WorldWideScience

Sample records for maximum calculated fluxes

  1. maximum neutron flux at thermal nuclear reactors

    International Nuclear Information System (INIS)

    Strugar, P.

    1968-10-01

    Since actual research reactors are technically complicated and expensive facilities it is important to achieve savings by appropriate reactor lattice configurations. There is a number of papers, and practical examples of reactors with central reflector, dealing with spatial distribution of fuel elements which would result in higher neutron flux. Common disadvantage of all the solutions is that the choice of best solution is done starting from the anticipated spatial distributions of fuel elements. The weakness of these approaches is lack of defined optimization criteria. Direct approach is defined as follows: determine the spatial distribution of fuel concentration starting from the condition of maximum neutron flux by fulfilling the thermal constraints. Thus the problem of determining the maximum neutron flux is solving a variational problem which is beyond the possibilities of classical variational calculation. This variational problem has been successfully solved by applying the maximum principle of Pontrjagin. Optimum distribution of fuel concentration was obtained in explicit analytical form. Thus, spatial distribution of the neutron flux and critical dimensions of quite complex reactor system are calculated in a relatively simple way. In addition to the fact that the results are innovative this approach is interesting because of the optimization procedure itself [sr

  2. Maximum neutron flux in thermal reactors

    International Nuclear Information System (INIS)

    Strugar, P.V.

    1968-12-01

    Direct approach to the problem is to calculate spatial distribution of fuel concentration if the reactor core directly using the condition of maximum neutron flux and comply with thermal limitations. This paper proved that the problem can be solved by applying the variational calculus, i.e. by using the maximum principle of Pontryagin. Mathematical model of reactor core is based on the two-group neutron diffusion theory with some simplifications which make it appropriate from maximum principle point of view. Here applied theory of maximum principle are suitable for application. The solution of optimum distribution of fuel concentration in the reactor core is obtained in explicit analytical form. The reactor critical dimensions are roots of a system of nonlinear equations and verification of optimum conditions can be done only for specific examples

  3. Data Acquisition and Flux Calculations

    DEFF Research Database (Denmark)

    Rebmann, C.; Kolle, O; Heinesch, B

    2012-01-01

    In this chapter, the basic theory and the procedures used to obtain turbulent fluxes of energy, mass, and momentum with the eddy covariance technique will be detailed. This includes a description of data acquisition, pretreatment of high-frequency data and flux calculation....

  4. Maximum power flux of auroral kilometric radiation

    International Nuclear Information System (INIS)

    Benson, R.F.; Fainberg, J.

    1991-01-01

    The maximum auroral kilometric radiation (AKR) power flux observed by distant satellites has been increased by more than a factor of 10 from previously reported values. This increase has been achieved by a new data selection criterion and a new analysis of antenna spin modulated signals received by the radio astronomy instrument on ISEE 3. The method relies on selecting AKR events containing signals in the highest-frequency channel (1980, kHz), followed by a careful analysis that effectively increased the instrumental dynamic range by more than 20 dB by making use of the spacecraft antenna gain diagram during a spacecraft rotation. This analysis has allowed the separation of real signals from those created in the receiver by overloading. Many signals having the appearance of AKR harmonic signals were shown to be of spurious origin. During one event, however, real second harmonic AKR signals were detected even though the spacecraft was at a great distance (17 R E ) from Earth. During another event, when the spacecraft was at the orbital distance of the Moon and on the morning side of Earth, the power flux of fundamental AKR was greater than 3 x 10 -13 W m -2 Hz -1 at 360 kHz normalized to a radial distance r of 25 R E assuming the power falls off as r -2 . A comparison of these intense signal levels with the most intense source region values (obtained by ISIS 1 and Viking) suggests that multiple sources were observed by ISEE 3

  5. A finite element calculation of flux pumping

    Science.gov (United States)

    Campbell, A. M.

    2017-12-01

    A flux pump is not only a fascinating example of the power of Faraday’s concept of flux lines, but also an attractive way of powering superconducting magnets without large electronic power supplies. However it is not possible to do this in HTS by driving a part of the superconductor normal, it must be done by exceeding the local critical density. The picture of a magnet pulling flux lines through the material is attractive, but as there is no direct contact between flux lines in the magnet and vortices, unless the gap between them is comparable to the coherence length, the process must be explicable in terms of classical electromagnetism and a nonlinear V-I characteristic. In this paper a simple 2D model of a flux pump is used to determine the pumping behaviour from first principles and the geometry. It is analysed with finite element software using the A formulation and FlexPDE. A thin magnet is passed across one or more superconductors connected to a load, which is a large rectangular loop. This means that the self and mutual inductances can be calculated explicitly. A wide strip, a narrow strip and two conductors are considered. Also an analytic circuit model is analysed. In all cases the critical state model is used, so the flux flow resistivity and dynamic resistivity are not directly involved, although an effective resistivity appears when J c is exceeded. In most of the cases considered here is a large gap between the theory and the experiments. In particular the maximum flux transferred to the load area is always less than the flux of the magnet. Also once the threshold needed for pumping is exceeded the flux in the load saturates within a few cycles. However the analytic circuit model allows a simple modification to allow for the large reduction in I c when the magnet is over a conductor. This not only changes the direction of the pumped flux but leads to much more effective pumping.

  6. Statistic method of research reactors maximum permissible power calculation

    International Nuclear Information System (INIS)

    Grosheva, N.A.; Kirsanov, G.A.; Konoplev, K.A.; Chmshkyan, D.V.

    1998-01-01

    The technique for calculating maximum permissible power of a research reactor at which the probability of the thermal-process accident does not exceed the specified value, is presented. The statistical method is used for the calculations. It is regarded that the determining function related to the reactor safety is the known function of the reactor power and many statistically independent values which list includes the reactor process parameters, geometrical characteristics of the reactor core and fuel elements, as well as random factors connected with the reactor specific features. Heat flux density or temperature is taken as a limiting factor. The program realization of the method discussed is briefly described. The results of calculating the PIK reactor margin coefficients for different probabilities of the thermal-process accident are considered as an example. It is shown that the probability of an accident with fuel element melting in hot zone is lower than 10 -8 1 per year for the reactor rated power [ru

  7. Dissecting Reactor Antineutrino Flux Calculations

    Science.gov (United States)

    Sonzogni, A. A.; McCutchan, E. A.; Hayes, A. C.

    2017-09-01

    Current predictions for the antineutrino yield and spectra from a nuclear reactor rely on the experimental electron spectra from 235U, 239Pu, 241Pu and a numerical method to convert these aggregate electron spectra into their corresponding antineutrino ones. In the present work we investigate quantitatively some of the basic assumptions and approximations used in the conversion method, studying first the compatibility between two recent approaches for calculating electron and antineutrino spectra. We then explore different possibilities for the disagreement between the measured Daya Bay and the Huber-Mueller antineutrino spectra, including the 238U contribution as well as the effective charge and the allowed shape assumption used in the conversion method. We observe that including a shape correction of about +6 % MeV-1 in conversion calculations can better describe the Daya Bay spectrum. Because of a lack of experimental data, this correction cannot be ruled out, concluding that in order to confirm the existence of the reactor neutrino anomaly, or even quantify it, precisely measured electron spectra for about 50 relevant fission products are needed. With the advent of new rare ion facilities, the measurement of shape factors for these nuclides, for many of which precise beta intensity data from TAGS experiments already exist, would be highly desirable.

  8. The FLUKA atmospheric neutrino flux calculation

    CERN Document Server

    Battistoni, G.; Montaruli, T.; Sala, P.R.

    2003-01-01

    The 3-dimensional (3-D) calculation of the atmospheric neutrino flux by means of the FLUKA Monte Carlo model is here described in all details, starting from the latest data on primary cosmic ray spectra. The importance of a 3-D calculation and of its consequences have been already debated in a previous paper. Here instead the focus is on the absolute flux. We stress the relevant aspects of the hadronic interaction model of FLUKA in the atmospheric neutrino flux calculation. This model is constructed and maintained so to provide a high degree of accuracy in the description of particle production. The accuracy achieved in the comparison with data from accelerators and cross checked with data on particle production in atmosphere certifies the reliability of shower calculation in atmosphere. The results presented here can be already used for analysis by current experiments on atmospheric neutrinos. However they represent an intermediate step towards a final release, since this calculation does not yet include the...

  9. Maximum heat flux in boiling in a large volume

    International Nuclear Information System (INIS)

    Bergmans, Dzh.

    1976-01-01

    Relationships are derived for the maximum heat flux qsub(max) without basing on the assumptions of both the critical vapor velocity corresponding to the zero growth rate, and planar interface. The Helmholz nonstability analysis of vapor column has been made to this end. The results of this examination have been used to find maximum heat flux for spherical, cylindric and flat plate heaters. The conventional hydrodynamic theory was found to be incapable of producing a satisfactory explanation of qsub(max) for small heaters. The occurrence of qsub(max) in the present case can be explained by inadequate removal of vapor output from the heater (the force of gravity for cylindrical heaters and surface tension for the spherical ones). In case of flat plate heater the qsub(max) value can be explained with the help of the hydrodynamic theory

  10. Maximum allowable heat flux for a submerged horizontal tube bundle

    International Nuclear Information System (INIS)

    McEligot, D.M.

    1995-01-01

    For application to industrial heating of large pools by immersed heat exchangers, the socalled maximum allowable (or open-quotes criticalclose quotes) heat flux is studied for unconfined tube bundles aligned horizontally in a pool without forced flow. In general, we are considering boiling after the pool reaches its saturation temperature rather than sub-cooled pool boiling which should occur during early stages of transient operation. A combination of literature review and simple approximate analysis has been used. To date our main conclusion is that estimates of q inch chf are highly uncertain for this configuration

  11. The Maximum Flux of Star-Forming Galaxies

    Science.gov (United States)

    Crocker, Roland M.; Krumholz, Mark R.; Thompson, Todd A.; Clutterbuck, Julie

    2018-04-01

    The importance of radiation pressure feedback in galaxy formation has been extensively debated over the last decade. The regime of greatest uncertainty is in the most actively star-forming galaxies, where large dust columns can potentially produce a dust-reprocessed infrared radiation field with enough pressure to drive turbulence or eject material. Here we derive the conditions under which a self-gravitating, mixed gas-star disc can remain hydrostatic despite trapped radiation pressure. Consistently taking into account the self-gravity of the medium, the star- and dust-to-gas ratios, and the effects of turbulent motions not driven by radiation, we show that galaxies can achieve a maximum Eddington-limited star formation rate per unit area \\dot{Σ }_*,crit ˜ 10^3 M_{⊙} pc-2 Myr-1, corresponding to a critical flux of F*, crit ˜ 1013L⊙ kpc-2 similar to previous estimates; higher fluxes eject mass in bulk, halting further star formation. Conversely, we show that in galaxies below this limit, our one-dimensional models imply simple vertical hydrostatic equilibrium and that radiation pressure is ineffective at driving turbulence or ejecting matter. Because the vast majority of star-forming galaxies lie below the maximum limit for typical dust-to-gas ratios, we conclude that infrared radiation pressure is likely unimportant for all but the most extreme systems on galaxy-wide scales. Thus, while radiation pressure does not explain the Kennicutt-Schmidt relation, it does impose an upper truncation on it. Our predicted truncation is in good agreement with the highest observed gas and star formation rate surface densities found both locally and at high redshift.

  12. Dust fluxes and iron fertilization in Holocene and Last Glacial Maximum climates

    Science.gov (United States)

    Lambert, Fabrice; Tagliabue, Alessandro; Shaffer, Gary; Lamy, Frank; Winckler, Gisela; Farias, Laura; Gallardo, Laura; De Pol-Holz, Ricardo

    2015-07-01

    Mineral dust aerosols play a major role in present and past climates. To date, we rely on climate models for estimates of dust fluxes to calculate the impact of airborne micronutrients on biogeochemical cycles. Here we provide a new global dust flux data set for Holocene and Last Glacial Maximum (LGM) conditions based on observational data. A comparison with dust flux simulations highlights regional differences between observations and models. By forcing a biogeochemical model with our new data set and using this model's results to guide a millennial-scale Earth System Model simulation, we calculate the impact of enhanced glacial oceanic iron deposition on the LGM-Holocene carbon cycle. On centennial timescales, the higher LGM dust deposition results in a weak reduction of pump. This is followed by a further ~10 ppm reduction over millennial timescales due to greater carbon burial and carbonate compensation.

  13. Maximum neutron flux in thermal reactors; Maksimum neutronskog fluksa kod termalnih reaktora

    Energy Technology Data Exchange (ETDEWEB)

    Strugar, P V [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1968-07-01

    Direct approach to the problem is to calculate spatial distribution of fuel concentration if the reactor core directly using the condition of maximum neutron flux and comply with thermal limitations. This paper proved that the problem can be solved by applying the variational calculus, i.e. by using the maximum principle of Pontryagin. Mathematical model of reactor core is based on the two-group neutron diffusion theory with some simplifications which make it appropriate from maximum principle point of view. Here applied theory of maximum principle are suitable for application. The solution of optimum distribution of fuel concentration in the reactor core is obtained in explicit analytical form. The reactor critical dimensions are roots of a system of nonlinear equations and verification of optimum conditions can be done only for specific examples.

  14. The calculation of maximum permissible exposure levels for laser radiation

    International Nuclear Information System (INIS)

    Tozer, B.A.

    1979-01-01

    The maximum permissible exposure data of the revised standard BS 4803 are presented as a set of decision charts which ensure that the user automatically takes into account such details as pulse length and pulse pattern, limiting angular subtense, combinations of multiple wavelength and/or multiple pulse lengths, etc. The two decision charts given are for the calculation of radiation hazards to skin and eye respectively. (author)

  15. Verification of maximum impact force for interim storage cask for the Fast Flux Testing Facility

    International Nuclear Information System (INIS)

    Chen, W.W.; Chang, S.J.

    1996-01-01

    The objective of this paper is to perform an impact analysis of the Interim Storage Cask (ISC) of the Fast Flux Test Facility (FFTF) for a 4-ft end drop. The ISC is a concrete cask used to store spent nuclear fuels. The analysis is to justify the impact force calculated by General Atomics (General Atomics, 1994) using the ILMOD computer code. ILMOD determines the maximum force developed by the concrete crushing which occurs when the drop energy has been absorbed. The maximum force, multiplied by the dynamic load factor (DLF), was used to determine the maximum g-level on the cask during a 4-ft end drop accident onto the heavily reinforced FFTF Reactor Service Building's concrete surface. For the analysis, this surface was assumed to be unyielding and the cask absorbed all the drop energy. This conservative assumption simplified the modeling used to qualify the cask's structural integrity for this accident condition

  16. COSANI-2, Gamma Doses from SABINE Calculation, Activity from ANISN Flux Calculation

    International Nuclear Information System (INIS)

    Dupont, C.

    1975-01-01

    1 - Nature of physical problem solved: Retrieval of SABINE and/or ANISN results. Calculates in case of SABINE results the individual contributions of capture gamma rays in each region to the total gamma dose and to the total gamma heating may calculate in case of ANISN new activity rates starting from ANISN flux saved on tape and activity cross sections taken on an ANISN binary library tape. The program can draw on a BENSON plotter any of the following quantities: - group flux; - activity rates; - dose rates; - neutron spectra for SABINE; - neutron or gamma direct or adjoint spectra for ANISN; - gamma heating and dose rate for SABINE including individual contributions from each region. Several ANISN and/or SABINE cases can be drawn on the same graph for comparison purposes. 2 - Restrictions on the complexity of the problem: Maximum number of: - tapes containing ANISN and/or SABINE results: 5; - curves per graph: 3; - regions: 40; - points per curve: 500; - energy groups: 200

  17. Maximum neutron flux at thermal nuclear reactors; Maksimum neutronskog fluksa kod termalnih reaktora

    Energy Technology Data Exchange (ETDEWEB)

    Strugar, P [Institute of Nuclear Sciences Vinca, Beograd (Serbia and Montenegro)

    1968-10-15

    Since actual research reactors are technically complicated and expensive facilities it is important to achieve savings by appropriate reactor lattice configurations. There is a number of papers, and practical examples of reactors with central reflector, dealing with spatial distribution of fuel elements which would result in higher neutron flux. Common disadvantage of all the solutions is that the choice of best solution is done starting from the anticipated spatial distributions of fuel elements. The weakness of these approaches is lack of defined optimization criteria. Direct approach is defined as follows: determine the spatial distribution of fuel concentration starting from the condition of maximum neutron flux by fulfilling the thermal constraints. Thus the problem of determining the maximum neutron flux is solving a variational problem which is beyond the possibilities of classical variational calculation. This variational problem has been successfully solved by applying the maximum principle of Pontrjagin. Optimum distribution of fuel concentration was obtained in explicit analytical form. Thus, spatial distribution of the neutron flux and critical dimensions of quite complex reactor system are calculated in a relatively simple way. In addition to the fact that the results are innovative this approach is interesting because of the optimization procedure itself. [Serbo-Croat] Savremeni reaktori za fizicka i tehnoloska istrazivanja predstavljaju tehnicki komplikovanu i skupu masinu. Iz tog razloga su opravdana nastojanja da se podesnim rasporedom goriva u jezgru reaktora dodje do sto ekonomicnijeg rjesenja. U literaturi postoji vise radova, cak i konkretnih realizacija u vidu reaktora sa reflektorom u centru, koji se bave odredjivanjem takve prostorne zavisnosti koncentracije goriva koja pod odredjenim uslovima daje najveci neutronski fluks. Zajednicki nedostatak svih pomenutih rjesenja je u tome sto se polazi od pretpostavljenih prostornih distribucija

  18. Calculation of neutron flux in the presence of a source

    International Nuclear Information System (INIS)

    Planchard, J.

    1993-09-01

    Neutron sources are introduced into the reactors to initiate the chain reaction. For safety reasons, we have to know the distribution and evolution of the flux throughout the startup phase. The flux is calculated iteratively but convergence of the process can slow down arbitrarily as we approach criticality. A calculation method is presented, with a convergence speed which does not depend on the negative reactivity when it is small. (author). 7 refs

  19. Quantitative calculations of helium ion escape fluxes from the polar ionospheres

    International Nuclear Information System (INIS)

    Raitt, W.J.; Schunk, R.W.; Banks, P.M.

    1978-01-01

    Recent experimental measurements of He + outward fluxes have been obtained for winter and summer hemispheres. The observed fluxes indicate an average He + escape flux of 2 x 10 7 cm -2 s -1 in the winter hemisphere and a factor of 10-20 lower in the summer hemisphere. Earlier theoretical calculations had yielded winter fluxes a factor of 4 lower than the measured values and summer fluxes a further factor of 20 below the winter fluxes. We have attempted to reduce this discrepancy between our earlier theoretical model and the experimental observations by improving our theoretical model in the following ways. The helium photoionization cross sections used are accurate to 10%, the latest solar EUV fluxes measured by the Atmosphere Explorer satellites have been incorporated, and the most recent MSIS model of the neutral atmosphere is contained in the model. A range of conditions covering solar cycle, seasonal, and geomagnetic conditions were studied. The results show a maximum He + escape flux of 1.4 x 10 7 cm -2 s -1 for solar maximum, winter, low magnetic activity conditions, which is within the scatter of the measured fluxes. The computed summer He + escape flux is a factor of 20 lower than the winter value, a result which is in reasonable agreement with the summer experimental observations. Possible reasons for the slight discrepancy between theory and experiment in summer are discussed

  20. Prediction of transient maximum heat flux based on a simple liquid layer evaporation model

    International Nuclear Information System (INIS)

    Serizawa, A.; Kataoka, I.

    1981-01-01

    A model of liquid layer evaporation with considerable supply of liquid has been formulated to predict burnout characteristics (maximum heat flux, life, etc.) during an increase of the power. The analytical description of the model is built upon the visual and photographic observations of the boiling configuration at near peak heat flux reported by other investigators. The prediction compares very favourably with water data presently available. It is suggested from the work reported here that the maximum heat flux occurs because of a balance between the consumption of the liquid film on the heated surface and the supply of liquid. Thickness of the liquid film is also very important. (author)

  1. A new calculation of atmospheric neutrino flux: the FLUKA approach

    International Nuclear Information System (INIS)

    Battistoni, G.; Bloise, C.; Cavalli, D.; Ferrari, A.; Montaruli, T.; Rancati, T.; Resconi, S.; Ronga, F.; Sala, P.R.

    1999-01-01

    Preliminary results from a full 3-D calculation of atmospheric neutrino fluxes using the FLUKA interaction model are presented and compared to previous existing calculations. This effort is motivated mainly by the 3-D capability and the satisfactory degree of accuracy of the hadron-nucleus models embedded in the FLUKA code. Here we show examples of benchmarking tests of the model with cosmic ray experiment results. A comparison of our calculation of the atmospheric neutrino flux with that of the Bartol group, for E ν > 1 GeV, is presented

  2. Calculation of the thermal neutron flux depression in the loop VISA-1

    International Nuclear Information System (INIS)

    Martinc, R.

    1961-01-01

    Among other applications, the VISA-1 loop is to be used for thermal load testing of materials. For this type of testing one should know the maximum power generated in the loop. This power is determined from the maximum thermal neutron flux in the VK-5 channel and mean flux depression in the fissile component of the loop. Thermal neutron flux depression is caused by neutron absorption in the components of the loop, shape of the components and neutron leaking through gaps as well as properties of the surrounding medium of the core. All these parameters were taken into account for calculating the depression of thermal neutron flux in the VISA-1 loop. Two group diffusion theory was used. Fast neutron from the fission in the loop and slowed down were taken into account. Depression of the thermal neutron flux is expressed by depression factor which represents the ratio of the mean thermal neutron flux in the fissile loop component and the thermal neutron flux in the VK-5 without the loop. Calculation error was estimated and it was recommended to determine the depression factor experimentally as well [sr

  3. Generalized diffusion theory for calculating the neutron transport scalar flux

    International Nuclear Information System (INIS)

    Alcouffe, R.E.

    1975-01-01

    A generalization of the neutron diffusion equation is introduced, the solution of which is an accurate approximation to the transport scalar flux. In this generalization the auxiliary transport calculations of the system of interest are utilized to compute an accurate, pointwise diffusion coefficient. A procedure is specified to generate and improve this auxiliary information in a systematic way, leading to improvement in the calculated diffusion scalar flux. This improvement is shown to be contingent upon satisfying the condition of positive calculated-diffusion coefficients, and an algorithm that ensures this positivity is presented. The generalized diffusion theory is also shown to be compatible with conventional diffusion theory in the sense that the same methods and codes can be used to calculate a solution for both. The accuracy of the method compared to reference S/sub N/ transport calculations is demonstrated for a wide variety of examples. (U.S.)

  4. Approximation for maximum pressure calculation in containment of PWR reactors

    International Nuclear Information System (INIS)

    Souza, A.L. de

    1989-01-01

    A correlation was developed to estimate the maximum pressure of dry containment of PWR following a Loss-of-Coolant Accident - LOCA. The expression proposed is a function of the total energy released to the containment by the primary circuit, of the free volume of the containment building and of the total surface are of the heat-conducting structures. The results show good agreement with those present in Final Safety Analysis Report - FSAR of several PWR's plants. The errors are in the order of ± 12%. (author) [pt

  5. Radiative flux calculations at UV and visible wavelengths

    International Nuclear Information System (INIS)

    Grossman, A.S.; Grant, K.E.; Wuebbles, D.J.

    1993-10-01

    A radiative transfer model to calculate the short wavelength fluxes at altitudes between 0 and 80 km has been developed at LLNL. The wavelength range extends from 175--735 nm. This spectral range covers the UV-B wavelength region, 250--350 nm, with sufficient resolution to allow comparison of UV-B measurements with theoretical predictions. Validation studies for the model have been made for both UV-B ground radiation calculations and tropospheric solar radiative forcing calculations for various ozone distributions. These studies indicate that the model produces results which agree well with respect to existing UV calculations from other published models

  6. TORT application in reactor pressure vessel neutron flux calculations

    International Nuclear Information System (INIS)

    Belousov, S.I.; Ilieva, K.D.; Antonov, S.Y.

    1994-01-01

    The neutron flux values onto reactor pressure vessel for WWER-1000 and WWER-440 reactors, at the places important for metal embrittlement surveillance have been calculated by 3 dimensional code TORT and synthesis method. The comparison of the results received by both methods confirms their good consistency. (authors). 13 refs., 4 tabs

  7. Analytical 3-D force calculation of a transverse flux machine

    NARCIS (Netherlands)

    Kremers, M.F.J.; Paulides, J.J.H.; Janssen, J.L.G.; Lomonova, E.A.

    2014-01-01

    Transverse Flux Machine (TFM) designs are, in general, based on 3-D Finite Element Methods (FEM). Previous attempts to perform analytical designs have been limited to Magnetic Equivalent Circuits (MEC). In this paper, for the first time, propulsion force calculation of TFMs is performed using an

  8. Application of generalized perturbation theory to flux disadvantage factor calculations

    International Nuclear Information System (INIS)

    Sallam, O.H.; Akimov, I.S.; Naguib, K.; Hamouda, I.

    1979-01-01

    The possibility of using the generalized perturbation theory to calculate the perturbation of the flux disadvantage factors of reactor cell, resulting from the variation of the cell parameters, is studied. For simplicity the one-group diffusion approximation is considered. All necessary equations are derived for variations both of the cell dimensions. Numerical results are presented in the paper

  9. SNS Sample Activation Calculator Flux Recommendations and Validation

    Energy Technology Data Exchange (ETDEWEB)

    McClanahan, Tucker C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS); Gallmeier, Franz X. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS); Iverson, Erik B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS); Lu, Wei [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS)

    2015-02-01

    The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) uses the Sample Activation Calculator (SAC) to calculate the activation of a sample after the sample has been exposed to the neutron beam in one of the SNS beamlines. The SAC webpage takes user inputs (choice of beamline, the mass, composition and area of the sample, irradiation time, decay time, etc.) and calculates the activation for the sample. In recent years, the SAC has been incorporated into the user proposal and sample handling process, and instrument teams and users have noticed discrepancies in the predicted activation of their samples. The Neutronics Analysis Team validated SAC by performing measurements on select beamlines and confirmed the discrepancies seen by the instrument teams and users. The conclusions were that the discrepancies were a result of a combination of faulty neutron flux spectra for the instruments, improper inputs supplied by SAC (1.12), and a mishandling of cross section data in the Sample Activation Program for Easy Use (SAPEU) (1.1.2). This report focuses on the conclusion that the SAPEU (1.1.2) beamline neutron flux spectra have errors and are a significant contributor to the activation discrepancies. The results of the analysis of the SAPEU (1.1.2) flux spectra for all beamlines will be discussed in detail. The recommendations for the implementation of improved neutron flux spectra in SAPEU (1.1.3) are also discussed.

  10. SPACETRAN, Radiation Leakage from Cylinder with ANISN Flux Calculation

    International Nuclear Information System (INIS)

    Cramer, S.N.; Solomito, M.

    1974-01-01

    1 - Nature of physical problem solved: SPACETRAN is designed to calculate the energy-dependent total flux or some proportional quantity such as kerma, due to the radiation leakage from the surface of a right-circular cylinder at detector positions located at arbitrary distances from the surface. The assumptions are made that the radiation emerging from the finite cylinder has no spatial dependence and that a vacuum surrounds the cylinder. 2 - Method of solution: There are three versions of the program in the code package. SPACETRAN-I uses the surface angular fluxes calculated by the discrete ordinates SN code ANISN, as input. SPACETRAN-II assumes that the surface angular flux for all energies can be represented as a function (Cos(PHI))**N, where PHI is the angle between surface outward normal and radiation direction, and N is an integer specified by the user. For both versions the energy group structure and the number and location of detectors is arbitrary. The flux (or response function) for a given energy group at some detection point is computed by summing the contributions from each surface area element over the entire surface. The surface area elements are defined by input data. SPACETRAN-III uses surface angular fluxes from DOT-3. SPACETRAN-I handles contributions either from a cylinder 'end' or 'side', so the total contributions must be obtained by adding the results of separate end and side runs. ANISN angular fluxes are specified for discrete directions. In general, the direction between the detector and contributing area will not exactly coincide with one of these discrete directions. In this case, the ANISN angular flux for the 'closest' discrete direction is used to approximate the contribution to the detector. SPACETRAN-II handles contributions from both the side and end of a cylinder in a single run. Since the assumed angular distribution is specified by a continuous function, it is not necessary to perform the angle selection described above. For

  11. MURALB - a programme for calculating neutron fluxes in many groups

    International Nuclear Information System (INIS)

    MacDougall, J.

    1977-09-01

    The program MURALB solves the multi-group transport equation (with no upscatter) in many equal lethargy groups to produce neutron fluxes in these groups. The code has been made very flexible by confining the spatial flux solution to a single subroutine which takes as input the cross section data and source for a single group and calculates the flux for that group. In this way by supplying different versions of this routine different geometries and methods of solution of the transport equation may be treated. At present plane, cylindrical and spherical diffusion theory and collision probability solutions are available, together with a two region collision probability solution for a rod in a square cell. There is no basic restriction to one dimension but the practical size of problem tends to be limited to about 30 spatial regions by core storage requirements. In addition to the flux solution, the code calculates neutron balance, reaction rates and few groups cross sections for each mesh region, together with the values averaged over the system (cell or reactor). The program is available both as a stand-alone code and integrated into the COSMOS system. (author)

  12. Use of CITATION code for flux calculation in neutron activation analysis with voluminous sample using an Am-Be source

    International Nuclear Information System (INIS)

    Khelifi, R.; Idiri, Z.; Bode, P.

    2002-01-01

    The CITATION code based on neutron diffusion theory was used for flux calculations inside voluminous samples in prompt gamma activation analysis with an isotopic neutron source (Am-Be). The code uses specific parameters related to the energy spectrum source and irradiation system materials (shielding, reflector). The flux distribution (thermal and fast) was calculated in the three-dimensional geometry for the system: air, polyethylene and water cuboidal sample (50x50x50 cm). Thermal flux was calculated in a series of points inside the sample. The results agreed reasonably well with observed values. The maximum thermal flux was observed at a distance of 3.2 cm while CITATION gave 3.7 cm. Beyond a depth of 7.2 cm, the thermal flux to fast flux ratio increases up to twice and allows us to optimise the detection system position in the scope of in-situ PGAA

  13. THE RISE AND FALL OF OPEN SOLAR FLUX DURING THE CURRENT GRAND SOLAR MAXIMUM

    International Nuclear Information System (INIS)

    Lockwood, M.; Rouillard, A. P.; Finch, I. D.

    2009-01-01

    We use geomagnetic activity data to study the rise and fall over the past century of the solar wind flow speed V SW , the interplanetary magnetic field strength B, and the open solar flux F S . Our estimates include allowance for the kinematic effect of longitudinal structure in the solar wind flow speed. As well as solar cycle variations, all three parameters show a long-term rise during the first half of the 20th century followed by peaks around 1955 and 1986 and then a recent decline. Cosmogenic isotope data reveal that this constitutes a grand maximum of solar activity which began in 1920, using the definition that such grand maxima are when 25-year averages of the heliospheric modulation potential exceeds 600 MV. Extrapolating the linear declines seen in all three parameters since 1985, yields predictions that the grand maximum will end in the years 2013, 2014, or 2027 using V SW , F S , or B, respectively. These estimates are consistent with predictions based on the probability distribution of the durations of past grand solar maxima seen in cosmogenic isotope data. The data contradict any suggestions of a floor to the open solar flux: we show that the solar minimum open solar flux, kinematically corrected to allow for the excess flux effect, has halved over the past two solar cycles.

  14. Neutron flux calculation by means of Monte Carlo methods

    International Nuclear Information System (INIS)

    Barz, H.U.; Eichhorn, M.

    1988-01-01

    In this report a survey of modern neutron flux calculation procedures by means of Monte Carlo methods is given. Due to the progress in the development of variance reduction techniques and the improvements of computational techniques this method is of increasing importance. The basic ideas in application of Monte Carlo methods are briefly outlined. In more detail various possibilities of non-analog games and estimation procedures are presented, problems in the field of optimizing the variance reduction techniques are discussed. In the last part some important international Monte Carlo codes and own codes of the authors are listed and special applications are described. (author)

  15. The calculation of neutron flux using Monte Carlo method

    Science.gov (United States)

    Günay, Mehtap; Bardakçı, Hilal

    2017-09-01

    In this study, a hybrid reactor system was designed by using 99-95% Li20Sn80 + 1-5% RG-Pu, 99-95% Li20Sn80 + 1-5% RG-PuF4, and 99-95% Li20Sn80 + 1-5% RG-PuO2 fluids, ENDF/B-VII.0 evaluated nuclear data library and 9Cr2WVTa structural material. The fluids were used in the liquid first wall, liquid second wall (blanket) and shield zones of a fusion-fission hybrid reactor system. The neutron flux was calculated according to the mixture components, radial, energy spectrum in the designed hybrid reactor system for the selected fluids, library and structural material. Three-dimensional nucleonic calculations were performed using the most recent version MCNPX-2.7.0 the Monte Carlo code.

  16. Flux and brightness calculations for various synchrotron radiation sources

    International Nuclear Information System (INIS)

    Weber, J.M.; Hulbert, S.L.

    1991-11-01

    Synchrotron radiation (SR) storage rings are powerful scientific and technological tools. The first generation of storage rings in the US., e.g., SURF (Washington, D.C.), Tantalus (Wisconsin), SSRL (Stanford), and CHESS (Cornell), revolutionized VUV, soft X-ray, and hard X-ray science. The second (present) generation of storage rings, e.g. the NSLS VUV and XRAY rings and Aladdin (Wisconsin), have sustained the revolution by providing higher stored currents and up to a factor of ten smaller electron beam sizes than the first generation sources. This has made possible a large number of experiments that could not performed using first generation sources. In addition, the NSLS XRAY ring design optimizes the performance of wigglers (high field periodic magnetic insertion devices). The third generation storage rings, e.g. ALS (Berkeley) and APS (Argonne), are being designed to optimize the performance of undulators (low field periodic magnetic insertion devices). These extremely high brightness sources will further revolutionize x-ray science by providing diffraction-limited x-ray beams. The output of undulators and wigglers is distinct from that of bending magnets in magnitude, spectral shape, and in spatial and angular size. Using published equations, we have developed computer programs to calculate the flux, central intensity, and brightness output bending magnets and selected wigglers and undulators of the NSLS VUV and XRAY rings, the Advanced Light Source (ALS), and the Advanced Photon Source (APS). Following is a summary of the equations used, the graphs and data produced, and the computer codes written. These codes, written in the C programming language, can be used to calculate the flux, central intensity, and brightness curves for bending magnets and insertion devices on any storage ring

  17. The Labrador Sea during the Last Glacial Maximum: Calcite dissolution or low biogenic carbonate fluxes?

    Science.gov (United States)

    Marshall, Nicole; de Vernal, Anne; Mucci, Alfonso; Filippova, Alexandra; Kienast, Markus

    2017-04-01

    Low concentrations of biogenic carbonate characterize the sediments deposited in the Labrador Sea during the last glaciation. This may reflect poor calcite preservation and/or low biogenic carbonate productivity and fluxes. Regional bottom water ventilation was reduced during the Last Glacial Maximum (LGM), so the calcite lysocline might have been shallower than at present in the deep Labrador Sea making dissolution of calcite shells in the deep Labrador Sea possible. To address the issue, a multi-proxy approach based on micropaleontological counts (coccoliths, foraminifers, palynomorphs) and biogeochemical analyses (alkenones) was applied in the investigation of core HU2008-029-004-PC recovered in the northwestern Labrador Sea. Calcite dissolution indices based on the relative abundance benthic foraminifera shells to their organic linings as well as on fragmentation of planktonic foraminifera shells were used to evaluate changes in calcite dissolution/ preservation since the LGM. In addition, the ratio of the concentrations of coccoliths, specifically of the alkenone-producer Emiliania huxleyi, and alkenones (Emiliania huxleyi: alkenones) was explored as a potential new proxy of calcite dissolution. A sharp increase in coccoliths, foraminifers and organic linings from nearly none to substantial concentrations at 12 ka, reflect a jump to significantly greater biogenic fluxes at the glacial-interglacial transition. Furthermore, conventional dissolution indices (shells/linings of benthic foraminifera and fragmentation of planktic foraminifers) reveal that dissolution is not likely responsible for the lower glacial abundances of coccoliths and foraminifers. Only the low Emiliania huxleyi: alkenones ratios in glacial sediments could be interpreted as evidence of increased dissolution during the LGM. Given the evidence of allochthonous alkenone input into the glacial Labrador Sea, the latter observations must be treated with caution. Overall, the records indicate that

  18. Communication: On the calculation of time-dependent electron flux within the Born-Oppenheimer approximation: A flux-flux reflection principle

    Science.gov (United States)

    Albert, Julian; Hader, Kilian; Engel, Volker

    2017-12-01

    It is commonly assumed that the time-dependent electron flux calculated within the Born-Oppenheimer (BO) approximation vanishes. This is not necessarily true if the flux is directly determined from the continuity equation obeyed by the electron density. This finding is illustrated for a one-dimensional model of coupled electronic-nuclear dynamics. There, the BO flux is in perfect agreement with the one calculated from a solution of the time-dependent Schrödinger equation for the coupled motion. A reflection principle is derived where the nuclear BO flux is mapped onto the electronic flux.

  19. Formulation of coarse mesh finite difference to calculate mathematical adjoint flux

    International Nuclear Information System (INIS)

    Pereira, Valmir; Martinez, Aquilino Senra; Silva, Fernando Carvalho da

    2002-01-01

    The objective of this work is the obtention of the mathematical adjoint flux, having as its support the nodal expansion method (NEM) for coarse mesh problems. Since there are difficulties to evaluate this flux by using NEM. directly, a coarse mesh finite difference program was developed to obtain this adjoint flux. The coarse mesh finite difference formulation (DFMG) adopted uses results of the direct calculation (node average flux and node face averaged currents) obtained by NEM. These quantities (flux and currents) are used to obtain the correction factors which modify the classical finite differences formulation . Since the DFMG formulation is also capable of calculating the direct flux it was also tested to obtain this flux and it was verified that it was able to reproduce with good accuracy both the flux and the currents obtained via NEM. In this way, only matrix transposition is needed to calculate the mathematical adjoint flux. (author)

  20. Application of maximum values for radiation exposure and principles for the calculation of radiation doses

    International Nuclear Information System (INIS)

    2007-08-01

    The guide presents the definitions of equivalent dose and effective dose, the principles for calculating these doses, and instructions for applying their maximum values. The limits (Annual Limit on Intake and Derived Air Concentration) derived from dose limits are also presented for the purpose of monitoring exposure to internal radiation. The calculation of radiation doses caused to a patient from medical research and treatment involving exposure to ionizing radiation is beyond the scope of this ST Guide

  1. Supplementary neutron flux calculations for the ORNL pool critical assembly pressure vessel facility

    Energy Technology Data Exchange (ETDEWEB)

    Maerker, R.E.; Maudlin, P.J.

    1981-02-01

    A three-dimensional Monte Carlo calculation was performed to estimate the neutron flux in the 8/7 configuration of the ORNL Pool Critical Assembly Pressure Vessel Facility. The calculational tool was the multigroup transport code MORSE operated in the adjoint mode. The MORSE flux results compared well with those using a previously adopted procedure for constructing a three-dimensional flux from one- and two-dimensional discrete ordinates calculations using the DOT-IV code. This study concluded that use of these discrete ordinates constructions in previous calculations is sufficiently accurate and does not account for the existing discrepancies between calculation and experiment.

  2. Supplementary neutron flux calculations for the ORNL pool critical assembly pressure vessel facility

    International Nuclear Information System (INIS)

    Maerker, R.E.; Maudlin, P.J.

    1981-02-01

    A three-dimensional Monte Carlo calculation was performed to estimate the neutron flux in the 8/7 configuration of the ORNL Pool Critical Assembly Pressure Vessel Facility. The calculational tool was the multigroup transport code MORSE operated in the adjoint mode. The MORSE flux results compared well with those using a previously adopted procedure for constructing a three-dimensional flux from one- and two-dimensional discrete ordinates calculations using the DOT-IV code. This study concluded that use of these discrete ordinates constructions in previous calculations is sufficiently accurate and does not account for the existing discrepancies between calculation and experiment

  3. Semi-analytic flux formulas for shielding calculations

    International Nuclear Information System (INIS)

    Wallace, O.J.

    1976-06-01

    A special coordinate system based on the work of H. Ono and A. Tsuro has been used to derive exact semi-analytic formulas for the flux from cylindrical, spherical, toroidal, rectangular, annular and truncated cone volume sources; from cylindrical, spherical, truncated cone, disk and rectangular surface sources; and from curved and tilted line sources. In most of the cases where the source is curved, shields of the same curvature are allowed in addition to the standard slab shields; cylindrical shields are also allowed in the rectangular volume source flux formula. An especially complete treatment of a cylindrical volume source is given, in which dose points may be arbitrarily located both within and outside the source, and a finite cylindrical shield may be considered. Detector points may also be specified as lying within spherical and annular source volumes. The integral functions encountered in these formulas require at most two-dimensional numeric integration in order to evaluate the flux values. The classic flux formulas involving only slab shields and slab, disk, line, sphere and truncated cone sources become some of the many special cases which are given in addition to the more general formulas mentioned above

  4. Neutron point-flux calculation by Monte Carlo

    International Nuclear Information System (INIS)

    Eichhorn, M.

    1986-04-01

    A survey of the usual methods for estimating flux at a point is given. The associated variance-reducing techniques in direct Monte Carlo games are explained. The multigroup Monte Carlo codes MC for critical systems and PUNKT for point source-point detector-systems are represented, and problems in applying the codes to practical tasks are discussed. (author)

  5. Rate maximum calculation of Dpa in CNA-II pressure vessel

    International Nuclear Information System (INIS)

    Mascitti, J. A

    2012-01-01

    The maximum dpa rate was calculated for the reactor in the following state: fresh fuel, no Xenon, a Boron concentration of 15.3 ppm, critical state, its control rods in the criticality position, hot, at full power (2160 MW). It was determined that the maximum dpa rate under such conditions is 3.54(2)x10 12 s -1 and it is located in the positions corresponding to θ=210 o in the azimuthal direction, and z=20 cm and -60 cm respectively in the axial direction, considering the calculation mesh centered at half height of the fuel element (FE) active length. The dpa rate spectrum was determined as well as the contribution to it for 4 energy groups: a thermal group, two epithermal groups and a fast one. The maximum dpa rate considering the photo-neutrons production from (γ, n) reaction in the heavy water of coolant and moderator was 3.93(4)x10 12 s -1 that is 11% greater than the obtained without photo-neutrons. This verified significant difference between both cases, suggest that photo-neutrons in large heavy water reactors such as CNA-II should not be ignored. The maximum DPA rate in the first mm of the reactor pressure vessel was calculated too and it was obtained a value of 4.22(6)x10 12 s -1 . It should be added that the calculation was carried out with the reactor complete accurate model, with no approximations in spatial or energy variables. Each value has, between parentheses, a percentage relative error representing the statistical uncertainty due to the probabilistic Monte Carlo method used to estimate it. More representative values may be obtained with this method if equilibrium burn-up distribution is used (author)

  6. Calculation of conventional and prompt lepton fluxes at very high energy

    CERN Document Server

    Fedynitch, Anatoli; Gaisser, Thomas K; Riehn, Felix; Stanev, Todor

    2015-01-01

    An efficient method for calculating inclusive conventional and prompt atmospheric leptons fluxes is presented. The coupled cascade equations are solved numerically by formulating them as matrix equation. The presented approach is very flexible and allows the use of different hadronic interaction models, realistic parametrizations of the primary cosmic-ray flux and the Earth's atmosphere, and a detailed treatment of particle interactions and decays. The power of the developed method is illustrated by calculating lepton flux predictions for a number of different scenarios.

  7. Calculating flux to predict future cave radon concentrations

    Czech Academy of Sciences Publication Activity Database

    Rowberry, Matthew David; Martí, Xavier; Frontera, C.; Van De Wiel, M.J.; Briestenský, Miloš

    2016-01-01

    Roč. 157, JUN (2016), 16-26 ISSN 0265-931X R&D Projects: GA MŠk LM2010008 Institutional support: RVO:67985891 ; RVO:68378271 Keywords : cave radon concentration * cave radon flux * cave ventilation * radioactive decay * fault slip * numerical modelling Subject RIV: DC - Siesmology, Volcanology, Earth Structure; BG - Nuclear, Atomic and Molecular Physics, Colliders (FZU-D) Impact factor: 2.310, year: 2016

  8. Rapid calculation of maximum particle lifetime for diffusion in complex geometries

    Science.gov (United States)

    Carr, Elliot J.; Simpson, Matthew J.

    2018-03-01

    Diffusion of molecules within biological cells and tissues is strongly influenced by crowding. A key quantity to characterize diffusion is the particle lifetime, which is the time taken for a diffusing particle to exit by hitting an absorbing boundary. Calculating the particle lifetime provides valuable information, for example, by allowing us to compare the timescale of diffusion and the timescale of the reaction, thereby helping us to develop appropriate mathematical models. Previous methods to quantify particle lifetimes focus on the mean particle lifetime. Here, we take a different approach and present a simple method for calculating the maximum particle lifetime. This is the time after which only a small specified proportion of particles in an ensemble remain in the system. Our approach produces accurate estimates of the maximum particle lifetime, whereas the mean particle lifetime always underestimates this value compared with data from stochastic simulations. Furthermore, we find that differences between the mean and maximum particle lifetimes become increasingly important when considering diffusion hindered by obstacles.

  9. 3-D flux distribution and criticality calculation of TRIGA Mark-II

    International Nuclear Information System (INIS)

    Can, B.

    1982-01-01

    In this work, the static calculation of the (I.T.U. TRIGA Mark-II) flux distribution has been made. The three dimensional, r-θ-z, representation of the core has been used. In this representation, for different configuration, the flux distribution has been calculated depending on two group theory. The thermal-hydraulics, the poisoning effects have been ignored. The calculations have been made by using the three dimensional and multigroup code CAN. (author)

  10. Application of maximum values for radiation exposure and principles for the calculation of radiation dose

    International Nuclear Information System (INIS)

    2000-01-01

    The guide sets out the mathematical definitions and principles involved in the calculation of the equivalent dose and the effective dose, and the instructions concerning the application of the maximum values of these quantities. further, for monitoring the dose caused by internal radiation, the guide defines the limits derived from annual dose limits (the Annual Limit on Intake and the Derived Air Concentration). Finally, the guide defines the operational quantities to be used in estimating the equivalent dose and the effective dose, and also sets out the definitions of some other quantities and concepts to be used in monitoring radiation exposure. The guide does not include the calculation of patient doses carried out for the purposes of quality assurance

  11. Application of maximum values for radiation exposure and principles for the calculation of radiation dose

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The guide sets out the mathematical definitions and principles involved in the calculation of the equivalent dose and the effective dose, and the instructions concerning the application of the maximum values of these quantities. further, for monitoring the dose caused by internal radiation, the guide defines the limits derived from annual dose limits (the Annual Limit on Intake and the Derived Air Concentration). Finally, the guide defines the operational quantities to be used in estimating the equivalent dose and the effective dose, and also sets out the definitions of some other quantities and concepts to be used in monitoring radiation exposure. The guide does not include the calculation of patient doses carried out for the purposes of quality assurance.

  12. TORT/MCNP coupling method for the calculation of neutron flux around a core of BWR

    International Nuclear Information System (INIS)

    Kurosawa, M.

    2005-01-01

    For the analysis of BWR neutronics performance, accurate data are required for neutron flux distribution over the In-Reactor Pressure Vessel equipments taking into account the detailed geometrical arrangement. The TORT code can calculate neutron flux around a core of BWR in a three-dimensional geometry model, but has difficulties in fine geometrical modelling and lacks huge computer resource. On the other hand, the MCNP code enables the calculation of the neutron flux with a detailed geometry model, but requires very long sampling time to give enough number of particles. Therefore, a TORT/MCNP coupling method has been developed to eliminate the two problems mentioned above in each code. In this method, the TORT code calculates angular flux distribution on the core surface and the MCNP code calculates neutron spectrum at the points of interest using the flux distribution. The coupling method will be used as the DOT-DOMINO-MORSE code system. This TORT/MCNP coupling method was applied to calculate the neutron flux at points where induced radioactivity data were measured for 54 Mn and 60 Co and the radioactivity calculations based on the neutron flux obtained from the above method were compared with the measured data. (authors)

  13. TORT/MCNP coupling method for the calculation of neutron flux around a core of BWR.

    Science.gov (United States)

    Kurosawa, Masahiko

    2005-01-01

    For the analysis of BWR neutronics performance, accurate data are required for neutron flux distribution over the In-Reactor Pressure Vessel equipments taking into account the detailed geometrical arrangement. The TORT code can calculate neutron flux around a core of BWR in a three-dimensional geometry model, but has difficulties in fine geometrical modelling and lacks huge computer resource. On the other hand, the MCNP code enables the calculation of the neutron flux with a detailed geometry model, but requires very long sampling time to give enough number of particles. Therefore, a TORT/MCNP coupling method has been developed to eliminate the two problems mentioned above in each code. In this method, the TORT code calculates angular flux distribution on the core surface and the MCNP code calculates neutron spectrum at the points of interest using the flux distribution. The coupling method will be used as the DOT-DOMINO-MORSE code system. This TORT/MCNP coupling method was applied to calculate the neutron flux at points where induced radioactivity data were measured for 54Mn and 60Co and the radioactivity calculations based on the neutron flux obtained from the above method were compared with the measured data.

  14. Calculation of atmospheric neutrino flux using the interaction model calibrated with atmospheric muon data

    International Nuclear Information System (INIS)

    Honda, M.; Kajita, T.; Kasahara, K.; Midorikawa, S.; Sanuki, T.

    2007-01-01

    Using the 'modified DPMJET-III' model explained in the previous paper [T. Sanuki et al., preceding Article, Phys. Rev. D 75, 043005 (2007).], we calculate the atmospheric neutrino flux. The calculation scheme is almost the same as HKKM04 [M. Honda, T. Kajita, K. Kasahara, and S. Midorikawa, Phys. Rev. D 70, 043008 (2004).], but the usage of the 'virtual detector' is improved to reduce the error due to it. Then we study the uncertainty of the calculated atmospheric neutrino flux summarizing the uncertainties of individual components of the simulation. The uncertainty of K-production in the interaction model is estimated using other interaction models: FLUKA'97 and FRITIOF 7.02, and modifying them so that they also reproduce the atmospheric muon flux data correctly. The uncertainties of the flux ratio and zenith angle dependence of the atmospheric neutrino flux are also studied

  15. A Fourier analysis on the maximum acceptable grid size for discrete proton beam dose calculation

    International Nuclear Information System (INIS)

    Li, Haisen S.; Romeijn, H. Edwin; Dempsey, James F.

    2006-01-01

    We developed an analytical method for determining the maximum acceptable grid size for discrete dose calculation in proton therapy treatment plan optimization, so that the accuracy of the optimized dose distribution is guaranteed in the phase of dose sampling and the superfluous computational work is avoided. The accuracy of dose sampling was judged by the criterion that the continuous dose distribution could be reconstructed from the discrete dose within a 2% error limit. To keep the error caused by the discrete dose sampling under a 2% limit, the dose grid size cannot exceed a maximum acceptable value. The method was based on Fourier analysis and the Shannon-Nyquist sampling theorem as an extension of our previous analysis for photon beam intensity modulated radiation therapy [J. F. Dempsey, H. E. Romeijn, J. G. Li, D. A. Low, and J. R. Palta, Med. Phys. 32, 380-388 (2005)]. The proton beam model used for the analysis was a near mono-energetic (of width about 1% the incident energy) and monodirectional infinitesimal (nonintegrated) pencil beam in water medium. By monodirection, we mean that the proton particles are in the same direction before entering the water medium and the various scattering prior to entrance to water is not taken into account. In intensity modulated proton therapy, the elementary intensity modulation entity for proton therapy is either an infinitesimal or finite sized beamlet. Since a finite sized beamlet is the superposition of infinitesimal pencil beams, the result of the maximum acceptable grid size obtained with infinitesimal pencil beam also applies to finite sized beamlet. The analytic Bragg curve function proposed by Bortfeld [T. Bortfeld, Med. Phys. 24, 2024-2033 (1997)] was employed. The lateral profile was approximated by a depth dependent Gaussian distribution. The model included the spreads of the Bragg peak and the lateral profiles due to multiple Coulomb scattering. The dependence of the maximum acceptable dose grid size on the

  16. One group neutron flux at a point in a cylindrical reactor cell calculated by Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Kocic, A [Institute of Nuclear Sciences Vinca, Beograd (Serbia and Montenegro)

    1974-01-15

    Mean values of the neutron flux over material regions and the neutron flux at space points in a cylindrical annular cell (one group model) have been calculated by Monte Carlo. The results are compared with those obtained by an improved collision probability method (author)

  17. Calculation of flux density distribution on irradiation field of electron accelerator

    International Nuclear Information System (INIS)

    Tanaka, Ryuichi

    1977-03-01

    The simple equation of flux density distribution in the irradiation field of an ordinary electron accelerator is a function of the physical parameters concerning electron irradiation. Calculation is based on the mean square scattering angle derived from a simple multiple scattering theory, with the correction factors of air scattering, beam scanning and number transmission coefficient. The flux density distribution was measured by charge absorption in a graphite target set in the air. For the calculated mean square scattering angles of 0.089-0.29, the values of calculation agree with those by experiment within about 10% except at large scattering angles. The method is applicable to dose evaluation of ordinary electron accelerators and design of various irradiators for radiation chemical reaction. Applicability of the simple multiple scattering theory in calculation of the scattered flux density and periodical variation of the flux density of scanning beam are also described. (auth.)

  18. Maximum Expected Wall Heat Flux and Maximum Pressure After Sudden Loss of Vacuum Insulation on the Stratospheric Observatory for Infrared Astronomy (SOFIA) Liquid Helium (LHe) Dewars

    Science.gov (United States)

    Ungar, Eugene K.

    2014-01-01

    The aircraft-based Stratospheric Observatory for Infrared Astronomy (SOFIA) is a platform for multiple infrared observation experiments. The experiments carry sensors cooled to liquid helium (LHe) temperatures. A question arose regarding the heat input and peak pressure that would result from a sudden loss of the dewar vacuum insulation. Owing to concerns about the adequacy of dewar pressure relief in the event of a sudden loss of the dewar vacuum insulation, the SOFIA Program engaged the NASA Engineering and Safety Center (NESC). This report summarizes and assesses the experiments that have been performed to measure the heat flux into LHe dewars following a sudden vacuum insulation failure, describes the physical limits of heat input to the dewar, and provides an NESC recommendation for the wall heat flux that should be used to assess the sudden loss of vacuum insulation case. This report also assesses the methodology used by the SOFIA Program to predict the maximum pressure that would occur following a loss of vacuum event.

  19. The truth is out there: measured, calculated and modelled benthic fluxes.

    Science.gov (United States)

    Pakhomova, Svetlana; Protsenko, Elizaveta

    2016-04-01

    In a modern Earth science there is a great importance of understanding the processes, forming the benthic fluxes as one of element sources or sinks to or from the water body, which affects the elements balance in the water system. There are several ways to assess benthic fluxes and here we try to compare the results obtained by chamber experiments, calculated from porewater distributions and simulated with model. Benthic fluxes of dissolved elements (oxygen, nitrogen species, phosphate, silicate, alkalinity, iron and manganese species) were studied in the Baltic and Black Seas from 2000 to 2005. Fluxes were measured in situ using chamber incubations (Jch) and at the same time sediment cores were collected to assess the porewater distribution at different depths to calculate diffusive fluxes (Jpw). Model study was carried out with benthic-pelagic biogeochemical model BROM (O-N-P-Si-C-S-Mn-Fe redox model). It was applied to simulate biogeochemical structure of the water column and upper sediment and to assess the vertical fluxes (Jmd). By the behaviour at the water-sediment interface all studied elements can be divided into three groups: (1) elements which benthic fluxes are determined by the concentrations gradient only (Si, Mn), (2) elements which fluxes depend on redox conditions in the bottom water (Fe, PO4, NH4), and (3) elements which fluxes are strongly connected with organic matter fate (O2, Alk, NH4). For the first group it was found that measured fluxes are always higher than calculated diffusive fluxes (1.5disadvantages and the main facing us question is - which value should be taken for calculation the balance? This research is funded by VISTA - a basic research program and collaborative partnership between the Norwegian Academy of Science and Letters and Statoil.

  20. Neutron flux shape effects in large fast reactor safety calculations

    International Nuclear Information System (INIS)

    Galati, A.; Loizzo, P.; Musco, A.

    1978-01-01

    Three classes of accidents in a large fast reactor were studied by the two-dimensional core dynamics code NADYP-2. A Modified version of the code, including a point kinetics module, allowed comparison between 2D and 0D power, reactivity and temperature histories. A strong shape effect was evidenced by these calculations in the boiling phase of LOF accidents as well as in the accident generated by control rod removal. Some future possibilities of by passing the consequences of this effect are indicated

  1. Calculation on maximum accumulation of Pu-239 and Pu-241 from aqueous homogeneous reactor

    International Nuclear Information System (INIS)

    Ikhlas H Siregar; Frida Agung R; Suharyana; Azizul Khakim; Dahman Siregar

    2016-01-01

    Calculations on maximum accumulation of Pu-239 and Pu-241 using MCNPX computer code with UO_2(NO_3)_2 fuel solution enriched by 19.75% operating at temperature 80°C have been conducted. AHR design was simulated with cylindrical core having diameter of 63.4 cm and 122 cm high. From this geometry we found the reactor was critical with density 108 gr U/L of UO_2(NO_3)_2 solution. The result showed that multiplication factor (k_e_f_f) of AHR was 1.05284. Then the burn up calculations were done for various time intervals from 5 days until 285 years to analyze the result. From calculation, it was found out that the saturated concentration of Pu-239 was reached after 40-50 years of operation, producing 1.23 x 102 gr and the activity 7.645 Ci. While for operate time of AHR to produce Pu-241 should under 80 years with mass 21.7 gr and the activity 2.247 x 103 Ci. The accumulations of both isotopes are considered to be small, having low potential for misusing them for producing nuclear weapon. (author)

  2. Calculate the maximum expected dose for technical radio physicists a cobalt machine

    International Nuclear Information System (INIS)

    Avila Avila, Rafael; Perez Velasquez, Reytel; Gonzalez Lapez, Nadia

    2009-01-01

    Considering the daily operations carried out by technicians Radiophysics Medical Service Department of Radiation Oncology Hospital V. General Teaching I. Lenin in the city of Holguin, during a working week (Between Monday and Friday) as an important element in calculating the maximum expected dose (MDE). From the exponential decay law which is subject the source activity, we propose corrections to the cumulative doses in the weekly period, leading to obtaining a formula which takes into a cumulative dose during working days and sees no dose accumulation of rest days (Saturday and Sunday). The estimate factor correction is made from a power series expansion convergent is truncated at the n-th term coincides with the week period for which you want to calculate the dose. As initial condition is adopted ambient dose equivalent rate as a given, which allows estimate MDE in the moments after or before this. Calculations were proposed use of an Excel spreadsheet that allows simple and accessible processing the formula obtained. (author)

  3. An analytical transport theory method for calculating flux distribution in slab cells

    International Nuclear Information System (INIS)

    Abdel Krim, M.S.

    2001-01-01

    A transport theory method for calculating flux distributions in slab fuel cell is described. Two coupled integral equations for flux in fuel and moderator are obtained; assuming partial reflection at moderator external boundaries. Galerkin technique is used to solve these equations. Numerical results for average fluxes in fuel and moderator and the disadvantage factor are given. Comparison with exact numerical methods, that is for total reflection moderator outer boundaries, show that the Galerkin technique gives accurate results for the disadvantage factor and average fluxes. (orig.)

  4. Supplementary neutron-flux calculations for the ORNL Pool Critical Assembly Pressure Vessel Facility

    International Nuclear Information System (INIS)

    Maudlin, P.J.; Maerker, R.E.

    1982-01-01

    A three-dimensional Monte Carlo calculation using the MORSE code was performed to validate a procedure previously adopted in the ORNL discrete ordinate analysis of measurements made in the ORNL Pool Critical Assembly Pressure Vessel Facility. The results of these flux calculations agree, within statistical undertainties of about 5%, with those obtained from a discrete ordinate analysis employing the same procedure. This study therefore concludes that the procedure for combining several one- and two-dimensional discrete ordinate calculations into a three-dimensional flux is sufficiently accurate that it does not account for the existing discrepancies observed between calculations and measurements in this facility

  5. Supplementary neutron-flux calculations for the ORNL Pool Critical Assembly Pressure Vessel Facility

    Energy Technology Data Exchange (ETDEWEB)

    Maudlin, P.J.; Maerker, R.E.

    1982-01-01

    A three-dimensional Monte Carlo calculation using the MORSE code was performed to validate a procedure previously adopted in the ORNL discrete ordinate analysis of measurements made in the ORNL Pool Critical Assembly Pressure Vessel Facility. The results of these flux calculations agree, within statistical undertainties of about 5%, with those obtained from a discrete ordinate analysis employing the same procedure. This study therefore concludes that the procedure for combining several one- and two-dimensional discrete ordinate calculations into a three-dimensional flux is sufficiently accurate that it does not account for the existing discrepancies observed between calculations and measurements in this facility.

  6. Calculation of conventional and prompt lepton fluxes at very high energy

    Directory of Open Access Journals (Sweden)

    Fedynitch Anatoli

    2015-01-01

    Full Text Available An efficient method for calculating inclusive conventional and prompt atmospheric leptons fluxes is presented. The coupled cascade equations are solved numerically by formulating them as matrix equation. The presented approach is very flexible and allows the use of different hadronic interaction models, realistic parametrizations of the primary cosmic-ray flux and the Earth's atmosphere, and a detailed treatment of particle interactions and decays. The power of the developed method is illustrated by calculating lepton flux predictions for a number of different scenarios.

  7. Calculating the Maximum Density of the Surface Packing of Ions in Ionic Liquids

    Science.gov (United States)

    Kislenko, S. A.; Moroz, Yu. O.; Karu, K.; Ivaništšev, V. B.; Fedorov, M. V.

    2018-05-01

    The maximum density of monolayer packing on a graphene surface is calculated by means of molecular dynamics (MD) for ions of characteristic size and symmetry: 1-butyl-3-methylimidazolium [BMIM]+, tetrabutylammonium [TBA]+, tetrafluoroborate [BF4]-, dicyanamide [DCA]-, and bis(trifluoromethane) sulfonimide [TFSI]-. The characteristic orientations of ions in a closely packed monolayer are found. It is shown that the formation of a closely packed monolayer is possible for [DCA]- and [BF4]- anions only at surface charges that exceed the limit of the electrochemical stability of the corresponding ionic liquids. For the [TBA]+ cation, a monolayer structure can be observed at the charge of nearly 30 μC/cm2 attainable in electrochemical experiment.

  8. Calculation and experimental study of the RBMK-1500 reactor emergency cooling at maximum designed accident

    International Nuclear Information System (INIS)

    Cherkashov, Yu.M.; Vasilevskij, V.P.; Labazov, V.H.; Loninov, A.Ya.; Molochnikov, Yu.S.; Novosel'skij, O.Yu.; Podlazov, L.N.; Pavlov, V.B.; Pushkarev, V.I.

    1981-01-01

    The analysis of thermohydraulic and neutron-physical processes occurring in the RBMK-1500 reactor during the reactor emergency cooling system triggering (RECS) after the maximum designed accident (MDA) is conducted. The MDA means hypothetical instant hilliotine break of the main circulating pump head collector. During the whole cooling down period the RECS should provide the temperature level of the fuel elements not exceeding 1200 deg C and the channel pipe temperature - 600 deg C. The principal flowsheet of the balloon type RECS is described. Calculations of the valve fast response effect on the RECS productivity are carried out. It is concluded that the chosen balloon RECS provides reliable temperature modes of fuel elements naand channel pipes under the MDA conditions. At the same time a momentary splash of neutron power by the value not more than 10% can take place [ru

  9. Pellet by pellet neutron flux calculations coupled with nodal expansion method

    International Nuclear Information System (INIS)

    Aldo, Dall'Osso

    2003-01-01

    We present a technique whose aim is to replace 2-dimensional pin by pin de-homogenization, currently done in core reactor calculations with the nodal expansion method (NEM), by a 3-dimensional finite difference diffusion calculation. This fine calculation is performed as a zoom in each node taking as boundary conditions the results of the NEM calculations. The size of fine mesh is of the order of a fuel pellet. The coupling between fine and NEM calculations is realised by an albedo like boundary condition. Some examples are presented showing fine neutron flux shape near control rods or assembly grids. Other fine flux behaviour as the thermal flux rise in the fuel near the reflector is emphasised. In general the results show the interest of the method in conditions where the separability of radial and axial directions is not granted. (author)

  10. Improvement of low energy atmospheric neutrino flux calculation using the JAM nuclear interaction model

    International Nuclear Information System (INIS)

    Honda, M.; Kajita, T.; Kasahara, K.; Midorikawa, S.

    2011-01-01

    We present the calculation of the atmospheric neutrino fluxes with an interaction model named JAM, which is used in PHITS (Particle and Heavy-Ion Transport code System) [K. Niita et al., Radiation Measurements 41, 1080 (2006).]. The JAM interaction model agrees with the HARP experiment [H. Collaboration, Astropart. Phys. 30, 124 (2008).] a little better than DPMJET-III[S. Roesler, R. Engel, and J. Ranft, arXiv:hep-ph/0012252.]. After some modifications, it reproduces the muon flux below 1 GeV/c at balloon altitudes better than the modified DPMJET-III, which we used for the calculation of atmospheric neutrino flux in previous works [T. Sanuki, M. Honda, T. Kajita, K. Kasahara, and S. Midorikawa, Phys. Rev. D 75, 043005 (2007).][M. Honda, T. Kajita, K. Kasahara, S. Midorikawa, and T. Sanuki, Phys. Rev. D 75, 043006 (2007).]. Some improvements in the calculation of atmospheric neutrino flux are also reported.

  11. Transport calculations of. gamma. -ray flux density and dose rate about implantable californium-252 sources

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, A; Lin, B I [Cincinnati Univ., Ohio (USA). Dept. of Chemical and Nuclear Engineering; Windham, J P; Kereiakes, J G

    1976-07-01

    ..gamma.. flux density and dose rate distributions have been calculated about implantable californium-252 sources for an infinite tissue medium. Point source flux densities as a function of energy and position were obtained from a discrete-ordinates calculation, and the flux densities were multiplied by their corresponding kerma factors and added to obtain point source dose rates. The point dose rates were integrated over the line source to obtain line dose rates. Container attenuation was accounted for by evaluating the point dose rate as a function of platinum thickness. Both primary and secondary flux densities and dose rates are presented. The agreement with an independent Monte Carlo calculation was excellent. The data presented should be useful for the design of new source configurations.

  12. The neutrons flux density calculations by Monte Carlo code for the double heterogeneity fuel

    International Nuclear Information System (INIS)

    Gurevich, M.I.; Brizgalov, V.I.

    1994-01-01

    This document provides the calculation technique for the fuel elements which consists of the one substance as a matrix and the other substance as the corn embedded in it. This technique can be used in the neutron flux density calculation by the universal Monte Carlo code. The estimation of accuracy is presented too. (authors). 6 refs., 1 fig

  13. Calculation of the Flux in a Square Lattice Cell and a Comparison with Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Apelqvist, G [State Power Board, Stockholm (Sweden)

    1961-05-15

    A calculation has been made of the thermal neutron flux in a square lattice cell using methods devised by Galanin. The f and L lattice parameters have been expressed in measurable quantities and a comparison made between measured and calculated values.

  14. Exploring the use of a deterministic adjoint flux calculation in criticality Monte Carlo simulations

    International Nuclear Information System (INIS)

    Jinaphanh, A.; Miss, J.; Richet, Y.; Martin, N.; Hebert, A.

    2011-01-01

    The paper presents a preliminary study on the use of a deterministic adjoint flux calculation to improve source convergence issues by reducing the number of iterations needed to reach the converged distribution in criticality Monte Carlo calculations. Slow source convergence in Monte Carlo eigenvalue calculations may lead to underestimate the effective multiplication factor or reaction rates. The convergence speed depends on the initial distribution and the dominance ratio. We propose using an adjoint flux estimation to modify the transition kernel according to the Importance Sampling technique. This adjoint flux is also used as the initial guess of the first generation distribution for the Monte Carlo simulation. Calculated Variance of a local estimator of current is being checked. (author)

  15. Localisation of a neutron source using measurements and calculation of the neutron flux and its gradient

    CERN Document Server

    Linden, P; Dahl, B; Pázsit, I; Por, G

    1999-01-01

    We have performed laboratory measurements of the neutron flux and its gradient in a static model experiment, similar to a model problem proposed in Pazsit (Ann. Nucl. Energy 24 (1997) 1257). The experimental system consists of a radioactive neutron source located in a water tank. The measurements are performed using a recently developed very small optical fibre detector. The measured values of the flux and its gradient are then used to test the possibility of localising the source. The results show that it is possible to measure the flux on the circumference of a circle and from this calculate the flux gradient vector. Then, by comparison of the measured quantities with corresponding MCNP calculations, both the direction and the distance to the source are found and thus the position of the source can be determined.

  16. Fusion neutron yield and flux calculation on HT-7 superconducting tokamak

    International Nuclear Information System (INIS)

    Fu Yanzhang; Zhu Yubao; Chen Juequan

    2006-01-01

    Neutron yield and flux have been numerically estimated on HT-7 tokamak. The total fusion neutron yield and neutron flux distribution on different positions and azimuth angles of the device are presented. Analyses on the errors induced by ion temperature and density distribution factors are given in detail. The results of the calculations provide a useful database for neutron diagnostics and neutron radiation protection. (authors)

  17. Connection factor calculation for isotopic neutron flux measurements with foil detectors

    International Nuclear Information System (INIS)

    Avila L, J.

    1987-01-01

    Thermal and resonance neutron self-shielding factors, neutron flux distortion and edge effects as well as a connection factor for neutron flux profile around a foil detector have been calculated. A general expression for resonance self shielding factor is presented in order to take into account the most important resonances for a given isotope. A computer program SPRESYTER.BAS was written and results for In-115 and Au-197 foils are given

  18. Calculation of neutron flux and reactivity by perturbation theory at high order

    International Nuclear Information System (INIS)

    Silva, W.L.P. da; Silva, F.C. da; Thome Filho, Z.D.

    1982-01-01

    A high order pertubation theory is studied, independent of time, applied to integral parameter calculation of a nuclear reactor. A pertubative formulation, based on flux difference technique, which gives directy the reactivity and neutron flux up to the aproximation order required, is presented. As an application of the method, global pertubations represented by fuel temperature variations, are used. Tests were done aiming to verify the relevancy of the approximation order for several intensities of the pertubations considered. (E.G.) [pt

  19. Temperature and void reactivity coefficient calculations for the high flux isotope reactor safety analysis report

    International Nuclear Information System (INIS)

    Engle, W.W. Jr.; Williams, L.R.

    1994-07-01

    This report provides documentation of a series of calculations performed in 1991 in order to provide input for the High Flux Isotope Reactor Safety Analysis Report. In particular, temperature and void reactivity coefficients were calculated for beginning-of-life, end-of-life, and xenon equilibrium (29 h) conditions. Much of the data used to prepare the computer models for these calculations was derived from the original HFIR nuclear design study

  20. Chain Rule Approach for Calculating the Time-Derivative of Flux

    Energy Technology Data Exchange (ETDEWEB)

    Langenbrunner, James R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Booker, Jane M. [Booker Scientific, Fredericksburg, TX (United States)

    2017-10-03

    The reaction history (gamma-flux observable) is mathematically studied by using the chain rule for taking the total-time derivatives. That is, the total time-derivative of flux is written as the product of the ion temperature derivative with respect to time and the derivative of the flux with respect to ion temperature. Some equations are derived using the further simplification that the fusion reactivity is a parametrized function of ion temperature, T. Deuterium-tritium (D-T) fusion is used as the application with reactivity calculations from three established reactivity parametrizations.

  1. An implicit flux-split algorithm to calculate hypersonic flowfields in chemical equilibrium

    Science.gov (United States)

    Palmer, Grant

    1987-01-01

    An implicit, finite-difference, shock-capturing algorithm that calculates inviscid, hypersonic flows in chemical equilibrium is presented. The flux vectors and flux Jacobians are differenced using a first-order, flux-split technique. The equilibrium composition of the gas is determined by minimizing the Gibbs free energy at every node point. The code is validated by comparing results over an axisymmetric hemisphere against previously published results. The algorithm is also applied to more practical configurations. The accuracy, stability, and versatility of the algorithm have been promising.

  2. Study of cosmic ray interaction model based on atmospheric muons for the neutrino flux calculation

    International Nuclear Information System (INIS)

    Sanuki, T.; Honda, M.; Kajita, T.; Kasahara, K.; Midorikawa, S.

    2007-01-01

    We have studied the hadronic interaction for the calculation of the atmospheric neutrino flux by summarizing the accurately measured atmospheric muon flux data and comparing with simulations. We find the atmospheric muon and neutrino fluxes respond to errors in the π-production of the hadronic interaction similarly, and compare the atmospheric muon flux calculated using the HKKM04 [M. Honda, T. Kajita, K. Kasahara, and S. Midorikawa, Phys. Rev. D 70, 043008 (2004).] code with experimental measurements. The μ + +μ - data show good agreement in the 1∼30 GeV/c range, but a large disagreement above 30 GeV/c. The μ + /μ - ratio shows sizable differences at lower and higher momenta for opposite directions. As the disagreements are considered to be due to assumptions in the hadronic interaction model, we try to improve it phenomenologically based on the quark parton model. The improved interaction model reproduces the observed muon flux data well. The calculation of the atmospheric neutrino flux will be reported in the following paper [M. Honda et al., Phys. Rev. D 75, 043006 (2007).

  3. Transport methods: general. 6. A Flux-Limited Diffusion Theory Derived from the Maximum Entropy Eddington Factor

    International Nuclear Information System (INIS)

    Yin, Chukai; Su, Bingjing

    2001-01-01

    The Minerbo's maximum entropy Eddington factor (MEEF) method was proposed as a low-order approximation to transport theory, in which the first two moment equations are closed for the scalar flux f and the current F through a statistically derived nonlinear Eddington factor f. This closure has the ability to handle various degrees of anisotropy of angular flux and is well justified both numerically and theoretically. Thus, a lot of efforts have been made to use this approximation in transport computations, especially in the radiative transfer and astrophysics communities. However, the method suffers numerical instability and may lead to anomalous solutions if the equations are solved by certain commonly used (implicit) mesh schemes. Studies on numerical stability in one-dimensional cases show that the MEEF equations can be solved satisfactorily by an implicit scheme (of treating δΦ/δx) if the angular flux is not too anisotropic so that f 32 , the classic diffusion solution P 1 , the MEEF solution f M obtained by Riemann solvers, and the NFLD solution D M for the two problems, respectively. In Fig. 1, NFLD and MEEF quantitatively predict very close results. However, the NFLD solution is qualitatively better because it is continuous while MEEF predicts unphysical jumps near the middle of the slab. In Fig. 2, the NFLD and MEEF solutions are almost identical, except near the material interface. In summary, the flux-limited diffusion theory derived from the MEEF description is quantitatively as accurate as the MEEF method. However, it is more qualitatively correct and user-friendly than the MEEF method and can be applied efficiently to various steady-state problems. Numerical tests show that this method is widely valid and overall predicts better results than other low-order approximations for various kinds of problems, including eigenvalue problems. Thus, it is an appealing approximate solution technique that is fast computationally and yet is accurate enough for a

  4. Monte Carlo calculation of the maximum therapeutic gain of tumor antivascular alpha therapy

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chen-Yu; Oborn, Bradley M.; Guatelli, Susanna; Allen, Barry J. [Centre for Experimental Radiation Oncology, St. George Clinical School, University of New South Wales, Kogarah, New South Wales 2217 (Australia); Illawarra Cancer Care Centre, Wollongong, New South Wales 2522, Australia and Centre for Medical Radiation Physics, University of Wollongong, New South Wales 2522 (Australia); Centre for Medical Radiation Physics, University of Wollongong, New South Wales 2522 (Australia); Centre for Experimental Radiation Oncology, St. George Clinical School, University of New South Wales, Kogarah, New South Wales 2217 (Australia)

    2012-03-15

    Purpose: Metastatic melanoma lesions experienced marked regression after systemic targeted alpha therapy in a phase 1 clinical trial. This unexpected response was ascribed to tumor antivascular alpha therapy (TAVAT), in which effective tumor regression is achieved by killing endothelial cells (ECs) in tumor capillaries and, thus, depriving cancer cells of nutrition and oxygen. The purpose of this paper is to quantitatively analyze the therapeutic efficacy and safety of TAVAT by building up the testing Monte Carlo microdosimetric models. Methods: Geant4 was adapted to simulate the spatial nonuniform distribution of the alpha emitter {sup 213}Bi. The intraluminal model was designed to simulate the background dose to normal tissue capillary ECs from the nontargeted activity in the blood. The perivascular model calculates the EC dose from the activity bound to the perivascular cancer cells. The key parameters are the probability of an alpha particle traversing an EC nucleus, the energy deposition, the lineal energy transfer, and the specific energy. These results were then applied to interpret the clinical trial. Cell survival rate and therapeutic gain were determined. Results: The specific energy for an alpha particle hitting an EC nucleus in the intraluminal and perivascular models is 0.35 and 0.37 Gy, respectively. As the average probability of traversal in these models is 2.7% and 1.1%, the mean specific energy per decay drops to 1.0 cGy and 0.4 cGy, which demonstrates that the source distribution has a significant impact on the dose. Using the melanoma clinical trial activity of 25 mCi, the dose to tumor EC nucleus is found to be 3.2 Gy and to a normal capillary EC nucleus to be 1.8 cGy. These data give a maximum therapeutic gain of about 180 and validate the TAVAT concept. Conclusions: TAVAT can deliver a cytotoxic dose to tumor capillaries without being toxic to normal tissue capillaries.

  5. Thermal Properties for the Thermal-Hydraulics Analyses of the BR2 Maximum Nominal Heat Flux

    Energy Technology Data Exchange (ETDEWEB)

    Dionne, B. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Bergeron, A. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Licht, J. R. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Kim, Y. S. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Hofman, G. L. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2015-02-01

    This memo describes the assumptions and references used in determining the thermal properties for the various materials used in the BR2 HEU (93% enriched in 235U) to LEU (19.75% enriched in 235U) conversion feasibility analysis. More specifically, this memo focuses on the materials contained within the pressure vessel (PV), i.e., the materials that are most relevant to the study of impact of the change of fuel from HEU to LEU. Section 2 provides a summary of the thermal properties in the form of tables while the following sections and appendices present the justification of these values. Section 3 presents a brief background on the approach used to evaluate the thermal properties of the dispersion fuel meat and specific heat capacity. Sections 4 to 7 discuss the material properties for the following materials: i) aluminum, ii) dispersion fuel meat (UAlx-Al and U-7Mo-Al), iii) beryllium, and iv) stainless steel. Section 8 discusses the impact of irradiation on material properties. Section 9 summarizes the material properties for typical operating temperatures. Appendix A elaborates on how to calculate dispersed phase’s volume fraction. Appendix B provides a revised methodology for determining the thermal conductivity as a function of burnup for HEU and LEU.

  6. Calculation of fast neutron flux in reactor pressure tubes and experimental facilities

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, P. C. [Canadian General Electric (Canada)

    1968-07-15

    The computer program EPITHET was used to calculate the fast neutron flux (>1 MeV) in several reactor pressure tubes and experimental facilities in order to compare the fast neutron flux in the different cases and to provide a self-consistent set of flux values which may be used to relate creep strain to fast neutron flux . The facilities considered are shown below together with the calculated fast neutron flux (>1 MeV). Fast flux 10{sup 13} n/cm{sup 2}s: NPD 1.14, Douglas Point 2.66, Pickering 2.89, Gentilly 2.35, SGHWR 3.65, NRU U-1 and U-2 3.25'' pressure tube - 19 element fuel 3.05, NRU U-1 and U-2 4.07'' pressure tube - 28 element fuel 3.18, NRU U-1 and U-2 4.07'' pressure tube - 18 element fuel 2.90, NRX X-5 0.88, PRTR Mk I fuel 2.81, PRTR HPD fuel 3.52, WR-1 2.73, Mk IV creep machine (NRX) 0.85, Mk VI creep machine (NRU) 2.04, Biaxial creep insert (NRU U-49) 2.61.

  7. Neutron flux calculation and fluence in the encircling of the core and vessel of a reactor BWR

    International Nuclear Information System (INIS)

    Martinez C, E.

    2011-01-01

    One of the main objectives related to the safety of any nuclear power plant, including the nuclear power plant of Laguna Verde is to ensure the structural integrity of reactor pressure vessel. To identify and quantify the damage caused by neutron irradiation in the vessel of any nuclear reactor, it is necessary to know both the neutron flux and the neutron fluence that the vessel has been receiving during its operation lifetime, and that the damage observed by mechanical testing are products of microstructural effects induced by neutron irradiation; therefore, it is important the study and prediction of the neutron flux in order to have a better understanding of the damage that these materials are receiving. The calculation here described uses the DORT code, which solves the neutron transport equation in discrete ordinates in two dimensions (x-y, r-θ and r-z), according to a regulatory guide, it should make an approximation of the neutron flux in three dimensions by the so called synthesis method. It is called in that way because it achieves a representation of 3 Dimensional neutron flux combining or summarizing the fluxes calculated by DORT r-θ, r-z and r. This work presents the application of synthesis method, according to Regulatory Guide 1190, to determine the 3 Dimensional fluxes in internal BWR reactor using three different spatial meshes. The results of the neutron flux and fluence, using three different meshes in the directions r, θ and z were compared with results reported in the literature obtaining a difference not larger than 9.61%, neutron flux reached its maximum, 1.58 E + 12 n/cm 2 s, at a height H 4 (239.07 cm) and angle 32.236 o in the core shroud and 4.00 E + 09 n/cm 2 s at a height H 4 and angle 35.27 o in the inner wall of the reactor vessel, positions that are consistent to within ±10% over the ones reported in the literature. (Author)

  8. A diffusion-theoretical method to calculate the neutron flux distribution in multisphere configurations

    International Nuclear Information System (INIS)

    Schuerrer, F.

    1980-01-01

    For characterizing heterogene configurations of pebble-bed reactors the fine structure of the flux distribution as well as the determination of the macroscopic neutronphysical quantities are of interest. When calculating system parameters of Wigner-Seitz-cells the usual codes for neutron spectra calculation always neglect the modulation of the neutron flux by the influence of neighbouring spheres. To judge the error arising from that procedure it is necessary to determinate the flux distribution in the surrounding of a spherical fuel element. In the present paper an approximation method to calculate the flux distribution in the two-sphere model is developed. This method is based on the exactly solvable problem of the flux determination of a point source of neutrons in an infinite medium, which contains a spherical perturbation zone eccentric to the point source. An iteration method allows by superposing secondary fields and alternately satisfying the conditions of continuity on the surface of each of the two fuel elements to advance to continually improving approximations. (orig.) 891 RW/orig. 892 CKA [de

  9. Calculation of neutron fluxes in biological shield of the TRIGA Mark II reactor

    International Nuclear Information System (INIS)

    Bozic, M.; Zagar, T.; Ravnik, M.

    2001-01-01

    The complete calculation of neutron fluxes in biological shield and verification with experimental results is presented. Calculated results are obtained with TORT code (TORT-Three Dimensional Oak Ridge Discrete Ordinates Neutron/Photon Transport Code). Experimental results used for comparison are available from irradiation experiment with selected type of concrete and other materials in irradiation channel 4 in TRIGA Mark II reactor. These experimental results were used as a benchmark. Homogeneous type of problem (without inserted irradiation channel) and problem with asymmetry (inserted beam port 4, filled with different materials) were of interest for neutron flux calculation. Deviation from material data set up as original parameters is also considered (first of all presence of water in concrete and density of concrete) for type of concrete in biological shield and for selected type of concrete in irradiation channel. BUGLE-96 (47 neutron energy groups) library is used. Excellent agreement between calculated and experimental results for reaction rate is received.(author)

  10. Alize 3 - first critical experiment for the franco-german high flux reactor - calculations

    International Nuclear Information System (INIS)

    Scharmer, K.

    1969-01-01

    The results of experiments in the light water cooled D 2 O reflected critical assembly ALIZE III have been compared to calculations. A diffusion model was used with 3 fast and epithermal groups and two overlapping thermal groups, which leads to good agreement of calculated and measured power maps, even in the case of strong variations of the neutron spectrum in the core. The difference of calculated and measured k eff was smaller than 0.5 per cent δk/k. Calculations of void and structure material coefficients of the reactivity of 'black' rods in the reflector, of spectrum variations (Cd-ratio, Pu-U-ratio) and to the delayed photoneutron fraction in the D 2 O reflector were made. Measurements of the influence of beam tubes on reactivity and flux distribution in the reflector were interpreted with regard to an optimum beam tube arrangement for the Franco- German High Flux Reactor. (author) [fr

  11. Calculations for HFIR [High Flux Isotope Reactor] fuel plate non- bonding and fuel segregation uncertainty factors

    International Nuclear Information System (INIS)

    Kirkpatrick, J.R.

    1990-10-01

    The effects of non-bonds and of fuel segregation on the package factors of the heat flux in the High Flux Isotope Reactor (HFIR) are examined. The effects of the two defects are examined both separately and together. It is concluded that the peaking factors that are used in the present HFIR thermal analysis code are conservative and thus no changes in the peaking factors are necessary to continue to ensure that HFIR is safe. A study was made of the effect of the non-bond spot diameter on the peaking factor. The conclusion is that the spot can have diameter more than three times the maximum value allowed by the specifications before the peaking factor is greater than the maximum value specified in the present HFIR thermal analysis code. 6 refs., 7 figs., 8 tabs

  12. Transport calculation of neutron flux distribution in reflector of PW reactor

    International Nuclear Information System (INIS)

    Remec, I.

    1982-01-01

    Two-dimensional transport calculation of the neutron flux and spectrum in the equatorial plain of PW reactor, using computer program DOT 3, is presented. Results show significant differences between neutron fields in which test samples and reactor vessel are exposed. (author)

  13. Error estimates for ice discharge calculated using the flux gate approach

    Science.gov (United States)

    Navarro, F. J.; Sánchez Gámez, P.

    2017-12-01

    Ice discharge to the ocean is usually estimated using the flux gate approach, in which ice flux is calculated through predefined flux gates close to the marine glacier front. However, published results usually lack a proper error estimate. In the flux calculation, both errors in cross-sectional area and errors in velocity are relevant. While for estimating the errors in velocity there are well-established procedures, the calculation of the error in the cross-sectional area requires the availability of ground penetrating radar (GPR) profiles transverse to the ice-flow direction. In this contribution, we use IceBridge operation GPR profiles collected in Ellesmere and Devon Islands, Nunavut, Canada, to compare the cross-sectional areas estimated using various approaches with the cross-sections estimated from GPR ice-thickness data. These error estimates are combined with those for ice-velocities calculated from Sentinel-1 SAR data, to get the error in ice discharge. Our preliminary results suggest, regarding area, that the parabolic cross-section approaches perform better than the quartic ones, which tend to overestimate the cross-sectional area for flight lines close to the central flowline. Furthermore, the results show that regional ice-discharge estimates made using parabolic approaches provide reasonable results, but estimates for individual glaciers can have large errors, up to 20% in cross-sectional area.

  14. A transmission probability method for calculation of neutron flux distributions in hexagonal geometry

    International Nuclear Information System (INIS)

    Wasastjerna, F.; Lux, I.

    1980-03-01

    A transmission probability method implemented in the program TPHEX is described. This program was developed for the calculation of neutron flux distributions in hexagonal light water reactor fuel assemblies. The accuracy appears to be superior to diffusion theory, and the computation time is shorter than that of the collision probability method. (author)

  15. Comparison of calculated energy flux of internal tides with microstructure measurements

    Directory of Open Access Journals (Sweden)

    Saeed Falahat

    2014-10-01

    Full Text Available Vertical mixing caused by breaking of internal tides plays a major role in maintaining the deep-ocean stratification. This study compares observations of dissipation from microstructure measurements to calculations of the vertical energy flux from barotropic to internal tides, taking into account the temporal variation due to the spring-neap tidal cycle. The dissipation data originate from two surveys in the Brazil Basin Tracer Release Experiment (BBTRE, and one over the LArval Dispersal along the Deep East Pacific Rise (LADDER3, supplemented with a few stations above the North-Atlantic Ridge (GRAVILUCK and in the western Pacific (IZU. A good correlation is found between logarithmic values of energy flux and local dissipation in BBTRE, suggesting that the theory is able to predict energy fluxes. For the LADDER3, the local dissipation is much smaller than the calculated energy flux, which is very likely due to the different topographic features of BBTRE and LADDER3. The East Pacific Rise consists of a few isolated seamounts, so that most of the internal wave energy can radiate away from the generation site, whereas the Brazil Basin is characterised by extended rough bathymetry, leading to a more local dissipation. The results from all four field surveys support the general conclusion that the fraction of the internal-tide energy flux that is dissipated locally is very different in different regions.

  16. Eddy current loss calculation and thermal analysis of axial-flux permanent magnet couplers

    Directory of Open Access Journals (Sweden)

    Di Zheng

    2017-02-01

    Full Text Available A three-dimensional magnetic field analytical model of axial-flux permanent magnet couplers is presented to calculate the eddy current loss, and the prediction of the copper plate temperature under various loads is analyzed. The magnetic field distribution is calculated, and then the eddy current loss is obtained, with the magnetic field analytical model established in cylindrical coordinate. The influence of various loads on eddy current loss is analyzed. Furthermore, a thermal model of axial-flux permanent magnet couplers is established by taking the eddy current loss as the heat source, using the electromagnetic-thermal coupled method. With the help of the thermal model, the influence of various loads on copper plate temperature rise is also analyzed. The calculated results are compared with the results of finite element method and measurement. The comparison results confirm the validity of the magnetic field analytical model and thermal model.

  17. The Eddington approximation calculation of radiation flux in the atmosphere–ocean system

    International Nuclear Information System (INIS)

    Shi, Chong; Nakajima, Teruyuki

    2015-01-01

    An analytical approximation method is presented to calculate the radiation flux in the atmosphere–ocean system using the Eddington approximation when the upwelling radiation from the ocean body is negligibly small. Numerical experiments were carried out to investigate the feasibility of the method in two cases: flat and rough ocean surfaces. The results show good consistency for the reflectivity at the top of atmosphere and transmissivity just above the ocean surface, in comparison with the exact values calculated by radiative transfer models in each case. Moreover, an obvious error might be introduced for the calculation of radiation flux at larger solar zenith angles when the roughness of the ocean surface is neglected. - Highlights: • The Eddington approximation method is extended to the atmosphere–ocean system. • The roughness of ocean surface cannot be neglected at lager solar zenith angles. • Unidirectional reflectivity for rough ocean surface is proposed

  18. Calculation of the flux density of gamma rays above the surface of Venus and the Earth

    International Nuclear Information System (INIS)

    Surkov, Yu.A.; Manvelyan, O.S.

    1987-01-01

    In this article the authors present the results of calculating the flux density of unscattered gamma rays as a function of height above the surfaces of Venus and the Earth. At each height they calculate the areas which will collect a certain fraction of the gamma rays. The authors calculate the spectra of scattered gamma rays, as well as their integrated fluxes at various heights above the surface of Venus. They consider how the atmosphere will affect the recording of gamma rays. Their results enable them to evaluate the optimal conditions for measuring the gamma-ray fields above the surfaces of Venus and the Earth and to determine the area of the planet which can be investigated in this way. These results are also necessary if they are to determine the elemental composition of the rock from the characteristic recorded spectrum of gamma radiation

  19. The analysis of RPV fast neutron flux calculation for PWR with three-dimensional SN method

    International Nuclear Information System (INIS)

    Yang Shouhai; Chen Yixue; Wang Weijin; Shi Shengchun; Lu Daogang

    2011-01-01

    Discrete ordinates (S N ) method is one of the most widely used method for reactor pressure vessel (RPV) design. As the fast development of computer CPU speed and memory capacity and consummation of three-dimensional discrete-ordinates method, it is mature for 3-D S N method to be used to engineering design for nuclear facilities. This work was done specifically for PWR model, with the results of 3-D core neutron transport calculation by 3-D core calculation, 3-D RPV fast neutron flux distribution obtain by 3-D S N method were compared with gained by 1-D and 2-D S N method and the 3-D Monte Carlo (MC) method. In this paper, the application of three-dimensional S N method in calculating RPV fast neutron flux distribution for pressurized water reactor (PWR) is presented and discussed. (authors)

  20. Simultaneous global calculation of flux and importance with forward Monte Carlo

    International Nuclear Information System (INIS)

    Deutsch, O.L.; Carter, L.L.

    1977-01-01

    A procedure is described for obtaining flux and importance globally in one Monte Carlo calculation at small to moderate incremental cost in terms of the time required to process a fixed number of particle histories. The application of this procedure and analysis of results are illustrated for a prototypical controlled thermonuclear reactor (CTR) streaming problem with coolant pipe penetrations through a concrete magnet shield. Our experience indicates that the availability of global information about both flux and importance can help to generate intuition in multidimensional shielding problems and can be of significant value during the early phase of shield design

  1. Damage flux analysis. Solid state detector and Monte-Carlo calculation

    International Nuclear Information System (INIS)

    Genthon, J.P.; Nimal, J.C.; Vergnaud, T.

    1975-09-01

    The change of resistivity induced by radiation in materials is particularly suitable for the measurement of equivalent damage fluxes, when it is used at low fluence for calibration of more classical activation reactions used at high fluences. A graphite and a tungsten detector are briefly described and results obtained in a good number of European reactors are given. The polykinetic three dimensional Monte-Carlo code Tripoli is used for calculation of damage fluxes. Comparison with above measurements shows a good agreement and confirms the use of the EURATOM damaging function for graphite [fr

  2. Spatially resolved charge exchange flux calculations on the Toroidal Pumped Limiter of Tore Supra

    International Nuclear Information System (INIS)

    Marandet, Y.; Tsitrone, E.; Boerner, P.; Reiter, D.; Beaute, A.; Delchambre, E.; Escarguel, A.; Brezinsek, S.; Genesio, P.; Gunn, J.; Monier-Garbet, P.; Mitteau, R.; Pegourie, B.

    2009-01-01

    A spatially resolved calculation of the charge exchange particle and energy fluxes on the Toroidal Pumped Limiter (TPL) of Tore Supra is presented, as a first step towards a better understanding and modelling of carbon erosion, migration, as well as deuterium codeposition and bulk diffusion of deuterium in Tore Supra. The results are obtained with the EIRENE code run in a 3D geometry. Physical and chemical erosion maps on the TPL are calculated, and the contribution of neutrals to erosion, especially in the self-shadowed area, is calculated.

  3. Systematic assembly homogenization and local flux reconstruction for nodal method calculations of fast reactor power distributions

    International Nuclear Information System (INIS)

    Dorning, J.J.

    1991-01-01

    A simultaneous pin lattice cell and fuel bundle homogenization theory has been developed for use with nodal diffusion calculations of practical reactors. The theoretical development of the homogenization theory, which is based on multiple-scales asymptotic expansion methods carried out through fourth order in a small parameter, starts from the transport equation and systematically yields: a cell-homogenized bundled diffusion equation with self-consistent expressions for the cell-homogenized cross sections and diffusion tensor elements; and a bundle-homogenized global reactor diffusion equation with self-consistent expressions for the bundle-homogenized cross sections and diffusion tensor elements. The continuity of the angular flux at cell and bundle interfaces also systematically yields jump conditions for the scaler flux or so-called flux discontinuity factors on the cell and bundle interfaces in terms of the two adjacent cell or bundle eigenfunctions. The expressions required for the reconstruction of the angular flux or the 'de-homogenization' theory were obtained as an integral part of the development; hence the leading order transport theory angular flux is easily reconstructed throughout the reactor including the regions in the interior of the fuel bundles or computational nodes and in the interiors of the pin lattice cells. The theoretical development shows that the exact transport theory angular flux is obtained to first order from the whole-reactor nodal diffusion calculations, done using the homogenized nuclear data and discontinuity factors, is a product of three computed quantities: a ''cell shape function''; a ''bundle shape function''; and a ''global shape function''. 10 refs

  4. Effects of tropospheric aerosols on radiative flux calculations at UV and visible wavelengths

    International Nuclear Information System (INIS)

    Grossman, A.S.; Grant, K.E.

    1994-08-01

    The surface fluxes in the wavelength range 175 to 735nm have been calculated for an atmosphere which contains a uniformly mixed aerosol layer of thickness 1km at the earth's surface. Two different aerosol types were considered, a rural aerosol, and an urban aerosol. The visibility range for the aerosol layers was 95 to 15 km. Surface flux ratios (15km/95km) were in agreement with previously published results for the rural aerosol layer to within about 2%. The surface flux ratios vary from 7 to 14% for the rural aerosol layer and from 13 to 23% for the urban aerosol layer over the wavelength range. A tropospheric radiative forcing of about 1.3% of the total tropospheric flux was determined for the 95km to 15km visibility change in the rural aerosol layer, indicating the potential of tropospheric feedback effects on the surface flux changes. This effect was found to be negligible for the urban aerosol layer. Stratospheric layer heating rate changes due to visibility changes in either the rural or urban aerosol layer were found to be negligible

  5. Calculation of neutron and gamma-ray flux-to-dose-rate conversion factors

    International Nuclear Information System (INIS)

    Kwon, S.G.; Lee, S.Y.; Yook, C.C.

    1981-01-01

    This paper presents flux-to-dose-rate conversion factors for neutrons and gamma rays based on the American National Standard Institute (ANSI) N666. These data are used to calculate the dose rate distribution of neutron and gamma ray in radiation fields. Neutron flux-to-dose-rate conversion factors for energies from 2.5 x 10 -8 to 20 MeV are presented; the corresponding energy range for gamma rays is 0.01 to 15 MeV. Flux-to-dose-rate conversion factors were calculated, under the assumption that radiation energy distribution has nonlinearity in the phantom, have different meaning from those values obtained by monoenergetic radiation. Especially, these values were determined with the cross section library. The flux-to-dose-rate conversion factors obtained in this work were in a good agreement to the values presented by ANSI. Those data will be useful for the radiation shielding analysis and the radiation dosimetry in the case of continuous energy distributions. (author)

  6. Optimisation of flux calculation in rivers from discrete water quality surveys, a step towards an expert system

    Science.gov (United States)

    Raymond, S.; Moatar, F.; Meybeck, M.; Bustillo, V.

    2009-04-01

    ) including a quadratic runoff module (Bustillo, 2005), 1 linear interpolation method and 2 discharge-weighted concentration methods ("M18", "M19", Philipps et al, 1999). As expected, based on 55 stations and 430 years, SPM fluxes are the most uncertain ones with maximum biases determined on annual fluxes (monthly sampling simulations). ranging at stations from -75% to +55% by the classical rating-curves approach ("M1", "M2") droping to -60% to +5% for the M18 method. At this frequency, biases are much less for Ptot and PO4-3 (-30% to +10%), nitrate (-5% to +10%) and are negligible for TDS. For higher frequencies, the biases are reduced: for instance for weekly surveys they drop to -25% for SPM and to -20% to 5% for Ptot for the M18 method. The river basin size is influencing the performance of calculations methods: SPM flux errors are much higher for smaller basins (103 to 104 km2) than for larger ones (> 104 km2), probably in relation with the flow duration in 2% of time which is a key control factor of flux duration in 2% of time (Moatar et al, 2006). This indicator based on daily flow (Q) records is generally available at water quality stations. Other indicators based on discrete water quality surveys are being tested to explain the performance of flux methods for each variable: concentrations (C) variability, C vs Q relationship, concentration seasonality. For each variable and each station the optimal flux calculation method will be derived from the future expert system. BUSTILLO V., Biogéochimie et hydroclimatologie appliquées à l'aménagement des bassins fluviaux .PhD Thesis, INP Toulouse,232 p+annexes (2005). FERGUSON R.I., Accuracy and precision of methods for estimating river loads. Earth Surface Processes and Landforms, vol. 12,95-104 (1987). MOATAR F., PERSON G., MEYBECK M., COYNEL A., ETCHEBER H., CROUZET P., The influence of contrasting suspended particulate matter transport regimes on the bias and precision of flux estimates Science of the Total Environment

  7. Maximum skin dose assessment in interventional cardiology: large area detectors and calculation methods

    International Nuclear Information System (INIS)

    Quail, E.; Petersol, A.

    2002-01-01

    Advances in imaging technology have facilitated the development of increasingly complex radiological procedures for interventional radiology. Such interventional procedures can involve significant patient exposure, although often represent alternatives to more hazardous surgery or are the sole method for treatment. Interventional radiology is already an established part of mainstream medicine and is likely to expand further with the continuing development and adoption of new procedures. Between all medical exposures, interventional radiology is first of the list of the more expansive radiological practice in terms of effective dose per examination with a mean value of 20 mSv. Currently interventional radiology contribute 4% to the annual collective dose, in spite of contributing to total annual frequency only 0.3% but considering the perspectives of this method can be expected a large expansion of this value. In IR procedures the potential for deterministic effects on the skin is a risk to be taken into account together with stochastic long term risk. Indeed, the International Commission on Radiological Protection (ICRP) in its publication No 85, affirms that the patient dose of priority concern is the absorbed dose in the area of skin that receives the maximum dose during an interventional procedure. For the mentioned reasons, in IR it is important to give to practitioners information on the dose received by the skin of the patient during the procedure. In this paper maximum local skin dose (MSD) is called the absorbed dose in the area of skin receiving the maximum dose during an interventional procedure

  8. Calculation of self-shielding coefficients, flux depression and cadmium factor for thermal neutron flux measurement of the IPEN/MB-01 reactor

    International Nuclear Information System (INIS)

    Marques, Andre Luis Ferreira; Ting, Daniel Kao Sun; Mendonca, Arlindo Gilson

    1996-01-01

    A calculation methodology of Flux Depression, Self-Shielding and Cadmium Factors is presented, using the ANISN code, for experiments conducted at the IPEN/MB-01 Research Reactor. The correction factors were determined considering thermal neutron flux and 0.125 e 0.250 mm diameter of 197 Au wires. (author)

  9. Atmospheric gamma-ray observation with the BETS detectorfor calibrating atmospheric neutrino flux calculations

    CERN Document Server

    Kasahara, K.; Torii, S.; Tamura, T.; Tateyama, N.; Yoshida, K.; Yamagami, T.; Saito, Y.; Nishimura, J.; Murakami, H.; Kobayashi, T.; Komori, Y.; Honda, M.; Ohuchi, T.; Midorikawa, S.; Yuda, T.

    2002-01-01

    We observed atmospheric gamma-rays around 10 GeV at balloon altitudes (15~25 km) and at a mountain (2770 m a.s.l). The observed results were compared with Monte Carlo calculations to find that an interaction model (Lund Fritiof1.6) used in an old neutrino flux calculation was not good enough for describing the observed values. In stead, we found that two other nuclear interaction models, Lund Fritiof7.02 and dpmjet3.03, gave much better agreement with the observations. Our data will serve for examining nuclear interaction models and for deriving a reliable absolute atmospheric neutrino flux in the GeV region.

  10. Calculation of gamma-ray flux density above the Venus and Earth surfaces

    International Nuclear Information System (INIS)

    Surkov, Yu.A.; Manvelyan, O.S.

    1987-01-01

    Calculational results of dependence of flux density of nonscattered gamma-quanta on the height above the Venus and Earth planet surfaces are presented in the paper. Areas, where a certain part of gamma quanta is accumulated, are calaculted for each height. Spectra of scattered gamma quanta and their integral fluxes at different heights above the Venera planet surface are calculated. Effect of the atmosphere on gamma radiation recorded is considered. The results obtained allow to estimate optimal conditions for measuring gamma-fields above the Venus and Earth planet surfaces, to determine the area of the planet surface investigated. They are also necessary to determine the elementary composition of the rock according to the characteristic gamma radiation spectrum recorded

  11. Measurement and calculation of fast neutron flux in a zero-energy reactor

    International Nuclear Information System (INIS)

    Day, D.H.; Fox, W.N.; Hyder, H.R.

    1963-05-01

    An activation technique for measuring relative fast neutron fluxes is described which has some advantages over the normal method using U238 fission. The technique is based on the formation of Rh 103 after inelastic scattering of neutrons above 100 keV in energy. This isomer decays with a 57.4 minute half-life giving an easily measurable γ-activity. The energy dependence of the inelastic scattering cross-section of Rh 103 is similar to that of the fission cross-section of U 238 thus making the results of direct relevance to reactor calculations. Using the Rh 103 activation technique, measurements have been made of the fast neutron flux distribution in a typical pressure tube heavy water lattice and are compared in this report with theoretical calculations using the MONTE CARLO method. (author)

  12. Experimental study and technique for calculation of critical heat fluxes in helium boiling in tubes

    International Nuclear Information System (INIS)

    Arkhipov, V.V.; Kvasnyuk, S.V.; Deev, V.I.; Andreev, V.K.

    1979-01-01

    Studied is the effect of regime parameters on critical heat loads in helium boiling in a vertical tube in the range of mass rates of 80 2 xc) and pressures of 100<=p<=200 kPa for the vapor content range corresponding to the heat exchange crisis of the first kind. The method for calculating critical heat fluxes describing experimental data with the error less than +-15% is proposed. The critical heat loads in helium boiling in tubes reduce with the growth of pressure and vapor content in the regime parameter ranges under investigation. Both positive and negative effects of the mass rate on the critical heat flux are observed. The calculation method proposed satisfactorily describes the experimental data

  13. Calculation of electromagnetic torque for synchronous motor with modulated magnetic flux and smooth harmonic rotor

    Science.gov (United States)

    Shevchenko, A. F.; Shevchenko, L. G.

    2017-10-01

    Results of the electromagnetic torque calculation for the synchronous motor with modulated magnetic flux and a smooth harmonic rotor are presented in this paper. The value of the torque is determined from the electromagnetic forces, which appear due to interaction of magnetic field in the gap with the rotor surface elements. The obtained analytical expression makes it possible to determine easily the electromagnetic torque for the considered motor in the MathCAD environment.

  14. Identification, Calculation Of The Three Dimensional Orbit, And Flux Of Asteroid 2007 TD14

    Science.gov (United States)

    Pereira, Vincent; Martin, E.; Millan, J.

    2012-01-01

    In recent years the rate of discovery of asteroids has improved dramatically and has far outstripped efforts to physically characterize them. In this work, we took part in the International Astronomical Search Campaign and confirmed the discovery of asteroid 2007 TD14. We then calculated the two and three dimensional orbit of the asteroid around the sun, given its six elements of orbit. Once the heliocentric and geocentric distances are known, and the visual magnitude of the asteroid obtained through photometry, its diameter can be calculated assuming a suitable value for the albedo. The diameter was 0.718 km and the albedo was 0.039. Using the Standard Thermal Model we calculated the temperature distribution on the surface of the asteroid and the flux of the asteroid in the thermal infrared (1.095 mJy at 22 microns on March 19, 2010). To the best of our knowledge there have been no previous reports of the diameter and flux of the asteroid. Our ultimate goal is to compare our flux values with newly released data from NASA Wide-field Infrared Survey Explorer Mission and thus obtain better estimates of the asteroid diameter and albedo.

  15. Improved collision probability method for thermal-neutron-flux calculation in a cylindrical reactor cell

    International Nuclear Information System (INIS)

    Bosevski, T.

    1986-01-01

    An improved collision probability method for thermal-neutron-flux calculation in a cylindrical reactor cell has been developed. Expanding the neutron flux and source into a series of even powers of the radius, one' gets a convenient method for integration of the one-energy group integral transport equation. It is shown that it is possible to perform an analytical integration in the x-y plane in one variable and to use the effective Gaussian integration over another one. Choosing a convenient distribution of space points in fuel and moderator the transport matrix calculation and cell reaction rate integration were condensed. On the basis of the proposed method, the computer program DISKRET for the ZUSE-Z 23 K computer has been written. The suitability of the proposed method for the calculation of the thermal-neutron-flux distribution in a reactor cell can be seen from the test results obtained. Compared with the other collision probability methods, the proposed treatment excels with a mathematical simplicity and a faster convergence. (author)

  16. Calculating the Prior Probability Distribution for a Causal Network Using Maximum Entropy: Alternative Approaches

    Directory of Open Access Journals (Sweden)

    Michael J. Markham

    2011-07-01

    Full Text Available Some problems occurring in Expert Systems can be resolved by employing a causal (Bayesian network and methodologies exist for this purpose. These require data in a specific form and make assumptions about the independence relationships involved. Methodologies using Maximum Entropy (ME are free from these conditions and have the potential to be used in a wider context including systems consisting of given sets of linear and independence constraints, subject to consistency and convergence. ME can also be used to validate results from the causal network methodologies. Three ME methods for determining the prior probability distribution of causal network systems are considered. The first method is Sequential Maximum Entropy in which the computation of a progression of local distributions leads to the over-all distribution. This is followed by development of the Method of Tribus. The development takes the form of an algorithm that includes the handling of explicit independence constraints. These fall into two groups those relating parents of vertices, and those deduced from triangulation of the remaining graph. The third method involves a variation in the part of that algorithm which handles independence constraints. Evidence is presented that this adaptation only requires the linear constraints and the parental independence constraints to emulate the second method in a substantial class of examples.

  17. Improvement of the neutron flux calculations in thick shield by conditional Monte Carlo and deterministic methods

    International Nuclear Information System (INIS)

    Ghassoun, Jillali; Jehoauni, Abdellatif

    2000-01-01

    In practice, the estimation of the flux obtained by Fredholm integral equation needs a truncation of the Neuman series. The order N of the truncation must be large in order to get a good estimation. But a large N induces a very large computation time. So the conditional Monte Carlo method is used to reduce time without affecting the estimation quality. In a previous works, in order to have rapid convergence of calculations it was considered only weakly diffusing media so that has permitted to truncate the Neuman series after an order of 20 terms. But in the most practical shields, such as water, graphite and beryllium the scattering probability is high and if we truncate the series at 20 terms we get bad estimation of flux, so it becomes useful to use high orders in order to have good estimation. We suggest two simple techniques based on the conditional Monte Carlo. We have proposed a simple density of sampling the steps for the random walk. Also a modified stretching factor density depending on a biasing parameter which affects the sample vector by stretching or shrinking the original random walk in order to have a chain that ends at a given point of interest. Also we obtained a simple empirical formula which gives the neutron flux for a medium characterized by only their scattering probabilities. The results are compared to the exact analytic solution, we have got a good agreement of results with a good acceleration of convergence calculations. (author)

  18. A guide for the calculation of the maximum permissible costs for shelters

    International Nuclear Information System (INIS)

    Schwarzlose, H.

    1981-01-01

    Among other things, this paper has the aim to define the scope which is reasonable for shelter costs as well as to inform about their real amount. Various assumptions have been made and examples have been given which seldom coincide with the specific facts. Thus, the possibility of how to find solutions which are precisely appropriate for persons is shown in a formula. The less the income, life expectancy and the number of persons to be considered the less are the maximum permissible costs for shelters. Under certain conditions the permissible costs are lower than the real costs. Thus, taking those assumptions into account, the shelter is not profitable any more. This case, for example, really applies to a couple, 57 years old, without children, with an income of 40,000 DM/year who intend to build an interior shelter. For a family with children who are under age, however, it is always profitable to build an interior basic shelter. (orig.) [de

  19. REMTWO - WRS system module number 299 for calculating the removal flux in a slab shield

    International Nuclear Information System (INIS)

    Grimstone, M.J.

    1978-06-01

    The WRS Modular Programming System has been developed as a means by which programmes may be more efficiently constructed, maintained and modified. In this system a module is a self-contained unit typically composed of one or more Fortran routines, and a programme is constructed from a number of such modules. This report describes one WRS module, the function of which is to calculate the uncollided flux due to a distributed source in a one-dimensional plane geometry system. A method is used in which the flux is approximated by the sum of diffusion equation solutions. The information given in this manual is of use both to the programmer wishing to incorporate the module in a programme, and to the user of such a programme. (author)

  20. Neutron flux calculations for the Rossendorf research reactor in (hex)- and (hex,z)-geometry using SNAP-3D

    International Nuclear Information System (INIS)

    Koch, R.; Findeisen, A.

    1986-04-01

    The multigroup neutron diffusion theory code SNAP-3D has been used to perform time independent neutron flux and power calculations of the 10 MW Rossendorf research reactor of the type WWR-SM. The report describes these calculations, as well as the actual reactor configuration, some details of the code SNAP-3D, and two- and three-dimensional reactor models. For evaluating the calculations some flux values and control rod worths have been compared with those of measurements. (author)

  1. LOW-METALLICITY PROTOSTARS AND THE MAXIMUM STELLAR MASS RESULTING FROM RADIATIVE FEEDBACK: SPHERICALLY SYMMETRIC CALCULATIONS

    International Nuclear Information System (INIS)

    Hosokawa, Takashi; Omukai, Kazuyuki

    2009-01-01

    The final mass of a newborn star is set at the epoch when the mass accretion onto the star is terminated. We study the evolution of accreting protostars and the limits of accretion in low-metallicity environments under spherical symmetry. Accretion rates onto protostars are estimated via the temperature evolution of prestellar cores with different metallicities. The derived rates increase with decreasing metallicity, from M-dot≅10 -6 M odot yr -1 at Z = Z sun to 10 -3 M sun yr -1 at Z = 0. With the derived accretion rates, the protostellar evolution is numerically calculated. We find that, at lower metallicity, the protostar has a larger radius and reaches the zero-age main sequence (ZAMS) at higher stellar mass. Using this protostellar evolution, we evaluate the upper stellar mass limit where the mass accretion is hindered by radiative feedback. We consider the effects of radiation pressure exerted on the accreting envelope, and expansion of an H II region. The mass accretion is finally terminated by radiation pressure on dust grains in the envelope for Z ∼> 10 -3 Z sun and by the expanding H II region for lower metallicity. The mass limit from these effects increases with decreasing metallicity from M * ≅ 10 M sun at Z = Z sun to ≅300 M sun at Z = 10 -6 Z sun . The termination of accretion occurs after the central star arrives at the ZAMS at all metallicities, which allows us to neglect protostellar evolution effects in discussing the upper mass limit by stellar feedback. The fragmentation induced by line cooling in low-metallicity clouds yields prestellar cores with masses large enough that the final stellar mass is set by the feedback effects. Although relaxing the assumption of spherical symmetry will alter feedback effects, our results will be a benchmark for more realistic evolution to be explored in future studies.

  2. An Analysis on the Calculation Efficiency of the Responses Caused by the Biased Adjoint Fluxes in Hybrid Monte Carlo Simulation

    International Nuclear Information System (INIS)

    Khuat, Quang Huy; Kim, Song Hyun; Kim, Do Hyun; Shin, Chang Ho

    2015-01-01

    This technique is known as Consistent Adjoint Driven Importance Sampling (CADIS) method and it is implemented in SCALE code system. In the CADIS method, adjoint transport equation has to be solved to determine deterministic importance functions. Using the CADIS method, a problem was noted that the biased adjoint flux estimated by deterministic methods can affect the calculation efficiency and error. The biases of adjoint function are caused by the methodology, calculation strategy, tolerance of result calculated by the deterministic method and inaccurate multi-group cross section libraries. In this paper, a study to analyze the influence of the biased adjoint functions into Monte Carlo computational efficiency is pursued. In this study, a method to estimate the calculation efficiency was proposed for applying the biased adjoint fluxes in the CADIS approach. For a benchmark problem, the responses and FOMs using SCALE code system were evaluated as applying the adjoint fluxes. The results show that the biased adjoint fluxes significantly affects the calculation efficiencies

  3. Comparisons of Measured and Calculated Neutron Fluxes in Laminated iron and Heavy Water

    Energy Technology Data Exchange (ETDEWEB)

    Aalto, E

    1964-10-15

    Measurements of neutron fluxes have been performed in configurations depicting the regions extending radially and axially outwards from the core of a PHWR reactor in order to test the accuracy of the available methods in shield design on thin alternating laminae of Fe and D{sub 2}O. A 'dry' experimental set-up was constructed, i.e. the D{sub 2}O was contained in flat tanks made of Al. The first set of measurements was performed through solid Fe and D{sub 2}O layers, and only the results of these experiments are described in this report. The set-up allowed measurements also in a mock-up of a reactor top penetrated by D{sub 2}O or air-filled channels (to be reported later). The results are compared to fluxes calculated by the British 18-group removal-diffusion method and by the NRN method developed at AE. The results show that the values predicted may be expected to be within a factor of 2 from the true values in most cases. The predicted relative flux distributions follow the observed ones with a very good accuracy in spite of the apparent misuse of diffusion theory for the thin regions in question. Finally, it is shown that the predicted change in the fast spectrum while penetrating these set-ups should be confirmable with certain threshold detectors.

  4. A method for prompt calculation of neutron flux from measured SPND [self-powered neutron detectors] currents

    International Nuclear Information System (INIS)

    Kulacsy, K.; Lux, I.

    1997-01-01

    A new, approximate method is given to calculate the in-core flux from the current of SPNDs, with a delay of only a few seconds. The stability of this stepwise algorithm is proven to be satisfactory, and the results of tests performed both on synthetic and on real data are presented. The reconstructed flux is found to follow both steady state and transient fluxes well. (author)

  5. Experimentally guided Monte Carlo calculations of the atmospheric muon flux for interdisciplinary applications

    International Nuclear Information System (INIS)

    Mitrica, B.; Brancus, I.M.; Toma, G.; Bercuci, A.; Aiftimiei, C.; Wentz, J.; Rebel, H.

    2004-01-01

    Atmospheric muons are produced in the interactions of primary cosmic rays particle with Earth's atmosphere, mainly by the decay of pions and kaons generated in hadronic interactions. They decay further in electrons and positrons and electron and muon neutrinos. Being the penetrating cosmic rays component, the muons manage to pass entirely through the atmosphere and can pass even larger absorbers before they interact with the material at the Earth's surface, and due to cosmogenic production of isotopes by atmospheric muons, information of astrophysical, environmental and material research interest can be obtained. Up to now, mainly semi-analytical approximations have been used to calculate the muon flux for estimating the cosmogenic isotope production, necessary for different applications. Our estimation of the atmospheric muon flux is based on a Monte-Carlo simulation program CORSIKA, in which we simulate the development in the atmosphere of the extensive air showers, using different models for the description of the hadronic interaction. Atmospheric muons are produced in the interactions of primary cosmic rays particle with Earth's atmosphere, mainly by the decay of pions and kaons generated in hadronic interactions. They decay further in electrons and positrons and electron and muon neutrinos. Being the penetrating cosmic rays component, the muons manage to pass entirely through the atmosphere and can pass even larger absorbers before they interact with the material at the Earth's surface, and due to cosmogenic production of isotopes by atmospheric muons, information of astrophysical, environmental and material research interest can be obtained. Up to now, mainly semi-analytical approximations have been used to calculate the muon flux for estimating the cosmogenic isotope production, necessary for different applications. Our estimation of the atmospheric muon flux is based on a Monte-Carlo simulation program CORSIKA, in which we simulates the development in the

  6. Calculations of Neutron Flux Distributions by Means of Integral Transport Methods

    Energy Technology Data Exchange (ETDEWEB)

    Carlvik, I

    1967-05-15

    Flux distributions have been calculated mainly in one energy group, for a number of systems representing geometries interesting for reactor calculations. Integral transport methods of two kinds were utilised, collision probabilities (CP) and the discrete method (DIT). The geometries considered comprise the three one-dimensional geometries, planes, sphericals and annular, and further a square cell with a circular fuel rod and a rod cluster cell with a circular outer boundary. For the annular cells both methods (CP and DIT) were used and the results were compared. The purpose of the work is twofold, firstly to demonstrate the versatility and efficacy of integral transport methods and secondly to serve as a guide for anybody who wants to use the methods.

  7. VIRGIN2007, Calculates Un-collided Neutron Flux and Neutron Reactions from Transmission in ENDF Format

    International Nuclear Information System (INIS)

    2007-01-01

    1 - Description of program or function: VIRGIN calculates un-collided flux and reactions due to transmission of a mono-directional beam of neutrons through any thickness of material. In order to simulate an experimental measurement the results are given as integrals over energy tally groups (as opposed to point-wise in energy). IAEA0932/10: This version include the updates up to January 30, 2007. Changes in ENDF/B-VII Format and procedures, as well as the evaluations themselves, make it impossible for versions of the ENDF/B pre-processing codes earlier than PREPRO 2007 (2007 Version) to accurately process current ENDF/B-VII evaluations. The present code can handle all existing ENDF/B-VI evaluations through release 8, which will be the last release of ENDF/B-VI. Modifications from previous versions: Virgin VERS. 2007-1 (Jan. 2007): checked against all ENDF/B-VII; increased in-core page size from 60,000 to 240,000. 2 - Method of solution: By taking the ratio of reactions to flux in each group an equivalent spatially dependent group averaged cross section is calculated. 3 - Restrictions on the complexity of the problem: The evaluated data must be in the ENDF/B format. However it must be linear-linear interpolable in energy-cross section between tabulated points. Since only cross sections (file 3) are used, this program will work on any version of ENDF/B

  8. Effect of chamber enclosure time on soil respiration flux: A comparison of linear and non-linear flux calculation methods

    DEFF Research Database (Denmark)

    Kandel, Tanka P; Lærke, Poul Erik; Elsgaard, Lars

    2016-01-01

    One of the shortcomings of closed chamber methods for soil respiration (SR) measurements is the decreased CO2 diffusion rate from soil to chamber headspace that may occur due to increased chamber CO2 concentrations. This feedback on diffusion rate may lead to underestimation of pre-deployment flu......One of the shortcomings of closed chamber methods for soil respiration (SR) measurements is the decreased CO2 diffusion rate from soil to chamber headspace that may occur due to increased chamber CO2 concentrations. This feedback on diffusion rate may lead to underestimation of pre...... was placed on fixed collars, and CO2 concentration in the chamber headspace were recorded at 1-s intervals for 45 min. Fluxes were measured in different soil types (sandy, sandy loam and organic soils), and for various manipulations (tillage, rain and drought) and soil conditions (temperature and moisture......) to obtain a range of fluxes with different shapes of flux curves. The linear method provided more stable flux results during short enclosure times (few min) but underestimated initial fluxes by 15–300% after 45 min deployment time. Non-linear models reduced the underestimation as average underestimation...

  9. Method of Relative Magnitudes for Calculating Magnetic Fluxes in Electrical Machine

    Directory of Open Access Journals (Sweden)

    Oleg A.

    2018-03-01

    Full Text Available Introduction: The article presents the study results of the model of an asynchronous electric motor carried out by the author within the framework of the Priorities Research Program “Research and development in the priority areas of development of Russia’s scientific and technical complex for 2014–2020”. Materials and Methods: A model of an idealized asynchronous machine (with sinusoidal distribution of magnetic induction in air gap is used in vector control systems. It is impossible to create windings for this machine. The basis of the new calculation approach was the Conductivity of Teeth Contours Method, developed at the Electrical Machines Chair of the Moscow Power Engineering Institute (MPEI. Unlike this method, the author used not absolute values, but relative magnitudes of magnetic fluxes. This solution fundamentally improved the method’s capabilities. The relative magnitudes of the magnetic fluxes of the teeth contours do not required the additional consideration for exact structure of magnetic field of tooth and adjacent slots. These structures are identical for all the teeth of the machine and differ only in magnitude. The purpose of the calculations was not traditional harmonic analysis of magnetic induction distribution in air gap of machine, but a refinement of the equations of electric machine model. The vector control researchers used only the cos(θ function as a value of mutual magnetic coupling coefficient between the windings. Results: The author has developed a way to take into account the design of the windings of a real machine by using imaginary measuring winding with the same winding design as a real phase winding. The imaginary winding can be placed in the position of any machine windings. The calculation of the relative magnetic fluxes of this winding helped to estimate the real values of the magnetic coupling coefficients between the windings, and find the correction functions for the model of an idealized

  10. Deterministic calculation of the effective delayed neutron fraction without using the adjoint neutron flux - 299

    International Nuclear Information System (INIS)

    Talamo, A.; Gohar, Y.; Aliberti, G.; Zhong, Z.; Bournos, V.; Fokov, Y.; Kiyavitskaya, H.; Routkovskaya, C.; Serafimovich, I.

    2010-01-01

    In 1997, Bretscher calculated the effective delayed neutron fraction by the k-ratio method. The Bretscher's approach is based on calculating the multiplication factor of a nuclear reactor core with and without the contribution of delayed neutrons. The multiplication factor set by the delayed neutrons (the delayed multiplication factor) is obtained as the difference between the total and the prompt multiplication factors. Bretscher evaluated the effective delayed neutron fraction as the ratio between the delayed and total multiplication factors (therefore the method is often referred to as k-ratio method). In the present work, the k-ratio method is applied by deterministic nuclear codes. The ENDF/B nuclear data library of the fuel isotopes ( 238 U and 238 U) have been processed by the NJOY code with and without the delayed neutron data to prepare multigroup WIMSD nuclear data libraries for the DRAGON code. The DRAGON code has been used for preparing the PARTISN macroscopic cross sections. This calculation methodology has been applied to the YALINA-Thermal assembly of Belarus. The assembly has been modeled and analyzed using PARTISN code with 69 energy groups and 60 different material zones. The deterministic and Monte Carlo results for the effective delayed neutron fraction obtained by the k-ratio method agree very well. The results also agree with the values obtained by using the adjoint flux. (authors)

  11. SYN3D: a single-channel, spatial flux synthesis code for diffusion theory calculations

    Energy Technology Data Exchange (ETDEWEB)

    Adams, C. H.

    1976-07-01

    This report is a user's manual for SYN3D, a computer code which uses single-channel, spatial flux synthesis to calculate approximate solutions to two- and three-dimensional, finite-difference, multigroup neutron diffusion theory equations. SYN3D is designed to run in conjunction with any one of several one- and two-dimensional, finite-difference codes (required to generate the synthesis expansion functions) currently being used in the fast reactor community. The report describes the theory and equations, the use of the code, and the implementation on the IBM 370/195 and CDC 7600 of the version of SYN3D available through the Argonne Code Center.

  12. Measurements and calculations of neutron fluxes through a simulation of the CRBR upper axial shielding

    International Nuclear Information System (INIS)

    Maerker, R.E.; Muckenthaler, F.J.

    1976-01-01

    Measurements, using a 4-in. Bonner Ball, have been made of the neutron fluxes penetrating a simulation of CRBR upper axial biological shielding at the Tower Shielding Facility. The simulation consisted of a 45.7 cm thick slab of SS-304 followed by a series of sodium tanks having a total thickness of 457 cm followed by slabs of carbon steel up to 61.0 cm thick. Measurements were made behind the stainless steel, behind intermediate thicknesses of 152 cm, 305 cm, and 457 cm of sodium (with the stainless steel in place), and behind various thicknesses of the carbon steel following both 305 cm and 457 cm of sodium (also with the stainless steel in place). Calculated and measured data are presented and compared

  13. Neutron flux calculations for criticality safety analysis using the narrow resonance approximations. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Hathout, A M [National Center for Nuclear Safety and Radiation Control, NC-NSRC, Atomic Energy Authority, Cairo (Egypt)

    1996-03-01

    The narrow resonance approximation is applicable for all low-energy resonances and the heaviest nuclides. It is of great importance in neutron calculations, hence, fertile isotopes do not undergo fission at resonance energies. The effect of overestimating the self shielded group averaged cross-section data for a given resonance nuclide can be fairly serious. In the present work, a detailed study, and derivation of the problem of self-shielding are carried-out through the information of Hansen-roach library which is used for criticality safety analysis. The intermediate neutron flux spectrum is analyzed, using the narrow resonance approximation. The resonance self-shielded values of various cross-sections are determined. 4 figs., 3 tabs.

  14. SYN3D: a single-channel, spatial flux synthesis code for diffusion theory calculations

    International Nuclear Information System (INIS)

    Adams, C.H.

    1976-07-01

    This report is a user's manual for SYN3D, a computer code which uses single-channel, spatial flux synthesis to calculate approximate solutions to two- and three-dimensional, finite-difference, multigroup neutron diffusion theory equations. SYN3D is designed to run in conjunction with any one of several one- and two-dimensional, finite-difference codes (required to generate the synthesis expansion functions) currently being used in the fast reactor community. The report describes the theory and equations, the use of the code, and the implementation on the IBM 370/195 and CDC 7600 of the version of SYN3D available through the Argonne Code Center

  15. A sensitivity study on neutron flux variation due to 10B concentration in dose calculation for BNCT

    International Nuclear Information System (INIS)

    Jung, Sang Hoon

    2006-02-01

    The effects of inclusion of 10 B concentration on neutron flux and dose in dose calculation were studied. In order to provide the quantitative effects of inclusion of 10 B concentrations on depressions of neutron and photon flux and dose, the fluxes and doses with voxel head phantoms for various 10 B concentrations homogeneously distributed were calculated by using MCNPX simulations. A lithium target system and beam shaping assembly, which have been developed at the Hanyang University, were used as epithermal neutron beam. The calculation results show that the neutron flux at the center of the head phantom decreases by approximately 5.4% per 10 ppm of 10 B concentration in comparison with the neutron flux in the case of boron-free. It was also observed that the tissue dose at the center of the head phantom is depressed by approximately 4.7% per 10 ppm of the 10 B concentration and the tumor dose by approximately 5.3% per 10 ppm. According to depth of tumors, it was observed that the depressions of the doses in the tumors are ranged in 3.7 ∼ 9.2%. The dose calculations in the case of boron-free show that it is overestimated in comparison with the dose calculations in the cases of the inclusion of 10 B concentrations for the normal tissue and the tumors. Therefore, in dose calculation for BNCT, the depressions of neutron flux and dose should be considered. The results in this study are available to setting up the depression ratios which can be used for converting neutron and gamma fluxes and doses in phantom with boron free into the fluxes and doses in phantom with inclusion of 10 B concentrations in treatment. It is expected that the depression ratios is practicable to dose evaluation for BNCT

  16. Pollutant transport over complex terrain: Flux and budget calculations for the pollumet field campaign

    Science.gov (United States)

    Lehning, Michael; Richner, Hans; Kok, Gregory L.

    Especially over complex terrain, transport processes dominate the local pollutant concentrations observed. The data gathered during the POLLUMET measuring campaign in 1993 allow a quantitative analysis of the pollutant fluxes and the pollutant budgets. The data include airborne measurements by NCAR's King Air, radio soundings, radar wind profiles, and data from meteorological ground stations. The regions of interest were the rather densely populated Swiss Plateau, which is embedded between the Alps and the Jura Mountains, and a box south of the Alps covering the south Ticino region and parts of northern Italy. An interpolation scheme was developed to reconstruct the wind field from all available measurements. From the wind field and the reconstruction of the concentration field the fluxes into and out of a box with fixed boundaries are calculated. The pollutant budgets are obtained from the sum of the fluxes and considering a mean vertical velocity. To assess the uncertainties introduced through the interpolation of the measurements, an extensive sensitivity analysis is included. The Swiss Plateau exports ozone and nitrogen oxides. The export rates can be interpreted as an ozone accumulation or fraction of 'homemade pollution' between 3 and 10% and require a net production rate of 1-2 ppb h -1. Accumulation of nitrogen oxides amounts to 20-60%. The box south of the Alps imports polluted air from northern Italy. Thus, oxidized nitrogen is not exported but a net production of ozone still occurs at a rate of 1-2 ppb h -1. The interpolated flow and concentration fields are decomposed into the mean over a box-boundary and the deviation from that mean. This allows isolation of the contribution of local circulations and large-scale turbulence to the total flux. It is shown how the local thermotopographic circulations increasingly dominate the transport as typical Alpine topography is approached. Even over the Swiss Plateau, approximately 20 km away from Alpine topography

  17. A simple calculation algorithm to separate high-resolution CH4 flux measurements into ebullition and diffusion-derived components

    Science.gov (United States)

    Hoffmann, Mathias; Schulz-Hanke, Maximilian; Garcia Alba, Joana; Jurisch, Nicole; Hagemann, Ulrike; Sachs, Torsten; Sommer, Michael; Augustin, Jürgen

    2016-04-01

    Processes driving methane (CH4) emissions in wetland ecosystems are highly complex. Especially, the separation of CH4 emissions into ebullition and diffusion derived flux components, a perquisite for the mechanistic process understanding and identification of potential environmental driver is rather challenging. We present a simple calculation algorithm, based on an adaptive R-script, which separates open-water, closed chamber CH4 flux measurements into diffusion- and ebullition-derived components. Hence, flux component specific dynamics are revealed and potential environmental driver identified. Flux separation is based on a statistical approach, using ebullition related sudden concentration changes obtained during high resolution CH4 concentration measurements. By applying the lower and upper quartile ± the interquartile range (IQR) as a variable threshold, diffusion dominated periods of the flux measurement are filtered. Subsequently, flux calculation and separation is performed. The algorithm was verified in a laboratory experiment and tested under field conditions, using flux measurement data (July to September 2013) from a flooded, former fen grassland site. Erratic ebullition events contributed 46% to total CH4 emissions, which is comparable to values reported by literature. Additionally, a shift in the diurnal trend of diffusive fluxes throughout the measurement period, driven by the water temperature gradient, was revealed.

  18. Appropriateness of dynamical systems for the comparison of different embedding methods via calculation of the maximum Lyapunov exponent

    International Nuclear Information System (INIS)

    Franchi, M; Ricci, L

    2014-01-01

    The embedding of time series provides a valuable, and sometimes indispensable, tool in order to analyze the dynamical properties of a chaotic system. To this purpose, the choice of the embedding dimension and lag is decisive. The scientific literature describes several methods for selecting the most appropriate parameter pairs. Unfortunately, no conclusive criterion to decide which method – and thus which embedding pair – is the best has been so far devised. A widely employed quantity to compare different methods is the maximum Lyapunov exponent (MLE) because, for chaotic systems that have explicit analytic representations, MLE can be numerically evaluated independently of the embedding dimension and lag. Within this framework, we investigated the dependence on the calculated MLE on the embedding dimension and lag in the case of three dynamical systems that are also widespreadly used as reference systems, namely the Lorenz, Rössler and Mackey-Glass attractors. By also taking into account the statistical fluctuations of the calculated MLE, we propose a new method to assess which systems provide suitable test benches for the comparison of different embedding methods via MLE calculation. For example we found that, despite of its popularity in this scientific context, the Rössler attractor is not a reliable workbench to test the validity of an embedding method

  19. Neutron-gamma flux and dose calculations in a Pressurized Water Reactor (PWR)

    Science.gov (United States)

    Brovchenko, Mariya; Dechenaux, Benjamin; Burn, Kenneth W.; Console Camprini, Patrizio; Duhamel, Isabelle; Peron, Arthur

    2017-09-01

    The present work deals with Monte Carlo simulations, aiming to determine the neutron and gamma responses outside the vessel and in the basemat of a Pressurized Water Reactor (PWR). The model is based on the Tihange-I Belgian nuclear reactor. With a large set of information and measurements available, this reactor has the advantage to be easily modelled and allows validation based on the experimental measurements. Power distribution calculations were therefore performed with the MCNP code at IRSN and compared to the available in-core measurements. Results showed a good agreement between calculated and measured values over the whole core. In this paper, the methods and hypotheses used for the particle transport simulation from the fission distribution in the core to the detectors outside the vessel of the reactor are also summarized. The results of the simulations are presented including the neutron and gamma doses and flux energy spectra. MCNP6 computational results comparing JEFF3.1 and ENDF-B/VII.1 nuclear data evaluations and sensitivity of the results to some model parameters are presented.

  20. Neutron-gamma flux and dose calculations in a Pressurized Water Reactor (PWR

    Directory of Open Access Journals (Sweden)

    Brovchenko Mariya

    2017-01-01

    Full Text Available The present work deals with Monte Carlo simulations, aiming to determine the neutron and gamma responses outside the vessel and in the basemat of a Pressurized Water Reactor (PWR. The model is based on the Tihange-I Belgian nuclear reactor. With a large set of information and measurements available, this reactor has the advantage to be easily modelled and allows validation based on the experimental measurements. Power distribution calculations were therefore performed with the MCNP code at IRSN and compared to the available in-core measurements. Results showed a good agreement between calculated and measured values over the whole core. In this paper, the methods and hypotheses used for the particle transport simulation from the fission distribution in the core to the detectors outside the vessel of the reactor are also summarized. The results of the simulations are presented including the neutron and gamma doses and flux energy spectra. MCNP6 computational results comparing JEFF3.1 and ENDF-B/VII.1 nuclear data evaluations and sensitivity of the results to some model parameters are presented.

  1. Flux

    DEFF Research Database (Denmark)

    Ravn, Ib

    . FLUX betegner en flyden eller strømmen, dvs. dynamik. Forstår man livet som proces og udvikling i stedet for som ting og mekanik, får man et andet billede af det gode liv end det, som den velkendte vestlige mekanicisme lægger op til. Dynamisk forstået indebærer det gode liv den bedst mulige...... kanalisering af den flux eller energi, der strømmer igennem os og giver sig til kende i vore daglige aktiviteter. Skal vores tanker, handlinger, arbejde, samvær og politiske liv organiseres efter stramme og faste regelsæt, uden slinger i valsen? Eller skal de tværtimod forløbe ganske uhindret af regler og bånd...

  2. Proton Fluxes Measured by the PAMELA Experiment from the Minimum to the Maximum Solar Activity for Solar Cycle 24

    Science.gov (United States)

    Martucci, M.; Munini, R.; Boezio, M.; Di Felice, V.; Adriani, O.; Barbarino, G. C.; Bazilevskaya, G. A.; Bellotti, R.; Bongi, M.; Bonvicini, V.; Bottai, S.; Bruno, A.; Cafagna, F.; Campana, D.; Carlson, P.; Casolino, M.; Castellini, G.; De Santis, C.; Galper, A. M.; Karelin, A. V.; Koldashov, S. V.; Koldobskiy, S.; Krutkov, S. Y.; Kvashnin, A. N.; Leonov, A.; Malakhov, V.; Marcelli, L.; Marcelli, N.; Mayorov, A. G.; Menn, W.; Mergè, M.; Mikhailov, V. V.; Mocchiutti, E.; Monaco, A.; Mori, N.; Osteria, G.; Panico, B.; Papini, P.; Pearce, M.; Picozza, P.; Ricci, M.; Ricciarini, S. B.; Simon, M.; Sparvoli, R.; Spillantini, P.; Stozhkov, Y. I.; Vacchi, A.; Vannuccini, E.; Vasilyev, G.; Voronov, S. A.; Yurkin, Y. T.; Zampa, G.; Zampa, N.; Potgieter, M. S.; Raath, J. L.

    2018-02-01

    Precise measurements of the time-dependent intensity of the low-energy (solar activity periods, i.e., from minimum to maximum, are needed to achieve comprehensive understanding of such physical phenomena. The minimum phase between solar cycles 23 and 24 was peculiarly long, extending up to the beginning of 2010 and followed by the maximum phase, reached during early 2014. In this Letter, we present proton differential spectra measured from 2010 January to 2014 February by the PAMELA experiment. For the first time the GCR proton intensity was studied over a wide energy range (0.08–50 GeV) by a single apparatus from a minimum to a maximum period of solar activity. The large statistics allowed the time variation to be investigated on a nearly monthly basis. Data were compared and interpreted in the context of a state-of-the-art three-dimensional model describing the GCRs propagation through the heliosphere.

  3. Three-dimensional calculations of neutron streaming in the beam tubes of the ORNL HFIR [High Flux Isotope Reactor] Reactor

    International Nuclear Information System (INIS)

    Childs, R.L.; Rhoades, W.A.; Williams, L.R.

    1988-01-01

    The streaming of neutrons through the beam tubes in High Flux Isotope Reactor at Oak Ridge National Laboratory has resulted in a reduction of the fracture toughness of the reactor vessel. As a result, an evaluation of vessel integrity was undertaken in order to determine if the reactor can be operated again. As a part of this evaluation, three-dimensional neutron transport calculations were performed to obtain fluxes at points of interest in the wall of the vessel. By comparing the calculated and measured activation of dosimetry specimens from the vessel surveillance program, it was determined that the calculated flux shape was satisfactory to transpose the surveillance data to the locations in the vessel. A bias factor was applied to correct for the average C/E ratio of 0.69. 8 refs., 7 figs., 3 tabs

  4. Analysis of calculated neutron flux response at detectors of G.A. Siwabessy multipurpose reactor (RSG-GAS Reactor)

    International Nuclear Information System (INIS)

    Taryo, Taswanda

    2002-01-01

    Multi Purpose Reactor G.A. Siwabessy (RSG-GAS) reactor core possesses 4 fission-chamber detectors to measure intermediate power level of RSG-GAS reactor. Another detector, also fission-chamber detector, is intended to measure power level of RSG-GAS reactor. To investigate influence of space to the neutron flux values for each detector measuring intermediate and power levels has been carried out. The calculation was carried out using combination of WIMS/D4 and CITATION-3D code and focused on calculation of neutron flux at different detector location of RSG-GAS typical working core various scenarios. For different scenarios, all calculation results showed that each detector, located at different location in the RSG-GAS reactor core, causes different neutron flux occurred in the reactor core due to spatial time effect

  5. Calculation of the thermal neutron flux depression in the loop VISA-1; Izracunavanje depresije fluksa termalnih neutrona u 'petlji' VISA-1

    Energy Technology Data Exchange (ETDEWEB)

    Martinc, R [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1961-12-15

    Among other applications, the VISA-1 loop is to be used for thermal load testing of materials. For this type of testing one should know the maximum power generated in the loop. This power is determined from the maximum thermal neutron flux in the VK-5 channel and mean flux depression in the fissile component of the loop. Thermal neutron flux depression is caused by neutron absorption in the components of the loop, shape of the components and neutron leaking through gaps as well as properties of the surrounding medium of the core. All these parameters were taken into account for calculating the depression of thermal neutron flux in the VISA-1 loop. Two group diffusion theory was used. Fast neutron from the fission in the loop and slowed down were taken into account. Depression of the thermal neutron flux is expressed by depression factor which represents the ratio of the mean thermal neutron flux in the fissile loop component and the thermal neutron flux in the VK-5 without the loop. Calculation error was estimated and it was recommended to determine the depression factor experimentally as well. [Serbo-Croat] Petlja VISA-1 namenjena je izmedju ostalog ispitivanju materiajala na termicka naprezanja. Za ova ispitivanja potrebno je poznavati maksimalnu snagu koja se razvija u petlji, a ona se odredjuje na osnovu maksimalnog fluksa termalnih neutrona u kanalu VK-5 i srednje depresije fluksa u fisibilnoj komponenti petlje. Depresija fluksa termalnih neutrona uzrokovana je apsorpcijom neutrona u komponentama petlje, geometrijom komponeni i isticanjem neutrona preko supljina u petlji kao i osobinama reaktorske sredine koja okruzuje petlju. Svi ovi faktori uzeti su u obzir pri proracunu depresije fluksa termalnih neutrona u petlji VISA-1. Primenjena je difuziona dvo grupna teorija. Uzeti su u obzir brzi neutroni nastali fisijom u petlji i usporeni u aktivnoj zoni RA. Depresija neutronskog fluksa izrazena je depresionim faktorom, koji predstavlja odnos srednjeg fluksa

  6. Ethanol-metabolizing pathways in deermice. Estimation of flux calculated from isotope effects

    International Nuclear Information System (INIS)

    Alderman, J.; Takagi, T.; Lieber, C.S.

    1987-01-01

    The apparent deuterium isotope effects on Vmax/Km (D(V/K] of ethanol oxidation in two deermouse strains (one having and one lacking hepatic alcohol dehydrogenase (ADH] were used to calculate flux through the ADH, microsomal ethanol-oxidizing system (MEOS), and catalase pathways. In vitro, D(V/K) values were 3.22 for ADH, 1.13 for MEOS, and 1.83 for catalase under physiological conditions of pH, temperature, and ionic strength. In vivo, in deermice lacking ADH (ADH-), D(V/K) was 1.20 +/- 0.09 (mean +/- S.E.) at 7.0 +/- 0.5 mM blood ethanol and 1.08 +/- 0.10 at 57.8 +/- 10.2 mM blood ethanol, consistent with ethanol oxidation principally by MEOS. Pretreatment of ADH- animals with the catalase inhibitor 3-amino-1,2,4-triazole did not significantly change D(V/K). ADH+ deermice exhibited D(V/K) values of 1.87 +/- 0.06 (untreated), 1.71 +/- 0.13 (pretreated with 3-amino-1,2,4-triazole), and 1.24 +/- 0.13 (after the ADH inhibitor, 4-methylpyrazole) at 5-7 mM blood ethanol levels. At elevated blood ethanol concentrations (58.1 +/- 2.4 mM), a D(V/K) of 1.37 +/- 0.21 was measured in the ADH+ strain. For measured D(V/K) values to accurately reflect pathway contributions, initial reaction conditions are essential. These were shown to exist by the following criteria: negligible fractional conversion of substrate to product and no measurable back reaction in deermice having a reversible enzyme (ADH). Thus, calculations from D(V/K) indicate that, even when ADH is present, non-ADH pathways (mostly MEOS) participate significantly in ethanol metabolism at all concentrations tested and play a major role at high levels

  7. Forward flux sampling calculation of homogeneous nucleation rates from aqueous NaCl solutions.

    Science.gov (United States)

    Jiang, Hao; Haji-Akbari, Amir; Debenedetti, Pablo G; Panagiotopoulos, Athanassios Z

    2018-01-28

    We used molecular dynamics simulations and the path sampling technique known as forward flux sampling to study homogeneous nucleation of NaCl crystals from supersaturated aqueous solutions at 298 K and 1 bar. Nucleation rates were obtained for a range of salt concentrations for the Joung-Cheatham NaCl force field combined with the Extended Simple Point Charge (SPC/E) water model. The calculated nucleation rates are significantly lower than the available experimental measurements. The estimates for the nucleation rates in this work do not rely on classical nucleation theory, but the pathways observed in the simulations suggest that the nucleation process is better described by classical nucleation theory than an alternative interpretation based on Ostwald's step rule, in contrast to some prior simulations of related models. In addition to the size of NaCl nucleus, we find that the crystallinity of a nascent cluster plays an important role in the nucleation process. Nuclei with high crystallinity were found to have higher growth probability and longer lifetimes, possibly because they are less exposed to hydration water.

  8. Calculation of gamma-rays and fast neutrons fluxes with the program Mercure-4

    International Nuclear Information System (INIS)

    Baur, A.; Dupont, C.; Totth, B.

    1978-01-01

    The program MERCURE-4 evaluates gamma ray or fast neutron attenuation, through laminated or bulky three-dimensionnal shields. The method used is that of line of sight point attenuation kernel, the scattered rays being taken into account by means of build-up factors for γ and removal cross sections for fast neutrons. The integration of the point kernel over the range of sources distributed in space and energy, is performed by the Monte-Carlo method, with an automatic adjustment of the importance functions. Since it is operationnal the program MERCURE-4 has been intensively used for many various problems, for example: - the calculation of gamma heating in reactor cores, control rods and shielding screens, as well as in experimental devices and irradiation loops; - the evaluation of fast neutron fluxes and corresponding damage in structural materials of reactors (vessel steels...); - the estimation of gamma dose rates on nuclear instrumentation in the reactors, around the reactor circuits and around spent fuel shipping casks

  9. Formulation of coarse mesh finite difference to calculate mathematical adjoint flux; Formulacao de diferencas finitas de malha grossa para calculo do fluxo adjunto matematico

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Valmir; Martinez, Aquilino Senra; Silva, Fernando Carvalho da [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear

    2002-07-01

    The objective of this work is the obtention of the mathematical adjoint flux, having as its support the nodal expansion method (NEM) for coarse mesh problems. Since there are difficulties to evaluate this flux by using NEM. directly, a coarse mesh finite difference program was developed to obtain this adjoint flux. The coarse mesh finite difference formulation (DFMG) adopted uses results of the direct calculation (node average flux and node face averaged currents) obtained by NEM. These quantities (flux and currents) are used to obtain the correction factors which modify the classical finite differences formulation . Since the DFMG formulation is also capable of calculating the direct flux it was also tested to obtain this flux and it was verified that it was able to reproduce with good accuracy both the flux and the currents obtained via NEM. In this way, only matrix transposition is needed to calculate the mathematical adjoint flux. (author)

  10. Inferring CO2 Fluxes from OCO-2 for Assimilation into Land Surface Models to Calculate Net Ecosystem Exchange

    Science.gov (United States)

    Prouty, R.; Radov, A.; Halem, M.; Nearing, G. S.

    2016-12-01

    Investigations of mid to high latitude atmospheric CO2 show a growing seasonal amplitude. Land surface models poorly predict net ecosystem exchange (NEE) and are unable to substantiate these sporadic observations. An investigation of how the biosphere has reacted to changes in atmospheric CO2 is essential to our understanding of potential climate-vegetation feedbacks. A global, seasonal investigation of CO2-flux is then necessary in order to assimilate into land surface models for improving the prediction of annual NEE. The Atmospheric Radiation Measurement program (ARM) of DOE collects CO2-flux measurements (in addition to CO2 concentration and various other meteorological quantities) at several towers located around the globe at half hour temporal frequencies. CO2-fluxes are calculated via the eddy covariance technique, which utilizes CO2-densities and wind velocities to calculate CO2-fluxes. The global coverage of CO2 concentrations as provided by the Orbiting Carbon Observatory (OCO-2) provide satellite-derived CO2 concentrations all over the globe. A framework relating the satellite-inferred CO2 concentrations collocated with the ground-based ARM as well as Ameriflux stations would enable calculations of CO2-fluxes far from the station sites around the entire globe. Regression techniques utilizing deep-learning neural networks may provide such a framework. Additionally, meteorological reanalysis allows for the replacement of the ARM multivariable meteorological variables needed to infer the CO2-fluxes. We present the results of inferring CO2-fluxes from OCO-2 CO2 concentrations for a two year period, Sept. 2014- Sept. 2016 at the ARM station located near Oklahoma City. A feed-forward neural network (FFNN) is used to infer relationships between the following data sets: F([ARM CO2-density], [ARM Meteorological Data]) = [ARM CO2-Flux] F([OCO-2 CO2-density],[ARM Meteorological Data]) = [ARM CO2-Flux] F([ARM CO2-density],[Meteorological Reanalysis]) = [ARM CO2-Flux

  11. Time-dependent magnetization of a type-II superconductor numerically calculated by using the flux-creep equation

    International Nuclear Information System (INIS)

    Lee, J. H.; Park, I. S.; Ahmad, D.; Kim, D.; Kim, Y. C.; Ko, R. K.; Jeong, D. Y.

    2012-01-01

    The macroscopic magnetic behaviors of a type-II superconductor, such as the field- or the temperature-dependent magnetization, have been described by using critical state models. However, because the models are time-independent, the magnetic relaxation in a type-II superconductor cannot be described by them, and the time dependence of the magnetization can affect the field or the temperature-dependent magnetization curve described by the models. In order to avoid the time independence of critical state models, we try the numerical calculation used by Qin et al., who mainly calculated the temperature dependence of the ac susceptibility χ(T). Their calculation showed that the frequency-dependent χ(T) could be obtained by using the flux-creep equation. We calculated the field-dependent magnetization and magnetic relaxation by using a numerical method. The calculated field-dependent magnetization M(H) curves shows the shapes of a typical type-II superconductor. The calculated magnetic relaxation do not show a logarithmic decay of the magnetization, but the addition of a surface barrier to the relaxation calculation caused a clear logarithmic decay of the magnetization, producing a crossover at a mid-time. This means that the logarithmic magnetic relaxation is caused by not only flux creep but also a combination of flux creep and a surface barrier.

  12. Calculation of the fast neutron flux spectrum in the MNSR inner irradiation site using the WIMSD4 code

    International Nuclear Information System (INIS)

    Khattab, K.

    2005-03-01

    The Miniature Neutron Source Reactor (MNSR) in Syria has five inner irradiation sites in the annulus Beryllium reflectors to analyze the unknown samples using the Neutron Activation Analysis technique and to produce medium and short half life isotopes. The fast neutron flux spectrum has a special importance in the MNSR reactor physics where this spectrum is required to measure the fast neutron flux in the MNSR inner irradiation sites. Hence, calculation of the fast neutron flux spectrum in the MNSR inner irradiation site is conducted in this work using the WIMSD4 code. The energy range is divided in the WIMSD4 to 69 energy groups. The first six energy groups represent the fast neutron ranging from 0.5 to 10 MeV. To calculate the fast neutron flux spectrum in the MNSR inner irradiation site using the WIMSD4 code, the MNSR is modeled as a super unit cell. This cell consists of three regions which are: the homogenized core, annulus Beryllium, and water. The fast neutron spectrum is calculated also using the U 235 fission neutron spectrum approximation. The U 235 fission neutron spectrum agrees very good with the WIMSD4 results when neutron energy exceeds 1 MeV, but it fails when the neutron energy ranges from 0.5 to 1 MeV. The WIMSD4 code is used as well to calculate the microscopic fission cross sections for the U 238 using six energy groups where a unit cell of U 238 is used since the U 238 is usually used to measure the fast neutron flux in the reactor. The macroscopic fission cross sections for the U 238 are calculated first then the microscopic fission cross sections are calculated knowing the U 238 atomic density. (Author)

  13. Calculation of the fast neutron flux spectrum in the MNSR inner irradiation site using the WIMSD4 code

    International Nuclear Information System (INIS)

    Khattab, K.

    2006-01-01

    The Miniature Neutron Source Reactor (MNSR) in Syria has five inner irradiation sites in the annulus Beryllium reflectors to analyze the unknown samples using the Neutron Activation Analysis technique and to produce medium and short half life isotopes. The fast neutron flux spectrum has a special importance in the MNSR reactor physics where this spectrum is required to measure the fast neutron flux in the MNSR inner irradiation sites. Hence, calculation of the fast neutron flux spectrum in the MNSR inner irradiation site is conducted in this work using the WIMSD4 code. The energy range is divided in the WIMSD4 to 69 energy groups. The first six energy groups represent the fast neutron ranging from 0.5 to 10 MeV. To calculate the fast neutron flux spectrum in the MNSR inner irradiation site using the WIMSD4 code, the MNSR is modeled as a super unit cell. This cell consists of three regions which are: the homogenized core, annulus Beryllium, and water. The fast neutron spectrum is calculated also using the U 235 fission neutron spectrum approximation. The U 235 fission neutron spectrum agrees very good with the WIMSD4 results when neutron energy exceeds 1 MeV, but it fails when the neutron energy ranges from 0.5 to 1 MeV. The WIMSD4 code is used as well to calculate the microscopic fission cross sections for the U 238 using six energy groups where a unit cell of U 238 is used since the U 238 is usually used to measure the fast neutron flux in the reactor. The macroscopic fission cross sections for the U 238 are calculated first then the microscopic fission cross sections are calculated knowing the U 238 atomic density. (Author)

  14. Soil heat flux calculation for sunlit and shaded surfaces under row crops: 1 - Model Development and sensitivity analysis

    Science.gov (United States)

    Soil heat flux at the surface (G0) is strongly influenced by whether the soil is shaded or sunlit, and therefore can have large spatial variability for incomplete vegetation cover, such as across the interrows of row crops. Most practical soil-plant-atmosphere energy balance models calculate G0 as a...

  15. Limits of agricultural greenhouse gas calculators to predict soil N2O and CH4 fluxes in tropical agriculture

    Science.gov (United States)

    Richards, Meryl; Metzel, Ruth; Chirinda, Ngonidzashe; Ly, Proyuth; Nyamadzawo, George; Duong Vu, Quynh; de Neergaard, Andreas; Oelofse, Myles; Wollenberg, Eva; Keller, Emma; Malin, Daniella; Olesen, Jørgen E.; Hillier, Jonathan; Rosenstock, Todd S.

    2016-05-01

    Demand for tools to rapidly assess greenhouse gas impacts from policy and technological change in the agricultural sector has catalyzed the development of ‘GHG calculators’— simple accounting approaches that use a mix of emission factors and empirical models to calculate GHG emissions with minimal input data. GHG calculators, however, rely on models calibrated from measurements conducted overwhelmingly under temperate, developed country conditions. Here we show that GHG calculators may poorly estimate emissions in tropical developing countries by comparing calculator predictions against measurements from Africa, Asia, and Latin America. Estimates based on GHG calculators were greater than measurements in 70% of the cases, exceeding twice the measured flux nearly half the time. For 41% of the comparisons, calculators incorrectly predicted whether emissions would increase or decrease with a change in management. These results raise concerns about applying GHG calculators to tropical farming systems and emphasize the need to broaden the scope of the underlying data.

  16. Neutron Flux and Activation Calculations for a High Current Deuteron Accelerator

    CERN Document Server

    Coniglio, Angela; Sandri, Sandro

    2005-01-01

    Neutron analysis of the first Neutral Beam (NB) for the International Thermonuclear Experimental Reactor (ITER) was performed to provide the basis for the study of the following main aspects: personnel safety during normal operation and maintenance, radiation shielding design, transportability of the NB components in the European countries. The first ITER NB is a medium energy light particle accelerator. In the scenario considered for the calculation the accelerated particles are negative deuterium ions with maximum energy of 1 MeV. The average beam current is 13.3 A. To assess neutron transport in the ITER NB structure a mathematical model of the components geometry was implemented into MCNP computer code (MCNP version 4c2. "Monte Carlo N-Particle Transport Code System." RSICC Computer Code Collection. June 2001). The neutron source definition was outlined considering both D-D and D-T neutron production. FISPACT code (R.A. Forrest, FISPACT-2003. EURATOM/UKAEA Fusion, December 2002) was used to assess neutron...

  17. Calculation with MCNP of capture photon flux in VVER-1000 experimental reactor.

    Science.gov (United States)

    Töre, Candan; Ortego, Pedro

    2005-01-01

    The aim of this study is to obtain by Monte Carlo method the high energy photon flux due to neutron capture in the internals and vessel layers of the experimental reactor LR-0 located in REZ, Czech Republic, and loaded with VVER-1000 fuel. The calclated neutron, photon and photon to neutron flux ratio are compared with experimental measurements performed with a multi-parameter stilbene detector. The results show clear underestimation of photon flux in downcomer and some overestimation at vessel surface and 1/4 thickness but a good fitting for deeper points in vessel.

  18. Verification of Monte Carlo calculations of the neutron flux in the carousel channels of the TRIGA Mark II reactor, Ljubljana

    International Nuclear Information System (INIS)

    Jacimovic, R.; Maucec, M.; Trkov, A.

    2002-01-01

    In this work experimental verification of Monte Carlo neutron flux calculations in the carousel facility (CF) of the 250 kW TRIGA Mark II reactor at the Jozef Stefan Institute is presented. Simulations were carried out using the Monte Carlo radiation-transport code, MCNP4B. The objective of the work was to model and verify experimentally the azimuthal variation of neutron flux in the CF for core No. 176, set up in April 2002. '1'9'8Au activities of Al-Au(0.1%) disks irradiated in 11 channels of the CF covering 180'0 around the perimeter of the core were measured. The comparison between MCNP calculation and measurement shows relatively good agreement and demonstrates the overall accuracy with which the detailed spectral characteristics can be predicted by calculations.(author)

  19. Simplified magnetic circuit for the calculation of the stray magnetic flux through the shell gaps

    Energy Technology Data Exchange (ETDEWEB)

    Collarin, P.; Piovan, R. [Associazioni EURATOM-ENEA-CNR-Univ. di Padova (Italy). Gruppo di Padova per Ricerche sulla Fusione

    1995-12-31

    Significant toroidal magnetic field perturbations, stray flux at the shell gaps and current mismatching in the coils of the toroidal field winding are measured during the start-up and the flat-top phases of RFX. These phenomena are consistent with large and wall locked MHD modes: at first some m = 1 modes evolve separately one after the other, afterwards they concur to a wide and localized plasma perturbation that persists during the flat-top. These perturbations are heavily influenced by the stray magnetic flux through the shell gaps. Hence a magnetic circuit that mainly considers the magnetic reluctance of the conducting shell gaps has been developed in order to estimate this stray flux and, therefore, to evaluate the stabilizing capability of the shell. The observation of the MHD modes, the description of the equivalent magnetic network, the estimation of the stray flux and the comparison with the experimental measurements are reported in the paper.

  20. Simplified magnetic circuit for the calculation of the stray magnetic flux through the shell gaps

    International Nuclear Information System (INIS)

    Collarin, P.; Piovan, R.

    1995-01-01

    Significant toroidal magnetic field perturbations, stray flux at the shell gaps and current mismatching in the coils of the toroidal field winding are measured during the start-up and the flat-top phases of RFX. These phenomena are consistent with large and wall locked MHD modes: at first some m = 1 modes evolve separately one after the other, afterwards they concur to a wide and localized plasma perturbation that persists during the flat-top. These perturbations are heavily influenced by the stray magnetic flux through the shell gaps. Hence a magnetic circuit that mainly considers the magnetic reluctance of the conducting shell gaps has been developed in order to estimate this stray flux and, therefore, to evaluate the stabilizing capability of the shell. The observation of the MHD modes, the description of the equivalent magnetic network, the estimation of the stray flux and the comparison with the experimental measurements are reported in the paper

  1. Calculation of neutron flux distribution of thermal neutrons from microtron converter in a graphite moderator with water reflector

    International Nuclear Information System (INIS)

    Andrejsek, K.

    1977-01-01

    The calculation is made of the thermal neutron flux in the moderator and reflector by solving the neutron diffusion equation using the four-group theory. The correction for neutron absorption in the moderator was carried out using the perturbation theory. The calculation was carried out for four groups with the following energy ranges: the first group 2 MeV to 3 keV, the second group 3 keV to 5 eV, the third group 5 eV to 0.025 eV and the fourth group 0.025 eV. The values of the macroscopic cross section of capture and scattering, of the diffusion coefficient, the macroscopic cross section of the moderator, of the neutron age and the extrapolation length for the water-graphite moderator used in the calculations are given. The spatial distribution of the thermal neutron flux is graphically represented for graphite of a 30, 40, and 50 cm radius and for graphite of a 30 and 40 cm radius with a 10 cm water reflector; a graphic comparison is made of the distribution of the thermal neutron flux in water and in graphite, both 40 cm in radius. The system of graphite with reflector proved to be the best and most efficient system for raising the flux density of thermal neutrons. (J.P.)

  2. Method for calculating the critical heat flux in mixed rod assemblies based on the tables of crisis in bundles

    International Nuclear Information System (INIS)

    Bobkov, V.P.

    2000-01-01

    The method for calculating the critical heat flux in the mixed rod assemblies, for example RBMK, containing three-four angle and peripheral macrocells, is presented. The method is based on generalization of experimental data in form of tables for the rods beams. It is recommended for the areas of parameters both provided for by experimental data and for others, where the data are absent. The advantages of the table method as follows: it is acceptable within a wide range of parameters and provides for smooth description of dependence of critical heat fluxes on these parameters; it is characterized by clearness, high reliability and accuracy and is easy in application [ru

  3. Calculation of the magnetic flux density distribution in type-II superconductors with finite thickness and well-defined geometry

    International Nuclear Information System (INIS)

    Forkl, A.; Kronmueller, H.

    1995-01-01

    The distribution of the critical current density j c (r) in hard type-II superconductors depends strongly on their sample geometry. Rules are given for the construction of j c (r). Samples with homogeneous thickness are divided into cakelike regions with a unique current direction. The spatial magnetic flux density distribution and the magnetic polarization of such a cakelike unit cell with homogeneous current density are calculated analytically. The magnetic polarization and magnetic flux density distribution of a superconductor in the mixed state is then given by an adequate superposition of the unit cell solutions. The theoretical results show good agreement with magneto-optically determined magnetic flux density distributions of a quadratic thin superconducting YBa 2 Cu 3 O 7-x film. The current density distribution is discussed for several sample geometries

  4. Accelerator-driven sub-critical research facility with low-enriched fuel in lead matrix: Neutron flux calculation

    Directory of Open Access Journals (Sweden)

    Avramović Ivana

    2007-01-01

    Full Text Available The H5B is a concept of an accelerator-driven sub-critical research facility (ADSRF being developed over the last couple of years at the Vinča Institute of Nuclear Sciences, Belgrade, Serbia. Using well-known computer codes, the MCNPX and MCNP, this paper deals with the results of a tar get study and neutron flux calculations in the sub-critical core. The neutron source is generated by an interaction of a proton or deuteron beam with the target placed inside the sub-critical core. The results of the total neutron flux density escaping the target and calculations of neutron yields for different target materials are also given here. Neutrons escaping the target volume with the group spectra (first step are used to specify a neutron source for further numerical simulations of the neutron flux density in the sub-critical core (second step. The results of the calculations of the neutron effective multiplication factor keff and neutron generation time L for the ADSRF model have also been presented. Neutron spectra calculations for an ADSRF with an uranium tar get (highest values of the neutron yield for the selected sub-critical core cells for both beams have also been presented in this paper.

  5. Development of a locally mass flux conservative computer code for calculating 3-D viscous flow in turbomachines

    Science.gov (United States)

    Walitt, L.

    1982-01-01

    The VANS successive approximation numerical method was extended to the computation of three dimensional, viscous, transonic flows in turbomachines. A cross-sectional computer code, which conserves mass flux at each point of the cross-sectional surface of computation was developed. In the VANS numerical method, the cross-sectional computation follows a blade-to-blade calculation. Numerical calculations were made for an axial annular turbine cascade and a transonic, centrifugal impeller with splitter vanes. The subsonic turbine cascade computation was generated in blade-to-blade surface to evaluate the accuracy of the blade-to-blade mode of marching. Calculated blade pressures at the hub, mid, and tip radii of the cascade agreed with corresponding measurements. The transonic impeller computation was conducted to test the newly developed locally mass flux conservative cross-sectional computer code. Both blade-to-blade and cross sectional modes of calculation were implemented for this problem. A triplet point shock structure was computed in the inducer region of the impeller. In addition, time-averaged shroud static pressures generally agreed with measured shroud pressures. It is concluded that the blade-to-blade computation produces a useful engineering flow field in regions of subsonic relative flow; and cross-sectional computation, with a locally mass flux conservative continuity equation, is required to compute the shock waves in regions of supersonic relative flow.

  6. A method to calculate flux distribution in reactor systems containing materials with grain structure

    International Nuclear Information System (INIS)

    Stepanek, J.

    1980-01-01

    A method is proposed to compute the neutron flux spatial distribution in slab, spherical or cylindrical systems containing zones with close grain structure of material. Several different types of equally distributed particles embedded in the matrix material are allowed in one or more zones. The multi-energy group structure of the flux is considered. The collision probability method is used to compute the fluxes in the grains and in an ''effective'' part of the matrix material. Then the overall structure of the flux distribution in the zones with homogenized materials is determined using the DPN ''surface flux'' method. Both computations are connected using the balance equation during the outer iterations. The proposed method is written in the code SURCU-DH. Two testcases are computed and discussed. One testcase is the computation of the eigenvalue in simplified slab geometry of an LWR container of one zone with boral grains equally distributed in an aluminium matrix. The second is the computation of the eigenvalue in spherical geometry of the HTR pebble-bed cell with spherical particles embedded in a graphite matrix. The results are compared to those obtained by repeated use of the WIMS Code. (author)

  7. Albedo analytical method for multi-scattered neutron flux calculation in cavity

    International Nuclear Information System (INIS)

    Shin, Kazuo; Selvi, S.; Hyodo, Tomonori

    1986-01-01

    A simple formula which describes multi-scattered neutron flux in a spherical cavity was derived based on the albedo concept. The formura treats a neutron source which has an arbitrary energy-angle distribution and is placed at any point in the cavity. The derived formula was applied to the estimation of neutron fluxes in two cavities, i.e. a spherical concrete cell with a 14-MeV neutron source at the center and the ''YAYOI'' reactor cavity with a pencil beam of reactor neutrons. The results of the analytical formula agreed very well with the reference data in the both problems. It was concluded that the formula is applicable to estimate the neutron fluxes in a spherical cell except for special cases that tangential source neutrons are incident to the cavity wall. (author)

  8. Alize 3 - first critical experiment for the franco-german high flux reactor - calculations; Alize 3 - premiere experience critique pour le reacteur a haut flux franco-allemand. Calculs

    Energy Technology Data Exchange (ETDEWEB)

    Scharmer, K [Commissariat a l' Energie Atomique, Dir. des Piles Atomiques, Saclay (France). Centre d' Etudes Nucleaires

    1969-07-01

    The results of experiments in the light water cooled D{sub 2}O reflected critical assembly ALIZE III have been compared to calculations. A diffusion model was used with 3 fast and epithermal groups and two overlapping thermal groups, which leads to good agreement of calculated and measured power maps, even in the case of strong variations of the neutron spectrum in the core. The difference of calculated and measured k{sub eff} was smaller than 0.5 per cent {delta}k/k. Calculations of void and structure material coefficients of the reactivity of 'black' rods in the reflector, of spectrum variations (Cd-ratio, Pu-U-ratio) and to the delayed photoneutron fraction in the D{sub 2}O reflector were made. Measurements of the influence of beam tubes on reactivity and flux distribution in the reflector were interpreted with regard to an optimum beam tube arrangement for the Franco- German High Flux Reactor. (author) [French] Les resultats des experiences faites dans la maquette critique ALIZE III, refrigeree a l'eau legere et reflechie par l'eau lourde, ont ete compares aux calculs. On a utilise un modele de la theorie de diffusion a trois groupes rapides et epithermiques et deux groupes thermiques qui se recouvrent. Ce modele a permis de calculer la distribution de puissance dans le coeur en bon accord avec les mesures, meme dans le cas d'une forte variation du spectre des neutrons dans le coeur. L'erreur entre k{sub eff} calcule et mesure etait inferieure a 0,5 pour cent {delta}k/k. Le coefficient de vide et des materiaux de structure, la reactivite des barres 'noires', les variations du spectre (rapport Cd, rapport Pu/U) et la fraction des photo-neutrons retardes sont egalement calcules. Les mesures de reactivite et de perturbation de flux dans le reflecteur, dues aux canaux, ont ete interpretees du point de vue d'un arrangement optimum des canaux pour le Reacteur a Haut Flux Franco-Allemand. (auteur)

  9. Application of the Bowring correlation for calculating the critical heat flux

    International Nuclear Information System (INIS)

    Borges, R.C.; Freitas, R.L.

    1986-01-01

    The evaluation of the critical heat flux is of great importance for the nuclear reactor project, because it permits the verification of the safety margin with respect to fuel rod damage. This work presents a comparison of the original critical heat flux correlation proposed by Bowring with an alternative form derived from it presented in several papers. Very different results have been encountered from the application of the two correlation forms. Therefore, a criterious choice of the correlation form must be done avoid the violation of the project's safety margin. (Author) [pt

  10. VSOP, Neutron Spectra, 2-D Flux Synthesis, Fuel Management, Thermohydraulics Calculation

    International Nuclear Information System (INIS)

    Teuchert, E.; Haas, K.A.

    1995-01-01

    flux for 1515 compositions in 2-D cases, r-z (9999 compositions in 3-D cases, x-y-z). The burnup scheme has been developed from the FEVER code. The build-up history of up to 49 fission product nuclides in the compositions is followed explicitly. The diffusion part of the program system can be repeated at many short burnup time steps, and the spectrum module can be repeated at larger time steps, when some significant change in the spectrum is expected. The fuel management and cost module performs the fuel shuffling and general evaluations of the reactor and fuel element life history. The fuel management simulates the currently known shuffling and out of pile routes for various reactors. It has further been extended to include the typical features of the pebble bed reactor such as burnup dependent optional reloading of elements, separated treatment of different fuel streams, and recycling in new fuel element types according to a consistent mass balance and timing. Optionally, several different types of data files can be set up with characteristic data of the reactor life. These are used for more detailed investigations and display programs. The restart option allows the study of special phases of the reactor life, e.g. changes of the fueling scheme, of the burnup, of the power output, of the coolant temperature, and of the corresponding reactivity effects. The fuel cycle cost data set is made for the present worth KPD code. Two-dimensional thermal hydraulics studies for operating and emergency conditions can be performed with the THERMIX code. The averaged temperatures of the different spectrum zones in the core are returned from the thermal hydraulics to the subsequent step of the reactor history. 3 - Restrictions on the complexity of the problem: In epithermal energy range the cell spectrum calculation is missing. If needed, it must be simulated by disadvantage factors being obtained in other codes. Further, dynamic common must be defined for the commons VARDIM, COCI

  11. Sensitivity of upper atmospheric emissions calculations to solar/stellar UV flux

    Directory of Open Access Journals (Sweden)

    Barthelemy Mathieu

    2014-01-01

    Full Text Available The solar UV (UltraViolet flux, especially the EUV (Extreme UltraViolet and FUV (Far UltraViolet components, is one of the main energetic inputs for planetary upper atmospheres. It drives various processes such as ionization, or dissociation which give rise to upper atmospheric emissions, especially in the UV and visible. These emissions are one of the main ways to investigate the upper atmospheres of planets. However, the uncertainties in the flux measurement or modeling can lead to biased estimates of fundamental atmospheric parameters, such as concentrations or temperatures in the atmospheres. We explore the various problems that can be identified regarding the uncertainties in solar/stellar UV flux by considering three examples. The worst case appears when the solar reflection component is dominant in the recorded spectrum as is seen for outer solar system measurements from HST (Hubble Space Telescope. We also show that the estimation of some particular line parameters (intensity and shape, especially Lyman α, is crucial, and that both total intensity and line profile are useful. In the case of exoplanets, the problem is quite critical since the UV flux of their parent stars is often very poorly known.

  12. A one-dimensional, one-group absorption-production nodal method for neutron flux and power distributions calculations

    International Nuclear Information System (INIS)

    Ferreira, C.R.

    1984-01-01

    It is presented the absorption-production nodal method for steady and dynamical calculations in one-dimension and one group energy. It was elaborated the NOD1D computer code (in FORTRAN-IV language). Calculations of neutron flux and power distributions, burnup, effective multiplication factors and critical boron concentration were made with the NOD1D code and compared with results obtained through the CITATION code, which uses the finite difference method. The nuclear constants were produced by the LEOPARD code. (M.C.K.) [pt

  13. Effect of micrometric hot spots on surface temperature measurement and flux calculation in the middle and long infrared

    International Nuclear Information System (INIS)

    Delchambre, E; Counsell, G; Kirk, A

    2009-01-01

    The non-uniformity of the target temperature due to micrometric hot spots (Hermann et al 2004 Phys. Scr. T 111 98) is an explanation for the experimental fact that near-infrared measurements yield higher temperature values than mid-infrared measurements (Hildebrandt et al 2003 InfraMation 2003 Proc. (Las Vegas, USA, October 2003), Delchambre et al 2005 J. Nucl. Mater. 337-339 1069). The issue of micrometric hot spot disturbance in the surface temperature (T surf ) measurement and heat load calculation is addressed in this paper. The theoretical investigation at 3, 5 and 12 μm and experiments in the range 3.5-5 μm indicate that the surface state can play an important role in the non-uniform heating surface and consequently in the overestimation of the bulk temperature. The contribution of the hot spots to temperature measurements and flux calculations has been simulated at different wavelengths. Calculations show that (1) the overestimation of the bulk temperature decreases with the wavelength and (2) the overestimation depends on the temperature difference, ΔT, between the bulk and the micrometric hot spots. In addition, experiments have been carried out in order to compare the flux calculations at different wavelengths on different graphite (polished, dusty). The results obtained are very sensitive to the surface state pointing out the difficulties in improving the heat flux calculation model, since the surface state can change during the plasma discharges. This paper shows that the problem of non-homogenous surface temperature can be significantly diminished on working at longer wavelengths.

  14. Calculation of fluxes through a repository caused by a local well

    International Nuclear Information System (INIS)

    Thunvik, R.

    1983-05-01

    The purpose of the present study is to roughly estimate the ground water flux through a radioactive repository in relation to the flux into a local well under various conditions. The well is assumed to be located at a depth of either 60 or 200 metres below the ground surface. Two main settings are considered, in one the well is located in a vertical fracture zone at a distance of 100 metres from one of the outer edges of the repository. The withdrawal from the well is assumed to be 6 m 3 /day. The flow domain is characterized by a rather low permeability. The boundary conditions considered are either a continuously saturated upper boundary and impervious lateral boundaries, or a phreatic upper boundary and hydrostatic lateral boundaries. The ratio of the flux through the repository to the flux into the well was obtained to be in the range from about 10- 5 to 10- 3 , depending on the boundary conditions and the depth of the well. The lowest figures were obtained in the examples, in which the upper boundary was assumed to be continually saturated. It is concluded that these examples may be considered representative of the actual flow problem. This conclusion is based upon the fact that in the case of a phreatic boundary the drawdown caused by the well was very small and the flow responses were very slow, implying that rather a small infiltration rate is requied to maintain saturated conditions at the upper boundary. The regional gradients caused by the well were rather small in comparison with the typically naturally occurring gradients. The flow to the well will therefore have little influence on the regional flow pattern in most practical cases. (author)

  15. Validation of DRAGON4/DONJON4 simulation methodology for a typical MNSR by calculating reactivity feedback coefficient and neutron flux

    Science.gov (United States)

    Al Zain, Jamal; El Hajjaji, O.; El Bardouni, T.; Boukhal, H.; Jaï, Otman

    2018-06-01

    The MNSR is a pool type research reactor, which is difficult to model because of the importance of neutron leakage. The aim of this study is to evaluate a 2-D transport model for the reactor compatible with the latest release of the DRAGON code and 3-D diffusion of the DONJON code. DRAGON code is then used to generate the group macroscopic cross sections needed for full core diffusion calculations. The diffusion DONJON code, is then used to compute the effective multiplication factor (keff), the feedback reactivity coefficients and neutron flux which account for variation in fuel and moderator temperatures as well as the void coefficient have been calculated using the DRAGON and DONJON codes for the MNSR research reactor. The cross sections of all the reactor components at different temperatures were generated using the DRAGON code. These group constants were used then in the DONJON code to calculate the multiplication factor and the neutron spectrum at different water and fuel temperatures using 69 energy groups. Only one parameter was changed where all other parameters were kept constant. Finally, Good agreements between the calculated and measured have been obtained for every of the feedback reactivity coefficients and neutron flux.

  16. Three-Dimensional Temperature Field Calculation and Analysis of an Axial-Radial Flux-Type Permanent Magnet Synchronous Motor

    Directory of Open Access Journals (Sweden)

    Dong Li

    2018-05-01

    Full Text Available This article concentrates on the steady-state thermal characteristics of the Axial-Radial Flux-Type Permanent Magnet Synchronous Motor (ARFTPMSM. Firstly, the three-dimensional mathematical models for electromagnetic calculation and analyses are established, and the machine loss, including the stator loss, armature winding loss, rotor loss, and axial structure loss is calculated by using time-step Finite Element Method (FEM. Then, the loss distribution is assigned as the heat source for the thermal calculation. Secondly, the mathematical model for thermal calculation is also established. The assumptions and the boundary conditions are proposed to simplify the calculation and to improve convergence. Thirdly, the three-dimensional electromagnetic and thermal calculations of the machine, of which the armature winding and axial field winding are developed by using copper wires, are solved, from which the temperature distributions of the machine components are obtained. The experiments are carried out on the prototype with copper wires to validate the accuracy of the established models. Then, the temperature distributions of machine components under different Axial Magnetic Motive Force (AMMF are investigated. Since the machine is finally developing by using HTS wires, the temperature distributions of machine developed by utilizing High Temperature Superconducting (HTS wires, are also studied. The temperature distribution differences of the machine developed by using copper wires and HTS wires are drawn. All of these above will provide a helpful reference for the thermal calculation of the ARFTPMSM, as well as the design of the HTS coils and the cryogenic cooling system.

  17. Use of the Le Chatelier principle in calculating the uniform flux in channels formed by packed rods

    International Nuclear Information System (INIS)

    Skrebkov, G.P.; Lozhkin, S.N.

    1986-01-01

    A method is proposed for calculating the hydrodynamics of a uniform flow in channels with a cross section of complex form. The method takes into account the anisotropy of the momentum transfer. The anisotropy coefficient of the momentum transfer is determined by using the Le Chatelier principle in a virtual process of transition to the kinematic structure of a uniform flux in equilibrium with a specified set of external conditions which include the channel geometry, wall roughness, and the value of the piezometric gradient

  18. Analytical Calculation of the Magnetic Field distribution in a Flux-Modulated Permanent-Magnet Brushless Motor

    DEFF Research Database (Denmark)

    Zhang, Xiaoxu; Liu, Xiao; Chen, Zhe

    2015-01-01

    This paper presents a rapid approach to compute the magnetic field distribution in a flux-modulated permanent-magnet brushless motor. Partial differential equations are used to describe the magnet field behavior in terms of magnetic vector potentials. The whole computational domain is divided...... into several regions, i.e., magnet, air-gaps, slot-openings, and slots. The numerical solution could be obtained by applying the boundary constraints on the interfaces between these regions. The accuracy of the proposed analytical model is verified by comparing the no-load magnetic field and armature reaction...... magnetic field with those calculated by finite element method....

  19. Neural-net based calculation of voltage dips at maximum angular swing in direct transient stability analysis [of power systems

    Energy Technology Data Exchange (ETDEWEB)

    Djukanovic, M [Inst. ' Nikola Tesla' , Belgrade (Yugoslavia); Sobajic, D J; Pao, Yohhan [Case Western Reserve Univ., Cleveland, OH (United States). Dept. of Electrical Engineering and Applied Physics Case Western Reserve Univ., Cleveland, OH (United States). Dept. of Computer Engineering and Science AI WARE inc., Cleveland, OH (United States)

    1992-10-01

    In heavily stressed power systems, post-fault transient voltage dips can lead to undesired tripping of industrial drives and large induction motors. The lowest transient voltage dips occur when fault clearing times are less than critical ones. In this paper, we propose a new iterative analytical methodology to obtain more accurate estimates of voltage dips at maximum angular swing in direct transient stability analysis. We also propose and demonstrate the possibility of storing the results of these computations in the associative memory (AM) system, which exhibits remarkable generalization capabilities. Feature-based models stored in the AM can be utilized for fast and accurate prediction of the location, duration and the amount of the worst voltage dips, thereby avoiding the need and cost for lengthy time-domain simulations. Numerical results obtained using the example of the New England power system are presented to illustrate our approach. (Author)

  20. Verification of heat flux and temperature calculation on the control rod outer surface

    Science.gov (United States)

    Taler, Jan; Cebula, Artur

    2011-12-01

    The paper presents heat transfer calculation results concerning a control rod of Forsmark Nuclear Power Plant (NPP). The part of the control rod, which is the object of interest, is surrounded by a mixing region of hot and cold flows and, as a consequence, is subjected to thermal fluctuations. The paper describes a numerical test which validates the method based on the solution of the inverse heat conduction problem (IHCP). The comparison of the results achieved by two methods, computational fluid dynamics (CFD) simulations and IHCP, including a description of the IHCP method used in the calculation process, shows a very good agreement between the methods.

  1. Neutron Flux Interpolation with Finite Element Method in the Nuclear Fuel Cell Calculation using Collision Probability Method

    International Nuclear Information System (INIS)

    Shafii, M. Ali; Su'ud, Zaki; Waris, Abdul; Kurniasih, Neny; Ariani, Menik; Yulianti, Yanti

    2010-01-01

    Nuclear reactor design and analysis of next-generation reactors require a comprehensive computing which is better to be executed in a high performance computing. Flat flux (FF) approach is a common approach in solving an integral transport equation with collision probability (CP) method. In fact, the neutron flux distribution is not flat, even though the neutron cross section is assumed to be equal in all regions and the neutron source is uniform throughout the nuclear fuel cell. In non-flat flux (NFF) approach, the distribution of neutrons in each region will be different depending on the desired interpolation model selection. In this study, the linear interpolation using Finite Element Method (FEM) has been carried out to be treated the neutron distribution. The CP method is compatible to solve the neutron transport equation for cylindrical geometry, because the angle integration can be done analytically. Distribution of neutrons in each region of can be explained by the NFF approach with FEM and the calculation results are in a good agreement with the result from the SRAC code. In this study, the effects of the mesh on the k eff and other parameters are investigated.

  2. Calcul du flux thermique a travers la liaison batiment- Sol | Diao ...

    African Journals Online (AJOL)

    In this work, we propose analytical models in two dimensions (2D) for the calculation of the thermal transfers through the connection building and ground in steady, witch we determine the linear thermal coefficient, and dynamic method. The methods used hold parameters geometrical and thermal having a great influence on ...

  3. Monitoring to assess progress toward meeting the Assabet River, Massachusetts, phosphorus total maximum daily load - Aquatic macrophyte biomass and sediment-phosphorus flux

    Science.gov (United States)

    Zimmerman, Marc J.; Qian, Yu; Yong Q., Tian

    2011-01-01

    In 2004, the Total Maximum Daily Load (TMDL) for Total Phosphorus in the Assabet River, Massachusetts, was approved by the U.S. Environmental Protection Agency. The goal of the TMDL was to decrease the concentrations of the nutrient phosphorus to mitigate some of the instream ecological effects of eutrophication on the river; these effects were, for the most part, direct consequences of the excessive growth of aquatic macrophytes. The primary instrument effecting lower concentrations of phosphorus was to be strict control of phosphorus releases from four major wastewatertreatment plants in Westborough, Marlborough, Hudson, and Maynard, Massachusetts. The improvements to be achieved from implementing this control were lower concentrations of total and dissolved phosphorus in the river, a 50-percent reduction in aquatic-plant biomass, a 30-percent reduction in episodes of dissolved oxygen supersaturation, no low-flow dissolved oxygen concentrations less than 5.0 milligrams per liter, and a 90-percent reduction in sediment releases of phosphorus to the overlying water. In 2007, the U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection, initiated studies to evaluate conditions in the Assabet River prior to the upgrading of wastewater-treatment plants to remove more phosphorus from their effluents. The studies, completed in 2008, implemented a visual monitoring plan to evaluate the extent and biomass of the floating macrophyte Lemna minor (commonly known as lesser duckweed) in five impoundments and evaluated the potential for phosphorus flux from sediments in impounded and free-flowing reaches of the river. Hydrologically, the two study years 2007 and 2008 were quite different. In 2007, summer streamflows, although low, were higher than average, and in 2008, the flows were generally higher than in 2007. Visually, the effects of these streamflow differences on the distribution of Lemna were obvious. In 2007, large amounts of

  4. Calculating the dermal flux of chemicals with OELs based on their molecular structure: An attempt to assign the skin notation.

    Science.gov (United States)

    Kupczewska-Dobecka, Małgorzata; Jakubowski, Marek; Czerczak, Sławomir

    2010-09-01

    Our objectives included calculating the permeability coefficient and dermal penetration rates (flux value) for 112 chemicals with occupational exposure limits (OELs) according to the LFER (linear free-energy relationship) model developed using published methods. We also attempted to assign skin notations based on each chemical's molecular structure. There are many studies available where formulae for coefficients of permeability from saturated aqueous solutions (K(p)) have been related to physicochemical characteristics of chemicals. The LFER model is based on the solvation equation, which contains five main descriptors predicted from chemical structure: solute excess molar refractivity, dipolarity/polarisability, summation hydrogen bond acidity and basicity, and the McGowan characteristic volume. Descriptor values, available for about 5000 compounds in the Pharma Algorithms Database were used to calculate permeability coefficients. Dermal penetration rate was estimated as a ratio of permeability coefficient and concentration of chemical in saturated aqueous solution. Finally, estimated dermal penetration rates were used to assign the skin notation to chemicals. Defined critical fluxes defined from the literature were recommended as reference values for skin notation. The application of Abraham descriptors predicted from chemical structure and LFER analysis in calculation of permeability coefficients and flux values for chemicals with OELs was successful. Comparison of calculated K(p) values with data obtained earlier from other models showed that LFER predictions were comparable to those obtained by some previously published models, but the differences were much more significant for others. It seems reasonable to conclude that skin should not be characterised as a simple lipophilic barrier alone. Both lipophilic and polar pathways of permeation exist across the stratum corneum. It is feasible to predict skin notation on the basis of the LFER and other published

  5. Calculating the Motion and Direction of Flux Transfer Events with Cluster

    Science.gov (United States)

    Collado-Vega, Y. M.; Sibeck, D. G.

    2012-01-01

    For many years now, the interactions of the solar wind plasma with the Earth's magnetosphere has been one of the most important problems for Space Physics. It is very important that we understand these processes because the high-energy particles and also the solar wind energy that cross the magneto sphere could be responsible for serious damage to our technological systems. The solar wind is inherently a dynamic medium, and the particles interaction with the Earth's magnetosphere can be steady or unsteady. Unsteady interaction include transient processes like bursty magnetic reconnection. Flux Transfer Events (FTEs) are magnetopause signatures that usually occur during transient times of reconnection. They exhibit bipolar signatures in the normal component of the magnetic field. We use multi-point timing analysis to determine the orientation and motion of ux transfer events (FTEs) detected by the four Cluster spacecraft on the high-latitude dayside and flank magnetopause during 2002 and 2003. During these years, the distances between the Cluster spacecraft were greater than 1000 km, providing the tetrahedral configuration needed to select events and determine velocities. Each velocity and location will be examined in detail and compared to the velocities and locations determined by the predictions of the component and antiparallel reconnection models for event formation, orientation, motion, and acceleration for a wide range of spacecraft locations and solar wind conditions.

  6. Influences of various calculation options on heat, water and carbon fluxes determined by open- and closed-path eddy covariance methods

    Directory of Open Access Journals (Sweden)

    Masahito Ueyama

    2012-07-01

    Full Text Available Synthesis studies using multiple-site datasets for eddy covariance potentially contain uncertainties originating from the use of different flux calculation options, because the choice of the process for calculating half-hourly fluxes from raw time series data is left to individual researchers. In this study, we quantified the uncertainties associated with different flux calculation methods at seven sites. The differences in the half-hourly fluxes were small, generally of the order less than a few percentiles, but they were substantial for the annual fluxes. After the standardisation under current recommendations in the FLUXNET communities, we estimated the uncertainties in the annual fluxes associated with the flux calculations to be 2.6±2.7 W m−2 (the mean 90% ± confidence interval for the sensible heat flux, 72±37 g C m−2 yr−1 for net ecosystem exchange (NEE, 12±6% for evapotranspiration, 12±6% for gross primary productivity and 16±10% for ecosystem respiration. The self-heating correction strongly influenced the annual carbon balance (143±93 g C m−2 yr−1, not only for cold sites but also for warm sites, but did not fully account for differences between the open- and closed-path systems (413±189 g C m−2 yr−1.

  7. Calculation of heat fluxes induced by radio frequency heating on the actively cooled protections of ion cyclotron resonant heating (ICRH) and lower hybrid (LH) antennas in Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Ritz, G., E-mail: Guillaume.ritz@gmail.com [CEA, Institut de la Recherche sur la Fusion Magnétique (IRFM), 13108 Saint Paul-lez-Durance (France); Corre, Y., E-mail: Yann.corre@cea.fr [CEA, Institut de la Recherche sur la Fusion Magnétique (IRFM), 13108 Saint Paul-lez-Durance (France); Rault, M.; Missirlian, M. [CEA, Institut de la Recherche sur la Fusion Magnétique (IRFM), 13108 Saint Paul-lez-Durance (France); Portafaix, C. [ITER Organization, Route de Vinon-sur-Verdon, 13115 Saint Paul-lez-Durance (France); Martinez, A.; Ekedahl, A.; Colas, L.; Guilhem, D.; Salami, M.; Loarer, T. [CEA, Institut de la Recherche sur la Fusion Magnétique (IRFM), 13108 Saint Paul-lez-Durance (France)

    2013-10-15

    Highlights: ► The heat flux generated by radiofrequency (RF) heating was calculated using Tore Supra's heating antennas. ► The highest heat flux value, generated by ions accelerated in RF-rectified sheath potentials, was 5 MW/m{sup 2}. ► The heat flux on the limiters of antennas was in the same order of magnitude as that on the toroidal pumping limiter. -- Abstract: Lower hybrid current drive (LHCD) and ion cyclotron resonance heating (ICRH) are recognized as important auxiliary heating and current drive methods for present and next step fusion devices. However, these radio frequency (RF) systems generate a heat flux up to several MW/m{sup 2} on the RF antennas during plasma operation. This paper focuses on the determination of the heat flux deposited on the lateral protections of the RF antennas in Tore Supra. The heat flux was calculated by finite element method (FEM) using a model of the lateral protection. The FEM calculation was based on surface temperature measurements using infrared cameras monitoring the RF antennas. The heat flux related to the acceleration of electrons in front of the LHCD grills (LHCD active) and to the acceleration of ions in RF-rectified sheath potentials (ICRH active) were calculated. Complementary results on the heat flux related to fast ions (ICRH active with a relatively low magnetic field) are also reported in this paper.

  8. The Effects of Data Gaps on the Calculated Monthly Mean Maximum and Minimum Temperatures in the Continental United States: A Spatial and Temporal Study.

    Science.gov (United States)

    Stooksbury, David E.; Idso, Craig D.; Hubbard, Kenneth G.

    1999-05-01

    Gaps in otherwise regularly scheduled observations are often referred to as missing data. This paper explores the spatial and temporal impacts that data gaps in the recorded daily maximum and minimum temperatures have on the calculated monthly mean maximum and minimum temperatures. For this analysis 138 climate stations from the United States Historical Climatology Network Daily Temperature and Precipitation Data set were selected. The selected stations had no missing maximum or minimum temperature values during the period 1951-80. The monthly mean maximum and minimum temperatures were calculated for each station for each month. For each month 1-10 consecutive days of data from each station were randomly removed. This was performed 30 times for each simulated gap period. The spatial and temporal impact of the 1-10-day data gaps were compared. The influence of data gaps is most pronounced in the continental regions during the winter and least pronounced in the southeast during the summer. In the north central plains, 10-day data gaps during January produce a standard deviation value greater than 2°C about the `true' mean. In the southeast, 10-day data gaps in July produce a standard deviation value less than 0.5°C about the mean. The results of this study will be of value in climate variability and climate trend research as well as climate assessment and impact studies.

  9. DEMONR, Monte-Carlo Shielding Calculation for Neutron Flux and Neutron Spectra, Teaching Program

    International Nuclear Information System (INIS)

    Courtney, J. C.

    1987-01-01

    1 - Description of problem or function: DEMONR treats the behavior of neutrons in a slab shield. It is frequently used as a teaching tool. 2 - Method of solution: An unbiased Monte Carlo code calculates the number, energy, and direction of neutrons that penetrate or are reflected from a shield. 3 - Restrictions on the complexity of the problem: Only one shield may be used in each problem. The shield material may be a single element or a homogeneous mixture of elements with a single effective atomic weight. Only elastic scattering and neutron capture processes are allowed. The source is a point located on one face of the slab. It provides a cosine distribution of current. Monoenergetic or fission spectrum neutrons may be selected

  10. Calculation of the radial and axial flux and power distribution for a CANDU 6 reactor with both the MCNP6 and Serpent codes

    International Nuclear Information System (INIS)

    Hussein, M.S.; Bonin, H.W.; Lewis, B.J.

    2014-01-01

    The most recent versions of the Monte Carlo-based probabilistic transport code MCNP6 and the continuous energy reactor physics burnup calculation code Serpent allow for a 3-D geometry calculation accounting for the detailed geometry without unit-cell homogenization. These two codes are used to calculate the axial and radial flux and power distributions for a CANDU6 GENTILLY-2 nuclear reactor core with 37-element fuel bundles. The multiplication factor, actual flux distribution and power density distribution were calculated by using a tally combination for MCNP6 and detector analysis for Serpent. Excellent agreement was found in the calculated flux and power distribution. The Serpent code is most efficient in terms of the computational time. (author)

  11. Calculation of the radial and axial flux and power distribution for a CANDU 6 reactor with both the MCNP6 and Serpent codes

    Energy Technology Data Exchange (ETDEWEB)

    Hussein, M.S.; Bonin, H.W., E-mail: mohamed.hussein@rmc.ca, E-mail: bonin-h@rmc.ca [Royal Military College of Canada, Dept. of Chemistry and Chemical Engineering, Kingston, ON (Canada); Lewis, B.J., E-mail: Brent.Lewis@uoit.ca [Univ. of Ontario Inst. of Tech., Faculty of Energy Systems and Nuclear Science, Oshawa, ON (Canada)

    2014-07-01

    The most recent versions of the Monte Carlo-based probabilistic transport code MCNP6 and the continuous energy reactor physics burnup calculation code Serpent allow for a 3-D geometry calculation accounting for the detailed geometry without unit-cell homogenization. These two codes are used to calculate the axial and radial flux and power distributions for a CANDU6 GENTILLY-2 nuclear reactor core with 37-element fuel bundles. The multiplication factor, actual flux distribution and power density distribution were calculated by using a tally combination for MCNP6 and detector analysis for Serpent. Excellent agreement was found in the calculated flux and power distribution. The Serpent code is most efficient in terms of the computational time. (author)

  12. Numerical effects in the neutron flux calculations into WWER-type reactor vessels by Monte Carlo method

    International Nuclear Information System (INIS)

    Alvarez Cardona, C.M.; Rodriguez Gual, M.; Hernandez Valle, S.

    2001-01-01

    The calculation of neutron fluxes and fluence into reactor pressure vessel is a regulatory requirement in the stages of the design, operation and plan lifetime extension. The reactor vessel is considered a unique and non-substitutable part of the NPP that undergoes degradation. The main source of the aging comes from the fast neutron damage induced in the steel crystalline lattice. Due to the proximity of the core edge to the vessel inner surface; the vessel steel is exposed to high fast neutron fluence. The effect of this irradiation on the mechanical properties becomes more acute because of the impurities measured in the Russian steel alloys. In the present paper, a PC version of the Monte Carlo 3-D HEXANN-EVALU system is used for the estimation of the WWER reactor pressure vessel irradiation. It was selected on the basis of its flexible options that on the other hand need to be quantified in connection with the desired magnitudes. The parameters that control the random walk of neutrons as well as the efficiency increasing options included in the code are studied in order to identify their impact in the final results for fluxes and fluence in the reactor pressure vessel. As a result an optimal set of parameters is suggested. (authors)

  13. Validation of calculated tissue maximum ratio obtained from measured percentage depth dose (PPD) data for high energy photon beam ( 6 MV and 15 MV)

    International Nuclear Information System (INIS)

    Osei, J.E.

    2014-07-01

    During external beam radiotherapy treatments, high doses are delivered to the cancerous cell. Accuracy and precision of dose delivery are primary requirements for effective and efficiency in treatment. This leads to the consideration of treatment parameters such as percentage depth dose (PDD), tissue air ratio (TAR) and tissue phantom ratio (TPR), which show the dose distribution in the patient. Nevertheless, tissue air ratio (TAR) for treatment time calculation, calls for the need to measure in-air-dose rate. For lower energies, measurement is not a problem but for higher energies, in-air measurement is not attainable due to the large build-up material required for the measurement. Tissue maximum ratio (TMR) is the quantity required to replace tissue air ratio (TAR) for high energy photon beam. It is known that tissue maximum ratio (TMR) is an important dosimetric function in radiotherapy treatment. As the calculation methods used to determine tissue maximum ratio (TMR) from percentage depth dose (PDD) were derived by considering the differences between TMR and PDD such as geometry and field size, where phantom scatter or peak scatter factors are used to correct dosimetric variation due to field size difference. The purpose of this study is to examine the accuracy of calculated tissue maximum ratio (TMR) data with measured TMR values for 6 MV and 15 MV photon beam at Sweden Ghana Medical Centre. With the help of the Blue motorize water phantom and the Omni pro-Accept software, Pdd values from which TMRs are calculated were measured at 100 cm source-to-surface distance (SSD) for various square field sizes from 5x5 cm to 40x40 cm and depth of 1.5 cm to 25 cm for 6 MV and 15 MV x-ray beam. With the same field sizes, depths and energies, the TMR values were measured. The validity of the calculated data was determined by making a comparison with values measured experimentally at some selected field sizes and depths. The results show that; the reference depth of maximum

  14. MICROX-2: an improved two-region flux spectrum code for the efficient calculation of group cross sections

    International Nuclear Information System (INIS)

    Mathews, D.; Koch, P.

    1979-12-01

    The MICROX-2 code is an improved version of the MICROX code. The improvements allow MICROX-2 to be used for the efficient and rigorous preparation of broad group neutron cross sections for poorly moderated systems such as fast breeder reactors in addition to the well moderated thermal reactors for which MICROX was designed. MICROX-2 is an integral transport theory code which solves the neutron slowing down and thermalization equations on a detailed energy grid for two-region lattice cells. The fluxes in the two regions are coupled by transport corrected collision probabilities. The inner region may include two different types of grains (particles). Neutron leakage effects are treated by performing B 1 slowing down and P 0 plus DB 2 thermalization calculations in each region. Cell averaged diffusion coefficients are prepared with the Benoist cell homogenization prescription

  15. SREM - WRS system module number 3348 for calculating the removal flux due to point, line or disc sources

    International Nuclear Information System (INIS)

    Grimstone, M.J.

    1978-06-01

    The WRS Modular Programming System has been developed as a means by which programmes may be more efficiently constructed, maintained and modified. In this system a module is a self-contained unit typically composed of one or more Fortran routines, and a programme is constructed from a number of such modules. This report describes one WRS module, the function of which is to calculate the uncollided flux and first-collision source from a disc source in a slab geometry system, a line source at the centre of a cylindrical system or a point source at the centre of a spherical system. The information given in this manual is of use both to the programmer wishing to incorporate the module in a programme, and to the user of such a programme. (author)

  16. Total maximum allocated load calculation of nitrogen pollutants by linking a 3D biogeochemical-hydrodynamic model with a programming model in Bohai Sea

    Science.gov (United States)

    Dai, Aiquan; Li, Keqiang; Ding, Dongsheng; Li, Yan; Liang, Shengkang; Li, Yanbin; Su, Ying; Wang, Xiulin

    2015-12-01

    The equal percent removal (EPR) method, in which pollutant reduction ratio was set as the same in all administrative regions, failed to satisfy the requirement for water quality improvement in the Bohai Sea. Such requirement was imposed by the developed Coastal Pollution Total Load Control Management. The total maximum allocated load (TMAL) of nitrogen pollutants in the sea-sink source regions (SSRs) around the Bohai Rim, which is the maximum pollutant load of every outlet under the limitation of water quality criteria, was estimated by optimization-simulation method (OSM) combined with loop approximation calculation. In OSM, water quality is simulated using a water quality model and pollutant load is calculated with a programming model. The effect of changes in pollutant loads on TMAL was discussed. Results showed that the TMAL of nitrogen pollutants in 34 SSRs was 1.49×105 ton/year. The highest TMAL was observed in summer, whereas the lowest in winter. TMAL was also higher in the Bohai Strait and central Bohai Sea and lower in the inner area of the Liaodong Bay, Bohai Bay and Laizhou Bay. In loop approximation calculation, the TMAL obtained was considered satisfactory for water quality criteria as fluctuation of concentration response matrix with pollutant loads was eliminated. Results of numerical experiment further showed that water quality improved faster and were more evident under TMAL input than that when using the EPR method

  17. Studies in boiling heat transfer in two phase flow through tube arrays: nucleate boiling heat transfer coefficient and maximum heat flux as a function of velocity and quality of Freon-113

    International Nuclear Information System (INIS)

    Rahmani, R.

    1983-01-01

    The nucleate boiling heat-transfer coefficient and the maximum heat flux were studied experimentally as functions of velocity, quality and heater diameter for single-phase flow, and two-phase flow of Freon-113 (trichlorotrifluorethane). Results show: (1) peak heat flux: over 300 measured peak heat flux data from two 0.875-in. and four 0.625-in.-diameter heaters indicated that: (a) for pool boiling, single-phase and two-phase forced convection boiling the only parameter (among hysteresis, rate of power increase, aging, presence and proximity of unheated rods) that has a statistically significant effect on the peak heat flux is the velocity. (b) In the velocity range (0 0 position or the point of impact of the incident fluid) and the top (180 0 position) of the test element, respectively

  18. Limits of agricultural greenhouse gas calculators to predict soil N2O and CH4 fluxes in tropical agriculture

    DEFF Research Database (Denmark)

    Richards, Meryl; Metzel, Ruth; Chirinda, Ngonidzashe

    2016-01-01

    measurements from Africa, Asia, and Latin America. Estimates based on GHG calculators were greater than measurements in 70% of the cases, exceeding twice the measured flux nearly half the time. For 41% of the comparisons, calculators incorrectly predicted whether emissions would increase or decrease...

  19. Calculations of shape and stability of menisci in Czochralski growth with tables to determine meniscus heights, maximum heights and capillary constants

    International Nuclear Information System (INIS)

    Uelhoff, W.; Mika, K.

    1975-05-01

    The shape and stability of menisci occurring during Czochralski growth have been studied by means of numerical methods for the case of the free surface. The existence of minimal joining angles is shown, beyond which the growing crystal will separate from the melt. The dependence of the interface height on the joining angle for different crystal diameters was calculated. The maximum stable heights and the corresponding joining angles were determined as a function of crystal diameter. A method for measuring the capillary constant of the melt during Czochralski growth is proposed. The results are compared with known analytical approximations. Limitations of the applications caused by a finite crucible radius or low g values are pointed out. For practical use the following functions have been tabulated: 1) meniscus height in dependence on joining angle and crystal radius, 2) the radius-height-ratio in dependence on radius and angle for the calculation of the capillary constant, 3) the maximum stable height and the corresponding growth angle as a function of crystal radius. (orig.) [de

  20. Calculation of the dependence on the Moon and Mars γ-quantum flux on the relief and distance to the surface

    International Nuclear Information System (INIS)

    Surkov, Yu.A.; Noskaleva, L.P.; Manvelyan, O.S.

    1978-01-01

    The dependence of the gamma quantum flux on height over a planet, area over which the gamma radiation is ''collected'', and surface relief is calculated. The effect of the planet atmosphere on detected gamma radiation is considered. If the specific power of gamma-quantum sources is known, the results obtained allow to determine for any height over a planet the gamma-quantum flux due to the planet rock and its atmosphere radiations, as well as the detector spatial resolution

  1. Test of Mie-based single-scattering properties of non-spherical dust aerosols in radiative flux calculations

    International Nuclear Information System (INIS)

    Fu, Q.; Thorsen, T.J.; Su, J.; Ge, J.M.; Huang, J.P.

    2009-01-01

    We simulate the single-scattering properties (SSPs) of dust aerosols with both spheroidal and spherical shapes at a wavelength of 0.55 μm for two refractive indices and four effective radii. Herein spheres are defined by preserving both projected area and volume of a non-spherical particle. It is shown that the relative errors of the spheres to approximate the spheroids are less than 1% in the extinction efficiency and single-scattering albedo, and less than 2% in the asymmetry factor. It is found that the scattering phase function of spheres agrees with spheroids better than the Henyey-Greenstein (HG) function for the scattering angle range of 0-90 o . In the range of ∼90-180 o , the HG function is systematically smaller than the spheroidal scattering phase function while the spherical scattering phase function is smaller from ∼90 o to 145 o but larger from ∼145 o to 180 o . We examine the errors in reflectivity and absorptivity due to the use of SSPs of equivalent spheres and HG functions for dust aerosols. The reference calculation is based on the delta-DISORT-256-stream scheme using the SSPs of the spheroids. It is found that the errors are mainly caused by the use of the HG function instead of the SSPs for spheres. By examining the errors associated with the delta-four- and delta-two-stream schemes using various approximate SSPs of dust aerosols, we find that the errors related to the HG function dominate in the delta-four-stream results, while the errors related to the radiative transfer scheme dominate in the delta-two-stream calculations. We show that the relative errors in the global reflectivity due to the use of sphere SSPs are always less than 5%. We conclude that Mie-based SSPs of non-spherical dust aerosols are well suited in radiative flux calculations.

  2. Development of a computer code for neutronic calculations of a hexagonal lattice of nuclear reactor using the flux expansion nodal method

    Directory of Open Access Journals (Sweden)

    Mohammadnia Meysam

    2013-01-01

    Full Text Available The flux expansion nodal method is a suitable method for considering nodalization effects in node corners. In this paper we used this method to solve the intra-nodal flux analytically. Then, a computer code, named MA.CODE, was developed using the C# programming language. The code is capable of reactor core calculations for hexagonal geometries in two energy groups and three dimensions. The MA.CODE imports two group constants from the WIMS code and calculates the effective multiplication factor, thermal and fast neutron flux in three dimensions, power density, reactivity, and the power peaking factor of each fuel assembly. Some of the code's merits are low calculation time and a user friendly interface. MA.CODE results showed good agreement with IAEA benchmarks, i. e. AER-FCM-101 and AER-FCM-001.

  3. Continuous-energy adjoint flux and perturbation calculation using the iterated fission probability method in Monte-Carlo code TRIPOLI-4 and underlying applications

    International Nuclear Information System (INIS)

    Truchet, G.; Leconte, P.; Peneliau, Y.; Santamarina, A.

    2013-01-01

    The first goal of this paper is to present an exact method able to precisely evaluate very small reactivity effects with a Monte Carlo code (<10 pcm). it has been decided to implement the exact perturbation theory in TRIPOLI-4 and, consequently, to calculate a continuous-energy adjoint flux. The Iterated Fission Probability (IFP) method was chosen because it has shown great results in some other Monte Carlo codes. The IFP method uses a forward calculation to compute the adjoint flux, and consequently, it does not rely on complex code modifications but on the physical definition of the adjoint flux as a phase-space neutron importance. In the first part of this paper, the IFP method implemented in TRIPOLI-4 is described. To illustrate the efficiency of the method, several adjoint fluxes are calculated and compared with their equivalent obtained by the deterministic code APOLLO-2. The new implementation can calculate angular adjoint flux. In the second part, a procedure to carry out an exact perturbation calculation is described. A single cell benchmark has been used to test the accuracy of the method, compared with the 'direct' estimation of the perturbation. Once again the method based on the IFP shows good agreement for a calculation time far more inferior to the 'direct' method. The main advantage of the method is that the relative accuracy of the reactivity variation does not depend on the magnitude of the variation itself, which allows us to calculate very small reactivity perturbations with high precision. It offers the possibility to split reactivity contributions on both isotopes and reactions. Other applications of this perturbation method are presented and tested like the calculation of exact kinetic parameters (βeff, Λeff) or sensitivity parameters

  4. Two-dimensional DORT discrete ordinates X-Y geometry neutron flux calculations for the Halden Heavy Boiling Water Reactor core configurations

    Energy Technology Data Exchange (ETDEWEB)

    Slater, C.O.

    1990-07-01

    Results are reported for two-dimensional discrete ordinates, X-Y geometry calculations performed for seven Halden Heavy Boiling Water Reactor core configurations. The calculations were performed in support of an effort to reassess the neutron fluence received by the reactor vessel. Nickel foil measurement data indicated considerable underprediction of fluences by the previously used multigroup removal- diffusion method. Therefore, calculations by a more accurate method were deemed appropriate. For each core configuration, data are presented for (1) integral fluxes in the core and near the vessel wall, (2) neutron spectra at selected locations, (3) isoflux contours superimposed on the geometry models, (4) plots of the geometry models, and (5) input for the calculations. The initial calculations were performed with several mesh sizes. Comparisons of the results from these calculations indicated that the uncertainty in the calculated fluxes should be less than 10%. However, three-dimensional effects (such as axial asymmetry in the fuel loading) could contribute to much greater uncertainty in the calculated neutron fluxes. 7 refs., 22 figs., 11 tabs.

  5. Contribution to the qualification of calculation methods of reactivity and of flux and power distributions in nuclear pressurized water reactor cores

    International Nuclear Information System (INIS)

    Abit, K.

    1984-01-01

    The last stage of the creation computer methods and calculations consists of verifying the running and qualifying the results obtained. The work of the present thesis consisted of improving a coupling method between radial and axial phenomena in a PWR core, refering to three-dimensional calculations, while ensuring a perfect coherence between the programmed physical models. The calculation results have been compared to measurements of reactivity and of flux distributions realized during start-up tests. Thus, the methods have been applied to the calculation of the evolution of a burnable poison (gadolinium) in view of operation in long campaign. 13 refs [fr

  6. A novel approach to calculate inductance and analyze magnetic flux density of helical toroidal coil applicable to Superconducting Magnetic Energy Storage systems (SMES)

    International Nuclear Information System (INIS)

    Alizadeh Pahlavani, M.R.; Shoulaie, A.

    2010-01-01

    In this paper, formulas are proposed for the self and mutual inductance calculations of the helical toroidal coil (HTC) by the direct and indirect methods at superconductivity conditions. The direct method is based on the Neumann's equation and the indirect approach is based on the toroidal and the poloidal components of the magnetic flux density. Numerical calculations show that the direct method is more accurate than the indirect approach at the expense of its longer computational time. Implementation of some engineering assumptions in the indirect method is shown to reduce the computational time without loss of accuracy. Comparison between the experimental measurements and simulated results for inductance, using the direct and the indirect methods indicates that the proposed formulas have high reliability. It is also shown that the self inductance and the mutual inductance could be calculated in the same way, provided that the radius of curvature is >0.4 of the minor radius, and that the definition of the geometric mean radius in the superconductivity conditions is used. Plotting contours for the magnetic flux density and the inductance show that the inductance formulas of helical toroidal coil could be used as the basis for coil optimal design. Optimization target functions such as maximization of the ratio of stored magnetic energy with respect to the volume of the toroid or the conductor's mass, the elimination or the balance of stress in some coordinate directions, and the attenuation of leakage flux could be considered. The finite element (FE) approach is employed to present an algorithm to study the three-dimensional leakage flux distribution pattern of the coil and to draw the magnetic flux density lines of the HTC. The presented algorithm, due to its simplicity in analysis and ease of implementation of the non-symmetrical and three-dimensional objects, is advantageous to the commercial software such as ANSYS, MAXWELL, and FLUX. Finally, using the

  7. Calculations of the thermal and fast neutron fluxes in the Syrian miniature neutron source reactor using the MCNP-4C code.

    Science.gov (United States)

    Khattab, K; Sulieman, I

    2009-04-01

    The MCNP-4C code, based on the probabilistic approach, was used to model the 3D configuration of the core of the Syrian miniature neutron source reactor (MNSR). The continuous energy neutron cross sections from the ENDF/B-VI library were used to calculate the thermal and fast neutron fluxes in the inner and outer irradiation sites of MNSR. The thermal fluxes in the MNSR inner irradiation sites were also measured experimentally by the multiple foil activation method ((197)Au (n, gamma) (198)Au and (59)Co (n, gamma) (60)Co). The foils were irradiated simultaneously in each of the five MNSR inner irradiation sites to measure the thermal neutron flux and the epithermal index in each site. The calculated and measured results agree well.

  8. User's guide for SLWDN9, a code for calculating flux-surfaced-averaging of alpha densities, currents, and heating in non-circular tokamaks

    International Nuclear Information System (INIS)

    Hively, L.M.; Miley, G.M.

    1980-03-01

    The code calculates flux-surfaced-averaged values of alpha density, current, and electron/ion heating profiles in realistic, non-circular tokamak plasmas. The code is written in FORTRAN and execute on the CRAY-1 machine at the Magnetic Fusion Energy Computer Center

  9. Thermal neutron flux distribution in the ET R R-1 reactor core as experimentally measured and theoretically calculated by the code triton

    Energy Technology Data Exchange (ETDEWEB)

    Imam, M [National center for nuclear safety and radiation control, atomic energy authority, Cairo, (Egypt)

    1995-10-01

    Thermal neutron flux distributions that were measured earlier at the ET-R R-1 reactor are compared with those calculated by the three dimensional diffusion code Triton. This comparison was made for the horizontal and vertical flux distributions. The horizontal thermal flux distributions considered in this comparison were along the core diagonals at two planes of different heights from core bottom, where one at a level passing through the control rod at core center and the other at a level below this control rod. In the meantime all the control rods were taken into consideration. The effect of the existence of a water cavity inside the core as well as the influence of the control rods on the thermal flux are illustrated in this work. The vertical thermal flux distributions considered in the comparison were at two positions in core namely; one along the core height the horizontal reactor power distribution along the core height and the horizontal reactor power distribution along the core diagonal as calculated by the code Triton are also given this work. 8 figs., 1 tab.

  10. On the use of flux limiters in the discrete ordinates method for 3D radiation calculations in absorbing and scattering media

    International Nuclear Information System (INIS)

    Godoy, William F.; DesJardin, Paul E.

    2010-01-01

    The application of flux limiters to the discrete ordinates method (DOM), S N , for radiative transfer calculations is discussed and analyzed for 3D enclosures for cases in which the intensities are strongly coupled to each other such as: radiative equilibrium and scattering media. A Newton-Krylov iterative method (GMRES) solves the final systems of linear equations along with a domain decomposition strategy for parallel computation using message passing libraries in a distributed memory system. Ray effects due to angular discretization and errors due to domain decomposition are minimized until small variations are introduced by these effects in order to focus on the influence of flux limiters on errors due to spatial discretization, known as numerical diffusion, smearing or false scattering. Results are presented for the DOM-integrated quantities such as heat flux, irradiation and emission. A variety of flux limiters are compared to 'exact' solutions available in the literature, such as the integral solution of the RTE for pure absorbing-emitting media and isotropic scattering cases and a Monte Carlo solution for a forward scattering case. Additionally, a non-homogeneous 3D enclosure is included to extend the use of flux limiters to more practical cases. The overall balance of convergence, accuracy, speed and stability using flux limiters is shown to be superior compared to step schemes for any test case.

  11. A PC-program for the calculation of neutron flux and element contents using the ki-method of neutron activation analysis

    International Nuclear Information System (INIS)

    Boulyga, E.G.; Boulyga, S.F.

    2000-01-01

    A computer program is described, which calculates the induced activities of isotopes after irradiation in a known neutron field, thermal and epithermal neutron fluxes from the measured induced activities and from nuclear data of 2-4 monitor nuclides as well as the element concentrations in samples irradiated together with the monitors. The program was developed for operation in Windows 3.1 (or higher). The application of the program for neutron activation analysis allows to simplify the experimental procedure and to reduce the time. The program was tested by measuring different types of standard reference materials at the FRJ-2 (Research Centre, Juelich, Germany) and Triga (University Mainz, Germany) reactors. Comparison of neutron flux parameters calculated by this program with those calculated by a VAX program developed at the Research Centre, Juelich was done. The results of testing seem to be satisfactory. (author)

  12. Calculation of the flux attenuation and multiple scattering correction factors in time of flight technique for double differential cross section measurements

    International Nuclear Information System (INIS)

    Martin, G.; Coca, M.; Capote, R.

    1996-01-01

    Using Monte Carlo method technique , a computer code which simulates the time of flight experiment to measure double differential cross section was developed. The correction factor for flux attenuation and multiple scattering, that make a deformation to the measured spectrum, were calculated. The energy dependence of the correction factor was determined and a comparison with other works is shown. Calculations for Fe 56 at two different scattering angles were made. We also reproduce the experiment performed at the Nuclear Analysis Laboratory for C 12 at 25 celsius degree and the calculated correction factor for the is measured is shown. We found a linear relation between the scatter size and the correction factor for flux attenuation

  13. Measurement and calculation of spatial and energetic neutron flux in the IEA-R1 reactor core

    International Nuclear Information System (INIS)

    Bittelli, U.D.

    1988-01-01

    This work presents spatial and energetic flux distribution measured in the IEA-R1 reactor core. The thermal neutron flux was measured by gold activation foils (bare and covered with cadmium) in the fuel element number 108 (reaction: 197 Au(n,γ) 198 Au) at 451W overall reactor power. The fast neutron flux was measured by indium activation foils (reaction: 115 In(n,n') 115m In) in the fuel elements number 94 at 4510W overall reactor power. The neutron energy spectrum was adjusted by SAND II code with the data produced by the irradiation of seven activation detectors in the fuel element number 94 at 4510 W overall reactor power. The following reactions were used: 58 Fe(n,γ) 59 Fe, 232 Th(n,γ) 233 Th, 197 Au(n,γ) 198 Au, 59 Co(n,γ) 60 Co, 54 Fe(n,p) 54 Mn, 24 Mg(n,p) 24 Na, 47 Ti(n,p) 47 Sc, 48 Ti(n,p) 48 Sc and 115 In(n,n') 115m In. The experimental results compared to those obtained by CITATION (spatial distribution flux) and HAMMER (energetic distribution flux) code, showed good agreement. The results presented in this work are a good contribution for a better knowledge of spatial and energetic neutron flux distribution in the IEA-R1 reactor core, besides that the experimental procedure is easily applicable to another situations. (autor) [pt

  14. A field studies and modeling approach to develop organochlorine pesticide and PCB total maximum daily load calculations: Case study for Echo Park Lake, Los Angeles, CA

    Energy Technology Data Exchange (ETDEWEB)

    Vasquez, V.R., E-mail: vrvasquez@ucla.edu [Environmental Science and Engineering Program, University of California, Los Angeles, Los Angeles, CA 90095-1496 (United States); Curren, J., E-mail: janecurren@yahoo.com [Environmental Science and Engineering Program, University of California, Los Angeles, Los Angeles, CA 90095-1496 (United States); Lau, S.-L., E-mail: simlin@ucla.edu [Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, CA 90095-1496 (United States); Stenstrom, M.K., E-mail: stenstro@seas.ucla.edu [Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, CA 90095-1496 (United States); Suffet, I.H., E-mail: msuffet@ucla.edu [Environmental Science and Engineering Program, University of California, Los Angeles, Los Angeles, CA 90095-1496 (United States)

    2011-09-01

    Echo Park Lake is a small lake in Los Angeles, CA listed on the USA Clean Water Act Section 303(d) list of impaired water bodies for elevated levels of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in fish tissue. A lake water and sediment sampling program was completed to support the development of total maximum daily loads (TMDL) to address the lake impairment. The field data indicated quantifiable levels of OCPs and PCBs in the sediments, but lake water data were all below detection levels. The field sediment data obtained may explain the contaminant levels in fish tissue using appropriate sediment-water partitioning coefficients and bioaccumulation factors. A partition-equilibrium fugacity model of the whole lake system was used to interpret the field data and indicated that half of the total mass of the pollutants in the system are in the sediments and the other half is in soil; therefore, soil erosion could be a significant pollutant transport mode into the lake. Modeling also indicated that developing and quantifying the TMDL depends significantly on the analytical detection level for the pollutants in field samples and on the choice of octanol-water partitioning coefficient and bioaccumulation factors for the model. - Research highlights: {yields} Fugacity model using new OCP and PCB field data supports lake TMDL calculations. {yields} OCP and PCB levels in lake sediment were found above levels for impairment. {yields} Relationship between sediment data and available fish tissue data evaluated. {yields} Model provides approximation of contaminant sources and sinks for a lake system. {yields} Model results were sensitive to analytical detection and quantification levels.

  15. On the kinetics of the aluminum-water reaction during exposure in high-heat flux test loops: 1, A computer program for oxidation calculations

    International Nuclear Information System (INIS)

    Pawel, R.E.

    1988-01-01

    The ''Griess Correlation,'' in which the thickness of the corrosion product on aluminum alloy surfaces is expressed as a function of time and temperature for high-flux-reactor conditions, was rewritten in the form of a simple, general rate equation. Based on this equation, a computer program that calculates oxide-layer thickness for any given time-temperature transient was written. 4 refs

  16. Dosimetry work and calculations in connection with the irradiation of large devices in the high flux materials testing reactor BR2

    International Nuclear Information System (INIS)

    De Raedt, C.; Leenders, L.; Tourwe, H.; Farrar, H. IV.

    1982-01-01

    For about fifteen years the high flux reactor BR2 has been involved in the testing of fast reactor fuel pins. In order to simulate the fast reactor neutron environment most devices are irradiated under cadmium screen, cutting off the thermal flux component. Extensive neutronic calculations are performed to help the optimization of the fuel bundle design. The actual experiments are preceded by irradiations of their mock-ups in BR02, the zero power model of BR2. The mock-up irradiations, supported by supplementary calculations, are performed for the determination of the main neutronic characteristics of the irradiation proper in BR2 and for the determination of the corresponding operation data. At the end of the BR2 irradiation, the experimental results, such as burn-ups, neutron fluences, helium production in the fuel pin claddings, etc. are correlated by neutronic calculations in order to examine the consistency of the post-irradiation results and to validate the routine calculation procedure and cross-section data employed. A comparison is made in this paper between neutronic calculation results and some post-irradiation data for MOL 7D, a cadmium screened sodium cooled loop containing a nineteen fuel pin bundle

  17. Model for Calculating the Maximum Permissible Tax Burden in Amur Region in the Context of the Implementation of Largest Investment Projects

    Directory of Open Access Journals (Sweden)

    Viktor Vladimirovich Ivanov

    2018-03-01

    Full Text Available According to the Government of the Amur region, tax collection from the implementation of investment projects was tightly controlled from 2016, because of the region’s high debt load. This situation requires assessing the acceptability of the level of regional tax burden for business entities. The purpose of this paper is to develop a model for assessing the level of regional tax burden, taking into account the implementation of the largest investment projects in the territory. The main hypothesis of this paper consists, firstly, in the existence of tax burden, which is acceptable for regional economic entities. Secondly, this level of tax burden ensures the growth of fiscal revenues for the budget. We proposed to assess the level of tax burden on the basis of a three-factor linear heterogeneous production function, taking into account certain economic indicators of the largest investment project — “Construction of the Vostochny Сosmodrome”. The concept of the Laffer curve serves as a research methodology. According to our calculations, since 2011, the tax burden in the Amur region has a clear tendency to increase. At the same time, from 2007 to the present time, the tax burden exceeds its maximum permissible value and constrains economic growth in the region. If this trend continues, by 2018 tax revenues from the territory of the region will be on the verge of reduction. The obtained results show that the tax burden in the Amur region in 2017 is 16.81 %. To stimulate the activities of economic entities in the region, and as a consequence, to increase the GRP of the region, it is necessary to reduce the level of taxation by 4.77 percentage points (to 12.04 %, Thus, the current economic situation requires to change the course of regional taxation policy to a more liberal attitude towards taxpayers. Otherwise, soon the budget of the Amur region may fail to receive a part of revenues, as the region’s economic entities will not be able to

  18. Numerical effects in the neutron flux calculations into WWER-type reactor vessels using the Monte Carlo

    International Nuclear Information System (INIS)

    Garcia Yip, F.; Alvarez Cardona, C.M.; Rodriguez Gual, M.; Hernandez Valle, S.

    2000-01-01

    In the present paper, a PC version of the Monte Carlo 3-D HEXANN-EVALU system is used for the estimation of the WWER reactor pressure vessel irradiation. It was selected on the basis of its flexible options that, however, need to be quantified in connection with the desired magnitudes. The parameters that control the random walk of neutrons, as well as the efficiency increasing options included in the code, are studied in order to identify their impact on the final results for fluxes and fluence in the reactor pressure vessel. As a result, an optimal set of parameters is suggested. (authors)

  19. Experimental data and calculation studies of critical heat fluxes at local disturbances of geometry of WWER fuel assemblies

    International Nuclear Information System (INIS)

    Kobzar, L.L.; Oleksyuk, D.A.

    2001-01-01

    The results of experiments executed in RRC 'Kurchatov Institute on the thermal-physical critical facility SVD are presented herein. The experiments modeled the drawing of two fuel rods to each other till touching WWER-1000 reactor in FA. The experimental model is a 7-rod bundle with the heated length of 1 m. The primary goal of experiments was to acquire the quantitative factors of the reduction in the critical heat fluxes as contrasted to the basic model (without disturbances of FA geometry) at the expense of local disturbance of a rod bundle geometry. As it follows from the experiment, the effect of decrease of the critical heat rate depends on combination of regime parameters and it makes 15% in the most unfavorable case (Authors)

  20. EURISOL-DS Multi-MWatt Hg Target: Neutron flux and fission rate calculations for the MAFF configuration

    CERN Document Server

    Romanets, Y; Vaz, P; Herrera-Martinez, A; Kadi, Y; Kharoua, C; Lettry, J; Lindroos, M

    The EURISOL (The EURopean Isotope Separation On-Line Radioactive Ion Beam) project aims at producing high intensity radioactive ion beams produced by neutron induced fission on a fissile target (235U) surrounding a liquid mercury converter. A proton beam of 1 GeV and 4 MW impinges on the Hg converter generating by spallation reactions high neutron fluxes. In this work the state-of-the-art Monte Carlo codes MCNPX and FLUKA were used to assess the neutronics performance of the system which geometry, inspired from the MAFF concept, allows a versatile manipulation of the fission targets. The objective of the study was to optimize the geometry of the system and the materials used in the fuel and reflector elements of the system, in order to achieve the highest possible fission rate.

  1. A new formulation of the pseudocontinuous synthesis algorithm applied to the calculation of neutronic flux in PWR reactors

    International Nuclear Information System (INIS)

    Silva, C.F. da.

    1979-09-01

    A new formulation of the pseudocontinuous synthesis algorithm is applied to solve the static three dimensional two-group diffusion equations. The new method avoids ambiguities regarding interface conditions, which are inherent to the differential formulation, by resorting to the finite difference version of the differential equations involved. A considerable number of input/output options, possible core configurations and control rod positioning are implemented resulting in a very flexible as well as economical code to compute 3D fluxes, power density and reactivities of PWR reactors with partial inserted control rods. The performance of this new code is checked against the IAEA 3D Benchmark problem and results show that SINT3D yields comparable accuracy with much less computing time and memory required than in conventional 3D finite differerence codes. (Author) [pt

  2. Absolute on-line in-pile measurement of neutron fluxes using self-powered neutron detectors: Monte Carlo sensitivity calculations

    Energy Technology Data Exchange (ETDEWEB)

    Vermeeren, L. [SCK/CEN, B-2400 Mol (Belgium)

    2001-07-01

    Self-powered neutron detectors (SPND) are well suited to monitor continuously the neutronic operating conditions of driver fuel of research reactors and to follow its burnup evolution. This is of particular importance when advanced or new MTR fuel designs need to be qualified. We have developed a detailed MCNP-4B based Monte Carlo approach for the calculation of neutron sensitivities of SPNDs. Results for the neutron sensitivity of a Rh SPND are in excellent agreement with experimental data recently obtained at the BR2 research reactor. A critical comparison of the Monte Carlo results with results from standard analytical methods reveals an important deficiency of the analytical methods in the description of the electron transport efficiency. Our calculation method allows a reliable on-line determination of the absolute in-pile neutron flux. (author)

  3. Absolute on-line in-pile measurement of neutron fluxes using self-powered neutron detectors: Monte Carlo sensitivity calculations

    International Nuclear Information System (INIS)

    Vermeeren, L.

    2001-01-01

    Self-powered neutron detectors (SPND) are well suited to monitor continuously the neutronic operating conditions of driver fuel of research reactors and to follow its burnup evolution. This is of particular importance when advanced or new MTR fuel designs need to be qualified. We have developed a detailed MCNP-4B based Monte Carlo approach for the calculation of neutron sensitivities of SPNDs. Results for the neutron sensitivity of a Rh SPND are in excellent agreement with experimental data recently obtained at the BR2 research reactor. A critical comparison of the Monte Carlo results with results from standard analytical methods reveals an important deficiency of the analytical methods in the description of the electron transport efficiency. Our calculation method allows a reliable on-line determination of the absolute in-pile neutron flux. (author)

  4. Development of a computer code for the calculation of stellar evolution, with applications to solar models of low neutrino flux

    International Nuclear Information System (INIS)

    Newman, M.J.

    1975-01-01

    A general purpose computer code has been developed to allow the detailed calculation of evolutionary sequences of hydrostatic stellar models under many circumstances of astrophysical interest. Solution of the structure equations is by the relaxation technique throughout the star without explicit integration and fitting for the outer envelope. A new matrix method of algebraic solution of the finite difference equations is employed, together with a modification of that method for the treatment of the central boundary condition. The method is easily adapted to an integration technique for the construction of initial models. It is demonstrated how the matrix technique allows determination of the derivatives of the matching condition in a single integration. The modification of the code for the purpose of detailed evolutionary calculation of a portion of a star is presented through the modification of the boundary conditions to represent in simple fashion the remainder of the star. Stability and convergence problems encountered in earlier versions of the code are discussed, as well as the techniques used to overcome them. The structure of the code is highly modular, so as to easily accommodate changes in input physics. Following the ad hoc suggestion of Clayton (1974), the calculations were repeated with the high energy tail of the Maxwell distribution of relative ion velocities depleted by various amounts. As an example of the technique of evolving a portion of a star a second application to the solar neutrino problem is made

  5. Calculation of the fine neutron flux distribution in the multi-zone reactor cell by spherical harmonics method; Odredjivanje fine raspodele fluksa u viseregionalnoj celiji reaktora primenom metode sfernih harmonika

    Energy Technology Data Exchange (ETDEWEB)

    Jockovic, M; Stefanovic, D; Barucija, M [The Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1965-07-01

    This presentation contains development and application of method for calculating the neutron flux distribution by P{sub 3} approximation. A computer codes was developed for the ZUSE-Z-23 computer. Some typical results are included.

  6. Determination of hot spot factors for calculation of the maximum fuel temperatures in the core thermal and hydraulic design of HTTR

    International Nuclear Information System (INIS)

    Maruyama, Soh; Yamashita, Kiyonobu; Fujimoto, Nozomu; Murata, Isao; Shindo, Ryuichi; Sudo, Yukio

    1988-12-01

    The Japan Atomic Energy Research Institute (JAERI) has been designing the High Temperature Engineering Test Reactor (HTTR), which is 30 MW in thermal power, 950deg C in reactor outlet coolant temperature and 40 kg/cm 2 G in primary coolant pressure. This report summarizes the hot spot factors and their estimated values used in the evaluation of the maximum fuel temperature which is one of the major items in the core thermal and hydraulic design of the HTTR. The hot spot factors consist of systematic factors and random factors. They were identified and their values adopted in the thermal and hydraulic design were determined considering the features of the HTTR. (author)

  7. Activation of the JET vacuum vessel: a comparison of calculated with measured gamma-radiation fluxes and dose rates

    International Nuclear Information System (INIS)

    Jarvis, O.N.; Sadler, G.; Avery, A.; Verschuur, K.A.

    1988-01-01

    The gamma-radiation dose-rates inside the JET vacuum vessel due to induced radioactivity were measured at intervals throughout the 1986 period of operation, and the decay gamma energy spectrum was measured during the subsequent lengthy shutdown. The dose-rates were found to be in good agreement with values calculated using the neutron yield records compiled from the time-resolved neutron yield monitor responses for individual discharges. This result provides strong support for the reliability of the neutron yield monitor calibration. (author)

  8. Evaluation on activation activity of reactor in JRR-2 applied 3 dimensional model to neutron flux calculation

    International Nuclear Information System (INIS)

    Kishimoto, Katsumi; Arigane, Kenji

    2005-03-01

    Revaluation to activation activity of reactor evaluated at the notification of dismantling submitted in 1997 was carried out in JRR-2 where decommissioning was advanced now. In the revaluation, estimation accuracy on neutron streaming at various horizontal experimental tubes was improved by applying 3 dimensional model to neutron transport calculation that had been carried out by 2 dimensional model, and calculating with TORT. As the result, excessive overestimations on horizontal experimental tubes and biological shield that had greatly contributed to total activation activity in evaluation at the notification of dismantling was revised, sum of their activation activities in the revaluation decreased to 1/18 (case after 1 year from the permanent shutdown of reactor) of evaluation at the notification of dismantling, and the structural materials that had large activation activity were changed. By the above, it was shown that introducing 3 dimensional model was effective in evaluation on activation activity of the research reactor that had a lot of various experimental tubes. Total activation activity of reactor by the revaluation depended on control rods, thermal shield plates and horizontal experimental tubes, and the value after 1 year from the permanent shutdown of reactor was 1.9x10 14 Bq. (author)

  9. RIFIFI: Analytical calculation method of the critical condition and flux in a varied regions reactor by two-group theory and one dimension developed for the Mercury-Ferranti computer; Rififi: methode de calcul analytique de la condition critique et des flux d'une pile a regions variees en theorie a deux groupes et a une dimension programmee pour le calculateur electronique Mercury (Ferranti)

    Energy Technology Data Exchange (ETDEWEB)

    Amouyal, A; Bacher, P; Lago, B; Mengin, F L; Parker, E [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    The calculation method presented in this report has been developed for the Mercury-Ferranti computer of the C.E.N.S. This calculation method allows to resolve the diffusion equations and continuity equations of flux and flow with two groups of neutrons and one dimension in spherical, cylindrical and linear geometry. In the cylindrical and linear configurations, we can take the height and extrapolated radius into account. The critical condition can be realised by varying linearly one or more parameters: k{sub {infinity}}, medium frontier, height or extrapolated radius. The calculation method enables also to calculate the flux, adjoint flux and various integrals. In the first part, it explains what is needed to know before using the method: data presentation, method possibilities, results presentation with some information about restrictions, accuracy and calculation time. The complete formulation of the calculation method is given in the second part. (M.P.)

  10. Experimental study of angular neutron flux spectra on a slab surface to assess nuclear data and calculational methods for a fusion reactor design

    International Nuclear Information System (INIS)

    Oyama, Yukio

    1988-06-01

    This paper presents an experimental approach to interpret the results of integral experiments for fusion neutronics research. The measurement is described of the angular neutron flux on a restricted area of slab assemblies with D-T neutron bombardment by using the time-of-flight (TOF) method with an NE213 neutron detector over an energy range from 0.05 to 15 MeV. A two bias scheme was developed to obtain an accurate detection efficiency over a wide energy range. The detector-collimator response function was introduced to define the restricted surface area and to determine the effective measured area. A series of measurements of the angular neutron flux on slabs of fusion blanket materials, i.e., Be, C, and Li 2 O, as functions of neutron leaking angle and slab thickness have been performed to examine neutron transport characteristics in bulk materials. The calculational analyses of the experimental results have been also carried out by using Monte Carlo neutron transport codes, i.e., MORSE-DD and MCNP. The existing nuclear data files, i.e., JENDL-3PR1, -3PR2, ENDF/B-IV and -V were tested by comparing with the experimental results. From the comparisons, the data on C and 7 Li in the present files are fairly sufficient. Those on beryllium, however, is insufficient for the estimation of high threshold reactions such as tritium production in a fusion reactor blanket design. It is also found that the total and elastic cross sections are more important for accurate predictions of neutronic parameters at deep position. The comparisons between the measured and calculated results provide information to understand the results of the previous integral experiments for confirmation of accuracy of fusion reactor designs. (author)

  11. Analysis of the two-fluid model and the drift-flux model for numerical calculation of two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Munkejord, Svend Tollak

    2006-05-11

    This thesis analyses models for two-phase flows and methods for the numerical resolution of these models. It is therefore one contribution to the development of reliable design tools for multiphase applications. Such tools are needed and expected by engineers in a range of fields, including in the oil and gas industry. The approximate Riemann solver of Roe has been studied. Roe schemes for three different two-phase flow models have been implemented in the framework of a standard numerical algorithm for the solution of hyperbolic conservation laws. The schemes have been analysed by calculation of benchmark tests from the literature, and by comparison with each other. A Roe scheme for the four-equation one-pressure two-fluid model has been implemented, and a second-order extension based on wave decomposition and flux-difference splitting was shown to work well and to give improved results compared to the first-order scheme. The convergence properties of the scheme were tested on smooth and discontinuous solutions. A Roe scheme has been proposed for a five-equation two-pressure two-fluid model with pressure relaxation. The use of analogous numerical methods for the five-equation and four-equation models allowed for a direct comparison of a method with and without pressure relaxation. Numerical experiments demonstrated that the two approaches converged to the same results, but that the five-equation pressure-relaxation method was significantly more dissipative, particularly for contact discontinuities. Furthermore, even though the five-equation model with instantaneous pressure relaxation has real eigenvalues, the calculations showed that it produced oscillations for cases where the four-equation model had complex eigenvalues. A Roe scheme has been constructed for the drift-flux model with general closure laws. For the case of the Zuber-Findlay slip law describing bubbly flows, the Roe matrix is completely analytical. Hence the present Roe scheme is more efficient than

  12. Aerosol-Induced Radiative Flux Changes Off the United States Mid-Atlantic Coast: Comparison of Values Calculated from Sunphotometer and In Situ Data with Those Measured by Airborne Pyranometer

    Science.gov (United States)

    Russell, P. B.; Livingston, J. M.; Hignett, P.; Kinne, S.; Wong, J.; Chien, A.; Bergstrom, R.; Durkee, P.; Hobbs, P. V.

    2000-01-01

    The Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) measured a variety of aerosol radiative effects (including flux changes) while simultaneously measuring the chemical, physical, and optical properties of the responsible aerosol particles. Here we use TARFOX-determined aerosol and surface properties to compute shortwave radiative flux changes for a variety of aerosol situations, with midvisible optical depths ranging from 0.06 to 0.55. We calculate flux changes by several techniques with varying degrees of sophistication, in part to investigate the sensitivity of results to computational approach. We then compare computed flux changes to those determined from aircraft measurements. Calculations using several approaches yield downward and upward flux changes that agree with measurements. The agreement demonstrates closure (i.e. consistency) among the TARFOX-derived aerosol properties, modeling techniques, and radiative flux measurements. Agreement between calculated and measured downward flux changes is best when the aerosols are modeled as moderately absorbing (midvisible single-scattering albedos between about 0.89 and 0.93), in accord with independent measurements of the TARPOX aerosol. The calculated values for instantaneous daytime upwelling flux changes are in the range +14 to +48 W/sq m for midvisible optical depths between 0.2 and 0.55. These values are about 30 to 100 times the global-average direct forcing expected for the global-average sulfate aerosol optical depth of 0.04. The reasons for the larger flux changes in TARFOX include the relatively large optical depths and the focus on cloud-free, daytime conditions over the dark ocean surface. These are the conditions that produce major aerosol radiative forcing events and contribute to any global-average climate effect.

  13. LANSCE steady state unperturbed thermal neutron fluxes at 100 μA

    International Nuclear Information System (INIS)

    Russell, G.J.

    1989-01-01

    The ''maximum'' unperturbed, steady state thermal neutron flux for LANSCE is calculated to be 2 /times/ 10 13 n/cm 2 -s for 100 μA of 800-MeV protons. This LANSCE neutron flux is a comparable entity to a steady state reactor thermal neutron flux. LANSCE perturbed steady state thermal neutron fluxes have also been calculated. Because LANSCE is a pulsed neutron source, much higher ''peak'' (in time) neutron fluxes can be generated than at a steady state reactor source. 5 refs., 5 figs

  14. Validation of absolute axial neutron flux distribution calculations with MCNP with 197Au(n,γ)198Au reaction rate distribution measurements at the JSI TRIGA Mark II reactor.

    Science.gov (United States)

    Radulović, Vladimir; Štancar, Žiga; Snoj, Luka; Trkov, Andrej

    2014-02-01

    The calculation of axial neutron flux distributions with the MCNP code at the JSI TRIGA Mark II reactor has been validated with experimental measurements of the (197)Au(n,γ)(198)Au reaction rate. The calculated absolute reaction rate values, scaled according to the reactor power and corrected for the flux redistribution effect, are in good agreement with the experimental results. The effect of different cross-section libraries on the calculations has been investigated and shown to be minor. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Stationary neutrino radiation transport by maximum entropy closure

    International Nuclear Information System (INIS)

    Bludman, S.A.

    1994-11-01

    The authors obtain the angular distributions that maximize the entropy functional for Maxwell-Boltzmann (classical), Bose-Einstein, and Fermi-Dirac radiation. In the low and high occupancy limits, the maximum entropy closure is bounded by previously known variable Eddington factors that depend only on the flux. For intermediate occupancy, the maximum entropy closure depends on both the occupation density and the flux. The Fermi-Dirac maximum entropy variable Eddington factor shows a scale invariance, which leads to a simple, exact analytic closure for fermions. This two-dimensional variable Eddington factor gives results that agree well with exact (Monte Carlo) neutrino transport calculations out of a collapse residue during early phases of hydrostatic neutron star formation

  16. Burnout calculation

    International Nuclear Information System (INIS)

    Li, D.

    1980-01-01

    Reviewed is the effect of heat flux of different system parameters on critical density in order to give an initial view on the value of several parameters. A thorough analysis of different equations is carried out to calculate burnout is steam-water flows in uniformly heated tubes, annular, and rectangular channels and rod bundles. Effect of heat flux density distribution and flux twisting on burnout and storage determination according to burnout are commended [ru

  17. Monte-Carlo method applied to the energy loss calculation of the gamma rays isotropic flux in the NaI(tau l) cylindrical scintillator between 0.5-20 MeV

    International Nuclear Information System (INIS)

    Martin, I.M.; Dutra, S.L.G.; Palmeira, R.A.R.

    1975-01-01

    Using the 'Monte Carlo' method, a determination was made of the response function of a NaI cylindrical crystal when exposed to an omnidirectional γ ray flux in the range 0.5 - 20 MeV. Improvements over previous similar calculations include considerations of the bremsstrahlung and multiple scattering processes in the slowing down of the secondary electrons. These calculations will be applied to the problem of determining the energy spectrum of an incident gamma ray flux from the measured response of the crystal in the space [pt

  18. Comparison of GCM subgrid fluxes calculated using BATS and SiB schemes with a coupled land-atmosphere high-resolution model

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Jinmei; Arritt, R.W. [Iowa State Univ., Ames, IA (United States)

    1996-12-31

    The importance of land-atmosphere interactions and biosphere in climate change studies has long been recognized, and several land-atmosphere interaction schemes have been developed. Among these, the Simple Biosphere scheme (SiB) of Sellers et al. and the Biosphere Atmosphere Transfer Scheme (BATS) of Dickinson et al. are two of the most widely known. The effects of GCM subgrid-scale inhomogeneities of surface properties in general circulation models also has received increasing attention in recent years. However, due to the complexity of land surface processes and the difficulty to prescribe the large number of parameters that determine atmospheric and soil interactions with vegetation, many previous studies and results seem to be contradictory. A GCM grid element typically represents an area of 10{sup 4}-10{sup 6} km{sup 2}. Within such an area, there exist variations of soil type, soil wetness, vegetation type, vegetation density and topography, as well as urban areas and water bodies. In this paper, we incorporate both BATS and SiB2 land surface process schemes into a nonhydrostatic, compressible version of AMBLE model (Atmospheric Model -- Boundary-Layer Emphasis), and compare the surface heat fluxes and mesoscale circulations calculated using the two schemes. 8 refs., 5 figs.

  19. Application of the FW-CADIS variance reduction method to calculate a precise N-flux distribution for the FRJ-2 research reactor

    International Nuclear Information System (INIS)

    Abbasi, F.; Nabbi, R.; Thomauske, B.; Ulrich, J.

    2014-01-01

    For the decommissioning of nuclear facilities, activity and dose rate atlases (ADAs) are required to create and manage a decommissioning plan and optimize the radiation protection measures. By the example of the research reactor FRJ-2, a detailed MCNP model for Monte-Carlo neutron and radiation transport calculations based on a full scale outer core CAD-model was generated. To cope with the inadequacies of the MCNP code for the simulation of a large and complex system like FRJ-2, the FW-CADIS method was embedded in the MCNP simulation runs to optimise particle sampling and weighting. The MAVRIC sequence of the SCALE6 program package, capable of generating importance maps, was applied for this purpose. The application resulted in a significant increase in efficiency and performance of the whole simulation method and in optimised utilization of the computer resources. As a result, the distribution of the neutron flux in the entire reactor structures - as a basis for the generation of the detailed activity atlas - was produced with a low level of variance and a high level of spatial, numerical and statistical precision.

  20. Application of the FW-CADIS variance reduction method to calculate a precise N-flux distribution for the FRJ-2 research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Abbasi, F.; Nabbi, R.; Thomauske, B.; Ulrich, J. [RWTH Aachen Univ. (Germany). Inst. of Nuclear Engineering and Technology

    2014-11-15

    For the decommissioning of nuclear facilities, activity and dose rate atlases (ADAs) are required to create and manage a decommissioning plan and optimize the radiation protection measures. By the example of the research reactor FRJ-2, a detailed MCNP model for Monte-Carlo neutron and radiation transport calculations based on a full scale outer core CAD-model was generated. To cope with the inadequacies of the MCNP code for the simulation of a large and complex system like FRJ-2, the FW-CADIS method was embedded in the MCNP simulation runs to optimise particle sampling and weighting. The MAVRIC sequence of the SCALE6 program package, capable of generating importance maps, was applied for this purpose. The application resulted in a significant increase in efficiency and performance of the whole simulation method and in optimised utilization of the computer resources. As a result, the distribution of the neutron flux in the entire reactor structures - as a basis for the generation of the detailed activity atlas - was produced with a low level of variance and a high level of spatial, numerical and statistical precision.

  1. State special standard for bremsstrahlung energy flux unit in the range of maximum photon energy 0.8-8.0 pJ (5-50 MeV)

    International Nuclear Information System (INIS)

    Yudin, M.F.; Skotnikov, V.V.; Bruj, V.N.; Tsvetkov, I.I.; Fominykh, V.I.

    1976-01-01

    The state special standard is described, which improves the accuracy and ensures unification and correctness of measurements of a bremsstrahlung energy flux. The size of the unit is conveyed, by means of working standards and model measuring means, to working devices measuring the energy flux over a wide range

  2. Calculation of the neutron flux and fluence in the covering of the nucleus and the vessel of a BWR; Calculo del flujo neutronico y fluencia en la envolvente del nucleo y la vasija de un reactor nuclear BWR

    Energy Technology Data Exchange (ETDEWEB)

    Martinez C, E.; Del Valle G, E. [IPN, Escuela Superior de Fisica y Matematicas, U. P. Adolfo Lopez Mateos, Col. Lindavista, 07738 Mexico D. F. (Mexico); Longoria G, L. C., E-mail: evalle@esfm.ipn.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2011-11-15

    One of the main objectives related with the safety in any nuclear power plant, including the nuclear power plant of Laguna Verde, is to guarantee the structural integrity of the pressure vessel of the reactor. To identify and quantifying the damage caused be neutron irradiation in the vessel of any nuclear reactor, is necessary to know as much the neutron flux as the fluence that it has been receiving during their time of operation life, since the observables damages by means of tests mechanics are products of micro-structural effects, induced by neutron irradiation, therefore, is important the study and prediction of the neutron flux to have a better knowledge of the damage that are receiving these materials. In our calculation the code DORT was used, which solves the transport equation in discreet coordinates and in two dimensions (x-y, r-{theta} and r-z), in accord to the regulator guide, it requires to make and approach of the neutron flux in three dimensions by means of the Synthesis Method. Whit this method is possible to achieve a representation of the flux in 3D combining or synthesizing the calculated fluxes by DORT code in r-{theta}, r-z and r. In this work the application of the Synthesis Method is presented, according to the Regulator Guide 1.190, to determine the fluxes 3D in the interns of a BWR using three different space meshes. (Author)

  3. Variability of the Lyman alpha flux with solar activity

    International Nuclear Information System (INIS)

    Lean, J.L.; Skumanich, A.

    1983-01-01

    A three-component model of the solar chromosphere, developed from ground based observations of the Ca II K chromospheric emission, is used to calculate the variability of the Lyman alpha flux between 1969 and 1980. The Lyman alpha flux at solar minimum is required in the model and is taken as 2.32 x 10 11 photons/cm 2 /s. This value occurred during 1975 as well as in 1976 near the commencement of solar cycle 21. The model predicts that the Lyman alpha flux increases to as much as 5 x 10 11 photons/cm 2 /s at the maximum of the solar cycle. The ratio of the average fluxes for December 1979 (cycle maximum) and July 1976 (cycle minimum) is 1.9. During solar maximum the 27-day solar rotation is shown to cause the Lyman alpha flux to vary by as much as 40% or as little as 5%. The model also shows that the Lyman alpha flux varies over intermediate time periods of 2 to 3 years, as well as over the 11-year sunspot cycle. We conclude that, unlike the sunspot number and the 10.7-cm radio flux, the Lyman alpha flux had a variability that was approximately the same during each of the past three cycles. Lyman alpha fluxes calculated by the model are consistent with measurements of the Lyman alpha flux made by 11 of a total of 14 rocket experiments conducted during the period 1969--1980. The model explains satisfactorily the absolute magnitude, long-term trends, and the cycle variability seen in the Lyman alpha irradiances by the OSO 5 satellite experiment. The 27-day variability observed by the AE-E satellite experiment is well reproduced. However, the magntidue of the AE-E 1 Lyman alpha irradiances are higher than the model calculations by between 40% and 80%. We suggest that the assumed calibration of the AE-E irradiances is in error

  4. Evaluation of the external radiation exposure dosimetry and calculation of maximum permissible concentration values for airborne materials containing 18F, 15O, 13N, 11C and 133Xe

    International Nuclear Information System (INIS)

    Piltingsrud, H.V.; Gels, G.L.

    1985-01-01

    To better understand the dose equivalent (D.E.) rates produced by airborne releases of gaseous positron-emitting radionuclides under various conditions of cloud size, a study of the external radiation exposure dosimetry of these radionuclides, as well as negatron, gamma and x-ray emitting 133Xe, was undertaken. This included a calculation of the contributions to D.E. as a function of cloud radii, at tissue depths of 0.07 mm (skin), 3 mm (lens of eye) and 10 mm (whole body) from both the particulate and photon radiations emitted by these radionuclides. Estimates of maximum permissible concentration (MPC) values were also calculated based on the calculated D.E. rates and current regulations for personnel radiation protection (CFR84). Three continuous air monitors, designed for use with 133Xe, were evaluated for applications in monitoring air concentrations of the selected positron emitters. The results indicate that for a given radionuclide and for a cloud greater than a certain radius, personnel radiation dosimeters must respond acceptably to only the photon radiations emitted by the radionuclide to provide acceptable personnel dosimetry. For clouds under that radius, personnel radiation dosimeters must also respond acceptably to the positron or negatron radiations to provide acceptable personnel dosimetry. It was found that two out of the three air concentration monitors may be useful for monitoring air concentrations of the selected positron emitters

  5. Solar maximum observatory

    International Nuclear Information System (INIS)

    Rust, D.M.

    1984-01-01

    The successful retrieval and repair of the Solar Maximum Mission (SMM) satellite by Shuttle astronauts in April 1984 permitted continuance of solar flare observations that began in 1980. The SMM carries a soft X ray polychromator, gamma ray, UV and hard X ray imaging spectrometers, a coronagraph/polarimeter and particle counters. The data gathered thus far indicated that electrical potentials of 25 MeV develop in flares within 2 sec of onset. X ray data show that flares are composed of compressed magnetic loops that have come too close together. Other data have been taken on mass ejection, impacts of electron beams and conduction fronts with the chromosphere and changes in the solar radiant flux due to sunspots. 13 references

  6. Measurement and simulation of thermal neutron flux distribution in the RTP core

    Science.gov (United States)

    Rabir, Mohamad Hairie B.; Jalal Bayar, Abi Muttaqin B.; Hamzah, Na'im Syauqi B.; Mustafa, Muhammad Khairul Ariff B.; Karim, Julia Bt. Abdul; Zin, Muhammad Rawi B. Mohamed; Ismail, Yahya B.; Hussain, Mohd Huzair B.; Mat Husin, Mat Zin B.; Dan, Roslan B. Md; Ismail, Ahmad Razali B.; Husain, Nurfazila Bt.; Jalil Khan, Zareen Khan B. Abdul; Yakin, Shaiful Rizaide B. Mohd; Saad, Mohamad Fauzi B.; Masood, Zarina Bt.

    2018-01-01

    The in-core thermal neutron flux distribution was determined using measurement and simulation methods for the Malaysian’s PUSPATI TRIGA Reactor (RTP). In this work, online thermal neutron flux measurement using Self Powered Neutron Detector (SPND) has been performed to verify and validate the computational methods for neutron flux calculation in RTP calculations. The experimental results were used as a validation to the calculations performed with Monte Carlo code MCNP. The detail in-core neutron flux distributions were estimated using MCNP mesh tally method. The neutron flux mapping obtained revealed the heterogeneous configuration of the core. Based on the measurement and simulation, the thermal flux profile peaked at the centre of the core and gradually decreased towards the outer side of the core. The results show a good agreement (relatively) between calculation and measurement where both show the same radial thermal flux profile inside the core: MCNP model over estimation with maximum discrepancy around 20% higher compared to SPND measurement. As our model also predicts well the neutron flux distribution in the core it can be used for the characterization of the full core, that is neutron flux and spectra calculation, dose rate calculations, reaction rate calculations, etc.

  7. Unconventional application of the two-flux approximation for the calculation of the Ambartsumyan-Chandrasekhar function and the angular spectrum of the backward-scattered radiation for a semi-infinite isotropically scattering medium

    Science.gov (United States)

    Remizovich, V. S.

    2010-06-01

    It is commonly accepted that the Schwarzschild-Schuster two-flux approximation (1905, 1914) can be employed only for the calculation of the energy characteristics of the radiation field (energy density and energy flux density) and cannot be used to characterize the angular distribution of radiation field. However, such an inference is not valid. In several cases, one can calculate the radiation intensity inside matter and the reflected radiation with the aid of this simplest approximation in the transport theory. In this work, we use the results of the simplest one-parameter variant of the two-flux approximation to calculate the angular distribution (reflection function) of the radiation reflected by a semi-infinite isotropically scattering dissipative medium when a relatively broad beam is incident on the medium at an arbitrary angle relative to the surface. We do not employ the invariance principle and demonstrate that the reflection function exhibits the multiplicative property. It can be represented as a product of three functions: the reflection function corresponding to the single scattering and two identical h functions, which have the same physical meaning as the Ambartsumyan-Chandrasekhar function ( H) has. This circumstance allows a relatively easy derivation of simple analytical expressions for the H function, total reflectance, and reflection function. We can easily determine the relative contribution of the true single scattering in the photon backscattering at an arbitrary probability of photon survival Λ. We compare all of the parameters of the backscattered radiation with the data resulting from the calculations using the exact theory of Ambartsumyan, Chandrasekhar, et al., which was developed decades after the two-flux approximation. Thus, we avoid the application of fine mathematical methods (the Wiener-Hopf method, the Case method of singular functions, etc.) and obtain simple analytical expressions for the parameters of the scattered radiation

  8. A punctual flux estimator and reactions rates optimization in neutral particles transport calculus by the Monte Carlo method; Mise au point d'un estimateur ponctuel du flux et des taux de reactions dans les calculs de transport de particules neutres par la methode de monte carlo

    Energy Technology Data Exchange (ETDEWEB)

    Authier, N

    1998-12-01

    One of the questions asked in radiation shielding problems is the estimation of the radiation level in particular to determine accessibility of working persons in controlled area (nuclear power plants, nuclear fuel reprocessing plants) or to study the dose gradients encountered in material (iron nuclear vessel, medical therapy, electronics in satellite). The flux and reaction rate estimators used in Monte Carlo codes give average values in volumes or on surfaces of the geometrical description of the system. But in certain configurations, the knowledge of punctual deposited energy and dose estimates are necessary. The Monte Carlo estimate of the flux at a point of interest is a calculus which presents an unbounded variance. The central limit theorem cannot be applied thus no easy confidencelevel may be calculated. The convergence rate is then very poor. We propose in this study a new solution for the photon flux at a point estimator. The method is based on the 'once more collided flux estimator' developed earlier for neutron calculations. It solves the problem of the unbounded variance and do not add any bias to the estimation. We show however that our new sampling schemes specially developed to treat the anisotropy of the photon coherent scattering is necessary for a good and regular behavior of the estimator. This developments integrated in the TRIPOLI-4 Monte Carlo code add the possibility of an unbiased punctual estimate on media interfaces. (author)

  9. A punctual flux estimator and reactions rates optimization in neutral particles transport calculus by the Monte Carlo method; Mise au point d'un estimateur ponctuel du flux et des taux de reactions dans les calculs de transport de particules neutres par la methode de monte carlo

    Energy Technology Data Exchange (ETDEWEB)

    Authier, N

    1998-12-01

    One of the questions asked in radiation shielding problems is the estimation of the radiation level in particular to determine accessibility of working persons in controlled area (nuclear power plants, nuclear fuel reprocessing plants) or to study the dose gradients encountered in material (iron nuclear vessel, medical therapy, electronics in satellite). The flux and reaction rate estimators used in Monte Carlo codes give average values in volumes or on surfaces of the geometrical description of the system. But in certain configurations, the knowledge of punctual deposited energy and dose estimates are necessary. The Monte Carlo estimate of the flux at a point of interest is a calculus which presents an unbounded variance. The central limit theorem cannot be applied thus no easy confidencelevel may be calculated. The convergence rate is then very poor. We propose in this study a new solution for the photon flux at a point estimator. The method is based on the 'once more collided flux estimator' developed earlier for neutron calculations. It solves the problem of the unbounded variance and do not add any bias to the estimation. We show however that our new sampling schemes specially developed to treat the anisotropy of the photon coherent scattering is necessary for a good and regular behavior of the estimator. This developments integrated in the TRIPOLI-4 Monte Carlo code add the possibility of an unbiased punctual estimate on media interfaces. (author)

  10. Implementação computacional do modelo carga-fluxo de carga-fluxo de dipolo para cálculo e interpretação das intensidades do espectro infravermelho Computational implementation of the model charge-charge flux-dipole flux for calculation and analysis of infrared intensities

    Directory of Open Access Journals (Sweden)

    Thiago C. F. Gomes

    2008-01-01

    Full Text Available The first computational implementation that automates the procedures involved in the calculation of infrared intensities using the charge-charge flux-dipole flux model is presented. The atomic charges and dipoles from the Quantum Theory of Atoms in Molecules (QTAIM model was programmed for Morphy98, Gaussian98 and Gaussian03 programs outputs, but for the ChelpG parameters only the Gaussian programs are supported. Results of illustrative but new calculations for the water, ammonia and methane molecules at the MP2/6-311++G(3d,3p theoretical level, using the ChelpG and QTAIM/Morphy charges and dipoles are presented. These results showed excellent agreement with analytical results obtained directly at the MP2/6-311++G(3d,3p level of theory.

  11. The topside ionosphere above Arecibo at equinox during sunspot maximum

    International Nuclear Information System (INIS)

    Bailey, G.J.

    1980-01-01

    The coupled time-dependent 0 + and H + continuity and momentum equations and 0 + , H + and electron heat balance equations are solved simultaneously within the L = 1.4 (Arecibo) magnetic flux tube between an altitude of 120 km and the equatorial plane. The results of the calculations are used in a study of the topside ionosphere above Arecibo at equinox during sunspot maximum. Magnetically quiet conditions are assumed. The results of the calculations show that the L = 1.4 magnetic flux tube becomes saturated from an arbitrary state within 2-3 days. During the day the ion content of the magnetic flux tube consists mainly of 0 + whereas 0 + and H + are both important during the night. There is an altitude region in the topside ionosphere during the day where ion-counterstreaming occurs with H + flowing downward and 0 + flowing upward. The conditions causing this ion-counterstreaming are discussed. There is a net chemical gain of H + at the higher altitudes. This H + diffuses both upwards and downwards whilst 0 + diffuses upwards from its solar e.u.v. production source which is most important at the lower altitudes. During the night the calculated 0 + and H + temperatures are very nearly equal whereas during the day there are occasions when the H + temperature exceeds the 0 - temperature by about 300 K. (author)

  12. Calculation of the transmutation rates of Tc-99, I-129 and Cs-135 in the High Flux Reactor, in the Phenix Reactor and in a light water reactor

    International Nuclear Information System (INIS)

    Bultman, J.

    1992-04-01

    Transmutation of long-lived fission products is of interest for the reduction of the possible dose to the population resulting from long-term leakage of nuclear waste from waste disposals. Three isotopes are of special interest: Tc-99, I-129 and Cs-135. Therefore, experiments on transmutation of these isotopes in nuclear reactors are planned. In the present study, the possible transmutation rates and mass reductions are determined for experiments in High Flux Reactor (HFR) located in Petten (Netherlands) and in Phenix (France). Also, rates were determined for a standard Light Water Reactor (LWR). The transmutation rates of the 3 fission products will be much higher in HFR than in Phenix reactor, as both total flux and effective cross sections are higher. For thick targets the effective half lives are approximately 3, 2 and 7 years for Tc-99, I-129 and Cs-135 irradiation respectively in HFR and 22, 16 and 40 years for Tc-99, I-129 and Cs-135 irradiation in Phenix reactor. The transmutation rates in LWR are low. Only the relatively large power of LWR guarantees a large total mass reduction. Especially transmutation of Cs-135 will be very difficult in Phenix and LWR, clearly shown by the very long effective half lives of 40 and 100 years, respectively. (author). 7 refs.; 5 figs.; 7 tabs

  13. Neutron flux monitoring device

    International Nuclear Information System (INIS)

    Shimazu, Yoichiro.

    1995-01-01

    In a neutron flux monitoring device, there are disposed a neutron flux measuring means for outputting signals in accordance with the intensity of neutron fluxes, a calculation means for calculating a self power density spectrum at a frequency band suitable to an object to be measured based on the output of the neutron flux measuring means, an alarm set value generation means for outputting an alarm set value as a comparative reference, and an alarm judging means for comparing the alarm set value with the outputted value of the calculation means to judge requirement of generating an alarm and generate an alarm in accordance with the result of the judgement. Namely, the time-series of neutron flux signals is put to fourier transformation for a predetermined period of time by the calculation means, and from each of square sums for real number component and imaginary number component for each of the frequencies, a self power density spectrum in the frequency band suitable to the object to be measured is calculated. Then, when the set reference value is exceeded, an alarm is generated. This can reliably prevent generation of erroneous alarm due to neutron flux noises and can accurately generate an alarm at an appropriate time. (N.H.)

  14. BRIEF COMMUNICATION: The negative ion flux across a double sheath at the formation of a virtual cathode

    Science.gov (United States)

    McAdams, R.; Bacal, M.

    2010-08-01

    For the case of negative ions from a cathode entering a plasma, the maximum negative ion flux and the positive ion flux before the formation of a virtual cathode have been calculated for particular plasma conditions. The calculation is based on a simple modification of an analysis of electron emission into a plasma containing negative ions. The results are in good agreement with a 1d3v PIC code model.

  15. Thermal neutron measurement using the instrumented test bundle and assessment of maximum linear power in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C. S.; Seo, C. K.; Lee, B. C.; Kim, H. N.; Kang, B. W. [KAERI, Taejon (Korea, Republic of)

    2000-10-01

    The HANARO fuel, U{sub 3}Si-Al, has been developed by AECL and tested in NRU reactor. Due to the lack of the data performed under the high power, the repetitive conduct of the irradiation test was required under the power greater than 108kW/m, which is the estimated maximum linear power in the design stage. Accordingly, the instrumented test bundle with SPND(Self Powered Neutron Detector) was fabricated and its irradiation test was performed in IR2 of HANARO. The measured thermal neutron flux with SPND is compared with calculation results by HANAFMS(HANARO Fuel Management System). The difference in the measured and calculated thermal flux values are below {+-}11% and the accuracy of the linear power predicted by HANAFMS is consequently accompanied. Therefore, it is believed that the maximum linear power above 120kW/m is achieved during the irradiation test of the test bundle.

  16. Fabrication of Anodic Aluminum Oxide Membrane for High Heat Flux Evaporation

    OpenAIRE

    McGrath, Kristine

    2016-01-01

    As electronics become more powerful and have higher energy densities, it is becoming more and more necessary to find solutions to dissipate these high heat fluxes. One solution to this problem is nanopore evaporative cooling. Based on current literature, the experimental data is far below what is expected from the theoretical calculations.In this thesis, the experimental results produced heat fluxes much closer to the theoretical values. Experimentally, a maximum heat dissipation of 103 W was...

  17. Dust fluxes linked to intensification of Prevailing Westerlies and Trade Winds stimulated Ethmodiscus rex giant diatom blooms in the southern Mariana Trench, western tropical Pacific at onset of the Last Glacial Maximum

    Science.gov (United States)

    Chen, D.; Luo, M.; Algeo, T. J.; Chen, L.

    2017-12-01

    The strontium (Sr) and neodymium (Nd) isotope compositions and clay-mineral assemblages of the detrital fraction of sediments in the southern Mariana Trench together with major- and trace-elements concentrations of bulk sediments have been determined to trace the sediment provenance and investigate the relationship between Asian dust input and blooms of the giant diatom Ethmodiscus rex. Enrichment of barium (Ba) in relative to upper continental crust (UCC) and low average Rb/K ratios in all study cores point to both hydrothermal and volcaniclastic inputs to the sediments. Both the Sr-Nd isotope compositions and the clay-mineral assemblages of the detrital fraction reflect a two-component mixing system consisting of Mariana arc volcaniclastics and eolian Asian dust. A decrease in smectite content and an increase in illite content just before formation of laminated diatom mats (LDMs) suggest a change in the source of the eolian dust from eastern Asian deserts (EADs) to central Asian deserts (CADs) at the onset of the Last Glacial Maximum (LGM). This observation suggests a causal linkage between atmospheric circulation patterns, the sources of eolian Asian dust, and marine productivity in the western Pacific region. We postulate that the shift to CAD-sourced dust may have played a greater role in promoting biological productivity in the oligotrophic western Pacific Ocean during the LGM than previously realized.

  18. Use of the ''Lagrangian and Eulerian points of view'' in the transient critical heat flux calculations for BWR rod bundles and experimental verifications

    International Nuclear Information System (INIS)

    Marinelli, V.; Pellei, A.; Vallero, P.; Vitanza, C.

    1975-01-01

    The calculations performed in comparison of the ''Lagrangian point of view'', by means of the DOLCE computer code with the local space--time approach of the ''Eulerian point of view'' indicate that the two methods give substantially equivalent results and predict satisfactorily the onset of the transient CHF for the Centro Informazioni Studi Esperienze annuli experimental data and General Electric Company 16-rod bundles data under typical boiling water reactor transients, including loss-of-coolant accident simulations. 9 references

  19. Approximate maximum parsimony and ancestral maximum likelihood.

    Science.gov (United States)

    Alon, Noga; Chor, Benny; Pardi, Fabio; Rapoport, Anat

    2010-01-01

    We explore the maximum parsimony (MP) and ancestral maximum likelihood (AML) criteria in phylogenetic tree reconstruction. Both problems are NP-hard, so we seek approximate solutions. We formulate the two problems as Steiner tree problems under appropriate distances. The gist of our approach is the succinct characterization of Steiner trees for a small number of leaves for the two distances. This enables the use of known Steiner tree approximation algorithms. The approach leads to a 16/9 approximation ratio for AML and asymptotically to a 1.55 approximation ratio for MP.

  20. Maximum permissible dose

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    This chapter presents a historic overview of the establishment of radiation guidelines by various national and international agencies. The use of maximum permissible dose and maximum permissible body burden limits to derive working standards is discussed

  1. Neutron flux monitor

    International Nuclear Information System (INIS)

    Oda, Naotaka.

    1993-01-01

    The device of the present invention greatly saves an analog processing section such as an analog filter and an analog processing circuit. That is, the device of the present invention comprises (1) a neutron flux detection means for detecting neutron fluxed in the reactor, (2) a digital filter means for dividing signals corresponding to the detected neutron fluxes into predetermined frequency band regions, (3) a calculation processing means for applying a calculation processing corresponding to the frequency band regions to the neutron flux detection signals divided by the digital filter means. With such a constitution, since the neutron detection signals are processed by the digital filter means, the accuracy is improved and the change for the property of the filter is facilitated. Further, when a neutron flux level is obtained, a calculation processing corresponding to the frequency band region can be conducted without the analog processing circuit. Accordingly, maintenance and accuracy are improved by greatly decreasing the number of parts. Further, since problems inherent to the analog circuit are solved, neutron fluxes are monitored at high reliability. (I.S.)

  2. Improved L-BFGS diagonal preconditioners for a large-scale 4D-Var inversion system: application to CO2 flux constraints and analysis error calculation

    Science.gov (United States)

    Bousserez, Nicolas; Henze, Daven; Bowman, Kevin; Liu, Junjie; Jones, Dylan; Keller, Martin; Deng, Feng

    2013-04-01

    large-scale 4D-Var system. The impact of using the diagonal preconditioners proposed by Gilbert and Le Maréchal (1989) instead of the usual Oren-Spedicato scalar will be first presented. We will also introduce new hybrid methods that combine randomization estimates of the analysis error variance with L-BFGS diagonal updates to improve the inverse Hessian approximation. Results from these new algorithms will be evaluated against standard large ensemble Monte-Carlo simulations. The methods explored here are applied to the problem of inferring global atmospheric CO2 fluxes using remote sensing observations, and are intended to be integrated with the future NASA Carbon Monitoring System.

  3. Atmospheric neutrino fluxes

    International Nuclear Information System (INIS)

    Honda, M.; Kasahara, K.; Hidaka, K.; Midorikawa, S.

    1990-02-01

    A detailed Monte Carlo simulation of neutrino fluxes of atmospheric origin is made taking into account the muon polarization effect on neutrinos from muon decay. We calculate the fluxes with energies above 3 MeV for future experiments. There still remains a significant discrepancy between the calculated (ν e +antiν e )/(ν μ +antiν μ ) ratio and that observed by the Kamiokande group. However, the ratio evaluated at the Frejus site shows a good agreement with the data. (author)

  4. Neutron-gamma flux and dose calculations for feasibility study of DISCOMS instrumentation in case of severe accident in a GEN 3 reactor

    Science.gov (United States)

    Brovchenko, Mariya; Duhamel, Isabelle; Dechenaux, Benjamin

    2017-09-01

    The present paper presents the study carried out in the frame of the DISCOMS project, which stands for "DIstributed Sensing for COrium Monitoring and Safety". This study concerns the calculation of the neutron and gamma radiations received by the considered instrumentation during the normal reactor operation as well as in case of a severe accident for the EPR reactor, outside the reactor pressure vessel and in the containment basemat. This paper summarizes the methods and hypotheses used for the particle transport simulation outside the vessel during normal reactor operation. The results of the simulations are then presented including the responses for distributed Optical Fiber Sensors (OFS), such as the gamma dose and the fast neutron fluence, and for Self Powered Neutron Detectors (SPNDs), namely the neutron and gamma spectra. Same responses are also evaluated for severe accident situations in order to design the SPNDs being sensitive to the both types of received neutron-gamma radiation. By contrast, fibers, involved as transducers in distributed OFS have to resist to the total radiation gamma dose and neutron fluence received during normal operation and the severe accident.

  5. Calculation of the inventory and near-field release rates of radioactivity from neutron-activated metal parts discharged from the high flux isotope reactor and emplaced in solid waste storage area 6 at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kelmers, A.D.; Hightower, J.R.

    1987-05-01

    Emplacement of contaminated reactor components involves disposal in lined and unlined auger holes in soil above the water table. The radionuclide inventory of disposed components was calculated. Information on the composition and weight of the components, as well as reasonable assumptions for the neutron flux fueling use, the time of neutron exposure, and radioactive decay after discharge, were employed in the inventory calculation. Near-field release rates of /sup 152/Eu, /sup 154/Eu, and /sup 155/Eu from control plates and cylinders were calculated for 50 years after emplacement. Release rates of the europium isotopes were uncertain. Two release-rate-limiting models were considered and a range of reasonable values were assumed for the time-to-failure of the auger-hole linear and aluminum cladding and europium solubility in SWSA-6 groundwater. The bounding europium radionuclide near-field release rates peaked at about 1.3 Ci/year total for /sup 152,154,155/Eu in 1987 for the lower bound, and at about 420 Ci/year in 1992 for the upper bound. The near-field release rates of /sup 55/Fe, /sup 59/Ni, /sup 60/Co, and /sup 63/Ni from stainless steel and cobalt alloy components, as well as of /sup 10/Be, /sup 41/Ca, and /sup 55/Fe from beryllium reflectors, were calculated for the next 100 years, assuming bulk waste corrosion was the release-rate-limiting step. Under the most conservative assumptions for the reflectors, the current (1986) total radionuclide release rate was calculated to be about 1.2 x 10/sup -4/ Ci/year, decreasing by 1992 to a steady release of about 1.5 x 10/sup -5/ Ci/year due primarily to /sup 41/Ca. 50 refs., 13 figs., 8 tabs.

  6. Use of sup(233)U for high flux reactors

    International Nuclear Information System (INIS)

    Sekimoto, Hiroshi; Liem, P.H.

    1991-01-01

    The feasibility design study on the graphite moderated gas cooled reactor as a high flux reactor has been performed. The core of the reactor is equipped with two graphite reflectors, i.e., the inner reflector and the outer reflector. The highest value of the thermal neutron flux and moderately high thermal neutron flux are expected to be achieved in the inner reflector region and in the outer reflector region respectively. This reactor has many merits comparing to the conventional high flux reactors. It has the inherent safety features associated with the modular high temperature reactors. Since the core is composed with pebble bed, the on-power refueling can be performed and the experiment time can be chosen as long as necessary. Since the thermal-to-fast flux ratio is large, the background neutron level is low and material damage induced by fast neutrons are small. The calculation was performed using a four groups diffusion approximation in a one-dimensional spherical geometry and a two-dimensional cylindrical geometry. By choosing the optimal values of the core-reflector geometrical parameters and moderator-to-fuel atomic density, high thermal neutron flux can be obtained. Because of the thermal neutron flux can be obtained. Because of the thermal design constraint, however, this design will produce a relatively large core volume (about 10 7 cc) and consequently a higher reactor power (100 MWth). Preliminary calculational results show that with an average power density of only 10 W/cc, maximum thermal neutron flux of 10 15 cm -2 s -1 can be achieved in the inner reflector. The eta value of 233 U is larger than 235 U. By introducing 233 U as the fissile material for this reactor, the thermal neutron flux level can be increased by about 15%. (author). 3 refs., 2 figs., 4 tabs

  7. Flux pinning by voids in surface-oxidized superconducting niobium and vanadium

    International Nuclear Information System (INIS)

    Meij, G.P. van der.

    1984-03-01

    The volume pinning force in several niobium and vanadium samples with voids is determined at various temperatures. Reasonable agreement is found with the collective pinning theory of Larkin and Ovchinnikov above the field of maximum pinning, if the flux line lattice is assumed to be amorphous in this region and if the elementary pinning force is calculated from the quasi-classical theory of Thuneberg, Kurkijaervi, and Rainer. Also some history and relaxation effects are studied in an alternating field. A qualitative explanation is given in terms of flux line dislocations, which reduce the shear strength of the flux line lattice. (Auth.)

  8. Increased terrestrial to ocean sediment and carbon fluxes in the northern Chesapeake Bay associated with twentieth century land alteration

    Science.gov (United States)

    Saenger, C.; Cronin, T. M.; Willard, D.; Halka, J.; Kerhin, R.

    2008-01-01

    We calculated Chesapeake Bay (CB) sediment and carbon fluxes before and after major anthropogenic land clearance using robust monitoring, modeling and sedimentary data. Four distinct fluxes in the estuarine system were considered including (1) the flux of eroded material from the watershed to streams, (2) the flux of suspended sediment at river fall lines, (3) the burial flux in tributary sediments, and (4) the burial flux in main CB sediments. The sedimentary maximum in Ambrosia (ragweed) pollen marked peak land clearance (~1900 a.d.). Rivers feeding CB had a total organic carbon (TOC)/total suspended solids of 0.24??0.12, and we used this observation to calculate TOC fluxes from sediment fluxes. Sediment and carbon fluxes increased by 138-269% across all four regions after land clearance. Our results demonstrate that sediment delivery to CB is subject to significant lags and that excess post-land clearance sediment loads have not reached the ocean. Post-land clearance increases in erosional flux from watersheds, and burial in estuaries are important processes that must be considered to calculate accurate global sediment and carbon budgets. ?? 2008 Coastal and Estuarine Research Federation.

  9. Real-time diamagnetic flux measurements on ASDEX Upgrade.

    Science.gov (United States)

    Giannone, L; Geiger, B; Bilato, R; Maraschek, M; Odstrčil, T; Fischer, R; Fuchs, J C; McCarthy, P J; Mertens, V; Schuhbeck, K H

    2016-05-01

    Real-time diamagnetic flux measurements are now available on ASDEX Upgrade. In contrast to the majority of diamagnetic flux measurements on other tokamaks, no analog summation of signals is necessary for measuring the change in toroidal flux or for removing contributions arising from unwanted coupling to the plasma and poloidal field coil currents. To achieve the highest possible sensitivity, the diamagnetic measurement and compensation coil integrators are triggered shortly before plasma initiation when the toroidal field coil current is close to its maximum. In this way, the integration time can be chosen to measure only the small changes in flux due to the presence of plasma. Two identical plasma discharges with positive and negative magnetic field have shown that the alignment error with respect to the plasma current is negligible. The measured diamagnetic flux is compared to that predicted by TRANSP simulations. The poloidal beta inferred from the diamagnetic flux measurement is compared to the values calculated from magnetic equilibrium reconstruction codes. The diamagnetic flux measurement and TRANSP simulation can be used together to estimate the coupled power in discharges with dominant ion cyclotron resonance heating.

  10. Receiver function estimated by maximum entropy deconvolution

    Institute of Scientific and Technical Information of China (English)

    吴庆举; 田小波; 张乃铃; 李卫平; 曾融生

    2003-01-01

    Maximum entropy deconvolution is presented to estimate receiver function, with the maximum entropy as the rule to determine auto-correlation and cross-correlation functions. The Toeplitz equation and Levinson algorithm are used to calculate the iterative formula of error-predicting filter, and receiver function is then estimated. During extrapolation, reflective coefficient is always less than 1, which keeps maximum entropy deconvolution stable. The maximum entropy of the data outside window increases the resolution of receiver function. Both synthetic and real seismograms show that maximum entropy deconvolution is an effective method to measure receiver function in time-domain.

  11. Core calculations of JMTR

    Energy Technology Data Exchange (ETDEWEB)

    Nagao, Yoshiharu [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    1998-03-01

    In material testing reactors like the JMTR (Japan Material Testing Reactor) of 50 MW in Japan Atomic Energy Research Institute, the neutron flux and neutron energy spectra of irradiated samples show complex distributions. It is necessary to assess the neutron flux and neutron energy spectra of an irradiation field by carrying out the nuclear calculation of the core for every operation cycle. In order to advance core calculation, in the JMTR, the application of MCNP to the assessment of core reactivity and neutron flux and spectra has been investigated. In this study, in order to reduce the time for calculation and variance, the comparison of the results of the calculations by the use of K code and fixed source and the use of Weight Window were investigated. As to the calculation method, the modeling of the total JMTR core, the conditions for calculation and the adopted variance reduction technique are explained. The results of calculation are shown. Significant difference was not observed in the results of neutron flux calculations according to the difference of the modeling of fuel region in the calculations by K code and fixed source. The method of assessing the results of neutron flux calculation is described. (K.I.)

  12. Atmospheric neutrino fluxes

    International Nuclear Information System (INIS)

    Perkins, D.H.

    1984-01-01

    The atmospheric neutrino fluxes, which are responsible for the main background in proton decay experiments, have been calculated by two independent methods. There are discrepancies between the two sets of results regarding latitude effects and up-down asymmetries, especially for neutrino energies Esub(ν) < 1 GeV. (author)

  13. Maximum Acceleration Recording Circuit

    Science.gov (United States)

    Bozeman, Richard J., Jr.

    1995-01-01

    Coarsely digitized maximum levels recorded in blown fuses. Circuit feeds power to accelerometer and makes nonvolatile record of maximum level to which output of accelerometer rises during measurement interval. In comparison with inertia-type single-preset-trip-point mechanical maximum-acceleration-recording devices, circuit weighs less, occupies less space, and records accelerations within narrower bands of uncertainty. In comparison with prior electronic data-acquisition systems designed for same purpose, circuit simpler, less bulky, consumes less power, costs and analysis of data recorded in magnetic or electronic memory devices. Circuit used, for example, to record accelerations to which commodities subjected during transportation on trucks.

  14. Studies of vertical fluxes of horizontal momentum in the lower atmosphere using the MU-radar

    Directory of Open Access Journals (Sweden)

    F. S. Kuo

    2008-11-01

    Full Text Available We study the momentum flux of the atmospheric motions in the height ranges between 6 and 22 km observed using the MU radar at Shigaraki in Japan during a 3 day period in January 1988. The data were divided by double Fourier transformation into data set of waves with downward- phase- velocity and data set of waves with upward-phase-velocity for independent momentum flux calculation. The result showed that both the 72 h averaged upward flux and downward flux of zonal momentum were negative at nearly each height, meaning that the upward flux was dominated by westward propagating waves while the downward flux was dominated by eastward propagating waves. The magnitude of the downward flux was approximately a factor of 1.5 larger than the upward flux for waves in the 2~7 h and 7~24 h period bands, and about equal to the upward flux in the 10–30 min and 30 min–2 h period bands. It is also observed that the vertical flux of zonal momentum tended to be small in each frequency band at the altitudes below the jet maximum (10~12 km, and the flux increased toward more negative values to reach a negative maximum at some altitude well above the jet maximum. Daily averaged flux showed tremendous variation: The 1st 24 h (quiet day was relatively quiet, and the fluxes of the 2nd and 3rd 24 h (active days increased sharply. Moreover, the upward fluxes of zonal momentum below 17 km in the quiet day for each period band (10~30 min, 30 min~2 h, 2~7 h, and 7~24 h were dominantly positive, while the corresponding downward fluxes were dominantly negative, meaning that the zonal momentum below 17 km in each period band under study were dominantly eastward (propagating along the mean wind. In the active days, both the upward fluxes and downward fluxes in each frequency band were dominantly negative throughout the whole altitude range 6.1–18.95 km.

  15. Maximum Quantum Entropy Method

    OpenAIRE

    Sim, Jae-Hoon; Han, Myung Joon

    2018-01-01

    Maximum entropy method for analytic continuation is extended by introducing quantum relative entropy. This new method is formulated in terms of matrix-valued functions and therefore invariant under arbitrary unitary transformation of input matrix. As a result, the continuation of off-diagonal elements becomes straightforward. Without introducing any further ambiguity, the Bayesian probabilistic interpretation is maintained just as in the conventional maximum entropy method. The applications o...

  16. Maximum power demand cost

    International Nuclear Information System (INIS)

    Biondi, L.

    1998-01-01

    The charging for a service is a supplier's remuneration for the expenses incurred in providing it. There are currently two charges for electricity: consumption and maximum demand. While no problem arises about the former, the issue is more complicated for the latter and the analysis in this article tends to show that the annual charge for maximum demand arbitrarily discriminates among consumer groups, to the disadvantage of some [it

  17. Extreme Maximum Land Surface Temperatures.

    Science.gov (United States)

    Garratt, J. R.

    1992-09-01

    There are numerous reports in the literature of observations of land surface temperatures. Some of these, almost all made in situ, reveal maximum values in the 50°-70°C range, with a few, made in desert regions, near 80°C. Consideration of a simplified form of the surface energy balance equation, utilizing likely upper values of absorbed shortwave flux (1000 W m2) and screen air temperature (55°C), that surface temperatures in the vicinity of 90°-100°C may occur for dry, darkish soils of low thermal conductivity (0.1-0.2 W m1 K1). Numerical simulations confirm this and suggest that temperature gradients in the first few centimeters of soil may reach 0.5°-1°C mm1 under these extreme conditions. The study bears upon the intrinsic interest of identifying extreme maximum temperatures and yields interesting information regarding the comfort zone of animals (including man).

  18. Maximum Power from a Solar Panel

    Directory of Open Access Journals (Sweden)

    Michael Miller

    2010-01-01

    Full Text Available Solar energy has become a promising alternative to conventional fossil fuel sources. Solar panels are used to collect solar radiation and convert it into electricity. One of the techniques used to maximize the effectiveness of this energy alternative is to maximize the power output of the solar collector. In this project the maximum power is calculated by determining the voltage and the current of maximum power. These quantities are determined by finding the maximum value for the equation for power using differentiation. After the maximum values are found for each time of day, each individual quantity, voltage of maximum power, current of maximum power, and maximum power is plotted as a function of the time of day.

  19. Spray Evaporation in Turbulent Flow: Numerical Calculations and Detailed Experiments by Phase-Doppler Anemometry Évaporation de brouillard en flux turbulent : calculs numériques et expériences détaillées par anémometrie de phase-Doppler

    Directory of Open Access Journals (Sweden)

    Sommerfeld M.

    2006-11-01

    Full Text Available The present paper concerns experiments and numerical calculations of an isopropyl-alcohol spray evaporating in a co-flowing turbulent heated air flow. The measurements provided detailed inlet and boundary conditions for the numerical calculations and allowed the validation of the numerical method and models. Phase-Doppler anemometry was used in order to obtain the spatial change of the droplet size distribution and the correlation between droplet size and velocity throughout the flow field. Additionally, a reliable method based on the detection of the signal amplitudes was applied to determine the droplet mass flux. By integration of the droplet mass flux profiles, the global evaporation rates could be determined for different flow conditions. Numerical calculations of the evaporating spray were performed by the Eulerian / Lagrangian approach. The modelling of droplet evaporation is briefly reviewed prior to the description of the applied numerical models and methods. Calculations for a single phase flow showed good agreement with the experiments. Also for all of the droplet phase properties reasonable agreement with the experiments could be achieved and the global evaporation rates agreed well with the measurements. Cet article expose en détail les expériences et les calculs concernant l'évaporation d'isopropanol pulvérisé dans un flux d'air chaud turbulent. Les mesures ont fourni le détail des conditions initiales et des conditions limites pour les calculs numériques ; elles ont également permis de valider la méthode et le modèle. L'anémométrie de phase-Doppler a permis de définir la modification spatiale de la distribution des dimensions de gouttelettes ainsi que la corrélation entre dimension et vitesse des gouttelettes, dans l'ensemble du champ d'écoulement. De plus, une méthode fiable fondée sur la détection des amplitudes de signal a été appliquée afin de déterminer le débit massique des gouttelettes. L

  20. COAGULATION CALCULATIONS OF ICY PLANET FORMATION AT 15-150 AU: A CORRELATION BETWEEN THE MAXIMUM RADIUS AND THE SLOPE OF THE SIZE DISTRIBUTION FOR TRANS-NEPTUNIAN OBJECTS

    Energy Technology Data Exchange (ETDEWEB)

    Kenyon, Scott J. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Bromley, Benjamin C., E-mail: skenyon@cfa.harvard.edu, E-mail: bromley@physics.utah.edu [Department of Physics, University of Utah, 201 JFB, Salt Lake City, UT 84112 (United States)

    2012-03-15

    We investigate whether coagulation models of planet formation can explain the observed size distributions of trans-Neptunian objects (TNOs). Analyzing published and new calculations, we demonstrate robust relations between the size of the largest object and the slope of the size distribution for sizes 0.1 km and larger. These relations yield clear, testable predictions for TNOs and other icy objects throughout the solar system. Applying our results to existing observations, we show that a broad range of initial disk masses, planetesimal sizes, and fragmentation parameters can explain the data. Adding dynamical constraints on the initial semimajor axis of 'hot' Kuiper Belt objects along with probable TNO formation times of 10-700 Myr restricts the viable models to those with a massive disk composed of relatively small (1-10 km) planetesimals.

  1. Calculation of thermal stress condition in long metal cylinder under heating by continuous laser radiation

    International Nuclear Information System (INIS)

    Uglov, A.A.; Uglov, S.A.; Kulik, A.N.

    1997-01-01

    The method of determination of temperature field and unduced thermal stresses in long metallic cylinder under its heating by cw-laser normally distributed heat flux is offered. The graphically presented results of calculation show the stress maximum is placed behind of center of laser heat sport along its movement line on the cylinder surface

  2. Predicting location-specific extreme coastal floods in the future climate by introducing a probabilistic method to calculate maximum elevation of the continuous water mass caused by a combination of water level variations and wind waves

    Science.gov (United States)

    Leijala, Ulpu; Björkqvist, Jan-Victor; Johansson, Milla M.; Pellikka, Havu

    2017-04-01

    Future coastal management continuously strives for more location-exact and precise methods to investigate possible extreme sea level events and to face flooding hazards in the most appropriate way. Evaluating future flooding risks by understanding the behaviour of the joint effect of sea level variations and wind waves is one of the means to make more comprehensive flooding hazard analysis, and may at first seem like a straightforward task to solve. Nevertheless, challenges and limitations such as availability of time series of the sea level and wave height components, the quality of data, significant locational variability of coastal wave height, as well as assumptions to be made depending on the study location, make the task more complicated. In this study, we present a statistical method for combining location-specific probability distributions of water level variations (including local sea level observations and global mean sea level rise) and wave run-up (based on wave buoy measurements). The goal of our method is to obtain a more accurate way to account for the waves when making flooding hazard analysis on the coast compared to the approach of adding a separate fixed wave action height on top of sea level -based flood risk estimates. As a result of our new method, we gain maximum elevation heights with different return periods of the continuous water mass caused by a combination of both phenomena, "the green water". We also introduce a sensitivity analysis to evaluate the properties and functioning of our method. The sensitivity test is based on using theoretical wave distributions representing different alternatives of wave behaviour in relation to sea level variations. As these wave distributions are merged with the sea level distribution, we get information on how the different wave height conditions and shape of the wave height distribution influence the joint results. Our method presented here can be used as an advanced tool to minimize over- and

  3. Maximum likely scale estimation

    DEFF Research Database (Denmark)

    Loog, Marco; Pedersen, Kim Steenstrup; Markussen, Bo

    2005-01-01

    A maximum likelihood local scale estimation principle is presented. An actual implementation of the estimation principle uses second order moments of multiple measurements at a fixed location in the image. These measurements consist of Gaussian derivatives possibly taken at several scales and/or ...

  4. Robust Maximum Association Estimators

    NARCIS (Netherlands)

    A. Alfons (Andreas); C. Croux (Christophe); P. Filzmoser (Peter)

    2017-01-01

    textabstractThe maximum association between two multivariate variables X and Y is defined as the maximal value that a bivariate association measure between one-dimensional projections αX and αY can attain. Taking the Pearson correlation as projection index results in the first canonical correlation

  5. Burnout in a channel with non-uniform circumferential heat flux

    International Nuclear Information System (INIS)

    Lee, D.H.

    1966-03-01

    Burnout experiments are reported for uniform flux and circumferential flux tilt (maximum/average flux about 1.25) with tubes and annuli, all the experiments having uniform axial heating. These show similar results, the burnout power with flux tilt being within 10% of that with uniform flux. For the same mean exit steam quality, the local maximum flux is higher than the predicted burnout value and generally a better prediction is obtained using the average flux. (author)

  6. Practical Wide-speed-range Sensorless Control System for Permanent Magnet Reluctance Synchronous Motor Drives via Active Flux Model

    DEFF Research Database (Denmark)

    Ancuti, Mihaela Codruta; Tutelea, Lucian; Andreescu, Gheorghe-Daniel

    2014-01-01

    This article introduces a control strategy to obtain near-maximum available torque in a wide speed range with sensorless operation via the active flux concept for permanent magnet-reluctance synchronous motor drives. A new torque dq current reference calculator is proposed, with reference torque...

  7. LCLS Maximum Credible Beam Power

    International Nuclear Information System (INIS)

    Clendenin, J.

    2005-01-01

    The maximum credible beam power is defined as the highest credible average beam power that the accelerator can deliver to the point in question, given the laws of physics, the beam line design, and assuming all protection devices have failed. For a new accelerator project, the official maximum credible beam power is determined by project staff in consultation with the Radiation Physics Department, after examining the arguments and evidence presented by the appropriate accelerator physicist(s) and beam line engineers. The definitive parameter becomes part of the project's safety envelope. This technical note will first review the studies that were done for the Gun Test Facility (GTF) at SSRL, where a photoinjector similar to the one proposed for the LCLS is being tested. In Section 3 the maximum charge out of the gun for a single rf pulse is calculated. In Section 4, PARMELA simulations are used to track the beam from the gun to the end of the photoinjector. Finally in Section 5 the beam through the matching section and injected into Linac-1 is discussed

  8. The Open Flux Problem

    Science.gov (United States)

    Linker, J. A.; Caplan, R. M.; Downs, C.; Riley, P.; Mikic, Z.; Lionello, R.; Henney, C. J.; Arge, C. N.; Liu, Y.; Derosa, M. L.; Yeates, A.; Owens, M. J.

    2017-10-01

    The heliospheric magnetic field is of pivotal importance in solar and space physics. The field is rooted in the Sun’s photosphere, where it has been observed for many years. Global maps of the solar magnetic field based on full-disk magnetograms are commonly used as boundary conditions for coronal and solar wind models. Two primary observational constraints on the models are (1) the open field regions in the model should approximately correspond to coronal holes (CHs) observed in emission and (2) the magnitude of the open magnetic flux in the model should match that inferred from in situ spacecraft measurements. In this study, we calculate both magnetohydrodynamic and potential field source surface solutions using 14 different magnetic maps produced from five different types of observatory magnetograms, for the time period surrounding 2010 July. We have found that for all of the model/map combinations, models that have CH areas close to observations underestimate the interplanetary magnetic flux, or, conversely, for models to match the interplanetary flux, the modeled open field regions are larger than CHs observed in EUV emission. In an alternative approach, we estimate the open magnetic flux entirely from solar observations by combining automatically detected CHs for Carrington rotation 2098 with observatory synoptic magnetic maps. This approach also underestimates the interplanetary magnetic flux. Our results imply that either typical observatory maps underestimate the Sun’s magnetic flux, or a significant portion of the open magnetic flux is not rooted in regions that are obviously dark in EUV and X-ray emission.

  9. The Open Flux Problem

    Energy Technology Data Exchange (ETDEWEB)

    Linker, J. A.; Caplan, R. M.; Downs, C.; Riley, P.; Mikic, Z.; Lionello, R. [Predictive Science Inc., 9990 Mesa Rim Road, Suite 170, San Diego, CA 92121 (United States); Henney, C. J. [Air Force Research Lab/Space Vehicles Directorate, 3550 Aberdeen Avenue SE, Kirtland AFB, NM (United States); Arge, C. N. [Science and Exploration Directorate, NASA/GSFC, Greenbelt, MD 20771 (United States); Liu, Y. [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States); Derosa, M. L. [Lockheed Martin Solar and Astrophysics Laboratory, 3251 Hanover Street B/252, Palo Alto, CA 94304 (United States); Yeates, A. [Department of Mathematical Sciences, Durham University, Durham, DH1 3LE (United Kingdom); Owens, M. J., E-mail: linkerj@predsci.com [Space and Atmospheric Electricity Group, Department of Meteorology, University of Reading, Earley Gate, P.O. Box 243, Reading RG6 6BB (United Kingdom)

    2017-10-10

    The heliospheric magnetic field is of pivotal importance in solar and space physics. The field is rooted in the Sun’s photosphere, where it has been observed for many years. Global maps of the solar magnetic field based on full-disk magnetograms are commonly used as boundary conditions for coronal and solar wind models. Two primary observational constraints on the models are (1) the open field regions in the model should approximately correspond to coronal holes (CHs) observed in emission and (2) the magnitude of the open magnetic flux in the model should match that inferred from in situ spacecraft measurements. In this study, we calculate both magnetohydrodynamic and potential field source surface solutions using 14 different magnetic maps produced from five different types of observatory magnetograms, for the time period surrounding 2010 July. We have found that for all of the model/map combinations, models that have CH areas close to observations underestimate the interplanetary magnetic flux, or, conversely, for models to match the interplanetary flux, the modeled open field regions are larger than CHs observed in EUV emission. In an alternative approach, we estimate the open magnetic flux entirely from solar observations by combining automatically detected CHs for Carrington rotation 2098 with observatory synoptic magnetic maps. This approach also underestimates the interplanetary magnetic flux. Our results imply that either typical observatory maps underestimate the Sun’s magnetic flux, or a significant portion of the open magnetic flux is not rooted in regions that are obviously dark in EUV and X-ray emission.

  10. Heat transfer and critical heat flux in a spiral flow in an asymmetrical heated tube; Transfert thermique et flux critique dans un ecoulement helicoidal en tube chauffe asymetriquement

    Energy Technology Data Exchange (ETDEWEB)

    Boscary, J [CEA Centre d` Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Direction des Sciences de la Matiere; [Association Euratom-CEA, Centre d` Etudes Nucleaires de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee

    1997-03-01

    The design of plasma facing components is crucial for plasma performance in next fusion reactors. These elements will be submitted to very high heat flux. They will be actively water-cooled by swirl tubes in the subcooled boiling regime. High heat flux experiments were conducted in order to analyse the heat transfer and to evaluate the critical heat flux. Water-cooled mock-ups were one-side heated by an electron beam gun for different thermal-hydraulic conditions. The critical heat flux was detected by an original method based on the isotherm modification on the heated surface. The wall heat transfer law including forced convection and subcooled boiling regimes was established. Numerical calculations of the material heat transfer conduction allowed the non-homogeneous distribution of the wall temperature and of the wall heat flux to be evaluated. The critical heat flux value was defined as the wall maximum heat flux. A critical heat flux model based on the liquid sublayer dryout under a vapor blanket was established. A good agreement with test results was found. (author) 197 refs.

  11. Heat transfer and critical heat flux in a asymmetrically heated tube helicoidal flow; Transfert thermique et flux critique dans un ecoulement helicoidal en tube chauffe asymetriquement

    Energy Technology Data Exchange (ETDEWEB)

    Boscary, J

    1995-10-01

    The design of plasma facing components is crucial for plasma performance in next fusion reactors. These elements will be submitted to very high heat flux. They will be actively water-cooled by swirl tubes in the subcooled boiling regime. High heat flux experiments were conducted in order to analyse the heat transfer and to evaluate the critical heat flux. Water-cooled mock-ups were one-side heated by an electron beam gun for different thermal-hydraulic conditions. The critical heat flux was detected by an original method based on the isotherm modification on the heated surface. The wall heat transfer law including forced convection and subcooled boiling regimes was established. Numerical calculations of the material heat transfer conduction allowed the non-homogeneous distribution of the wall temperature and of the wall heat flux to be evaluated. The critical heat flux value was defined as the wall maximum heat flux. A critical heat flux model based on the liquid sublayer dryout under a vapor blanket was established. A good agreement with test results was found. (author). 198 refs., 126 figs., 21 tabs.

  12. Specification of ROP flux shape

    International Nuclear Information System (INIS)

    Min, Byung Joo; Gray, A.

    1997-06-01

    The CANDU 9 480/SEU core uses 0.9% SEU (Slightly Enriched Uranium) fuel. The use f SEU fuel enables the reactor to increase the radial power form factor from 0.865, which is typical in current natural uranium CANDU reactors, to 0.97 in the nominal CANDU 9 480/SEU core. The difference is a 12% increase in reactor power. An additional 5% increase can be achieved due to a reduced refuelling ripple. The channel power limits were also increased by 3% for a total reactor power increase of 20%. This report describes the calculation of neutron flux distributions in the CANDU 9 480/SEU core under conditions specified by the C and I engineers. The RFSP code was used to calculate of neutron flux shapes for ROP analysis. Detailed flux values at numerous potential detector sites were calculated for each flux shape. (author). 6 tabs., 70 figs., 4 refs

  13. Specification of ROP flux shape

    Energy Technology Data Exchange (ETDEWEB)

    Min, Byung Joo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Gray, A [Atomic Energy of Canada Ltd., Chalk River, ON (Canada)

    1997-06-01

    The CANDU 9 480/SEU core uses 0.9% SEU (Slightly Enriched Uranium) fuel. The use f SEU fuel enables the reactor to increase the radial power form factor from 0.865, which is typical in current natural uranium CANDU reactors, to 0.97 in the nominal CANDU 9 480/SEU core. The difference is a 12% increase in reactor power. An additional 5% increase can be achieved due to a reduced refuelling ripple. The channel power limits were also increased by 3% for a total reactor power increase of 20%. This report describes the calculation of neutron flux distributions in the CANDU 9 480/SEU core under conditions specified by the C and I engineers. The RFSP code was used to calculate of neutron flux shapes for ROP analysis. Detailed flux values at numerous potential detector sites were calculated for each flux shape. (author). 6 tabs., 70 figs., 4 refs.

  14. Maximum power point tracking

    International Nuclear Information System (INIS)

    Enslin, J.H.R.

    1990-01-01

    A well engineered renewable remote energy system, utilizing the principal of Maximum Power Point Tracking can be m ore cost effective, has a higher reliability and can improve the quality of life in remote areas. This paper reports that a high-efficient power electronic converter, for converting the output voltage of a solar panel, or wind generator, to the required DC battery bus voltage has been realized. The converter is controlled to track the maximum power point of the input source under varying input and output parameters. Maximum power point tracking for relative small systems is achieved by maximization of the output current in a battery charging regulator, using an optimized hill-climbing, inexpensive microprocessor based algorithm. Through practical field measurements it is shown that a minimum input source saving of 15% on 3-5 kWh/day systems can easily be achieved. A total cost saving of at least 10-15% on the capital cost of these systems are achievable for relative small rating Remote Area Power Supply systems. The advantages at larger temperature variations and larger power rated systems are much higher. Other advantages include optimal sizing and system monitor and control

  15. Monte Carlo calculation of standard graphite block

    International Nuclear Information System (INIS)

    Ljubenov, V.

    2000-01-01

    This paper presents results of calculation of neutron flux space and energy distribution in the standard graphite block (SGB) obtained by the MCNP TM code. VMCCS nuclear data library, based on the ENDF / B-VI release 4 evaluation file, is used. MCNP model of the SGB considers detailed material, geometric and spectral properties of the neutron source, source carrier, graphite moderator medium, aluminium foil holders and proximate surrounding of SGB Geometric model is organised to provide the simplest homogeneous volume cells in order to obtain the maximum acceleration of neutron history tracking (author)

  16. Maximum entropy methods

    International Nuclear Information System (INIS)

    Ponman, T.J.

    1984-01-01

    For some years now two different expressions have been in use for maximum entropy image restoration and there has been some controversy over which one is appropriate for a given problem. Here two further entropies are presented and it is argued that there is no single correct algorithm. The properties of the four different methods are compared using simple 1D simulations with a view to showing how they can be used together to gain as much information as possible about the original object. (orig.)

  17. Solar Modulation of Inner Trapped Belt Radiation Flux as a Function of Atmospheric Density

    Science.gov (United States)

    Lodhi, M. A. K.

    2005-01-01

    No simple algorithm seems to exist for calculating proton fluxes and lifetimes in the Earth's inner, trapped radiation belt throughout the solar cycle. Most models of the inner trapped belt in use depend upon AP8 which only describes the radiation environment at solar maximum and solar minimum in Cycle 20. One exception is NOAAPRO which incorporates flight data from the TIROS/NOAA polar orbiting spacecraft. The present study discloses yet another, simple formulation for approximating proton fluxes at any time in a given solar cycle, in particular between solar maximum and solar minimum. It is derived from AP8 using a regression algorithm technique from nuclear physics. From flux and its time integral fluence, one can then approximate dose rate and its time integral dose.

  18. The last glacial maximum

    Science.gov (United States)

    Clark, P.U.; Dyke, A.S.; Shakun, J.D.; Carlson, A.E.; Clark, J.; Wohlfarth, B.; Mitrovica, J.X.; Hostetler, S.W.; McCabe, A.M.

    2009-01-01

    We used 5704 14C, 10Be, and 3He ages that span the interval from 10,000 to 50,000 years ago (10 to 50 ka) to constrain the timing of the Last Glacial Maximum (LGM) in terms of global ice-sheet and mountain-glacier extent. Growth of the ice sheets to their maximum positions occurred between 33.0 and 26.5 ka in response to climate forcing from decreases in northern summer insolation, tropical Pacific sea surface temperatures, and atmospheric CO2. Nearly all ice sheets were at their LGM positions from 26.5 ka to 19 to 20 ka, corresponding to minima in these forcings. The onset of Northern Hemisphere deglaciation 19 to 20 ka was induced by an increase in northern summer insolation, providing the source for an abrupt rise in sea level. The onset of deglaciation of the West Antarctic Ice Sheet occurred between 14 and 15 ka, consistent with evidence that this was the primary source for an abrupt rise in sea level ???14.5 ka.

  19. 77 FR 37554 - Calculation of Maximum Obligation Limitation

    Science.gov (United States)

    2012-06-22

    ... definition of a financial company under section 201 of the Dodd- Frank Act. \\4\\ Section 203(b) of the Dodd... definition of a financial company under section 201. \\5\\ 12 U.S.C. 1823(c)(4). \\6\\ Section 201(a)(11) of the... is in default or in danger of default and that it meets the definition of financial company under...

  20. 76 FR 72645 - Calculation of Maximum Obligation Limitation

    Science.gov (United States)

    2011-11-25

    ..., inter alia, its powers and duties to: (1) Succeed to all rights, titles, powers and privileges of the... issued on or after January 1, 1999. The Agencies have sought to present the proposed rule in a simple and...

  1. Maximum Entropy Fundamentals

    Directory of Open Access Journals (Sweden)

    F. Topsøe

    2001-09-01

    Full Text Available Abstract: In its modern formulation, the Maximum Entropy Principle was promoted by E.T. Jaynes, starting in the mid-fifties. The principle dictates that one should look for a distribution, consistent with available information, which maximizes the entropy. However, this principle focuses only on distributions and it appears advantageous to bring information theoretical thinking more prominently into play by also focusing on the "observer" and on coding. This view was brought forward by the second named author in the late seventies and is the view we will follow-up on here. It leads to the consideration of a certain game, the Code Length Game and, via standard game theoretical thinking, to a principle of Game Theoretical Equilibrium. This principle is more basic than the Maximum Entropy Principle in the sense that the search for one type of optimal strategies in the Code Length Game translates directly into the search for distributions with maximum entropy. In the present paper we offer a self-contained and comprehensive treatment of fundamentals of both principles mentioned, based on a study of the Code Length Game. Though new concepts and results are presented, the reading should be instructional and accessible to a rather wide audience, at least if certain mathematical details are left aside at a rst reading. The most frequently studied instance of entropy maximization pertains to the Mean Energy Model which involves a moment constraint related to a given function, here taken to represent "energy". This type of application is very well known from the literature with hundreds of applications pertaining to several different elds and will also here serve as important illustration of the theory. But our approach reaches further, especially regarding the study of continuity properties of the entropy function, and this leads to new results which allow a discussion of models with so-called entropy loss. These results have tempted us to speculate over

  2. Achieving maximum baryon densities

    International Nuclear Information System (INIS)

    Gyulassy, M.

    1984-01-01

    In continuing work on nuclear stopping power in the energy range E/sub lab/ approx. 10 GeV/nucleon, calculations were made of the energy and baryon densities that could be achieved in uranium-uranium collisions. Results are shown. The energy density reached could exceed 2 GeV/fm 3 and baryon densities could reach as high as ten times normal nuclear densities

  3. Probable maximum flood control

    International Nuclear Information System (INIS)

    DeGabriele, C.E.; Wu, C.L.

    1991-11-01

    This study proposes preliminary design concepts to protect the waste-handling facilities and all shaft and ramp entries to the underground from the probable maximum flood (PMF) in the current design configuration for the proposed Nevada Nuclear Waste Storage Investigation (NNWSI) repository protection provisions were furnished by the United States Bureau of Reclamation (USSR) or developed from USSR data. Proposed flood protection provisions include site grading, drainage channels, and diversion dikes. Figures are provided to show these proposed flood protection provisions at each area investigated. These areas are the central surface facilities (including the waste-handling building and waste treatment building), tuff ramp portal, waste ramp portal, men-and-materials shaft, emplacement exhaust shaft, and exploratory shafts facility

  4. Introduction to maximum entropy

    International Nuclear Information System (INIS)

    Sivia, D.S.

    1988-01-01

    The maximum entropy (MaxEnt) principle has been successfully used in image reconstruction in a wide variety of fields. We review the need for such methods in data analysis and show, by use of a very simple example, why MaxEnt is to be preferred over other regularizing functions. This leads to a more general interpretation of the MaxEnt method, and its use is illustrated with several different examples. Practical difficulties with non-linear problems still remain, this being highlighted by the notorious phase problem in crystallography. We conclude with an example from neutron scattering, using data from a filter difference spectrometer to contrast MaxEnt with a conventional deconvolution. 12 refs., 8 figs., 1 tab

  5. Introduction to maximum entropy

    International Nuclear Information System (INIS)

    Sivia, D.S.

    1989-01-01

    The maximum entropy (MaxEnt) principle has been successfully used in image reconstruction in a wide variety of fields. The author reviews the need for such methods in data analysis and shows, by use of a very simple example, why MaxEnt is to be preferred over other regularizing functions. This leads to a more general interpretation of the MaxEnt method, and its use is illustrated with several different examples. Practical difficulties with non-linear problems still remain, this being highlighted by the notorious phase problem in crystallography. He concludes with an example from neutron scattering, using data from a filter difference spectrometer to contrast MaxEnt with a conventional deconvolution. 12 refs., 8 figs., 1 tab

  6. Functional Maximum Autocorrelation Factors

    DEFF Research Database (Denmark)

    Larsen, Rasmus; Nielsen, Allan Aasbjerg

    2005-01-01

    MAF outperforms the functional PCA in concentrating the interesting' spectra/shape variation in one end of the eigenvalue spectrum and allows for easier interpretation of effects. Conclusions. Functional MAF analysis is a useful methods for extracting low dimensional models of temporally or spatially......Purpose. We aim at data where samples of an underlying function are observed in a spatial or temporal layout. Examples of underlying functions are reflectance spectra and biological shapes. We apply functional models based on smoothing splines and generalize the functional PCA in......\\verb+~+\\$\\backslash\\$cite{ramsay97} to functional maximum autocorrelation factors (MAF)\\verb+~+\\$\\backslash\\$cite{switzer85,larsen2001d}. We apply the method to biological shapes as well as reflectance spectra. {\\$\\backslash\\$bf Methods}. MAF seeks linear combination of the original variables that maximize autocorrelation between...

  7. Regularized maximum correntropy machine

    KAUST Repository

    Wang, Jim Jing-Yan; Wang, Yunji; Jing, Bing-Yi; Gao, Xin

    2015-01-01

    In this paper we investigate the usage of regularized correntropy framework for learning of classifiers from noisy labels. The class label predictors learned by minimizing transitional loss functions are sensitive to the noisy and outlying labels of training samples, because the transitional loss functions are equally applied to all the samples. To solve this problem, we propose to learn the class label predictors by maximizing the correntropy between the predicted labels and the true labels of the training samples, under the regularized Maximum Correntropy Criteria (MCC) framework. Moreover, we regularize the predictor parameter to control the complexity of the predictor. The learning problem is formulated by an objective function considering the parameter regularization and MCC simultaneously. By optimizing the objective function alternately, we develop a novel predictor learning algorithm. The experiments on two challenging pattern classification tasks show that it significantly outperforms the machines with transitional loss functions.

  8. Regularized maximum correntropy machine

    KAUST Repository

    Wang, Jim Jing-Yan

    2015-02-12

    In this paper we investigate the usage of regularized correntropy framework for learning of classifiers from noisy labels. The class label predictors learned by minimizing transitional loss functions are sensitive to the noisy and outlying labels of training samples, because the transitional loss functions are equally applied to all the samples. To solve this problem, we propose to learn the class label predictors by maximizing the correntropy between the predicted labels and the true labels of the training samples, under the regularized Maximum Correntropy Criteria (MCC) framework. Moreover, we regularize the predictor parameter to control the complexity of the predictor. The learning problem is formulated by an objective function considering the parameter regularization and MCC simultaneously. By optimizing the objective function alternately, we develop a novel predictor learning algorithm. The experiments on two challenging pattern classification tasks show that it significantly outperforms the machines with transitional loss functions.

  9. Heat transfer and critical heat flux in a spiral flow in an asymmetrical heated tube

    International Nuclear Information System (INIS)

    Boscary, J.; Association Euratom-CEA, Centre d'Etudes Nucleaires de Cadarache, 13 - Saint-Paul-lez-Durance

    1997-03-01

    The design of plasma facing components is crucial for plasma performance in next fusion reactors. These elements will be submitted to very high heat flux. They will be actively water-cooled by swirl tubes in the subcooled boiling regime. High heat flux experiments were conducted in order to analyse the heat transfer and to evaluate the critical heat flux. Water-cooled mock-ups were one-side heated by an electron beam gun for different thermal-hydraulic conditions. The critical heat flux was detected by an original method based on the isotherm modification on the heated surface. The wall heat transfer law including forced convection and subcooled boiling regimes was established. Numerical calculations of the material heat transfer conduction allowed the non-homogeneous distribution of the wall temperature and of the wall heat flux to be evaluated. The critical heat flux value was defined as the wall maximum heat flux. A critical heat flux model based on the liquid sublayer dryout under a vapor blanket was established. A good agreement with test results was found. (author)

  10. Heat transfer and critical heat flux in a asymmetrically heated tube helicoidal flow

    International Nuclear Information System (INIS)

    Boscary, J.

    1995-10-01

    The design of plasma facing components is crucial for plasma performance in next fusion reactors. These elements will be submitted to very high heat flux. They will be actively water-cooled by swirl tubes in the subcooled boiling regime. High heat flux experiments were conducted in order to analyse the heat transfer and to evaluate the critical heat flux. Water-cooled mock-ups were one-side heated by an electron beam gun for different thermal-hydraulic conditions. The critical heat flux was detected by an original method based on the isotherm modification on the heated surface. The wall heat transfer law including forced convection and subcooled boiling regimes was established. Numerical calculations of the material heat transfer conduction allowed the non-homogeneous distribution of the wall temperature and of the wall heat flux to be evaluated. The critical heat flux value was defined as the wall maximum heat flux. A critical heat flux model based on the liquid sublayer dryout under a vapor blanket was established. A good agreement with test results was found. (author). 198 refs., 126 figs., 21 tabs

  11. Monte Carlo surface flux tallies

    International Nuclear Information System (INIS)

    Favorite, Jeffrey A.

    2010-01-01

    Particle fluxes on surfaces are difficult to calculate with Monte Carlo codes because the score requires a division by the surface-crossing angle cosine, and grazing angles lead to inaccuracies. We revisit the standard practice of dividing by half of a cosine 'cutoff' for particles whose surface-crossing cosines are below the cutoff. The theory behind this approximation is sound, but the application of the theory to all possible situations does not account for two implicit assumptions: (1) the grazing band must be symmetric about 0, and (2) a single linear expansion for the angular flux must be applied in the entire grazing band. These assumptions are violated in common circumstances; for example, for separate in-going and out-going flux tallies on internal surfaces, and for out-going flux tallies on external surfaces. In some situations, dividing by two-thirds of the cosine cutoff is more appropriate. If users were able to control both the cosine cutoff and the substitute value, they could use these parameters to make accurate surface flux tallies. The procedure is demonstrated in a test problem in which Monte Carlo surface fluxes in cosine bins are converted to angular fluxes and compared with the results of a discrete ordinates calculation.

  12. Solar maximum mission

    International Nuclear Information System (INIS)

    Ryan, J.

    1981-01-01

    By understanding the sun, astrophysicists hope to expand this knowledge to understanding other stars. To study the sun, NASA launched a satellite on February 14, 1980. The project is named the Solar Maximum Mission (SMM). The satellite conducted detailed observations of the sun in collaboration with other satellites and ground-based optical and radio observations until its failure 10 months into the mission. The main objective of the SMM was to investigate one aspect of solar activity: solar flares. A brief description of the flare mechanism is given. The SMM satellite was valuable in providing information on where and how a solar flare occurs. A sequence of photographs of a solar flare taken from SMM satellite shows how a solar flare develops in a particular layer of the solar atmosphere. Two flares especially suitable for detailed observations by a joint effort occurred on April 30 and May 21 of 1980. These flares and observations of the flares are discussed. Also discussed are significant discoveries made by individual experiments

  13. Near bed suspended sediment flux by single turbulent events

    Science.gov (United States)

    Amirshahi, Seyed Mohammad; Kwoll, Eva; Winter, Christian

    2018-01-01

    The role of small scale single turbulent events in the vertical mixing of near bed suspended sediments was explored in a shallow shelf sea environment. High frequency velocity and suspended sediment concentration (SSC; calibrated from the backscatter intensity) were collected using an Acoustic Doppler Velocimeter (ADV). Using quadrant analysis, the despiked velocity time series was divided into turbulent events and small background fluctuations. Reynolds stress and Turbulent Kinetic Energy (TKE) calculated from all velocity samples, were compared to the same turbulent statistics calculated only from velocity samples classified as turbulent events (Reevents and TKEevents). The comparison showed that Reevents and TKEevents was increased 3 and 1.6 times, respectively, when small background fluctuations were removed and that the correlation with SSC for TKE could be improved through removal of the latter. The correlation between instantaneous vertical turbulent flux (w ‧) and SSC fluctuations (SSC ‧) exhibits a tidal pattern with the maximum correlation at peak ebb and flood currents, when strong turbulent events appear. Individual turbulent events were characterized by type, strength, duration and length. Cumulative vertical turbulent sediment fluxes and average SSC associated with individual turbulent events were calculated. Over the tidal cycle, ejections and sweeps were the most dominant events, transporting 50% and 36% of the cumulative vertical turbulent event sediment flux, respectively. Although the contribution of outward interactions to the vertical turbulent event sediment flux was low (11%), single outward interaction events were capable of inducing similar SSC ‧ as sweep events. The results suggest that on time scales of tens of minutes to hours, TKE may be appropriate to quantify turbulence in sediment transport studies, but that event characteristics, particular the upward turbulent flux need to be accounted for when considering sediment transport

  14. Critical flux determination by flux-stepping

    DEFF Research Database (Denmark)

    Beier, Søren; Jonsson, Gunnar Eigil

    2010-01-01

    In membrane filtration related scientific literature, often step-by-step determined critical fluxes are reported. Using a dynamic microfiltration device, it is shown that critical fluxes determined from two different flux-stepping methods are dependent upon operational parameters such as step...... length, step height, and.flux start level. Filtrating 8 kg/m(3) yeast cell suspensions by a vibrating 0.45 x 10(-6) m pore size microfiltration hollow fiber module, critical fluxes from 5.6 x 10(-6) to 1.2 x 10(-5) m/s have been measured using various step lengths from 300 to 1200 seconds. Thus......, such values are more or less useless in itself as critical flux predictors, and constant flux verification experiments have to be conducted to check if the determined critical fluxes call predict sustainable flux regimes. However, it is shown that using the step-by-step predicted critical fluxes as start...

  15. Boosted Fast Flux Loop Alternative Cooling Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Glen R. Longhurst; Donna Post Guillen; James R. Parry; Douglas L. Porter; Bruce W. Wallace

    2007-08-01

    The Gas Test Loop (GTL) Project was instituted to develop the means for conducting fast neutron irradiation tests in a domestic radiation facility. It made use of booster fuel to achieve the high neutron flux, a hafnium thermal neutron absorber to attain the high fast-to-thermal flux ratio, a mixed gas temperature control system for maintaining experiment temperatures, and a compressed gas cooling system to remove heat from the experiment capsules and the hafnium thermal neutron absorber. This GTL system was determined to provide a fast (E > 0.1 MeV) flux greater than 1.0E+15 n/cm2-s with a fast-to-thermal flux ratio in the vicinity of 40. However, the estimated system acquisition cost from earlier studies was deemed to be high. That cost was strongly influenced by the compressed gas cooling system for experiment heat removal. Designers were challenged to find a less expensive way to achieve the required cooling. This report documents the results of the investigation leading to an alternatively cooled configuration, referred to now as the Boosted Fast Flux Loop (BFFL). This configuration relies on a composite material comprised of hafnium aluminide (Al3Hf) in an aluminum matrix to transfer heat from the experiment to pressurized water cooling channels while at the same time providing absorption of thermal neutrons. Investigations into the performance this configuration might achieve showed that it should perform at least as well as its gas-cooled predecessor. Physics calculations indicated that the fast neutron flux averaged over the central 40 cm (16 inches) relative to ATR core mid-plane in irradiation spaces would be about 1.04E+15 n/cm2-s. The fast-to-thermal flux ratio would be in excess of 40. Further, the particular configuration of cooling channels was relatively unimportant compared with the total amount of water in the apparatus in determining performance. Thermal analyses conducted on a candidate configuration showed the design of the water coolant and

  16. HEU benchmark calculations and LEU preliminary calculations for IRR-1

    International Nuclear Information System (INIS)

    Caner, M.; Shapira, M.; Bettan, M.; Nagler, A.; Gilat, J.

    2004-01-01

    We performed neutronics calculations for the Soreq Research Reactor, IRR-1. The calculations were done for the purpose of upgrading and benchmarking our codes and methods. The codes used were mainly WIMS-D/4 for cell calculations and the three dimensional diffusion code CITATION for full core calculations. The experimental flux was obtained by gold wire activation methods and compared with our calculated flux profile. The IRR-1 is loaded with highly enriched uranium fuel assemblies, of the plate type. In the framework of preparation for conversion to low enrichment fuel, additional calculations were done assuming the presence of LEU fresh fuel. In these preliminary calculations we investigated the effect on the criticality and flux distributions of the increase of U-238 loading, and the corresponding uranium density.(author)

  17. Uncertainty calculations made easier

    International Nuclear Information System (INIS)

    Hogenbirk, A.

    1994-07-01

    The results are presented of a neutron cross section sensitivity/uncertainty analysis performed in a complicated 2D model of the NET shielding blanket design inside the ITER torus design, surrounded by the cryostat/biological shield as planned for ITER. The calculations were performed with a code system developed at ECN Petten, with which sensitivity/uncertainty calculations become relatively simple. In order to check the deterministic neutron transport calculations (performed with DORT), calculations were also performed with the Monte Carlo code MCNP. Care was taken to model the 2.0 cm wide gaps between two blanket segments, as the neutron flux behind the vacuum vessel is largely determined by neutrons streaming through these gaps. The resulting neutron flux spectra are in excellent agreement up to the end of the cryostat. It is noted, that at this position the attenuation of the neutron flux is about 1 l orders of magnitude. The uncertainty in the energy integrated flux at the beginning of the vacuum vessel and at the beginning of the cryostat was determined in the calculations. The uncertainty appears to be strongly dependent on the exact geometry: if the gaps are filled with stainless steel, the neutron spectrum changes strongly, which results in an uncertainty of 70% in the energy integrated flux at the beginning of the cryostat in the no-gap-geometry, compared to an uncertainty of only 5% in the gap-geometry. Therefore, it is essential to take into account the exact geometry in sensitivity/uncertainty calculations. Furthermore, this study shows that an improvement of the covariance data is urgently needed in order to obtain reliable estimates of the uncertainties in response parameters in neutron transport calculations. (orig./GL)

  18. The effects of different footprint sizes and cloud algorithms on the top-of-atmosphere radiative flux calculation from the Clouds and Earth's Radiant Energy System (CERES instrument on Suomi National Polar-orbiting Partnership (NPP

    Directory of Open Access Journals (Sweden)

    W. Su

    2017-10-01

    Full Text Available Only one Clouds and Earth's Radiant Energy System (CERES instrument is onboard the Suomi National Polar-orbiting Partnership (NPP and it has been placed in cross-track mode since launch; it is thus not possible to construct a set of angular distribution models (ADMs specific for CERES on NPP. Edition 4 Aqua ADMs are used for flux inversions for NPP CERES measurements. However, the footprint size of NPP CERES is greater than that of Aqua CERES, as the altitude of the NPP orbit is higher than that of the Aqua orbit. Furthermore, cloud retrievals from the Visible Infrared Imaging Radiometer Suite (VIIRS and the Moderate Resolution Imaging Spectroradiometer (MODIS, which are the imagers sharing the spacecraft with NPP CERES and Aqua CERES, are also different. To quantify the flux uncertainties due to the footprint size difference between Aqua CERES and NPP CERES, and due to both the footprint size difference and cloud property difference, a simulation is designed using the MODIS pixel-level data, which are convolved with the Aqua CERES and NPP CERES point spread functions (PSFs into their respective footprints. The simulation is designed to isolate the effects of footprint size and cloud property differences on flux uncertainty from calibration and orbital differences between NPP CERES and Aqua CERES. The footprint size difference between Aqua CERES and NPP CERES introduces instantaneous flux uncertainties in monthly gridded NPP CERES measurements of less than 4.0 W m−2 for SW (shortwave and less than 1.0 W m−2 for both daytime and nighttime LW (longwave. The global monthly mean instantaneous SW flux from simulated NPP CERES has a low bias of 0.4 W m−2 when compared to simulated Aqua CERES, and the root-mean-square (RMS error is 2.2 W m−2 between them; the biases of daytime and nighttime LW flux are close to zero with RMS errors of 0.8 and 0.2 W m−2. These uncertainties are within the uncertainties of CERES ADMs

  19. The Global Character of the Flux of Downward Longwave Radiation

    Science.gov (United States)

    Stephens, Graeme L.; Wild, Martin; Stackhouse, Paul W., Jr.; L'Ecuyer, Tristan; Kato, Seiji; Henderson, David S.

    2012-01-01

    Four different types of estimates of the surface downwelling longwave radiative flux (DLR) are reviewed. One group of estimates synthesizes global cloud, aerosol, and other information in a radiation model that is used to calculate fluxes. Because these synthesis fluxes have been assessed against observations, the global-mean values of these fluxes are deemed to be the most credible of the four different categories reviewed. The global, annual mean DLR lies between approximately 344 and 350 W/sq m with an error of approximately +/-10 W/sq m that arises mostly from the uncertainty in atmospheric state that governs the estimation of the clear-sky emission. The authors conclude that the DLR derived from global climate models are biased low by approximately 10 W/sq m and even larger differences are found with respect to reanalysis climate data. The DLR inferred from a surface energy balance closure is also substantially smaller that the range found from synthesis products suggesting that current depictions of surface energy balance also require revision. The effect of clouds on the DLR, largely facilitated by the new cloud base information from the CloudSat radar, is estimated to lie in the range from 24 to 34 W/sq m for the global cloud radiative effect (all-sky minus clear-sky DLR). This effect is strongly modulated by the underlying water vapor that gives rise to a maximum sensitivity of the DLR to cloud occurring in the colder drier regions of the planet. The bottom of atmosphere (BOA) cloud effect directly contrast the effect of clouds on the top of atmosphere (TOA) fluxes that is maximum in regions of deepest and coldest clouds in the moist tropics.

  20. Variability of fractal dimension of solar radio flux

    Science.gov (United States)

    Bhatt, Hitaishi; Sharma, Som Kumar; Trivedi, Rupal; Vats, Hari Om

    2018-04-01

    In the present communication, the variation of the fractal dimension of solar radio flux is reported. Solar radio flux observations on a day to day basis at 410, 1415, 2695, 4995, and 8800 MHz are used in this study. The data were recorded at Learmonth Solar Observatory, Australia from 1988 to 2009 covering an epoch of two solar activity cycles (22 yr). The fractal dimension is calculated for the listed frequencies for this period. The fractal dimension, being a measure of randomness, represents variability of solar radio flux at shorter time-scales. The contour plot of fractal dimension on a grid of years versus radio frequency suggests high correlation with solar activity. Fractal dimension increases with increasing frequency suggests randomness increases towards the inner corona. This study also shows that the low frequency is more affected by solar activity (at low frequency fractal dimension difference between solar maximum and solar minimum is 0.42) whereas, the higher frequency is less affected by solar activity (here fractal dimension difference between solar maximum and solar minimum is 0.07). A good positive correlation is found between fractal dimension averaged over all frequencies and yearly averaged sunspot number (Pearson's coefficient is 0.87).

  1. Calculation of fluences of fast neutrons hitting the pressure vessel of the Dukovany NPP WWER-440 reactor. Part I. Theory, calculations, comparison with the experiment

    International Nuclear Information System (INIS)

    Rataj, J.

    1993-10-01

    The method of calculating neutron spectra and integral flux densities of neutrons hitting the pressure vessel of the Dukovany NPP WWER-440 reactor is outlined. The one-dimensional and two-dimensional calculations were performed by means of the DORT code in R, R-Z, and R-Θ geometries using the cross sections from the ELXSIR library. In the R-Θ geometry, the coupled neutron flux densities were determined. The calculated values of the maximum activation of detectors differ less than 15% from the values measured in surveillance specimens, which is within the limit of uncertainty associated with the position of the detector in the casing. The differences between the calculated and observed data behind the pressure vessel were below 4%. 10 tabs., 3 figs., 41 refs

  2. Pollutant Flux Estimation in an Estuary Comparison between Model and Field Measurements

    Directory of Open Access Journals (Sweden)

    Yen-Chang Chen

    2014-08-01

    Full Text Available This study proposes a framework for estimating pollutant flux in an estuary. An efficient method is applied to estimate the flux of pollutants in an estuary. A gauging station network in the Danshui River estuary is established to measure the data of water quality and discharge based on the efficient method. A boat mounted with an acoustic Doppler profiler (ADP traverses the river along a preselected path that is normal to the streamflow to measure the velocities, water depths and water quality for calculating pollutant flux. To know the characteristics of the estuary and to provide the basis for the pollutant flux estimation model, data of complete tidal cycles is collected. The discharge estimation model applies the maximum velocity and water level to estimate mean velocity and cross-sectional area, respectively. Thus, the pollutant flux of the estuary can be easily computed as the product of the mean velocity, cross-sectional area and pollutant concentration. The good agreement between the observed and estimated pollutant flux of the Danshui River estuary shows that the pollutant measured by the conventional and the efficient methods are not fundamentally different. The proposed method is cost-effective and reliable. It can be used to estimate pollutant flux in an estuary accurately and efficiently.

  3. Phase diagram measurements by Heat-flux DSC and thermodynamic calculations of the mixture of the Esters Ethyl undecanoate (C13H26O2) and Ethyl tridecanoate (C15H30O2)

    NARCIS (Netherlands)

    Schaftenaar, H.P.C.

    2006-01-01

    In this report a phase diagram is determined by heat flux DSC of the binary mixture Ethyl undecanoate and Ethyl tridecanoate. Our hypothesis for equilibrium phase behaviour is that the components Ethyl undecanoate and Ethyl tridecanoate do have the same crystal form and they have restricted

  4. Measurement and evaluation of fast neutron flux of CT and OR5 irradiation hole in HANARO

    International Nuclear Information System (INIS)

    Yang, Seong Woo; Choo, Kee Nam; Lee, Seung-Kyu; Kim, Yong Kyun

    2012-01-01

    The irradiation test has been conducted to evaluate the irradiation performance of many materials by a material capsule at HANARO. Since the fast neutron fluence above 1 MeV is important for the irradiation test of material, it must be measured and evaluated exactly at each irradiation hole. Therefore, a fast neutron flux was measured and evaluated by a 09M-02K capsule irradiated in an OR5 irradiation hole and a 10M-01K capsule irradiated in a CT irradiation hole. Fe, Ni, and Ti wires as the fluence monitor were used for the detection of fast neutron flux. Before the irradiation test, the neutron flux and spectrum was calculated for each irradiation hole using an MCNP code. After the irradiation test, the activity of the fluence monitor was measured by an HPGe detector and the reaction rate was calculated. For the OR5 irradiation hole, the radial difference of the fast neutron flux was observed from a calculated data due to the OR5 irradiation hole being located outside the core. Furthermore, a control absorber rod was withdrawn from the core as the increase of the irradiation time at the same irradiation cycle, so the distribution of neutron flux was changed from the beginning to the end of the cycle. These effects were considered to evaluate the fast neutron flux. Neutron spectrums of the CT and OR5 irradiation hole were adjusted by the measured data. The fluxes of a fast neutron above 1 MeV were compared with calculated and measured value. Although the maximum difference was shown at 18.48%, most of the results showed good agreement. (author)

  5. Notes on neutron flux measurement

    International Nuclear Information System (INIS)

    Alcala Ruiz, F.

    1984-01-01

    The main purpose of this work is to get an useful guide to carry out topical neutron flux measurements. Although the foil activation technique is used in the majority of the cases, other techniques, such as those based on fission chambers and self-powered neutron detectors, are also shown. Special interest is given to the description and application of corrections on the measurement of relative and absolute induced activities by several types of detectors (scintillators, G-M and gas proportional counters). The thermal arid epithermal neutron fluxes, as determined in this work, are conventional or effective (West cots fluxes), which are extensively used by the reactor experimentalists; however, we also give some expressions where they are related to the integrated neutron fluxes, which are used in neutron calculations. (Author) 16 refs

  6. Neutron flux monitor

    International Nuclear Information System (INIS)

    Seki, Eiji; Tai, Ichiro.

    1984-01-01

    Purpose: To maintain the measuring accuracy and the reponse time within an allowable range in accordance with the change of neutron fluxes in a nuclear reactor pressure vessel. Constitution: Neutron fluxes within a nuclear reactor pressure vessel are detected by detectors, converted into pulse signals and amplified in a range switching amplifier. The amplified signals are further converted through an A/D converter and digital signals from the converter are subjected to a square operation in an square operation circuit. The output from the circuit is inputted into an integration circuit to selectively accumulate the constant of 1/2n, 1 - 1/2n (n is a positive integer) respectively for two continuing signals to perform weighing. Then, the addition is carried out to calculate the integrated value and the addition number is changed by the chane in the number n to vary the integrating time. The integrated value is inputted into a control circuit to control the value of n so that the fluctuation and the calculation time for the integrated value are within a predetermined range and, at the same time, the gain of the range switching amplifier is controlled. (Seki, T.)

  7. rf SQUID system as tunable flux qubit

    Energy Technology Data Exchange (ETDEWEB)

    Ruggiero, B. [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I-80078 Pozzuoli (Italy)]. E-mail: b.ruggiero@cib.na.cnr.it; Granata, C. [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I-80078 Pozzuoli (Italy); Vettoliere, A. [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I-80078 Pozzuoli (Italy); Rombetto, S. [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I-80078 Pozzuoli (Italy); Russo, R. [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I-80078 Pozzuoli (Italy); Russo, M. [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I-80078 Pozzuoli (Italy); Corato, V. [Dipartimento di Ingegneria dell' Informazione, Seconda Universita di Napoli, I-81031 Aversa (Italy); Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I-80078 Pozzuoli (Italy); Silvestrini, P. [Dipartimento di Ingegneria dell' Informazione, Seconda Universita di Napoli, I-81031 Aversa (Italy); Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I-80078 Pozzuoli (Italy)

    2006-08-21

    We present a fully integrated rf SQUID-based system as flux qubit with a high control of the flux transfer function of the superconducting transformer modulating the coupling between the flux qubit and the readout system. The control of the system is possible by including into the superconducting flux transformer a vertical two-Josephson-junctions interferometer (VJI) in which the Josephson current is precisely modulated from a maximum to zero by a transversal magnetic field parallel to the flux transformer plane. The proposed system can be also used in a more general configuration to control the off-diagonal terms in the Hamiltonian of the flux qubit and to turn on and off the coupling between two or more qubits.

  8. Measurement of a thermal neutron flux using air activation; Mesure de flux de neutrons thermiques par activation d'air

    Energy Technology Data Exchange (ETDEWEB)

    Guyonvarh, M; Lecomte, P; Le Meur, R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-07-01

    It is necessary to know, in irradiation loops, the thermal neutron flux after the irradiation device has been introduced and without being obliged to wait for the discharge of this device. In order to measure the flux and to control it continuously, one possible method is to place in the flux a coiled steel tube through which air passes. By measuring the activity of argon 41, and with a knowledge of the flow rate and the temperature of the air, it is possible to calculate the flux. An air-circulation flux controller is described and the relationship between the flux and the count rate is established The accuracy of an absolute measurement is about 14 per cent; that of a relative measurement is about 3 per cent. The measurement can be carried out equally well whether the reactor is operating at maximum or at low power. The measurement range goes from 10{sup 9} to lO{sup 15} n.cm{sup -2}.sec{sup -1}, and it would be possible after a few modifications to measure fluxes between 10{sup 5} and 10{sup 15} n.cm{sup -2}.sec{sup -1}. Finally, the method is very safe to operate: there is little risk of irradiation because of the low specific activity of the argon-41 formed, and no risk of contamination because the decay product of argon-41 is stable. This method, which is now being used in loops, is thus very practical. (authors) [French] Sur des boucles d'irradiation il est necessaire de connaitre le flux de neutrons thermiques apres mise en place du dispositif d'irradiation et sans etre oblige d'attendre le detournement de ce dispositif. Pour mesurer le flux et le controler en permanence, une methode consiste a placer sous flux un serpentin en acier dans lequel on fait circuler de l'air. La mesure d'activite d'argon 41 permet de calculer le flux, connaissant le debit et la temperature de l'air. Un controleur de flux par circulation d'air est decrit et la relation entre le flux et le taux de comptage est etablie. La precision d'une mesure absolue est de l'ordre de 14 pour

  9. Statistical mechanics of flux lines in high-temperature superconductors

    International Nuclear Information System (INIS)

    Dasgupta, C.

    1992-01-01

    The shortness of the low temperature coherence lengths of high T c materials leads to new mechanisms of pinning of flux lines. Lattice periodic modulations of the order parameters itself acts to pin vortex lines in regions of the unit cell were the order parameter is small. A presentation of flux creep and flux noise at low temperature and magnetic fields in terms of motion of simple metastable defects on flux lines is made, with a calculation of flux lattice melting. 12 refs

  10. Credal Networks under Maximum Entropy

    OpenAIRE

    Lukasiewicz, Thomas

    2013-01-01

    We apply the principle of maximum entropy to select a unique joint probability distribution from the set of all joint probability distributions specified by a credal network. In detail, we start by showing that the unique joint distribution of a Bayesian tree coincides with the maximum entropy model of its conditional distributions. This result, however, does not hold anymore for general Bayesian networks. We thus present a new kind of maximum entropy models, which are computed sequentially. ...

  11. OpenFLUX: efficient modelling software for 13C-based metabolic flux analysis

    Directory of Open Access Journals (Sweden)

    Nielsen Lars K

    2009-05-01

    Full Text Available Abstract Background The quantitative analysis of metabolic fluxes, i.e., in vivo activities of intracellular enzymes and pathways, provides key information on biological systems in systems biology and metabolic engineering. It is based on a comprehensive approach combining (i tracer cultivation on 13C substrates, (ii 13C labelling analysis by mass spectrometry and (iii mathematical modelling for experimental design, data processing, flux calculation and statistics. Whereas the cultivation and the analytical part is fairly advanced, a lack of appropriate modelling software solutions for all modelling aspects in flux studies is limiting the application of metabolic flux analysis. Results We have developed OpenFLUX as a user friendly, yet flexible software application for small and large scale 13C metabolic flux analysis. The application is based on the new Elementary Metabolite Unit (EMU framework, significantly enhancing computation speed for flux calculation. From simple notation of metabolic reaction networks defined in a spreadsheet, the OpenFLUX parser automatically generates MATLAB-readable metabolite and isotopomer balances, thus strongly facilitating model creation. The model can be used to perform experimental design, parameter estimation and sensitivity analysis either using the built-in gradient-based search or Monte Carlo algorithms or in user-defined algorithms. Exemplified for a microbial flux study with 71 reactions, 8 free flux parameters and mass isotopomer distribution of 10 metabolites, OpenFLUX allowed to automatically compile the EMU-based model from an Excel file containing metabolic reactions and carbon transfer mechanisms, showing it's user-friendliness. It reliably reproduced the published data and optimum flux distributions for the network under study were found quickly ( Conclusion We have developed a fast, accurate application to perform steady-state 13C metabolic flux analysis. OpenFLUX will strongly facilitate and

  12. Critical heat flux in subcooled and low quality boiling

    International Nuclear Information System (INIS)

    Maroti, L.

    1976-06-01

    A semi-empirical relationship for critical heat flux prediction in a light water cooled power reactor core is developed. The method of developing this relationship is the extension of the analysis of pool boiling crisis for forced convective boiling. In the calculations the energy conservation equation is used together with additional condition for the crisis. Assuming that in the vicinity of the crisis the heat is transported only by the latent heat of the vapour this condition for the crisis can be characterized by the maximum departure velocity of the vapour. Because only flow boiling crisis associating with bubbling at the heating surface is considered the model could be applied only for low quality boiling crisis. The calculated results are compared to the available experimental ones. (Sz.N.Z.)

  13. SR 97 - Radionuclide transport calculations

    Energy Technology Data Exchange (ETDEWEB)

    Lindgren, Maria [Kemakta Konsult AB, Stockholm (Sweden); Lindstroem, Fredrik [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    1999-12-01

    An essential component of a safety assessment is to calculate radionuclide release and dose consequences for different scenarios and cases. The SKB tools for such a quantitative assessment are used to calculate the maximum releases and doses for the hypothetical repository sites Aberg, Beberg and Ceberg for the initial canister defect scenario and also for the glacial melting case for Aberg. The reasonable cases, i.e. all parameters take reasonable values, results in maximum biosphere doses of 5x10{sup -8} Sv/yr for Aberg, 3x10{sup -8} Sv/yr for Beberg and 1x10{sup -8} Sv/yr for Ceberg for peat area. These doses lie significantly below 0.15 mSv/yr. (A dose of 0.15 mSv/yr for unit probability corresponds to the risk limit of 10{sup -5} per year for the most exposed individuals recommended in regulations.) The conclusion that the maximum risk would lie well below 10{sup -5} per year is also demonstrated by results from the probabilistic calculations, which directly assess the resulting risk by combining dose and probability estimates. The analyses indicate that the risk is 2x10{sup -5} Sv/yr for Aberg, 8x10{sup -7} Sv/yr for Beberg and 3x10{sup -8} Sv/yr for Ceberg. The analysis shows that the most important parameters in the near field are the number of defective canisters and the instant release fraction. The influence from varying one parameter never changes the doses as much as an order of magnitude. In the far field the most important uncertainties affecting release and retention are associated with permeability and connectivity of the fractures in the rock. These properties affect several parameters. Highly permeable and well connected fractures imply high groundwater fluxes and short groundwater travel times. Sparsely connected or highly variable fracture properties implies low flow wetted surface along migration paths. It should, however, be remembered that the far-field parameters have little importance if the near-field parameters take their reasonable

  14. SR 97 - Radionuclide transport calculations

    International Nuclear Information System (INIS)

    Lindgren, Maria; Lindstroem, Fredrik

    1999-12-01

    An essential component of a safety assessment is to calculate radionuclide release and dose consequences for different scenarios and cases. The SKB tools for such a quantitative assessment are used to calculate the maximum releases and doses for the hypothetical repository sites Aberg, Beberg and Ceberg for the initial canister defect scenario and also for the glacial melting case for Aberg. The reasonable cases, i.e. all parameters take reasonable values, results in maximum biosphere doses of 5x10 -8 Sv/yr for Aberg, 3x10 -8 Sv/yr for Beberg and 1x10 -8 Sv/yr for Ceberg for peat area. These doses lie significantly below 0.15 mSv/yr. (A dose of 0.15 mSv/yr for unit probability corresponds to the risk limit of 10 -5 per year for the most exposed individuals recommended in regulations.) The conclusion that the maximum risk would lie well below 10 -5 per year is also demonstrated by results from the probabilistic calculations, which directly assess the resulting risk by combining dose and probability estimates. The analyses indicate that the risk is 2x10 -5 Sv/yr for Aberg, 8x10 -7 Sv/yr for Beberg and 3x10 -8 Sv/yr for Ceberg. The analysis shows that the most important parameters in the near field are the number of defective canisters and the instant release fraction. The influence from varying one parameter never changes the doses as much as an order of magnitude. In the far field the most important uncertainties affecting release and retention are associated with permeability and connectivity of the fractures in the rock. These properties affect several parameters. Highly permeable and well connected fractures imply high groundwater fluxes and short groundwater travel times. Sparsely connected or highly variable fracture properties implies low flow wetted surface along migration paths. It should, however, be remembered that the far-field parameters have little importance if the near-field parameters take their reasonable values. In that case almost all

  15. Atmosphere–Surface Fluxes of CO2 using Spectral Techniques

    DEFF Research Database (Denmark)

    Sørensen, Lise Lotte; Larsen, Søren Ejling

    2010-01-01

    Different flux estimation techniques are compared here in order to evaluate air–sea exchange measurement methods used on moving platforms. Techniques using power spectra and cospectra to estimate fluxes are presented and applied to measurements of wind speed and sensible heat, latent heat and CO2...... fluxes. Momentum and scalar fluxes are calculated from the dissipation technique utilizing the inertial subrange of the power spectra and from estimation of the cospectral amplitude, and both flux estimates are compared to covariance derived fluxes. It is shown how even data having a poor signal......-to-noise ratio can be used for flux estimations....

  16. A study of influence of material properties on magnetic flux density induced in magneto rheological damper through finite element analysis

    Directory of Open Access Journals (Sweden)

    Gurubasavaraju T. M.

    2018-01-01

    Full Text Available Magnetorheological fluids are smart materials, which are responsive to the external stimulus and changes their rheological properties. The damper performance (damping force is dependent on the magnetic flux density induced at the annular gap. Magnetic flux density developed at fluid flow gap of MR damper due to external applied current is also dependent on materials properties of components of MR damper (such as piston head, outer cylinder and piston rod. The present paper discus about the influence of different materials selected for components of the MR damper on magnetic effect using magnetostatic analysis. Different materials such as magnetic and low carbon steels are considered for piston head of the MR damper and magnetic flux density induced at fluid flow gap (filled with MR fluid is computed for different DC current applied to the electromagnetic coil. Developed magnetic flux is used for calculating the damper force using analytical method for each case. The low carbon steel has higher magnetic permeability hence maximum magnetic flux could pass through the piston head, which leads to higher value of magnetic effect induction at the annular gap. From the analysis results it is observed that the magnetic steel and low carbon steel piston head provided maximum magnetic flux density. Eventually the higher damping force can be observed for same case.

  17. Magnetic-flux pump

    Science.gov (United States)

    Hildebrandt, A. F.; Elleman, D. D.; Whitmore, F. C. (Inventor)

    1966-01-01

    A magnetic flux pump is described for increasing the intensity of a magnetic field by transferring flux from one location to the magnetic field. The device includes a pair of communicating cavities formed in a block of superconducting material, and a piston for displacing the trapped magnetic flux into the secondary cavity producing a field having an intense flux density.

  18. Radon flux measurement methodologies

    International Nuclear Information System (INIS)

    Nielson, K.K.; Rogers, V.C.

    1984-01-01

    Five methods for measuring radon fluxes are evaluated: the accumulator can, a small charcoal sampler, a large-area charcoal sampler, the ''Big Louie'' charcoal sampler, and the charcoal tent sampler. An experimental comparison of the five flux measurement techniques was also conducted. Excellent agreement was obtained between the measured radon fluxes and fluxes predicted from radium and emanation measurements

  19. Vertical Josephson Interferometer for Tunable Flux Qubit

    Energy Technology Data Exchange (ETDEWEB)

    Granata, C [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I- 80078, Pozzuoli (Italy); Vettoliere, A [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I- 80078, Pozzuoli (Italy); Lisitskiy, M [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I- 80078, Pozzuoli (Italy); Rombetto, S [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I- 80078, Pozzuoli (Italy); Russo, M [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I- 80078, Pozzuoli (Italy); Ruggiero, B [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I- 80078, Pozzuoli (Italy); Corato, V [Dipartimento di Ingegneria dell' Informazione, Seconda Universita di Napoli, I-8 1031, Aversa (Italy) and Istituto di Cibernetica ' E. Caianiello' del CNR, I-80078, Pozzuoli (Italy); Russo, R [Dipartimento di Ingegneria dell' Informazione, Seconda Universita di Napoli, I-8 1031, Aversa (Italy) and Istituto di Cibernetica ' E. Caianiello' del CNR, I-80078, Pozzuoli (Italy); Silvestrini, P [Dipartimento di Ingegneria dell' Informazione, Seconda Universita di Napoli, I-8 1031, Aversa (Italy) and Istituto di Cibernetica ' E. Caianiello' del CNR, I-80078, Pozzuoli (Italy)

    2006-06-01

    We present a niobium-based Josephson device as prototype for quantum computation with flux qubits. The most interesting feature of this device is the use of a Josephson vertical interferometer to tune the flux qubit allowing the control of the off-diagonal Hamiltonian terms of the system. In the vertical interferometer, the Josephson current is precisely modulated from a maximum to zero with fine control by a small transversal magnetic field parallel to the rf superconducting loop plane.

  20. PODESY program for flux mapping of CNA II reactor:

    International Nuclear Information System (INIS)

    Ribeiro Guevara, Sergio

    1988-01-01

    The PODESY program, developed by KWU, calculates the spatial flux distribution of CNA II reactor through a three-dimensional expansion of 90 incore detector measurements. The calculation is made in three steps: a) short-term calculation which considers the control rod positions and it has to be done each time the flux mapping is calculated; b) medium-term calculation which includes local burn-up dependent calculation made by diffusion methods in macro-cell configurations (seven channels in hexagonal distribution), and c) long-term calculation, or macroscopic flux determination, that is a fitting and expansion of measured fluxes, previously corrected by local effects, using the eigen functions of the modified diffusion equation. The paper outlines development of step (c) of the calculation. The incore detectors have been located in the central zone of the core. In order to obtain low errors in the expansion procedure it is necessary to include additional points, whose flux values are assumed to be equivalent to detector measurements. These flux values are calculated with detector measurements and a spatial flux distribution calculated by a PUMA code. This PUMA calculation employs a smooth burn-up distribution (local burn-up variations are considered in step (b) of the whole calculation) representing the state of core evolution at the calculation time. The core evolution referred to ends when the equilibrium core condition is reached. Additionally, a calculation method to be employed in the plant in case of incore detector failures, is proposed. (Author) [es

  1. Critical heat flux evaluation

    International Nuclear Information System (INIS)

    Banner, D.

    1995-01-01

    Critical heat flux (CHF) is of importance for nuclear safety and represents the major limiting factors for reactor cores. Critical heat flux is caused by a sharp reduction in the heat transfer coefficient located at the outer surface of fuel rods. Safety requires that this phenomenon also called the boiling crisis should be precluded under nominal or incidental conditions (Class I and II events). CHF evaluation in reactor cores is basically a two-step approach. Fuel assemblies are first tested in experimental loops in order to determine CHF limits under various flow conditions. Then, core thermal-hydraulic calculations are performed for safety evaluation. The paper will go into more details about the boiling crisis in order to pinpoint complexity and lack of fundamental understanding in many areas. Experimental test sections needed to collect data over wide thermal-hydraulic and geometric ranges are described CHF safety margin evaluation in reactors cores is discussed by presenting how uncertainties are mentioned. From basic considerations to current concerns, the following topics are discussed; knowledge of the boiling crisis, CHF predictors, and advances thermal-hydraulic codes. (authors). 15 refs., 4 figs

  2. Predicting radon flux from uranium mill tailings

    International Nuclear Information System (INIS)

    Freeman, H.D.; Hartley, J.N.

    1983-11-01

    Pacific Northwest Laboratory (PNL), under contract to the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action Project (UMTRAP) office, is developing technology for the design of radon barriers for uranium mill tailings piles. To properly design a radon cover for a particular tailings pile, the radon flux emanating from the bare tailings must be known. The tailings characteristics required to calculate the radon flux include radium-226 content, emanating power, bulk density, and radon diffusivity. This paper presents theoretical and practical aspects of estimating the radon flux from an uranium tailings pile. Results of field measurements to verify the calculation methodology are also discussed. 24 references, 4 figures, 4 tables

  3. Plasma crowbars in cylindrical flux compression experiments

    International Nuclear Information System (INIS)

    Suter, L.J.

    1979-01-01

    We have done a series of one- and two-dimensional calculations of hard-core Z-pinch flux compression experiments in order to study the effect of a plasma on these systems. These calculations show that including a plasma can reduce the amount of flux lost during the compression. Flux losses to the outer wall of such experiments can be greatly reduced by a plasma conducting sheath which forms along the wall. This conducting sheath consists of a cold, dense high β, unmagnetized plasma which has enough pressure to balance a large field gradient. Flux which is lost into the center conductor is not effectively stopped by this plasma sheath until late in the implosion, at which time a layer similar to the one formed at the outer wall is created. Two-dimensionl simulations show that flux losses due to arching along the sliding contact of the experiment can be effectively stopped by the formation of a plasma conducting sheath

  4. Flux driven turbulence in tokamaks

    International Nuclear Information System (INIS)

    Garbet, X.; Ghendrih, P.; Ottaviani, M.; Sarazin, Y.; Beyer, P.; Benkadda, S.; Waltz, R.E.

    1999-01-01

    This work deals with tokamak plasma turbulence in the case where fluxes are fixed and profiles are allowed to fluctuate. These systems are intermittent. In particular, radially propagating fronts, are usually observed over a broad range of time and spatial scales. The existence of these fronts provide a way to understand the fast transport events sometimes observed in tokamaks. It is also shown that the confinement scaling law can still be of the gyroBohm type in spite of these large scale transport events. Some departure from the gyroBohm prediction is observed at low flux, i.e. when the gradients are close to the instability threshold. Finally, it is found that the diffusivity is not the same for a turbulence calculated at fixed flux than at fixed temperature gradient, with the same time averaged profile. (author)

  5. Wide range neutron flux monitor

    International Nuclear Information System (INIS)

    Endo, Yorimasa; Fukushima, Toshiki.

    1983-01-01

    Purpose: To provide a wide range neutron-flux monitor adapted such that the flux monitoring function and alarming function can automatically by shifted from pulse counting system to cambel method system. Constitution: A wide range neutron-flux monitor comprises (la) pulse counting system and (lb) cambel-method system for inputting detection signals from neutron detectors and separating them into signals for the pulse measuring system and the cambel measuring system, (2) overlap detection and calculation circuit for detecting the existence of the overlap of two output signals from the (la) and (lb) systems, and (3) trip circuit for judging the abnormal state of neutron detectors upon input of the detection signals. (Seki, T.)

  6. Heat flux driven ion turbulence

    International Nuclear Information System (INIS)

    Garbet, X.

    1998-01-01

    This work is an analysis of an ion turbulence in a tokamak in the case where the thermal flux is fixed and the temperature profile is allowed to fluctuate. The system exhibits some features of Self-Organized Critical systems. In particular, avalanches are observed. Also the frequency spectrum of the thermal flux exhibits a structure similar to the one of a sand pile automaton, including a 1/f behavior. However, the time average temperature profile is found to be supercritical, i.e. the temperature gradient stays above the critical value. Moreover, the heat diffusivity is lower for a turbulence calculated at fixed flux than a fixed temperature gradient, with the same time average temperature. This behavior is attributed to a stabilizing effect of avalanches. (author)

  7. Surface fluxes in heterogeneous landscape

    Energy Technology Data Exchange (ETDEWEB)

    Bay Hasager, C

    1997-01-01

    The surface fluxes in homogeneous landscapes are calculated by similarity scaling principles. The methodology is well establish. In heterogeneous landscapes with spatial changes in the micro scale range, i e from 100 m to 10 km, advective effects are significant. The present work focus on these effects in an agricultural countryside typical for the midlatitudes. Meteorological and satellite data from a highly heterogeneous landscape in the Rhine Valley, Germany was collected in the large-scale field experiment TRACT (Transport of pollutants over complex terrain) in 1992. Classified satellite images, Landsat TM and ERS SAR, are used as basis for roughness maps. The roughnesses were measured at meteorological masts in the various cover classes and assigned pixel by pixel to the images. The roughness maps are aggregated, i e spatially averaged, into so-called effective roughness lengths. This calculation is performed by a micro scale aggregation model. The model solves the linearized atmospheric flow equations by a numerical (Fast Fourier Transform) method. This model also calculate maps of friction velocity and momentum flux pixel wise in heterogeneous landscapes. It is indicated how the aggregation methodology can be used to calculate the heat fluxes based on the relevant satellite data i e temperature and soil moisture information. (au) 10 tabs., 49 ills., 223 refs.

  8. Critical heat flux determination in an annulus section

    International Nuclear Information System (INIS)

    Reyes C, C.A.

    1997-01-01

    The present report explains the phenomenon of Critical heat flux. The study of this physical phenomenon is carried out during the boiling of a liquid and is of supreme importance for the calculation and operation of a nuclear reactor even in the moderns generators of steam (thermoelectric and nucleoelectrics), industrial cooling and in all those industrial process that use a liquid subject to sources of heating and to conditions of work excessively high (temperatures and pressures) so that stay in operation in an appropriate manner and sure. Once well-known this value, the equipment used in these process works with a maximum heat that is smaller than the Critical Heat Flux. The study of the Critical Heat Flux has achieved important advances in the last years, mainly for the enormous obligation that in this moment involved the safety to world level, this has forced to researchers and designers of this type of equipment to center their attention in the obtaining of a correlation which of general way explains it. In this reports two correlations will be compared that they contribute to the evaluation of the Critical Heat Flux in annulus and that they try to be generals in this type of geometry, the Shah correlation's and the Katto correlation's. The same as most of the correlations, these have been calculated so that the fluid of work is water, although they have also been proven with others fluids. The results obtained in this report only will show the degree of advance which the investigation of this phenomenon has achieved in annulus and to low amounts of flow of liquid, like which they are in the Experimental Heat Transfer Circuit located in the Department of Physics of the National Institute of Nuclear Research. (Author)

  9. Last Glacial Maximum Salinity Reconstruction

    Science.gov (United States)

    Homola, K.; Spivack, A. J.

    2016-12-01

    It has been previously demonstrated that salinity can be reconstructed from sediment porewater. The goal of our study is to reconstruct high precision salinity during the Last Glacial Maximum (LGM). Salinity is usually determined at high precision via conductivity, which requires a larger volume of water than can be extracted from a sediment core, or via chloride titration, which yields lower than ideal precision. It has been demonstrated for water column samples that high precision density measurements can be used to determine salinity at the precision of a conductivity measurement using the equation of state of seawater. However, water column seawater has a relatively constant composition, in contrast to porewater, where variations from standard seawater composition occur. These deviations, which affect the equation of state, must be corrected for through precise measurements of each ion's concentration and knowledge of apparent partial molar density in seawater. We have developed a density-based method for determining porewater salinity that requires only 5 mL of sample, achieving density precisions of 10-6 g/mL. We have applied this method to porewater samples extracted from long cores collected along a N-S transect across the western North Atlantic (R/V Knorr cruise KN223). Density was determined to a precision of 2.3x10-6 g/mL, which translates to salinity uncertainty of 0.002 gms/kg if the effect of differences in composition is well constrained. Concentrations of anions (Cl-, and SO4-2) and cations (Na+, Mg+, Ca+2, and K+) were measured. To correct salinities at the precision required to unravel LGM Meridional Overturning Circulation, our ion precisions must be better than 0.1% for SO4-/Cl- and Mg+/Na+, and 0.4% for Ca+/Na+, and K+/Na+. Alkalinity, pH and Dissolved Inorganic Carbon of the porewater were determined to precisions better than 4% when ratioed to Cl-, and used to calculate HCO3-, and CO3-2. Apparent partial molar densities in seawater were

  10. Maximum Parsimony on Phylogenetic networks

    Science.gov (United States)

    2012-01-01

    Background Phylogenetic networks are generalizations of phylogenetic trees, that are used to model evolutionary events in various contexts. Several different methods and criteria have been introduced for reconstructing phylogenetic trees. Maximum Parsimony is a character-based approach that infers a phylogenetic tree by minimizing the total number of evolutionary steps required to explain a given set of data assigned on the leaves. Exact solutions for optimizing parsimony scores on phylogenetic trees have been introduced in the past. Results In this paper, we define the parsimony score on networks as the sum of the substitution costs along all the edges of the network; and show that certain well-known algorithms that calculate the optimum parsimony score on trees, such as Sankoff and Fitch algorithms extend naturally for networks, barring conflicting assignments at the reticulate vertices. We provide heuristics for finding the optimum parsimony scores on networks. Our algorithms can be applied for any cost matrix that may contain unequal substitution costs of transforming between different characters along different edges of the network. We analyzed this for experimental data on 10 leaves or fewer with at most 2 reticulations and found that for almost all networks, the bounds returned by the heuristics matched with the exhaustively determined optimum parsimony scores. Conclusion The parsimony score we define here does not directly reflect the cost of the best tree in the network that displays the evolution of the character. However, when searching for the most parsimonious network that describes a collection of characters, it becomes necessary to add additional cost considerations to prefer simpler structures, such as trees over networks. The parsimony score on a network that we describe here takes into account the substitution costs along the additional edges incident on each reticulate vertex, in addition to the substitution costs along the other edges which are

  11. Natural Elemental Concentrations and Fluxes: Their Use as Indicators of Repository Safety

    International Nuclear Information System (INIS)

    Miller, Bill; Lind, Andy; Savage, Dave; Maul, Philip; Robinson, Peter

    2002-03-01

    controlling the release and transport of contaminants from the repository. In further calculations, the elemental mass fluxes of U, Th, K and Rb were used to calculate total alpha and non-alpha radioactive fluxes. For U and Th, activity fluxes were calculated for the radioelements alone as well as for their respective decay chains, assuming secular equilibrium in the chains and considering only the longer-lived nuclides with half-lives longer than one day. For K and Rb, activity fluxes were calculated for the non-series nuclides 40 K and 87 Rb. These natural activity fluxes are considered to be particularly useful safety indicators because they can be readily compared with the results from PAs, because the calculated repository releases normally expressed as dose can be recast in terms of equivalent activity fluxes. Lastly, ore bodies and hydrothermal systems were considered briefly because they provide the potential for maximum concentrations and maximum fluxes, respectively, in geological systems. Although it would be unlikely that a repository would ever be located in these geological systems, they are useful to consider here because they provide further context to the broadest variability in natural systems for comparison with the repository releases. This study has demonstrated that it is possible to compile from the published literature a substantial database of elemental abundances in natural materials and, using this data, to calculate a range of elemental and activity fluxes arising due to different processes at different spatial scales. Although it was not attempted in this work, these fluxes should be comparable to standard PA results, with some modification to the PA calculations explicitly to output the concentrations and activities associated with the repository releases

  12. Shielding calculations using FLUKA

    International Nuclear Information System (INIS)

    Yamaguchi, Chiri; Tesch, K.; Dinter, H.

    1988-06-01

    The dose equivalent on the surface of concrete shielding has been calculated using the Monte Carlo code FLUKA86 for incident proton energies from 10 to 800 GeV. The results have been compared with some simple equations. The value of the angular dependent parameter in Moyer's equation has been calculated from the locations where the values of the maximum dose equivalent occur. (author)

  13. Theory and application of maximum magnetic energy in toroidal plasmas

    International Nuclear Information System (INIS)

    Chu, T.K.

    1992-02-01

    The magnetic energy in an inductively driven steady-state toroidal plasma is a maximum for a given rate of dissipation of energy (Poynting flux). A purely resistive steady state of the piecewise force-free configuration, however, cannot exist, as the periodic removal of the excess poloidal flux and pressure, due to heating, ruptures the static equilibrium of the partitioning rational surfaces intermittently. The rupture necessitates a plasma with a negative q'/q (as in reverse field pinches and spheromaks) to have the same α in all its force-free regions and with a positive q'/q (as in tokamaks) to have centrally peaked α's

  14. Nitrous oxide fluxes from grassland in the Netherlands. 1. Statistical analysis of flux-chamber measurements

    NARCIS (Netherlands)

    Velthof, G.L.; Oenema, O.

    1995-01-01

    Accurate estimates of total nitrous oxide (N2O) losses from grasslands derived from flux-chamber measurements are hampered by the large spatial and temporal variability of N2O fluxes from these sites. In this study, four methods for the calculation o

  15. Maximum Entropy in Drug Discovery

    Directory of Open Access Journals (Sweden)

    Chih-Yuan Tseng

    2014-07-01

    Full Text Available Drug discovery applies multidisciplinary approaches either experimentally, computationally or both ways to identify lead compounds to treat various diseases. While conventional approaches have yielded many US Food and Drug Administration (FDA-approved drugs, researchers continue investigating and designing better approaches to increase the success rate in the discovery process. In this article, we provide an overview of the current strategies and point out where and how the method of maximum entropy has been introduced in this area. The maximum entropy principle has its root in thermodynamics, yet since Jaynes’ pioneering work in the 1950s, the maximum entropy principle has not only been used as a physics law, but also as a reasoning tool that allows us to process information in hand with the least bias. Its applicability in various disciplines has been abundantly demonstrated. We give several examples of applications of maximum entropy in different stages of drug discovery. Finally, we discuss a promising new direction in drug discovery that is likely to hinge on the ways of utilizing maximum entropy.

  16. About Merging Threshold and Critical Flux Concepts into a Single One: The Boundary Flux

    Directory of Open Access Journals (Sweden)

    Marco Stoller

    2014-01-01

    Full Text Available In the last decades much effort was put in understanding fouling phenomena on membranes. One successful approach to describe fouling issues on membranes is the critical flux theory. The possibility to measure a maximum value of the permeate flux for a given system without incurring in fouling issues was a breakthrough in membrane process design. However, in many cases critical fluxes were found to be very low, lower than the economic feasibility of the process. The knowledge of the critical flux value must be therefore considered as a good starting point for process design. In the last years, a new concept was introduced, the threshold flux, which defines the maximum permeate flow rate characterized by a low constant fouling rate regime. This concept, more than the critical flux, is a new practical tool for membrane process designers. In this paper a brief review on critical and threshold flux will be reported and analyzed. And since the concepts share many common aspects, merged into a new concept, called the boundary flux, the validation will occur by the analysis of previously collected data by the authors, during the treatment of olive vegetation wastewater by ultrafiltration and nanofiltration membranes.

  17. Clustering of Emerging Flux

    Science.gov (United States)

    Ruzmaikin, A.

    1997-01-01

    Observations show that newly emerging flux tends to appear on the Solar surface at sites where there is flux already. This results in clustering of solar activity. Standard dynamo theories do not predict this effect.

  18. Asymmetric flux generation and its relaxation in reversed field pinch

    International Nuclear Information System (INIS)

    Arimoto, H.; Masamune, S.; Nagata, A.

    1985-02-01

    The toroidally asymmetric flux enhancement [''dynamo effect''] and the axisymmetrization of the enhanced fluxes that follows in the setting up phase of Reversed Field Pinch are investigated on the STP-3[M] device. A rapid increase in the toroidal flux generated by the dynamo effect is first observed near the poloidal and toroidal current feeders. Then, this inhomogeneity of the flux propagates toroidally towards the plasma current. The axisymmetrization of the flux is attained just after the maximum of plasma current. The MHD activities decrease significantly after this axisymmetrization and the quiescent period is obtained. (author)

  19. Declination Calculator

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Declination is calculated using the current International Geomagnetic Reference Field (IGRF) model. Declination is calculated using the current World Magnetic Model...

  20. Fast modeling of flux trapping cascaded explosively driven magnetic flux compression generators.

    Science.gov (United States)

    Wang, Yuwei; Zhang, Jiande; Chen, Dongqun; Cao, Shengguang; Li, Da; Liu, Chebo

    2013-01-01

    To predict the performance of flux trapping cascaded flux compression generators, a calculation model based on an equivalent circuit is investigated. The system circuit is analyzed according to its operation characteristics in different steps. Flux conservation coefficients are added to the driving terms of circuit differential equations to account for intrinsic flux losses. To calculate the currents in the circuit by solving the circuit equations, a simple zero-dimensional model is used to calculate the time-varying inductance and dc resistance of the generator. Then a fast computer code is programmed based on this calculation model. As an example, a two-staged flux trapping generator is simulated by using this computer code. Good agreements are achieved by comparing the simulation results with the measurements. Furthermore, it is obvious that this fast calculation model can be easily applied to predict performances of other flux trapping cascaded flux compression generators with complex structures such as conical stator or conical armature sections and so on for design purpose.

  1. Global view of F-region electron density and temperature at solar maximum

    International Nuclear Information System (INIS)

    Brace, L.H.; Theis, R.F.; Hoegy, W.R.

    1982-01-01

    Dynamics Explorer-2 is permitting the first measurements of the global structure of the F-regions at very high levels of solar activity (S>200). Selected full orbits of Langmuir probe measurements of electron temperature, T/sub e/, and density, N/sub e/, are shown to illustrate this global structure and some of the ionospheric features that are the topic of other papers in this issue. The ionospheric thermal structure is of particular interest because T/sub e/ is a sensitive indicator of the coupling of magnetospheric energy into the upper atmosphere. A comparison of these heating effects with those observed at solar minimum shows that the magnetospheric sources are more important at solar maximum, as might have been expected. Heating at the cusp, the auroral oval and the plasma-pause is generally both greater and more variable. Electron cooling rate calculations employing low latitude measurements indicate that solar extreme ultraviolet heating of the F region at solar maximum is enhanced by a factor that is greater than the increase in solar flux. Some of this enhanced electron heating arises from the increase in electron heating efficiency at the higher N/sub e/ of solar maximum, but this appears insufficient to completely resolve the discrepancy

  2. Neutron flux distribution forecasting device of reactor

    International Nuclear Information System (INIS)

    Uematsu, Hitoshi

    1991-01-01

    A neutron flux distribution is forecast by using current data obtained from a reactor. That is, the device of the present invention comprises (1) a neutron flux monitor disposed in various positions in the reactor, (2) a forecasting means for calculating and forecasting a one-dimensional neutron flux distribution relative to imaginable events by using data obtained from the neutron flux monitor and physical models, and (3) a display means for displaying the results forecast in the forecasting means to a reactor operation console. Since the forecast values for the one-dimensional neutron flux distribution relative to the imaginable events are calculated in the device of the present invention by using data obtained from the neutron flux monitor and the physical models, the data as a base of the calculation are new and the period for calculating the forecast values can be shortened. Accordingly, although there is a worry of providing some errors in the forecast values, they can be utilized sufficiently as reference data. As a result, the reactor can be operated more appropriately. (I.N.)

  3. Maximum stellar iron core mass

    Indian Academy of Sciences (India)

    60, No. 3. — journal of. March 2003 physics pp. 415–422. Maximum stellar iron core mass. F W GIACOBBE. Chicago Research Center/American Air Liquide ... iron core compression due to the weight of non-ferrous matter overlying the iron cores within large .... thermal equilibrium velocities will tend to be non-relativistic.

  4. Maximum entropy beam diagnostic tomography

    International Nuclear Information System (INIS)

    Mottershead, C.T.

    1985-01-01

    This paper reviews the formalism of maximum entropy beam diagnostic tomography as applied to the Fusion Materials Irradiation Test (FMIT) prototype accelerator. The same formalism has also been used with streak camera data to produce an ultrahigh speed movie of the beam profile of the Experimental Test Accelerator (ETA) at Livermore. 11 refs., 4 figs

  5. Maximum entropy beam diagnostic tomography

    International Nuclear Information System (INIS)

    Mottershead, C.T.

    1985-01-01

    This paper reviews the formalism of maximum entropy beam diagnostic tomography as applied to the Fusion Materials Irradiation Test (FMIT) prototype accelerator. The same formalism has also been used with streak camera data to produce an ultrahigh speed movie of the beam profile of the Experimental Test Accelerator (ETA) at Livermore

  6. A portable storage maximum thermometer

    International Nuclear Information System (INIS)

    Fayart, Gerard.

    1976-01-01

    A clinical thermometer storing the voltage corresponding to the maximum temperature in an analog memory is described. End of the measurement is shown by a lamp switch out. The measurement time is shortened by means of a low thermal inertia platinum probe. This portable thermometer is fitted with cell test and calibration system [fr

  7. Solar Flux Deposition And Heating Rates In Jupiter's Atmosphere

    Science.gov (United States)

    Perez-Hoyos, Santiago; Sánchez-Lavega, A.

    2009-09-01

    We discuss here the solar downward net flux in the 0.25 - 2.5 µm range in the atmosphere of Jupiter and the associated heating rates under a number of vertical cloud structure scenarios focusing in the effect of clouds and hazes. Our numerical model is based in the doubling-adding technique to solve the radiative transfer equation and it includes gas absorption by CH4, NH3 and H2, in addition to Rayleigh scattering by a mixture of H2 plus He. Four paradigmatic Jovian regions have been considered (hot-spots, belts, zones and Polar Regions). The hot-spots are the most transparent regions with downward net fluxes of 2.5±0.5 Wm-2 at the 6 bar level. The maximum solar heating is 0.04±0.01 K/day and occurs above 1 bar. Belts and zones characterization result in a maximum net downward flux of 0.5 Wm-2 at 2 bar and 0.015 Wm-2 at 6 bar. Heating is concentrated in the stratospheric and tropospheric hazes. Finally, Polar Regions are also explored and the results point to a considerable stratospheric heating of 0.04±0.02 K/day. In all, these calculations suggest that the role of the direct solar forcing in the Jovian atmospheric dynamics is limited to the upper 1 - 2 bar of the atmosphere except in the hot-spot areas. Acknowledgments: This work has been funded by Spanish MEC AYA2006-07735 with FEDER support and Grupos Gobierno Vasco IT-464-07.

  8. Neutron spectra unfolding with maximum entropy and maximum likelihood

    International Nuclear Information System (INIS)

    Itoh, Shikoh; Tsunoda, Toshiharu

    1989-01-01

    A new unfolding theory has been established on the basis of the maximum entropy principle and the maximum likelihood method. This theory correctly embodies the Poisson statistics of neutron detection, and always brings a positive solution over the whole energy range. Moreover, the theory unifies both problems of overdetermined and of underdetermined. For the latter, the ambiguity in assigning a prior probability, i.e. the initial guess in the Bayesian sense, has become extinct by virtue of the principle. An approximate expression of the covariance matrix for the resultant spectra is also presented. An efficient algorithm to solve the nonlinear system, which appears in the present study, has been established. Results of computer simulation showed the effectiveness of the present theory. (author)

  9. Factors controlling vertical fluxes of prrticles in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Nair, T.M.B.; Ramaswamy, V.; Parthiban, G.; Shankar, R.

    )) in the western Arabian Sea. Carbonate contributed mainly by foraminifers and coccolithophorids, are the dominant component in all the traps. Opal fluxes were maximum in the western Arabian Sea. At all the locations, lithogenic percentages increased with depth...

  10. Reactor calculation benchmark PCA blind test results

    International Nuclear Information System (INIS)

    Kam, F.B.K.; Stallmann, F.W.

    1980-01-01

    Further improvement in calculational procedures or a combination of calculations and measurements is necessary to attain 10 to 15% (1 sigma) accuracy for neutron exposure parameters (flux greater than 0.1 MeV, flux greater than 1.0 MeV, and dpa). The calculational modeling of power reactors should be benchmarked in an actual LWR plant to provide final uncertainty estimates for end-of-life predictions and limitations for plant operations. 26 references, 14 figures, 6 tables

  11. Reactor calculation benchmark PCA blind test results

    Energy Technology Data Exchange (ETDEWEB)

    Kam, F.B.K.; Stallmann, F.W.

    1980-01-01

    Further improvement in calculational procedures or a combination of calculations and measurements is necessary to attain 10 to 15% (1 sigma) accuracy for neutron exposure parameters (flux greater than 0.1 MeV, flux greater than 1.0 MeV, and dpa). The calculational modeling of power reactors should be benchmarked in an actual LWR plant to provide final uncertainty estimates for end-of-life predictions and limitations for plant operations. 26 references, 14 figures, 6 tables.

  12. KENO, Multigroup P1 Scattering Monte-Carlo Transport Calculation for Criticality, Keff, Flux in 3-D. KENO-5, SCALE-1 Module with Pn Scattering, Super-grouping, Diffusion Albedo Reflection

    International Nuclear Information System (INIS)

    Petrie, L.M.; Landers, N.F.

    2001-01-01

    1 - Description of problem or function: KENO is a multigroup, Monte Carlo criticality code containing a special geometry package which allows easy description of systems composed of cylinders, spheres, and cuboids (rectangular parallelepipeds) arranged in any order with only one restriction. They cannot be rotated or translated. Each geometrical region must be described as completely enclosing all regions interior to it. For systems not describable using this special geometry package, the program can use the generalized geometry package (GEOM) developed for the O5R Monte Carlo code. It allows any system that can be described by a collection of planes and/or quadratic surfaces, arbitrarily oriented and intersecting in arbitrary fashion. The entire problem can be mocked up in generalized geometry, or one generalized geometry unit or box type can be used alone or in combination with standard KENO units or box types. Rectangular arrays of fissile units are allowed with or without external reflector regions. Output from KENO consists of k eff for the system plus an estimate of its standard deviation and the leakage, absorption, and fissions for each energy group plus the totals for all groups. Flux as a function of energy group and region and fission densities as a function of region are optional output. KENO-4: Added features include a neutron balance edit, PICTURE routines to check the input geometry, and a random number sequencing subroutine written in FORTRAN-4. 2 - Method of solution: The scattering treatment used in KENO assumes that the differential neutron scattering cross section can be represented by a P1 Legendre polynomial. Absorption of neutrons in KENO is not allowed. Instead, at each collision point of a neutron tracking history the weight of the neutron is reduced by the absorption probability. When the neutron weight has been reduced below a specified point for the region in which the collision occurs, Russian roulette is played to determine if the

  13. Comparison of the 1D flux theory with a 2D hydrodynamic secondary settling tank model.

    Science.gov (United States)

    Ekama, G A; Marais, P

    2004-01-01

    The applicability of the 1D idealized flux theory (1DFT) for design of secondary settling tanks (SSTs) is evaluated by comparing its predicted maximum surface overflow (SOR) and solids loading (SLR) rates with that calculated from the 2D hydrodynamic model SettlerCAD using as a basis 35 full scale SST stress tests conducted on different SSTs with diameters from 30 to 45m and 2.25 to 4.1 m side water depth, with and without Stamford baffles. From the simulations, a relatively consistent pattern appeared, i.e. that the 1DFT can be used for design but its predicted maximum SLR needs to be reduced by an appropriate flux rating, the magnitude of which depends mainly on SST depth and hydraulic loading rate (HLR). Simulations of the sloping bottom shallow (1.5-2.5 m SWD) Dutch SSTs tested by STOWa and the Watts et al. SST, all with doubled SWDs, and the Darvill new (4.1 m) and old (2.5 m) SSTs with interchanged depths, were run to confirm the sensitivity of the flux rating to depth and HLR. Simulations with and without a Stamford baffle were also done. While the design of the internal features of the SST, such as baffling, have a marked influence on the effluent SS concentration for underloaded SSTs, these features appeared to have only a small influence on the flux rating, i.e. capacity, of the SST, In the meantime until more information is obtained, it would appear that from the simulations so far that the flux rating of 0.80 of the 1DFT maximum SLR recommended by Ekama and Marais remains a reasonable value to apply in the design of full scale SSTs--for deep SSTs (4 m SWD) the flux rating could be increased to 0.85 and for shallow SSTs (2.5 m SWD) decreased to 0.75. It is recommended that (i) while the apparent interrelationship between SST flux rating and depth suggests some optimization of the volume of the SST, that this be avoided and that (ii) the depth of the SST be designed independently of the surface area as is usually the practice and once selected, the

  14. Rotating flux compressor for energy conversion

    International Nuclear Information System (INIS)

    Chowdhuri, P.; Linton, T.W.; Phillips, J.A.

    1983-01-01

    The rotating flux compressor (RFC) converts rotational kinetic energy into an electrical output pulse which would have higher energy than the electrical energy initially stored in the compressor. An RFC has been designed in which wedge-shaped rotor blades pass through the air gaps between successive turns of a solenoid, the stator. Magnetic flux is generated by pulsing the stator solenoids when the inductance is a maximum, i.e., when the flux fills the stator-solenoid volume. Connecting the solenoid across a load conserves the flux which is compressed within the small volume surrounding the stator periphery when the rotor blades cut into the free space between the stator plates, creating a minimum-inductance condition. The unique features of this design are: (1) no electrical connections (brushes) to the rotor; (2) no conventional windings; and (3) no maintenance. The device has been tested up to 5000 rpm of rotor speed

  15. Flux measurement in ZBR at the TRIGA Mark II reactor

    International Nuclear Information System (INIS)

    Dauke, M.

    2005-01-01

    The determination of the neutron flux in the TRIGA-2-Vienna reactor was the objective of this research. The theory of the method (4π-β detectors) is presented as well as the determination of the maximum flux, gold-cadmium differential measurement, cobalt-wire measurement, finally a comparison of all results was made and interpreted. (nevyjel)

  16. Flux at a point in MCNP

    International Nuclear Information System (INIS)

    Cashwell, E.D.; Schrandt, R.G.

    1980-01-01

    The current state of the art of calculating flux at a point with MCNP is discussed. Various techniques are touched upon, but the main emphasis is on the fast improved version of the once-more-collided flux estimator, which has been modified to treat neutrons thermalized by the free gas model. The method is tested on several problems on interest and the results are presented

  17. Determing and monitoring of maximum permissible power for HWRR-3

    International Nuclear Information System (INIS)

    Jia Zhanli; Xiao Shigang; Jin Huajin; Lu Changshen

    1987-01-01

    The operating power of a reactor is an important parameter to be monitored. This report briefly describes the determining and monitoring of maximum permissiable power for HWRR-3. The calculating method is described, and the result of calculation and analysis of error are also given. On-line calculation and real time monitoring have been realized at the heavy water reactor. It provides the reactor with a real time and reliable supervision. This makes operation convenient and increases reliability

  18. TRANSHEX, 2-D Thermal Neutron Flux Distribution from Epithermal Flux in Hexagonal Geometry

    International Nuclear Information System (INIS)

    Patrakka, E.

    1994-01-01

    1 - Description of program or function: TRANSHEX is a multigroup integral transport program that determines the thermal scalar flux distribution arising from a known epithermal flux in two- dimensional hexagonal geometry. 2 - Method of solution: The program solves the isotropic collision probability equations for a region-averaged scalar flux by an iterative method. Either a successive over-relaxation or an inner-outer iteration technique is applied. Flat flux collision probabilities between trigonal space regions with white boundary condition are utilized. The effect of epithermal flux is taken into consideration as a slowing-down source that is calculated for a given spatial distribution and 1/E energy dependence of the epithermal flux

  19. On Maximum Entropy and Inference

    Directory of Open Access Journals (Sweden)

    Luigi Gresele

    2017-11-01

    Full Text Available Maximum entropy is a powerful concept that entails a sharp separation between relevant and irrelevant variables. It is typically invoked in inference, once an assumption is made on what the relevant variables are, in order to estimate a model from data, that affords predictions on all other (dependent variables. Conversely, maximum entropy can be invoked to retrieve the relevant variables (sufficient statistics directly from the data, once a model is identified by Bayesian model selection. We explore this approach in the case of spin models with interactions of arbitrary order, and we discuss how relevant interactions can be inferred. In this perspective, the dimensionality of the inference problem is not set by the number of parameters in the model, but by the frequency distribution of the data. We illustrate the method showing its ability to recover the correct model in a few prototype cases and discuss its application on a real dataset.

  20. Maximum Water Hammer Sensitivity Analysis

    OpenAIRE

    Jalil Emadi; Abbas Solemani

    2011-01-01

    Pressure waves and Water Hammer occur in a pumping system when valves are closed or opened suddenly or in the case of sudden failure of pumps. Determination of maximum water hammer is considered one of the most important technical and economical items of which engineers and designers of pumping stations and conveyance pipelines should take care. Hammer Software is a recent application used to simulate water hammer. The present study focuses on determining significance of ...

  1. Maximum Gene-Support Tree

    Directory of Open Access Journals (Sweden)

    Yunfeng Shan

    2008-01-01

    Full Text Available Genomes and genes diversify during evolution; however, it is unclear to what extent genes still retain the relationship among species. Model species for molecular phylogenetic studies include yeasts and viruses whose genomes were sequenced as well as plants that have the fossil-supported true phylogenetic trees available. In this study, we generated single gene trees of seven yeast species as well as single gene trees of nine baculovirus species using all the orthologous genes among the species compared. Homologous genes among seven known plants were used for validation of the finding. Four algorithms—maximum parsimony (MP, minimum evolution (ME, maximum likelihood (ML, and neighbor-joining (NJ—were used. Trees were reconstructed before and after weighting the DNA and protein sequence lengths among genes. Rarely a gene can always generate the “true tree” by all the four algorithms. However, the most frequent gene tree, termed “maximum gene-support tree” (MGS tree, or WMGS tree for the weighted one, in yeasts, baculoviruses, or plants was consistently found to be the “true tree” among the species. The results provide insights into the overall degree of divergence of orthologous genes of the genomes analyzed and suggest the following: 1 The true tree relationship among the species studied is still maintained by the largest group of orthologous genes; 2 There are usually more orthologous genes with higher similarities between genetically closer species than between genetically more distant ones; and 3 The maximum gene-support tree reflects the phylogenetic relationship among species in comparison.

  2. The power and robustness of maximum LOD score statistics.

    Science.gov (United States)

    Yoo, Y J; Mendell, N R

    2008-07-01

    The maximum LOD score statistic is extremely powerful for gene mapping when calculated using the correct genetic parameter value. When the mode of genetic transmission is unknown, the maximum of the LOD scores obtained using several genetic parameter values is reported. This latter statistic requires higher critical value than the maximum LOD score statistic calculated from a single genetic parameter value. In this paper, we compare the power of maximum LOD scores based on three fixed sets of genetic parameter values with the power of the LOD score obtained after maximizing over the entire range of genetic parameter values. We simulate family data under nine generating models. For generating models with non-zero phenocopy rates, LOD scores maximized over the entire range of genetic parameters yielded greater power than maximum LOD scores for fixed sets of parameter values with zero phenocopy rates. No maximum LOD score was consistently more powerful than the others for generating models with a zero phenocopy rate. The power loss of the LOD score maximized over the entire range of genetic parameters, relative to the maximum LOD score calculated using the correct genetic parameter value, appeared to be robust to the generating models.

  3. BRIGITTE, Dose Rate and Heat Source and Energy Flux for Self-Absorbing Rods

    International Nuclear Information System (INIS)

    Jegu, M.; Clement, M.

    1978-01-01

    1 - Nature of physical problem solved: Calculation of dose rate, heat sources or energy flux. The sources are self-absorbing radioactive rods. The shielding consists of blocks of which the cross section can be defined. 2 - Method of solution: Exponential attenuation and build-up factor between source points and detector points. Source integration with error estimate. Automatic or controlled build-up with monitor print-out. 3 - Restrictions on the complexity of the problem: Number of energy points, regions, detector points, abscissa points of the rod, vertical position of the rod, are all limited to ten. The maximum total number of vertical steps is 124

  4. Response of actinides to flux changes in high-flux systems

    International Nuclear Information System (INIS)

    Sailor, W.C.

    1993-01-01

    When discussing the transmutation of actinides in accelerator-based transmutation of waste (ATW) systems, there has been some concern about the dynamics of the actinides under high transient fluxes. For a pure neptunium feed, it has been estimated that the 238 Np/ 237 Np ratio increase due to an increasing flux may lead to an unstable, positive reactivity growth. In this analysis, a perturbation method is used to calculate the response of the entire set of actinides in a general way that allows for more species than just neptunium. The time response of the system can be calculated; i.e., a plot of fuel composition and reactivity versus time after a change in flux can be made. The effects of fission products can also be included. The procedure is extremely accurate on short time scales (∼ 1000 s) for the flux levels we contemplate. Calculational results indicate that the reactivity insertions are always smaller than previously estimated

  5. Surface Flux Modeling for Air Quality Applications

    Directory of Open Access Journals (Sweden)

    Limei Ran

    2011-08-01

    Full Text Available For many gasses and aerosols, dry deposition is an important sink of atmospheric mass. Dry deposition fluxes are also important sources of pollutants to terrestrial and aquatic ecosystems. The surface fluxes of some gases, such as ammonia, mercury, and certain volatile organic compounds, can be upward into the air as well as downward to the surface and therefore should be modeled as bi-directional fluxes. Model parameterizations of dry deposition in air quality models have been represented by simple electrical resistance analogs for almost 30 years. Uncertainties in surface flux modeling in global to mesoscale models are being slowly reduced as more field measurements provide constraints on parameterizations. However, at the same time, more chemical species are being added to surface flux models as air quality models are expanded to include more complex chemistry and are being applied to a wider array of environmental issues. Since surface flux measurements of many of these chemicals are still lacking, resistances are usually parameterized using simple scaling by water or lipid solubility and reactivity. Advances in recent years have included bi-directional flux algorithms that require a shift from pre-computation of deposition velocities to fully integrated surface flux calculations within air quality models. Improved modeling of the stomatal component of chemical surface fluxes has resulted from improved evapotranspiration modeling in land surface models and closer integration between meteorology and air quality models. Satellite-derived land use characterization and vegetation products and indices are improving model representation of spatial and temporal variations in surface flux processes. This review describes the current state of chemical dry deposition modeling, recent progress in bi-directional flux modeling, synergistic model development research with field measurements, and coupling with meteorological land surface models.

  6. FILAMENT INTERACTION MODELED BY FLUX ROPE RECONNECTION

    International Nuclear Information System (INIS)

    Toeroek, T.; Chandra, R.; Pariat, E.; Demoulin, P.; Schmieder, B.; Aulanier, G.; Linton, M. G.; Mandrini, C. H.

    2011-01-01

    Hα observations of solar active region NOAA 10501 on 2003 November 20 revealed a very uncommon dynamic process: during the development of a nearby flare, two adjacent elongated filaments approached each other, merged at their middle sections, and separated again, thereby forming stable configurations with new footpoint connections. The observed dynamic pattern is indicative of 'slingshot' reconnection between two magnetic flux ropes. We test this scenario by means of a three-dimensional zero β magnetohydrodynamic simulation, using a modified version of the coronal flux rope model by Titov and Demoulin as the initial condition for the magnetic field. To this end, a configuration is constructed that contains two flux ropes which are oriented side-by-side and are embedded in an ambient potential field. The choice of the magnetic orientation of the flux ropes and of the topology of the potential field is guided by the observations. Quasi-static boundary flows are then imposed to bring the middle sections of the flux ropes into contact. After sufficient driving, the ropes reconnect and two new flux ropes are formed, which now connect the former adjacent flux rope footpoints of opposite polarity. The corresponding evolution of filament material is modeled by calculating the positions of field line dips at all times. The dips follow the morphological evolution of the flux ropes, in qualitative agreement with the observed filaments.

  7. LOFT gamma densitometer background fluxes

    International Nuclear Information System (INIS)

    Grimesey, R.A.; McCracken, R.T.

    1978-01-01

    Background gamma-ray fluxes were calculated at the location of the γ densitometers without integral shielding at both the hot-leg and cold-leg primary piping locations. The principal sources for background radiation at the γ densitometers are 16 N activity from the primary piping H 2 O and γ radiation from reactor internal sources. The background radiation was calculated by the point-kernel codes QAD-BSA and QAD-P5A. Reasonable assumptions were required to convert the response functions calculated by point-kernel procedures into the gamma-ray spectrum from reactor internal sources. A brief summary of point-kernel equations and theory is included

  8. Two-dimensional sensitivity calculation code: SENSETWO

    International Nuclear Information System (INIS)

    Yamauchi, Michinori; Nakayama, Mitsuo; Minami, Kazuyoshi; Seki, Yasushi; Iida, Hiromasa.

    1979-05-01

    A SENSETWO code for the calculation of cross section sensitivities with a two-dimensional model has been developed, on the basis of first order perturbation theory. It uses forward neutron and/or gamma-ray fluxes and adjoint fluxes obtained by two-dimensional discrete ordinates code TWOTRAN-II. The data and informations of cross sections, geometry, nuclide density, response functions, etc. are transmitted to SENSETWO by the dump magnetic tape made in TWOTRAN calculations. The required input for SENSETWO calculations is thus very simple. The SENSETWO yields as printed output the cross section sensitivities for each coarse mesh zone and for each energy group, as well as the plotted output of sensitivity profiles specified by the input. A special feature of the code is that it also calculates the reaction rate with the response function used as the adjoint source in TWOTRAN adjoint calculation and the calculated forward flux from the TWOTRAN forward calculation. (author)

  9. Generic maximum likely scale selection

    DEFF Research Database (Denmark)

    Pedersen, Kim Steenstrup; Loog, Marco; Markussen, Bo

    2007-01-01

    in this work is on applying this selection principle under a Brownian image model. This image model provides a simple scale invariant prior for natural images and we provide illustrative examples of the behavior of our scale estimation on such images. In these illustrative examples, estimation is based......The fundamental problem of local scale selection is addressed by means of a novel principle, which is based on maximum likelihood estimation. The principle is generally applicable to a broad variety of image models and descriptors, and provides a generic scale estimation methodology. The focus...

  10. Hydraulic Limits on Maximum Plant Transpiration

    Science.gov (United States)

    Manzoni, S.; Vico, G.; Katul, G. G.; Palmroth, S.; Jackson, R. B.; Porporato, A. M.

    2011-12-01

    Photosynthesis occurs at the expense of water losses through transpiration. As a consequence of this basic carbon-water interaction at the leaf level, plant growth and ecosystem carbon exchanges are tightly coupled to transpiration. In this contribution, the hydraulic constraints that limit transpiration rates under well-watered conditions are examined across plant functional types and climates. The potential water flow through plants is proportional to both xylem hydraulic conductivity (which depends on plant carbon economy) and the difference in water potential between the soil and the atmosphere (the driving force that pulls water from the soil). Differently from previous works, we study how this potential flux changes with the amplitude of the driving force (i.e., we focus on xylem properties and not on stomatal regulation). Xylem hydraulic conductivity decreases as the driving force increases due to cavitation of the tissues. As a result of this negative feedback, more negative leaf (and xylem) water potentials would provide a stronger driving force for water transport, while at the same time limiting xylem hydraulic conductivity due to cavitation. Here, the leaf water potential value that allows an optimum balance between driving force and xylem conductivity is quantified, thus defining the maximum transpiration rate that can be sustained by the soil-to-leaf hydraulic system. To apply the proposed framework at the global scale, a novel database of xylem conductivity and cavitation vulnerability across plant types and biomes is developed. Conductivity and water potential at 50% cavitation are shown to be complementary (in particular between angiosperms and conifers), suggesting a tradeoff between transport efficiency and hydraulic safety. Plants from warmer and drier biomes tend to achieve larger maximum transpiration than plants growing in environments with lower atmospheric water demand. The predicted maximum transpiration and the corresponding leaf water

  11. Compact neutron flux monitor

    International Nuclear Information System (INIS)

    Madhavi, V.; Phatak, P.R.; Bahadur, C.; Bayala, A.K.; Jakati, R.K.; Sathian, V.

    2003-01-01

    Full text: A compact size neutron flux monitor has been developed incorporating standard boards developed for smart radiation monitors. The sensitivity of the monitors is 0.4cps/nV. It has been tested up to 2075 nV flux with standard neutron sources. It shows convincing results even in high flux areas like 6m away from the accelerator in RMC (Parel) for 106/107 nV. These monitors have a focal and remote display, alarm function with potential free contacts for centralized control and additional provision of connectivity via RS485/Ethernet. This paper describes the construction, working and results of the above flux monitor

  12. Fast neutron fluence calculations as support for a BWR pressure vessel and internals surveillance program

    International Nuclear Information System (INIS)

    Lucatero, Marco A.; Palacios-Hernandez, Javier C.; Ortiz-Villafuerte, Javier; Xolocostli-Munguia, J. Vicente; Gomez-Torres, Armando M.

    2010-01-01

    Materials surveillance programs are required to detect and prevent degradation of safety-related structures and components of a nuclear power reactor. In this work, following the directions in the Regulatory Guide 1.190, a calculational methodology is implemented as additional support for a reactor pressure vessel and internals surveillance program for a BWR. The choice of the neutronic methods employed was based on the premise of being able of performing all the expected future survey calculations in relatively short times, but without compromising accuracy. First, a geometrical model of a typical BWR was developed, from the core to the primary containment, including jet pumps and all other structures. The methodology uses the Synthesis Method to compute the three-dimensional neutron flux distribution. In the methodology, the code CORE-MASTER-PRESTO is used as the three-dimensional core simulator; SCALE is used to generate the fine-group flux spectra of the components of the model and also used to generate a 47 energy-groups job cross section library, collapsed from the 199-fine-group master library VITAMIN-B6; ORIGEN2 was used to compute the isotopic densities of uranium and plutonium; and, finally, DORT was used to calculate the two-dimensional and one-dimensional neutron flux distributions required to compute the synthesized three-dimensional neutron flux. Then, the calculation of fast neutron fluence was performed using the effective full power time periods through six operational fuel cycles of two BWR Units and until the 13th cycle for Unit 1. The results showed a maximum relative difference between the calculated-by-synthesis fast neutron fluxes and fluences and those measured by Fe, Cu and Ni dosimeters less than 7%. The dosimeters were originally located adjacent to the pressure vessel wall, as part of the surveillance program. Results from the computations of peak fast fluence on pressure vessel wall and specific weld locations on the core shroud are

  13. CONTAIN calculations

    International Nuclear Information System (INIS)

    Scholtyssek, W.

    1995-01-01

    In the first phase of a benchmark comparison, the CONTAIN code was used to calculate an assumed EPR accident 'medium-sized leak in the cold leg', especially for the first two days after initiation of the accident. The results for global characteristics compare well with those of FIPLOC, MELCOR and WAVCO calculations, if the same materials data are used as input. However, significant differences show up for local quantities such as flows through leakages. (orig.)

  14. Primary cosmic ray flux

    Energy Technology Data Exchange (ETDEWEB)

    Stanev, Todor

    2001-05-01

    We discuss the primary cosmic ray flux from the point of view of particle interactions and production of atmospheric neutrinos. The overall normalization of the cosmic ray flux and its time variations and site dependence are major ingredients of the atmospheric neutrino predictions and the basis for the derivation of the neutrino oscillation parameters.

  15. Flux cutting in superconductors

    International Nuclear Information System (INIS)

    Campbell, A M

    2011-01-01

    This paper describes experiments and theories of flux cutting in superconductors. The use of the flux line picture in free space is discussed. In superconductors cutting can either be by means of flux at an angle to other layers of flux, as in longitudinal current experiments, or due to shearing of the vortex lattice as in grain boundaries in YBCO. Experiments on longitudinal currents can be interpreted in terms of flux rings penetrating axial lines. More physical models of flux cutting are discussed but all predict much larger flux cutting forces than are observed. Also, cutting is occurring at angles between vortices of about one millidegree which is hard to explain. The double critical state model and its developments are discussed in relation to experiments on crossed and rotating fields. A new experiment suggested by Clem gives more direct information. It shows that an elliptical yield surface of the critical state works well, but none of the theoretical proposals for determining the direction of E are universally applicable. It appears that, as soon as any flux flow takes place, cutting also occurs. The conclusion is that new theories are required. (perspective)

  16. Simplified Methodology to Estimate the Maximum Liquid Helium (LHe) Cryostat Pressure from a Vacuum Jacket Failure

    Science.gov (United States)

    Ungar, Eugene K.; Richards, W. Lance

    2015-01-01

    The aircraft-based Stratospheric Observatory for Infrared Astronomy (SOFIA) is a platform for multiple infrared astronomical observation experiments. These experiments carry sensors cooled to liquid helium temperatures. The liquid helium supply is contained in large (i.e., 10 liters or more) vacuum-insulated dewars. Should the dewar vacuum insulation fail, the inrushing air will condense and freeze on the dewar wall, resulting in a large heat flux on the dewar's contents. The heat flux results in a rise in pressure and the actuation of the dewar pressure relief system. A previous NASA Engineering and Safety Center (NESC) assessment provided recommendations for the wall heat flux that would be expected from a loss of vacuum and detailed an appropriate method to use in calculating the maximum pressure that would occur in a loss of vacuum event. This method involved building a detailed supercritical helium compressible flow thermal/fluid model of the vent stack and exercising the model over the appropriate range of parameters. The experimenters designing science instruments for SOFIA are not experts in compressible supercritical flows and do not generally have access to the thermal/fluid modeling packages that are required to build detailed models of the vent stacks. Therefore, the SOFIA Program engaged the NESC to develop a simplified methodology to estimate the maximum pressure in a liquid helium dewar after the loss of vacuum insulation. The method would allow the university-based science instrument development teams to conservatively determine the cryostat's vent neck sizing during preliminary design of new SOFIA Science Instruments. This report details the development of the simplified method, the method itself, and the limits of its applicability. The simplified methodology provides an estimate of the dewar pressure after a loss of vacuum insulation that can be used for the initial design of the liquid helium dewar vent stacks. However, since it is not an exact

  17. Actinide and Xenon reactivity effects in ATW high flux systems

    International Nuclear Information System (INIS)

    Woosley, M.; Olson, K.; Henderson, D.L.

    1995-01-01

    In this paper, initial system reactivity response to flux changes caused by the actinides and xenon are investigated separately for a high flux ATW system. The maximum change in reactivity after a flux change due to the effect of the changing quantities of actinides is generally at least two orders of magnitude smaller than either the positive or negative reactivity effect associated with xenon after a shutdown or start-up. In any transient flux event, the reactivity response of the system to xenon will generally occlude the response due to the actinides

  18. Actinide and xenon reactivity effects in ATW high flux systems

    International Nuclear Information System (INIS)

    Woosley, M.; Olson, K.; Henderson, D. L.; Sailor, W. C.

    1995-01-01

    In this paper, initial system reactivity response to flux changes caused by the actinides and xenon are investigated separately for a high flux ATW system. The maximum change in reactivity after a flux change due to the effect of the changing quantities of actinides is generally at least two orders of magnitude smaller than either the positive or negative reactivity effect associated with xenon after a shutdown or start-up. In any transient flux event, the reactivity response of the system to xenon will generally occlude the response due to the actinides

  19. Actinide and Xenon reactivity effects in ATW high flux systems

    Energy Technology Data Exchange (ETDEWEB)

    Woosley, M. [Univ. of Virginia, Charlottesville, VA (United States); Olson, K.; Henderson, D.L. [Univ. of Wisconsin, Madison, WI (United States)] [and others

    1995-10-01

    In this paper, initial system reactivity response to flux changes caused by the actinides and xenon are investigated separately for a high flux ATW system. The maximum change in reactivity after a flux change due to the effect of the changing quantities of actinides is generally at least two orders of magnitude smaller than either the positive or negative reactivity effect associated with xenon after a shutdown or start-up. In any transient flux event, the reactivity response of the system to xenon will generally occlude the response due to the actinides.

  20. System for memorizing maximum values

    Science.gov (United States)

    Bozeman, Richard J., Jr.

    1992-08-01

    The invention discloses a system capable of memorizing maximum sensed values. The system includes conditioning circuitry which receives the analog output signal from a sensor transducer. The conditioning circuitry rectifies and filters the analog signal and provides an input signal to a digital driver, which may be either linear or logarithmic. The driver converts the analog signal to discrete digital values, which in turn triggers an output signal on one of a plurality of driver output lines n. The particular output lines selected is dependent on the converted digital value. A microfuse memory device connects across the driver output lines, with n segments. Each segment is associated with one driver output line, and includes a microfuse that is blown when a signal appears on the associated driver output line.

  1. Remarks on the maximum luminosity

    Science.gov (United States)

    Cardoso, Vitor; Ikeda, Taishi; Moore, Christopher J.; Yoo, Chul-Moon

    2018-04-01

    The quest for fundamental limitations on physical processes is old and venerable. Here, we investigate the maximum possible power, or luminosity, that any event can produce. We show, via full nonlinear simulations of Einstein's equations, that there exist initial conditions which give rise to arbitrarily large luminosities. However, the requirement that there is no past horizon in the spacetime seems to limit the luminosity to below the Planck value, LP=c5/G . Numerical relativity simulations of critical collapse yield the largest luminosities observed to date, ≈ 0.2 LP . We also present an analytic solution to the Einstein equations which seems to give an unboundedly large luminosity; this will guide future numerical efforts to investigate super-Planckian luminosities.

  2. Maximum mutual information regularized classification

    KAUST Repository

    Wang, Jim Jing-Yan

    2014-09-07

    In this paper, a novel pattern classification approach is proposed by regularizing the classifier learning to maximize mutual information between the classification response and the true class label. We argue that, with the learned classifier, the uncertainty of the true class label of a data sample should be reduced by knowing its classification response as much as possible. The reduced uncertainty is measured by the mutual information between the classification response and the true class label. To this end, when learning a linear classifier, we propose to maximize the mutual information between classification responses and true class labels of training samples, besides minimizing the classification error and reducing the classifier complexity. An objective function is constructed by modeling mutual information with entropy estimation, and it is optimized by a gradient descend method in an iterative algorithm. Experiments on two real world pattern classification problems show the significant improvements achieved by maximum mutual information regularization.

  3. Scintillation counter, maximum gamma aspect

    International Nuclear Information System (INIS)

    Thumim, A.D.

    1975-01-01

    A scintillation counter, particularly for counting gamma ray photons, includes a massive lead radiation shield surrounding a sample-receiving zone. The shield is disassembleable into a plurality of segments to allow facile installation and removal of a photomultiplier tube assembly, the segments being so constructed as to prevent straight-line access of external radiation through the shield into radiation-responsive areas. Provisions are made for accurately aligning the photomultiplier tube with respect to one or more sample-transmitting bores extending through the shield to the sample receiving zone. A sample elevator, used in transporting samples into the zone, is designed to provide a maximum gamma-receiving aspect to maximize the gamma detecting efficiency. (U.S.)

  4. Maximum mutual information regularized classification

    KAUST Repository

    Wang, Jim Jing-Yan; Wang, Yi; Zhao, Shiguang; Gao, Xin

    2014-01-01

    In this paper, a novel pattern classification approach is proposed by regularizing the classifier learning to maximize mutual information between the classification response and the true class label. We argue that, with the learned classifier, the uncertainty of the true class label of a data sample should be reduced by knowing its classification response as much as possible. The reduced uncertainty is measured by the mutual information between the classification response and the true class label. To this end, when learning a linear classifier, we propose to maximize the mutual information between classification responses and true class labels of training samples, besides minimizing the classification error and reducing the classifier complexity. An objective function is constructed by modeling mutual information with entropy estimation, and it is optimized by a gradient descend method in an iterative algorithm. Experiments on two real world pattern classification problems show the significant improvements achieved by maximum mutual information regularization.

  5. Heat flux microsensor measurements

    Science.gov (United States)

    Terrell, J. P.; Hager, J. M.; Onishi, S.; Diller, T. E.

    1992-01-01

    A thin-film heat flux sensor has been fabricated on a stainless steel substrate. The thermocouple elements of the heat flux sensor were nickel and nichrome, and the temperature resistance sensor was platinum. The completed heat flux microsensor was calibrated at the AEDC radiation facility. The gage output was linear with heat flux with no apparent temperature effect on sensitivity. The gage was used for heat flux measurements at the NASA Langley Vitiated Air Test Facility. Vitiated air was expanded to Mach 3.0 and hydrogen fuel was injected. Measurements were made on the wall of a diverging duct downstream of the injector during all stages of the hydrogen combustion tests. Because the wall and the gage were not actively cooled, the wall temperature reached over 1000 C (1900 F) during the most severe test.

  6. Measurements at the RA Reactor related to the VISA-2 project - Part 3, calculation of VISA-2 samples influence on the reactor reactivity, on the depression of thermal neutron flux in VK-5 channel and VISA-2 samples; Fizicka merenja na reaktoru RA u vezi projekta VISA-2 - III deo, Proracun uticaja uzoraka VISA-2 na reaktivnost reaktora, na depresiju fluksa termalnih neuntrona u kanalu VK-5 i u uzorcima VISA-2

    Energy Technology Data Exchange (ETDEWEB)

    Markovic, H; Martinc, R [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1962-07-01

    The objective of this task was to determine the thermal neutron flux in the RA reactor cell with VISA-2 samples, the influence of VISA-2 samples on the thermal neutron flux distribution in the vicinity of VK-5 channel and the antireactivity of VISA-2 samples placed in the RA reactor core. This distribution is needed for calculating the mean value of absorption and thermal efficiency factor in the reactor cell with the sample. Thermal neutron flux distribution without the sample was calculated by diffusion theory. Fast neutron flux space distribution was assumed to be constant, i.e. that it is dependent only on the nuclear properties of the materials. Macroscopic thermal neutron flux distribution was determined by two-group diffusion theory using the four factor formula applied for two regions: active RA region, and reactor region with calls containing VISA-2 samples. This calculation enables estimation of the VISA-2 samples influence on the thermal neutron flux distribution in the VK-5 channel. Antireactivity of VISA-2 samples was calculated by neutron diffusion theory applying the perturbation method. [Serbo-Croat] Cilj ovog zadatka je da se odredi raspodela fluksa termalnih neutrona u celiji reaktora RA sa uzorcima VISA-2, uticaj uzoraka VISA-2 na makroskopsku raspodelu termalnih neutrona u blizini uzoraka, tj. u kanalu VK-5, kao i antiraktivnost uzoraka VISA-2 ubacenih u jezgro RA. Poznavanje ove raspodele potrebno je za izracunavanje srednje apsorpcije i faktora termalnog iskoriscenja u celiji reaktora sa uzorkom. Raspodela fluksa termalnih neutrona u celiji RA bez uzorka izracunata je na bazi difuzione teorije. Fluks brzih neutrona uzet je kao konstanta s obzirom na prostorne koordinate, tj. da zavisi samo od nuklearnih karakteristika materijala. Makroskopska raspodela fluksa termalnih neutrona u okolini VISA-2 odredjena je na bazi dvogrupne difuzione teorije preko formule cetiri faktora, primenjene na dve zone: prva aktivna zona RA, i druga reaktorka sredina

  7. Concentrations and fluxes of isoprene and oxygenated VOCs at a French Mediterranean oak forest

    International Nuclear Information System (INIS)

    Kalogridis, C.; Gros, V.; Sarda-Esteve, R.; Bonsang, B.; Bonnaire, N.; Boissard, C.; Baisnee, D.; Lathiere, J.

    2014-01-01

    The CANOPEE project aims to better understand the biosphere-atmosphere exchanges of biogenic volatile organic compounds (BVOCs) in the case of Mediterranean ecosystems and the impact of in-canopy processes on the atmospheric chemical composition above the canopy. Based on an intensive field campaign, the objective of our work was to determine the chemical composition of the air inside a canopy as well as the net fluxes of reactive species between the canopy and the boundary layer. Measurements were carried out during spring 2012 at the field site of the Oak Observatory of the Observatoire de Haute Provence (O3HP) located in the southeast of France. The site is a forest ecosystem dominated by downy oak, Quercus pubescens Willd., a typical Mediterranean species which features large isoprene emission rates. Mixing ratios of isoprene, its degradation products methylvinylketone (MVK) and methacrolein (MACR) and several other oxygenated VOC (OxVOC) were measured above the canopy using an online proton transfer reaction mass spectrometer (PTR-MS), and fluxes were calculated by the disjunct eddy covariance approach. The O3HP site was found to be a very significant source of isoprene emissions, with daily maximum ambient concentrations ranging between 2-16 ppbv inside and 2-5 ppbv just above the top of the forest canopy. Significant isoprene fluxes were observed only during daytime, following diurnal cycles with midday net emission fluxes from the canopy ranging between 2.0 and 9.7 mgm -2 h -1 . Net isoprene normalized flux (at 30 C, 1000 μmol quantam -2 s -1 ) was estimated at 7.4 mgm -2 h -1 . Evidence of direct emission of methanol was also found exhibiting maximum daytime fluxes ranging between 0.2 and 0.6 mgm -2 h -1 , whereas flux values for monoterpenes and others OxVOC such as acetone and acetaldehyde were below the detection limit. The MVK+MACR-to-isoprene ratio provided useful information on the oxidation of isoprene, and is in agreement with recent findings

  8. Radiation dosimetry at the BNL High Flux Beam Reactor

    International Nuclear Information System (INIS)

    Holden, N.E.; Hu, J.P.; Reciniello, R.N.

    1998-02-01

    The HFBR is a heavy water, D 2 O, cooled and moderated reactor with twenty-eight fuel elements containing a maximum of 9.8 kilograms of 235 U. The core is 53 cm high and 48 cm in diameter and has an active volume of 97 liters. The HFBR, which was designed to operate at forty mega-watts, 40 NW, was upgraded to operate at 60 NW. Since 1991, it has operated at 30 MW. In a normal 30 MW operating cycle the HFBR operates 24 hours a day for thirty days, with a six to fourteen day shutdown period for refueling and maintenance work. While most reactors attempts to minimize the escape of neutrons from the core, the HFBR's D 2 O design allows the thermal neutron flux to peak in the reflector region and maximizes the number of thermal neutrons available to nine horizontal external beams, H-1 to H-9. The HFBR neutron dosimetry effort described here compares measured and calculated energy dependent neutron and gamma ray flux densities and/or dose rates at horizontal beam lines and vertical irradiation thimbles

  9. The study of heat flux for disruption on experimental advanced superconducting tokamak

    International Nuclear Information System (INIS)

    Yang, Zhendong; Fang, Jianan; Luo, Jiarong; Cui, Zhixue; Gong, Xianzu; Gan, Kaifu; Zhao, Hailin; Zhang, Bin; Chen, Meiwen

    2016-01-01

    Disruption of the plasma is one of the most dangerous instabilities in tokamak. During the disruption, most of the plasma thermal energy is lost, which causes damages to the plasma facing components. Infrared (IR) camera is an effective tool to detect the temperature distribution on the first wall, and the energy deposited on the first wall can be calculated from the surface temperature profile measured by the IR camera. This paper concentrates on the characteristics of heat flux distribution onto the first wall under different disruptions, including the minor disruption and the vertical displacement events (VDE) disruption. Several minor disruptions have been observed before the major disruption under the high plasma density in experimental advanced superconducting tokamak. During the minor disruption, the heat fluxes are mainly deposited on the upper/lower divertors. The magnetic configuration prior to the minor disruption is a lower single null with the radial distance between the two separatrices in the outer midplane dR_s_e_p = −2 cm, while it changes to upper single null (dR_s_e_p = 1.4 cm) during the minor disruption. As for the VDE disruption, the spatial distribution of heat flux exhibits strong toroidal and radial nonuniformity, and the maximum heat flux received on the dome plate can be up to 11 MW/m"2.

  10. Effect of flux discontinuity on spatial approximations for discrete ordinates methods

    International Nuclear Information System (INIS)

    Duo, J.I.; Azmy, Y.Y.

    2005-01-01

    This work presents advances on error analysis of the spatial approximation of the discrete ordinates method for solving the neutron transport equation. Error norms for different non-collided flux problems over a two dimensional pure absorber medium are evaluated using three numerical methods. The problems are characterized by the incoming flux boundary conditions to obtain solutions with different level of differentiability. The three methods considered are the Diamond Difference (DD) method, the Arbitrarily High Order Transport method of the Nodal type (AHOT-N), and of the Characteristic type (AHOT-C). The last two methods are employed in constant, linear and quadratic orders of spatial approximation. The cell-wise error is computed as the difference between the cell-averaged flux computed by each method and the exact value, then the L 1 , L 2 , and L ∞ error norms are calculated. The results of this study demonstrate that the level of differentiability of the exact solution profoundly affects the rate of convergence of the numerical methods' solutions. Furthermore, in the case of discontinuous exact flux the methods fail to converge in the maximum error norm, or in the pointwise sense, in accordance with previous local error analysis. (authors)

  11. The study of heat flux for disruption on experimental advanced superconducting tokamak

    Science.gov (United States)

    Yang, Zhendong; Fang, Jianan; Gong, Xianzu; Gan, Kaifu; Luo, Jiarong; Zhao, Hailin; Cui, Zhixue; Zhang, Bin; Chen, Meiwen

    2016-05-01

    Disruption of the plasma is one of the most dangerous instabilities in tokamak. During the disruption, most of the plasma thermal energy is lost, which causes damages to the plasma facing components. Infrared (IR) camera is an effective tool to detect the temperature distribution on the first wall, and the energy deposited on the first wall can be calculated from the surface temperature profile measured by the IR camera. This paper concentrates on the characteristics of heat flux distribution onto the first wall under different disruptions, including the minor disruption and the vertical displacement events (VDE) disruption. Several minor disruptions have been observed before the major disruption under the high plasma density in experimental advanced superconducting tokamak. During the minor disruption, the heat fluxes are mainly deposited on the upper/lower divertors. The magnetic configuration prior to the minor disruption is a lower single null with the radial distance between the two separatrices in the outer midplane dRsep = -2 cm, while it changes to upper single null (dRsep = 1.4 cm) during the minor disruption. As for the VDE disruption, the spatial distribution of heat flux exhibits strong toroidal and radial nonuniformity, and the maximum heat flux received on the dome plate can be up to 11 MW/m2.

  12. FluxPyt: a Python-based free and open-source software for 13C-metabolic flux analyses.

    Science.gov (United States)

    Desai, Trunil S; Srivastava, Shireesh

    2018-01-01

    13 C-Metabolic flux analysis (MFA) is a powerful approach to estimate intracellular reaction rates which could be used in strain analysis and design. Processing and analysis of labeling data for calculation of fluxes and associated statistics is an essential part of MFA. However, various software currently available for data analysis employ proprietary platforms and thus limit accessibility. We developed FluxPyt, a Python-based truly open-source software package for conducting stationary 13 C-MFA data analysis. The software is based on the efficient elementary metabolite unit framework. The standard deviations in the calculated fluxes are estimated using the Monte-Carlo analysis. FluxPyt also automatically creates flux maps based on a template for visualization of the MFA results. The flux distributions calculated by FluxPyt for two separate models: a small tricarboxylic acid cycle model and a larger Corynebacterium glutamicum model, were found to be in good agreement with those calculated by a previously published software. FluxPyt was tested in Microsoft™ Windows 7 and 10, as well as in Linux Mint 18.2. The availability of a free and open 13 C-MFA software that works in various operating systems will enable more researchers to perform 13 C-MFA and to further modify and develop the package.

  13. Maximum entropy and Bayesian methods

    International Nuclear Information System (INIS)

    Smith, C.R.; Erickson, G.J.; Neudorfer, P.O.

    1992-01-01

    Bayesian probability theory and Maximum Entropy methods are at the core of a new view of scientific inference. These 'new' ideas, along with the revolution in computational methods afforded by modern computers allow astronomers, electrical engineers, image processors of any type, NMR chemists and physicists, and anyone at all who has to deal with incomplete and noisy data, to take advantage of methods that, in the past, have been applied only in some areas of theoretical physics. The title workshops have been the focus of a group of researchers from many different fields, and this diversity is evident in this book. There are tutorial and theoretical papers, and applications in a very wide variety of fields. Almost any instance of dealing with incomplete and noisy data can be usefully treated by these methods, and many areas of theoretical research are being enhanced by the thoughtful application of Bayes' theorem. Contributions contained in this volume present a state-of-the-art overview that will be influential and useful for many years to come

  14. Field-theoretic calculation of kinetic helicity flux

    Indian Academy of Sciences (India)

    Given all these practical aspects, kinetic helicity is an important quantity to study in fluid turbulence. Turbulence involves millions of interacting modes. It is very difficult to analyze these modes theoretically as well as numerically. In recent times, a new numeri- cal procedure called 'large eddy simulations' (LES) has become ...

  15. Configuration of LWR fuel enrichment or burnup yielding maximum power

    International Nuclear Information System (INIS)

    Bartosek, V.; Zalesky, K.

    1976-01-01

    An analysis is given of the spatial distribution of fuel burnup and enrichment in a light-water lattice of given dimensions with slightly enriched uranium, at which the maximum output is achieved. It is based on the spatial solution of neutron flux using a one-group diffusion model in which linear dependence may be expected of the fission cross section and the material buckling parameter on the fuel burnup and enrichment. Two problem constraints are considered, i.e., the neutron flux value and the specific output value. For the former the optimum core configuration remains qualitatively unchanged for any reflector thickness, for the latter the cases of a reactor with and without reflector must be distinguished. (Z.M.)

  16. Evaluation of NASA's Carbon Monitoring System (CMS) Flux Pilot: Terrestrial CO2 Fluxes

    Science.gov (United States)

    Fisher, J. B.; Polhamus, A.; Bowman, K. W.; Collatz, G. J.; Potter, C. S.; Lee, M.; Liu, J.; Jung, M.; Reichstein, M.

    2011-12-01

    NASA's Carbon Monitoring System (CMS) flux pilot project combines NASA's Earth System models in land, ocean and atmosphere to track surface CO2 fluxes. The system is constrained by atmospheric measurements of XCO2 from the Japanese GOSAT satellite, giving a "big picture" view of total CO2 in Earth's atmosphere. Combining two land models (CASA-Ames and CASA-GFED), two ocean models (ECCO2 and NOBM) and two atmospheric chemistry and inversion models (GEOS-5 and GEOS-Chem), the system brings together the stand-alone component models of the Earth System, all of which are run diagnostically constrained by a multitude of other remotely sensed data. Here, we evaluate the biospheric land surface CO2 fluxes (i.e., net ecosystem exchange, NEE) as estimated from the atmospheric flux inversion. We compare against the prior bottom-up estimates (e.g., the CASA models) as well. Our evaluation dataset is the independently derived global wall-to-wall MPI-BGC product, which uses a machine learning algorithm and model tree ensemble to "scale-up" a network of in situ CO2 flux measurements from 253 globally-distributed sites in the FLUXNET network. The measurements are based on the eddy covariance method, which uses observations of co-varying fluxes of CO2 (and water and energy) from instruments on towers extending above ecosystem canopies; the towers integrate fluxes over large spatial areas (~1 km2). We present global maps of CO2 fluxes and differences between products, summaries of fluxes by TRANSCOM region, country, latitude, and biome type, and assess the time series, including timing of minimum and maximum fluxes. This evaluation shows both where the CMS is performing well, and where improvements should be directed in further work.

  17. AVERAGE FLUXES FROM HETEROGENEOUS VEGETATED REGIONS

    NARCIS (Netherlands)

    KLAASSEN, W

    Using a surface-layer model, fluxes of heat and momentum have been calculated for flat regions with regularly spaced step changes in surface roughness and stomatal resistance. The distance between successive step changes is limited to 10 km in order to fill the gap between micro-meteorological

  18. Calculation of deuterium retention in, re-emission and reflection from a tungsten material under D+ ions irradiation with ACAT-DIFFUSE

    International Nuclear Information System (INIS)

    Ono, T.; Muramoto, T.; Kenmotsu, T.; Kawamura, T.

    2008-08-01

    We calculated, with a dynamic Monte Carlo code ACAT-DIFFUSE, fluxes of thermal D 2 re-emission, reflection and self-sputtering from a wrought tungsten material during a time sequence of 100 eV D + implantation, post-implanted isothermal out-gassing and thermal desorption spectroscopy. The obtained result agreed well with an existing experiment, where diffusion was considered in the calculations from the beginning of implantation. The three fluxes in the implantation period were shown to be almost comparable. The integrated deuterium flux released in the same period was estimated. The depth profiles of deuterium retained at 300 K in that period indicate that, while their maximum locations did not move, the profiles were broadened out because of fast diffusion. The amount of deuterium retained at 300 K was one order of magnitude higher than that at 473 K. (author)

  19. THE TOPOLOGY OF CANONICAL FLUX TUBES IN FLARED JET GEOMETRY

    Energy Technology Data Exchange (ETDEWEB)

    Lavine, Eric Sander; You, Setthivoine, E-mail: Slavine2@uw.edu, E-mail: syou@aa.washington.edu [University of Washington, 4000 15th Street, NE Aeronautics and Astronautics 211 Guggenheim Hall, Box 352400, Seattle, WA 98195 (United States)

    2017-01-20

    Magnetized plasma jets are generally modeled as magnetic flux tubes filled with flowing plasma governed by magnetohydrodynamics (MHD). We outline here a more fundamental approach based on flux tubes of canonical vorticity, where canonical vorticity is defined as the circulation of the species’ canonical momentum. This approach extends the concept of magnetic flux tube evolution to include the effects of finite particle momentum and enables visualization of the topology of plasma jets in regimes beyond MHD. A flared, current-carrying magnetic flux tube in an ion-electron plasma with finite ion momentum is thus equivalent to either a pair of electron and ion flow flux tubes, a pair of electron and ion canonical momentum flux tubes, or a pair of electron and ion canonical vorticity flux tubes. We examine the morphology of all these flux tubes for increasing electrical currents, different radial current profiles, different electron Mach numbers, and a fixed, flared, axisymmetric magnetic geometry. Calculations of gauge-invariant relative canonical helicities track the evolution of magnetic, cross, and kinetic helicities in the system, and show that ion flow fields can unwind to compensate for an increasing magnetic twist. The results demonstrate that including a species’ finite momentum can result in a very long collimated canonical vorticity flux tube even if the magnetic flux tube is flared. With finite momentum, particle density gradients must be normal to canonical vorticities, not to magnetic fields, so observations of collimated astrophysical jets could be images of canonical vorticity flux tubes instead of magnetic flux tubes.

  20. Maximum entropy principal for transportation

    International Nuclear Information System (INIS)

    Bilich, F.; Da Silva, R.

    2008-01-01

    In this work we deal with modeling of the transportation phenomenon for use in the transportation planning process and policy-impact studies. The model developed is based on the dependence concept, i.e., the notion that the probability of a trip starting at origin i is dependent on the probability of a trip ending at destination j given that the factors (such as travel time, cost, etc.) which affect travel between origin i and destination j assume some specific values. The derivation of the solution of the model employs the maximum entropy principle combining a priori multinomial distribution with a trip utility concept. This model is utilized to forecast trip distributions under a variety of policy changes and scenarios. The dependence coefficients are obtained from a regression equation where the functional form is derived based on conditional probability and perception of factors from experimental psychology. The dependence coefficients encode all the information that was previously encoded in the form of constraints. In addition, the dependence coefficients encode information that cannot be expressed in the form of constraints for practical reasons, namely, computational tractability. The equivalence between the standard formulation (i.e., objective function with constraints) and the dependence formulation (i.e., without constraints) is demonstrated. The parameters of the dependence-based trip-distribution model are estimated, and the model is also validated using commercial air travel data in the U.S. In addition, policy impact analyses (such as allowance of supersonic flights inside the U.S. and user surcharge at noise-impacted airports) on air travel are performed.

  1. Flux transformers made of commercial high critical temperature superconducting wires.

    Science.gov (United States)

    Dyvorne, H; Scola, J; Fermon, C; Jacquinot, J F; Pannetier-Lecoeur, M

    2008-02-01

    We have designed flux transformers made of commercial BiSCCO tapes closed by soldering with normal metal. The magnetic field transfer function of the flux transformer was calculated as a function of the resistance of the soldered contacts. The performances of different kinds of wires were investigated for signal delocalization and gradiometry. We also estimated the noise introduced by the resistance and showed that the flux transformer can be used efficiently for weak magnetic field detection down to 1 Hz.

  2. Continuous magnetic flux pump

    Science.gov (United States)

    Hildebrandt, A. F.; Elleman, D. D.; Whitmore, F. C. (Inventor)

    1966-01-01

    A method and means for altering the intensity of a magnetic field by transposing flux from one location to the location desired fro the magnetic field are examined. The device described includes a pair of communicating cavities formed in a block of superconducting material, is dimensioned to be insertable into one of the cavities and to substantially fill the cavity. Magnetic flux is first trapped in the cavities by establishing a magnetic field while the superconducting material is above the critical temperature at which it goes superconducting. Thereafter, the temperature of the material is reduced below the critical value, and then the exciting magnetic field may be removed. By varying the ratios of the areas of the two cavities, it is possible to produce a field having much greater flux density in the second, smaller cavity, into which the flux transposed.

  3. Flux in Tallinn

    Index Scriptorium Estoniae

    2004-01-01

    Rahvusvahelise elektroonilise kunsti sümpoosioni ISEA2004 klubiõhtu "Flux in Tallinn" klubis Bon Bon. Eestit esindasid Ropotator, Ars Intel Inc., Urmas Puhkan, Joel Tammik, Taavi Tulev (pseud. Wochtzchee). Klubiõhtu koordinaator Andres Lõo

  4. Flux shunts for undulators

    International Nuclear Information System (INIS)

    Hoyer, E.; Chin, J.; Hassenzahl, W.V.

    1993-05-01

    Undulators for high-performance applications in synchrotron-radiation sources and periodic magnetic structures for free-electron lasers have stringent requirements on the curvature of the electron's average trajectory. Undulators using the permanent magnet hybrid configuration often have fields in their central region that produce a curved trajectory caused by local, ambient magnetic fields such as those of the earth. The 4.6 m long Advanced Light Source (ALS) undulators use flux shunts to reduce this effect. These flux shunts are magnetic linkages of very high permeability material connecting the two steel beams that support the magnetic structures. The shunts reduce the scalar potential difference between the supporting beams and carry substantial flux that would normally appear in the undulator gap. Magnetic design, mechanical configuration of the flux shunts and magnetic measurements of their effect on the ALS undulators are described

  5. REFLOS, Fuel Loading and Cost from Burnup and Heavy Atomic Mass Flow Calculation in HWR

    International Nuclear Information System (INIS)

    Boettcher, W.; Schmidt, E.

    1969-01-01

    1 - Nature of physical problem solved: REFLOS is a programme for the evaluation of fuel-loading schemes in heavy water moderated reactors. The problems involved in this study are: a) Burn-up calculation for the reactor cell. b) Determination of reactivity behaviour, power distribution, attainable burn-up for both the running-in period and the equilibrium of a 3-dimensional heterogeneous reactor model; investigation of radial fuel movement schemes. c) Evaluation of mass flows of heavy atoms through the reactor and fuel cycle costs for the running-in, the equilibrium, and the shut down of a power reactor. If the subroutine for treating the reactor cell were replaced by a suitable routine, other reactors with weakly absorbing moderators could be analyzed. 2 - Method of solution: Nuclear constants and isotopic compositions of the different fuels in the reactor are calculated by the cell-burn-up programme and tabulated as functions of the burn-up rate (MWD/T). Starting from a known state of the reactor, the 3-dimensional heterogeneous reactor programme (applying an extension of the technique of Feinberg and Galanin) calculates reactivity and neutron flux distribution using one thermal and one or two fast neutron groups. After a given irradiation time, the new state of the reactor is determined, and new nuclear constants are assigned to the various defined locations in the reactor. Reloading of fuel may occur if the prescribed life of the reactor is reached or if the effective multiplication factor or the power form factor falls below a specified level. The scheme of reloading to be carried out is specified by a load vector, giving the number of channels to be discharged, the kind of movement from one to another channel and the type of fresh fuel to be charged for each single reloading event. After having determined the core states characterizing the equilibrium period, and having decided the fuel reloading scheme for the running-in period of the reactor life, the fuel

  6. Flux-pinning-induced stresses in a hollow superconducting cylinder with flux creep and viscosity properties

    International Nuclear Information System (INIS)

    Feng, W.J.; Gao, S.W.

    2014-01-01

    Highlights: • Magnetoelastic problem for a superconducting cylinder with a hole is investigated. • The effects of both flux creep and viscous flux flow on stresses are analyzed. • For the FC case, the maximal hoop tensile stress always occurs at hole edge. • For the ZFC case, the maximal hoop stress is not certain to occur at hole edge. - Abstract: The magnetoelastic problem for a superconducting cylinder with a concentric hole placed in a magnetic field is investigated, where the flux creep and viscous flux flow have been considered. The stress distributions are derived and numerical calculated for the descending field in both the zero-field cooling (ZFC) and field cooling (FC) processes. The effects of applied magnetic field, flux creep and viscous flux flow on the maximal radial and hoop stresses are discussed in detail, and some novel phenomena are found. Among others, for the FC case, the maximal hoop tensile stress always occurs at the hole edge, whist for the ZFC case, the maximal stresses including both hoop and radial stresses either occur in the vicinity of the hole or occur at the position of flux frontier in the remagnetization process. For the descending field, in general, both the flux creep and viscosity parameters have important effects on the maximal radial and hoop stresses. All these phenomena are perhaps of vital importance for the application of superconductors

  7. MAXIMUM RUNOFF OF THE FLOOD ON WADIS OF NORTHERN ...

    African Journals Online (AJOL)

    lanez

    The technique of account the maximal runoff of flood for the rivers of northern part of Algeria based on the theory of ... north to south: 1) coastal Tel – fertile, high cultivated and sown zone; 2) territory of Atlas. Mountains ... In the first case the empiric dependence between maximum intensity of precipitation for some calculation ...

  8. Elemental composition of cosmic rays using a maximum likelihood method

    International Nuclear Information System (INIS)

    Ruddick, K.

    1996-01-01

    We present a progress report on our attempts to determine the composition of cosmic rays in the knee region of the energy spectrum. We have used three different devices to measure properties of the extensive air showers produced by primary cosmic rays: the Soudan 2 underground detector measures the muon flux deep underground, a proportional tube array samples shower density at the surface of the earth, and a Cherenkov array observes light produced high in the atmosphere. We have begun maximum likelihood fits to these measurements with the hope of determining the nuclear mass number A on an event by event basis. (orig.)

  9. The mechanics of granitoid systems and maximum entropy production rates.

    Science.gov (United States)

    Hobbs, Bruce E; Ord, Alison

    2010-01-13

    A model for the formation of granitoid systems is developed involving melt production spatially below a rising isotherm that defines melt initiation. Production of the melt volumes necessary to form granitoid complexes within 10(4)-10(7) years demands control of the isotherm velocity by melt advection. This velocity is one control on the melt flux generated spatially just above the melt isotherm, which is the control valve for the behaviour of the complete granitoid system. Melt transport occurs in conduits initiated as sheets or tubes comprising melt inclusions arising from Gurson-Tvergaard constitutive behaviour. Such conduits appear as leucosomes parallel to lineations and foliations, and ductile and brittle dykes. The melt flux generated at the melt isotherm controls the position of the melt solidus isotherm and hence the physical height of the Transport/Emplacement Zone. A conduit width-selection process, driven by changes in melt viscosity and constitutive behaviour, operates within the Transport Zone to progressively increase the width of apertures upwards. Melt can also be driven horizontally by gradients in topography; these horizontal fluxes can be similar in magnitude to vertical fluxes. Fluxes induced by deformation can compete with both buoyancy and topographic-driven flow over all length scales and results locally in transient 'ponds' of melt. Pluton emplacement is controlled by the transition in constitutive behaviour of the melt/magma from elastic-viscous at high temperatures to elastic-plastic-viscous approaching the melt solidus enabling finite thickness plutons to develop. The system involves coupled feedback processes that grow at the expense of heat supplied to the system and compete with melt advection. The result is that limits are placed on the size and time scale of the system. Optimal characteristics of the system coincide with a state of maximum entropy production rate. This journal is © 2010 The Royal Society

  10. Determination of the Atmospheric Neutrino Fluxes from Atmospheric Neutrino Data

    NARCIS (Netherlands)

    Gonzalez-Garcia, M. C.; Maltoni, M.; Rojo, J.

    2006-01-01

    The precise knowledge of the atmospheric neutrino fluxes is a key ingredient in the interpretation of the results from any atmospheric neutrino experiment. In the standard atmospheric neutrino data analysis, these fluxes are theoretical inputs obtained from sophisticated numerical calculations based

  11. Fluxes of ammonia in the coastal marine boundary layer

    DEFF Research Database (Denmark)

    Sørensen, L.L.; Hertel, O.; Skjøth, C.A.

    2003-01-01

    Concentrations of ammonia in air and ammonium in surface water were measured from a platform in the Southern North Sea close to the Dutch coast. Fluxes were derived from the measurements applying Monin-Obukhov similarity theory and exchange velocities calculated. The fluxes and air concentrations...

  12. Dependence of Core and Extended Flux on Core Dominance ...

    Indian Academy of Sciences (India)

    Abstract. Based on two extragalactic radio source samples, the core dominance parameter is calculated, and the correlations between the core/extended flux density and core dominance parameter are investi- gated. When the core dominance parameter is lower than unity, it is linearly correlated with the core flux density, ...

  13. Fluxes of chemically reactive species inferred from mean concentration measurements

    NARCIS (Netherlands)

    Galmarini, S.; Vilà-Guerau De Arellano, J.; Duyzer, J.H.

    1997-01-01

    A method is presented for the calculation of the fluxes of chemically reactive species on the basis of routine measurements of meteorological variables and chemical species. The method takes explicity into account the influence of chemical reactions on the fluxes of the species. As a demonstration

  14. Dynamical Processes in Flux Tubes and their Role in ...

    Indian Academy of Sciences (India)

    We model the dynamical interaction between magnetic flux tubes and granules in the solar photosphere which leads to the excitation of transverse (kink) and longitudinal (sausage) tube waves. The investigation is motivated by the interpretation of network oscillations in terms of flux tube waves. The calculations show that ...

  15. Foil activation detectors - some remarks on the choice of detectors, the adjustment of cross-sections and the unfolding of flux spectra

    International Nuclear Information System (INIS)

    McCracken, A.K.; Packwood, A.

    1978-01-01

    Neutron spectroscopy in a favourable environment can yield without supporting calculations a wealth of spectral detail which cannot be approached by the multiple foil analysis (MFA) method. On the other hand in hostile environments only MFA methods are available and they require validation and/or improvement by exposing them to comparison with other types of measurement and definitive calculation in tightly controlled test neutron spectra. This paper considers some problems related to MFA unfolding of flux spectra, systematic and random errors in detector measurements and the choice of detectors which will be of maximum use in all environments of current interest

  16. Investigation of some possible changes in Am-Be neutron source configuration in order to increase the thermal neutron flux using Monte Carlo code

    Science.gov (United States)

    Basiri, H.; Tavakoli-Anbaran, H.

    2018-01-01

    Am-Be neutrons source is based on (α, n) reaction and generates neutrons in the energy range of 0-11 MeV. Since the thermal neutrons are widely used in different fields, in this work, we investigate how to improve the source configuration in order to increase the thermal flux. These suggested changes include a spherical moderator instead of common cylindrical geometry, a reflector layer and an appropriate materials selection in order to achieve the maximum thermal flux. All calculations were done by using MCNP1 Monte Carlo code. Our final results indicated that a spherical paraffin moderator, a layer of beryllium as a reflector can efficiently increase the thermal neutron flux of Am-Be source.

  17. Reliability calculations

    International Nuclear Information System (INIS)

    Petersen, K.E.

    1986-03-01

    Risk and reliability analysis is increasingly being used in evaluations of plant safety and plant reliability. The analysis can be performed either during the design process or during the operation time, with the purpose to improve the safety or the reliability. Due to plant complexity and safety and availability requirements, sophisticated tools, which are flexible and efficient, are needed. Such tools have been developed in the last 20 years and they have to be continuously refined to meet the growing requirements. Two different areas of application were analysed. In structural reliability probabilistic approaches have been introduced in some cases for the calculation of the reliability of structures or components. A new computer program has been developed based upon numerical integration in several variables. In systems reliability Monte Carlo simulation programs are used especially in analysis of very complex systems. In order to increase the applicability of the programs variance reduction techniques can be applied to speed up the calculation process. Variance reduction techniques have been studied and procedures for implementation of importance sampling are suggested. (author)

  18. Calculator calculus

    CERN Document Server

    McCarty, George

    1982-01-01

    How THIS BOOK DIFFERS This book is about the calculus. What distinguishes it, however, from other books is that it uses the pocket calculator to illustrate the theory. A computation that requires hours of labor when done by hand with tables is quite inappropriate as an example or exercise in a beginning calculus course. But that same computation can become a delicate illustration of the theory when the student does it in seconds on his calculator. t Furthermore, the student's own personal involvement and easy accomplishment give hi~ reassurance and en­ couragement. The machine is like a microscope, and its magnification is a hundred millionfold. We shall be interested in limits, and no stage of numerical approximation proves anything about the limit. However, the derivative of fex) = 67.SgX, for instance, acquires real meaning when a student first appreciates its values as numbers, as limits of 10 100 1000 t A quick example is 1.1 , 1.01 , 1.001 , •••• Another example is t = 0.1, 0.01, in the functio...

  19. A flux footprint analysis to understand ecosystem fluxes in an intensively managed landscape

    Science.gov (United States)

    Hernandez Rodriguez, L. C.; Goodwell, A. E.; Kumar, P.

    2017-12-01

    Flux tower studies in agricultural sites have mainly been done at plot scale, where the footprint of the instruments is small such that the data reveals the behaviour of the nearby crop on which the study is focused. In the Midwestern United States, the agricultural ecosystem and its associated drainage, evapotranspiration, and nutrient dynamics are dominant influences on interactions between the soil, land, and atmosphere. In this study, we address large-scale ecohydrologic fluxes and states in an intensively managed landscape based on data from a 25m high eddy covariance flux tower. We show the calculated upwind distance and flux footprint for a flux tower located in Central Illinois as part of the Intensively Managed Landscapes Critical Zone Observatory (IMLCZO). In addition, we calculate the daily energy balance during the summer of 2016 from the flux tower measurements and compare with the modelled energy balance from a representative corn crop located in the flux tower footprint using the Multi-Layer Canopy model, MLCan. The changes in flux footprint over the course of hours, days, and the growing season have significant implications for the measured fluxes of carbon and energy at the flux tower. We use MLCan to simulate these fluxes under land covers of corn and soybeans. Our results demonstrate how the instrument heights impact the footprint of the captured eddy covariance fluxes, and we explore the implication for hydrological analysis. The convective turbulent atmosphere during the daytime shows a wide footprint of more than 10 km2, which reaches 3km length for the 90% contribution, where buoyancy is the dominant mechanism driving turbulence. In contrast, the stable atmosphere during the night-time shows a narrower footprint that goes beyond 8km2 and grows in the direction of the prevalent wind, which exceeds 4 km in length. This study improves our understanding of agricultural ecosystem behaviour in terms of the magnitude and variability of fluxes and

  20. The use of fuel of various enrichment for flux shaping; Koriscenje goriva razlicitog obogacenja za dobijanje zeljene raspodele neutronskog fluksa

    Energy Technology Data Exchange (ETDEWEB)

    Zavaljevski, N; Pesic, M; Strugar, P [Boris Kidric Institute of nuclear sciences, Vinca, Belgrade (Yugoslavia)

    1980-07-01

    Spatial flux shaping, particularly obtaining maximum thermal neutron flux in experimental channels of a research reactor or flux flattening in a power reactor, is often desired in nuclear reactor utilization. Some experimental results of flux shaping at the RB reactor by use of the fuel of various enrichment are resented. Considerable increases in thermal neutron flux in central experimental channels is obtained and can serve as a starting point for further investigations as well as for comparison with theoretical models. (author)

  1. CONDOR: neutronic code for fuel elements calculation with rods

    International Nuclear Information System (INIS)

    Villarino, E.A.

    1990-01-01

    CONDOR neutronic code is used for the calculation of fuel elements formed by fuel rods. The method employed to obtain the neutronic flux is that of collision probabilities in a multigroup scheme on two-dimensional geometry. This code utilizes new calculation algorithms and normalization of such collision probabilities. Burn-up calculations can be made before the alternative of applying variational methods for response flux calculations or those corresponding to collision normalization. (Author) [es

  2. Atmospheric electron flux at airplane altitude

    International Nuclear Information System (INIS)

    Enomoto, R.; Chiba, J.; Ogawa, K.; Sumiyoshi, T.; Takasaki, F.; Kifune, T.; Matsubara, Y.; Nishimura, J.

    1991-01-01

    We have developed a new detector to systematically measure the cosmic-ray electron flux at airplane altitudes. We loaded a lead-glass-based electron telescope onto a commercial cargo airplane. The first experiment was carried out using the air route between Narita (Japan) and Sydney (Australia); during this flight we measured the electron flux at various altitudes and latitudes. The thresholds of the electron energies were 1, 2, and 4 GeV. The results agree with a simple estimation using one-dimensional shower theory. A comparison with a Monte Carlo calculation was made

  3. Meromorphic flux compactification

    Energy Technology Data Exchange (ETDEWEB)

    Damian, Cesar [Departamento de Ingeniería Mecánica, Universidad de Guanajuato,Carretera Salamanca-Valle de Santiago Km 3.5+1.8 Comunidad de Palo Blanco,Salamanca (Mexico); Loaiza-Brito, Oscar [Departamento de Física, Universidad de Guanajuato,Loma del Bosque No. 103 Col. Lomas del Campestre C.P 37150 León, Guanajuato (Mexico)

    2017-04-26

    We present exact solutions of four-dimensional Einstein’s equations related to Minkoswki vacuum constructed from Type IIB string theory with non-trivial fluxes. Following https://www.doi.org/10.1007/JHEP02(2015)187; https://www.doi.org/10.1007/JHEP02(2015)188 we study a non-trivial flux compactification on a fibered product by a four-dimensional torus and a two-dimensional sphere punctured by 5- and 7-branes. By considering only 3-form fluxes and the dilaton, as functions on the internal sphere coordinates, we show that these solutions correspond to a family of supersymmetric solutions constructed by the use of G-theory. Meromorphicity on functions constructed in terms of fluxes and warping factors guarantees that flux and 5-brane contributions to the scalar curvature vanish while fulfilling stringent constraints as tadpole cancelation and Bianchi identities. Different Einstein’s solutions are shown to be related by U-dualities. We present three supersymmetric non-trivial Minkowski vacuum solutions and compute the corresponding soft terms. We also construct a non-supersymmetric solution and study its stability.

  4. Meromorphic flux compactification

    International Nuclear Information System (INIS)

    Damian, Cesar; Loaiza-Brito, Oscar

    2017-01-01

    We present exact solutions of four-dimensional Einstein’s equations related to Minkoswki vacuum constructed from Type IIB string theory with non-trivial fluxes. Following https://www.doi.org/10.1007/JHEP02(2015)187; https://www.doi.org/10.1007/JHEP02(2015)188 we study a non-trivial flux compactification on a fibered product by a four-dimensional torus and a two-dimensional sphere punctured by 5- and 7-branes. By considering only 3-form fluxes and the dilaton, as functions on the internal sphere coordinates, we show that these solutions correspond to a family of supersymmetric solutions constructed by the use of G-theory. Meromorphicity on functions constructed in terms of fluxes and warping factors guarantees that flux and 5-brane contributions to the scalar curvature vanish while fulfilling stringent constraints as tadpole cancelation and Bianchi identities. Different Einstein’s solutions are shown to be related by U-dualities. We present three supersymmetric non-trivial Minkowski vacuum solutions and compute the corresponding soft terms. We also construct a non-supersymmetric solution and study its stability.

  5. Flux Pinning in Superconductors

    CERN Document Server

    Matsushita, Teruo

    2007-01-01

    The book covers the flux pinning mechanisms and properties and the electromagnetic phenomena caused by the flux pinning common for metallic, high-Tc and MgB2 superconductors. The condensation energy interaction known for normal precipitates or grain boundaries and the kinetic energy interaction proposed for artificial Nb pins in Nb-Ti, etc., are introduced for the pinning mechanism. Summation theories to derive the critical current density are discussed in detail. Irreversible magnetization and AC loss caused by the flux pinning are also discussed. The loss originally stems from the ohmic dissipation of normal electrons in the normal core driven by the electric field induced by the flux motion. The readers will learn why the resultant loss is of hysteresis type in spite of such mechanism. The influence of the flux pinning on the vortex phase diagram in high Tc superconductors is discussed, and the dependencies of the irreversibility field are also described on other quantities such as anisotropy of supercondu...

  6. Neutron flux measurements in C-9 capsule pressure tube

    International Nuclear Information System (INIS)

    Barbos, D.; Roth, C. S.; Gugiu, D.; Preda, M.

    2001-01-01

    C-9 capsule is a fuel testing facility in which the testing consists of a daily cycle ranging between the limits 100% power to 50% power. C-9 in-pile section with sample holder an instrumentation are introduced in G-9 and G-10 experimental channels. The experimental fuel channel has a maximum value when the in-pile section (pressure tube) is in G-9 channel and minimum value in G-10 channel. In this paper the main goals are determination or measurements of: - axial thermal neutron flux distribution in C-9 pressure tube both in G-9 and G-10 channel; - ratio of maximum neutron flux value in G-9 and the same value in G-9 channel and the same value in G-10 channel; - neutron flux-spectrum. On the basis of axial neutron flux distribution measurements, the experimental fuel element in sample holder position in set. Both axial neutron flux distribution of thermal neutrons and neutron flux-spectrum were performed using multi- foil activation technique. Activation rates were obtained by absolute measurements of the induced activity using gamma spectroscopy methods. To determine the axial thermal neutron flux distribution in G-9 and G-10, Cu 100% wire was irradiated at the reactor power of 2 MW. Ratio between the two maximum values, in G-9 and G-10 channels, is 2.55. Multi-foil activation method was used for neutron flux spectrum measurements. The neutron spectra and flux were obtained from reaction rate measurements by means of SAND 2 code. To obtain gamma-ray spectra, a HPGe detector connected to a multichannel analyzer was used. The spectrometer is absolute efficiency calibrated. The foils were irradiated at 2 MW reactor power in previously determined maximum flux position resulted from wire measurements. This reaction rates were normalized for 10 MW reactor power. Neutron self shielding corrections for the activation foils were applied. The self-shielding corrections are computed using Monte Carlo simulation methods. The measured integral flux is 1.1·10 14 n/cm 2 s

  7. Two-dimensional maximum entropy image restoration

    International Nuclear Information System (INIS)

    Brolley, J.E.; Lazarus, R.B.; Suydam, B.R.; Trussell, H.J.

    1977-07-01

    An optical check problem was constructed to test P LOG P maximum entropy restoration of an extremely distorted image. Useful recovery of the original image was obtained. Comparison with maximum a posteriori restoration is made. 7 figures

  8. Reliability Calculations

    DEFF Research Database (Denmark)

    Petersen, Kurt Erling

    1986-01-01

    Risk and reliability analysis is increasingly being used in evaluations of plant safety and plant reliability. The analysis can be performed either during the design process or during the operation time, with the purpose to improve the safety or the reliability. Due to plant complexity and safety...... and availability requirements, sophisticated tools, which are flexible and efficient, are needed. Such tools have been developed in the last 20 years and they have to be continuously refined to meet the growing requirements. Two different areas of application were analysed. In structural reliability probabilistic...... approaches have been introduced in some cases for the calculation of the reliability of structures or components. A new computer program has been developed based upon numerical integration in several variables. In systems reliability Monte Carlo simulation programs are used especially in analysis of very...

  9. Neutrino fluxes produced by high energy solar flare particles

    International Nuclear Information System (INIS)

    Kolomeets, E.V.; Shmonin, V.L.

    1975-01-01

    In this work the calculated differential energy spectra of neutrinos poduced by high energy protons accelerated during 'small' solar flares are presented. The muon flux produced by neutrino interactions with the matter at large depths under the ground is calculated. The obtained flux of muons for the total number of solar flare accelerated protons of 10 28 - 10 32 is within 10 9 - 10 13 particles/cm 2 X s x ster. (orig.) [de

  10. Online In-Core Thermal Neutron Flux Measurement for the Validation of Computational Methods

    International Nuclear Information System (INIS)

    Mohamad Hairie Rabir; Muhammad Rawi Mohamed Zin; Yahya Ismail

    2016-01-01

    In order to verify and validate the computational methods for neutron flux calculation in RTP calculations, a series of thermal neutron flux measurement has been performed. The Self Powered Neutron Detector (SPND) was used to measure thermal neutron flux to verify the calculated neutron flux distribution in the TRIGA reactor. Measurements results obtained online for different power level of the reactor. The experimental results were compared to the calculations performed with Monte Carlo code MCNP using detailed geometrical model of the reactor. The calculated and measured thermal neutron flux in the core are in very good agreement indicating that the material and geometrical properties of the reactor core are modelled well. In conclusion one can state that our computational model describes very well the neutron flux distribution in the reactor core. Since the computational model properly describes the reactor core it can be used for calculations of reactor core parameters and for optimization of RTP utilization. (author)

  11. Course on hybrid calculation

    International Nuclear Information System (INIS)

    Weill, J.; Tellier; Bonnemay; Craigne; Chareton; Di Falco

    1969-02-01

    After a definition of hybrid calculation (combination of analogue and digital calculation) with a distinction between series and parallel hybrid computing, and a description of a hybrid computer structure and of task sharing between computers, this course proposes a description of hybrid hardware used in Saclay and Cadarache computing centres, and of operations performed by these systems. The next part addresses issues related to programming languages and software. The fourth part describes how a problem is organised for its processing on these computers. Methods of hybrid analysis are then addressed: resolution of optimisation problems, of partial differential equations, and of integral equations by means of different methods (gradient, maximum principle, characteristics, functional approximation, time slicing, Monte Carlo, Neumann iteration, Fischer iteration)

  12. Theoretical basal Ca II fluxes for late-type stars: results from magnetic wave models with time-dependent ionization and multi-level radiation treatments

    Science.gov (United States)

    Fawzy, Diaa E.; Stȩpień, K.

    2018-03-01

    In the current study we present ab initio numerical computations of the generation and propagation of longitudinal waves in magnetic flux tubes embedded in the atmospheres of late-type stars. The interaction between convective turbulence and the magnetic structure is computed and the obtained longitudinal wave energy flux is used in a self-consistent manner to excite the small-scale magnetic flux tubes. In the current study we reduce the number of assumptions made in our previous studies by considering the full magnetic wave energy fluxes and spectra as well as time-dependent ionization (TDI) of hydrogen, employing multi-level Ca II atomic models, and taking into account departures from local thermodynamic equilibrium. Our models employ the recently confirmed value of the mixing-length parameter α=1.8. Regions with strong magnetic fields (magnetic filling factors of up to 50%) are also considered in the current study. The computed Ca II emission fluxes show a strong dependence on the magnetic filling factors, and the effect of time-dependent ionization (TDI) turns out to be very important in the atmospheres of late-type stars heated by acoustic and magnetic waves. The emitted Ca II fluxes with TDI included into the model are decreased by factors that range from 1.4 to 5.5 for G0V and M0V stars, respectively, compared to models that do not consider TDI. The results of our computations are compared with observations. Excellent agreement between the observed and predicted basal flux is obtained. The predicted trend of Ca II emission flux with magnetic filling factor and stellar surface temperature also agrees well with the observations but the calculated maximum fluxes for stars of different spectral types are about two times lower than observations. Though the longitudinal MHD waves considered here are important for chromosphere heating in high activity stars, additional heating mechanism(s) are apparently present.

  13. How long do centenarians survive? Life expectancy and maximum lifespan.

    Science.gov (United States)

    Modig, K; Andersson, T; Vaupel, J; Rau, R; Ahlbom, A

    2017-08-01

    The purpose of this study was to explore the pattern of mortality above the age of 100 years. In particular, we aimed to examine whether Scandinavian data support the theory that mortality reaches a plateau at particularly old ages. Whether the maximum length of life increases with time was also investigated. The analyses were based on individual level data on all Swedish and Danish centenarians born from 1870 to 1901; in total 3006 men and 10 963 women were included. Birth cohort-specific probabilities of dying were calculated. Exact ages were used for calculations of maximum length of life. Whether maximum age changed over time was analysed taking into account increases in cohort size. The results confirm that there has not been any improvement in mortality amongst centenarians in the past 30 years and that the current rise in life expectancy is driven by reductions in mortality below the age of 100 years. The death risks seem to reach a plateau of around 50% at the age 103 years for men and 107 years for women. Despite the rising life expectancy, the maximum age does not appear to increase, in particular after accounting for the increasing number of individuals of advanced age. Mortality amongst centenarians is not changing despite improvements at younger ages. An extension of the maximum lifespan and a sizeable extension of life expectancy both require reductions in mortality above the age of 100 years. © 2017 The Association for the Publication of the Journal of Internal Medicine.

  14. Shielding calculations for a 30 MeV proton accelerator

    International Nuclear Information System (INIS)

    Nandy, Maitreyee; Sarkar, P.K.

    2003-01-01

    Full text: The thickness of the shield, made of ordinary concrete, required to reduce the equivalent dose rate below the maximum permissible limit and to ensure safe operation of a 30 MeV proton accelerator has been estimated using the Moyer model. Required double differential neutron yield from thick stopping targets has been calculated for several reactions to be used for production of 67 Ga, 111 In, 123 I and 201 Tl radioisotopes. The neutron emission at 0 deg and 90 deg angles with respect to the incident beam direction is estimated using the hybrid model code ALICE91 which considers preequilibrium and equilibrium emissions from the target+projectile composite system. From this neutron yield the equivalent neutron dose rate at unit distance is determined using the ICRP recommended flux-to-dose conversion factors

  15. Flux-limited diffusion models in radiation hydrodynamics

    International Nuclear Information System (INIS)

    Pomraning, G.C.; Szilard, R.H.

    1993-01-01

    The authors discuss certain flux-limited diffusion theories which approximately describe radiative transfer in the presence of steep spatial gradients. A new formulation is presented which generalizes a flux-limited description currently in widespread use for large radiation hydrodynamic calculations. This new formation allows more than one Case discrete mode to be described by a flux-limited diffusion equation. Such behavior is not extant in existing formulations. Numerical results predicted by these flux-limited diffusion models are presented for radiation penetration into an initially cold halfspace. 37 refs., 5 figs

  16. Neutron flux monitoring device

    International Nuclear Information System (INIS)

    Goto, Yasushi; Mitsubori, Minehisa; Ohashi, Kazunori.

    1997-01-01

    The present invention provides a neutron flux monitoring device for preventing occurrence of erroneous reactor scram caused by the elevation of the indication of a start region monitor (SRM) due to a factor different from actual increase of neutron fluxes. Namely, judgement based on measured values obtained by a pulse counting method and a judgment based on measured values obtained by a Cambel method are combined. A logic of switching neutron flux measuring method to be used for monitoring, namely, switching to an intermediate region when both of the judgements are valid is adopted. Then, even if the indication value is elevated based on the Cambel method with no increase of the counter rate in a neutron source region, the switching to the intermediate region is not conducted. As a result, erroneous reactor scram such as 'shorter reactor period' can be avoided. (I.S.)

  17. Estimating the maximum potential revenue for grid connected electricity storage :

    Energy Technology Data Exchange (ETDEWEB)

    Byrne, Raymond Harry; Silva Monroy, Cesar Augusto.

    2012-12-01

    The valuation of an electricity storage device is based on the expected future cash flow generated by the device. Two potential sources of income for an electricity storage system are energy arbitrage and participation in the frequency regulation market. Energy arbitrage refers to purchasing (stor- ing) energy when electricity prices are low, and selling (discharging) energy when electricity prices are high. Frequency regulation is an ancillary service geared towards maintaining system frequency, and is typically procured by the independent system operator in some type of market. This paper outlines the calculations required to estimate the maximum potential revenue from participating in these two activities. First, a mathematical model is presented for the state of charge as a function of the storage device parameters and the quantities of electricity purchased/sold as well as the quantities o ered into the regulation market. Using this mathematical model, we present a linear programming optimization approach to calculating the maximum potential revenue from an elec- tricity storage device. The calculation of the maximum potential revenue is critical in developing an upper bound on the value of storage, as a benchmark for evaluating potential trading strate- gies, and a tool for capital nance risk assessment. Then, we use historical California Independent System Operator (CAISO) data from 2010-2011 to evaluate the maximum potential revenue from the Tehachapi wind energy storage project, an American Recovery and Reinvestment Act of 2009 (ARRA) energy storage demonstration project. We investigate the maximum potential revenue from two di erent scenarios: arbitrage only and arbitrage combined with the regulation market. Our analysis shows that participation in the regulation market produces four times the revenue compared to arbitrage in the CAISO market using 2010 and 2011 data. Then we evaluate several trading strategies to illustrate how they compare to the

  18. Turbulent fluxes by "Conditional Eddy Sampling"

    Science.gov (United States)

    Siebicke, Lukas

    2015-04-01

    for the field (one to two orders of magnitude lower compared to current closed-path laser based eddy covariance systems). Potential applications include fluxes of CO2, CH4, N2O, VOCs and other tracers. Finally we assess the flux accuracy of the Conditional Eddy Sampling (CES) approach as in our real implementation relative to alternative techniques including eddy covariance (EC) and relaxed eddy accumulation (REA). We further quantify various sources of instrument and method specific measurement errors. This comparison uses real measurements of 20 Hz turbulent time series of 3D wind velocity, sonic temperature and CO2 mixing ratio over a mixed decidious forest at the 'ICOS' flux tower site 'Hainich', Germany. Results from a simulation using real wind and CO2 timeseries from the Hainich site from 30 April to 3 November 2014 and real instrument performance suggest that the maximum flux estimates error (50% and 75% error quantiles) from Conditional Eddy Sampling (CES) relative to the true flux is 1.3% and 10%, respectively for monthly net fluxes, 1.6% and 7%, respectively for daily net fluxes and 8% and 35%, respectively for 30-minute CO2 flux estimates. Those results from CES are promising and outperform our REA estimates by about a factor of 50 assuming REA with constant b value. Results include flux time series from the EC, CES and REA approaches from 30-min to annual resolution.

  19. Theory of flux cutting and flux transport at the critical current of a type-II superconducting cylindrical wire

    International Nuclear Information System (INIS)

    Clem, John R.

    2011-01-01

    I introduce a critical-state theory incorporating both flux cutting and flux transport to calculate the magnetic-field and current-density distributions inside a type-II superconducting cylinder at its critical current in a longitudinal applied magnetic field. The theory is an extension of the elliptic critical-state model introduced by Romero-Salazar and Perez-Rodriguez. The vortex dynamics depend in detail on two nonlinear effective resistivities for flux cutting (ρ(parallel)) and flux flow (ρ(perpendicular)), and their ratio r = ρ(parallel)/ρ(perpendicular). When r c (φ) that makes the vortex arc unstable.

  20. Comic ray flux anisotropies caused by astrospheres

    Science.gov (United States)

    Scherer, K.; Strauss, R. D.; Ferreira, S. E. S.; Fichtner, H.

    2016-09-01

    Huge astrospheres or stellar wind bubbles influence the propagation of cosmic rays at energies up to the TeV range and can act as small-scale sinks decreasing the cosmic ray flux. We model such a sink (in 2D) by a sphere of radius 10 pc embedded within a sphere of a radius of 1 kpc. The cosmic ray flux is calculated by means of backward stochastic differential equations from an observer, which is located at r0, to the outer boundary. It turns out that such small-scale sinks can influence the cosmic ray flux at the observer's location by a few permille (i.e. a few 0.1%), which is in the range of the observations by IceCube, Milagro and other large area telescopes.

  1. Turbulent Fogwater Flux Measurements Above A Forest

    Science.gov (United States)

    Burkard, R.; Eugster, W.; Buetzberger, P.; Siegwolf, R.

    Many forest ecosystems in elevated regions receive a significant fraction of their wa- ter and nutrient input by the interception of fogwater. Recently, several studies have demonstrated the suitability of the eddy covariance technique for the direct measure- ment of turbulent liquid water fluxes. Since summer 2001 a fogwater flux measure- ment equipment has been running at a montane site above a mixed forest canopy in Switzerland. The measurement equipment consists of a high-speed size-resolving droplet spectrometer and a three-dimensional ultrasonic anemometer. The chemical composition of the fogwater was determined from samples collected with a modified Caltech active strand collector. The deposition of nutrients by fog (occult deposition) was calculated by multiplying the total fogwater flux (total of measured turbulent and calculated gravitational flux) during each fog event by the ionic concentrations found in the collected fogwater. Several uncertainties still exist as far as the accuracy of the measurements is con- cerned. Although there is no universal statistical approach for testing the quality of the liquid water flux data directly, results of independent data quality checks of the two time series involved in the flux computation and accordingly the two instruments (ultrasonic anemometer and the droplet spectrometer) are presented. Within the measurement period, over 80 fog events with a duration longer than 2.5 hours were analyzed. An enormous physical and chemical heterogeneity among these fog events was found. We assume that some of this heterogeneity is due to the fact that fog or cloud droplets are not conservative entities: the turbulent flux of fog droplets, which can be referred to as the liquid water flux, is affected by phase change processes and coagulation. The measured coexistence of upward fluxes of small fog droplets (di- ameter < 10 µm) with the downward transport of larger droplets indicates the influ- ence of such processes. With the

  2. Radiation flux measuring device

    International Nuclear Information System (INIS)

    Corte, E.; Maitra, P.

    1977-01-01

    A radiation flux measuring device is described which employs a differential pair of transistors, the output of which is maintained constant, connected to a radiation detector. Means connected to the differential pair produce a signal representing the log of the a-c component of the radiation detector, thereby providing a signal representing the true root mean square logarithmic output. 3 claims, 2 figures

  3. Soluble organic nutrient fluxes

    Science.gov (United States)

    Robert G. Qualls; Bruce L. Haines; Wayne Swank

    2014-01-01

    Our objectives in this study were (i) compare fluxes of the dissolved organic nutrients dissolved organic carbon (DOC), DON, and dissolved organic phosphorus (DOP) in a clearcut area and an adjacent mature reference area. (ii) determine whether concentrations of dissolved organic nutrients or inorganic nutrients were greater in clearcut areas than in reference areas,...

  4. Flux vacua and supermanifolds

    Energy Technology Data Exchange (ETDEWEB)

    Grassi, Pietro Antonio [CERN, Theory Unit, CH-1211 Geneva, 23 (Switzerland); Marescotti, Matteo [Dipartimento di Fisica Teorica, Universita di Torino, Via Giuria 1, I-10125, Turin (Italy)

    2007-01-15

    As been recently pointed out, physically relevant models derived from string theory require the presence of non-vanishing form fluxes besides the usual geometrical constraints. In the case of NS-NS fluxes, the Generalized Complex Geometry encodes these informations in a beautiful geometrical structure. On the other hand, the R-R fluxes call for supergeometry as the underlying mathematical framework. In this context, we analyze the possibility of constructing interesting supermanifolds recasting the geometrical data and RR fluxes. To characterize these supermanifolds we have been guided by the fact topological strings on supermanifolds require the super-Ricci flatness of the target space. This can be achieved by adding to a given bosonic manifold enough anticommuting coordinates and new constraints on the bosonic sub-manifold. We study these constraints at the linear and non-linear level for a pure geometrical setting and in the presence of p-form field strengths. We find that certain spaces admit several super-extensions and we give a parameterization in a simple case of d bosonic coordinates and two fermionic coordinates. In addition, we comment on the role of the RR field in the construction of the super-metric. We give several examples based on supergroup manifolds and coset supermanifolds.

  5. Flux vacua and supermanifolds

    International Nuclear Information System (INIS)

    Grassi, Pietro Antonio; Marescotti, Matteo

    2007-01-01

    As been recently pointed out, physically relevant models derived from string theory require the presence of non-vanishing form fluxes besides the usual geometrical constraints. In the case of NS-NS fluxes, the Generalized Complex Geometry encodes these informations in a beautiful geometrical structure. On the other hand, the R-R fluxes call for supergeometry as the underlying mathematical framework. In this context, we analyze the possibility of constructing interesting supermanifolds recasting the geometrical data and RR fluxes. To characterize these supermanifolds we have been guided by the fact topological strings on supermanifolds require the super-Ricci flatness of the target space. This can be achieved by adding to a given bosonic manifold enough anticommuting coordinates and new constraints on the bosonic sub-manifold. We study these constraints at the linear and non-linear level for a pure geometrical setting and in the presence of p-form field strengths. We find that certain spaces admit several super-extensions and we give a parameterization in a simple case of d bosonic coordinates and two fermionic coordinates. In addition, we comment on the role of the RR field in the construction of the super-metric. We give several examples based on supergroup manifolds and coset supermanifolds

  6. Flux scaling: Ultimate regime

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Flux scaling: Ultimate regime. With the Nusselt number and the mixing length scales, we get the Nusselt number and Reynolds number (w'd/ν) scalings: and or. and. scaling expected to occur at extremely high Ra Rayleigh-Benard convection. Get the ultimate regime ...

  7. Increasing the neutron flux study for the TRR-II core design

    International Nuclear Information System (INIS)

    Chen, C.-H.; Yang, J.-T.; Chou, Y.-C.

    1999-01-01

    The maximum unperturbed thermal flux of the originally proposed core design, which is a 6x6 square arrangement with power level of 20 MW and has been presented at the 6th Meeting of IGORR, for the TRR-II reactor is about 2.0x10 14 n/cm 2 -sec. However, it is no longer satisfied the user's requirement, that is, it must reach at least 2.5x10 14 n/cm 2 -sec. In order to enhance the thermal neutron flux, one of the most effective ways is to increase the average power density. Therefore, two new designs with more compact cores are then proposed and studied. One is 5x6 rectangular arrangement with power of 20 MW; the other one is 5x5 square arrangement with power of 16 MW. It is for sure that both core designs can satisfy thermal hydraulic safety limits. The designed parameters related to neutronics are listed and compared fundamentally. According to our calculation, although both cores have similar average power density, the results show that the 5x6/20 MW design has the maximum unperturbed thermal flux in the D 2 O region about 2.7x10 14 n/cm 2 -sec, and the 5x5/16 MW design has 2.5x10 14 n/cm 2 -sec. The maximum thermal flux in the neighborhood of the longer side of the 5x6 core is about 7% higher than the one in the neighborhood of any side of the 5x5 core. This 'long-side effect' gives the 5x6/20 MW core design an advantage of the utilization of the thermal neutron flux in the D 2 O region. In addition, the 5x5 core is also more sensitive to the reactivity change on account of in-core irradiation test facilities. Therefore, under overall considerations the 5x6/20 MW core design is chosen for further detailed design. (author)

  8. Improved HOR fuel management by flux measurement data feedback

    Energy Technology Data Exchange (ETDEWEB)

    Serov, I.V.; Leege, P.F.A. de; Hoogenboom, J.E.; Gibcus, H.P.M. [Delft University of Technology, Reactor Physics Dep., Interfaculty Reactor Inst., Delft (Netherlands)

    1997-07-01

    Flux distribution in a nuclear reactor can be obtained by utilizing different calculational and experimental methods. The obtained flux distributions are associated with uncertainties and therefore always differ from each other. By combining information from the calculation and experiment using the confluence method, it is possible to obtain a more reliable estimate of the flux distribution than exhibited by the calculation or experiment separately. As a feedback, the fuel burnup distribution, which is used as initial data to the calculation can be improved as well. The confluence method is applied to improvement of the burnup distribution estimates for the HOR research reactor of the Delft University of Technology. An integrated code system CONHOR is developed to match the CITATION results of in-core foil activation rate calculations with in-core experimental data through confluence. The system forms the basis for the advanced fuel management of the reactor. (author)

  9. Improved HOR fuel management by flux measurement data feedback

    Energy Technology Data Exchange (ETDEWEB)

    Serov, I.V.; Leege, P.F.A. de; Hoogenboom, J.E.; Gibcus, H.P.M. [Delft University of Technology, Reactor Physics Dep., Interfaculty Reactor Inst., Delft (Netherlands)

    1997-07-01

    Flux distribution in a nuclear reactor can be obtained by utilizing different calculational and experimental methods. The obtained flux distributions are associated with uncertainties and therefore always differ from each other. By combining information from the calculation and experiment using the confluence method, it is possible to obtain a more reliable estimate of the flux distribution than exhibited by the calculation or experiment separately. As a feedback, the fuel burnup distribution, which is used as initial data to the calculation can be improved as well. The confluence method is applied to improvement of the burnup distribution estimates for the HOR research reactor of the Delft University of Technology. An integrated code system CONHOR is developed to match the CITATION results of in-core foil activation rate calculations with in-core experimental data through confluence. The system forms the basis for the advanced fuel management of the reactor. (author) 1 fig., 8 refs.

  10. Improved HOR fuel management by flux measurement data feedback

    International Nuclear Information System (INIS)

    Serov, I.V.; Leege, P.F.A. de; Hoogenboom, J.E.; Gibcus, H.P.M.

    1997-01-01

    Flux distribution in a nuclear reactor can be obtained by utilizing different calculational and experimental methods. The obtained flux distributions are associated with uncertainties and therefore always differ from each other. By combining information from the calculation and experiment using the confluence method, it is possible to obtain a more reliable estimate of the flux distribution than exhibited by the calculation or experiment separately. As a feedback, the fuel burnup distribution, which is used as initial data to the calculation can be improved as well. The confluence method is applied to improvement of the burnup distribution estimates for the HOR research reactor of the Delft University of Technology. An integrated code system CONHOR is developed to match the CITATION results of in-core foil activation rate calculations with in-core experimental data through confluence. The system forms the basis for the advanced fuel management of the reactor. (author)

  11. APPLE, Plot of 1-D Multigroup Neutron Flux and Gamma Flux and Reaction Rates from ANISN

    International Nuclear Information System (INIS)

    Kawasaki, Hiromitsu; Seki, Yasushi

    1983-01-01

    A - Description of problem or function: The APPLE-2 code has the following functions: (1) It plots multi-group energy spectra of neutron and/or gamma ray fluxes calculated by ANISN, DOT-3.5, and MORSE. (2) It gives an overview plot of multi-group neutron fluxes calculated by ANISN and DOT-3.5. The scalar neutron flux phi(r,E) is plotted with the spatial parameter r linear along the Y-axis, logE along the X-axis and log phi(r,E) in the Z direction. (3) It calculates the spatial distribution and region volume integrated values of reaction rates using the scalar flux calculated with ANISN and DOT-3.5. (4) Reaction rate distribution along the R or Z direction may be plotted. (5) An overview plot of reaction rates or scalar fluxes summed over specified groups may be plotted. R(ri,zi) or phi(ri,zi) is plotted with spatial parameters r and z along the X- and Y-axes in an orthogonal coordinate system. (6) Angular flux calculated by ANISN is rearranged and a shell source at any specified spatial mesh point may be punched out in FIDO format. The shell source obtained may be employed in solving deep penetration problems with ANISN, when the entire reactor system is divided into two or more parts and the neutron fluxes in two adjoining parts are connected by using the shell source. B - Method of solution: (a) The input data specification is made as simple as possible by making use of the input data required in the radiation transport code. For example, geometry related data in ANISN and DOT are transmitted to APPLE-2 along with scalar flux data so as to reduce duplicity and errors in reproducing these data. (b) Most the input data follow the free form FIDO format developed at Oak Ridge National Laboratory and used in the ANISN code. Furthermore, the mixture specifying method used in ANISN is also employed by APPLE-2. (c) Libraries for some standard response functions required in fusion reactor design have been prepared and are made available to users of the 42-group neutron

  12. Nuclear data preparation and discrete ordinates calculation

    International Nuclear Information System (INIS)

    Carmignani, B.

    1980-01-01

    These lectures deal with the use of the GAM-GATHER and GAM-THERMOS chains for the calculation of lattice cross sections and within use of the discrete ordinates one dimensional ANISN code for the calculation of criticality and flux distribution of the cell and of the whole reactor. As an example the codes are applied to the calculation of a PWR. Results of different approximations are compared. (author)

  13. Turbulent transport across invariant canonical flux surfaces

    International Nuclear Information System (INIS)

    Hollenberg, J.B.; Callen, J.D.

    1994-07-01

    Net transport due to a combination of Coulomb collisions and turbulence effects in a plasma is investigated using a fluid moment description that allows for kinetic and nonlinear effects via closure relations. The model considered allows for ''ideal'' turbulent fluctuations that distort but preserve the topology of species-dependent canonical flux surfaces ψ number-sign,s triple-bond ∫ dF · B number-sign,s triple-bond ∇ x [A + (m s /q s )u s ] in which u s is the flow velocity of the fluid species. Equations for the net transport relative to these surfaces due to ''nonideal'' dissipative processes are found for the total number of particles and total entropy enclosed by a moving canonical flux surface. The corresponding particle transport flux is calculated using a toroidal axisymmetry approximation of the ideal surfaces. The resulting Lagrangian transport flux includes classical, neoclassical-like, and anomalous contributions and shows for the first time how these various contributions should be summed to obtain the total particle transport flux

  14. Thermal-hydraulic analysis of a 600 MW supercritical CFB boiler with low mass flux

    International Nuclear Information System (INIS)

    Pan Jie; Yang Dong; Chen Gongming; Zhou Xu; Bi Qincheng

    2012-01-01

    Supercritical Circulating Fluidized Bed (CFB) boiler becomes an important development trend for coal-fired power plant and thermal-hydraulic analysis is a key factor for the design and operation of water wall. According to the boiler structure and furnace-sided heat flux, the water wall system of a 600 MW supercritical CFB boiler is treated in this paper as a flow network consisting of series-parallel loops, pressure grids and connecting tubes. A mathematical model for predicting the thermal-hydraulic characteristics in boiler heating surface is based on the mass, momentum and energy conservation equations of these components, which introduces numerous empirical correlations available for heat transfer and hydraulic resistance calculation. Mass flux distribution and pressure drop data in the water wall at 30%, 75% and 100% of the boiler maximum continuous rating (BMCR) are obtained by iteratively solving the model. Simultaneity, outlet vapor temperatures and metal temperatures in water wall tubes are estimated. The results show good heat transfer performance and low flow resistance, which implies that the water wall design of supercritical CFB boiler is applicable. - Highlights: → We proposed a model for thermal-hydraulic analysis of boiler heating surface. → The model is applied in a 600 MW supercritical CFB boiler. → We explore the pressure drop, mass flux and temperature distribution in water wall. → The operating safety of boiler is estimated. → The results show good heat transfer performance and low flow resistance.

  15. Structure and flux pinning properties of irradiation defects in YBa2Cu3O7-x

    International Nuclear Information System (INIS)

    Kirk, M.A.

    1992-06-01

    We review our investigations of defects produced in YBa 2 Cu 3 O 7-x by various forms of irradiation. The defect microstructure has been studied by transmission electron microscopy (TEM). Irradiation enhancements of flux pinning have been studied by SQUID magnetometry on single crystals. In many cases the same single crystals were used in both TEM and SQUID investigations. The primary atom recoil spectra for all the irradiations studied have been carefully calculated and used to correlate the TEM and magnetization results for the different types of irradiation. Correlation of annealing experiments, employing both TEM and SQUID measurements, among several types of irradiation has also yielded information on the different defect structures present. Defect densities, sizes and strain field anisotropies have been determined by TEM. Defect flux pinning anisotropies have been determined for two field orientations in twinned single crystals. The temperature dependences of the flux pinning have been measured. The maximum field of irreversibility at 70 K is shown to change markedly upon both neutron and proton irradiations in some crystals and not others. The defect structure, chemistry and location in the unit cell has been determined in some cases. Some interaction with existing defect structure has been observed in proton and electron irradiations. The damage character and directionality has been determined in GeV ion irradiated crystals

  16. Annual variation of CH{sub 4} emissions from the middle taiga in West Siberian Lowland (2005-2009): a case of high CH{sub 4} flux and precipitation rate in the summer of 2007

    Energy Technology Data Exchange (ETDEWEB)

    Sasakawa, M.; Ito, A.; Machida, T. (Center for Global Environmental Research, National Inst. for Environmental Studies, Tsukuba (Japan)), Email: sasakawa.motoki@nies.go.jp; Tsuda, N. (Global Environmental Forum, Bunkyo-ku Tokyo (Japan)); Niwa, Y. (Meteorological Research Inst., Tsukuba (Japan)); Davydov, D.; Fofonov, A.; Arshinov, M. (V.E. Zuev Inst. of Atmospheric Optics, Russian Academy of Sciences, Siberian Branch, Tomsk (Russian Federation))

    2012-03-15

    We described continuous measurements of CH{sub 4} and CO{sub 2} concentration obtained at two sites placed in the middle taiga, Karasevoe (KRS) and Demyanskoe (DEM), in West Siberian Lowland (WSL) from 2005 to 2009. Although both CH{sub 4} and CO{sub 2} accumulation (DELTACH{sub 4} and DELTACO{sub 2}) during night-time at KRS in June and July 2007 showed an anomalously high concentration, higher ratios of DELTACH{sub 4}/DELTACO{sub 2} compared with those in other years indicated that a considerably higher CH{sub 4} flux occurred relative to the CO{sub 2} flux. The daily CH{sub 4} flux calculated with the ratio of DELTACH{sub 4}/DELTACO{sub 2} and terrestrial biosphere CO{sub 2} flux from an ecosystem model showed a maximum in July at the both sites. Although anomalously high flux was observed in June and July 2007 at KRS, only a small flux variation was observed at DEM. The high regional CH{sub 4} flux in June and July 2007 at KRS was reproduced using a process-based ecosystem model, Vegetation Integrative Simulator for Trace gases (VISIT), in response to high water table depth caused by the anomalously high precipitation during the summer of 2007

  17. Annual variation of CH4 emissions from the middle taiga in West Siberian Lowland (2005–2009: a case of high CH4 flux and precipitation rate in the summer of 2007

    Directory of Open Access Journals (Sweden)

    M. Sasakawa

    2012-03-01

    Full Text Available We described continuous measurements of CH4 and CO2 concentration obtained at two sites placed in the middle taiga, Karasevoe (KRS and Demyanskoe (DEM, in West Siberian Lowland (WSL from 2005 to 2009. Although both CH4 and CO2 accumulation (ΔCH4 and ▵CO2 during night-time at KRS in June and July 2007 showed an anomalously high concentration, higher ratios of ΔCH4/ΔCO2 compared with those in other years indicated that a considerably higher CH4 flux occurred relative to the CO2 flux. The daily CH4 flux calculated with the ratio of ΔCH4/ΔCO2 and terrestrial biosphere CO2 flux from an ecosystem model showed a maximum in July at the both sites. Although anomalously high flux was observed in June and July 2007 at KRS, only a small flux variation was observed at DEM. The high regional CH4 flux in June and July 2007 at KRS was reproduced using a process-based ecosystem model, Vegetation Integrative Simulator for Trace gases (VISIT, in response to high water table depth caused by the anomalously high precipitation during the summer of 2007.

  18. Maximum permissible voltage of YBCO coated conductors

    Energy Technology Data Exchange (ETDEWEB)

    Wen, J.; Lin, B.; Sheng, J.; Xu, J.; Jin, Z. [Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai (China); Hong, Z., E-mail: zhiyong.hong@sjtu.edu.cn [Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai (China); Wang, D.; Zhou, H.; Shen, X.; Shen, C. [Qingpu Power Supply Company, State Grid Shanghai Municipal Electric Power Company, Shanghai (China)

    2014-06-15

    Highlights: • We examine three kinds of tapes’ maximum permissible voltage. • We examine the relationship between quenching duration and maximum permissible voltage. • Continuous I{sub c} degradations under repetitive quenching where tapes reaching maximum permissible voltage. • The relationship between maximum permissible voltage and resistance, temperature. - Abstract: Superconducting fault current limiter (SFCL) could reduce short circuit currents in electrical power system. One of the most important thing in developing SFCL is to find out the maximum permissible voltage of each limiting element. The maximum permissible voltage is defined as the maximum voltage per unit length at which the YBCO coated conductors (CC) do not suffer from critical current (I{sub c}) degradation or burnout. In this research, the time of quenching process is changed and voltage is raised until the I{sub c} degradation or burnout happens. YBCO coated conductors test in the experiment are from American superconductor (AMSC) and Shanghai Jiao Tong University (SJTU). Along with the quenching duration increasing, the maximum permissible voltage of CC decreases. When quenching duration is 100 ms, the maximum permissible of SJTU CC, 12 mm AMSC CC and 4 mm AMSC CC are 0.72 V/cm, 0.52 V/cm and 1.2 V/cm respectively. Based on the results of samples, the whole length of CCs used in the design of a SFCL can be determined.

  19. Spectral maximum entropy hydrodynamics of fermionic radiation: a three-moment system for one-dimensional flows

    International Nuclear Information System (INIS)

    Banach, Zbigniew; Larecki, Wieslaw

    2013-01-01

    The spectral formulation of the nine-moment radiation hydrodynamics resulting from using the Boltzmann entropy maximization procedure is considered. The analysis is restricted to the one-dimensional flows of a gas of massless fermions. The objective of the paper is to demonstrate that, for such flows, the spectral nine-moment maximum entropy hydrodynamics of fermionic radiation is not a purely formal theory. We first determine the domains of admissible values of the spectral moments and of the Lagrange multipliers corresponding to them. We then prove the existence of a solution to the constrained entropy optimization problem. Due to the strict concavity of the entropy functional defined on the space of distribution functions, there exists a one-to-one correspondence between the Lagrange multipliers and the moments. The maximum entropy closure of moment equations results in the symmetric conservative system of first-order partial differential equations for the Lagrange multipliers. However, this system can be transformed into the equivalent system of conservation equations for the moments. These two systems are consistent with the additional conservation equation interpreted as the balance of entropy. Exploiting the above facts, we arrive at the differential relations satisfied by the entropy function and the additional function required to close the system of moment equations. We refer to this additional function as the moment closure function. In general, the moment closure and entropy–entropy flux functions cannot be explicitly calculated in terms of the moments determining the state of a gas. Therefore, we develop a perturbation method of calculating these functions. Some additional analytical (and also numerical) results are obtained, assuming that the maximum entropy distribution function tends to the Maxwell–Boltzmann limit. (paper)

  20. Maximum Mass of Hybrid Stars in the Quark Bag Model

    Science.gov (United States)

    Alaverdyan, G. B.; Vartanyan, Yu. L.

    2017-12-01

    The effect of model parameters in the equation of state for quark matter on the magnitude of the maximum mass of hybrid stars is examined. Quark matter is described in terms of the extended MIT bag model including corrections for one-gluon exchange. For nucleon matter in the range of densities corresponding to the phase transition, a relativistic equation of state is used that is calculated with two-particle correlations taken into account based on using the Bonn meson-exchange potential. The Maxwell construction is used to calculate the characteristics of the first order phase transition and it is shown that for a fixed value of the strong interaction constant αs, the baryon concentrations of the coexisting phases grow monotonically as the bag constant B increases. It is shown that for a fixed value of the strong interaction constant αs, the maximum mass of a hybrid star increases as the bag constant B decreases. For a given value of the bag parameter B, the maximum mass rises as the strong interaction constant αs increases. It is shown that the configurations of hybrid stars with maximum masses equal to or exceeding the mass of the currently known most massive pulsar are possible for values of the strong interaction constant αs > 0.6 and sufficiently low values of the bag constant.

  1. A maximum principle for the first-order Boltzmann equation, incorporating a potential treatment of voids

    International Nuclear Information System (INIS)

    Schofield, S.L.

    1988-01-01

    Ackroyd's generalized least-squares method for solving the first-order Boltzmann equation is adapted to incorporate a potential treatment of voids. The adaptation comprises a direct least-squares minimization allied with a suitably-defined bilinear functional. The resulting formulation gives rise to a maximum principle whose functional does not contain terms of the type that have previously led to difficulties in treating void regions. The maximum principle is derived without requiring continuity of the flux at interfaces. The functional of the maximum principle is concluded to have an Euler-Lagrange equation given directly by the first-order Boltzmann equation. (author)

  2. Design of a flux buffer based on the flux shuttle

    International Nuclear Information System (INIS)

    Gershenson, M.

    1991-01-01

    This paper discusses the design considerations for a flux buffer based on the flux-shuttle concept. Particular attention is given to the issues of flux popping, stability of operation and saturation levels for a large input. Modulation techniques used in order to minimize 1/f noise, in addition to offsets are also analyzed. Advantages over conventional approaches using a SQUID for a flux buffer are discussed. Results of computer simulations are presented

  3. Lobotomy of flux compactifications

    Energy Technology Data Exchange (ETDEWEB)

    Dibitetto, Giuseppe [Institutionen för fysik och astronomi, University of Uppsala,Box 803, SE-751 08 Uppsala (Sweden); Guarino, Adolfo [Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics,Bern University, Sidlerstrasse 5, CH-3012 Bern (Switzerland); Roest, Diederik [Centre for Theoretical Physics, University of Groningen,Nijenborgh 4 9747 AG Groningen (Netherlands)

    2014-05-15

    We provide the dictionary between four-dimensional gauged supergravity and type II compactifications on T{sup 6} with metric and gauge fluxes in the absence of supersymmetry breaking sources, such as branes and orientifold planes. Secondly, we prove that there is a unique isotropic compactification allowing for critical points. It corresponds to a type IIA background given by a product of two 3-tori with SO(3) twists and results in a unique theory (gauging) with a non-semisimple gauge algebra. Besides the known four AdS solutions surviving the orientifold projection to N=4 induced by O6-planes, this theory contains a novel AdS solution that requires non-trivial orientifold-odd fluxes, hence being a genuine critical point of the N=8 theory.

  4. Maximum Efficiency per Torque Control of Permanent-Magnet Synchronous Machines

    Directory of Open Access Journals (Sweden)

    Qingbo Guo

    2016-12-01

    Full Text Available High-efficiency permanent-magnet synchronous machine (PMSM drive systems need not only optimally designed motors but also efficiency-oriented control strategies. However, the existing control strategies only focus on partial loss optimization. This paper proposes a novel analytic loss model of PMSM in either sine-wave pulse-width modulation (SPWM or space vector pulse width modulation (SVPWM which can take into account both the fundamental loss and harmonic loss. The fundamental loss is divided into fundamental copper loss and fundamental iron loss which is estimated by the average flux density in the stator tooth and yoke. In addition, the harmonic loss is obtained from the Bertotti iron loss formula by the harmonic voltages of the three-phase inverter in either SPWM or SVPWM which are calculated by double Fourier integral analysis. Based on the analytic loss model, this paper proposes a maximum efficiency per torque (MEPT control strategy which can minimize the electromagnetic loss of PMSM in the whole operation range. As the loss model of PMSM is too complicated to obtain the analytical solution of optimal loss, a golden section method is applied to achieve the optimal operation point accurately, which can make PMSM work at maximum efficiency. The optimized results between SPWM and SVPWM show that the MEPT in SVPWM has a better effect on the optimization performance. Both the theory analysis and experiment results show that the MEPT control can significantly improve the efficiency performance of the PMSM in each operation condition with a satisfied dynamic performance.

  5. Diffusion piecewise homogenization via flux discontinuity factors

    International Nuclear Information System (INIS)

    Sanchez, Richard; Zmijarevic, Igor

    2011-01-01

    We analyze the calculation of flux discontinuity factors (FDFs) for use with piecewise subdomain assembly homogenization. These coefficients depend on the numerical mesh used to compute the diffusion problem. When the mesh has a single degree of freedom on subdomain interfaces the solution is unique and can be computed independently per subdomain. For all other cases we have implemented an iterative calculation for the FDFs. Our numerical results show that there is no solution to this nonlinear problem but that the iterative algorithm converges towards FDFs values that reproduce subdomains reaction rates with a relatively high precision. In our test we have included both the GET and black-box FDFs. (author)

  6. Experimental study of the atmospheric neutrino flux

    International Nuclear Information System (INIS)

    Hirata, K.S.; Kajita, T.; Koshiba, M.

    1988-01-01

    We have observed 277 fully contained events in the KAMIOKANDE detector. The number of electron-like single prong events is in good agreement with the predictions of a Monte Carlo calculation based on atmospheric neutrino interactions in the detector. On the other hand, the number of muon-like single prong events is 59 ± 7 %(statistical error) of the predicted number of the Monte Carlo calculation. We are unable to explain the data as the result of systematic detector effects or uncertainties in the atmospheric neutrino fluxes. (author)

  7. Physics of magnetic flux ropes

    Science.gov (United States)

    Russell, C. T.; Priest, E. R.; Lee, L. C.

    The present work encompasses papers on the structure, waves, and instabilities of magnetic flux ropes (MFRs), photospheric flux tubes (PFTs), the structure and heating of coronal loops, solar prominences, coronal mass ejections and magnetic clouds, flux ropes in planetary ionospheres, the magnetopause, magnetospheric field-aligned currents and flux tubes, and the magnetotail. Attention is given to the equilibrium of MFRs, resistive instability, magnetic reconnection and turbulence in current sheets, dynamical effects and energy transport in intense flux tubes, waves in solar PFTs, twisted flux ropes in the solar corona, an electrodynamical model of solar flares, filament cooling and condensation in a sheared magnetic field, the magnetopause, the generation of twisted MFRs during magnetic reconnection, ionospheric flux ropes above the South Pole, substorms and MFR structures, evidence for flux ropes in the earth magnetotail, and MFRs in 3D MHD simulations.

  8. Gradient heat flux measurement as monitoring method for the diesel engine

    Science.gov (United States)

    Sapozhnikov, S. Z.; Mityakov, V. Yu; Mityakov, A. V.; Vintsarevich, A. V.; Pavlov, A. V.; Nalyotov, I. D.

    2017-11-01

    The usage of gradient heat flux measurement for monitoring of heat flux on combustion chamber surface and optimization of diesel work process is proposed. Heterogeneous gradient heat flux sensors can be used at various regimes for an appreciable length of time. Fuel injection timing is set by the position of the maximum point on the angular heat flux diagram however, the value itself of the heat flux may not be considered. The development of such an approach can be productive for remote monitoring of work process in the cylinders of high-power marine engines.

  9. Revealing the Maximum Strength in Nanotwinned Copper

    DEFF Research Database (Denmark)

    Lu, L.; Chen, X.; Huang, Xiaoxu

    2009-01-01

    boundary–related processes. We investigated the maximum strength of nanotwinned copper samples with different twin thicknesses. We found that the strength increases with decreasing twin thickness, reaching a maximum at 15 nanometers, followed by a softening at smaller values that is accompanied by enhanced...

  10. Modelling maximum canopy conductance and transpiration in ...

    African Journals Online (AJOL)

    There is much current interest in predicting the maximum amount of water that can be transpired by Eucalyptus trees. It is possible that industrial waste water may be applied as irrigation water to eucalypts and it is important to predict the maximum transpiration rates of these plantations in an attempt to dispose of this ...

  11. Updated thermal model using simplified short-wave radiosity calculations

    International Nuclear Information System (INIS)

    Smith, J.A.; Goltz, S.M.

    1994-01-01

    An extension to a forest canopy thermal radiance model is described that computes the short-wave energy flux absorbed within the canopy by solving simplified radiosity equations describing flux transfers between canopy ensemble classes partitioned by vegetation layer and leaf slope. Integrated short-wave reflectance and transmittance-factors obtained from measured leaf optical properties were found to be nearly equal for the canopy studied. Short-wave view factor matrices were approximated by combining the average leaf scattering coefficient with the long-wave view factor matrices already incorporated in the model. Both the updated and original models were evaluated for a dense spruce fir forest study site in Central Maine. Canopy short-wave absorption coefficients estimated from detailed Monte Carlo ray tracing calculations were 0.60, 0.04, and 0.03 for the top, middle, and lower canopy layers corresponding to leaf area indices of 4.0, 1.05, and 0.25. The simplified radiosity technique yielded analogous absorption values of 0.55, 0.03, and 0.01. The resulting root mean square error in modeled versus measured canopy temperatures for all layers was less than 1°C with either technique. Maximum error in predicted temperature using the simplified radiosity technique was approximately 2°C during peak solar heating. (author)

  12. Updated thermal model using simplified short-wave radiosity calculations

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J. A.; Goltz, S. M.

    1994-02-15

    An extension to a forest canopy thermal radiance model is described that computes the short-wave energy flux absorbed within the canopy by solving simplified radiosity equations describing flux transfers between canopy ensemble classes partitioned by vegetation layer and leaf slope. Integrated short-wave reflectance and transmittance-factors obtained from measured leaf optical properties were found to be nearly equal for the canopy studied. Short-wave view factor matrices were approximated by combining the average leaf scattering coefficient with the long-wave view factor matrices already incorporated in the model. Both the updated and original models were evaluated for a dense spruce fir forest study site in Central Maine. Canopy short-wave absorption coefficients estimated from detailed Monte Carlo ray tracing calculations were 0.60, 0.04, and 0.03 for the top, middle, and lower canopy layers corresponding to leaf area indices of 4.0, 1.05, and 0.25. The simplified radiosity technique yielded analogous absorption values of 0.55, 0.03, and 0.01. The resulting root mean square error in modeled versus measured canopy temperatures for all layers was less than 1°C with either technique. Maximum error in predicted temperature using the simplified radiosity technique was approximately 2°C during peak solar heating. (author)

  13. Entropy fluxes, endoreversibility, and solar energy conversion

    Science.gov (United States)

    de Vos, A.; Landsberg, P. T.; Baruch, P.; Parrott, J. E.

    1993-09-01

    A formalism illustrating the conversion of radiation energy into work can be obtained in terms of energy and entropy fluxes. Whereas the Landsberg equality was derived for photothermal conversion with zero bandgap, a generalized inequality for photothermal/photovoltaic conversion with a single, but arbitrary, bandgap was deduced. This result was derived for a direct energy and entropy balance. The formalism of endoreversible dynamics was adopted in order to show the correlation with the latter approach. It was a surprising fact that the generalized Landsberg inequality was derived by optimizing some quantity W(sup *), which obtains it maximum value under short-circuit condition.

  14. Methane Flux of Amazonian Peatland Ecosystems: Large Ecosystem Fluxes with Substantial Contribution from Palm (maritia Flexuosa) STEM Emissions

    Science.gov (United States)

    Van Haren, J. L. M.; Cadillo-Quiroz, H.

    2015-12-01

    Methane (CH4) emissions through plants have long been known in wetlands. However, most measurements have focused on stem tops and leaves. Recently, measurements at the lower parts of stems have shown that stem emissions can exceed soil CH4 emissions in Asian peatlands (Pangala et al. 2013). The addition of stem fluxes to soil fluxes for total ecosystem fluxes has the potential to bridge the discrepancy between modeled to measured and bottom-up to top-down flux estimates. Our measurements in peatlands of Peru show that especially Mauritia flexuosa, a palm species, can emit very large quantities of CH4, although most trees emitted at least some CH4. We used flexible stem chambers to adapt to stems of any size above 5cm in diameter. The chambers were sampled in closed loop with a Gasmet DX4015 for flux measurements, which lasted ~5 minutes after flushing with ambient air. We found that M. flexuosa stem fluxes decrease with height along the stem and were positively correlated with soil fluxes. Most likely CH4 is transported up the stem with the xylem water. Measured M. flexuosa stem fluxes below 1.5m averaged 11.2±1.5 mg-C m-2 h-1 (±95% CI) with a maximum of 123±3.5 mg-C m-2 h-1 (±SE), whereas soil fluxes averaged 6.7±1.7 mg-C m-2 h-1 (±95% CI) with a maximum of 31.6±0.4 mg-C m-2 h-1 (±SE). Significant CH4 fluxes were measured up to 5 m height along the stems. Combined with the high density of ~150 M. flexuosa individuals per hectare in these peatlands and the consistent diameter of ~30cm, the high flux rates add ~20% to the soil flux. With anywhere between 1 and 5 billion M. flexuosa stems across Amazon basin wetlands, stem fluxes from this palm species could represent a major addition to the overall Amazon basin CH4 flux.

  15. High Flux Heat Exchanger

    Science.gov (United States)

    1993-01-01

    maximum jet velocity (6.36 m/s), and maximum number of jets (nine). Wadsworth and Mudawar [49] describe the use of a single slotted nozzle to provide...H00503 (ASME), pp. 121-128, 1989. 40 49. D. C. Wadsworth and I. Mudawar , "Cooling of a Multichip Electronic Module by Means of Confined Two-Dimensional...Jets of Dielectric Liquid," HTD-Vol. 111, Heat Transfer in Electrglif, Book No. H00503 (ASME), pp. 79-87, 1989. 50. D.C. Wadsworth and I. Mudawar

  16. The calculation of Tritium burnup in Tokamaks

    International Nuclear Information System (INIS)

    Bittoni, E.; Haegi, M.

    1987-01-01

    In a deuterium plasma tokamak, the contained fusion-produced tritons are supposed to be decelerated down to thermalization according to classical Coulomb scattering. A fraction of these fast tritons undergoes the DT fusion reaction producing 14.1 MeV neutrons. It is thus possible to get information on the confinement of these fast tritons by comparing the measured and the calculated ratio of the 14.1 MeV to the 2.45 MeV neutron flux. This report describes the calculation of this flux ratio by means of a numerical Monte Carlo-like code

  17. Analytic flux formulas and tables of shielding functions

    International Nuclear Information System (INIS)

    Wallace, O.J.

    1981-06-01

    Hand calculations of radiation flux and dose rates are often useful in evaluating radiation shielding and in determining the scope of a problem. The flux formulas appropriate to such calculations are almost always based on the point kernel and allow for at most the consideration of laminar slab shields. These formulas often require access to tables of values of integral functions for effective use. Flux formulas and function tables appropriate to calculations involving homogeneous source regions with the shapes of lines, disks, slabs, truncated cones, cylinders, and spheres are presented. Slab shields may be included in most of these calculations, and the effect of a cylindrical shield surrounding a cylindrical source may be estimated. Detector points may be located axially, laterally, or interior to a cylindrical source. Line sources may be tilted with respect to a slab shield. All function tables are given for a wide range of arguments

  18. Using sonic anemometer temperature to measure sensible heat flux in strong winds

    Directory of Open Access Journals (Sweden)

    S. P. Burns

    2012-09-01

    Full Text Available Sonic anemometers simultaneously measure the turbulent fluctuations of vertical wind (w' and sonic temperature (Ts', and are commonly used to measure sensible heat flux (H. Our study examines 30-min heat fluxes measured with a Campbell Scientific CSAT3 sonic anemometer above a subalpine forest. We compared H calculated with Ts to H calculated with a co-located thermocouple and found that, for horizontal wind speed (U less than 8 m s−1, the agreement was around ±30 W m−2. However, for U ≈ 8 m s−1, the CSAT H had a generally positive deviation from H calculated with the thermocouple, reaching a maximum difference of ≈250 W m−2 at U ≈ 18 m s−1. With version 4 of the CSAT firmware, we found significant underestimation of the speed of sound and thus Ts in high winds (due to a delayed detection of the sonic pulse, which resulted in the large CSAT heat flux errors. Although this Ts error is qualitatively similar to the well-known fundamental correction for the crosswind component, it is quantitatively different and directly related to the firmware estimation of the pulse arrival time. For a CSAT running version 3 of the firmware, there does not appear to be a significant underestimation of Ts; however, a Ts error similar to that of version 4 may occur if the CSAT is sufficiently out of calibration. An empirical correction to the CSAT heat flux that is consistent with our conceptual understanding of the Ts error is presented. Within a broader context, the surface energy balance is used to evaluate the heat flux measurements, and the usefulness of side-by-side instrument comparisons is discussed.

  19. Hexagonal tube behaviour in fuel assemblies under neutron flux in a French fast neutron reactor core

    International Nuclear Information System (INIS)

    Bernard, A.; Ammann, P.

    This paper presents what is obtained in the field of the interpretation by calculation of the post irradiation examination of hexagonal tubes, and in the field of prevision by calculation of the behaviour of hexagonal tubes under fast flux [fr

  20. First flux measurement in a SINQ supermirror neutron guide

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, S.; Schlumpf, N.; Bauer, G. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    On Dec. 3, 1996, the Swiss spallation neutron source SINQ was taken into operation and produced its first neutrons successfully. The neutron spectrum within one of the supermirror guides was estimated by a chopper Time-of-Flight method. The result shows a 30% higher neutron intensity at the flux maximum than expected from previous Monte-Carlo simulations. (author) 1 fig., 4 refs.