duodenal motion during pancreatic radiotherapy. Methods: Seven patients treated for pancreatic cancer were selected for analysis. Four patients were treated with abdominal compression and three without. The duodenum was contoured by the same physician on each CBCT (five CBCTs for patients with compression, four for non-compression patients). CBCTs were rigidly registered using a soft tissue match and contours were copied to the delivered plans which were all radical (BED > 50 Gy). The distance between the duodenum on the planning CT and each CBCT was quantified by calculating the root mean square (RMS) distance. The DVHs of each abdominal compression patient was converted to an EQD2 DVH (alpha/beta = 10) using an in-house tool and volumes receiving at least 25, 35, 45, and 50 Gy were recorded. Results: The maximum variation in duodenal volumes on the CBCTs for the four abdominal compression patients were 19.1 cm{sup 3} (32.8%), 19.1 cm{sup 3} (20.6%), 19.9 cm{sup 3} (14.3%), and 12.9 cm{sup 3} (27.3%) compared to 15.2 cm{sup 3} (17.6%), 34.7 cm{sup 3} (83.4%), and 56 cm{sup 3} (60.2%) for non-compression patients. The average RMS distance between the duodenum on the planning CT and each CBCT for all abdominal compression patients was 0.3 cm compared to 0.7 cm for non-compressed patients. The largest (and average) difference between the planning CT and CBCTs in volume of duodenum receiving more than 25, 35, 45 and 50 Gy for abdominal compression patients was 11% (5%), 9% (3%), 9% (2%), and 6% (1%). Conclusion: Abdominal compression reduces variation in volume and absolute position of the duodenum throughout treatment. This is seen as an improvement but does not eliminate the need to consider dosimetric effects of motion. Abdominal compression is particularly useful in SBRT when only a few fractions are delivered. Alon Witztum is supported by an MRC/Gray Institute DPhil Studentship. Daniel Holyoake is

  6. Compressive strength and microstructural analysis of fly ash/palm oil fuel ash based geopolymer mortar

    International Nuclear Information System (INIS)

    Ranjbar, Navid; Mehrali, Mehdi; Behnia, Arash; Alengaram, U. Johnson; Jumaat, Mohd Zamin

    2014-01-01

    Highlights: • Results show POFA is adaptable as replacement in FA based geopolymer mortar. • The increase in POFA/FA ratio delay of the compressive development of geopolymer. • The density of POFA based geoploymer is lower than FA based geopolymer mortar. - Abstract: This paper presents the effects and adaptability of palm oil fuel ash (POFA) as a replacement material in fly ash (FA) based geopolymer mortar from the aspect of microstructural and compressive strength. The geopolymers developed were synthesized with a combination of sodium hydroxide and sodium silicate as activator and POFA and FA as high silica–alumina resources. The development of compressive strength of POFA/FA based geopolymers was investigated using X-ray florescence (XRF), X-ray diffraction (XRD), Fourier transform infrared (FTIR), and field emission scanning electron microscopy (FESEM). It was observed that the particle shapes and surface area of POFA and FA as well as chemical composition affects the density and compressive strength of the mortars. The increment in the percentages of POFA increased the silica/alumina (SiO 2 /Al 2 O 3 ) ratio and that resulted in reduction of the early compressive strength of the geopolymer and delayed the geopolymerization process

  7. Demonstrating the Performance and Emission Characteristics of a Variable Compression Ratio, Alvar-Cycle Engine

    OpenAIRE

    Erlandsson, Olof; Lundholm, Gunnar; Söderberg, Fredrik; Johansson, Bengt; Wong, Victor W.

    1998-01-01

    This paper is a direct continuation of a previous study that addressed the performance and design of a variable compression engine, the Alvar-Cycle Engine [1]. The earlier study was presented at the SAE International Conference and Exposition in Detroit during February 23- 26, 1998 as SAE paper 981027. In the present paper test results from a single cylinder prototype are reviewed and compared with a similar conventional engine. Efficiency and emissions are shown as fu...

  8. Joint compression and encryption using chaotically mutated Huffman trees

    Science.gov (United States)

    Hermassi, Houcemeddine; Rhouma, Rhouma; Belghith, Safya

    2010-10-01

    This paper introduces a new scheme for joint compression and encryption using the Huffman codec. A basic tree is first generated for a given message and then based on a keystream generated from a chaotic map and depending from the input message, the basic tree is mutated without changing the statistical model. Hence a symbol can be coded by more than one codeword having the same length. The security of the scheme is tested against the known plaintext attack and the brute force attack. Performance analysis including encryption/decryption speed, additional computational complexity and compression ratio are given.

  9. Disk-based compression of data from genome sequencing.

    Science.gov (United States)

    Grabowski, Szymon; Deorowicz, Sebastian; Roguski, Łukasz

    2015-05-01

    High-coverage sequencing data have significant, yet hard to exploit, redundancy. Most FASTQ compressors cannot efficiently compress the DNA stream of large datasets, since the redundancy between overlapping reads cannot be easily captured in the (relatively small) main memory. More interesting solutions for this problem are disk based, where the better of these two, from Cox et al. (2012), is based on the Burrows-Wheeler transform (BWT) and achieves 0.518 bits per base for a 134.0 Gbp human genome sequencing collection with almost 45-fold coverage. We propose overlapping reads compression with minimizers, a compression algorithm dedicated to sequencing reads (DNA only). Our method makes use of a conceptually simple and easily parallelizable idea of minimizers, to obtain 0.317 bits per base as the compression ratio, allowing to fit the 134.0 Gbp dataset into only 5.31 GB of space. http://sun.aei.polsl.pl/orcom under a free license. sebastian.deorowicz@polsl.pl Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. modified water-cement ratio law for compressive strength of rice

    African Journals Online (AJOL)

    user

    various types of structures due to its structural stability and strength [1]. ... value of water-cement ratio results in greater pore spaces in .... as well as removing the excess water on the surface of the soil particles. ... and aggregate impact value.

  11. Medical Image Compression Based on Vector Quantization with Variable Block Sizes in Wavelet Domain

    Directory of Open Access Journals (Sweden)

    Huiyan Jiang

    2012-01-01

    Full Text Available An optimized medical image compression algorithm based on wavelet transform and improved vector quantization is introduced. The goal of the proposed method is to maintain the diagnostic-related information of the medical image at a high compression ratio. Wavelet transformation was first applied to the image. For the lowest-frequency subband of wavelet coefficients, a lossless compression method was exploited; for each of the high-frequency subbands, an optimized vector quantization with variable block size was implemented. In the novel vector quantization method, local fractal dimension (LFD was used to analyze the local complexity of each wavelet coefficients, subband. Then an optimal quadtree method was employed to partition each wavelet coefficients, subband into several sizes of subblocks. After that, a modified K-means approach which is based on energy function was used in the codebook training phase. At last, vector quantization coding was implemented in different types of sub-blocks. In order to verify the effectiveness of the proposed algorithm, JPEG, JPEG2000, and fractal coding approach were chosen as contrast algorithms. Experimental results show that the proposed method can improve the compression performance and can achieve a balance between the compression ratio and the image visual quality.

  12. NON-COHESIVE SOILS’ COMPRESSIBILITY AND UNEVEN GRAIN-SIZE DISTRIBUTION RELATION

    Directory of Open Access Journals (Sweden)

    Anatoliy Mirnyy

    2016-03-01

    Full Text Available This paper presents the results of laboratory investigation of soil compression phases with consideration of various granulometric composition. Materials and Methods Experimental soil box with microscale video recording for compression phases studies is described. Photo and video materials showing the differences of microscale particle movements were obtained for non-cohesive soils with different grain-size distribution. Results The analysis of the compression tests results and elastic and plastic deformations separation allows identifying each compression phase. It is shown, that soil density is correlating with deformability parameters only for the same grain-size distribution. Basing on the test results the authors suggest that compaction ratio is not sufficient for deformability estimating without grain-size distribution taken into account. Discussion and Conclusions Considering grain-size distribution allows refining technological requirements for artificial soil structures, backfills, and sand beds. Further studies could be used for developing standard documents, SP45.13330.2012 in particular.

  13. Analysis of tractable distortion metrics for EEG compression applications

    International Nuclear Information System (INIS)

    Bazán-Prieto, Carlos; Blanco-Velasco, Manuel; Cruz-Roldán, Fernando; Cárdenas-Barrera, Julián

    2012-01-01

    Coding distortion in lossy electroencephalographic (EEG) signal compression methods is evaluated through tractable objective criteria. The percentage root-mean-square difference, which is a global and relative indicator of the quality held by reconstructed waveforms, is the most widely used criterion. However, this parameter does not ensure compliance with clinical standard guidelines that specify limits to allowable noise in EEG recordings. As a result, expert clinicians may have difficulties interpreting the resulting distortion of the EEG for a given value of this parameter. Conversely, the root-mean-square error is an alternative criterion that quantifies distortion in understandable units. In this paper, we demonstrate that the root-mean-square error is better suited to control and to assess the distortion introduced by compression methods. The experiments conducted in this paper show that the use of the root-mean-square error as target parameter in EEG compression allows both clinicians and scientists to infer whether coding error is clinically acceptable or not at no cost for the compression ratio. (paper)

  14. Combustion in a High-Speed Compression-Ignition Engine

    Science.gov (United States)

    Rothrock, A M

    1933-01-01

    An investigation conducted to determine the factors which control the combustion in a high-speed compression-ignition engine is presented. Indicator cards were taken with the Farnboro indicator and analyzed according to the tangent method devised by Schweitzer. The analysis show that in a quiescent combustion chamber increasing the time lag of auto-ignition increases the maximum rate of combustion. Increasing the maximum rate of combustion increases the tendency for detonation to occur. The results show that by increasing the air temperature during injection the start of combustion can be forced to take place during injection and so prevent detonation from occurring. It is shown that the rate of fuel injection does not in itself control the rate of combustion.

  15. Increasing the compressive strength of portland cement concrete using flat glass powder

    Energy Technology Data Exchange (ETDEWEB)

    Miranda Junior, Edson Jansen Pedrosa de; Bezerra, Helton de Jesus Costa Leite; Politi, Flavio Salgado; Paiva, Antonio Ernandes Macedo, E-mail: edson.jansen@ifma.edu.br [Instituto Federal de Educacao, Ciencia e Tecnologia do Maranha (IFMA), Sao Luis, MA (Brazil). Dept. de Mecanica e Materiais

    2014-08-15

    This paper analyzes the compressive strength of Portland cement concrete in response to the incorporation of 5%, 10% and 20% of flat glass powder in place of sand, at w/c (water/cement) ratios of 0.50, 0.55 and 0.58. A statistical analysis of variance (ANOVA) was performed after 7, 14 and 28 days of curing. The compressive strength test results indicate that the concrete containing a w/c ratio of 0.50 can be used for structural applications, regardless of the waste glass content, as can that with a w/c ratio of 0.55 containing 20% of waste glass. We suggest that the use of flat glass powder in place of sand in the above mentioned percentages is feasible for the production of an environmentally appropriate and structurally applicable concrete. However, the concrete's fluidity and void content must be taken into account. (author)

  16. Optimization of the segmented method for optical compression and multiplexing system

    Science.gov (United States)

    Al Falou, Ayman

    2002-05-01

    Because of the constant increasing demands of images exchange, and despite the ever increasing bandwidth of the networks, compression and multiplexing of images is becoming inseparable from their generation and display. For high resolution real time motion pictures, electronic performing of compression requires complex and time-consuming processing units. On the contrary, by its inherent bi-dimensional character, coherent optics is well fitted to perform such processes that are basically bi-dimensional data handling in the Fourier domain. Additionally, the main limiting factor that was the maximum frame rate is vanishing because of the recent improvement of spatial light modulator technology. The purpose of this communication is to benefit from recent optical correlation algorithms. The segmented filtering used to store multi-references in a given space bandwidth product optical filter can be applied to networks to compress and multiplex images in a given bandwidth channel.

  17. Experimental and Numerical Study of Jet Controlled Compression Ignition on Combustion Phasing Control in Diesel Premixed Compression Ignition Systems

    Directory of Open Access Journals (Sweden)

    Qiang Zhang

    2014-07-01

    Full Text Available In order to directly control the premixed combustion phasing, a Jet Controlled Compression Ignition (JCCI for diesel premixed compression ignition systems is investigated. Experiments were conducted on a single cylinder natural aspirated diesel engine without EGR at 3000 rpm. Numerical models were validated by load sweep experiments at fixed spark timing. Detailed combustion characteristics were analyzed based on the BMEP of 2.18 bar. The simulation results showed that the high temperature jets of reacting active radical species issued from the ignition chamber played an important role on the onset of combustion in the JCCI system. The combustion of diesel pre-mixtures was initiated rapidly by the combustion products issued from the ignition chamber. Moreover, the flame propagation was not obvious, similar to that in Pre-mixed Charge Compression Ignition (PCCI. Consequently, spark timing sweep experiments were conducted. The results showed a good linear relationship between spark timing in the ignition chamber and CA10 and CA50, which indicated the ability for direct combustion phasing control in diesel PCCI. The NOx and soot emissions gradually changed with the decrease of spark advance angle. The maximum reduction of NOx and soot were both over 90%, and HC and CO emissions were increased.

  18. The research of optimal selection method for wavelet packet basis in compressing the vibration signal of a rolling bearing in fans and pumps

    International Nuclear Information System (INIS)

    Hao, W; Jinji, G

    2012-01-01

    Compressing the vibration signal of a rolling bearing has important significance to wireless monitoring and remote diagnosis of fans and pumps which is widely used in the petrochemical industry. In this paper, according to the characteristics of the vibration signal in a rolling bearing, a compression method based on the optimal selection of wavelet packet basis is proposed. We analyze several main attributes of wavelet packet basis and the effect to the compression of the vibration signal in a rolling bearing using wavelet packet transform in various compression ratios, and proposed a method to precisely select a wavelet packet basis. Through an actual signal, we come to the conclusion that an orthogonal wavelet packet basis with low vanishing moment should be used to compress the vibration signal of a rolling bearing to get an accurate energy proportion between the feature bands in the spectrum of reconstructing the signal. Within these low vanishing moments, orthogonal wavelet packet basis, and 'coif' wavelet packet basis can obtain the best signal-to-noise ratio in the same compression ratio for its best symmetry.

  19. Excavation and drying of compressed peat; Tiivistetyn turpeen nosto ja kuivaus

    Energy Technology Data Exchange (ETDEWEB)

    Erkkilae, A.; Frilander, P.; Hillebrand, K.; Nurmi, H.

    1996-12-31

    The target of this three year (1993 - 1995) project was to improve the peat product-ion efficiency by developing an energy economical excavation method for compressed peat, by which it is possible to obtain best possible degree of compression and load from the DS-production point of view. It is possible to improve the degree of utilization of solar radiation in drying from 30 % to 40 %. The main research areas were drying of the compressed peat and peat compression. The third sub-task for 1995 was demonstration of the main parts of the method in laboratory scale. Experimental compressed peat (Compeat) drying models were made for peats Carex-peat H7, Carex-peat H5 and Carex-Sphagnum-peat H7. Compeat dried without turning in best circumstances in 34 % shorter time than milled layer made of the same peat turned twice, the initial moisture content being 4 kgH2OkgDS-1. In the tests carried out in 1995 with Carex-peat the compression had not corresponding effect on intensifying of the drying of peat. Compression of Carex-Sphagnum peat H7 increased the drying speed by about 10 % compared with the drying time of uncompressed milled layer. In the sprinkling test about 30-50 % of the sprinkled water was sucked into the compressed peat layer, while about 70 % of the rain is sucked into the corresponding uncompressed milled layer. Use of vibration decreased the energy consumption of the steel-surfaced nozzles about 20 % in the maximum, but the effect depend on the rotation speed of the macerator and the vibration power. In the new Compeat method (production method for compressed peat), developed in the research, the peat is loosened from the field surface by milling 3-5 cm thick layer of peat of moisture content 75-80 %

  20. Characterization of the Compressive Strength of Sandcrete Blocks in ...

    African Journals Online (AJOL)

    On the basis of the noted poor quality control, recommendations appropriate for improving the strength and effectiveness of sandcrete blocks production in Nigeria are made. Keywords: Sandcrete Blocks, Compressive Strength, Mix Ratio Journal of Civil Engineering Research and Practice Vol. 5 (1) 2008: pp. 15-28 ...

  1. Design for limit stresses of orange fruits (Citrus sinensis under axial and radial compression as related to transportation and storage design

    Directory of Open Access Journals (Sweden)

    Christopher Chukwutoo Ihueze

    2017-01-01

    Full Text Available This article employed the Hertz contact stress theory and the finite element method to evaluate the maximum contact pressure and the limit stresses of orange fruit under transportation and storage. The elastic properties of orange fruits subjected to axial and axial contact were measured such that elastic limit force, elastic modulus, Poisson’s ratio and bioyield stress were obtained as 18 N, 0.691 MPa, 0.367, 0.009 MPa for axial compression and for radial loading were 15.69 N, 0.645 MPa, 0.123, 0.010 MPa. The Hertz maximum contact pressure was estimated for axial and radial contacts as 0.036 MPa. The estimated limiting yield stress estimated as von Mises stresses for the induced surface stresses of the orange topologies varied from 0.005 MPa–0.03 MPa. Based on the distortion energy theory (DET the yield strength of orange fruit is recommended as 0.03 MPa while based on the maximum shear stress theory (MSST is 0.01 MPa for the design of orange transportation and storage system.

  2. Compressed Sensing in Vibration Monitoring Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Osvaldo Casares-Quirós

    2014-12-01

    After an experimental test using Waspmotes the fixed-variable variant has a 56.58% reduction of power consumption by introducing a maximum error ± 0.00195g and compress in 52.44% the amount of samples. This algorithm increased the network energy autonomy from 17 hours to 26.5 hours. Through mathematical analysis, the variable-fixed technique reduces in 74.81% the power consumption in sensing nodes transmissions and decrease in 90% the number of samples.

  3. KungFQ: a simple and powerful approach to compress fastq files.

    Science.gov (United States)

    Grassi, Elena; Di Gregorio, Federico; Molineris, Ivan

    2012-01-01

    Nowadays storing data derived from deep sequencing experiments has become pivotal and standard compression algorithms do not exploit in a satisfying manner their structure. A number of reference-based compression algorithms have been developed but they are less adequate when approaching new species without fully sequenced genomes or nongenomic data. We developed a tool that takes advantages of fastq characteristics and encodes them in a binary format optimized in order to be further compressed with standard tools (such as gzip or lzma). The algorithm is straightforward and does not need any external reference file, it scans the fastq only once and has a constant memory requirement. Moreover, we added the possibility to perform lossy compression, losing some of the original information (IDs and/or qualities) but resulting in smaller files; it is also possible to define a quality cutoff under which corresponding base calls are converted to N. We achieve 2.82 to 7.77 compression ratios on various fastq files without losing information and 5.37 to 8.77 losing IDs, which are often not used in common analysis pipelines. In this paper, we compare the algorithm performance with known tools, usually obtaining higher compression levels.

  4. Correlation between compressive strength and ultrasonic pulse velocity of high strength concrete incorporating chopped basalt fibre

    Science.gov (United States)

    Shafiq, Nasir; Fadhilnuruddin, Muhd; Elshekh, Ali Elheber Ahmed; Fathi, Ahmed

    2015-07-01

    Ultrasonic pulse velocity (UPV), is considered as the most important test for non-destructive techniques that are used to evaluate the mechanical characteristics of high strength concrete (HSC). The relationship between the compressive strength of HSC containing chopped basalt fibre stands (CBSF) and UPV was investigated. The concrete specimens were prepared using a different ratio of CBSF as internal strengthening materials. The compressive strength measurements were conducted at the sample ages of 3, 7, 28, 56 and 90 days; whilst, the ultrasonic pulse velocity was measured at 28 days. The result of HSC's compressive strength with the chopped basalt fibre did not show any improvement; instead, it was decreased. The UPV of the chopped basalt fibre reinforced concrete has been found to be less than that of the control mix for each addition ratio of the basalt fibre. A relationship plot is gained between the cube compressive strength for HSC and UPV with various amounts of chopped basalt fibres.

  5. GTZ: a fast compression and cloud transmission tool optimized for FASTQ files.

    Science.gov (United States)

    Xing, Yuting; Li, Gen; Wang, Zhenguo; Feng, Bolun; Song, Zhuo; Wu, Chengkun

    2017-12-28

    The dramatic development of DNA sequencing technology is generating real big data, craving for more storage and bandwidth. To speed up data sharing and bring data to computing resource faster and cheaper, it is necessary to develop a compression tool than can support efficient compression and transmission of sequencing data onto the cloud storage. This paper presents GTZ, a compression and transmission tool, optimized for FASTQ files. As a reference-free lossless FASTQ compressor, GTZ treats different lines of FASTQ separately, utilizes adaptive context modelling to estimate their characteristic probabilities, and compresses data blocks with arithmetic coding. GTZ can also be used to compress multiple files or directories at once. Furthermore, as a tool to be used in the cloud computing era, it is capable of saving compressed data locally or transmitting data directly into cloud by choice. We evaluated the performance of GTZ on some diverse FASTQ benchmarks. Results show that in most cases, it outperforms many other tools in terms of the compression ratio, speed and stability. GTZ is a tool that enables efficient lossless FASTQ data compression and simultaneous data transmission onto to cloud. It emerges as a useful tool for NGS data storage and transmission in the cloud environment. GTZ is freely available online at: https://github.com/Genetalks/gtz .

  6. Efficient transmission of compressed data for remote volume visualization.

    Science.gov (United States)

    Krishnan, Karthik; Marcellin, Michael W; Bilgin, Ali; Nadar, Mariappan S

    2006-09-01

    One of the goals of telemedicine is to enable remote visualization and browsing of medical volumes. There is a need to employ scalable compression schemes and efficient client-server models to obtain interactivity and an enhanced viewing experience. First, we present a scheme that uses JPEG2000 and JPIP (JPEG2000 Interactive Protocol) to transmit data in a multi-resolution and progressive fashion. The server exploits the spatial locality offered by the wavelet transform and packet indexing information to transmit, in so far as possible, compressed volume data relevant to the clients query. Once the client identifies its volume of interest (VOI), the volume is refined progressively within the VOI from an initial lossy to a final lossless representation. Contextual background information can also be made available having quality fading away from the VOI. Second, we present a prioritization that enables the client to progressively visualize scene content from a compressed file. In our specific example, the client is able to make requests to progressively receive data corresponding to any tissue type. The server is now capable of reordering the same compressed data file on the fly to serve data packets prioritized as per the client's request. Lastly, we describe the effect of compression parameters on compression ratio, decoding times and interactivity. We also present suggestions for optimizing JPEG2000 for remote volume visualization and volume browsing applications. The resulting system is ideally suited for client-server applications with the server maintaining the compressed volume data, to be browsed by a client with a low bandwidth constraint.

  7. Heterogeneous free-surface profile of B4C polycrystal under shock compression

    International Nuclear Information System (INIS)

    Mashimo, T.; Uchino, M.

    1997-01-01

    Observations of the free-surface behavior under shock compression by the gapped-flat mirror method were performed on B 4 C and Si 3 N 4 ceramics to study their shock-yielding properties. Jagged profiles of the moving free-surface in the plastic region, with a special scale of about one mm and a maximum local displacement of a few 10s of μm, were observed for B 4 C polycrystals. Similar profiles for Si 3 N 4 polycrystals were smooth. Such profiles for B 4 C polycrystals were also observed in the elastic region. It is suggested that these observations reflect the heterogeneous nature of shock compression in solids, and further indicate that a macroscopic slip system plays an important role in the elastoplastic transition of B 4 C material under shock compression and decompression. copyright 1997 American Institute of Physics

  8. The unique contribution of manual chest compression-vibrations to airflow during physiotherapy in sedated, fully ventilated children.

    Science.gov (United States)

    Gregson, Rachael K; Shannon, Harriet; Stocks, Janet; Cole, Tim J; Peters, Mark J; Main, Eleanor

    2012-03-01

    This study aimed to quantify the specific effects of manual lung inflations with chest compression-vibrations, commonly used to assist airway clearance in ventilated patients. The hypothesis was that force applied during the compressions made a significant additional contribution to increases in peak expiratory flow and expiratory to inspiratory flow ratio over and above that resulting from accompanying increases in inflation volume. Prospective observational study. Cardiac and general pediatric intensive care. Sedated, fully ventilated children. Customized force-sensing mats and a commercial respiratory monitor recorded force and respiration during physiotherapy. Percentage changes in peak expiratory flow, peak expiratory to inspiratory flow ratios, inflation volume, and peak inflation pressure between baseline and manual inflations with and without compression-vibrations were calculated. Analysis of covariance determined the relative contribution of changes in pressure, volume, and force to influence changes in peak expiratory flow and peak expiratory to inspiratory flow ratio. Data from 105 children were analyzed (median age, 1.3 yrs; range, 1 wk to 15.9 yrs). Force during compressions ranged from 15 to 179 N (median, 46 N). Peak expiratory flow increased on average by 76% during compressions compared with baseline ventilation. Increases in peak expiratory flow were significantly related to increases in inflation volume, peak inflation pressure, and force with peak expiratory flow increasing by, on average, 4% for every 10% increase in inflation volume (p children.

  9. Telemedicine + OCT: toward design of optimized algorithms for high-quality compressed images

    Science.gov (United States)

    Mousavi, Mahta; Lurie, Kristen; Land, Julian; Javidi, Tara; Ellerbee, Audrey K.

    2014-03-01

    Telemedicine is an emerging technology that aims to provide clinical healthcare at a distance. Among its goals, the transfer of diagnostic images over telecommunication channels has been quite appealing to the medical community. When viewed as an adjunct to biomedical device hardware, one highly important consideration aside from the transfer rate and speed is the accuracy of the reconstructed image at the receiver end. Although optical coherence tomography (OCT) is an established imaging technique that is ripe for telemedicine, the effects of OCT data compression, which may be necessary on certain telemedicine platforms, have not received much attention in the literature. We investigate the performance and efficiency of several lossless and lossy compression techniques for OCT data and characterize their effectiveness with respect to achievable compression ratio, compression rate and preservation of image quality. We examine the effects of compression in the interferogram vs. A-scan domain as assessed with various objective and subjective metrics.

  10. Studies of the pressure dependence of the charge density distribution in cerium phosphide by the maximum-entropy method

    CERN Document Server

    Ishimatsu, N; Takata, M; Nishibori, E; Sakata, M; Hayashi, J; Shirotani, I; Shimomura, O

    2002-01-01

    The physical properties relating to 4f electrons in cerium phosphide, especially the temperature dependence and the isomorphous transition that occurs at around 10 GPa, were studied by means of x-ray powder diffraction and charge density distribution maps derived by the maximum-entropy method. The compressibility of CeP was exactly determined using a helium pressure medium and the anomaly that indicated the isomorphous transition was observed in the compressibility. We also discuss the anisotropic charge density distribution of Ce ions and its temperature dependence.

  11. Variable Frame Rate and Length Analysis for Data Compression in Distributed Speech Recognition

    DEFF Research Database (Denmark)

    Kraljevski, Ivan; Tan, Zheng-Hua

    2014-01-01

    This paper addresses the issue of data compression in distributed speech recognition on the basis of a variable frame rate and length analysis method. The method first conducts frame selection by using a posteriori signal-to-noise ratio weighted energy distance to find the right time resolution...... length for steady regions. The method is applied to scalable source coding in distributed speech recognition where the target bitrate is met by adjusting the frame rate. Speech recognition results show that the proposed approach outperforms other compression methods in terms of recognition accuracy...... for noisy speech while achieving higher compression rates....

  12. Compressive and Shear Wave Velocity Profiles using Seismic Refraction Technique

    International Nuclear Information System (INIS)

    Aziman, M; Hazreek, Z A M; Azhar, A T S; Haimi, D S

    2016-01-01

    Seismic refraction measurement is one of the geophysics exploration techniques to determine soil profile. Meanwhile, the borehole technique is an established way to identify the changes of soil layer based on number of blows penetrating the soil. Both techniques are commonly adopted for subsurface investigation. The seismic refraction test is a non-destructive and relatively fast assessment compared to borehole technique. The soil velocities of compressive wave and shear wave derived from the seismic refraction measurements can be directly utilised to calculate soil parameters such as soil modulus and Poisson’s ratio. This study investigates the seismic refraction techniques to obtain compressive and shear wave velocity profile. Using the vertical and horizontal geophones as well as vertical and horizontal strike directions of the transient seismic source, the propagation of compressive wave and shear wave can be examined, respectively. The study was conducted at Sejagung Sri Medan. The seismic velocity profile was obtained at a depth of 20 m. The velocity of the shear wave is about half of the velocity of the compression wave. The soil profiles of compressive and shear wave velocities were verified using the borehole data and showed good agreement with the borehole data. (paper)

  13. Blind Compressed Sensing Parameter Estimation of Non-cooperative Frequency Hopping Signal

    Directory of Open Access Journals (Sweden)

    Chen Ying

    2016-10-01

    Full Text Available To overcome the disadvantages of a non-cooperative frequency hopping communication system, such as a high sampling rate and inadequate prior information, parameter estimation based on Blind Compressed Sensing (BCS is proposed. The signal is precisely reconstructed by the alternating iteration of sparse coding and basis updating, and the hopping frequencies are directly estimated based on the results. Compared with conventional compressive sensing, blind compressed sensing does not require prior information of the frequency hopping signals; hence, it offers an effective solution to the inadequate prior information problem. In the proposed method, the signal is first modeled and then reconstructed by Orthonormal Block Diagonal Blind Compressed Sensing (OBD-BCS, and the hopping frequencies and hop period are finally estimated. The simulation results suggest that the proposed method can reconstruct and estimate the parameters of noncooperative frequency hopping signals with a low signal-to-noise ratio.

  14. Addition of Audiovisual Feedback During Standard Compressions Is Associated with Improved Ability

    Directory of Open Access Journals (Sweden)

    Nicholas Asakawa

    2018-02-01

    Full Text Available Introduction: A benefit of in-hospital cardiac arrest is the opportunity for rapid initiation of “high-quality” chest compressions as defined by current American Heart Association (AHA adult guidelines as a depth 2–2.4 inches, full chest recoil, rate 100–120 per minute, and minimal interruptions with a chest compression fraction (CCF ≥ 60%. The goal of this study was to assess the effect of audiovisual feedback on the ability to maintain high-quality chest compressions as per 2015 updated guidelines. Methods: Ninety-eight participants were randomized into four groups. Participants were randomly assigned to perform chest compressions with or without use of audiovisual feedback (+/− AVF. Participants were further assigned to perform either standard compressions with a ventilation ratio of 30:2 to simulate cardiopulmonary resuscitation (CPR without an advanced airway or continuous chest compressions to simulate CPR with an advanced airway. The primary outcome measured was ability to maintain high-quality chest compressions as defined by current 2015 AHA guidelines. Results: Overall comparisons between continuous and standard chest compressions (n=98 were without significant differences in chest compression dynamics (p’s >0.05. Overall comparisons between +/− AVF (n = 98 were significant for differences in average rate of compressions per minute (p= 0.0241 and proportion of chest compressions within guideline rate recommendations (p = 0.0084. There was a significant difference in the proportion of high quality-chest compressions favoring AVF (p = 0.0399. Comparisons between chest compression strategy groups +/− AVF were significant for differences in compression dynamics favoring AVF (p’s < 0.05. Conclusion: Overall, AVF is associated with greater ability to maintain high-quality chest compressions per most-recent AHA guidelines. Specifically, AVF was associated with a greater proportion of compressions within ideal rate with

  15. Effect of crown-to-implant ratio on peri-implant stress: a finite element analysis.

    Science.gov (United States)

    Verri, Fellippo Ramos; Batista, Victor Eduardo de Souza; Santiago, Joel Ferreira; Almeida, Daniel Augusto de Faria; Pellizzer, Eduardo Piza

    2014-12-01

    The aim of this study was to evaluate stress distribution in the fixation screws and bone tissue around implants in single-implant supported prostheses with crowns of different heights (10, 12.5, 15 mm - crown-to-implant ratio 1:1, 1.25:1, 1.5:1, respectively). It was designed using three 3-D models. Each model was developed with a mandibular segment of bone block including an internal hexagon implant supporting a screw-retained, single metal-ceramic crown. The crown height was set at 10, 12.5, and 15 mm with crown-to-implant ratio of 1:1, 1.25:1, 1.5:1, respectively. The applied forces were 200N (axial) and 100 N (oblique). The increase of crown height showed differences with the oblique load in some situations. By von Mises' criterion, a high stress area was concentrated at the implant/fixation screw and abutment/implant interfaces at crown-to-implant ratio of 1:1, 1.25:1, 1.5:1, respectively. Using the maximum principal criteria, the buccal regions showed higher traction stress intensity, whereas the distal regions showed the largest compressive stress in all models. The increase of C/I ratio must be carefully evaluated by the dentist since the increase of this C/I ratio is proportional to the increase of average stress for both screw fixation (C/I 1:1 to 1:1.25 ratio=30.1% and C/I 1:1 to 1:1.5 ratio=46.3%) and bone tissue (C/I 1:1 to 1:1.25 ratio=30% and C/I 1:1 to 1:1.5 ratio=51.5%). Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Prediction of compressive strength up to 28 days from microstructure of Portland cement

    DEFF Research Database (Denmark)

    Svinning, K.; Høskuldsson, Agnar; Justnes, H.

    2008-01-01

    represented by curves from X-ray diffraction analysis and differential thermogravimetric analysis, as well as particle size distributions. PLS gave maximum explained variance in compressive strength at 1, 2, 7 and 28 days of 93%, 90%, 79% and 67%, respectively. The high explained variance makes the prediction...

  17. Influence of

    Directory of Open Access Journals (Sweden)

    V. Hariram

    2015-12-01

    Full Text Available The importance of diesel engines for human application is growing day by day. The engine operating parameters also play a key role in tuning the engine conforming to the better performance and emission standards. The effect of varying the compression ratios has more impact on the performance, emission and combustion parameters. In this study, single cylinder direct injection CI engine was tested on varying the compression ratios of 18, 17 and 16 at varying loads. The combustion and performance variation on reducing the compression ratios were investigated clearly. Reduction in brake thermal efficiency and increase in exhaust gas temperatures were observed when compression ratio was reduced from 18 to 16. The brake specific fuel consumption was increased on reducing the compression ratio. Reduction of peak cylinder pressure was observed on reduction of compression ratio and the ignition delay period increased on reducing the compression ratio. The peak heat release rate was closer to TDC on increasing compression ratios from 16 to 18. The rate of pressure rise was also investigated and showed maximum of 5.38 bar/°CA and minimum of 0.78 bar/°CA on above compression ratios. Cumulative heat release was also evaluated in this study showing higher heat energy for higher loads and compression ratios. The performance and combustion parameters on the useful compression ratio of 18 were also justified.

  18. Portable and Transparent Message Compression in MPI Libraries to Improve the Performance and Scalability of Parallel Applications

    Energy Technology Data Exchange (ETDEWEB)

    Albonesi, David; Burtscher, Martin

    2009-04-17

    The goal of this project has been to develop a lossless compression algorithm for message-passing libraries that can accelerate HPC systems by reducing the communication time. Because both compression and decompression have to be performed in software in real time, the algorithm has to be extremely fast while still delivering a good compression ratio. During the first half of this project, they designed a new compression algorithm called FPC for scientific double-precision data, made the source code available on the web, and published two papers describing its operation, the first in the proceedings of the Data Compression Conference and the second in the IEEE Transactions on Computers. At comparable average compression ratios, this algorithm compresses and decompresses 10 to 100 times faster than BZIP2, DFCM, FSD, GZIP, and PLMI on the three architectures tested. With prediction tables that fit into the CPU's L1 data acache, FPC delivers a guaranteed throughput of six gigabits per second on a 1.6 GHz Itanium 2 system. The C source code and documentation of FPC are posted on-line and have already been downloaded hundreds of times. To evaluate FPC, they gathered 13 real-world scientific datasets from around the globe, including satellite data, crash-simulation data, and messages from HPC systems. Based on the large number of requests they received, they also made these datasets available to the community (with permission of the original sources). While FPC represents a great step forward, it soon became clear that its throughput was too slow for the emerging 10 gigabits per second networks. Hence, no speedup can be gained by including this algorithm in an MPI library. They therefore changed the aim of the second half of the project. Instead of implementing FPC in an MPI library, they refocused their efforts to develop a parallel compression algorithm to further boost the throughput. After all, all modern high-end microprocessors contain multiple CPUs on a

  19. The Behaviour of Palm Oil Fibre Block Masonry Prism under Eccentric Compressive Loading

    Science.gov (United States)

    Mokhtar, Mardiha; Kolop, Roslan; Baizura Hamid, Nor; Kaamin, Masiri; Farhan Rosdi, Mohd; Ngadiman, Norhayati; Sahat, Suhaila

    2017-08-01

    Dry-stacked masonry offers great benefits in constructing masonry buildings. Several examples from previous research show that dry masonry is reasonable alternative to the traditional building system. By addition of fibre, the ductility and the propagation of cracking will be improved. This study investigates the dry stack oil palm fibre block prisms which were subjected to eccentricity compression loads. These concrete blocks were cast using a single mould with suitable fibre-cement composition namely 1:4 (cement: sand) and 0.40 water to the cement ratio based on cement weight. Prisms test using 400 (length) × 150 (width) × 510 (height) mm specimen was carried under eccentric load. There were forty eight (48) prisms built with different configurations based on their volume of fibre. In this study, one types of grout were used namely the fine grout of mix 1:3:2 (cement: sand: aggregate (5mm maximum). Based on the test performed, the failure mechanism and influencing parameters were discussed. From compressive strength test result, it shows that the strength of concrete block decreased with the increase of fibre used. Although the control sample has the higher strength compared to concrete with EFB, it can be seen from mode failure of masonry prism that fibre could extend the cracking time. These results show that the oil palm fibre blocks can improve the failure behaviour and suitable to be used as load bearing wall construction in Malaysia.

  20. Tracheal compression due to an elongated aortic arch in patients with congenital heart disease: evaluation using multidetector-row CT

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Noriko; Hayabuchi, Yasunobu; Inoue, Miki; Sakata, Miho; Nabo, Manal Mohamed Helmy; Nakagawa, Ryuji; Saijo, Takahiko; Kagami, Shoji [University of Tokushima, Department of Pediatrics, Tokushima (Japan)

    2009-10-15

    The airway can become obstructed as a result of compression by an elongated aortic arch. In this study we evaluated tracheal compression using multidetector-row CT in patients with congenital heart disease and an elongated aortic arch. The trachea was measured at the level of the aortic arch in 205 children and young adults and then the severity of tracheal compression was determined by measuring the tracheal diameter ratio (short axis diameter/long axis diameter). Patients were divided as follows: group I (normal aortic arch; n=166), group II (transversely running aortic arch; n=22), and group III (elongated aortic arch; n=17). From the viewpoint of the relationship of the great arteries, group II had D-malposition, and group III had L-malposition. Age, height, weight and body surface area were significantly correlated with the short and long axis diameter in group I. There was a negative correlation between tracheal diameter ratio and the physical size parameters. The tracheal diameter ratio in group III was 0.50{+-}0.13, which was significantly lower than in groups I and II (P<0.01 and 0.05, respectively). Even apparently asymptomatic patients with an elongated aortic arch can have tracheal compression. An elongated aortic arch may be a useful predictor of tracheal compression. (orig.)

  1. Effect of Coating Solvent Ratio on the Drug Release Lag Time of ...

    African Journals Online (AJOL)

    Purpose: The aim of the study was to investigate the effect of hydro-alcohol coating solvent ratio on the surface texture and lag time of porous theophylline osmotic tablet. Methods: Porous theophylline osmotic pump tablets were formulated by direct compression and coated by spraying with varying ratios of water-alcohol ...

  2. A Novel ECG Data Compression Method Using Adaptive Fourier Decomposition With Security Guarantee in e-Health Applications.

    Science.gov (United States)

    Ma, JiaLi; Zhang, TanTan; Dong, MingChui

    2015-05-01

    This paper presents a novel electrocardiogram (ECG) compression method for e-health applications by adapting an adaptive Fourier decomposition (AFD) algorithm hybridized with a symbol substitution (SS) technique. The compression consists of two stages: first stage AFD executes efficient lossy compression with high fidelity; second stage SS performs lossless compression enhancement and built-in data encryption, which is pivotal for e-health. Validated with 48 ECG records from MIT-BIH arrhythmia benchmark database, the proposed method achieves averaged compression ratio (CR) of 17.6-44.5 and percentage root mean square difference (PRD) of 0.8-2.0% with a highly linear and robust PRD-CR relationship, pushing forward the compression performance to an unexploited region. As such, this paper provides an attractive candidate of ECG compression method for pervasive e-health applications.

  3. Informational analysis for compressive sampling in radar imaging.

    Science.gov (United States)

    Zhang, Jingxiong; Yang, Ke

    2015-03-24

    Compressive sampling or compressed sensing (CS) works on the assumption of the sparsity or compressibility of the underlying signal, relies on the trans-informational capability of the measurement matrix employed and the resultant measurements, operates with optimization-based algorithms for signal reconstruction and is thus able to complete data compression, while acquiring data, leading to sub-Nyquist sampling strategies that promote efficiency in data acquisition, while ensuring certain accuracy criteria. Information theory provides a framework complementary to classic CS theory for analyzing information mechanisms and for determining the necessary number of measurements in a CS environment, such as CS-radar, a radar sensor conceptualized or designed with CS principles and techniques. Despite increasing awareness of information-theoretic perspectives on CS-radar, reported research has been rare. This paper seeks to bridge the gap in the interdisciplinary area of CS, radar and information theory by analyzing information flows in CS-radar from sparse scenes to measurements and determining sub-Nyquist sampling rates necessary for scene reconstruction within certain distortion thresholds, given differing scene sparsity and average per-sample signal-to-noise ratios (SNRs). Simulated studies were performed to complement and validate the information-theoretic analysis. The combined strategy proposed in this paper is valuable for information-theoretic orientated CS-radar system analysis and performance evaluation.

  4. Thermodynamic analysis on optimum performance of scramjet engine at high Mach numbers

    International Nuclear Information System (INIS)

    Zhang, Duo; Yang, Shengbo; Zhang, Silong; Qin, Jiang; Bao, Wen

    2015-01-01

    In order to predict the maximum performance of scramjet engine at flight conditions with high freestream Mach numbers, a thermodynamic model of Brayton cycle was utilized to analyze the effects of inlet pressure ratio, fuel equivalence ratio and the upper limit of gas temperature to the specific thrust and the fuel impulse of the scramjet considering the characteristics of non-isentropic compression in the inlet. The results show that both the inlet efficiency and the temperature limit in the combustor have remarkable effects on the overall engine performances. Different with the ideal Brayton cycles assuming isentropic compression without upper limit of gas temperature, both the maximum specific thrust and the maximum fuel impulse of a scramjet present non-monotonic trends against the fuel equivalence ratio in this study. Considering the empirical design efficiencies of inlet, there is a wide range of fuel equivalence ratios in which the fuel impulses remain at high values. Moreover, the maximum specific thrust can also be achieved with a fuel equivalence ratio near this range. Therefore, it is possible to achieve an overall high performance in a scramjet at high Mach numbers. - Highlights: • Thermodynamic analysis with Brayton cycle on overall performances of scramjet. • The compression loss in the inlet was considered in predicting scram-mode operation. • Non-monotonic trends of engine performances against fuel equivalence ratio.

  5. Modified water-cement ratio law for compressive strength of rice ...

    African Journals Online (AJOL)

    This work examines the modification of age long water – cement ratio law of Ordinary Portland Cement (OPC) concrete to cater for concrete with Rice Husk Ash (RHA). Chemical analysis of RHA produced under controlled temperature of 600°C was carried out. A total of one hundred and fifty (150) RHA concrete cubes at ...

  6. Investigations on the relationship between power spectrum and signal-to-noise ratio of frequency-swept pulses

    International Nuclear Information System (INIS)

    Zhang Zhuhong; Fan Diayuan

    1993-01-01

    The criterion for obtaining compressed chirp pulses with high signal-to-noise ratio is the shape of the power spectrum, a chirp pulse of Gaussian shaped power spectrum without modulation is needed in CPA system to get the clean compressed pulses. 4 refs., 2 figs

  7. Local Limit Phenomena, Flow Compression, and Fuel Cracking Effects in High-Speed Turbulent Flames

    Science.gov (United States)

    2015-06-01

    e.g. local extinction and re- ignition , interactions between flow compression and fast-reaction induced dilatation (reaction compression ), and to...time as a function of initial temperature in constant-pressure auto - ignition , and (b) the S-curves of perfectly stirred reactors (PSRs), for n...mechanism. The reduction covered auto - ignition and perfectly stirred reactors for equivalence ratio range of 0.5~1.5, initial temperature higher than

  8. Dynamics of compressible gas-liquid flows with a stiff density ratio

    International Nuclear Information System (INIS)

    Cortes, Julien

    1999-01-01

    This work is devoted to the study of transient two-phase flows when the ratio of the two densities is stiff. At first, we review briefly some of the basic principles about two-phase flow, hyperbolicity and the finite volume method. Then we develop a perturbation method, based on the stiffness of the density ratio, to examine the Eigen-structure of two-fluid models. Indeed, in such models, complex phasic interactions yield a complex Eigen-structure which may raise numerous problems in simulations. We show that our approach provides a convenient frame to study the hyperbolicity of such models. At this stage, advanced numerical tests are computed showing the efficiency of our approach in the context of unstructured multidimensional meshes. Our tests are validated for non-equilibrium flows using experimental data or through mesh refinements. At last, we use the scaling of the densities to analyse how momentum is transferred between phases in the context of bubbly flows. We study the relevance of a stiff relaxation term related to the ratio of the densities using linear stability properties and Chapman-Enskog expansions. Our results and some numerical computations tends to show that such a system is apparently well-posed despite being 'weakly' hyperbolic. (author) [fr

  9. Cloud solution for histopathological image analysis using region of interest based compression.

    Science.gov (United States)

    Kanakatte, Aparna; Subramanya, Rakshith; Delampady, Ashik; Nayak, Rajarama; Purushothaman, Balamuralidhar; Gubbi, Jayavardhana

    2017-07-01

    Recent technological gains have led to the adoption of innovative cloud based solutions in medical imaging field. Once the medical image is acquired, it can be viewed, modified, annotated and shared on many devices. This advancement is mainly due to the introduction of Cloud computing in medical domain. Tissue pathology images are complex and are normally collected at different focal lengths using a microscope. The single whole slide image contains many multi resolution images stored in a pyramidal structure with the highest resolution image at the base and the smallest thumbnail image at the top of the pyramid. Highest resolution image will be used for tissue pathology diagnosis and analysis. Transferring and storing such huge images is a big challenge. Compression is a very useful and effective technique to reduce the size of these images. As pathology images are used for diagnosis, no information can be lost during compression (lossless compression). A novel method of extracting the tissue region and applying lossless compression on this region and lossy compression on the empty regions has been proposed in this paper. The resulting compression ratio along with lossless compression on tissue region is in acceptable range allowing efficient storage and transmission to and from the Cloud.

  10. 1-D Compression Behaviour of Acid Sulphate Soils Treated with Alkali-Activated Slag.

    Science.gov (United States)

    Islam, Shahidul; Haque, Asadul; Bui, Ha Hong

    2016-04-15

    Improvements of soft soils by mechanically mixing cementitious additives have been widely practised for construction of infrastructure. Mixing of additives improves strength and compressibility properties of soils through the development of soil structure. This study investigates the 1-D compression behaviour of alkali-activated slag treated acid sulphate soils (ASS) cured up to 365 days. The void ratio-logarithm of pressure (e-logσ') behaviour of treated ASS, including the destructuration behaviour, with additive contents and curing time have been analysed. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses have been undertaken to explain the observed variations of the 1-D compression behaviour. This paper presents the results of these analyses in view of obtaining an insight into the 1-D compression behaviour of treated ASS with the help of mineralogical analysis.

  11. Pressurizer safety valve serviceability enhancement by spring compression stability

    Energy Technology Data Exchange (ETDEWEB)

    Ratiu, M.D.; Moisidis, N.T. [California Consulting Engineering and Technology (CALCET), San Leandro, California (United States)

    2007-07-01

    The proactive maintenance of the spring-loaded-self-actuated Pressurizer Safety Valve (PSV) has caused frequent concerns pertaining the spring self actuated reliability due to set point drift, spurious openings, and seat leakage. The exhaustive testing performed on a Crosby PSV model 6M6 has revealed that the principal cause of these malfunctions is the spring compression elastic instability during service. The spring lateral deformations measurements performed validated the analytical shapes for spring compression: symmetrical bending - for coaxial supported ends - restraining any support displacement, and asymmetrical bending induced by the potential misalignment of the supported top end. The source of the spring compression instability appears on the tested Crosby PSV induced by the top end lateral displacement during long term operation. The testing with restrained displacement at the spring top has shown consistent set-point reproducibility, less than +/- 1 per cent. To eliminate the asymmetrical spring buckling, a design review of the PSV is proposed including the guided fixture at the top and the decrease of spring coil slenderness ratio H/D, corresponding to the general analytical elastic stability for the asymmetrical compression. (authors)

  12. Pressurizer safety valve serviceability enhancement by spring compression stability

    International Nuclear Information System (INIS)

    Ratiu, M.D.; Moisidis, N.T.

    2007-01-01

    The proactive maintenance of the spring-loaded-self-actuated Pressurizer Safety Valve (PSV) has caused frequent concerns pertaining the spring self actuated reliability due to set point drift, spurious openings, and seat leakage. The exhaustive testing performed on a Crosby PSV model 6M6 has revealed that the principal cause of these malfunctions is the spring compression elastic instability during service. The spring lateral deformations measurements performed validated the analytical shapes for spring compression: symmetrical bending - for coaxial supported ends - restraining any support displacement, and asymmetrical bending induced by the potential misalignment of the supported top end. The source of the spring compression instability appears on the tested Crosby PSV induced by the top end lateral displacement during long term operation. The testing with restrained displacement at the spring top has shown consistent set-point reproducibility, less than +/- 1 per cent. To eliminate the asymmetrical spring buckling, a design review of the PSV is proposed including the guided fixture at the top and the decrease of spring coil slenderness ratio H/D, corresponding to the general analytical elastic stability for the asymmetrical compression. (authors)

  13. Technique for Selecting Optimum Fan Compression Ratio based on the Effective Power Plant Parameters

    Directory of Open Access Journals (Sweden)

    I. I. Kondrashov

    2016-01-01

    Full Text Available Nowadays, civilian aircrafts occupy the major share of global aviation industry market. As to medium and long - haul aircrafts, turbofans with separate exhaust streams are widely used. Here, fuel efficiency is the main criterion of this engine. The paper presents the research results of the mutual influence of fan pressure ratio and bypass ratio on the effective specific fuel consumption. Shows the increasing bypass ratio to be a rational step for reducing the fuel consumption. Also considers the basic features of engines with a high bypass ratio. Among the other working process parameters, fan pressure ratio and bypass ratio are the most relevant for consideration as they are the most structural variables at a given level of technical excellence. The paper presents the dependence of the nacelle drag coefficient on the engine bypass ratio. For computation were adopted the projected parameters of prospective turbofans to be used in the power plant of the 180-seat medium-haul aircraft. Computation of the engine cycle was performed in Mathcad using these data, with fan pressure ratio and bypass ratio being varied. The combustion chamber gas temperature, the overall pressure ratio and engine thrust remained constant. Pressure loss coefficients, the efficiency of the engine components and the amount of air taken for cooling also remained constant. The optimal parameters corresponding to the minimum effective specific fuel consumption were found as the result of computation. The paper gives recommendations for adjusting optimal parameters, depending on the considered external factors, such as weight of engine and required fuel reserve. The obtained data can be used to estimate parameters of future turbofan engines with high bypass ratio.

  14. A Compression Algorithm in Wireless Sensor Networks of Bearing Monitoring

    International Nuclear Information System (INIS)

    Zheng Bin; Meng Qingfeng; Wang Nan; Li Zhi

    2011-01-01

    The energy consumption of wireless sensor networks (WSNs) is always an important problem in the application of wireless sensor networks. This paper proposes a data compression algorithm to reduce amount of data and energy consumption during the data transmission process in the on-line WSNs-based bearing monitoring system. The proposed compression algorithm is based on lifting wavelets, Zerotree coding and Hoffman coding. Among of that, 5/3 lifting wavelets is used for dividing data into different frequency bands to extract signal characteristics. Zerotree coding is applied to calculate the dynamic thresholds to retain the attribute data. The attribute data are then encoded by Hoffman coding to further enhance the compression ratio. In order to validate the algorithm, simulation is carried out by using Matlab. The result of simulation shows that the proposed algorithm is very suitable for the compression of bearing monitoring data. The algorithm has been successfully used in online WSNs-based bearing monitoring system, in which TI DSP TMS320F2812 is used to realize the algorithm.

  15. Coronary angiogram video compression for remote browsing and archiving applications.

    Science.gov (United States)

    Ouled Zaid, Azza; Fradj, Bilel Ben

    2010-12-01

    In this paper, we propose a H.264/AVC based compression technique adapted to coronary angiograms. H.264/AVC coder has proven to use the most advanced and accurate motion compensation process, but, at the cost of high computational complexity. On the other hand, analysis of coronary X-ray images reveals large areas containing no diagnostically important information. Our contribution is to exploit the energy characteristics in slice equal size regions to determine the regions with relevant information content, to be encoded using the H.264 coding paradigm. The others regions, are compressed using fixed block motion compensation and conventional hard-decision quantization. Experiments have shown that at the same bitrate, this procedure reduces the H.264 coder computing time of about 25% while attaining the same visual quality. A subjective assessment, based on the consensus approach leads to a compression ratio of 30:1 which insures both a diagnostic adequacy and a sufficient compression in regards to storage and transmission requirements. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. A computational fluid dynamics (CFD) study of WEB-treated aneurysms: Can CFD predict WEB "compression" during follow-up?

    Science.gov (United States)

    Caroff, Jildaz; Mihalea, Cristian; Da Ros, Valerio; Yagi, Takanobu; Iacobucci, Marta; Ikka, Léon; Moret, Jacques; Spelle, Laurent

    2017-07-01

    Recent reports have revealed a worsening of aneurysm occlusion between WEB treatment baseline and angiographic follow-up due to "compression" of the device. We utilized computational fluid dynamics (CFD) in order to determine whether the underlying mechanism of this worsening is flow related. We included data from all consecutive patients treated in our institution with a WEB for unruptured aneurysms located either at the middle cerebral artery or basilar tip. The CFD study was performed using pre-operative 3D rotational angiography. From digital subtraction follow-up angiographies patients were dichotomized into two groups: one with WEB "compression" and one without. We performed statistical analyses to determine a potential correlation between WEB compression and CFD inflow ratio. Between July 2012 and June 2015, a total of 22 unruptured middle cerebral artery or basilar tip aneurysms were treated with a WEB device in our department. Three patients were excluded from the analysis and the mean follow-up period was 17months. Eleven WEBs presented "compression" during follow-up. Interestingly, device "compression" was statistically correlated to the CFD inflow ratio (P=0.018), although not to aneurysm volume, aspect ratio or neck size. The mechanisms underlying the worsening of aneurysm occlusion in WEB-treated patients due to device compression are most likely complex as well as multifactorial. However, it is apparent from our pilot study that a high arterial inflow is, at least, partially involved. Further theoretical and animal research studies are needed to increase our understanding of this phenomenon. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Compression characteristics and permeability of saturated Gaomiaozi ca-bentonite

    International Nuclear Information System (INIS)

    Sun Wenjing; Sun De'an; Fang Lei

    2012-01-01

    The compression characteristics and permeability of compacted Gaomiaozi Ca-bentonite saturated by the water uptake tests are studied by conducting a series of one-dimension compression tests. The permeability coefficient can be calculated by the Terzaghi's one-dimensional consolidation theory after the consolidation coefficient is obtained by the square root of time method. It is found that the compression curves of compacted specimens saturated by the water uptake tests tend to be consistent in the relatively high stress range. The compression indexes show a linear decrease with increasing dry density and the swelling index is a constant. The permeability coefficient decreases with increasing compression stress, and they show the linear relationship in double logarithmic coordinates. Meanwhile, the permeability coefficient shows a linear decrease with decreasing void ratio, which has no relationship with initial states, stress states and stress paths. The permeability coefficient k of GMZ Ca-bentonite at dry density Pd of 1.75 g/cm 3 can be calculated as 2.0 × 10 -11 cm/s by the linear relationship between Pd and log k. It is closed to the permeability coefficient of GMZ Ca-bentonite with the same dry density published in literature, which testifies that the method calculating the permeability coefficient is feasible from the consolidation coefficient obtained by the consolidation test. (authors)

  18. An Electron Bunch Compression Scheme for a Superconducting Radio Frequency Linear Accelerator Driven Light Source

    Energy Technology Data Exchange (ETDEWEB)

    C. Tennant, S.V. Benson, D. Douglas, P. Evtushenko, R.A. Legg

    2011-09-01

    We describe an electron bunch compression scheme suitable for use in a light source driven by a superconducting radio frequency (SRF) linac. The key feature is the use of a recirculating linac to perform the initial bunch compression. Phasing of the second pass beam through the linac is chosen to de-chirp the electron bunch prior to acceleration to the final energy in an SRF linac ('afterburner'). The final bunch compression is then done at maximum energy. This scheme has the potential to circumvent some of the most technically challenging aspects of current longitudinal matches; namely transporting a fully compressed, high peak current electron bunch through an extended SRF environment, the need for a RF harmonic linearizer and the need for a laser heater. Additional benefits include a substantial savings in capital and operational costs by efficiently using the available SRF gradient.

  19. Design of bunch compressing system with suppression of coherent synchrotron radiation for ATF upgrade

    International Nuclear Information System (INIS)

    Jing, Yichao; Fedurin, Mikhail; Stratakis, Diktys

    2015-01-01

    One of the operation modes for Accelerator Test Facility (ATF) upgrade is to provide high peak current, high quality electron beam for users. Such operation requires a bunch compressing system with a very large compression ratio. The CSR originating from the strong compressors generally could greatly degrade the quality of the electron beam. In this paper, we present our design for the entire bunch compressing system that will limit the effect of CSR on the e-beam@s quality. We discuss and detail the performance from the start to end simulation of such a compressor for ATF.

  20. Using gasoline in an advanced compression ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Cracknell, R.F.; Ariztegui, J.; Dubois, T.; Hamje, H.D.C.; Pellegrini, L.; Rickeard, D.J.; Rose, K.D. [CONCAWE, Brussels (Belgium); Heuser, B. [RWTH Aachen Univ. (Germany). Inst. for Combustion Engines; Schnorbus, T.; Kolbeck, A.F. [FEV GmbH, Aachen (Germany)

    2013-06-01

    Future vehicles will be required to improve their efficiency, reduce both regulated and CO{sub 2} emissions, and maintain acceptable driveability, safety, and noise. To achieve this overall performance, they will be configured with more advanced hardware, sensors, and control technologies that will also enable their operation on a broader range of fuel properties. Fuel flexibility has already been demonstrated in previous studies on a compression ignition bench engine and a demonstration vehicle equipped with an advanced engine management system, closed-loop combustion control, and air-path control strategies. An unresolved question is whether engines of this sort can also operate on market gasoline while achieving diesel-like efficiency and acceptable emissions and noise levels. In this study, a compression ignition bench engine having a higher compression ratio, optimised valve timing, advanced engine management system, and flexible fuel injection could be operated on a European gasoline over full to medium part loads. The combustion was sensitive to EGR rates, however, and optimising all emissions and combustion noise was a considerable challenge at lower loads. (orig.)

  1. A seismic data compression system using subband coding

    Science.gov (United States)

    Kiely, A. B.; Pollara, F.

    1995-01-01

    This article presents a study of seismic data compression techniques and a compression algorithm based on subband coding. The algorithm includes three stages: a decorrelation stage, a quantization stage that introduces a controlled amount of distortion to allow for high compression ratios, and a lossless entropy coding stage based on a simple but efficient arithmetic coding method. Subband coding methods are particularly suited to the decorrelation of nonstationary processes such as seismic events. Adaptivity to the nonstationary behavior of the waveform is achieved by dividing the data into separate blocks that are encoded separately with an adaptive arithmetic encoder. This is done with high efficiency due to the low overhead introduced by the arithmetic encoder in specifying its parameters. The technique could be used as a progressive transmission system, where successive refinements of the data can be requested by the user. This allows seismologists to first examine a coarse version of waveforms with minimal usage of the channel and then decide where refinements are required. Rate-distortion performance results are presented and comparisons are made with two block transform methods.

  2. Spherical composite particles of rice starch and microcrystalline cellulose: a new coprocessed excipient for direct compression.

    Science.gov (United States)

    Limwong, Vasinee; Sutanthavibul, Narueporn; Kulvanich, Poj

    2004-03-12

    Composite particles of rice starch (RS) and microcrystalline cellulose were fabricated by spray-drying technique to be used as a directly compressible excipient. Two size fractions of microcrystalline cellulose, sieved (MCS) and jet milled (MCJ), having volumetric mean diameter (D50) of 13.61 and 40.51 microm, respectively, were used to form composite particles with RS in various mixing ratios. The composite particles produced were evaluated for their powder and compression properties. Although an increase in the microcrystalline cellulose proportion imparted greater compressibility of the composite particles, the shape of the particles was typically less spherical with rougher surface resulting in a decrease in the degree of flowability. Compressibility of composite particles made from different size fractions of microcrystalline cellulose was not different; however, using MCJ, which had a particle size range close to the size of RS (D50 = 13.57 microm), provided more spherical particles than using MCS. Spherical composite particles between RS and MCJ in the ratio of 7:3 (RS-MCJ-73) were then evaluated for powder properties and compressibility in comparison with some marketed directly compressible diluents. Compressibility of RS-MCJ-73 was greater than commercial spray-dried RS (Eratab), coprocessed lactose and microcrystalline cellulose (Cellactose), and agglomerated lactose (Tablettose), but, as expected, lower than microcrystalline cellulose (Vivapur 101). Flowability index of RS-MCJ-73 appeared to be slightly lower than Eratab but higher than Vivapur 101, Cellactose, and Tablettose. Tablets of RS-MCJ-73 exhibited low friability and good self-disintegrating property. It was concluded that these developed composite particles could be introduced as a new coprocessed direct compression excipient.

  3. SPECTRUM analysis of multispectral imagery in conjunction with wavelet/KLT data compression

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, J.N.; Brislawn, C.M.

    1993-12-01

    The data analysis program, SPECTRUM, is used for fusion, visualization, and classification of multi-spectral imagery. The raw data used in this study is Landsat Thematic Mapper (TM) 7-channel imagery, with 8 bits of dynamic range per channel. To facilitate data transmission and storage, a compression algorithm is proposed based on spatial wavelet transform coding and KLT decomposition of interchannel spectral vectors, followed by adaptive optimal multiband scalar quantization. The performance of SPECTRUM clustering and visualization is evaluated on compressed multispectral data. 8-bit visualizations of 56-bit data show little visible distortion at 50:1 compression and graceful degradation at higher compression ratios. Two TM images were processed in this experiment: a 1024 x 1024-pixel scene of the region surrounding the Chernobyl power plant, taken a few months before the reactor malfunction, and a 2048 x 2048 image of Moscow and surrounding countryside.

  4. Effects of stretching and compression on conducting properties of an Au–alkanedithiol–Au molecular junction

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Fang; Zhang, Xiao-Jiao; Yu, Ji-Hai; Xu, Hua; Chu, Yu-Fang [Physics Science and Engineering Technology College, Yichun University, Yichun 336000 (China); Fan, Zhi-Qiang, E-mail: fan0221@163.com [School of Physics and Electronic Science, Changsha University of Science and Technology, Changsha 410004 (China)

    2016-03-01

    We have studied the effects of stretching and compression on the electronic properties of 7-alkanedithiol covalently linked to two Au electrodes. Results show a progressive increase in conductivity upon molecule compression and decrease with molecule stretching. The notable conductance increase at high compression is attributed to a significant modification of HOMO and LUMO orbitals of the junction, which enhances electron delocalization and promotes tunneling across the junction. More important, the current switching ratios between the various stages of compressed/extended geometries almost maintain the constant values on the bias region from 0 V to 2 V. In other word, the mechanically-induced conductance enhancement and weakening are stable within a large bias voltage range.

  5. From Fibonacci Sequence to the Golden Ratio

    Directory of Open Access Journals (Sweden)

    Alberto Fiorenza

    2013-01-01

    Full Text Available We consider the well-known characterization of the Golden ratio as limit of the ratio of consecutive terms of the Fibonacci sequence, and we give an explanation of this property in the framework of the Difference Equations Theory. We show that the Golden ratio coincides with this limit not because it is the root with maximum modulus and multiplicity of the characteristic polynomial, but, from a more general point of view, because it is the root with maximum modulus and multiplicity of a restricted set of roots, which in this special case coincides with the two roots of the characteristic polynomial. This new perspective is the heart of the characterization of the limit of ratio of consecutive terms of all linear homogeneous recurrences with constant coefficients, without any assumption on the roots of the characteristic polynomial, which may be, in particular, also complex and not real.

  6. A Study of Compressive Strength Characteristics of Laterite Sand Hollow Blocks

    Directory of Open Access Journals (Sweden)

    Abiodun Olanipekun

    2007-01-01

    Full Text Available This paper presents the results of experimental investigations carried out on partial replacement of sand with laterite as it affects the compressive strength of sandcrete hollow blocks. Two mix proportions (1:6 and 1:8 were used with laterite content varying between 0 and 50% at 10% intervals. Hand and machine compaction methods were used. Curing was done by sprinkling water on the specimens. The results showed that for each mix proportion and compaction method, the compressive strength decreases with increase in laterite content. Machine compacted hollow sandcrete blocks made from mix ratio 1:6 and with up to 10% laterite content is found suitable and hence recommended for building construction having attained a 28-day compressive strength of 2.07N/mm2 as required by the Nigerian Standards.

  7. Single-particle dispersion in compressible turbulence

    Science.gov (United States)

    Zhang, Qingqing; Xiao, Zuoli

    2018-04-01

    Single-particle dispersion statistics in compressible box turbulence are studied using direct numerical simulation. Focus is placed on the detailed discussion of effects of the particle Stokes number and turbulent Mach number, as well as the forcing type. When solenoidal forcing is adopted, it is found that the single-particle dispersion undergoes a transition from the ballistic regime at short times to the diffusive regime at long times, in agreement with Taylor's particle dispersion argument. The strongest dispersion of heavy particles is announced when the Stokes number is of order 1, which is similar to the scenario in incompressible turbulence. The dispersion tends to be suppressed as the Mach number increases. When hybrid solenoidal and compressive forcing at a ratio of 1/2 is employed, the flow field shows apparent anisotropic property, characterized by the appearance of large shock wave structures. Accordingly, the single-particle dispersion shows extremely different behavior from the solenoidal forcing case.

  8. Nonlinear behavior of nuclear buildings made of low slenderness ratio under alternate loading. Vol. 1

    International Nuclear Information System (INIS)

    Assadi, Said.

    1985-04-01

    Outside horizontal forces shells of a nuclear building are subjected to traction or compression vertical forces on the horizontal cross section, they are indeed gravity forces (compression) or vertical component of seismic sollicitation (traction). These shells, generally twice more reinforced than ordinary buildings, have a slenderness ratio rarely above 1. Role of shearing stress is more important than flexion. As a result, horizontal reinforcements of low slenderness ratio loose their efficiency in shear resistance, however in some case local resistance to shear is secured. Flexure resistance is obtained by armouring in vertical edges. Resistance, ductility damping and rigidity of plane shells are studied under the action of repeated alternate horizontal forces with or without a perpendicular traction (or compression) force. A computer code CADBANU was realized to study the response of nuclear building made of low slenderness ratio under a dynamic excitation applied to the base. This program gives the horizontal translation and rotation for each floor. The first version of this program was verified and graphic results are given [fr

  9. Single-event transient imaging with an ultra-high-speed temporally compressive multi-aperture CMOS image sensor.

    Science.gov (United States)

    Mochizuki, Futa; Kagawa, Keiichiro; Okihara, Shin-ichiro; Seo, Min-Woong; Zhang, Bo; Takasawa, Taishi; Yasutomi, Keita; Kawahito, Shoji

    2016-02-22

    In the work described in this paper, an image reproduction scheme with an ultra-high-speed temporally compressive multi-aperture CMOS image sensor was demonstrated. The sensor captures an object by compressing a sequence of images with focal-plane temporally random-coded shutters, followed by reconstruction of time-resolved images. Because signals are modulated pixel-by-pixel during capturing, the maximum frame rate is defined only by the charge transfer speed and can thus be higher than those of conventional ultra-high-speed cameras. The frame rate and optical efficiency of the multi-aperture scheme are discussed. To demonstrate the proposed imaging method, a 5×3 multi-aperture image sensor was fabricated. The average rising and falling times of the shutters were 1.53 ns and 1.69 ns, respectively. The maximum skew among the shutters was 3 ns. The sensor observed plasma emission by compressing it to 15 frames, and a series of 32 images at 200 Mfps was reconstructed. In the experiment, by correcting disparities and considering temporal pixel responses, artifacts in the reconstructed images were reduced. An improvement in PSNR from 25.8 dB to 30.8 dB was confirmed in simulations.

  10. Biomechanical evaluation of a second generation headless compression screw for ankle arthrodesis in a cadaver model.

    Science.gov (United States)

    Somberg, Andrew Max; Whiteside, William K; Nilssen, Erik; Murawski, Daniel; Liu, Wei

    2016-03-01

    Many types of screws, plates, and strut grafts have been utilized for ankle arthrodesis. Biomechanical testing has shown that these constructs can have variable stiffness. More recently, headless compression screws have emerged as an evolving method of achieving compression in various applications but there is limited literature regarding ankle arthrodesis. The aim of this study was to determine the biomechanical stability provided by a second generation fully threaded headless compression screw compared to a standard headed, partially threaded cancellous screw in a cadaveric ankle arthrodesis model. Twenty fresh frozen human cadaver specimens were subjected to simulated ankle arthrodesis with either three standard cancellous-bone screws (InFix 7.3mm) or with three headless compression screws (Acumed Acutrak 2 7.5mm). The specimens were subjected to cyclic loading and unloading at a rate of 1Hz, compression of 525 Newtons (N) and distraction of 20N for a total of 500 cycles using an electromechanical load frame (Instron). The amount of maximum distraction was recorded as well as the amount of motion that occurred through 1, 10, 50, 100, and 500 cycles. No significant difference (p=0.412) was seen in the amount of distraction that occurred across the fusion site for either screw. The average maximum distraction after 500 cycles was 201.9μm for the Acutrak 2 screw and 235.4μm for the InFix screw. No difference was seen throughout each cycle over time for the Acutrak 2 screw (p-value=0.988) or the InFix screw (p-value=0.991). Both the traditional InFix type screw and the second generation Acumed Acutrak headless compression screws provide adequate fixation during ankle arthrodesis under submaximal loads. There is no demonstrable difference between traditional cannulated partially threaded screws and headless compression screws studied in this model. Copyright © 2015 European Foot and Ankle Society. Published by Elsevier Ltd. All rights reserved.

  11. Testing compression strength of wood logs by drilling resistance

    Science.gov (United States)

    Kalny, Gerda; Rados, Kristijan; Rauch, Hans Peter

    2017-04-01

    Soil bioengineering is a construction technique using biological components for hydraulic and civil engineering solutions, based on the application of living plants and other auxiliary materials including among others log wood. Considering the reliability of the construction it is important to know about the durability and the degradation process of the wooden logs to estimate and retain the integral performance of a soil bioengineering system. An important performance indicator is the compression strength, but this parameter is not easy to examine by non-destructive methods. The Rinntech Resistograph is an instrument to measure the drilling resistance by a 3 mm wide needle in a wooden log. It is a quasi-non-destructive method as the remaining hole has no weakening effects to the wood. This is an easy procedure but result in values, hard to interpret. To assign drilling resistance values to specific compression strengths, wooden specimens were tested in an experiment and analysed with the Resistograph. Afterwards compression tests were done at the same specimens. This should allow an easier interpretation of drilling resistance curves in future. For detailed analyses specimens were investigated by means of branch inclusions, cracks and distances between annual rings. Wood specimens are tested perpendicular to the grain. First results show a correlation between drilling resistance and compression strength by using the mean drilling resistance, average width of the annual rings and the mean range of the minima and maxima values as factors for the drilling resistance. The extended limit of proportionality, the offset yield strength and the maximum strength were taken as parameters for compression strength. Further investigations at a second point in time strengthen these results.

  12. Compressive Strength of Concrete made from Natural Fine Aggregate Sources in Minna, Nigeria

    Directory of Open Access Journals (Sweden)

    M. Abdullahi

    2017-12-01

    Full Text Available This work presented an investigation of concrete developed from five fine aggregate sources in Minna, Niger state, Nigeria. Tests conducted on the fine aggregate samples included specific gravity, sieve analysis, bulk density and moisture content. The concrete mix design was done using absolute volume method at various mix proportion of 1:2:4, 1:2:3 and 1:1:2 and water-cement ratios of 0.4, 0.45, 0.5, 0.55 and 0.6. The compressive strengths of concrete were determined at 28-day curing age. Test results revealed that the specific gravities of the aggregate were between 2.60 to 2.70, compacted bulk densities also ranged from 1505.18 to 1701.15kg/m3, loose bulk densities ranged from 1379.32 to 1478.17kg/m3, and moisture content ranged from 0.93 to 2.47%. All the fine aggregate samples satisfied the overall and medium grading limits for natural fine aggregates. The coarse aggregate used fairly followed the grading limit for aggregate size of 20 to 5 mm. The compressive strength of the concrete obtained using the aggregate samples A, B, C, D, and Eall within the ranges of 18.97 to 34.98 N/mm2. Statistical models were developed for the compressive strength of concrete as a function of water-cement ratio for various fine aggregate sources and mix proportions. The models were found to have good predictive the capabilities of the compressive strength of concrete for given water-cement ratio. The properties of fine aggregates and the resulting concrete characteristics showed that all the fine aggregate samples are suitable to be used for concrete production.

  13. Effects of slow- and fast-acting compression on hearing impaired listeners’ consonant-vowel identification in interrupted noise

    DEFF Research Database (Denmark)

    Kowalewski, Borys; Zaar, Johannes; Fereczkowski, Michal

    2017-01-01

    There is conflicting evidence about the relative benefit of slow- and fast- acting compression for speech intelligibility. It has been hypothesized tha tfast-acting compression improves audibility at low signal-to-noise ratios (SNRs) but may distort the speech envelope at higher SNRs. The present...... intelligibility benefit of fast-acting compression was found in both the quiet and the noisy conditions for the lower speech levels. No negative effects of fast-acting compression were observed when the speech level exceeded the level of the noise. These findings suggest that fast-acting compression provides...... study investigated the effects of compression with nearly instantaneous attack time but either fast (10 ms) or slow (500 ms) release times on consonant identification in hearing-impaired listeners. Consonant-vowel speech tokens were presented at several presentation levels in two conditions...

  14. Toward negative Poisson's ratio composites: Investigation of the auxetic behavior of fibrous networks

    Science.gov (United States)

    Tatlier, Mehmet Seha

    Random fibrous can be found among natural and synthetic materials. Some of these random fibrous networks possess negative Poisson's ratio and they are extensively called auxetic materials. The governing mechanisms behind this counter intuitive property in random networks are yet to be understood and this kind of auxetic material remains widely under-explored. However, most of synthetic auxetic materials suffer from their low strength. This shortcoming can be rectified by developing high strength auxetic composites. The process of embedding auxetic random fibrous networks in a polymer matrix is an attractive alternate route to the manufacture of auxetic composites, however before such an approach can be developed, a methodology for designing fibrous networks with the desired negative Poisson's ratios must first be established. This requires an understanding of the factors which bring about negative Poisson's ratios in these materials. In this study, a numerical model is presented in order to investigate the auxetic behavior in compressed random fiber networks. Finite element analyses of three-dimensional stochastic fiber networks were performed to gain insight into the effects of parameters such as network anisotropy, network density, and degree of network compression on the out-of-plane Poisson's ratio and Young's modulus. The simulation results suggest that the compression is the critical parameter that gives rise to negative Poisson's ratio while anisotropy significantly promotes the auxetic behavior. This model can be utilized to design fibrous auxetic materials and to evaluate feasibility of developing auxetic composites by using auxetic fibrous networks as the reinforcing layer.

  15. 1-D Compression Behaviour of Acid Sulphate Soils Treated with Alkali-Activated Slag

    Directory of Open Access Journals (Sweden)

    Shahidul Islam

    2016-04-01

    Full Text Available Improvements of soft soils by mechanically mixing cementitious additives have been widely practised for construction of infrastructure. Mixing of additives improves strength and compressibility properties of soils through the development of soil structure. This study investigates the 1-D compression behaviour of alkali-activated slag treated acid sulphate soils (ASS cured up to 365 days. The void ratio-logarithm of pressure (e-logσ′ behaviour of treated ASS, including the destructuration behaviour, with additive contents and curing time have been analysed. X-ray diffraction (XRD and scanning electron microscopy (SEM analyses have been undertaken to explain the observed variations of the 1-D compression behaviour. This paper presents the results of these analyses in view of obtaining an insight into the 1-D compression behaviour of treated ASS with the help of mineralogical analysis.

  16. Output factors and scatter ratios

    Energy Technology Data Exchange (ETDEWEB)

    Shrivastava, P N; Summers, R E; Samulski, T V; Baird, L C [Allegheny General Hospital, Pittsburgh, PA (USA); Ahuja, A S; Dubuque, G L; Hendee, W R; Chhabra, A S

    1979-07-01

    Reference is made to a previous publication on output factors and scatter ratios for radiotherapy units in which it was suggested that the output factor should be included in the definitions of scatter-air ratio and tissue-maximum ratio. In the present correspondence from other authors and from the authors of the previous publication, the original definitions and the proposed changes are discussed. Radiation scatter from source and collimator degradation of beam energy and calculation of dose in tissue are considered in relation to the objective of accurate dosimetry.

  17. Compressive strength of structural concrete made with locally available coarse aggregates

    International Nuclear Information System (INIS)

    Kumar, A.; Khaskheli, G.B.

    2009-01-01

    Quality of CA (Coarse Aggregate) is one of the prime factors to control the quality of concrete. But construction industry of Sindh is not very much bothered about the quality of CA in concrete manufacturing. In Sindh, Hyderabad vicinity is comparatively rich in production of CA. This research is to evaluate the compressive strength of structural concrete made with CA obtained from five different crush plants (Petaro, Parker, Palari, Ghulam Hyder Baloch and Ongar), available in the vicinity of Hyderabad. ln total 360 concrete cubes (150x150x150mm) were manufactured, 72 for each source of CA by keeping 1:2:4 and 1:1.5:3 material ratios. The cubes were manufactured with 0.45 w/c (water cement ratio), 0.5 and 0.55 w/c and tested for compressive strength after 3, 7, 14 and 28 days of curing. Results show that performance of CA obtained from all the five crush plants remained in agreement with BS and ACI Code recommendations. Concrete made with CA obtained from Petaro and Parker gave higher early strength than that of others while concrete made with CA obtained from Petaro, Parker together with Palari gave higher 28th day compressive strength. (author)

  18. Body Fineness Ratio as a Predictor of Maximum Prolonged-Swimming Speed in Coral Reef Fishes

    Science.gov (United States)

    Walker, Jeffrey A.; Alfaro, Michael E.; Noble, Mae M.; Fulton, Christopher J.

    2013-01-01

    The ability to sustain high swimming speeds is believed to be an important factor affecting resource acquisition in fishes. While we have gained insights into how fin morphology and motion influences swimming performance in coral reef fishes, the role of other traits, such as body shape, remains poorly understood. We explore the ability of two mechanistic models of the causal relationship between body fineness ratio and endurance swimming-performance to predict maximum prolonged-swimming speed (Umax) among 84 fish species from the Great Barrier Reef, Australia. A drag model, based on semi-empirical data on the drag of rigid, submerged bodies of revolution, was applied to species that employ pectoral-fin propulsion with a rigid body at U max. An alternative model, based on the results of computer simulations of optimal shape in self-propelled undulating bodies, was applied to the species that swim by body-caudal-fin propulsion at Umax. For pectoral-fin swimmers, Umax increased with fineness, and the rate of increase decreased with fineness, as predicted by the drag model. While the mechanistic and statistical models of the relationship between fineness and Umax were very similar, the mechanistic (and statistical) model explained only a small fraction of the variance in Umax. For body-caudal-fin swimmers, we found a non-linear relationship between fineness and Umax, which was largely negative over most of the range of fineness. This pattern fails to support either predictions from the computational models or standard functional interpretations of body shape variation in fishes. Our results suggest that the widespread hypothesis that a more optimal fineness increases endurance-swimming performance via reduced drag should be limited to fishes that swim with rigid bodies. PMID:24204575

  19. Compressibility of 304 Stainless Steel Powder Metallurgy Materials Reinforced with 304 Short Stainless Steel Fibers.

    Science.gov (United States)

    Yao, Bibo; Zhou, Zhaoyao; Duan, Liuyang; Xiao, Zhiyu

    2016-03-04

    Powder metallurgy (P/M) technique is usually used for manufacturing porous metal materials. However, some P/M materials are limitedly used in engineering for their performance deficiency. A novel 304 stainless steel P/M material was produced by a solid-state sintering of 304 stainless steel powders and 304 short stainless steel fibers, which were alternately laid in layers according to mass ratio. In this paper, the compressive properties of the P/M materials were characterized by a series of uniaxial compression tests. The effects of fiber content, compaction pressure and high temperature nitriding on compressive properties were investigated. The results indicated that, without nitriding, the samples changed from cuboid to cydariform without damage in the process of compression. The compressive stress was enhanced with increasing fiber content ranging from 0 to 8 wt.%. For compaction pressure from 55 to 75 MPa, greater compaction pressure improved compressive stress. Moreover, high temperature nitriding was able to significantly improve the yield stress, but collapse failure eventually occurred.

  20. Optimization of Error-Bounded Lossy Compression for Hard-to-Compress HPC Data

    Energy Technology Data Exchange (ETDEWEB)

    Di, Sheng; Cappello, Franck

    2018-01-01

    Since today’s scientific applications are producing vast amounts of data, compressing them before storage/transmission is critical. Results of existing compressors show two types of HPC data sets: highly compressible and hard to compress. In this work, we carefully design and optimize the error-bounded lossy compression for hard-tocompress scientific data. We propose an optimized algorithm that can adaptively partition the HPC data into best-fit consecutive segments each having mutually close data values, such that the compression condition can be optimized. Another significant contribution is the optimization of shifting offset such that the XOR-leading-zero length between two consecutive unpredictable data points can be maximized. We finally devise an adaptive method to select the best-fit compressor at runtime for maximizing the compression factor. We evaluate our solution using 13 benchmarks based on real-world scientific problems, and we compare it with 9 other state-of-the-art compressors. Experiments show that our compressor can always guarantee the compression errors within the user-specified error bounds. Most importantly, our optimization can improve the compression factor effectively, by up to 49% for hard-tocompress data sets with similar compression/decompression time cost.