WorldWideScience

Sample records for maximum body size

  1. Comparing fishers' and scientific estimates of size at maturity and maximum body size as indicators for overfishing.

    Science.gov (United States)

    Mclean, Elizabeth L; Forrester, Graham E

    2018-04-01

    We tested whether fishers' local ecological knowledge (LEK) of two fish life-history parameters, size at maturity (SAM) at maximum body size (MS), was comparable to scientific estimates (SEK) of the same parameters, and whether LEK influenced fishers' perceptions of sustainability. Local ecological knowledge was documented for 82 fishers from a small-scale fishery in Samaná Bay, Dominican Republic, whereas SEK was compiled from the scientific literature. Size at maturity estimates derived from LEK and SEK overlapped for most of the 15 commonly harvested species (10 of 15). In contrast, fishers' maximum size estimates were usually lower than (eight species), or overlapped with (five species) scientific estimates. Fishers' size-based estimates of catch composition indicate greater potential for overfishing than estimates based on SEK. Fishers' estimates of size at capture relative to size at maturity suggest routine inclusion of juveniles in the catch (9 of 15 species), and fishers' estimates suggest that harvested fish are substantially smaller than maximum body size for most species (11 of 15 species). Scientific estimates also suggest that harvested fish are generally smaller than maximum body size (13 of 15), but suggest that the catch is dominated by adults for most species (9 of 15 species), and that juveniles are present in the catch for fewer species (6 of 15). Most Samaná fishers characterized the current state of their fishery as poor (73%) and as having changed for the worse over the past 20 yr (60%). Fishers stated that concern about overfishing, catching small fish, and catching immature fish contributed to these perceptions, indicating a possible influence of catch-size composition on their perceptions. Future work should test this link more explicitly because we found no evidence that the minority of fishers with more positive perceptions of their fishery reported systematically different estimates of catch-size composition than those with the more

  2. Intraspecific Variation in Maximum Ingested Food Size and Body Mass in Varecia rubra and Propithecus coquereli

    Directory of Open Access Journals (Sweden)

    Adam Hartstone-Rose

    2011-01-01

    Full Text Available In a recent study, we quantified the scaling of ingested food size (Vb—the maximum size at which an animal consistently ingests food whole—and found that Vb scaled isometrically between species of captive strepsirrhines. The current study examines the relationship between Vb and body size within species with a focus on the frugivorous Varecia rubra and the folivorous Propithecus coquereli. We found no overlap in Vb between the species (all V. rubra ingested larger pieces of food relative to those eaten by P. coquereli, and least-squares regression of Vb and three different measures of body mass showed no scaling relationship within each species. We believe that this lack of relationship results from the relatively narrow intraspecific body size variation and seemingly patternless individual variation in Vb within species and take this study as further evidence that general scaling questions are best examined interspecifically rather than intraspecifically.

  3. The extended Price equation quantifies species selection on mammalian body size across the Palaeocene/Eocene Thermal Maximum.

    Science.gov (United States)

    Rankin, Brian D; Fox, Jeremy W; Barrón-Ortiz, Christian R; Chew, Amy E; Holroyd, Patricia A; Ludtke, Joshua A; Yang, Xingkai; Theodor, Jessica M

    2015-08-07

    Species selection, covariation of species' traits with their net diversification rates, is an important component of macroevolution. Most studies have relied on indirect evidence for its operation and have not quantified its strength relative to other macroevolutionary forces. We use an extension of the Price equation to quantify the mechanisms of body size macroevolution in mammals from the latest Palaeocene and earliest Eocene of the Bighorn and Clarks Fork Basins of Wyoming. Dwarfing of mammalian taxa across the Palaeocene/Eocene Thermal Maximum (PETM), an intense, brief warming event that occurred at approximately 56 Ma, has been suggested to reflect anagenetic change and the immigration of small bodied-mammals, but might also be attributable to species selection. Using previously reconstructed ancestor-descendant relationships, we partitioned change in mean mammalian body size into three distinct mechanisms: species selection operating on resident mammals, anagenetic change within resident mammalian lineages and change due to immigrants. The remarkable decrease in mean body size across the warming event occurred through anagenetic change and immigration. Species selection also was strong across the PETM but, intriguingly, favoured larger-bodied species, implying some unknown mechanism(s) by which warming events affect macroevolution. © 2015 The Author(s).

  4. Evolution of body size in Galapagos marine iguanas.

    Science.gov (United States)

    Wikelski, Martin

    2005-10-07

    Body size is one of the most important traits of organisms and allows predictions of an individual's morphology, physiology, behaviour and life history. However, explaining the evolution of complex traits such as body size is difficult because a plethora of other traits influence body size. Here I review what we know about the evolution of body size in a group of island reptiles and try to generalize about the mechanisms that shape body size. Galapagos marine iguanas occupy all 13 larger islands in this Pacific archipelago and have maximum island body weights between 900 and 12 000g. The distribution of body sizes does not match mitochondrial clades, indicating that body size evolves independently of genetic relatedness. Marine iguanas lack intra- and inter-specific food competition and predators are not size-specific, discounting these factors as selective agents influencing body size. Instead I hypothesize that body size reflects the trade-offs between sexual and natural selection. We found that sexual selection continuously favours larger body sizes. Large males establish display territories and some gain over-proportional reproductive success in the iguanas' mating aggregations. Females select males based on size and activity and are thus responsible for the observed mating skew. However, large individuals are strongly selected against during El Niño-related famines when dietary algae disappear from the intertidal foraging areas. We showed that differences in algae sward ('pasture') heights and thermal constraints on large size are causally responsible for differences in maximum body size among populations. I hypothesize that body size in many animal species reflects a trade-off between foraging constraints and sexual selection and suggest that future research could focus on physiological and genetic mechanisms determining body size in wild animals. Furthermore, evolutionary stable body size distributions within populations should be analysed to better

  5. Body size distribution of the dinosaurs.

    Directory of Open Access Journals (Sweden)

    Eoin J O'Gorman

    Full Text Available The distribution of species body size is critically important for determining resource use within a group or clade. It is widely known that non-avian dinosaurs were the largest creatures to roam the Earth. There is, however, little understanding of how maximum species body size was distributed among the dinosaurs. Do they share a similar distribution to modern day vertebrate groups in spite of their large size, or did they exhibit fundamentally different distributions due to unique evolutionary pressures and adaptations? Here, we address this question by comparing the distribution of maximum species body size for dinosaurs to an extensive set of extant and extinct vertebrate groups. We also examine the body size distribution of dinosaurs by various sub-groups, time periods and formations. We find that dinosaurs exhibit a strong skew towards larger species, in direct contrast to modern day vertebrates. This pattern is not solely an artefact of bias in the fossil record, as demonstrated by contrasting distributions in two major extinct groups and supports the hypothesis that dinosaurs exhibited a fundamentally different life history strategy to other terrestrial vertebrates. A disparity in the size distribution of the herbivorous Ornithischia and Sauropodomorpha and the largely carnivorous Theropoda suggests that this pattern may have been a product of a divergence in evolutionary strategies: herbivorous dinosaurs rapidly evolved large size to escape predation by carnivores and maximise digestive efficiency; carnivores had sufficient resources among juvenile dinosaurs and non-dinosaurian prey to achieve optimal success at smaller body size.

  6. Body size distribution of the dinosaurs.

    Science.gov (United States)

    O'Gorman, Eoin J; Hone, David W E

    2012-01-01

    The distribution of species body size is critically important for determining resource use within a group or clade. It is widely known that non-avian dinosaurs were the largest creatures to roam the Earth. There is, however, little understanding of how maximum species body size was distributed among the dinosaurs. Do they share a similar distribution to modern day vertebrate groups in spite of their large size, or did they exhibit fundamentally different distributions due to unique evolutionary pressures and adaptations? Here, we address this question by comparing the distribution of maximum species body size for dinosaurs to an extensive set of extant and extinct vertebrate groups. We also examine the body size distribution of dinosaurs by various sub-groups, time periods and formations. We find that dinosaurs exhibit a strong skew towards larger species, in direct contrast to modern day vertebrates. This pattern is not solely an artefact of bias in the fossil record, as demonstrated by contrasting distributions in two major extinct groups and supports the hypothesis that dinosaurs exhibited a fundamentally different life history strategy to other terrestrial vertebrates. A disparity in the size distribution of the herbivorous Ornithischia and Sauropodomorpha and the largely carnivorous Theropoda suggests that this pattern may have been a product of a divergence in evolutionary strategies: herbivorous dinosaurs rapidly evolved large size to escape predation by carnivores and maximise digestive efficiency; carnivores had sufficient resources among juvenile dinosaurs and non-dinosaurian prey to achieve optimal success at smaller body size.

  7. Body Size Distribution of the Dinosaurs

    Science.gov (United States)

    O’Gorman, Eoin J.; Hone, David W. E.

    2012-01-01

    The distribution of species body size is critically important for determining resource use within a group or clade. It is widely known that non-avian dinosaurs were the largest creatures to roam the Earth. There is, however, little understanding of how maximum species body size was distributed among the dinosaurs. Do they share a similar distribution to modern day vertebrate groups in spite of their large size, or did they exhibit fundamentally different distributions due to unique evolutionary pressures and adaptations? Here, we address this question by comparing the distribution of maximum species body size for dinosaurs to an extensive set of extant and extinct vertebrate groups. We also examine the body size distribution of dinosaurs by various sub-groups, time periods and formations. We find that dinosaurs exhibit a strong skew towards larger species, in direct contrast to modern day vertebrates. This pattern is not solely an artefact of bias in the fossil record, as demonstrated by contrasting distributions in two major extinct groups and supports the hypothesis that dinosaurs exhibited a fundamentally different life history strategy to other terrestrial vertebrates. A disparity in the size distribution of the herbivorous Ornithischia and Sauropodomorpha and the largely carnivorous Theropoda suggests that this pattern may have been a product of a divergence in evolutionary strategies: herbivorous dinosaurs rapidly evolved large size to escape predation by carnivores and maximise digestive efficiency; carnivores had sufficient resources among juvenile dinosaurs and non-dinosaurian prey to achieve optimal success at smaller body size. PMID:23284818

  8. Body Size Distribution of the Dinosaurs

    OpenAIRE

    O?Gorman, Eoin J.; Hone, David W. E.

    2012-01-01

    The distribution of species body size is critically important for determining resource use within a group or clade. It is widely known that non-avian dinosaurs were the largest creatures to roam the Earth. There is, however, little understanding of how maximum species body size was distributed among the dinosaurs. Do they share a similar distribution to modern day vertebrate groups in spite of their large size, or did they exhibit fundamentally different distributions due to unique evolutiona...

  9. Metabolic expenditures of lunge feeding rorquals across scale: implications for the evolution of filter feeding and the limits to maximum body size.

    Directory of Open Access Journals (Sweden)

    Jean Potvin

    Full Text Available Bulk-filter feeding is an energetically efficient strategy for resource acquisition and assimilation, and facilitates the maintenance of extreme body size as exemplified by baleen whales (Mysticeti and multiple lineages of bony and cartilaginous fishes. Among mysticetes, rorqual whales (Balaenopteridae exhibit an intermittent ram filter feeding mode, lunge feeding, which requires the abandonment of body-streamlining in favor of a high-drag, mouth-open configuration aimed at engulfing a very large amount of prey-laden water. Particularly while lunge feeding on krill (the most widespread prey preference among rorquals, the effort required during engulfment involve short bouts of high-intensity muscle activity that demand high metabolic output. We used computational modeling together with morphological and kinematic data on humpback (Megaptera noveaangliae, fin (Balaenoptera physalus, blue (Balaenoptera musculus and minke (Balaenoptera acutorostrata whales to estimate engulfment power output in comparison with standard metrics of metabolic rate. The simulations reveal that engulfment metabolism increases across the full body size of the larger rorqual species to nearly 50 times the basal metabolic rate of terrestrial mammals of the same body mass. Moreover, they suggest that the metabolism of the largest body sizes runs with significant oxygen deficits during mouth opening, namely, 20% over maximum VO2 at the size of the largest blue whales, thus requiring significant contributions from anaerobic catabolism during a lunge and significant recovery after a lunge. Our analyses show that engulfment metabolism is also significantly lower for smaller adults, typically one-tenth to one-half VO2|max. These results not only point to a physiological limit on maximum body size in this lineage, but also have major implications for the ontogeny of extant rorquals as well as the evolutionary pathways used by ancestral toothed whales to transition from hunting

  10. Dinosaurs, dragons, and dwarfs: The evolution of maximal body size

    Science.gov (United States)

    Burness, Gary P.; Diamond, Jared; Flannery, Timothy

    2001-01-01

    Among local faunas, the maximum body size and taxonomic affiliation of the top terrestrial vertebrate vary greatly. Does this variation reflect how food requirements differ between trophic levels (herbivores vs. carnivores) and with taxonomic affiliation (mammals and birds vs. reptiles)? We gathered data on the body size and food requirements of the top terrestrial herbivores and carnivores, over the past 65,000 years, from oceanic islands and continents. The body mass of the top species was found to increase with increasing land area, with a slope similar to that of the relation between body mass and home range area, suggesting that maximum body size is determined by the number of home ranges that can fit into a given land area. For a given land area, the body size of the top species decreased in the sequence: ectothermic herbivore > endothermic herbivore > ectothermic carnivore > endothermic carnivore. When we converted body mass to food requirements, the food consumption of a top herbivore was about 8 times that of a top carnivore, in accord with the factor expected from the trophic pyramid. Although top ectotherms were heavier than top endotherms at a given trophic level, lower metabolic rates per gram of body mass in ectotherms resulted in endotherms and ectotherms having the same food consumption. These patterns explain the size of the largest-ever extinct mammal, but the size of the largest dinosaurs exceeds that predicted from land areas and remains unexplained. PMID:11724953

  11. Body size, swimming speed, or thermal sensitivity? Predator-imposed selection on amphibian larvae.

    Science.gov (United States)

    Gvoždík, Lumír; Smolinský, Radovan

    2015-11-02

    Many animals rely on their escape performance during predator encounters. Because of its dependence on body size and temperature, escape velocity is fully characterized by three measures, absolute value, size-corrected value, and its response to temperature (thermal sensitivity). The primary target of the selection imposed by predators is poorly understood. We examined predator (dragonfly larva)-imposed selection on prey (newt larvae) body size and characteristics of escape velocity using replicated and controlled predation experiments under seminatural conditions. Specifically, because these species experience a wide range of temperatures throughout their larval phases, we predict that larvae achieving high swimming velocities across temperatures will have a selective advantage over more thermally sensitive individuals. Nonzero selection differentials indicated that predators selected for prey body size and both absolute and size-corrected maximum swimming velocity. Comparison of selection differentials with control confirmed selection only on body size, i.e., dragonfly larvae preferably preyed on small newt larvae. Maximum swimming velocity and its thermal sensitivity showed low group repeatability, which contributed to non-detectable selection on both characteristics of escape performance. In the newt-dragonfly larvae interaction, body size plays a more important role than maximum values and thermal sensitivity of swimming velocity during predator escape. This corroborates the general importance of body size in predator-prey interactions. The absence of an appropriate control in predation experiments may lead to potentially misleading conclusions about the primary target of predator-imposed selection. Insights from predation experiments contribute to our understanding of the link between performance and fitness, and further improve mechanistic models of predator-prey interactions and food web dynamics.

  12. Oxygen no longer plays a major role in Body Size Evolution

    Science.gov (United States)

    Datta, H.; Sachson, W.; Heim, N. A.; Payne, J.

    2015-12-01

    When observing the long-term relationship between atmospheric oxygen and the maximum size in organisms across the Geozoic (~3.8 Ga - present), it appears that as oxygen increases, organism size grows. However, during the Phanerozoic (541 Ma - Present) oxygen levels varied, so we set out to test the hypothesis that oxygen levels drive patterns marine animal body size evolution. Expected decreases in maximum size due to a lack of oxygen do not occur, and instead, body size continues to increase regardless. In the oxygen data, a relatively low atmospheric oxygen percentage can support increasing body size, so our research tries to determine whether lifestyle affects body size in marine organisms. The genera in the data set were organized based on their tiering, motility, and feeding, such as a pelagic, fully-motile, predator. When organisms fill a certain ecological niche to take advantage of resources, they will have certain life modes, rather than randomly selected traits. For example, even in terrestrial environments, large animals have to constantly feed themselves to support their expensive terrestrial lifestyle which involves fairly consistent movement, and the structural support necessary for that movement. Only organisms with access to high energy food sources or large amounts of food can support themselves, and that is before they expend energy elsewhere. Organisms that expend energy frugally when active or have slower metabolisms in comparison to body size have a more efficient lifestyle and are generally able to grow larger, while those who have higher energy demands like predators are limited to comparatively smaller sizes. Therefore, in respect to the fossil record and modern measurements of animals, the metabolism and lifestyle of an organism dictate its body size in general. With this further clarification on the patterns of evolution, it will be easier to observe and understand the reasons for the ecological traits of organisms today.

  13. Rule reversal: Ecogeographical patterns of body size variation in the common treeshrew (Mammalia, Scandentia)

    Science.gov (United States)

    Sargis, Eric J.; Millien, Virginie; Woodman, Neal; Olson, Link E.

    2018-01-01

    There are a number of ecogeographical “rules” that describe patterns of geographical variation among organisms. The island rule predicts that populations of larger mammals on islands evolve smaller mean body size than their mainland counterparts, whereas smaller‐bodied mammals evolve larger size. Bergmann's rule predicts that populations of a species in colder climates (generally at higher latitudes) have larger mean body sizes than conspecifics in warmer climates (at lower latitudes). These two rules are rarely tested together and neither has been rigorously tested in treeshrews, a clade of small‐bodied mammals in their own order (Scandentia) broadly distributed in mainland Southeast Asia and on islands throughout much of the Sunda Shelf. The common treeshrew, Tupaia glis, is an excellent candidate for study and was used to test these two rules simultaneously for the first time in treeshrews. This species is distributed on the Malay Peninsula and several offshore islands east, west, and south of the mainland. Using craniodental dimensions as a proxy for body size, we investigated how island size, distance from the mainland, and maximum sea depth between the mainland and the islands relate to body size of 13 insular T. glis populations while also controlling for latitude and correlation among variables. We found a strong negative effect of latitude on body size in the common treeshrew, indicating the inverse of Bergmann's rule. We did not detect any overall difference in body size between the island and mainland populations. However, there was an effect of island area and maximum sea depth on body size among island populations. Although there is a strong latitudinal effect on body size, neither Bergmann's rule nor the island rule applies to the common treeshrew. The results of our analyses demonstrate the necessity of assessing multiple variables simultaneously in studies of ecogeographical rules.

  14. Body size, performance and fitness in galapagos marine iguanas.

    Science.gov (United States)

    Wikelski, Martin; Romero, L Michael

    2003-07-01

    Complex organismal traits such as body size are influenced by innumerable selective pressures, making the prediction of evolutionary trajectories for those traits difficult. A potentially powerful way to predict fitness in natural systems is to study the composite response of individuals in terms of performance measures, such as foraging or reproductive performance. Once key performance measures are identified in this top-down approach, we can determine the underlying physiological mechanisms and gain predictive power over long-term evolutionary processes. Here we use marine iguanas as a model system where body size differs by more than one order of magnitude between island populations. We identified foraging efficiency as the main performance measure that constrains body size. Mechanistically, foraging performance is determined by food pasture height and the thermal environment, influencing intake and digestion. Stress hormones may be a flexible way of influencing an individual's response to low-food situations that may be caused by high population density, famines, or anthropogenic disturbances like oil spills. Reproductive performance, on the other hand, increases with body size and is mediated by higher survival of larger hatchlings from larger females and increased mating success of larger males. Reproductive performance of males may be adjusted via plastic hormonal feedback mechanisms that allow individuals to assess their social rank annually within the current population size structure. When integrated, these data suggest that reproductive performance favors increased body size (influenced by reproductive hormones), with an overall limit imposed by foraging performance (influenced by stress hormones). Based on our mechanistic understanding of individual performances we predicted an evolutionary increase in maximum body size caused by global warming trends. We support this prediction using specimens collected during 1905. We also show in a common

  15. From the Cover: Environmental and biotic controls on the evolutionary history of insect body size

    Science.gov (United States)

    Clapham, Matthew E.; Karr, Jered A.

    2012-07-01

    Giant insects, with wingspans as large as 70 cm, ruled the Carboniferous and Permian skies. Gigantism has been linked to hyperoxic conditions because oxygen concentration is a key physiological control on body size, particularly in groups like flying insects that have high metabolic oxygen demands. Here we show, using a dataset of more than 10,500 fossil insect wing lengths, that size tracked atmospheric oxygen concentrations only for the first 150 Myr of insect evolution. The data are best explained by a model relating maximum size to atmospheric environmental oxygen concentration (pO2) until the end of the Jurassic, and then at constant sizes, independent of oxygen fluctuations, during the Cretaceous and, at a smaller size, the Cenozoic. Maximum insect size decreased even as atmospheric pO2 rose in the Early Cretaceous following the evolution and radiation of early birds, particularly as birds acquired adaptations that allowed more agile flight. A further decrease in maximum size during the Cenozoic may relate to the evolution of bats, the Cretaceous mass extinction, or further specialization of flying birds. The decoupling of insect size and atmospheric pO2 coincident with the radiation of birds suggests that biotic interactions, such as predation and competition, superseded oxygen as the most important constraint on maximum body size of the largest insects.

  16. Size dependence of efficiency at maximum power of heat engine

    KAUST Repository

    Izumida, Y.; Ito, N.

    2013-01-01

    We perform a molecular dynamics computer simulation of a heat engine model to study how the engine size difference affects its performance. Upon tactically increasing the size of the model anisotropically, we determine that there exists an optimum size at which the model attains the maximum power for the shortest working period. This optimum size locates between the ballistic heat transport region and the diffusive heat transport one. We also study the size dependence of the efficiency at the maximum power. Interestingly, we find that the efficiency at the maximum power around the optimum size attains a value that has been proposed as a universal upper bound, and it even begins to exceed the bound as the size further increases. We explain this behavior of the efficiency at maximum power by using a linear response theory for the heat engine operating under a finite working period, which naturally extends the low-dissipation Carnot cycle model [M. Esposito, R. Kawai, K. Lindenberg, C. Van den Broeck, Phys. Rev. Lett. 105, 150603 (2010)]. The theory also shows that the efficiency at the maximum power under an extreme condition may reach the Carnot efficiency in principle.© EDP Sciences Società Italiana di Fisica Springer-Verlag 2013.

  17. Size dependence of efficiency at maximum power of heat engine

    KAUST Repository

    Izumida, Y.

    2013-10-01

    We perform a molecular dynamics computer simulation of a heat engine model to study how the engine size difference affects its performance. Upon tactically increasing the size of the model anisotropically, we determine that there exists an optimum size at which the model attains the maximum power for the shortest working period. This optimum size locates between the ballistic heat transport region and the diffusive heat transport one. We also study the size dependence of the efficiency at the maximum power. Interestingly, we find that the efficiency at the maximum power around the optimum size attains a value that has been proposed as a universal upper bound, and it even begins to exceed the bound as the size further increases. We explain this behavior of the efficiency at maximum power by using a linear response theory for the heat engine operating under a finite working period, which naturally extends the low-dissipation Carnot cycle model [M. Esposito, R. Kawai, K. Lindenberg, C. Van den Broeck, Phys. Rev. Lett. 105, 150603 (2010)]. The theory also shows that the efficiency at the maximum power under an extreme condition may reach the Carnot efficiency in principle.© EDP Sciences Società Italiana di Fisica Springer-Verlag 2013.

  18. Growth and maximum size of tiger sharks (Galeocerdo cuvier) in Hawaii.

    Science.gov (United States)

    Meyer, Carl G; O'Malley, Joseph M; Papastamatiou, Yannis P; Dale, Jonathan J; Hutchinson, Melanie R; Anderson, James M; Royer, Mark A; Holland, Kim N

    2014-01-01

    Tiger sharks (Galecerdo cuvier) are apex predators characterized by their broad diet, large size and rapid growth. Tiger shark maximum size is typically between 380 & 450 cm Total Length (TL), with a few individuals reaching 550 cm TL, but the maximum size of tiger sharks in Hawaii waters remains uncertain. A previous study suggested tiger sharks grow rather slowly in Hawaii compared to other regions, but this may have been an artifact of the method used to estimate growth (unvalidated vertebral ring counts) compounded by small sample size and narrow size range. Since 1993, the University of Hawaii has conducted a research program aimed at elucidating tiger shark biology, and to date 420 tiger sharks have been tagged and 50 recaptured. All recaptures were from Hawaii except a single shark recaptured off Isla Jacques Cousteau (24°13'17″N 109°52'14″W), in the southern Gulf of California (minimum distance between tag and recapture sites  =  approximately 5,000 km), after 366 days at liberty (DAL). We used these empirical mark-recapture data to estimate growth rates and maximum size for tiger sharks in Hawaii. We found that tiger sharks in Hawaii grow twice as fast as previously thought, on average reaching 340 cm TL by age 5, and attaining a maximum size of 403 cm TL. Our model indicates the fastest growing individuals attain 400 cm TL by age 5, and the largest reach a maximum size of 444 cm TL. The largest shark captured during our study was 464 cm TL but individuals >450 cm TL were extremely rare (0.005% of sharks captured). We conclude that tiger shark growth rates and maximum sizes in Hawaii are generally consistent with those in other regions, and hypothesize that a broad diet may help them to achieve this rapid growth by maximizing prey consumption rates.

  19. Association between different phases of menstrual cycle and body image measures of perceived size, ideal size, and body dissatisfaction.

    Science.gov (United States)

    Teixeira, André Luiz S; Dias, Marcelo Ricardo C; Damasceno, Vinícius O; Lamounier, Joel A; Gardner, Rick M

    2013-12-01

    The association between phases of the menstrual cycle and body image was investigated. 44 university women (M age = 23.3 yr., SD = 4.7) judged their perceived and ideal body size, and body dissatisfaction was calculated at each phase of the menstrual cycle, including premenstrual, menstrual, and intermenstrual. Participants selected one of nine figural drawings ranging from very thin to obese that represented their perceived size and ideal size. Body dissatisfaction was measured as the absolute difference between scores on perceived and ideal figural drawings. During each menstrual phase, anthropometric measures of weight, height, body mass index, circumference of waist and abdomen, and body composition were taken. There were no significant differences in any anthropometric measures between the three menstrual cycle phases. Perceived body size and body dissatisfaction were significantly different between menstrual phases, with the largest perceived body size and highest body dissatisfaction occurring during the menstrual phase. Ideal body size did not differ between menstrual phases, although participants desired a significantly smaller ideal size as compared to the perceived size.

  20. Spatial and body-size dependent response of marine pelagic communities to projected global climate change.

    Science.gov (United States)

    Lefort, Stelly; Aumont, Olivier; Bopp, Laurent; Arsouze, Thomas; Gehlen, Marion; Maury, Olivier

    2015-01-01

    Temperature, oxygen, and food availability directly affect marine life. Climate models project a global warming of the ocean's surface (~+3 °C), a de-oxygenation of the ocean's interior (~-3%) and a decrease in total marine net primary production (~-8%) under the 'business as usual' climate change scenario (RCP8.5). We estimated the effects of these changes on biological communities using a coupled biogeochemical (PISCES)--ecosystems (APECOSM) model forced by the physical outputs of the last generation of the IPSL-CM Earth System Model. The APECOSM model is a size-structured bio-energetic model that simulates the 3D dynamical distributions of three interactive pelagic communities (epipelagic, mesopelagic, and migratory) under the effects of multiple environmental factors. The PISCES-APECOSM model ran from 1850 to 2100 under historical forcing followed by RCP8.5. Our RCP8.5 simulation highlights significant changes in the spatial distribution, biomass, and maximum body-size of the simulated pelagic communities. Biomass and maximum body-size increase at high latitude over the course of the century, reflecting the capacity of marine organisms to respond to new suitable environment. At low- and midlatitude, biomass and maximum body-size strongly decrease. In those regions, large organisms cannot maintain their high metabolic needs because of limited and declining food availability. This resource reduction enhances the competition and modifies the biomass distribution among and within the three communities: the proportion of small organisms increases in the three communities and the migrant community that initially comprised a higher proportion of small organisms is favored. The greater resilience of small body-size organisms resides in their capacity to fulfill their metabolic needs under reduced energy supply and is further favored by the release of predation pressure due to the decline of large organisms. These results suggest that small body-size organisms might be

  1. The relations between forest fragmentation and bird community body size and biodiversity and bird community body size.

    OpenAIRE

    Hopman, F.

    2017-01-01

    Bachelor thesis Future Planet Studies, major biologie ABSTRACT Animal species with a larger body-size tend to have larger home ranges than small-bodied animals. Therefore it is likely that they are more affected by habitat fragmentation than small-bodied species. Body size of birds also seems to have a negative relation with species richness. This research has therefore looked into whether birds with a larger body-size are more sensitive to habitat fragmentation caused by forest...

  2. Explaining body size beliefs in anorexia.

    Science.gov (United States)

    Gadsby, Stephen

    2017-11-01

    Cognitive neuropsychiatry has had much success in providing theoretical models for the causal origins of many delusional beliefs. Recently, it has been suggested that some anorexia nervosa patients' beliefs about their own body size should be considered delusions. As such, it seems high time the methods of cognitive neuropsychiatry were turned to modelling the false body size beliefs of anorexics. In this paper, I adopt an empiricist approach to modelling the causal origins of false body size beliefs in anorexia. Within the background of cognitive neuropsychiatry, empiricist models claim that abnormal beliefs are grounded by abnormal experiences bearing similar content. I discuss the kinds of abnormal experiences of body size anorexics suffer from which could ground their false beliefs about body size. These oversized experiences come in three varieties: false self-other body comparisons, spontaneous mental imagery of a fat body and distorted perception of affordances. Further theoretical and empirical research into the oversized experiences which anorexics suffer from presents a promising avenue for understanding and treating the disorder.

  3. No support for Heincke's law in hagfish (Myxinidae): lack of an association between body size and the depth of species occurrence.

    Science.gov (United States)

    Schumacher, E L; Owens, B D; Uyeno, T A; Clark, A J; Reece, J S

    2017-08-01

    This study tests for interspecific evidence of Heincke's law among hagfishes and advances the field of research on body size and depth of occurrence in fishes by including a phylogenetic correction and by examining depth in four ways: maximum depth, minimum depth, mean depth of recorded specimens and the average of maximum and minimum depths of occurrence. Results yield no evidence for Heincke's law in hagfishes, no phylogenetic signal for the depth at which species occur, but moderate to weak phylogenetic signal for body size, suggesting that phylogeny may play a role in determining body size in this group. © 2017 The Fisheries Society of the British Isles.

  4. Exercise-induced maximum metabolic rate scaled to body mass by ...

    African Journals Online (AJOL)

    Exercise-induced maximum metabolic rate scaled to body mass by the fractal ... rate scaling is that exercise-induced maximum aerobic metabolic rate (MMR) is ... muscle stress limitation, and maximized oxygen delivery and metabolic rates.

  5. Optimum body size of Holstein replacement heifers.

    Science.gov (United States)

    Hoffman, P C

    1997-03-01

    Criteria that define optimum body size of replacement heifers are required by commercial dairy producers to evaluate replacement heifer management programs. Historically recommended body size criteria have been based on live BW measurements. Numerous research studies have observed a positive relationship between BW at first calving and first lactation milk yield, which has served as the impetus for using live BW to define body size of replacement heifers. Live BW is, however, not the only available measurement to define body size. Skeletal measurements such as wither height, length, and pelvic area have been demonstrated to be related to first lactation performance and (or) dystocia. Live BW measurements also do not define differences in body composition. Differences in body composition of replacement heifers at first calving are also related to key performance variables. An updated research data base is available for the modern Holstein genotype to incorporate measures of skeletal growth and body composition with BW when defining body size. These research projects also lend insight into the relative importance of measurements that define body size of replacement heifers. Incorporation of these measurements from current research into present BW recommendations should aid commercial dairy producers to better define replacement heifer growth and management practices. This article proposes enhancements in defining optimum body size and growth characteristics of Holstein replacement heifers.

  6. Selection of the Maximum Spatial Cluster Size of the Spatial Scan Statistic by Using the Maximum Clustering Set-Proportion Statistic.

    Science.gov (United States)

    Ma, Yue; Yin, Fei; Zhang, Tao; Zhou, Xiaohua Andrew; Li, Xiaosong

    2016-01-01

    Spatial scan statistics are widely used in various fields. The performance of these statistics is influenced by parameters, such as maximum spatial cluster size, and can be improved by parameter selection using performance measures. Current performance measures are based on the presence of clusters and are thus inapplicable to data sets without known clusters. In this work, we propose a novel overall performance measure called maximum clustering set-proportion (MCS-P), which is based on the likelihood of the union of detected clusters and the applied dataset. MCS-P was compared with existing performance measures in a simulation study to select the maximum spatial cluster size. Results of other performance measures, such as sensitivity and misclassification, suggest that the spatial scan statistic achieves accurate results in most scenarios with the maximum spatial cluster sizes selected using MCS-P. Given that previously known clusters are not required in the proposed strategy, selection of the optimal maximum cluster size with MCS-P can improve the performance of the scan statistic in applications without identified clusters.

  7. Detecting size and shape of bodies capacitatively

    International Nuclear Information System (INIS)

    Walton, H.

    1980-01-01

    The size and shape of a body is determined by rolling it between the plates of capacitors and measuring the capacitance changes. A capacitor comprising two parallel, spaced wires inclined to the rolling direction and above and below the rolling body scans sections of the body along its longitudinal axis, another determines the body's lengths and a third comprising two non-parallel wires determines the position of the body. The capacitance changes are compared with those produced by a body of known size and shape so that the size and shape of the body can be determined. (author)

  8. The discrepancy between emotional vs. rational estimates of body size, actual size, and ideal body ratings: theoretical and clinical implications.

    Science.gov (United States)

    Thompson, J K; Dolce, J J

    1989-05-01

    Thirty-two asymptomatic college females were assessed on multiple aspects of body image. Subjects' estimation of the size of three body sites (waist, hips, thighs) was affected by instructional protocol. Emotional ratings, based on how they "felt" about their body, elicited ratings that were larger than actual and ideal size measures. Size ratings based on rational instructions were no different from actual sizes, but were larger than ideal ratings. There were no differences between actual and ideal sizes. The results are discussed with regard to methodological issues involved in body image research. In addition, a working hypothesis that differentiates affective/emotional from cognitive/rational aspects of body size estimation is offered to complement current theories of body image. Implications of the findings for the understanding of body image and its relationship to eating disorders are discussed.

  9. Dependence of US hurricane economic loss on maximum wind speed and storm size

    International Nuclear Information System (INIS)

    Zhai, Alice R; Jiang, Jonathan H

    2014-01-01

    Many empirical hurricane economic loss models consider only wind speed and neglect storm size. These models may be inadequate in accurately predicting the losses of super-sized storms, such as Hurricane Sandy in 2012. In this study, we examined the dependences of normalized US hurricane loss on both wind speed and storm size for 73 tropical cyclones that made landfall in the US from 1988 through 2012. A multi-variate least squares regression is used to construct a hurricane loss model using both wind speed and size as predictors. Using maximum wind speed and size together captures more variance of losses than using wind speed or size alone. It is found that normalized hurricane loss (L) approximately follows a power law relation with maximum wind speed (V max ) and size (R), L = 10 c V max a R b , with c determining an overall scaling factor and the exponents a and b generally ranging between 4–12 and 2–4 respectively. Both a and b tend to increase with stronger wind speed. Hurricane Sandy’s size was about three times of the average size of all hurricanes analyzed. Based on the bi-variate regression model that explains the most variance for hurricanes, Hurricane Sandy’s loss would be approximately 20 times smaller if its size were of the average size with maximum wind speed unchanged. It is important to revise conventional empirical hurricane loss models that are only dependent on maximum wind speed to include both maximum wind speed and size as predictors. (letters)

  10. Effects of exposure to bodies of different sizes on perception of and satisfaction with own body size: two randomized studies.

    Science.gov (United States)

    Bould, Helen; Carnegie, Rebecca; Allward, Heather; Bacon, Emily; Lambe, Emily; Sapseid, Megan; Button, Katherine S; Lewis, Glyn; Skinner, Andy; Broome, Matthew R; Park, Rebecca; Harmer, Catherine J; Penton-Voak, Ian S; Munafò, Marcus R

    2018-05-01

    Body dissatisfaction is prevalent among women and associated with subsequent obesity and eating disorders. Exposure to images of bodies of different sizes has been suggested to change the perception of 'normal' body size in others. We tested whether exposure to different-sized (otherwise identical) bodies changes perception of own and others' body size, satisfaction with body size and amount of chocolate consumed. In Study 1, 90 18-25-year-old women with normal BMI were randomized into one of three groups to complete a 15 min two-back task using photographs of women either of 'normal weight' (Body Mass Index (BMI) 22-23 kg m -2 ), or altered to appear either under- or over-weight. Study 2 was identical except the 96 participants had high baseline body dissatisfaction and were followed up after 24 h. We also conducted a mega-analysis combining both studies. Participants rated size of others' bodies, own size, and satisfaction with size pre- and post-task. Post-task ratings were compared between groups, adjusting for pre-task ratings. Participants exposed to over- or normal-weight images subsequently perceived others' bodies as smaller, in comparison to those shown underweight bodies ( p  < 0.001). They also perceived their own bodies as smaller (Study 1, p  = 0.073; Study 2, p  = 0.018; mega-analysis, p  = 0.001), and felt more satisfied with their size (Study 1, p  = 0.046; Study 2, p  = 0.004; mega-analysis, p  = 0.006). There were no differences in chocolate consumption. This study suggests that a move towards using images of women with a BMI in the healthy range in the media may help to reduce body dissatisfaction, and the associated risk of eating disorders.

  11. Artificial fish schools : Collective effects of school size, body size, and body form

    NARCIS (Netherlands)

    Kunz, H.; Hemelrijk, C.K.

    2003-01-01

    Individual-based models of schooling in fish have demonstrated that, via processes of self-organization. artificial fish may school in the absence of a leader or external stimuli, using local information only. We study for the first time how body size and body form of artificial fish affect school

  12. Size matters: relationships between body size and body mass of common coastal, aquatic invertebrates in the Baltic Sea

    Directory of Open Access Journals (Sweden)

    Johan Eklöf

    2017-01-01

    Full Text Available Background Organism biomass is one of the most important variables in ecological studies, making biomass estimations one of the most common laboratory tasks. Biomass of small macroinvertebrates is usually estimated as dry mass or ash-free dry mass (hereafter ‘DM’ vs. ‘AFDM’ per sample; a laborious and time consuming process, that often can be speeded up using easily measured and reliable proxy variables like body size or wet (fresh mass. Another common way of estimating AFDM (one of the most accurate but also time-consuming estimates of biologically active tissue mass is the use of AFDM/DM ratios as conversion factors. So far, however, these ratios typically ignore the possibility that the relative mass of biologically active vs. non-active support tissue (e.g., protective exoskeleton or shell—and therefore, also AFDM/DM ratios—may change with body size, as previously shown for taxa like spiders, vertebrates and trees. Methods We collected aquatic, epibenthic macroinvertebrates (>1 mm in 32 shallow bays along a 360 km stretch of the Swedish coast along the Baltic Sea; one of the largest brackish water bodies on Earth. We then estimated statistical relationships between the body size (length or height in mm, body dry mass and ash-free dry mass for 14 of the most common taxa; five gastropods, three bivalves, three crustaceans and three insect larvae. Finally, we statistically estimated the potential influence of body size on the AFDM/DM ratio per taxon. Results For most taxa, non-linear regression models describing the power relationship between body size and (i DM and (ii AFDM fit the data well (as indicated by low SE and high R2. Moreover, for more than half of the taxa studied (including the vast majority of the shelled molluscs, body size had a negative influence on organism AFDM/DM ratios. Discussion The good fit of the modelled power relationships suggests that the constants reported here can be used to quickly estimate

  13. Muzzle size, paranasal swelling size and body mass in Mandrillus leucophaeus.

    Science.gov (United States)

    Elton, Sarah; Morgan, Bethan J

    2006-04-01

    The drill (Mandrillus leucophaeus), a forest-living Old World monkey, is highly sexually dimorphic, with males exhibiting extreme secondary sexual characteristics, including growth of paranasal swellings on the muzzle. In this study, the size of the secondary bone that forms the paranasal swellings on the muzzles of drills was assessed in relation to body mass proxies. The relationship between the overall size of the muzzle and surrogate measures of body mass was also examined. In female drills, muzzle breadth was positively correlated with two proxies of overall body mass, greatest skull length and upper M1 area. However, there was no such correlation in males. Paranasal swellings in males also appeared to have no significant relationship to body mass proxies. This suggests that secondary bone growth on the muzzles of male drills is independent of overall body size. Furthermore, this secondary bone appears to be vermiculate, probably developing rapidly and in an irregular manner, with no correlation in the sizes of paranasal swelling height and breadth. However, various paranasal swelling dimensions were related to the size of the muzzle. It is suggested that the growth of the paranasal swellings and possibly the muzzle could be influenced by androgen production and reflect testes size and sperm motility. The size and appearance of the paranasal swellings may thus be an indicator of reproductive quality both to potential mates and male competitors. Further work is required to investigate the importance of the paranasal swellings as secondary sexual characteristics in Mandrillus and the relationship between body size and secondary sexual characteristics. Attention should also be paid to the mechanisms and trajectories of facial growth in Mandrillus.

  14. Optimizing the maximum reported cluster size in the spatial scan statistic for ordinal data.

    Science.gov (United States)

    Kim, Sehwi; Jung, Inkyung

    2017-01-01

    The spatial scan statistic is an important tool for spatial cluster detection. There have been numerous studies on scanning window shapes. However, little research has been done on the maximum scanning window size or maximum reported cluster size. Recently, Han et al. proposed to use the Gini coefficient to optimize the maximum reported cluster size. However, the method has been developed and evaluated only for the Poisson model. We adopt the Gini coefficient to be applicable to the spatial scan statistic for ordinal data to determine the optimal maximum reported cluster size. Through a simulation study and application to a real data example, we evaluate the performance of the proposed approach. With some sophisticated modification, the Gini coefficient can be effectively employed for the ordinal model. The Gini coefficient most often picked the optimal maximum reported cluster sizes that were the same as or smaller than the true cluster sizes with very high accuracy. It seems that we can obtain a more refined collection of clusters by using the Gini coefficient. The Gini coefficient developed specifically for the ordinal model can be useful for optimizing the maximum reported cluster size for ordinal data and helpful for properly and informatively discovering cluster patterns.

  15. Sauropod dinosaurs evolved moderately sized genomes unrelated to body size.

    Science.gov (United States)

    Organ, Chris L; Brusatte, Stephen L; Stein, Koen

    2009-12-22

    Sauropodomorph dinosaurs include the largest land animals to have ever lived, some reaching up to 10 times the mass of an African elephant. Despite their status defining the upper range for body size in land animals, it remains unknown whether sauropodomorphs evolved larger-sized genomes than non-avian theropods, their sister taxon, or whether a relationship exists between genome size and body size in dinosaurs, two questions critical for understanding broad patterns of genome evolution in dinosaurs. Here we report inferences of genome size for 10 sauropodomorph taxa. The estimates are derived from a Bayesian phylogenetic generalized least squares approach that generates posterior distributions of regression models relating genome size to osteocyte lacunae volume in extant tetrapods. We estimate that the average genome size of sauropodomorphs was 2.02 pg (range of species means: 1.77-2.21 pg), a value in the upper range of extant birds (mean = 1.42 pg, range: 0.97-2.16 pg) and near the average for extant non-avian reptiles (mean = 2.24 pg, range: 1.05-5.44 pg). The results suggest that the variation in size and architecture of genomes in extinct dinosaurs was lower than the variation found in mammals. A substantial difference in genome size separates the two major clades within dinosaurs, Ornithischia (large genomes) and Saurischia (moderate to small genomes). We find no relationship between body size and estimated genome size in extinct dinosaurs, which suggests that neutral forces did not dominate the evolution of genome size in this group.

  16. Exercise-induced maximum metabolic rate scaled to body mass by ...

    African Journals Online (AJOL)

    user

    2016-10-27

    Oct 27, 2016 ... maximum aerobic metabolic rate (MMR) is proportional to the fractal extent ... metabolic rate with body mass can be obtained by taking body .... blood takes place. ..... MMR and BMR is that MMR is owing mainly to respiration in skeletal .... the spectra of surface area scaling strategies of cells and organisms:.

  17. The maximum sizes of large scale structures in alternative theories of gravity

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Sourav [IUCAA, Pune University Campus, Post Bag 4, Ganeshkhind, Pune, 411 007 India (India); Dialektopoulos, Konstantinos F. [Dipartimento di Fisica, Università di Napoli ' Federico II' , Complesso Universitario di Monte S. Angelo, Edificio G, Via Cinthia, Napoli, I-80126 Italy (Italy); Romano, Antonio Enea [Instituto de Física, Universidad de Antioquia, Calle 70 No. 52–21, Medellín (Colombia); Skordis, Constantinos [Department of Physics, University of Cyprus, 1 Panepistimiou Street, Nicosia, 2109 Cyprus (Cyprus); Tomaras, Theodore N., E-mail: sbhatta@iitrpr.ac.in, E-mail: kdialekt@gmail.com, E-mail: aer@phys.ntu.edu.tw, E-mail: skordis@ucy.ac.cy, E-mail: tomaras@physics.uoc.gr [Institute of Theoretical and Computational Physics and Department of Physics, University of Crete, 70013 Heraklion (Greece)

    2017-07-01

    The maximum size of a cosmic structure is given by the maximum turnaround radius—the scale where the attraction due to its mass is balanced by the repulsion due to dark energy. We derive generic formulae for the estimation of the maximum turnaround radius in any theory of gravity obeying the Einstein equivalence principle, in two situations: on a spherically symmetric spacetime and on a perturbed Friedman-Robertson-Walker spacetime. We show that the two formulae agree. As an application of our formula, we calculate the maximum turnaround radius in the case of the Brans-Dicke theory of gravity. We find that for this theory, such maximum sizes always lie above the ΛCDM value, by a factor 1 + 1/3ω, where ω>> 1 is the Brans-Dicke parameter, implying consistency of the theory with current data.

  18. Nonplantigrade Foot Posture: A Constraint on Dinosaur Body Size.

    Directory of Open Access Journals (Sweden)

    Tai Kubo

    Full Text Available Dinosaurs had functionally digitigrade or sub-unguligrade foot postures. With their immediate ancestors, dinosaurs were the only terrestrial nonplantigrades during the Mesozoic. Extant terrestrial mammals have different optimal body sizes according to their foot posture (plantigrade, digitigrade, and unguligrade, yet the relationship of nonplantigrade foot posture with dinosaur body size has never been investigated, even though the body size of dinosaurs has been studied intensively. According to a large dataset presented in this study, the body sizes of all nonplantigrades (including nonvolant dinosaurs, nonvolant terrestrial birds, extant mammals, and extinct Nearctic mammals are above 500 g, except for macroscelid mammals (i.e., elephant shrew, a few alvarezsauroid dinosaurs, and nondinosaur ornithodirans (i.e., the immediate ancestors of dinosaurs. When nonplantigrade tetrapods evolved from plantigrade ancestors, lineages with nonplantigrade foot posture exhibited a steady increase in body size following Cope's rule. In contrast, contemporaneous plantigrade lineages exhibited no trend in body size evolution and were largely constrained to small body sizes. This evolutionary pattern of body size specific to foot posture occurred repeatedly during both the Mesozoic and the Cenozoic eras. Although disturbed by the end-Cretaceous extinction, species of mid to large body size have predominantly been nonplantigrade animals from the Jurassic until the present; conversely, species with small body size have been exclusively composed of plantigrades in the nonvolant terrestrial tetrapod fauna.

  19. Nonplantigrade Foot Posture: A Constraint on Dinosaur Body Size.

    Science.gov (United States)

    Kubo, Tai; Kubo, Mugino O

    2016-01-01

    Dinosaurs had functionally digitigrade or sub-unguligrade foot postures. With their immediate ancestors, dinosaurs were the only terrestrial nonplantigrades during the Mesozoic. Extant terrestrial mammals have different optimal body sizes according to their foot posture (plantigrade, digitigrade, and unguligrade), yet the relationship of nonplantigrade foot posture with dinosaur body size has never been investigated, even though the body size of dinosaurs has been studied intensively. According to a large dataset presented in this study, the body sizes of all nonplantigrades (including nonvolant dinosaurs, nonvolant terrestrial birds, extant mammals, and extinct Nearctic mammals) are above 500 g, except for macroscelid mammals (i.e., elephant shrew), a few alvarezsauroid dinosaurs, and nondinosaur ornithodirans (i.e., the immediate ancestors of dinosaurs). When nonplantigrade tetrapods evolved from plantigrade ancestors, lineages with nonplantigrade foot posture exhibited a steady increase in body size following Cope's rule. In contrast, contemporaneous plantigrade lineages exhibited no trend in body size evolution and were largely constrained to small body sizes. This evolutionary pattern of body size specific to foot posture occurred repeatedly during both the Mesozoic and the Cenozoic eras. Although disturbed by the end-Cretaceous extinction, species of mid to large body size have predominantly been nonplantigrade animals from the Jurassic until the present; conversely, species with small body size have been exclusively composed of plantigrades in the nonvolant terrestrial tetrapod fauna.

  20. Oocyte size, egg index, and body lipid content in relation to body size in the solitary bee Megachile rotundata.

    Science.gov (United States)

    O'Neill, Kevin M; Delphia, Casey M; O'Neill, Ruth P

    2014-01-01

    Females of solitary, nest-provisioning bees have relatively low fecundity, but produce large eggs as part of their overall strategy of investing substantially in each offspring. In intraspecific comparisons of several species of solitary, nest-provisioning bees and wasps, the size of the mature eggs produced increases with female body size. We further examined oocyte size-body size correlations in the solitary bee Megachile rotundata (F.), an important crop pollinator. We hypothesized that larger females carry larger basal oocytes (i.e., those next in line to be oviposited) but that body size-oocyte size correlations would be absent soon after emergence, before their first eggs fully matured. Because egg production is likely affected by the quantity of stored lipids carried over from the bees' immature stages, we also tested the hypothesis that female body size is correlated with the body lipid content at adult emergence, the time during which oocyte growth accelerates. We found significant correlations of body size with oocyte size variables chosen to reflect: (1) the magnitude of the investment in the next egg to be laid (i.e., the length and volume of the basal oocyte) and (2) the longer term potential to produce mature oocytes (i.e., the summed lengths and volumes of the three largest oocytes in each female). Positive correlations existed throughout the nesting season, even during the first week following adult emergence. The ability to produce and carry larger oocytes may be linked to larger females starting the nesting season with greater lipid stores (which we document here) or to greater space within the abdomen of larger females. Compared to other species of solitary bees, M. rotundata appears to have (1) smaller oocytes than solitary nest-provisioning bees in general, (2) comparable oocyte sizes relative to congeners, and (3) larger oocytes than related brood parasitic megachilids.

  1. Body weight in relation to variation in body size of Oystercatchers Haematopus ostralegus

    NARCIS (Netherlands)

    Zwarts, L; Hulscher, JB; Koopman, K; Zegers, PM

    1996-01-01

    This paper analyses the relationships between body weight in the Oystercatcher and two measures of its body size, bill length and wing length. The weight variation between individuals due to differences in body size is nearly as large as the seasonal variation in body weight within individuals. Wing

  2. Sneaker Males Affect Fighter Male Body Size and Sexual Size Dimorphism in Salmon.

    Science.gov (United States)

    Weir, Laura K; Kindsvater, Holly K; Young, Kyle A; Reynolds, John D

    2016-08-01

    Large male body size is typically favored by directional sexual selection through competition for mates. However, alternative male life-history phenotypes, such as "sneakers," should decrease the strength of sexual selection acting on body size of large "fighter" males. We tested this prediction with salmon species; in southern populations, where sneakers are common, fighter males should be smaller than in northern populations, where sneakers are rare, leading to geographical clines in sexual size dimorphism (SSD). Consistent with our prediction, fighter male body size and SSD (fighter male∶female size) increase with latitude in species with sneaker males (Atlantic salmon Salmo salar and masu salmon Oncorhynchus masou) but not in species without sneakers (chum salmon Oncorhynchus keta and pink salmon Oncorhynchus gorbuscha). This is the first evidence that sneaker males affect SSD across populations and species, and it suggests that alternative male mating strategies may shape the evolution of body size.

  3. Joint evolution of predator body size and prey-size preference.

    NARCIS (Netherlands)

    Troost, T.A.; Kooi, B.W.; Dieckmann, U.

    2007-01-01

    We studied the joint evolution of predator body size and prey-size preference based on dynamic energy budget theory. The predators' demography and their functional response are based on general eco-physiological principles involving the size of both predator and prey. While our model can account for

  4. Joint evolution of predator body size and prey-size preference

    NARCIS (Netherlands)

    Troost, Tineke; Kooi, Bob; Dieckmann, Ulf

    2007-01-01

    We studied the joint evolution of predator body size and prey-size preference based on dynamic energy budget theory. The predators’ demography and their functional response are based on general eco-physiological principles involving the size of both predator and prey. While our model can account

  5. Oocyte size, egg index, and body lipid content in relation to body size in the solitary bee Megachile rotundata

    Directory of Open Access Journals (Sweden)

    Kevin M. O’Neill

    2014-03-01

    Full Text Available Females of solitary, nest-provisioning bees have relatively low fecundity, but produce large eggs as part of their overall strategy of investing substantially in each offspring. In intraspecific comparisons of several species of solitary, nest-provisioning bees and wasps, the size of the mature eggs produced increases with female body size. We further examined oocyte size–body size correlations in the solitary bee Megachile rotundata (F., an important crop pollinator. We hypothesized that larger females carry larger basal oocytes (i.e., those next in line to be oviposited but that body size–oocyte size correlations would be absent soon after emergence, before their first eggs fully matured. Because egg production is likely affected by the quantity of stored lipids carried over from the bees’ immature stages, we also tested the hypothesis that female body size is correlated with the body lipid content at adult emergence, the time during which oocyte growth accelerates. We found significant correlations of body size with oocyte size variables chosen to reflect: (1 the magnitude of the investment in the next egg to be laid (i.e., the length and volume of the basal oocyte and (2 the longer term potential to produce mature oocytes (i.e., the summed lengths and volumes of the three largest oocytes in each female. Positive correlations existed throughout the nesting season, even during the first week following adult emergence. The ability to produce and carry larger oocytes may be linked to larger females starting the nesting season with greater lipid stores (which we document here or to greater space within the abdomen of larger females. Compared to other species of solitary bees, M. rotundata appears to have (1 smaller oocytes than solitary nest-provisioning bees in general, (2 comparable oocyte sizes relative to congeners, and (3 larger oocytes than related brood parasitic megachilids.

  6. Song repertoire size correlates with measures of body size in Eurasian blackbirds

    DEFF Research Database (Denmark)

    Hesler, Nana; Mundry, Roger; Sacher, Thomas

    2012-01-01

    In most oscine bird species males possess a repertoire of different song patterns. The size of these repertoires is assumed to serve as an honest signal of male quality. The Eurasian blackbird’s (Turdus merula) song contains a large repertoire of different element types with a flexible song...... organisation. Here we investigated whether repertoire size in Eurasian blackbirds correlates with measures of body size, namely length of wing, 8th primary, beak and tarsus. So far, very few studies have investigated species with large repertoires and a flexible song organisation in this context. We found...... positive correlations, meaning that larger males had larger repertoires. Larger males may have better fighting abilities and, thus, advantages in territorial defence. Larger structural body size may also reflect better conditions during early development. Therefore, under the assumption that body size...

  7. Body Size, Fecundity, and Sexual Size Dimorphism in the Neotropical Cricket Macroanaxipha macilenta (Saussure) (Orthoptera: Gryllidae).

    Science.gov (United States)

    Cueva Del Castillo, R

    2015-04-01

    Body size is directly or indirectly correlated with fitness. Body size, which conveys maximal fitness, often differs between sexes. Sexual size dimorphism (SSD) evolves because body size tends to be related to reproductive success through different pathways in males and females. In general, female insects are larger than males, suggesting that natural selection for high female fecundity could be stronger than sexual selection in males. I assessed the role of body size and fecundity in SSD in the Neotropical cricket Macroanaxipha macilenta (Saussure). This species shows a SSD bias toward males. Females did not present a correlation between number of eggs and body size. Nonetheless, there were fluctuations in the number of eggs carried by females during the sampling period, and the size of females that were collected carrying eggs was larger than that of females collected with no eggs. Since mating induces vitellogenesis in some cricket species, differences in female body size might suggest male mate choice. Sexual selection in the body size of males of M. macilenta may possibly be stronger than the selection of female fecundity. Even so, no mating behavior was observed during the field observations, including audible male calling or courtship songs, yet males may produce ultrasonic calls due to their size. If female body size in M. macilenta is not directly related to fecundity, the lack of a correlated response to selection on female body size could represent an alternate evolutionary pathway in the evolution of body size and SSD in insects.

  8. Body size, energy use, and community structure of small mammals

    OpenAIRE

    Ernest, S.K. Morgan

    2005-01-01

    Body size has long been hypothesized to play a major role in community structure and dynamics. Two general hypotheses exist for how resources are distributed among body sizes: (1) resources are equally available and uniformly utilized across body sizes and (2) resources are differentially available to organisms of different body sizes, resulting in a nonuniform or modal distribution. It has also been predicted that the distri-bution of body sizes of species in a community should reflect the u...

  9. Association between inaccurate estimation of body size and obesity in schoolchildren

    Directory of Open Access Journals (Sweden)

    Larissa da Cunha Feio Costa

    2015-12-01

    Full Text Available Objectives: To investigate the prevalence of inaccurate estimation of own body size among Brazilian schoolchildren of both sexes aged 7-10 years, and to test whether overweight/obesity; excess body fat and central obesity are associated with inaccuracy. Methods: Accuracy of body size estimation was assessed using the Figure Rating Scale for Brazilian Children. Multinomial logistic regression was used to analyze associations. Results: The overall prevalence of inaccurate body size estimation was 76%, with 34% of the children underestimating their body size and 42% overestimating their body size. Obesity measured by body mass index was associated with underestimation of body size in both sexes, while central obesity was only associated with overestimation of body size among girls. Conclusions: The results of this study suggest there is a high prevalence of inaccurate body size estimation and that inaccurate estimation is associated with obesity. Accurate estimation of own body size is important among obese schoolchildren because it may be the first step towards adopting healthy lifestyle behaviors.

  10. Investigating Young Children's Perceptions of Body Size and Healthy Habits

    Science.gov (United States)

    Xu, Tingting; Nerren, Jannah S.

    2017-01-01

    Attitudes and biases toward body size perceived as fat and body size perceived as thin are present in young children (Cramer and Steinwert in "J Appl Dev Psychol" 19(3):429-451, 1998; Worobey and Worobey in "Body Image" 11:171-174, 2014). However, the information children have regarding body size and ways to modify body size…

  11. Latitudinal clines in Drosophila melanogaster: body size, allozyme ...

    Indian Academy of Sciences (India)

    Unknown

    logy, in explaining such natural genetic variation in D. melanogaster body size and development time. It is argued .... high latitudes were found to use limited food more effi- ciently, so ..... always associate fast development with small body size.

  12. Body size in early life and risk of breast cancer.

    Science.gov (United States)

    Shawon, Md Shajedur Rahman; Eriksson, Mikael; Li, Jingmei

    2017-07-21

    Body size in early life is inversely associated with adult breast cancer (BC) risk, but it is unclear whether the associations differ by tumor characteristics. In a pooled analysis of two Swedish population-based studies consisting of 6731 invasive BC cases and 28,705 age-matched cancer-free controls, we examined the associations between body size in early life and BC risk. Self-reported body sizes at ages 7 and 18 years were collected by a validated nine-level pictogram (aggregated into three categories: small, medium and large). Odds ratios (OR) and corresponding 95% confidence intervals (CI) were estimated from multivariable logistic regression models in case-control analyses, adjusting for study, age at diagnosis, age at menarche, number of children, hormone replacement therapy, and family history of BC. Body size change between ages 7 and 18 were also examined in relation to BC risk. Case-only analyses were performed to test whether the associations differed by tumor characteristics. Medium or large body size at age 7 and 18 was associated with a statistically significant decreased BC risk compared to small body size (pooled OR (95% CI): comparing large to small, 0.78 (0.70-0.86), P trend <0.001 and 0.72 (0.64-0.80), P trend <0.001, respectively). The majority of the women (~85%) did not change body size categories between age 7 and 18 . Women who remained medium or large between ages 7 and 18 had significantly decreased BC risk compared to those who remained small. A reduction in body size between ages 7 and 18 was also found to be inversely associated with BC risk (0.90 (0.81-1.00)). No significant association was found between body size at age 7 and tumor characteristics. Body size at age 18 was found to be inversely associated with tumor size (P trend  = 0.006), but not estrogen receptor status and lymph node involvement. For all analyses, the overall inferences did not change appreciably after further adjustment for adult body mass index. Our data

  13. Nonplantigrade Foot Posture: A Constraint on Dinosaur Body Size

    OpenAIRE

    Kubo, Tai; Kubo, Mugino O.

    2016-01-01

    Dinosaurs had functionally digitigrade or sub-unguligrade foot postures. With their immediate ancestors, dinosaurs were the only terrestrial nonplantigrades during the Mesozoic. Extant terrestrial mammals have different optimal body sizes according to their foot posture (plantigrade, digitigrade, and unguligrade), yet the relationship of nonplantigrade foot posture with dinosaur body size has never been investigated, even though the body size of dinosaurs has been studied intensively. Accordi...

  14. Body size evolution in insular speckled rattlesnakes (Viperidae: Crotalus mitchellii.

    Directory of Open Access Journals (Sweden)

    Jesse M Meik

    2010-03-01

    Full Text Available Speckled rattlesnakes (Crotalus mitchellii inhabit multiple islands off the coast of Baja California, Mexico. Two of the 14 known insular populations have been recognized as subspecies based primarily on body size divergence from putative mainland ancestral populations; however, a survey of body size variation from other islands occupied by these snakes has not been previously reported. We examined body size variation between island and mainland speckled rattlesnakes, and the relationship between body size and various island physical variables among 12 island populations. We also examined relative head size among giant, dwarfed, and mainland speckled rattlesnakes to determine whether allometric differences conformed to predictions of gape size (and indirectly body size evolving in response to shifts in prey size.Insular speckled rattlesnakes show considerable variation in body size when compared to mainland source subspecies. In addition to previously known instances of gigantism on Angel de la Guarda and dwarfism on El Muerto, various degrees of body size decrease have occurred frequently in this taxon, with dwarfed rattlesnakes occurring mostly on small, recently isolated, land-bridge islands. Regression models using the Akaike information criterion (AIC showed that mean SVL of insular populations was most strongly correlated with island area, suggesting the influence of selection for different body size optima for islands of different size. Allometric differences in head size of giant and dwarf rattlesnakes revealed patterns consistent with shifts to larger and smaller prey, respectively.Our data provide the first example of a clear relationship between body size and island area in a squamate reptile species; among vertebrates this pattern has been previously documented in few insular mammals. This finding suggests that selection for body size is influenced by changes in community dynamics that are related to graded differences in area over

  15. Being Barbie: The Size of One’s Own Body Determines the Perceived Size of the World

    Science.gov (United States)

    van der Hoort, Björn; Guterstam, Arvid; Ehrsson, H. Henrik

    2011-01-01

    A classical question in philosophy and psychology is if the sense of one's body influences how one visually perceives the world. Several theoreticians have suggested that our own body serves as a fundamental reference in visual perception of sizes and distances, although compelling experimental evidence for this hypothesis is lacking. In contrast, modern textbooks typically explain the perception of object size and distance by the combination of information from different visual cues. Here, we describe full body illusions in which subjects experience the ownership of a doll's body (80 cm or 30 cm) and a giant's body (400 cm) and use these as tools to demonstrate that the size of one's sensed own body directly influences the perception of object size and distance. These effects were quantified in ten separate experiments with complementary verbal, questionnaire, manual, walking, and physiological measures. When participants experienced the tiny body as their own, they perceived objects to be larger and farther away, and when they experienced the large-body illusion, they perceived objects to be smaller and nearer. Importantly, despite identical retinal input, this “body size effect” was greater when the participants experienced a sense of ownership of the artificial bodies compared to a control condition in which ownership was disrupted. These findings are fundamentally important as they suggest a causal relationship between the representations of body space and external space. Thus, our own body size affects how we perceive the world. PMID:21633503

  16. Litter size of Danish crossbred sows increased without changes in sow body dimensions over a thirteen year period

    DEFF Research Database (Denmark)

    Nielsen, S. E.; Kristensen, A. R.; Moustsen, V. Aa

    2018-01-01

    dimensions and litter size was also investigated. Depth, width, length and height were measured from 405 Danish crossbred sows in 10 different herds, classified in groups of parity 1, 2, 3, 4, 5, 6 and ≥ 7. By Linear Mixed-Effects Models with depth, width, length and height in turn as response variable......The purpose of this study was to investigate if body dimensions of Danish crossbred sows (Yorkshire x Landrace) had increased compared to a previous Danish study from 2004. In addition, and as an expected potential benefit of increased body dimensions, a potential correlation between body...... and parity and herd as explanatory variables, estimated means, 5th and 95th percentiles, minimum and maximum observation were recorded. Furthermore, a weighted index for litter size (denoted as the “litter size potential”) was used as response variable with depth, width, length, height and parity...

  17. Overestimation of body size in eating disorders and its association to body-related avoidance behavior.

    Science.gov (United States)

    Vossbeck-Elsebusch, Anna N; Waldorf, Manuel; Legenbauer, Tanja; Bauer, Anika; Cordes, Martin; Vocks, Silja

    2015-06-01

    Body-related avoidance behavior, e.g., not looking in the mirror, is a common feature of eating disorders. It is assumed that it leads to insufficient feedback concerning one's own real body form and might thus contribute to distorted mental representation of one's own body. However, this assumption still lacks empirical foundation. Therefore, the aim of the present study was to examine the relationship between misperception of one's own body and body-related avoidance behavior in N = 78 female patients with Bulimia nervosa and eating disorder not otherwise specified. Body-size misperception was assessed using a digital photo distortion technique based on an individual picture of each participant which was taken in a standardized suit. In a regression analysis with body-related avoidance behavior, body mass index and weight and shape concerns as predictors, only body-related avoidance behavior significantly contributed to the explanation of body-size overestimation. This result supports the theoretical assumption that body-related avoidance behavior makes body-size overestimation more likely.

  18. Male songbird indicates body size with low-pitched advertising songs.

    Science.gov (United States)

    Hall, Michelle L; Kingma, Sjouke A; Peters, Anne

    2013-01-01

    Body size is a key sexually selected trait in many animal species. If size imposes a physical limit on the production of loud low-frequency sounds, then low-pitched vocalisations could act as reliable signals of body size. However, the central prediction of this hypothesis--that the pitch of vocalisations decreases with size among competing individuals--has limited support in songbirds. One reason could be that only the lowest-frequency components of vocalisations are constrained, and this may go unnoticed when vocal ranges are large. Additionally, the constraint may only be apparent in contexts when individuals are indeed advertising their size. Here we explicitly consider signal diversity and performance limits to demonstrate that body size limits song frequency in an advertising context in a songbird. We show that in purple-crowned fairy-wrens, Malurus coronatus coronatus, larger males sing lower-pitched low-frequency advertising songs. The lower frequency bound of all advertising song types also has a significant negative relationship with body size. However, the average frequency of all their advertising songs is unrelated to body size. This comparison of different approaches to the analysis demonstrates how a negative relationship between body size and song frequency can be obscured by failing to consider signal design and the concept of performance limits. Since these considerations will be important in any complex communication system, our results imply that body size constraints on low-frequency vocalisations could be more widespread than is currently recognised.

  19. Male songbird indicates body size with low-pitched advertising songs.

    Directory of Open Access Journals (Sweden)

    Michelle L Hall

    Full Text Available Body size is a key sexually selected trait in many animal species. If size imposes a physical limit on the production of loud low-frequency sounds, then low-pitched vocalisations could act as reliable signals of body size. However, the central prediction of this hypothesis--that the pitch of vocalisations decreases with size among competing individuals--has limited support in songbirds. One reason could be that only the lowest-frequency components of vocalisations are constrained, and this may go unnoticed when vocal ranges are large. Additionally, the constraint may only be apparent in contexts when individuals are indeed advertising their size. Here we explicitly consider signal diversity and performance limits to demonstrate that body size limits song frequency in an advertising context in a songbird. We show that in purple-crowned fairy-wrens, Malurus coronatus coronatus, larger males sing lower-pitched low-frequency advertising songs. The lower frequency bound of all advertising song types also has a significant negative relationship with body size. However, the average frequency of all their advertising songs is unrelated to body size. This comparison of different approaches to the analysis demonstrates how a negative relationship between body size and song frequency can be obscured by failing to consider signal design and the concept of performance limits. Since these considerations will be important in any complex communication system, our results imply that body size constraints on low-frequency vocalisations could be more widespread than is currently recognised.

  20. Body size estimation of self and others in females varying in BMI.

    Directory of Open Access Journals (Sweden)

    Anne Thaler

    Full Text Available Previous literature suggests that a disturbed ability to accurately identify own body size may contribute to overweight. Here, we investigated the influence of personal body size, indexed by body mass index (BMI, on body size estimation in a non-clinical population of females varying in BMI. We attempted to disentangle general biases in body size estimates and attitudinal influences by manipulating whether participants believed the body stimuli (personalized avatars with realistic weight variations represented their own body or that of another person. Our results show that the accuracy of own body size estimation is predicted by personal BMI, such that participants with lower BMI underestimated their body size and participants with higher BMI overestimated their body size. Further, participants with higher BMI were less likely to notice the same percentage of weight gain than participants with lower BMI. Importantly, these results were only apparent when participants were judging a virtual body that was their own identity (Experiment 1, but not when they estimated the size of a body with another identity and the same underlying body shape (Experiment 2a. The different influences of BMI on accuracy of body size estimation and sensitivity to weight change for self and other identity suggests that effects of BMI on visual body size estimation are self-specific and not generalizable to other bodies.

  1. Body size estimation of self and others in females varying in BMI.

    Science.gov (United States)

    Thaler, Anne; Geuss, Michael N; Mölbert, Simone C; Giel, Katrin E; Streuber, Stephan; Romero, Javier; Black, Michael J; Mohler, Betty J

    2018-01-01

    Previous literature suggests that a disturbed ability to accurately identify own body size may contribute to overweight. Here, we investigated the influence of personal body size, indexed by body mass index (BMI), on body size estimation in a non-clinical population of females varying in BMI. We attempted to disentangle general biases in body size estimates and attitudinal influences by manipulating whether participants believed the body stimuli (personalized avatars with realistic weight variations) represented their own body or that of another person. Our results show that the accuracy of own body size estimation is predicted by personal BMI, such that participants with lower BMI underestimated their body size and participants with higher BMI overestimated their body size. Further, participants with higher BMI were less likely to notice the same percentage of weight gain than participants with lower BMI. Importantly, these results were only apparent when participants were judging a virtual body that was their own identity (Experiment 1), but not when they estimated the size of a body with another identity and the same underlying body shape (Experiment 2a). The different influences of BMI on accuracy of body size estimation and sensitivity to weight change for self and other identity suggests that effects of BMI on visual body size estimation are self-specific and not generalizable to other bodies.

  2. Spatial and temporal variation of body size among early Homo.

    Science.gov (United States)

    Will, Manuel; Stock, Jay T

    2015-05-01

    The estimation of body size among the earliest members of the genus Homo (2.4-1.5Myr [millions of years ago]) is central to interpretations of their biology. It is widely accepted that Homo ergaster possessed increased body size compared with Homo habilis and Homo rudolfensis, and that this may have been a factor involved with the dispersal of Homo out of Africa. The study of taxonomic differences in body size, however, is problematic. Postcranial remains are rarely associated with craniodental fossils, and taxonomic attributions frequently rest upon the size of skeletal elements. Previous body size estimates have been based upon well-preserved specimens with a more reliable species assessment. Since these samples are small (n Koobi Fora after 1.7Myr, indicating regional size variation. The significant body size differences between specimens from Koobi Fora and Olduvai support the cranial evidence for at least two co-existing morphotypes in the Early Pleistocene of eastern Africa. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Large-scale ocean connectivity and planktonic body size

    KAUST Repository

    Villarino, Ernesto; Watson, James R.; Jö nsson, Bror; Gasol, Josep M.; Salazar, Guillem; Acinas, Silvia G.; Estrada, Marta; Massana, Ramó n; Logares, Ramiro; Giner, Caterina R.; Pernice, Massimo C.; Olivar, M. Pilar; Citores, Leire; Corell, Jon; Rodrí guez-Ezpeleta, Naiara; Acuñ a, José Luis; Molina-Ramí rez, Axayacatl; Gonzá lez-Gordillo, J. Ignacio; Có zar, André s; Martí , Elisa; Cuesta, José A.; Agusti, Susana; Fraile-Nuez, Eugenio; Duarte, Carlos M.; Irigoien, Xabier; Chust, Guillem

    2018-01-01

    Global patterns of planktonic diversity are mainly determined by the dispersal of propagules with ocean currents. However, the role that abundance and body size play in determining spatial patterns of diversity remains unclear. Here we analyse spatial community structure - β-diversity - for several planktonic and nektonic organisms from prokaryotes to small mesopelagic fishes collected during the Malaspina 2010 Expedition. β-diversity was compared to surface ocean transit times derived from a global circulation model, revealing a significant negative relationship that is stronger than environmental differences. Estimated dispersal scales for different groups show a negative correlation with body size, where less abundant large-bodied communities have significantly shorter dispersal scales and larger species spatial turnover rates than more abundant small-bodied plankton. Our results confirm that the dispersal scale of planktonic and micro-nektonic organisms is determined by local abundance, which scales with body size, ultimately setting global spatial patterns of diversity.

  4. Large-scale ocean connectivity and planktonic body size

    KAUST Repository

    Villarino, Ernesto

    2018-01-04

    Global patterns of planktonic diversity are mainly determined by the dispersal of propagules with ocean currents. However, the role that abundance and body size play in determining spatial patterns of diversity remains unclear. Here we analyse spatial community structure - β-diversity - for several planktonic and nektonic organisms from prokaryotes to small mesopelagic fishes collected during the Malaspina 2010 Expedition. β-diversity was compared to surface ocean transit times derived from a global circulation model, revealing a significant negative relationship that is stronger than environmental differences. Estimated dispersal scales for different groups show a negative correlation with body size, where less abundant large-bodied communities have significantly shorter dispersal scales and larger species spatial turnover rates than more abundant small-bodied plankton. Our results confirm that the dispersal scale of planktonic and micro-nektonic organisms is determined by local abundance, which scales with body size, ultimately setting global spatial patterns of diversity.

  5. Mechanical limits to maximum weapon size in a giant rhinoceros beetle.

    Science.gov (United States)

    McCullough, Erin L

    2014-07-07

    The horns of giant rhinoceros beetles are a classic example of the elaborate morphologies that can result from sexual selection. Theory predicts that sexual traits will evolve to be increasingly exaggerated until survival costs balance the reproductive benefits of further trait elaboration. In Trypoxylus dichotomus, long horns confer a competitive advantage to males, yet previous studies have found that they do not incur survival costs. It is therefore unlikely that horn size is limited by the theoretical cost-benefit equilibrium. However, males sometimes fight vigorously enough to break their horns, so mechanical limits may set an upper bound on horn size. Here, I tested this mechanical limit hypothesis by measuring safety factors across the full range of horn sizes. Safety factors were calculated as the ratio between the force required to break a horn and the maximum force exerted on a horn during a typical fight. I found that safety factors decrease with increasing horn length, indicating that the risk of breakage is indeed highest for the longest horns. Structural failure of oversized horns may therefore oppose the continued exaggeration of horn length driven by male-male competition and set a mechanical limit on the maximum size of rhinoceros beetle horns. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  6. Visual attention mediates the relationship between body satisfaction and susceptibility to the body size adaptation effect.

    Science.gov (United States)

    Stephen, Ian D; Sturman, Daniel; Stevenson, Richard J; Mond, Jonathan; Brooks, Kevin R

    2018-01-01

    Body size misperception-the belief that one is larger or smaller than reality-affects a large and growing segment of the population. Recently, studies have shown that exposure to extreme body stimuli results in a shift in the point of subjective normality, suggesting that visual adaptation may be a mechanism by which body size misperception occurs. Yet, despite being exposed to a similar set of bodies, some individuals within a given geographical area will develop body size misperception and others will not. The reason for these individual difference is currently unknown. One possible explanation stems from the observation that women with lower levels of body satisfaction have been found to pay more attention to images of thin bodies. However, while attention has been shown to enhance visual adaptation effects in low (e.g. rotational and linear motion) and high level stimuli (e.g., facial gender), it is not known whether this effect exists in visual adaptation to body size. Here, we test the hypothesis that there is an indirect effect of body satisfaction on the direction and magnitude of the body fat adaptation effect, mediated via visual attention (i.e., selectively attending to images of thin over fat bodies or vice versa). Significant mediation effects were found in both men and women, suggesting that observers' level of body satisfaction may influence selective visual attention to thin or fat bodies, which in turn influences the magnitude and direction of visual adaptation to body size. This may provide a potential mechanism by which some individuals develop body size misperception-a risk factor for eating disorders, compulsive exercise behaviour and steroid abuse-while others do not.

  7. The evolution of body size and shape in the human career

    Science.gov (United States)

    Grabowski, Mark; Hatala, Kevin G.; Richmond, Brian G.

    2016-01-01

    Body size is a fundamental biological property of organisms, and documenting body size variation in hominin evolution is an important goal of palaeoanthropology. Estimating body mass appears deceptively simple but is laden with theoretical and pragmatic assumptions about best predictors and the most appropriate reference samples. Modern human training samples with known masses are arguably the ‘best’ for estimating size in early bipedal hominins such as the australopiths and all members of the genus Homo, but it is not clear if they are the most appropriate priors for reconstructing the size of the earliest putative hominins such as Orrorin and Ardipithecus. The trajectory of body size evolution in the early part of the human career is reviewed here and found to be complex and nonlinear. Australopith body size varies enormously across both space and time. The pre-erectus early Homo fossil record from Africa is poor and dominated by relatively small-bodied individuals, implying that the emergence of the genus Homo is probably not linked to an increase in body size or unprecedented increases in size variation. Body size differences alone cannot explain the observed variation in hominin body shape, especially when examined in the context of small fossil hominins and pygmy modern humans. This article is part of the themed issue ‘Major transitions in human evolution’. PMID:27298459

  8. Interspecific geographic range size-body size relationship and the diversification dynamics of Neotropical furnariid birds.

    Science.gov (United States)

    Inostroza-Michael, Oscar; Hernández, Cristián E; Rodríguez-Serrano, Enrique; Avaria-Llautureo, Jorge; Rivadeneira, Marcelo M

    2018-05-01

    Among the earliest macroecological patterns documented, is the range and body size relationship, characterized by a minimum geographic range size imposed by the species' body size. This boundary for the geographic range size increases linearly with body size and has been proposed to have implications in lineages evolution and conservation. Nevertheless, the macroevolutionary processes involved in the origin of this boundary and its consequences on lineage diversification have been poorly explored. We evaluate the macroevolutionary consequences of the difference (hereafter the distance) between the observed and the minimum range sizes required by the species' body size, to untangle its role on the diversification of a Neotropical species-rich bird clade using trait-dependent diversification models. We show that speciation rate is a positive hump-shaped function of the distance to the lower boundary. The species with highest and lowest distances to minimum range size had lower speciation rates, while species close to medium distances values had the highest speciation rates. Further, our results suggest that the distance to the minimum range size is a macroevolutionary constraint that affects the diversification process responsible for the origin of this macroecological pattern in a more complex way than previously envisioned. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.

  9. Taylor's law and body size in exploited marine ecosystems.

    Science.gov (United States)

    Cohen, Joel E; Plank, Michael J; Law, Richard

    2012-12-01

    Taylor's law (TL), which states that variance in population density is related to mean density via a power law, and density-mass allometry, which states that mean density is related to body mass via a power law, are two of the most widely observed patterns in ecology. Combining these two laws predicts that the variance in density is related to body mass via a power law (variance-mass allometry). Marine size spectra are known to exhibit density-mass allometry, but variance-mass allometry has not been investigated. We show that variance and body mass in unexploited size spectrum models are related by a power law, and that this leads to TL with an exponent slightly <2. These simulated relationships are disrupted less by balanced harvesting, in which fishing effort is spread across a wide range of body sizes, than by size-at-entry fishing, in which only fish above a certain size may legally be caught.

  10. Evidence for the Higher Importance of Signal Size Over Body Size in Aposematic Signaling in Insects

    OpenAIRE

    Remmel, Triinu; Tammarub, Toomas

    2011-01-01

    To understand the evolution of warning coloration, it is important to distinguish between different aspects of conspicuous color patterns. As an example, both pattern element size and body size of prey have been shown to enhance the effectiveness of warning signals. However, it is unclear whether the effect of body size is merely a side effect of proportionally increasing pattern elements, or if there is an effect of body size per se. These possibilities were evaluated by offering different s...

  11. Can blind persons accurately assess body size from the voice?

    Science.gov (United States)

    Pisanski, Katarzyna; Oleszkiewicz, Anna; Sorokowska, Agnieszka

    2016-04-01

    Vocal tract resonances provide reliable information about a speaker's body size that human listeners use for biosocial judgements as well as speech recognition. Although humans can accurately assess men's relative body size from the voice alone, how this ability is acquired remains unknown. In this study, we test the prediction that accurate voice-based size estimation is possible without prior audiovisual experience linking low frequencies to large bodies. Ninety-one healthy congenitally or early blind, late blind and sighted adults (aged 20-65) participated in the study. On the basis of vowel sounds alone, participants assessed the relative body sizes of male pairs of varying heights. Accuracy of voice-based body size assessments significantly exceeded chance and did not differ among participants who were sighted, or congenitally blind or who had lost their sight later in life. Accuracy increased significantly with relative differences in physical height between men, suggesting that both blind and sighted participants used reliable vocal cues to size (i.e. vocal tract resonances). Our findings demonstrate that prior visual experience is not necessary for accurate body size estimation. This capacity, integral to both nonverbal communication and speech perception, may be present at birth or may generalize from broader cross-modal correspondences. © 2016 The Author(s).

  12. Influence of body size on coexistence of bird species

    NARCIS (Netherlands)

    Leyequien Abarca, E.; Boer, de W.F.; Cleef, A.M.

    2007-01-01

    Theory suggests that body size is an important factor in determining interspecific competition and, ultimately, in structuring ecological communities. However, there is a lack of pragmatic studies linking body size and interspecific competition to patterns in ecological communities. The objective of

  13. Impact of ancestry and body size on sonographic ulnar nerve dimensions

    International Nuclear Information System (INIS)

    Childs, Jessie T.; Phillips, Maureen; Thoirs, Kerry A.

    2012-01-01

    Introduction: The purpose of this study was to investigate the impact that geographic ancestry and body size have on ultrasonographic measurements of the ulnar nerve size measured at the elbow. Materials and methods: We performed anthropometric measurements of body size and ultrasonographic measurements of the ulnar nerve at the elbow on 13 Vietnamese and 24 European participants. Regression analysis was used to determine the effect of body size and geographic ancestry on ulnar nerve size. Results: BMI had the greatest impact on ulnar nerve size. The short axis diameter was least resilient, and the long axis diameter was the most resilient to the effects of body size and geographic ancestry. Discussion: The long axis diameter has an apparent immunity to the influences of overall body size, arm size, or geographic ancestry and has the most potential as a sensitive discriminator between normal nerves and nerves affected by ulnar neuropathy at the elbow.

  14. Body size diversity and frequency distributions of Neotropical cichlid fishes (Cichliformes: Cichlidae: Cichlinae.

    Directory of Open Access Journals (Sweden)

    Sarah E Steele

    Full Text Available Body size is an important correlate of life history, ecology and distribution of species. Despite this, very little is known about body size evolution in fishes, particularly freshwater fishes of the Neotropics where species and body size diversity are relatively high. Phylogenetic history and body size data were used to explore body size frequency distributions in Neotropical cichlids, a broadly distributed and ecologically diverse group of fishes that is highly representative of body size diversity in Neotropical freshwater fishes. We test for divergence, phylogenetic autocorrelation and among-clade partitioning of body size space. Neotropical cichlids show low phylogenetic autocorrelation and divergence within and among taxonomic levels. Three distinct regions of body size space were identified from body size frequency distributions at various taxonomic levels corresponding to subclades of the most diverse tribe, Geophagini. These regions suggest that lineages may be evolving towards particular size optima that may be tied to specific ecological roles. The diversification of Geophagini appears to constrain the evolution of body size among other Neotropical cichlid lineages; non-Geophagini clades show lower species-richness in body size regions shared with Geophagini. Neotropical cichlid genera show less divergence and extreme body size than expected within and among tribes. Body size divergence among species may instead be present or linked to ecology at the community assembly scale.

  15. A Fourier analysis on the maximum acceptable grid size for discrete proton beam dose calculation

    International Nuclear Information System (INIS)

    Li, Haisen S.; Romeijn, H. Edwin; Dempsey, James F.

    2006-01-01

    We developed an analytical method for determining the maximum acceptable grid size for discrete dose calculation in proton therapy treatment plan optimization, so that the accuracy of the optimized dose distribution is guaranteed in the phase of dose sampling and the superfluous computational work is avoided. The accuracy of dose sampling was judged by the criterion that the continuous dose distribution could be reconstructed from the discrete dose within a 2% error limit. To keep the error caused by the discrete dose sampling under a 2% limit, the dose grid size cannot exceed a maximum acceptable value. The method was based on Fourier analysis and the Shannon-Nyquist sampling theorem as an extension of our previous analysis for photon beam intensity modulated radiation therapy [J. F. Dempsey, H. E. Romeijn, J. G. Li, D. A. Low, and J. R. Palta, Med. Phys. 32, 380-388 (2005)]. The proton beam model used for the analysis was a near mono-energetic (of width about 1% the incident energy) and monodirectional infinitesimal (nonintegrated) pencil beam in water medium. By monodirection, we mean that the proton particles are in the same direction before entering the water medium and the various scattering prior to entrance to water is not taken into account. In intensity modulated proton therapy, the elementary intensity modulation entity for proton therapy is either an infinitesimal or finite sized beamlet. Since a finite sized beamlet is the superposition of infinitesimal pencil beams, the result of the maximum acceptable grid size obtained with infinitesimal pencil beam also applies to finite sized beamlet. The analytic Bragg curve function proposed by Bortfeld [T. Bortfeld, Med. Phys. 24, 2024-2033 (1997)] was employed. The lateral profile was approximated by a depth dependent Gaussian distribution. The model included the spreads of the Bragg peak and the lateral profiles due to multiple Coulomb scattering. The dependence of the maximum acceptable dose grid size on the

  16. Variable Step Size Maximum Correntropy Criteria Based Adaptive Filtering Algorithm

    Directory of Open Access Journals (Sweden)

    S. Radhika

    2016-04-01

    Full Text Available Maximum correntropy criterion (MCC based adaptive filters are found to be robust against impulsive interference. This paper proposes a novel MCC based adaptive filter with variable step size in order to obtain improved performance in terms of both convergence rate and steady state error with robustness against impulsive interference. The optimal variable step size is obtained by minimizing the Mean Square Deviation (MSD error from one iteration to the other. Simulation results in the context of a highly impulsive system identification scenario show that the proposed algorithm has faster convergence and lesser steady state error than the conventional MCC based adaptive filters.

  17. Emaciated mannequins: a study of mannequin body size in high street fashion stores.

    Science.gov (United States)

    Robinson, Eric; Aveyard, Paul

    2017-01-01

    There is concern that the body size of fashion store mannequins are too thin and promote unrealistic body ideals. To date there has been no systematic examination of the size of high street fashion store mannequins. We surveyed national fashion retailers located on the high street of two English cities. The body size of 'male' and 'female' mannequins was assessed by two blinded research assistants using visual rating scales. The average female mannequin body size was representative of a very underweight woman and 100% of female mannequins represented an underweight body size. The average male mannequin body size was significantly larger than the average female mannequin body size. Only 8% of male mannequins represented an underweight body size. The body size of mannequins used to advertise female fashion is unrealistic and would be considered medically unhealthy in humans.

  18. Perception of biological motion from size-invariant body representations

    Directory of Open Access Journals (Sweden)

    Markus eLappe

    2015-03-01

    Full Text Available The visual recognition of action is one of the socially most important and computationally demanding capacities of the human visual system. It combines visual shape recognition with complex non-rigid motion perception. Action presented as a point-light animation is a striking visual experience for anyone who sees it for the first time. Information about the shape and posture of the human body is sparse in point-light animations, but it is essential for action recognition. In the posturo-temporal filter model of biological motion perception posture information is picked up by visual neurons tuned to the form of the human body before body motion is calculated. We tested whether point-light stimuli are processed through posture recognition of the human body form by using a typical feature of form recognition, namely size invariance. We constructed a point-light stimulus that can only be perceived through a size-invariant mechanism. This stimulus changes rapidly in size from one image to the next. It thus disrupts continuity of early visuo-spatial properties but maintains continuity of the body posture representation. Despite this massive manipulation at the visuo-spatial level, size-changing point-light figures are spontaneously recognized by naive observers, and support discrimination of human body motion.

  19. Decreases in beetle body size linked to climate change and warming temperatures.

    Science.gov (United States)

    Tseng, Michelle; Kaur, Katrina M; Soleimani Pari, Sina; Sarai, Karnjit; Chan, Denessa; Yao, Christine H; Porto, Paula; Toor, Anmol; Toor, Harpawantaj S; Fograscher, Katrina

    2018-05-01

    Body size is a fundamental ecological trait and is correlated with population dynamics, community structure and function, and ecosystem fluxes. Laboratory data from broad taxonomic groups suggest that a widespread response to a warming world may be an overall decrease in organism body size. However, given the myriad of biotic and abiotic factors that can also influence organism body size in the wild, it is unclear whether results from these laboratory assays hold in nature. Here we use datasets spanning 30 to 100 years to examine whether the body size of wild-caught beetles has changed over time, whether body size changes are correlated with increased temperatures, and we frame these results using predictions derived from a quantitative review of laboratory responses of 22 beetle species to temperature. We found that 95% of laboratory-reared beetles decreased in size with increased rearing temperature, with larger-bodied species shrinking disproportionately more than smaller-bodied beetles. In addition, the museum datasets revealed that larger-bodied beetle species have decreased in size over time, that mean beetle body size explains much of the interspecific variation in beetle responses to temperature, and that long-term beetle size changes are explained by increases in autumn temperature and decreases in spring temperature in this region. Our data demonstrate that the relationship between body size and temperature of wild-caught beetles matches relatively well with results from laboratory studies, and that variation in this relationship is largely explained by interspecific variation in mean beetle body size. This long-term beetle dataset is one of the most comprehensive arthropod body size datasets compiled to date, it improves predictions regarding the shrinking of organisms with global climate change, and together with the meta-analysis data, call for new hypotheses to explain why larger-bodied organisms may be more sensitive to temperature. © 2018 The

  20. High diversity, low disparity and small body size in plesiosaurs (Reptilia, Sauropterygia from the Triassic-Jurassic boundary.

    Directory of Open Access Journals (Sweden)

    Roger B J Benson

    Full Text Available Invasion of the open ocean by tetrapods represents a major evolutionary transition that occurred independently in cetaceans, mosasauroids, chelonioids (sea turtles, ichthyosaurs and plesiosaurs. Plesiosaurian reptiles invaded pelagic ocean environments immediately following the Late Triassic extinctions. This diversification is recorded by three intensively-sampled European fossil faunas, spanning 20 million years (Ma. These provide an unparalleled opportunity to document changes in key macroevolutionary parameters associated with secondary adaptation to pelagic life in tetrapods. A comprehensive assessment focuses on the oldest fauna, from the Blue Lias Formation of Street, and nearby localities, in Somerset, UK (Earliest Jurassic: 200 Ma, identifying three new species representing two small-bodied rhomaleosaurids (Stratesaurus taylori gen et sp. nov.; Avalonnectes arturi gen. et sp. nov and the most basal plesiosauroid, Eoplesiosaurus antiquior gen. et sp. nov. The initial radiation of plesiosaurs was characterised by high, but short-lived, diversity of an archaic clade, Rhomaleosauridae. Representatives of this initial radiation were replaced by derived, neoplesiosaurian plesiosaurs at small-medium body sizes during a more gradual accumulation of morphological disparity. This gradualistic modality suggests that adaptive radiations within tetrapod subclades are not always characterised by the initially high levels of disparity observed in the Paleozoic origins of major metazoan body plans, or in the origin of tetrapods. High rhomaleosaurid diversity immediately following the Triassic-Jurassic boundary supports the gradual model of Late Triassic extinctions, mostly predating the boundary itself. Increase in both maximum and minimum body length early in plesiosaurian history suggests a driven evolutionary trend. However, Maximum-likelihood models suggest only passive expansion into higher body size categories.

  1. Body Size, Extinction Risk and Knowledge Bias in New World Snakes

    Science.gov (United States)

    Vilela, Bruno; Villalobos, Fabricio; Rodríguez, Miguel Ángel; Terribile, Levi Carina

    2014-01-01

    Extinction risk and body size have been found to be related in various vertebrate groups, with larger species being more at risk than smaller ones. We checked whether this was also the case for snakes by investigating extinction risk–body size relationships in the New World's Colubroidea species. We used the IUCN Red List risk categories to assign each species to one of two broad levels of threat (Threatened and Non-Threatened) or to identify it as either Data Deficient or Not-Evaluated by the IUCN. We also included the year of description of each species in our analysis as this could affect the level of threat assigned to it (earlier described species had more time to gather information about them, which might have facilitated their evaluation). Also, species detectability could be a function of body size, with larger species tending to be described earlier, which could have an impact in extinction risk–body size relationships. We found a negative relationship between body size and description year, with large-bodied species being described earlier. Description year also varied among risk categories, with Non-Threatened species being described earlier than Threatened species and both species groups earlier than Data Deficient species. On average, Data Deficient species also presented smaller body sizes, while no size differences were detected between Threatened and Non-Threatened species. So it seems that smaller body sizes are related with species detectability, thus potentially affecting both when a species is described (smaller species tend to be described more recently) as well as the amount of information gathered about it (Data Deficient species tend to be smaller). Our data also indicated that if Data Deficient species were to be categorized as Threatened in the future, snake body size and extinction risk would be negatively related, contrasting with the opposite pattern commonly observed in other vertebrate groups. PMID:25409293

  2. Body size satisfaction and physical activity levels among men and women.

    Science.gov (United States)

    Kruger, Judy; Lee, Chong-Do; Ainsworth, Barbara E; Macera, Caroline A

    2008-08-01

    Body size satisfaction may be an important factor associated with physical activity. We analyzed data from the 2002 National Physical Activity and Weight Loss Survey (NPAWLS), a population-based cross-sectional telephone survey of US adults. Multiple logistic regression models were used to examine the association of body size satisfaction on being regularly active. Participants were aged > or =18 years with complete data on weight, race/ethnicity, physical activity level, and body size satisfaction (n = 10,021). More than half of men (55.8%) and women (53.3%) who reported being very satisfied with the body size were regularly active. After adjustment for covariates, participants who reported being somewhat or not satisfied with their body size had a 13 and 44% lower odds of being regularly active, respectively, compared with those very satisfied with their body size. When stratified by race/ethnicity, this association remained in whites (P for trend physical activity than those less satisfied. Further research is needed to explore predictors of physical activity to reduce health disparities.

  3. Correlates of self-worth and body size dissatisfaction among obese Latino youth.

    Science.gov (United States)

    Mirza, Nazrat M; Mackey, Eleanor Race; Armstrong, Bridget; Jaramillo, Ana; Palmer, Matilde M

    2011-03-01

    The current study examined self-worth and body size dissatisfaction, and their association with maternal acculturation among obese Latino youth enrolled in a community-based obesity intervention program. Upon entry to the program, a sample of 113 participants reported global self-worth comparable to general population norms, but lower athletic competence and perception of physical appearance. Interestingly, body size dissatisfaction was more prevalent among younger respondents. Youth body size dissatisfaction was associated with less acculturated mothers and higher maternal dissatisfaction with their child's body size. By contrast, although global self-worth was significantly related to body dissatisfaction, it was not influenced by mothers' acculturation or dissatisfaction with their own or their child's body size. Obesity intervention programs targeted to Latino youth need to address self-worth concerns among the youth as well as addressing maternal dissatisfaction with their children's body size. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Human vocal attractiveness as signaled by body size projection.

    Directory of Open Access Journals (Sweden)

    Yi Xu

    Full Text Available Voice, as a secondary sexual characteristic, is known to affect the perceived attractiveness of human individuals. But the underlying mechanism of vocal attractiveness has remained unclear. Here, we presented human listeners with acoustically altered natural sentences and fully synthetic sentences with systematically manipulated pitch, formants and voice quality based on a principle of body size projection reported for animal calls and emotional human vocal expressions. The results show that male listeners preferred a female voice that signals a small body size, with relatively high pitch, wide formant dispersion and breathy voice, while female listeners preferred a male voice that signals a large body size with low pitch and narrow formant dispersion. Interestingly, however, male vocal attractiveness was also enhanced by breathiness, which presumably softened the aggressiveness associated with a large body size. These results, together with the additional finding that the same vocal dimensions also affect emotion judgment, indicate that humans still employ a vocal interaction strategy used in animal calls despite the development of complex language.

  5. 50 CFR 697.21 - Gear identification and marking, escape vent, maximum trap size, and ghost panel requirements.

    Science.gov (United States)

    2010-10-01

    ... vent, maximum trap size, and ghost panel requirements. 697.21 Section 697.21 Wildlife and Fisheries... identification and marking, escape vent, maximum trap size, and ghost panel requirements. (a) Gear identification... Administrator finds to be consistent with paragraph (c) of this section. (d) Ghost panel. (1) Lobster traps not...

  6. Evolution of extreme body size disparity in monitor lizards (Varanus).

    Science.gov (United States)

    Collar, David C; Schulte, James A; Losos, Jonathan B

    2011-09-01

    Many features of species' biology, including life history, physiology, morphology, and ecology are tightly linked to body size. Investigation into the causes of size divergence is therefore critical to understanding the factors shaping phenotypic diversity within clades. In this study, we examined size evolution in monitor lizards (Varanus), a clade that includes the largest extant lizard species, the Komodo dragon (V. komodoensis), as well as diminutive species that are nearly four orders of magnitude smaller in adult body mass. We demonstrate that the remarkable body size disparity of this clade is a consequence of different selective demands imposed by three major habitat use patterns-arboreality, terrestriality, and rock-dwelling. We reconstructed phylogenetic relationships and ancestral habitat use and applied model selection to determine that the best-fitting evolutionary models for species' adult size are those that infer oppositely directed adaptive evolution associated with terrestriality and rock-dwelling, with terrestrial lineages evolving extremely large size and rock-dwellers becoming very small. We also show that habitat use affects the evolution of several ecologically important morphological traits independently of body size divergence. These results suggest that habitat use exerts a strong, multidimensional influence on the evolution of morphological size and shape disparity in monitor lizards. © 2011 The Author(s).

  7. Body size distributions signal a regime shift in a lake ...

    Science.gov (United States)

    Communities of organisms, from mammals to microorganisms, have discontinuous distributions of body size. This pattern of size structuring is a conservative trait of community organization and is a product of processes that occur at multiple spatial and temporal scales. In this study, we assessed whether body size patterns serve as an indicator of a threshold between alternative regimes. Over the past 7000 years, the biological communities of Foy Lake (Montana,USA) have undergone a major regime shift owing to climate change. We used a palaeoecological record of diatom communities to estimate diatom sizes, and then analysed the discontinuous distribution of organism sizes over time. We used Bayesian classification and regression tree models to determine that all time intervals exhibited aggregations of sizes separated by gaps in the distribution and found a significant change in diatom body size distributions approximately 150 years before the identified ecosystem regime shift. We suggest that discontinuity analysis is a useful addition to the suite of tools for the detection of early warning signals of regime shifts. Communities of organisms from mammals to microorganisms have discontinuous distributions of body size. This pattern of size structuring is a conservative trait of community organization and is a product of processes that occur at discrete spatial and temporal scales within ecosystems. Here, a paleoecological record of diatom community change is use

  8. The limit distribution of the maximum increment of a random walk with dependent regularly varying jump sizes

    DEFF Research Database (Denmark)

    Mikosch, Thomas Valentin; Moser, Martin

    2013-01-01

    We investigate the maximum increment of a random walk with heavy-tailed jump size distribution. Here heavy-tailedness is understood as regular variation of the finite-dimensional distributions. The jump sizes constitute a strictly stationary sequence. Using a continuous mapping argument acting...... on the point processes of the normalized jump sizes, we prove that the maximum increment of the random walk converges in distribution to a Fréchet distributed random variable....

  9. The influence of personal BMI on body size estimations and sensitivity to body size change in anorexia spectrum disorders.

    OpenAIRE

    Cornelissen, Katri; Bester, Andre; Cairns, Paul; Tovee, Martin; Cornelissen, Piers

    2015-01-01

    In this cross-sectional study, we investigated the influence of personal BMI on body size estimation in 42 women who have symptoms of anorexia (referred to henceforth as anorexia spectrum disorders, ANSD), and 100 healthy controls. Low BMI control participants over-estimate their size and high BMI controls under-estimate, a pattern which is predicted by a perceptual phenomenon called contraction bias. In addition, control participants' sensitivity to size change declines as their BMI increase...

  10. Variability in human body size

    Science.gov (United States)

    Annis, J. F.

    1978-01-01

    The range of variability found among homogeneous groups is described and illustrated. Those trends that show significantly marked differences between sexes and among a number of racial/ethnic groups are also presented. Causes of human-body size variability discussed include genetic endowment, aging, nutrition, protective garments, and occupation. The information is presented to aid design engineers of space flight hardware and equipment.

  11. Effect of body size and body mass on δ 13 C and δ 15 N in coastal fishes and cephalopods

    Science.gov (United States)

    Vinagre, C.; Máguas, C.; Cabral, H. N.; Costa, M. J.

    2011-11-01

    Carbon and nitrogen isotopes have been widely used in the investigation of trophic relations, energy pathways, trophic levels and migrations, under the assumption that δ 13C is independent of body size and that variation in δ 15N occurs exclusively due to ontogenetic changes in diet and not body size increase per se. However, several studies have shown that these assumptions are uncertain. Data from food-webs containing an important number of species lack theoretical support on these assumptions because very few species have been tested for δ 13C and δ 15N variation in captivity. However, if sampling comprises a wide range of body sizes from various species, the variation of δ 13C and δ 15N with body size can be investigated. While correlation between body size and δ 13C and δ 15N can be due to ontogenetic diet shifts, stability in such values throughout the size spectrum can be considered an indication that δ 13C and δ 15N in muscle tissues of such species is independent of body size within that size range, and thus the basic assumptions can be applied in the interpretation of such food webs. The present study investigated the variation in muscle δ 13C and δ 15N with body size and body mass of coastal fishes and cephalopods. It was concluded that muscle δ 13C and δ 15N did not vary with body size or mass for all bony fishes with only one exception, the dragonet Callionymus lyra. Muscle δ 13C and δ 15N also did not vary with body size or mass in cartilaginous fishes and cephalopods, meaning that body size/mass per se have no effect on δ 13C or δ 15N, for most species analysed and within the size ranges sampled. The assumption that δ 13C is independent of body size and that variation in δ 15N is not affected by body size increase per se was upheld for most organisms and can be applied to the coastal food web studied taking into account that C. lyra is an exception.

  12. Speciation in little: the role of range and body size in the diversification of Malagasy mantellid frogs

    Directory of Open Access Journals (Sweden)

    Vences Miguel

    2011-07-01

    Full Text Available Abstract Background The rate and mode of lineage diversification might be shaped by clade-specific traits. In Madagascar, many groups of organisms are characterized by tiny distribution ranges and small body sizes, and this high degree of microendemism and miniaturization parallels a high species diversity in some of these groups. We here investigate the geographic patterns characterizing the radiation of the frog family Mantellidae that is virtually endemic to Madagascar. We integrate a newly reconstructed near-complete species-level timetree of the Mantellidae with georeferenced distribution records and maximum male body size data to infer the influence of these life-history traits on each other and on mantellid diversification. Results We reconstructed a molecular phylogeny based on nuclear and mitochondrial DNA for 257 species and candidate species of the mantellid frog radiation. Based on this phylogeny we identified 53 well-supported pairs of sister species that we used for phylogenetic comparative analyses, along with whole tree-based phylogenetic comparative methods. Sister species within the Mantellidae diverged at 0.2-14.4 million years ago and more recently diverged sister species had geographical range centroids more proximate to each other, independently of their current sympatric or allopatric occurrence. The largest number of sister species pairs had non-overlapping ranges, but several examples of young microendemic sister species occurring in full sympatry suggest the possibility of non-allopatric speciation. Range sizes of species included in the sister species comparisons increased with evolutionary age, as did range size differences between sister species, which rejects peripatric speciation. For the majority of mantellid sister species and the whole mantellid radiation, range and body sizes were associated with each other and small body sizes were linked to higher mitochondrial nucleotide substitution rates and higher clade

  13. Deforestation and stream warming affect body size of Amazonian fishes.

    Science.gov (United States)

    Ilha, Paulo; Schiesari, Luis; Yanagawa, Fernando I; Jankowski, KathiJo; Navas, Carlos A

    2018-01-01

    Declining body size has been suggested to be a universal response of organisms to rising temperatures, manifesting at all levels of organization and in a broad range of taxa. However, no study to date evaluated whether deforestation-driven warming could trigger a similar response. We studied changes in fish body size, from individuals to assemblages, in streams in Southeastern Amazonia. We first conducted sampling surveys to validate the assumption that deforestation promoted stream warming, and to test the hypothesis that warmer deforested streams had reduced fish body sizes relative to cooler forest streams. As predicted, deforested streams were up to 6 °C warmer and had fish 36% smaller than forest streams on average. This body size reduction could be largely explained by the responses of the four most common species, which were 43-55% smaller in deforested streams. We then conducted a laboratory experiment to test the hypothesis that stream warming as measured in the field was sufficient to cause a growth reduction in the dominant fish species in the region. Fish reared at forest stream temperatures gained mass, whereas those reared at deforested stream temperatures lost mass. Our results suggest that deforestation-driven stream warming is likely to be a relevant factor promoting observed body size reductions, although other changes in stream conditions, like reductions in organic matter inputs, can also be important. A broad scale reduction in fish body size due to warming may be occurring in streams throughout the Amazonian Arc of Deforestation, with potential implications for the conservation of Amazonian fish biodiversity and food supply for people around the Basin.

  14. Deforestation and stream warming affect body size of Amazonian fishes

    Science.gov (United States)

    Yanagawa, Fernando I.; Jankowski, KathiJo; Navas, Carlos A.

    2018-01-01

    Declining body size has been suggested to be a universal response of organisms to rising temperatures, manifesting at all levels of organization and in a broad range of taxa. However, no study to date evaluated whether deforestation-driven warming could trigger a similar response. We studied changes in fish body size, from individuals to assemblages, in streams in Southeastern Amazonia. We first conducted sampling surveys to validate the assumption that deforestation promoted stream warming, and to test the hypothesis that warmer deforested streams had reduced fish body sizes relative to cooler forest streams. As predicted, deforested streams were up to 6 °C warmer and had fish 36% smaller than forest streams on average. This body size reduction could be largely explained by the responses of the four most common species, which were 43–55% smaller in deforested streams. We then conducted a laboratory experiment to test the hypothesis that stream warming as measured in the field was sufficient to cause a growth reduction in the dominant fish species in the region. Fish reared at forest stream temperatures gained mass, whereas those reared at deforested stream temperatures lost mass. Our results suggest that deforestation-driven stream warming is likely to be a relevant factor promoting observed body size reductions, although other changes in stream conditions, like reductions in organic matter inputs, can also be important. A broad scale reduction in fish body size due to warming may be occurring in streams throughout the Amazonian Arc of Deforestation, with potential implications for the conservation of Amazonian fish biodiversity and food supply for people around the Basin. PMID:29718960

  15. No Effect of Featural Attention on Body Size Aftereffects

    Directory of Open Access Journals (Sweden)

    Ian David Stephen

    2016-08-01

    Full Text Available Prolonged exposure to images of narrow bodies has been shown to induce a perceptual aftereffect, such that observers’ point of subjective normality (PSN for bodies shifts towards narrower bodies. The converse effect is shown for adaptation to wide bodies. In low-level stimuli, object attention (attention directed to the object and spatial attention (attention directed to the location of the object have been shown to increase the magnitude of visual aftereffects, while object-based attention enhances the adaptation effect in faces. It is not known whether featural attention (attention directed to a specific aspect of the object affects the magnitude of adaptation effects in body stimuli. Here, we manipulate the attention of Caucasian observers to different featural information in body images, by asking them to rate the fatness or sex typicality of male and female bodies manipulated to appear fatter or thinner than average. PSNs for body fatness were taken at baseline and after adaptation, and a change in PSN (ΔPSN was calculated. A body size adaptation effect was found, with observers who viewed fat bodies showing an increased PSN, and those exposed to thin bodies showing a reduced PSN. However, manipulations of featural attention to body fatness or sex typicality produced equivalent results, suggesting that featural attention may not affect the strength of the body size aftereffect.

  16. No Effect of Featural Attention on Body Size Aftereffects.

    Science.gov (United States)

    Stephen, Ian D; Bickersteth, Chloe; Mond, Jonathan; Stevenson, Richard J; Brooks, Kevin R

    2016-01-01

    Prolonged exposure to images of narrow bodies has been shown to induce a perceptual aftereffect, such that observers' point of subjective normality (PSN) for bodies shifts toward narrower bodies. The converse effect is shown for adaptation to wide bodies. In low-level stimuli, object attention (attention directed to the object) and spatial attention (attention directed to the location of the object) have been shown to increase the magnitude of visual aftereffects, while object-based attention enhances the adaptation effect in faces. It is not known whether featural attention (attention directed to a specific aspect of the object) affects the magnitude of adaptation effects in body stimuli. Here, we manipulate the attention of Caucasian observers to different featural information in body images, by asking them to rate the fatness or sex typicality of male and female bodies manipulated to appear fatter or thinner than average. PSNs for body fatness were taken at baseline and after adaptation, and a change in PSN (ΔPSN) was calculated. A body size adaptation effect was found, with observers who viewed fat bodies showing an increased PSN, and those exposed to thin bodies showing a reduced PSN. However, manipulations of featural attention to body fatness or sex typicality produced equivalent results, suggesting that featural attention may not affect the strength of the body size aftereffect.

  17. The Sex Determination Gene transformer Regulates Male-Female Differences in Drosophila Body Size.

    Science.gov (United States)

    Rideout, Elizabeth J; Narsaiya, Marcus S; Grewal, Savraj S

    2015-12-01

    Almost all animals show sex differences in body size. For example, in Drosophila, females are larger than males. Although Drosophila is widely used as a model to study growth, the mechanisms underlying this male-female difference in size remain unclear. Here, we describe a novel role for the sex determination gene transformer (tra) in promoting female body growth. Normally, Tra is expressed only in females. We find that loss of Tra in female larvae decreases body size, while ectopic Tra expression in males increases body size. Although we find that Tra exerts autonomous effects on cell size, we also discovered that Tra expression in the fat body augments female body size in a non cell-autonomous manner. These effects of Tra do not require its only known targets doublesex and fruitless. Instead, Tra expression in the female fat body promotes growth by stimulating the secretion of insulin-like peptides from insulin producing cells in the brain. Our data suggest a model of sex-specific growth in which body size is regulated by a previously unrecognized branch of the sex determination pathway, and identify Tra as a novel link between sex and the conserved insulin signaling pathway.

  18. The Sex Determination Gene transformer Regulates Male-Female Differences in Drosophila Body Size.

    Directory of Open Access Journals (Sweden)

    Elizabeth J Rideout

    2015-12-01

    Full Text Available Almost all animals show sex differences in body size. For example, in Drosophila, females are larger than males. Although Drosophila is widely used as a model to study growth, the mechanisms underlying this male-female difference in size remain unclear. Here, we describe a novel role for the sex determination gene transformer (tra in promoting female body growth. Normally, Tra is expressed only in females. We find that loss of Tra in female larvae decreases body size, while ectopic Tra expression in males increases body size. Although we find that Tra exerts autonomous effects on cell size, we also discovered that Tra expression in the fat body augments female body size in a non cell-autonomous manner. These effects of Tra do not require its only known targets doublesex and fruitless. Instead, Tra expression in the female fat body promotes growth by stimulating the secretion of insulin-like peptides from insulin producing cells in the brain. Our data suggest a model of sex-specific growth in which body size is regulated by a previously unrecognized branch of the sex determination pathway, and identify Tra as a novel link between sex and the conserved insulin signaling pathway.

  19. Carotid body size on CTA: Correlation with comorbidities

    International Nuclear Information System (INIS)

    Cramer, J.A.; Wiggins, R.H.; Fudim, M.; Engelman, Z.J.; Sobotka, P.A.; Shah, L.M.

    2014-01-01

    Aim: To test the hypothesis that computed tomographic angiography (CTA) can identify carotid body enlargement in patients with sympathetically mediated diseases. Materials and methods: A retrospective chart review of all patients obtaining CTAs of the cervical vasculature at University of Utah Health Sciences Center over a 6-month period was performed. Widest axial measurements of both carotid bodies were performed on a picture archiving and communication system (PACS). Statistical analysis was then performed to compare the mean carotid body size between control patients and patients with diabetes mellitus, hypertension, and congestive heart failure. Results: Measurements were performed on 288 patients, with 134 controls. Of the remaining 154, 72 patients had diabetes mellitus, 46 had congestive heart failure, and 130 had hypertension. The control patients had a mean carotid body diameter of 2.3 mm. There was a statistically significant (p < 0.01) 20–25% increase in mean diameter with diabetes mellitus (2.8 mm), hypertension (2.7 mm), and congestive heart failure (2.7 mm; p < 0.01). Conclusions: This study found a 20–25% larger mean carotid body size in patients with diabetes mellitus, hypertension, and congestive heart failure relative to controls. However, this small enlargement should not mimic other carotid body diseases, such as a paraganglionoma. Moreover, these findings further support the proposed functional relationship between the carotid body and sympathetically mediated disease states

  20. Stereometrical analysis of number and size of prolamellar bodies during pea chloroplast development

    Directory of Open Access Journals (Sweden)

    Agnieszka Mostowska

    2014-01-01

    Full Text Available The plastid prolamelar bodies in dark-grown pea seedlings undergo gradual transformation and decay after illumination with low intensity light. Random micrographs do not give direct information concerning the sizes and average numbers of prolamellar bodies in a plastid. These values were obtained after evaluation by a stereometrical method from the ratio of polamellar bodies sizes to the plastid size and from the frequency of prolamellar body sections of a given diameter. Plastids of dark-grown seedlings contained on the average at least one prolamellar body. After illumination the size of the bodies decreased rapidly owing to dispersion into primary thylakoids and split into much smaller numerous prolamellar bodies.

  1. Body Size Predicts Cardiac and Vascular Resistance Effects on Men's and Women's Blood Pressure

    Directory of Open Access Journals (Sweden)

    Joyce M. Evans

    2017-08-01

    Full Text Available Key Points SummaryWe report how blood pressure, cardiac output and vascular resistance are related to height, weight, body surface area (BSA, and body mass index (BMI in healthy young adults at supine rest and standing.Much inter-subject variability in young adult's blood pressure, currently attributed to health status, may actually result from inter-individual body size differences.Each cardiovascular variable is linearly related to height, weight and/or BSA (more than to BMI.When supine, cardiac output is positively related, while vascular resistance is negatively related, to body size. Upon standing, the change in vascular resistance is positively related to size.The height/weight relationships of cardiac output and vascular resistance to body size are responsible for blood pressure relationships to body size.These basic components of blood pressure could help distinguish normal from abnormal blood pressures in young adults by providing a more effective scaling mechanism.Introduction: Effects of body size on inter-subject blood pressure (BP variability are not well established in adults. We hypothesized that relationships linking stroke volume (SV, cardiac output (CO, and total peripheral resistance (TPR with body size would account for a significant fraction of inter-subject BP variability.Methods: Thirty-four young, healthy adults (19 men, 15 women participated in 38 stand tests during which brachial artery BP, heart rate, SV, CO, TPR, and indexes of body size were measured/calculated.Results: Steady state diastolic arterial BP was not significantly correlated with any index of body size when subjects were supine. However, upon standing, the more the subject weighed, or the taller s/he was, the greater the increase in diastolic pressure. Systolic pressure strongly correlated with body weight and height both supine and standing. Diastolic and systolic BP were more strongly related to height, weight and body surface area than to body mass

  2. Maximum size-density relationships for mixed-hardwood forest stands in New England

    Science.gov (United States)

    Dale S. Solomon; Lianjun Zhang

    2000-01-01

    Maximum size-density relationships were investigated for two mixed-hardwood ecological types (sugar maple-ash and beech-red maple) in New England. Plots meeting type criteria and undergoing self-thinning were selected for each habitat. Using reduced major axis regression, no differences were found between the two ecological types. Pure species plots (the species basal...

  3. Determining the effect of grain size and maximum induction upon coercive field of electrical steels

    Science.gov (United States)

    Landgraf, Fernando José Gomes; da Silveira, João Ricardo Filipini; Rodrigues-Jr., Daniel

    2011-10-01

    Although theoretical models have already been proposed, experimental data is still lacking to quantify the influence of grain size upon coercivity of electrical steels. Some authors consider a linear inverse proportionality, while others suggest a square root inverse proportionality. Results also differ with regard to the slope of the reciprocal of grain size-coercive field relation for a given material. This paper discusses two aspects of the problem: the maximum induction used for determining coercive force and the possible effect of lurking variables such as the grain size distribution breadth and crystallographic texture. Electrical steel sheets containing 0.7% Si, 0.3% Al and 24 ppm C were cold-rolled and annealed in order to produce different grain sizes (ranging from 20 to 150 μm). Coercive field was measured along the rolling direction and found to depend linearly on reciprocal of grain size with a slope of approximately 0.9 (A/m)mm at 1.0 T induction. A general relation for coercive field as a function of grain size and maximum induction was established, yielding an average absolute error below 4%. Through measurement of B50 and image analysis of micrographs, the effects of crystallographic texture and grain size distribution breadth were qualitatively discussed.

  4. Body size mediated coexistence in swans.

    Science.gov (United States)

    Engelhardt, Katharina A M; Ritchie, Mark E; Powell, James A

    2014-01-01

    Differences in body sizes may create a trade-off between foraging efficiency (foraging gains/costs) and access to resources. Such a trade-off provides a potential mechanism for ecologically similar species to coexist on one resource. We explored this hypothesis for tundra (Cygnus columbianus) and trumpeter swans (Cygnus buccinator), a federally protected species, feeding solely on sago pondweed (Stuckenia pectinata) tubers during fall staging and wintering in northern Utah. Foraging efficiency was higher for tundra swans because this species experienced lower foraging and metabolic costs relative to foraging gains; however, trumpeter swans (a) had longer necks and therefore had access to exclusive resources buried deep in wetland sediments and (b) were more aggressive and could therefore displace tundra swans from lucrative foraging locations. We conclude that body size differentiation is an important feature of coexistence among ecologically similar species feeding on one resource. In situations where resources are limiting and competition for resources is strong, conservation managers will need to consider the trade-off between foraging efficiency and access to resources to ensure ecologically similar species can coexist on a shared resource.

  5. Body size mediated coexistence of consumers competing for resources in space

    Science.gov (United States)

    Basset, A.; Angelis, D.L.

    2007-01-01

    Body size is a major phenotypic trait of individuals that commonly differentiates co-occurring species. We analyzed inter-specific competitive interactions between a large consumer and smaller competitors, whose energetics, selection and giving-up behaviour on identical resource patches scaled with individual body size. The aim was to investigate whether pure metabolic constraints on patch behaviour of vagile species can determine coexistence conditions consistent with existing theoretical and experimental evidence. We used an individual-based spatially explicit simulation model at a spatial scale defined by the home range of the large consumer, which was assumed to be parthenogenic and semelparous. Under exploitative conditions, competitive coexistence occurred in a range of body size ratios between 2 and 10. Asymmetrical competition and the mechanism underlying asymmetry, determined by the scaling of energetics and patch behaviour with consumer body size, were the proximate determinant of inter-specific coexistence. The small consumer exploited patches more efficiently, but searched for profitable patches less effectively than the larger competitor. Therefore, body-size related constraints induced niche partitioning, allowing competitive coexistence within a set of conditions where the large consumer maintained control over the small consumer and resource dynamics. The model summarises and extends the existing evidence of species coexistence on a limiting resource, and provides a mechanistic explanation for decoding the size-abundance distribution patterns commonly observed at guild and community levels. ?? Oikos.

  6. Neural substrate of body size: illusory feeling of shrinking of the waist.

    Directory of Open Access Journals (Sweden)

    H Henrik Ehrsson

    2005-12-01

    Full Text Available The perception of the size and shape of one's body (body image is a fundamental aspect of how we experience ourselves. We studied the neural correlates underlying perceived changes in the relative size of body parts by using a perceptual illusion in which participants felt that their waist was shrinking. We scanned the brains of the participants using functional magnetic resonance imaging. We found that activity in the cortices lining the left postcentral sulcus and the anterior part of the intraparietal sulcus reflected the illusion of waist shrinking, and that this activity was correlated with the reported degree of shrinking. These results suggest that the perceived changes in the size and shape of body parts are mediated by hierarchically higher-order somatosensory areas in the parietal cortex. Based on this finding we suggest that relative size of body parts is computed by the integration of more elementary somatic signals from different body segments.

  7. The body size of the oil-collecting bee Tetrapedia diversipes (Apidae)

    OpenAIRE

    Pinto da Silva,Carlos; Silva,Adriana; Duran Cordeiro,Guaraci; Alves dos Santos ,Isabel

    2015-01-01

    The body size of bees can affect their fitness in many ways. There is an indirect relationship between the size of the mother and the size of her progeny. This is so because large mothers use larger nests and brood cells and have higher foraging capacity than small mothers, and consequently large mothers supply a larger amount of food to their larvae, which grow larger. We analyzed the relationship between body size of individual oil-collecting bees of the species Tetrapedia diversipes and th...

  8. Geographical variation in body size and sexual size dimorphism in an Australian lizard, Boulenger's Skink (Morethia boulengeri).

    Science.gov (United States)

    Michael, Damian R; Banks, Sam C; Piggott, Maxine P; Cunningham, Ross B; Crane, Mason; MacGregor, Christopher; McBurney, Lachlan; Lindenmayer, David B

    2014-01-01

    Ecogeographical rules help explain spatial and temporal patterns in intraspecific body size. However, many of these rules, when applied to ectothermic organisms such as reptiles, are controversial and require further investigation. To explore factors that influence body size in reptiles, we performed a heuristic study to examine body size variation in an Australian lizard, Boulenger's Skink Morethia boulengeri from agricultural landscapes in southern New South Wales, south-eastern Australia. We collected tissue and morphological data on 337 adult lizards across a broad elevation and climate gradient. We used a model-selection procedure to determine if environmental or ecological variables best explained body size variation. We explored the relationship between morphology and phylogenetic structure before modeling candidate variables from four broad domains: (1) geography (latitude, longitude and elevation), (2) climate (temperature and rainfall), (3) habitat (vegetation type, number of logs and ground cover attributes), and (4) management (land use and grazing history). Broad phylogenetic structure was evident, but on a scale larger than our study area. Lizards were sexually dimorphic, whereby females had longer snout-vent length than males, providing support for the fecundity selection hypothesis. Body size variation in M. boulengeri was correlated with temperature and rainfall, a pattern consistent with larger individuals occupying cooler and more productive parts of the landscape. Climate change forecasts, which predict warmer temperature and increased aridity, may result in reduced lizard biomass and decoupling of trophic interactions with potential implications for community organization and ecosystem function.

  9. Body Size Shifts in Philippine Reef Fishes: Interfamilial Variation in Responses to Protection

    Directory of Open Access Journals (Sweden)

    Robert Y. Fidler

    2014-03-01

    Full Text Available As a consequence of intense fishing pressure, fished populations experience reduced population sizes and shifts in body size toward the predominance of smaller and early maturing individuals. Small, early-maturing fish exhibit significantly reduced reproductive output and, ultimately, reduced fitness. As part of resource management and biodiversity conservation programs worldwide, no-take marine protected areas (MPAs are expected to ameliorate the adverse effects of fishing pressure. In an attempt to advance our understanding of how coral reef MPAs meet their long-term goals, this study used visual census data from 23 MPAs and fished reefs in the Philippines to address three questions: (1 Do MPAs promote shifts in fish body size frequency distribution towards larger body sizes when compared to fished reefs? (2 Do MPA size and (3 age contribute to the efficacy of MPAs in promoting such shifts? This study revealed that across all MPAs surveyed, the distribution of fishes between MPAs and fished reefs were similar; however, large-bodied fish were more abundant within MPAs, along with small, young-of-the-year individuals. Additionally, there was a significant shift in body size frequency distribution towards larger body sizes in 12 of 23 individual reef sites surveyed. Of 22 fish families, eleven demonstrated significantly different body size frequency distributions between MPAs and fished reefs, indicating that shifts in the size spectrum of fishes in response to protection are family-specific. Family-level shifts demonstrated a significant, positive correlation with MPA age, indicating that MPAs become more effective at increasing the density of large-bodied fish within their boundaries over time.

  10. The non-linear relationship between body size and function in parrotfishes

    Science.gov (United States)

    Lokrantz, J.; Nyström, M.; Thyresson, M.; Johansson, C.

    2008-12-01

    Parrotfishes are a group of herbivores that play an important functional role in structuring benthic communities on coral reefs. Increasingly, these fish are being targeted by fishermen, and resultant declines in biomass and abundance may have severe consequences for the dynamics and regeneration of coral reefs. However, the impact of overfishing extends beyond declining fish stocks. It can also lead to demographic changes within species populations where mean body size is reduced. The effect of reduced mean body size on population dynamics is well described in literature but virtually no information exists on how this may influence important ecological functions. The study investigated how one important function, scraping (i.e., the capacity to remove algae and open up bare substratum for coral larval settlement), by three common species of parrotfishes ( Scarus niger, Chlorurus sordidus, and Chlorurus strongylocephalus) on coral reefs at Zanzibar (Tanzania) was influenced by the size of individual fishes. There was a non-linear relationship between body size and scraping function for all species examined, and impact through scraping was also found to increase markedly when fish reached a size of 15 20 cm. Thus, coral reefs which have a high abundance and biomass of parrotfish may nonetheless be functionally impaired if dominated by small-sized individuals. Reductions in mean body size within parrotfish populations could, therefore, have functional impacts on coral reefs that previously have been overlooked.

  11. Body size ideals and dissatisfaction in Ghanaian adolescents: role of media, lifestyle and well-being.

    Science.gov (United States)

    Michels, N; Amenyah, S D

    2017-05-01

    To inspire effective health promotion campaigns, we tested the relationship of ideal body size and body size dissatisfaction with (1) the potential resulting health-influencing factors diet, physical activity and well-being; and (2) with media as a potential influencer of body ideals. This is a cross-sectional study in 370 Ghanaian adolescents (aged 11-18 years). Questionnaires included disordered eating (EAT26), diet quality (FFQ), physical activity (IPAQ), well-being (KINDL) and media influence on appearance (SATAQ: pressure, internalisation and information). Ideal body size and body size dissatisfaction were assessed using the Stunkard figure rating scale. Body mass index (BMI), skinfolds and waist were measured. Linear regressions were adjusted for gender, age and parental education. Also, mediation was tested: 'can perceived media influence play a role in the effects of actual body size on body size dissatisfaction?'. Body size dissatisfaction was associated with lower well-being and more media influence (pressure and internalisation) but not with physical activity, diet quality or disordered eating. An underweight body size ideal might worsen disordered eating but was not significantly related to the other predictors of interest. Only a partial mediation effect by media pressure was found: especially overweight adolescents felt media pressure, and this media pressure was associated with more body size dissatisfaction. To prevent disordered eating and low well-being, health messages should include strategies that reduce body size dissatisfaction and increase body esteem by not focussing on the thin body ideal. Changing body size ideals in the media might be an appropriate way since media pressure was a mediator in the BMI-dissatisfaction relation. Copyright © 2017 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  12. Adjusting parameters of aortic valve stenosis severity by body size

    DEFF Research Database (Denmark)

    Minners, Jan; Gohlke-Baerwolf, Christa; Kaufmann, Beat A

    2014-01-01

    stenosis (jet velocity ≥2.5 m/s) and related to outcomes in a second cohort of 1525 patients from the Simvastatin/Ezetimibe in Aortic Stenosis (SEAS) study. RESULTS: Whereas jet velocity and MPG were independent of body size, AVA was significantly correlated with height, weight, BSA and BMI (Pearson...... correlation coefficient (r) 0.319, 0.281, 0.317 and 0.126, respectively, all pcorrelation between AVA and body size...

  13. Migrate small, sound big: functional constraints on body size promote tracheal elongation in cranes.

    Science.gov (United States)

    Jones, M R; Witt, C C

    2014-06-01

    Organismal traits often represent the outcome of opposing selection pressures. Although social or sexual selection can cause the evolution of traits that constrain function or survival (e.g. ornamental feathers), it is unclear how the strength and direction of selection respond to ecological shifts that increase the severity of the constraint. For example, reduced body size might evolve by natural selection to enhance flight performance in migratory birds, but social or sexual selection favouring large body size may provide a countervailing force. Tracheal elongation is a potential outcome of these opposing pressures because it allows birds to convey an auditory signal of exaggerated body size. We predicted that the evolution of migration in cranes has coincided with a reduction in body size and a concomitant intensification of social or sexual selection for apparent large body size via tracheal elongation. We used a phylogenetic comparative approach to examine the relationships among migration distance, body mass and trachea length in cranes. As predicted, we found that migration distance correlated negatively with body size and positively with proportional trachea length. This result was consistent with our hypothesis that evolutionary reductions in body size led to intensified selection for trachea length. The most likely ultimate causes of intensified positive selection on trachea length are the direct benefits of conveying a large body size in intraspecific contests for mates and territories. We conclude that the strength of social or sexual selection on crane body size is linked to the degree of functional constraint. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  14. Body Size Preference of Marine Animals in Relation to Extinction Selectivity

    Science.gov (United States)

    Sriram, A.; Idgunji, S.; Heim, N. A.; Payne, J.

    2014-12-01

    Our project encompasses an extremely specific aspect in relation to the five mass extinctions in geologic history. We asked ourselves whether larger or smaller body sizes would be better suited for surviving a mass extinction. To conduct research for our project, we used the body sizes of 17,172 marine animal genera as our primary data. These animals include echinoderms, arthropods, chordates, mollusks, and brachiopods. These creatures are perfect model organisms in terms of finding data on them because they have an excellent fossil record, and are well documented. We focused on the mean body size of these animals before and after each of the five mass extinctions (end-Ordovician, Late Devonian, end-Permian, end-Triassic, and end-Cretaceous). Our hypothesis was that the average biovolume of animals increased after each of the extinctions, with the mean size being greater after than it was before. Our size data is from the Ellis & Messina Catalogue of Ostracoda and the Treatise on Invertebrate Paleontology. We obtained stratigraphic range data The Treatise and Sepkoski (2002). In our analyses, we compared the mean size of the different animal genera before and after each extinction event. We further partitioned size change across mass extinction boundaries into three categories: the surviving genera, the extinct genera, and the newly originating genera that came about after the extinction. According to our analyses, the mean sizes did not change significantly from the genera living during the stages before the extinctions and after the extinctions. From our results, we can assume that there were not enough major increases in the overall volume of the organisms to warrant a definite conclusion that extinctions lead to larger body sizes. Further support for our findings came from the T-tests in our R code. Only the Cretaceous period showed true evidence for size changing because of the extinction; in this case, the mean size decreased. T-tests for the Cretaceous

  15. Spatial variation in egg size of a top predator: Interplay of body size and environmental factors?

    Science.gov (United States)

    Louzao, Maite; Igual, José M.; Genovart, Meritxell; Forero, Manuela G.; Hobson, Keith A.; Oro, Daniel

    2008-09-01

    It is expected that nearby populations are constrained by the same ecological features shaping in turn similarity in their ecological traits. Here, we studied the spatio-temporal variability in egg size among local populations of the critically endangered Balearic shearwater Puffinus mauretanicus, a top marine predator endemic to the western Mediterranean region. Specifically we assessed whether this trait was influenced by maternal body size, as an indicator of a genetic component, and feeding ecology (through stable-carbon and nitrogen-isotope measurements), as an indicator of environmental factors. We found that egg size varied among local populations, an unexpected result at such a small spatial scale. Body size differences at the local population level only partially explained such differences. Blood isotope measurements also differed among local populations. Values of δ 15N suggested inter-population differences in trophic level, showing a similar general pattern with egg size, and suggesting a nutritional link between them whereby egg size was affected by differences in feeding resources and/or behaviour. Values of δ 13C suggested that local populations did not differ in foraging habits with respect to benthic- vs. pelagic-based food-webs. Egg size did not vary among years as did breeding performance, suggesting that a differential temporal window could affect both breeding parameters in relation to food availability. The absence of a relationship between breeding performance and egg size suggested that larger eggs might only confer an advantage during harsh conditions. Alternatively parental quality could greatly affect breeding performance. We showed that inter-population differences in egg size could be influenced by both body size and environmental factors.

  16. Illusory changes in body size modulate body satisfaction in a way that is related to non-clinical eating disorder psychopathology.

    Directory of Open Access Journals (Sweden)

    Catherine Preston

    Full Text Available Historically, body size overestimation has been linked to abnormal levels of body dissatisfaction found in eating disorders. However, recently this relationship has been called into question. Indeed, despite a link between how we perceive and how we feel about our body seeming intuitive, until now lack of an experimental method to manipulate body size has meant that a causal link, even in healthy participants, has remained elusive. Recent developments in body perception research demonstrate that the perceptual experience of the body can be readily manipulated using multisensory illusions. The current study exploits such illusions to modulate perceived body size in an attempt to influence body satisfaction. Participants were presented with stereoscopic video images of slimmer and wider mannequin bodies viewed through head-mounted displays from first person perspective. Illusory ownership was induced by synchronously stroking the seen mannequin body with the unseen real body. Pre and post-illusion affective and perceptual measures captured changes in perceived body size and body satisfaction. Illusory ownership of a slimmer body resulted in participants perceiving their actual body as slimmer and giving higher ratings of body satisfaction demonstrating a direct link between perceptual and affective body representations. Change in body satisfaction following illusory ownership of a wider body, however, was related to degree of (non-clinical eating disorder psychopathology, which can be linked to fluctuating body representations found in clinical samples. The results suggest that body perception is linked to body satisfaction and may be of importance for eating disorder symptomology.

  17. Illusory Changes in Body Size Modulate Body Satisfaction in a Way That Is Related to Non-Clinical Eating Disorder Psychopathology

    Science.gov (United States)

    Preston, Catherine; Ehrsson, H. Henrik

    2014-01-01

    Historically, body size overestimation has been linked to abnormal levels of body dissatisfaction found in eating disorders. However, recently this relationship has been called into question. Indeed, despite a link between how we perceive and how we feel about our body seeming intuitive, until now lack of an experimental method to manipulate body size has meant that a causal link, even in healthy participants, has remained elusive. Recent developments in body perception research demonstrate that the perceptual experience of the body can be readily manipulated using multisensory illusions. The current study exploits such illusions to modulate perceived body size in an attempt to influence body satisfaction. Participants were presented with stereoscopic video images of slimmer and wider mannequin bodies viewed through head-mounted displays from first person perspective. Illusory ownership was induced by synchronously stroking the seen mannequin body with the unseen real body. Pre and post-illusion affective and perceptual measures captured changes in perceived body size and body satisfaction. Illusory ownership of a slimmer body resulted in participants perceiving their actual body as slimmer and giving higher ratings of body satisfaction demonstrating a direct link between perceptual and affective body representations. Change in body satisfaction following illusory ownership of a wider body, however, was related to degree of (non-clinical) eating disorder psychopathology, which can be linked to fluctuating body representations found in clinical samples. The results suggest that body perception is linked to body satisfaction and may be of importance for eating disorder symptomology. PMID:24465698

  18. Aging and body size in solitary bees

    Science.gov (United States)

    Solitary bees are important pollinators of crops and non-domestic plants. Osmia lignaria is a native, commercially-reared solitary bee used to maximize pollination in orchard crops. In solitary bees, adult body size is extremely variable depending on the nutritional resources available to the develo...

  19. Body Size Mediated Coexistence in Swans

    Directory of Open Access Journals (Sweden)

    Katharina A. M. Engelhardt

    2014-01-01

    Full Text Available Differences in body sizes may create a trade-off between foraging efficiency (foraging gains/costs and access to resources. Such a trade-off provides a potential mechanism for ecologically similar species to coexist on one resource. We explored this hypothesis for tundra (Cygnus columbianus and trumpeter swans (Cygnus buccinator, a federally protected species, feeding solely on sago pondweed (Stuckenia pectinata tubers during fall staging and wintering in northern Utah. Foraging efficiency was higher for tundra swans because this species experienced lower foraging and metabolic costs relative to foraging gains; however, trumpeter swans (a had longer necks and therefore had access to exclusive resources buried deep in wetland sediments and (b were more aggressive and could therefore displace tundra swans from lucrative foraging locations. We conclude that body size differentiation is an important feature of coexistence among ecologically similar species feeding on one resource. In situations where resources are limiting and competition for resources is strong, conservation managers will need to consider the trade-off between foraging efficiency and access to resources to ensure ecologically similar species can coexist on a shared resource.

  20. Big or fast: two strategies in the developmental control of body size

    OpenAIRE

    Nijhout, H. Frederik

    2015-01-01

    Adult body size is controlled by the mechanisms that stop growth when a species-characteristic size has been reached. The mechanisms by which size is sensed and by which this information is transduced to the growth regulating system are beginning to be understood in a few species of insects. Two rather different strategies for control have been discovered; one favors large body size and the other favors rapid development.

  1. Body size and body esteem in women : The mediating role of possible self expectancy

    NARCIS (Netherlands)

    Dalley, Simon E.; Pollet, Thomas V.; Vidal, Jose

    We predicted that an expectancy of acquiring a feared fat self and an expectancy of acquiring a hoped-for thin self both mediate the impact of body size on women's body esteem. We also predicted that the mediating pathway through the feared fat self would be stronger than that through the hoped-for

  2. Body size and body esteem in women: The mediating role of possible self expectancy

    NARCIS (Netherlands)

    Dalley, S.E.; Pollet, T.V.; Vidal, J.

    2013-01-01

    We predicted that an expectancy of acquiring a feared fat self and an expectancy of acquiring a hoped-for thin self both mediate the impact of body size on women's body esteem. We also predicted that the mediating pathway through the feared fat self would be stronger than that through the hoped-for

  3. Body size limits dim-light foraging activity in stingless bees (Apidae: Meliponini).

    Science.gov (United States)

    Streinzer, Martin; Huber, Werner; Spaethe, Johannes

    2016-10-01

    Stingless bees constitute a species-rich tribe of tropical and subtropical eusocial Apidae that act as important pollinators for flowering plants. Many foraging tasks rely on vision, e.g. spatial orientation and detection of food sources and nest entrances. Meliponini workers are usually small, which sets limits on eye morphology and thus quality of vision. Limitations are expected both on acuity, and thus on the ability to detect objects from a distance, as well as on sensitivity, and thus on the foraging time window at dusk and dawn. In this study, we determined light intensity thresholds for flight under dim light conditions in eight stingless bee species in relation to body size in a Neotropical lowland rainforest. Species varied in body size (0.8-1.7 mm thorax-width), and we found a strong negative correlation with light intensity thresholds (0.1-79 lx). Further, we measured eye size, ocelli diameter, ommatidia number, and facet diameter. All parameters significantly correlated with body size. A disproportionately low light intensity threshold in the minute Trigonisca pipioli, together with a large eye parameter P eye suggests specific adaptations to circumvent the optical constraints imposed by the small body size. We discuss the implications of body size in bees on foraging behavior.

  4. Experimental Investigation of Subject-Specific On-Body Radio Propagation Channels for Body-Centric Wireless Communications

    Directory of Open Access Journals (Sweden)

    Mohammad Monirujjaman Khan

    2014-01-01

    Full Text Available In this paper, subject-specific narrowband (2.45 GHz and ultra-wideband (3–10.6 GHz on-body radio propagation studies in wireless body area networks (WBANs were performed by characterizing the path loss for eight different human subjects of different shapes and sizes. The body shapes and sizes of the test subjects used in this study are characterised as thin, medium build, fatty, shorter, average height and taller. Experimental investigation was made in an indoor environment using a pair of printed monopoles (for the narrowband case and a pair of tapered slot antennas (for the ultra-wideband (UWB case. Results demonstrated that, due to the different sizes, heights and shapes of the test subjects, the path loss exponent value varies up to maximum of 0.85 for the narrowband on-body case, whereas a maximum variation of the path loss exponent value of 1.15 is noticed for the UWB case. In addition, the subject-specific behaviour of the on-body radio propagation channels was compared between narrowband and UWB systems, and it was deduced that the on-body radio channels are subject-specific for both narrowband and UWB system cases, when the same antennas (same characteristics are used. The effect of the human body shape and size variations on the eight different on-body radio channels is also studied for both the narrowband and UWB cases.

  5. Low level of polyandry constrains phenotypic plasticity of male body size in mites.

    Directory of Open Access Journals (Sweden)

    Peter Schausberger

    Full Text Available Polyandry, i.e. females mating with multiple males, is more common than previously anticipated and potentially provides both direct and indirect fitness benefits to females. The level of polyandry (defined by the lifetime number of male mates of a female is an important determinant of the occurrence and intensity of sexual selection acting on male phenotypes. While the forces of sexual selection acting on phenotypic male traits such as body size are relatively well understood, sexual selection acting on phenotypic plasticity of these traits is unexplored. We tackled this issue by scrutinizing the link between polyandry and phenotypic plasticity of male body size in two sympatric plant-inhabiting predatory mite species, Phytoseiulus persimilis and Neoseiulus californicus. These two species are similar in life history, ecological niche requirements, mating behavior, polygyny and female body size plasticity but strikingly differ in the level of both polyandry and phenotypic plasticity of male body size (both lower in P. persimilis. We hypothesized that deviations from standard body size, i.e. the size achieved under favorable conditions, incur higher costs for males in the less polyandrous P. persimilis. To test our hypotheses, we conducted two experiments on (i the effects of male body size on spermatophore transfer in singly mating females and (ii the effects of mate sequence (switching the order of standard-sized and small males on mating behavior and paternity success in doubly mating females. In P. persimilis but not N. californicus, small males transferred fewer but larger spermatophores to the females; in both species, females re-mated more likely with standard-sized following small than small following standard-sized males; in P. persimilis, first standard-sized males sired a higher proportion of offspring produced after re-mating by the female than first small males, whereas in N. californicus the paternity success of small and standard-sized

  6. Low level of polyandry constrains phenotypic plasticity of male body size in mites.

    Science.gov (United States)

    Schausberger, Peter; Walzer, Andreas; Murata, Yasumasa; Osakabe, Masahiro

    2017-01-01

    Polyandry, i.e. females mating with multiple males, is more common than previously anticipated and potentially provides both direct and indirect fitness benefits to females. The level of polyandry (defined by the lifetime number of male mates of a female) is an important determinant of the occurrence and intensity of sexual selection acting on male phenotypes. While the forces of sexual selection acting on phenotypic male traits such as body size are relatively well understood, sexual selection acting on phenotypic plasticity of these traits is unexplored. We tackled this issue by scrutinizing the link between polyandry and phenotypic plasticity of male body size in two sympatric plant-inhabiting predatory mite species, Phytoseiulus persimilis and Neoseiulus californicus. These two species are similar in life history, ecological niche requirements, mating behavior, polygyny and female body size plasticity but strikingly differ in the level of both polyandry and phenotypic plasticity of male body size (both lower in P. persimilis). We hypothesized that deviations from standard body size, i.e. the size achieved under favorable conditions, incur higher costs for males in the less polyandrous P. persimilis. To test our hypotheses, we conducted two experiments on (i) the effects of male body size on spermatophore transfer in singly mating females and (ii) the effects of mate sequence (switching the order of standard-sized and small males) on mating behavior and paternity success in doubly mating females. In P. persimilis but not N. californicus, small males transferred fewer but larger spermatophores to the females; in both species, females re-mated more likely with standard-sized following small than small following standard-sized males; in P. persimilis, first standard-sized males sired a higher proportion of offspring produced after re-mating by the female than first small males, whereas in N. californicus the paternity success of small and standard-sized males was

  7. Body composition of freshwater Wallago attu in relation to body size ...

    African Journals Online (AJOL)

    Wallago attu is one of the large freshwater catfish found in Pakistan. The rapid growth and high nutritional quality encouraged investigation into the aquaculture potential of this excellent food fish. It was observed that body size had a positive influence on percent ash, percent fat and percent protein contents (wet weight) but ...

  8. Reduced oxygen at high altitude limits maximum size.

    Science.gov (United States)

    Peck, L S; Chapelle, G

    2003-11-07

    The trend towards large size in marine animals with latitude, and the existence of giant marine species in polar regions have long been recognized, but remained enigmatic until a recent study showed it to be an effect of increased oxygen availability in sea water of a low temperature. The effect was apparent in data from 12 sites worldwide because of variations in water oxygen content controlled by differences in temperature and salinity. Another major physical factor affecting oxygen content in aquatic environments is reduced pressure at high altitude. Suitable data from high-altitude sites are very scarce. However, an exceptionally rich crustacean collection, which remains largely undescribed, was obtained by the British 1937 expedition from Lake Titicaca on the border between Peru and Bolivia in the Andes at an altitude of 3809 m. We show that in Lake Titicaca the maximum length of amphipods is 2-4 times smaller than other low-salinity sites (Caspian Sea and Lake Baikal).

  9. Prolificacy and Its Relationship with Age, Body Weight, Parity, Previous Litter Size and Body Linear Type Traits in Meat-type Goats

    Directory of Open Access Journals (Sweden)

    Avijit Haldar

    2014-05-01

    Full Text Available Data on age and body weight at breeding, parity, previous litter size, days open and some descriptive body linear traits from 389 meat-type, prolific Black Bengal goats in Tripura State of India, were collected for 3 and 1/2 years (2007 to 2010 and analyzed using logistic regression model. The objectives of the study were i to evaluate the effect of age and body weight at breeding, parity, previous litter size and days open on litter size of does; and ii to investigate if body linear type traits influenced litter size in meat-type, prolific goats. The incidence of 68.39% multiple births with a prolificacy rate of 175.07% was recorded. Higher age (>2.69 year, higher parity order (>2.31, more body weight at breeding (>20.5 kg and larger previous litter size (>1.65 showed an increase likelihood of multiple litter size when compared to single litter size. There was a strong, positive relationship between litter size and various body linear type traits like neck length (>22.78 cm, body length (>54.86 cm, withers height (>48.85 cm, croup height (>50.67 cm, distance between tuber coxae bones (>11.38 cm and distance between tuber ischii bones (>4.56 cm for discriminating the goats bearing multiple fetuses from those bearing a single fetus.

  10. The evolution of body size in extant groups of North American freshwater fishes: speciation, size distributions, and Cope's rule.

    Science.gov (United States)

    Knouft, Jason H; Page, Lawrence M

    2003-03-01

    Change in body size within an evolutionary lineage over time has been under investigation since the synthesis of Cope's rule, which suggested that there is a tendency for mammals to evolve larger body size. Data from the fossil record have subsequently been examined for several other taxonomic groups to determine whether they also displayed an evolutionary increase in body size. However, we are not aware of any species-level study that has investigated the evolution of body size within an extant continental group. Data acquired from the fossil record and data derived from the evolutionary relationships of extant species are not similar, with each set exhibiting both strengths and weaknesses related to inferring evolutionary patterns. Consequently, expectation that general trends exhibited in the fossil record will correspond to patterns in extant groups is not necessarily warranted. Using phylogenetic relationships of extant species, we show that five of nine families of North American freshwater fishes exhibit an evolutionary trend of decreasing body size. These trends result from the basal position of large species and the more derived position of small species within families. Such trends may be caused by the invasion of small streams and subsequent isolation and speciation. This pattern, potentially influenced by size-biased dispersal rates and the high percentage of small streams in North America, suggests a scenario that could result in the generation of the size-frequency distribution of North American freshwater fishes.

  11. Heritability of body size in the polar bears of Western Hudson Bay.

    Science.gov (United States)

    Malenfant, René M; Davis, Corey S; Richardson, Evan S; Lunn, Nicholas J; Coltman, David W

    2018-04-18

    Among polar bears (Ursus maritimus), fitness is dependent on body size through males' abilities to win mates, females' abilities to provide for their young and all bears' abilities to survive increasingly longer fasting periods caused by climate change. In the Western Hudson Bay subpopulation (near Churchill, Manitoba, Canada), polar bears have declined in body size and condition, but nothing is known about the genetic underpinnings of body size variation, which may be subject to natural selection. Here, we combine a 4449-individual pedigree and an array of 5,433 single nucleotide polymorphisms (SNPs) to provide the first quantitative genetic study of polar bears. We used animal models to estimate heritability (h 2 ) among polar bears handled between 1966 and 2011, obtaining h 2 estimates of 0.34-0.48 for strictly skeletal traits and 0.18 for axillary girth (which is also dependent on fatness). We genotyped 859 individuals with the SNP array to test for marker-trait association and combined p-values over genetic pathways using gene-set analysis. Variation in all traits appeared to be polygenic, but we detected one region of moderately large effect size in body length near a putative noncoding RNA in an unannotated region of the genome. Gene-set analysis suggested that variation in body length was associated with genes in the regulatory cascade of cyclin expression, which has previously been associated with body size in mice. A greater understanding of the genetic architecture of body size variation will be valuable in understanding the potential for adaptation in polar bear populations challenged by climate change. © 2018 John Wiley & Sons Ltd.

  12. Body shape and size depictions of African American women in JET magazine, 1953-2006.

    Science.gov (United States)

    Dawson-Andoh, Nana A; Gray, James J; Soto, José A; Parker, Scott

    2011-01-01

    Depictions of Caucasian women in the mainstream media have become increasingly thinner in size and straighter in shape. These changes may be inconsistent with the growing influence of African American beauty ideals, which research has established as more accepting of larger body sizes and more curvaceous body types than Caucasians. The present study looked at trends in the portrayal of African American women featured in JET magazine from 1953 to 2006. Beauty of the Week (BOW) images were collected and analyzed to examine body size (estimated by independent judges) and body shape (estimated by waist-to-hip ratio). We expected body sizes to increase and body shapes to become more curvaceous. Results revealed a rise in models' body size consistent with expectations, but an increase in waist-to-hip ratio, contrary to prediction. Our findings suggest that the African American feminine beauty ideal reflects both consistencies with and departures from mainstream cultural ideals. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Preliminarily study on the maximum handling size, prey size and species selectivity of growth hormone transgenic and non-transgenic common carp Cyprinus carpio when foraging on gastropods

    Science.gov (United States)

    Zhu, Tingbing; Zhang, Lihong; Zhang, Tanglin; Wang, Yaping; Hu, Wei; Olsen, Rolf Eric; Zhu, Zuoyan

    2017-10-01

    The present study preliminarily examined the differences in maximum handling size, prey size and species selectivity of growth hormone transgenic and non-transgenic common carp Cyprinus carpio when foraging on four gastropods species (Bellamya aeruginosa, Radix auricularia, Parafossarulus sinensis and Alocinma longicornis) under laboratory conditions. In the maximum handling size trial, five fish from each age group (1-year-old and 2-year-old) and each genotype (transgenic and non-transgenic) of common carp were individually allowed to feed on B. aeruginosa with wide shell height range. The results showed that maximum handling size increased linearly with fish length, and there was no significant difference in maximum handling size between the two genotypes. In the size selection trial, three pairs of 2-year-old transgenic and non-transgenic carp were individually allowed to feed on three size groups of B. aeruginosa. The results show that the two genotypes of C. carpio favored the small-sized group over the large-sized group. In the species selection trial, three pairs of 2-year-old transgenic and non-transgenic carp were individually allowed to feed on thin-shelled B. aeruginosa and thick-shelled R. auricularia, and five pairs of 2-year-old transgenic and non-transgenic carp were individually allowed to feed on two gastropods species (P. sinensis and A. longicornis) with similar size and shell strength. The results showed that both genotypes preferred thin-shelled Radix auricularia rather than thick-shelled B. aeruginosa, but there were no significant difference in selectivity between the two genotypes when fed on P. sinensis and A. longicornis. The present study indicates that transgenic and non-transgenic C. carpio show similar selectivity of predation on the size- and species-limited gastropods. While this information may be useful for assessing the environmental risk of transgenic carp, it does not necessarily demonstrate that transgenic common carp might

  14. The limit distribution of the maximum increment of a random walk with regularly varying jump size distribution

    DEFF Research Database (Denmark)

    Mikosch, Thomas Valentin; Rackauskas, Alfredas

    2010-01-01

    In this paper, we deal with the asymptotic distribution of the maximum increment of a random walk with a regularly varying jump size distribution. This problem is motivated by a long-standing problem on change point detection for epidemic alternatives. It turns out that the limit distribution...... of the maximum increment of the random walk is one of the classical extreme value distributions, the Fréchet distribution. We prove the results in the general framework of point processes and for jump sizes taking values in a separable Banach space...

  15. Pareto versus lognormal: a maximum entropy test.

    Science.gov (United States)

    Bee, Marco; Riccaboni, Massimo; Schiavo, Stefano

    2011-08-01

    It is commonly found that distributions that seem to be lognormal over a broad range change to a power-law (Pareto) distribution for the last few percentiles. The distributions of many physical, natural, and social events (earthquake size, species abundance, income and wealth, as well as file, city, and firm sizes) display this structure. We present a test for the occurrence of power-law tails in statistical distributions based on maximum entropy. This methodology allows one to identify the true data-generating processes even in the case when it is neither lognormal nor Pareto. The maximum entropy approach is then compared with other widely used methods and applied to different levels of aggregation of complex systems. Our results provide support for the theory that distributions with lognormal body and Pareto tail can be generated as mixtures of lognormally distributed units.

  16. Can foraging ecology drive the evolution of body size in a diving endotherm?

    Directory of Open Access Journals (Sweden)

    Timothée R Cook

    Full Text Available Within a single animal species, different morphs can allow for differential exploitation of foraging niches between populations, while sexual size dimorphism can provide each sex with access to different resources. Despite being potentially important agents of evolution, resource polymorphisms, and the way they operate in wild populations, remain poorly understood. In this study, we examine how trophic factors can select for different body sizes between populations and sexes in a diving endotherm. Dive depth and duration are positively related to body size in diving birds and mammals, a relationship explained by a lower mass-specific metabolic rate and greater oxygen stores in larger individuals. Based on this allometry, we predict that selection for exploiting resources situated at different depths can drive the evolution of body size in species of diving endotherms at the population and sexual level. To test this prediction, we studied the foraging ecology of Blue-eyed Shags, a group of cormorants with male-biased sexual size dimorphism from across the Southern Ocean. We found that mean body mass and relative difference in body mass between sexes varied by up to 77% and 107% between neighbouring colonies, respectively. Birds from colonies with larger individuals dived deeper than birds from colonies with smaller individuals, when accounting for sex. In parallel, males dived further offshore and deeper than females and the sexual difference in dive depth reflected the level of sexual size dimorphism at each colony. We argue that body size in this group of birds is under intense selection for diving to depths of profitable benthic prey patches and that, locally, sexual niche divergence selection can exaggerate the sexual size dimorphism of Blue-eyed Shags initially set up by sexual selection. Our findings suggest that trophic resources can select for important geographic micro-variability in body size between populations and sexes.

  17. Body size correlates with fertilization success but not gonad size in grass goby territorial males.

    Directory of Open Access Journals (Sweden)

    Jose Martin Pujolar

    Full Text Available In fish species with alternative male mating tactics, sperm competition typically occurs when small males that are unsuccessful in direct contests steal fertilization opportunities from large dominant males. In the grass goby Zosterisessor ophiocephalus, large territorial males defend and court females from nest sites, while small sneaker males obtain matings by sneaking into nests. Parentage assignment of 688 eggs from 8 different nests sampled in the 2003-2004 breeding season revealed a high level of sperm competition. Fertilization success of territorial males was very high but in all nests sneakers also contributed to the progeny. In territorial males, fertilization success correlated positively with male body size. Gonadal investment was explored in a sample of 126 grass gobies collected during the period 1995-1996 in the same area (61 territorial males and 65 sneakers. Correlation between body weight and testis weight was positive and significant for sneaker males, while correlation was virtually equal to zero in territorial males. That body size in territorial males is correlated with fertilization success but not gonad size suggests that males allocate much more energy into growth and relatively little into sperm production once the needed size to become territorial is attained. The increased paternity of larger territorial males might be due to a more effective defense of the nest in comparison with smaller territorial males.

  18. Body size correlates with fertilization success but not gonad size in grass goby territorial males.

    Science.gov (United States)

    Pujolar, Jose Martin; Locatello, Lisa; Zane, Lorenzo; Mazzoldi, Carlotta

    2012-01-01

    In fish species with alternative male mating tactics, sperm competition typically occurs when small males that are unsuccessful in direct contests steal fertilization opportunities from large dominant males. In the grass goby Zosterisessor ophiocephalus, large territorial males defend and court females from nest sites, while small sneaker males obtain matings by sneaking into nests. Parentage assignment of 688 eggs from 8 different nests sampled in the 2003-2004 breeding season revealed a high level of sperm competition. Fertilization success of territorial males was very high but in all nests sneakers also contributed to the progeny. In territorial males, fertilization success correlated positively with male body size. Gonadal investment was explored in a sample of 126 grass gobies collected during the period 1995-1996 in the same area (61 territorial males and 65 sneakers). Correlation between body weight and testis weight was positive and significant for sneaker males, while correlation was virtually equal to zero in territorial males. That body size in territorial males is correlated with fertilization success but not gonad size suggests that males allocate much more energy into growth and relatively little into sperm production once the needed size to become territorial is attained. The increased paternity of larger territorial males might be due to a more effective defense of the nest in comparison with smaller territorial males.

  19. Galectin-3 levels relate in children to total body fat, abdominal fat, body fat distribution, and cardiac size.

    Science.gov (United States)

    Dencker, Magnus; Arvidsson, Daniel; Karlsson, Magnus K; Wollmer, Per; Andersen, Lars B; Thorsson, Ola

    2018-03-01

    Galectin-3 has recently been proposed as a novel biomarker for cardiovascular disease in adults. The purpose of this investigation was to assess relationships between galectin-3 levels and total body fat, abdominal fat, body fat distribution, aerobic fitness, blood pressure, left ventricular mass, left atrial size, and increase in body fat over a 2-year period in a population-based sample of children. Our study included 170 children aged 8-11 years. Total fat mass and abdominal fat were measured by dual-energy x-ray absorptiometry (DXA). Body fat distribution was expressed as abdominal fat/total fat mass. Maximal oxygen uptake was assessed by indirect calorimetry during a maximal exercise test and scaled to body mass. Systolic and diastolic blood pressure and pulse pressure were measured. Left atrial size, left ventricular mass, and relative wall thickness were measured by echocardiography. Frozen serum samples were analyzed for galectin-3 by the Proximity Extension Assay technique. A follow-up DXA scan was performed in 152 children 2 years after the baseline exam. Partial correlations, with adjustment for sex and age, between galectin-3 versus body fat measurements indicated weak to moderate relationships. Moreover, left atrial size, left ventricular mass, and relative wall thickness and pulse pressure were also correlated with galectin-3. Neither systolic blood pressure nor maximal oxygen uptake was correlated with galectin-3. There was also a correlation between galectin-3 and increase in total body fat over 2 years, while no such correlations were found for the other fat measurements. More body fat and abdominal fat, more abdominal body fat distribution, more left ventricular mass, and increased left atrial size were all associated with higher levels of galectin-3. Increase in total body fat over 2 years was also associated with higher levels of galectin-3. What is Known: • Galectin-3 has been linked to obesity and been proposed to be a novel biomarker

  20. A pilot study on body image, attractiveness and body size in Gambians living in an urban community.

    Science.gov (United States)

    Siervo, M; Grey, P; Nyan, O A; Prentice, A M

    2006-06-01

    We investigated the attitudinal and perceptual components of body image and its link with body mass index (BMI) in a sample of urban Gambians. We also looked at cross-cultural differences in body image and views on attractiveness between Gambians and Americans. Four groups of 50 subjects were assessed: men 14- 25y (YM); women 14-25y (YW); men 35-50y (OM); women 35-50y (OW). Socio-economic status, education, healthy lifestyle and western influences were investigated. Height and weight were measured. Body dissatisfaction was assessed with the body dissatisfaction scale of the Eating Disorder Inventory. Perceptions of body image and attractiveness were assessed using the Body Image Assessment for Obesity (BIA-O) and Figure Rating Scale (FRS). Different generations of Gambians had very different perceptions and attitudes towards obesity. Current body size was realistically perceived and largely well tolerated. Older women had a higher body discrepancy (current minus ideal body size) than other groups (pbody size until they were overweight (BMI=27.8 kg/m2), whilst OM, YM and YW started to be concerned at a BMI respectively of 22.9, 19.8 and 21.5 kg/m2. A cross-cultural comparison using published data on FRS showed that Gambians were more obesity tolerant than black and white Americans. The Gambia is a country in the early stage of demographic transitions but in urban areas there is an increase in obesity prevalence. Inherent tensions between the preservation of cultural values and traditional habits, and raising awareness of the risks of obesity, may limit health interventions to prevent weight gain.

  1. Environmental, biological and anthropogenic effects on grizzly bear body size: temporal and spatial considerations.

    Science.gov (United States)

    Nielsen, Scott E; Cattet, Marc R L; Boulanger, John; Cranston, Jerome; McDermid, Greg J; Shafer, Aaron B A; Stenhouse, Gordon B

    2013-09-08

    Individual body growth is controlled in large part by the spatial and temporal heterogeneity of, and competition for, resources. Grizzly bears (Ursus arctos L.) are an excellent species for studying the effects of resource heterogeneity and maternal effects (i.e. silver spoon) on life history traits such as body size because their habitats are highly variable in space and time. Here, we evaluated influences on body size of grizzly bears in Alberta, Canada by testing six factors that accounted for spatial and temporal heterogeneity in environments during maternal, natal and 'capture' (recent) environments. After accounting for intrinsic biological factors (age, sex), we examined how body size, measured in mass, length and body condition, was influenced by: (a) population density; (b) regional habitat productivity; (c) inter-annual variability in productivity (including silver spoon effects); (d) local habitat quality; (e) human footprint (disturbances); and (f) landscape change. We found sex and age explained the most variance in body mass, condition and length (R(2) from 0.48-0.64). Inter-annual variability in climate the year before and of birth (silver spoon effects) had detectable effects on the three-body size metrics (R(2) from 0.04-0.07); both maternal (year before birth) and natal (year of birth) effects of precipitation and temperature were related with body size. Local heterogeneity in habitat quality also explained variance in body mass and condition (R(2) from 0.01-0.08), while annual rate of landscape change explained additional variance in body length (R(2) of 0.03). Human footprint and population density had no observed effect on body size. These results illustrated that body size patterns of grizzly bears, while largely affected by basic biological characteristics (age and sex), were also influenced by regional environmental gradients the year before, and of, the individual's birth thus illustrating silver spoon effects. The magnitude of the silver

  2. Body size reductions in nonmammalian eutheriodont therapsids (Synapsida) during the end-Permian mass extinction.

    Science.gov (United States)

    Huttenlocker, Adam K

    2014-01-01

    The extent to which mass extinctions influence body size evolution in major tetrapod clades is inadequately understood. For example, the 'Lilliput effect,' a common feature of mass extinctions, describes a temporary decrease in body sizes of survivor taxa in post-extinction faunas. However, its signature on existing patterns of body size evolution in tetrapods and the persistence of its impacts during post-extinction recoveries are virtually unknown, and rarely compared in both geologic and phylogenetic contexts. Here, I evaluate temporal and phylogenetic distributions of body size in Permo-Triassic therocephalian and cynodont therapsids (eutheriodonts) using a museum collections-based approach and time series model fitting on a regional stratigraphic sequence from the Karoo Basin, South Africa. I further employed rank order correlation tests on global age and clade rank data from an expanded phylogenetic dataset, and performed evolutionary model testing using Brownian (passive diffusion) models. Results support significant size reductions in the immediate aftermath of the end-Permian mass extinction (ca. 252.3 Ma) consistent with some definitions of Lilliput effects. However, this temporal succession reflects a pattern that was underscored largely by Brownian processes and constructive selectivity. Results also support two recent contentions about body size evolution and mass extinctions: 1) active, directional evolution in size traits is rare over macroevolutionary time scales and 2) geologically brief size reductions may be accomplished by the ecological removal of large-bodied species without rapid originations of new small-bodied clades or shifts from long-term evolutionary patterns.

  3. Patterns of diversity in soft-bodied meiofauna: dispersal ability and body size matter.

    Science.gov (United States)

    Curini-Galletti, Marco; Artois, Tom; Delogu, Valentina; De Smet, Willem H; Fontaneto, Diego; Jondelius, Ulf; Leasi, Francesca; Martínez, Alejandro; Meyer-Wachsmuth, Inga; Nilsson, Karin Sara; Tongiorgi, Paolo; Worsaae, Katrine; Todaro, M Antonio

    2012-01-01

    Biogeographical and macroecological principles are derived from patterns of distribution in large organisms, whereas microscopic ones have often been considered uninteresting, because of their supposed wide distribution. Here, after reporting the results of an intensive faunistic survey of marine microscopic animals (meiofauna) in Northern Sardinia, we test for the effect of body size, dispersal ability, and habitat features on the patterns of distribution of several groups. As a dataset we use the results of a workshop held at La Maddalena (Sardinia, Italy) in September 2010, aimed at studying selected taxa of soft-bodied meiofauna (Acoela, Annelida, Gastrotricha, Nemertodermatida, Platyhelminthes and Rotifera), in conjunction with data on the same taxa obtained during a previous workshop hosted at Tjärnö (Western Sweden) in September 2007. Using linear mixed effects models and model averaging while accounting for sampling bias and potential pseudoreplication, we found evidence that: (1) meiofaunal groups with more restricted distribution are the ones with low dispersal potential; (2) meiofaunal groups with higher probability of finding new species for science are the ones with low dispersal potential; (3) the proportion of the global species pool of each meiofaunal group present in each area at the regional scale is negatively related to body size, and positively related to their occurrence in the endobenthic habitat. Our macroecological analysis of meiofauna, in the framework of the ubiquity hypothesis for microscopic organisms, indicates that not only body size but mostly dispersal ability and also occurrence in the endobenthic habitat are important correlates of diversity for these understudied animals, with different importance at different spatial scales. Furthermore, since the Western Mediterranean is one of the best-studied areas in the world, the large number of undescribed species (37%) highlights that the census of marine meiofauna is still very far

  4. Study on Droplet Size and Velocity Distributions of a Pressure Swirl Atomizer Based on the Maximum Entropy Formalism

    Directory of Open Access Journals (Sweden)

    Kai Yan

    2015-01-01

    Full Text Available A predictive model for droplet size and velocity distributions of a pressure swirl atomizer has been proposed based on the maximum entropy formalism (MEF. The constraint conditions of the MEF model include the conservation laws of mass, momentum, and energy. The effects of liquid swirling strength, Weber number, gas-to-liquid axial velocity ratio and gas-to-liquid density ratio on the droplet size and velocity distributions of a pressure swirl atomizer are investigated. Results show that model based on maximum entropy formalism works well to predict droplet size and velocity distributions under different spray conditions. Liquid swirling strength, Weber number, gas-to-liquid axial velocity ratio and gas-to-liquid density ratio have different effects on droplet size and velocity distributions of a pressure swirl atomizer.

  5. Allometries of Maximum Growth Rate versus Body Mass at Maximum Growth Indicate That Non-Avian Dinosaurs Had Growth Rates Typical of Fast Growing Ectothermic Sauropsids

    Science.gov (United States)

    Werner, Jan; Griebeler, Eva Maria

    2014-01-01

    We tested if growth rates of recent taxa are unequivocally separated between endotherms and ectotherms, and compared these to dinosaurian growth rates. We therefore performed linear regression analyses on the log-transformed maximum growth rate against log-transformed body mass at maximum growth for extant altricial birds, precocial birds, eutherians, marsupials, reptiles, fishes and dinosaurs. Regression models of precocial birds (and fishes) strongly differed from Case’s study (1978), which is often used to compare dinosaurian growth rates to those of extant vertebrates. For all taxonomic groups, the slope of 0.75 expected from the Metabolic Theory of Ecology was statistically supported. To compare growth rates between taxonomic groups we therefore used regressions with this fixed slope and group-specific intercepts. On average, maximum growth rates of ectotherms were about 10 (reptiles) to 20 (fishes) times (in comparison to mammals) or even 45 (reptiles) to 100 (fishes) times (in comparison to birds) lower than in endotherms. While on average all taxa were clearly separated from each other, individual growth rates overlapped between several taxa and even between endotherms and ectotherms. Dinosaurs had growth rates intermediate between similar sized/scaled-up reptiles and mammals, but a much lower rate than scaled-up birds. All dinosaurian growth rates were within the range of extant reptiles and mammals, and were lower than those of birds. Under the assumption that growth rate and metabolic rate are indeed linked, our results suggest two alternative interpretations. Compared to other sauropsids, the growth rates of studied dinosaurs clearly indicate that they had an ectothermic rather than an endothermic metabolic rate. Compared to other vertebrate growth rates, the overall high variability in growth rates of extant groups and the high overlap between individual growth rates of endothermic and ectothermic extant species make it impossible to rule out either

  6. Allometries of maximum growth rate versus body mass at maximum growth indicate that non-avian dinosaurs had growth rates typical of fast growing ectothermic sauropsids.

    Science.gov (United States)

    Werner, Jan; Griebeler, Eva Maria

    2014-01-01

    We tested if growth rates of recent taxa are unequivocally separated between endotherms and ectotherms, and compared these to dinosaurian growth rates. We therefore performed linear regression analyses on the log-transformed maximum growth rate against log-transformed body mass at maximum growth for extant altricial birds, precocial birds, eutherians, marsupials, reptiles, fishes and dinosaurs. Regression models of precocial birds (and fishes) strongly differed from Case's study (1978), which is often used to compare dinosaurian growth rates to those of extant vertebrates. For all taxonomic groups, the slope of 0.75 expected from the Metabolic Theory of Ecology was statistically supported. To compare growth rates between taxonomic groups we therefore used regressions with this fixed slope and group-specific intercepts. On average, maximum growth rates of ectotherms were about 10 (reptiles) to 20 (fishes) times (in comparison to mammals) or even 45 (reptiles) to 100 (fishes) times (in comparison to birds) lower than in endotherms. While on average all taxa were clearly separated from each other, individual growth rates overlapped between several taxa and even between endotherms and ectotherms. Dinosaurs had growth rates intermediate between similar sized/scaled-up reptiles and mammals, but a much lower rate than scaled-up birds. All dinosaurian growth rates were within the range of extant reptiles and mammals, and were lower than those of birds. Under the assumption that growth rate and metabolic rate are indeed linked, our results suggest two alternative interpretations. Compared to other sauropsids, the growth rates of studied dinosaurs clearly indicate that they had an ectothermic rather than an endothermic metabolic rate. Compared to other vertebrate growth rates, the overall high variability in growth rates of extant groups and the high overlap between individual growth rates of endothermic and ectothermic extant species make it impossible to rule out either of

  7. Allometries of maximum growth rate versus body mass at maximum growth indicate that non-avian dinosaurs had growth rates typical of fast growing ectothermic sauropsids.

    Directory of Open Access Journals (Sweden)

    Jan Werner

    Full Text Available We tested if growth rates of recent taxa are unequivocally separated between endotherms and ectotherms, and compared these to dinosaurian growth rates. We therefore performed linear regression analyses on the log-transformed maximum growth rate against log-transformed body mass at maximum growth for extant altricial birds, precocial birds, eutherians, marsupials, reptiles, fishes and dinosaurs. Regression models of precocial birds (and fishes strongly differed from Case's study (1978, which is often used to compare dinosaurian growth rates to those of extant vertebrates. For all taxonomic groups, the slope of 0.75 expected from the Metabolic Theory of Ecology was statistically supported. To compare growth rates between taxonomic groups we therefore used regressions with this fixed slope and group-specific intercepts. On average, maximum growth rates of ectotherms were about 10 (reptiles to 20 (fishes times (in comparison to mammals or even 45 (reptiles to 100 (fishes times (in comparison to birds lower than in endotherms. While on average all taxa were clearly separated from each other, individual growth rates overlapped between several taxa and even between endotherms and ectotherms. Dinosaurs had growth rates intermediate between similar sized/scaled-up reptiles and mammals, but a much lower rate than scaled-up birds. All dinosaurian growth rates were within the range of extant reptiles and mammals, and were lower than those of birds. Under the assumption that growth rate and metabolic rate are indeed linked, our results suggest two alternative interpretations. Compared to other sauropsids, the growth rates of studied dinosaurs clearly indicate that they had an ectothermic rather than an endothermic metabolic rate. Compared to other vertebrate growth rates, the overall high variability in growth rates of extant groups and the high overlap between individual growth rates of endothermic and ectothermic extant species make it impossible to rule

  8. Factors determining the average body size of geographically separated Arctodiaptomus salinus (Daday, 1885) populations.

    Science.gov (United States)

    Anufriieva, Elena V; Shadrin, Nickolai V

    2014-03-01

    Arctodiaptomus salinus inhabits water bodies across Eurasia and North Africa. Based on our own data and that from the literature, we analyzed the influences of several factors on the intra- and inter-population variability of this species. A strong negative linear correlation between temperature and average body size in the Crimean and African populations was found, in which the parameters might be influenced by salinity. Meanwhile, a significant negative correlation between female body size and the altitude of habitats was found by comparing body size in populations from different regions. Individuals from environments with highly varying abiotic parameters, e.g. temporary reservoirs, had a larger body size than individuals from permanent water bodies. The changes in average body mass in populations were at 11.4 times, whereas, those in individual metabolic activities were at 6.2 times. Moreover, two size groups of A. salinus in the Crimean and the Siberian lakes were observed. The ratio of female length to male length fluctuated between 1.02 and 1.30. The average size of A. salinus in populations and its variations were determined by both genetic and environmental factors. However, the parities of these factors were unequal in either spatial or temporal scales.

  9. A Prospective Investigation of Body Size, Body Fat Composition and Colorectal Cancer Risk in the UK Biobank.

    Science.gov (United States)

    Ortega, Luisa Saldana; Bradbury, Kathryn E; Cross, Amanda J; Morris, Jessica S; Gunter, Marc J; Murphy, Neil

    2017-12-19

    Obesity has been consistently associated with a greater colorectal cancer risk, but this relationship is weaker among women. In the UK Biobank, we investigated the associations between body size (body mass index [BMI], height, waist circumference, and waist-to-hip ratio) and body fat composition (total body fat percentage and trunk fat percentage) measurements with colorectal cancer risk among 472,526 men and women followed for 5.6 years on average. Multivariable hazard ratios (HRs) and 95% confidence intervals (95%CI) for developing colorectal cancer (2,636 incident cases) were estimated using Cox proportional hazards models. Among men, when the highest and lowest fifths were compared, BMI (HR = 1.35, 95%CI: 1.13-1.61; P trend  body fat percentage (HR = 1.27, 95%CI: 1.06-1.53; P trend  = 0.002), and trunk fat percentage (HR = 1.31, 95%CI: 1.09-1.58; P trend  = 0.002) were associated with greater colorectal cancer risk. For women, only waist-to-hip ratio (HR for highest versus lowest fifth = 1.33, 95%CI: 1.08-1.65; P trend  = 0.005) was positively associated with colorectal cancer risk. Greater body size (overall and abdominal adiposity) was positively associated with colorectal cancer development in men. For women, abdominal adiposity, rather than overall body size, was associated with a greater colorectal cancer risk.

  10. Body size reductions in nonmammalian eutheriodont therapsids (Synapsida during the end-Permian mass extinction.

    Directory of Open Access Journals (Sweden)

    Adam K Huttenlocker

    Full Text Available The extent to which mass extinctions influence body size evolution in major tetrapod clades is inadequately understood. For example, the 'Lilliput effect,' a common feature of mass extinctions, describes a temporary decrease in body sizes of survivor taxa in post-extinction faunas. However, its signature on existing patterns of body size evolution in tetrapods and the persistence of its impacts during post-extinction recoveries are virtually unknown, and rarely compared in both geologic and phylogenetic contexts. Here, I evaluate temporal and phylogenetic distributions of body size in Permo-Triassic therocephalian and cynodont therapsids (eutheriodonts using a museum collections-based approach and time series model fitting on a regional stratigraphic sequence from the Karoo Basin, South Africa. I further employed rank order correlation tests on global age and clade rank data from an expanded phylogenetic dataset, and performed evolutionary model testing using Brownian (passive diffusion models. Results support significant size reductions in the immediate aftermath of the end-Permian mass extinction (ca. 252.3 Ma consistent with some definitions of Lilliput effects. However, this temporal succession reflects a pattern that was underscored largely by Brownian processes and constructive selectivity. Results also support two recent contentions about body size evolution and mass extinctions: 1 active, directional evolution in size traits is rare over macroevolutionary time scales and 2 geologically brief size reductions may be accomplished by the ecological removal of large-bodied species without rapid originations of new small-bodied clades or shifts from long-term evolutionary patterns.

  11. Body Size Reductions in Nonmammalian Eutheriodont Therapsids (Synapsida) during the End-Permian Mass Extinction

    Science.gov (United States)

    Huttenlocker, Adam K.

    2014-01-01

    The extent to which mass extinctions influence body size evolution in major tetrapod clades is inadequately understood. For example, the ‘Lilliput effect,’ a common feature of mass extinctions, describes a temporary decrease in body sizes of survivor taxa in post-extinction faunas. However, its signature on existing patterns of body size evolution in tetrapods and the persistence of its impacts during post-extinction recoveries are virtually unknown, and rarely compared in both geologic and phylogenetic contexts. Here, I evaluate temporal and phylogenetic distributions of body size in Permo-Triassic therocephalian and cynodont therapsids (eutheriodonts) using a museum collections-based approach and time series model fitting on a regional stratigraphic sequence from the Karoo Basin, South Africa. I further employed rank order correlation tests on global age and clade rank data from an expanded phylogenetic dataset, and performed evolutionary model testing using Brownian (passive diffusion) models. Results support significant size reductions in the immediate aftermath of the end-Permian mass extinction (ca. 252.3 Ma) consistent with some definitions of Lilliput effects. However, this temporal succession reflects a pattern that was underscored largely by Brownian processes and constructive selectivity. Results also support two recent contentions about body size evolution and mass extinctions: 1) active, directional evolution in size traits is rare over macroevolutionary time scales and 2) geologically brief size reductions may be accomplished by the ecological removal of large-bodied species without rapid originations of new small-bodied clades or shifts from long-term evolutionary patterns. PMID:24498335

  12. The impact of psychological stress on men's judgements of female body size.

    Science.gov (United States)

    Swami, Viren; Tovée, Martin J

    2012-01-01

    Previous work has suggested that the experience of psychological stress may influence physical attractiveness ideals, but most evidence in favour of this hypothesis remains archival. The objective of this study was to experimentally investigate the impact of stress on men's judgements of female body size. Men were randomly assigned to either an experimental group, in which they took part in a task that heightened stress (experimental group, n = 41) or in which they did not take part in such a task (control group, n = 40). Both groups rated the attractiveness of female bodies varying in size from emaciated to obese, completed a measure of appetite sensation, and had their body mass indices (BMIs) measured. Between-groups analyses showed that the experimental group was matched with the control group in terms of mean age, BMI, and appetite sensation. Further analyses showed that men in the experimental group rated a significantly heavier female body size as maximally attractive than the control group. Men in the experimental group also rated heavier female bodies as more attractive and idealised a wider range of female figures than did the control group. This study found that the experience of stress was associated with a preference among men for heavier female body sizes. These results indicate that human attractiveness judgements are sensitive to variations in local ecologies and reflect adaptive strategies for dealing with changing environmental conditions.

  13. Three-month-old human infants use vocal cues of body size.

    Science.gov (United States)

    Pietraszewski, David; Wertz, Annie E; Bryant, Gregory A; Wynn, Karen

    2017-06-14

    Differences in vocal fundamental ( F 0 ) and average formant ( F n ) frequencies covary with body size in most terrestrial mammals, such that larger organisms tend to produce lower frequency sounds than smaller organisms, both between species and also across different sex and life-stage morphs within species. Here we examined whether three-month-old human infants are sensitive to the relationship between body size and sound frequencies. Using a violation-of-expectation paradigm, we found that infants looked longer at stimuli inconsistent with the relationship-that is, a smaller organism producing lower frequency sounds, and a larger organism producing higher frequency sounds-than at stimuli that were consistent with it. This effect was stronger for fundamental frequency than it was for average formant frequency. These results suggest that by three months of age, human infants are already sensitive to the biologically relevant covariation between vocalization frequencies and visual cues to body size. This ability may be a consequence of developmental adaptations for building a phenotype capable of identifying and representing an organism's size, sex and life-stage. © 2017 The Author(s).

  14. Size structures sensory hierarchy in ocean life

    DEFF Research Database (Denmark)

    Martens, Erik Andreas; Wadhwa, Navish; Jacobsen, Nis Sand

    2015-01-01

    Life in the ocean is shaped by the trade-off between a need to encounter other organisms for feeding or mating, and to avoid encounters with predators. Avoiding or achieving encounters necessitates an efficient means of collecting the maximum possible information from the surroundings through...... predict the body size limits for various sensory modes, which align very well with size ranges found in literature. The treatise of all ocean life, from unicellular organisms to whales, demonstrates how body size determines available sensing modes, and thereby acts as a major structuring factor of aquatic...

  15. Body size and predatory performance in wolves: is bigger better?

    Science.gov (United States)

    MacNulty, Daniel R; Smith, Douglas W; Mech, L David; Eberly, Lynn E

    2009-05-01

    1. Large body size hinders locomotor performance in ways that may lead to trade-offs in predator foraging ability that limit the net predatory benefit of larger size. For example, size-related improvements in handling prey may come at the expense of pursuing prey and thus negate any enhancement in overall predatory performance due to increasing size. 2. This hypothesis was tested with longitudinal data from repeated observations of 94 individually known wolves (Canis lupus) hunting elk (Cervus elaphus) in Yellowstone National Park, USA. Wolf size was estimated from an individually based sex-specific growth model derived from body mass measurements of 304 wolves. 3. Larger size granted individual wolves a net predatory advantage despite substantial variation in its effect on the performance of different predatory tasks; larger size improved performance of a strength-related task (grappling and subduing elk) but failed to improve performance of a locomotor-related task (selecting an elk from a group) for wolves > 39 kg. 4. Sexual dimorphism in wolf size also explained why males outperformed females in each of the three tasks considered (attacking, selecting, and killing). 5. These findings support the generalization that bigger predators are overall better hunters, but they also indicate that increasing size ultimately limits elements of predatory behaviour that require superior locomotor performance. We argue that this could potentially narrow the dietary niche of larger carnivores as well as limit the evolution of larger size if prey are substantially more difficult to pursue than to handle.

  16. Island Rule, quantitative genetics and brain-body size evolution in Homo floresiensis.

    Science.gov (United States)

    Diniz-Filho, José Alexandre Felizola; Raia, Pasquale

    2017-06-28

    Colonization of islands often activate a complex chain of adaptive events that, over a relatively short evolutionary time, may drive strong shifts in body size, a pattern known as the Island Rule. It is arguably difficult to perform a direct analysis of the natural selection forces behind such a change in body size. Here, we used quantitative evolutionary genetic models, coupled with simulations and pattern-oriented modelling, to analyse the evolution of brain and body size in Homo floresiensis , a diminutive hominin species that appeared around 700 kya and survived up to relatively recent times (60-90 kya) on Flores Island, Indonesia. The hypothesis of neutral evolution was rejected in 97% of the simulations, and estimated selection gradients are within the range found in living natural populations. We showed that insularity may have triggered slightly different evolutionary trajectories for body and brain size, which means explaining the exceedingly small cranial volume of H. floresiensis requires additional selective forces acting on brain size alone. Our analyses also support previous conclusions that H. floresiensis may be most likely derived from an early Indonesian H. erectus , which is coherent with currently accepted biogeographical scenario for Homo expansion out of Africa. © 2017 The Author(s).

  17. Mammal extinctions, body size, and paleotemperature.

    Science.gov (United States)

    Bown, T M; Holroyd, P A; Rose, K D

    1994-10-25

    There is a general inverse relationship between the natural logarithm of tooth area (a body size indicator) of some fossil mammals and paleotemperature during approximately 2.9 million years of the early Eocene in the Bighorn Basin of northwest Wyoming. When mean temperatures became warmer, tooth areas tended to become smaller. During colder times, larger species predominated; these generally became larger or remained the same size. Paleotemperature trends also markedly affected patterns of local (and, perhaps, regional) extinction and immigration. New species appeared as immigrants during or near the hottest (smaller forms) and coldest (larger forms) intervals. Paleotemperature trend reversals commonly resulted in the ultimate extinction of both small forms (during cooling intervals) and larger forms (during warming intervals). These immigrations and extinctions mark faunal turnovers that were also modulated by sharp increases in sediment accumulation rate.

  18. Cultural constructions of "obesity": understanding body size, social class and gender in Morocco.

    Science.gov (United States)

    Batnitzky, Adina K

    2011-01-01

    This article presents data from an in-depth qualitative study of overweight and diabetic women in Morocco, a North African country experiencing a rapid increase in obesity according to national statistics. This case study explores the heterogeneous relationship among health, culture and religion in Morocco by highlighting the relationship between the intricacies of women's everyday lives and their body sizes. My findings suggest that although the Body Mass Index (BMI) of adult women has been documented to have increased in Morocco along with other macroeconomic changes (i.e., increases in urbanization, etc.), "obesity" has yet to be universally medicalized in the Moroccan context. As such women do not generally utilize a medicalized concept of obesity in reference to their larger body sizes. Rather, cultural constructions of "obesity" are understood through cultural understandings of a larger body size, religious beliefs about health and illness, and the nature of women's religious participation. This stands in contrast to dominant accounts about the region that promote an overall veneration of a larger body size for women. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. The Relationship of Body Size and Adiposity to Source of Self-Esteem in College Women

    Science.gov (United States)

    Moncur, Breckann; Bailey, Bruce W.; Lockhart, Barbara D.; LeCheminant, James D.; Perkins, Annette E.

    2013-01-01

    Background: Studies looking at self-esteem and body size or adiposity generally demonstrate a negative relationship. However, the relationship between the source of self-esteem and body size has not been examined in college women. Purpose: The purpose of this study was to evaluate the relationship of body size and adiposity to source of…

  20. Obesity Bias in Children: The Role of Actual and Perceived Body Size

    Science.gov (United States)

    Kornilaki, Ekaterina N.

    2015-01-01

    The aim of this study was to examine how children perceive their body size and whether their actual or perceived body size can explain their anti-fat views. Four hundred and fourteen 5-6, 7-8 and 9-10-year-old children were read short vignettes depicting two characters, one possessing a positive and the other a negative quality. Following each…

  1. The impact of psychological stress on men's judgements of female body size.

    Directory of Open Access Journals (Sweden)

    Viren Swami

    Full Text Available BACKGROUND: Previous work has suggested that the experience of psychological stress may influence physical attractiveness ideals, but most evidence in favour of this hypothesis remains archival. The objective of this study was to experimentally investigate the impact of stress on men's judgements of female body size. METHODS: Men were randomly assigned to either an experimental group, in which they took part in a task that heightened stress (experimental group, n = 41 or in which they did not take part in such a task (control group, n = 40. Both groups rated the attractiveness of female bodies varying in size from emaciated to obese, completed a measure of appetite sensation, and had their body mass indices (BMIs measured. RESULTS: Between-groups analyses showed that the experimental group was matched with the control group in terms of mean age, BMI, and appetite sensation. Further analyses showed that men in the experimental group rated a significantly heavier female body size as maximally attractive than the control group. Men in the experimental group also rated heavier female bodies as more attractive and idealised a wider range of female figures than did the control group. CONCLUSION: This study found that the experience of stress was associated with a preference among men for heavier female body sizes. These results indicate that human attractiveness judgements are sensitive to variations in local ecologies and reflect adaptive strategies for dealing with changing environmental conditions.

  2. Temporal profile of body temperature in acute ischemic stroke: relation to infarct size and outcome.

    Science.gov (United States)

    Geurts, Marjolein; Scheijmans, Féline E V; van Seeters, Tom; Biessels, Geert J; Kappelle, L Jaap; Velthuis, Birgitta K; van der Worp, H Bart

    2016-11-21

    High body temperatures after ischemic stroke have been associated with larger infarct size, but the temporal profile of this relation is unknown. We assess the relation between temporal profile of body temperature and infarct size and functional outcome in patients with acute ischemic stroke. In 419 patients with acute ischemic stroke we assessed the relation between body temperature on admission and during the first 3 days with both infarct size and functional outcome. Infarct size was measured in milliliters on CT or MRI after 3 days. Poor functional outcome was defined as a modified Rankin Scale score ≥3 at 3 months. Body temperature on admission was not associated with infarct size or poor outcome in adjusted analyses. By contrast, each additional 1.0 °C in body temperature on day 1 was associated with 0.31 ml larger infarct size (95% confidence interval (CI) 0.04-0.59), on day 2 with 1.13 ml larger infarct size(95% CI, 0.83-1.43), and on day 3 with 0.80 ml larger infarct size (95% CI, 0.48-1.12), in adjusted linear regression analyses. Higher peak body temperatures on days two and three were also associated with poor outcome (adjusted relative risks per additional 1.0 °C in body temperature, 1.52 (95% CI, 1.17-1.99) and 1.47 (95% CI, 1.22-1.77), respectively). Higher peak body temperatures during the first days after ischemic stroke, rather than on admission, are associated with larger infarct size and poor functional outcome. This suggests that prevention of high temperatures may improve outcome if continued for at least 3 days.

  3. Waif goodbye! Average-size female models promote positive body image and appeal to consumers.

    Science.gov (United States)

    Diedrichs, Phillippa C; Lee, Christina

    2011-10-01

    Despite consensus that exposure to media images of thin fashion models is associated with poor body image and disordered eating behaviours, few attempts have been made to enact change in the media. This study sought to investigate an effective alternative to current media imagery, by exploring the advertising effectiveness of average-size female fashion models, and their impact on the body image of both women and men. A sample of 171 women and 120 men were assigned to one of three advertisement conditions: no models, thin models and average-size models. Women and men rated average-size models as equally effective in advertisements as thin and no models. For women with average and high levels of internalisation of cultural beauty ideals, exposure to average-size female models was associated with a significantly more positive body image state in comparison to exposure to thin models and no models. For men reporting high levels of internalisation, exposure to average-size models was also associated with a more positive body image state in comparison to viewing thin models. These findings suggest that average-size female models can promote positive body image and appeal to consumers.

  4. Reduced body size and cub recruitment in polar bears associated with sea ice decline

    Science.gov (United States)

    Rode, Karyn D.; Amstrup, Steven C.; Regehr, Eric V.

    2010-01-01

    Rates of reproduction and survival are dependent upon adequate body size and condition of individuals. Declines in size and condition have provided early indicators of population decline in polar bears (Ursus maritimus) near the southern extreme of their range. We tested whether patterns in body size, condition, and cub recruitment of polar bears in the southern Beaufort Sea of Alaska were related to the availability of preferred sea ice habitats and whether these measures and habitat availability exhibited trends over time, between 1982 and 2006. The mean skull size and body length of all polar bears over three years of age declined over time, corresponding with long‐term declines in the spatial and temporal availability of sea ice habitat. Body size of young, growing bears declined over time and was smaller after years when sea ice availability was reduced. Reduced litter mass and numbers of yearlings per female following years with lower availability of optimal sea ice habitat, suggest reduced reproductive output and juvenile survival. These results, based on analysis of a long‐term data set, suggest that declining sea ice is associated with nutritional limitations that reduced body size and reproduction in this population.

  5. ZResponse to selection, heritability and genetic correlations between body weight and body size in Pacific white shrimp, Litopenaeus vannamei

    Science.gov (United States)

    Andriantahina, Farafidy; Liu, Xiaolin; Huang, Hao; Xiang, Jianhai

    2012-03-01

    To quantify the response to selection, heritability and genetic correlations between weight and size of Litopenaeus vannamei, the body weight (BW), total length (TL), body length (BL), first abdominal segment depth (FASD), third abdominal segment depth (TASD), first abdominal segment width (FASW), and partial carapace length (PCL) of 5-month-old parents and of offspnng were measured by calculating seven body measunngs of offspnng produced by a nested mating design. Seventeen half-sib families and 42 full-sib families of L. vannamei were produced using artificial fertilization from 2-4 dams by each sire, and measured at around five months post-metamorphosis. The results show that hentabilities among vanous traits were high: 0.515±0.030 for body weight and 0.394±0.030 for total length. After one generation of selection. the selection response was 10.70% for offspring growth. In the 5th month, the realized heritability for weight was 0.296 for the offspnng generation. Genetic correlations between body weight and body size were highly variable. The results indicate that external morphological parameters can be applied dunng breeder selection for enhancing the growth without sacrificing animals for determining the body size and breed ability; and selective breeding can be improved significantly, simultaneously with increased production.

  6. Critical threshold size for overwintering sandeels (Ammodytes marinus)

    DEFF Research Database (Denmark)

    Deurs, Mikael van; Hartvig, Martin; Steffensen, John Fleng

    2011-01-01

    scales with body size and increases with temperature, and the two factors together determine a critical threshold size for passive overwintering below which the organism is unlikely to survive without feeding. This is because the energetic cost of metabolism exceeds maximum energy reserves...... independent long-term overwintering experiments. Maximum attainable energy reserves were estimated from published data on A. marinus in the North Sea. The critical threshold size in terms of length (Lth) for A. marinus in the North Sea was estimated to be 9.5 cm. We then investigated two general predictions...

  7. AN AGENT-BASED APPROACH TO MODELING MAMMALIAN EVOLUTION: HOW RESOURCE DISTRIBUTION AND PREDATION AFFECT BODY SIZE

    OpenAIRE

    ANNE KANDLER; JEROEN B. SMAERS

    2012-01-01

    Macro-evolutionary investigations into cross-scale patterns of body size variation have put many of the pieces of the evolutionary body size puzzle in place. To further tackle micro- and meso-scale process-based reasons underlying changes in body size, researchers compare natural populations across different habitat structures, assessing which habitat structures correspond to which changes in body size variation. The complex multi-scale dynamics underlying the effect of the external environme...

  8. Thermal phenotypic plasticity of body size in Drosophila ...

    Indian Academy of Sciences (India)

    ... body size in Drosophila melanogaster: sexual dimorphism and genetic correlations. Jean R. David, Amir Yassin, Jean-Claude Moreteau, Helene Legout and Brigitte Moreteau. J. Genet. 90, 295–302. Table 1. Correlations between wing and thorax length at the within (n = 420) and between line level (n = 30). Temperature.

  9. Proximate composition of Mystus bleekeri in relation to body size ...

    African Journals Online (AJOL)

    Proximate composition of small catfish, Mystus bleekeri, from Nala Daik, Sialkot, Pakistan was investigated and fluctuation in relation to body size and condition factor was carried out. Mean percentages for water, fat, protein and ash contents in the whole wet body weight of wild M. bleekeri were 77.87, 3.26, 15.01 and ...

  10. Canalization of body size matters for lifetime reproductive success of male predatory mites (Acari: Phytoseiidae).

    Science.gov (United States)

    Walzer, Andreas; Schausberger, Peter

    2014-04-01

    The adaptive canalization hypothesis predicts that highly fitness-relevant traits are canalized via past selection, resulting in low phenotypic plasticity and high robustness to environmental stress. Accordingly, we hypothesized that the level of phenotypic plasticity of male body size of the predatory mites Phytoseiulus persimilis (low plasticity) and Neoseiulus californicus (high plasticity) reflects the effects of body size variation on fitness, especially male lifetime reproductive success (LRS). We first generated small and standard-sized males of P. persimilis and N. californicus by rearing them to adulthood under limited and ample prey supply, respectively. Then, adult small and standard-sized males were provided with surplus virgin females throughout life to assess their mating and reproductive traits. Small male body size did not affect male longevity or the number of fertilized females but reduced male LRS of P. persimilis but not N. californicus . Proximately, the lower LRS of small than standard-sized P. persimilis males correlated with shorter mating durations, probably decreasing the amount of transferred sperm. Ultimately, we suggest that male body size is more strongly canalized in P. persimilis than N. californicus because deviation from standard body size has larger detrimental fitness effects in P. persimilis than N. californicus .

  11. Body size and predatory performance in wolves: Is bigger better?

    Science.gov (United States)

    MacNulty, D.R.; Smith, D.W.; Mech, L.D.; Eberly, L.E.

    2009-01-01

    Large body size hinders locomotor performance in ways that may lead to trade-offs in predator foraging ability that limit the net predatory benefit of larger size. For example, size-related improvements in handling prey may come at the expense of pursuing prey and thus negate any enhancement in overall predatory performance due to increasing size. 2. This hypothesis was tested with longitudinal data from repeated observations of 94 individually known wolves (Canis lupus) hunting elk (Cervus elaphus) in Yellowstone National Park, USA. Wolf size was estimated from an individually based sex-specific growth model derived from body mass measurements of 304 wolves. 3. Larger size granted individual wolves a net predatory advantage despite substantial variation in its effect on the performance of different predatory tasks; larger size improved performance of a strength-related task (grappling and subduing elk) but failed to improve performance of a locomotor-related task (selecting an elk from a group) for wolves > 39 kg. 4. Sexual dimorphism in wolf size also explained why males outperformed females in each of the three tasks considered (attacking, selecting, and killing). 5. These findings support the generalization that bigger predators are overall better hunters, but they also indicate that increasing size ultimately limits elements of predatory behaviour that require superior locomotor performance. We argue that this could potentially narrow the dietary niche of larger carnivores as well as limit the evolution of larger size if prey are substantially more difficult to pursue than to handle. ?? 2009 British Ecological Society.

  12. Host body size and the diversity of tick assemblages on Neotropical vertebrates

    Directory of Open Access Journals (Sweden)

    Helen J. Esser

    2016-12-01

    Full Text Available Identifying the factors that influence the species diversity and distribution of ticks (Acari: Ixodida across vertebrate host taxa is of fundamental ecological and medical importance. Host body size is considered one of the most important determinants of tick abundance, with larger hosts having higher tick burdens. The species diversity of tick assemblages should also be greater on larger-bodied host species, but empirical studies testing this hypothesis are lacking. Here, we evaluate this relationship using a comparative dataset of feeding associations from Panama between 45 tick species and 171 host species that range in body size by three orders of magnitude. We found that tick species diversity increased with host body size for adult ticks but not for immature ticks. We also found that closely related host species tended to have similar tick species diversity, but correcting for host phylogeny did not alter the relationships between host body size and tick species diversity. The distribution of tick species was highly aggregated, with approximately 20% of the host species harboring 80% of all tick species, following the Pareto principle or 20/80 Rule. Thus, the aggregated pattern commonly observed for tick burdens and disease transmission also holds for patterns of tick species richness. Our finding that the adult ticks in this system preferentially parasitize large-bodied host species suggests that the ongoing anthropogenic loss of large-bodied vertebrates is likely to result in host-tick coextinction events, even when immature stages feed opportunistically. As parasites play critical roles in ecological and evolutionary processes, such losses may profoundly affect ecosystem functioning and services.

  13. Body Size Estimation from Early to Middle Childhood: Stability of Underestimation, BMI, and Gender Effects

    Directory of Open Access Journals (Sweden)

    Silje Steinsbekk

    2017-11-01

    Full Text Available Individuals who are overweight are more likely to underestimate their body size than those who are normal weight, and overweight underestimators are less likely to engage in weight loss efforts. Underestimation of body size might represent a barrier to prevention and treatment of overweight; thus insight in how underestimation of body size develops and tracks through the childhood years is needed. The aim of the present study was therefore to examine stability in children’s underestimation of body size, exploring predictors of underestimation over time. The prospective path from underestimation to BMI was also tested. In a Norwegian cohort of 6 year olds, followed up at ages 8 and 10 (analysis sample: n = 793 body size estimation was captured by the Children’s Body Image Scale, height and weight were measured and BMI calculated. Overall, children were more likely to underestimate than overestimate their body size. Individual stability in underestimation was modest, but significant. Higher BMI predicted future underestimation, even when previous underestimation was adjusted for, but there was no evidence for the opposite direction of influence. Boys were more likely than girls to underestimate their body size at ages 8 and 10 (age 8: 38.0% vs. 24.1%; Age 10: 57.9% vs. 30.8% and showed a steeper increase in underestimation with age compared to girls. In conclusion, the majority of 6, 8, and 10-year olds correctly estimate their body size (prevalence ranging from 40 to 70% depending on age and gender, although a substantial portion perceived themselves to be thinner than they actually were. Higher BMI forecasted future underestimation, but underestimation did not increase the risk for excessive weight gain in middle childhood.

  14. Associations among body size across the life course, adult height and endometriosis.

    Science.gov (United States)

    Farland, L V; Missmer, S A; Bijon, A; Gusto, G; Gelot, A; Clavel-Chapelon, F; Mesrine, S; Boutron-Ruault, M C; Kvaskoff, M

    2017-08-01

    Are body size across the life course and adult height associated with endometriosis? Endometriosis is associated with lean body size during childhood, adolescence and adulthood; tall total adult height; and tall sitting height. The literature suggests that both adult body size and height are associated with endometriosis risk, but few studies have investigated the role of body size across the life course. Additionally, no study has investigated the relationships between components of height and endometriosis. We used a nested case-control design within E3N (Etude Epidémiologique auprès de femmes de l'Education Nationale), a prospective cohort of French women. Data were updated every 2-3 years through self-administered questionnaires. Odds ratios (ORs) and 95% CIs were computed using logistic regression models adjusted for a priori confounding factors. A total of 2416 endometriosis cases were reported as surgically ascertained among the 61 208 included women. The odds of endometriosis were lower among women who reported having a large versus lean body size at 8 years (P for trend = 0.003), at menarche (P for trend endometriosis compared to those in the lowest (endometriosis. Endometriosis cases may be prone to misclassification; however, we restricted our case definition to surgically-confirmed cases, which showed a high validation rate. Body size is based on retrospective self-report, which may be subject to recall bias. The results of this study suggest that endometriosis is positively associated with lean body size across the life course and total adult height. They also suggest that components of height are associated with endometriosis, which should be investigated further. The Mutuelle Générale de l'Education Nationale (MGEN); the European Community; the French League against Cancer (LNCC); Gustave Roussy; the French Institute of Health and Medical Research (Inserm). L.V.F. was supported by a T32 grant (#HD060454) in reproductive, perinatal and pediatric

  15. Climate change and body size shift in Mediterranean bivalve assemblages: unexpected role of biological invasions.

    Science.gov (United States)

    Nawrot, Rafał; Albano, Paolo G; Chattopadhyay, Devapriya; Zuschin, Martin

    2017-08-16

    Body size is a synthetic functional trait determining many key ecosystem properties. Reduction in average body size has been suggested as one of the universal responses to global warming in aquatic ecosystems. Climate change, however, coincides with human-enhanced dispersal of alien species and can facilitate their establishment. We address effects of species introductions on the size structure of recipient communities using data on Red Sea bivalves entering the Mediterranean Sea through the Suez Canal. We show that the invasion leads to increase in median body size of the Mediterranean assemblage. Alien species are significantly larger than native Mediterranean bivalves, even though they represent a random subset of the Red Sea species with respect to body size. The observed patterns result primarily from the differences in the taxonomic composition and body-size distributions of the source and recipient species pools. In contrast to the expectations based on the general temperature-size relationships in marine ectotherms, continued warming of the Mediterranean Sea indirectly leads to an increase in the proportion of large-bodied species in bivalve assemblages by accelerating the entry and spread of tropical aliens. These results underscore complex interactions between changing climate and species invasions in driving functional shifts in marine ecosystems. © 2017 The Author(s).

  16. Body size and lean mass of brown bears across and within four diverse ecosystems

    Science.gov (United States)

    Hilderbrand, Grant V.; Gustine, David; Mangipane, Buck A.; Joly, Kyle; Leacock, William; Mangipane, Lindsey S.; Erlenbach, Joy; Sorum, Mathew; Cameron, Matthew; Belant, Jerrold L.; Cambier, Troy

    2018-01-01

    Variation in body size across populations of brown bears (Ursus arctos) is largely a function of the availability and quality of nutritional resources while plasticity within populations reflects utilized niche width with implications for population resiliency. We assessed skull size, body length, and lean mass of adult female and male brown bears in four Alaskan study areas that differed in climate, primary food resources, population density, and harvest regime. Full body-frame size, as evidenced by asymptotic skull size and body length, was achieved by 8 to 14 years of age across populations and sexes. Lean body mass of both sexes continued to increase throughout their life. Differences between populations existed for all morphological measures in both sexes, bears in ecosystems with abundant salmon were generally larger. Within all populations, broad variation was seen in body size measures of adults with females displaying roughly a 2-fold difference in lean mass and males showing a 3- to 4-fold difference. The high level of intraspecific variation seen across and within populations suggests the presence of multiple life-history strategies and niche variation relative to resource partitioning, risk tolerance or aversion, and competition. Further, this level of variation indicates broad potential to adapt to changes within a given ecosystem and across the species’ range.

  17. Breaking Haller's rule: brain-body size isometry in a minute parasitic wasp.

    NARCIS (Netherlands)

    Woude, van der E.; Smid, H.M.; Chittka, L.; Huigens, M.E.

    2013-01-01

    Throughout the animal kingdom, Haller's rule holds that smaller individuals have larger brains relative to their body than larger-bodied individuals. Such brain-body size allometry is documented for all animals studied to date, ranging from small ants to the largest mammals. However, through

  18. Body Size as a Driver of Scavenging in Theropod Dinosaurs.

    Science.gov (United States)

    Kane, Adam; Healy, Kevin; Ruxton, Graeme D; Jackson, Andrew L

    2016-06-01

    Theropod dinosaurs dominated Earth's terrestrial ecosystem as a diverse group of predators for more than 160 million years, yet little is known about their foraging ecology. Maintaining a balanced energy budget presented a major challenge for therapods, which ranged from the chicken-sized Microraptor up to the whale-sized Giganotosaurus, in the face of intense competition and the demands of ontogenetic growth. Facultative scavenging, a behavior present in almost all modern predators, may have been important in supplementing energetically expensive lifestyles. By using agent-based models based on the allometric relationship between size and foraging behaviors, we show that theropods between 27 and 1,044 kg would have gained a significant energetic advantage over individuals at both the small and large extremes of theropod body mass through their scavenging efficiency. These results were robust to rate of competition, primary productivity, and detection distance. Our models demonstrate the potential importance of facultative scavenging in theropods and the role of body size in defining its prevalence in Mesozoic terrestrial systems.

  19. Transient dwarfism of soil fauna during the Paleocene-Eocene Thermal Maximum.

    Science.gov (United States)

    Smith, Jon J; Hasiotis, Stephen T; Kraus, Mary J; Woody, Daniel T

    2009-10-20

    Soil organisms, as recorded by trace fossils in paleosols of the Willwood Formation, Wyoming, show significant body-size reductions and increased abundances during the Paleocene-Eocene Thermal Maximum (PETM). Paleobotanical, paleopedologic, and oxygen isotope studies indicate high temperatures during the PETM and sharp declines in precipitation compared with late Paleocene estimates. Insect and oligochaete burrows increase in abundance during the PETM, suggesting longer periods of soil development and improved drainage conditions. Crayfish burrows and molluscan body fossils, abundant below and above the PETM interval, are significantly less abundant during the PETM, likely because of drier floodplain conditions and lower water tables. Burrow diameters of the most abundant ichnofossils are 30-46% smaller within the PETM interval. As burrow size is a proxy for body size, significant reductions in burrow diameter suggest that their tracemakers were smaller bodied. Smaller body sizes may have resulted from higher subsurface temperatures, lower soil moisture conditions, or nutritionally deficient vegetation in the high-CO(2) atmosphere inferred for the PETM. Smaller soil fauna co-occur with dwarf mammal taxa during the PETM; thus, a common forcing mechanism may have selected for small size in both above- and below-ground terrestrial communities. We predict that soil fauna have already shown reductions in size over the last 150 years of increased atmospheric CO(2) and surface temperatures or that they will exhibit this pattern over the next century. We retrodict also that soil fauna across the Permian-Triassic and Triassic-Jurassic boundary events show significant size decreases because of similar forcing mechanisms driven by rapid global warming.

  20. Transient dwarfism of soil fauna during the Paleocene-Eocene Thermal Maximum

    Science.gov (United States)

    Smith, J.J.; Hasiotis, S.T.; Kraus, M.J.; Woody, D.T.

    2009-01-01

    Soil organisms, as recorded by trace fossils in paleosols of the Willwood Formation, Wyoming, show significant body-size reductions and increased abundances during the Paleocene-Eocene Thermal Maximum (PETM). Paleobotanical, paleopedologic, and oxygen isotope studies indicate high temperatures during the PETM and sharp declines in precipitation compared with late Paleocene estimates. Insect and oligochaete burrows increase in abundance during the PETM, suggesting longer periods of soil development and improved drainage conditions. Crayfish burrows and molluscan body fossils, abundant below and above the PETM interval, are significantly less abundant during the PETM, likely because of drier floodplain conditions and lower water tables. Burrow diameters of the most abundant ichnofossils are 30-46% smaller within the PETM interval. As burrow size is a proxy for body size, significant reductions in burrow diameter suggest that their tracemakers were smaller bodied. Smaller body sizes may have resulted from higher subsurface temperatures, lower soil moisture conditions, or nutritionally deficient vegetation in the high-CO2 atmosphere inferred for the PETM. Smaller soil fauna co-occur with dwarf mammal taxa during the PETM; thus, a common forcing mechanism may have selected for small size in both above- and below-ground terrestrial communities. We predict that soil fauna have already shown reductions in size over the last 150 years of increased atmospheric CO2 and surface temperatures or that they will exhibit this pattern over the next century. We retrodict also that soil fauna across the Permian-Triassic and Triassic-Jurassic boundary events show significant size decreases because of similar forcing mechanisms driven by rapid global warming.

  1. Correlation between Leukocyte Numbers and Body Size of Rainbow Trout

    DEFF Research Database (Denmark)

    Mohammad, Rezkar Jaafar; Otani, Maki; Kania, Per Walter

    2016-01-01

    wild and cultured fish and we show that the size of the leukocyte population increases exponentially with body size of rainbow trout. Four groups (5 fish/group) of naive rainbow trout (Oncorhynchus mykiss) with a mean body weight of 2 - 4 g (group I), 4 - 6 g (group II), 25 - 30 g (group III), and 650...... towards an antigen to be initiated even in fry. The number of leukocytes in individual fish at different developmental stages is likely to influence the capacity of the fish to respond simultaneously to several antigens (pathogens and vaccine components). This parameter may therefore be crucial for both...... - 780 g (group IV) were investigated. The number of lymphocytes was generally higher in head kidney compared to blood and spleen but they dominated in all samples (blood, head kidney and spleen) and their numbers increased exponentially with fish size. Percentages of lymphocytes in relation...

  2. Women Build Long Bones With Less Cortical Mass Relative to Body Size and Bone Size Compared With Men.

    Science.gov (United States)

    Jepsen, Karl J; Bigelow, Erin M R; Schlecht, Stephen H

    2015-08-01

    The twofold greater lifetime risk of fracturing a bone for white women compared with white men and black women has been attributed in part to differences in how the skeletal system accumulates bone mass during growth. On average, women build more slender long bones with less cortical area compared with men. Although slender bones are known to have a naturally lower cortical area compared with wider bones, it remains unclear whether the relatively lower cortical area of women is consistent with their increased slenderness or is reduced beyond that expected for the sex-specific differences in bone size and body size. Whether this sexual dimorphism is consistent with ethnic background and is recapitulated in the widely used mouse model also remains unclear. We asked (1) do black women build bones with reduced cortical area compared with black men; (2) do white women build bones with reduced cortical area compared with white men; and (3) do female mice build bones with reduced cortical area compared with male mice? Bone strength and cross-sectional morphology of adult human and mouse bone were calculated from quantitative CT images of the femoral midshaft. The data were tested for normality and regression analyses were used to test for differences in cortical area between men and women after adjusting for body size and bone size by general linear model (GLM). Linear regression analysis showed that the femurs of black women had 11% lower cortical area compared with those of black men after adjusting for body size and bone size (women: mean=357.7 mm2; 95% confidence interval [CI], 347.9-367.5 mm2; men: mean=400.1 mm2; 95% CI, 391.5-408.7 mm2; effect size=1.2; pbone size (women: mean=350.1 mm2; 95% CI, 340.4-359.8 mm2; men: mean=394.3 mm2; 95% CI, 386.5-402.1 mm2; effect size=1.3; pbone size (female: mean=0.73 mm2; 95% CI, 0.71-0.74 mm2; male: mean=0.70 mm2; 95% CI, 0.68-0.71 mm2; effect size=0.74; p=0.04, GLM). Female femurs are not simply a more slender version of male

  3. Maximum permissible dose

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    This chapter presents a historic overview of the establishment of radiation guidelines by various national and international agencies. The use of maximum permissible dose and maximum permissible body burden limits to derive working standards is discussed

  4. Body Size Adaptations to Altitudinal Climatic Variation in Neotropical Grasshoppers of the Genus Sphenarium (Orthoptera: Pyrgomorphidae)

    Science.gov (United States)

    2015-01-01

    Altitudinal clines in body size can result from the effects of natural and sexual selection on growth rates and developing times in seasonal environments. Short growing and reproductive seasons constrain the body size that adults can attain and their reproductive success. Little is known about the effects of altitudinal climatic variation on the diversification of Neotropical insects. In central Mexico, in addition to altitude, highly heterogeneous topography generates diverse climates that can occur even at the same latitude. Altitudinal variation and heterogeneous topography open an opportunity to test the relative impact of climatic variation on body size adaptations. In this study, we investigated the relationship between altitudinal climatic variation and body size, and the divergence rates of sexual size dimorphism (SSD) in Neotropical grasshoppers of the genus Sphenarium using a phylogenetic comparative approach. In order to distinguish the relative impact of natural and sexual selection on the diversification of the group, we also tracked the altitudinal distribution of the species and trends of both body size and SSD on the phylogeny of Sphenarium. The correlative evidence suggests no relationship between altitude and body size. However, larger species were associated with places having a warmer winter season in which the temporal window for development and reproduction can be longer. Nonetheless, the largest species were also associated with highly seasonal environments. Moreover, large body size and high levels of SSD have evolved independently several times throughout the history of the group and male body size has experienced a greater evolutionary divergence than females. These lines of evidence suggest that natural selection, associated with seasonality and sexual selection, on maturation time and body size could have enhanced the diversification of this insect group. PMID:26684616

  5. Evolution of bill size in relation to body size in toucans and hornbills (Aves: Piciformes and Bucerotiformes

    Directory of Open Access Journals (Sweden)

    Austin L. Hughes

    2014-06-01

    Full Text Available Evidence that the bill of the Toco Toucan, Ramphastos toco Statius Muller, 1776, has a specialized role in heat dissipation suggests a new function for the large and light-weight bill of the toucan family (Piciformes: Ramphastidae. A prediction of this hypothesis is that bill length in toucans will increase with body mass at a rate greater than the isometric expectation. This hypothesis was tested in a phylogenetic context with measurements of skeletal elements in adult males of 21 toucan species. In these species, 64.3% of variance in relative skeletal measurements was accounted for by the contrast between bill and body size. Maxilla length and depth increased with body mass at a greater than isometric rate relative to both body mass and other linear skeletal measures. By contrast, no such trend was seen in a parallel analysis of 24 hornbill species (Bucerotiformes, sometimes considered ecological equivalents of toucans. The unique relationship between bill size and body mass in toucans supports the hypothesis that the evolution of a heat dissipation function has been a persistent theme of bill evolution in toucans.

  6. Attention biases in preoccupation with body image: An ERP study of the role of social comparison and automaticity when processing body size.

    Science.gov (United States)

    Uusberg, Helen; Peet, Krista; Uusberg, Andero; Akkermann, Kirsti

    2018-03-17

    Appearance-related attention biases are thought to contribute to body image disturbances. We investigated how preoccupation with body image is associated with attention biases to body size, focusing on the role of social comparison processes and automaticity. Thirty-six women varying on self-reported preoccupation compared their actual body size to size-modified images of either themselves or a figure-matched peer. Amplification of earlier (N170, P2) and later (P3, LPP) ERP components recorded under low vs. high concurrent working memory load were analyzed. Women with high preoccupation exhibited an earlier bias to larger bodies of both self and peer. During later processing stages, they exhibited a stronger bias to enlarged as well as reduced self-images and a lack of sensitivity to size-modifications of the peer-image. Working memory load did not affect these biases systematically. Current findings suggest that preoccupation with body image involves an earlier attention bias to weight increase cues and later over-engagement with own figure. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Interactive effects of body-size structure and adaptive foraging on food-web stability.

    Science.gov (United States)

    Heckmann, Lotta; Drossel, Barbara; Brose, Ulrich; Guill, Christian

    2012-03-01

    Body-size structure of food webs and adaptive foraging of consumers are two of the dominant concepts of our understanding how natural ecosystems maintain their stability and diversity. The interplay of these two processes, however, is a critically important yet unresolved issue. To fill this gap in our knowledge of ecosystem stability, we investigate dynamic random and niche model food webs to evaluate the proportion of persistent species. We show that stronger body-size structures and faster adaptation stabilise these food webs. Body-size structures yield stabilising configurations of interaction strength distributions across food webs, and adaptive foraging emphasises links to resources closer to the base. Moreover, both mechanisms combined have a cumulative effect. Most importantly, unstructured random webs evolve via adaptive foraging into stable size-structured food webs. This offers a mechanistic explanation of how size structure adaptively emerges in complex food webs, thus building a novel bridge between these two important stabilising mechanisms. © 2012 Blackwell Publishing Ltd/CNRS.

  8. Study of the variation of maximum beam size with quadrupole gradient in the FMIT drift tube linac

    International Nuclear Information System (INIS)

    Boicourt, G.P.; Jameson, R.A.

    1981-01-01

    The sensitivity of maximum beam size to input mismatch is studied as a function of quadrupole gradient in a short, high-current, drift-tube linac (DTL), for two presriptions: constant phase advance with constant filling factor; and constant strength with constant-length quads. Numerical study using PARMILA shows that the choice of quadrupole strength that minimizes the maximum transverse size of the matched beam through subsequent cells of the linac tends to be most sensitive to input mismatch. However, gradients exist nearby that result in almost-as-small beams over a suitably broad range of mismatch. The study was used to choose the initial gradient for the DTL portion of the Fusion Material Irradiation Test (FMIT) linac. The matching required across quad groups is also discussed

  9. Vocal tract length and formant frequency dispersion correlate with body size in rhesus macaques.

    Science.gov (United States)

    Fitch, W T

    1997-08-01

    Body weight, length, and vocal tract length were measured for 23 rhesus macaques (Macaca mulatta) of various sizes using radiographs and computer graphic techniques. linear predictive coding analysis of tape-recorded threat vocalizations were used to determine vocal tract resonance frequencies ("formants") for the same animals. A new acoustic variable is proposed, "formant dispersion," which should theoretically depend upon vocal tract length. Formant dispersion is the averaged difference between successive formant frequencies, and was found to be closely tied to both vocal tract length and body size. Despite the common claim that voice fundamental frequency (F0) provides an acoustic indication of body size, repeated investigations have failed to support such a relationship in many vertebrate species including humans. Formant dispersion, unlike voice pitch, is proposed to be a reliable predictor of body size in macaques, and probably many other species.

  10. Improving a maximum horizontal gradient algorithm to determine geological body boundaries and fault systems based on gravity data

    Science.gov (United States)

    Van Kha, Tran; Van Vuong, Hoang; Thanh, Do Duc; Hung, Duong Quoc; Anh, Le Duc

    2018-05-01

    The maximum horizontal gradient method was first proposed by Blakely and Simpson (1986) for determining the boundaries between geological bodies with different densities. The method involves the comparison of a center point with its eight nearest neighbors in four directions within each 3 × 3 calculation grid. The horizontal location and magnitude of the maximum values are found by interpolating a second-order polynomial through the trio of points provided that the magnitude of the middle point is greater than its two nearest neighbors in one direction. In theoretical models of multiple sources, however, the above condition does not allow the maximum horizontal locations to be fully located, and it could be difficult to correlate the edges of complicated sources. In this paper, the authors propose an additional condition to identify more maximum horizontal locations within the calculation grid. This additional condition will improve the method algorithm for interpreting the boundaries of magnetic and/or gravity sources. The improved algorithm was tested on gravity models and applied to gravity data for the Phu Khanh basin on the continental shelf of the East Vietnam Sea. The results show that the additional locations of the maximum horizontal gradient could be helpful for connecting the edges of complicated source bodies.

  11. Understanding the Role of Reservoir Size on Probable Maximum Precipitation

    Science.gov (United States)

    Woldemichael, A. T.; Hossain, F.

    2011-12-01

    This study addresses the question 'Does surface area of an artificial reservoir matter in the estimation of probable maximum precipitation (PMP) for an impounded basin?' The motivation of the study was based on the notion that the stationarity assumption that is implicit in the PMP for dam design can be undermined in the post-dam era due to an enhancement of extreme precipitation patterns by an artificial reservoir. In addition, the study lays the foundation for use of regional atmospheric models as one way to perform life cycle assessment for planned or existing dams to formulate best management practices. The American River Watershed (ARW) with the Folsom dam at the confluence of the American River was selected as the study region and the Dec-Jan 1996-97 storm event was selected for the study period. The numerical atmospheric model used for the study was the Regional Atmospheric Modeling System (RAMS). First, the numerical modeling system, RAMS, was calibrated and validated with selected station and spatially interpolated precipitation data. Best combinations of parameterization schemes in RAMS were accordingly selected. Second, to mimic the standard method of PMP estimation by moisture maximization technique, relative humidity terms in the model were raised to 100% from ground up to the 500mb level. The obtained model-based maximum 72-hr precipitation values were named extreme precipitation (EP) as a distinction from the PMPs obtained by the standard methods. Third, six hypothetical reservoir size scenarios ranging from no-dam (all-dry) to the reservoir submerging half of basin were established to test the influence of reservoir size variation on EP. For the case of the ARW, our study clearly demonstrated that the assumption of stationarity that is implicit the traditional estimation of PMP can be rendered invalid to a large part due to the very presence of the artificial reservoir. Cloud tracking procedures performed on the basin also give indication of the

  12. Relative Importance of Sex, Pre-Starvation Body Mass and Structural Body Size in the Determination of Exceptional Starvation Resistance of Anchomenus dorsalis (Coleoptera: Carabidae.

    Directory of Open Access Journals (Sweden)

    Michal Knapp

    Full Text Available In nature, almost all animals have to cope with periods of food shortage during their lifetimes. Starvation risks are especially high for carnivorous predatory species, which often experience long intervals between stochastic prey capturing events. A laboratory experiment using the common predatory carabid beetle Anchomenus dorsalis revealed an exceptional level of starvation resistance in this species: males survived up to 137 days and females up to 218 days without food at 20°C. Individual starvation resistance was strongly positively affected by pre-starvation body mass but only slightly by beetle structural body size per se. Females outperformed males even when the effect of gender was corrected for the effects of structural body size and pre-starvation body mass. The better performance of females compared to males and of beetles with higher relative pre-starvation body mass could be linked to higher fat content and lean dry mass before starvation, followed by a greater decrease in both during starvation. There was also a difference between the sexes in the extent of body mass changes both during ad libitum feeding and following starvation; the body masses of females fluctuated more compared to males. This study stresses the need to distinguish between body mass and structural body size when investigating the ecological and evolutionary consequences of body size. Investigation of the net effects of body size and sex is necessary to disentangle the causes of differences in individual performances in studies of species with significant sexual size dimorphism.

  13. Body size and growth in 0- to 4-year-old children and the relation to body size in primary school age

    NARCIS (Netherlands)

    Stocks, T.; Renders, C.M.; Bulk-Bunschoten, A.M.W.; Hirasing, R.A.; Buuren, S. van; Seidell, J.C.

    2011-01-01

    Excess weight in early life is believed to increase susceptibility to obesity, and in support of such theory, excess weight and fast weight gain in early childhood have been related to overweight later in life. The aim of this study was to review the literature on body size and growth in 0- to

  14. Body size and growth in 0- to 4-year-old children and the relation to body size in primary school age

    NARCIS (Netherlands)

    Stocks, T; Renders, C M; Bulk-Bunschoten, A.M.W.; HiraSing, R.A.; van Buuren, S.; Seidell, J C

    Excess weight in early life is believed to increase susceptibility to obesity, and in support of such theory, excess weight and fast weight gain in early childhood have been related to overweight later in life. The aim of this study was to review the literature on body size and growth in 0- to

  15. Maximum type I error rate inflation from sample size reassessment when investigators are blind to treatment labels.

    Science.gov (United States)

    Żebrowska, Magdalena; Posch, Martin; Magirr, Dominic

    2016-05-30

    Consider a parallel group trial for the comparison of an experimental treatment to a control, where the second-stage sample size may depend on the blinded primary endpoint data as well as on additional blinded data from a secondary endpoint. For the setting of normally distributed endpoints, we demonstrate that this may lead to an inflation of the type I error rate if the null hypothesis holds for the primary but not the secondary endpoint. We derive upper bounds for the inflation of the type I error rate, both for trials that employ random allocation and for those that use block randomization. We illustrate the worst-case sample size reassessment rule in a case study. For both randomization strategies, the maximum type I error rate increases with the effect size in the secondary endpoint and the correlation between endpoints. The maximum inflation increases with smaller block sizes if information on the block size is used in the reassessment rule. Based on our findings, we do not question the well-established use of blinded sample size reassessment methods with nuisance parameter estimates computed from the blinded interim data of the primary endpoint. However, we demonstrate that the type I error rate control of these methods relies on the application of specific, binding, pre-planned and fully algorithmic sample size reassessment rules and does not extend to general or unplanned sample size adjustments based on blinded data. © 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. © 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.

  16. Effect of meal size and body size on specific dynamic action and gastric processing in decapod crustaceans.

    Science.gov (United States)

    McGaw, Iain J; Curtis, Daniel L

    2013-11-01

    Meal size and animal size are important factors affecting the characteristics of the specific dynamic action (SDA) response across a variety of taxa. The effects of these two variables on the SDA of decapod crustaceans are based on just a couple of articles, and are not wholly consistent with the responses reported for other aquatic ectotherms. Therefore, the effects of meal size and animal size on the characteristics of SDA response were investigated in a variety of decapod crustaceans from different families. A 6 fold increase in meal size (0.5%-3% body mass) resulted a pronounced increase in the duration of increased oxygen consumption, resulting in an increase in the SDA of Callinectes sapidus, Cancer gracilis, Hemigrapsus nudus, Homarus americanus, Pugettia producta and Procambarus clarkii. Unlike many other aquatic ectotherms a substantial increase between meal sizes was required, with meal size close to their upper feeding limit (3% body mass), before changes were evident. In many organisms increases in both duration and scope contribute to the overall SDA, here changes in scope as a function of meal size were weak, suggesting that a similar amount of energy is required to upregulate gastric processes, regardless of meal size. The SDA characteristics were less likely to be influenced by the size of the animal, and there was no difference in the SDA (kJ) as a function of size in H. americanus or Cancer irroratus when analysed as mass specific values. In several fish species characteristics of the SDA response are more closely related to the transit times of food, rather than the size of a meal. To determine if a similar trend occurred in crustaceans, the transit rates of different sized meals were followed through the digestive system using a fluoroscope. Although there was a trend towards larger meals taking longer to pass through the gut, this was only statistically significant for P. clarkii. There were some changes in transit times as a function of animal

  17. My 'Fat Girl Complex': a preliminary investigation of sexual health and body image in women of size.

    Science.gov (United States)

    Satinsky, Sonya; Dennis, Barbara; Reece, Michael; Sanders, Stephanie; Bardzell, Shaowen

    2013-01-01

    Women of size who inhabit non-normative bodies may have different experiences with body image and sexual health than women of average body size. In this exploratory study, we interviewed four women of size recruited from a larger mixed-methodological study of body image and sexuality. Each woman was interviewed twice on topics of body image, sexuality and sexual health. Reconstructive Horizon Analysis was used to analyse the content of the interviews. Women who expressed that their bodies had inherent personal and social value regardless of size did not articulate connections between body size and their sexual health. However, those women who looked externally for validation of their attractiveness struggled with acceptance of their sexuality and bodies and spoke of ways in which their body size and appearance hindered them from having the sexually healthy lives that they wanted. Findings highlight two important components of women's sexual health as participants related them to body image: the right to pleasure and the right to engage only in wanted sexual activity. Participants described how negative body attitudes affected both of these aspects of their sexual health. Interventions targeting weight-based stigma may offer a means of indirectly promoting sexual health and autonomy in women.

  18. Effects of seed predators of different body size on seed mortality in Bornean logged forest.

    Science.gov (United States)

    Hautier, Yann; Saner, Philippe; Philipson, Christopher; Bagchi, Robert; Ong, Robert C; Hector, Andy

    2010-07-19

    The Janzen-Connell hypothesis proposes that seed and seedling enemies play a major role in maintaining high levels of tree diversity in tropical forests. However, human disturbance may alter guilds of seed predators including their body size distribution. These changes have the potential to affect seedling survival in logged forest and may alter forest composition and diversity. We manipulated seed density in plots beneath con- and heterospecific adult trees within a logged forest and excluded vertebrate predators of different body sizes using cages. We show that small and large-bodied predators differed in their effect on con- and heterospecific seedling mortality. In combination small and large-bodied predators dramatically decreased both con- and heterospecific seedling survival. In contrast, when larger-bodied predators were excluded small-bodied predators reduced conspecific seed survival leaving seeds coming from the distant tree of a different species. Our results suggest that seed survival is affected differently by vertebrate predators according to their body size. Therefore, changes in the body size structure of the seed predator community in logged forests may change patterns of seed mortality and potentially affect recruitment and community composition.

  19. Body Size Perceptions and Weight Status of Adults in a Nigerian ...

    African Journals Online (AJOL)

    Subjects and Methods: A cross‑sectional sample of 183 adults living in a rural community, South‑West Nigeria was randomly recruited into the study. Their verbal and visual body size perceptions were assessed through structured questions and body images. Descriptive and inferential statistics were used to analyze the ...

  20. Sexual Size Dimorphism and Body Condition in the Australasian Gannet.

    Directory of Open Access Journals (Sweden)

    Lauren P Angel

    Full Text Available Sexual size dimorphism is widespread throughout seabird taxa and several drivers leading to its evolution have been hypothesised. While the Australasian Gannet (Morus serrator has previously been considered nominally monomorphic, recent studies have documented sexual segregation in diet and foraging areas, traits often associated with size dimorphism. The present study investigated the sex differences in body mass and structural size of this species at two colonies (Pope's Eye, PE; Point Danger, PD in northern Bass Strait, south-eastern Australia. Females were found to be 3.1% and 7.3% heavier (2.74 ± 0.03, n = 92; 2.67 ± 0.03 kg, n = 43 than males (2.66 ± 0.03, n = 92; 2.48 ± 0.03 kg, n = 43 at PE and PD, respectively. Females were also larger in wing ulna length (0.8% both colonies but smaller in bill depth (PE: 2.2%; PD: 1.7% than males. Despite this dimorphism, a discriminant function provided only mild accuracy in determining sex. A similar degree of dimorphism was also found within breeding pairs, however assortative mating was not apparent at either colony (R2 < 0.04. Using hydrogen isotope dilution, a body condition index was developed from morphometrics to estimate total body fat (TBF stores, where TBF(% = 24.43+1.94*(body mass/wing ulna length - 0.58*tarsus length (r2 = 0.84, n = 15. This index was used to estimate body composition in all sampled individuals. There was no significant difference in TBF(% between the sexes for any stage of breeding or in any year of the study at either colony suggesting that, despite a greater body mass, females were not in a better condition than males. While the driving mechanism for sexual dimorphism in this species is currently unknown, studies of other Sulids indicate segregation in foraging behaviour, habitat and diet may be a contributing factor.

  1. Understanding mismatches in body size, speed and power among adolescent rugby union players.

    Science.gov (United States)

    Krause, Lyndon M; Naughton, Geraldine A; Denny, Greg; Patton, Declan; Hartwig, Tim; Gabbett, Tim J

    2015-05-01

    With adolescent sport increasingly challenged by mismatches in size, new strategies are important to maximize participation. The objectives were to (1) improve the understanding of mismatches in physical size, speed and power in adolescent rugby union players, (2) explore associations between size and performance with demographic, playing-history, and injury profiles, and (3) explore the applicability of existing criteria for age/body mass-based dispensation (playing-down) strategies. Cross-sectional study. Four hundred and eighty-five male community rugby union players were recruited from three Australian states selected to represent community-based U12, U13, U14 and U15 players. Body mass, stature, speed (10, 30, and 40 m sprints) and lower-leg power (relative peak power and relative peak force) were measured. Independent student t-tests, linear regressions and Chi square analyses were undertaken. Mean values in age groups for size, speed and power masked considerable overlap in the ranges within specific age groups of adolescent rugby players. Only a small proportion of players (approximately 5%) shared the highest and lowest tertiles for speed, relative peak power and body mass. Physical size was not related to injury. The mean body mass of current community rugby union players was above the 75th percentile on normative growth-charts. The notion that bigger, faster, and more powerful characteristics occur simultaneously in adolescent rugby players was not supported in the present study. Current practices in body mass-based criteria for playing down an age group lack a sufficient evidence for decision-making. Dispensation solely based on body mass may not address mismatch in junior rugby union. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  2. Body size and the timing of egg production in parasitoid wasps.

    NARCIS (Netherlands)

    Ellers, J.; Jervis, M.

    2003-01-01

    In insects several key fitness-related variables are positively correlated with intraspecific variation in body size, but little is known about size-related variation in the timing of egg production within species. Female insects are known to vary in the degree to which they concentrate egg

  3. Body size evolution in an old insect order: No evidence for Cope's Rule in spite of fitness benefits of large size.

    Science.gov (United States)

    Waller, John T; Svensson, Erik I

    2017-09-01

    We integrate field data and phylogenetic comparative analyses to investigate causes of body size evolution and stasis in an old insect order: odonates ("dragonflies and damselflies"). Fossil evidence for "Cope's Rule" in odonates is weak or nonexistent since the last major extinction event 65 million years ago, yet selection studies show consistent positive selection for increased body size among adults. In particular, we find that large males in natural populations of the banded demoiselle (Calopteryx splendens) over several generations have consistent fitness benefits both in terms of survival and mating success. Additionally, there was no evidence for stabilizing or conflicting selection between fitness components within the adult life-stage. This lack of stabilizing selection during the adult life-stage was independently supported by a literature survey on different male and female fitness components from several odonate species. We did detect several significant body size shifts among extant taxa using comparative methods and a large new molecular phylogeny for odonates. We suggest that the lack of Cope's rule in odonates results from conflicting selection between fitness advantages of large adult size and costs of long larval development. We also discuss competing explanations for body size stasis in this insect group. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  4. Mammal body size evolution in North America and Europe over 20 Myr: similar trends generated by different processes.

    Science.gov (United States)

    Huang, Shan; Eronen, Jussi T; Janis, Christine M; Saarinen, Juha J; Silvestro, Daniele; Fritz, Susanne A

    2017-02-22

    Because body size interacts with many fundamental biological properties of a species, body size evolution can be an essential component of the generation and maintenance of biodiversity. Here we investigate how body size evolution can be linked to the clade-specific diversification dynamics in different geographical regions. We analyse an extensive body size dataset of Neogene large herbivores (covering approx. 50% of the 970 species in the orders Artiodactyla and Perissodactyla) in Europe and North America in a Bayesian framework. We reconstruct the temporal patterns of body size in each order on each continent independently, and find significant increases of minimum size in three of the continental assemblages (except European perissodactyls), suggesting an active selection for larger bodies. Assessment of trait-correlated birth-death models indicates that the common trend of body size increase is generated by different processes in different clades and regions. Larger-bodied artiodactyl species on both continents tend to have higher origination rates, and both clades in North America show strong links between large bodies and low extinction rate. Collectively, our results suggest a strong role of species selection and perhaps of higher-taxon sorting in driving body size evolution, and highlight the value of investigating evolutionary processes in a biogeographic context. © 2017 The Author(s).

  5. Carotid body size measured by computed tomographic angiography in individuals born prematurely.

    Science.gov (United States)

    Bates, Melissa L; Welch, Brian T; Randall, Jess T; Petersen-Jones, Humphrey G; Limberg, Jacqueline K

    2018-05-24

    We tested the hypothesis that the carotid bodies would be smaller in individuals born prematurely or exposed to perinatal oxygen therapy when compared individuals born full term that did not receive oxygen therapy. A retrospective chart review was conducted on patients who underwent head/neck computed tomography angiography (CTA) at the Mayo Clinic between 10 and 40 years of age (n = 2503). Patients were identified as premature ( body images captured during the CTA were performed. Carotid body visualization was possible in 43% of patients and 52% of age, sex, and body mass index (BMI)-matched controls but only 17% of juvenile preterm subjects (p = 0.07). Of the carotid bodies that could be visualized, widest axial measurements of the carotid bodies in individuals born prematurely (n = 7, 34 ± 4 weeks gestation, birth weight: 2460 ± 454 g; average size: 2.5 ± 0.2 cm) or individuals exposed to perinatal oxygen therapy (n = 3, 38 ± 2 weeks gestation, Average size: 2.2 ± 0.1 cm) were not different when compared to controls (2.3 ± 0.2 cm and 2.3 ± 0.2 cm, respectively, p > 0.05). Carotid body size, as measured using CTA, is not smaller in adults born prematurely or exposed to perinatal oxygen therapy when compared to sex, age, and BMI-matched controls. However, carotid body visualization was lower in juvenile premature patients. The decreased ability to visualize the carotid bodies in these individuals may be a result of their prematurity. Copyright © 2018. Published by Elsevier B.V.

  6. Habitat structure and body size distributions: Cross-ecosystem comparison for taxa with determinate and indeterminate growth

    Science.gov (United States)

    Nash, Kirsty L.; Allen, Craig R.; Barichievy, Chris; Nystrom, Magnus; Sundstrom, Shana M.; Graham, Nicholas A.J.

    2014-01-01

    Habitat structure across multiple spatial and temporal scales has been proposed as a key driver of body size distributions for associated communities. Thus, understanding the relationship between habitat and body size is fundamental to developing predictions regarding the influence of habitat change on animal communities. Much of the work assessing the relationship between habitat structure and body size distributions has focused on terrestrial taxa with determinate growth, and has primarily analysed discontinuities (gaps) in the distribution of species mean sizes (species size relationships or SSRs). The suitability of this approach for taxa with indeterminate growth has yet to be determined. We provide a cross-ecosystem comparison of bird (determinate growth) and fish (indeterminate growth) body mass distributions using four independent data sets. We evaluate three size distribution indices: SSRs, species size–density relationships (SSDRs) and individual size–density relationships (ISDRs), and two types of analysis: looking for either discontinuities or abundance patterns and multi-modality in the distributions. To assess the respective suitability of these three indices and two analytical approaches for understanding habitat–size relationships in different ecosystems, we compare their ability to differentiate bird or fish communities found within contrasting habitat conditions. All three indices of body size distribution are useful for examining the relationship between cross-scale patterns of habitat structure and size for species with determinate growth, such as birds. In contrast, for species with indeterminate growth such as fish, the relationship between habitat structure and body size may be masked when using mean summary metrics, and thus individual-level data (ISDRs) are more useful. Furthermore, ISDRs, which have traditionally been used to study aquatic systems, present a potentially useful common currency for comparing body size distributions

  7. Body size and symbiotic status influence gonad development in Aiptasia pallida anemones.

    Science.gov (United States)

    Carlisle, Judith F; Murphy, Grant K; Roark, Alison M

    2017-01-01

    Pale anemones ( Aiptasia pallida ) coexist with dinoflagellates (primarily Symbiodinium minutum ) in a mutualistic relationship. The purpose of this study was to investigate the role of these symbionts in gonad development of anemone hosts. Symbiotic and aposymbiotic anemones were subjected to light cycles that induced gametogenesis. These anemones were then sampled weekly for nine weeks, and gonad development was analyzed histologically. Anemone size was measured as mean body column diameter, and oocytes or sperm follicles were counted for each anemone. Generalized linear models were used to evaluate the influence of body size and symbiotic status on whether gonads were present and on the number of oocytes or sperm follicles produced. Body size predicted whether gonads were present, with larger anemones being more likely than smaller anemones to develop gonads. Both body size and symbiotic status predicted gonad size, such that larger and symbiotic anemones produced more oocytes and sperm follicles than smaller and aposymbiotic anemones. Overall, only 22 % of aposymbiotic females produced oocytes, whereas 63 % of symbiotic females produced oocytes. Similarly, 6 % of aposymbiotic males produced sperm follicles, whereas 60 % of symbiotic males produced sperm follicles. Thus, while gonads were present in 62 % of symbiotic anemones, they were present in only 11 % of aposymbiotic anemones. These results indicate that dinoflagellate symbionts influence gonad development and thus sexual maturation in both female and male Aiptasia pallida anemones. This finding substantiates and expands our current understanding of the importance of symbionts in the development and physiology of cnidarian hosts.

  8. Macroscale patterns in body size of intertidal crustaceans provide insights on climate change effects

    Science.gov (United States)

    Dugan, Jenifer E.; Hubbard, David M.; Contreras, Heraldo; Duarte, Cristian; Acuña, Emilio; Schoeman, David S.

    2017-01-01

    Predicting responses of coastal ecosystems to altered sea surface temperatures (SST) associated with global climate change, requires knowledge of demographic responses of individual species. Body size is an excellent metric because it scales strongly with growth and fecundity for many ectotherms. These attributes can underpin demographic as well as community and ecosystem level processes, providing valuable insights for responses of vulnerable coastal ecosystems to changing climate. We investigated contemporary macroscale patterns in body size among widely distributed crustaceans that comprise the majority of intertidal abundance and biomass of sandy beach ecosystems of the eastern Pacific coasts of Chile and California, USA. We focused on ecologically important species representing different tidal zones, trophic guilds and developmental modes, including a high-shore macroalga-consuming talitrid amphipod (Orchestoidea tuberculata), two mid-shore scavenging cirolanid isopods (Excirolana braziliensis and E. hirsuticauda), and a low-shore suspension-feeding hippid crab (Emerita analoga) with an amphitropical distribution. Significant latitudinal patterns in body sizes were observed for all species in Chile (21° - 42°S), with similar but steeper patterns in Emerita analoga, in California (32°- 41°N). Sea surface temperature was a strong predictor of body size (-4% to -35% °C-1) in all species. Beach characteristics were subsidiary predictors of body size. Alterations in ocean temperatures of even a few degrees associated with global climate change are likely to affect body sizes of important intertidal ectotherms, with consequences for population demography, life history, community structure, trophic interactions, food-webs, and indirect effects such as ecosystem function. The consistency of results for body size and temperature across species with different life histories, feeding modes, ecological roles, and microhabitats inhabiting a single widespread coastal

  9. Beauty, body size and wages: Evidence from a unique data set.

    Science.gov (United States)

    Oreffice, Sonia; Quintana-Domeque, Climent

    2016-09-01

    We analyze how attractiveness rated at the start of the interview in the German General Social Survey is related to weight, height, and body mass index (BMI), separately by gender and accounting for interviewers' characteristics or fixed effects. We show that height, weight, and BMI all strongly contribute to male and female attractiveness when attractiveness is rated by opposite-sex interviewers, and that anthropometric characteristics are irrelevant to male interviewers when assessing male attractiveness. We also estimate whether, controlling for beauty, body size measures are related to hourly wages. We find that anthropometric attributes play a significant role in wage regressions in addition to attractiveness, showing that body size cannot be dismissed as a simple component of beauty. Our findings are robust to controlling for health status and accounting for selection into working. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Body size and premolar evolution in the early-middle eocene euprimates of Wyoming.

    Science.gov (United States)

    Jones, Katrina E; Rose, Kenneth D; Perry, Jonathan M G

    2014-01-01

    The earliest euprimates to arrive in North America were larger-bodied notharctids and smaller-bodied omomyids. Through the Eocene, notharctids generally continued to increase in body size, whereas omomyids generally radiated within small- and increasingly mid-sized niches in the middle Eocene. This study examines the influence of changing body size and diet on the evolution of the lower fourth premolar in Eocene euprimates. The P4 displays considerable morphological variability in these taxa. Despite the fact that most studies of primate dental morphology have focused on the molars, P4 can also provide important paleoecological insights. We analyzed the P4 from 177 euprimate specimens, representing 35 species (11 notharctids and 24 omomyids), in three time bins of approximately equal duration: early Wasatchian, late Wasatchian, and Bridgerian. Two-dimensional surface landmarks were collected from lingual photographs, capturing important variation in cusp position and tooth shape. Disparity metrics were calculated and compared for the three time bins. In the early Eocene, notharctids have a more molarized P4 than omomyids. During the Bridgerian, expanding body size range of omomyids was accompanied by a significant increase in P4 disparity and convergent evolution of the semimolariform condition in the largest omomyines. P4 morphology relates to diet in early euprimates, although patterns vary between families. Copyright © 2013 Wiley Periodicals, Inc.

  11. Factors determining the average body size of geographically separated Arctodiaptomus salinus (Daday, 1885) populations

    OpenAIRE

    Anufriieva, Elena V.; Shadrin, Nickolai V.

    2014-01-01

    Arctodiaptomus salinus inhabits water bodies across Eurasia and North Africa. Based on our own data and that from the literature, we analyzed the influences of several factors on the intra- and inter-population variability of this species. A strong negative linear correlation between temperature and average body size in the Crimean and African populations was found, in which the parameters might be influenced by salinity. Meanwhile, asignificant negative correlation between female body size a...

  12. Energetic tradeoffs control the size distribution of aquatic mammals

    Science.gov (United States)

    Gearty, William; McClain, Craig R.; Payne, Jonathan L.

    2018-04-01

    Four extant lineages of mammals have invaded and diversified in the water: Sirenia, Cetacea, Pinnipedia, and Lutrinae. Most of these aquatic clades are larger bodied, on average, than their closest land-dwelling relatives, but the extent to which potential ecological, biomechanical, and physiological controls contributed to this pattern remains untested quantitatively. Here, we use previously published data on the body masses of 3,859 living and 2,999 fossil mammal species to examine the evolutionary trajectories of body size in aquatic mammals through both comparative phylogenetic analysis and examination of the fossil record. Both methods indicate that the evolution of an aquatic lifestyle is driving three of the four extant aquatic mammal clades toward a size attractor at ˜500 kg. The existence of this body size attractor and the relatively rapid selection toward, and limited deviation from, this attractor rule out most hypothesized drivers of size increase. These three independent body size increases and a shared aquatic optimum size are consistent with control by differences in the scaling of energetic intake and cost functions with body size between the terrestrial and aquatic realms. Under this energetic model, thermoregulatory costs constrain minimum size, whereas limitations on feeding efficiency constrain maximum size. The optimum size occurs at an intermediate value where thermoregulatory costs are low but feeding efficiency remains high. Rather than being released from size pressures, water-dwelling mammals are driven and confined to larger body sizes by the strict energetic demands of the aquatic medium.

  13. Body Size of Male Youth Soccer Players: 1978-2015.

    Science.gov (United States)

    Malina, Robert M; Figueiredo, António J; Coelho-E-Silva, Manuel J

    2017-10-01

    Studies of the body size and proportions of athletes have a long history. Comparisons of athletes within specific sports across time, though not extensive, indicate both positive and negative trends. To evaluate secular variation in heights and weights of male youth soccer players reported in studies between 1978 and 2015. Reported mean ages, heights, and weights of male soccer players 9-18 years of age were extracted from the literature and grouped into two intervals: 1978-99 and 2000-15. A third-order polynomial was fitted to the mean heights and weights across the age range for each interval, while the Preece-Baines model 1 was fitted to the grand means of mean heights and mean weights within each chronological year to estimate ages at peak height velocity and peak weight velocity for each time interval. Third-order polynomials applied to all data points and estimates based on the Preece-Baines model applied to grand means for each age group provided similar fits. Both indicated secular changes in body size between the two intervals. Secular increases in height and weight between 1978-99 and 2000-15 were especially apparent between 13 and 16 years of age, but estimated ages at peak height velocity (13.01 and 12.91 years) and peak weight velocity (13.86 and 13.77 years) did not differ between the time intervals. Although the body size of youth soccer players increased between 1978-99 and 2000-15, estimated ages at peak height velocity and peak weight velocity did not change. The increase in height and weight likely reflected improved health and nutritional conditions, in addition to the selectivity of soccer reflected in systematic selection and retention of players advanced in maturity status, and exclusion of late maturing players beginning at about 12-13 years of age. Enhanced training programs aimed at the development of strength and power are probably an additional factor contributing to secular increases in body weight.

  14. Are rates of species diversification and body size evolution coupled in the ferns?

    Science.gov (United States)

    Testo, Weston L; Sundue, Michael A

    2018-03-01

    Understanding the relationship between phenotypic evolution and lineage diversification is a central goal of evolutionary biology. To extend our understanding of the role morphological evolution plays in the diversification of plants, we examined the relationship between leaf size evolution and lineage diversification across ferns. We tested for an association between body size evolution and lineage diversification using a comparative phylogenetic approach that combined a time-calibrated phylogeny and leaf size data set for 2654 fern species. Rates of leaf size change and lineage diversification were estimated using BAMM, and rate correlations were performed for rates obtained for all families and individual species. Rates and patterns of rate-rate correlation were also analyzed separately for terrestrial and epiphytic taxa. We find no significant correlation between rates of leaf area change and lineage diversification, nor was there a difference in this pattern when growth habit is considered. Our results are consistent with the findings of an earlier study that reported decoupled rates of body size evolution and diversification in the Polypodiaceae, but conflict with a recent study that reported a positive correlation between body size evolution and lineage diversification rates in the tree fern family Cyatheaceae. Our findings indicate that lineage diversification in ferns is largely decoupled from shifts in body size, in contrast to several other groups of organisms. Speciation in ferns appears to be primarily driven by hybridization and isolation along elevational gradients, rather than adaptive radiations featuring prominent morphological restructuring. The exceptional diversity of leaf morphologies in ferns appears to reflect a combination of ecophysiological constraints and adaptations that are not key innovations. © 2018 Botanical Society of America.

  15. Life course evolution of body size and breast cancer survival in the E3N cohort.

    Science.gov (United States)

    His, Mathilde; Le Guélennec, Marine; Mesrine, Sylvie; Boutron-Ruault, Marie-Christine; Clavel-Chapelon, Françoise; Fagherazzi, Guy; Dossus, Laure

    2018-04-15

    Although adult obesity has been associated with poor breast cancer survival, data on adiposity at different periods in life and its lifelong evolution are scarce. Our aims were to assess the associations between breast cancer survival and body size during childhood, puberty and early adulthood and body size trajectories from childhood to adulthood. Self-assessed body size at age 8, at puberty, at age 20-25 and at age 35-40 and trajectories of body size of 4,662 breast cancer survivors from the prospective E3N cohort were studied in relation to risk of death from any cause, death from breast cancer and second invasive cancer event using multivariate Cox regression models. Four trajectories of body size were identified (T1 "moderate increase," T2 "stable/low increase," T3 "increase at puberty" and T4 "constantly high"). Compared with stable body size, an increase in body size during adult life was associated with an increased risk of death from any cause (HR T1 vs. T2 = 1.27; 95% CI = 1.01-1.60) and an increased risk of second invasive cancer event (HR T1 vs. T2 = 1.25; 95% CI = 1.06-1.47). Silhouettes at various ages were not associated with survival. Our results suggest that the evolution of body size from childhood to adulthood has a long-term influence on breast cancer survival. Although these results need to be confirmed, this work sheds light on the need to combine lifelong approaches to current BMI to better identify breast cancer survivors who are at higher risk of recurrence or second primary cancer, or of death. © 2017 UICC.

  16. Maximum inflation of the type 1 error rate when sample size and allocation rate are adapted in a pre-planned interim look.

    Science.gov (United States)

    Graf, Alexandra C; Bauer, Peter

    2011-06-30

    We calculate the maximum type 1 error rate of the pre-planned conventional fixed sample size test for comparing the means of independent normal distributions (with common known variance) which can be yielded when sample size and allocation rate to the treatment arms can be modified in an interim analysis. Thereby it is assumed that the experimenter fully exploits knowledge of the unblinded interim estimates of the treatment effects in order to maximize the conditional type 1 error rate. The 'worst-case' strategies require knowledge of the unknown common treatment effect under the null hypothesis. Although this is a rather hypothetical scenario it may be approached in practice when using a standard control treatment for which precise estimates are available from historical data. The maximum inflation of the type 1 error rate is substantially larger than derived by Proschan and Hunsberger (Biometrics 1995; 51:1315-1324) for design modifications applying balanced samples before and after the interim analysis. Corresponding upper limits for the maximum type 1 error rate are calculated for a number of situations arising from practical considerations (e.g. restricting the maximum sample size, not allowing sample size to decrease, allowing only increase in the sample size in the experimental treatment). The application is discussed for a motivating example. Copyright © 2011 John Wiley & Sons, Ltd.

  17. Evolution of the earliest horses driven by climate change in the Paleocene-Eocene Thermal Maximum.

    Science.gov (United States)

    Secord, Ross; Bloch, Jonathan I; Chester, Stephen G B; Boyer, Doug M; Wood, Aaron R; Wing, Scott L; Kraus, Mary J; McInerney, Francesca A; Krigbaum, John

    2012-02-24

    Body size plays a critical role in mammalian ecology and physiology. Previous research has shown that many mammals became smaller during the Paleocene-Eocene Thermal Maximum (PETM), but the timing and magnitude of that change relative to climate change have been unclear. A high-resolution record of continental climate and equid body size change shows a directional size decrease of ~30% over the first ~130,000 years of the PETM, followed by a ~76% increase in the recovery phase of the PETM. These size changes are negatively correlated with temperature inferred from oxygen isotopes in mammal teeth and were probably driven by shifts in temperature and possibly high atmospheric CO(2) concentrations. These findings could be important for understanding mammalian evolutionary responses to future global warming.

  18. Body-size spectra of biofilm-dwelling protozoa and their seasonal shift in coastal ecosystems.

    Science.gov (United States)

    Zhao, Lu; Xu, Guangjian; Wang, Zheng; Xu, Henglong

    2016-10-01

    Community-based assessment of protozoa is usually performed at a taxon-dependent resolution. As an inherent 'taxon-free' trait, however, body-size spectrum has proved to be a highly informative indicator to summarize the functional structure of a community in both community research and monitoring programs in aquatic ecosystems. To demonstrate the relationships between the taxon-free resolution of protozoan communities and water conditions, the body-size spectra of biofilm-dwelling protozoa and their seasonal shift and environmental drivers were explored based on an annual dataset collected monthly from coastal waters of the Yellow Sea, northern China. Body sizes were calculated in equivalent spherical diameter (ESD). Among a total of 8 body-size ranks, S2 (19-27μm), S3 (28-36μm), S4 (37-50μm) and S5 (53-71μm) were the top four levels in frequency of occurrence, while rank S1 (13-17μm), S2 and S4 were the dominant levels in abundance. These dominants showed a clear seasonal succession: S2/S4 (spring)→S2/S4 (summer)→S4 (autumn)→S2 (winter) in frequency of occurrence; S1 (spring)→S4 (summer)→S2 (autumn)→S1 (winter) in abundance. Bootstrapped average analysis showed a clear seasonal shift in body-size spectra of the protozoa during a 1-year cycle, and the best-matching analysis demonstrated that the temporal variations in frequency of occurrence and abundance were significantly correlated with water temperature, pH, dissolved oxygen (DO), alone or in combination with chemical oxygen demand (COD) and nutrients. Thus, the body-size spectra of biofilm-dwelling protozoa were seasonally shaped and might be used as a time and cost efficient bioindicator of water quality in marine ecosystems. Copyright © 2016 Elsevier GmbH. All rights reserved.

  19. Body size and mating success in Drosophila willistoni are ...

    Indian Academy of Sciences (India)

    Mating activity and wing length were investigated in the F1 progeny of Drosophila willistoni females collected in the field to examine any possible relationship between body size and mating success. The flies were observed in a mating chamber under laboratory conditions. No significant differences in wing length were ...

  20. Variation of Body Size in Rice Water Weevil (Coleoptera: Curculionidae) and Its Associations with Population Biology

    OpenAIRE

    Huang, Yunshan; Ao, Yan; Jiang, Mingxing; Way, Michael O

    2018-01-01

    Abstract Life history characteristics help us to determine the ability of invasive species to establish and thrive in an exotic environment. However, so far, there have been very few reports concerning geographic variation in the body size of invasive insects and the associations between body size variation and population biology. In this study, we surveyed the geographic variation in body size of an invasive agricultural pest, the rice water weevil Lissorhoptrus oryzophilus Kuschel (Coleopte...

  1. The role of underestimating body size for self-esteem and self-efficacy among grade five children in Canada.

    Science.gov (United States)

    Maximova, Katerina; Khan, Mohammad K A; Austin, S Bryn; Kirk, Sara F L; Veugelers, Paul J

    2015-10-01

    Underestimating body size hinders healthy behavior modification needed to prevent obesity. However, initiatives to improve body size misperceptions may have detrimental consequences on self-esteem and self-efficacy. Using sex-specific multiple mixed-effect logistic regression models, we examined the association of underestimating versus accurate body size perceptions with self-esteem and self-efficacy in a provincially representative sample of 5075 grade five school children. Body size perceptions were defined as the standardized difference between the body mass index (BMI, from measured height and weight) and self-perceived body size (Stunkard body rating scale). Self-esteem and self-efficacy for physical activity and healthy eating were self-reported. Most of overweight boys and girls (91% and 83%); and most of obese boys and girls (93% and 90%) underestimated body size. Underestimating weight was associated with greater self-efficacy for physical activity and healthy eating among normal-weight children (odds ratio: 1.9 and 1.6 for boys, 1.5 and 1.4 for girls) and greater self-esteem among overweight and obese children (odds ratio: 2.0 and 6.2 for boys, 2.0 and 3.4 for girls). Results highlight the importance of developing optimal intervention strategies as part of targeted obesity prevention efforts that de-emphasize the focus on body weight, while improving body size perceptions. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Microgeographic body size variation in a high elevation Andean anole (Anolis mariarum; Squamata, Polychrotidae

    Directory of Open Access Journals (Sweden)

    Brian C Bock

    2009-12-01

    Full Text Available Intra-specific body size variation is common and often is assumed to be adaptive. Studies of body size variation among sites should include or consider environmental and ecological variables in their designs. Additionally, reciprocal transplant or common garden studies will support which variables are really contributing to the observed body size variation. This study analyzed the microgeographic body size variation in Anolis mariarum, a small lizard endemic to Antioquia, Colombia. Parameters such as body size, shape, and lepidosis variation were quantified in 217 adult A. mariarum, belonging to six populations separated by less than 80km. Results showed that significant body size variation was not related to differences among sites in mean annual temperature, but covaried with mean annual precipitation, with the largest individuals occurring in dryer sites. Mark-recapture data obtained from 115 individuals from both the wettest and dryest sites from October 2004 to April 2005 showed that growth rates were higher at the latter. Eight males from each site were captured at the end of the mark- recapture study and reared for two months under identical conditions in a common garden study. Individuals from both sites grew faster when reared in the laboratory with food provided ad libitum. Although growth rates of males from the two populations did not differ significantly in the laboratory, males from the dryest site still maintained a significantly larger asymptotic body size in their growth trajectories. Multivariate analyses also demonstrated that both males and females from the six populations differed in terms of body shape and lepidosis. However, only female body size was found to covary significantly with an environmental gradient (precipitation. A. mariarum does not conform to Bergmann’s rule, but the relationship found between mean body size and asympotic growth with mean annual precipitation at these sites needs further analysis

  3. Insights into bioassessment of marine pollution using body-size distinctness of planktonic ciliates based on a modified trait hierarchy.

    Science.gov (United States)

    Xu, Henglong; Jiang, Yong; Xu, Guangjian

    2016-06-15

    Based on a modified trait hierarchy of body-size units, the feasibility for bioassessment of water pollution using body-size distinctness of planktonic ciliates was studied in a semi-enclosed bay, northern China. An annual dataset was collected at five sampling stations within a gradient of heavy metal contaminants. Results showed that: (1) in terms of probability density, the body-size spectra of the ciliates represented significant differences among the five stations; (2) bootstrap average analysis demonstrated a spatial variation in body-size rank patterns in response to pollution stress due to heavy metals; and (3) the average body-size distinctness (Δz(+)) and variation in body-size distinctness (Λz(+)), based on the modified trait hierarchy, revealed a clear departure pattern from the expected body-size spectra in areas with pollutants. These results suggest that the body-size diversity measures based on the modified trait hierarchy of the ciliates may be used as a potential indicator of marine pollution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Diabetes Awareness and Body Size Perceptions of Cree Schoolchildren

    Science.gov (United States)

    Willows, Noreen D.; Marshall, Dru; Raine, Kim; Ridley, Denise C.

    2009-01-01

    Native American Indians and First Nations are predisposed to obesity and diabetes. A study was done to understand Cree schoolchildren's diabetes awareness and body size perceptions in two communities that had diabetes awareness-raising activities in the Province of Quebec, Canada. Children (N = 203) in grades 4-6 were classified into weight…

  5. Increased body size along urbanization gradients at both community and intraspecific level in macro-moths.

    Science.gov (United States)

    Merckx, Thomas; Kaiser, Aurélien; Van Dyck, Hans

    2018-05-23

    Urbanization involves a cocktail of human-induced rapid environmental changes and is forecasted to gain further importance. Urban-heat-island effects result in increased metabolic costs expected to drive shifts towards smaller body sizes. However, urban environments are also characterized by strong habitat fragmentation, often selecting for dispersal phenotypes. Here, we investigate to what extent, and at which spatial scale(s), urbanization drives body size shifts in macro-moths-an insect group characterized by positive size-dispersal links-at both the community and intraspecific level. Using light and bait trapping as part of a replicated, spatially nested sampling design, we show that despite the observed urban warming of their woodland habitat, macro-moth communities display considerable increases in community-weighted mean body size because of stronger filtering against small species along urbanization gradients. Urbanization drives intraspecific shifts towards increased body size too, at least for a third of species analysed. These results indicate that urbanization drives shifts towards larger, and hence, more mobile species and individuals in order to mitigate low connectivity of ecological resources in urban settings. Macro-moths are a key group within terrestrial ecosystems, and since body size is central to species interactions, such urbanization-driven phenotypic change may impact urban ecosystem functioning, especially in terms of nocturnal pollination and food web dynamics. Although we show that urbanization's size-biased filtering happens simultaneously and coherently at both the inter- and intraspecific level, we demonstrate that the impact at the community level is most pronounced at the 800 m radius scale, whereas species-specific size increases happen at local and landscape scales (50-3,200 m radius), depending on the species. Hence, measures-such as creating and improving urban green infrastructure-to mitigate the effects of urbanization on

  6. Temporal profile of body temperature in acute ischemic stroke: Relation to infarct size and outcome

    NARCIS (Netherlands)

    M. Geurts (Marjolein); Scheijmans, F.E.V. (Féline E.V.); T. van Seeters (Tom); G.J. Biessels; L.J. Kappelle (Jaap); B.K. Velthuis (Birgitta K.); H.B. van der Worp (Bart); C.B. Majoie (Charles); Y.B.W.E.M. Roos (Yvo); L.E.M. Duijm (Lucien); K. Keizer (Koos); A. van der Lugt (Aad); D.W.J. Dippel (Diederik); Greve, D. (Droogh-de); H.P. Bienfait (Henri); M.A.A. van Walderveen (Marianne); M.J.H. Wermer (Marieke); G.J. Lycklama à Nijeholt (Geert); J. Boiten (Jelis); A. Duyndam (Anita); V.I.H. Kwa; F.J. Meijer (F.); E.J. van Dijk (Ewoud); A.M. Kesselring (Anouk); J. Hofmeijer; J.A. Vos (Jan Albert); W.J. Schonewille (Wouter); W.J. van Rooij (W.); P.L.M. de Kort (Paul); C.C. Pleiter (C.); S.L.M. Bakker (Stef); Bot, J.; M.C. Visser (Marieke); B.K. Velthuis (Birgitta); I.C. van der Schaaf (Irene); J.W. Dankbaar (Jan); W.P. Mali (Willem); van Seeters, T.; A.D. Horsch (Alexander D.); J.M. Niesten (Joris); G.J. Biessels (Geert Jan); L.J. Kappelle (Jaap); J.S.K. Luitse; Y. van der Graaf (Yolanda)

    2016-01-01

    textabstractBackground: High body temperatures after ischemic stroke have been associated with larger infarct size, but the temporal profile of this relation is unknown. We assess the relation between temporal profile of body temperature and infarct size and functional outcome in patients with acute

  7. A longitudinal study of the relationships between the Big Five personality traits and body size perception.

    Science.gov (United States)

    Hartmann, Christina; Siegrist, Michael

    2015-06-01

    The present study investigated the longitudinal development of body size perception in relation to different personality traits. A sample of Swiss adults (N=2905, 47% men), randomly selected from the telephone book, completed a questionnaire on two consecutive years (2012, 2013). Body size perception was assessed with the Contour Drawing Rating Scale and personality traits were assessed with a short version of the Big Five Inventory. Longitudinal analysis of change indicated that men and women scoring higher on conscientiousness perceived themselves as thinner one year later. In contrast, women scoring higher on neuroticism perceived their body size as larger one year later. No significant effect was observed for men scoring higher on neuroticism. These results were independent of weight changes, body mass index, age, and education. Our findings suggest that personality traits contribute to body size perception among adults. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. A macroevolutionary explanation for energy equivalence in the scaling of body size and population density.

    Science.gov (United States)

    Damuth, John

    2007-05-01

    Across a wide array of animal species, mean population densities decline with species body mass such that the rate of energy use of local populations is approximately independent of body size. This "energetic equivalence" is particularly evident when ecological population densities are plotted across several or more orders of magnitude in body mass and is supported by a considerable body of evidence. Nevertheless, interpretation of the data has remained controversial, largely because of the difficulty of explaining the origin and maintenance of such a size-abundance relationship in terms of purely ecological processes. Here I describe results of a simulation model suggesting that an extremely simple mechanism operating over evolutionary time can explain the major features of the empirical data. The model specifies only the size scaling of metabolism and a process where randomly chosen species evolve to take resource energy from other species. This process of energy exchange among particular species is distinct from a random walk of species abundances and creates a situation in which species populations using relatively low amounts of energy at any body size have an elevated extinction risk. Selective extinction of such species rapidly drives size-abundance allometry in faunas toward approximate energetic equivalence and maintains it there.

  9. Tradeoffs in the evolution of caste and body size in the hyperdiverse ant genus Pheidole.

    Directory of Open Access Journals (Sweden)

    Terrence P McGlynn

    Full Text Available The efficient investment of resources is often the route to ecological success, and the adaptability of resource investment may play a critical role in promoting biodiversity. The ants of the "hyperdiverse" genus Pheidole produce two discrete sterile castes, soldiers and minor workers. Within Pheidole, there is tremendous interspecific variation in proportion of soldiers. The causes and correlates of caste ratio variation among species of Pheidole remain enigmatic. Here we test whether a body size threshold model accounts for interspecific variation in caste ratio in Pheidole, such that species with larger body sizes produce relatively fewer soldiers within their colonies. We evaluated the caste ratio of 26 species of Pheidole and found that the body size of workers accounts for interspecific variation in the production of soldiers as we predicted. Twelve species sampled from one forest in Costa Rica yielded the same relationship as found in previously published data from many localities. We conclude that production of soldiers in the most species-rich group of ants is regulated by a body size threshold mechanism, and that the great variation in body size and caste ratio in Pheidole plays a role in niche divergence in this rapidly evolving taxon.

  10. Interdependent effects of male and female body size plasticity on mating behaviour of predatory mites.

    Science.gov (United States)

    Walzer, Andreas; Schausberger, Peter

    2015-02-01

    The adaptive canalization hypothesis predicts that traits with low phenotypic plasticity are more fitness relevant, because they have been canalized via strong past selection, than traits with high phenotypic plasticity. Based on differing male body size plasticities of the predatory mites Phytoseiulus persimilis (low plasticity) and Neoseiulus californicus (high plasticity), we accordingly hypothesized that small male body size entails higher costs in female choice and male-male competition in P. persimilis than N. californicus . Males of both species are highly polygynous but females differ in the level of polyandry (low level in P. persimilis ; medium level in N. californicus ). We videotaped the mating interactions in triplets of either P. persimilis or N. californicus , consisting of a virgin female (small or standard-sized) and a small and a standard-sized male. Mating by both small and standard-sized P. persimilis females was biased towards standard-sized males, resulting from the interplay between female preference for standard-sized males and the inferiority of small males in male-male competition. In contrast, mating by N. californicus females was equally balanced between small and standard-sized males. Small N. californicus males were more aggressive ('Napoleon complex') in male-male competition, reducing the likelihood of encounter between the standard-sized male and the female, and thus counterbalancing female preference for standard-sized males. Our results support the hypothesis that male body size is more important to fitness in the low-level polyandrous P. persimilis than in the medium-level polyandrous N. californicus and provide a key example of the implications of sexually selected body size plasticity on mating behaviour.

  11. The tempo and mode of evolution: body sizes of island mammals.

    Science.gov (United States)

    Raia, Pasquale; Meiri, Shai

    2011-07-01

    The tempo and mode of body size evolution on islands are believed to be well known. It is thought that body size evolves relatively quickly on islands toward the mammalian modal value, thus generating extreme cases of size evolution and the island rule. Here, we tested both theories in a phylogenetically explicit context, by using two different species-level mammalian phylogenetic hypotheses limited to sister clades dichotomizing into an exclusively insular and an exclusively mainland daughter nodes. Taken as a whole, mammals were found to show a largely punctuational mode of size evolution. We found that, accounting for this, and regardless of the phylogeny used, size evolution on islands is no faster than on the continents. We compared different selection regimes using a set of Ornstein-Uhlenbeck models to examine the effects of insularity of the mode of evolution. The models strongly supported clade-specific selection regimes. Under this regime, however, an evolutionary model allowing insular species to evolve differently from their mainland relatives performs worse than a model that ignores insularity as a factor. Thus, insular taxa do not experience statistically different selection from their mainland relatives. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  12. Role of media and peers on body change strategies among adult men: is body size important?

    Science.gov (United States)

    McCabe, Marita P; McGreevy, Shauna J

    2011-01-01

    There has been limited previous research that has examined the role of sociocultural influences on body change strategies among adult men. The current study investigated the role of specific types of messages (encouragement, teasing and modelling) from peers and the media on the strategies to change weight among adult men. Differences were evaluated between 526 men aged from 18 to 60 years from three groups (normal weight, overweight and obese) on body image, body change strategies and messages about their body received from peers and the media. Men were primarily drawn from United States, Australia and Europe. Results showed that messages received by men regarding losing weight or increasing muscle size differed according to weight. Body image and media messages were the strongest predictors of losing weight, whereas body image importance and messages from peers were the strongest predictors of increasing muscles. These findings highlight the importance of sociocultural influences on body change strategies among adult males. Copyright © 2010 John Wiley & Sons, Ltd and Eating Disorders Association.

  13. How acoustic signals scale with individual body size: common trends across diverse taxa

    OpenAIRE

    Rafael L. Rodríguez; Marcelo Araya-Salas; David A. Gray; Michael S. Reichert; Laurel B. Symes; Matthew R. Wilkins; Rebecca J. Safran; Gerlinde Höbel

    2015-01-01

    We use allometric analysis to explore how acoustic signals scale on individual body size and to test hypotheses about the factors shaping relationships between signals and body size. Across case studies spanning birds, crickets, tree crickets, and tree frogs, we find that most signal traits had low coefficients of variation, shallow allometric scalings, and little dispersion around the allometric function. We relate variation in these measures to the shape of mate preferences and the level of...

  14. Adaptive evolution of body size subject to indirect effect in trophic cascade system.

    Science.gov (United States)

    Wang, Xin; Fan, Meng; Hao, Lina

    2017-09-01

    Trophic cascades represent a classic example of indirect effect and are wide-spread in nature. Their ecological impact are well established, but the evolutionary consequences have received even less theoretical attention. We theoretically and numerically investigate the trait (i.e., body size of consumer) evolution in response to indirect effect in a trophic cascade system. By applying the quantitative trait evolutionary theory and the adaptive dynamic theory, we formulate and explore two different types of eco-evolutionary resource-consumer-predator trophic cascade model. First, an eco-evolutionary model incorporating the rapid evolution is formulated to investigate the effect of rapid evolution of the consumer's body size, and to explore the impact of density-mediate indirect effect on the population dynamics and trait dynamics. Next, by employing the adaptive dynamic theory, a long-term evolutionary model of consumer body size is formulated to evaluate the effect of long-term evolution on the population dynamics and the effect of trait-mediate indirect effect. Those models admit rich dynamics that has not been observed yet in empirical studies. It is found that, both in the trait-mediated and density-mediated system, the body size of consumer in predator-consumer-resource interaction (indirect effect) evolves smaller than that in consumer-resource and predator-consumer interaction (direct effect). Moreover, in the density-mediated system, we found that the evolution of consumer body size contributes to avoiding consumer extinction (i.e., evolutionary rescue). The trait-mediate and density-mediate effects may produce opposite evolutionary response. This study suggests that the trophic cascade indirect effect affects consumer evolution, highlights a more comprehensive mechanistic understanding of the intricate interplay between ecological and evolutionary force. The modeling approaches provide avenue for study on indirect effects from an evolutionary perspective

  15. Endothermy in African platypleurine cicadas: the influence of body size and habitat (Hemiptera: Cicadidae).

    Science.gov (United States)

    Sanborn, Allen F; Villet, Martin H; Phillips, Polly K

    2004-01-01

    The platypleurine cicadas have a wide distribution across Africa and southern Asia. We investigate endothermy as a thermoregulatory strategy in 11 South African species from five genera, with comparisons to the lone ectothermic platypleurine we found, in an attempt to ascertain any influence that habitat and/or body size have on the expression of endothermy in the platypleurine cicadas. Field measurements of body temperature (T(b)) show that these animals regulate T(b) through endogenous heat production. Heat production in the laboratory elevated T(b) to the same range as in animals active in the field. Maximum T(b) measured during calling activity when there was no access to solar radiation ranged from 13.2 degrees to 22.3 degrees C above ambient temperature in the five species measured. The mean T(b) during activity without access to solar radiation did not differ from the mean T(b) during diurnal activity. All platypleurines exhibit a unique behavior for cicadas while warming endogenously, a temperature-dependent telescoping pulsation of the abdomen that probably functions in ventilation. Platypleurines generally call from trunks and branches within the canopy and appear to rely on endothermy even when the sun is available to elevate T(b), in contrast to the facultative endothermy exhibited by New World endothermic species. The two exceptions to this generalization we found within the platypleurines are Platypleura wahlbergi and Albanycada albigera, which were the smallest species studied. The small size of P. wahlbergi appears to have altered their thermoregulatory strategy to one of facultative endothermy, whereby they use the sun when it is available to facilitate increases in T(b). Albanycada albigera is the only ectothermic platypleurine we found. The habitat and host plant association of A. albigera appear to have influenced the choice of ectothermy as a thermoregulatory strategy, as the species possesses the metabolic machinery to elevate to the T

  16. Acute Effects of Partial-Body Cryotherapy on Isometric Strength: Maximum Handgrip Strength Evaluation.

    Science.gov (United States)

    De Nardi, Massimo; Pizzigalli, Luisa; Benis, Roberto; Caffaro, Federica; Micheletti Cremasco, Margherita

    2017-12-01

    De Nardi, M, Pizzigalli, L, Benis, R, Caffaro, F, and Cremasco, MM. Acute effects of partial-body cryotherapy on isometric strength: maximum handgrip strength evaluation. J Strength Cond Res 31(12): 3497-3502, 2017-The aim of the study was to evaluate the influence of a single partial-body cryotherapy (PBC) session on the maximum handgrip strength (JAMAR Hydraulic Hand dynamometer). Two hundred healthy adults were randomized into a PBC group and a control group (50 men and 50 women in each group). After the initial handgrip strength test (T0), the experimental group performed a 150-second session of PBC (temperature range between -130 and -160° C), whereas the control group stayed in a thermo neutral room (22.0 ± 0.5° C). Immediately after, both groups performed another handgrip strength test (T1). Data underlined that both groups showed an increase in handgrip strength values, especially the experimental group (Control: T0 = 39.48 kg, T1 = 40.01 kg; PBC: T0 = 39.61 kg, T1 = 41.34 kg). The analysis also reported a statistical effect related to gender (F = 491.99, P ≤ 0.05), with women showing lower handgrip strength values compared with men (women = 30.43 kg, men = 52.27 kg). Findings provide the first evidence that a single session of PBC leads to the improvement of muscle strength in healthy people. The results of the study imply that PBC could be performed also before a training session or a sport competition, to increase hand isometric strength.

  17. Maximum relative speeds of living organisms: Why do bacteria perform as fast as ostriches?

    Science.gov (United States)

    Meyer-Vernet, Nicole; Rospars, Jean-Pierre

    2016-12-01

    Self-locomotion is central to animal behaviour and survival. It is generally analysed by focusing on preferred speeds and gaits under particular biological and physical constraints. In the present paper we focus instead on the maximum speed and we study its order-of-magnitude scaling with body size, from bacteria to the largest terrestrial and aquatic organisms. Using data for about 460 species of various taxonomic groups, we find a maximum relative speed of the order of magnitude of ten body lengths per second over a 1020-fold mass range of running and swimming animals. This result implies a locomotor time scale of the order of one tenth of second, virtually independent on body size, anatomy and locomotion style, whose ubiquity requires an explanation building on basic properties of motile organisms. From first-principle estimates, we relate this generic time scale to other basic biological properties, using in particular the recent generalisation of the muscle specific tension to molecular motors. Finally, we go a step further by relating this time scale to still more basic quantities, as environmental conditions at Earth in addition to fundamental physical and chemical constants.

  18. Race differences in accuracy of self-reported childhood body size among white and black women

    NARCIS (Netherlands)

    Field, AE; Franko, DL; Striegel-Moore, RH; Schreiber, GB; Crawford, PB; Daniels, [No Value

    Objective: To assess the relation of self-reported current and recalled preadolescent body size to measured BMI (kilograms per meter squared) and interviewer's assessment of body size. 4Research Methods and Procedures: This was a prospective cohort study of 1890 white and black women who were 9 to

  19. The island rule of body size demonstrated on individual hosts

    NARCIS (Netherlands)

    Molleman, Freerk; Depoilly, Alexandre; Vernon, Philippe; Müller, Jörg; Bailey, Richard; Jarzabek-Müller, Andrea; Prinzing, Andreas

    2016-01-01

    Aim: Under spatial isolation on oceanic islands, species tend to show extreme body sizes. From the point of view of many colonizers, individual hosts surrounded by phylogenetically distant neighbours are phylogenetically isolated. This study addresses for the first time how phylogenetic isolation

  20. Variation in age and size in Fennoscandian three-spined sticklebacks (Gasterosteus aculeatus).

    Science.gov (United States)

    DeFaveri, Jacquelin; Merilä, Juha

    2013-01-01

    Average age and maximum life span of breeding adult three-spined sticklebacks (Gasterosteus aculeatus) were determined in eight Fennoscandian localities with the aid of skeletochronology. The average age varied from 1.8 to 3.6 years, and maximum life span from three to six years depending on the locality. On average, fish from marine populations were significantly older than those from freshwater populations, but variation within habitat types was large. We also found significant differences in mean body size among different habitat types and populations, but only the population differences remained significant after accounting for variation due to age effects. These results show that generation length and longevity in three-spined sticklebacks can vary significantly from one locality to another, and that population differences in mean body size cannot be explained as a simple consequence of differences in population age structure. We also describe a nanistic population from northern Finland exhibiting long life span and small body size.

  1. Variation in age and size in Fennoscandian three-spined sticklebacks (Gasterosteus aculeatus.

    Directory of Open Access Journals (Sweden)

    Jacquelin DeFaveri

    Full Text Available Average age and maximum life span of breeding adult three-spined sticklebacks (Gasterosteus aculeatus were determined in eight Fennoscandian localities with the aid of skeletochronology. The average age varied from 1.8 to 3.6 years, and maximum life span from three to six years depending on the locality. On average, fish from marine populations were significantly older than those from freshwater populations, but variation within habitat types was large. We also found significant differences in mean body size among different habitat types and populations, but only the population differences remained significant after accounting for variation due to age effects. These results show that generation length and longevity in three-spined sticklebacks can vary significantly from one locality to another, and that population differences in mean body size cannot be explained as a simple consequence of differences in population age structure. We also describe a nanistic population from northern Finland exhibiting long life span and small body size.

  2. Penis size interacts with body shape and height to influence male attractiveness.

    Science.gov (United States)

    Mautz, Brian S; Wong, Bob B M; Peters, Richard A; Jennions, Michael D

    2013-04-23

    Compelling evidence from many animal taxa indicates that male genitalia are often under postcopulatory sexual selection for characteristics that increase a male's relative fertilization success. There could, however, also be direct precopulatory female mate choice based on male genital traits. Before clothing, the nonretractable human penis would have been conspicuous to potential mates. This observation has generated suggestions that human penis size partly evolved because of female choice. Here we show, based upon female assessment of digitally projected life-size, computer-generated images, that penis size interacts with body shape and height to determine male sexual attractiveness. Positive linear selection was detected for penis size, but the marginal increase in attractiveness eventually declined with greater penis size (i.e., quadratic selection). Penis size had a stronger effect on attractiveness in taller men than in shorter men. There was a similar increase in the positive effect of penis size on attractiveness with a more masculine body shape (i.e., greater shoulder-to-hip ratio). Surprisingly, larger penis size and greater height had almost equivalent positive effects on male attractiveness. Our results support the hypothesis that female mate choice could have driven the evolution of larger penises in humans. More broadly, our results show that precopulatory sexual selection can play a role in the evolution of genital traits.

  3. Does the experience of ownership over a rubber hand change body size perception in anorexia nervosa patients?

    NARCIS (Netherlands)

    Keizer, Anouk; Smeets, Monique A M; Postma, Albert; van Elburg, Annemarie; Dijkerman, H. Chris

    Anorexia nervosa (AN) patients show disturbances in body size experience. Here, malleability of body representation was assessed by inducing the Rubber Hand Illusion (RHI). Specifically the impact of the illusion on body size estimation was investigated.Thirty AN patients and thirty healthy females

  4. Insect temperature-body size trends common to laboratory, latitudinal and seasonal gradients are not found across altitudes

    DEFF Research Database (Denmark)

    Horne, Curtis R.; Hirst, Andrew G.; Atkinson, David

    2018-01-01

    Body size affects rates of most biological and ecological processes, from individual performance to ecosystem function, and is fundamentally linked to organism fitness. Within species, size at maturity can vary systematically with environmental temperature in the laboratory and across seasons...... altitude. Although the general direction of body size clines along altitudinal gradients has been examined previously, to our knowledge altitude-body size (A-S) clines have never been synthesised quantitatively, nor compared with temperature-size (T-S) responses measured under controlled laboratory......, as well as over latitudinal gradients. Recent meta-analyses have revealed a close match in the magnitude and direction of these size gradients in various arthropod orders, suggesting that these size responses share common drivers. As with increasing latitude, temperature also decreases with increasing...

  5. Regulation of Caenorhabditis elegans body size and male tail development by the novel gene lon-8

    Directory of Open Access Journals (Sweden)

    Korswagen Hendrik C

    2007-03-01

    Full Text Available Abstract Background In C. elegans and other nematode species, body size is determined by the composition of the extracellular cuticle as well as by the nuclear DNA content of the underlying hypodermis. Mutants that are defective in these processes can exhibit either a short or a long body size phenotype. Several mutations that give a long body size (Lon phenotype have been characterized and found to be regulated by the DBL-1/TGF-β pathway, that controls post-embryonic growth and male tail development. Results Here we characterize a novel gene affecting body size. lon-8 encodes a secreted product of the hypodermis that is highly conserved in Rhabditid nematodes. lon-8 regulates larval elongation as well as male tail development. In both processes, lon-8 appears to function independently of the Sma/Mab pathway. Rather, lon-8 genetically interacts with dpy-11 and dpy-18, which encode cuticle collagen modifying enzymes. Conclusion The novel gene lon-8 encodes a secreted product of the hypodermis that controls body size and male ray morphology in C. elegans. lon-8 genetically interacts with enzymes that affect the composition of the cuticle.

  6. The effect of body size evolution and ecology on encephalization in cave bears and extant relatives.

    Science.gov (United States)

    Veitschegger, Kristof

    2017-06-05

    The evolution of larger brain volumes relative to body size in Mammalia is the subject of an extensive amount of research. Early on palaeontologists were interested in the brain of cave bears, Ursus spelaeus, and described its morphology and size. However, until now, it was not possible to compare the absolute or relative brain size in a phylogenetic context due to the lack of an established phylogeny, comparative material, and phylogenetic comparative methods. In recent years, many tools for comparing traits within phylogenies were developed and the phylogenetic position of cave bears was resolved based on nuclear as well as mtDNA. Cave bears exhibit significantly lower encephalization compared to their contemporary relatives and intraspecific brain mass variation remained rather small. Encephalization was correlated with the combined dormancy-diet score. Body size evolution was a main driver in the degree of encephalization in cave bears as it increased in a much higher pace than brain size. In Ursus spelaeus, brain and body size increase over time albeit differently paced. This rate pattern is different in the highest encephalized bear species within the dataset, Ursus malayanus. The brain size in this species increased while body size heavily decreased compared to its ancestral stage. Early on in the evolution of cave bears encephalization decreased making it one of the least encephalized bear species compared to extant and extinct members of Ursidae. The results give reason to suspect that as herbivorous animals, cave bears might have exhibited a physiological buffer strategy to survive the strong seasonality of their environment. Thus, brain size was probably affected by the negative trade-off with adipose tissue as well as diet. The decrease of relative brain size in the herbivorous Ursus spelaeus is the result of a considerable increase in body size possibly in combination with environmental conditions forcing them to rest during winters.

  7. Body growth and life history in wild mountain gorillas (Gorilla beringei beringei) from Volcanoes National Park, Rwanda.

    Science.gov (United States)

    Galbany, Jordi; Abavandimwe, Didier; Vakiener, Meagan; Eckardt, Winnie; Mudakikwa, Antoine; Ndagijimana, Felix; Stoinski, Tara S; McFarlin, Shannon C

    2017-07-01

    Great apes show considerable diversity in socioecology and life history, but knowledge of their physical growth in natural settings is scarce. We characterized linear body size growth in wild mountain gorillas from Volcanoes National Park, Rwanda, a population distinguished by its extreme folivory and accelerated life histories. In 131 individuals (0.09-35.26 years), we used non-invasive parallel laser photogrammetry to measure body length, back width, arm length and two head dimensions. Nonparametric LOESS regression was used to characterize cross-sectional distance and velocity growth curves for males and females, and consider links with key life history milestones. Sex differences became evident between 8.5 and 10.0 years of age. Thereafter, female growth velocities declined, while males showed increased growth velocities until 10.0-14.5 years across dimensions. Body dimensions varied in growth; females and males reached 98% of maximum body length at 11.7 and 13.1 years, respectively. Females attained 95.3% of maximum body length by mean age at first birth. Neonates were 31% of maternal size, and doubled in size by mean weaning age. Males reached maximum body and arm length and back width before emigration, but experienced continued growth in head dimensions. While comparable data are scarce, our findings provide preliminary support for the prediction that mountain gorillas reach maximum body size at earlier ages compared to more frugivorous western gorillas. Data from other wild populations are needed to better understand comparative great ape development, and investigate links between trajectories of physical, behavioral, and reproductive maturation. © 2017 Wiley Periodicals, Inc.

  8. Body size of commom opossum Didelphis aurita Wied-Neuwied 1826 (Didelphimorphia: Didelphidae on southern brazilian islands

    Directory of Open Access Journals (Sweden)

    CH. Salvador

    Full Text Available The body size of vertebrates isolated on islands can undergo changes due to ecological features of these environments. This study aimed to compare the body size of the common opossum, Didelphis aurita, from different insular populations within the same archipelago in southern Brazil. The opossum populations showed corporal variation and different hypotheses were raised to understand the results. This study constitutes the most detailed body size comparison of a marsupial within different insular populations in the Neotropical zone and the data gathered represents an initial contribution for regional fauna biometric knowledge.

  9. Life course variations in the heritability of body size

    DEFF Research Database (Denmark)

    Zhao, J.; Luan, J.A.; Sharp, S.J.

    aim was to use this approach to investigate the life course variations in heritability of body size. Methods: We analysed height, weight and body mass index variables at 11 time-points in 2,452 individuals (1,225 men, 1,227 women) born in 1946 and enrolled in the MRC National Survey of Health...... and Development (NSHD), with genotypes at 147,949 single nucleotide polymorphisms (SNPs) on Metabochips which were subsequently imputed to 506,255 according to the 1000Genomes project. We obtained genome-wide kinship matrices using genotypes at SNPs on Metabochips and genotypes at all SNPs, which were used.......11(0-0.20), 0.10(0-0.22) for height, weight and body mass index, respectively. Variation in estimates was also seen between alternative procedures. Conclusion: This work supports the utility of large-scale genotype data in heritability estimation and highlights the age-related variability in genetic...

  10. Variations in otolith patterns, sizes and body morphometrics of jack mackerel Trachurus japonicus juveniles.

    Science.gov (United States)

    Kanaji, Y; Kishida, M; Watanabe, Y; Kawamura, T; Xie, S; Yamashita, Y; Sassa, C; Tsukamoto, Y

    2010-10-01

    Variations in otolith patterns, sizes and body morphometrics of jack mackerel Trachurus japonicus juveniles were investigated. Under transmitted light, translucent (W(t)) and opaque otoliths (W(o)) were detected in juveniles collected from Wakasa Bay between July 2005 and April 2006, whereas only opaque otoliths (G(o)) were detected in Goto-nada Sea individuals between May and June 2006. Three groups of juveniles were distinguished based on differences in hatch season, otolith size and growth history, and body morphometrics. As T. japonicus has different spawning seasons according to spawning grounds, each group was estimated to hatch in different waters. Juveniles with W(t) otoliths were considered to have stayed in coastal habitat longer, as the hatch area was estimated to be near Wakasa Bay. Juveniles with W(o) and G(o) otoliths appear to recruit to coastal waters at larger size, since their hatch areas were estimated to be far from each collection area. Larger otoliths of W(t) were attributed to otolith accretion after the second growth flexion, which was observed only for W(t) . Standard length of W(t) fish at the second otolith growth flexion was estimated to correspond to recruitment size to coastal rocky reefs in Wakasa Bay. Body morphometrics were correlated with otolith size after removing body size effect, suggesting that morphological variations of T. japonicus juveniles were also associated with the timing of recruitment to coastal habitat. © 2010 The Authors. Journal compilation © 2010 The Fisheries Society of the British Isles.

  11. Radiation-induced rib fracture after stereotactic body radiotherapy with a total dose of 54-56 Gy given in 9-7 fractions for patients with peripheral lung tumor: impact of maximum dose and fraction size.

    Science.gov (United States)

    Aoki, Masahiko; Sato, Mariko; Hirose, Katsumi; Akimoto, Hiroyoshi; Kawaguchi, Hideo; Hatayama, Yoshiomi; Ono, Shuichi; Takai, Yoshihiro

    2015-04-22

    Radiation-induced rib fracture after stereotactic body radiotherapy (SBRT) for lung cancer has been recently reported. However, incidence of radiation-induced rib fracture after SBRT using moderate fraction sizes with a long-term follow-up time are not clarified. We examined incidence and risk factors of radiation-induced rib fracture after SBRT using moderate fraction sizes for the patients with peripherally located lung tumor. During 2003-2008, 41 patients with 42 lung tumors were treated with SBRT to 54-56 Gy in 9-7 fractions. The endpoint in the study was radiation-induced rib fracture detected by CT scan after the treatment. All ribs where the irradiated doses were more than 80% of prescribed dose were selected and contoured to build the dose-volume histograms (DVHs). Comparisons of the several factors obtained from the DVHs and the probabilities of rib fracture calculated by Kaplan-Meier method were performed in the study. Median follow-up time was 68 months. Among 75 contoured ribs, 23 rib fractures were observed in 34% of the patients during 16-48 months after SBRT, however, no patients complained of chest wall pain. The 4-year probabilities of rib fracture for maximum dose of ribs (Dmax) more than and less than 54 Gy were 47.7% and 12.9% (p = 0.0184), and for fraction size of 6, 7 and 8 Gy were 19.5%, 31.2% and 55.7% (p = 0.0458), respectively. Other factors, such as D2cc, mean dose of ribs, V10-55, age, sex, and planning target volume were not significantly different. The doses and fractionations used in this study resulted in no clinically significant rib fractures for this population, but that higher Dmax and dose per fraction treatments resulted in an increase in asymptomatic grade 1 rib fractures.

  12. Silk elasticity as a potential constraint on spider body size.

    Science.gov (United States)

    Rodríguez-Gironés, Miguel A; Corcobado, Guadalupe; Moya-Laraño, Jordi

    2010-10-07

    Silk is known for its strength and extensibility and has played a key role in the radiation of spiders. Individual spiders use different glands to produce silk types with unique sets of proteins. Most research has studied the properties of major ampullate and capture spiral silks and their ecological implications, while little is known about minor ampullate silk, the type used by those spider species studied to date for bridging displacements. A biomechanical model parameterised with available data shows that the minimum radius of silk filaments required for efficient bridging grows with the square root of the spider's body mass, faster than the radius of minor ampullate silk filaments actually produced by spiders. Because the morphology of spiders adapted to walking along or under silk threads is ill suited for moving on a solid surface, for these species there is a negative relationship between body mass and displacement ability. As it stands, the model suggests that spiders that use silk for their displacements are prevented from attaining a large body size if they must track their resources in space. In particular, silk elasticity would favour sexual size dimorphism because males that must use bridging lines to search for females cannot grow large. 2010 Elsevier Ltd. All rights reserved.

  13. Ecological and evolutionary influences on body size and shape in the Galápagos marine iguana (Amblyrhynchus cristatus).

    Science.gov (United States)

    Chiari, Ylenia; Glaberman, Scott; Tarroso, Pedro; Caccone, Adalgisa; Claude, Julien

    2016-07-01

    Oceanic islands are often inhabited by endemic species that have undergone substantial morphological evolutionary change due to processes of multiple colonizations from various source populations, dispersal, and local adaptation. Galápagos marine iguanas are an example of an island endemic exhibiting high morphological diversity, including substantial body size variation among populations and sexes, but the causes and magnitude of this variation are not well understood. We obtained morphological measurements from marine iguanas throughout their distribution range. These data were combined with genetic and local environmental data from each population to investigate the effects of evolutionary history and environmental conditions on body size and shape variation and sexual dimorphism. Our results indicate that body size and shape are highly variable among populations. Sea surface temperature and island perimeter, but not evolutionary history as depicted by phylogeographic patterns in this species, explain variation in body size among populations. Conversely, evolutionary history, but not environmental parameters or island size, was found to influence variation in body shape among populations. Finally, in all populations except one, we found strong sexual dimorphism in body size and shape in which males are larger, with higher heads than females, while females have longer heads than males. Differences among populations suggest that plasticity and/or genetic adaptation may shape body size and shape variation in marine iguanas. This study will help target future investigations to address the contribution of plasticity versus genetic adaptation on size and shape variation in marine iguanas.

  14. Effect of host plant on body size of Frankliniella occidentalis and its correlation with reproductive capacity

    NARCIS (Netherlands)

    Kogel, de W.J.; Bosco, D.; Hoek, van der M.; Mollema, C.

    1999-01-01

    The effect of different host plants on Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) body size was investigated. Thrips from three different populations, from the Netherlands, Italy, and USA, achieved greater body sizes when reared on cucumber than on bean. The same thrips grew

  15. Body Image Issues In Lithuanian Magazines Aimed For Children And Adolescents In Relation To Body Mass Index And Body Size Perception Of 16-19 Y. Old Girls During The Last 15 Years

    OpenAIRE

    Tutkuviene, Janina

    2017-01-01

    Mass media plays an important role in forming body image and makes the significant impact on body size perception in children and adolescents. The aim of present study was to reveal trends in depiction of body image cues in Lithuanian magazines aimed for children and adolescents in relation to changes of real body mass index (BMI) and body size perception of 16-19 y. old girls in the year 2000 and the 2015. Three popular journals published both in the year 2000 and the 2015, were chosen for i...

  16. Paradoxical reproduction and body size in the rock lizard, Agama ...

    African Journals Online (AJOL)

    1993-07-05

    Jul 5, 1993 ... The rock lizard Agama atra atra from Namaqualand differs in both body size and reproduction from other populations of this species occurring elsewhere in southern Africa. Both sexes from Namaqualand are significantly larger than their counterparts in the south-western Cape. While reproduction in this ...

  17. Freshwater fishes in Greek lakes: Species richness and body size patterns

    Directory of Open Access Journals (Sweden)

    Anthi Oikonomou

    2015-11-01

    Full Text Available Freshwater ecosystems are widely recognised as hotspots of biodiversity and endemism; thus they are of great value for conservation biogeography. Amongst the taxa found in freshwater ecosystems, fish are the ideal biological model for testing biogeographical patterns and have often been used in large-scale ecological and biogeographical analyses. Lakes of Greece provide a unique opportunity to test biogeographical theories, however, biogeographical studies in Greece at broader, regional, scales, based on the distribution of freshwater species, species richness and endemism, are scarce. The aim of the current study is to test the effect of key environmental factors and spatial variables on species richness of lacustrine fishes and to test their effect on species’ size distributions. We assembled datasets of species richness and body size and environmental (predictor factors for 13 Greek lakes. Model selection procedures revealed that fish species richness increased with ecosystem area and decreased with altitude. In addition, our results showed that latitude per se is a good predictor of body size. Indeed, the mean size of lacustrine communities in the northern and southern lake ecosystems differed significantly. These patterns reflect the biogeographical history of these areas and highlight the crucial role connectivity plays in communities’ species composition.

  18. Balancing the dilution and oddity effects: decisions depend on body size.

    Directory of Open Access Journals (Sweden)

    Gwendolen M Rodgers

    Full Text Available Grouping behaviour, common across the animal kingdom, is known to reduce an individual's risk of predation; particularly through dilution of individual risk and predator confusion (predator inability to single out an individual for attack. Theory predicts greater risk of predation to individuals more conspicuous to predators by difference in appearance from the group (the 'oddity' effect. Thus, animals should choose group mates close in appearance to themselves (eg. similar size, whilst also choosing a large group.We used the Trinidadian guppy (Poecilia reticulata, a well known model species of group-living freshwater fish, in a series of binary choice trials investigating the outcome of conflict between preferences for large and phenotypically matched groups along a predation risk gradient. We found body-size dependent differences in the resultant social decisions. Large fish preferred shoaling with size-matched individuals, while small fish demonstrated no preference. There was a trend towards reduced preferences for the matched shoal under increased predation risk. Small fish were more active than large fish, moving between shoals more frequently. Activity levels increased as predation risk decreased. We found no effect of unmatched shoal size on preferences or activity.Our results suggest that predation risk and individual body size act together to influence shoaling decisions. Oddity was more important for large than small fish, reducing in importance at higher predation risks. Dilution was potentially of limited importance at these shoal sizes. Activity levels may relate to how much sampling of each shoal was needed by the test fish during decision making. Predation pressure may select for better decision makers to survive to larger size, or that older, larger fish have learned to make shoaling decisions more efficiently, and this, combined with their size relative to shoal-mates, and attractiveness as prey items influences shoaling

  19. Porters of the eastern hills of Nepal: Body size and load weight.

    Science.gov (United States)

    Malville, Nancy J.

    1999-01-01

    This study documents the activities of 635 porters transporting goods along three traditional trade routes of eastern Nepal. Nearly 95% of the porters were male. They ranged in age from 10-65 years, and most of them had begun to perform long-distance portage at 12-15 years of age. Mean body mass and height of adult males in the combined sample (n = 438) was 49.7 +/- 5.0 kg and 155.5 +/- 6.5 cm, respectively. Adult males age 20-49 years carried loads of 73 +/- 15 kg, equivalent to 146% +/- 30% of body mass. Body size of adult males was not a strong predictor of load weight. The correlation between body mass and load was r = 0.24 (P porters to carry such large loads in spite of their small body size is the ability to pace themselves by making frequent rest stops. Heart rate monitoring of 26 adult male commercial porters demonstrated how porters regulate heart rate and energy expenditure by resting the load every two to three minutes on the T-headed walking stick (tokma) and by setting the load periodically on load-resting platforms (chautaras) for longer recovery periods. Am. J. Hum. Biol. 11:1-11, 1999. Copyright 1999 Wiley-Liss, Inc.

  20. SENSITIVITY OF BODY SWAY PARAMETERS DURING QUIET STANDING TO MANIPULATION OF SUPPORT SURFACE SIZE

    Directory of Open Access Journals (Sweden)

    Sarabon Nejc

    2010-09-01

    Full Text Available The centre of pressure (COP movement during stance maintenance on a stable surface is commonly used to describe and evaluate static balance. The aim of our study was to test sensitivity of individual COP parameters to different stance positions which were used to address size specific changes in the support surface. Twenty-nine subjects participated in the study. They carried out three 60-second repetitions of each of the five balance tasks (parallel stance, semi-tandem stance, tandem stance, contra-tandem stance, single leg stance. Using the force plate, the monitored parameters included the total COP distance, the distance covered in antero-posterior and medio-lateral directions, the maximum oscillation amplitude in antero-posterior and medio-lateral directions, the total frequency of oscillation, as well as the frequency of oscillation in antero-posterior and medio-lateral directions. The parameters which describe the total COP distance were the most sensitive to changes in the balance task, whereas the frequency of oscillation proved to be sensitive to a slightly lesser extent. Reductions in the support surface size in each of the directions resulted in proportional changes of antero-posterior and medio- lateral directions. The frequency of oscillation did not increase evenly with the increase in the level of difficulty of the balance task, but reached a certain value, above which it did not increase. Our study revealed the monitored parameters of the COP to be sensitive to the support surface size manipulations. The results of the study provide an important source for clinical and research use of the body sway measurements.

  1. Geographic variation in body size and its relationship with environmental gradients in the Oriental Garden Lizard, Calotes versicolor.

    Science.gov (United States)

    Wei, Xiaomei; Yan, Linmiao; Zhao, Chengjian; Zhang, Yueyun; Xu, Yongli; Cai, Bo; Jiang, Ni; Huang, Yong

    2018-05-01

    Patterns of geographic variation in body size are predicted to evolve as adaptations to local environmental gradients. However, many of these clinal patterns in body size, such as Bergmann's rule, are controversial and require further investigation into ectotherms such as reptiles on a regional scale. To examine the environmental variables (temperature, precipitation, topography and primary productivity) that shaped patterns of geographic variation in body size in the reptile Calotes versicolor , we sampled 180 adult specimens (91 males and 89 females) at 40 locations across the species range in China. The MANOVA results suggest significant sexual size dimorphism in C. versicolor ( F 23,124  = 11.32, p  body size of C. versicolor differed for males and females, but mechanisms related to heat balance and water availability hypotheses were involved in both sexes. Temperature seasonality, precipitation of the driest month, precipitation seasonality, and precipitation of the driest quarter were the most important predictors of variation in body size in males, whereas mean precipitation of the warmest quarter, mean temperature of the wettest quarter, precipitation seasonality, and precipitation of the wettest month were most important for body size variation in females. The discrepancy between patterns of association between the sexes suggested that different selection pressures may be acting in males and females.

  2. Intra- and trans-generational costs of reduced female body size caused by food limitation early in life in mites.

    Directory of Open Access Journals (Sweden)

    Andreas Walzer

    Full Text Available Food limitation early in life may be compensated for by developmental plasticity resulting in accelerated development enhancing survival at the expense of small adult body size. However and especially for females in non-matching maternal and offspring environments, being smaller than the standard may incur considerable intra- and trans-generational costs.Here, we evaluated the costs of small female body size induced by food limitation early in life in the sexually size-dimorphic predatory mite Phytoseiulus persimilis. Females are larger than males. These predators are adapted to exploit ephemeral spider mite prey patches. The intra- and trans-generational effects of small maternal body size manifested in lower maternal survival probabilities, decreased attractiveness for males, and a reduced number and size of eggs compared to standard-sized females. The trans-generational effects of small maternal body size were sex-specific with small mothers producing small daughters but standard-sized sons.Small female body size apparently intensified the well-known costs of sexual activity because mortality of small but not standard-sized females mainly occurred shortly after mating. The disadvantages of small females in mating and egg production may be generally explained by size-associated morphological and physiological constraints. Additionally, size-assortative mate preferences of standard-sized mates may have rendered small females disproportionally unattractive mating partners. We argue that the sex-specific trans-generational effects were due to sexual size dimorphism - females are the larger sex and thus more strongly affected by maternal stress than the smaller males - and to sexually selected lower plasticity of male body size.

  3. Intra- and trans-generational costs of reduced female body size caused by food limitation early in life in mites.

    Science.gov (United States)

    Walzer, Andreas; Schausberger, Peter

    2013-01-01

    Food limitation early in life may be compensated for by developmental plasticity resulting in accelerated development enhancing survival at the expense of small adult body size. However and especially for females in non-matching maternal and offspring environments, being smaller than the standard may incur considerable intra- and trans-generational costs. Here, we evaluated the costs of small female body size induced by food limitation early in life in the sexually size-dimorphic predatory mite Phytoseiulus persimilis. Females are larger than males. These predators are adapted to exploit ephemeral spider mite prey patches. The intra- and trans-generational effects of small maternal body size manifested in lower maternal survival probabilities, decreased attractiveness for males, and a reduced number and size of eggs compared to standard-sized females. The trans-generational effects of small maternal body size were sex-specific with small mothers producing small daughters but standard-sized sons. Small female body size apparently intensified the well-known costs of sexual activity because mortality of small but not standard-sized females mainly occurred shortly after mating. The disadvantages of small females in mating and egg production may be generally explained by size-associated morphological and physiological constraints. Additionally, size-assortative mate preferences of standard-sized mates may have rendered small females disproportionally unattractive mating partners. We argue that the sex-specific trans-generational effects were due to sexual size dimorphism - females are the larger sex and thus more strongly affected by maternal stress than the smaller males - and to sexually selected lower plasticity of male body size.

  4. Body Image Issues In Lithuanian Magazines Aimed For Children And Adolescents In Relation To Body Mass Index And Body Size Perception Of 16-19 Y. Old Girls During The Last 15 Years.

    Science.gov (United States)

    Tutkuviene, Janina; Misiute, Agne; Strupaite, Ieva; Paulikaite, Gintare; Pavlovskaja, Erika

    2017-03-01

    Mass media plays an important role in forming body image and makes the significant impact on body size perception in children and adolescents. The aim of present study was to reveal trends in depiction of body image cues in Lithuanian magazines aimed for children and adolescents in relation to changes of real body mass index (BMI) and body size perception of 16-19 y. old girls in the year 2000 and the 2015. Three popular journals published both in the year 2000 and the 2015, were chosen for in-depth analysis of their contents (the periodicity of different topics was counted and compared). Attention given to a healthy body image has increased and the promotion of especially skinny females’ body has decreased during the last 15 years from the dominant type in the year 2000 to depiction of slightly thin or normal body build in the 2015. However, the real BMI of 16-19 y. old Lithuanian girls has significantly increased during the 2000-2015 period (from 20.09 till 21.32 kg/m²; pimage issues in mass media (magazines aimed for adolescent girls) were in parallel with the proper self-esteem of body size in adolescent girls.

  5. Some like it hot... : the evolution and genetics of temperature dependent body size in Drosophila melanogaster

    NARCIS (Netherlands)

    Bochdanovits, Z. (Zoltán)

    2003-01-01

    Body size is one of the most obvious and most important characteristic of any organism. A thorough understanding of how and why a certain individual obtains a specific body size, given its evolutionary history and ecological context, is a fundamental question in biology. One special case of

  6. How Big Is It Really? Assessing the Efficacy of Indirect Estimates of Body Size in Asian Elephants.

    Directory of Open Access Journals (Sweden)

    Simon N Chapman

    Full Text Available Information on an organism's body size is pivotal in understanding its life history and fitness, as well as helping inform conservation measures. However, for many species, particularly large-bodied wild animals, taking accurate body size measurements can be a challenge. Various means to estimate body size have been employed, from more direct methods such as using photogrammetry to obtain height or length measurements, to indirect prediction of weight using other body morphometrics or even the size of dung boli. It is often unclear how accurate these measures are because they cannot be compared to objective measures. Here, we investigate how well existing estimation equations predict the actual body weight of Asian elephants Elephas maximus, using body measurements (height, chest girth, length, foot circumference and neck circumference taken directly from a large population of semi-captive animals in Myanmar (n = 404. We then define new and better fitting formulas to predict body weight in Myanmar elephants from these readily available measures. We also investigate whether the important parameters height and chest girth can be estimated from photographs (n = 151. Our results show considerable variation in the ability of existing estimation equations to predict weight, and that the equations proposed in this paper predict weight better in almost all circumstances. We also find that measurements from standardised photographs reflect body height and chest girth after applying minor adjustments. Our results have implications for size estimation of large wild animals in the field, as well as for management in captive settings.

  7. Depictive and metric body size estimation in anorexia nervosa and bulimia nervosa: A systematic review and meta-analysis.

    Science.gov (United States)

    Mölbert, Simone Claire; Klein, Lukas; Thaler, Anne; Mohler, Betty J; Brozzo, Chiara; Martus, Peter; Karnath, Hans-Otto; Zipfel, Stephan; Giel, Katrin Elisabeth

    2017-11-01

    A distorted representation of one's own body is a diagnostic criterion and core psychopathology of both anorexia nervosa (AN) and bulimia nervosa (BN). Despite recent technical advances in research, it is still unknown whether this body image disturbance is characterized by body dissatisfaction and a low ideal weight and/or includes a distorted perception or processing of body size. In this article, we provide an update and meta-analysis of 42 articles summarizing measures and results for body size estimation (BSE) from 926 individuals with AN, 536 individuals with BN and 1920 controls. We replicate findings that individuals with AN and BN overestimate their body size as compared to controls (ES=0.63). Our meta-regression shows that metric methods (BSE by direct or indirect spatial measures) yield larger effect sizes than depictive methods (BSE by evaluating distorted pictures), and that effect sizes are larger for patients with BN than for patients with AN. To interpret these results, we suggest a revised theoretical framework for BSE that accounts for differences between depictive and metric BSE methods regarding the underlying body representations (conceptual vs. perceptual, implicit vs. explicit). We also discuss clinical implications and argue for the importance of multimethod approaches to investigate body image disturbance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Changes in body size and physical characteristics of South African under-20 rugby union players over a 13-year period.

    Science.gov (United States)

    Lombard, Wayne P; Durandt, Justin J; Masimla, Herman; Green, Mervin; Lambert, Michael I

    2015-04-01

    This study compared changes in the body size and physical characteristics of South African under-20 rugby union players over a 13-year period. A total of 453 South African under-20 players (forwards: n = 256 and backs: n = 197) underwent measurements of body mass, stature, muscular strength, endurance, and 10- and 40-m sprint times. A 2-way analysis of variance was used to determine significant differences for the main effects of position (forwards vs. backs) and time (1998-2010). The pooled data showed that forwards were significantly heavier (22%), taller (5%), and stronger (18%) than the backs. However, when 1 repetition maximum strength scores were adjusted for body mass, backs were stronger per kg body mass. Stature did not change over the 13-year period for both groups. There were, however, significant increases in muscular strength (50%), body mass (20%), and muscular endurance (50%). Furthermore, an improvement in sprint times over 40 (4%) and 10 m (7%) was evident over the period of the study. In conclusion, the players became heavier, stronger, taller, and improved their upper-body muscular endurance over the 13 years of the study. Furthermore, sprint times over 10 and 40 m improved over the same time period despite the increase in body mass. It can be speculated that the changes in physical characteristics of the players over time are possibly a consequence of (a) adaptations to the changing demands of the game and (b) advancements in training methods.

  9. Body size, skills, and income: evidence from 150,000 teenage siblings.

    Science.gov (United States)

    Lundborg, Petter; Nystedt, Paul; Rooth, Dan-Olof

    2014-10-01

    We provide new evidence on the long-run labor market penalty of teenage overweight and obesity using unique and large-scale data on 150,000 male siblings from the Swedish military enlistment. Our empirical analysis provides four important results. First, we provide the first evidence of a large adult male labor market penalty for being overweight or obese as a teenager. Second, we replicate this result using data from the United States and the United Kingdom. Third, we note a strikingly strong within-family relationship between body size and cognitive skills/noncognitive skills. Fourth, a large part of the estimated body-size penalty reflects lower skill acquisition among overweight and obese teenagers. Taken together, these results reinforce the importance of policy combating early-life obesity in order to reduce healthcare expenditures as well as poverty and inequalities later in life.

  10. Body Fineness Ratio as a Predictor of Maximum Prolonged-Swimming Speed in Coral Reef Fishes

    Science.gov (United States)

    Walker, Jeffrey A.; Alfaro, Michael E.; Noble, Mae M.; Fulton, Christopher J.

    2013-01-01

    The ability to sustain high swimming speeds is believed to be an important factor affecting resource acquisition in fishes. While we have gained insights into how fin morphology and motion influences swimming performance in coral reef fishes, the role of other traits, such as body shape, remains poorly understood. We explore the ability of two mechanistic models of the causal relationship between body fineness ratio and endurance swimming-performance to predict maximum prolonged-swimming speed (Umax) among 84 fish species from the Great Barrier Reef, Australia. A drag model, based on semi-empirical data on the drag of rigid, submerged bodies of revolution, was applied to species that employ pectoral-fin propulsion with a rigid body at U max. An alternative model, based on the results of computer simulations of optimal shape in self-propelled undulating bodies, was applied to the species that swim by body-caudal-fin propulsion at Umax. For pectoral-fin swimmers, Umax increased with fineness, and the rate of increase decreased with fineness, as predicted by the drag model. While the mechanistic and statistical models of the relationship between fineness and Umax were very similar, the mechanistic (and statistical) model explained only a small fraction of the variance in Umax. For body-caudal-fin swimmers, we found a non-linear relationship between fineness and Umax, which was largely negative over most of the range of fineness. This pattern fails to support either predictions from the computational models or standard functional interpretations of body shape variation in fishes. Our results suggest that the widespread hypothesis that a more optimal fineness increases endurance-swimming performance via reduced drag should be limited to fishes that swim with rigid bodies. PMID:24204575

  11. Effect of directional selection for body size on fluctuating asymmetry ...

    Indian Academy of Sciences (India)

    In this study, we investigated whether stress caused by artificial bidirectional selection for body size has any effect on the levels of FA of different morphological traits in Drosophila ananassae. The realised heritability (h2) was higher in low-line females and high-line males, which suggests an asymmetrical response to ...

  12. Investigating sediment size distributions and size-specific Sm-Nd isotopes as paleoceanographic proxy in the North Atlantic Ocean: reconstructing past deep-sea current speeds since Last Glacial Maximum

    OpenAIRE

    Li, Yuting

    2017-01-01

    To explore whether the dispersion of sediments in the North Atlantic can be related to modern and past Atlantic Meridional Overturning Circulation (AMOC) flow speed, particle size distributions (weight%, Sortable Silt mean grain size) and grain-size separated (0–4, 4–10, 10–20, 20–30, 30–40 and 40–63 µm) Sm-Nd isotopes and trace element concentrations are measured on 12 cores along the flow-path of Western Boundary Undercurrent and in the central North Atlantic since the Last glacial Maximum ...

  13. Intra- and Trans-Generational Costs of Reduced Female Body Size Caused by Food Limitation Early in Life in Mites

    Science.gov (United States)

    Walzer, Andreas; Schausberger, Peter

    2013-01-01

    Background Food limitation early in life may be compensated for by developmental plasticity resulting in accelerated development enhancing survival at the expense of small adult body size. However and especially for females in non-matching maternal and offspring environments, being smaller than the standard may incur considerable intra- and trans-generational costs. Methodology/Principal Findings Here, we evaluated the costs of small female body size induced by food limitation early in life in the sexually size-dimorphic predatory mite Phytoseiulus persimilis. Females are larger than males. These predators are adapted to exploit ephemeral spider mite prey patches. The intra- and trans-generational effects of small maternal body size manifested in lower maternal survival probabilities, decreased attractiveness for males, and a reduced number and size of eggs compared to standard-sized females. The trans-generational effects of small maternal body size were sex-specific with small mothers producing small daughters but standard-sized sons. Conclusions/Significance Small female body size apparently intensified the well-known costs of sexual activity because mortality of small but not standard-sized females mainly occurred shortly after mating. The disadvantages of small females in mating and egg production may be generally explained by size-associated morphological and physiological constraints. Additionally, size-assortative mate preferences of standard-sized mates may have rendered small females disproportionally unattractive mating partners. We argue that the sex-specific trans-generational effects were due to sexual size dimorphism – females are the larger sex and thus more strongly affected by maternal stress than the smaller males – and to sexually selected lower plasticity of male body size. PMID:24265745

  14. The Effect of Body Size in Mercury Accumulation Biokinetic of Cockle Shell (Anadara Granosa)

    International Nuclear Information System (INIS)

    Wahyu Retno Prihatiningsih

    2007-01-01

    Accumulation of mercury biokinetic in cockle shell (Anadara granosa) through water pathway has been investigated under laboratory condition. The objective of research is to find the effect of body size in mercury biokinetic of Anadara granosa and to find bioindicator based on biokinetic parameter. The research shows that body size of Anadara granosa give an effect to concentration factor and could barrier mercury contaminant. Concentration factor for size 1.9, 2.5 and 3.9 cm of biota moving high and reach steady state condition after 24 days. Concentration factor of Anadara granosa in size 1.9, 2.5 and 3.9 is 0.1476, 0.1645 and 0.2573 day. Based on mechanism of mercury biokinetic process, it was proof that Anadara granosa is an ideal invertebrate for bioindicator. (author)

  15. Body Size of Contemporary Youth in Different Parts of the World

    Science.gov (United States)

    Meredith, Howard V.

    1969-01-01

    Based on body size measurements accumulated between 1950-1960, comparisons were made of 13-year-old girls and 15-year-old boys from North and South America, northern, central, and southwest Asia, Oceania, Australia, Africa, the Near East, and Europe. (DO)

  16. Density, body size, and reproduction of feral house mice on Gough ...

    African Journals Online (AJOL)

    1991-05-02

    May 2, 1991 ... 1992,27(1). Density, body size, and reproduction of feral house mice on Gough Island ... and mean monthly air temperatures (at sea level) range between 9°C ..... Concern about the adverse effect of introduced mice on island.

  17. The Influence of Age and Sex on Genetic Associations with Adult Body Size and Shape

    DEFF Research Database (Denmark)

    Winkler, Thomas W; Justice, Anne E; Graff, Mariaelisa

    2015-01-01

    Genome-wide association studies (GWAS) have identified more than 100 genetic variants contributing to BMI, a measure of body size, or waist-to-hip ratio (adjusted for BMI, WHRadjBMI), a measure of body shape. Body size and shape change as people grow older and these changes differ substantially...... (G x AGE), sex-specific effects (G x SEX) or age-specific effects that differed between men and women (G x AGE x SEX). For BMI, we identified 15 loci (11 previously established for main effects, four novel) that showed significant (FDR... effects on WHRadjBMI. These results may provide further insights into the biology that underlies weight change with age or the sexually dimorphism of body shape....

  18. Scaling of lifting forces in relation to object size in whole body lifting

    NARCIS (Netherlands)

    Kingma, I.; van Dieen, J.H.; Toussaint, H.M.

    2005-01-01

    Subjects prepare for a whole body lifting movement by adjusting their posture and scaling their lifting forces to the expected object weight. The expectancy is based on visual and haptic size cues. This study aimed to find out whether lifting force overshoots related to object size cues disappear or

  19. Effects of different strength training frequencies on maximum strength, body composition and functional capacity in healthy older individuals.

    Science.gov (United States)

    Turpela, Mari; Häkkinen, Keijo; Haff, Guy Gregory; Walker, Simon

    2017-11-01

    There is controversy in the literature regarding the dose-response relationship of strength training in healthy older participants. The present study determined training frequency effects on maximum strength, muscle mass and functional capacity over 6months following an initial 3-month preparatory strength training period. One-hundred and six 64-75year old volunteers were randomly assigned to one of four groups; performing strength training one (EX1), two (EX2), or three (EX3) times per week and a non-training control (CON) group. Whole-body strength training was performed using 2-5 sets and 4-12 repetitions per exercise and 7-9 exercises per session. Before and after the intervention, maximum dynamic leg press (1-RM) and isometric knee extensor and plantarflexor strength, body composition and quadriceps cross-sectional area, as well as functional capacity (maximum 7.5m forward and backward walking speed, timed-up-and-go test, loaded 10-stair climb test) were measured. All experimental groups increased leg press 1-RM more than CON (EX1: 3±8%, EX2: 6±6%, EX3: 10±8%, CON: -3±6%, Ptraining frequency would induce greater benefit to maximum walking speed (i.e. functional capacity) despite a clear dose-response in dynamic 1-RM strength, at least when predominantly using machine weight-training. It appears that beneficial functional capacity improvements can be achieved through low frequency training (i.e. 1-2 times per week) in previously untrained healthy older participants. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Comparison of organ doses in human phantoms: variations due to body size and posture

    International Nuclear Information System (INIS)

    Feng, Xu; Xiang-Hong, Jia; Xue-Jun, Yu; Zhan-Chun, Pan; Qian, Liu; Chun-Xin, Yang

    2017-01-01

    Organ dose calculations performed using human phantoms can provide estimates of astronauts' health risks due to cosmic radiation. However, the characteristics of such phantoms strongly affect the estimation precision. To investigate organ dose variations with body size and posture in human phantoms, a non-uniform rational B-spline boundary surfaces model was constructed based on cryo-section images. This model was used to establish four phantoms with different body size and posture parameters, whose organs parameters were changed simultaneously and which were voxelised with 4x4x4 mm"3 resolution. Then, using Monte Carlo transport code, the organ doses caused by ≤500 MeV isotropic incident protons were calculated. The dose variations due to body size differences within a certain range were negligible, and the doses received in crouching and standing-up postures were similar. Therefore, a standard Chinese phantom could be established, and posture changes cannot effectively protect astronauts during solar particle events. (authors)

  1. Body size shifts and early warning signals precede the historic collapse of whale stocks.

    Science.gov (United States)

    Clements, Christopher F; Blanchard, Julia L; Nash, Kirsty L; Hindell, Mark A; Ozgul, Arpat

    2017-06-22

    Predicting population declines is a key challenge in the face of global environmental change. Abundance-based early warning signals have been shown to precede population collapses; however, such signals are sensitive to the low reliability of abundance estimates. Here, using historical data on whales harvested during the 20th century, we demonstrate that early warning signals can be present not only in the abundance data, but also in the more reliable body size data of wild populations. We show that during the period of commercial whaling, the mean body size of caught whales declined dramatically (by up to 4 m over a 70-year period), leading to early warning signals being detectable up to 40 years before the global collapse of whale stocks. Combining abundance and body size data can reduce the length of the time series required to predict collapse, and decrease the chances of false positive early warning signals.

  2. Interrelationships of Hormones, Diet, Body Size and Breast Cancer among Hispanic Women

    National Research Council Canada - National Science Library

    Peltz, Gerson

    2005-01-01

    ...). The training program will focus on breast cancer etiology, specifically the interrelationships between hormones, diet, body size, and breast cancer among Hispanic women in the Lower Rio Grande Valley (LRGV...

  3. Size relationships of different body parts in the three dipteran species Drosophila melanogaster, Ceratitis capitata and Musca domestica.

    Science.gov (United States)

    Siomava, Natalia; Wimmer, Ernst A; Posnien, Nico

    2016-06-01

    Body size is an integral feature of an organism that influences many aspects of life such as fecundity, life span and mating success. Size of individual organs and the entire body size represent quantitative traits with a large reaction norm, which are influenced by various environmental factors. In the model system Drosophila melanogaster, pupal size and adult traits, such as tibia and thorax length or wing size, accurately estimate the overall body size. However, it is unclear whether these traits can be used in other flies. Therefore, we studied changes in size of pupae and adult organs in response to different rearing temperatures and densities for D. melanogaster, Ceratitis capitata and Musca domestica. We confirm a clear sexual size dimorphism (SSD) for Drosophila and show that the SSD is less uniform in the other species. Moreover, the size response to changing growth conditions is sex dependent. Comparison of static and evolutionary allometries of the studied traits revealed that response to the same environmental variable is genotype specific but has similarities between species of the same order. We conclude that the value of adult traits as estimators of the absolute body size may differ among species and the use of a single trait may result in wrong assumptions. Therefore, we suggest using a body size coefficient computed from several individual measurements. Our data is of special importance for monitoring activities of natural populations of the three dipteran flies, since they are harmful species causing economical damage (Drosophila, Ceratitis) or transferring diseases (Musca).

  4. Geographic body size variation in the periodical cicadas Magicicada: implications for life cycle divergence and local adaptation.

    Science.gov (United States)

    Koyama, T; Ito, H; Kakishima, S; Yoshimura, J; Cooley, J R; Simon, C; Sota, T

    2015-06-01

    Seven species in three species groups (Decim, Cassini and Decula) of periodical cicadas (Magicicada) occupy a wide latitudinal range in the eastern United States. To clarify how adult body size, a key trait affecting fitness, varies geographically with climate conditions and life cycle, we analysed the relationships of population mean head width to geographic variables (latitude, longitude, altitude), habitat annual mean temperature (AMT), life cycle and species differences. Within species, body size was larger in females than males and decreased with increasing latitude (and decreasing habitat AMT), following the converse Bergmann's rule. For the pair of recently diverged 13- and 17-year species in each group, 13-year cicadas were equal in size or slightly smaller on average than their 17-year counterparts despite their shorter developmental time. This fact suggests that, under the same climatic conditions, 17-year cicadas have lowered growth rates compared to their 13-years counterparts, allowing 13-year cicadas with faster growth rates to achieve body sizes equivalent to those of their 17-year counterparts at the same locations. However, in the Decim group, which includes two 13-year species, the more southerly, anciently diverged 13-year species (Magicicada tredecim) was characterized by a larger body size than the other, more northerly 13- and 17-year species, suggesting that local adaptation in warmer habitats may ultimately lead to evolution of larger body sizes. Our results demonstrate how geographic clines in body size may be maintained in sister species possessing different life cycles. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  5. Weber's Illusion and Body Shape: Anisotropy of Tactile Size Perception on the Hand

    Science.gov (United States)

    Longo, Matthew R.; Haggard, Patrick

    2011-01-01

    The perceived distance between touches on a single skin surface is larger on regions of high tactile sensitivity than those with lower acuity, an effect known as "Weber's illusion". This illusion suggests that tactile size perception involves a representation of the perceived size of body parts preserving characteristics of the somatosensory…

  6. Population-based resequencing of experimentally evolved populations reveals the genetic basis of body size variation in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Thomas L Turner

    2011-03-01

    Full Text Available Body size is a classic quantitative trait with evolutionarily significant variation within many species. Locating the alleles responsible for this variation would help understand the maintenance of variation in body size in particular, as well as quantitative traits in general. However, successful genome-wide association of genotype and phenotype may require very large sample sizes if alleles have low population frequencies or modest effects. As a complementary approach, we propose that population-based resequencing of experimentally evolved populations allows for considerable power to map functional variation. Here, we use this technique to investigate the genetic basis of natural variation in body size in Drosophila melanogaster. Significant differentiation of hundreds of loci in replicate selection populations supports the hypothesis that the genetic basis of body size variation is very polygenic in D. melanogaster. Significantly differentiated variants are limited to single genes at some loci, allowing precise hypotheses to be formed regarding causal polymorphisms, while other significant regions are large and contain many genes. By using significantly associated polymorphisms as a priori candidates in follow-up studies, these data are expected to provide considerable power to determine the genetic basis of natural variation in body size.

  7. The bold and the beautiful. Influence of body size of televised media models on body dissatisfaction and actual food intake

    NARCIS (Netherlands)

    Anschutz, Doeschka J; Engels, Rutger C M E; Becker, Eni S; van Strien, Tatjana

    2008-01-01

    The effects of exposure to televised thin and average size models on body dissatisfaction and actual food intake were examined. Normal weight female students (N=104) were exposed to a 30-min movie clip featuring beautiful girls. Half of them viewed the movie clip in normal screen size (4:3) and the

  8. Size Effect of the 2-D Bodies on the Geothermal Gradient and Q-A Plot

    Science.gov (United States)

    Thakur, M.; Blackwell, D. D.

    2009-12-01

    Using numerical models we have investigated some of the criticisms on the Q-A plot of related to the effect of size of the body on the slope and reduced heat flow. The effects of horizontal conduction depend on the relative difference of radioactivity between the body and the country rock (assuming constant thermal conductivity). Horizontal heat transfer due to different 2-D bodies was numerically studied in order to quantify resulting temperature differences at the Moho and errors on the predication of Qr (reduced heat flow). Using the two end member distributions of radioactivity, the step model (thickness 10km) and exponential model, different 2-D models of horizontal scale (width) ranging from 10 -500 km were investigated. Increasing the horizontal size of the body tends to move observations closer towards the 1-D solution. A temperature difference of 50 oC is produced (for the step model) at Moho between models of width 10 km versus 500 km. In other words the 1-D solution effectively provides large scale averaging in terms of heat flow and temperature field in the lithosphere. For bodies’ ≤ 100 km wide the geotherms at shallower levels are affected, but at depth they converge and are 50 oC lower than that of the infinite plate model temperature. In case of 2-D bodies surface heat flow is decreased due to horizontal transfer of heat, which will shift the Q-A point vertically downward on the Q-A plot. The smaller the size of the body, the more will be the deviation from the 1-D solution and the more will be the movement of Q-A point downwards on a Q-A plot. On the Q-A plot, a limited points of bodies of different sizes with different radioactivity contrast (for the step and exponential model), exactly reproduce the reduced heat flow Qr. Thus the size of the body can affect the slope on a Q-A plot but Qr is not changed. Therefore, Qr ~ 32 mWm-2 obtained from the global terrain average Q-A plot represents the best estimate of stable continental mantle heat

  9. Myonuclear domain size and myosin isoform expression in muscle fibres from mammals representing a 100,000-fold difference in body size.

    Science.gov (United States)

    Liu, Jing-Xia; Höglund, Anna-Stina; Karlsson, Patrick; Lindblad, Joakim; Qaisar, Rizwan; Aare, Sudhakar; Bengtsson, Ewert; Larsson, Lars

    2009-01-01

    This comparative study of myonuclear domain (MND) size in mammalian species representing a 100,000-fold difference in body mass, ranging from 25 g to 2500 kg, was undertaken to improve our understanding of myonuclear organization in skeletal muscle fibres. Myonuclear domain size was calculated from three-dimensional reconstructions in a total of 235 single muscle fibre segments at a fixed sarcomere length. Irrespective of species, the largest MND size was observed in muscle fibres expressing fast myosin heavy chain (MyHC) isoforms, but in the two smallest mammalian species studied (mouse and rat), MND size was not larger in the fast-twitch fibres expressing the IIA MyHC isofom than in the slow-twitch type I fibres. In the larger mammals, the type I fibres always had the smallest average MND size, but contrary to mouse and rat muscles, type IIA fibres had lower mitochondrial enzyme activities than type I fibres. Myonuclear domain size was highly dependent on body mass in the two muscle fibre types expressed in all species, i.e. types I and IIA. Myonuclear domain size increased in muscle fibres expressing both the beta/slow (type I; r = 0.84, P fast IIA MyHC isoform (r = 0.90; P muscle fibre type, independent of species. However, myosin isoform expression is not the sole protein determining MND size, and other protein systems, such as mitochondrial proteins, may be equally or more important determinants of MND size.

  10. Ideal Body Size as a Mediator for the Gender-Specific Association Between Socioeconomic Status and Body Mass Index: Evidence From an Upper-Middle-Income Country in the African Region.

    OpenAIRE

    Yepes Maryam; Maurer Jürgen; Stringhini Silvia; Viswanathan Barathi; Gedeon Jude; Bovet Pascal

    2016-01-01

    While obesity continues to rise globally the associations between body size gender and socioeconomic status (SES) seem to vary in different populations and little is known on the contribution of perceived ideal body size in the social disparity of obesity in African countries. We examined the gender and socioeconomic patterns of body mass index (BMI) and perceived ideal body size in the Seychelles a middle income small island state in the African region. We also assessed the potential role of...

  11. Generating size-controlled embryoid bodies using laser direct-write

    International Nuclear Information System (INIS)

    Dias, A D; Corr, D T; Unser, A M; Xie, Y; Chrisey, D B

    2014-01-01

    Embryonic stem cells (ESCs) have the potential to self-renew and differentiate into any specialized cell type. One common method to differentiate ESCs in vitro is through embryoid bodies (EBs), three-dimensional cellular aggregates that spontaneously self-assemble and generally express markers for the three germ layers, endoderm, ectoderm, and mesoderm. It has been previously shown that both EB size and 2D colony size each influence differentiation. We hypothesized that we could control the size of the EB formed by mouse ESCs (mESCs) by using a cell printing method, laser direct-write (LDW), to control both the size of the initial printed colony and the local cell density in printed colonies. After printing mESCs at various printed colony sizes and printing densities, two-way ANOVAs indicated that the EB diameter was influenced by printing density after three days (p = 0.0002), while there was no effect of the printed colony diameter on the EB diameter at the same timepoint (p = 0.74). There was no significant interaction between these two factors. Tukey's honestly significant difference test showed that high-density colonies formed significantly larger EBs, suggesting that printed mESCs quickly aggregate with nearby cells. Thus, EBs can be engineered to a desired size by controlling printing density, which will influence the design of future differentiation studies. Herein, we highlight the capacity of LDW to control the local cell density and colony size independently, at prescribed spatial locations, potentially leading to better stem cell maintenance and directed differentiation. (paper)

  12. Body Size and the Risk of Primary Hyperparathyroidism in Women: A Cohort Study.

    Science.gov (United States)

    Vaidya, Anand; Curhan, Gary C; Paik, Julie M; Wang, Molin; Taylor, Eric N

    2017-09-01

    Greater body weight and fat mass have been associated with higher serum parathyroid hormone levels and a higher prevalence of primary hyperparathyroidism (P-HPTH) in women. However, prospective studies to evaluate whether greater body size associates with a higher incidence of developing P-HPTH have not been reported. We investigated whether greater body size was independently associated with a higher risk for developing P-HPTH in women. We conducted a prospective cohort study of 85,013 female participants in the Nurses' Health Study I followed for up to 26 years. Body size was measured via multiple metrics: weight, body mass index (BMI), and waist circumference (WC). Weight and BMI were assessed every 2 years from 1986 to 2012, and WC was assessed in 1986, 1996, and 2000. Detailed dietary and demographic exposures were quantified via validated biennial questionnaires. Incident cases of P-HPTH were confirmed by individual medical record review. Cox proportional hazards models were used to evaluate whether WC, weight, and BMI were independent risk factors for developing P-HPTH. Models were adjusted for demographic variables, comorbidities, medications, intakes of calcium and vitamin D, and exposure to ultraviolet light. We confirmed 491 incident cases of P-HPTH during 2,128,068 person-years of follow-up. The multivariable-adjusted relative risks for incident P-HPTH increased across quartiles of WC: Q1, ref; Q2, 1.34 (0.97, 1.86); Q3, 1.70 (1.24, 2.31); Q4, 2.27 (1.63, 3.18); p trend < 0.001. Similarly, the multivariable-adjusted risks for incident P-HPTH increased across quartiles of weight: Q1, ref; Q2, 1.23 (0.92, 1.65); Q3, 1.63 (1.24, 2.14); Q4, 1.65 (1.24, 2.19); p trend < 0.001. A similar but statistically non-significant trend was observed across quartiles of BMI (p trend = 0.07). In summary, body size may be an independent and modifiable risk factor for developing P-HPTH in women. © 2017 American Society for Bone and Mineral Research. © 2017 American

  13. Beyond body size: muscle biochemistry and body shape explain ontogenetic variation of anti-predatory behaviour in the lizard Salvator merianae.

    Science.gov (United States)

    de Barros, Fábio Cury; de Carvalho, José Eduardo; Abe, Augusto Shinya; Kohlsdorf, Tiana

    2016-06-01

    Anti-predatory behaviour evolves under the strong action of natural selection because the success of individuals avoiding predation essentially defines their fitness. Choice of anti-predatory strategies is defined by prey characteristics as well as environmental temperature. An additional dimension often relegated in this multilevel equation is the ontogenetic component. In the tegu Salvator merianae, adults run away from predators at high temperatures but prefer fighting when it is cold, whereas juveniles exhibit the same flight strategy within a wide thermal range. Here, we integrate physiology and morphology to understand ontogenetic variation in the temperature-dependent shift of anti-predatory behaviour in these lizards. We compiled data for body shape and size, and quantified enzyme activity in hindlimb and head muscles, testing the hypothesis that morphophysiological models explain ontogenetic variation in behavioural associations. Our prediction is that juveniles exhibit body shape and muscle biochemistry that enhance flight strategies. We identified biochemical differences between muscles mainly in the LDH:CS ratio, whereby hindlimb muscles were more glycolytic than the jaw musculature. Juveniles, which often use evasive strategies to avoid predation, have more glycolytic hindlimb muscles and are much smaller when compared with adults 1-2 years old. Ontogenetic differences in body shape were identified but marginally contributed to behavioural variation between juvenile and adult tegus, and variation in anti-predatory behaviour in these lizards resides mainly in associations between body size and muscle biochemistry. Our results are discussed in the ecological context of predator avoidance by individuals differing in body size living at temperature-variable environments, where restrictions imposed by the cold could be compensated by specific phenotypes. © 2016. Published by The Company of Biologists Ltd.

  14. Estimation of body-size traits by photogrammetry in large mammals to inform conservation.

    Science.gov (United States)

    Berger, Joel

    2012-10-01

    Photography, including remote imagery and camera traps, has contributed substantially to conservation. However, the potential to use photography to understand demography and inform policy is limited. To have practical value, remote assessments must be reasonably accurate and widely deployable. Prior efforts to develop noninvasive methods of estimating trait size have been motivated by a desire to answer evolutionary questions, measure physiological growth, or, in the case of illegal trade, assess economics of horn sizes; but rarely have such methods been directed at conservation. Here I demonstrate a simple, noninvasive photographic technique and address how knowledge of values of individual-specific metrics bears on conservation policy. I used 10 years of data on juvenile moose (Alces alces) to examine whether body size and probability of survival are positively correlated in cold climates. I investigated whether the presence of mothers improved juvenile survival. The posited latter relation is relevant to policy because harvest of adult females has been permitted in some Canadian and American jurisdictions under the assumption that probability of survival of young is independent of maternal presence. The accuracy of estimates of head sizes made from photographs exceeded 98%. The estimates revealed that overwinter juvenile survival had no relation to the juvenile's estimated mass (p < 0.64) and was more strongly associated with maternal presence (p < 0.02) than winter snow depth (p < 0.18). These findings highlight the effects on survival of a social dynamic (the mother-young association) rather than body size and suggest a change in harvest policy will increase survival. Furthermore, photographic imaging of growth of individual juvenile muskoxen (Ovibos moschatus) over 3 Arctic winters revealed annual variability in size, which supports the idea that noninvasive monitoring may allow one to detect how some environmental conditions ultimately affect body growth.

  15. Radiation-induced rib fracture after stereotactic body radiotherapy with a total dose of 54–56 Gy given in 9–7 fractions for patients with peripheral lung tumor: impact of maximum dose and fraction size

    International Nuclear Information System (INIS)

    Aoki, Masahiko; Sato, Mariko; Hirose, Katsumi; Akimoto, Hiroyoshi; Kawaguchi, Hideo; Hatayama, Yoshiomi; Ono, Shuichi; Takai, Yoshihiro

    2015-01-01

    Radiation-induced rib fracture after stereotactic body radiotherapy (SBRT) for lung cancer has been recently reported. However, incidence of radiation-induced rib fracture after SBRT using moderate fraction sizes with a long-term follow-up time are not clarified. We examined incidence and risk factors of radiation-induced rib fracture after SBRT using moderate fraction sizes for the patients with peripherally located lung tumor. During 2003–2008, 41 patients with 42 lung tumors were treated with SBRT to 54–56 Gy in 9–7 fractions. The endpoint in the study was radiation-induced rib fracture detected by CT scan after the treatment. All ribs where the irradiated doses were more than 80% of prescribed dose were selected and contoured to build the dose-volume histograms (DVHs). Comparisons of the several factors obtained from the DVHs and the probabilities of rib fracture calculated by Kaplan-Meier method were performed in the study. Median follow-up time was 68 months. Among 75 contoured ribs, 23 rib fractures were observed in 34% of the patients during 16–48 months after SBRT, however, no patients complained of chest wall pain. The 4-year probabilities of rib fracture for maximum dose of ribs (Dmax) more than and less than 54 Gy were 47.7% and 12.9% (p = 0.0184), and for fraction size of 6, 7 and 8 Gy were 19.5%, 31.2% and 55.7% (p = 0.0458), respectively. Other factors, such as D2cc, mean dose of ribs, V10–55, age, sex, and planning target volume were not significantly different. The doses and fractionations used in this study resulted in no clinically significant rib fractures for this population, but that higher Dmax and dose per fraction treatments resulted in an increase in asymptomatic grade 1 rib fractures

  16. Childhood Body Size and the Risk of Malignant Melanoma in Adulthood

    DEFF Research Database (Denmark)

    Meyle, Kathrine D; Gamborg, Michael; Sørensen, Thorkild I A

    2017-01-01

    years and age 13 years had a significantly increased MM risk compared with children who grew taller between those ages. Birth weight was positively associated with MM. We conclude that associations between body size and MM originate early in life and are driven largely by height and birth weight...

  17. Rates and modes of body size evolution in early carnivores and herbivores: a case study from Captorhinidae

    Directory of Open Access Journals (Sweden)

    Neil Brocklehurst

    2016-01-01

    Full Text Available Body size is an extremely important characteristic, impacting on a variety of ecological and life-history traits. It is therefore important to understand the factors which may affect its evolution, and diet has attracted much interest in this context. A recent study which examined the evolution of the earliest terrestrial herbivores in the Late Carboniferous and Early Permian concluded that in the four herbivorous clades examined there was a trend towards increased body size, and that this increase was more substantial than that observed in closely related carnivorous clades. However, this hypothesis was not based on quantitative examination, and phylogenetic comparative methods provide a more robust means of testing such hypotheses. Here, the evolution of body size within different dietary regimes is examined in Captorhinidae, the most diverse and longest lived of these earliest high fibre herbivores. Evolutionary models were fit to their phylogeny to test for variation in rate and mode of evolution between the carnivorous and herbivorous members of this clade, and an analysis of rate variation throughout the tree was carried out. Estimates of ancestral body sizes were calculated in order to compare the rates and direction of evolution of lineages with different dietary regimes. Support for the idea that the high fibre herbivores within captorhinids are being drawn to a higher adaptive peak in body size than the carnivorous members of this clade is weak. A shift in rates of body size evolution is identified, but this does not coincide with the evolution of high-fibre herbivory, instead occurring earlier in time and at a more basal node. Herbivorous lineages which show an increase in size are not found to evolve at a faster rate than those which show a decrease; in fact, it is those which experience a size decrease which evolve at higher rates. It is possible the shift in rates of evolution is related to the improved food processing ability of

  18. Nasonia Parasitic Wasps Escape from Haller's Rule by Diphasic, Partially Isometric Brain-Body Size Scaling and Selective Neuropil Adaptations

    NARCIS (Netherlands)

    Groothuis, Jitte; Smid, Hans M.

    2017-01-01

    Haller's rule states that brains scale allometrically with body size in all animals, meaning that relative brain size increases with decreasing body size. This rule applies both on inter- and intraspecific comparisons. Only 1 species, the extremely small parasitic wasp Trichogramma evanescens, is

  19. Body-size trends of the extinct giant shark Carcharocles megalodon: a deep-time perspective on marine apex predators.

    Science.gov (United States)

    Pimiento, Catalina; Balk, Meghan A

    2015-06-01

    The extinct shark Carcharocles megalodon is one of the largest marine apex predators ever to exist. Nonetheless, little is known about its body-size variations through time and space. Here, we studied the body-size trends of C. megalodon through its temporal and geographic range to better understand its ecology and evolution. Given that this species was the last of the megatooth lineage, a group of species that shows a purported size increase through time, we hypothesized that C. megalodon also displayed this trend, increasing in size over time and reaching its largest size prior to extinction. We found that C. megalodon body-size distribution was left-skewed (suggesting a long-term selective pressure favoring larger individuals), and presented significant geographic variation (possibly as a result of the heterogeneous ecological constraints of this cosmopolitan species) over geologic time. Finally, we found that stasis was the general mode of size evolution of C. megalodon (i.e., no net changes over time), contrasting with the trends of the megatooth lineage and our hypothesis. Given that C. megalodon is a relatively long-lived species with a widely distributed fossil record, we further used this study system to provide a deep-time perspective to the understanding of the body-size trends of marine apex predators. For instance, our results suggest that (1) a selective pressure in predatory sharks for consuming a broader range of prey may favor larger individuals and produce left-skewed distributions on a geologic time scale; (2) body-size variations in cosmopolitan apex marine predators may depend on their interactions with geographically discrete communities; and (3) the inherent characteristics of shark species can produce stable sizes over geologic time, regardless of the size trends of their lineages.

  20. Choosing representative body sizes for reference adults and children

    International Nuclear Information System (INIS)

    Cristy, M.

    1992-01-01

    In 1975 the International Commission on Radiological Protection published a report on Reference Man (ICRP Publication 23), and a task group of the ICRP is now revising that report. Currently 'Reference Man [adult male] is defined as being between 20-30 years of age, weighing 70 kg, is 170 cm in height, is a Caucasian and is a Western European or North American in habitat and custom' (ICRP 23, p. 4). A reference adult female (58 kg, 160 cm) was also defined and data on the fetus and children were given, but with less detail and fewer specific reference values because the focus of the ICRP at that time was on young male radiation workers. The 70-kg Reference Man (earlier called Standard Man) has been used in radiation protection for 40 years, including the dosimetric schema for nuclear medicine, and this 70-kg reference has been used since at least the 1920's in physiological models. As is well known, humans in most parts of the world have increased in size (height and weight) since this standard was first adopted. Taking modern European populations as a reference and expanding the age range to 20-50 years, the author now suggests 176 cm height and 73-75 kg weight for adult males and 163 cm and about 60 kg for adult females would be more appropriate. The change in height is particularly important because many anatomical and physiological parameters - e.g., lean body mass, skeletal weight, total body water, blood volume, respiratory volumes - are correlated more closely with height than with weight. The difference in lean body mass between Asian and Caucasian persons, for example, is largely or wholly due to the difference in body height. Many equations for mean body water and other whole-body measures use body height as the only or the most important parameter, and so it is important that reference body height be chosen well

  1. Tactic changes in dusky frillgoby Bathygobius fuscus sneaker males: effects of body size and nest availability.

    Science.gov (United States)

    Takegaki, T; Kaneko, T; Matsumoto, Y

    2013-02-01

    Field and laboratory studies were conducted to examine the effects of nest availability and body size on changes in male mating tactics from sneaking to nest-holding in the dusky frillgoby Bathygobius fuscus. In the field, the body size of nest-holding males decreased from early to mid-breeding season, suggesting the possibility of a change in the tactics of sneaker males to nest-holding. Many sneaker males did not use vacant spawning nests even when size-matched nests were available, but they continued to reproduce as sneakers. Similarly, in aquarium experiments with available vacant nests, some sneaker males became nest-holders irrespective of their body size, but some did not. These results showed that nest availability is not a limiting factor for changes in tactics by sneaker males in this species. Because tactic-unchanged sneaker males were co-housed with larger nest-holding males in the tanks, the body size of nearby nest-holding males may have affected the decision to change tactics for sneaker males. Moreover, smaller individuals among tactic-changed males tended to spend more time until spawning, probably because they had relatively larger costs and smaller benefits of reproduction as nest-holding males compared to larger males. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  2. Geographic body size and shape variation in a mainland anolis (Squamata: Dactyloidae) from northwestern South America (Colombia)

    International Nuclear Information System (INIS)

    Calderon Espinosa, Martha L; Barragan Contreras, Leidy Alejandra

    2014-01-01

    Anolis auratus is a widely distributed species, from Costa Rica in Central America, through northern South America, including Colombia, Venezuela, northern Brazil, Surinam and the Guyanas. In Colombia, its widespread distribution across different life zones suggests that these lizards occupy different environments and exhibit different microhabitat use in different geographic areas. On the other hand, some observations suggest that this species prefers open areas, selecting grasslands over brushy areas, and thus, an alternative hypothesis is that microhabitat use is similar among different populations. In Anolis, body variables related to locomotion (body size and shape) defines structural microhabitat use, so two distinct patterns could be expected in this species: Conservative or highly variable body size and shape throughout the species distribution. To test these predictions, we characterized geographic variation in morphometric traits of this species in Colombia. Females and males were similar in body size, but exhibited differences in some variables related to body shape. These characteristics also varied among males and females from different regions, suggesting heterogeneous use of structural microhabitat, between sexes and among populations. As an alternative, phylogenetic divergence among populations could also account for the observed differences. Absence of ecological and phylogenetic data limits our ability to identify the underlying causes of this pattern. However, we provide a general framework to explore hypotheses about evolution of body size and shape in this species.

  3. Maximum Bandwidth Enhancement of Current Mirror using Series-Resistor and Dynamic Body Bias Technique

    Directory of Open Access Journals (Sweden)

    V. Niranjan

    2014-09-01

    Full Text Available This paper introduces a new approach for enhancing the bandwidth of a low voltage CMOS current mirror. The proposed approach is based on utilizing body effect in a MOS transistor by connecting its gate and bulk terminals together for signal input. This results in boosting the effective transconductance of MOS transistor along with reduction of the threshold voltage. The proposed approach does not affect the DC gain of the current mirror. We demonstrate that the proposed approach features compatibility with widely used series-resistor technique for enhancing the current mirror bandwidth and both techniques have been employed simultaneously for maximum bandwidth enhancement. An important consequence of using both techniques simultaneously is the reduction of the series-resistor value for achieving the same bandwidth. This reduction in value is very attractive because a smaller resistor results in smaller chip area and less noise. PSpice simulation results using 180 nm CMOS technology from TSMC are included to prove the unique results. The proposed current mirror operates at 1Volt consuming only 102 µW and maximum bandwidth extension ratio of 1.85 has been obtained using the proposed approach. Simulation results are in good agreement with analytical predictions.

  4. Secular trends of body sizes in Korean children and adolescents: from 1965 to 2010

    Directory of Open Access Journals (Sweden)

    Jin Soo Moon

    2011-11-01

    Full Text Available An anthropometric survey is one of the most important approaches to use when evaluating the health status of children. Secular trends in body sizes, such as height, weight, head circumference, chest circumference, and body mass index showed significant changes over 40 years in Korea. A series of periodic surveys were conducted in 1967, 1975, 1985, 1997, and 2005 by the Korean Pediatric Society and Ministry of Health and Welfare. The quality of data from school health examinations and the Korea National Health and Nutrition Examination Survey has improved, so we can use them now as resources for anthropometric analysis. The final height differences between 1965 and 1997 were 4.5 cm both in boys (168.9 cm in 1965; 173.4 cm in 1997 and girls (155.9 cm in 1965; 160.4 cm in 1997. The differences between 1997 and 2005 were 0.9 cm in boys (174.3cm in 2005 and 0.8 cm in girls (161.2 cm in 2005. There was no difference in final height measurements between 2005 and 2010. An increase in body size at earlier teen ages was pronounced during these decades compared to the previous generation; however, little change has been identified more recently. Body size has been increasing, and obesity has become more prevalent. Systems that gather data should be updated in order to cope with these secular trends. In an upcoming era of secular trends that would be in a slow transition, several surveys that include body measurements should be prepared to meet future needs.

  5. Body temperatures in dinosaurs: what can growth curves tell us?

    Science.gov (United States)

    Griebeler, Eva Maria

    2013-01-01

    To estimate the body temperature (BT) of seven dinosaurs Gillooly, Alleen, and Charnov (2006) used an equation that predicts BT from the body mass and maximum growth rate (MGR) with the latter preserved in ontogenetic growth trajectories (BT-equation). The results of these authors evidence inertial homeothermy in Dinosauria and suggest that, due to overheating, the maximum body size in Dinosauria was ultimately limited by BT. In this paper, I revisit this hypothesis of Gillooly, Alleen, and Charnov (2006). I first studied whether BTs derived from the BT-equation of today's crocodiles, birds and mammals are consistent with core temperatures of animals. Second, I applied the BT-equation to a larger number of dinosaurs than Gillooly, Alleen, and Charnov (2006) did. In particular, I estimated BT of Archaeopteryx (from two MGRs), ornithischians (two), theropods (three), prosauropods (three), and sauropods (nine). For extant species, the BT value estimated from the BT-equation was a poor estimate of an animal's core temperature. For birds, BT was always strongly overestimated and for crocodiles underestimated; for mammals the accuracy of BT was moderate. I argue that taxon-specific differences in the scaling of MGR (intercept and exponent of the regression line, log-log-transformed) and in the parameterization of the Arrhenius model both used in the BT-equation as well as ecological and evolutionary adaptations of species cause these inaccuracies. Irrespective of the found inaccuracy of BTs estimated from the BT-equation and contrary to the results of Gillooly, Alleen, and Charnov (2006) I found no increase in BT with increasing body mass across all dinosaurs (Sauropodomorpha, Sauropoda) studied. This observation questions that, due to overheating, the maximum size in Dinosauria was ultimately limited by BT. However, the general high inaccuracy of dinosaurian BTs derived from the BT-equation makes a reliable test of whether body size in dinosaurs was ultimately limited

  6. The influence of tested body size upon longitudinal ultrasonic pulse velocity

    International Nuclear Information System (INIS)

    Suarez Antola, R.

    2001-01-01

    Low ultrasonic frequencies are used in nondestructive testing of heterogeneous materials,such as concrete,rocks and timber.When frequencies are low enough,size and shape of tested bodies may influence measured longitudinal pulse velocities(geometric dispersion).A simplified mathematical model is developed from known experimental and theoretical results obtained for elastic wave propagation in rods of uniform circular cross section.Wave propagation is described by a spatial averaged dilatational field in an approach which is named quasi fluid.A formula is obtained which relates group velocity with an effective lateral size of the body,with transducers a frequency,with a non-dimensional parameter and with asymptotic P-wave velocity.In principle it can be applied to bars of any uniform cross section.The limitations of this formula are discussed in relation to path length,threshold of detection,patterns of radiation and reception and other variables.A more general formula is proposed.Practical application of this formula is briefly exemplified using some experimental data obtained by the author.The problem of longitudinal pulse propagation in reinforcing steel bars embedded in concrete is briefly considered

  7. Concerted evolution of body mass and cell size: similar patterns among species of birds (Galliformes) and mammals (Rodentia)

    Science.gov (United States)

    Dragosz-Kluska, Dominika; Pis, Tomasz; Pawlik, Katarzyna; Kapustka, Filip; Kilarski, Wincenty M.; Kozłowski, Jan

    2018-01-01

    ABSTRACT Cell size plays a role in body size evolution and environmental adaptations. Addressing these roles, we studied body mass and cell size in Galliformes birds and Rodentia mammals, and collected published data on their genome sizes. In birds, we measured erythrocyte nuclei and basal metabolic rates (BMRs). In birds and mammals, larger species consistently evolved larger cells for five cell types (erythrocytes, enterocytes, chondrocytes, skin epithelial cells, and kidney proximal tubule cells) and evolved smaller hepatocytes. We found no evidence that cell size differences originated through genome size changes. We conclude that the organism-wide coordination of cell size changes might be an evolutionarily conservative characteristic, and the convergent evolutionary body size and cell size changes in Galliformes and Rodentia suggest the adaptive significance of cell size. Recent theory predicts that species evolving larger cells waste less energy on tissue maintenance but have reduced capacities to deliver oxygen to mitochondria and metabolize resources. Indeed, birds with larger size of the abovementioned cell types and smaller hepatocytes have evolved lower mass-specific BMRs. We propose that the inconsistent pattern in hepatocytes derives from the efficient delivery system to hepatocytes, combined with their intense involvement in supracellular function and anabolic activity. PMID:29540429

  8. Concerted evolution of body mass and cell size: similar patterns among species of birds (Galliformes and mammals (Rodentia

    Directory of Open Access Journals (Sweden)

    Marcin Czarnoleski

    2018-04-01

    Full Text Available Cell size plays a role in body size evolution and environmental adaptations. Addressing these roles, we studied body mass and cell size in Galliformes birds and Rodentia mammals, and collected published data on their genome sizes. In birds, we measured erythrocyte nuclei and basal metabolic rates (BMRs. In birds and mammals, larger species consistently evolved larger cells for five cell types (erythrocytes, enterocytes, chondrocytes, skin epithelial cells, and kidney proximal tubule cells and evolved smaller hepatocytes. We found no evidence that cell size differences originated through genome size changes. We conclude that the organism-wide coordination of cell size changes might be an evolutionarily conservative characteristic, and the convergent evolutionary body size and cell size changes in Galliformes and Rodentia suggest the adaptive significance of cell size. Recent theory predicts that species evolving larger cells waste less energy on tissue maintenance but have reduced capacities to deliver oxygen to mitochondria and metabolize resources. Indeed, birds with larger size of the abovementioned cell types and smaller hepatocytes have evolved lower mass-specific BMRs. We propose that the inconsistent pattern in hepatocytes derives from the efficient delivery system to hepatocytes, combined with their intense involvement in supracellular function and anabolic activity.

  9. The influence of body size on adult skeletal age estimation methods.

    Science.gov (United States)

    Merritt, Catherine E

    2015-01-01

    Accurate age estimations are essential to archaeological and forensic analyses. However, reliability for adult skeletal age estimations is poor, especially for individuals over the age of 40 years. This is the first study to show that body size influences skeletal age estimation. The İşcan et al., Lovejoy et al., Buckberry and Chamberlain, and Suchey-Brooks age methods were tested on 764 adult skeletons from the Hamann-Todd and William Bass Collections. Statures ranged from 1.30 to 1.93 m and body masses ranged from 24.0 to 99.8 kg. Transition analysis was used to evaluate the differences in the age estimations. For all four methods, the smallest individuals have the lowest ages at transition and the largest individuals have the highest ages at transition. Short and light individuals are consistently underaged, while tall and heavy individuals are consistently overaged. When femoral length and femoral head diameter are compared with the log-age model, results show the same trend as the known stature and body mass measurements. The skeletal remains of underweight individuals have fewer age markers while those of obese individuals have increased surface degeneration and osteophytic lipping. Tissue type and mechanical loading have been shown to affect bone turnover rates, and may explain the differing patterns of skeletal aging. From an archaeological perspective, the underaging of light, short individuals suggests the need to revisit the current research consensus on the young mortality rates of past populations. From a forensic perspective, understanding the influence of body size will impact efforts to identify victims of mass disasters, genocides, and homicides. © 2014 Wiley Periodicals, Inc.

  10. Vertebral Adaptations to Large Body Size in Theropod Dinosaurs.

    Directory of Open Access Journals (Sweden)

    John P Wilson

    Full Text Available Rugose projections on the anterior and posterior aspects of vertebral neural spines appear throughout Amniota and result from the mineralization of the supraspinous and interspinous ligaments via metaplasia, the process of permanent tissue-type transformation. In mammals, this metaplasia is generally pathological or stress induced, but is a normal part of development in some clades of birds. Such structures, though phylogenetically sporadic, appear throughout the fossil record of non-avian theropod dinosaurs, yet their physiological and adaptive significance has remained unexamined. Here we show novel histologic and phylogenetic evidence that neural spine projections were a physiological response to biomechanical stress in large-bodied theropod species. Metaplastic projections also appear to vary between immature and mature individuals of the same species, with immature animals either lacking them or exhibiting smaller projections, supporting the hypothesis that these structures develop through ontogeny as a result of increasing bending stress subjected to the spinal column. Metaplastic mineralization of spinal ligaments would likely affect the flexibility of the spinal column, increasing passive support for body weight. A stiff spinal column would also provide biomechanical support for the primary hip flexors and, therefore, may have played a role in locomotor efficiency and mobility in large-bodied species. This new association of interspinal ligament metaplasia in Theropoda with large body size contributes additional insight to our understanding of the diverse biomechanical coping mechanisms developed throughout Dinosauria, and stresses the significance of phylogenetic methods when testing for biological trends, evolutionary or not.

  11. Vertebral Adaptations to Large Body Size in Theropod Dinosaurs.

    Science.gov (United States)

    Wilson, John P; Woodruff, D Cary; Gardner, Jacob D; Flora, Holley M; Horner, John R; Organ, Chris L

    2016-01-01

    Rugose projections on the anterior and posterior aspects of vertebral neural spines appear throughout Amniota and result from the mineralization of the supraspinous and interspinous ligaments via metaplasia, the process of permanent tissue-type transformation. In mammals, this metaplasia is generally pathological or stress induced, but is a normal part of development in some clades of birds. Such structures, though phylogenetically sporadic, appear throughout the fossil record of non-avian theropod dinosaurs, yet their physiological and adaptive significance has remained unexamined. Here we show novel histologic and phylogenetic evidence that neural spine projections were a physiological response to biomechanical stress in large-bodied theropod species. Metaplastic projections also appear to vary between immature and mature individuals of the same species, with immature animals either lacking them or exhibiting smaller projections, supporting the hypothesis that these structures develop through ontogeny as a result of increasing bending stress subjected to the spinal column. Metaplastic mineralization of spinal ligaments would likely affect the flexibility of the spinal column, increasing passive support for body weight. A stiff spinal column would also provide biomechanical support for the primary hip flexors and, therefore, may have played a role in locomotor efficiency and mobility in large-bodied species. This new association of interspinal ligament metaplasia in Theropoda with large body size contributes additional insight to our understanding of the diverse biomechanical coping mechanisms developed throughout Dinosauria, and stresses the significance of phylogenetic methods when testing for biological trends, evolutionary or not.

  12. Ultrasonography assessment of renal size and its correlation with body mass index in adults without known renal disease

    International Nuclear Information System (INIS)

    Raza, M.; Hameed, A.; Khan, M.I.

    2012-01-01

    Many conditions affect renal size. To evaluate abnormalities in renal size, knowledge of standardised values for normal renal dimensions is essential as it shows variability in the values of normal renal size depending on body size, age and ethnicity. Ultrasound, being an easily available, non-invasive, safe and less expensive modality, is widely used for evaluation of renal dimensions and repeated follow-ups. The objectives of this study were to determine renal size by ultrasound in adults without any known renal disease, and to determine the relationship of renal size with body mass index. Methods: Study was conducted in the Department of Diagnostic Radiology, Shifa International Hospital and PIMS Islamabad. Renal size was assessed by ultrasound in 4,035 adult subjects with normal serum creatinine and without any known renal disease, between November 2002 and December 2010. Renal length, width, thickness and volume were obtained and mean renal length and volume were correlated with body mass index and other factors like age, side, gender, weight and height of the subjects. Results: Mean renal length on right side was 101.6+-8.9 mm, renal width 42.7+-7.1 mm, and parenchymal thickness 14.4+-2.9 mm. On left side, mean renal length was 102.7+-9.2 mm, width 47.6+-7.0 mm, and parenchymal thickness 15.1+-3.1 mm. Mean renal volume on right was 99.8+-37.2 cm/sup 3/ and on left was 124.4+-41.3 cm/sup 3/. Left renal size was significantly larger than right in both genders. Relationship of mean renal length was significant when correlated with age, side, gender, height and weight, and body mass index. Renal volumes also showed a similar relationship with side, gender, height and weight, and body mass index; but with age such a relationship was seen only for left kidney. Conclusion: Pakistani population has mean renal size smaller than reference values available in international literature. Renal length and volume have a direct relationship with body mass index. Mean renal

  13. Effect of gender and lean body mass on kidney size in healthy 10-year-old children

    DEFF Research Database (Denmark)

    Schmidt, I. M.; Mølgaard, C.; Main, K. M.

    2001-01-01

    predictor of kidney volume was lean body mass, overruling height, weight, and surface area. When total kidney volume was related to lean body mass as a ratio, the gender difference in kidney size was no longer significant. A strong negative correlation was found between fat body mass and kidney volume...

  14. Patient size and x-ray transmission in body CT.

    Science.gov (United States)

    Ogden, Kent; Huda, Walter; Scalzetti, Ernest M; Roskopf, Marsha L

    2004-04-01

    Physical characteristics were obtained for 196 patients undergoing chest and abdomen computed tomography (CT) examinations. Computed tomography sections for these patients having no evident pathology were analyzed to determine patient dimensions (AP and lateral), together with the average attenuation coefficient. Patient weights ranged from approximately 3 kg to about 120 kg. For chest CT, the mean Hounsfield unit (HU) fell from about -120 HU for newborns to about -300 HU for adults. For abdominal CT, the mean HU for children and normal-sized adults was about 20 HU, but decreased to below -50 HU for adults weighing more than 100 kg. The effective photon energy and percent energy fluence transmitted through a given patient size and composition was calculated for representative x-ray spectra at 80, 100, 120, and 140 kV tube potentials. A 70-kg adult scanned at 120 kVp transmits 2.6% of the energy fluence for chest and 0.7% for abdomen CT examinations. Reducing the patient size to 10 kg increases transmission by an order of magnitude. For 70 kg patients, effective energies in body CT range from approximately 50 keV at 80 kVp to approximately 67 keV at 140 kVp; increasing patient size from 10 to 120 kg resulted in an increase in effective photon energy of approximately 4 keV. The x-ray transmission data and effective photon energy data can be used to determine CT image noise and image contrast, respectively, and information on patient size and composition can be used to determine patient doses.

  15. Change in body size and mortality: results from the Melbourne collaborative cohort study.

    Science.gov (United States)

    Karahalios, Amalia; Simpson, Julie A; Baglietto, Laura; MacInnis, Robert J; Hodge, Allison M; Giles, Graham G; English, Dallas R

    2014-01-01

    The association between change in weight or body mass index, and mortality is widely reported, however, both measures fail to account for fat distribution. Change in waist circumference, a measure of central adiposity, in relation to mortality has not been studied extensively. We investigated the association between mortality and changes in directly measured waist circumference, hips circumference and weight from baseline (1990-1994) to wave 2 (2003-2007) in a prospective cohort study of people aged 40-69 years at baseline. Cox regression, with age as the time metric and follow-up starting at wave 2, adjusted for confounding variables, was used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for change in body size in relation to mortality from all causes, cardiovascular disease and cancer. There were 1465 deaths (109 cancer, 242 cardiovascular disease) identified during an average 7.7 years of follow-up from 21 298 participants. Compared to minimal increase in body size, loss of waist circumference (HR: 1.26; 95% CI: 1.09-1.47), weight (1.80; 1.54-2.11), or hips circumference (1.35; 1.15-1.57) were associated with an increased risk of all-cause mortality, particularly for older adults. Weight loss was associated with cardiovascular disease mortality (2.40; 1.57-3.65) but change in body size was not associated with obesity-related cancer mortality. This study confirms the association between weight loss and increased mortality from all-causes for older adults. Based on evidence from observational cohort studies, weight stability may be the recommended option for most adults, especially older adults.

  16. Physical capital and the embodied nature of income inequality: gender differences in the effect of body size on workers' incomes in Canada.

    Science.gov (United States)

    Perks, Thomas

    2012-02-01

    This study assesses the effects of body size--measured using the body mass index--on the income attainment of female and male workers in Canada. Using data from a national representative sample of Canadians, multivariate analyses show that, for female workers, the body size-income relationship is negative. However, for male workers, the body size-income relationship is positive and nonlinear. Using Bourdieu's conceptualization of physical capital, and Shilling's extension of it, it is argued that these results are suggestive of the relative importance of body size to the production and continuation of gender income inequality in Canada.

  17. Ontogenetic and evolutionary effects of predation and competition on nine-spined stickleback (Pungitius pungitius) body size.

    Science.gov (United States)

    Välimäki, Kaisa; Herczeg, Gábor

    2012-07-01

    1. Individual- and population-level variation in body size and growth often correlates with many fitness traits. Predation and food availability are expected to affect body size and growth as important agents of both natural selection and phenotypic plasticity. How differences in predation and food availability affect body size/growth during ontogeny in populations adapted to different predation and competition regimes is rarely studied. 2. Nine-spined stickleback (Pungitius pungitius) populations originating from habitats with varying levels of predation and competition are known to be locally adapted to their respective habitats in terms of body size and growth. Here, we studied how different levels of perceived predation risk and competition during ontogeny affect the reaction norms of body size and growth in (i) marine and pond populations adapted to different levels of predation and competition and (ii) different sexes. We reared nine-spined stickleback in a factorial experiment under two levels of perceived predation risk (present/absent) and competition (high/low food supply). 3. We found divergence in the reaction norms at two levels: (i) predation-adapted marine stickleback had stronger reactions to predatory cues than intraspecific competition-adapted pond stickleback, the latter being more sensitive to available food than the marine fish and (ii) females reacting more strongly to the treatments than males. 4. The repeated, habitat-dependent nature of the differences suggests that natural selection is the agent behind the observed patterns. Our results suggest that genetic adaptation to certain environmental factors also involves an increase in the range of expressible phenotypic plasticity. We found support for this phenomenon at two levels: (i) across populations driven by habitat type and (ii) within populations driven by sex. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.

  18. Cryptic lineage diversity, body size divergence, and sympatry in a species complex of Australian lizards (Gehyra).

    Science.gov (United States)

    Moritz, Craig C; Pratt, Renae C; Bank, Sarah; Bourke, Gayleen; Bragg, Jason G; Doughty, Paul; Keogh, J Scott; Laver, Rebecca J; Potter, Sally; Teasdale, Luisa C; Tedeschi, Leonardo G; Oliver, Paul M

    2018-01-01

    Understanding the joint evolutionary and ecological underpinnings of sympatry among close relatives remains a key challenge in biology. This problem can be addressed through joint phylogenomic and phenotypic analysis of complexes of closely related lineages within, and across, species and hence representing the speciation continuum. For a complex of tropical geckos from northern Australia-Gehyra nana and close relatives-we combine mtDNA phylogeography, exon-capture sequencing, and morphological data to resolve independently evolving lineages and infer their divergence history and patterns of morphological evolution. Gehyra nana is found to include nine divergent lineages and is paraphyletic with four other species from the Kimberley region of north-west Australia. Across these 13 taxa, 12 of which are restricted to rocky habitats, several lineages overlap geographically, including on the diverse Kimberley islands. Morphological evolution is dominated by body size shifts, and both body size and shape have evolved gradually across the group. However, larger body size shifts are observed among overlapping taxa than among closely related parapatric lineages of G. nana, and sympatric lineages are more divergent than expected at random. Whether elevated body size differences among sympatric lineages are due to ecological sorting or character displacement remains to be determined. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  19. Body size and hosts of Triatoma infestans populations affect the size of bloodmeal contents and female fecundity in rural northwestern Argentina.

    Science.gov (United States)

    Gürtler, Ricardo E; Fernández, María Del Pilar; Cecere, María Carla; Cohen, Joel E

    2017-12-01

    Human sleeping quarters (domiciles) and chicken coops are key source habitats of Triatoma infestans-the principal vector of the infection that causes Chagas disease-in rural communities in northern Argentina. Here we investigated the links among individual bug bloodmeal contents (BMC, mg), female fecundity, body length (L, mm), host blood sources and habitats. We tested whether L, habitat and host blood conferred relative fitness advantages using generalized linear mixed-effects models and a multimodel inference approach with model averaging. The data analyzed include 769 late-stage triatomines collected in 120 sites from six habitats in 87 houses in Figueroa, Santiago del Estero, during austral spring. L correlated positively with other body-size surrogates and was modified by habitat type, bug stage and recent feeding. Bugs from chicken coops were significantly larger than pig-corral and kitchen bugs. The best-fitting model of log BMC included habitat, a recent feeding, bug stage, log Lc (mean-centered log L) and all two-way interactions including log Lc. Human- and chicken-fed bugs had significantly larger BMC than bugs fed on other hosts whereas goat-fed bugs ranked last, in consistency with average blood-feeding rates. Fecundity was maximal in chicken-fed bugs from chicken coops, submaximal in human- and pig-fed bugs, and minimal in goat-fed bugs. This study is the first to reveal the allometric effects of body-size surrogates on BMC and female fecundity in a large set of triatomine populations occupying multiple habitats, and discloses the links between body size, microsite temperatures and various fitness components that affect the risks of transmission of Trypanosoma cruzi.

  20. Body size and hosts of Triatoma infestans populations affect the size of bloodmeal contents and female fecundity in rural northwestern Argentina.

    Directory of Open Access Journals (Sweden)

    Ricardo E Gürtler

    2017-12-01

    Full Text Available Human sleeping quarters (domiciles and chicken coops are key source habitats of Triatoma infestans-the principal vector of the infection that causes Chagas disease-in rural communities in northern Argentina. Here we investigated the links among individual bug bloodmeal contents (BMC, mg, female fecundity, body length (L, mm, host blood sources and habitats. We tested whether L, habitat and host blood conferred relative fitness advantages using generalized linear mixed-effects models and a multimodel inference approach with model averaging. The data analyzed include 769 late-stage triatomines collected in 120 sites from six habitats in 87 houses in Figueroa, Santiago del Estero, during austral spring. L correlated positively with other body-size surrogates and was modified by habitat type, bug stage and recent feeding. Bugs from chicken coops were significantly larger than pig-corral and kitchen bugs. The best-fitting model of log BMC included habitat, a recent feeding, bug stage, log Lc (mean-centered log L and all two-way interactions including log Lc. Human- and chicken-fed bugs had significantly larger BMC than bugs fed on other hosts whereas goat-fed bugs ranked last, in consistency with average blood-feeding rates. Fecundity was maximal in chicken-fed bugs from chicken coops, submaximal in human- and pig-fed bugs, and minimal in goat-fed bugs. This study is the first to reveal the allometric effects of body-size surrogates on BMC and female fecundity in a large set of triatomine populations occupying multiple habitats, and discloses the links between body size, microsite temperatures and various fitness components that affect the risks of transmission of Trypanosoma cruzi.

  1. Mammalian collection on Noah's Ark: the effects of beauty, brain and body size.

    Directory of Open Access Journals (Sweden)

    Daniel Frynta

    Full Text Available The importance of today's zoological gardens as the so-called "Noah's Ark" grows as the natural habitat of many species quickly diminishes. Their potential to shelter a large amount of individuals from many species gives us the opportunity to reintroduce a species that disappeared in nature. However, the selection of animals to be kept in zoos worldwide is highly selective and depends on human decisions driven by both ecological criteria such as population size or vulnerability and audience-driven criteria such as aesthetic preferences. Thus we focused our study on the most commonly kept and bred animal class, the mammals, and we asked which factors affect various aspects of the mammalian collection of zoos. We analyzed the presence/absence, population size, and frequency per species of each of the 123 mammalian families kept in the worldwide zoo collection. Our aim was to explain these data using the human-perceived attractiveness of mammalian families, their body weight, relative brain size and species richness of the family. In agreement with various previous studies, we found that the body size and the attractiveness of mammals significantly affect all studied components of the mammalian collection of zoos. There is a higher probability of the large and attractive families to be kept. Once kept, these animals are presented in larger numbers in more zoos. On the contrary, the relative mean brain size only affects the primary selection whether to keep the family or not. It does not affect the zoo population size or the number of zoos that keep the family.

  2. Professional hazards? The impact of models' body size on advertising effectiveness and women's body-focused anxiety in professions that do and do not emphasize the cultural ideal of thinness.

    Science.gov (United States)

    Dittmar, Helga; Howard, Sarah

    2004-12-01

    Previous experimental research indicates that the use of average-size women models in advertising prevents the well-documented negative effect of thin models on women's body image, while such adverts are perceived as equally effective (Halliwell & Dittmar, 2004). The current study extends this work by: (a) seeking to replicate the finding of no difference in advertising effectiveness between average-size and thin models (b) examining level of ideal-body internalization as an individual, internal factor that moderates women's vulnerability to thin media models, in the context of (c) comparing women in professions that differ radically in their focus on, and promotion of, the sociocultural ideal of thinness for women--employees in fashion advertising (n = 75) and teachers in secondary schools (n = 75). Adverts showing thin, average-size and no models were perceived as equally effective. High internalizers in both groups of women felt worse about their body image after exposure to thin models compared to other images. Profession affected responses to average-size models. Teachers reported significantly less body-focused anxiety after seeing average-size models compared to no models, while there was no difference for fashion advertisers. This suggests that women in professional environments with less focus on appearance-related ideals can experience increased body-esteem when exposed to average-size models, whereas women in appearance-focused professions report no such relief.

  3. The genetic basis of natural variation in mushroom body size in Drosophila melanogaster.

    Science.gov (United States)

    Zwarts, Liesbeth; Vanden Broeck, Lies; Cappuyns, Elisa; Ayroles, Julien F; Magwire, Michael M; Vulsteke, Veerle; Clements, Jason; Mackay, Trudy F C; Callaerts, Patrick

    2015-12-11

    Genetic variation in brain size may provide the basis for the evolution of the brain and complex behaviours. The genetic substrate and the selective pressures acting on brain size are poorly understood. Here we use the Drosophila Genetic Reference Panel to map polymorphic variants affecting natural variation in mushroom body morphology. We identify 139 genes and 39 transcription factors and confirm effects on development and adult plasticity. We show correlations between morphology and aggression, sleep and lifespan. We propose that natural variation in adult brain size is controlled by interaction of the environment with gene networks controlling development and plasticity.

  4. Formal comment on: Myhrvold (2016) Dinosaur metabolism and the allometry of maximum growth rate. PLoS ONE; 11(11): e0163205.

    Science.gov (United States)

    Griebeler, Eva Maria; Werner, Jan

    2018-01-01

    In his 2016 paper, Myhrvold criticized ours from 2014 on maximum growth rates (Gmax, maximum gain in body mass observed within a time unit throughout an individual's ontogeny) and thermoregulation strategies (ectothermy, endothermy) of 17 dinosaurs. In our paper, we showed that Gmax values of similar-sized extant ectothermic and endothermic vertebrates overlap. This strongly questions a correct assignment of a thermoregulation strategy to a dinosaur only based on its Gmax and (adult) body mass (M). Contrary, Gmax separated similar-sized extant reptiles and birds (Sauropsida) and Gmax values of our studied dinosaurs were similar to those seen in extant similar-sized (if necessary scaled-up) fast growing ectothermic reptiles. Myhrvold examined two hypotheses (H1 and H2) regarding our study. However, we did neither infer dinosaurian thermoregulation strategies from group-wide averages (H1) nor were our results based on that Gmax and metabolic rate (MR) are related (H2). In order to assess whether single dinosaurian Gmax values fit to those of extant endotherms (birds) or of ectotherms (reptiles), we already used a method suggested by Myhrvold to avoid H1, and we only discussed pros and cons of a relation between Gmax and MR and did not apply it (H2). We appreciate Myhrvold's efforts in eliminating the correlation between Gmax and M in order to statistically improve vertebrate scaling regressions on maximum gain in body mass. However, we show here that his mass-specific maximum growth rate (kC) replacing Gmax (= MkC) does not model the expected higher mass gain in larger than in smaller species for any set of species. We also comment on, why we considered extant reptiles and birds as reference models for extinct dinosaurs and why we used phylogenetically-informed regression analysis throughout our study. Finally, we question several arguments given in Myhrvold in order to support his results.

  5. German and English Bodies: No Evidence for Cross-Linguistic Differences in Preferred Orthographic Grain Size

    Directory of Open Access Journals (Sweden)

    Xenia Schmalz

    2017-03-01

    Full Text Available Previous studies have found that words and nonwords with many body neighbours (i.e., words with the same orthographic body, e.g., 'cat, brat, at' are read faster than items with fewer body neighbours. This body-N effect has been explored in the context of cross-linguistic differences in reading where it has been reported that the size of the effect differs as a function of orthographic depth: readers of English, a deep orthography, show stronger facilitation than readers of German, a shallow orthography. Such findings support the psycholinguistic grain size theory, which proposes that readers of English rely on large orthographic units to reduce ambiguity of print-to-speech correspondences in their orthography. Here we re-examine the evidence for this pattern and find that there is no reliable evidence for such a cross-linguistic difference. Re-analysis of a key study (Ziegler et al., 2001, analysis of data from the English Lexicon Project (Balota et al., 2007, and a large-scale analysis of nine new experiments all support this conclusion. Using Bayesian analysis techniques, we find little evidence of the body-N effect in most tasks and conditions. Where we do find evidence for a body-N effect (lexical decision for nonwords, we find evidence against an interaction with language.

  6. Aerodynamics of solid bodies in the solar nebula

    Energy Technology Data Exchange (ETDEWEB)

    Weidenschilling, S J [Carnegie Institution of Washington, D.C. (USA). Dept. of Terrestrial Magnetism

    1977-07-01

    On a centrally condensed solar nebula, the pressure gradient in the gas causes the nebula to rotate more slowly than the free orbital velocity. Drag forces cause the orbits of solid bodies to decay. Their motions have been investigated analytically and numerically for all applicable drag laws. The maximum radial velocity developed is independent of the drag law, and insensitive to the nebular mass. Results are presented for a variety of model nebulae. Radial velocities depend strongly on particle size, reaching values of the order of 10/sup 4/ cm/s for metre-sized objects. Possible consequences include: mixing of solid matter with the solar nebula on short timescales, collisions leading to rapid accumulation of planetesimals, fractionation of bodies by size or density, and production of regions of anomalous composition in the solar nebula.

  7. DNA methylation patterns in cord blood DNA and body size in childhood.

    Directory of Open Access Journals (Sweden)

    Caroline L Relton

    Full Text Available Epigenetic markings acquired in early life may have phenotypic consequences later in development through their role in transcriptional regulation with relevance to the developmental origins of diseases including obesity. The goal of this study was to investigate whether DNA methylation levels at birth are associated with body size later in childhood.A study design involving two birth cohorts was used to conduct transcription profiling followed by DNA methylation analysis in peripheral blood. Gene expression analysis was undertaken in 24 individuals whose biological samples and clinical data were collected at a mean ± standard deviation (SD age of 12.35 (0.95 years, the upper and lower tertiles of body mass index (BMI were compared with a mean (SD BMI difference of 9.86 (2.37 kg/m(2. This generated a panel of differentially expressed genes for DNA methylation analysis which was then undertaken in cord blood DNA in 178 individuals with body composition data prospectively collected at a mean (SD age of 9.83 (0.23 years. Twenty-nine differentially expressed genes (>1.2-fold and p<10(-4 were analysed to determine DNA methylation levels at 1-3 sites per gene. Five genes were unmethylated and DNA methylation in the remaining 24 genes was analysed using linear regression with bootstrapping. Methylation in 9 of the 24 (37.5% genes studied was associated with at least one index of body composition (BMI, fat mass, lean mass, height at age 9 years, although only one of these associations remained after correction for multiple testing (ALPL with height, p(Corrected = 0.017.DNA methylation patterns in cord blood show some association with altered gene expression, body size and composition in childhood. The observed relationship is correlative and despite suggestion of a mechanistic epigenetic link between in utero life and later phenotype, further investigation is required to establish causality.

  8. Maximum type 1 error rate inflation in multiarmed clinical trials with adaptive interim sample size modifications.

    Science.gov (United States)

    Graf, Alexandra C; Bauer, Peter; Glimm, Ekkehard; Koenig, Franz

    2014-07-01

    Sample size modifications in the interim analyses of an adaptive design can inflate the type 1 error rate, if test statistics and critical boundaries are used in the final analysis as if no modification had been made. While this is already true for designs with an overall change of the sample size in a balanced treatment-control comparison, the inflation can be much larger if in addition a modification of allocation ratios is allowed as well. In this paper, we investigate adaptive designs with several treatment arms compared to a single common control group. Regarding modifications, we consider treatment arm selection as well as modifications of overall sample size and allocation ratios. The inflation is quantified for two approaches: a naive procedure that ignores not only all modifications, but also the multiplicity issue arising from the many-to-one comparison, and a Dunnett procedure that ignores modifications, but adjusts for the initially started multiple treatments. The maximum inflation of the type 1 error rate for such types of design can be calculated by searching for the "worst case" scenarios, that are sample size adaptation rules in the interim analysis that lead to the largest conditional type 1 error rate in any point of the sample space. To show the most extreme inflation, we initially assume unconstrained second stage sample size modifications leading to a large inflation of the type 1 error rate. Furthermore, we investigate the inflation when putting constraints on the second stage sample sizes. It turns out that, for example fixing the sample size of the control group, leads to designs controlling the type 1 error rate. © 2014 The Author. Biometrical Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Body size, blood feeding activity, and fecundity of Psorophora howardii, Psorophora ciliata, and Psorophora ferox (Diptera: Culicidae).

    Science.gov (United States)

    Zhu, Lin; Fulcher, Ali; Hossain, Tanjim; Davidson, Claudia; Beier, John C; Xue, Rui-De

    2014-03-01

    Field-collected female Psorophora howardii (Coquillett), Psorophora ciliate (F.), and Psorophora ferox (Humboltd) mosquitoes were tested in laboratory conditions to measure body size, blood engorgement duration, bloodmeal size, fecundity, and egg morphology. Mean bloodmeal size was significantly different among the three species of mosquitoes, whereas there was no difference in blood engorgement duration. Mean body weights and wing lengths of Ps. howardii and Ps. ciliata were significantly greater than Ps.ferox. Seven days after bloodmeals, oviposition rates for Ps. howardii, Ps. ciliata, and Ps.ferox were 18.8, 56.2, and 0%, respectively. The mean number of total eggs produced per female for the three species was 59, 81, and 73, respectively. Mean egg lengths of Ps. howardii and Ps. ciliata were significantly greater than Ps.ferox, and egg diameters for each of the three species were significantly different from one another. Length per diameter ratios of Ps. howardii and Ps. ciliata were significantly smaller than Ps. ferox. Bloodmeal size was positively related to body weight, but not related to blood engorgement duration, and the total egg number was positively related to bloodmeal size.

  10. Microwave non-contact imaging of subcutaneous human body tissues.

    Science.gov (United States)

    Kletsov, Andrey; Chernokalov, Alexander; Khripkov, Alexander; Cho, Jaegeol; Druchinin, Sergey

    2015-10-01

    A small-size microwave sensor is developed for non-contact imaging of a human body structure in 2D, enabling fitness and health monitoring using mobile devices. A method for human body tissue structure imaging is developed and experimentally validated. Subcutaneous fat tissue reconstruction depth of up to 70 mm and maximum fat thickness measurement error below 2 mm are demonstrated by measurements with a human body phantom and human subjects. Electrically small antennas are developed for integration of the microwave sensor into a mobile device. Usability of the developed microwave sensor for fitness applications, healthcare, and body weight management is demonstrated.

  11. Seasonal body size reductions with warming covary with major body size gradients in arthropod species

    DEFF Research Database (Denmark)

    Horne, Curtis R.; Hirst, Andrew G.; Atkinson, David

    2017-01-01

    experience different developmental conditions. Yet, unlike other size patterns, these common seasonal temperature–size gradients have never been collectively analysed. We undertake the largest analysis to date of seasonal temperature-size gradients in multivoltine arthropods, including 102 aquatic...... and terrestrial species from 71 global locations. Adult size declines in warmer seasons in 86% of the species examined. Aquatic species show approximately 2.5-fold greater reduction in size per °C of warming than terrestrial species, supporting the hypothesis that greater oxygen limitation in water than in air...

  12. Examining predator–prey body size, trophic level and body mass across marine and terrestrial mammals

    Science.gov (United States)

    Tucker, Marlee A.; Rogers, Tracey L.

    2014-01-01

    Predator–prey relationships and trophic levels are indicators of community structure, and are important for monitoring ecosystem changes. Mammals colonized the marine environment on seven separate occasions, which resulted in differences in species' physiology, morphology and behaviour. It is likely that these changes have had a major effect upon predator–prey relationships and trophic position; however, the effect of environment is yet to be clarified. We compiled a dataset, based on the literature, to explore the relationship between body mass, trophic level and predator–prey ratio across terrestrial (n = 51) and marine (n = 56) mammals. We did not find the expected positive relationship between trophic level and body mass, but we did find that marine carnivores sit 1.3 trophic levels higher than terrestrial carnivores. Also, marine mammals are largely carnivorous and have significantly larger predator–prey ratios compared with their terrestrial counterparts. We propose that primary productivity, and its availability, is important for mammalian trophic structure and body size. Also, energy flow and community structure in the marine environment are influenced by differences in energy efficiency and increased food web stability. Enhancing our knowledge of feeding ecology in mammals has the potential to provide insights into the structure and functioning of marine and terrestrial communities. PMID:25377460

  13. The thermal environment of the nest affects body and cell size in the solitary red mason bee (Osmia bicornis L.).

    Science.gov (United States)

    Kierat, Justyna; Szentgyörgyi, Hajnalka; Czarnoleski, Marcin; Woyciechowski, Michał

    2017-08-01

    Many ectotherms grow larger at lower temperatures than at higher temperatures. This pattern, known as the temperature-size rule, is often accompanied by plastic changes in cell size, which can mechanistically explain the thermal dependence of body size. However, the theory predicts that thermal plasticity in cell size has adaptive value for ectotherms because there are different optimal cell-membrane-to-cell-volume ratios at different temperatures. At high temperatures, the demand for oxygen is high; therefore, a large membrane surface of small cells is beneficial because it allows high rates of oxygen transport into the cell. The metabolic costs of maintaining membranes become more important at low temperatures than at high temperatures, which favours large cells. In a field experiment, we manipulated the thermal conditions inside nests of the red mason bee, a solitary bee that does not regulate the temperature in its nests and whose larvae develop under ambient conditions. We assessed the effect of temperature on body mass and ommatidia size (our proxy of cell size). The body and cell sizes decreased in response to a higher mean temperature and greater temperature fluctuations. This finding is in accordance with predictions of the temperature-size rule and optimal cell size theory and suggests that both the mean temperature and the magnitude of temperature fluctuations are important for determining body and cell sizes. Additionally, we observed that males of the red mason bee tend to have larger ommatidia in relation to their body mass than females, which might play an important role during mating flight. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. General herpetological collecting is size-based for five Pacific lizards

    Science.gov (United States)

    Rodda, Gordon H.; Yackel Adams, Amy A.; Campbell, Earl W.; Fritts, Thomas H.

    2015-01-01

    Accurate estimation of a species’ size distribution is a key component of characterizing its ecology, evolution, physiology, and demography. We compared the body size distributions of five Pacific lizards (Carlia ailanpalai, Emoia caeruleocauda, Gehyra mutilata, Hemidactylus frenatus, and Lepidodactylus lugubris) from general herpetological collecting (including visual surveys and glue boards) with those from complete censuses obtained by total removal. All species exhibited the same pattern: general herpetological collecting undersampled juveniles and oversampled mid-sized adults. The bias was greatest for the smallest juveniles and was not statistically evident for newly maturing and very large adults. All of the true size distributions of these continuously breeding species were skewed heavily toward juveniles, more so than the detections obtained from general collecting. A strongly skewed size distribution is not well characterized by the mean or maximum, though those are the statistics routinely reported for species’ sizes. We found body mass to be distributed more symmetrically than was snout–vent length, providing an additional rationale for collecting and reporting that size measure.

  15. Effect of size and composition of the body on absolute measurement of calcium in vivo

    International Nuclear Information System (INIS)

    Spinks, T.J.

    1979-01-01

    The effect of size and composition of the body on the measurement of total calcium in absolute units by neutron activation analysis is described. The neutron beam, produced from a cyclotron, was of mean energy 7.5 MeV. Counting of the activities induced in a patient was carried out with a multidetector whole body counter. Calibration of the system was achieved by using two phantoms of different sizes containing known quantities of calcium. The dimensions of various phantom sections were varied to determine the effect on efficiency of activation, an approximately linear relationship with body thickness being found. The influence of body habitus on counting efficiency was assessed by counting different patients who had been given known quantities of 42 K. The effects of (a) the non-uniform distribution of calcium and (b) the variation in density of different tissues on both activation and counting efficiency are discussed. It is estimated that the 68% confidence limits on the measurement of 49 Ca count rate per unit neutron fluence is +- 3.0% and on the measurement of calcium in grams +- 8.2%. (author)

  16. Body size and allometric shape variation in the molly Poecilia vivipara along a gradient of salinity and predation.

    Science.gov (United States)

    Araújo, Márcio S; Perez, S Ivan; Magazoni, Maria Julia C; Petry, Ana C

    2014-12-04

    Phenotypic diversity among populations may result from divergent natural selection acting directly on traits or via correlated responses to changes in other traits. One of the most frequent patterns of correlated response is the proportional change in the dimensions of anatomical traits associated with changes in growth or absolute size, known as allometry. Livebearing fishes subject to predation gradients have been shown to repeatedly evolve larger caudal peduncles and smaller cranial regions under high predation regimes. Poecilia vivipara is a livebearing fish commonly found in coastal lagoons in the north of the state of Rio de Janeiro, Brazil. Similar to what is observed in other predation gradients, lagoons inhabited by P. vivipara vary in the presence of piscivorous fishes; contrary to other poeciliid systems, populations of P. vivipara vary greatly in body size, which opens the possibility of strong allometric effects on shape variation. Here we investigated body shape diversification among six populations of P. vivipara along a predation gradient and its relationship with allometric trajectories within and among populations. We found substantial body size variation and correlated shape changes among populations. Multivariate regression analysis showed that size variation among populations accounted for 66% of shape variation in females and 38% in males, suggesting that size is the most important dimension underlying shape variation among populations of P. vivipara in this system. Changes in the relative sizes of the caudal peduncle and cranial regions were only partly in line with predictions from divergent natural selection associated with predation regime. Our results suggest the possibility that adaptive shape variation among populations has been partly constrained by allometry in P. vivipara. Processes governing body size changes are therefore important in the diversification of this species. We conclude that in species characterized by substantial

  17. Body size distributions of the pale grass blue butterfly in Japan: Size rules and the status of the Fukushima population

    Science.gov (United States)

    Taira, Wataru; Iwasaki, Mayo; Otaki, Joji M.

    2015-01-01

    The body size of the pale grass blue butterfly, Zizeeria maha, has been used as an environmental indicator of radioactive pollution caused by the Fukushima nuclear accident. However, geographical and temporal size distributions in Japan and temperature effects on size have not been established in this species. Here, we examined the geographical, temporal, and temperature-dependent changes of the forewing size of Z. maha argia in Japan. Butterflies collected in 2012 and 2013 from multiple prefectures throughout Japan demonstrated an inverse relationship of latitude and forewing size, which is the reverse of Bergmann’s cline. The Fukushima population was significantly larger than the Aomori and Miyagi populations and exhibited no difference from most of the other prefectural populations. When monitored at a single geographic locality every other month, forewing sizes were the largest in April and the smallest in August. Rearing larvae at a constant temperature demonstrated that forewing size followed the temperature-size rule. Therefore, the converse Bergmann’s rule and the temperature-size rule coexist in this multivoltine species. Our study establishes this species as a useful environmental indicator and supports the idea that the size reduction observed only in Fukushima Prefecture in 2011 was caused by the environmental stress of radioactive pollution. PMID:26197998

  18. Survival Times of Meter-Sized Rock Boulders on the Surface of Airless Bodies

    Science.gov (United States)

    Basilevsky, A. T.; Head, J. W.; Horz, F.; Ramsley, K.

    2015-01-01

    This study considers the survival times of meter-sized rock boulders on the surfaces of several airless bodies. As the starting point, we employ estimates of the survival times of such boulders on the surface of the Moon by[1], then discuss the role of destruction due to day-night temperature cycling, consider the meteorite bombardment environment on the considered bodies in terms of projectile flux and velocities and finally estimate the survival times. Survival times of meter-sized rocks on lunar surface: The survival times of hand specimen-sized rocks exposed to the lunar surface environment were estimated based on experiments modeling the destruction of rocks by meteorite impacts, combined with measurements of the lunar surface meteorite flux, (e.g.,[2]). For estimations of the survival times of meter-sized lunar boulders, [1] suggested a different approach based on analysis of the spatial density of boulders on the rims of small lunar craters of known absolute age. It was found that for a few million years, only a small fraction of the boulders ejected by cratering process are destroyed, for several tens of million years approx.50% are destroyed, and for 200-300 Ma, 90 to 99% are destroyed. Following [2] and other works, [1] considered that the rocks are mostly destroyed by meteorite impacts. Destruction of rocks by thermal-stress. However, high diurnal temperature variations on the surface of the Moon and other airless bodies imply that thermal stresses may also be a cause of surface rock destruction. Delbo et al. [3] interpreted the observed presence of fine debris on the surface of small asteroids as due to thermal surface cycling. They stated that because of the very low gravity on the surface of these bodies, ejecta from meteorite impacts should leave the body, so formation there of fine debris has to be due to thermal cycling. Based on experiments on heating-cooling of cm-scale pieces of ordinary and carbonaceous chondrites and theoretical modeling of

  19. Ideal Body Size as a Mediator for the Gender-Specific Association between Socioeconomic Status and Body Mass Index: Evidence from an Upper-Middle-Income Country in the African Region

    Science.gov (United States)

    Yepes, Maryam; Maurer, Jürgen; Stringhini, Silvia; Viswanathan, Barathi; Gedeon, Jude; Bovet, Pascal

    2016-01-01

    Background: While obesity continues to rise globally, the associations between body size, gender, and socioeconomic status (SES) seem to vary in different populations, and little is known on the contribution of perceived ideal body size in the social disparity of obesity in African countries. Purpose: We examined the gender and socioeconomic…

  20. Impact of Glucose Tolerance Status, Sex, and Body Size on Glucose Absorption Patterns During OGTTs

    DEFF Research Database (Denmark)

    Faerch, K.; Pacini, G.; Nolan, J. J.

    2013-01-01

    OBJECTIVEWe studied whether patterns of glucose absorption during oral glucose tolerance tests (OGTTs) were abnormal in individuals with impaired glucose regulation and whether they were related to sex and body size (height and fat-free mass). We also examined how well differences in insulin......, reflected the differences for these parameters between those with normal and impaired glucose regulation as measured by gold-standard tests.CONCLUSIONSGlucose absorption patterns during an OGTT are significantly related to plasma glucose levels and body size, which should be taken into account when.......RESULTSMore rapid glucose absorption (P 0.036) and reduced late glucose absorption (P 0.039) were observed in the i-IFG group relative to NGT and i-IGT groups. Women with i-IGT had a lower early glucose absorption than did men with i-IGT (P = 0.041); however, this difference did not persist when differences in body...

  1. Fat-Related Anthropometric Variables and Regional Patterns of Body Size and Adiposity of Adolescents in Aba South LGA, Abia State, Nigeria.

    Science.gov (United States)

    Eme, Paul Eze; Onuoha, Nnenna Ola; Mbah, Obioma B

    2016-05-04

    This study assessed fat-related anthropometric variables and regional patterns of body size and adiposity of adolescents in Aba South LGA. A total number of 600 adolescents who were secondary school students aged 10 to 19 years wereselected from 61 registered secondary schools. A multi-random sampling technique was used to select the patients. Ethical approval and informed consent were obtained from the patients who participated in the study. Each patient was subjected to weight, height, mid-upper arm circumference (MUAC), and skinfolds measurements using standard methods. Body fat percentage was calculated by the formulas described by Slaughter, Siris, and Shailk equations. Descriptive statistics of frequencies, percentages, mean, and standard deviation were used to examine the gender-specific anthropometric indices. Chi-square and independent t test were also applied to determine the differences between the parameters or variables of the genders at P< .05. The respondents aged 19 years had the highest measurement for triceps (14.60 mm), thigh (35.05 mm), and MUAC (25.95 mm), while those aged 18 years had the highest measurement for suprailiac (15.00 mm) and subscapular (16.94 mm). Females had more fat deposits than males in all the skinfold sites. They also had a significantly (P = .05) higher body fat percentage than males. A multiple regression analysis revealed that maximum calf fat was a strong predictor of body fat percentage of the patients. High prevalence of obesity was found in this study, and the 3 equations of body fat percentage showed similar findings that more females than males had higher body fat percentage. © The Author(s) 2016.

  2. Body Image and Body Type Preferences in St. Kitts, Caribbean: A Cross-Cultural Comparison with U.S. Samples regarding Attitudes towards Muscularity, Body Fat, and Breast Size

    Directory of Open Access Journals (Sweden)

    Peter B. Gray

    2012-07-01

    Full Text Available We investigated body image in St. Kitts, a Caribbean island where tourism, international media, and relatively high levels of body fat are common. Participants were men and women recruited from St. Kitts (n = 39 and, for comparison, U.S. samples from universities (n = 618 and the Internet (n = 438. Participants were shown computer generated images varying in apparent body fat level and muscularity or breast size and they indicated their body type preferences and attitudes. Overall, there were only modest differences in body type preferences between St. Kitts and the Internet sample, with the St. Kitts participants being somewhat more likely to value heavier women. Notably, however, men and women from St. Kitts were more likely to idealize smaller breasts than participants in the U.S. samples. Attitudes regarding muscularity were generally similar across samples. This study provides one of the few investigations of body preferences in the Caribbean.

  3. Rates of ecological divergence and body size evolution are correlated with species diversification in scaly tree ferns

    Science.gov (United States)

    Ramírez-Barahona, Santiago; Barrera-Redondo, Josué; Eguiarte, Luis E.

    2016-01-01

    Variation in species richness across regions and between different groups of organisms is a major feature of evolution. Several factors have been proposed to explain these differences, including heterogeneity in the rates of species diversification and the age of clades. It has been frequently assumed that rapid rates of diversification are coupled to high rates of ecological and morphological evolution, leading to a prediction that remains poorly explored for most species: the positive association between ecological niche divergence, morphological evolution and species diversification. We combined a time-calibrated phylogeny with distribution, ecological and body size data for scaly tree ferns (Cyatheaceae) to test whether rates of species diversification are predicted by the rates at which clades have evolved distinct ecological niches and body sizes. We found that rates of species diversification are positively correlated with rates of ecological and morphological evolution, with rapidly diversifying clades also showing rapidly evolving ecological niches and body sizes. Our results show that rapid diversification of scaly tree ferns is associated with the evolution of species with comparable morphologies that diversified into similar, yet distinct, environments. This suggests parallel evolutionary pathways opening in different tropical regions whenever ecological and geographical opportunities arise. Accordingly, rates of ecological niche and body size evolution are relevant to explain the current patterns of species richness in this ‘ancient’ fern lineage across the tropics. PMID:27412279

  4. Rates of ecological divergence and body size evolution are correlated with species diversification in scaly tree ferns.

    Science.gov (United States)

    Ramírez-Barahona, Santiago; Barrera-Redondo, Josué; Eguiarte, Luis E

    2016-07-13

    Variation in species richness across regions and between different groups of organisms is a major feature of evolution. Several factors have been proposed to explain these differences, including heterogeneity in the rates of species diversification and the age of clades. It has been frequently assumed that rapid rates of diversification are coupled to high rates of ecological and morphological evolution, leading to a prediction that remains poorly explored for most species: the positive association between ecological niche divergence, morphological evolution and species diversification. We combined a time-calibrated phylogeny with distribution, ecological and body size data for scaly tree ferns (Cyatheaceae) to test whether rates of species diversification are predicted by the rates at which clades have evolved distinct ecological niches and body sizes. We found that rates of species diversification are positively correlated with rates of ecological and morphological evolution, with rapidly diversifying clades also showing rapidly evolving ecological niches and body sizes. Our results show that rapid diversification of scaly tree ferns is associated with the evolution of species with comparable morphologies that diversified into similar, yet distinct, environments. This suggests parallel evolutionary pathways opening in different tropical regions whenever ecological and geographical opportunities arise. Accordingly, rates of ecological niche and body size evolution are relevant to explain the current patterns of species richness in this 'ancient' fern lineage across the tropics. © 2016 The Author(s).

  5. Body size mediates social and environmental effects on nest building behaviour in a fish with paternal care.

    Science.gov (United States)

    Lehtonen, Topi K; Lindström, Kai; Wong, Bob B M

    2015-07-01

    Body size, social setting, and the physical environment can all influence reproductive behaviours, but their interactions are not well understood. Here, we investigated how male body size, male-male competition, and water turbidity influence nest-building behaviour in the sand goby (Pomatoschistus minutus), a marine fish with exclusive paternal care. We found that environmental and social factors affected the nest characteristics of small and large males differently. In particular, association between male size and the level of nest elaboration (i.e. the amount of sand piled on top of the nest) was positive only under clear water conditions. Similarly, male size and nest entrance size were positively associated only in the absence of competition. Such interactions may, in turn, help to explain the persistence of variation in reproductive behaviours, which-due to their importance in offspring survival-are otherwise expected to be under strong balancing selection.

  6. Body temperatures in dinosaurs: what can growth curves tell us?

    Directory of Open Access Journals (Sweden)

    Eva Maria Griebeler

    Full Text Available To estimate the body temperature (BT of seven dinosaurs Gillooly, Alleen, and Charnov (2006 used an equation that predicts BT from the body mass and maximum growth rate (MGR with the latter preserved in ontogenetic growth trajectories (BT-equation. The results of these authors evidence inertial homeothermy in Dinosauria and suggest that, due to overheating, the maximum body size in Dinosauria was ultimately limited by BT. In this paper, I revisit this hypothesis of Gillooly, Alleen, and Charnov (2006. I first studied whether BTs derived from the BT-equation of today's crocodiles, birds and mammals are consistent with core temperatures of animals. Second, I applied the BT-equation to a larger number of dinosaurs than Gillooly, Alleen, and Charnov (2006 did. In particular, I estimated BT of Archaeopteryx (from two MGRs, ornithischians (two, theropods (three, prosauropods (three, and sauropods (nine. For extant species, the BT value estimated from the BT-equation was a poor estimate of an animal's core temperature. For birds, BT was always strongly overestimated and for crocodiles underestimated; for mammals the accuracy of BT was moderate. I argue that taxon-specific differences in the scaling of MGR (intercept and exponent of the regression line, log-log-transformed and in the parameterization of the Arrhenius model both used in the BT-equation as well as ecological and evolutionary adaptations of species cause these inaccuracies. Irrespective of the found inaccuracy of BTs estimated from the BT-equation and contrary to the results of Gillooly, Alleen, and Charnov (2006 I found no increase in BT with increasing body mass across all dinosaurs (Sauropodomorpha, Sauropoda studied. This observation questions that, due to overheating, the maximum size in Dinosauria was ultimately limited by BT. However, the general high inaccuracy of dinosaurian BTs derived from the BT-equation makes a reliable test of whether body size in dinosaurs was ultimately

  7. Visual diet versus associative learning as mechanisms of change in body size preferences.

    Directory of Open Access Journals (Sweden)

    Lynda G Boothroyd

    Full Text Available Systematic differences between populations in their preferences for body size may arise as a result of an adaptive 'prepared learning' mechanism, whereby cues to health or status in the local population are internalized and affect body preferences. Alternatively, differences between populations may reflect their 'visual diet' as a cognitive byproduct of mere exposure. Here we test the relative importance of these two explanations for variation in body preferences. Two studies were conducted where female observers were exposed to pictures of high or low BMI women which were either aspirational (healthy, attractive models in high status clothes or non-aspirational (eating disordered patients in grey leotards, or to combinations thereof, in order to manipulate their body-weight preferences which were tested at baseline and at post-test. Overall, results showed good support for visual diet effects (seeing a string of small or large bodies resulted in a change from pre- to post-test whether the bodies were aspirational or not and also some support for the associative learning explanation (exposure to aspirational images of overweight women induced a towards preferring larger bodies, even when accompanied by equal exposure to lower weight bodies in the non-aspirational category. Thus, both influences may act in parallel.

  8. Body size distribution in ground beetles (Coleoptera: Carabidae) as a possible monitoring method of environmental impacts of transgenic maize

    DEFF Research Database (Denmark)

    Grumo, Davide di; Lövei, Gabor L.

    2015-01-01

    Despite the obligatory post-market environmental monitoring of genetically modified (GM) crops in Europe, there are no available standards on methods. Our aim was to examine the suitability of using changes in carabid body size distribution as a possible monitoring method. The sampling was carried...... informative Lorenz asymmetry coefficients. A total of 6339 carabids belonging to 38 species were captured and indentified. The analysis detected a shift in size distribution between months but no important differences in the assemblages in Bt vs. non-Bt maize plots were found. We concluded that an increasing...... body size trend from spring to autumn was evident, and the use of a multilevel analysis was important to correctly interpret the body size distribution. Therefore, the proposed methods are indeed sensitive to subtle changes in the structure of the carabid assemblages, and they have the potential...

  9. The art of being small : brain-body size scaling in minute parasitic wasps

    NARCIS (Netherlands)

    Woude, van der Emma

    2017-01-01

    Haller’s rule states that small animals have relatively larger brains than large animals. This brain-body size relationship may enable small animals to maintain similar levels of brain performance as large animals. However, it also causes small animals to spend an exceptionally large proportion

  10. Examining predator-prey body size, trophic level and body mass across marine and terrestrial mammals.

    Science.gov (United States)

    Tucker, Marlee A; Rogers, Tracey L

    2014-12-22

    Predator-prey relationships and trophic levels are indicators of community structure, and are important for monitoring ecosystem changes. Mammals colonized the marine environment on seven separate occasions, which resulted in differences in species' physiology, morphology and behaviour. It is likely that these changes have had a major effect upon predator-prey relationships and trophic position; however, the effect of environment is yet to be clarified. We compiled a dataset, based on the literature, to explore the relationship between body mass, trophic level and predator-prey ratio across terrestrial (n = 51) and marine (n = 56) mammals. We did not find the expected positive relationship between trophic level and body mass, but we did find that marine carnivores sit 1.3 trophic levels higher than terrestrial carnivores. Also, marine mammals are largely carnivorous and have significantly larger predator-prey ratios compared with their terrestrial counterparts. We propose that primary productivity, and its availability, is important for mammalian trophic structure and body size. Also, energy flow and community structure in the marine environment are influenced by differences in energy efficiency and increased food web stability. Enhancing our knowledge of feeding ecology in mammals has the potential to provide insights into the structure and functioning of marine and terrestrial communities. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  11. Lower limits of ornithischian dinosaur body size inferred from a new Upper Jurassic heterodontosaurid from North America

    Science.gov (United States)

    Butler, Richard J.; Galton, Peter M.; Porro, Laura B.; Chiappe, Luis M.; Henderson, Donald M.; Erickson, Gregory M.

    2010-01-01

    The extremes of dinosaur body size have long fascinated scientists. The smallest (dinosaurs are carnivorous saurischian theropods, and similarly diminutive herbivorous or omnivorous ornithischians (the other major group of dinosaurs) are unknown. We report a new ornithischian dinosaur, Fruitadens haagarorum, from the Late Jurassic of western North America that rivals the smallest theropods in size. The largest specimens of Fruitadens represent young adults in their fifth year of development and are estimated at just 65–75 cm in total body length and 0.5–0.75 kg body mass. They are thus the smallest known ornithischians. Fruitadens is a late-surviving member of the basal dinosaur clade Heterodontosauridae, and is the first member of this clade to be described from North America. The craniodental anatomy and diminutive body size of Fruitadens suggest that this taxon was an ecological generalist with an omnivorous diet, thus providing new insights into morphological and palaeoecological diversity within Dinosauria. Late-surviving (Late Jurassic and Early Cretaceous) heterodontosaurids are smaller and less ecologically specialized than Early (Late Triassic and Early Jurassic) heterodontosaurids, and this ecological generalization may account in part for the remarkable 100-million-year-long longevity of the clade. PMID:19846460

  12. The optimal exercise intensity for the unbiased comparison of thermoregulatory responses between groups unmatched for body size during uncompensable heat stress.

    Science.gov (United States)

    Ravanelli, Nicholas; Cramer, Matthew; Imbeault, Pascal; Jay, Ollie

    2017-03-01

    We sought to identify the appropriate exercise intensity for unbiased comparisons of changes in rectal temperature (ΔT re ) and local sweat rates (LSR) between groups unmatched for body size during uncompensable heat stress. Sixteen males vastly different in body morphology were separated into two equal groups [small (SM): 65.8 ± 6.2 kg, 1.8 ± 0.1 m 2 ; large (LG): 100.0 ± 13.1 kg, 2.3 ± 0.1 m 2 ], but matched for sudomotor thermosensitivity (SM: 1.3 ± 0.6; LG: 1.1 ± 0.4 mg·cm -2 ·min -1 ·°C -1 ). The maximum potential for evaporation (E max ) for each participant was assessed using an incremental humidity protocol. On separate occasions, participants then completed 60 min of cycling in a 35°C and 70% RH environment at (1) 50% of VO 2max , (2) a heat production (H prod ) of 520 W, (3) H prod relative to mass (6 W·kg -1 ), and (4) H prod relative to mass above E max (3 W·kg -1 >E max ). E max was similar between LG (347 ± 39 W, 154 ± 15 W·m -2 ) and SM (313 ± 63 W, 176 ± 34 W·m -2 , P  >   0.12). ΔT re was greater in SM compared to LG at 520 W (SM: 1.5 ± 0.5; LG 0.8 ± 0.3°C, P  E max (SM: 1.4 ± 0.5; LG 1.3 ± 0.4°C, P  =   0.99). LSR was similar between LG and SM irrespective of condition, suggesting maximum LSR was attained (SM: 1.10 ± 0.23; LG: 1.07 ± 0.35 mg·cm -2 ·min -1 , P  =   0.50). In conclusion, systematic differences in ΔT re and LSR between groups unmatched for body size during uncompensable heat stress can be avoided by a fixed H prod in W·kg -1 or W·kg -1 >E max . © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  13. Birth mass is the key to understanding the negative correlation between lifespan and body size in dogs.

    Science.gov (United States)

    Fan, Rong; Olbricht, Gayla; Baker, Xavior; Hou, Chen

    2016-12-08

    Larger dog breeds live shorter than the smaller ones, opposite of the mass-lifespan relationship observed across mammalian species. Here we use data from 90 dog breeds and a theoretical model based on the first principles of energy conservation and life history tradeoffs to explain the negative correlation between longevity and body size in dogs. We found that the birth/adult mass ratio of dogs scales negatively with adult size, which is different than the weak interspecific scaling in mammals. Using the model, we show that this ratio, as an index of energy required for growth, is the key to understanding why the lifespan of dogs scales negatively with body size. The model also predicts that the difference in mass-specific lifetime metabolic energy usage between dog breeds is proportional to the difference in birth/adult mass ratio. Empirical data on lifespan, body mass, and metabolic scaling law of dogs strongly supports this prediction.

  14. Glenoid version and size: does gender, ethnicity, or body size play a role?

    Science.gov (United States)

    Piponov, Hristo Ivanov; Savin, David; Shah, Neal; Esposito, Domenic; Schwartz, Brian; Moretti, Vincent; Goldberg, Benjamin

    2016-11-01

    Variations in glenoid morphology among patients of different gender, body habitus, and ethnicity have been of interest for surgeons. Understanding these anatomical variations is a critical step in restoring normal glenohumeral structure during shoulder reconstruction surgery. Retrospective review of 108 patient shoulder CT scans was performed and glenoid version, AP diameter and height were measured. Statistical multiple regression models were used to investigate the ability of gender and ethnicity to predict glenoid AP diameter, height, and version independently of patient weight and height. The mean glenoid AP diameter was 24.7 ± 3.5, the mean glenoid height was 31.7 ± 3.7, and the mean glenoid version was 0.05 ± 9.05. According to our regression models, males would be expected to exhibit 8.4° more glenoid retroversion than females (p = 0.003) and have 2.9 mm larger glenoid height compared to females (p = 0.002). The predicted male glenoid AP diameter was 3.4 mm higher than that in females (p variations in glenoid size and version are observed among ethnicities, larger sample size ethnic groups will be necessary to explore the precise relations. Surgeons should consider gender and ethnic variations in the pre-operative planning and surgical restoration of the native glenohumeral relationship. Anatomic Study.

  15. Effects of Abiotic Factors on the Geographic Distribution of Body Size Variation and Chromosomal Polymorphisms in Two Neotropical Grasshopper Species (Dichroplus: Melanoplinae: Acrididae

    Directory of Open Access Journals (Sweden)

    Claudio J. Bidau

    2012-01-01

    Full Text Available We review the effects of abiotic factors on body size in two grasshopper species with large geographical distributions: Dichroplus pratensis and D. vittatus, inhabiting Argentina in diverse natural habitats. Geographical spans for both species provide an opportunity to study the effects of changes in abiotic factors on body size. The analyses of body size distribution in both species revealed a converse Bergmannian pattern: body size is positively correlated with latitude, altitude, and seasonality that influences time available for development and growth. Allen’s rule is also inverted. Morphological variability increases towards the ends of the Bergmannian clines and, in D. pratensis, is related with a central-marginal distribution of chromosomal variants that influence recombination. The converse Bergmannian patterns influence sexual size dimorphism in both species but in different fashions. Body size variation at a microspatial scale in D. pratensis is extremely sensitive to microclimatic clines. We finally compare our results with those for other Orthopteran species.

  16. Clinical correlation of radiological spinal stenosis after standardization for vertebral body size

    International Nuclear Information System (INIS)

    Athiviraham, A.; Yen, D.; Scott, C.; Soboleski, D.

    2007-01-01

    Aim: To determine the relationship between the degree of radiographic lumbar spinal stenosis, adjusted with an internal control for vertebral body size, and disability from lumbar stenosis. Materials and methods: one hundred and twenty-three consecutive patients with clinical and radiological confirmation of neural impingement secondary to lumbar stenosis were enrolled prospectively. Thecal sac anteroposterior (AP) diameter (TSD) and cross-sectional area (CSA), and vertebral body AP dimension (VBD) were determined. These parameters were then correlated with patients' symptoms using the modified Roland-Morris questionnaire (RMQ) disability score. Results: No statistically significant inverse correlation was found between the TSD and RMQ score (p = 0.433), between the CSA and RMQ score (p = 0.124), or between the TSD:VBD ratio and RMQ score (p = 0.109). There was a significant positive correlation between the CSA:VBD ratio and RMQ score (p = .036), and therefore, there was no statistical support for an inverse relationship between the two. There was a significant difference in mean RMQ scores when the patients were divided into those with CSA greater than or equal to 70 mm 2 and those less than 70 mm 2 , with T = -2.104 and p = 0.038. Conclusion: The degree of radiographic lumbar spinal stenosis, even with the use of an internal control of vertebral body size and standardized disability questionnaires, does not correlate with clinical symptoms. However, patients with more severe stenosis below a CSA critical threshold of 70 mm 2 , have significantly greater functional disability

  17. Performance analysis and comparison of an Atkinson cycle coupled to variable temperature heat reservoirs under maximum power and maximum power density conditions

    International Nuclear Information System (INIS)

    Wang, P.-Y.; Hou, S.-S.

    2005-01-01

    In this paper, performance analysis and comparison based on the maximum power and maximum power density conditions have been conducted for an Atkinson cycle coupled to variable temperature heat reservoirs. The Atkinson cycle is internally reversible but externally irreversible, since there is external irreversibility of heat transfer during the processes of constant volume heat addition and constant pressure heat rejection. This study is based purely on classical thermodynamic analysis methodology. It should be especially emphasized that all the results and conclusions are based on classical thermodynamics. The power density, defined as the ratio of power output to maximum specific volume in the cycle, is taken as the optimization objective because it considers the effects of engine size as related to investment cost. The results show that an engine design based on maximum power density with constant effectiveness of the hot and cold side heat exchangers or constant inlet temperature ratio of the heat reservoirs will have smaller size but higher efficiency, compression ratio, expansion ratio and maximum temperature than one based on maximum power. From the view points of engine size and thermal efficiency, an engine design based on maximum power density is better than one based on maximum power conditions. However, due to the higher compression ratio and maximum temperature in the cycle, an engine design based on maximum power density conditions requires tougher materials for engine construction than one based on maximum power conditions

  18. Body size and the rate of spread of invasive ladybird beetles in North America

    Czech Academy of Sciences Publication Activity Database

    Hemptinne, J. L.; Magro, A.; Evans, E.W.; Dixon, Anthony F. G.

    2012-01-01

    Roč. 14, č. 3 (2012), s. 595-605 ISSN 1387-3547 Institutional support: RVO:67179843 Keywords : Invasiveness * Body size * Reproductive rate * Coccinella septempunctata * Harmonia axyridis Subject RIV: EH - Ecology , Behaviour Impact factor: 2.509, year: 2012

  19. A critical evaluation of the insect body size model and causes of metamorphosis in solitary bees

    Science.gov (United States)

    The insect body size model posits that adult size is determined by growth rate and the duration of growth during the larval stage of development. Within the model, growth rate is regulated by many mechanistic elements that are influenced by both internal and external factors. However, the duration o...

  20. Analysis of factors that influence the maximum number of repetitions in two upper-body resistance exercises: curl biceps and bench press.

    Science.gov (United States)

    Iglesias, Eliseo; Boullosa, Daniel A; Dopico, Xurxo; Carballeira, Eduardo

    2010-06-01

    The purpose of this study was to analyze the influence of exercise type, set configuration, and relative intensity load on relationship between 1 repetition maximum (1RM) and maximum number of repetitions (MNR). Thirteen male subjects, experienced in resistance training, were tested in bench press and biceps curl for 1RM, MNR at 90% of 1RM with cluster set configuration (rest of 30s between repetitions) and MNR at 70% of 1RM with traditional set configuration (no rest between repetitions). A lineal encoder was used for measuring displacement of load. Analysis of variance analysis revealed a significant effect of load (pbench press and biceps curl, respectively; pbench press and biceps curl, respectively; p>0.05). Correlation between 1RM and MNR was significant for medium-intensity in biceps curl (r=-0.574; pvelocity along set, so velocity seems to be similar at a same relative intensity for subjects with differences in maximum strength levels. From our results, we suggest the employment of MNR rather than % of 1RM for training monitoring. Furthermore, we suggest the introduction of cluster set configuration for upper-body assessment of MNR and for upper-body muscular endurance training at high-intensity loads, as it seems an efficient approach in looking for sessions with greater training volumes. This could be an interesting approach for such sports as wrestling or weightlifting.

  1. A six decades long follow-up on body size in adolescents from Zagreb, Croatia (1951-2010).

    Science.gov (United States)

    Zajc Petranović, Matea; Tomas, Željka; Smolej Narančić, Nina; Škarić-Jurić, Tatjana; Veček, Andrea; Miličić, Jasna

    2014-03-01

    Most studies analysing the influence of socioeconomic deterioration on body size focus on the impact of food shortages and diseases on the growth in early childhood. To evaluate how socioeconomic conditions influence the growth during the adolescence, we tracked the body size of 15-19 year-olds over the last sixty years covering the socialist period (1951-1990), the war (1991-1995) and the transition to capitalistic economy. This study of Zagreb, Croatia, adolescent population provides information on the secular trend in height, weight and Body Mass Index (BMI) and examines their relation with Real Gross Domestic Product. From 1951 to 2010 the girls' height approximately increased by 6.2cm and weight by 6.8kg, while the boys' height increased by 12.2cm and weight by 17.3kg. Prior to 1991 mean BMI in girls was higher than in boys, but from 1991 on, the interrelation between the sexes has been opposite, possibly mirroring the cultural trends that started in mid-1970s and reflecting higher sensitivity of boys to the socioeconomic changes. In conclusion, the secular trend in body size over the investigated period reflects the positive economic trends interrupted by the war. The recent increase in BMI corresponds to the country's economic recovery and indicates the "nutrition transition". Copyright © 2013 Elsevier B.V. All rights reserved.

  2. The Influence of Age and Sex on Genetic Associations with Adult Body Size and Shape: A Large-Scale Genome-Wide Interaction Study

    NARCIS (Netherlands)

    T.W. Winkler (Thomas W.); A.E. Justice (Anne); M.J. Graff (Maud J.L.); Barata, L. (Llilda); M.F. Feitosa (Mary Furlan); Chu, S. (Su); J. Czajkowski (Jacek); T. Esko (Tõnu); M. Fall (Magnus); T.O. Kilpeläinen (Tuomas); Y. Lu (Yingchang); R. Mägi (Reedik); E. Mihailov (Evelin); T.H. Pers (Tune); Rüeger, S. (Sina); A. Teumer (Alexander); G.B. Ehret (Georg); T. Ferreira (Teresa); N.L. Heard-Costa (Nancy); J. Karjalainen (Juha); V. Lagou (Vasiliki); A. Mahajan (Anubha); Neinast, M.D. (Michael D.); I. Prokopenko (Inga); J. Simino (Jeannette); T.M. Teslovich (Tanya M.); R. Jansen; H.J. Westra (Harm-Jan); C.C. White (Charles); D. Absher (Devin); T.S. Ahluwalia (Tarunveer Singh); S. Ahmad (Shafqat); E. Albrecht (Eva); A.C. Alves (Alexessander Couto); Bragg-Gresham, J.L. (Jennifer L.); A.J. de Craen (Anton); J.C. Bis (Joshua); A. Bonnefond (Amélie); G. Boucher (Gabrielle); G. Cadby (Gemma); Y.-C. Cheng (Yu-Ching); Chiang, C.W. (Charleston W K); G. Delgado; A. Demirkan (Ayşe); N. Dueker (Nicole); N. Eklund (Niina); G. Eiriksdottir (Gudny); J. Eriksson (Joel); B. Feenstra (Bjarke); K. Fischer (Krista); F. Frau (Francesca); T.E. Galesloot (Tessel); F. Geller (Frank); A. Goel (Anuj); M. Gorski (Mathias); T.B. Grammer (Tanja); S. Gustafsson (Stefan); Haitjema, S. (Saskia); J.J. Hottenga (Jouke Jan); J.E. Huffman (Jennifer); A.U. Jackson (Anne); K.B. Jacobs (Kevin); A. Johansson (Åsa); M. Kaakinen (Marika); M.E. Kleber (Marcus); J. Lahti (Jari); I.M. Leach (Irene Mateo); Lehne, B. (Benjamin); Liu, Y. (Youfang); K.S. Lo; M. Lorentzon (Mattias); J. Luan (Jian'An); P.A. Madden (Pamela); M. Mangino (Massimo); B. McKnight (Barbara); Medina-Gomez, C. (Carolina); K.L. Monda (Keri); M.E. Montasser (May E.); G. Müller (Gabriele); M. Müller-Nurasyid (Martina); I.M. Nolte (Ilja); Panoutsopoulou, K. (Kalliope); L. Pascoe (Laura); L. Paternoster (Lavinia); N.W. Rayner (Nigel William); F. Renström (Frida); Rizzi, F. (Federica); L.M. Rose (Lynda); Ryan, K.A. (Kathy A.); P. Salo (Perttu); S. Sanna (Serena); H. Scharnagl (Hubert); Shi, J. (Jianxin); A.V. Smith (Albert Vernon); L. Southam (Lorraine); A. Stancáková (Alena); V. Steinthorsdottir (Valgerdur); R.J. Strawbridge (Rona); Sung, Y.J. (Yun Ju); I. Tachmazidou (Ioanna); T. Tanaka (Toshiko); G. Thorleifsson (Gudmar); S. Trompet (Stella); N. Pervjakova (Natalia); J.P. Tyrer (Jonathan); L. Vandenput (Liesbeth); S.W. Van Der Laan (Sander W.); N. van der Velde (Nathalie); J. van Setten (Jessica); J.V. van Vliet-Ostaptchouk (Jana); N. Verweij (Niek); E. Vlachopoulou (Efthymia); L. Waite (Lindsay); S.R. Wang (Sophie); Z. Wang (Zhaoming); S.H. Wild (Sarah); C. Willenborg (Christina); J.F. Wilson (James); A. Wong (Andrew); Yang, J. (Jian); L. Yengo (Loic); L.M. Yerges-Armstrong (Laura); Yu, L. (Lei); W. Zhang (Weihua); Zhao, J.H. (Jing Hua); E.A. Andersson (Ehm Astrid); S.J.L. Bakker (Stephan); D. Baldassarre (Damiano); Banasik, K. (Karina); Barcella, M. (Matteo); Barlassina, C. (Cristina); C. Bellis (Claire); P. Benaglio (Paola); J. Blangero (John); M. Blüher (Matthias); Bonnet, F. (Fabrice); L.L. Bonnycastle (Lori); H.A. Boyd (Heather); M. Bruinenberg (M.); Buchman, A.S. (Aron S.); H. Campbell (Harry); Y.D. Chen (Y.); P.S. Chines (Peter); S. Claudi-Boehm (Simone); J.W. Cole (John W.); F.S. Collins (Francis); E.J.C. de Geus (Eco); L.C.P.G.M. de Groot (Lisette); M. Dimitriou (Maria); J. Duan (Jubao); S. Enroth (Stefan); E. Eury (Elodie); A.-E. Farmaki (Aliki-Eleni); N.G. Forouhi (Nita); N. Friedrich (Nele); P.V. Gejman (Pablo); B. Gigante (Bruna); N. Glorioso (Nicola); A. Go (Attie); R.F. Gottesman (Rebecca); J. Gräßler (Jürgen); H. Grallert (Harald); N. Grarup (Niels); Gu, Y.-M. (Yu-Mei); L. Broer (Linda); A.C. Ham (Annelies); T. Hansen (T.); T.B. Harris (Tamara); C.A. Hartman (Catharina A.); Hassinen, M. (Maija); N. Hastie (Nick); A.T. Hattersley (Andrew); A.C. Heath (Andrew); A.K. Henders (Anjali); D.G. Hernandez (Dena); H.L. Hillege (Hans); O.L. Holmen (Oddgeir); G.K. Hovingh (Kees); J. Hui (Jennie); Husemoen, L.L. (Lise L.); Hutri-Kähönen, N. (Nina); P.G. Hysi (Pirro); T. Illig (Thomas); P.L. de Jager (Philip); S. Jalilzadeh (Shapour); T. Jorgensen (Torben); J.W. Jukema (Jan Wouter); Juonala, M. (Markus); S. Kanoni (Stavroula); M. Karaleftheri (Maria); K.T. Khaw; L. Kinnunen (Leena); T. Kittner (Thomas); W. Koenig (Wolfgang); I. Kolcic (Ivana); P. Kovacs (Peter); Krarup, N.T. (Nikolaj T.); W. Kratzer (Wolfgang); Krüger, J. (Janine); Kuh, D. (Diana); M. Kumari (Meena); T. Kyriakou (Theodosios); C. Langenberg (Claudia); L. Lannfelt (Lars); C. Lanzani (Chiara); V. Lotay (Vaneet); L.J. Launer (Lenore); K. Leander (Karin); J. Lindström (Jaana); A. Linneberg (Allan); Liu, Y.-P. (Yan-Ping); S. Lobbens (Stéphane); R.N. Luben (Robert); V. Lyssenko (Valeriya); S. Männistö (Satu); P.K. Magnusson (Patrik); W.L. McArdle (Wendy); C. Menni (Cristina); S. Merger (Sigrun); L. Milani (Lili); Montgomery, G.W. (Grant W.); A.P. Morris (Andrew); N. Narisu (Narisu); M. Nelis (Mari); K.K. Ong (Ken); A. Palotie (Aarno); L. Perusse (Louis); I. Pichler (Irene); M.G. Pilia (Maria Grazia); A. Pouta (Anneli); Rheinberger, M. (Myriam); Ribel-Madsen, R. (Rasmus); Richards, M. (Marcus); K.M. Rice (Kenneth); T.K. Rice (Treva K.); C. Rivolta (Carlo); V. Salomaa (Veikko); A.R. Sanders (Alan); M.A. Sarzynski (Mark A.); S. Scholtens (Salome); R.A. Scott (Robert); W.R. Scott (William R.); S. Sebert (Sylvain); S. Sengupta (Sebanti); B. Sennblad (Bengt); T. Seufferlein (Thomas); A. Silveira (Angela); P.E. Slagboom (Eline); J.H. Smit (Jan); T. Sparsø (Thomas); K. Stirrups (Kathy); R.P. Stolk (Ronald); H.M. Stringham (Heather); Swertz, M.A. (Morris A.); A.J. Swift (Amy); A.C. Syvänen; S.-T. Tan (Sian-Tsung); B. Thorand (Barbara); A. Tönjes (Anke); Tremblay, A. (Angelo); E. Tsafantakis (Emmanouil); P.J. van der Most (Peter); U. Völker (Uwe); M.-C. Vohl (Marie-Claude); J.M. Vonk (Judith); M. Waldenberger (Melanie); Walker, R.W. (Ryan W.); R. Wennauer (Roman); E. Widen; G.A.H.M. Willemsen (Gonneke); T. Wilsgaard (Tom); A.F. Wright (Alan); M.C. Zillikens (Carola); S. Van Dijk (Suzanne); N.M. van Schoor (Natasja); F.W. Asselbergs (Folkert); P.I.W. de Bakker (Paul); J.S. Beckmann (Jacques); J.P. Beilby (John); D.A. Bennett (David A.); R.N. Bergman (Richard); S.M. Bergmann (Sven); C.A. Böger (Carsten); B.O. Boehm (Bernhard); E.A. Boerwinkle (Eric); D.I. Boomsma (Dorret); S.R. Bornstein (Stefan); E.P. Bottinger (Erwin); C. Bouchard (Claude); J.C. Chambers (John); S.J. Chanock (Stephen); D.I. Chasman (Daniel); F. Cucca (Francesco); D. Cusi (Daniele); G.V. Dedoussis (George); J. Erdmann (Jeanette); K. Hagen (Knut); D. Evans; U. de Faire (Ulf); M. Farrall (Martin); L. Ferrucci (Luigi); I. Ford (Ian); L. Franke (Lude); P.W. Franks (Paul); P. Froguel (Philippe); R.T. Gansevoort (Ron); C. Gieger (Christian); H. Grönberg (Henrik); V. Gudnason (Vilmundur); U. Gyllensten (Ulf); P. Hall (Per); A. Hamsten (Anders); P. van der Harst (Pim); C. Hayward (Caroline); M. Heliovaara (Markku); C. Hengstenberg (Christian); A.A. Hicks (Andrew); A. Hingorani (Aroon); A. Hofman (Albert); Hu, F. (Frank); H.V. Huikuri (Heikki); K. Hveem (Kristian); A. James (Alan); Jordan, J.M. (Joanne M.); A. Jula (Antti); M. Kähönen (Mika); E. Kajantie (Eero); S. Kathiresan (Sekar); L.A.L.M. Kiemeney (Bart); M. Kivimaki (Mika); P. Knekt; H. Koistinen (Heikki); J.S. Kooner (Jaspal S.); S. Koskinen (Seppo); J. Kuusisto (Johanna); W. Maerz (Winfried); N.G. Martin (Nicholas); M. Laakso (Markku); T.A. Lakka (Timo); T. Lehtimäki (Terho); G. Lettre (Guillaume); D.F. Levinson (Douglas); W.H.L. Kao (Wen); M.L. Lokki; Mäntyselkä, P. (Pekka); M. Melbye (Mads); A. Metspalu (Andres); B.D. Mitchell (Braxton); F.L. Moll (Frans); J.C. Murray (Jeffrey); A.W. Musk (Arthur); M.S. Nieminen (Markku); I. Njølstad (Inger); C. Ohlsson (Claes); A.J. Oldehinkel (Albertine); B.A. Oostra (Ben); C. Palmer (Cameron); J.S. Pankow (James); G. Pasterkamp (Gerard); N.L. Pedersen (Nancy); O. Pedersen (Oluf); B.W.J.H. Penninx (Brenda); M. Perola (Markus); A. Peters (Annette); O. Polasek (Ozren); P.P. Pramstaller (Peter Paul); Psaty, B.M. (Bruce M.); Qi, L. (Lu); T. Quertermous (Thomas); Raitakari, O.T. (Olli T.); T. Rankinen (Tuomo); R. Rauramaa (Rainer); P.M. Ridker (Paul); J.D. Rioux (John); F. Rivadeneira Ramirez (Fernando); J.I. Rotter (Jerome I.); I. Rudan (Igor); H.M. den Ruijter (Hester ); J. Saltevo (Juha); N. Sattar (Naveed); Schunkert, H. (Heribert); P.E.H. Schwarz (Peter); A.R. Shuldiner (Alan); J. Sinisalo (Juha); H. Snieder (Harold); T.I.A. Sørensen (Thorkild); T.D. Spector (Timothy); Staessen, J.A. (Jan A.); Stefania, B. (Bandinelli); U. Thorsteinsdottir (Unnur); M. Stumvoll (Michael); J.-C. Tardif (Jean-Claude); E. Tremoli (Elena); J. Tuomilehto (Jaakko); A.G. Uitterlinden (André); M. Uusitupa (Matti); A.L.M. Verbeek; S.H.H.M. Vermeulen (Sita); J. Viikari (Jorma); Vitart, V. (Veronique); H. Völzke (Henry); P. Vollenweider (Peter); G. Waeber (Gérard); M. Walker (Mark); H. Wallaschofski (Henri); N.J. Wareham (Nick); H. Watkins (Hugh); E. Zeggini (Eleftheria); A. Chakravarti (Aravinda); Clegg, D.J. (Deborah J.); L.A. Cupples (Adrienne); P. Gordon-Larsen (Penny); C.E. Jaquish (Cashell); D.C. Rao (Dabeeru C.); Abecasis, G.R. (Goncalo R.); T.L. Assimes (Themistocles); I.E. Barroso (Inês); S.I. Berndt (Sonja); M. Boehnke (Michael); P. Deloukas (Panagiotis); C.S. Fox (Caroline); L. Groop (Leif); D. Hunter (David); E. Ingelsson (Erik); R.C. Kaplan (Robert); McCarthy, M.I. (Mark I.); K.L. Mohlke (Karen); J.R. O´Connell; Schlessinger, D. (David); D.P. Strachan (David); J-A. Zwart (John-Anker); C.M. van Duijn (Cornelia); J.N. Hirschhorn (Joel); C.M. Lindgren (Cecilia M.); I.M. Heid (Iris); K.E. North (Kari); I.B. Borecki (Ingrid); Z. Kutalik (Zoltán); R.J.F. Loos (Ruth)

    2015-01-01

    textabstractGenome-wide association studies (GWAS) have identified more than 100 genetic variants contributing to BMI, a measure of body size, or waist-to-hip ratio (adjusted for BMI, WHRadjBMI), a measure of body shape. Body size and shape change as people grow older and these changes differ

  3. Reproductive success in a natural population of male three-spined stickleback Gasterosteus aculeatus: effects of nuptial colour, parasites and body size.

    Science.gov (United States)

    Sparkes, T C; Rush, V; Kopp, D A; Foster, S A

    2013-05-01

    The effects of nuptial colour, parasites and body size on reproductive success were examined in a natural population of three-spined stickleback Gasterosteus aculeatus. Reproductive males were collected, with the contents of their nests, during the embryo-guarding stage from Lynne Lake (Cook Inlet, Alaska, U.S.A.), and nuptial colour, infection status and body size were recorded. Regression analysis revealed that male body size was the only predictor, of those measured, of reproductive success in nature. © 2013 The Authors. Journal of Fish Biology © 2013 The Fisheries Society of the British Isles.

  4. A prospective study of calf factors affecting age, body size, and body condition score at first calving of holstein dairy heifers.

    Science.gov (United States)

    Heinrichs, A J; Heinrichs, B S; Harel, O; Rogers, G W; Place, N T

    2005-08-01

    Data were collected prospectively on parameters related to first calving on 18 farms located in Northeastern Pennsylvania. This project was designed to study possible residual effects of calf management practices and events occurring during the first 16 wk of life on age, BW, skeletal growth, and body condition score at first calving. Multiple imputation method for handling missing data was incorporated in these analyses. This method has the advantage over ad hoc single imputations because the appropriate error structure is maintained. Much similarity was found between the multiple imputation method and a traditional mixed model analysis, except that some estimates from the multiple imputation method seemed more logical in their effects on the parameter measured. Factors related to increased age at first calving were increased difficulty of delivery, antibiotic treatment of sick calves, increased amount of milk or milk replacer fed before weaning, reduced quality of forage fed to weaned calves, maximum humidity, mean daily temperature, and maximum ammonia levels in calf housing areas. Body weight at calving tended to increase with parity of the dam, increased amount of grain fed to calves, increased ammonia levels, and increased mean temperature of the calf housing area. Body condition score at calving tended to be positively influenced by delivery score at first calving, dam parity, and milk or milk replacer dry matter intake. Withers height at calving was positively affected by treatment of animals with antibiotics and increased mean temperature in the calf area. This study demonstrated that nutrition, housing, and management factors that affect health and growth of calves have long-term effects on the animal at least through first calving.

  5. BODY SIZE AND HAREM SIZE IN MALE RED-WINGED BLACKBIRDS: MANIPULATING SELECTION WITH SEX-SPECIFIC FEEDERS.

    Science.gov (United States)

    Rohwer, Sievert; Langston, Nancy; Gori, Dave

    1996-10-01

    We experimentally manipulated the strength of selection in the field on red-winged blackbirds (Agelaius phoeniceus) to test hypotheses about contrasting selective forces that favor either large or small males in sexually size dimorphic birds. Selander (1972) argued that sexual selection favors larger males, while survival selection eventually stabilizes male size because larger males do not survive as well as smaller males during harsh winters. Searcy (1979a) proposed instead that sexual selection may be self limiting: male size might be stabilized not by overwinter mortality, but by breeding-season sexual selection that favors smaller males. Under conditions of energetic stress, smaller males should be able to display more and thus achieve higher reproductive success. Using feeders that provisioned males or females but not both, we produced conditions that mimicked the extremes of natural conditions. We found experimental support for the hypothesis that when food is abundant, sexual selection favors larger males. But even under conditions of severe energetic stress, smaller males did not gain larger harems, as the self-limiting hypothesis predicted. Larger males were more energetically stressed than smaller males, but in ways that affected their future reproductive output rather than their current reproductive performance. Stressed males that returned had smaller wings and tails than those that did not return; among returning stressed males, relative harem sizes were inversely related to wing and tail length. Thus, male body size may be stabilized not by survival costs during the non-breeding season, nor by energetic costs during the breeding season, but by costs of future reproduction that larger males pay for their increased breeding-season effort. © 1996 The Society for the Study of Evolution.

  6. Anemia and Iron Status Among Different Body Size Phenotypes in Chinese Adult Population: a Nation-Wide, Health and Nutrition Survey.

    Science.gov (United States)

    Li, Jiang; Xiao, Cheng; Yang, Hui; Zhou, Yun; Wang, Rui; Cao, Yongtong

    2017-12-09

    Previous studies have shown that there is a controversial relationship between iron homeostasis and obesity. This study aims to explore the relationship of anemia and iron status with different body size phenotypes in adult Chinese population. Using information on iron status-related parameters and lifestyle data from 8462 participants of the 2009 wave of China Health and Nutrition Survey (2009 CHNS), we performed multivariable logistic regression analyses to estimate the odds ratios (ORs) for the risk of anemia and iron parameters according to different body size phenotypes. Participants with higher body mass index (BMI) had a lower anemia prevalence with significant trends in both metabolic status groups (P different metabolic status groups and in different body size phenotypes, respectively. The ORs for higher ferritin and transferrin increased across different body size phenotypes in both genders, and for sTfR/log ferritin index decreased (P < 0.01 for trend). This association was still statistically significant after adjustment for multiple confounders. We found an inverse association of BMI levels with the prevalence of anemia and strong association of serum ferritin and transferrin with higher risk of obesity or overweight in both metabolic status groups.

  7. Association between body size and blood pressure in children from different ethnic origins

    NARCIS (Netherlands)

    LA de Hoog, Marieke; van Eijsden, Manon; Stronks, Karien; Gemke, Reinoud J. B. J.; Vrijkotte, Tanja G. M.

    2012-01-01

    Objective: To assess associations between body size and blood pressure in children (5-6 years) from different ethnic origins. Method: Five ethnic groups of the ABCD cohort were examined: Dutch (n=1 923), Turkish (n=99), Moroccan (n=187), Black-African (n=67) and Black-Caribbean (n=121). Data on

  8. Small body size and extreme cortical bone remodeling indicate phyletic dwarfism in Magyarosaurus dacus (Sauropoda: Titanosauria).

    Science.gov (United States)

    Stein, Koen; Csiki, Zoltan; Rogers, Kristina Curry; Weishampel, David B; Redelstorff, Ragna; Carballido, Jose L; Sander, P Martin

    2010-05-18

    Sauropods were the largest terrestrial tetrapods (>10(5) kg) in Earth's history and grew at rates that rival those of extant mammals. Magyarosaurus dacus, a titanosaurian sauropod from the Upper Cretaceous (Maastrichtian) of Romania, is known exclusively from small individuals (dwarfism (phyletic nanism) in dinosaurs, but a recent study suggested that the small Romanian titanosaurs actually represent juveniles of a larger-bodied taxon. Here we present strong histological evidence that M. dacus was indeed a dwarf (phyletic nanoid). Bone histological analysis of an ontogenetic series of Magyarosaurus limb bones indicates that even the smallest Magyarosaurus specimens exhibit a bone microstructure identical to fully mature or old individuals of other sauropod taxa. Comparison of histologies with large-bodied sauropods suggests that Magyarosaurus had an extremely reduced growth rate, but had retained high basal metabolic rates typical for sauropods. The uniquely decreased growth rate and diminutive body size in Magyarosaurus were adaptations to life on a Cretaceous island and show that sauropod dinosaurs were not exempt from general ecological principles limiting body size.

  9. Body size, growth and life span: implications for the polewards range shift of Octopus tetricus in south-eastern Australia.

    Science.gov (United States)

    Ramos, Jorge E; Pecl, Gretta T; Moltschaniwskyj, Natalie A; Strugnell, Jan M; León, Rafael I; Semmens, Jayson M

    2014-01-01

    Understanding the response of any species to climate change can be challenging. However, in short-lived species the faster turnover of generations may facilitate the examination of responses associated with longer-term environmental change. Octopus tetricus, a commercially important species, has undergone a recent polewards range shift in the coastal waters of south-eastern Australia, thought to be associated with the southerly extension of the warm East Australian Current. At the cooler temperatures of a polewards distribution limit, growth of a species could be slower, potentially leading to a bigger body size and resulting in a slower population turnover, affecting population viability at the extreme of the distribution. Growth rates, body size, and life span of O. tetricus were examined at the leading edge of a polewards range shift in Tasmanian waters (40°S and 147°E) throughout 2011. Octopus tetricus had a relatively small body size and short lifespan of approximately 11 months that, despite cooler temperatures, would allow a high rate of population turnover and may facilitate the population increase necessary for successful establishment in the new extended area of the range. Temperature, food availability and gender appear to influence growth rate. Individuals that hatched during cooler and more productive conditions, but grew during warming conditions, exhibited faster growth rates and reached smaller body sizes than individuals that hatched into warmer waters but grew during cooling conditions. This study suggests that fast growth, small body size and associated rapid population turnover may facilitate the range shift of O. tetricus into Tasmanian waters.

  10. crm-1 facilitates BMP signaling to control body size in Caenorhabditis elegans.

    Science.gov (United States)

    Fung, Wong Yan; Fat, Ko Frankie Chi; Eng, Cheah Kathryn Song; Lau, Chow King

    2007-11-01

    We have identified in Caenorhabditis elegans a homologue of the vertebrate Crim1, crm-1, which encodes a putative transmembrane protein with multiple cysteine-rich (CR) domains known to have bone morphogenetic proteins (BMPs) binding activity. Using the body morphology of C. elegans as an indicator, we showed that attenuation of crm-1 activity leads to a small body phenotype reminiscent of that of BMP pathway mutants. We showed that the crm-1 loss-of-function phenotype can be rescued by constitutive supply of sma-4 activity. crm-1 can enhance BMP signaling and this activity is dependent on the presence of the DBL-1 ligand and its receptors. crm-1 is expressed in neurons at the ventral nerve cord, where the DBL-1 ligand is produced. However, ectopic expression experiments reveal that crm-1 gene products act outside the DBL-1 producing cells and function non-autonomously to facilitate dbl/sma pathway signaling to control body size.

  11. Near-Body Grid Adaption for Overset Grids

    Science.gov (United States)

    Buning, Pieter G.; Pulliam, Thomas H.

    2016-01-01

    A solution adaption capability for curvilinear near-body grids has been implemented in the OVERFLOW overset grid computational fluid dynamics code. The approach follows closely that used for the Cartesian off-body grids, but inserts refined grids in the computational space of original near-body grids. Refined curvilinear grids are generated using parametric cubic interpolation, with one-sided biasing based on curvature and stretching ratio of the original grid. Sensor functions, grid marking, and solution interpolation tasks are implemented in the same fashion as for off-body grids. A goal-oriented procedure, based on largest error first, is included for controlling growth rate and maximum size of the adapted grid system. The adaption process is almost entirely parallelized using MPI, resulting in a capability suitable for viscous, moving body simulations. Two- and three-dimensional examples are presented.

  12. Age-related effects of body mass on fertility and litter size in roe deer.

    Science.gov (United States)

    Flajšman, Katarina; Jerina, Klemen; Pokorny, Boštjan

    2017-01-01

    We analysed effects of females' body mass and age on reproductive capacity of European roe deer (Capreolus capreolus) in a large sample set of 1312 females (305 yearlings and 1007 adults), hunted throughout Slovenia, central Europe, in the period 2013-2015. Body mass positively affected probability of ovulation and potential litter size (number of corpora lutea), although its effect was more pronounced in yearlings than in adults. Between age groups, we found clear differences in responses of both reproductive parameters to body mass which influences primarily reproductive performance of younger, and in particular, lighter individuals: at the same body mass yearlings would at average have smaller litters than adults, and at lower body mass also young to middle-aged adults would have smaller litters than old ones. In addition, while yearlings have to reach a critical threshold body mass to attain reproductive maturity, adult females are fertile (produce ova) even at low body mass. However, at higher body mass also younger individuals shift their efforts into the reproduction, and after reaching an age-specific threshold the body mass does not have any further effects on the reproductive output of roe deer females. Increased reproductive capacity at more advanced age, combined with declining body mass suggests that old does allocate more of their resources in reproduction than in body condition.

  13. Age-related effects of body mass on fertility and litter size in roe deer.

    Directory of Open Access Journals (Sweden)

    Katarina Flajšman

    Full Text Available We analysed effects of females' body mass and age on reproductive capacity of European roe deer (Capreolus capreolus in a large sample set of 1312 females (305 yearlings and 1007 adults, hunted throughout Slovenia, central Europe, in the period 2013-2015. Body mass positively affected probability of ovulation and potential litter size (number of corpora lutea, although its effect was more pronounced in yearlings than in adults. Between age groups, we found clear differences in responses of both reproductive parameters to body mass which influences primarily reproductive performance of younger, and in particular, lighter individuals: at the same body mass yearlings would at average have smaller litters than adults, and at lower body mass also young to middle-aged adults would have smaller litters than old ones. In addition, while yearlings have to reach a critical threshold body mass to attain reproductive maturity, adult females are fertile (produce ova even at low body mass. However, at higher body mass also younger individuals shift their efforts into the reproduction, and after reaching an age-specific threshold the body mass does not have any further effects on the reproductive output of roe deer females. Increased reproductive capacity at more advanced age, combined with declining body mass suggests that old does allocate more of their resources in reproduction than in body condition.

  14. Selection for growth rate and body size have altered the expression profiles of somatotropic axis genes in chickens

    Science.gov (United States)

    Liu, Yong; Xu, Zhiqiang; Duan, Xiaohua; Li, Qihua; Dou, Tengfei; Gu, Dahai; Rong, Hua; Wang, Kun; Li, Zhengtian; Talpur, Mir Zulqarnain; Huang, Ying; Wang, Shanrong; Yan, Shixiong; Tong, Huiquan; Zhao, Sumei; Zhao, Guiping; Su, Zhengchang; Ge, Changrong

    2018-01-01

    The growth hormone / insulin-like growth factor-1 (GH/IGF-1) pathway of the somatotropic axis is the major controller for growth rate and body size in vertebrates, but the effect of selection on the expression of GH/IGF-1 somatotropic axis genes and their association with body size and growth performance in farm animals is not fully understood. We analyzed a time series of expression profiles of GH/IGF-1 somatotropic axis genes in two chicken breeds, the Daweishan mini chickens and Wuding chickens, and the commercial Avian broilers hybrid exhibiting markedly different body sizes and growth rates. We found that growth rate and feed conversion efficiency in Daweishan mini chickens were significantly lower than those in Wuding chickens and Avian broilers. The Wuding and Daweishan mini chickens showed higher levels of plasma GH, pituitary GH mRNA but lower levels of hepatic growth hormone receptor (GHR) mRNA than in Avian broilers. Daweishan mini chickens showed significantly lower levels of plasma IGF-1, thigh muscle and hepatic IGF-1 mRNA than did Avian broilers and Wuding chickens. These results suggest that the GH part of the somatotropic axis is the main regulator of growth rate, while IGF-1 may regulate both growth rate and body weight. Selection for growth performance and body size have altered the expression profiles of somatotropic axis genes in a breed-, age-, and tissue-specific manner, and manner, and alteration of regulatory mechanisms of these genes might play an important role in the developmental characteristics of chickens. PMID:29630644

  15. GI Joe or Average Joe? The impact of average-size and muscular male fashion models on men's and women's body image and advertisement effectiveness.

    Science.gov (United States)

    Diedrichs, Phillippa C; Lee, Christina

    2010-06-01

    Increasing body size and shape diversity in media imagery may promote positive body image. While research has largely focused on female models and women's body image, men may also be affected by unrealistic images. We examined the impact of average-size and muscular male fashion models on men's and women's body image and perceived advertisement effectiveness. A sample of 330 men and 289 women viewed one of four advertisement conditions: no models, muscular, average-slim or average-large models. Men and women rated average-size models as equally effective in advertisements as muscular models. For men, exposure to average-size models was associated with more positive body image in comparison to viewing no models, but no difference was found in comparison to muscular models. Similar results were found for women. Internalisation of beauty ideals did not moderate these effects. These findings suggest that average-size male models can promote positive body image and appeal to consumers. 2010 Elsevier Ltd. All rights reserved.

  16. Twin study of genetic and environmental influences on adult body size, shape and composition

    DEFF Research Database (Denmark)

    Schousboe, K.; Visscher, P.M.; Erbas, B.

    2004-01-01

    ), we determined zygosity by DNA similarity, and performed anthropometry and bioelectrical impedance analysis of body composition. The contribution to the total phenotypic variance of genetic, common environment, and individual environment was estimated in multivariate analysis using the FISHER program...... effects under the assumptions of no nonadditive effect. The pattern of age trends was inconsistent. However, when significant there was a decrease in heritability with advancing age. DISCUSSION: These findings suggest that adult body size, shape, and composition are highly heritable in both women and men...

  17. The effect of feeding position and body size on the capacity of small ...

    African Journals Online (AJOL)

    The effect of feeding position and body size on the capacity of small ruminants to reach, for food when fed through barriers. ... The barrier allowed the neck to pass through, but not the shoulders. It was hypothesized that goats would have larger reach than sheep and that for each species, horizontal reach forwards, F, ...

  18. Scale effects between body size and limb design in quadrupedal mammals.

    Science.gov (United States)

    Kilbourne, Brandon M; Hoffman, Louwrens C

    2013-01-01

    Recently the metabolic cost of swinging the limbs has been found to be much greater than previously thought, raising the possibility that limb rotational inertia influences the energetics of locomotion. Larger mammals have a lower mass-specific cost of transport than smaller mammals. The scaling of the mass-specific cost of transport is partly explained by decreasing stride frequency with increasing body size; however, it is unknown if limb rotational inertia also influences the mass-specific cost of transport. Limb length and inertial properties--limb mass, center of mass (COM) position, moment of inertia, radius of gyration, and natural frequency--were measured in 44 species of terrestrial mammals, spanning eight taxonomic orders. Limb length increases disproportionately with body mass via positive allometry (length ∝ body mass(0.40)); the positive allometry of limb length may help explain the scaling of the metabolic cost of transport. When scaled against body mass, forelimb inertial properties, apart from mass, scale with positive allometry. Fore- and hindlimb mass scale according to geometric similarity (limb mass ∝ body mass(1.0)), as do the remaining hindlimb inertial properties. The positive allometry of limb length is largely the result of absolute differences in limb inertial properties between mammalian subgroups. Though likely detrimental to locomotor costs in large mammals, scale effects in limb inertial properties appear to be concomitant with scale effects in sensorimotor control and locomotor ability in terrestrial mammals. Across mammals, the forelimb's potential for angular acceleration scales according to geometric similarity, whereas the hindlimb's potential for angular acceleration scales with positive allometry.

  19. Intrapopulational body size variation and cranial capacity variation in Middle Pleistocene humans: the Sima de los Huesos sample (Sierra de Atapuerca, Spain).

    Science.gov (United States)

    Lorenzo, C; Carretero, J M; Arsuaga, J L; Gracia, A; Martínez, I

    1998-05-01

    A sexual dimorphism more marked than in living humans has been claimed for European Middle Pleistocene humans, Neandertals and prehistoric modern humans. In this paper, body size and cranial capacity variation are studied in the Sima de los Huesos Middle Pleistocene sample. This is the largest sample of non-modern humans found to date from one single site, and with all skeletal elements represented. Since the techniques available to estimate the degree of sexual dimorphism in small palaeontological samples are all unsatisfactory, we have used the bootstraping method to asses the magnitude of the variation in the Sima de los Huesos sample compared to modern human intrapopulational variation. We analyze size variation without attempting to sex the specimens a priori. Anatomical regions investigated are scapular glenoid fossa; acetabulum; humeral proximal and distal epiphyses; ulnar proximal epiphysis; radial neck; proximal femur; humeral, femoral, ulnar and tibial shaft; lumbosacral joint; patella; calcaneum; and talar trochlea. In the Sima de los Huesos sample only the humeral midshaft perimeter shows an unusual high variation (only when it is expressed by the maximum ratio, not by the coefficient of variation). In spite of that the cranial capacity range at Sima de los Huesos almost spans the rest of the European and African Middle Pleistocene range. The maximum ratio is in the central part of the distribution of modern human samples. Thus, the hypothesis of a greater sexual dimorphism in Middle Pleistocene populations than in modern populations is not supported by either cranial or postcranial evidence from Sima de los Huesos.

  20. Body size of young Australians aged five to 16 years.

    Science.gov (United States)

    Hitchcock, N E; Maller, R A; Gilmour, A I

    1986-10-20

    In 1983-1984, 4578 Perth primary and secondary schoolchildren were studied. The selected sample was broadly representative of the ethnic groups that make up the Perth population and of the different social ranks within that population. The age, sex, weight, height, country of birth of the child and the parents, and occupation of the father were recorded for each subject. Weight, height and body mass index (BMI) increased with age. Age and sex were the most important determinants of body size. However, children of lower social rank and those with a southern European background were over-represented among the overweight children (greater than the 90th centile for BMI), particularly in adolescence. Children with an Asian background who were 11 years of age and younger were over-represented among the underweight children (less than or equal to the 10th centile for BMI). Results from this study indicate a continuing, though small (1.5 cm to 1.6 cm), secular increase in height over the past 13 to 14 years.

  1. Do sex, body size and reproductive condition influence the thermal preferences of a large lizard? A study in Tupinambis merianae.

    Science.gov (United States)

    Cecchetto, Nicolas Rodolfo; Naretto, Sergio

    2015-10-01

    Body temperature is a key factor in physiological processes, influencing lizard performances; and life history traits are expected to generate variability of thermal preferences in different individuals. Gender, body size and reproductive condition may impose specific requirements on preferred body temperatures. If these three factors have different physiological functions and thermal requirements, then the preferred temperature may represent a compromise that optimizes these physiological functions. Therefore, the body temperatures that lizards select in a controlled environment may reflect a temperature that maximizes their physiological needs. The tegu lizard Tupinambis merianae is one of the largest lizards in South America and has wide ontogenetic variation in body size and sexual dimorphism. In the present study we evaluate intraspecific variability of thermal preferences of T. merianae. We determined the selected body temperature and the rate at which males and females attain their selected temperature, in relation to body size and reproductive condition. We also compared the behavior in the thermal gradient between males and females and between reproductive condition of individuals. Our study show that T. merianae selected body temperature within a narrow range of temperatures variation in the laboratory thermal gradient, with 36.24±1.49°C being the preferred temperature. We observed no significant differences between sex, body size and reproductive condition in thermal preferences. Accordingly, we suggest that the evaluated categories of T. merianae have similar thermal requirements. Males showed higher rates to obtain heat than females and reproductive females, higher rates than non-reproductive ones females. Moreover, males and reproductive females showed a more dynamic behavior in the thermal gradient. Therefore, even though they achieve the same selected temperature, they do it differentially. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Contest experience and body size affect different types of contest decisions.

    Science.gov (United States)

    Chen, Yu-Ju; Hsu, Yuying

    2016-11-01

    This study examined the relative importance of contest experience and size differences to behavioral decisions over the course of contests. Using a mangrove rivulus fish, Kryptolebias marmoratus, we showed that although contest experience and size differences jointly determined contest outcomes, they affected contestants' interactions at different stages of contests. Contest experience affected behavioral decisions at earlier stages of contests, including the tendency and latency to launch attacks, the tendency to escalate contests into mutual attacks and the outcome of non-escalated contests. Once contests were escalated into mutual attacks, the degree of size difference affected the fish's persistence in escalation and chance of winning, but contest experience did not. These results support the hypothesis that contest experience modifies individuals' estimation of their fighting ability rather than their actual strength. Furthermore, (1) in contests between two naïve contestants, more than 60 % of fish that were 2-3 mm smaller than their opponent escalated the contest to physical fights, even though their larger opponents eventually won 92 % of escalated fights and (2) fish with a losing experience were very likely to retreat in the face of an opponent 2-3 mm smaller than them without escalating. The result that a 2-3 mm size advantage could not offset the influence of a losing experience on the tendency to escalate suggests that, as well as depending on body size, the fish's physical strength is influenced by other factors which require further investigation.

  3. Embodiment in a Child-Like Talking Virtual Body Influences Object Size Perception, Self-Identification, and Subsequent Real Speaking.

    Science.gov (United States)

    Tajadura-Jiménez, Ana; Banakou, Domna; Bianchi-Berthouze, Nadia; Slater, Mel

    2017-08-29

    People's mental representations of their own body are malleable and continuously updated through sensory cues. Altering one's body-representation can lead to changes in object perception and implicit attitudes. Virtual reality has been used to embody adults in the body of a 4-year-old child or a scaled-down adult body. Child embodiment was found to cause an overestimation of object sizes, approximately double that during adult embodiment, and identification of the self with child-like attributes. Here we tested the contribution of auditory cues related to one's own voice to these visually-driven effects. In a 2 × 2 factorial design, visual and auditory feedback on one's own body were varied across conditions, which included embodiment in a child or scaled-down adult body, and real (undistorted) or child-like voice feedback. The results replicated, in an older population, previous findings regarding size estimations and implicit attitudes. Further, although auditory cues were not found to enhance these effects, we show that the strength of the embodiment illusion depends on the child-like voice feedback being congruent or incongruent with the age of the virtual body. Results also showed the positive emotional impact of the illusion of owning a child's body, opening up possibilities for health applications.

  4. Accurate modeling and maximum power point detection of ...

    African Journals Online (AJOL)

    Accurate modeling and maximum power point detection of photovoltaic ... Determination of MPP enables the PV system to deliver maximum available power. ..... adaptive artificial neural network: Proposition for a new sizing procedure.

  5. Relationship between self-discrepancy and worries about penis size in men with body dysmorphic disorder.

    Science.gov (United States)

    Veale, David; Miles, Sarah; Read, Julie; Bramley, Sally; Troglia, Andrea; Carmona, Lina; Fiorito, Chiara; Wells, Hannah; Wylie, Kevan; Muir, Gordon

    2016-06-01

    We explored self-discrepancy in men with body dysmorphic disorder (BDD) concerned about penis size, men without BDD but anxious about penis size, and controls. Men with BDD (n=26) were compared to those with small penis anxiety (SPA; n=31) and controls (n=33), objectively (by measuring) and investigating self-discrepancy: actual size, ideal size, and size they felt they should be according to self and other. Most men under-estimated their penis size, with the BDD group showing the greatest discrepancy between perceived and ideal size. The SPA group showed a larger discrepancy than controls. This was replicated for the perceptions of others, suggesting the BDD group internalised the belief that they should have a larger penis size. There was a significant correlation between symptoms of BDD and this discrepancy. This self-actual and self-ideal/self-should discrepancy and the role of comparing could be targeted in therapy. Copyright © 2016. Published by Elsevier Ltd.

  6. Intra- and Trans-Generational Costs of Reduced Female Body Size Caused by Food Limitation Early in Life in Mites

    OpenAIRE

    Walzer, Andreas; Schausberger, Peter

    2013-01-01

    Background Food limitation early in life may be compensated for by developmental plasticity resulting in accelerated development enhancing survival at the expense of small adult body size. However and especially for females in non-matching maternal and offspring environments, being smaller than the standard may incur considerable intra- and trans-generational costs. Methodology/Principal Findings Here, we evaluated the costs of small female body size induced by food limitation early in life i...

  7. Sizing for ethnicity in multi-cultural societies: development of size ...

    African Journals Online (AJOL)

    ... years, and fell in the size 6/10 to size 14/38 size range. The findings of the study suggest that young South African women of African descent with a triangular body shape may experience loose fit in the upper body of garments sized according to the size specifications currently used in the South African apparel industry.

  8. MXLKID: a maximum likelihood parameter identifier

    International Nuclear Information System (INIS)

    Gavel, D.T.

    1980-07-01

    MXLKID (MaXimum LiKelihood IDentifier) is a computer program designed to identify unknown parameters in a nonlinear dynamic system. Using noisy measurement data from the system, the maximum likelihood identifier computes a likelihood function (LF). Identification of system parameters is accomplished by maximizing the LF with respect to the parameters. The main body of this report briefly summarizes the maximum likelihood technique and gives instructions and examples for running the MXLKID program. MXLKID is implemented LRLTRAN on the CDC7600 computer at LLNL. A detailed mathematical description of the algorithm is given in the appendices. 24 figures, 6 tables

  9. Distribution and linkage disequilibrium analysis of polymorphisms of GH1 gene in different populations of pigs associated with body size.

    Science.gov (United States)

    Cheng, Yunyun; Liu, Songcai; Su, Dan; Lu, Chao; Zhang, Xin; Wu, Qingyan; Li, Siming; Fu, Haoyu; Yu, Hao; Hao, Linlin

    2016-03-01

    Growth hormone (GH) has been considered as a candidate gene for growth and body size in pigs. In this study, polymorphisms of the GH1 gene were evaluated for associations with body size traits in 190 pig individuals. Seventeen single-nucleotide polymorphisms (SNPs) were identified in GH1 gene of the large pig breeds and miniature pig breeds using direct sequencing and genotyped by allele-specific PCR approach. Notably, six (g.237A>G, g.283T>C, g.309A>G, g.318A>G, g.540A>G and g.544A>G) of them were significantly associated with body size, of which three loci (g.283T>C, g.309A>G, g.318A>G) located in the signal-peptide coding region of GH1 gene compose a CGG haplotype for large pigs and TAA haplotype for miniature pigs (P G and g.544A>G) located in the second intron of GH1 gene compose a GG haplotype for large pigs and AA haplotype for miniature pigs (P body size of pigs providing genetic basis for pig breeding with the improved economic benefits.

  10. Body size and shape misperception and visual adaptation: An overview of an emerging research paradigm.

    Science.gov (United States)

    Challinor, Kirsten L; Mond, Jonathan; Stephen, Ian D; Mitchison, Deborah; Stevenson, Richard J; Hay, Phillipa; Brooks, Kevin R

    2017-12-01

    Although body size and shape misperception (BSSM) is a common feature of anorexia nervosa, bulimia nervosa and muscle dysmorphia, little is known about its underlying neural mechanisms. Recently, a new approach has emerged, based on the long-established non-invasive technique of perceptual adaptation, which allows for inferences about the structure of the neural apparatus responsible for alterations in visual appearance. Here, we describe several recent experimental examples of BSSM, wherein exposure to "extreme" body stimuli causes visual aftereffects of biased perception. The implications of these studies for our understanding of the neural and cognitive representation of human bodies, along with their implications for clinical practice are discussed.

  11. Variations in leopard cat (Prionailurus bengalensis skull morphology and body size: sexual and geographic influences

    Directory of Open Access Journals (Sweden)

    Fernando L. Sicuro

    2015-10-01

    , the longer hind foot of male leopard cats is the main feature of sexual dimorphism among P. b. bengalensis (and probably among P. b. horsfieldii too. External body measurements also indicated the absence of sexual dimorphism among individuals of P. b. borneoensis. Inter-subspecific skull comparisons provided a morphometric basis for differentiating some subspecies. Prionailurus b. horsfieldii and P. b. bengalensis were distinguished only by a subtle difference in PM4 size, indicating that overall skull morphology does not appear to support their separate taxonomical status, in spite of the marked differences reported in their coat patterns. Geological events affecting the Sunda Shelf connection between the Sunda Islands and the mainland during the Last Glacial Maximum seem to have influenced directly the morphological pattern shown by leopard cat subspecies nowadays.

  12. Microclimatic Divergence in a Mediterranean Canyon Affects Richness, Composition, and Body Size in Saproxylic Beetle Assemblages.

    Directory of Open Access Journals (Sweden)

    Jörn Buse

    Full Text Available Large valleys with opposing slopes may act as a model system with which the effects of strong climatic gradients on biodiversity can be evaluated. The advantage of such comparisons is that the impact of a change of climate can be studied on the same species pool without the need to consider regional differences. The aim of this study was to compare the assemblage of saproxylic beetles on such opposing slopes at Lower Nahal Oren, Mt. Carmel, Israel (also known as "Evolution Canyon" with a 200-800% higher solar radiation on the south-facing (SFS compared to the north-facing slope (NFS. We tested specific hypotheses of species richness patterns, assemblage structure, and body size resulting from interslope differences in microclimate. Fifteen flight-interception traps per slope were distributed over three elevation levels ranging from 50 to 100 m a.s.l. Richness of saproxylic beetles was on average 34% higher on the SFS compared with the NFS, with no detected influence of elevation levels. Both assemblage structure and average body size were determined by slope aspect, with more small-bodied beetles found on the SFS. Both the increase in species richness and the higher prevalence of small species on the SFS reflect ecological rules present on larger spatial grain (species-energy hypothesis and community body size shift hypothesis, and both can be explained by the metabolic theory of ecology. This is encouraging for the complementary use of micro- and macroclimatic gradients to study impacts of climate warming on biodiversity.

  13. Associations between adiposity, hormones, and gains in height, whole-body height-adjusted bone size, and size-adjusted bone mineral content in 8- to 11-year-old children

    DEFF Research Database (Denmark)

    Dalskov, Stine-Mathilde; Ritz, Christian; Larnkjær, Anni

    2016-01-01

    We examined fat-independent associations of hormones with height and whole-body bone size and mineral content in 633 school children. IGF-1 and osteocalcin predict growth in height, while fat, osteocalcin, and in girls also, IGF-1 predict growth in bone size. Leptin and ghrelin are inversely asso...

  14. An investigation of rugby scrimmaging posture and individual maximum pushing force.

    Science.gov (United States)

    Wu, Wen-Lan; Chang, Jyh-Jong; Wu, Jia-Hroung; Guo, Lan-Yuen

    2007-02-01

    Although rugby is a popular contact sport and the isokinetic muscle torque assessment has recently found widespread application in the field of sports medicine, little research has examined the factors associated with the performance of game-specific skills directly by using the isokinetic-type rugby scrimmaging machine. This study is designed to (a) measure and observe the differences in the maximum individual pushing forward force produced by scrimmaging in different body postures (3 body heights x 2 foot positions) with a self-developed rugby scrimmaging machine and (b) observe the variations in hip, knee, and ankle angles at different body postures and explore the relationship between these angle values and the individual maximum pushing force. Ten national rugby players were invited to participate in the examination. The experimental equipment included a self-developed rugby scrimmaging machine and a 3-dimensional motion analysis system. Our results showed that the foot positions (parallel and nonparallel foot positions) do not affect the maximum pushing force; however, the maximum pushing force was significantly lower in posture I (36% body height) than in posture II (38%) and posture III (40%). The maximum forward force in posture III (40% body height) was also slightly greater than for the scrum in posture II (38% body height). In addition, it was determined that hip, knee, and ankle angles under parallel feet positioning are factors that are closely negatively related in terms of affecting maximum pushing force in scrimmaging. In cross-feet postures, there was a positive correlation between individual forward force and hip angle of the rear leg. From our results, we can conclude that if the player stands in an appropriate starting position at the early stage of scrimmaging, it will benefit the forward force production.

  15. Effects of Isometric Brain-Body Size Scaling on the Complexity of Monoaminergic Neurons in a Minute Parasitic Wasp

    NARCIS (Netherlands)

    Woude, van der Emma; Smid, Hans M.

    2017-01-01

    Trichogramma evanescens parasitic wasps show large phenotypic plasticity in brain and body size, resulting in a 5-fold difference in brain volume among genetically identical sister wasps. Brain volume scales linearly with body volume in these wasps. This isometric brain scaling forms an exception to

  16. A sex-specific trade-off between mating preferences for genetic compatibility and body size in a cichlid fish with mutual mate choice.

    Science.gov (United States)

    Thünken, Timo; Meuthen, Denis; Bakker, Theo C M; Baldauf, Sebastian A

    2012-08-07

    Mating preferences for genetic compatibility strictly depend on the interplay of the genotypes of potential partners and are therein fundamentally different from directional preferences for ornamental secondary sexual traits. Thus, the most compatible partner is on average not the one with most pronounced ornaments and vice versa. Hence, mating preferences may often conflict. Here, we present a solution to this problem while investigating the interplay of mating preferences for relatedness (a compatibility criterion) and large body size (an ornamental or quality trait). In previous experiments, both sexes of Pelvicachromis taeniatus, a cichlid fish with mutual mate choice, showed preferences for kin and large partners when these criteria were tested separately. In the present study, test fish were given a conflicting choice between two potential mating partners differing in relatedness as well as in body size in such a way that preferences for both criteria could not simultaneously be satisfied. We show that a sex-specific trade-off occurs between mating preferences for body size and relatedness. For females, relatedness gained greater importance than body size, whereas the opposite was true for males. We discuss the potential role of the interplay between mating preferences for relatedness and body size for the evolution of inbreeding preference.

  17. Variation in male body size and reproductive allocation in the leafcutter ant Atta colombica

    DEFF Research Database (Denmark)

    Stürup, M.; den Boer, S. P. A.; Nash, David Richard

    2011-01-01

    species. In 2008 and 2009, we revisited a Panamanian population of Atta colombica leafcutter ants to partially repeat and complement a study of more than 15 years ago. We compared within- and between-colony variation in male body size (mass and width of head, mesosoma and gaster) and sperm characteristics...

  18. Influence of body size on Cu bioaccumulation in zebra mussels Dreissena polymorpha exposed to different sources of particle-associated Cu

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Huan, E-mail: huanzhong1982@hotmail.com [Environmental and Resource Studies Program, Trent University, Peterborough, Ontario (Canada); Nanjing University, School of Environment, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, Jiangsu Province (China); Kraemer, Lisa; Evans, Douglas [Environmental and Resource Studies Program, Trent University, Peterborough, Ontario (Canada)

    2013-10-15

    Highlights: • Mussels exposed to algal/sediment-Cu have different size-related Cu accumulation. • Size-related Cu accumulation in mussels could be more dependant on algal-Cu uptake. • Importance of algal/sediment-Cu to Cu bioaccumulation varies with mussel body size. • Cu sources (algae and sediments) should be considered in “mussel watch” programs. • Cu stable isotope offers many advantages in Cu bioaccumulation studies. -- Abstract: Size of organisms is critical in controlling metal bioavailability and bioaccumulation, while mechanisms of size-related metal bioaccumulation are not fully understood. To investigate the influences of different sources of particle-associated Cu on body size-related Cu bioavailability and bioaccumulation, zebra mussels (Dreissena polymorpha) of different sizes were exposed to stable Cu isotope ({sup 65}Cu) spiked algae (Chlorella vulgaris) or sediments in the laboratory and the Cu tissue concentration-size relationships were compared with that in unexposed mussels. Copper tissue concentrations decreased with mussel size (tissue or shell dry weight) in both unexposed and algal-exposed mussels with similar decreasing patterns, but were independent of size in sediment-exposed mussels. Furthermore, the relative contribution of Cu uptake from algae (65–91%) to Cu bioaccumulation is always higher than that from sediments (9–35%), possibly due to the higher bioavailability of algal-Cu. Therefore, the size-related ingestion of algae could be more important in influencing the size-related variations in Cu bioaccumulation. However, the relative contribution of sediment-Cu to Cu bioaccumulation increased with body size and thus sediment ingestion may also affect the size-related Cu variations in larger mussels (tissue weight >7.5 mg). This study highlights the importance of considering exposure pathways in normalization of metal concentration variation when using bivalves as biomonitors.

  19. Dissociating object-based from egocentric transformations in mental body rotation: effect of stimuli size.

    Science.gov (United States)

    Habacha, Hamdi; Moreau, David; Jarraya, Mohamed; Lejeune-Poutrain, Laure; Molinaro, Corinne

    2018-01-01

    The effect of stimuli size on the mental rotation of abstract objects has been extensively investigated, yet its effect on the mental rotation of bodily stimuli remains largely unexplored. Depending on the experimental design, mentally rotating bodily stimuli can elicit object-based transformations, relying mainly on visual processes, or egocentric transformations, which typically involve embodied motor processes. The present study included two mental body rotation tasks requiring either a same-different or a laterality judgment, designed to elicit object-based or egocentric transformations, respectively. Our findings revealed shorter response times for large-sized stimuli than for small-sized stimuli only for greater angular disparities, suggesting that the more unfamiliar the orientations of the bodily stimuli, the more stimuli size affected mental processing. Importantly, when comparing size transformation times, results revealed different patterns of size transformation times as a function of angular disparity between object-based and egocentric transformations. This indicates that mental size transformation and mental rotation proceed differently depending on the mental rotation strategy used. These findings are discussed with respect to the different spatial manipulations involved during object-based and egocentric transformations.

  20. Supplementing five-point body condition score with body fat percentage increases the sensitivity for assessing overweight status of small to medium sized dogs

    Directory of Open Access Journals (Sweden)

    Arai T

    2012-09-01

    Full Text Available Gebin Li,1 Peter Lee,1 Nobuko Mori,1 Ichiro Yamamoto,1 Koh Kawasumi,1 Hisao Tanabe,2 Toshiro Arai11Department of Veterinary Science, School of Veterinary Medicine, Nippon Veterinary and Life Science University, 2Komazawa Animal Hospital, Tokyo, JapanBackground and methods: Currently, five-point body condition scoring (BCS is widely used by veterinarians and clinicians to assess adiposity in dogs in Japan. However, BCS score assignment is subjective in nature, and most clinicians do not score with half points, instead preferring to round off values, thereby rendering less accurate assessments. Therefore, we sought to determine whether assessing body fat percentage using simple morphometric measurements and supplementing this with five-point BCS can have increased sensitivity for detecting increasing adiposity in overweight small-medium sized dog breeds via plasma metabolite validation.Results: Overall, lean body fat percentage was determined to be 15%–22% for male (non-neutered/neutered dogs and 15%–25% for female (nonspayed/spayed. Dogs categorized as overweight by BCS had significantly higher levels of nonesterified fatty acids (P = 0.005, whereas animals categorized as overweight by BCS + body fat percentage were observed to have significantly higher levels of nonesterified fatty acids (P = 0.006, total cholesterol (P = 0.029, and triglycerides (P = 0.001 than lean animals. The increased sensitivity due to body fat percentage for gauging alterations in plasma metabolite levels may be due to increased correlation strength. Body fat percentage correlated positively with plasma insulin (r = 0.627, P = 0.002, nonesterified fatty acids (r = 0.674, P < 0.001, total cholesterol (r = 0.825, P < 0.0001, triglycerides (r = 0.5823, P < 0.005, blood urea nitrogen (r = 0.429, P < 0.05, creatinine (r = 0.490, P = 0.021, and total protein (r = 0.737, P< 0.0001 levels, which all tend to increase as a result of increasing adiposity

  1. Performance and separation occurrence of binary probit regression estimator using maximum likelihood method and Firths approach under different sample size

    Science.gov (United States)

    Lusiana, Evellin Dewi

    2017-12-01

    The parameters of binary probit regression model are commonly estimated by using Maximum Likelihood Estimation (MLE) method. However, MLE method has limitation if the binary data contains separation. Separation is the condition where there are one or several independent variables that exactly grouped the categories in binary response. It will result the estimators of MLE method become non-convergent, so that they cannot be used in modeling. One of the effort to resolve the separation is using Firths approach instead. This research has two aims. First, to identify the chance of separation occurrence in binary probit regression model between MLE method and Firths approach. Second, to compare the performance of binary probit regression model estimator that obtained by MLE method and Firths approach using RMSE criteria. Those are performed using simulation method and under different sample size. The results showed that the chance of separation occurrence in MLE method for small sample size is higher than Firths approach. On the other hand, for larger sample size, the probability decreased and relatively identic between MLE method and Firths approach. Meanwhile, Firths estimators have smaller RMSE than MLEs especially for smaller sample sizes. But for larger sample sizes, the RMSEs are not much different. It means that Firths estimators outperformed MLE estimator.

  2. Despite Buffers, Experimental Forest Clearcuts Impact Amphibian Body Size and Biomass.

    Science.gov (United States)

    Veysey Powell, Jessica S; Babbitt, Kimberly J

    2015-01-01

    Forest buffers are a primary tool used to protect wetland-dependent wildlife. Though implemented widely, buffer efficacy is untested for most amphibian species. Consequently, it remains unclear whether buffers are sufficient for maintaining amphibian populations and if so, how wide buffers should be. We present evidence from a six-year, landscape-scale experiment testing the impacts of clearcutting, buffer width, and hydroperiod on body size and condition and biomass of breeding adults for two amphibian species at 11 vernal pools in the northeastern United States. We randomly assigned treatments (i.e., reference, 100m buffer, 30m buffer) across pools, clearcut to create buffers, and captured all spotted salamanders and wood frogs. Clearcuts strongly and negatively impacted size, condition, and biomass, but wider buffers mitigated effect magnitude and duration. Among recaptured individuals, for example, 30m-treatment salamanders were predicted to be about 9.5 mm shorter than, while 100m-treatment salamanders did not differ in length from, reference-treatment salamanders. Similarly, among recaptured frogs, mean length in the 30m treatment was predicted to decrease by about 1 mm/year, while in the 100m and reference treatments, length was time-invariant. Some, but not all, metrics recovered with time. For example, female new-captured and recaptured salamanders were predicted, respectively and on average, to weigh 4.5 and 7 g less in the 30m versus reference treatment right after the cut. While recaptured-female mass was predicted to recover by 9.5 years post-cut, new-captured-female mass did not recover. Hydroperiod was an important mediator: in the 100m treatment, cutting predominately affected pools that were stressed hydrologically. Overall, salamanders and female frogs were impacted more than male frogs. Our results highlight the importance of individualized metrics like body size, which can reveal sublethal effects and illuminate mechanisms by which habitat

  3. Despite Buffers, Experimental Forest Clearcuts Impact Amphibian Body Size and Biomass.

    Directory of Open Access Journals (Sweden)

    Jessica S Veysey Powell

    Full Text Available Forest buffers are a primary tool used to protect wetland-dependent wildlife. Though implemented widely, buffer efficacy is untested for most amphibian species. Consequently, it remains unclear whether buffers are sufficient for maintaining amphibian populations and if so, how wide buffers should be. We present evidence from a six-year, landscape-scale experiment testing the impacts of clearcutting, buffer width, and hydroperiod on body size and condition and biomass of breeding adults for two amphibian species at 11 vernal pools in the northeastern United States. We randomly assigned treatments (i.e., reference, 100m buffer, 30m buffer across pools, clearcut to create buffers, and captured all spotted salamanders and wood frogs. Clearcuts strongly and negatively impacted size, condition, and biomass, but wider buffers mitigated effect magnitude and duration. Among recaptured individuals, for example, 30m-treatment salamanders were predicted to be about 9.5 mm shorter than, while 100m-treatment salamanders did not differ in length from, reference-treatment salamanders. Similarly, among recaptured frogs, mean length in the 30m treatment was predicted to decrease by about 1 mm/year, while in the 100m and reference treatments, length was time-invariant. Some, but not all, metrics recovered with time. For example, female new-captured and recaptured salamanders were predicted, respectively and on average, to weigh 4.5 and 7 g less in the 30m versus reference treatment right after the cut. While recaptured-female mass was predicted to recover by 9.5 years post-cut, new-captured-female mass did not recover. Hydroperiod was an important mediator: in the 100m treatment, cutting predominately affected pools that were stressed hydrologically. Overall, salamanders and female frogs were impacted more than male frogs. Our results highlight the importance of individualized metrics like body size, which can reveal sublethal effects and illuminate mechanisms by

  4. Size-appropriate radiation doses in pediatric body CT: a study of regional community adoption in the United States

    International Nuclear Information System (INIS)

    Hopkins, Katharine L.; Vajtai, Petra L.; Pettersson, David R.; Spinning, Kristopher; Beckett, Brooke R.; Koudelka, Caroline W.; Bardo, Dianna M.E.

    2013-01-01

    During the last decade, there has been a movement in the United States toward utilizing size-appropriate radiation doses for pediatric body CT, with smaller doses given to smaller patients. This study assesses community adoption of size-appropriate pediatric CT techniques. Size-specific dose estimates (SSDE) in pediatric body scans are compared between community facilities and a university children's hospital that tailors CT protocols to patient size as advocated by Image Gently. We compared 164 pediatric body scans done at community facilities (group X) with 466 children's hospital scans. Children's hospital scans were divided into two groups: A, 250 performed with established pediatric weight-based protocols and filtered back projection; B, 216 performed with addition of iterative reconstruction technique and a 60% reduction in volume CT dose index (CTDI vol ). SSDE was calculated and differences among groups were compared by regression analysis. Mean SSDE was 1.6 and 3.9 times higher in group X than in groups A and B and 2.5 times higher for group A than group B. A model adjusting for confounders confirmed significant differences between group pairs. Regional community hospitals and imaging centers have not universally adopted child-sized pediatric CT practices. More education and accountability may be necessary to achieve widespread implementation. Since even lower radiation doses are possible with iterative reconstruction technique than with filtered back projection alone, further exploration of the former is encouraged. (orig.)

  5. Size-appropriate radiation doses in pediatric body CT: a study of regional community adoption in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, Katharine L.; Vajtai, Petra L. [Oregon Health and Science University, Department of Diagnostic Radiology, DC7R, Portland, OR (United States); Oregon Health and Science University, Department of Pediatrics, Portland, OR (United States); Pettersson, David R.; Spinning, Kristopher; Beckett, Brooke R. [Oregon Health and Science University, Department of Diagnostic Radiology, DC7R, Portland, OR (United States); Koudelka, Caroline W. [Oregon Health and Science University, Division of Biostatistics, Department of Public Health and Preventive Medicine, Portland, OR (United States); Bardo, Dianna M.E. [Oregon Health and Science University, Department of Diagnostic Radiology, DC7R, Portland, OR (United States); Oregon Health and Science University, Department of Cardiovascular Medicine, Portland, OR (United States)

    2013-09-15

    During the last decade, there has been a movement in the United States toward utilizing size-appropriate radiation doses for pediatric body CT, with smaller doses given to smaller patients. This study assesses community adoption of size-appropriate pediatric CT techniques. Size-specific dose estimates (SSDE) in pediatric body scans are compared between community facilities and a university children's hospital that tailors CT protocols to patient size as advocated by Image Gently. We compared 164 pediatric body scans done at community facilities (group X) with 466 children's hospital scans. Children's hospital scans were divided into two groups: A, 250 performed with established pediatric weight-based protocols and filtered back projection; B, 216 performed with addition of iterative reconstruction technique and a 60% reduction in volume CT dose index (CTDI{sub vol}). SSDE was calculated and differences among groups were compared by regression analysis. Mean SSDE was 1.6 and 3.9 times higher in group X than in groups A and B and 2.5 times higher for group A than group B. A model adjusting for confounders confirmed significant differences between group pairs. Regional community hospitals and imaging centers have not universally adopted child-sized pediatric CT practices. More education and accountability may be necessary to achieve widespread implementation. Since even lower radiation doses are possible with iterative reconstruction technique than with filtered back projection alone, further exploration of the former is encouraged. (orig.)

  6. Body size, physical activity and risk of colorectal cancer with or without the CpG island methylator phenotype (CIMP.

    Directory of Open Access Journals (Sweden)

    Laura A E Hughes

    Full Text Available BACKGROUND: We investigated how body size and physical activity influence the risk of the CpG island methylator phenotype (CIMP in colorectal cancer (CRC. METHODS: In the Netherlands Cohort Study (n = 120,852, risk factors were self-reported at baseline in 1986. After 7.3 years of follow-up, 603 cases and 4,631 sub-cohort members were available. CIMP status according to the Weisenberger markers was determined using methylation specific PCR on DNA from paraffin embedded tumor tissue. Hazard rate ratios (HR and 95% confidence intervals for CIMP (27.7% and non-CIMP (72.3% tumors were calculated according to BMI, BMI at age 20, BMI change, trouser/skirt size, height, and physical activity. RESULTS: BMI modeled per 5 kg/m(2 increase was associated with both CIMP and non-CIMP tumors, however, HRs were attenuated when additionally adjusted for trouser/skirt size. Trouser/skirt size, per 2 size increase, was associated with both tumor subtypes, even after adjustment for BMI (CIMP HR: 1.20, 95%CI: 1.01-1.43; non-CIMP HR: 1.14, 95%CI: 1.04-1.28. Height per 5 cm was associated with both tumor sub-types, but HRs were attenuated when adjusted for body weight. BMI at age 20 was positively associated with increased risk of CIMP tumors and the association was significantly less pronounced for non-CIMP tumors (P-heterogeneity = 0.01. Physical activity was inversely associated with both subtypes, but a dose-response association was observed only for non-CIMP tumors (P-trend = 0.02. CONCLUSIONS: Body size, especially central adiposity, may increase the risk of both CIMP and non-CIMP tumors. Body fat at young age may differentially influence risk. Physical activity appears to decrease the risk of CRC regardless of these molecular subtypes.

  7. Body size, physical activity and risk of colorectal cancer with or without the CpG island methylator phenotype (CIMP).

    Science.gov (United States)

    Hughes, Laura A E; Simons, Colinda C J M; van den Brandt, Piet A; Goldbohm, R Alexandra; de Goeij, Anton F; de Bruïne, Adriaan P; van Engeland, Manon; Weijenberg, Matty P

    2011-04-05

    We investigated how body size and physical activity influence the risk of the CpG island methylator phenotype (CIMP) in colorectal cancer (CRC). In the Netherlands Cohort Study (n = 120,852), risk factors were self-reported at baseline in 1986. After 7.3 years of follow-up, 603 cases and 4,631 sub-cohort members were available. CIMP status according to the Weisenberger markers was determined using methylation specific PCR on DNA from paraffin embedded tumor tissue. Hazard rate ratios (HR) and 95% confidence intervals for CIMP (27.7%) and non-CIMP (72.3%) tumors were calculated according to BMI, BMI at age 20, BMI change, trouser/skirt size, height, and physical activity. BMI modeled per 5 kg/m(2) increase was associated with both CIMP and non-CIMP tumors, however, HRs were attenuated when additionally adjusted for trouser/skirt size. Trouser/skirt size, per 2 size increase, was associated with both tumor subtypes, even after adjustment for BMI (CIMP HR: 1.20, 95%CI: 1.01-1.43; non-CIMP HR: 1.14, 95%CI: 1.04-1.28). Height per 5 cm was associated with both tumor sub-types, but HRs were attenuated when adjusted for body weight. BMI at age 20 was positively associated with increased risk of CIMP tumors and the association was significantly less pronounced for non-CIMP tumors (P-heterogeneity = 0.01). Physical activity was inversely associated with both subtypes, but a dose-response association was observed only for non-CIMP tumors (P-trend = 0.02). Body size, especially central adiposity, may increase the risk of both CIMP and non-CIMP tumors. Body fat at young age may differentially influence risk. Physical activity appears to decrease the risk of CRC regardless of these molecular subtypes.

  8. Analysis to determine the maximum dimensions of flexible apertures in sensored security netting products.

    Energy Technology Data Exchange (ETDEWEB)

    Murton, Mark; Bouchier, Francis A.; vanDongen, Dale T.; Mack, Thomas Kimball; Cutler, Robert P; Ross, Michael P.

    2013-08-01

    Although technological advances provide new capabilities to increase the robustness of security systems, they also potentially introduce new vulnerabilities. New capability sometimes requires new performance requirements. This paper outlines an approach to establishing a key performance requirement for an emerging intrusion detection sensor: the sensored net. Throughout the security industry, the commonly adopted standard for maximum opening size through barriers is a requirement based on square inchestypically 96 square inches. Unlike standard rigid opening, the dimensions of a flexible aperture are not fixed, but variable and conformable. It is demonstrably simple for a human intruder to move through a 96-square-inch opening that is conformable to the human body. The longstanding 96-square-inch requirement itself, though firmly embedded in policy and best practice, lacks a documented empirical basis. This analysis concluded that the traditional 96-square-inch standard for openings is insufficient for flexible openings that are conformable to the human body. Instead, a circumference standard is recommended for these newer types of sensored barriers. The recommended maximum circumference for a flexible opening should be no more than 26 inches, as measured on the inside of the netting material.

  9. Preoperative body size and composition, habitual diet, and post-operative complications in elective colorectal cancer patients in Norway.

    Science.gov (United States)

    Berstad, P; Haugum, B; Helgeland, M; Bukholm, I; Almendingen, K

    2013-08-01

    Both malnutrition and obesity are related to worsened post-operative outcomes after colorectal surgery. Obese cancer patients may be malnourished as a result of short-term weight loss. The present study aimed to evaluate preoperative nutritional status, body composition and dietary intake related to post-operative complications (POC) and post-operative hospital days (POHD) in elective colorectal cancer (CRC) patients. Anthropometry, body composition measured by bioelectric spectroscopy and dietary habits assessed by a validated food-frequency questionnaire were examined in 100 newly-diagnosed CRC patients. Data from 30-day POC and POHD were collected from medical records. Nonparametric and chi-squared tests and logistic regression were used to analyse associations between body and dietary variables and post-operative outcome. Twenty-nine patients had at least one POC. The median POHD was six. Body size and composition measures and short-term weight loss were no different between patients with and without POC, or between patients with POHD body size, body composition and short-term weight loss were not related to 30-day post-operative outcomes in CRC patients. A high content of marine n-3 PUFA in preoperative habitual diets may protect against POC after CRC surgery. © 2012 The Authors Journal of Human Nutrition and Dietetics © 2012 The British Dietetic Association Ltd.

  10. Behavioral and body size correlates of energy intake underreporting by obese and normal-weight women.

    Science.gov (United States)

    Kretsch, M J; Fong, A K; Green, M W

    1999-03-01

    To examine behavioral and body size influences on the underreporting of energy intake by obese and normal-weight women. Seven-day estimated food records were kept by subjects before they participated in a 49-day residential study. Self-reported energy intake was compared with energy intake required to maintain a stable body weight during the residential study (reference standard). Energy intake bias and its relationship to various body size and behavioral measures were examined. Twenty-two, healthy, normal-weight (mean body mass index [BMI] = 21.3) and obese (mean BMI = 34.2) women aged 22 to 42 years were studied. Analysis of variance, paired t test, simple linear regression, and Pearson correlation analyses were conducted. Mean energy intake from self-reported food records was underreported by normal-weight (-9.7%) and obese (-19.4%) women. BMI correlated inversely with the energy intake difference for normal-weight women (r = -.67, P = .02), whereas the Beck Depression Inventory correlated positively with the energy intake difference for obese women (r = .73, P behavioral traits play a role in the ability of women to accurately self-report energy intake. BMI appears to be predictive of underreporting of energy intake by normal-weight women, whereas emotional factors related to depression appear to be more determinant of underreporting for obese women. Understanding causative factors of the underreporting phenomenon will help practicing dietitians to devise appropriate and realistic diet intervention plans that clients can follow to achieve meaningful change.

  11. Sexual Functioning and Behavior of Men with Body Dysmorphic Disorder Concerning Penis Size Compared with Men Anxious about Penis Size and with Controls: A Cohort Study

    OpenAIRE

    Veale, David; Miles, Sarah; Read, Julie; Troglia, Andrea; Wylie, Kevan; Muir, Gordon

    2015-01-01

    Introduction: Little is known about the sexual functioning and behavior of men anxious about the size of their penis and the means that they might use to try to alter the size of their penis. Aim: To compare sexual functioning and behavior in men with body dysmorphic disorder (BDD) concerning penis size and in men with small penis anxiety (SPA without BDD) and in a control group of men who do not have any concerns. Methods: An opportunistic sample of 90 men from the community were recru...

  12. Evidence for soft bounds in Ubuntu package sizes and mammalian body masses.

    Science.gov (United States)

    Gherardi, Marco; Mandrà, Salvatore; Bassetti, Bruno; Cosentino Lagomarsino, Marco

    2013-12-24

    The development of a complex system depends on the self-coordinated action of a large number of agents, often determining unexpected global behavior. The case of software evolution has great practical importance: knowledge of what is to be considered atypical can guide developers in recognizing and reacting to abnormal behavior. Although the initial framework of a theory of software exists, the current theoretical achievements do not fully capture existing quantitative data or predict future trends. Here we show that two elementary laws describe the evolution of package sizes in a Linux-based operating system: first, relative changes in size follow a random walk with non-Gaussian jumps; second, each size change is bounded by a limit that is dependent on the starting size, an intriguing behavior that we call "soft bound." Our approach is based on data analysis and on a simple theoretical model, which is able to reproduce empirical details without relying on any adjustable parameter and generates definite predictions. The same analysis allows us to formulate and support the hypothesis that a similar mechanism is shaping the distribution of mammalian body sizes, via size-dependent constraints during cladogenesis. Whereas generally accepted approaches struggle to reproduce the large-mass shoulder displayed by the distribution of extant mammalian species, this is a natural consequence of the softly bounded nature of the process. Additionally, the hypothesis that this model is valid has the relevant implication that, contrary to a common assumption, mammalian masses are still evolving, albeit very slowly.

  13. Niche expansion, body size, and survival in Galápagos marine iguanas.

    Science.gov (United States)

    Wikelski, M; Wrege, Peter H

    2000-07-01

    Foraging theory predicts that dietary niche breadth should expand as resource availability decreases. However, Galápagos marine iguanas often die during algae shortages (El Niños) although land plants abound where they rest and reproduce. On Seymour Norte island, a subpopulation of iguanas exhibited unique foraging behavior: they consistently included the succulent beach plant B. maritima in their diet. We investigated the consequences of land-plant feeding for body size and survival. Batis-eaters supplemented their algae diet both before and after intertidal zone foraging, and more Batis was eaten during tides unfavorable for intertidal zone foraging (dawn and dusk). Larger, energy-constrained iguanas fed more on land than did smaller animals. Compared to intertidal zone algae, Batis was 39% lower in caloric content (1.6 vs. 2.6 kcal g -1 dry mass), 56% lower in protein (8.3 vs. 18.9% dry mass) and 57% lower in nitrogen (1.3 vs. 3.0% dry mass). In spite of its lower nutrient value, iguanas that supplemented their diet with this plant were able to attain nearly twice the body size of other iguanas on the island. Age estimates indicate that many Batis-eaters survived repeated El Niño episodes during which animals of their relative size-class experienced high mortality on other islands. The larger animals were, however, completely dependent upon this supplementary source of food to maintain condition, and all perished in the 1997-1998 El Niño when high tides inundated and killed Batis on Seymour Norte Island. We hypothesize that Batis feeding developed as a local foraging tradition, and that dietary conservatism and strong foraging site fidelity explain why the inclusion of land plants in the diet has been observed in only a single population. Ultimately, a unique algae-adapted hindgut morphology and physiology may limit a switch from marine to terrestrial diet.

  14. Body Size Changes Among National Collegiate Athletic Association New England Division III Football Players, 1956-2014: Comparison With Age-Matched Population Controls.

    Science.gov (United States)

    Elliott, Kayla R; Harmatz, Jerold S; Zhao, Yanli; Greenblatt, David J

    2016-05-01

    Collegiate football programs encourage athletes to pursue high body weights. To examine position-dependent trends over time in body size characteristics among football players in the National Collegiate Athletic Association Division III New England Small College Athletic Conference (NESCAC) from 1956 to 2014 and to compare the observed absolute and relative changes with those in age-matched male population controls. Descriptive laboratory study. Medical school affiliated with a NESCAC institution. Football team rosters from the 10-member NESCAC schools, available as public documents, were analyzed along with body size data from general population males aged 20 to 29 years from the National Health and Nutrition Examination Survey (NHANES). Body weight, height, and calculated body mass index were evaluated using analysis of variance, linear regression, and nonlinear regression to determine the distribution features of size variables and changes associated with time (year), school, and position. Among NESCAC linemen, absolute and relative changes over time in body weight and body mass index exceeded corresponding changes in the NHANES population controls. New England Small College Athletic Conference offensive linemen body weights increased by 37.5% from 1956 to 2014 (192 to 264 lb [86.4 to 118.8 kg]), compared with a 12% increase (164 to 184 lb [73.8 to 82.8 kg]) since 1961 in the NHANES population controls. Body mass index changed in parallel with body weight and exceeded 35 kg/m(2) in more than 30% of contemporary NESCAC offensive linemen. Among skill players in the NESCAC group, time-related changes in body size characteristics generally paralleled those in the NHANES controls. High body weight and body mass indices were evident in offensive linemen, even among those in Division III football programs with no athletic scholarships. These characteristics may be associated with adverse cardiovascular and metabolic outcomes. We need approaches to encourage risk

  15. From damselflies to pterosaurs: how burst and sustainable flight performance scale with size.

    Science.gov (United States)

    Marden, J H

    1994-04-01

    Recent empirical data for short-burst lift and power production of flying animals indicate that mass-specific lift and power output scale independently (lift) or slightly positively (power) with increasing size. These results contradict previous theory, as well as simple observation, which argues for degradation of flight performance with increasing size. Here, empirical measures of lift and power during short-burst exertion are combined with empirically based estimates of maximum muscle power output in order to predict how burst and sustainable performance scale with body size. The resulting model is used to estimate performance of the largest extant flying birds and insects, along with the largest flying animals known from fossils. These estimates indicate that burst flight performance capacities of even the largest extinct fliers (estimated mass 250 kg) would allow takeoff from the ground; however, limitations on sustainable power output should constrain capacity for continuous flight at body sizes exceeding 0.003-1.0 kg, depending on relative wing length and flight muscle mass.

  16. The effect of body coloration and group size on social partner preferences in female fighting fish (Betta splendens).

    Science.gov (United States)

    Blakeslee, C; McRobert, S P; Brown, A C; Clotfelter, E D

    2009-02-01

    Females of the fighting fish Betta splendens have been shown to associate with other B. splendens females in a manner reminiscent of shoaling behavior. Since body coloration varies dramatically in this species, and since body coloration has been shown to affect shoalmate choice in other species of fish, we examined the influence of body coloration on association preferences in female B. splendens. In dichotomous choice tests, B. splendens females spent more time swimming near groups of females (regardless of coloration) than swimming near an empty chamber, and chose to swim near fish of similar coloration to their own when choosing between two distinctly colored groups of females. When examining the interplay between body coloration and group size, focal fish spent more time swimming near larger groups (N=5) of similarly colored fish than swimming near an individual female of similar coloration. However, focal fish showed no preference when presented with an individual female of similar coloration and a larger group of females of dissimilar coloration. These results suggest that association choices in B. splendens females are strongly affected by both body coloration and by group size.

  17. Influences of sex, ontogeny and body size on the thermal ecology of Liolaemus lutzae (Squamata, Liolaemidae) in a restinga remnant in Southeastern Brazil.

    Science.gov (United States)

    Maia-Carneiro, Thiago; Rocha, Carlos Frederico Duarte

    2013-01-01

    Variations in body temperature (Tb) of lizards can be partially explained by intrinsic factors such as sex, ontogeny and body size. Liolaemus lutzae is a lizard species restricted to restingas in the Brazilian coast in the state of Rio de Janeiro. Herein, we studied sexual dimorphism and influences of sex, ontogeny, and body size to the Tb of L. lutzae. Adult males were larger than adult females, probably due to both intersexual selection and intra-sexual selection. There was intersexual difference in lizards' Tb (males hotter than females), but Tb did not differ after factored out for the effects of body size. The mean Tb of juvenile lizards was higher than that of adults after factored out for the effect of body mass. It is possible that adults may have excluded juveniles from microhabitats with better thermal regimes. Also, this might have occurred due to requirements of juveniles to maintain high growth rates. Forage searching for prey by juveniles also exposes them to high environmental temperatures. Juveniles also may have higher Tb than co-specific adults (relative to body mass) to favor prey capture. In absolute values, adult lizards tended to use microhabitats with lower temperatures than that used by juveniles, possibly to avoid risks of overheating and death. Body temperature and snout-vent length were positively related, as well as body temperature and body mass, presumably caused by the thermal inertia of the bodies (trend of a body to resist to changes in its temperature). Intrinsic factors such as sex, ontogeny and body size can affect the thermal ecology of L. lutzae, despite coastal habitat features to which they are exposed also influences the body temperature of active lizards in restinga habitats. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Common Noctule Bats Are Sexually Dimorphic in Migratory Behaviour and Body Size but Not Wing Shape.

    Directory of Open Access Journals (Sweden)

    M Teague O'Mara

    Full Text Available Within the large order of bats, sexual size dimorphism measured by forearm length and body mass is often female-biased. Several studies have explained this through the effects on load carrying during pregnancy, intrasexual competition, as well as the fecundity and thermoregulation advantages of increased female body size. We hypothesized that wing shape should differ along with size and be under variable selection pressure in a species where there are large differences in flight behaviour. We tested whether load carrying, sex differential migration, or reproductive advantages of large females affect size and wing shape dimorphism in the common noctule (Nyctalus noctula, in which females are typically larger than males and only females migrate long distances each year. We tested for univariate and multivariate size and shape dimorphism using data sets derived from wing photos and biometric data collected during pre-migratory spring captures in Switzerland. Females had forearms that are on average 1% longer than males and are 1% heavier than males after emerging from hibernation, but we found no sex differences in other size, shape, or other functional characters in any wing parameters during this pre-migratory period. Female-biased size dimorphism without wing shape differences indicates that reproductive advantages of big mothers are most likely responsible for sexual dimorphism in this species, not load compensation or shape differences favouring aerodynamic efficiency during pregnancy or migration. Despite large behavioural and ecological sex differences, morphology associated with a specialized feeding niche may limit potential dimorphism in narrow-winged bats such as common noctules and the dramatic differences in migratory behaviour may then be accomplished through plasticity in wing kinematics.

  19. Theoretical assessment of the maximum obtainable power in wireless power transfer constrained by human body exposure limits in a typical room scenario.

    Science.gov (United States)

    Chen, Xi Lin; De Santis, Valerio; Umenei, Aghuinyue Esai

    2014-07-07

    In this study, the maximum received power obtainable through wireless power transfer (WPT) by a small receiver (Rx) coil from a relatively large transmitter (Tx) coil is numerically estimated in the frequency range from 100 kHz to 10 MHz based on human body exposure limits. Analytical calculations were first conducted to determine the worst-case coupling between a homogeneous cylindrical phantom with a radius of 0.65 m and a Tx coil positioned 0.1 m away with the radius ranging from 0.25 to 2.5 m. Subsequently, three high-resolution anatomical models were employed to compute the peak induced field intensities with respect to various Tx coil locations and dimensions. Based on the computational results, scaling factors which correlate the cylindrical phantom and anatomical model results were derived. Next, the optimal operating frequency, at which the highest transmitter source power can be utilized without exceeding the exposure limits, is found to be around 2 MHz. Finally, a formulation is proposed to estimate the maximum obtainable power of WPT in a typical room scenario while adhering to the human body exposure compliance mandates.

  20. Theoretical assessment of the maximum obtainable power in wireless power transfer constrained by human body exposure limits in a typical room scenario

    International Nuclear Information System (INIS)

    Chen, Xi Lin; De Santis, Valerio; Umenei, Aghuinyue Esai

    2014-01-01

    In this study, the maximum received power obtainable through wireless power transfer (WPT) by a small receiver (Rx) coil from a relatively large transmitter (Tx) coil is numerically estimated in the frequency range from 100 kHz to 10 MHz based on human body exposure limits. Analytical calculations were first conducted to determine the worst-case coupling between a homogeneous cylindrical phantom with a radius of 0.65 m and a Tx coil positioned 0.1 m away with the radius ranging from 0.25 to 2.5 m. Subsequently, three high-resolution anatomical models were employed to compute the peak induced field intensities with respect to various Tx coil locations and dimensions. Based on the computational results, scaling factors which correlate the cylindrical phantom and anatomical model results were derived. Next, the optimal operating frequency, at which the highest transmitter source power can be utilized without exceeding the exposure limits, is found to be around 2 MHz. Finally, a formulation is proposed to estimate the maximum obtainable power of WPT in a typical room scenario while adhering to the human body exposure compliance mandates. (paper)

  1. Sea urchins in a high-CO2 world: partitioned effects of body size, ocean warming and acidification on metabolic rate.

    Science.gov (United States)

    Carey, Nicholas; Harianto, Januar; Byrne, Maria

    2016-04-15

    Body size and temperature are the major factors explaining metabolic rate, and the additional factor of pH is a major driver at the biochemical level. These three factors have frequently been found to interact, complicating the formulation of broad models predicting metabolic rates and hence ecological functioning. In this first study of the effects of warming and ocean acidification, and their potential interaction, on metabolic rate across a broad range in body size (two to three orders of magnitude difference in body mass), we addressed the impact of climate change on the sea urchin ITALIC! Heliocidaris erythrogrammain context with climate projections for southeast Australia, an ocean warming hotspot. Urchins were gradually introduced to two temperatures (18 and 23°C) and two pH levels (7.5 and 8.0), at which they were maintained for 2 months. Identical experimental trials separated by several weeks validated the fact that a new physiological steady state had been reached, otherwise known as acclimation. The relationship between body size, temperature and acidification on the metabolic rate of ITALIC! H. erythrogrammawas strikingly stable. Both stressors caused increases in metabolic rate: 20% for temperature and 19% for pH. Combined effects were additive: a 44% increase in metabolism. Body size had a highly stable relationship with metabolic rate regardless of temperature or pH. None of these diverse drivers of metabolism interacted or modulated the effects of the others, highlighting the partitioned nature of how each influences metabolic rate, and the importance of achieving a full acclimation state. Despite these increases in energetic demand there was very limited capacity for compensatory modulating of feeding rate; food consumption increased only in the very smallest specimens, and only in response to temperature, and not pH. Our data show that warming, acidification and body size all substantially affect metabolism and are highly consistent and

  2. The evolution of body size under environmental gradients in ectotherms: why should Bergmann's rule apply to lizards?

    Directory of Open Access Journals (Sweden)

    Tregenza Tom

    2008-02-01

    Full Text Available Abstract Background The impact of environmental gradients on the evolution of life history traits is a central issue in macroecology and evolutionary biology. A number of hypotheses have been formulated to explain factors shaping patterns of variation in animal mass. One such example is Bergmann's rule, which predicts that body size will be positively correlated with latitude and elevation, and hence, with decreasing environmental temperatures. A generally accepted explanation for this phenotypic response is that as body mass increases, body surface area gets proportionally smaller, which contributes to reduced rates of heat-loss. Phylogenetic and non-phylogenetic evidence reveals that endotherms follow Bergmann's rule. In contrast, while previous non-phylogenetic studies supported this prediction in up to 75% of ectotherms, recent phylogenetic comparative analyses suggest that its validity for these organisms is controversial and less understood. Moreover, little attention has been paid to why some ectotherms conform to this rule, while others do not. Here, we investigate Bergmann's rule in the six main clades forming the Liolaemus genus, one of the largest and most environmentally diverse genera of terrestrial vertebrates. A recent study conducted on some species belonging to four of these six clades concluded that Liolaemus species follow Bergmann's rule, representing the only known phylogenetic support for this model in lizards. However, a later reassessment of this evidence, performed on one of the four analysed clades, produced contrasting conclusions. Results Our results fail to support Bergmann's rule in Liolaemus lizards. Non-phylogenetic and phylogenetic analyses showed that none of the studied clades experience increasing body size with increasing latitude and elevation. Conclusion Most physiological and behavioural processes in ectotherms depend directly upon their body temperature. In cold environments, adaptations to gain heat

  3. Diet, body size, physical activity and risk of prostate cancer: An umbrella review of the evidence.

    Science.gov (United States)

    Markozannes, Georgios; Tzoulaki, Ioanna; Karli, Dimitra; Evangelou, Evangelos; Ntzani, Evangelia; Gunter, Marc J; Norat, Teresa; Ioannidis, John P; Tsilidis, Konstantinos K

    2016-12-01

    The existing literature on the relationship between diet, body size, physical activity and prostate cancer risk was summarised by the World Cancer Research Fund Continuous Update Project (CUP). An evaluation of the robustness of this evidence is required to help inform public health policy. The robustness of this evidence was evaluated using several criteria addressing evidence strength and validity, including the statistical significance of the random effects summary estimate and of the largest study in a meta-analysis, number of prostate cancer cases, between-study heterogeneity, 95% prediction intervals, small-study effects bias, excess significance bias and sensitivity analyses with credibility ceilings. A total of 248 meta-analyses were extracted from the CUP, which studied associations of 23 foods, 31 nutrients, eight indices of body size and three indices of physical activity with risk of total prostate cancer development, mortality or cancer development by stage and grade. Of the 176 meta-analyses using a continuous scale to measure the exposures, no association presented strong evidence by satisfying all the aforementioned criteria. Only the association of height with total prostate cancer incidence and mortality presented highly suggestive evidence with a 4% higher risk per 5 cm greater height (95% confidence interval, 1.03, 1.05). Associations for body mass index, weight, height, dietary calcium and spirits intake were supported by suggestive evidence. Overall, the association of diet, body size, physical activity and prostate cancer has been extensively studied, but no association was graded with strong evidence. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Monte Carlo simulation of a stand-up type whole body counter using different sized BOMAB phantoms

    International Nuclear Information System (INIS)

    Park, Minjung; Yoo, Jaeryong; Park, Seyoung; Ha, Wiho; Lee, Seungsook; Park, Minjung; Yoo, Jaeryong; Kim, Kwangpyo

    2013-01-01

    It is necessary to assess internal contamination level to determine the need for medical intervention. Whole Body Counter (WBC) is used to measure incorporated radioactive materials inside the human body. Also, WBC is standard in vivo method and used for preparedness of response to radiological emergencies. To operate this equipment correctly, proper energy and efficiency calibrations must be performed. WBC is usually calibrated using a Bottle Manikin ABsorber (BOMAB) Phantom, which is the industrial standard. The problem occurs when the subjects to be measured have different physical characteristics (height or weight) from a phantom used in calibration. In radiation emergency situations, this problem is expected to worsen because there are special populations whose physical characteristics are different from reference male, for example children and women. The aim of this study is to resolve this problem by simulating counting efficiency of different sized BOMAB phantoms using Monte Carlo techniques. The counting efficiency response of the WBC has been modeled for different sized four BOMAB phantoms using MCNPX. The stand-up type WBC has different efficiency response on phantom size since this WBC has different geometry from other scanning-type or non-linear geometry WBC. In emergency monitoring situations, it is important to estimate activity of various sized persons. Therefore, it is necessary to apply appropriate counting efficiency according to person size. Further investigations are needed to optimize methodology for measuring small object in the stand-up type WBC

  5. Molecular Characterization of Bovine SMO Gene and Effects of Its Genetic Variations on Body Size Traits in Qinchuan Cattle (Bos taurus)

    Science.gov (United States)

    Zhang, Ya-Ran; Gui, Lin-Sheng; Li, Yao-Kun; Jiang, Bi-Jie; Wang, Hong-Cheng; Zhang, Ying-Ying; Zan, Lin-Sen

    2015-01-01

    Smoothened (Smo)-mediated Hedgehog (Hh) signaling pathway governs the patterning, morphogenesis and growth of many different regions within animal body plans. This study evaluated the effects of genetic variations of the bovine SMO gene on economically important body size traits in Chinese Qinchuan cattle. Altogether, eight single nucleotide polymorphisms (SNPs: 1–8) were identified and genotyped via direct sequencing covering most of the coding region and 3ʹUTR of the bovine SMO gene. Both the p.698Ser.>Ser. synonymous mutation resulted from SNP1 and the p.700Ser.>Pro. non-synonymous mutation caused by SNP2 mapped to the intracellular C-terminal tail of bovine Smo protein; the other six SNPs were non-coding variants located in the 3ʹUTR. The linkage disequilibrium was analyzed, and five haplotypes were discovered in 520 Qinchuan cattle. Association analyses showed that SNP2, SNP3/5, SNP4 and SNP6/7 were significantly associated with some body size traits (p 0.05). Meanwhile, cattle with wild-type combined haplotype Hap1/Hap1 had significantly (p < 0.05) greater body length than those with Hap2/Hap2. Our results indicate that variations in the SMO gene could affect body size traits of Qinchuan cattle, and the wild-type haplotype Hap1 together with the wild-type alleles of these detected SNPs in the SMO gene could be used to breed cattle with superior body size traits. Therefore, our results could be helpful for marker-assisted selection in beef cattle breeding programs. PMID:26225956

  6. [The relationship between adolescent body size and health promoting behavior and biochemical indicator factors].

    Science.gov (United States)

    Chen, Hsiu-Chih; Chen, Hsing-Mei; Chen, Min-Li; Chiang, Chih-Ming; Chen, Mei-Yen

    2012-06-01

    Tainan City has the third highest prevalence of junior high school student obesity of all administrative districts in Taiwan. School nurses play an important role in promoting student health. Understanding the factors that significantly impact student weight is critical to designing effective student health promotion programs. This study explored the relationships between health promotion behavior and serum biomarker variables and body size. Researchers used a cross-sectional descriptive study design and stratified cluster random sampling. Subjects were 7th graders who received an in-school health checkup with blood test at 41 public junior high schools in Tainan City between July 2010 and May 2011. Research instruments included the adolescent health promotion (AHP) scale, serum biochemical profile and BMI (body mass index). Obtained data were analyzed using descriptive and inferential statistics. Of the 726 students who participated in this study, 22.2% were underweight and 23.8% were overweight or obese. Higher AHP scores correlated with better biomarkers and body size. Multivariate analysis found factors that increased the risk of being overweight included: being male, having a father with a relatively low level of education, playing video games frequently, and doing little or no exercise (odds ratio = 1.93, 1.75, 1.07, 1.04, respectively). Participants with relatively healthy behaviors had better biomarkers and a lower risk of being overweight. Findings can support the development of evidence-based school programs to promote student health.

  7. Prey size and availability limits maximum size of rainbow trout in a large tailwater: insights from a drift-foraging bioenergetics model

    Science.gov (United States)

    Dodrill, Michael J.; Yackulic, Charles B.; Kennedy, Theodore A.; Haye, John W

    2016-01-01

    The cold and clear water conditions present below many large dams create ideal conditions for the development of economically important salmonid fisheries. Many of these tailwater fisheries have experienced declines in the abundance and condition of large trout species, yet the causes of these declines remain uncertain. Here, we develop, assess, and apply a drift-foraging bioenergetics model to identify the factors limiting rainbow trout (Oncorhynchus mykiss) growth in a large tailwater. We explored the relative importance of temperature, prey quantity, and prey size by constructing scenarios where these variables, both singly and in combination, were altered. Predicted growth matched empirical mass-at-age estimates, particularly for younger ages, demonstrating that the model accurately describes how current temperature and prey conditions interact to determine rainbow trout growth. Modeling scenarios that artificially inflated prey size and abundance demonstrate that rainbow trout growth is limited by the scarcity of large prey items and overall prey availability. For example, shifting 10% of the prey biomass to the 13 mm (large) length class, without increasing overall prey biomass, increased lifetime maximum mass of rainbow trout by 88%. Additionally, warmer temperatures resulted in lower predicted growth at current and lower levels of prey availability; however, growth was similar across all temperatures at higher levels of prey availability. Climate change will likely alter flow and temperature regimes in large rivers with corresponding changes to invertebrate prey resources used by fish. Broader application of drift-foraging bioenergetics models to build a mechanistic understanding of how changes to habitat conditions and prey resources affect growth of salmonids will benefit management of tailwater fisheries.

  8. High prevalence of homing behaviour among juvenile coral-reef fishes and the role of body size

    Science.gov (United States)

    Streit, Robert P.; Bellwood, David R.

    2017-12-01

    Adult coral-reef fishes display a remarkable ability to return home after being displaced. However, we know very little about homing behaviour in juvenile fishes. Homing behaviour in juvenile fishes is of interest because it will shape subsequent spatial distributions of adult fish communities. Comparing multiple species, families and functional groups allows us to distinguish between species-specific traits and more generalised, species-independent traits that may drive homing behaviour. Using displacement experiments of up to 150 m, we quantified homing behaviour of juvenile, newly recruited reef fishes of seven species in three families, including herbivorous parrotfishes and rabbitfishes, carnivorous wrasse and planktivorous damselfishes. All species showed the ability to home successfully, but success rates differed among species. Juvenile parrotfishes were the most successful (67% returning home), while return rates in the other species ranged from 10.5% ( Siganus doliatus) to 28.9% ( Coris batuensis). However, across all species body size appeared to be the main driver of homing success, rather than species-specific traits. With every cm increase in body size, odds of returning home almost tripled (170% increase) across all species. Interestingly, the probability of getting lost was not related to body size, which suggests that mortality was not a major driver of unsuccessful homing. Homing probability halved beyond displacement distances of 10 m and then remained stable. Higher likelihood of homing over short distances may suggest that different sensory cues are used to navigate. Overall, our results suggest that homing ability is a widespread trait among juvenile reef fishes. A `sense of home' and site attachment appear to develop early during ontogeny, especially above taxon-specific size thresholds. Hence, spatial flexibility exists only in a brief window after settlement, with direct implications for subsequent patterns of connectivity and ecosystem

  9. The influence of age and sex on genetic associations with adult body size and shape: a large-scale genome-wide interaction study

    OpenAIRE

    Winkler, Thomas W.; Heid, Iris M.; Gorski, Mathias

    2015-01-01

    Genome-wide association studies (GWAS) have identified more than 100 genetic variants contributing to BMI, a measure of body size, or waist-to-hip ratio (adjusted for BMI, WHRadjBMI), a measure of body shape. Body size and shape change as people grow older and these changes differ substantially between men and women. To systematically screen for age-and/or sex-specific effects of genetic variants on BMI and WHRadjBMI, we performed meta-analyses of 114 studies (up to 320,485 individuals of Eur...

  10. Effect of body size and temperature on respiration of Galaxias maculatus (Pisces: Galaxiidae)

    Science.gov (United States)

    Milano, D.; Vigliano, P.H.; Beauchamp, David A.

    2017-01-01

    Body mass and temperature are primary determinants of metabolic rate in ectothermic animals. Oxygen consumption of post-larval Galaxias maculatus was measured in respirometry trials under different temperatures (5–21°C) and varying body masses (0.1–>1.5 g) spanning a relevant range of thermal conditions and sizes. Specific respiration rates (R in g O2 g−1 d−1) declined as a power function of body mass and increased exponentially with temperature and was expressed as: R = 0.0007 * W −0.31 * e 0.13 * T. The ability of this model to predict specific respiration rate was evaluated by comparing observed values with those predicted by the model. Our findings suggest that the respiration rate of G. maculatus is the result of multiple interactive processes (intrinsic and extrinsic factors) that modulate each other in ‘meta-mechanistic’ ways; this would help to explain the species’ ability to undergo the complex ontogenetic habitat shifts observed in the lakes of the Andean Patagonic range.

  11. Linking mean body size of pelagic Cladocera to environmental variables in Precambrian Shield lakes: A paleolimnological approach

    Directory of Open Access Journals (Sweden)

    John P. SMOL

    2008-02-01

    Full Text Available Daphnia and Bosmina fragments were identified and measured in the surface sediments of 42 lakes in the Muskoka-Haliburton region of Ontario, Canada, in an attempt to identify environmental factors that may influence cladoceran body size. Specifically, pecten length on Daphnia post-abdominal claws, antennule length on Bosmina headshields, and carapace and mucro lengths of Bosmina carapaces were measured. These measurements were then compared to limnological variables previously identified as possibly influencing cladoceran size, including dissolved organic carbon (DOC, total phosphorus (TP, pH, calcium (Ca, Chaoborus density, and fish presence/absence. Cladoceran size displayed a linear relationship to TP, with larger Bosmina and Daphnia present in lakes with lower nutrient levels. We suspect that, as larger individuals are more efficient grazers, they may competitively exclude smaller individuals when nutrients are limiting in these lakes. Bosmina mucro length and cladoceran community size structure displayed a step response to DOC, with mean size significantly smaller when DOC concentrations were higher than 5.89 mg L-1. Daphnia pecten length displayed a negative linear relationship to DOC above a concentration of 4.90 mg l-1. Reduced predation pressure from gape-limited macroinvertebrate predators, such as Chaoborus, may have influenced these relationships. DOC was also highly correlated to TP in these lakes, and size trends might be responding to the TP gradient rather than the DOC gradient. Mean cladoceran body size in acidic lakes (pH 6.0. There was no relationship between size structure and Ca concentrations, attributed to a narrow Ca gradient in these lakes. Predation effects were examined using limited Chaoborus density and fish presence/absence data. Although there were no significant relationships between cladoceran size and Chaoborus density, some significant relationships between size variables and fish predation were identified. The

  12. Cues to body size in the formant spacing of male koala (Phascolarctos cinereus) bellows: honesty in an exaggerated trait.

    Science.gov (United States)

    Charlton, Benjamin D; Ellis, William A H; McKinnon, Allan J; Cowin, Gary J; Brumm, Jacqui; Nilsson, Karen; Fitch, W Tecumseh

    2011-10-15

    Determining the information content of vocal signals and understanding morphological modifications of vocal anatomy are key steps towards revealing the selection pressures acting on a given species' vocal communication system. Here, we used a combination of acoustic and anatomical data to investigate whether male koala bellows provide reliable information on the caller's body size, and to confirm whether male koalas have a permanently descended larynx. Our results indicate that the spectral prominences of male koala bellows are formants (vocal tract resonances), and show that larger males have lower formant spacing. In contrast, no relationship between body size and the fundamental frequency was found. Anatomical investigations revealed that male koalas have a permanently descended larynx: the first example of this in a marsupial. Furthermore, we found a deeply anchored sternothyroid muscle that could allow male koalas to retract their larynx into the thorax. While this would explain the low formant spacing of the exhalation and initial inhalation phases of male bellows, further research will be required to reveal the anatomical basis for the formant spacing of the later inhalation phases, which is predictive of vocal tract lengths of around 50 cm (nearly the length of an adult koala's body). Taken together, these findings show that the formant spacing of male koala bellows has the potential to provide receivers with reliable information on the caller's body size, and reveal that vocal adaptations allowing callers to exaggerate (or maximise) the acoustic impression of their size have evolved independently in marsupials and placental mammals.

  13. Characterizing graphs of maximum matching width at most 2

    DEFF Research Database (Denmark)

    Jeong, Jisu; Ok, Seongmin; Suh, Geewon

    2017-01-01

    The maximum matching width is a width-parameter that is de ned on a branch-decomposition over the vertex set of a graph. The size of a maximum matching in the bipartite graph is used as a cut-function. In this paper, we characterize the graphs of maximum matching width at most 2 using the minor o...

  14. Body Size Changes Among National Collegiate Athletic Association New England Division III Football Players, 1956−2014: Comparison With Age-Matched Population Controls

    Science.gov (United States)

    Elliott, Kayla R.; Harmatz, Jerold S.; Zhao, Yanli; Greenblatt, David J.

    2016-01-01

    Context:  Collegiate football programs encourage athletes to pursue high body weights. Objective:  To examine position-dependent trends over time in body size characteristics among football players in the National Collegiate Athletic Association Division III New England Small College Athletic Conference (NESCAC) from 1956 to 2014 and to compare the observed absolute and relative changes with those in age-matched male population controls. Design:  Descriptive laboratory study. Setting:  Medical school affiliated with a NESCAC institution. Patients or Other Participants:  Football team rosters from the 10-member NESCAC schools, available as public documents, were analyzed along with body size data from general population males aged 20 to 29 years from the National Health and Nutrition Examination Survey (NHANES). Main Outcome Measure(s):  Body weight, height, and calculated body mass index were evaluated using analysis of variance, linear regression, and nonlinear regression to determine the distribution features of size variables and changes associated with time (year), school, and position. Results:  Among NESCAC linemen, absolute and relative changes over time in body weight and body mass index exceeded corresponding changes in the NHANES population controls. New England Small College Athletic Conference offensive linemen body weights increased by 37.5% from 1956 to 2014 (192 to 264 lb [86.4 to 118.8 kg]), compared with a 12% increase (164 to 184 lb [73.8 to 82.8 kg]) since 1961 in the NHANES population controls. Body mass index changed in parallel with body weight and exceeded 35 kg/m2 in more than 30% of contemporary NESCAC offensive linemen. Among skill players in the NESCAC group, time-related changes in body size characteristics generally paralleled those in the NHANES controls. Conclusions:  High body weight and body mass indices were evident in offensive linemen, even among those in Division III football programs with no athletic

  15. Ovarian cancer and body size

    DEFF Research Database (Denmark)

    Mosgaard, Berit Jul

    2012-01-01

    Only about half the studies that have collected information on the relevance of women's height and body mass index to their risk of developing ovarian cancer have published their results, and findings are inconsistent. Here, we bring together the worldwide evidence, published and unpublished...

  16. Maximum-Likelihood Detection Of Noncoherent CPM

    Science.gov (United States)

    Divsalar, Dariush; Simon, Marvin K.

    1993-01-01

    Simplified detectors proposed for use in maximum-likelihood-sequence detection of symbols in alphabet of size M transmitted by uncoded, full-response continuous phase modulation over radio channel with additive white Gaussian noise. Structures of receivers derived from particular interpretation of maximum-likelihood metrics. Receivers include front ends, structures of which depends only on M, analogous to those in receivers of coherent CPM. Parts of receivers following front ends have structures, complexity of which would depend on N.

  17. Influence of body size on Cu bioaccumulation in zebra mussels Dreissena polymorpha exposed to different sources of particle-associated Cu.

    Science.gov (United States)

    Zhong, Huan; Kraemer, Lisa; Evans, Douglas

    2013-10-15

    Size of organisms is critical in controlling metal bioavailability and bioaccumulation, while mechanisms of size-related metal bioaccumulation are not fully understood. To investigate the influences of different sources of particle-associated Cu on body size-related Cu bioavailability and bioaccumulation, zebra mussels (Dreissena polymorpha) of different sizes were exposed to stable Cu isotope ((65)Cu) spiked algae (Chlorella vulgaris) or sediments in the laboratory and the Cu tissue concentration-size relationships were compared with that in unexposed mussels. Copper tissue concentrations decreased with mussel size (tissue or shell dry weight) in both unexposed and algal-exposed mussels with similar decreasing patterns, but were independent of size in sediment-exposed mussels. Furthermore, the relative contribution of Cu uptake from algae (65-91%) to Cu bioaccumulation is always higher than that from sediments (9-35%), possibly due to the higher bioavailability of algal-Cu. Therefore, the size-related ingestion of algae could be more important in influencing the size-related variations in Cu bioaccumulation. However, the relative contribution of sediment-Cu to Cu bioaccumulation increased with body size and thus sediment ingestion may also affect the size-related Cu variations in larger mussels (tissue weight >7.5mg). This study highlights the importance of considering exposure pathways in normalization of metal concentration variation when using bivalves as biomonitors. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Wintering ecology of sympatric subspecies of Sandhill Crane: Correlations between body size, site fidelity, and movement patterns

    Science.gov (United States)

    Ivey, Gary L.; Dugger, Bruce D.; Herziger, Caroline P.; Casazza, Michael L.; Fleskes, Joseph P.

    2015-01-01

    Body size is known to correlate with many aspects of life history in birds, and this knowledge can be used to manage and conserve bird species. However, few studies have compared the wintering ecology of sympatric subspecies that vary significantly in body size. We used radiotelemetry to examine the relationship between body size and site fidelity, movements, and home range in 2 subspecies of Sandhill Crane (Grus canadensis) wintering in the Sacramento–San Joaquin Delta of California, USA. Both subspecies showed high interannual return rates to the Delta study area, but Greater Sandhill Cranes (G. c. tabida) showed stronger within-winter fidelity to landscapes in our study region and to roost complexes within landscapes than did Lesser Sandhill Cranes (G. c. canadensis). Foraging flights from roost sites were shorter for G. c. tabida than for G. c. canadensis (1.9 ± 0.01 km vs. 4.5 ± 0.01 km, respectively) and, consequently, the mean size of 95% fixed-kernel winter home ranges was an order of magnitude smaller for G. c. tabida than for G. c. canadensis (1.9 ± 0.4 km2 vs. 21.9 ± 1.9 km2, respectively). Strong site fidelity indicates that conservation planning to manage for adequate food resources around traditional roost sites can be effective for meeting the habitat needs of these cranes, but the scale of conservation efforts should differ by subspecies. Analysis of movement patterns suggests that conservation planners and managers should consider all habitats within 5 km of a known G. c. tabida roost and within 10 km of a G. c. canadensis roost when planning for habitat management, mitigation, acquisition, and easements.

  19. Body Size Regression Formulae, Proximate Composition and Energy Density of Eastern Bering Sea Mesopelagic Fish and Squid.

    Science.gov (United States)

    Sinclair, Elizabeth H; Walker, William A; Thomason, James R

    2015-01-01

    The ecological significance of fish and squid of the mesopelagic zone (200 m-1000 m) is evident by their pervasiveness in the diets of a broad spectrum of upper pelagic predators including other fishes and squids, seabirds and marine mammals. As diel vertical migrators, mesopelagic micronekton are recognized as an important trophic link between the deep scattering layer and upper surface waters, yet fundamental aspects of the life history and energetic contribution to the food web for most are undescribed. Here, we present newly derived regression equations for 32 species of mesopelagic fish and squid based on the relationship between body size and the size of hard parts typically used to identify prey species in predator diet studies. We describe the proximate composition and energy density of 31 species collected in the eastern Bering Sea during May 1999 and 2000. Energy values are categorized by body size as a proxy for relative age and can be cross-referenced with the derived regression equations. Data are tabularized to facilitate direct application to predator diet studies and food web models.

  20. Heterogeneous effects of market integration on subadult body size and nutritional status among the Shuar of Amazonian Ecuador

    Science.gov (United States)

    Urlacher, Samuel S.; Liebert, Melissa A.; Snodgrass, J. Josh; Blackwell, Aaron D.; Cepon-Robins, Tara J.; Gildner, Theresa E.; Madimenos, Felicia C.; Amir, Dorsa; Bribiescas, Richard G.; Sugiyama, Lawrence S.

    2016-01-01

    Background Market integration (MI) – increasing production for and consumption from a market-based economy – is drastically altering traditional ways of life and environmental conditions among indigenous Amazonian peoples. The effects of MI on the biology and health of Amazonian children and adolescents, however, remain unclear. Aim This study examines the impact of MI on subadult body size and nutritional status at the population, regional, and household levels among the Shuar of Amazonian Ecuador. Subjects and Methods Anthropometric data were collected between 2005 and 2014 from 2,164 Shuar (age 2-19 years) living in two geographic regions differing in general degree of MI. High-resolution household economic, lifestyle, and dietary data were collected from a subsample of 631 participants. Analyses were performed to investigate relationships between body size and year of data collection, region, and specific aspects of household MI. Results Results from temporal and regional analyses suggest that MI has a significant and overall positive impact on Shuar body size and nutritional status. However, household-level results exhibit nuanced and heterogeneous specific effects of MI underlying these overarching relationships. Conclusion This study provides novel insight into the complex socio-ecological pathways linking MI, physical growth, and health among the Shuar and other indigenous Amazonian populations. PMID:27230632

  1. Monte Carlo simulation of calibration of shadow shield scanning bed whole body monitor using different size BOMAB phantoms

    International Nuclear Information System (INIS)

    Bhati, S.; Patni, H.K.; Singh, I.S.; Garg, S.P.

    2005-01-01

    A shadow shield scanning bed whole body monitor incorporating a (102 mm dia x 76 mm thick) NaI(Tl) detector, is employed for assessment of high-energy photon emitters at BARC. The monitor is calibrated using a Reference BOMAB phantom representative of an average Indian radiation worker. However to account for the size variation in the physique of workers, it is required to calibrate the system with different size BOMAB phantoms which is both difficult and expensive. Therefore, a theoretical approach based on Monte Carlo techniques has been employed to calibrate the system with BOMAB phantoms of different sizes for several radionuclides of interest. A computer program developed for this purpose, simulates the scanning geometry of the whole body monitor and computes detection efficiencies for the BARC Reference phantom (63 kg/168 cm), ICRP Reference phantom (70 kg/170 cm) and several of its scaled versions covering a wide range of body builds. The detection efficiencies computed for different photon energies for BARC Reference phantom were found to be in very good agreement with experimental data, thus validating the Monte Carlo scheme used in the computer code. The results from this study could be used for assessment of internal contamination due to high-energy photon emitters for radiation workers of different physiques. (author)

  2. Estimation of Body Weight from Body Size Measurements and Body Condition Scores in Dairy Cows

    DEFF Research Database (Denmark)

    Enevoldsen, Carsten; Kristensen, T.

    1997-01-01

    , and body condition score were consistently associated with BW. The coefficients of multiple determination varied from 80 to 89%. The number of significant terms and the parameter estimates of the models differed markedly among groups of cows. Apparently, these differences were due to breed and feeding...... regimen. Results from this study indicate that a reliable model for estimating BW of very different dairy cows maintained in a wide range of environments can be developed using body condition score, demographic information, and measurements of hip height and hip width. However, for management purposes......The objective of this study was to evaluate the use of hip height and width, body condition score, and relevant demographic information to predict body weight (BW) of dairy cows. Seven regression models were developed from data from 972 observations of 554 cows. Parity, hip height, hip width...

  3. The role of electrostatic charging of small and intermediate sized bodies in the solar system

    International Nuclear Information System (INIS)

    Mendis, D.A.

    1981-01-01

    The role of electrostatic charging of small and intermediate sized bodies in the solar system is reviewed. These bodies include planetary, interplanetary and cometary dust as well as cometary nuclei (at large heliocentric distances), asteroids and the larger bodies in the Saturnian ring system. While this charging has both physical and dynamical consequences for the small dust grains, it has only physical consequences for the larger bodies. The main physical consequences for the small grains are electrostatic erosion (''chipping'') and disruption, whereas for the larger bodies they include electrostatic levitation and blow-off of fine loose dust from their surfaces. A large variety of solar system phenomena, recently observed by the Pioneer and Voyager deep space probes as well as the HEOS-2 earth satellite, are explained in terms of these processes. Certain peculiar features observed in the dust tails of comets as well as the spatial orientation of the zodiacal dust cloud may also be explained along these lines. The possible electrostatic erosion of the dust mantles of new comets as well as the electrostatic 'polishing' of the smaller asteroids are also discussed. (Auth.)

  4. [Influences of ration level and initial body weight on growth and size hierarchy of hybrid tilapia, Oreochromis mossambicus x O. niloticus].

    Science.gov (United States)

    Wang, Yan

    2003-02-01

    72 hybrid tilapia were distributed into twelve tanks, each stocked in six fish (A, B, C, D, E, F) with different body size. The initial body weight was 62.69 +/- 1.46 g for fish A, 56.48 +/- 1.30 g for B, 50.75 +/- 1.19 g for C, 35.56 +/- 1.18 g for D, 31.05 +/- 0.88 g for E, and 27.35 +/- 0.95 g for F (mean +/- SE). The fish were reared under four ration levels (deprived of feed, fed at 1.5% body weight per day (BW.d-1), fed at 3.0% BW.d-1, or fed excess) throughout four weeks, respectively. The specific growth rate (SGR) and feed efficiency (FE) of the fish increased with increasing ration level up to 3.0% BW.d-1, and then, SGR maintained at a constant level while FE dropped with continuing increase of ration. The variance coefficient of SGR and final body weight was relatively high in the fish that fed at 1.5% BW.d-1. For fish A, SGR was not significantly different, between 1.5% BW.d-1, 3.0% BW.d-1 and fed excess, while in fish F, relatively high variations were found among different ration treatments. This experiment revealed that the growth and size hierarchy of hybrid tilapia were related to their ration level and initial body size. Under ration levels more than 3.0% BW.d-1, SGR was usually high, and size hierarchy was relatively weak.

  5. Heterogeneous effects of market integration on sub-adult body size and nutritional status among the Shuar of Amazonian Ecuador.

    Science.gov (United States)

    Urlacher, Samuel S; Liebert, Melissa A; Josh Snodgrass, J; Blackwell, Aaron D; Cepon-Robins, Tara J; Gildner, Theresa E; Madimenos, Felicia C; Amir, Dorsa; Bribiescas, Richard G; Sugiyama, Lawrence S

    2016-07-01

    Market integration (MI)-increasing production for and consumption from a market-based economy-is drastically altering traditional ways of life and environmental conditions among indigenous Amazonian peoples. The effects of MI on the biology and health of Amazonian children and adolescents, however, remain unclear. This study examines the impact of MI on sub-adult body size and nutritional status at the population, regional and household levels among the Shuar of Amazonian Ecuador. Anthropometric data were collected between 2005-2014 from 2164 Shuar (aged 2-19 years) living in two geographic regions differing in general degree of MI. High-resolution household economic, lifestyle and dietary data were collected from a sub-sample of 631 participants. Analyses were performed to investigate relationships between body size and year of data collection, region and specific aspects of household MI. Results from temporal and regional analyses suggest that MI has a significant and overall positive impact on Shuar body size and nutritional status. However, household-level results exhibit nuanced and heterogeneous specific effects of MI underlying these overarching relationships. This study provides novel insight into the complex socio-ecological pathways linking MI, physical growth and health among the Shuar and other indigenous Amazonian populations.

  6. Body size and geographic range do not explain long term variation in fish populations: a Bayesian phylogenetic approach to testing assembly processes in stream fish assemblages.

    Directory of Open Access Journals (Sweden)

    Stephen J Jacquemin

    Full Text Available We combine evolutionary biology and community ecology to test whether two species traits, body size and geographic range, explain long term variation in local scale freshwater stream fish assemblages. Body size and geographic range are expected to influence several aspects of fish ecology, via relationships with niche breadth, dispersal, and abundance. These traits are expected to scale inversely with niche breadth or current abundance, and to scale directly with dispersal potential. However, their utility to explain long term temporal patterns in local scale abundance is not known. Comparative methods employing an existing molecular phylogeny were used to incorporate evolutionary relatedness in a test for covariation of body size and geographic range with long term (1983 - 2010 local scale population variation of fishes in West Fork White River (Indiana, USA. The Bayesian model incorporating phylogenetic uncertainty and correlated predictors indicated that neither body size nor geographic range explained significant variation in population fluctuations over a 28 year period. Phylogenetic signal data indicated that body size and geographic range were less similar among taxa than expected if trait evolution followed a purely random walk. We interpret this as evidence that local scale population variation may be influenced less by species-level traits such as body size or geographic range, and instead may be influenced more strongly by a taxon's local scale habitat and biotic assemblages.

  7. An improved maximum power point tracking method for a photovoltaic system

    Science.gov (United States)

    Ouoba, David; Fakkar, Abderrahim; El Kouari, Youssef; Dkhichi, Fayrouz; Oukarfi, Benyounes

    2016-06-01

    In this paper, an improved auto-scaling variable step-size Maximum Power Point Tracking (MPPT) method for photovoltaic (PV) system was proposed. To achieve simultaneously a fast dynamic response and stable steady-state power, a first improvement was made on the step-size scaling function of the duty cycle that controls the converter. An algorithm was secondly proposed to address wrong decision that may be made at an abrupt change of the irradiation. The proposed auto-scaling variable step-size approach was compared to some various other approaches from the literature such as: classical fixed step-size, variable step-size and a recent auto-scaling variable step-size maximum power point tracking approaches. The simulation results obtained by MATLAB/SIMULINK were given and discussed for validation.

  8. Intraspecific Allometry of Basal Metabolic Rate : Relations with Body Size, Temperature, Composition, and Circadian Phase in the Kestrel, Falco tinnunculus

    NARCIS (Netherlands)

    Daan, Serge; Masman, Dirkjan; Strijkstra, Arjen; Verhulst, Simon

    1989-01-01

    The relationship between body size and basal metabolic rate (BMR) in homeotherms has been treated in the literature primarily by comparison between species of mammals or birds. This paper focuses on the intraindividual changes in BMR when body mass (W) varies with different maintenance regimens. BMR

  9. Half-body irradiation-experience of size cases

    International Nuclear Information System (INIS)

    Andrade Carvalho, H. de; Aguilar, P.B.; Nadalin, W.; Weissberger, Y.; Scaff, L.A.M.; Lins, J.R.B.

    1990-01-01

    From 1983 to 1989, six patients with disseminated neoplastic disease non-responsive to conventional therapy were treated with palliative antialgic means. Three patients with breast cancer, two with prostate and one with Ewing's sarcoma received a total of eight treatments. The irradiation was first administered to the half-body presenting worst symptomatology. Total single dose of 800 cGy was delivered to the lower half-body and 600 cGy to the upper half-body. Pain relief was observed 24 to 48 hours after the irradiation in all patients. The haematological tolerance was good and deaths of these patients were not related to complications due to the radiation therapy. (author)

  10. Additive genetic variation in the craniofacial skeleton of baboons (genus Papio) and its relationship to body and cranial size.

    Science.gov (United States)

    Joganic, Jessica L; Willmore, Katherine E; Richtsmeier, Joan T; Weiss, Kenneth M; Mahaney, Michael C; Rogers, Jeffrey; Cheverud, James M

    2018-02-01

    Determining the genetic architecture of quantitative traits and genetic correlations among them is important for understanding morphological evolution patterns. We address two questions regarding papionin evolution: (1) what effect do body and cranial size, age, and sex have on phenotypic (V P ) and additive genetic (V A ) variation in baboon crania, and (2) how might additive genetic correlations between craniofacial traits and body mass affect morphological evolution? We use a large captive pedigreed baboon sample to estimate quantitative genetic parameters for craniofacial dimensions (EIDs). Our models include nested combinations of the covariates listed above. We also simulate the correlated response of a given EID due to selection on body mass alone. Covariates account for 1.2-91% of craniofacial V P . EID V A decreases across models as more covariates are included. The median genetic correlation estimate between each EID and body mass is 0.33. Analysis of the multivariate response to selection reveals that observed patterns of craniofacial variation in extant baboons cannot be attributed solely to correlated response to selection on body mass, particularly in males. Because a relatively large proportion of EID V A is shared with body mass variation, different methods of correcting for allometry by statistically controlling for size can alter residual V P patterns. This may conflate direct selection effects on craniofacial variation with those resulting from a correlated response to body mass selection. This shared genetic variation may partially explain how selection for increased body mass in two different papionin lineages produced remarkably similar craniofacial phenotypes. © 2017 Wiley Periodicals, Inc.

  11. Reference man and woman more fully characterized: Variations on the basis of body size, age, sex, and race

    International Nuclear Information System (INIS)

    Ellis, K.J.

    1990-01-01

    Total body neutron activation analysis, prompt-gamma neutron activation analysis, and whole body counting have been used to determine the elemental composition of the human body. The total body elements measured were potassium, nitrogen, calcium, sodium, chlorine, and phosphorus. Total body water was also determined by the dilution principle using tritiated water. Observations were made in an adult US population that totaled 1374 and ranged in age from 20 to 90 yr. The dataset for the white population consisted of 175 males and 1134 females observations; for the black population, it consisted of 30 male and 35 female observations. The variation in the elemental composition of both males and females in any 5-yr age group was large and ranged up to 20% (SD). Age-, race-, sex-, and size-specific differences were evident. When equations were developed that predicted the elemental composition of the adult on the basis of age, weight, and height, the variation in the age groups was reduced approximately in half. Age-specific mean values for the 20- to 29-yr-old white population were also compared with values for the International Commission on Radiological Protection (ICRP)-23 Reference Man. The open-quotes averageclose quotes young adult male was larger than Reference Man; the in vivo data also indicated a larger skeletal mass, more lean tissues and body water, but lower body sodium. When in vivo prediction equations were used to adjust for size differences, good agreement was found between the expected values and those for Reference Man. The ICRP-23 does not contain elemental data for Reference Woman; therefore, the in vivo data in the present study provide the first estimates of body composition for Reference Woman

  12. Energetic constraints, size gradients, and size limits in benthic marine invertebrates.

    Science.gov (United States)

    Sebens, Kenneth P

    2002-08-01

    Populations of marine benthic organisms occupy habitats with a range of physical and biological characteristics. In the intertidal zone, energetic costs increase with temperature and aerial exposure, and prey intake increases with immersion time, generating size gradients with small individuals often found at upper limits of distribution. Wave action can have similar effects, limiting feeding time or success, although certain species benefit from wave dislodgment of their prey; this also results in gradients of size and morphology. The difference between energy intake and metabolic (and/or behavioral) costs can be used to determine an energetic optimal size for individuals in such populations. Comparisons of the energetic optimal size to the maximum predicted size based on mechanical constraints, and the ensuing mortality schedule, provides a mechanism to study and explain organism size gradients in intertidal and subtidal habitats. For species where the energetic optimal size is well below the maximum size that could persist under a certain set of wave/flow conditions, it is probable that energetic constraints dominate. When the opposite is true, populations of small individuals can dominate habitats with strong dislodgment or damage probability. When the maximum size of individuals is far below either energetic optima or mechanical limits, other sources of mortality (e.g., predation) may favor energy allocation to early reproduction rather than to continued growth. Predictions based on optimal size models have been tested for a variety of intertidal and subtidal invertebrates including sea anemones, corals, and octocorals. This paper provides a review of the optimal size concept, and employs a combination of the optimal energetic size model and life history modeling approach to explore energy allocation to growth or reproduction as the optimal size is approached.

  13. Threat-level-dependent manipulation of signaled body size: dog growls' indexical cues depend on the different levels of potential danger.

    Science.gov (United States)

    Bálint, Anna; Faragó, Tamás; Miklósi, Ádám; Pongrácz, Péter

    2016-11-01

    Body size is an important feature that affects fighting ability; however, size-related parameters of agonistic vocalizations are difficult to manipulate because of anatomical constraints within the vocal production system. Rare examples of acoustic size modulation are due to specific features that enable the sender to steadily communicate exaggerated body size. However, one could argue that it would be more adaptive if senders could adjust their signaling behavior to the fighting potential of their actual opponent. So far there has been no experimental evidence for this possibility. We tested this hypothesis by exposing family dogs (Canis familiaris) to humans with potentially different fighting ability. In a within-subject experiment, 64 dogs of various breeds consecutively faced two threateningly approaching humans, either two men or two women of different stature, or a man and a woman of similar or different stature. We found that the dogs' vocal responses were affected by the gender of the threatening stranger and the dog owner's gender. Dogs with a female owner, or those dogs which came from a household where both genders were present, reacted with growls of lower values of the Pitch-Formant component (including deeper fundamental frequency and lower formant dispersion) to threatening men. Our results are the first to show that non-human animals react with dynamic alteration of acoustic parameters related to their individual indexical features (body size), depending on the level of threat in an agonistic encounter.

  14. Digestive enzymes and gut morphometric parameters of threespine stickleback (Gasterosteus aculeatus): Influence of body size and temperature.

    Science.gov (United States)

    Hani, Younes Mohamed Ismail; Marchand, Adrien; Turies, Cyril; Kerambrun, Elodie; Palluel, Olivier; Bado-Nilles, Anne; Beaudouin, Rémy; Porcher, Jean-Marc; Geffard, Alain; Dedourge-Geffard, Odile

    2018-01-01

    Determining digestive enzyme activity is of potential interest to obtain and understand valuable information about fish digestive physiology, since digestion is an elementary process of fish metabolism. We described for the first time (i) three digestive enzymes: amylase, trypsin and intestinal alkaline phosphatase (IAP), and (ii) three gut morphometric parameters: relative gut length (RGL), relative gut mass (RGM) and Zihler's index (ZI) in threespine stickleback (Gasterosteus aculeatus), and we studied the effect of temperature and body size on these parameters. When mimicking seasonal variation in temperature, body size had no effect on digestive enzyme activity. The highest levels of amylase and trypsin activity were observed at 18°C, while the highest IAP activity was recorded at 20°C. When sticklebacks were exposed to three constant temperatures (16, 18 and 21°C), a temporal effect correlated to fish growth was observed with inverse evolution patterns between amylase activity and the activities of trypsin and IAP. Temperature (in both experiments) had no effect on morphometric parameters. However, a temporal variation was recorded for both RGM (in the second experiment) and ZI (in both experiments), and the later was correlated to fish body mass.

  15. Digestive enzymes and gut morphometric parameters of threespine stickleback (Gasterosteus aculeatus): Influence of body size and temperature

    Science.gov (United States)

    Marchand, Adrien; Turies, Cyril; Kerambrun, Elodie; Palluel, Olivier; Bado-Nilles, Anne; Beaudouin, Rémy; Porcher, Jean-Marc; Geffard, Alain; Dedourge-Geffard, Odile

    2018-01-01

    Determining digestive enzyme activity is of potential interest to obtain and understand valuable information about fish digestive physiology, since digestion is an elementary process of fish metabolism. We described for the first time (i) three digestive enzymes: amylase, trypsin and intestinal alkaline phosphatase (IAP), and (ii) three gut morphometric parameters: relative gut length (RGL), relative gut mass (RGM) and Zihler’s index (ZI) in threespine stickleback (Gasterosteus aculeatus), and we studied the effect of temperature and body size on these parameters. When mimicking seasonal variation in temperature, body size had no effect on digestive enzyme activity. The highest levels of amylase and trypsin activity were observed at 18°C, while the highest IAP activity was recorded at 20°C. When sticklebacks were exposed to three constant temperatures (16, 18 and 21°C), a temporal effect correlated to fish growth was observed with inverse evolution patterns between amylase activity and the activities of trypsin and IAP. Temperature (in both experiments) had no effect on morphometric parameters. However, a temporal variation was recorded for both RGM (in the second experiment) and ZI (in both experiments), and the later was correlated to fish body mass. PMID:29614133

  16. Correlates of elemental-isotopic composition of stream fishes: the importance of land-use, species identity and body size.

    Science.gov (United States)

    Montaña, C G; Schalk, C M

    2018-04-01

    The isotopic (δ 13 C and δ 15 N) and stoichiometric (C:N:P) compositions of four fish species (Family Centrarchidae: Lepomis auritus, Lepomis cyanellus; Family Cyprinidae: Nocomis leptocephalus, Semotilus atromaculatus) were examined across four North Carolina Piedmont streams arrayed along an urbanization gradient. Both isotopic and stoichiometric composition of fishes appeared to track changes occurring in basal resource availability. Values of δ 13 C of basal resources and consumers were more enriched at the most urbanized streams. Similarly, basal resources and consumers were δ 15 N-enriched at more urbanized streams. Basal resource stoichiometry varied across streams, with periphyton being the most variable. Primary consumers stoichiometry also differed across streams. Intraspecific variation in fish stoichiometry correlated with the degree of urbanization, as the two cyprinids had higher N content and L. cyanellus had higher P content in more urbanized streams, probably due to enrichment of basal resources. Intrinsic factors, specifically species identity and body size also affected stoichiometric variation. Phosphorus (P) content increased significantly with body size in centrarchids, but not in cyprinids. These results suggest that although species identity and body size are important predictors of elemental stoichiometry, the complex nature of altered urban streams may yield imbalances in the elemental composition of consumers via their food resources. © 2018 The Fisheries Society of the British Isles.

  17. Impact of body size, nutrition and socioeconomic position in early life on the epigenome: a systematic review protocol.

    Science.gov (United States)

    Maddock, Jane; Wulaningsih, Wahyu; Hardy, Rebecca

    2017-07-05

    Body size, nutrition and socioeconomic position (SEP) in early life have been associated with a range of later life health outcomes. Epigenetic regulation is one mechanism through which these early life factors may impact later life health. The aim of this review protocol is to outline procedures to document the influence of body size, nutrition and SEP in early life on the epigenome. MEDLINE, Embase and BIOSIS will be systematically searched using pre-defined keywords. Additional studies will be identified through manual searching of reference lists. Two independent researchers will assess the eligibility and quality of each study, with disagreements being resolved through discussion or a third reviewer. Studies will be included if they have epigenetic markers measured either at the same time as, or after, the early life exposure and, have a measure of body size, nutrition or SEP in early life (up to 12 years), are in the English language and are from a sample of community-dwelling participants. This protocol will be used to collate the evidence for the effect of early life factors on the epigenome. Findings will form a component of a wider research study examining epigenetic responses to exposures in early life and over the life course and its impact on healthy ageing using data from population-based cohort studies. PROSPERO CRD42016050193.

  18. INITIAL PLANETESIMAL SIZES AND THE SIZE DISTRIBUTION OF SMALL KUIPER BELT OBJECTS

    International Nuclear Information System (INIS)

    Schlichting, Hilke E.; Fuentes, Cesar I.; Trilling, David E.

    2013-01-01

    The Kuiper Belt is a remnant from the early solar system and its size distribution contains many important constraints that can be used to test models of planet formation and collisional evolution. We show, by comparing observations with theoretical models, that the observed Kuiper Belt size distribution is well matched by coagulation models, which start with an initial planetesimal population with radii of about 1 km, and subsequent collisional evolution. We find that the observed size distribution above R ∼ 30 km is primordial, i.e., it has not been modified by collisional evolution over the age of the solar system, and that the size distribution below R ∼ 30 km has been modified by collisions and that its slope is well matched by collisional evolution models that use published strength laws. We investigate in detail the resulting size distribution of bodies ranging from 0.01 km to 30 km and find that its slope changes several times as a function of radius before approaching the expected value for an equilibrium collisional cascade of material strength dominated bodies for R ∼< 0.1 km. Compared to a single power-law size distribution that would span the whole range from 0.01 km to 30 km, we find in general a strong deficit of bodies around R ∼ 10 km and a strong excess of bodies around 2 km in radius. This deficit and excess of bodies are caused by the planetesimal size distribution left over from the runaway growth phase, which left most of the initial mass in small planetesimals while only a small fraction of the total mass is converted into large protoplanets. This excess mass in small planetesimals leaves a permanent signature in the size distribution of small bodies that is not erased after 4.5 Gyr of collisional evolution. Observations of the small Kuiper Belt Object (KBO) size distribution can therefore test if large KBOs grew as a result of runaway growth and constrained the initial planetesimal sizes. We find that results from recent KBO

  19. Genetics of human body size and shape: body proportions and indices.

    Science.gov (United States)

    Livshits, Gregory; Roset, A; Yakovenko, K; Trofimov, S; Kobyliansky, E

    2002-01-01

    The study of the genetic component in morphological variables such as body height and weight, head and chest circumference, etc. has a rather long history. However, only a few studies investigated body proportions and configuration. The major aim of the present study was to evaluate the extent of the possible genetic effects on the inter-individual variation of a number of body configuration indices amenable to clear functional interpretation. Two ethnically different pedigree samples were used in the study: (1) Turkmenians (805 individuals) from Central Asia, and (2) Chuvasha (732 individuals) from the Volga riverside, Russian Federation. To achieve the aim of the present study we proposed three new indices, which were subjected to a statistical-genetic analysis using modified version of "FISHER" software. The proposed indices were: (1) an integral index of torso volume (IND#1), an index reflecting a predisposition of body proportions to maintain a balance in a vertical position (IND#2), and an index of skeletal extremities volume (IND#3). Additionally, the first two principal factors (PF1 and PF2) obtained on 19 measurements of body length and breadth were subjected to genetic analysis. Variance decomposition analysis that simultaneously assess the contribution of gender, age, additive genetic effects and effects of environment shared by the nuclear family members, was applied to fit variation of the above three indices, and PF1 and PF2. The raw familial correlation of all study traits and in both samples showed: (1) all marital correlations did not differ significantly from zero; (2) parent-offspring and sibling correlations were all positive and statistically significant. The parameter estimates obtained in variance analyses showed that from 40% to 75% of inter-individual variation of the studied traits (adjusted for age and sex) were attributable to genetic effects. For PF1 and PF2 in both samples, and for IND#2 (in Chuvasha pedigrees), significant common sib

  20. A Virtual Reality Full Body Illusion Improves Body Image Disturbance in Anorexia Nervosa.

    Directory of Open Access Journals (Sweden)

    Anouk Keizer

    Full Text Available Patients with anorexia nervosa (AN have a persistent distorted experience of the size of their body. Previously we found that the Rubber Hand Illusion improves hand size estimation in this group. Here we investigated whether a Full Body Illusion (FBI affects body size estimation of body parts more emotionally salient than the hand. In the FBI, analogue to the RHI, participants experience ownership over an entire virtual body in VR after synchronous visuo-tactile stimulation of the actual and virtual body.We asked participants to estimate their body size (shoulders, abdomen, hips before the FBI was induced, directly after induction and at ~2 hour 45 minutes follow-up. The results showed that AN patients (N = 30 decrease the overestimation of their shoulders, abdomen and hips directly after the FBI was induced. This effect was strongest for estimates of circumference, and also observed in the asynchronous control condition of the illusion. Moreover, at follow-up, the improvements in body size estimation could still be observed in the AN group. Notably, the HC group (N = 29 also showed changes in body size estimation after the FBI, but the effect showed a different pattern than that of the AN group.The results lead us to conclude that the disturbed experience of body size in AN is flexible and can be changed, even for highly emotional body parts. As such this study offers novel starting points from which new interventions for body image disturbance in AN can be developed.

  1. Sexual Functioning and Behavior of Men with Body Dysmorphic Disorder Concerning Penis Size Compared with Men Anxious about Penis Size and with Controls: A Cohort Study

    Directory of Open Access Journals (Sweden)

    David Veale, MD, FRCPsych

    2015-09-01

    Conclusion: Men with BDD are more likely to have erectile dysfunction and less satisfaction with intercourse than controls but maintain their libido. Further research is required to develop and evaluate a psychological intervention for such men with adequate outcome measures. Veale D, Miles S, Read J, Troglia A, Wylie K, and Muir G. Sexual functioning and behavior of men with body dysmorphic disorder concerning penis size compared with men anxious about penis size and with controls: A cohort study. Sex Med 2015;3:147–155.

  2. Rates of molecular evolution in tree ferns are associated with body size, environmental temperature, and biological productivity.

    Science.gov (United States)

    Barrera-Redondo, Josué; Ramírez-Barahona, Santiago; Eguiarte, Luis E

    2018-05-01

    Variation in rates of molecular evolution (heterotachy) is a common phenomenon among plants. Although multiple theoretical models have been proposed, fundamental questions remain regarding the combined effects of ecological and morphological traits on rate heterogeneity. Here, we used tree ferns to explore the correlation between rates of molecular evolution in chloroplast DNA sequences and several morphological and environmental factors within a Bayesian framework. We revealed direct and indirect effects of body size, biological productivity, and temperature on substitution rates, where smaller tree ferns living in warmer and less productive environments tend to have faster rates of molecular evolution. In addition, we found that variation in the ratio of nonsynonymous to synonymous substitution rates (dN/dS) in the chloroplast rbcL gene was significantly correlated with ecological and morphological variables. Heterotachy in tree ferns may be influenced by effective population size associated with variation in body size and productivity. Macroevolutionary hypotheses should go beyond explaining heterotachy in terms of mutation rates and instead, should integrate population-level factors to better understand the processes affecting the tempo of evolution at the molecular level. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.

  3. CT assessment of normal splenic size in children

    International Nuclear Information System (INIS)

    Prassopoulos, P.; Cavouras, D.

    1994-01-01

    The size of the normal spleen was estimated by CT in 153 children, examined with indication unrelated to splenic disease. In each patient the width, thickness, length and volume of the spleen were calculated. Measurements were also normalized to the transverse diameter of the body of the first lumbar vertebra. The spleen underwent significant growth during the first 4 years of life and reached maximum size at the age of 13. There were no differences in splenic volume between boys and girls. Splenic thickness correlated best with normal splenic volume. The strongest correlation was also found between splenic thickness and volume in a group of 45 children with clinically evident splenomegaly. Splenic thickness, an easy-to-use measurement, may be employed in everyday practice to represent splenic volume on CT. (orig.)

  4. Influence of adult nutrition on the relationship between body size and reproductive parameters in a parasitoid wasp

    NARCIS (Netherlands)

    Bezemer, T.M.; Harvey, J.A.; Mills, N.J.

    2005-01-01

    1. An important constraint upon life-history evolution in parasitoids is the limit imposed by body size on allocation of limited metabolic resources to different fitness-related physiological functions such as reproduction and survival. 2. The influence of adult nutrition on reproductive and

  5. Body size and longitudinal body weight changes do not increase mortality in incident peritoneal dialysis patients of the Brazilian peritoneal dialysis multicenter study

    Science.gov (United States)

    da Silva Fernandes, Natália Maria; Bastos, Marcus Gomes; Franco, Márcia Regina Gianotti; Chaoubah, Alfredo; da Glória Lima, Maria; Divino-Filho, José Carolino; Qureshi, Abdul Rashid

    2013-01-01

    OBJECTIVES: To determine the roles of body size and longitudinal body weight changes in the survival of incident peritoneal dialysis patients. PATIENTS AND METHODS: Patients (n = 1911) older than 18 years of age recruited from 114 dialysis centers (Dec/2004-Oct/2007) and participating in the Brazilian Peritoneal Dialysis Multicenter Cohort Study were included. Clinical and laboratory data were collected monthly (except if the patient received a transplant, recovered renal function, was transferred to hemodialysis, or died). RESULTS: Survival analyses were performed using Kaplan-Meier survival curves and Cox proportional hazards. Total follow-up was 34 months. The mean age was 59 years (54% female). The weight category percentages were as follows: underweight: 8%; normal: 51%; overweight: 29%; and obese 12%. The multivariate model showed a higher risk of death for a body mass index 30 kg/m2. Patients were divided into five categories according to quintiles of body weight changes during the first year of dialysis: +7.1%. Patients in the lowest quintile had significantly higher mortality, whereas no negative impact was observed in the other quintiles. CONCLUSION: These findings suggest that overweight/obesity and a positive body weight variation during the first year of peritoneal dialysis therapy do not increase mortality in incident dialysis patients in Brazil. PMID:23420157

  6. Many-body localization in disorder-free systems: The importance of finite-size constraints

    Energy Technology Data Exchange (ETDEWEB)

    Papić, Z., E-mail: zpapic@perimeterinstitute.ca [School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT (United Kingdom); Perimeter Institute for Theoretical Physics, Waterloo, ON N2L 2Y5 (Canada); Stoudenmire, E. Miles [Perimeter Institute for Theoretical Physics, Waterloo, ON N2L 2Y5 (Canada); Abanin, Dmitry A. [Department of Theoretical Physics, University of Geneva, 24 quai Ernest-Ansermet, 1211 Geneva (Switzerland); Perimeter Institute for Theoretical Physics, Waterloo, ON N2L 2Y5 (Canada)

    2015-11-15

    Recently it has been suggested that many-body localization (MBL) can occur in translation-invariant systems, and candidate 1D models have been proposed. We find that such models, in contrast to MBL systems with quenched disorder, typically exhibit much more severe finite-size effects due to the presence of two or more vastly different energy scales. In a finite system, this can artificially split the density of states (DOS) into bands separated by large gaps. We argue for such models to faithfully represent the thermodynamic limit behavior, the ratio of relevant coupling must exceed a certain system-size depedent cutoff, chosen such that various bands in the DOS overlap one another. Setting the parameters this way to minimize finite-size effects, we study several translation-invariant MBL candidate models using exact diagonalization. Based on diagnostics including entanglement and local observables, we observe thermal (ergodic), rather than MBL-like behavior. Our results suggest that MBL in translation-invariant systems with two or more very different energy scales is less robust than perturbative arguments suggest, possibly pointing to the importance of non-perturbative effects which induce delocalization in the thermodynamic limit.

  7. A Virtual Reality Full Body Illusion Improves Body Image Disturbance in Anorexia Nervosa

    NARCIS (Netherlands)

    Keizer, Anouk; van Elburg, Annemarie; Helms, Rossa; Dijkerman, H Chris

    2016-01-01

    BACKGROUND: Patients with anorexia nervosa (AN) have a persistent distorted experience of the size of their body. Previously we found that the Rubber Hand Illusion improves hand size estimation in this group. Here we investigated whether a Full Body Illusion (FBI) affects body size estimation of

  8. Body size-dependent Cd accumulation in the zebra mussel Dreissena polymorpha from different routes.

    Science.gov (United States)

    Tang, Wen-Li; Evans, Douglas; Kraemer, Lisa; Zhong, Huan

    2017-02-01

    Understanding body size-dependent metal accumulation in aquatic organisms (i.e., metal allometry) is critical in interpreting biomonitoring data. While growth has received the most attention, little is known about controls of metal exposure routes on metal allometry. Here, size-dependent Cd accumulation in zebra mussels (Dreissena polymorpha) from different routes were investigated by exposing mussels to A.( 111 Cd spiked algae+ 113 Cd spiked river water) or B.( 111 Cd spiked sediments+ 113 Cd spiked river water). After exposure, 111 Cd or 113 Cd levels in mussel tissue were found to be negatively correlated with tissue weight, while Cd allometry coefficients (b values) were dependent on Cd exposure routes: -0.664 for algae, -0.241 for sediments and -0.379 for river water, compared to -0.582 in un-exposed mussels. By comparing different Cd exposure routes, we found that size-dependent Cd bioaccumulation from algae or river water could be more responsible for the overall size-dependent Cd accumulation in mussels, and the relative importance of the two sources was dependent on mussel size ranges: Cadmium obtained from algae (algae-Cd) was more important in size-dependent Cd accumulation in smaller mussels (tissue dry weight  5 mg). In contrast, sediment-Cd contributed only a small amount to Cd accumulation in zebra mussels and may have little effect on size-dependent Cd bioaccumulation. Our results suggest that size-dependent Cd accumulation in mussels could be largely affected by exposure routes, which should be considered when trying to interpret Cd biomonitoring data of zebra mussels. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Craniomandibular form and body size variation of first generation mouse hybrids: A model for hominin hybridization.

    Science.gov (United States)

    Warren, Kerryn A; Ritzman, Terrence B; Humphreys, Robyn A; Percival, Christopher J; Hallgrímsson, Benedikt; Ackermann, Rebecca Rogers

    2018-03-01

    Hybridization occurs in a number of mammalian lineages, including among primate taxa. Analyses of ancient genomes have shown that hybridization between our lineage and other archaic hominins in Eurasia occurred numerous times in the past. However, we still have limited empirical data on what a hybrid skeleton looks like, or how to spot patterns of hybridization among fossils for which there are no genetic data. Here we use experimental mouse models to supplement previous studies of primates. We characterize size and shape variation in the cranium and mandible of three wild-derived inbred mouse strains and their first generation (F 1 ) hybrids. The three parent taxa in our analysis represent lineages that diverged over approximately the same period as the human/Neanderthal/Denisovan lineages and their hybrids are variably successful in the wild. Comparisons of body size, as quantified by long bone measurements, are also presented to determine whether the identified phenotypic effects of hybridization are localized to the cranium or represent overall body size changes. The results indicate that hybrid cranial and mandibular sizes, as well as limb length, exceed that of the parent taxa in all cases. All three F 1 hybrid crosses display similar patterns of size and form variation. These results are generally consistent with earlier studies on primates and other mammals, suggesting that the effects of hybridization may be similar across very different scenarios of hybridization, including different levels of hybrid fitness. This paper serves to supplement previous studies aimed at identifying F 1 hybrids in the fossil record and to introduce further research that will explore hybrid morphologies using mice as a proxy for better understanding hybridization in the hominin fossil record. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Body frame size in school children is related to the amount of adipose tissue in different depots but not to adipose distribution.

    Science.gov (United States)

    Guzmán-de la Garza, Francisco J; González Ayala, Alejandra E; Gómez Nava, Marisol; Martínez Monsiváis, Leislie I; Salinas Martínez, Ana M; Ramírez López, Erik; Mathiew Quirós, Alvaro; Garcia Quintanilla, Francisco

    2017-09-10

    The main aim of this study was to test the hypothesis that body frame size is related to the amount of fat in different adipose tissue depots and to fat distribution in schoolchildren. Children aged between 5 and 10 years were included in this cross-sectional study (n = 565). Body frame size, adiposity markers (anthropometric, skinfolds thickness, and ultrasound measures), and fat distribution indices were analyzed. Correlation coefficients adjusted by reliability were estimated and analyzed by sex; the significance of the difference between two correlation coefficients was assessed using the Fisher z-transformation. The sample included primarily urban children; 58.6% were normal weight, 16.1% overweight, 19.6% obese, and the rest were underweight. Markers of subcutaneous adiposity, fat mass and fat-free mass, and preperitoneal adiposity showed higher and significant correlations with the sum of the biacromial + bitrochanteric diameter than with the elbow diameter, regardless of sex. The fat distribution conicity index presented significant but weak correlations; and visceral adipose tissue, hepatic steatosis, and the waist-for-hip ratio were not significantly correlated with body frame size measures. Body frame size in school children was related to the amount of adipose tissue in different depots, but not adipose distribution. More studies are needed to confirm this relationship and its importance to predict changes in visceral fat deposition during growth. © 2017 Wiley Periodicals, Inc.

  11. Elucidating mechanisms for insect body size: partial support for the oxygen-dependent induction of moulting hypothesis.

    Science.gov (United States)

    Kivelä, Sami M; Viinamäki, Sonja; Keret, Netta; Gotthard, Karl; Hohtola, Esa; Välimäki, Panu

    2018-01-25

    Body size is a key life history trait, and knowledge of its mechanistic basis is crucial in life history biology. Such knowledge is accumulating for holometabolous insects, whose growth is characterised and body size affected by moulting. According to the oxygen-dependent induction of moulting (ODIM) hypothesis, moult is induced at a critical mass at which oxygen demand of growing tissues overrides the supply from the tracheal respiratory system, which principally grows only at moults. Support for the ODIM hypothesis is controversial, partly because of a lack of proper data to explicitly test the hypothesis. The ODIM hypothesis predicts that the critical mass is positively correlated with oxygen partial pressure ( P O 2 ) and negatively with temperature. To resolve the controversy that surrounds the ODIM hypothesis, we rigorously test these predictions by exposing penultimate-instar Orthosia gothica (Lepidoptera: Noctuidae) larvae to temperature and moderate P O 2  manipulations in a factorial experiment. The relative mass increment in the focal instar increased along with increasing P O 2 , as predicted, but there was only weak suggestive evidence of the temperature effect. Probably owing to a high measurement error in the trait, the effect of P O 2  on the critical mass was sex specific; high P O 2  had a positive effect only in females, whereas low P O 2  had a negative effect only in males. Critical mass was independent of temperature. Support for the ODIM hypothesis is partial because of only suggestive evidence of a temperature effect on moulting, but the role of oxygen in moult induction seems unambiguous. The ODIM mechanism thus seems worth considering in body size analyses. © 2018. Published by The Company of Biologists Ltd.

  12. Nutrient enrichment differentially affects body sizes of primary consumers and predators in a detritus-based stream

    Science.gov (United States)

    John M. Davis; Amy D. Rosemond; Sue L. Eggert; Wyatt F. Cross; J. Bruce. Wallace

    2010-01-01

    We assessed how a 5-yr nutrient enrichment affected the responses of different size classes of primary consumers and predators in a detritus-based headwater stream. We hypothesized that alterations in detritus availability because of enrichment would decrease the abundance and biomass of large-bodied consumers. In contrast, we found that 2 yr of enrichment increased...

  13. Lean body mass as a determinant of thyroid size

    NARCIS (Netherlands)

    Wesche, M. F.; Wiersinga, W. M.; Smits, N. J.

    1998-01-01

    Males have a larger thyroid gland than females, and this has been related to the difference in body weight. In view of the different body composition of men and women, we hypothesized that lean body mass is a better determinant of thyroid volume than body weight. A cross-sectional study in an area

  14. Field size and dose distribution of electron beam

    International Nuclear Information System (INIS)

    Kang, Wee Saing

    1980-01-01

    The author concerns some relations between the field size and dose distribution of electron beams. The doses of electron beams are measured by either an ion chamber with an electrometer or by film for dosimetry. We analyzes qualitatively some relations; the energy of incident electron beams and depths of maximum dose, field sizes of electron beams and depth of maximum dose, field size and scatter factor, electron energy and scatter factor, collimator shape and scatter factor, electron energy and surface dose, field size and surface dose, field size and central axis depth dose, and field size and practical range. He meets with some results. They are that the field size of electron beam has influence on the depth of maximum dose, scatter factor, surface dose and central axis depth dose, scatter factor depends on the field size and energy of electron beam, and the shape of the collimator, and the depth of maximum dose and the surface dose depend on the energy of electron beam, but the practical range of electron beam is independent of field size

  15. Organ doses as a function of body weight for environmental gamma rays

    International Nuclear Information System (INIS)

    Saito, Kimiaki; Petoussi, N.; Zankl, M.; Veit, R.; Jacob, P.; Drexler, G.

    1991-01-01

    The organ doses for γ rays from typical environmental sources were determined with Monte Carlo calculations using anthropomorphic phantoms having different body sizes. It has been suggested that body weight is the predominant factor influencing organ doses for environmental γ rays, regardless of sex and age. A weight function expressing organ doses for environmental γ rays was introduced. This function fitted well with the organ doses calculated using the different phantoms. The function coefficients were determined mathematically with the least squares method. On the assumption that this function was applicable to organ doses for human bodies with diverse characteristics, the variances in organ doses due to race, sex, age and difference in body weight of adults were investigated. The variations of organ doses due to race and sex were not significant. Differences in body weight were found to alter organ doses by a maximum of 10% for γ rays over 100 keV, and 20% for low-energy γ rays. The doses for organs located deep inside a body, such as ovaries, differed between a newborn baby and an adult by a maximum factor of 2 to 3. For γ rays over 100 keV, the variation was within a factor of 2 for all organs. The organ doses for adolescents more than 12 years agreed within 15% with those of the average adult. (author)

  16. What prolongs a butterfly's life?: Trade-offs between dormancy, fecundity and body size.

    Directory of Open Access Journals (Sweden)

    Elena Haeler

    Full Text Available In butterflies, life span often increases only at the expense of fecundity. Prolonged life span, on the other hand, provides more opportunities for oviposition. Here, we studied the association between life span and summer dormancy in two closely related species of Palearctic Meadow Brown butterflies, the endemic Maniola nurag and the widespread M. jurtina, from two climatic provenances, a Mediterranean and a Central European site, and tested the relationships between longevity, body size and fecundity. We experimentally induced summer dormancy and hence prolonged the butterflies' life in order to study the effects of such a prolonged life. We were able to modulate longevity only in Mediterranean females by rearing them under summer photoperiodic conditions (light 16 h : dark 8 h, thereby more than doubling their natural life span, to up to 246 days. Central European individuals kept their natural average live span under all treatments, as did Mediterranean individuals under autumn treatment (light 11: dark 13. Body size only had a significant effect in the smaller species, M. nurag, where it affected the duration of dormancy and lifetime fecundity. In the larger species, M. jurtina, a prolonged adult life span did, surprisingly, not convey any fecundity loss. In M. nurag, which generally deposited fewer eggs, extended life had a fecundity cost. We conclude that Mediterranen M. jurtina butterflies have an extraordinary plasticity in aging which allows them to extend life span in response to adverse environmental conditions and relieve the time limitation on egg-laying while maintaining egg production at equal levels.

  17. Development of a modified cortisol extraction procedure for intermediately sized fish not amenable to whole-body or plasma extraction methods.

    Science.gov (United States)

    Guest, Taylor W; Blaylock, Reginald B; Evans, Andrew N

    2016-02-01

    The corticosteroid hormone cortisol is the central mediator of the teleost stress response. Therefore, the accurate quantification of cortisol in teleost fishes is a vital tool for addressing fundamental questions about an animal's physiological response to environmental stressors. Conventional steroid extraction methods using plasma or whole-body homogenates, however, are inefficient within an intermediate size range of fish that are too small for phlebotomy and too large for whole-body steroid extractions. To assess the potential effects of hatchery-induced stress on survival of fingerling hatchery-reared Spotted Seatrout (Cynoscion nebulosus), we developed a novel extraction procedure for measuring cortisol in intermediately sized fish (50-100 mm in length) that are not amenable to standard cortisol extraction methods. By excising a standardized portion of the caudal peduncle, this tissue extraction procedure allows for a small portion of a larger fish to be sampled for cortisol, while minimizing the potential interference from lipids that may be extracted using whole-body homogenization procedures. Assay precision was comparable to published plasma and whole-body extraction procedures, and cortisol quantification over a wide range of sample dilutions displayed parallelism versus assay standards. Intra-assay %CV was 8.54%, and average recovery of spiked samples was 102%. Also, tissue cortisol levels quantified using this method increase 30 min after handling stress and are significantly correlated with blood values. We conclude that this modified cortisol extraction procedure provides an excellent alternative to plasma and whole-body extraction procedures for intermediately sized fish, and will facilitate the efficient assessment of cortisol in a variety of situations ranging from basic laboratory research to industrial and field-based environmental health applications.

  18. Direct maximum parsimony phylogeny reconstruction from genotype data.

    Science.gov (United States)

    Sridhar, Srinath; Lam, Fumei; Blelloch, Guy E; Ravi, R; Schwartz, Russell

    2007-12-05

    Maximum parsimony phylogenetic tree reconstruction from genetic variation data is a fundamental problem in computational genetics with many practical applications in population genetics, whole genome analysis, and the search for genetic predictors of disease. Efficient methods are available for reconstruction of maximum parsimony trees from haplotype data, but such data are difficult to determine directly for autosomal DNA. Data more commonly is available in the form of genotypes, which consist of conflated combinations of pairs of haplotypes from homologous chromosomes. Currently, there are no general algorithms for the direct reconstruction of maximum parsimony phylogenies from genotype data. Hence phylogenetic applications for autosomal data must therefore rely on other methods for first computationally inferring haplotypes from genotypes. In this work, we develop the first practical method for computing maximum parsimony phylogenies directly from genotype data. We show that the standard practice of first inferring haplotypes from genotypes and then reconstructing a phylogeny on the haplotypes often substantially overestimates phylogeny size. As an immediate application, our method can be used to determine the minimum number of mutations required to explain a given set of observed genotypes. Phylogeny reconstruction directly from unphased data is computationally feasible for moderate-sized problem instances and can lead to substantially more accurate tree size inferences than the standard practice of treating phasing and phylogeny construction as two separate analysis stages. The difference between the approaches is particularly important for downstream applications that require a lower-bound on the number of mutations that the genetic region has undergone.

  19. Direct maximum parsimony phylogeny reconstruction from genotype data

    Directory of Open Access Journals (Sweden)

    Ravi R

    2007-12-01

    Full Text Available Abstract Background Maximum parsimony phylogenetic tree reconstruction from genetic variation data is a fundamental problem in computational genetics with many practical applications in population genetics, whole genome analysis, and the search for genetic predictors of disease. Efficient methods are available for reconstruction of maximum parsimony trees from haplotype data, but such data are difficult to determine directly for autosomal DNA. Data more commonly is available in the form of genotypes, which consist of conflated combinations of pairs of haplotypes from homologous chromosomes. Currently, there are no general algorithms for the direct reconstruction of maximum parsimony phylogenies from genotype data. Hence phylogenetic applications for autosomal data must therefore rely on other methods for first computationally inferring haplotypes from genotypes. Results In this work, we develop the first practical method for computing maximum parsimony phylogenies directly from genotype data. We show that the standard practice of first inferring haplotypes from genotypes and then reconstructing a phylogeny on the haplotypes often substantially overestimates phylogeny size. As an immediate application, our method can be used to determine the minimum number of mutations required to explain a given set of observed genotypes. Conclusion Phylogeny reconstruction directly from unphased data is computationally feasible for moderate-sized problem instances and can lead to substantially more accurate tree size inferences than the standard practice of treating phasing and phylogeny construction as two separate analysis stages. The difference between the approaches is particularly important for downstream applications that require a lower-bound on the number of mutations that the genetic region has undergone.

  20. The Maximum Resource Bin Packing Problem

    DEFF Research Database (Denmark)

    Boyar, J.; Epstein, L.; Favrholdt, L.M.

    2006-01-01

    Usually, for bin packing problems, we try to minimize the number of bins used or in the case of the dual bin packing problem, maximize the number or total size of accepted items. This paper presents results for the opposite problems, where we would like to maximize the number of bins used...... algorithms, First-Fit-Increasing and First-Fit-Decreasing for the maximum resource variant of classical bin packing. For the on-line variant, we define maximum resource variants of classical and dual bin packing. For dual bin packing, no on-line algorithm is competitive. For classical bin packing, we find...

  1. Isointegral analysis of body surface maps for the assessment of location and size of myocardial infarction

    International Nuclear Information System (INIS)

    Tonooka, I.; Kubota, I.; Watanabe, Y.; Tsuiki, K.; Yasui, S.

    1983-01-01

    To estimate the location and size of myocardial infarction (MI), an isointegral mapping technique was adopted from among various body surface electrocardiographic mapping techniques. QRS isointegral and departure maps were made in 35 patients with MI. These patients were separated into 3 groups, based on the location of MI: anterior, inferior, and anterior plus inferior. The severity and location of MI were estimated by thallium-201 myocardial perfusion imaging and the degree of scintigraphic defect was represented by a defect score. The extent of MI was expected to be reflected on the QRS isointegral maps as a distribution of negative QRS complex time-integral values. However, the extent and the location of MI were hardly detectable by the original maps. A departure mapping technique was then devised to observe the distribution of departure index on the body surface. Particular attention was given to the area where the departure index was less than -2, and this area was expected to reflect the location and size of specific abnormality of isointegral map due to MI. There were strong correlations between departure area and defect score in the anterior and inferior MI cases (r . 0.88 and r . 0.79, respectively). However, patients with anterior MI plus inferior MI showed no such correlation. Q-wave mapping was compared with QRS isointegral mapping, and QRS isointegral mapping was found to be more accurate in the estimation of the location and size of MI than Q wave mapping. Thus, QRS isointegral mapping, especially departure mapping, is more useful and convenient for detecting the location and size of MI than methods such as isopotential and Q wave mapping

  2. Chromosomal inversions effect body size and shape in different breeding resources in Drosophila buzzatii.

    Science.gov (United States)

    Fernández Iriarte, P J; Norry, F M; Hasson, E R

    2003-07-01

    The cactophilic Drosophila buzzatii provides an excellent model for the study of reaction norms across discrete environments because it breeds on rotting tissues (rots) of very different cactus species. Here we test the possible effects of second chromosome inversions on body size and shape (wing loading) across suitable natural breeding substrates. Using homokaryotypic stocks derived from several lines homozygous for four naturally occurring chromosomal inversions, we show that arrangements significantly affect size-related traits and wing loading. In addition, karyotypes show differing effects, across natural breeding resources, for wing loading. The 2st and 2jz(3) arrangements decrease and the 2j arrangement increases wing loading. For thorax length and wing loading, karyotypic correlations across host plants are slightly lower in females than in males. These results support the hypothesis that these traits have a genetic basis associated with the inversion polymorphism.

  3. Copepod community growth rates in relation to body size, temperature, and food availability in the East China Sea: a test of metabolic theory of ecology

    Directory of Open Access Journals (Sweden)

    K. Y. Lin

    2013-03-01

    Full Text Available Zooplankton play an essential role in marine food webs, and understanding how community-level growth rates of zooplankton vary in the field is critical for predicting how marine ecosystem function may vary in the face of environmental changes. Here, we used the artificial cohort method to examine the effects of temperature, body size, and chlorophyll concentration (a proxy for food on weight-specific growth rates for copepod communities in the East China Sea. Specifically, we tested the hypothesis that copepod community growth rates can be described by the metabolic theory of ecology (MTE, linking spatio-temporal variation of copepod growth rate with temperature and their body size. Our results generally agree with predictions made by the MTE and demonstrate that weight-specific growth rates of copepod communities in our study area are positively related with temperature and negatively related to body size. However, the regression coefficients of body size do not approach the theoretical predictions. Furthermore, we find that the deviation from the MTE predictions may be partly attributed to the effect of food availability (which is not explicitly accounted for by the MTE. In addition, significant difference in the coefficients of temperature and body size exists among taxonomic groups. Our results suggest that considering the effects of food limitation and taxonomy is necessary to better understand copepod growth rates under in situ conditions, and such effects on the MTE-based predictions need further investigation.

  4. Initial studies on the contributions of body size and gastrointestinal passage rates to dietary flexibility among gorillas.

    Science.gov (United States)

    Remis, M J

    2000-06-01

    Large body size has been traditionally seen as the primary dietary adaptation of gorillas, facilitating their consumption of fibrous foods (Schaller ¿1963 The Mountain Gorilla; Watts ¿1990 Int. J. Primatol. 11:21-45). Nevertheless, recent research has emphasized frugivory among western lowland gorillas, as well as the influence of habitat and seasonality on gorilla diet and behavior across subspecies (Watts ¿1990 Int. J. Primatol. 11:21-45; Tutin et al. ¿1991 Philos. R. Soc. Trans. Lond. Biol. 334:179-186; Remis ¿1994 Ph.D. Thesis, ¿1997a Am. J. Primatol. 43:87-109, ¿1997b Am. J. Primatol. 43:111-133, ¿1998 Primate Locomotion: Recent Advances, p 95-(1)108, ¿1999 Primates 40:383-396; Nishihara ¿1995 Primates 36:151-168; Goldsmith ¿1999a Int. J. Primatol. 20:1-23, Goldsmith [1999b] Nonhuman Primates, p 58-63). This study provides preliminary data to address the physiological underpinnings of dietary flexibility among gorillas, and their consumption of a broad range of fibrous and tannin-rich foods. To date, little is known about the digestive physiology of the African apes (but see Milton ¿1984 Adaptations for Foraging in Nonhuman Primates, p 249-279, Milton [1984] ¿1999Evol. Anthropol. 8:11-20; Milton and Demment ¿1988 J. Nutr. 118:1082-1088; Lambert ¿1997 Ph.D. Dissertation), although gastrointestinal morphology and proportions are roughly similar among species ( Chivers and Hladik ¿1980 J. Morphol. 166:337-386). This study provides additional experimental data on the gastrointestinal passage times of gorillas (Gorilla gorilla gorilla) fed a captive diet in a zoological park setting and discusses results in relation to field research on gorilla feeding ecology. In this study, 480 small plastic markers were fed to six captive gorillas. The mean gut retention time (MRT) of the adult gorillas in this study was 50 hr, longer than the 31 hr reported for chimpanzees fed a similar diet (Lambert ¿1997 Ph.D. Dissertation). These data suggest that gorillas

  5. Molecular Characterization of Bovine SMO Gene and Effects of Its Genetic Variations on Body Size Traits in Qinchuan Cattle (Bos taurus).

    Science.gov (United States)

    Zhang, Ya-Ran; Gui, Lin-Sheng; Li, Yao-Kun; Jiang, Bi-Jie; Wang, Hong-Cheng; Zhang, Ying-Ying; Zan, Lin-Sen

    2015-07-27

    Smoothened (Smo)-mediated Hedgehog (Hh) signaling pathway governs the patterning, morphogenesis and growth of many different regions within animal body plans. This study evaluated the effects of genetic variations of the bovine SMO gene on economically important body size traits in Chinese Qinchuan cattle. Altogether, eight single nucleotide polymorphisms (SNPs: 1-8) were identified and genotyped via direct sequencing covering most of the coding region and 3'UTR of the bovine SMO gene. Both the p.698Ser.>Ser. synonymous mutation resulted from SNP1 and the p.700Ser.>Pro. non-synonymous mutation caused by SNP2 mapped to the intracellular C-terminal tail of bovine Smo protein; the other six SNPs were non-coding variants located in the 3'UTR. The linkage disequilibrium was analyzed, and five haplotypes were discovered in 520 Qinchuan cattle. Association analyses showed that SNP2, SNP3/5, SNP4 and SNP6/7 were significantly associated with some body size traits (p 0.05). Meanwhile, cattle with wild-type combined haplotype Hap1/Hap1 had significantly (p cattle, and the wild-type haplotype Hap1 together with the wild-type alleles of these detected SNPs in the SMO gene could be used to breed cattle with superior body size traits. Therefore, our results could be helpful for marker-assisted selection in beef cattle breeding programs.

  6. Maximum power point tracking

    International Nuclear Information System (INIS)

    Enslin, J.H.R.

    1990-01-01

    A well engineered renewable remote energy system, utilizing the principal of Maximum Power Point Tracking can be m ore cost effective, has a higher reliability and can improve the quality of life in remote areas. This paper reports that a high-efficient power electronic converter, for converting the output voltage of a solar panel, or wind generator, to the required DC battery bus voltage has been realized. The converter is controlled to track the maximum power point of the input source under varying input and output parameters. Maximum power point tracking for relative small systems is achieved by maximization of the output current in a battery charging regulator, using an optimized hill-climbing, inexpensive microprocessor based algorithm. Through practical field measurements it is shown that a minimum input source saving of 15% on 3-5 kWh/day systems can easily be achieved. A total cost saving of at least 10-15% on the capital cost of these systems are achievable for relative small rating Remote Area Power Supply systems. The advantages at larger temperature variations and larger power rated systems are much higher. Other advantages include optimal sizing and system monitor and control

  7. Prenatal exposure to vitamin-D from fortified margarine and milk and body size at age 7 years

    DEFF Research Database (Denmark)

    Jensen, C B; Gamborg, M; Berentzen, T L

    2015-01-01

    BACKGROUND/OBJECTIVES: Prenatal vitamin-D deficiency may be associated with increased risk of obesity later in life. Using two national vitamin-D fortification programs as the setting for a societal experiment, we investigated whether exposure to vitamin-D from fortified margarine and low-fat milk...... during foetal life was associated with body size at 7 years of age. SUBJECTS/METHODS: Vitamin-D fortification of margarine was mandatory in Denmark from 1961 to 1985, and voluntary fortification of low-fat milk was permitted from 1972 to 1976. Using information on body mass index (BMI) Z-score at the age...

  8. Some effects of temperature, meal size, and body weight on gastric evacuation time in the dab Limanda limanda (L)

    Energy Technology Data Exchange (ETDEWEB)

    Jobling, M; Gwyther, D; Grove, D J

    1977-03-01

    Gastric emptying time in the dab, Limanda limanda, has been studied using an X-ray technique. The addition of 25% barium sulphate to a test meal did not significantly affect the transit time. Lowering the experimental temperature from 16.4 to 8.5/sup 0/C markedly decreased gastric evacuation time. An increase in ration size led to an increase in the time required to empty the stomach and also to increase the amount of food digested per unit of time. For any given ration size, expressed as percent body weight, the larger the animal the longer is the time required for evacuation of that meal. We suggest that the food intake per day, as a percentage of live body weight, will be smaller for larger L. limanda in the wild.

  9. Size-dependent plastic deformation of twinned nanopillars in body-centered cubic tungsten

    Science.gov (United States)

    Xu, Shuozhi; Startt, Jacob K.; Payne, Thomas G.; Deo, Chaitanya S.; McDowell, David L.

    2017-05-01

    Compared with face-centered cubic metals, twinned nanopillars in body-centered cubic (BCC) systems are much less explored partly due to the more complicated plastic deformation behavior and a lack of reliable interatomic potentials for the latter. In this paper, the fault energies predicted by two semi-empirical interatomic potentials in BCC tungsten (W) are first benchmarked against density functional theory calculations. Then, the more accurate potential is employed in large scale molecular dynamics simulations of tensile and compressive loading of twinned nanopillars in BCC W with different cross sectional shapes and sizes. A single crystal, a twinned crystal, and single crystalline nanopillars are also studied as references. Analyses of the stress-strain response and defect nucleation reveal a strong tension-compression asymmetry and a weak pillar size dependence in the yield strength. Under both tensile and compressive loading, plastic deformation in the twinned nanopillars is dominated by dislocation slip on {110} planes that are nucleated from the intersections between the twin boundary and the pillar surface. It is also found that the cross sectional shape of nanopillars affects the strength and the initial site of defect nucleation but not the overall stress-strain response and plastic deformation behavior.

  10. No Effect of Featural Attention on Body Size Aftereffects

    OpenAIRE

    Stephen, Ian D.; Bickersteth, Chloe; Mond, Jonathan; Stevenson, Richard J.; Brooks, Kevin R.

    2016-01-01

    Prolonged exposure to images of narrow bodies has been shown to induce a perceptual aftereffect, such that observers’ point of subjective normality (PSN) for bodies shifts toward narrower bodies. The converse effect is shown for adaptation to wide bodies. In low-level stimuli, object attention (attention directed to the object) and spatial attention (attention directed to the location of the object) have been shown to increase the magnitude of visual aftereffects, while object-based attention...

  11. Finite mixture model: A maximum likelihood estimation approach on time series data

    Science.gov (United States)

    Yen, Phoong Seuk; Ismail, Mohd Tahir; Hamzah, Firdaus Mohamad

    2014-09-01

    Recently, statistician emphasized on the fitting of finite mixture model by using maximum likelihood estimation as it provides asymptotic properties. In addition, it shows consistency properties as the sample sizes increases to infinity. This illustrated that maximum likelihood estimation is an unbiased estimator. Moreover, the estimate parameters obtained from the application of maximum likelihood estimation have smallest variance as compared to others statistical method as the sample sizes increases. Thus, maximum likelihood estimation is adopted in this paper to fit the two-component mixture model in order to explore the relationship between rubber price and exchange rate for Malaysia, Thailand, Philippines and Indonesia. Results described that there is a negative effect among rubber price and exchange rate for all selected countries.

  12. Ethnic variability in body size, proportions and composition in children aged 5 to 11 years: is ethnic-specific calibration of bioelectrical impedance required?

    Directory of Open Access Journals (Sweden)

    Simon Lee

    Full Text Available Bioelectrical Impedance Analysis (BIA has the potential to be used widely as a method of assessing body fatness and composition, both in clinical and community settings. BIA provides bioelectrical properties, such as whole-body impedance which ideally needs to be calibrated against a gold-standard method in order to provide accurate estimates of fat-free mass. UK studies in older children and adolescents have shown that, when used in multi-ethnic populations, calibration equations need to include ethnic-specific terms, but whether this holds true for younger children remains to be elucidated. The aims of this study were to examine ethnic differences in body size, proportions and composition in children aged 5 to 11 years, and to establish the extent to which such differences could influence BIA calibration.In a multi-ethnic population of 2171 London primary school-children (47% boys; 34% White, 29% Black African/Caribbean, 25% South Asian, 12% Other detailed anthropometric measurements were performed and ethnic differences in body size and proportion were assessed. Ethnic differences in fat-free mass, derived by deuterium dilution, were further evaluated in a subsample of the population (n = 698. Multiple linear regression models were used to calibrate BIA against deuterium dilution.In children < 11 years of age, Black African/Caribbean children were significantly taller, heavier and had larger body size than children of other ethnicities. They also had larger waist and limb girths and relatively longer legs. Despite these differences, ethnic-specific terms did not contribute significantly to the BIA calibration equation (Fat-free mass = 1.12+0.71*(height2/impedance+0.18*weight.Although clear ethnic differences in body size, proportions and composition were evident in this population of young children aged 5 to 11 years, an ethnic-specific BIA calibration equation was not required.

  13. Ontogenetic shifts in intraguild predation on thrips by phytoseiid mites: the relevance of body size and diet specialization.

    Science.gov (United States)

    Walzer, A; Paulus, H F; Schausberger, P

    2004-12-01

    In greenhouse agroecosystems, a guild of spider mite predators may consist of the oligophagous predatory mite Phytoseiulus persimilis Athias-Henriot, the polyphagous predatory mite Neoseiulus californicus McGregor (both Acari: Phytoseiidae) and the primarily herbivorous but facultatively predatory western flower thrips Frankliniella occidentalis Pergande (Thysanoptera: Thripidae). Diet-specialization and the predator body size relative to prey are crucial factors in predation on F. occidentalis by P. persimilis and N. californicus. Here, it was tested whether the relevance of these factors changes during predator ontogeny. First, the predator (protonymphs and adult females of P. persimilis and N. californicus): prey (F. occidentalis first instars) body size ratios were measured. Second, the aggressiveness of P. persimilis and N. californicus towards F. occidentalis was assessed. Third, survival, development and oviposition of P. persimilis and N. californicus with F. occidentalis prey was determined. The body size ranking was P. persimilis females > N. californicus females > P. persimilis protonymphs > N. californicus protonymphs. Neoseiulus californicus females were the most aggressive predators, followed by highly aggressive N. californicus protonymphs and moderately aggressive P. persimilis protonymphs. Phytoseiulus persimilis females did not attack thrips. Frankliniella occidentalis larvae are an alternative prey for juvenile N. californicus and P. persimilis, enabling them to reach adulthood. Females of N. californicus but not P. persimilis sustained egg production with thrips prey. Within the guild studied here, N. californicus females are the most harmful predators for F. occidentalis larvae, followed by N. californicus and P. persimilis juveniles. Phytoseiulus persimilis females are harmless to F. occidentalis.

  14. Perceived face size in healthy adults.

    Science.gov (United States)

    D'Amour, Sarah; Harris, Laurence R

    2017-01-01

    Perceptual body size distortions have traditionally been studied using subjective, qualitative measures that assess only one type of body representation-the conscious body image. Previous research on perceived body size has typically focused on measuring distortions of the entire body and has tended to overlook the face. Here, we present a novel psychophysical method for determining perceived body size that taps into implicit body representation. Using a two-alternative forced choice (2AFC), participants were sequentially shown two life-size images of their own face, viewed upright, upside down, or tilted 90°. In one interval, the width or length dimension was varied, while the other interval contained an undistorted image. Participants reported which image most closely matched their own face. An adaptive staircase adjusted the distorted image to hone in on the image that was equally likely to be judged as matching their perceived face as the accurate image. When viewed upright or upside down, face width was overestimated and length underestimated, whereas perception was accurate for the on-side views. These results provide the first psychophysically robust measurements of how accurately healthy participants perceive the size of their face, revealing distortions of the implicit body representation independent of the conscious body image.

  15. Relationship between oral status and maximum bite force in preschool children

    Directory of Open Access Journals (Sweden)

    Ching-Ming Su

    2009-03-01

    Conclusion: By combining the results of this study, it was concluded that associations of bite force with factors like age, maximum mouth opening and the number of teeth in contact were clearer than for other variables such as body height, body weight, occlusal pattern, and tooth decay or fillings.

  16. Mesoscale spatiotemporal variability in a complex host-parasite system influenced by intermediate host body size.

    Science.gov (United States)

    Rodríguez, Sara M; Valdivia, Nelson

    2017-01-01

    Parasites are essential components of natural communities, but the factors that generate skewed distributions of parasite occurrences and abundances across host populations are not well understood. Here, we analyse at a seascape scale the spatiotemporal relationships of parasite exposure and host body-size with the proportion of infected hosts (i.e., prevalence) and aggregation of parasite burden across ca. 150 km of the coast and over 22 months. We predicted that the effects of parasite exposure on prevalence and aggregation are dependent on host body-sizes. We used an indirect host-parasite interaction in which migratory seagulls, sandy-shore molecrabs, and an acanthocephalan worm constitute the definitive hosts, intermediate hosts, and endoparasite, respectively. In such complex systems, increments in the abundance of definitive hosts imply increments in intermediate hosts' exposure to the parasite's dispersive stages. Linear mixed-effects models showed a significant, albeit highly variable, positive relationship between seagull density and prevalence. This relationship was stronger for small (cephalothorax length >15 mm) than large molecrabs (analysis of the variance-to-mean ratio of per capita parasite burden showed no relationship between seagull density and mean parasite aggregation across host populations. However, the amount of unexplained variability in aggregation was strikingly higher in larger than smaller intermediate hosts. This unexplained variability was driven by a decrease in the mean-variance scaling in heavily infected large molecrabs. These results show complex interdependencies between extrinsic and intrinsic population attributes on the structure of host-parasite interactions. We suggest that parasite accumulation-a characteristic of indirect host-parasite interactions-and subsequent increasing mortality rates over ontogeny underpin size-dependent host-parasite dynamics.

  17. The Analysis of Three-Body Contact Temperature under the Different Third Particle Size, Density, and Value of Friction

    Directory of Open Access Journals (Sweden)

    Horng-Wen Wu

    2017-10-01

    Full Text Available Recently, many studies have investigated the friction, wear, and temperature characteristics of the interface between two relative movements. Such analyses often set the coefficient of friction as a fixed value and are analyzed in cases of two-body contact; however, the interface is often a three-body contact and the coefficient of friction varies depending on the operating conditions. This is a significant error in the analysis of contact characteristics, therefore, in this study, the actual interface and the change of the coefficient of friction were analyzed based on three-body micro-contact theory where the contact temperature was also analyzed and the difference between the generally assumed values were compared. The results showed that under three-body contact, the coefficient of total friction increased with an increase in particle size; and at a different particle size and area density of particles, the surface contact temperature increased with the plasticity index and load increases, and the particle contact temperature increased with the increasing particle size. The surface temperature rise was mainly affected by the ratio of the average temperature between surface 1 and surface 2 to the multiplication between the 100th root of the area density of particles and the square root of the equivalent surface roughness (Ts1s2_ave*/ηa0.01σ0.5 and the ratio of the 10th root of the mean particle diameter to the 100th root of the equivalent surface roughness (xa0.1/σ0.001. Particle temperature was mainly affected by the ratio of the 10th root of the mean particle diameter to the 100th root of the equivalent surface roughness (xa0.1/σ0.001 and the area density of particles ηa. Our study indicated that when the contact of surface with surface and the contact of the particles with the surface, the resulting heat balance was assigned to the particles and the surface in a three-body contact situation. Under this contact behavior, it could avoid

  18. Asymmetric competition, body size, and foraging tactics: testing the ideal free distribution in two competing fish species

    Czech Academy of Sciences Publication Activity Database

    Berec, M.; Křivan, Vlastimil; Berec, Luděk

    2006-01-01

    Roč. 8, č. 5 (2006), s. 929-942 ISSN 1522-0613 R&D Projects: GA AV ČR(CZ) IAA6007303; GA AV ČR IAA100070601 Institutional research plan: CEZ:AV0Z50070508 Keywords : allopatric species * asymmetric competititon * body size Subject RIV: EH - Ecology, Behaviour Impact factor: 1.785, year: 2006

  19. A comparison of larval density and low dose rate irradiation effects on amphibian body size at metamorphosis

    Energy Technology Data Exchange (ETDEWEB)

    Stark, K.; Scott, D.E.; Tsyusko, O.; Coughlin, D.P.; Hinton, T.G.

    2008-07-01

    Amphibian larvae undergo substantial morphological and physiological changes as they metamorphose into adults. This period of rapid change and enhanced cell division could increase their sensitivity to external stressors. In this study, we were interested in possible differences between natural and anthropogenic stressor effects during the period just prior to metamorphosis. We studied this by exposing late-stage Scaphiopus holbrookii tadpoles in different larval densities to four irradiation dose rates (0.13, 2.4, 21, and 222 mGy d-1) from 137Cs. Life history traits important for population dynamics, such as body size at metamorphosis and development rate, were measured. Results suggest that the ecological factor larval density had a much more profound effect on juvenile body size at metamorphosis than low-dose rate radiation. The development rate measured as age at metamorphosis was not effected by the two stressors. Radiation had no impact on the endpoints we measured; giving credence to the IAEA guidance that a dose rate smaller than 10 mGy d-1 is protective of aquatic biota. (author)(tk)

  20. A comparison of larval density and low dose rate irradiation effects on amphibian body size at metamorphosis

    International Nuclear Information System (INIS)

    Stark, K.; Scott, D.E.; Tsyusko, O.; Coughlin, D.P.; Hinton, T.G.

    2008-01-01

    Amphibian larvae undergo substantial morphological and physiological changes as they metamorphose into adults. This period of rapid change and enhanced cell division could increase their sensitivity to external stressors. In this study, we were interested in possible differences between natural and anthropogenic stressor effects during the period just prior to metamorphosis. We studied this by exposing late-stage Scaphiopus holbrookii tadpoles in different larval densities to four irradiation dose rates (0.13, 2.4, 21, and 222 mGy d -1 ) from 137 Cs. Life history traits important for population dynamics, such as body size at metamorphosis and development rate, were measured. Results suggest that the ecological factor larval density had a much more profound effect on juvenile body size at metamorphosis than low-dose rate radiation. The development rate measured as age at metamorphosis was not effected by the two stressors. Radiation had no impact on the endpoints we measured; giving credence to the IAEA guidance that a dose rate smaller than 10 mGy d -1 is protective of aquatic biota. (author)(tk)