WorldWideScience

Sample records for maximum biosorption capacity

  1. Chemical treatment of olive pomace: effect on acid-basic properties and metal biosorption capacity.

    Science.gov (United States)

    Martín-Lara, M A; Pagnanelli, F; Mainelli, S; Calero, M; Toro, L

    2008-08-15

    In this study, olive pomace, an agricultural waste that is very abundant in Mediterranean area, was modified by two chemical treatments in order to improve its biosorption capacity. Potentiometric titrations and IR analyses were used to characterise untreated olive pomace (OP), olive pomace treated by phosphoric acid (PAOP) and treated by hydrogen peroxide (HPOP). Acid-base properties of all investigated biosorbents were characterised by two main kinds of active sites, whose nature and concentration were determined by a mechanistic model assuming continuous distribution for the proton affinity constants. Titration modelling denoted that all investigated biosorbents (OP, PAOP and HPOP) were characterised by the same kinds of active sites (carboxylic and phenolic), but with different total concentrations with PAOP richer than OP and HPOP. Single metal equilibrium studies in batch reactors were carried out to determine the capacity of these sorbents for copper and cadmium ions at constant pH. Experimental data were analysed and compared using the Langmuir isotherm. The order of maximum uptake capacity of copper and cadmium ions on different biosorbents was PAOP>HPOP>OP. The maximum adsorption capacity of copper and cadmium, was obtained as 0.48 and 0.10 mmol/g, respectively, for PAOP. Metal biosorption tests in presence of Na(+) in solution were also carried out in order to evaluate the effect of chemical treatment on biomass selectivity. These data showed that PAOP is more selective for cadmium than the other sorbents, while similar selectivity was observed for copper.

  2. Chemical treatment of olive pomace: Effect on acid-basic properties and metal biosorption capacity

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Lara, M.A. [Departamento de Ingenieria Quimica, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, 18071 Granada (Spain)], E-mail: marianml@ugr.es; Pagnanelli, F. [Dipartimento di Chimica, Facolta di S.M.F.N., Universita degli Studi ' La Sapienza' , P.le A. Moro, 5, 00185 Roma (Italy)], E-mail: francesca.pagnanelli@uniroma1.it; Mainelli, S. [Dipartimento di Chimica, Facolta di S.M.F.N., Universita degli Studi ' La Sapienza' , P.le A. Moro, 5, 00185 Roma (Italy); Calero, M. [Departamento de Ingenieria Quimica, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, 18071 Granada (Spain); Toro, L. [Dipartimento di Chimica, Facolta di S.M.F.N., Universita degli Studi ' La Sapienza' , P.le A. Moro, 5, 00185 Roma (Italy)

    2008-08-15

    In this study, olive pomace, an agricultural waste that is very abundant in Mediterranean area, was modified by two chemical treatments in order to improve its biosorption capacity. Potentiometric titrations and IR analyses were used to characterise untreated olive pomace (OP), olive pomace treated by phosphoric acid (PAOP) and treated by hydrogen peroxide (HPOP). Acid-base properties of all investigated biosorbents were characterised by two main kinds of active sites, whose nature and concentration were determined by a mechanistic model assuming continuous distribution for the proton affinity constants. Titration modelling denoted that all investigated biosorbents (OP, PAOP and HPOP) were characterised by the same kinds of active sites (carboxylic and phenolic), but with different total concentrations with PAOP richer than OP and HPOP. Single metal equilibrium studies in batch reactors were carried out to determine the capacity of these sorbents for copper and cadmium ions at constant pH. Experimental data were analysed and compared using the Langmuir isotherm. The order of maximum uptake capacity of copper and cadmium ions on different biosorbents was PAOP > HPOP > OP. The maximum adsorption capacity of copper and cadmium, was obtained as 0.48 and 0.10 mmol/g, respectively, for PAOP. Metal biosorption tests in presence of Na{sup +} in solution were also carried out in order to evaluate the effect of chemical treatment on biomass selectivity. These data showed that PAOP is more selective for cadmium than the other sorbents, while similar selectivity was observed for copper.

  3. Biosorption of fluoride ion from water using the seeds of the ...

    African Journals Online (AJOL)

    Biosorption of fluoride ion from water using the seeds of the cabbage tree ( Moringa ... The maximum fluoride sorption capacity was found to be 1.32 mg.g-1 of dry weight ... Key words: Biosorption, chemisorption, desorption, fluoride, isotherm, ...

  4. Biosorption of C.I. Direct Blue 199 from aqueous solution by nonviable Aspergillus niger

    International Nuclear Information System (INIS)

    Xiong Xiaojing; Meng Xuejiao; Zheng Tianling

    2010-01-01

    The capacity and mechanism with which nonviable Aspergillus niger removed the textile dye, C.I. Direct Blue 199, from aqueous solution was investigated using different parameters, such as initial dye concentration, pH and temperature. In batch experiments, the biosorption capacity increased with decrease in pH, and the maximum dye uptake capacity of the biosorbent was 29.96 mg g -1 at 400 mg L -1 dye concentration and 45 deg. C. The Langmuir and Freundlich models were able to describe the biosorption equilibrium of C.I. Direct Blue 199 onto the fungal biomass. Biosorption followed a pseudo-second order kinetic model with high correlation coefficients (r 2 > 0.99). Thermodynamic studies revealed that the biosorption process was successful, spontaneous and endothermic in nature.

  5. Biosorption of uranium by cross-linked and alginate immobilized residual biomass from distillery spent wash

    International Nuclear Information System (INIS)

    Bustard, M.; McHale, A.P.

    1997-01-01

    Residual biomass from a whiskey distillery was examined for its ability to function as a biosorbent for uranium. Biomass recovered and lyophilised exhibited a maximum biosorption capacity of 165-170 mg uranium/g dry weight biomass at 15 C. With a view towards the development of continuous or semi-continuous flow biosorption processes it was decided to immobilize the material by (1) cross-linking with formaldehyde and (2) introducing that material into alginate matrices. Cross-linking the recovered biomass resulted in the formation of a biosorbent preparation with a maximum biosorption capacity of 185-190 mg/g dry weight biomass at 15 C. Following immobilization of biomass in alginate matrices it was found that the total amount of uranium bound to the matrix did not change with increasing amounts of biomass immobilized. It was found however, that the proportion of uranium bound to the biomass within the alginate-biomass matrix increased with increasing biomass concentration. Further analysis of these preparations demonstrated that the alginate-biomass matrix had a maximum biosorption capacity of 220 mg uranium/g dry weight of the matrix, even at low concentrations of biomass. (orig.). With 3 figs., 1 tab

  6. Biosorption of uranium by cross-linked and alginate immobilized residual biomass from distillery spent wash

    Energy Technology Data Exchange (ETDEWEB)

    Bustard, M. [Biotechnology Research Group, School of Applied Biological and Chemical Sciences, University of Ulster, Coleraine (United Kingdom); McHale, A.P. [Biotechnology Research Group, School of Applied Biological and Chemical Sciences, University of Ulster, Coleraine (United Kingdom)

    1997-08-01

    Residual biomass from a whiskey distillery was examined for its ability to function as a biosorbent for uranium. Biomass recovered and lyophilised exhibited a maximum biosorption capacity of 165-170 mg uranium/g dry weight biomass at 15 C. With a view towards the development of continuous or semi-continuous flow biosorption processes it was decided to immobilize the material by (1) cross-linking with formaldehyde and (2) introducing that material into alginate matrices. Cross-linking the recovered biomass resulted in the formation of a biosorbent preparation with a maximum biosorption capacity of 185-190 mg/g dry weight biomass at 15 C. Following immobilization of biomass in alginate matrices it was found that the total amount of uranium bound to the matrix did not change with increasing amounts of biomass immobilized. It was found however, that the proportion of uranium bound to the biomass within the alginate-biomass matrix increased with increasing biomass concentration. Further analysis of these preparations demonstrated that the alginate-biomass matrix had a maximum biosorption capacity of 220 mg uranium/g dry weight of the matrix, even at low concentrations of biomass. (orig.). With 3 figs., 1 tab.

  7. Biosorption of C.I. Direct Blue 199 from aqueous solution by nonviable Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Xiong Xiaojing, E-mail: xiongxj@xmu.edu.cn [Environmental Science Research Center, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005 (China); Meng Xuejiao [Environmental Science Research Center, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005 (China); Zheng Tianling [Environmental Science Research Center, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005 (China); Key Laboratory of Ministry of Education for Coast and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361005 (China)

    2010-03-15

    The capacity and mechanism with which nonviable Aspergillus niger removed the textile dye, C.I. Direct Blue 199, from aqueous solution was investigated using different parameters, such as initial dye concentration, pH and temperature. In batch experiments, the biosorption capacity increased with decrease in pH, and the maximum dye uptake capacity of the biosorbent was 29.96 mg g{sup -1} at 400 mg L{sup -1} dye concentration and 45 deg. C. The Langmuir and Freundlich models were able to describe the biosorption equilibrium of C.I. Direct Blue 199 onto the fungal biomass. Biosorption followed a pseudo-second order kinetic model with high correlation coefficients (r{sup 2} > 0.99). Thermodynamic studies revealed that the biosorption process was successful, spontaneous and endothermic in nature.

  8. Biosorption of 241Am by Candida sp

    International Nuclear Information System (INIS)

    Luo Shunzhong; Zhang Taiming; Liu Ning; Yang Yuanyou; Jin Jiannan; Hua Xinfeng

    2003-01-01

    The biosorption of radionuclide 241 Am from solutions by Candida sp., and the influences of experimental conditions on the adsorption were studied. The results showed that the adsorption equilibrium was achieved within 4h and the optimum pH=2. No significant differences on 241 Am biosorption were observed at 10-45 degree C, or challenged with Au 3+ or Ag + , even 1500 times or 4500 times over 241 Am, respectively. The adsorption rate could reach 97.8% by dry Candida sp. of 0.82 g/L in 241 Am solutions (pH=2) of 5.6-111 MBq/L (44.04-873.0 μg/L) (C 0 ), with maximum adsorption capacity (W) of 63.5 MBq/g (501.8 μg/g), implying that the removal of 241 Am by Candida sp. from solutions was feasible. The relationship between activities (C 0 ) and adsorption capacities (W) of 241 Am indicated that the biosorption process could be described by Langmuir adsorption isotherm

  9. Biosorption of gold from computer microprocessor leachate solutions using chitin.

    Science.gov (United States)

    Côrtes, Letícia N; Tanabe, Eduardo H; Bertuol, Daniel A; Dotto, Guilherme L

    2015-11-01

    The biosorption of gold from discarded computer microprocessor (DCM) leachate solutions was studied using chitin as a biosorbent. The DCM components were leached with thiourea solutions, and two procedures were tested for recovery of gold from the leachates: (1) biosorption and (2) precipitation followed by biosorption. For each procedure, the biosorption was evaluated considering kinetic, equilibrium, and thermodynamic aspects. The general order model was able to represent the kinetic behavior, and the equilibrium was well represented by the BET model. The maximum biosorption capacities were around 35 mg g(-1) for both procedures. The biosorption of gold on chitin was a spontaneous, favorable, and exothermic process. It was found that precipitation followed by biosorption resulted in the best gold recovery, because other species were removed from the leachate solution in the precipitation step. This method enabled about 80% of the gold to be recovered, using 20 g L(-1) of chitin at 298 K for 4 h. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Equilibrium and thermodynamics of azo dyes biosorption onto Spirulina platensis

    Directory of Open Access Journals (Sweden)

    G. L. Dotto

    2013-03-01

    Full Text Available The equilibrium and thermodynamics of azo dye (tartrazine and allura red biosorption onto Spirulina platensis biomass were investigated. The equilibrium curves were obtained at 298, 308, 318 and 328 K, and four isotherm models were fitted the experimental data. Biosorption thermodynamic parameters (ΔG, ΔH and ΔS were estimated. The results showed that the biosorption was favored by a temperature decrease. For both dyes, the Sips model was the best to represent the equilibrium experimental data (R²>0.99 and ARE<5.0% and the maximum biosorption capacities were 363.2 and 468.7 mg g-1 for tartrazine and allura red, respectively, obtained at 298 K. The negative values of ΔG and ΔH showed that the biosorption of both dyes was spontaneous, favorable and exothermic. The positive values of ΔS suggested that the system disorder increases during the biosorption process.

  11. Biosorption of americium-241 by Candida sp

    International Nuclear Information System (INIS)

    Luo Shunzhong; Zhang Taiming; Liu Ning; Yang Yuanyou; Jin Jiannan; Liao Jiali

    2003-01-01

    As an important radioisotope in nuclear industry and other fields, americium-241 is one of the most serious contamination concerns duo to its high toxicity and long half-life. In this experiment, the biosorption of 241 Am from solution by Candida sp., and the effects of various experimental conditions on the adsorption were investigated. The preliminary results showed that the adsorption of 241 Am by Candida sp. was efficient. 241 Am could be removed by Candida sp. of 0.82 g/L (dry weight) from 241 Am solutions of 5.6-111 MBq/L (44.3-877.2 μg/L)(C 0 ), with maximum adsorption rate (R) of 98% and maximum adsorption capacities (W) of 63.5 MBq/g biomass (dry weight) (501.8 μg/g). The biosorption equilibrium was achieved within 4 hour and the optimum pH was pH = 2. No significant differences on 241 Am adsorption were observed at 10 C-45 C, or in solutions containing Au 3+ or Ag + , even 1500 times or 4500 times above the 241 Am concentration, respectively. The relationship between concentrations and adsorption capacities of 241 Am indicated the biosorption process should be described by a Langmuir adsorption isotherm. (orig.)

  12. Biosorption of heavy metal ions from aqueous solution by red macroalgae.

    Science.gov (United States)

    Ibrahim, Wael M

    2011-09-15

    Biosorption is an effective process for the removal and recovery of heavy metal ions from aqueous solutions. The biomass of marine algae has been reported to have high biosorption capacities for a number of heavy metal ions. In this study, four species of red seaweeds Corallina mediterranea, Galaxaura oblongata, Jania rubens and Pterocladia capillacea were examined to remove Co(II), Cd(II), Cr(III) and Pb(II) ions from aqueous solution. The experimental parameters that affect the biosorption process such as pH, contact time and biomass dosage were studied. The maximum biosorption capacity of metal ions was 105.2mg/g at biomass dosage 10 g/L, pH 5 and contact time 60 min. The biosorption efficiency of algal biomass for the removal of heavy metal ions from industrial wastewater was evaluated for two successive cycles. Galaxaura oblongata biomass was relatively more efficient to remove metal ions with mean biosorption efficiency of 84%. This study demonstrated that these seaweeds constitute a promising, efficient, cheap and biodegradable sorbent biomaterial for lowering the heavy metal pollution in the environment. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Reuse of waste beer yeast sludge for biosorptive decolorization of reactive blue 49 from aqueous solution.

    Science.gov (United States)

    Wang, Baoe; Guo, Xiu

    2011-06-01

    Reactive blue 49 was removed from aqueous solution by biosorption using powder waste sludge composed of Saccharomyces cerevisiae from the beer-brewing industry. The effect of initial pH, temperature and the biosorption thermodynamics, equilibrium, kinetics was investigated in this study. It was found that the biosorption capacity was at maximum at initial pH 3, that the effect of temperature on biosorption of reactive blue 49 was only slight in relation to the large biosorption capacity (25°C, 361 mg g(-1)) according as the biosorption capacity decreased only 43 mg g(-1) at the temperature increased from 25 to 50°C. The biosorption was spontaneous, exothermic in nature and the dye molecules movements decreased slightly in random at the solid/liquid interface during the biosorption of dye on biosorbents. The biosorption equilibrium data could be described by Freundich isotherm model. The biosorption rates were found to be consistent with a pseudo-second-order kinetics model. The functional group interaction analysis between waste beer yeast sludge and reactive blue 49 by the aid of Fourier transform infrared (abbr. FTIR) spectroscopy indicated that amino components involved in protein participated in the biosorption process, which may be achieved by the mutual electrostatic adsorption process between the positively charged amino groups in waste beer yeast sludge with negatively charged sulfonic groups in reactive blue 49.

  14. Biosorption kinetics of Cd (II, Cr (III and Pb (II in aqueous solutions by olive stone

    Directory of Open Access Journals (Sweden)

    M. Calero

    2009-06-01

    Full Text Available A by-product from olive oil production, olive stone, was investigated for the removal of Cd (II, Cr (III and Pb (II from aqueous solutions. The kinetics of biosorption are studied, analyzing the effect of the initial concentration of metal and temperature. Pseudo-first-order, pseudo-second-order, Elovich and intraparticle diffusion models have been used to represent the kinetics of the process and obtain the main kinetic parameters. The results show that the pseudo-second order model is the one that best describes the biosorption of the three metal ions for all the range of experimental conditions investigated. For the three metal ions, the maximum biosoption capacity and the initial biosorption rate increase when the initial metal concentration rises. However, the kinetic constant decreases when the initial metal concentration increases. The temperature effect on biosorption capacity for Cd (II and Cr (III is less significant; however, for Pb (II the effect of temperature is more important, especially when temperature rises from 25 to 40ºC. The biosorption capacity at mmol/g of olive stone changes in the following order: Cr>Cd>Pb. Thus, for an initial concentration of 220 mg/ℓ, a maximum sorption capacity of 0.079 mmol/g for Cr (III, 0.065 mmol/g for Cd (II and 0.028 mmol/g for Pb (II has been obtained.

  15. Insight into biosorption equilibrium, kinetics and thermodynamics of crystal violet onto Ananas comosus (pineapple) leaf powder

    Science.gov (United States)

    Chakraborty, Sagnik; Chowdhury, Shamik; Saha, Papita Das

    2012-06-01

    Biosorption performance of pineapple leaf powder (PLP) for removal of crystal violet (CV) from its aqueous solutions was investigated. To this end, the influence of operational parameters such as pH, biosorbent dose, initial dye concentration and temperature were studied employing a batch experimental setup. The biosorption process followed the Langmuir isotherm model with high correlation coefficients ( R 2 > 0.99) at different temperatures. The maximum monolayer biosorption capacity was found to be 78.22 mg g-1 at 293 K. The kinetic data conformed to the pseudo-second-order kinetic model. The activation energy of the system was calculated as 58.96 kJ mol- 1 , indicating chemisorption nature of the ongoing biosorption process. A thermodynamic study showed spontaneous and exothermic nature of the biosorption process. Owing to its low cost and high dye uptake capacity, PLP has potential for application as biosorbent for removal of CV from aqueous solutions.

  16. Effect of pH on cadmium biosorption by coconut copra meal

    International Nuclear Information System (INIS)

    Ofomaja, Augustine E.; Ho, Y.-S.

    2007-01-01

    Biosorption of cadmium ion by coconut copra meal, an agricultural waste product was investigated as a function of initial solution pH and initial cadmium concentration. Pseudo-second-order kinetic analyses were performed to determine the rate constant of biosorption, the equilibrium capacity, and initial biosorption rate. Cadmium biosorption by copra meal was found to be dependent on the initial solution pH and initial cadmium concentration. Ion exchange occurred in the initial biosorption period. In addition, mathematical relationships were drawn to relate the change in the solution hydrogen ion concentration with equilibrium biosorption capacity, initial cadmium concentration, and equilibrium biosorption capacity

  17. Biosorption of malachite green from aqueous solutions by Pleurotus ostreatus using Taguchi method

    Science.gov (United States)

    2014-01-01

    Dyes released into the environment have been posing a serious threat to natural ecosystems and aquatic life due to presence of heat, light, chemical and other exposures stable. In this study, the Pleurotus ostreatus (a macro-fungus) was used as a new biosorbent to study the biosorption of hazardous malachite green (MG) from aqueous solutions. The effective disposal of P. ostreatus is a meaningful work for environmental protection and maximum utilization of agricultural residues. The operational parameters such as biosorbent dose, pH, and ionic strength were investigated in a series of batch studies at 25°C. Freundlich isotherm model was described well for the biosorption equilibrium data. The biosorption process followed the pseudo-second-order kinetic model. Taguchi method was used to simplify the experimental number for determining the significance of factors and the optimum levels of experimental factors for MG biosorption. Biosorbent dose and initial MG concentration had significant influences on the percent removal and biosorption capacity. The highest percent removal reached 89.58% and the largest biosorption capacity reached 32.33 mg/g. The Fourier transform infrared spectroscopy (FTIR) showed that the functional groups such as, carboxyl, hydroxyl, amino and phosphonate groups on the biosorbent surface could be the potential adsorption sites for MG biosorption. P. ostreatus can be considered as an alternative biosorbent for the removal of dyes from aqueous solutions. PMID:24620852

  18. Biosorption of Phenolic Compounds from Aqueous Solutions using Pine (Pinus densiflora Sieb Bark Powder

    Directory of Open Access Journals (Sweden)

    Siva Kumar Nadavala

    2014-07-01

    Full Text Available The present study describes the development of a new bioadsorbent from lignocellulosic wastes of agricultural origin. The biosorption capacity of an agricultural solid waste, pine bark (Pinus densiflora Sieb., to remove phenolic compounds (phenol, 2-chlorophenol (2-CPh, and 4- chlorophenol (4-CPh from aqueous solutions under batch equilibrium conditions was investigated. The morphological characteristics of the biosorbent were evaluated by BET surface area analysis, Fourier transform infrared spectroscopy (FTIR, elemental analysis, an X-ray diffractometer (XRD, and a scanning electron microscope (SEM. Batch experiments were conducted to investigate the effect of initial pH (2 to 10, contact time, initial concentration of adsorbate (50 to 200 mg/L, and biosorbent dosage. The biosorption of phenolic compounds decreased with increasing pH, and the highest biosorption capacity was achieved at a pH of 6.0. Biosorption equilibrium was established in 120 min. The biosorption equilibrium data were fitted and analyzed with Langmuir, Freundlich, and Dubinin-Radushkevich isotherm equations, as well as four adsorption kinetic models. The kinetics data fitted well into the pseudo-second-order kinetic model, with a correlation coefficient greater than 0.993. The maximum monolayer biosorption capacity of pine bark for phenol, 2-CPh, and 4-CPh was found to be 142.85, 204.08, and 263.15 mg/g, respectively, as calculated by the Langmuir model at 30 ± 1 °C. Pine bark could be used as a new effective, low-cost biosorbent material with good uptake capacity and rapid kinetics for the removal of phenolic compounds from aqueous media.

  19. Biosorption characteristics of Spirulina and Chlorella cells to accumulate heavy metals

    Directory of Open Access Journals (Sweden)

    Kőnig-Péter Anikó

    2015-01-01

    Full Text Available The heavy metal biosorption of dried Chlorella vulgaris and Spirulina platensis-Spirulina maxima cells was studied under various experimental conditions. The effect of biosorbent dosage, pH, adsorption time, temperature, initial metal concentration on biosorption was studied. Biosorption process can be divided into two parts: the first part follows zero-order, the second part pseudo second-order kinetics. Characterization of biosorption equilibrium was evaluated with Langmuir and Dubinin-Radushkevich models using non-linear regression. The optimum pH range was found to be 5.0 − 6.0 for Pb(II and 4.0 − 6.0 for Cu(II and Cd(II adsorption. The maximum adsorption capacities for Pb(II, Cd(II and Cu(II were 144, 161 and 138 mg g-1 by Chlorella cells and 370, 201 and 165 by Spirulina cells, based on the experimental data. The same values for activated carbon were 86, 134 and 43 mg g-1, respectively.

  20. Lead (II) biosorption equilibrium and characterization through FT-IR and SEM-EDAX crosslinked pectin from orange peels

    International Nuclear Information System (INIS)

    Garcia Villegas, Victor R.; Ale Borja, Neptali; Guzman Lezama, Enrique G.; Maldonado Garcia, Holger J.; Yipmantin Ojeda, Andrea G.

    2013-01-01

    Pectic material extracted from orange peels was previously cross-linked to diminish hydration and swelling capacity when pectin is found in aqueous solution medium. Degree of metoxilation (DM), galacturonic acid anhydrous (% AGA) and pKa determination allowed characterizing biosorbent. Maximum sorption capacity was obtained at pH between 4.5 and 5.5. For data processing and statistical treatment informatics Orign 6.0 version program was used. Data from biosorption equilibrium had a better fit on Langmuir sorption equation model, obtaining q max = 186 mg/g as a maximum adsorption capacity. Fourier transform infrared spectroscopy analysis (FT-IR) allowed recognizing characteristic functional groups presents as well as biomass modifications. Biosorbent surface morphologic was studied by scanning electron microscope (SEM) and elemental composition biomass before biosorption process was obtained through Energy-dispersive X-ray spectroscopy (EDAX). (author)

  1. Evaluation of the biosorption capacity of lead by filamentous fungi native to the Ticapampa mining tailings (Recuay, Ancash)

    International Nuclear Information System (INIS)

    Perez, Mirella; Rosas, Paola; Villena, Gretty; Leon, Kety; Espinoza, Marco

    2015-01-01

    Lead biosorption was determined in five fungal biomasses isolated from the mining waste from the town of Ticapampa (Recuay province, Ancash Region) of which the strains with the highest percentage of lead sorption were studied. The process of biosorption was evaluated using a system of polyethylene tubes each containing 40 ml of solution contaminated with 200 ppm lead incubated at 30 °C under constant agitation at 150 rpm using 1 g/L of inactive fungal biomass. Removal of lead was measured by atomic absorption using the technique of flame, finding that the biomass of the species Talaromyces muroii, Talaromyces flavus and Penicillium velutinun (identified by DNA sequencing) are the most efficient to decrease the concentration of lead in aqueous solution thus achieving a maximum of its capacity of sorption of 189.7 mg/L, 82.7 mg/L and 33.8 mg/L, pH 6.0 respectively in approximately 48 hours of incubation. The results indicate that the native fungi isolated from environmental mining liabilities could be a cost effective biosorbent and easily cultivable for the removing of metal ions such as lead as in the case of environmental contamination by heavy metals. (author)

  2. Biosorption characteristic of Alcaligenes sp. BAPb.1 for removal of lead(II) from aqueous solution.

    Science.gov (United States)

    Jin, Yu; Yu, Sumei; Teng, Chunying; Song, Tao; Dong, Liying; Liang, Jinsong; Bai, Xin; Xu, Xiuhong; Qu, Juanjuan

    2017-06-01

    In this study, strain BAPb.1 was isolated from lead mining area and used as an adsorbent to remove lead(II) ions from aqueous solution. The physicochemical characteristics, heavy metal resistance and antibiotic sensitivity of strain BAPb.1 were investigated. Biosorption capacity was evaluated by batch biosorption experiments, and isothermal characteristics were discussed. Atomic force microscopy (AFM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and Fourier transform infrared spectrometry (FTIR) were conducted to explore the mechanism for lead(II) adsorption. Based on morphological and physiological characteristics as well as the phylogenetic analysis of 16S rDNA sequences, strain BAPb.1 was identified as a member of the genus Alcaligenes. It exhibited high resistances to multiple heavy metals such as lead(II), copper(II), zinc(II), nickel(II) and chromium(VI), and to antibiotics such as kanamycin, ampicillin, streptomycin, chloramphenicol, and tetracycline. The optimum conditions for maximum biosorption rate of 85.2% and maximum capacity of 56.8 mg g -1 were found at pH of 5, adsorbent dosage of 1.5 g L -1 (dry weight), initial lead(II) concentration of 100 mg L -1 , and contact time of 30 min at 30 °C. Biosorption isotherms were well fitted with Langmuir isotherm model. Mechanism analysis reveals that the lead(II) ions may exchange with sodium and potassium ions, and the hydroxyl, carbonyl and phosphate groups on the cell surface can chelate the lead(II) ions, therefore, surface adsorption play significant role in the biosorption process.

  3. Utilization of fermentation waste (Corynebacterium glutamicum) for biosorption of Reactive Black 5 from aqueous solution

    International Nuclear Information System (INIS)

    Vijayaraghavan, K.; Yun, Yeoung-Sang

    2007-01-01

    A fermentation waste, Corynebacterium glutamicum, was successfully employed as a biosorbent for Reactive Black 5 (RB5) from aqueous solution. This paper initially studied the effect of pretreatment on the biosorption capacity of C. glutamicum toward RB5, using several chemical agents, such as HCl, H 2 SO 4 , HNO 3 , NaOH, Na 2 CO 3 , CaCl 2 and NaCl. Among these reagents, 0.1 M HNO 3 gave the maximum enhancement of the RB5 uptake, exhibiting 195 mg/g at pH 1 with an initial RB5 concentration of 500 mg/l. The solution pH and temperature were found to affect the biosorption capacity, and the biosorption isotherms derived at different pHs and temperatures revealed that a low pH (pH 1) and high temperature (35 deg. C) favored biosorption. The biosorption isotherm was well represented using three-parameter models (Redlich-Peterson and Sips) compared to two-parameter models (Langmuir and Freundlich models). As a result, high correlation coefficients and low average percentage error values were observed for three-parameter models. A maximum RB5 uptake of 419 mg/g was obtained at pH 1 and a temperature of 35 deg. C, according to the Langmuir model. The kinetics of the biosorption process with different initial concentrations (500-2000 mg/l) was also monitored, and the data were analyzed using pseudo-first and pseudo-second order models, with the latter describing the data well. Various thermodynamic parameters, such as ΔG o , ΔH o and ΔS o , were calculated, indicating that the present system was a spontaneous and endothermic process. The use of a 0.1 M NaOH solution successfully desorbed almost all the dye molecules from dye-loaded C. glutamicum biomass at different solid-to-liquid ratios examined

  4. Chromium removal through biosorption and bioaccumulation by bacteria from tannery effluents contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Alam, Mohammad Zubair [Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh (India); Ahmad, Shamim [Microbiology Division, Institute of Ophthalmology, Faculty of Medicine, J.N. Medical College, Aligarh Muslim University, Aligarh (India)

    2011-03-15

    Four bacterial isolates (two resistant and two sensitive to chromium) were isolated from soil contaminated with tannery effluents at Jajmau (Kanpur), India, and were identified by 16S rDNA gene sequencing as Stenotrophomonas maltophilia, Exiguobacterium sp., Pantoea sp., and Aeromonas sp. Biosorption of chromium by dried and living biomasses was determined in the resistant and sensitive isolates. The effect of pH, initial metal concentration, and contact time on biosorption was studied. At pH 2.5 the living biomass of chromium resistant isolate Exiguobacterium sp. ZM-2 biosorbed maximum amount of Cr{sup 6+} (29.8 mg/g) whereas the dried biomass of this isolate biosorbed 20.1 mg/g at an initial concentration of 100 mg/L. In case of chromate sensitive isolates, much difference was not observed in biosorption capacities between their dried and living biomasses. The maximum biosorption of Cr{sup 3+} was observed at pH 4.5. However, biosorption was identical in resistant and sensitive isolates. The data on chromium biosorption were analyzed using Langmuir and Freundlich isotherm model. The biosorption data of Cr{sup 6+} and Cr{sup 3+} from aqueous solution were better fitted in Langmuir isotherm model compared to Freundlich isotherm model. Metal recovery through desorption was observed better with dried biomasses compared to the living biomasses for both types of chromium ions. Bioaccumulation of chromate was found higher in chromate resistant isolates compared to the chromate sensitive isolates. Transmission electron microscopy confirmed the accumulation of chromium in cytoplasm in the resistant isolates. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Biosorption of Cu2+ and Pb2+ using sophora alopecuroides residue

    Science.gov (United States)

    Feng, N.; Fan, W.; Zhu, M.; Zhang, Y.

    2016-08-01

    Sophora alopecuroides residue (SAP), a kind of traditional Chinese herbal medicine residue, was developed in an alternative biosorbent for the removal Cu2+ and Pb2+ in simulated wastewater. The morphology and surface texture of SAP were characterized by scanning electron microscopy, which showed a loose and porous structure. The biosorption experiments of Cu2+ and Pb2+ onto SAP were investigated by using batch techniques. High biosorption percentage appeared at pH values of 4.5-6.0. The experimental data followed the second-order kinetic model well. Equilibrium fit with the Langmuir isotherm model well. The maximum biosorption capacity of an adsorbent at 25 °C was respectively 60.6 mg/g Cu2+ and 128.1 mg/g Pb2+. The findings of the present study show that SAP is an attractive and effective biosorbent for Cu2+ and Pb2+.

  6. Kinetic and Thermodynamic Studies on Biosorption of Direct Red 81 from Aqueous Solutions by Chamomilla Plant

    Directory of Open Access Journals (Sweden)

    M. Momen Heravi

    2013-01-01

    Full Text Available In this study, Chamomilla plant biomass used as a sorbent for biosorption of a textile dye, direct red 81, from an aqueous solution. The batch sorption was studied with respect to dye concentration, adsorbent dose and temperature. Also, kinetic and isotherm parameters were determined for biosorption of Direct red 81 by Chamomilla plant. The maximum biosorption capacity (qm of Direct red 81 10 mg g-1 was obtained at 25oC. The kinetic and isotherm studies indicated that the biosorption process obeys a pseudo-second order and Langmuir isotherm models. In addition, various thermodynamic parameters, such as changes in Gibbs free energy (ΔG, enthalpy (ΔH and entropy (ΔS have been calculated. The biosorption process of Direct Red 81 dye onto activated carbon prepared from Chamomilla plant was found to be spontaneous and exothermic. The findings of this investigation suggest that this procces is a physical biosorption. The experimental studies indicated that Chamomilla plant had the potential to act as an alternative biosorbent to remove the Direct Red 81 dye from an aqueous solution.

  7. Biosorption of Am-241 and Cs-137 by radioactive liquid waste by coffee husk

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Rafael Vicente de Padua; Sakata, Solange Kazumi; Bellini, Maria Helena; Marumo, Julio Takehiro, E-mail: jtmarumo@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Radioactive Waste Management Laboratory of Nuclear and Energy Research Institute, IPEN-CNEN/SP, has stored many types of radioactive liquid wastes, including liquid scintillators, mixed wastes from chemical analysis and spent decontamination solutions. These wastes need special attention, because the available treatment processes are often expensive and difficult to manage. Biosorption using biomass of vegetable using agricultural waste has become a very attractive technique because it involves the removal of heavy metals ions by low cost biossorbents. The aim of this study is to evaluate the potential of the coffee husk to remove Am-241 and Cs-137 from radioactive liquid waste. The coffee husk was tested in two forms, treated and untreated. The chemical treatment of the coffee husk was performed with HNO{sub 3} and NaOH diluted solutions. The results showed that the coffee husk did not showed significant differences in behavior and capacity for biosorption for Am-241 and Cs-137 over time. Coffee husk showed low biosorption capacity for Cs-137, removing only 7.2 {+-} 1.0% in 4 hours of contact time. For Am-241, the maximum biosorption was 57,5 {+-} 0.6% in 1 hours. These results suggest that coffee husk in untreated form can be used in the treatment of radioactive waste liquid containing Am-241. (author)

  8. Biosorption of heavy metals using a dead macro fungus schizophyllum commune fries: evaluation of equilibrium and kinetic models

    International Nuclear Information System (INIS)

    Javid, A.; Bajwa, R.; Javid, A.

    2010-01-01

    Biomass of a wood rotting fungus viz., Schizophyllum commune Fries was utilized for the treatment of electroplating wastewater that contained Cu(II), Ni(II), Zn(II) and Cr(VI) ions. Preliminary batch assays were conducted with synthetic pure metal-bearing solutions. Results obtained showed that among various parameters studied, solution pH between a range of 2.0-6.0 induced negligible uptake at pH < 3.5 and exhibited maximum at around 4.5-5.5 for Ni(II), Cu(II) and Zn(II) ions, while for Cr(VI) ion the highest was evidenced at pH 2.0-2.5. The kinetics of all metal ions was fast and biosorption equilibrium was established in 1 hour with appropriateness of pseudo-second-order. A temperature change in the range of 15 - 45 deg. C did not affect the biosorption capacity of the candidate fungus. The biosorption of metal ion increased on elevating initial metal ions concentrations (20-100 mg L/sup -1/) in the medium. The maximum biosorption capacity of fungus biomass was 9.0, 21.27, 4.83, 18.54 mg g/sup -1/ for Ni(II), Cu(II) and Zn(II) and Cr(VI), respectively. The experimental data was best adjusted by Langmuir, Freundlich and modified Langmuir models. Biosorption assays conducted with actual electroplating effluents under pre-optimized conditions revealed efficiency of 72.01, 53.16, 7.08 and 19.87% for Cu(II), Ni(II), Zn(II) and Cr(VI) ions, respectively by candidate biomass. (author)

  9. Biosorption of Cd(II) and Zn(II) by nostoc commune: isotherm and kinetics studies

    Energy Technology Data Exchange (ETDEWEB)

    Morsy, Fatthy M. [Faculty of Science, Botany Department, Assiut University, Assiut (Egypt); Hassan, Sedky H.A. [Department of Biological Environment, Kangwon National University, Kangwon-do (Korea, Republic of); Koutb, Mostafa [Faculty of Science, Botany Department, Assiut University, Assiut (Egypt); Umm Al-Qura University, Faculty of Applied Science, Biology Department, Mecca (Saudi Arabia)

    2011-07-15

    In this study, Nostoc commune (cyanobacterium) was used as an inexpensive and efficient biosorbent for Cd(II) and Zn(II) removal from aqueous solutions. The effect of various physicochemical factors on Cd(II) and Zn(II) biosorption such as pH 2.0-7.0, initial metal concentration 0.0-300 mg/L and contact time 0-120 min were studied. Optimum pH for removal of Cd(II) and Zn(II) was 6.0, while the contact time was 30 min at room temperature. The nature of biosorbent and metal ion interaction was evaluated by infrared (IR) technique. IR analysis of bacterial biomass revealed the presence of amino, carboxyl, hydroxyl, and carbonyl groups, which are responsible for biosorption of Cd(II) and Zn (II). The maximum biosorption capacities for Cd(II) and Zn(II) biosorption by N. commune calculated from Langmuir biosorption isotherm were 126.32 and 115.41 mg/g, respectively. The biosorption isotherm for two biosorbents fitted well with Freundlich isotherm than Langmuir model with correlation coefficient (r{sup 2} < 0.99). The biosorption kinetic data were fitted well with the pseudo-second-order kinetic model. Thus, this study indicated that the N. commune is an efficient biosorbent for the removal of Cd(II) and Zn(II) from aqueous solutions. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Biosorption of Cu (II onto chemically modified waste mycelium of Aspergillus awamori: Equilibrium, kinetics and modeling studies

    Directory of Open Access Journals (Sweden)

    ZDRAVKA VELKOVA

    2012-01-01

    Full Text Available The biosorption potential of chemically modified waste mycelium of industrial xylanase-producing strain Aspergillus awamori for Cu (II removal from aqueous solutions was evaluated. The influence of pH, contact time and initial Cu (II concentration on the removal efficiency was evaluated. Maximum biosorption capacity was reached by sodium hydroxide treated waste fungal mycelium at pH 5.0. The Langmuir adsorption equation matched very well the adsorption equilibrium data in the studied conditions. The process kinetic followed the pseudo-firs order model.

  11. The effect of pulse voltage and capacitance on biosorption of uranium by biomass derived from whiskey distillery spent wash

    Energy Technology Data Exchange (ETDEWEB)

    Bustard, M.; Rollan, A.; McHale, A.P. [Biotechnology Research Group, School of Applied Biological and Chemical Sciences, University of Ulster (United Kingdom)

    1999-01-01

    Biosorption of uranium by residual biomass from The Old Bushmill`s Distillery Co. Ltd., Bushmills, Co. Antrim, Northern Ireland, following exposure to short and intense electric pulses has been examined. The biomass was prepared from the distillery spent wash and consisted of non-viable yeast and bacterial cells. As shown previously, untreated biomass had a maximum biosorption capacity of 170 mg uranium/g dry weight biomass. When biosorption reactions were placed between two electrodes and exposed to electric pulses with field strengths ranging from 1.25-3.25 kV/cm at a capacitance of 25 {mu}F, biosorption increased from 170 mg of uranium to 275 mg uranium/g dry weight biomass. The data were obtained from biosorption isotherm analyses and taken as the degree of biosorption at residual uranium concentrations of 3 mM. In addition, when the capacitance of the electric pulses increased from 0.25 {mu}F to 25 {mu}F at a fixed pulse field strength the degree of biosorption increased from 210 mg uranium to 240 mg uranium/g dry weight biomass. The results suggest that application of short and intense electric pulses to biosorption reactions may play an important role in enhancing microbial biosorption of toxic metals/radionuclides from waste water streams. (orig.) With 2 tabs., 10 refs.

  12. Biosorption of copper by marine algae Gelidium and algal composite material in a packed bed column.

    Science.gov (United States)

    Vilar, Vítor J P; Botelho, Cidália M S; Loureiro, José M; Boaventura, Rui A R

    2008-09-01

    Marine algae Gelidium and algal composite material were investigated for the continuous removal of Cu(II) from aqueous solution in a packed bed column. The biosorption behaviour was studied during one sorption-desorption cycle of Cu(II) in the flow through column fed with 50 and 25 mg l(-1) of Cu(II) in aqueous solution, at pH 5.3, leading to a maximum uptake capacity of approximately 13 and 3 mg g(-1), respectively, for algae Gelidium and composite material. The breakthrough time decreases as the inlet copper concentration increases, for the same flow rate. The pH of the effluent decreases over the breakthrough time of copper ions, which indicates that ion exchange is one of the mechanisms involved in the biosorption process. Temperature has little influence on the metal uptake capacity and the increase of the ionic strength reduces the sorption capacity, decreasing the breakthrough time. Desorption using 0.1M HNO(3) solution was 100% effective. After two consecutive sorption-desorption cycles no changes in the uptake capacity of the composite material were observed. A mass transfer model including film and intraparticle resistances, and the equilibrium relationship, for adsorption and desorption, was successfully applied for the simulation of the biosorption column performance.

  13. Biosorption of Am-241 and Cs-137 by radioactive liquid waste by coffee husk

    International Nuclear Information System (INIS)

    Ferreira, Rafael Vicente de Padua; Sakata, Solange Kazumi; Bellini, Maria Helena; Marumo, Julio Takehiro

    2011-01-01

    Radioactive Waste Management Laboratory of Nuclear and Energy Research Institute, IPEN-CNEN/SP, has stored many types of radioactive liquid wastes, including liquid scintillators, mixed wastes from chemical analysis and spent decontamination solutions. These wastes need special attention, because the available treatment processes are often expensive and difficult to manage. Biosorption using biomass of vegetable using agricultural waste has become a very attractive technique because it involves the removal of heavy metals ions by low cost biossorbents. The aim of this study is to evaluate the potential of the coffee husk to remove Am-241 and Cs-137 from radioactive liquid waste. The coffee husk was tested in two forms, treated and untreated. The chemical treatment of the coffee husk was performed with HNO 3 and NaOH diluted solutions. The results showed that the coffee husk did not showed significant differences in behavior and capacity for biosorption for Am-241 and Cs-137 over time. Coffee husk showed low biosorption capacity for Cs-137, removing only 7.2 ± 1.0% in 4 hours of contact time. For Am-241, the maximum biosorption was 57,5 ± 0.6% in 1 hours. These results suggest that coffee husk in untreated form can be used in the treatment of radioactive waste liquid containing Am-241. (author)

  14. Batch and continuous (fixed-bed column) biosorption of crystal violet by Artocarpus heterophyllus (jackfruit) leaf powder.

    Science.gov (United States)

    Saha, Papita Das; Chakraborty, Sagnik; Chowdhury, Shamik

    2012-04-01

    In this study, batch and fixed-bed column experiments were performed to investigate the biosorption potential of Artocarpus heterophyllus (jackfruit) leaf powder (JLP) to remove crystal violet (CV) from aqueous solutions. Batch biosorption studies were carried out as a function of solution pH, contact time, initial dye concentration and temperature. The biosorption equilibrium data showed excellent fit to the Langmuir isotherm model with maximum monolayer biosorption capacity of 43.39 mg g(-1) at pH 7.0, initial dye concentration=50 mg L(-1), temperature=293 K and contact time=120 min. According to Dubinin-Radushkevich (D-R) isotherm model, biosorption of CV by JLP was chemisorption. The biosorption kinetics followed the pseudo-second-order kinetic model. Thermodynamic analysis revealed that biosorption of CV from aqueous solution by JLP was a spontaneous and exothermic process. In order to ascertain the practical applicability of the biosorbent, fixed-bed column studies were also performed. The breakthrough time increased with increasing bed height and decreased with increasing flow rate. The Thomas model as well as the BDST model showed good agreement with the experimental results at all the process parameters studied. It can be concluded that JLP is a promising biosorbent for removal of CV from aqueous solutions. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Bioaccumulation and biosorption of bismuth Bi (III) by filamentous fungus Aspergillus clavatus; Bioakumulacia a biosorpcia bizmutu Bi(III) mikroskopickou vlaknitou hubou Aspergillus clavatus

    Energy Technology Data Exchange (ETDEWEB)

    Boriova, K.; Matus, P. [Univerzita Komenskeho, Prirodovedecka fakulta, Ustav laboratorneho vyskumu geomaterialov, 84215 Bratislava (Slovakia); Cernansky, S.; Bujdos, M. [Univerzita Komenskeho, Prirodovedecka fakulta, Katedra Katedra environmentalnej ekologie, 84215 Bratislava (Slovakia)

    2013-04-16

    In this work we focused on bismuth (III) biosorption and bioaccumulation. Prior the bioaccumulation experiments the 7-day-old conidia were collected from mycelia surface of filamentous fungus Aspergillus clavatus and used as inocula for 50 ml of nutrient media with different bismuth (III) concentrations. After 15-day cultivation under laboratory conditions (dark, 25 grad C) the bismuth concentration in grown fungal biomass was measured using ICP OES. Maximum achieved accumulation capacity of dry biomass was 112 {mu}mol.g{sup -1}. Batch biosorption experiments were performed in Erlenmeyer flasks with pelletized wet fungal biomass/solution ratio 1.8% and with various bismuth (III) concentrations. The equilibrium time was studied within the time interval of 0-240 min. The reaction kinetics were well described by both pseudo-first and pseudo-second order rate models, and equilibrium was reached after 50 min. Langmuir and Freundlich isotherm models were used to represent equilibrium data, and the calculated maximum biosorption capacity of fungal biomass for bismuth(III) was 0.40 mmol.g{sup -1}. (authors)

  16. Utilization of unconventional lignocellulosic waste biomass for the biosorption of toxic triphenylmethane dye malachite green from aqueous solution.

    Science.gov (United States)

    Selvasembian, Rangabhashiyam; P, Balasubramanian

    2018-05-12

    Biosorption potential of novel lignocellulosic biosorbents Musa sp. peel (MSP) and Aegle marmelos shell (AMS) was investigated for the removal of toxic triphenylmethane dye malachite green (MG), from aqueous solution. Batch experiments were performed to study the biosorption characteristics of malachite green onto lignocellulosic biosorbents as a function of initial solution pH, initial malachite green concentration, biosorbents dosage, and temperature. Biosorption equilibrium data were fitted to two and three parameters isotherm models. Three-parameter isotherm models better described the equilibrium data. The maximum monolayer biosorption capacities obtained using the Langmuir model for MG removal using MSP and AMS was 47.61 and 18.86 mg/g, respectively. The biosorption kinetic data were analyzed using pseudo-first-order, pseudo-second-order, Elovich and intraparticle diffusion models. The pseudo-second-order kinetic model best fitted the experimental data, indicated the MG biosorption using MSP and AMS as chemisorption process. The removal of MG using AMS was found as highly dependent on the process temperature. The removal efficiency of MG showed declined effect at the higher concentrations of NaCl and CaCl 2 . The regeneration test of the biosorbents toward MG removal was successful up to three cycles.

  17. Enhancement of uranium(VI) biosorption by chemically modified marine-derived mangrove endophytic fungus Fusarium sp. ZZF51

    International Nuclear Information System (INIS)

    Chen, F.; Tan, N.; Long, W.; Yang, S.K.; She, Z.G.; Lin, Y.C.

    2014-01-01

    Fusarium sp. ZZF51, mangrove endophytic fungus originated from South China Sea coast, was chemically modified by formaldehyde, methanol and acetic acid to enhance its affinity of uranium(VI) from waste water. The influencing factors about uranium(VI) adsorption such as contact time, solution pH, the ratio of solid/liquid (S/L) and initial uranium(VI) concentration were investigated, and the suitable adsorption isotherm and kinetic models were determined. In addition, the biosorption mechanism was also discussed by FTIR analysis. Experimental results show that the maximum biosorption capacity of formaldehyde-treated biomass for uranium(VI) at the optimized condition of pH 6.0, S/L 0.6 and equilibrium time 90 min is 318.04 mg g -1 , and those of methanol-treated and HAc-treated biomass are 311.95 and 351.67 mg g -1 at the same pH and S/L values but different equilibrium time of 60 and 90 min, respectively. Thus the maximum biosorption capacity of the three kind of modified biomass have greatly surpassed that of the raw biomass (21.42 mg g -1 ). The study of kinetic exhibits a high level of compliance with the Lagergren's pseudo-second-order kinetic models. Langumir and Freundlich models have proved to be well able to explain the sorption equilibrium with the satisfactory correlation coefficients higher than 0.96. FTIR analysis reveals that the carboxyl, amino and hydroxyl groups on the cell wall of Fusarium sp. ZZF51 play an important role in uranium(VI) biosorption process. (author)

  18. Assessment of cationic dye biosorption characteristics of untreated and non-conventional biomass: Pyracantha coccinea berries

    Energy Technology Data Exchange (ETDEWEB)

    Akar, Tamer, E-mail: takar@ogu.edu.tr [Department of Chemistry, Faculty of Arts and Science, Eskisehir Osmangazi University, 26480, Eskisehir (Turkey); Anilan, Burcu; Gorgulu, Asli [Department of Cemistry Education, Faculty of Education, Eskisehir Osmangazi University, 26480, Eskisehir (Turkey); Akar, Sibel Tunali [Department of Chemistry, Faculty of Arts and Science, Eskisehir Osmangazi University, 26480, Eskisehir (Turkey)

    2009-09-15

    This work reports on the assessment of the dye methylene blue biosorption properties of Pyracantha coccinea berries under different experimental conditions. Equilibrium and kinetic studies were carried out to determine the biosorption capacity and rate constants. The highest biosorption yield was observed at about pH 6.0, while the biosorption capacity of the biomass decreased with decreasing initial pH values. Batch equilibrium data obtained at different temperatures (15, 25, 35 and 45 deg. C) were modeled by Freundlich, Langmuir and Dubinin-Radushkevich (D-R) isotherms. Langmuir isotherm model fitted the equilibrium data, at the all studied temperatures, better than the other isotherm models indicating monolayer dye biosorption process. The highest monolayer biosorption capacity was found to be 127.50 mg/g dry biomass at 45 deg. C. Kinetic studies indicate that the biosorption process followed the pseudo-second-order model, rather than the pseudo-first-order model. {Delta}G{sup o}, {Delta}H{sup o} and {Delta}S{sup o} parameters of biosorption show that the process is spontaneous and endothermic in nature. The biosorbent-dye interaction mechanisms were investigated using a combination of Fourier transform infrared spectroscopy and scanning electron microscopy. The biosorption procedure was applied to simulated wastewater including several pollutants. The results obtained indicated that the suggested inexpensive and readily available biomaterial has a good potential for the biosorptive removal of basic dye.

  19. Assessment of cationic dye biosorption characteristics of untreated and non-conventional biomass: Pyracantha coccinea berries

    International Nuclear Information System (INIS)

    Akar, Tamer; Anilan, Burcu; Gorgulu, Asli; Akar, Sibel Tunali

    2009-01-01

    This work reports on the assessment of the dye methylene blue biosorption properties of Pyracantha coccinea berries under different experimental conditions. Equilibrium and kinetic studies were carried out to determine the biosorption capacity and rate constants. The highest biosorption yield was observed at about pH 6.0, while the biosorption capacity of the biomass decreased with decreasing initial pH values. Batch equilibrium data obtained at different temperatures (15, 25, 35 and 45 deg. C) were modeled by Freundlich, Langmuir and Dubinin-Radushkevich (D-R) isotherms. Langmuir isotherm model fitted the equilibrium data, at the all studied temperatures, better than the other isotherm models indicating monolayer dye biosorption process. The highest monolayer biosorption capacity was found to be 127.50 mg/g dry biomass at 45 deg. C. Kinetic studies indicate that the biosorption process followed the pseudo-second-order model, rather than the pseudo-first-order model. ΔG o , ΔH o and ΔS o parameters of biosorption show that the process is spontaneous and endothermic in nature. The biosorbent-dye interaction mechanisms were investigated using a combination of Fourier transform infrared spectroscopy and scanning electron microscopy. The biosorption procedure was applied to simulated wastewater including several pollutants. The results obtained indicated that the suggested inexpensive and readily available biomaterial has a good potential for the biosorptive removal of basic dye.

  20. BIOSORPTION AND RECOVERY OF HEAVY METALS FROM AQUEOUS SOLUTIONS BY EICHHORNIA CRASSIPES (WATER HYACINTH ASH

    Directory of Open Access Journals (Sweden)

    Tariq Mahmood

    2010-04-01

    Full Text Available Heavy metal’s release without treatment poses a significant threat to the environment. Heavy metals are non-biodegradable and persistent. In the present study the ash of water hyacinth (Eichhornia crassipes, was used to remove six metals from aqueous solutions through biosorption. Results of batch and column experiments showed excellent adsorption capacity. Removal of lead, chromium, zinc, cadmium, copper, and nickel was 29.83, 1.263, 1.575, 3.323, 2.984 and 1.978 µgg-1, respectively. The biosorptive capacity was maximum with pH >8.00. Desorption in µgg-1 of ash for lead, chromium, zinc, cadmium, copper, and nickel was 18.10, 9.99, 11.99, 27.54, 21.09, and 3.71 respectively. Adsorption/desorption of these metals from ash showed the potential of this technology for recovery of metals for further usages. Hydrogen adsorption was also studied with a Sievert-type apparatus. Hydrogen adsorption experiments showed significant storage capacity of water hyacinth ash.

  1. Statistical analysis and optimization of copper biosorption capability ...

    African Journals Online (AJOL)

    These three variables were further adopted by the three-level Box– Behnken design to correlate between the three variables and to estimate the optimal conditions required for Cu2+ biosorption. Although the maximum value for Cu2+ biosorption was 85%, the calculated optimum percentage was 72%, which was a 2.57-fold ...

  2. The process of biosorption of heavy metals in bioreactors loaded with sanitary sewage sludge

    Directory of Open Access Journals (Sweden)

    A. J. Morais Barros

    2006-06-01

    Full Text Available This work on the process of biosorption of nickel and chromium in an ascendant continuous-flow, fixed packed-bed bioreactor of sanitary sewage sludge was conducted in a search for solutions to the environmental problem caused by heavy metals. Analysis of the results demonstrated that the absorbent had an extraordinary capacity for biosorption of the heavy metals studied at about 9.0 pH of the effluent, with a removal percentage of over 90.0% for the two metals. Chemometric study results demonstrated that 20 days of the experimental system function were sufficient for achieving the maximum efficiency of sorption of the heavy metals studied by the sanitary sewage sludge employed.

  3. Biosorption of eriochrome black t and astrazon fggl blue using almond and cotton seed oil cake biomass in a batch mode

    International Nuclear Information System (INIS)

    Safa, Y.

    2014-01-01

    In the present research study, the biosorption of Eriochrome Black T (EBT) and Astrazon FGGL blue (A-FGGL) onto novel biomasses Almond (Prunus dulcis) oil cake and Cotton seed oil cake respectively was investigated in the batch mode using different process parameters like pH, particle size, biosorbent dose, initial dye concentration, contact time and temperature. Maximum biosorption capacity was observed at pH 3 for EBT onto almond oil cake and pH2 for Astrazon FGGL blue onto cotton seed oil cake.The biosorption capacity was efficient at the smallest particle size of biosorbent. The amount of dye sorbed (mg/g) decreased with the decrease in biosorbent dose and increased with increase in initial dye concentration and temperature. Optimum contact time for equilibrium to achieve was found to be 120 and 180 minutes for EBT and A-FGGL blue, respectively. The Langmuir isotherm model was best fitted to experimental data. The biosorption followed the pseudo-second order kinetic model suggesting a chemisorption mechanism. The positive value of deltaH showed the endothermic nature of the process. In this research, the influence of electrolytes, heavy metals and surfactants on the removal of dyes was also examined. (author)

  4. Biosorption of nonylphenol by pure algae, field-collected planktons and their fractions

    International Nuclear Information System (INIS)

    Zhang, Dainan; Ran, Yong; Cao, Xiaoyan; Mao, Jingdong; Cui, Jinfang; Schmidt-Rohr, Klaus

    2015-01-01

    Algal samples were fractionated into lipid (LP), lipid free (LF), alkaline nonhydrolyzable carbon (ANHC), and acid nonhydrolyzable carbon (NHC) fractions, and were characterized by the quantitative 13 C multiCP NMR technique. The biosorption isotherms for nonylphenol (NP) were established and compared with previously published data for phenanthrene (Phen). The log K OC values are significantly higher for the field-collected plankton samples than for the commercial algae and cultured algae samples, correlating with their lipid contents and aliphatic carbon structure. As the NHC fraction contains more poly(methylene) carbon, it exhibits a higher biosorption capacity. The sorption capacities are negatively related to the polarity index, COO/N–C=O, polar C and O-alkyl C concentrations, but are positively related to the H/O atomic ratios and poly(methylene) carbon. The higher sorption capacities observed for NP than for Phen on the investigated samples are explained by specific interactions such as hydrogen bonding and π–π interaction. - Highlights: • Quantitative 13 C NMR technique was applied to algae and their fraction samples. • The biosorption isotherms for the ANHC and NHC fractions are nonlinear. • Polarity and lipid affect the biosorption capacity of NP. • The sorption capacity is positively related to polymethylene carbon. • The hydrogen and π–π interactions between NP and algae could be important. - The NHC fractions are chemically and structurally different from other fractions, and their biosorption for NP is much higher than that of the bulk algae

  5. Selection of Biosorbents for Biosorption of Three Heavy Metals in a ...

    African Journals Online (AJOL)

    Initial ion concentrations of heavy metals and mass of biosorbents increase with biosorption capacity. Furthermore, Langmuir isotherm better described equilibrium biosorption of copper by Pseudomonas aeruginosa, Staphylococcus xylosus and Saccharomyces sp. (Yeast) with linear regression coefficient of correlation, R2 ...

  6. Potentiality of uranium biosorption from nitric acid solutions using shrimp shells

    International Nuclear Information System (INIS)

    Ahmed, S.H.; El Sheikh, E.M.; Morsy, A.M.A.

    2014-01-01

    Biosorption has gained important credibility during recent years because of its good performance and low cost. This work is concerned with studying the potentiality of the chitin component of the shrimp shells for uranium biosorption from nitric acid liquid solutions. The structural characteristics of the working chitin have been determined via Fourier Transform Infrared Spectroscopy (FTIR). The surface morphology was examined using Scanning Electron Microscopy (SEM). The adsorption capacity of biomass was investigated experimentally. The influence of contact time, pH, metal ion concentration, solution volume to mass ratio and temperature were evaluated and the results were fitted using adsorption isotherm models. The kinetic of uranium biosorption was also investigated as well as biosorption thermodynamic. - Graphical abstract: Physicochemical process of biosorption is known to be promising technique due to the ease of operation and comparable low cost of biosorbant application. Chitin flakes extracted from shrimp shells show potentiality in uranium adsorption reached 7.48 mg uranium at the following conditions: 60 min contact time, pH 3.66, 50:1 V/m ration and at room temperature. The theoretical sorption capacity was 25.31 mg g −1 , according to Langmuir isotherm model. The rate of sorption follows pseudo second-order. The nature of biosorption process is spontaneous and exothermic. - Highlights: • This study shows the potentially for shrimp shell beads for uranium adsorption. • The max. biosorption was achieved at pH 3.6, contact time 60 min, S/L ratio 1:50. • Uranium sorption follows Langmuir isotherm with theoretical capacity of 25.31 g/kg. • The nature of sorption process of the sorbents is spontaneous and exothermic. • The rate of sorption follows pseudo second-order

  7. Biosorption of cadmium (II) and lead (II) from aqueous solutions using mushrooms: A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Vimala, R., E-mail: vimararagu@yahoo.co.in [School of Biotechnology, Chemical and Biomedical Engineering, VIT University, Vellore 632014, Tamil Nadu (India); Das, Nilanjana [School of Biotechnology, Chemical and Biomedical Engineering, VIT University, Vellore 632014, Tamil Nadu (India)

    2009-08-30

    Sorption capacity of oyster mushroom (Pleurotus platypus), button mushroom (Agaricus bisporus) and milky mushroom (Calocybe indica) were evaluated on biosorption of heavy metals, viz. cadmium (II) and lead (II) from aqueous solutions. The optimum sorption conditions were studied for each metal separately. The desired pH of the aqueous solution was found to be 6.0 for the removal of cadmium (II) and 5.0 for removal of lead (II) for all the mushrooms. The percent removal of both the metals was found to increase with the increase in biosorbent dosage and contact time. The fitness of the biosorption data for Langmuir and Freundlich adsorption models was investigated. It was found that biosorption of cadmium (II) and lead (II) ions onto the biomass of the three mushrooms were better suitable to Langmuir than Freundlich adsorption model. P. platypus showed the highest metal uptake potential for cadmium (q{sub max} 34.96 mg/g) whereas A. bisporus exhibited maximum potential for lead (q{sub max} 33.78 mg/g). Milky mushroom showed the lowest metal uptake capacity for both the metals. The present data confirms that mushrooms may be used as efficient biosorbent for the removal of cadmium (II) and lead (II) ions from aqueous solution.

  8. Biosorption of copper and zinc by immobilised and free algal biomass, and the effects of metal biosorption on the growth and cellular structure of Chlorella sp.and Chlamydomonas sp.isolated from rivers in Penang, Malaysia

    Institute of Scientific and Technical Information of China (English)

    W.O.Wan Maznah; A.T. Al-Fawwaz; Misni Surif

    2012-01-01

    In this study,the biosorption of copper and zinc ions by Chlorella sp.and Chlamydomonas sp.isolated from local environments in Malaysia was investigated in a batch system and by microscopic analyses.Under optimal biosorption conditions,the biosorption capacity of Chlorella sp.for copper and zinc ions was 33.4 and 28.5 mg/g,respectively,after 6 hr of biosorption in an immobilised system.Batch experiments showed that the biosorption capacity of algal biomass immobilised in the form of sodium alginate beads was higher than that of the free biomass.Scanning electron microscopy and energy-dispersive X-ray spectroscopy analyses revealed that copper and zinc were mainly sorbed at the cell surface during biosorption.Exposure to 5 mg/L of copper and zinc affected both the chlorophyll content and cell count of the algal cells after the first 12 hr of contact time.

  9. Biosorption and desorption of Cd2+ from wastewater by dehydrated shreds of Cladophora fascicularis

    Science.gov (United States)

    Deng, Liping; Zhu, Xiaobin; Su, Yingying; Su, Hua; Wang, Xinting

    2008-02-01

    The adsorption and desorption of algae Cladophora fascicularis and their relation with initial Cd2+ concentration, initial pH, and co-existing ions were studied. Adsorption equilibrium and biosorption kinetics were established from batch experiments. The adsorption equilibrium was adequately described by the Langmuir isotherm, and biosorption kinetics was in pseudo-second order model. The experiment on co-existing ions showed that the biosorption capacity of biomass decreased with an increasing concentration of competing ions. Desorption experiments indicated that EDTA was efficient desorbent for recovery from Cd2+. With high capacities of metal biosorption and desorption, the biomass of Cladophora fascicularis is promising as a cost-effective biosorbent for the removal of Cd2+ from wastewater.

  10. Use of Aspergillus wentii for biosorption of methylene blue from ...

    African Journals Online (AJOL)

    In this study, Aspergillus wentii was used as a biosorbent for the adsorption of methylene blue from aqueous solution. The effects of contact time, initial dye concentration, solution pH and temperature on biosorption were investigated. The contact time required (that is, the equilibrium time) for maximum dye biosorption was ...

  11. Biosorption of Cd+2 by green plant biomass, Araucaria heterophylla: characterization, kinetic, isotherm and thermodynamic studies

    Science.gov (United States)

    Sarada, B.; Krishna Prasad, M.; Kishore Kumar, K.; Murthy, Ch V. R.

    2017-11-01

    The present study attempted to analyze the biosorption behavior of novel biosorbent, Araucaria heterophylla (green plant) biomass, to remove Cd+2 from solutions against various parameters, i.e., initial metal ion concentration, pH, temperature, sorbent dosage and biomass particle size. The maximum biosorption was found to be 90.02% at pH 5.5 and biosorption capacity ( q e) of Cd+2 is 9.2506 mg g-1. The Langmuir and Freundlich equilibrium adsorption isotherms were studied and it was observed that Freundlich model is the best fit than the Langmuir model with correlation co-efficient of 0.999. Kinetic studies indicated that the biosorption process of Cd+2 well followed the pseudo-second-order model with R 2 0.999. Thermodynamic studies observed that the process is exothermic (Δ H ° negative). Free energy change (Δ G °) with negative sign reflected the feasibility and spontaneous nature of the process. The chemical functional -OH groups, CH2 stretching vibrations, C=O carbonyl group of alcohol, C=O carbonyl group of amide, P=O stretching vibrations and -CH groups were involved in the biosorption process. The XRD pattern of the A. heterophylla was found to be mostly amorphous in nature. The SEM studies showed Cd+2 biosorption on selective grains of the biosorbent. It was concluded that A. heterophylla leaf powder can be used as an effective, low-cost, and environmentally friendly biosorbent for the removal of Cd+2 from aqueous solution.

  12. Equilibrium, kinetic and thermodynamic studies of the biosorption of textile dye (Reactive Red 195) onto Pinus sylvestris L

    International Nuclear Information System (INIS)

    Aksakal, Ozkan; Ucun, Handan

    2010-01-01

    This study investigated the biosorption of Reactive Red 195 (RR 195), an azo dye, from aqueous solution by using cone biomass of Pinus sylvestris Linneo. To this end, pH, initial dye concentration, biomass dosage and contact time were studied in a batch biosorption system. Maximum pH for efficient RR 195 biosorption was found to be 1.0 and the initial RR 195 concentration increased with decreasing percentage removal. Biosorption capacity increased from 6.69 mg/g at 20 deg. C to 7.38 mg/g at 50 deg. C for 200 mg/L dye concentration. Kinetics of the interactions was tested by pseudo-first-order and pseudo-second-order kinetics, the Elovich equation and intraparticle diffusion mechanism. Pseudo-second-order kinetic model provided a better correlation for the experimental data studied in comparison to the pseudo-first-order kinetic model and intraparticle diffusion mechanism. Moreover, the Elovich equation also showed a good fit to the experimental data. Freundlich and Langmuir adsorption isotherms were used for the mathematical description of the biosorption equilibrium data. The activation energy of biosorption (Ea) was found to be 8.904 kJ/mol by using the Arrhenius equation. Using the thermodynamic equilibrium coefficients obtained at different temperatures, the study also evaluated the thermodynamic constants of biosorption (ΔG o , ΔH o and ΔS). The results indicate that cone biomass can be used as an effective and low-cost biosorbent to remove reactive dyes from aqueous solution.

  13. Biosorption of Pb2+ using Trichoderma viride as Alternative Solution for Heavy Metal Pollution in the Waters

    Directory of Open Access Journals (Sweden)

    Rensani Taloin

    2018-01-01

    Full Text Available Lead(II is considered as the main cause of pollutant that is toxic, corrosive, and irritant. One method that can be applied for reducing Pb(II in the environment is by using microorganisms. In this work, the study of biosorption of Pb(II in the water samples was conducted using Trichoderma viride. The research is focused on determination of optimum conditions including pH, biosorption time, and initial concentration of Pb(II used. The profiles in functional groups contained in the T. viride have been monitored using FT-IR spectrophotometry. Results showed that the maximum biosorption of Pb(II achieved at pH 4.5, with equilibrium of contact time of 20 h, optimum concentration of 50 mg/L, and adsorption capacity of 85 mg/1x106 T. viride colonies. The FTIR results indicated that biosorption process changed the functional groups in the T. viride. These have shown in the absorption bands at ~3200 cm-1, ~2850 cm-1, ~2260 cm-1, ~1650 cm-1, ~1450 cm-1, 1180 cm-1, and in the finger printing regions. The biosorption mechanism was proposed through the adsorption process between positively charged metal ions and the negative charge on the functional groups, such as -COO-, -OPO32-, and –NH2-, on the cell surface.

  14. The use of Neem biomass for the biosorption of zinc from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Arshad, Mamoona [Department of Chemistry, University of Agriculture, Faisalabad 38040 (Pakistan); Bioprocess Technology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577, Faisalabad (Pakistan); Zafar, Muhammad Nadeem [Department of Chemistry, University of Agriculture, Faisalabad 38040 (Pakistan); Department of Analytical Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund (Sweden)], E-mail: MNadeem.Zafar@analykem.lu.se; Younis, Sadaf; Nadeem, Raziya [Department of Chemistry, University of Agriculture, Faisalabad 38040 (Pakistan)

    2008-09-15

    An adsorbent was developed from mature leaves and stem bark of the Neem (Azadirachta indica) tree for removing zinc from water. Adsorption was carried out in a batch process with several different concentrations of zinc by varying pH. The uptake of metal was very fast initially, but gradually slowed down indicating penetration into the interior of the adsorbent particles. The data showed that optimum pH for efficient biosorption of zinc by Neem leaves and stem bark was 4 and 5, respectively. The maximum adsorption capacity showed that the Neem biomass had a mass capacity for zinc (147.08 mg Zn/g for Neem leaves and 137.67 mg Zn/g Neem bark). The experimental results were analyzed in terms of Langmuir and Freundlich isotherms. The adsorption followed pseudo-second-order kinetic model. The thermodynamic assessment of the metal ion-Neem tree biomass system indicated the feasibility and spontaneous nature of the process and {delta}G{sup o} values were evaluated as ranging from -26.84 to -32.75 (Neem leaves) kJ/mol and -26.04 to -29.50 (Neem bark) kJ/mol for zinc biosorption. Due to its outstanding zinc uptake capacity, the Neem tree was proved to be an excellent biomaterial for accumulating zinc from aqueous solutions.

  15. Equilibrium, thermodynamic and kinetic investigations for biosorption of uranium with green algae (Cladophora hutchinsiae).

    Science.gov (United States)

    Bağda, Esra; Tuzen, Mustafa; Sarı, Ahmet

    2017-09-01

    Removal of toxic chemicals from environmental samples with low-cost methods and materials are very useful approach for especially large-scale applications. Green algae are highly abundant biomaterials which are employed as useful biosorbents in many studies. In the present study, an interesting type of green algae, Cladophora hutchinsiae (C. hutchinsiae) was used for removal of highly toxic chemical such as uranium. The pH, biosorbent concentration, contact time and temperature were optimized as 5.0, 12 g/L, 60 min and 20 °C, respectively. For the equilibrium calculations, three well known isotherm models (Langmuir, Freundlich and Dubinin-Radushkevich) were employed. The maximum biosorption capacity of the biosorbent was calculated as about 152 mg/g under the optimum batch conditions. The mean energy of biosorption was calculated as 8.39 kJ/mol from the D-R biosorption isotherm. The thermodynamic and kinetic characteristics of biosorption were also investigated to explain the nature of the process. The kinetic data best fits the pseudo-second-order kinetic model with a regression coefficient of >0.99 for all studied temperatures. The calculated ΔH° and ΔG° values showed that the biosorption process is exothermic and spontaneous for temperatures between 293 and 333 K. Furthermore, after seven cycling process, the sorption and desorption efficiencies of the biosorbent were found to be 70, and 58%, respectively meaning that the biosorbent had sufficiently high reusability performance as a clean-up tool. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Uranium biosorption by Trichoderma harzianum entrapped in polyester foam beads

    International Nuclear Information System (INIS)

    Khalid, A.M.; Shemsi, A.M.; Akhtar, K.; Anwar, M.A.

    1993-01-01

    Mechanism of uranium biosorption by resting cells of Trichoderma harzianum was studied at pH 4.5. Time-dependent uptake of uranium by Trichoderma harzianum was also determined. Various cations (Na, K, Ca and Fe, etc.) were found to affect the adsorption capability of these cells. Different theoretical thermodynamic models governing the adsorption behavior of uranium were also tested and it was found to follow the Langmuir and Freundlich adsorption isotherms. The constants of Freundlich adsorption isotherm A and 1/n were found to be 1.5 x 10 -6 mole/g and 0.31 respectively. Dubinin Radushkevich equation was tested and the maximum adsorption capacity (X m ) of Trichoderma harzianum and sorption energy (E s ) for the ion exchange process computed. Data of uranium sorption were also examined using Weber Morris's equation. The upscaling of uranium biosorption by Trichoderma harzianum entrapped in commercial foam (polyesters) was carried out in glass columns. It was found to recover more than 85% of the total uranium present in bacterial leachate

  17. Potentiality of uranium biosorption from nitric acid solutions using shrimp shells.

    Science.gov (United States)

    Ahmed, S H; El Sheikh, E M; Morsy, A M A

    2014-08-01

    Biosorption has gained important credibility during recent years because of its good performance and low cost. This work is concerned with studying the potentiality of the chitin component of the shrimp shells for uranium biosorption from nitric acid liquid solutions. The structural characteristics of the working chitin have been determined via Fourier Transform Infrared Spectroscopy (FTIR). The surface morphology was examined using Scanning Electron Microscopy (SEM). The adsorption capacity of biomass was investigated experimentally. The influence of contact time, pH, metal ion concentration, solution volume to mass ratio and temperature were evaluated and the results were fitted using adsorption isotherm models. The kinetic of uranium biosorption was also investigated as well as biosorption thermodynamic. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Assessment of the biosorption characteristics of a macro-fungus for the decolorization of Acid Red 44 (AR44) dye

    International Nuclear Information System (INIS)

    Akar, Tamer; Tosun, Ilknur; Kaynak, Zerrin; Kavas, Emine; Incirkus, Gonul; Akar, Sibel Tunali

    2009-01-01

    This study focuses on the possible use of macro-fungus Agaricus bisporus to remove Acid Red 44 dye from aqueous solutions. Batch equilibrium studies were carried out as a function of pH, biomass amount, contact time and temperature to determine the decolorization efficiency of biosorbent. The highest dye removal yield was achieved at pH 2.0. Equilibrium occurred within about 30 min. Biosorption data were successfully described by Langmuir isotherm model and the pseudo-second-order kinetic model. The maximum monolayer biosorption capacity of biosorbent material was found as 1.19 x 10 -4 mol g -1 . Thermodynamic parameters indicated that the biosorption of Acid Red 44 onto fungal biomass was spontaneous and endothermic in nature. Fourier transform infrared spectroscopy and scanning electron microscopy were used for the characterization of possible dye-biosorbent interaction and surface structure of biosorbent, respectively. Finally the proposed biosorbent was successfully used for the decolorization of Acid Red 44 in synthetic wastewater conditions.

  19. Biosorption of chromium (VI) from aqueous solutions and ANN modelling.

    Science.gov (United States)

    Nag, Soma; Mondal, Abhijit; Bar, Nirjhar; Das, Sudip Kumar

    2017-08-01

    The use of sustainable, green and biodegradable natural wastes for Cr(VI) detoxification from the contaminated wastewater is considered as a challenging issue. The present research is aimed to assess the effectiveness of seven different natural biomaterials, such as jackfruit leaf, mango leaf, onion peel, garlic peel, bamboo leaf, acid treated rubber leaf and coconut shell powder, for Cr(VI) eradication from aqueous solution by biosorption process. Characterizations were conducted using SEM, BET and FTIR spectroscopy. The effects of operating parameters, viz., pH, initial Cr(VI) ion concentration, adsorbent dosages, contact time and temperature on metal removal efficiency, were studied. The biosorption mechanism was described by the pseudo-second-order model and Langmuir isotherm model. The biosorption process was exothermic, spontaneous and chemical (except garlic peel) in nature. The sequence of adsorption capacity was mango leaf > jackfruit leaf > acid treated rubber leaf > onion peel > bamboo leaf > garlic peel > coconut shell with maximum Langmuir adsorption capacity of 35.7 mg g -1 for mango leaf. The treated effluent can be reused. Desorption study suggested effective reuse of the adsorbents up to three cycles, and safe disposal method of the used adsorbents suggested biodegradability and sustainability of the process by reapplication of the spent adsorbent and ultimately leading towards zero wastages. The performances of the adsorbents were verified with wastewater from electroplating industry. The scale-up study reported for industrial applications. ANN modelling using multilayer perception with gradient descent (GD) and Levenberg-Marquart (LM) algorithm had been successfully used for prediction of Cr(VI) removal efficiency. The study explores the undiscovered potential of the natural waste materials for sustainable existence of small and medium sector industries, especially in the third world countries by protecting the environment by eco-innovation.

  20. BIOSORPTION OF Cr(VI FROM SYNTHETIC WASTEWATER USING THE FRUIT SHELL OF GULMOHAR (Delonix regia: APPLICATION TO ELECTROPLATING WASTEWATER

    Directory of Open Access Journals (Sweden)

    Attimodde Girirajanna Devi Prasad

    2010-05-01

    Full Text Available The biosorption of Cr(VI from synthetic solutions and electroplating wastewater using the fruit shell of gulmohar has been investigated in a batch system. The effects of various parameters such as pH, contact time, adsorbent dosage, and initial concentration of Cr(VI on the biosorption process were studied. The complete removal of Cr(VI was observed at pH < 3.0. Studies indicated that both biosorption and bioreduction were involved in the removal of Cr(VI. The sorption equilibrium exhibited a better fit to the Langmuir isotherm than the Freundlich isotherm. The maximum biosorption capacity of fruit shell of gulmohar to remove Cr(VI was 12.28 mg/g. A kinetic model of pseudo-second order provided a good description of the experimental data as compared to a pseudo-first order kinetic model. The sorption rate was found to be dependent on the initial concentration of Cr(VI and biomaterials dosage. The study showed that the abundant and inexpensive fruit shell of gulmohar biosorbent has a potential application in the removal of Cr(VI from electroplating wastewater and its conversion into less or non-toxic Cr (III.

  1. Biosorption characteristics of copper (II), chromium (III), nickel (II), and lead (II) from aqueous solutions by Chara sp. and Cladophora sp.

    Science.gov (United States)

    Elmaci, Ayşe; Yonar, Taner; Ozengin, Nihan

    2007-09-01

    The aim of this research was to expose individual removals of copper, chromium, nickel, and lead from aqueous solutions via biosorption using nonliving algae species, Chara sp. and Cladophora sp. Optimum pH values for biosorption of copper (II), chromium (III), nickel (II), and lead (II) from aqueous solutions were determined to be 6, 7, 7, and 3 for Cladophora sp. and 5, 3, 5, and 4 for Chara sp. respectively. Maximum adsorption capacities of Chara sp. [10.54 for chromium (III) and 61.72 for lead (II)] and Cladophora sp. [6.59 for chromium (III) and 16.75 and 23.25 for lead (II)] for chromium (III) and lead (II) are similar. On the other hand, copper (II) and nickel (II) biosorption capacity of Cladophora sp. [14.28 for copper (II) and 16.75 for nickel (II)] is greater than Chara sp. [6.506 for copper (II) and 11.76 for nickel (II)]. Significantly high correlation coefficients indicated for the Langmuir adsorption isotherm models can be used to describe the equilibrium behavior of copper, chromium, nickel, and lead adsorption onto Cladophora sp. and Chara sp.

  2. Biosorption of radionuclide Americium-241 by A. niger spore and hyphae

    International Nuclear Information System (INIS)

    Yang Yuanyou; Liu Ning; Jin Jiannan; Hua Xinfeng; Zhang Taiming; Luo Shunzhong; Sun Qiling

    2002-01-01

    The biosorption of radionuclide 241 Am from solution was studied by a. niger spore and hyphae, and the effects of the operational conditions on the treatment were investigated. The results showed the treatment by A. niger spore and hyphae were very efficient. An average of 96% of the total 241 Am was removed from 241 Am solutions of 5.6-111 MBq/L (C 0 ), with adsorption capacities (W) of 7.2-142.4 MBq/g biomass, 5.2-106.5 MBq/g, respectively. The biosorption equilibrium was achieved within 1 h and the optimum pH value ranged 3-0.1 mol/L HNO 3 and 3-2 for spore and hyphae of A. niger, respectively. No significant effects on 241 Am biosorption were observed at 15 degree C-45 degree C, or challenged with containing Au 3+ or Ag + , even 2000 times above 241 Am amount. the index relationship between concentrations and adsorption capacities of 241 Am indicated that the 241 Am biosorption by A. niger spore and hyphae obey to Freundlich adsorption equation. The adsorption behavior of A. niger spore and hyphae were basically coincident

  3. Biosorption of copper(II) and lead(II) onto potassium hydroxide treated pine cone powder.

    Science.gov (United States)

    Ofomaja, A E; Naidoo, E B; Modise, S J

    2010-08-01

    Pine cone powder surface was treated with potassium hydroxide and applied for copper(II) and lead(II) removal from solution. Isotherm experiments and desorption tests were conducted and kinetic analysis was performed with increasing temperatures. As solution pH increased, the biosorption capacity and the change in hydrogen ion concentration in solution increased. The change in hydrogen ion concentration for lead(II) biosorption was slightly higher than for copper(II) biosorption. The results revealed that ion-exchange is the main mechanism for biosorption for both metal ions. The pseudo-first order kinetic model was unable to describe the biosorption process throughout the effective biosorption period while the modified pseudo-first order kinetics gave a better fit but could not predict the experimentally observed equilibrium capacities. The pseudo-second order kinetics gave a better fit to the experimental data over the temperature range from 291 to 347 K and the equilibrium capacity increased from 15.73 to 19.22 mg g(-1) for copper(II) and from 23.74 to 26.27 for lead(II). Activation energy was higher for lead(II) (22.40 kJ mol(-1)) than for copper(II) (20.36 kJ mol(-1)). The free energy of activation was higher for lead(II) than for copper(II) and the values of DeltaH* and DeltaS* indicate that the contribution of reorientation to the activation stage is higher for lead(II) than copper(II). This implies that lead(II) biosorption is more spontaneous than copper(II) biosorption. Equilibrium studies showed that the Langmuir isotherm gave a better fit for the equilibrium data indicating monolayer coverage of the biosorbent surface. There was only a small interaction between metal ions when simultaneously biosorbed and cation competition was higher for the Cu-Pb system than for the Pb-Cu system. Desorption studies and the Dubinin-Radushkevich isotherm and energy parameter, E, also support the ion-exchange mechanism. Copyright 2010 Elsevier Ltd. All rights reserved.

  4. Biosorption of cesium by native and chemically modified biomass of marine algae: introduce the new biosorbents for biotechnology applications

    International Nuclear Information System (INIS)

    Jalali-Rad, R.; Ghafourian, H.; Asef, Y.; Dalir, S.T.; Sahafipour, M.H.; Gharanjik, B.M.

    2004-01-01

    Biosorption batch experiments were conducted to determine the cesium binding ability of native biomass and chemically modified biosorbents derived from marine algae, namely ferrocyanide algal sorbents type 1 and type 2 (FASs1 and FASs2). The applicability of the Langmuir and Freundlich isotherms for representation of the experimental data was investigated. The cesium sorption performances of the various types of sorbents were compared using the maximum capacities (q max values) obtained from fitting the Langmuir isotherm to the values calculated from the sorption experiments, which FASs type 1 and type 2 showed better sorption performances for cesium. FASs1 and FASs2 derived from formaldehyde and glutaraldehyde crosslinked Padina australis exhibited lower sorption capacities than those prepared from the non-crosslinked one. Most of the cesium ions were bound to FASs1, derived from Sargassum glaucescens and P. australis, in <2 min and equilibrium reached within the first 30 min of contact. Biosorption of cesium by FASs1 derived from P. australis and Cystoseria indica was constantly occurred at a wide range of pH, between 1 and 10, and the highest removal took place at pH 4. The presence of sodium and potassium at 0.5 and 1 mM did not inhibit cesium biosorption by algae biomass. The maximum cesium uptake was acquired using the large particles of FAS2 originated from S. glaucescens (2-4 mm). Desorption of cesium from the metal-laden FASs1 (from P. australis, S. glaucescens and Dictyota indica) was completely achieved applying 0.5 and 1 M NaOH and KOH, although the cesium sorption capacity of the biosorbents (from C. indica and S. glaucescens) decreased by 46-51% after 9 sorption-desorption cycles

  5. Biosorption of cesium by native and chemically modified biomass of marine algae: introduce the new biosorbents for biotechnology applications

    Energy Technology Data Exchange (ETDEWEB)

    Jalali-Rad, R. [Department of Biotechnology, Nuclear Research Center, Atomic Energy Organization of Iran, Tehran (Iran, Islamic Republic of)]. E-mail: rjalali@aeoi.org.ir; Ghafourian, H. [Department of Biotechnology, Nuclear Research Center, Atomic Energy Organization of Iran, Tehran (Iran, Islamic Republic of); Asef, Y. [Department of Biotechnology, Nuclear Research Center, Atomic Energy Organization of Iran, Tehran (Iran, Islamic Republic of); Dalir, S.T. [Department of Biotechnology, Nuclear Research Center, Atomic Energy Organization of Iran, Tehran (Iran, Islamic Republic of); Sahafipour, M.H. [Department of Biotechnology, Nuclear Research Center, Atomic Energy Organization of Iran, Tehran (Iran, Islamic Republic of); Gharanjik, B.M. [Offshore Fisheries Research Center, Chabahar (Iran, Islamic Republic of)

    2004-12-10

    Biosorption batch experiments were conducted to determine the cesium binding ability of native biomass and chemically modified biosorbents derived from marine algae, namely ferrocyanide algal sorbents type 1 and type 2 (FASs1 and FASs2). The applicability of the Langmuir and Freundlich isotherms for representation of the experimental data was investigated. The cesium sorption performances of the various types of sorbents were compared using the maximum capacities (q{sub max} values) obtained from fitting the Langmuir isotherm to the values calculated from the sorption experiments, which FASs type 1 and type 2 showed better sorption performances for cesium. FASs1 and FASs2 derived from formaldehyde and glutaraldehyde crosslinked Padina australis exhibited lower sorption capacities than those prepared from the non-crosslinked one. Most of the cesium ions were bound to FASs1, derived from Sargassum glaucescens and P. australis, in <2 min and equilibrium reached within the first 30 min of contact. Biosorption of cesium by FASs1 derived from P. australis and Cystoseria indica was constantly occurred at a wide range of pH, between 1 and 10, and the highest removal took place at pH 4. The presence of sodium and potassium at 0.5 and 1 mM did not inhibit cesium biosorption by algae biomass. The maximum cesium uptake was acquired using the large particles of FAS2 originated from S. glaucescens (2-4 mm). Desorption of cesium from the metal-laden FASs1 (from P. australis, S. glaucescens and Dictyota indica) was completely achieved applying 0.5 and 1 M NaOH and KOH, although the cesium sorption capacity of the biosorbents (from C. indica and S. glaucescens) decreased by 46-51% after 9 sorption-desorption cycles.

  6. Biosorption of uranium in radioactive liquid organic waste by coconut fiber

    International Nuclear Information System (INIS)

    Marumo, Julio Takehiro; Ferreira, Eduardo Gurzoni Alvares; Vieira, Ludmila Cabreira; Ferreira, Rafael Vicente de Padua; Silva, Edson Antonio da

    2013-01-01

    Radioactive liquid organic waste needs special attention because the available treatment processes are often expensive and difficult to be managed. Biosorption is a potential technique since it allies low cost with relatively high efficiency. Biosorption has been defined as the property of certain biomolecules to bind and remove selected ions or other molecules from aqueous solutions. Biosorption using vegetable biomass from agricultural waste has become a very attractive technique because it involves the removal of heavy metal ions by low cost biosorbent. This technique could be employed in the treatment of radioactive liquid wastes. Among the biosorbent reported in the literature, coconut fiber (Cocos nucifera L.) is highlighted due to the large number of functional groups in its composition. The aim of this study was to assess the potential of coconut fiber to remove uranium from radioactive liquid organic waste. This work was divided into three stages: 1) Preparation and activation of the coconut fiber; 2) Physical characterization of the biomass, 3) Batch biosorption experiments. Two forms of coconut fiber were tested, raw and activated. The activation was performed with dilute HNO3 and NaOH solutions. The parameters evaluated for physical characterization of biomass were morphological characteristics of coconut fiber, real and apparent density and surface area. The biomass was suspended in 10 ml of solutions prepared with distillate water and radioactive liquid waste for 2 hours in the proportion of 0.2% w/v. After the contact time, the coconut fiber was removed by filtration and the supernatant, analyzed by inductively coupled plasma optical emission spectrometry (ICP-OES).The results were evaluated using Langmuir and Freundlich isotherms. The maximum capacity for the raw coconut fiber was lower than the activated one, removing only 1.14mg/g against 2.61mg/g. These results suggest that biosorption with coconut fiber in activated form can be applied in the

  7. Biosorption of uranium in radioactive liquid organic waste by coconut fiber

    Energy Technology Data Exchange (ETDEWEB)

    Marumo, Julio Takehiro; Ferreira, Eduardo Gurzoni Alvares; Vieira, Ludmila Cabreira; Ferreira, Rafael Vicente de Padua, E-mail: jtmarumo@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Silva, Edson Antonio da, E-mail: edson.silva2@unioeste.br [Universidade Estadual do Oeste do Parana (UNIOESTE), Toledo, PR (Brazil)

    2013-07-01

    Radioactive liquid organic waste needs special attention because the available treatment processes are often expensive and difficult to be managed. Biosorption is a potential technique since it allies low cost with relatively high efficiency. Biosorption has been defined as the property of certain biomolecules to bind and remove selected ions or other molecules from aqueous solutions. Biosorption using vegetable biomass from agricultural waste has become a very attractive technique because it involves the removal of heavy metal ions by low cost biosorbent. This technique could be employed in the treatment of radioactive liquid wastes. Among the biosorbent reported in the literature, coconut fiber (Cocos nucifera L.) is highlighted due to the large number of functional groups in its composition. The aim of this study was to assess the potential of coconut fiber to remove uranium from radioactive liquid organic waste. This work was divided into three stages: 1) Preparation and activation of the coconut fiber; 2) Physical characterization of the biomass, 3) Batch biosorption experiments. Two forms of coconut fiber were tested, raw and activated. The activation was performed with dilute HNO3 and NaOH solutions. The parameters evaluated for physical characterization of biomass were morphological characteristics of coconut fiber, real and apparent density and surface area. The biomass was suspended in 10 ml of solutions prepared with distillate water and radioactive liquid waste for 2 hours in the proportion of 0.2% w/v. After the contact time, the coconut fiber was removed by filtration and the supernatant, analyzed by inductively coupled plasma optical emission spectrometry (ICP-OES).The results were evaluated using Langmuir and Freundlich isotherms. The maximum capacity for the raw coconut fiber was lower than the activated one, removing only 1.14mg/g against 2.61mg/g. These results suggest that biosorption with coconut fiber in activated form can be applied in the

  8. Biosorption of Strontium from Simulated Nuclear Wastewater by Scenedesmus spinosus under Culture Conditions: Adsorption and Bioaccumulation Processes and Models

    Science.gov (United States)

    Liu, Mingxue; Dong, Faqin; Kang, Wu; Sun, Shiyong; Wei, Hongfu; Zhang, Wei; Nie, Xiaoqin; Guo, Yuting; Huang, Ting; Liu, Yuanyuan

    2014-01-01

    Algae biosorption is an ideal wastewater treatment method when coupled with algae growth and biosorption. The adsorption and bioaccumulation of strontium from simulated nuclear wastewater by Scenedesmus spinosus were investigated in this research. One hundred mL of cultured S. spinosus cells with a dry weight of 1.0 mg in simulated nuclear wastewater were used to analyze the effects on S. spinosus cell growth as well as the adsorption and bioaccumulation characters under conditions of 25 ± 1 °C with approximately 3,000 lux illumination. The results showed that S. spinosus had a highly selective biosorption capacity for strontium, with a maximum bioremoval ratio of 76%. The adsorbed strontium ion on cell walls was approximately 90% of the total adsorbed amount; the bioaccumulation in the cytoplasm varied by approximately10%. The adsorption quantity could be described with an equilibrium isotherm. The pseudo-second-order kinetic model suggested that adsorption was the rate-limiting step of the biosorption process. A new bioaccumulation model with three parameters was proposed and could give a good fit with the experiment data. The results suggested that S. spinosus may be a potential biosorbent for the treatment of nuclear wastewater in culture conditions. PMID:24919131

  9. Biosorption of Strontium from Simulated Nuclear Wastewater by Scenedesmus spinosus under Culture Conditions: Adsorption and Bioaccumulation Processes and Models

    Directory of Open Access Journals (Sweden)

    Mingxue Liu

    2014-06-01

    Full Text Available Algae biosorption is an ideal wastewater treatment method when coupled with algae growth and biosorption. The adsorption and bioaccumulation of strontium from simulated nuclear wastewater by Scenedesmus spinosus were investigated in this research. One hundred mL of cultured S. spinosus cells with a dry weight of 1.0 mg in simulated nuclear wastewater were used to analyze the effects on S. spinosus cell growth as well as the adsorption and bioaccumulation characters under conditions of 25 ± 1 °C with approximately 3,000 lux illumination. The results showed that S. spinosus had a highly selective biosorption capacity for strontium, with a maximum bioremoval ratio of 76%. The adsorbed strontium ion on cell walls was approximately 90% of the total adsorbed amount; the bioaccumulation in the cytoplasm varied by approximately10%. The adsorption quantity could be described with an equilibrium isotherm. The pseudo-second-order kinetic model suggested that adsorption was the rate-limiting step of the biosorption process. A new bioaccumulation model with three parameters was proposed and could give a good fit with the experiment data. The results suggested that S. spinosus may be a potential biosorbent for the treatment of nuclear wastewater in culture conditions.

  10. Biosorption of uranium by chemically modified Rhodotorula glutinis

    International Nuclear Information System (INIS)

    Bai Jing; Yao Huijun; Fan Fangli; Lin Maosheng; Zhang Lina; Ding Huajie; Lei Fuan; Wu Xiaolei; Li, Xiaofei; Guo Junsheng; Qin Zhi

    2010-01-01

    The present paper reports the biosorption of uranium onto chemically modified yeast cells, Rhodotorula glutinis, in order to study the role played by various functional groups in the cell wall. Esterification of the carboxyl groups and methylation of the amino groups present in the cells were carried out by methanol and formaldehyde treatment, respectively. The uranium sorption capacity increased 31% for the methanol-treated biomass and 11% for the formaldehyde-treated biomass at an initial uranium concentration of 140 mg/L. The enhancement of uranium sorption capacity was investigated by Fourier transform infrared (FTIR) spectroscopy analysis, with amino and carboxyl groups were determined to be the important functional groups involved in uranium binding. The biosorption isotherms of uranium onto the raw and chemically modified biomass were also investigated with varying uranium concentrations. Langmuir and Freundlich models were well able to explain the sorption equilibrium data with satisfactory correlation coefficients higher than 0.9. -- Research highlights: → Uranium biosorption on to chemically modified yeast cells → Cells before and after uranium sorption were investigate by FTIR spectroscopy → Amino and carboxyl groups were important functional groups involved in uranium binding → The sorption equilibrium date of raw and chemically modified biomass fitted well with Langmuir and Freundlich models

  11. Biosorption of uranium by chemically modified Rhodotorula glutinis

    Energy Technology Data Exchange (ETDEWEB)

    Bai Jing, E-mail: baijing@impcas.ac.c [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Yao Huijun [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Fan Fangli; Lin Maosheng [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Zhang Lina; Ding Huajie; Lei Fuan; Wu Xiaolei [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Li, Xiaofei [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Guo Junsheng; Qin Zhi [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2010-11-15

    The present paper reports the biosorption of uranium onto chemically modified yeast cells, Rhodotorula glutinis, in order to study the role played by various functional groups in the cell wall. Esterification of the carboxyl groups and methylation of the amino groups present in the cells were carried out by methanol and formaldehyde treatment, respectively. The uranium sorption capacity increased 31% for the methanol-treated biomass and 11% for the formaldehyde-treated biomass at an initial uranium concentration of 140 mg/L. The enhancement of uranium sorption capacity was investigated by Fourier transform infrared (FTIR) spectroscopy analysis, with amino and carboxyl groups were determined to be the important functional groups involved in uranium binding. The biosorption isotherms of uranium onto the raw and chemically modified biomass were also investigated with varying uranium concentrations. Langmuir and Freundlich models were well able to explain the sorption equilibrium data with satisfactory correlation coefficients higher than 0.9. -- Research highlights: {yields} Uranium biosorption on to chemically modified yeast cells {yields} Cells before and after uranium sorption were investigate by FTIR spectroscopy {yields} Amino and carboxyl groups were important functional groups involved in uranium binding {yields} The sorption equilibrium date of raw and chemically modified biomass fitted well with Langmuir and Freundlich models

  12. Characterization of biosorption process of As(III) on green algae Ulothrix cylindricum

    International Nuclear Information System (INIS)

    Tuzen, Mustafa; Sari, Ahmet; Mendil, Durali; Uluozlu, Ozgur Dogan; Soylak, Mustafa; Dogan, Mehmet

    2009-01-01

    Arsenic (As) is generally found as As(III) and As(V) in environmental samples. Toxicity of As(III) is higher than As(V). This paper presents the characteristics of As(III) biosorption from aqueous solution using the green algae (Ulothrix cylindricum) biomass as a function of pH, biomass dosage, contact time, and temperature. Langmuir, Freundlich and Dubinin-Radushkevich (D-R) models were applied to describe the biosorption isotherm of As(III) by U. cylindricum biomass. The biosorption capacity of U. cylindricum biomass was found as 67.2 mg/g. The metal ions were desorbed from U. cylindricum using 1 M HCl. The high stability of U. cylindricum permitted 10 times of adsorption-elution process along the studies with a slightly decrease about 16% in recovery of As(III) ions. The mean free energy value evaluated from the D-R model indicated that the biosorption of As(III) onto U. cylindricum biomass was taken place by chemical ion-exchange. The calculated thermodynamic parameters, ΔG o , ΔH o and ΔS o showed that the biosorption of As(III) onto U. cylindricum biomass was feasible, spontaneous and exothermic under examined conditions. Experimental data were also tested in terms of biosorption kinetics using pseudo-first-order and pseudo-second-order kinetic models. The results showed that the biosorption processes of As(III) followed well pseudo-second-order kinetics.

  13. Characterization of Pb2+ biosorption by psychrotrophic strain Pseudomonas sp. I3 isolated from permafrost soil of Mohe wetland in Northeast China.

    Science.gov (United States)

    Li, Dandan; Xu, Xingjian; Yu, Hongwen; Han, Xuerong

    2017-07-01

    Due to the long and severe winter in Northeast China, wastewater containing lead (Pb) is treated inefficiently, resulting in irregular disposal. In order to solve this problem, a Pb-resistant psychrotrophic bacterium, Pseudomonas sp. I3, was isolated from permafrost soil of Mohe wetland and served as biosorbent for Pb 2+ removal under 15 °C. The minimum inhibitory concentration of strain I3 for Pb 2+ was 7.5 mM, which was higher than that of Escherichia coli DH5α (1.5 mM). However, acid digestion results showed that these two bacteria had a comparable biosorption capacity for Pb 2+ , suggesting no direct relationship between biosorption ability of bacteria and their metal-resistance. Acid digestion results also proved that intracellular Pb accumulation was mainly contributed to the distinct performance between living and non-living biosorbents, which was further confirmed by the analyses of TEM-EDS. Results of FTIR revealed that functional groups including CH 2 , CO, CN, NH, COO and SO 3 were participated in the biosorption process of the tested biosorbents no matter bacteria were living or not. The effects of environmental factors including pH, temperature, biomass dose, operation time and initial Pb 2+ concentration were investigated through a batch of biosorption experiments. The equilibrium data for living and non-living biosorbent were well fitted to Langmuir model with their maximum Pb 2+ biosorption capacities of 49.48 and 42.37 mg/g, respectively. The kinetic data for each biosorbent were well described by pseudo-second order kinetic model. Overall, Pseudomonas sp. I3 seemed to be an effective biosorbent for cleansing Pb 2+ from contaminated wastewater at low temperature. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Biosorption of the strontium ion by irradiated Saccharomyces cerevisiae under culture conditions.

    Science.gov (United States)

    Qiu, Liang; Feng, Jundong; Dai, Yaodong; Chang, Shuquan

    2017-06-01

    As a new-emerging method for strontium disposal, biosorption has shown advantages such as high sorption capacity; low cost. In this study, we investigated the potential of Saccharomyces cerevisiae (S. cerevisiae) in strontium disposal under culture conditions and the effects of irradiation on their biosorption capabilities. We found that S. cerevisiae can survive irradiation and grow. Pre-exposure to irradiation rendered S. cerevisiae resistant to further irradiation. Surprisingly, the pre-exposure to irradiation can increase the biosorption capability of S. cerevisiae. We further investigated the factors that influenced the biosorption efficiency, which were (strongest to weakest): pH > strontium concentration > time > temperature. In our orthogonal experiment, the optimal conditions for strontium biosorption by irradiated S. cerevisiae were: pH 7, 150 mg L -1 strontium at the temperature of 32 °C with 30 h. The equilibrium of strontium biosorption was analyzed by Langmuir and Freundlich models, from which the formal model is found to provide a better fit for the experimental results. The kinetics of strontium biosorption by living irradiated S. cerevisiae was found to be comprised of three phases: dramatically increased during 0-9 h, decreased during 12-24 h, and increased during 30-50 h. These results provide a systematic understanding of the biosorption capabilities of irradiated S. cerevisiae, which can contribute to the development of remediating nuclear waste water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. The use of instrumental neutron activation analysis method in bio-sorption determination

    International Nuclear Information System (INIS)

    Khamidova, Kh.M.; Mutavalieva, Z.S.; Muchamedshina, N.M.; Mirzagatova, A.A.

    2005-01-01

    Full text: Recently, much attention is paid to the research and development of effective metal remediation methods. In industry, for the removal of metals from the industrial solutions and wastes, the expensive ion-exchange resin method of metal sorption is used today. The microbiological methods are much less expensive, are available and provide its application in natural conditions. The search for molybdenum bio sorbent was performed amongst Actinomyces strains. The 18 of Streptomyces strains were used. The data showed that all investigated strains uptake the molybdenum from the solution in various degrees. The molybdenum determination was performed using neutron activation analysis technique. In a nuclear reactor, the samples were treated with a steady flow of neutrons (5.1·10 13 ) n·cm -2 sec -1 in 20 hours. The samples were stored for 6-7 days before analysis. The Actinomyces biomass uptake capacity was up to 94.5 %. The 8 cultures have the most high uptake capacity that varied from 87.4 to 94.5 %. Streptomyces sp. 39 and Streptomyces sp.32 have the lowest bio-sorption capacity amongst studied strains, which was 46.6% and 40 % respectively, whereas the bio sorption capacity of other cultures varied from 55.8 to 64.1%. The influence of some physical and chemical parameters (culture age, pH, temperature) on molybdenum bio-sorption was studied. Data showed that the change in pH, temperature and cultivation period lead to the increase of bio-sorption capacity

  16. Biosorption of uranium by Azolla, SP, Brazil

    International Nuclear Information System (INIS)

    Vieira, Ludmila C.; Alves, Eliakim G.; Marumo, Julio T.; Ferreira, Rafael V. de P.; Canevesi, Rafael L.S.; Silva, Edson A.

    2015-01-01

    Radioactive liquid waste needs special attention and requires suitable treatment before deposition. Among the potential technologies under development for the treatment of liquid radioactive wastes the biosorption has been highlighted by being an efficient and low cost technique. Biosorption process involves the exchange of ions contained in the biomass matrix by others present in solution. There are many biomasses that could be applied in treatment of radioactive wastes, for example, agricultural residues and macrophyte. The aim of this study is evaluate the ability of the Azolla sp., a floating aquatic plant, to absorb uranium in solution. Azolla sp. is a macrophyte that has been used to treat effluents containing heavy metals. The biosorption capacity of uranium by Azolla sp. was experimentally determined and modeled by isotherms. Experiments were performed to determine metal uptake, and then the solutions were analyzed by inductively coupled plasma optical emission spectrometry (ICP-OES). The isotherms applied to model the data was Langmuir, Freundlich, Sips Toth, Redlich Peternson, Two-Site-Langmuir, Radke Prausnitz to develop a technique for the treatment of radioactive liquid waste generated at the Nuclear and Energy Research Institute (IPEN-CNEN/SP), Brazil. (author)

  17. Biosorption of uranium by Azolla, SP, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Ludmila C.; Alves, Eliakim G.; Marumo, Julio T., E-mail: lcvieira@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Ferreira, Rafael V. de P., E-mail: rafael@itatijuca.com [Itatijuca Biotech, Sao Paulo, SP (Brazil); Canevesi, Rafael L.S.; Silva, Edson A., E-mail: edson.silva2@unioeste.br [Universidade Estadual do Oeste Parana (UNIOESTE), Toledo, PR (Brazil)

    2015-07-01

    Radioactive liquid waste needs special attention and requires suitable treatment before deposition. Among the potential technologies under development for the treatment of liquid radioactive wastes the biosorption has been highlighted by being an efficient and low cost technique. Biosorption process involves the exchange of ions contained in the biomass matrix by others present in solution. There are many biomasses that could be applied in treatment of radioactive wastes, for example, agricultural residues and macrophyte. The aim of this study is evaluate the ability of the Azolla sp., a floating aquatic plant, to absorb uranium in solution. Azolla sp. is a macrophyte that has been used to treat effluents containing heavy metals. The biosorption capacity of uranium by Azolla sp. was experimentally determined and modeled by isotherms. Experiments were performed to determine metal uptake, and then the solutions were analyzed by inductively coupled plasma optical emission spectrometry (ICP-OES). The isotherms applied to model the data was Langmuir, Freundlich, Sips Toth, Redlich Peternson, Two-Site-Langmuir, Radke Prausnitz to develop a technique for the treatment of radioactive liquid waste generated at the Nuclear and Energy Research Institute (IPEN-CNEN/SP), Brazil. (author)

  18. Study of Mo (VI Removal from Aqueous Solution: Application of Different Mathematical Models to Continuous Biosorption Data

    Directory of Open Access Journals (Sweden)

    Fatemeh Kafshgari

    2013-01-01

    Full Text Available Molybdenum (VI biosorption process was investigated by marine algae Cystoseria indica pretreated with 0.1 M CaCl2 solution in a packed bed column. The biosorbent was characterized by FTIR, BET and SEM analyses. The results showed that Mo (VI ions should be chelated with the hydroxyl, carboxyl and amine groups of the biomass. The effects of inlet metal concentration and flow rate on biosorption process were investigated and the experimental breakthrough curves were obtained. Results showed that the maximum biosorption capacity of Ca-pretreated C. indica for Mo (VI was found to be 18.32 mg/g at optimum flow rate of (1.4 mL/min. The controlled-rate step shifted from external to internal mass transfer limitations, as the flow rate increased. Also, it was observed that the breakthrough and exhaustion time decreased from 17.14 hr to 9.05 hr and from 0.006 h to 0.002 hr respectively, with the increase of flow rate from 0.7 to 2.1 ML/min. The increase in the initial concentration of Mo (VI solution from 30 to 95 ml min-1 increases the adsorption capacity from 18.32 to 30.19 mg/g and decreases the percentage of Mo (VI removal from 61 to 38%. Also, the treated volume was the greatest (1.42 L at the lowest inlet concentration. Column data obtained under different conditions were described using the Thomas, Yoon and Nelson, Yan and Belter models. The breakthrough curve predictions by Belter model were found to be very satisfactory.

  19. Biosorption of lead(II) and cadmium(II) by protonated Sargassum glaucescens biomass in a continuous packed bed column

    International Nuclear Information System (INIS)

    Naddafi, Kazem; Nabizadeh, Ramin; Saeedi, Reza; Mahvi, Amir Hossein; Vaezi, Forough; Yaghmaeian, Kamyar; Ghasri, Azar; Nazmara, Shahrokh

    2007-01-01

    Biosorption of lead(II) and cadmium(II) from aqueous solutions by protonated Sargassum glaucescens biomass was studied in a continuous packed bed column. The selective uptake of Pb 2+ and Cd 2+ was investigated in a binary system with initial concentration of 1 mM for each metal ion. The selective uptake capacities of Pb 2+ and Cd 2+ at complete exhaustion point were obtained 1.18 and 0.22 mmol/g, respectively; therefore, the biosorbent showed much higher relative affinity for Pb 2+ than for Cd 2+ . The optimum range of empty bed contact time (EBCT) was identified as 5-10 min in the packed bed column. The efficiency of biosorbent regeneration by 0.1 M HCl was achieved about 60%, so that the maximum uptake capacity of Pb 2+ by the regenerated biomass was determined to be 0.75 mmol/g while the same value for the original biomass was 1.24 mmol/g. The Thomas model was found in a suitable fitness with the experimental data (R 2 > 0.90 and ε% + with the uptake of heavy metals; hence, ion exchange was confirmed to be one of the main biosorption mechanisms

  20. Comparative study on metal biosorption by two macroalgae in saline waters: single and ternary systems.

    Science.gov (United States)

    Figueira, Paula; Henriques, Bruno; Teixeira, Ana; Lopes, Cláudia B; Reis, Ana T; Monteiro, Rui J R; Duarte, A C; Pardal, M A; Pereira, E

    2016-06-01

    The biosorption capability of two marine macroalgae (green Ulva lactuca and brown Fucus vesiculosus) was evaluated in the removal of toxic metals (Hg, Cd and Pb) from saline waters, under realistic conditions. Results showed that, independently of the contamination scenario tested, both macroalgae have a remarkable capacity to biosorb Hg and Pb. In single-contaminant systems, by using only c.a. 500 mg of non-pre-treated algae biomass (size macroalgae exhibited a similar selectivity toward the target metals: Hg > Pb> > Cd, although Pb removal by U. lactuca was more inhibited than that achieved by F. vesiculosus. Under the experimental conditions used, none of the macroalgae was effective to remove Cd (maximum removal of 20 %). In all cases, the kinetics of biosorption was mathematically described with success. Globally, it became clear that the studied macroalgae may be part of simple, efficient, and cost-effective water treatment technologies. Nevertheless, Fucus vesiculosus has greater potential, since it always presented higher initial sorption rates and higher removal efficiencies.

  1. Batch removal and optimization of Cu(II) ions from aqueous solution by biosorption on to native and pretreated mangifera indica seeds

    International Nuclear Information System (INIS)

    Noreen, A.; Ali, G.; Jabeen, M.

    2011-01-01

    Biosorption is a process that utilizes biomass to sequester toxic heavy metals and is particularly useful for the removal of contaminants from industrial effluents. Present study involved batch experiments for the sorption of Cu(II) onto Mangifera indica seeds kernel particles in order to optimize the biosorbent dose, agitation rate, pH, contact time and initial metal ion concentration. The effect of citric acid pretreatment was also studied. Maximum uptake was observed at pH 5, biosorbent dose 0.5 g and agitation rate 150 rpm. A direct correlation was found to exist between adsorbed Cu(II) ion concentration and initial metal concentration upto a certain level then it reached a saturation value at about 250 mg/L. Biosorption equilibrium was established by 60 min. The maximum metal uptake capacity was 13.2 mg/g at optimized conditions. The uptake capacity of the biomass was increased by chemical pretreatment with citric acid (15.2 mg/g) when compared with the raw biomass (13.2 mg/g). Equilibrium data was fitted to Freundlich and Langmuir isotherm equations and the data was found to well represented by Langmuir isotherm equation with r/sup 2/ = 0.9981 and q/sub max/ = 17.939 mg/g for raw biomass and with r/sup 2/ = 0.9984 and qmax 18.57 mg/g for modified biomass. (author)

  2. Biosorption of uranium from wastewater by ZVI-SRB immobilized in calcium alginate

    International Nuclear Information System (INIS)

    Wang Aihe; Zhang Wei; Hu Kaiguang

    2009-01-01

    A ZVI-SRB was immobilized in calcium alginate gel beads,and the immobilized ZVI-SRB was used for removing uranium from wasterwater. The kinetics of uranium biosorption by the immobilized ZVI-SRB and the immobilized SRB was investigated. The results show that the immobilized ZVI-SRB and SRB were effective in removing uranium from wasterwater, and their maximal absorption capacities were up to 312.50 and 256.41 mg/g respectively. The kinetics of uranium biosorption onto the immobilized ZVI-SRB and SRB followed pseudo-second order model. (authors)

  3. Biosorption potential of synthetic dyes by heat-inactivated and live Lentinus edodes CCB-42 immobilized in loofa sponges.

    Science.gov (United States)

    Gimenez, Gabriela Gregolin; Ruiz, Suelen Pereira; Caetano, Wilker; Peralta, Rosane Marina; Matioli, Graciette

    2014-12-01

    Lentinus edodes CCB-42 was immobilized in loofa sponges and applied to the biosorption of the synthetic dyes congo red, bordeaux red and methyl violet. Live immobilized microorganisms achieved average decolorations of congo red, bordeaux red and methyl violet of 97.8, 99.7 and 90.6 %, respectively. The loofa sponge was the support and the coadjuvant promoting dye adsorption. The biosorption conditions were optimized for each dye, yielding 30 °C, pH 5.0 and a 12 h reaction time for congo red; 25 °C, pH 3.0 and 36 h for bordeaux red; and 25 °C, pH 8.0 and 24 h for methyl violet. Operational stability was evaluated over five consecutive cycles, with both bordeaux red and congo red exhibiting decolorations above 90 %, while the decoloration of methyl violet decreased after the third cycle. In the sixth month of storage, congo red, bordeaux red and methyl violet had decolorations of 93.1, 79.4 and 73.8 %, respectively. Biosorption process best fit the pseudo-second-order kinetic and Freundlich isotherm models. Maximum biosorption capacity of heat-treated L. edodes immobilized in loofa sponge was determined as 143.678, 500.00 and 381.679 mg/g for congo red, bordeaux red and methyl violet, respectively. Treatment with immobilized L. edodes reduced the phytotoxicity of the medium containing dyes. FT-Raman experiments suggested the occurrence of interactions between loofa sponge fibers, L. edodes and dye. L. edodes CCB-42 immobilized in loofa sponges represents a promising new mode of treatment of industrial effluents.

  4. Chromium (VI) biosorption properties of multiple resistant bacteria isolated from industrial sewerage.

    Science.gov (United States)

    Oyetibo, Ganiyu Oladunjoye; Ilori, Matthew Olusoji; Obayori, Oluwafemi Sunday; Amund, Olukayode Oladipo

    2013-08-01

    Chromium (VI) [Cr (VI)] biosorption by four resistant autochthonous bacterial strains was investigated to determine their potential for use in sustainable marine water-pollution control. Maximum exchange between Cr (VI) ions and protons on the cells surfaces were at 30-35 °C, pH 2.0 and 350-450 mg/L. The bacterial strains effectively removed 79.0-90.5 % Cr (VI) ions from solution. Furthermore, 85.3-93.0 % of Cr (VI) ions were regenerated from the biomasses, and 83.4-91.7 % of the metal was adsorbed when the biomasses was reused. Langmuir isotherm performed better than Freundlich isotherm, depicting that Cr (VI) affinity was in the sequence Rhodococcus sp. AL03Ni > Burkholderia cepacia AL96Co > Corynebacterium kutscheri FL108Hg > Pseudomonas aeruginosa CA207Ni. Biosorption isotherms confirmed that Rhodococcus sp. AL03Ni was a better biosorbent with a maximum uptake of 107.46 mg of Cr (VI) per g (dry weight) of biomass. The results highlight the high potential of the organisms for bacteria-based detoxification of Cr (VI) via biosorption.

  5. Biosorption of mercury from aqueous solutions using highly characterised peats

    Directory of Open Access Journals (Sweden)

    A.M. Rizzuti

    2015-02-01

    Full Text Available This research investigated the biosorption of mercury from aqueous solutions by six highly characterised peats. Samples of the peats were tested both in unaltered condition and after being treated with hydrochloric acid (HCl to free up any occupied exchange sites. Other variables tested were sample dose, contact time, mixing temperature, and the concentration and pH of the mercury solution. Desorption studies were also performed, and tests were done to determine whether the peats could be re-used for mercury biosorption. The results indicate that all six peat types biosorb mercury from aqueous solutions extremely well (92−100 % removal and that their mercury removal capacities are not significantly affected by manipulation of the various factors tested. The factor that had the greatest impact on the mercury removal capacities of the peats was the pH of the mercury solution. The optimal mercury solution pH for mercury removal was in the range 5−7 for four of the peats and in the range 2−3 for the other two. The desorption results indicate that it may be possible to recover up to 41 % of the removed mercury. All of the peat types tested can be repeatedly re-used for additional mercury biosorption cycles. Hence, their disposal should not become a hazardous waste problem.

  6. Screening of various types of lignin products for biosorption of heavy metals (Cu, Ni, Zn)

    Energy Technology Data Exchange (ETDEWEB)

    Gouda, H [Nile Research Inst., National Water Research Center, El Qanater (Egypt)

    2000-07-01

    This paper discussed the need to develop new technologies and approaches to meet strict environmental legislation and standards regarding the discharge of heavy metals to the environment by industry. A study was conducted to determine the feasibility of using different lignin materials for heavy metal removal using the BioElecDetox process. This process uses an unique combination of existing water and wastewater equipment and technology. The heavy metal removal efficiencies of grape stalks, pine bark, larch bark, pine sawdust, broccoli stems, and paper pulp were tested for their biosorption capacity, sedimentation, desorption and recycling for single solutions of copper, nickel and zinc (Cu, Ni and Zn respectively). Results showed that the grape stalk was the best biosorbent among the biomasses examined for Cu, Ni and Zn ions from single solution. The biomass biosorption capacity was determined using the Langmuir equation. Pine bark also gave good results and was considered to be the second best biosorbent. The biosorption for single metal solution was high for all metals. Biomass recycling had no impact on the efficiency of biosorption. It was recommended that future experiments should be conducted for industrial effluent using different biomasses at laboratory scale for the BioElecDetox process. 5 refs., 1 tab., 2 figs.

  7. Biosorption of Cr(VI from AqueousSolution Using New Adsorbent: Equilibrium and Thermodynamic Study

    Directory of Open Access Journals (Sweden)

    Israa G. Zainal

    2010-01-01

    Full Text Available Biosorption is one such emerging technology which utilized naturally occurring waste materials to sequester heavy metals from polluted water. In the present study cinnamon was utilized for Cr(VI removal from aqueous solutions.It was found that a time of two hours was sufficient for sorption to attain equilibrium. The optimum pH was 2 for Cr(VI removal. Temprature has little influence on the biosorption process. The Cr(VI removal decreased with increase in temperature. The biosorption data was well fitted to Dubinin - Radushkevich (D-R, Freundlich and Tempkin adsorption isotherm models, although the correlation coefficient of Langmuir model was high but the calculated adsorption capacity did not agree with the experimental. The thermodynamic study reveals that the biosorption process is spontaneous and the spontaneity decreased with temperature increase and the process is exothermic accompanied by highly ordered adsorbate at the solid liquid interface. ΔH° values were negative and lie in the range of physical adsorption.

  8. Biosorption of 239Pu by immobilized sargassum fusiforme

    International Nuclear Information System (INIS)

    Liang Zhirong; Chen Qi; Wu Yusheng

    2009-01-01

    Sargassum fusiforme was immobilized with calcium alginates and its biosorption property to 239 Pu was studied by batch and column methods. Biosorption equilibrium time of immobilized Sargassum fusiforme biosorbent to 239 Pu is 120 min and biosorption efficiency is over 99.2% when the initial concentration of 239 Pu is 21.5 kBq/L and pH is 2.5-5.0. After five times repetition biosorption-desorption cycles biosorption efficiency is still over 98.0% when the velocity of flow is 2 ml/min in column experiment. Immobilized Sargassum fusiforme biosorbent is better to 239 Pu due to its better chemical stability, mechanical strength, lower cost, high biosorption efficiency and repeated biosorption-desorption cycles. (authors)

  9. Biosorption of uranium and lead by Streptomyces longwoodensis

    International Nuclear Information System (INIS)

    Friis, N.; Myers-Keith, P.

    1986-01-01

    Biosorption of uranium and lead by lyophilized cells of Streptomyces longwoodensis was examined as a function of metal concentration, pH, cell concentration, and culture age. Cells harvested from the stationary growth phase exhibited an exceptionally high capacity for uranium (0.44 g U/g dry weight) at pH 5. Calculated values of the distribution coefficient and separation factor indicated a strong preference of the cell mass for uranyl ions over lead ions. The specific uranium uptake was similar for the cell wall and the cytoplasmic fraction. Uranium uptake was associated with an increase in hydrogen ion concentration, and phosphorus analysis of whole cells indicated a simple stoichiometric ratio between uranium uptake and phosphorus content. It is proposed that metal ions are bound to phosphodiester residues present both in the cell wall and cytoplasmic fractions. Based on this model, it was shown that uranium accumulation exhibits a maximum at pH 4.6 that is supported by experimental data from previous investigations

  10. Maximum physical capacity testing in cancer patients undergoing chemotherapy

    DEFF Research Database (Denmark)

    Knutsen, L.; Quist, M; Midtgaard, J

    2006-01-01

    BACKGROUND: Over the past few years there has been a growing interest in the field of physical exercise in rehabilitation of cancer patients, leading to requirements for objective maximum physical capacity measurement (maximum oxygen uptake (VO(2max)) and one-repetition maximum (1RM)) to determin...... early in the treatment process. However, the patients were self-referred and thus highly motivated and as such are not necessarily representative of the whole population of cancer patients treated with chemotherapy....... in performing maximum physical capacity tests as these motivated them through self-perceived competitiveness and set a standard that served to encourage peak performance. CONCLUSION: The positive attitudes in this sample towards maximum physical capacity open the possibility of introducing physical testing...

  11. Optimization of chromium biosorption in aqueous solution by marine ...

    African Journals Online (AJOL)

    Optimization of a chromium biosorption process was performed by varying three independent variables pH (0.5 to 3.5), initial chromium ion concentration (10 to 30 mg/L), and Yarrowia lipolytica dosage (2 to 4 g/L) using a Doehlert experimental design (DD) involving response surface methodology (RSM). For the maximum ...

  12. Potentiality of Neopestalotiopsis clavispora ASU1 in biosorption of cadmium and zinc.

    Science.gov (United States)

    Hassan, Sedky H A; Koutb, Mostafa; Nafady, Nivien Allam; Hassan, Elhagag Ahmed

    2018-07-01

    In this study, a fungal isolate was isolated from avocado fruit collected from a market in Makkah city, Saudi Arabia, and identified as Neopestalotiopsis clavispora ASU1. The biomass of Neopestalotiopsis clavispora ASU1 was used as a natural bio-sorbent for removal of Cd(II) and Zn(II) from aqueous solutions. Characterization of fungal biomass was performed using Fourier transform infrared spectroscopy, X-ray Diffractometer, and BET surface area. Different factors on Cd(II) and Zn(II) biosorption were studied to evaluate the maximum conditions for metals biosorption. The (q max ) for Cd(II) and Zn (II) by N. clavispora ASU1 calculated from the Langmuir adsorption isotherm was 185.3 ± 0.25 and 153.8 ± 0.21 mg/g, respectively. Based on r 2 , the equilibrium biosorption isotherms fitted well with Langmuir model than Freundlich isotherm. The adsorption kinetics was studied, and the biosorption followed to the pseudo-second-order model. Thus, the current study indicated that the biomass of N. clavispora ASU1 is an effective adsorbent for the removal of heavy metals from aqueous solutions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Biosorption of the Copper and Cadmium Ions - a Study through Adsorption Isotherms Analysis

    Directory of Open Access Journals (Sweden)

    Marcia T. Veit

    2007-10-01

    Full Text Available In this work, the biosorption process of copper-cadmium ions binary mixture by using marine algae Sargassum filipendula was investigated. A set of experiments was performed to obtain equilibrium data for the given batch operational conditions - T=30°C, pH=5. The interpretation of equilibrium data was based on the binary adsorption isotherms models in the Langmuir and Freundlich forms. To evaluate the models parameters, nonlinear identification procedure was used based on the Least Square statistical method and SIMPLEX local optimizer. An analysis of the obtained results showed that the marine algae biomass has higher affinity to copper ions than to cadmium ones. The biomass maximum adsorption capacity for the binary system was about 1.16 meq/g.

  14. Biosorption studies on powder of stem of Acacia nilotica: Removal of arsenic from surface water

    International Nuclear Information System (INIS)

    Baig, Jameel A.; Kazi, Tasneem G.; Shah, Abdul Q.; Kandhro, Ghulam A.; Afridi, Hassan I.; Khan, Sumaira; Kolachi, Nida F.

    2010-01-01

    In present study a biomass derived from the stem of Acacia nilotica has been investigated to remove As ions from surface water samples of different origins (lake, canal and river). The effects of various parameters viz. pH, biosorbent dosage, contact time and temperature on the biosorption processes were systematically studied. Experimental data were modeled by Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherms. It was observed that As biosorption best fitted to the Langmuir and Freundlich isotherms. The mean sorption energy (E) calculated from D-R model, indicated physico-chemical biosorption. Study of thermodynamic parameters revealed the endothermic, spontaneous and feasible nature of biosorption process. The pseudo-second-order rate equation described better the kinetics of As biosorption with good correlation coefficients than pseudo-first-order equation. The biomass of A. nilotica was found to be effective for the removal of As with 95% sorption efficiency at a concentration of <200 μg/L of As solution, and thus uptake capacity is 50.8 mg As/g of biomass. The A. nilotica biomass could be used as a low-cost biosorbent for As ion removal.

  15. Removal of thorium(IV) from aqueous solution by biosorption onto modified powdered waste sludge. Experimental design approach

    International Nuclear Information System (INIS)

    Yunus Pamukoglu, M.; Mustafa Senyurt; Bulent Kirkan

    2017-01-01

    The biosorption of radioactive Th(IV) ions in the aqueous solutions onto the modified powdered waste sludge (MPWS) has been examined. In this context, the parameters affecting biosorption of Th(IV) from aqueous solutions has been examined by using MPWS biosorbent in Box Behnken statistical experimental design. The structure of MPWS biosorbent was characterized by using SEM and BET techniques. According to the experimental design results, MPWS and Th(IV) concentrations should be kept high to achieve the maximum efficiency in Th(IV) biosorption. On the other hand, MPWS, which is also used as a biosorbent, is an economical, effective and natural biosorbent. (author)

  16. Biosorption and bioaccumulation of thallium by thallium-tolerant fungal isolates.

    Science.gov (United States)

    Sun, Jialong; Zou, Xiao; Xiao, Tangfu; Jia, Yanlong; Ning, Zengping; Sun, Min; Liu, Yizhang; Jiang, Tao

    2015-11-01

    Little is known about the biosorption and bioaccumulation capacity of thallium (Tl) by microorganisms that occur in Tl-polluted soil. The present study focused on characterizing the biosorption and bioaccumulation of Tl by Tl-tolerant fungi isolated from Tl-polluted soils. Preliminary data showed a positive correlation between the biomass and the biosorbed Tl content. The Tl-tolerant strains were capable of bioaccumulating Tl, up to 7189 mg kg(-1) dry weight. The subcellular distribution of Tl showed obvious compartmentalization: cytoplasm ≫ cell wall > organelle. The majority of Tl (up to 79%) was found in the cytoplasm, suggesting that intracellular compartmentalization appeared to be responsible for detoxification. These findings further suggest the applicability of the fungal isolates for cleanup of Tl in Tl-polluted water and soil.

  17. Biosorption of styrene from synthetic wastewater by sugar cane waste(Bagass

    Directory of Open Access Journals (Sweden)

    Mehdi Hassanzadeh

    2015-04-01

    Full Text Available In this work, styrene removal from wastewater by using sugarcane waste (bagasse as an adsorbent was studied. Equilibrium isotherms and kinetics were determined; the effects of bagasse particle size and concentration, solutions pH, and temperature on the biosorption of styrene were studied in batch experiments. Adsorption equilibrium data was successfully fitted to Langmuir isotherms (R2=0.986 and Freundlich isotherms (R2=0.96. Also, the kinetics of biosorption was fitted to pseudo-second order equations (K2=0.00146 g mg-1 min-1, qe=24.5 mg g-1 for particle size range of 88-105 μm. According to the obtained results, an empirical equation was presented that could be used to calculate the percentage of styrene adsorption. The results showed that an increase in temperature caused a decrease in styrene removal. Moreover, maximum uptake was observed with NaOH-treated bagasse. It was found that an increase in average particle size decreased the biosorption rate. According to the calculated heat of adsorption, this sorption can be classified as a chemical biosorption. The optimum uptake was determined to be 88% at a pH equal to 12.1, a temperature of 35 oC, a particle size of 420-500 μm, and a bagasse concentration of 1 g L-1.

  18. Prospective role of indigenous Exiguobacterium profundum PT2 in arsenic biotransformation and biosorption by planktonic cultures and biofilms.

    Science.gov (United States)

    Saba; Andreasen, R; Li, Y; Rehman, Y; Ahmed, M; Meyer, R L; Sabri, A N

    2018-02-01

    The aim of this study was to analyse arsenic (As) transformation and biosorption by indigenous As-resistant bacteria both in planktonic and biofilm modes of growth. As-resistant bacteria were isolated from industrial waste water and strain PT2, and identified as Exiguobacterium profundum through 16S rRNA gene sequencing was selected for further study. As transformation and biosorption by E. profundumPT2 was determined by HPLC-ICP-MS analysis. Planktonic cultures reduced 3·73 mmol l -1 As 5+ into As 3+ from artificial waste water effluent after 48-h incubation. In case of biosorption, planktonic cultures and biofilms exhibited 25·2 and 29·4 mg g -1 biomass biosorption, respectively. As biosorption kinetics followed Freundlich isotherm and pseudo second-order model. Biofilm formation peaked after 3 days of incubation, and in the presence of As stress, biofilm formation was significantly affected in contrast to control (P biofilms with an increased demand of nutrients was revealed by minimum roughness and maximum surface to biovolume ratio measured through CLSM analysis. Indigenous As-resistant E. profundumPT2 was found capable of As transformation and biosorption both in the form of planktonic cultures and biofilms. Indigenous biofilm forming E. profundum PT2 revealing As biosorption and biotransformation potential is presented an eco-friendly and cost-effective source for As remediation that can be implemented for waste water treatment. © 2017 The Society for Applied Microbiology.

  19. Biosorption of Cr (VI) ions from electroplating industrial effluent using immobilized Aspergillus niger biomass.

    Science.gov (United States)

    Chhikara, S; Dhankhar, R

    2008-09-01

    A fungus, Aspergillus niger was chemically treated with 0.1 M H2SO4 and 0.1 N NaOH to form biosorbent and it was immobilized in calcium alginate beads. The biosorption capacity of immobilized biosorbents for Cr (VI) was found to depend on pH, contact time, biosorbent dose and initial concentration of Cr (VI). The maximum uptake of Cr (VI) was 92.5, 95.9 and 98.4 mg respectively at a pH of 1.5 and with an increase in pH up to 10.5 the metal uptake decreased gradually up to 38.75, 50.19 and 65.28 mg respectively for acid treated, untreated and base treated fungal biosorbents. Increase in biosorbent dose up to 1 g of biomass and contact time up to 60 min resulted in an increase in biosorption from 19.6, 15.6 and 26.1 mg at a biosorbent dose of 0.1 g 100 ml(-1) to 92.45, 95.7 and 98.52 mg at a biosorbent dose of 1.0 g 100 ml(-1) and then further increase in adsorbent dose and contact time did not resulted in more Cr (VI) adsorption by per unit weight of biosorbent. The value of Kad (adsorption rate constant) revealed the pseudo-first order nature of biosorption. The percentage metal uptake by the biosorbent was found to decrease upto 62.33, 52.67 and 83.5 percent respectively for acid treated, untreated and base treated fungal biosorbents at the 300 mgl(-1) Cr (VI) ion concentration. The resulted data was found to fit well in Langmuir model of adsorption isotherm with a high value of correlation coefficient. The value of Qmax, b (Langmuir constants), R(L) (separation factor) and delta G (Gibb's free energy) revealed the favourable nature of adsorption. The biosorbed metal was eluted from the biosorbent by using 0.1 M H2SO4 as elutant. Immobilized biosorbent can be reused for five consecutive biosorption/desorption cycles without apparent loss of efficiency after its reconditioning. The biosorbent was found to perform well in the electroplating industrial effluent.

  20. Optimization of Chromium Biosorption by Fungal Adsorbent, Trichoderma sp. BSCR02 and its Desorption Studies

    Directory of Open Access Journals (Sweden)

    John Rose Mercy Benila Smily

    2017-04-01

    Full Text Available Heavy metal pollution in water because of the discharge of industrial effluent imposes serious environmental concern. Chromium is one of such pollutants which is considered as toxic, non-biodegradable and persistent in nature. In the present study, the fungal strains isolated from the water samples of Manjakkudi lake were screened for their resistance towards the heavy metal, chromium. The Trichoderma sp. BSCR02 showing resistance towards increased chromium concentration (4 mg/mL was selected for the biosorption studies. The chromium biosorption ability of the untreated and alkali-treated mycelium of Trichoderma sp. BSCR02 was compared and found the alkali treatment as better biosorbent. The process parameters governing chromium biosorption by the dead biomass of Trichoderma sp. were optimized and maximum chromium removal was observed at pH 5 with 200 mg/L initial metal concentration at 35°C when supplemented 1.6 mg/mL of biosorbent for the contact time of 120 min. The biosorbent was found to be active for five cycles of biosorption. The results revealed the applicability of the Trichoderma sp. BSCR2 for the effective removal of chromium from the contaminated water bodies.

  1. REMOVAL OF CRYSTAL VIOLET BY BIOSORPTION ONTO DATE STONES

    Directory of Open Access Journals (Sweden)

    NOUREDDINE EL MESSAOUDI

    2016-07-01

    Full Text Available The biosorption has the advantage that it can be applied to effluent disposal and thus brings various responses to the regulatory requirements for environmental protection. This study presents the results obtained from the use of date stones (DS for the elimination of crystal violet (CV from aqueous medium. Several analysis techniques were used to determine the different characteristics of biosorbent studied (FTIR, TGA-DTA, SEM and pHzpc.The physico-chemical parameters influence of the biosorption such as biosorbent dosage, contact time, temperature, biosorbent particles size and initial dye pH were investigated under static conditions in order to evaluate the process system. The test results show that a gram of date stones may set a maximum amount adsorbed 90.89 mg·g-1 of CV at 50 °C according to the Langmuir isotherm with pseudo-second-order kinetic. Thermodynamic calculations performed shows also that sorption is spontaneous, endothermic and increased randomness in the solid / solution interface.

  2. The radiation resistance and cobalt biosorption activity of yeast strains isolated from the Lanyu low-level radioactive waste repository in Taiwan.

    Science.gov (United States)

    Li, Chia-Chin; Chung, Hsiao-Ping; Wen, Hsiao-Wei; Chang, Ching-Tu; Wang, Ya-Ting; Chou, Fong-In

    2015-08-01

    The ubiquitous nature of microbes has made them the pioneers in radionuclides adsorption and transport. In this study, the radiation resistance and nuclide biosorption capacity of microbes isolated from the Lanyu low-level radioactive waste (LLRW) repository in Taiwan was assessed, the evaluation of the possibility of using the isolated strain as biosorbents for (60)Co and Co (II) from contaminated aqueous solution and the potential impact on radionuclides release. The microbial content of solidified waste and broken fragments of containers at the Lanyu LLRW repository reached 10(5) CFU/g. Two yeast strains, Candida guilliermondii (CT1) and Rhodotorula calyptogenae (RT1) were isolated. The radiation dose necessary to reduce the microbial count by one log cycle of CT1 and RT1 was 2.1 and 0.8 kGy, respectively. Both CT1 and RT1 can grow under a radiation field with dose rate of 6.8 Gy/h, about 100 times higher than that on the surface of the LLRW container in Lanyu repository. CT1 and RT1 had the maximum (60)Co biosorption efficiency of 99.7 ± 0.1% and 98.3 ± 0.2%, respectively in (60)Co aqueous solution (700 Bq/mL), and the (60)Co could stably retained for more than 30 days in CT 1. Nearly all of the Co was absorbed and reached equilibrium within 1 h by CT1 and RT1 in the 10 μg/g Co (II) aqueous solution. Biosorption efficiency test showed almost all of the Co (II) was adsorbed by CT1 in 20 μg/g Co (II) aqueous solution, the efficiency of biosorption by RT1 in 10 μg/g of Co (II) was lower. The maximum Co (II) sorption capacity of CT1 and RT1 was 5324.0 ± 349.0 μg/g (dry wt) and 3737.6 ± 86.5 μg/g (dry wt), respectively, in the 20 μg/g Co (II) aqueous solution. Experimental results show that microbial activity was high in the Lanyu LLRW repository in Taiwan. Two isolated yeast strains, CT1 and RT1 have high potential for use as biosorbents for (60)Co and Co (II) from contaminated aqueous solution, on the other hand, but may have the

  3. Comparison Of Cd2+ Biosorption And Bioaccumulation By Bacteria – A Radiometric Study

    Directory of Open Access Journals (Sweden)

    Machalová Linda

    2015-12-01

    Full Text Available In this work, bioaccumulation and biosorption characteristics of Cd2+ ions by both dead and living non-growing biomass of gram-positive bacteria Kocuria palustris and Micrococcus luteus isolated from spent nuclear fuel pools were compared. The radioindicator method with radionuclide 109Cd was used to obtain precise and reliable data characterizing Cd compartmentalization in bacterial cells. The following cellular distribution of Cd in living non-growing biomass after 4 h incubation in solutions containing different concentration of Cd2+ ions (100, 250, 500, 750 and 1000 µmol/L spiked with 109CdCl2 under aeration at 30 °C were obtained: in M. luteus almost 85 % of Cd was localized on the cell surface and 15 % in cytoplasm. Similarly, in K. palustris 83 % of Cd was localized on the cell surface and 17 % in cytoplasm. The data were obtained by gamma spectrometry of extracts and solids after sequential extraction of biomass with 5 mM Ca(NO32 and 20 mM EDTA. Biosorption of Cd by non-living bacterial biomass is a rapid process strongly affected by solution pH and as was confirmed by FTIR analysis beside carboxylate ions also other functional groups such as amino and phosphate contribute to Cd binding by bacterial cell surfaces. Maximum sorption capacities Qmax (μmol/g calculated from the Langmuir isotherm were 444 ± 15 μmol/g for M. luteus and 381 ± 1 μmol/g for K. palustris.

  4. Biosorption of nickel by Lysinibacillus sp. BA2 native to bauxite mine.

    Science.gov (United States)

    Prithviraj, Desale; Deboleena, Kashyap; Neelu, Nawani; Noor, Nahar; Aminur, Rahman; Balasaheb, Kapadnis; Abul, Mandal

    2014-09-01

    The current scenario of environmental pollution urges the need for an effective solution for toxic heavy metal removal from industrial wastewater. Bioremediation is the most cost effective process employed by the use of microbes especially bacteria resistant to toxic metals. In this study, Lysinibacillus sp. BA2, a nickel tolerant strain isolated from bauxite mine was used for the biosorption of Ni(II). Lysinibacillus sp. BA2 biomass had isoelectric point (pI) of 3.3. The maximum negative zeta potential value (-39.45) was obtained at pH 6.0 which was highly favourable for Ni(II) biosorption. 238.04mg of Ni(II) adsorbed on one gram of dead biomass and 196.32mg adsorbed on one gram of live biomass. The adsorption of Ni(II) on biomass increased with time and attained saturation after 180min with rapid biosorption in initial 30min. The Langmuir and Freundlich isotherms could fit well for biosorption of Ni(II) by dead biomass while Langmuir isotherm provided a better fit for live biomass based on correlation coefficient values. The kinetic studies of Ni(II) removal, using dead and live biomass was well explained by second-order kinetic model. Ni(II) adsorption on live biomass was confirmed by SEM-EDX where cell aggregation and increasing irregularity of cell morphology was observed even though cells were in non-growing state. The FTIR analysis of biomass revealed the presence of carboxyl, hydroxyl and amino groups, which seem responsible for biosorption of Ni(II). The beads made using dead biomass of Lysinibacillus sp. BA2 could efficiently remove Ni(II) from effluent solutions. These microbial cells can substitute expensive methods for treating nickel contaminated industrial wastewaters. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Biosorption of aqueous lead (II) on rice straws (oryza sativa) by flash column process

    International Nuclear Information System (INIS)

    Khalid, H.N.; Hassan, M.U.; Jamil, N.; Ahmad, D.; Bushra, H.; Khatoon, S.

    2010-01-01

    Biosorption of Pb (II) on rice straws has been studied with the variation in the parameters and on modified rice straws by flash column process. Different parameters like particle size of adsorbent, initial concentration of metal ions, length and width of columns were studied. A comparative study of modification of adsorbent was also done for which rice straws were modified with EDTA, acids, bases, and volatile organic solvents. Base modified adsorbents have shown an increase in adsorption capacity while acid modified adsorbents proved to be the poor adsorbents for metal ions similarly ash of rice straws used as adsorbent given higher adsorption and EDTA modified adsorbents have shown least adsorption of metal ions. Polar volatile organic solvents modified adsorbent gave less adsorption efficiency and non polar adsorbent shown no influence on Pb (II) uptake capacity of rice straws. Rice straws proved to be the best biosorbent for Pb(II) in aqueous solution. The biosorption characteristics fit well with Langmuir and Freundlich isotherm. (author)

  6. Biosorption of heavy metals from wastewater by biosolids

    Energy Technology Data Exchange (ETDEWEB)

    Orhan, Y.; Bueyuekguengoer, H. [Ondokuz Mayis University, Engineering Faculty, Environmental Engineering Department, 55139 Samsun (Turkey); Hrenovic, J. [University of Zagreb, Faculty of Science, Department of Biology, Rooseveltov trg 6, 10000 Zagreb (Croatia)

    2006-08-15

    In a study where the removal of heavy metals from wastewater is the primary aim, the biosorption of heavy metals onto biosolids prepared as Pseudomonas aeruginosa immobilized onto granular activated carbon was investigated in batch and column systems. In the batch system, adsorption equilibriums of heavy metals were reached between 20 and 50 min, and the optimal dosage of biosolids was 0.3 g/L. The biosorption efficiencies were 84, 80, 79, 59 and 42 % for Cr(VI), Ni(II), Cu(II), Zn(II) and Cd(II) ions, respectively. The rate constants of biosorption and pore diffusion of heavy metals were 0.013-0.089 min{sup -1} and 0.026-0.690 min{sup -0.5}. In the column systems, the biosorption efficiencies for all heavy metals increased up to 81-100 %. The affinity of biosorption for various metal ions towards biosolids was decreased in the order: Cr = Ni > Cu > Zn > Cd. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  7. Competitive biosorption of thorium and uranium by actinomycetes

    International Nuclear Information System (INIS)

    Nakajima, Akira; Tsuruta, Takehiko

    2002-01-01

    The competitive biosorption of thorium and uranium by actinomycetes was examined. Of the actinomycetes tested, Streptomyces levoris showed the highest ability to sorb both thorium and uranium from aqueous systems. Thorium sorption was not affected by co-existed uranium, while uranium sorption was strongly hindered by co-existed thorium. The amounts of both thorium and uranium sorbed by Streptomyces levoris cells increased with an increase of the solution pH. Although the equilibrium isotherm of uranium biosorption is in similar manner as that of thorium biosorption, uranium was sorbed much faster than thorium. Biosorption isotherm of each metal ion could be well fitted by Langmuir isotherm taking the ionic charge of metal ions into account. The Langmuir isotherm for binary system did not explain completely the competitive biosorption of thorium and uranium by Streptomyces levoris. However, the results suggested that the ion species of both metals in the cells should be Th(OH) 2 2+ and UO 2 2+ , respectively. (author)

  8. Biosorption of chromium from electroplating and galvanizing industrial effluents under extreme conditions using Chlorella vulgaris

    Directory of Open Access Journals (Sweden)

    G. Sibi

    2016-07-01

    Full Text Available Hexavalent chromium [Cr(VI] is a toxic oxidized form and an important metal pollutant in the water bodies. Biosorption of chromium(VI offers a potential alternative to conventional metal removal methods. Dried biomass of Chlorella vulgaris was used as biosorbent for the removal of Cr(VI from electroplating and galvanizing industry effluents as a function of biosorbent dosage, contact time, pH, salinity and initial metal ion concentration. Batch experiments were conducted for biosorption and the optimum conditions were 1 g/L biomass, 4 h contact time, pH 2 and 2.893 mS/cm of electrical conductivity. The chromium biosorption was strictly pH dependent with a maximum Cr removal of 63.2 mg/L at pH 2. Highest Cr removal at a concentration of 81.3 mg/L was observed at Electrical conductivity (EC value of 2.893 mS/cm. A comparison of Langmuir and Freundlich isotherm models revealed that Freundlich isotherm model fitted the experimental data based on R2, qmax and standard error values. The results suggest that C. vulgaris biomass could be considered a promising low-cost biosorbent for the removal of Cr(VI from electroplating and galvanizing industry effluents. Keywords: Biosorption, Chlorella vulgaris, Microalgae, Hexavalent chromium

  9. Neural fuzzy modelization of copper removal from water by biosorption in fixed-bed columns using olive stone and pinion shell.

    Science.gov (United States)

    Calero, M; Iáñez-Rodríguez, I; Pérez, A; Martín-Lara, M A; Blázquez, G

    2018-03-01

    Continuous copper biosorption in fixed-bed column by olive stone and pinion shell was studied. The effect of three operational parameters was analyzed: feed flow rate (2-6 ml/min), inlet copper concentration (40-100 mg/L) and bed-height (4.4-13.4 cm). Artificial Neural-Fuzzy Inference System (ANFIS) was used in order to optimize the percentage of copper removal and the retention capacity in the column. The highest percentage of copper retained was achieved at 2 ml/min, 40 mg/L and 4.4 cm. However, the optimum biosorption capacity was obtained at 6 ml/min, 100 mg/L and 13.4 cm. Finally, breakthrough curves were simulated with mathematical traditional models and ANFIS model. The calculated results obtained with each model were compared with experimental data. The best results were given by ANFIS modelling that predicted copper biosorption with high accuracy. Breakthrough curves surfaces, which enable the visualization of the behavior of the system in different process conditions, were represented. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Biosorption of americium by alginate beads

    International Nuclear Information System (INIS)

    Borba, Tania Regina de; Marumo, Julio Takehiro; Goes, Marcos Maciel de; Ferreira, Rafael Vicente de Padua; Sakata, Solange Kazumi

    2009-01-01

    The use of biotechnology to remove heavy metals from wastes plays great potential in treatment of radioactive wastes and therefore the aim of this study was to evaluate the biosorption of americium by alginate beads. Biosorption has been defined as the property of certain biomolecules to bind and remove selected ions or other molecules from aqueous solutions. The calcium alginate beads as biosorbent were prepared and analyzed for americium uptaking. The experiments were performed in different solution activity concentrations, pH and exposure time. The results suggest that biosorption process is more efficient at pH 4 and for 75, 150, 300 Bq/mL and 120 minutes were necessary to remove almost 100% of the americium-241 from the solution. (author)

  11. Biosorption of Cr(VI) in Aqueous Solution using Microorganisms: Comparison of the Use of Rhizopus oryzae, Bacillus firmus, and Trichoderma viride

    Science.gov (United States)

    Safitri, Anna; Mahardini, Putri; Prasetyawan, Sasangka; Roosdiana, Anna

    2018-01-01

    In this work, the study of biosorption of Cr(VI) from aqueous solution was conducted using Rhizopus oryzae, Bacillus firmus, and Trichoderma viride as microorganisms that can absorb Cr(VI). The research is focused on determination of optimum conditions including pH, the number of R. oryzae, B. firmus, and T. viride (inoculums), and initial concentrations of Cr(VI) used. Optimum pH was obtained at pH 5, 4.5 and 6, for biosorption of Cr(VI) with R. oryzae, B. firmus, and T. viride, respectively, in the capacity of 45.3%, 24.5%, and 90.3%. The highest amount of Cr(VI) adsorbed for biosorption with R. oryzae, B. firmus, and T. viride, were 55.4%, 18.5%, and 74.5%, respectively, using 6-mL inoculums. The equilibrium concentrations achieved for R. oryzae, B. firmus, and T. viride were 60 mg/mL, 40 mg/mL, and 40 mg/mL, with the amount of Cr(VI) adsorbed were 32.4%, 28.2%, and 89.3%, respectively. The adsorption capacity for R. oryzae, B. firmus, and T. viride were 45.3 mg/1×106 colonies, 36.2 mg/1×106 cells, and 77.8 mg/1×106 colonies, respectively. Overall, the biosorbents effectivity order in the biosorption process of Cr(VI) are T. viride > R. oryzae > B. firmus.

  12. Application of experimental design and derivative spectrophotometry methods in optimization and analysis of biosorption of binary mixtures of basic dyes from aqueous solutions.

    Science.gov (United States)

    Asfaram, Arash; Ghaedi, Mehrorang; Ghezelbash, Gholam Reza; Pepe, Francesco

    2017-05-01

    Simultaneous biosorption of malachite green (MG) and crystal violet (CV) on biosorbent Yarrowia lipolytica ISF7 was studied. An appropriate derivative spectrophotometry technique was used to evaluate the concentration of each dye in binary solutions, despite significant interferences in visible light absorbances. The effects of pH, temperature, growth time, initial MG and CV concentration in batch experiments were assessed using Design of Experiment (DOE) according to central composite second order response surface methodology (RSM). The analysis showed that the greatest biosorption efficiency (>99% for both dyes) can be obtained at pH 7.0, T=28°C, 24h mixing and 20mgL -1 initial concentrations for both MG and CV dyes. The quadratic constructed equation ability for fitting experimental data is judged based on criterions like R 2 values, significant p and lack-of-fit value strongly confirm its high adequacy and applicability for prediction of revel behavior of the system under study. The proposed model showed very high correlation coefficients (R 2 =0.9997 for CV and R 2 =0.9989 for MG), while supported by closeness of predicted and experimental value. A kinetic analysis was carried out, showing that for both dyes a pseudo-second order kinetic model adequately describes the available data. The Langmuir isotherm model in single and binary components has better performance for description of dyes biosorption with maximum monolayer biosorption capacity of 59.4 and 62.7mgg -1 in single component and 46.4 and 50.0mgg -1 for CV and MB in binary components, respectively. The surface structure of biosorbents and the possible biosorbents-dyes interactions between were also evaluated by Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). The values of thermodynamic parameters including ΔG° and ΔH° strongly confirm which method is spontaneous and endothermic. Copyright © 2017. Published by Elsevier Inc.

  13. Biosorption of heavy metals by immobilized microalgae; Biosorption von Schwermetallen durch immobilisierte Mikroalgen

    Energy Technology Data Exchange (ETDEWEB)

    Wilke, A.; Bunke, G.; Goetz, P.; Buchholz, R. [Technische Univ. Berlin (Germany). Fachgebiet Bioverfahrenstechnik

    1999-07-01

    Some microalgae stand out by the fact that they are highly capable of adsorbing heavy metals (biosorption). In contrast to bioaccumulation, where heavy metals are actively integrated into living cells, biosorption is a process of chemical-physical deposition to functional groups of the cell wall components. For a process-technological application, different reactor configurations may be used. Owing to different advantages such as a continuous mode of operation, attainable low effluent concentrations, low operating cost, ease of scaling up, modular design, modest space demand and a high degree of automation, packed-bed adsorption is the process-technological solution to be preferred. Mathematical modelling of adsorption kinetics as a basis for scaling up requires knowledge of resistances to suspended matter transport for the adsorbents used. By appropriate experiments the different resistances (film resistance, diffusion resistance inside particles) need to be decoupled from each other prior to their determination. (orig.) [German] Einige Mikroalgen zeichnen sich dadurch aus, im hohen Masse Schwermetalle zu adsorbieren (Biosorption). Im Gegensatz zur Bioakkumulation, bei der die Schwermetalle aktiv in die lebende Zelle aufgenommen werden, handelt es sich bei der Biosorption um einen chemischen/physikalischen Anlagerungsprozess an funktionelle Gruppen der Zellwandkomponenten. Fuer eine verfahrenstechnische Umsetzung koennen unterschiedliche Reaktorkonfigurationen verwendet werden. Aufgrund verschiedener Vorteile wie kontinuierliche Betriebsweise, niedrige erreichbare Ablaufkonzentration, geringe Betriebskosten, einfache Scale-up-Faehigkeit, modulare Bauweise, geringer Platzbedarf sowie hoher Automatisierungsgrad ist eine Festbettadsorption als verfahrenstechnische Loesung vorzuziehen. Eine mathematische Modellierung der Adsorptionskinetik, als Basis einer Massstabsvergroesserung, erfordert die Kenntnis der Stofftransportwiderstaende bei den verwendeten Adsorbentien

  14. Potential Malaysia agricultural waste materials for the biosorption of cadmium(II) from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Foo, L.P.Y.; Tee, C.Z.; Raimy, N.R.; Hassell, D.G.; Lee, L.Y. [University of Nottingham Malaysia Campus, Semenyih, Selangor (Malaysia)

    2012-04-15

    Biosorption of cadmium(II) ions (Cd{sup 2+}) onto Ananas comosus (AC) peel, Parkia speciosa (PS) pods and Psidium guajava (PG) peel were investigated in this study. Batch sorption experiments were performed by investigating the effect of initial pH. It was found that Cd{sup 2+} uptake was highly dependent on the initial pH and Cd{sup 2+} removal efficiency was highest for PG peel, followed by AC peel and PS pods. Biosorption experiments were carried out using different initial Cd{sup 2+} concentration and the experimental data obtained was fitted to both Langmuir and Freundlich isotherms. The experimental data was found to best fit the Langmuir isotherm, and adsorption capacities of 18.21 mg/g (AC peel), 25.64 mg/g (PS pods) and 39.68 mg/g (PG peel) were obtained. Comparison with published adsorption capacities for other low-cost biosorbents indicates that PS pods and PG peel have potential as low-cost biosorbent materials for the removal of Cd{sup 2+} from aqueous solution. (orig.)

  15. Fixed-bed biosorption of cadmium using immobilized Scenedesmus obliquus CNW-N cells on loofa (Luffa cylindrica) sponge.

    Science.gov (United States)

    Chen, Bor-Yann; Chen, Chun-Yen; Guo, Wan-Qian; Chang, Hao-Wei; Chen, Wen-Ming; Lee, Duu-Jong; Huang, Chieh-Chen; Ren, Nan-Qi; Chang, Jo-Shu

    2014-05-01

    A continuous fixed-bed biosorption process was established for cadmium (Cd) removal by Scenedesmus obliquus CNW-N (isolated from southern Taiwan) cells immobilized onto loofa sponge. This immobilized-cell biosorption process allows better recovery and reusability of the microalgal biomass. The growth of microalgae on the matrix support with appropriate nutrient supplementation could enhance the overall metal removal activity. Major operating parameters (e.g., feeding flow rate, cycle number of medium replacement, and particle diameter of the sponge) were studied for treatability evaluation. The most promising cell growth on the sponge support was obtained at a flow rate of 0.284 bed volume (BV)/min, sponge particle diameter of 1 cm, and with one cycle of medium replacement. The performance of fixed-bed biosorption (adsorption capacity of 38.4 mg, breakthrough time at 15.5 h) was achieved at a flow rate of 5 ml/min with an influent concentration of 7.5 mg Cd/l. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Biosorption of Cadmium by Non-Toxic Extracellular Polymeric Substances (EPS Synthesized by Bacteria from Marine Intertidal Biofilms

    Directory of Open Access Journals (Sweden)

    Juan Carlos Camacho-Chab

    2018-02-01

    Full Text Available Cadmium is a major heavy metal found in polluted aquatic environments, mainly derived from industrial production processes. We evaluated the biosorption of solubilized Cd2+ using the extracellular polymeric substances (EPS produced by Bacillus sp. MC3B-22 and Microbacterium sp. MC3B-10 (Microbactan; these bacteria were originally isolated from intertidal biofilms off the coast of Campeche, Mexico. EPS were incubated with different concentrations of cadmium in ultrapure water. Residual Cd2+ concentrations were determined by Inductive Coupled Plasma-Optic Emission Spectrometry and the maximum sorption capacity (Qmax was calculated according to the Langmuir model. EPS were characterized by X-ray photoelectron spectroscopy (XPS before and after sorption. The Qmax of Cd2+ was 97 mg g−1 for Microbactan and 141 mg g−1 for MC3B-22 EPS, these adsorption levels being significantly higher than previously reported for other microbial EPS. In addition, XPS analysis revealed changes in structure of EPS after biosorption and showed that amino functional groups contributed to the binding of Cd2+, unlike other studies that show the carbohydrate fraction is responsible for this activity. This work expands the current view of bacterial species capable of synthesizing EPS with biosorbent potential for cadmium and provides evidence that different chemical moieties, other than carbohydrates, participate in this process.

  17. Biosorption of thorium(IV) from aqueous solution by living biomass of marine-derived fungus Fusarium sp. ZZF51

    International Nuclear Information System (INIS)

    Yang, S.K.; Tan, N.; Wu, W.L.; Hou, X.J.; Xiang, K.X.; Lin, Y.C.

    2015-01-01

    The biosportion of Th(IV) by the marine-derived Fungus Fusarium sp. ZZF51 was study. The Biosorption was found to be at a maximum (79.24 %), in a solution containing 50 mg Th/L, at pH 5.0, with 0.28 g dry biomass. The Temkin isotherm model and pseudo-second-order kinetic model was found to fit the data very well over the entire range of concentrations. The FTIR analysis reveals that the carboxyl, amino and hydroxyl groups on the cell wall of Fusarium sp. ZZF51 play an important role in Th(IV) biosorption process. (author)

  18. Biosorption of cationic basic dye and cadmium by the novel biosorbent Bacillus catenulatus JB-022 strain.

    Science.gov (United States)

    Kim, Su Young; Jin, Mi Ra; Chung, Chang Ho; Yun, Yeoung-Sang; Jahng, Kwang Yeop; Yu, Kang-Yeol

    2015-04-01

    Biosorption of heavy metals and dyes is a promising technology that involves the removal of toxic metals from industrial wastes. The present study aims to screen the bacterial strains isolated from soils and polluted pond for their potential biosorption of both cationic dye and cadmium. Bacillus catenulatus JB-022 strain removed 58% and 66% of cationic basic blue 3 (BB3) and cadmium (Cd(II)) at the respective concentrations of 2000 mg/L and 150 mg/L. The biosorption equilibrium data were well fitted by the Langmuir adsorption isotherm, and the kinetic studies indicated that the biosorption followed the pseudo-second-order model. The biosorption kinetics showed that the equilibrium was reached within 10 min and 5 min for BB3 and Cd(II), respectively. According to the Langmuir model, the maximum uptakes of BB3 and Cd(II) by the JB-022 biomass were estimated to be 139.74 and 64.28 mg/g, respectively. To confirm the surface morphology and functional groups, field emission scanning electron microscope, energy-dispersive X-ray spectrometer, X-ray diffraction, and Fourier transform infrared spectroscopy analyses were carried out, and the results revealed that the biomass of JB-022 has carboxyl and phosphonate groups as potential surface functional groups capable of binding to cationic pollutants. In conclusion, B. catenulatus JB-022 is proposed as an excellent biosorbent with potentially important applications in removal of cationic pollutants from wastewaters. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  19. Biodecolorization of Textile Dye Effluent by Biosorption on Fungal Biomass Materials

    Science.gov (United States)

    Kabbout, Rana; Taha, Samir

    Colored industrial effluents have become a vital source of water pollution, and because water is the most important natural source; its treatment is a responsibility. Usually colored wastewater is treated by physical and chemical processes. But these technologies are ineffective in removing dyes, expensive and not adaptable to a wide range of colored water. Biosorption was identified as the preferred technique for bleaching colored wastewater by giving the best results. This treatment was based on the use of dead fungal biomass as new material for treating industrial colored effluents by biosorption. We studied the ability of biosorption of methylene blue (MB) by Aspergillus fumigatus and optimize the conditions for better absorption. Biosorption reaches 68% at 120 min. Similarly, the biosorbed amount increases up to 65% with pH from 4 to 6, and it's similar and around 90% for pH from 7 to 13. At ambient temperature 20-22 °C, the percentage of biosorption of methylene blue was optimal. The kinetic of biosorption is directly related to the surface of biosorbent when the particle size is also an important factor affecting the ability of biosorption. Also the biosorption of methylene blue increases with the dose of biosorbent due to an augmentation of the adsorption surface. In this study, for an initial concentration of 12 mg/L of MB (biosorbent/solution ratio=2g/L) buffered to alkaline pH, and a contact time of 120 min, biosorption takes place at an ambient temperature and reaches 93.5% under these conditions.

  20. Radionuclide and heavy metal biosorption by Pseudomonas biomass

    International Nuclear Information System (INIS)

    Sar, Pinaki; D'Souza, S.F.; Kazy, Sufia K.; Singh, S.P.

    2001-01-01

    Biosorptive metal (nickel and copper) and radionuclide (uranium) uptake capacity of two Pseudomonas strains was investigated in order to develop biotechnological strategies for toxic metals remediation. Lyophilized Pseudomonas biomass showed a very high uranium loading of 541 mg g -1 dry wt. Compared to this, the other bacterial strain of Pseudomonas aeruginosa used for nickel and copper removal yielded a maximum value of 265 mg g -1 and 137 mg g -1 respectively. Cation binding by both the biomass was fast saturating, pH -dependent process with optimum pH for U, Cu and Ni was pH 5.0, 7.0 and 8.0, respectively. In bimetallic combination, U sorption was inhibited only by Fe 3+ , Al 3+ and Cu 2+ suggesting a selective cation binding by the Pseudomonas biomass. In case of Ni and Cu, presence of Na, K or Ca increased the metal binding while Cd and Pb was antagonistic. Mineral acids could recover more than 75% (on average) of sorbed Ni or Cu. Noticeably, uranium and copper desorption was specifically high (88-90%) with sodium carbonate while calcium carbonate showed a good result for nickel. The overall data are in favour of deployment of the test biomass as efficient metal/radionuclide removal/recovery system. (author)

  1. Biosorption of copper (II) from aqueous solution by mycelial pellets ...

    African Journals Online (AJOL)

    The optimum diameter and pH for biosorption of copper (II) was found to be 1.0 to 1.2 mm and 4.0. Evaluation of the experimental data in terms of biosorption dynamics showed that the biosorption of copper (II) onto MPRO followed the pseudo-second-order kinetic model. The equilibrium data fitted very well to the Langmuir ...

  2. Spectrophotometric study of bio-sorption of uranium on glass grade spodumene shell powder

    International Nuclear Information System (INIS)

    Parakudyil, A.S.; Pillai, A.K.; Reddy, A.V.R.; Singal, R.K.; Sharma, P.K.; Michael, K.M.

    2012-01-01

    Separation of uranium found in iron ore leachates was done by extraction chromatography using glass grade spodumene shellpowder (GSS) in nitric acid medium and analyzed spectrophotometrically. The influences of metal ion concentration, pH and adsorption capacity of biomass were investigated. Biosorption is a potential method of separation of heavy and trace metals from waste water and effluents from various sources. The adsorption capacities of biomass were investigated by batch experiments and column experiments. In the present study, glass grade spodumene shell powder (GSS) in acidic medium is being used as a biosorbent

  3. Mechanism of biosorption of Heavy metals by mucor rouxii

    Energy Technology Data Exchange (ETDEWEB)

    Yan, G. [Alberta Capital Region Wastewater Commission, Fort Saskatchewan, Alberta (Canada); Viraraghavan, T. [Faculty of Engineering, University of Regina, Regina, Saskatchewan (Canada)

    2008-08-15

    Fungi such as Aspergillus niger and Mucor rouxii are capable of removing heavy metals from aqueous solutions. The role various functional groups play in the cell wall of M. rouxii in metal biosorption of lead, cadmium, nickel and zinc was investigated in this paper. The biomass was chemically treated to modify the functional carboxyl, amino and phosphate groups. These modifications were examined by means of infrared spectroscopy. It was found that an esterification of the carboxyl groups and phosphate and a methylation of the amine groups significantly decreased the biosorption of the heavy metals studied. Thus, the carboxylate, amine and phosphate groups were recognized as important in the biosorption of metal ions by M. rouxii biomass. The role the lipids fraction play was not significant. The study showed that Na, K, Ca and Mg ions were released from the biomass after biosorption of Pb,Cd,Ni and Zn, indicating that ion exchange was a key mechanism in the biosorption of metal ions by M. rouxii biomass. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  4. Biosorption of heavy metals and uranium by starfish and Pseudomonas putida.

    Science.gov (United States)

    Choi, Jaeyoung; Lee, Ju Young; Yang, Jung-Seok

    2009-01-15

    Biosorption of heavy metals and uranium from contaminated wastewaters may represent an innovative purification process. This study investigates the removal ability of unit mass of Pseudomonas putida and starfish for lead, cadmium, and uranium by quantifying the adsorption capacity. The adsorption of heavy metals and uranium by the samples was influenced by pH, and increased with increasing Pb, Cd, and U concentrations. Dead cells adsorbed the largest quantity of all heavy metals than live cells and starfish. The adsorption capacity followed the order: U(VI)>Pb>Cd. The results also suggest that bacterial membrane cells can be used successfully in the treatment of high strength metal-contaminated wastewaters.

  5. Biosorption of heavy metals and uranium by starfish and Pseudomonas putida

    International Nuclear Information System (INIS)

    Choi, Jaeyoung; Lee, Ju Young; Yang, Jung-Seok

    2009-01-01

    Biosorption of heavy metals and uranium from contaminated wastewaters may represent an innovative purification process. This study investigates the removal ability of unit mass of Pseudomonas putida and starfish for lead, cadmium, and uranium by quantifying the adsorption capacity. The adsorption of heavy metals and uranium by the samples was influenced by pH, and increased with increasing Pb, Cd, and U concentrations. Dead cells adsorbed the largest quantity of all heavy metals than live cells and starfish. The adsorption capacity followed the order: U(VI) > Pb > Cd. The results also suggest that bacterial membrane cells can be used successfully in the treatment of high strength metal-contaminated wastewaters

  6. Biosorption of hexavalent chromium in a tannery industry wastewater using fungi species

    International Nuclear Information System (INIS)

    Sivakumar, D.

    2016-01-01

    The isolated fungi species of different kinds from chromium contaminated soil sites located in Nagalkeni, Chennai were used for reducing chromium(VI) in a tannery industry wastewater of Nagalkeni, Chennai. The experiments were conducted to know biosorption potential of isolated fungi species for removing chromium(VI) in a tannery industry wastewater against the different p H, fungi biomass and chromium(VI) concentration (dilution ratio). The results of this study indicated that the order of maximum removal of chromium(VI) by an isolated fungi species at an optimum pH of 3, fungi biomass of 4g and an initial chromium(VI) concentration of 18.125 mg/L (dilution ratio 4) is A. niger > A. flavus > A. fumigatus > A. nidulans > A. heteromorphus > A. foetidus > A. viridinutans. This study found that the maximum removal of chromium(VI) was achieved by Aspergillus niger (96.3 %) than other fungi species at chromium(VI) concentration of 18.125 mg/L in a tannery industry wastewater. The chromium removal from tannery industry wastewater was validated by checking chromium removal in an aqueous solution and by checking the removal efficiency of other parameters in a tannery industry wastewater using same isolated A. niger. Biosorption model was proposed to simulate the experimental condition for removing chromium(VI) in a tannery industry wastewater by all isolated fungi species. The R2 and x2 values of the proposed model predicted that the proposed biosorption model is very much useful for predicting the trend of reduction potential of chromium(VI) in a tannery industry wastewater by all isolated fungi species. This study suggested that one could select the type of fungi species, ion concentration level, selection of treatment period, quantity of biomass to be used, and p H level of the medium, to achieve the highest reduction of any toxic metals from any contaminated water, wastewater and soil environment.

  7. Batch and column studies on biosorption of acid dyes on fresh water macro alga Azolla filiculoides.

    Science.gov (United States)

    Padmesh, T V N; Vijayaraghavan, K; Sekaran, G; Velan, M

    2005-10-17

    The biosorption of Acid red 88 (AR88), Acid green 3 (AG3) and Acid orange 7 (AO7) by deactivated fresh water macro alga Azolla filiculoides was investigated in batch mode. Langmuir and Freundlich adsorption models were used for the mathematical description of the batch biosorption equilibrium data and model constants were evaluated. The adsorption capacity was pH dependent with a maximum value of 109.0 mg/g at pH 7 for AR88, 133.5 mg/g at pH 3 for AG3 and 109.6 mg/g at pH 3 for AO7, respectively, was obtained. The pseudo first and second order kinetic models were also applied to the experimental kinetic data and high correlation coefficients favor pseudo second order model for the present systems. The ability of A. filiculoides to biosorb AG3 in packed column was also investigated. The column experiments were conducted to study the effect of important design parameters such as initial dye concentration (50-100 mg/L), bed height (15-25 cm) and flow rate (5-15 mL/min) to the well-adsorbed dye. At optimum bed height (25 cm), flow rate (5 mL/min) and initial dye concentration (100 mg/L), A. filiculoides exhibited 28.1mg/g for AG3. The Bed Depth Service Time model and the Thomas model were used to analyze the experimental data and the model parameters were evaluated.

  8. Maximum Aerobic Capacity of Underground Coal Miners in India

    Directory of Open Access Journals (Sweden)

    Ratnadeep Saha

    2011-01-01

    Full Text Available Miners fitness test was assessed in terms of determination of maximum aerobic capacity by an indirect method following a standard step test protocol before going down to mine by taking into consideration of heart rates (Telemetric recording and oxygen consumption of the subjects (Oxylog-II during exercise at different working rates. Maximal heart rate was derived as 220−age. Coal miners reported a maximum aerobic capacity within a range of 35–38.3 mL/kg/min. It also revealed that oldest miners (50–59 yrs had a lowest maximal oxygen uptake (34.2±3.38 mL/kg/min compared to (42.4±2.03 mL/kg/min compared to (42.4±2.03 mL/kg/min the youngest group (20–29 yrs. It was found to be negatively correlated with age (r=−0.55 and −0.33 for younger and older groups respectively and directly associated with the body weight of the subjects (r=0.57 – 0.68, P≤0.001. Carriers showed maximum cardio respiratory capacity compared to other miners. Indian miners VO2max was found to be lower both compared to their abroad mining counterparts and various other non-mining occupational working groups in India.

  9. Microbial remediation of soil pollution from ore mining. Part 3: Cyanide removal and biosorption of heavy metals in mining and processing water; Untersuchungen zur mikrobiellen Sicherung von Erzbergbaualtlasten. Teilvorhaben 3: Cyanidabbau und Biosorption von Schwermetallen in Abwaessern aus Erzbergbau- und Aufbereitungsbetrieben. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Blumenroth, P.; Bosecker, K.

    1999-12-01

    1. Cyanide degradation: Of the cyanide- and thiocyanate-degrading bacteria, Burkholderia cepacia and Pseudomonas spec. were the most effective. 2. Biosorption: Of the isolates suited for biosorption of heavy metals, 597-A (non-identifiable) and 597-A2 (Aspergillus fumigatis) had the biggest potential. The sorption capacity of the fungi for metals varied with the C source used for their growth: apple juice > molasses > glucose. The fungi are not cyanide-sensitive and can even degrade cyanide. Living biomass had better metal sorption efficiencies than dead mycelium. The biosorption rates in waste water were usually higher than in broth. Depending on the metal composition and concentrations and on the exposure time and volume of the mycelia, up to 85 % of the initial concentration was removed from the liquid phase. The capacity of different biomasses for the sorption of metal mixtures was between 65 and 80 mg/g of dry matter depending on the experimental conditions, with peak rates up to 100 mg/g. [German] 1. Cyanidabbau: Von den zum Abbau von Cyaniden und Thiocyanat befaehigten Bakterien erwiesen sich Burkholderia cepacia und Pseudomonas spec. als am besten geeignet. 2. Biosorption: Von den zur Biosorption von Schwermetallen befaehigten Isolaten wiesen 597-A1 (nicht identifizierbar) und 597-A2 (Aspergillus fumigatus) das groesste Potential auf. Die Sorptionsleistung der Pilze fuer Metalle war abhaengig von der C-Quelle, die zur Anzucht verwendet wurde: Apfelsaft>Melasse>Glucose. Die Pilze sind unempfindlich gegenueber Cyanid und sogar zu dessen Abbau in der Lage. Lebende Biomasse sorbierte mehr Metalle als abgetoetetes Pilzmyzel. Die in Abwaessern ermittelten Biosorptionsraten waren meist hoeher als die in Medium erzielten Raten. Je nach Zusammensetzung und Konzentration der Metalle sowie Einwirkdauer und Menge des eingesetzten Pilzmyzels wurden bis zu 85% des Ausgangsgehaltes aus der Fluessigphase entfernt. Die Kapazitaet verschiedener Biomassen fuer die Sorption

  10. Biosorption of heavy metals in polluted water, using different waste fruit cortex

    Science.gov (United States)

    Kelly-Vargas, Kevin; Cerro-Lopez, Monica; Reyna-Tellez, Silvia; Bandala, Erick R.; Sanchez-Salas, Jose Luis

    The biosorption capacity of different cortex fruit wastes including banana (Musa paradisiaca), lemon (Citrus limonum) and orange (Citrus sinensis) peel were evaluated. In order to perform these experiments, grinded dried cortexes were used as package in 100 mm high, 10 mm i.d. columns. The grinded material was powdered in a mortar and passed through a screen in order to get two different particle sizes, 2 and 1 mm, for all powders. To estimate the biosorption capabilities of the tested materials, different heavy metals were passed through the columns and the elution filtrate reloaded different times to increase the retention of metals. The heavy metals used were prepared as synthetic samples at 10 mg/L of Pb(NO3)2, Cd(NO3)2, and Cu(NO3)2·6H2O using primary standards. In preliminary experiments using banana cortex, it was found that material with 1 mm of particle size showed higher retention capability (up to12%) than the material with 2 mm of particle size. Considering these results, 1 mm particle size material was used in further experiments with the other waste materials. It was found that for Pb and Cu removal, lemon and orange cortex showed better biosorption capability when compared with banana cortex (up to 15% less for Pb and 48% less for Cu). For Cd, banana cortex showed better biosorption capability 57% (67.2 mg/g of cortex) more than orange (28.8 mg/g of cortex), and 82% more than lemon (12 mg/g of cortex). Reload of the columns with the filtrate after passing through the column improved the removal capability of all the materials tested from 10% to 50% depending on the cortex and metal tested.

  11. Investigation on batch biosorption of lead using Lactobacillius ...

    African Journals Online (AJOL)

    In this research, the biosorption of lead by Lactobacillus bulgaricus was investigated. The mechanism for the biosorption was similar to ionic exchanger. The media pH, weight of dried biomass and initial lead concentration were investigated at ambient temperature. At high acidic solution (pH<1.5) and also in alkaline ...

  12. Effect of Cu(II), Cd(II) and Zn(II) on Pb(II) biosorption by algae Gelidium-derived materials.

    Science.gov (United States)

    Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R

    2008-06-15

    Biosorption of Pb(II), Cu(II), Cd(II) and Zn(II) from binary metal solutions onto the algae Gelidium sesquipedale, an algal industrial waste and a waste-based composite material was investigated at pH 5.3, in a batch system. Binary Pb(II)/Cu(II), Pb(II)/Cd(II) and Pb(II)/Zn(II) solutions have been tested. For the same equilibrium concentrations of both metal ions (1 mmol l(-1)), approximately 66, 85 and 86% of the total uptake capacity of the biosorbents is taken by lead ions in the systems Pb(II)/Cu(II), Pb(II)/Cd(II) and Pb(II)/Zn(II), respectively. Two-metal results were fitted to a discrete and a continuous model, showing the inhibition of the primary metal biosorption by the co-cation. The model parameters suggest that Cd(II) and Zn(II) have the same decreasing effect on the Pb(II) uptake capacity. The uptake of Pb(II) was highly sensitive to the presence of Cu(II). From the discrete model it was possible to obtain the Langmuir affinity constant for Pb(II) biosorption. The presence of the co-cations decreases the apparent affinity of Pb(II). The experimental results were successfully fitted by the continuous model, at different pH values, for each biosorbent. The following sequence for the equilibrium affinity constants was found: Pb>Cu>Cd approximately Zn.

  13. Biosorption of Cadmium from Aqueous Solutions Using A local ...

    African Journals Online (AJOL)

    Yomi

    2012-01-31

    Jan 31, 2012 ... Through the study period, the organism was routinely maintained at. 4°C on the ..... Isotherm and Thermodynamic Studies of the Biosorption of Cadmium. (II) by Snail ... An innovative matrix to enhance the biosorption of Cd (II) ...

  14. Biosorption of the metal-complex dye Acid Black 172 by live and heat-treated biomass of Pseudomonas sp. strain DY1: Kinetics and sorption mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Du, Lin-Na; Wang, Bing [College of Life Science, Zhejiang University, 310058, Hangzhou, Zhejiang Province (China); Li, Gang [Department of Agriculture and Biotechnology, Wenzhou Vocational College of Science and Technology, 325006 Wenzhou, Zhejiang Province (China); Wang, Sheng [College of Life Science, Zhejiang University, 310058, Hangzhou, Zhejiang Province (China); Crowley, David E., E-mail: crowley@ucr.edu [Department of Environmental Science, University of California, Riverside, CA 92521 (United States); Zhao, Yu-Hua, E-mail: yhzhao225@zju.edu.cn [College of Life Science, Zhejiang University, 310058, Hangzhou, Zhejiang Province (China)

    2012-02-29

    Highlights: Black-Right-Pointing-Pointer The maximum amount of Acid Black 172 sorption was about 2.98 mmol/g biomass. Black-Right-Pointing-Pointer Amine groups played a major role in the biosorption of Acid Black 172. Black-Right-Pointing-Pointer The reasons of increased dye sorption by heat-treated biomass were proposed. - Abstract: The ability of Pseudomonas sp. strain DY1 to adsorb Acid Black 172 was studied to determine the kinetics and mechanisms involved in biosorption of the dye. Kinetic data for adsorption fit a pseudo-second-order model. Increased initial dye concentration could significantly enhance the amount of dye adsorbed by heat-treated biomass in which the maximum amount of dye adsorbed was as high as 2.98 mmol/g biomass, whereas it had no significant influence on dye sorption by live biomass. As treated temperature increased, the biomass showed gradual increase of dye sorption ability. Experiments using potentiometric titration and Fourier transform infrared spectroscopy (FTIR) indicated that amine groups (NH{sub 2}) played a prominent role in biosorption of Acid Black 172. Scanning electron microscopy (SEM), atomic force microscopy (AFM) and transmission electron microscopy (TEM) analysis indicated that heat treatment of the biomass increased the permeability of the cell walls and denatured the intracellular proteins. The results of biosorption experiments by different cell components confirmed that intracellular proteins contributed to the increased biosorption of Acid Black 172 by heat-treated biomass. The data suggest that biomass produced by this strain may have application for removal of metal-complex dyes from wastewater streams generated from the dye products industry.

  15. Biosorption of Acid Blue 290 (AB 290) and Acid Blue 324 (AB 324) dyes on Spirogyra rhizopus

    International Nuclear Information System (INIS)

    Ozer, Ayla; Akkaya, Goenuel; Turabik, Meral

    2006-01-01

    In this study, the biosorption of Acid Blue 290 and Acid Blue 324 on Spirogyra rhizopus, a green algae growing on fresh water, was studied with respect to initial pH, temperature, initial dye concentration and biosorbent concentration. The optimum initial pH and temperature values for AB 290 and AB 324 biosorption were found to be 2.0, 30 deg. C and 3.0, 25 deg. C, respectively. It was observed that the adsorbed AB 290 and AB 324 amounts increased with increasing the initial dye concentration up to 1500 and 750 mg/L, respectively. The Langmuir, Freundlich, Redlich-Peterson and Koble-Corrigan isotherm models were applied to the experimental equilibrium data and the isotherm constants were determined by using Polymath 4.1 software. The monolayer coverage capacities of S. rhizopus for AB 290 and AB 324 dyes were found as 1356.6 mg/g and 367.0 mg/g, respectively. The intraparticle diffusion model and the pseudo-second order kinetic model were applied to the experimental data in order to describe the removal mechanism of these acidic dyes by S. rhizopus. The pseudo-second order kinetic model described very well the biosorption kinetics of AB 290 and AB 324 dyes. Thermodynamic studies showed that the biosorption of AB 290 and AB 324 on S. rhizopus was exothermic in nature

  16. Equilibrium, thermodynamic and kinetic studies on biosorption of Mn(II) from aqueous solution by Pseudomonas sp., Staphylococcus xylosus and Blakeslea trispora cells

    International Nuclear Information System (INIS)

    Gialamouidis, D.; Mitrakas, M.; Liakopoulou-Kyriakides, M.

    2010-01-01

    Biosorption of Mn(II) from aqueous solutions using Pseudomonas sp., Staphylococcus xylosus and Blakeslea trispora cells was investigated under various experimental conditions of pH, biomass concentration, contact time and temperature. The optimum pH value was determined to 6.0 and the optimum biomass concentration to 1.0 g L -1 for all types of cells. Mn(II) biosorption was found to fit better to the Langmuir model for Pseudomonas sp. and B. trispora and to Freundlich model for S. xylosus. Langmuir model gave maximum Mn(II) uptake capacity 109 mg g -1 for Pseudomonas sp. and much lower, 59 mg g -1 and 40 mg g -1 for S. xylosus and B. trispora, respectively. Pseudo-second-order kinetic model was also found to be in good agreement with the experimental results. Thermodynamic parameters of the adsorption confirmed the endothermic nature of sorption process with positive heat of enthalpy, accompanied by a positive value of entropy change. Interestingly, desorption experiments by treating biomass with 0.1 M HNO 3 solution resulted to more than 88% recovery of the adsorbed Mn(II) from Pseudomonas sp. and almost 95% and 99% from S. xylosus and B. trispora cells respectively, thus indicating that Mn(II) can be easily and quantitatively recovered from biomass.

  17. The radiation resistance and cobalt biosorption activity of yeast strains isolated from the Lanyu low-level radioactive waste repository in Taiwan

    International Nuclear Information System (INIS)

    Li, Chia-Chin; Chung, Hsiao-Ping; Wen, Hsiao-Wei; Chang, Ching-Tu; Wang, Ya-Ting; Chou, Fong-In

    2015-01-01

    The ubiquitous nature of microbes has made them the pioneers in radionuclides adsorption and transport. In this study, the radiation resistance and nuclide biosorption capacity of microbes isolated from the Lanyu low-level radioactive waste (LLRW) repository in Taiwan was assessed, the evaluation of the possibility of using the isolated strain as biosorbents for 60 Co and Co (II) from contaminated aqueous solution and the potential impact on radionuclides release. The microbial content of solidified waste and broken fragments of containers at the Lanyu LLRW repository reached 10 5  CFU/g. Two yeast strains, Candida guilliermondii (CT1) and Rhodotorula calyptogenae (RT1) were isolated. The radiation dose necessary to reduce the microbial count by one log cycle of CT1 and RT1 was 2.1 and 0.8 kGy, respectively. Both CT1 and RT1 can grow under a radiation field with dose rate of 6.8 Gy/h, about 100 times higher than that on the surface of the LLRW container in Lanyu repository. CT1 and RT1 had the maximum 60 Co biosorption efficiency of 99.7 ± 0.1% and 98.3 ± 0.2%, respectively in 60 Co aqueous solution (700 Bq/mL), and the 60 Co could stably retained for more than 30 days in CT 1. Nearly all of the Co was absorbed and reached equilibrium within 1 h by CT1 and RT1 in the 10 μg/g Co (II) aqueous solution. Biosorption efficiency test showed almost all of the Co (II) was adsorbed by CT1 in 20 μg/g Co (II) aqueous solution, the efficiency of biosorption by RT1 in 10 μg/g of Co (II) was lower. The maximum Co (II) sorption capacity of CT1 and RT1 was 5324.0 ± 349.0 μg/g (dry wt) and 3737.6 ± 86.5 μg/g (dry wt), respectively, in the 20 μg/g Co (II) aqueous solution. Experimental results show that microbial activity was high in the Lanyu LLRW repository in Taiwan. Two isolated yeast strains, CT1 and RT1 have high potential for use as biosorbents for 60 Co and Co (II) from contaminated aqueous solution, on the other hand, but may have the impact on

  18. Biosorption of mercury by capsulated and slime layerforming Gram ...

    African Journals Online (AJOL)

    The biosorption of mercury by two locally isolated Gram-ve bacilli: Klebsiella pneumoniae ssp. pneumonia (capsulated) and slime layer forming Pseudomonas aeruginosa, was characterized. Mercury adsorption was found to be influenced by the pH value of the biosorption solution, initial metal concentration, amount of the ...

  19. Biosorption of Methylene Blue by De-Oiled Algal Biomass: Equilibrium, Kinetics and Artificial Neural Network Modelling

    Science.gov (United States)

    Maurya, Rahulkumar; Ghosh, Tonmoy; Paliwal, Chetan; Shrivastav, Anupama; Chokshi, Kaumeel; Pancha, Imran; Ghosh, Arup; Mishra, Sandhya

    2014-01-01

    The main objective of the present study is to effectively utilize the de-oiled algal biomass (DAB) to minimize the waste streams from algal biofuel by using it as an adsorbent. Methylene blue (MB) was used as a sorbate for evaluating the potential of DAB as a biosorbent. The DAB was characterized by SEM, FTIR, pHPZC, particle size, pore volume and pore diameter to understand the biosorption mechanism. The equilibrium studies were carried out by variation in different parameters, i.e., pH (2–9), temperature (293.16–323.16 K), biosorbent dosage (1–10 g L−1), contact time (0–1,440 min), agitation speed (0–150 rpm) and dye concentration (25–2,500 mg L−1). MB removal was greater than 90% in both acidic and basic pH. The optimum result of MB removal was found at 5–7 g L−1 DAB concentration. DAB removes 86% dye in 5 minutes under static conditions and nearly 100% in 24 hours when agitated at 150 rpm. The highest adsorption capacity was found 139.11 mg g−1 at 2,000 mg L−1 initial MB concentration. The process attained equilibrium in 24 hours. It is an endothermic process whose spontaneity increases with temperature. MB biosorption by DAB follows pseudo-second order kinetics. Artificial neural network (ANN) model also validates the experimental dye removal efficiency (R2 = 0.97) corresponding with theoretically predicted values. Sensitivity analysis suggests that temperature and agitation speed affect the process most with 23.62% and 21.08% influence on MB biosorption, respectively. Dye adsorption capacity of DAB in fixed bed column was 107.57 mg g−1 in preliminary study while it went up to 139.11 mg g−1 in batch studies. The probable mechanism for biosorption in this study is chemisorptions via surface active charges in the initial phase followed by physical sorption by occupying pores of DAB. PMID:25310576

  20. Uranium uptake by the filamentous fungal biomass, Aspergillus fumigatus and mechanism of biosorption

    International Nuclear Information System (INIS)

    Bhainsa, Kuber C.; D'Souza, S.F.

    2010-01-01

    Uptake of uranium by Aspergillus fumigatus was investigated in a batch study. Previously, we had reported good uranium uptake capacity, i.e., 423 mg U/g by this fungal biomass. The objective of the present study was to investigate the uranium uptake and mechanism of biosorption by Aspergillus fumigatus. The metal uptake was rapid and 80% of metal ion could be removed within 4 minutes of contact time. Kinetic modeling indicated that the uptake of uranium followed Lagergren's pseudo-second order reaction indicating the process to be mediated through chemisorption mechanism. Further studies on isotherm modeling were carried out using D-R isotherm to confirm the same. The energy of biosorption obtained from D-R isotherm was found to be 14.4 kJ/mol. This energy corresponds to the energy of chemisorption (ion-exchange) which varies between 8-16 kJ/mol. All these results suggest that uranium uptake by Aspergillus fumigatus is mediated through chemisorptions mechanism. (author)

  1. A Novel Pb-Resistant Bacillus subtilis Bacterium Isolate for Co-Biosorption of Hazardous Sb(III and Pb(II: Thermodynamics and Application Strategy

    Directory of Open Access Journals (Sweden)

    Yue Cai

    2018-04-01

    Full Text Available The present work is the first to study co-biosorption of Pb(II and Sb(III by a novel bacterium and its application strategy. The biosorption characteristics of Pb(II and Sb(III ions from aqueous solution using B. subtilis were investigated. Optimum pH, biomass dosage, contact time and temperature were determined to be 5.00, 6.00 mg/L, 45 min and 35 °C, respectively. Langmuir, Freundlich, Temkin and Dubinin-Radushkevich (D-R models were applied to describe the biosorption isotherm of the metal ions by B. subtilis. Results showed that Langmuir model fitted the equilibrium data of Pb(II better than others, while biosorption of Sb(III obeyed the Freundlich model well. The biosorption capacity of B. subtilis biomass for Pb(II and Sb(III ions was found to be 17.34 ± 0.14 and 2.32 ± 0.30 mg/g, respectively. Kinetic data showed the biosorption process of Pb(II and Sb(III ions both followed the pseudo-second-order kinetic model, with R2 ranging from 0.974 to 0.999 for Pb(II and from 0.967 to 0.979 for Sb(III. The calculated thermodynamic parameters, negative ∆G and positive ∆H and ∆S values, indicated the biosorption of Pb(II and Sb(III ions onto B. subtilis biomass in water was feasible, endothermic, and spontaneous. Bacterial bioleaching experiment revealed B. subtilis can increase the mobility of Pb(II and Sb(III in polluted soil when pH was close to 6 at low temperature. Consequently, B. subtilis, as a cheap and original bacterial material, could be a promising biomass to remove Pb or isolate Sb from industrial wastewater and to assist phytoremediation of Pb and Sb from weak acid or near neutral pH polluted soils at low temperature.

  2. Heavy metals in handloom-dyeing effluents and their biosorption by agricultural byproducts.

    Science.gov (United States)

    Nahar, Kamrun; Chowdhury, Md Abul Khair; Chowdhury, Md Akhter Hossain; Rahman, Afzal; Mohiuddin, K M

    2018-03-01

    The Madhabdi municipality in the Narsingdi district of Bangladesh is a well-known area for textile, handloom weaving, and dyeing industries. These textile industries produce a considerable amount of effluents, sewage sludge, and solid waste materials every day that they directly discharge into surrounding water bodies and agricultural fields. This disposal poses a serious threat to the overall epidemic and socio-economic pattern of the locality. This research entailed the collection of 34 handloom-dyeing effluent samples from different handloom-dyeing industries of Madhabdi, which were then analyzed to determine the contents of the heavy metals iron (Fe), zinc (Zn), copper (Cu), chromium (Cr), manganese (Mn), lead (Pb), and cadmium (Cd). Average concentrations of Fe, Cr, Cu, Pb, Mn, and Zn were 3.81, 1.35, 1.70, 0.17, 0.75, and 0.73 mg L -1 , respectively, whereas Cd content was below the detectable limit of the atomic adsorption spectrophotometer. The concentrations of Fe, Cr, Cu, Pb, and Mn exceed the industrial effluent discharge standards (IEDS) for inland surface water and irrigation water guideline values. A biosorption experiment of the heavy metals (Fe, Cr, Cu, Mn, and Zn) was conducted without controlling for any experimental parameters (e.g., pH, temperature, or other compounds present in the effluent samples) by using four agricultural wastes or byproducts, namely rice husk, sawdust, lemon peel, and eggshell. Twenty grams of each biosorbent was added to 1 L of effluent samples and stored for 7 days. The biosorption capacity of each biosorbent is ranked as follows: eggshell, sawdust, rice husk, and lemon peel. Furthermore, the biosorption affinity of each metal ion was found in the following order: Cu and Cr (both had similar biosorption affinity), Zn, Fe, Mn. The effluents should not be discharged before treatment, and efficient treatment of effluents is possible with eggshell powder or sawdust at a rate of 20 g of biosorbent per liter of effluents.

  3. Biosorption of lead ions on biosorbent prepared from plumb shells (spondias mombin): kinetics and equilibrium studies

    International Nuclear Information System (INIS)

    Adeogen, A.I.; Bello, O.S.; Adeboye, M.D.

    2010-01-01

    Plumb shell was used to prepare an adsorbent for biosorption of lead ions in aqueous solution at 25 degree C. The adsorption capacity of the adsorbent at equilibrium was found to increase from 2.8 to 49.0 mg/g with an increase in the initial lead ion concentration from 50 to 200 mg/L. Using the equilibrium and kinetics studies, isotherm of the lead ions on the biosorbent was determined and correlated with common isotherm equations. The equilibrium data for lead ion adsorption fitted well into the Freundlich equation, with a value of 0.76 (R2 = 0.9), with distribution coefficient of 4.90. The biosorption of lead ions on the adsorbent from plumb shells could best be described by the pseudo-second-order equation. The kinetic parameters of this best-fit model were calculated and discussed. (author)

  4. Cadmium biosorption by Streptomyces sp. F4 isolated from former uranium mine.

    Science.gov (United States)

    Siñeriz, Manuel Louis; Kothe, Erika; Abate, Carlos Mauricio

    2009-09-01

    46 actinomycetes were isolated from two polluted sites and one unpolluted site. One strain, F4, was selected through primary qualitative screening assays because of its cadmium resistance, and physiologically and taxonomically characterized. F4 was able to grow at 7.5% NaCl and 100 microg/ml lysozyme and at a pH between 6 and 10. 16S rDNA sequence analysis showed that F4 was closely related to Streptomyces tendae. Growth of Streptomyces sp. F4 on culture medium with 8 mg/l Cd(2+) for 8 days showed 80% inhibition. Maximum specific biosorption was 41.7 mg Cd(2+)/g dry weight after 7 days of growth and highest Cd(2+ )concentration was found in the cell wall (41.2%). The exopolysaccharide layer only contained 7.4%, whereas 39.4% of Cd(2+) was found in the cytosolic fraction. Twelve % was found in the ribosomes and membrane fraction. This was verified with TEM, showing Streptomyces sp. F4 cytoplasm with dark granulate appearance. This study could present the potential capacity of Streptomyces sp. F4 for Cd(2+) bioremediation. Copyright 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. The biosorption of cadmium and lead ions from aqueous Solution ...

    African Journals Online (AJOL)

    The biosorption potentiality of Musa paradisiaca stalk at removing cadmium and lead ions from aqueous solution was investigated. The biosorption experiment was carried out as a function of contact time, initial pH, initial metal ion concentration and biosorbent dose. Adsorption equilibria were obtained from batch ...

  6. Biosorption of lead, copper and cadmium by an indigenous isolate Enterobacter sp. J1 possessing high heavy-metal resistance

    International Nuclear Information System (INIS)

    Lu, W.-B.; Shi, J.-J.; Wang, C.-H.; Chang, J.-S.

    2006-01-01

    This study was undertaken to investigate biosorption kinetics and equilibria of lead (Pb), copper (Cu) and cadmium (Cd) ions using the biomass of Enterobacter sp. J1 isolated from a local industry wastewater treatment plant. Efficiency of metal ion recovery from metal-loaded biomass to regenerate the biosorbent was also determined. The results show that Enterobacter sp. J1 was able to uptake over 50 mg of Pb per gram of dry cell, while having equilibrium adsorption capacities of 32.5 and 46.2 mg/g dry cell for Cu and Cd, respectively. In general, Langmuir and Freundlich models were able to describe biosorption isotherm fairly well, except that prediction of Pb adsorption was relatively poor with Langmuir model, suggesting a different mechanism for Pb biosorption. Adjusting the pH value to 3.0 led to nearly complete desorption of Cd from metal-loaded biomass, while over 90% recovery of Pb and Cu ions was obtained at pH ≤ 2. After four repeated adsorption/desorption cycles, biomass of Enterobacter sp. J1 retained 75, 79 and 90% of original capacity for adsorption of Pb, Cu and Cd, respectively, suggesting good reusability of the biosorbent. A combinative model was proposed to describe the kinetics of heavy-metal adsorption by Enterobacter sp. J1 and the model appeared to have an excellent prediction of the experimental data. The model simulation results also seemed to suggest that intracellular accumulation may occur during the uptake of Pb

  7. Biosorption of lead, copper and cadmium by an indigenous isolate Enterobacter sp. J1 possessing high heavy-metal resistance

    Energy Technology Data Exchange (ETDEWEB)

    Lu, W.-B. [Department of Cosmetic Science, Chung Hwa College of Medical Technology, Tainan, Taiwan (China); Shi, J.-J. [Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan (China); Wang, C.-H. [Department of Biological Engineering, Yung Ta Institute of Technology and Commerce, Pingtung, Taiwan (China); Chang, J.-S. [Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan (China)]. E-mail: changjs@mail.ncku.edu.tw

    2006-06-30

    This study was undertaken to investigate biosorption kinetics and equilibria of lead (Pb), copper (Cu) and cadmium (Cd) ions using the biomass of Enterobacter sp. J1 isolated from a local industry wastewater treatment plant. Efficiency of metal ion recovery from metal-loaded biomass to regenerate the biosorbent was also determined. The results show that Enterobacter sp. J1 was able to uptake over 50 mg of Pb per gram of dry cell, while having equilibrium adsorption capacities of 32.5 and 46.2 mg/g dry cell for Cu and Cd, respectively. In general, Langmuir and Freundlich models were able to describe biosorption isotherm fairly well, except that prediction of Pb adsorption was relatively poor with Langmuir model, suggesting a different mechanism for Pb biosorption. Adjusting the pH value to 3.0 led to nearly complete desorption of Cd from metal-loaded biomass, while over 90% recovery of Pb and Cu ions was obtained at pH {<=} 2. After four repeated adsorption/desorption cycles, biomass of Enterobacter sp. J1 retained 75, 79 and 90% of original capacity for adsorption of Pb, Cu and Cd, respectively, suggesting good reusability of the biosorbent. A combinative model was proposed to describe the kinetics of heavy-metal adsorption by Enterobacter sp. J1 and the model appeared to have an excellent prediction of the experimental data. The model simulation results also seemed to suggest that intracellular accumulation may occur during the uptake of Pb.

  8. Characterization of the biosorption of cadmium, lead and copper with the brown alga Fucus vesiculosus

    International Nuclear Information System (INIS)

    Mata, Y.N.; Blazquez, M.L.; Ballester, A.; Gonzalez, F.; Munoz, J.A.

    2008-01-01

    The recovery of cadmium, lead and copper with the brown alga Fucus vesiculosus was characterized and quantified. The biosorption data fitted the pseudo-second order and Langmuir isotherm models, but did not adjust to the intraparticle diffusion model. The metal uptakes deduced from the pseudo-second order kinetic model and the Langmuir isotherm model followed a similar sequence: Cu > Cd ∼ Pb. The Langmuir maximum metal uptakes were: 0.9626 mmol/g, Pb 1.02 mmol/g, and Cu 1.66 mmol/g. According to the equilibrium constants of this isotherm model, the affinity of metals for the biomass followed this order: Pb > Cu > Cd. Biosorption was accomplished by ion exchange between metals in solution and algal protons, calcium and other light metals, and by complexation of the adsorbed metals with algal carboxyl groups. FTIR spectra showed a shift in the bands of carboxyl, hydroxyl and sulfonate groups

  9. Chromium (VI) biosorption and removal of chemical oxygen demand by Spirulina platensis from wastewater-supplemented culture medium.

    Science.gov (United States)

    Magro, Clinei D; Deon, Maitê C; De Rossi, Andreia; Reinehr, Christian O; Hemkemeier, Marcelo; Colla, Luciane M

    2012-01-01

    The inappropriate discharge of wastewater containing high concentrations of toxic metals is a serious threat to the environment. Given that the microalga Spirulina platensis has demonstrated a capacity for chromium VI (Cr (VI) biosorption, we assessed the ideal concentration of chromium-containing wastewater required for maximum removal of Cr (VI) and chemical oxygen demand (COD) from the environment by using this microalga. The Paracas and Leb-52 strains of S. platensis, with initial wastewater concentrations of 0%, 12.5%, 25%, and 50%, were cultured in Zarrouk medium diluted to 50% under controlled air, temperature, and lighting conditions. The cultures were maintained for 28 days, and pH, biomass growth, COD, and Cr (VI) were assessed. The wastewater concentration influenced microalgal growth, especially at high concentrations. Removal of 82.19% COD and 60.92% Cr (VI) was obtained, but the COD removal was greater than the Cr (VI) removal in both strains of S. platensis.

  10. The effect of surfactant on pollutant biosorption of Trametes versicolor

    Science.gov (United States)

    Gül, Ülküye Dudu; Silah, Hülya; Akbaş, Halide; Has, Merve

    2016-04-01

    The major problem concerning industrial wastewater is treatment of dye and heavy metal containing effluents. Industrial effluents are also contained surfactants that are used as levelling, dispersing and wetting agents. The purpose of this study was to investigate the effect of surfactant on textile dye biosorption properties of a white rot fungus named Trametes versicolor. Reactive dyes are commonly used in textile industry because of their advantages such as brightness and excellent color fastness. A recative textile dye, called Everzol Black, was used in this study. The low-cost mollasses medium is used for fungal growth. The usage of mollases, the sugar refinery effluent as a source of energy and nutrients, gained importance because of reducing the cost and also reusing another waste. In biosorption process the effect of surfactant on dye removal properties of T. versicolor was examined as a function of pH, dye consentration and surfactant concentration. The results of this study showed that the surfactant enhanced the dye removal capacity of Trametes versicolor. The dye and surfactant molecules were interacted electrostatically and these electrostatic interactions improved dye removal properties of filamentous fungus T. versicolor. The results of this study recommended the use of surfactants as an inducer in textile wastewater treatment technologies.

  11. Column studies for biosorption of dyes from aqueous solutions on ...

    African Journals Online (AJOL)

    Biosorption is becoming a promising alternative to replace or supplement the present dye removal processes from dye wastewaters. Based on the results of batch studies on biosorption of the dyes on powdered fungal biomass, Aspergillus niger, an immobilised fungal biomass was used in column studies for removal of four ...

  12. Mechanism of Biosorption of Nickel Ions from Polluted Effluent by Bacillus sp. Strain MGL-75

    Directory of Open Access Journals (Sweden)

    Salman Ahmadi Asbchin

    2013-08-01

    Full Text Available The aim of this work was to investigate Bacillus sp. strain MGL-75 as biosorbent, for the fixation of Ni ion in batch reactor. Pollution of the environment by toxic metals is a major environmental concern. In a first step, biosorption kinetics and isotherms have been performed at pH 7. The equilibrium time was about 5 min and the adsorption equilibrium data were well described by the Langmuir`s equation. The point of zero net proton charge (PZNPC was found close to pH 5.7. Using the single extrapolation method, three kinds of acidic functional groups with three intrinsic pka were determined at 4.4, 6.9 and 11.2. The maximum capacity has been extrapolated to 0/52 mmol/g. Finally the effect of autoclave, 2, 4 Dinitrophenol (DNF and Na-Azid (NaN3, and the effect of pH values, were studied. These results indicated that the Bacillus sp. strain MGL-75 is an excellent candidate for use in reactor to remove Nickel ions from polluted aqueous effluents.

  13. Preparation of nano-biomaterials with Leptolyngbia foveolarum and heavy metal biosorption by free and immobilized algal cells

    International Nuclear Information System (INIS)

    Toncheva-Panova, T.; Pouneva, I.; Sholeva, M.; Chernev, G.

    2010-01-01

    Using the sol-gel procedure nano-biomaterials with incorporation of Leptolyngbia foveolarum in the silica matrix were manufactured. The immobilization of algal cells was confirmed with Scanning Electron Microscopy (SEM) investigations and photos. Observation of nano-biomaterials with Atomic Force Microscopy (AFM) shows nanostructure with well-defined nanounits and their aggregates. The potential of the Antarctic isolate L. foveolarum for sorption of Cu 2+ and Cd 2+ was studied by incubation of free algal cells and those immobilized in nano-biomaterials in the salts solutions of the two heavy metals. The rest of the heavy metal was determined with inductively coupled plasma atomic emission spectrometer (ICP-AES). It was established that the heavy metal biosorption capacity demonstrated by the free Leptolyngbia cells was retained after their incorporation in the nano-matrices. Free cells as well as embedded in silica nano-matrix sequestered the two heavy metals with greater affinity for copper. The highest binding capacity, 76% of the initial Cu 2+ concentration possessed nano-biomaterials with incorporated vegetative L. foveolarum cells, compared to 68% of free cells. For cadmium the degree of biosorption was lower - 35% by free cells and 30.2% by those incorporated in the biocer. (authors)

  14. Biosorption treatment of brackish water

    International Nuclear Information System (INIS)

    Rizwan, M.; Ali, M.; Tariq, M.I.; Rehman, F.U.; Karim, A.; Makshoof, M.; Farooq, R.

    2010-01-01

    Biosorptivity of different agricultural wastes have been evaluated for the treatment of brackish water and a new method, based on the principle of bio-sorption has been described. Wastes of the Saccharum officinarum, Moringa oleifera, Triticum aestivcum and Oryza sativa have been used in raw forms as well as after converting them into ash and activated carbon as biosorbents for treatment of brackish water in this study. Samples of brackish water have been analyzed before and after treatment for quality control parameters of water. A significant Improvement has been observed in quality control parameters of water after treatment. pH of the water samples slightly increased from 7.68 to 7.97 with different treatments. A substantial decrease in conductivity,. TDS, TH, concentrations of cations and anions was observed in the samples of brackish water after treatment with different biosorbents. (author)

  15. Studies on biosorption of Cr(VI) on a green resin: dry cow dung powder and tracer technique

    International Nuclear Information System (INIS)

    Barot, N.S.; Bagla, H.K.

    2012-01-01

    The present investigation entails the application of dry cow dung powder (DCP) as an indigenous, inexpensive and eco-friendly material for the removal of Cr(VI) from aqueous medium. Batch biosorption experiments were conducted employing 51 Cr(VI) as a tracer and the effect of various process parameters such as optimum pH, temperature, amount of resin, time of equilibration, agitation speed, concentration of metal ions and interfering effect of different salts etc. were studied. The kinetic studies were carried out employing various models but the best fitting was given by Lagergren Pseudo-second order model with high correlation coefficient R 2 value of 0.997 and adsorption capacity of 10.20 mg/g. The thermodynamic parameters for biosorption were evaluated as ΔG = -2.837 kJ/mol, ΔH = -4.757 kJ/mol and ΔS = 16.64 J/mol K, which indicated spontaneous and exothermic process with high affinity of DCP for Cr(VI). Many naturally available materials are used for the biosorption of heavy metal pollutants, where most of them are physically or chemically modified. In this research work, DCP has been utilized without any pre or post chemical treatment. Thus it manifests the principle of green chemistry and proves to be an eco-friendly resin. (orig.)

  16. Studies on biosorption of Cr(VI) on a green resin: dry cow dung powder and tracer technique

    Energy Technology Data Exchange (ETDEWEB)

    Barot, N.S.; Bagla, H.K. [Kishinchand Chellaram College, Mumbai (India). Nuclear and Radiochemistry Dept.

    2012-07-01

    The present investigation entails the application of dry cow dung powder (DCP) as an indigenous, inexpensive and eco-friendly material for the removal of Cr(VI) from aqueous medium. Batch biosorption experiments were conducted employing {sup 51}Cr(VI) as a tracer and the effect of various process parameters such as optimum pH, temperature, amount of resin, time of equilibration, agitation speed, concentration of metal ions and interfering effect of different salts etc. were studied. The kinetic studies were carried out employing various models but the best fitting was given by Lagergren Pseudo-second order model with high correlation coefficient R{sup 2} value of 0.997 and adsorption capacity of 10.20 mg/g. The thermodynamic parameters for biosorption were evaluated as {Delta}G = -2.837 kJ/mol, {Delta}H = -4.757 kJ/mol and {Delta}S = 16.64 J/mol K, which indicated spontaneous and exothermic process with high affinity of DCP for Cr(VI). Many naturally available materials are used for the biosorption of heavy metal pollutants, where most of them are physically or chemically modified. In this research work, DCP has been utilized without any pre or post chemical treatment. Thus it manifests the principle of green chemistry and proves to be an eco-friendly resin. (orig.)

  17. Lead Biosorption by Self-Immobilized Rhizopus nigricans Pellets in a Laboratory Scale Packed Bed Column: Mathematical Model and Experiment

    Directory of Open Access Journals (Sweden)

    Adela Kogej

    2010-01-01

    Full Text Available The biosorption of lead ions from aqueous solution on a self-immobilized Rhizopus nigricans biomass has been studied. Experiments were performed in a laboratory scale packed bed column at different liquid flow rates and biosorbent bed heights. Recorded experimental breakthrough curves were compared to those predicted by a mathematical model, which was developed to simulate a packed bed biosorption process by a soft, self-immobilized fungal biosorbent. In the range of examined experimental conditions, the biomass characteristics such as pellet porosity and biosorption capacity substantially affected the predicted response curve. General correlations for the estimation of the intra-pellet effective diffusivity, the external mass transfer coefficient, as well as axial dispersion were successfully applied in this biological system with specific mechanical properties. Under the experimental conditions, mass transfer is controlled by the external film resistance, while the intra-pellet mass transfer resistance, as well as the effect of axial dispersion, can be neglected. A new parameter α, the fraction of active biomass, with an average value of α=0.7, was introduced to take into account the specific biomass characteristics, and consequently the observed non-ideal liquid flow through the bed of fungal pellets.

  18. Biosorption of nickel (II) ions from aqueous solutions by tapioca peel ...

    African Journals Online (AJOL)

    Tapioca peel, waste from native tapioca starch industry in Thailand, was used for the biosorption of nickel from aqueous solution. The experimental parameter focuses on the influence of contact time, solution pH, initial concentration and temperature using batch experiments. The results indicated that the biosorption ...

  19. Biosorption of Pb(II) ions by modified quebracho tannin resin

    Energy Technology Data Exchange (ETDEWEB)

    Yurtsever, Meral [Department of Environmental Engineering, Engineering Faculty, Sakarya University, 54187 Sakarya (Turkey)], E-mail: mevci@sakarya.edu.tr; Sengil, I. Ayhan [Department of Environmental Engineering, Engineering Faculty, Sakarya University, 54187 Sakarya (Turkey)

    2009-04-15

    In this study, the effect of temperature, pH and initial metal concentration on Pb(II) biosorption on modified quebracho tannin resin (QTR) was investigated. Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) were used to investigate QTR structure and morphology. Besides, the specific BET surface area and zeta-potential of the QTR were analysed. Thermodynamic functions, the change of free energy ({delta}G{sup o}), enthalpy ({delta}H{sup o}) and entropy ({delta}S{sup o}) of Pb adsorption on modified tannin resin were calculated as -5.43 kJ mol{sup -1} (at 296 {+-} 2 K), 31.84 kJ mol{sup -1} and 0.127 J mmol{sup -1} K{sup -1}, respectively, indicating the spontaneous, endothermic and the increased randomness nature of Pb{sup 2+} adsorption. The kinetic data was tested using pseudo-first-order, pseudo-second-order, Elovich and intraparticle diffusion model. The results suggested that the pseudo-second-order model (R{sup 2} > 0.999) was the best choice among all the kinetic models to describe the adsorption behavior of Pb(II) onto QTR. Langmuir, Freundlich and Tempkin adsorption models were used to represent the equilibrium data. The best interpretation for the experimental data was given by the Langmuir isotherm and the maximum adsorption capacity (86.207 mg g{sup -1}) of Pb(II) was obtained at pH 5 and 296 K.

  20. Biosorption of uranium on Bacillus sp. dwc-2: preliminary investigation on mechanism

    International Nuclear Information System (INIS)

    Li, Xiaolong; Ding, Congcong; Liao, Jiali; Lan, Tu; Li, Feize; Zhang, Dong; Yang, Jijun; Yang, Yuanyou; Luo, Shunzhong; Tang, Jun; Liu, Ning

    2014-01-01

    In this paper, the biosorption mechanisms of uranium on an aerobic Bacillus sp. dwc-2, isolated from a potential disposal site for (ultra-) low uraniferous radioactive waste in Southwest China, was explored by transmission electron microscopy (TEM), energy dispersive X-ray (EDX) analysis, FT-IR spectroscopy, proton induced X-ray emission (PIXE) and enhanced proton backscattering spectrometry (EPBS). The biosorption experiments for uranium were carried out at a low pH (pH 3.0), where the uranium solution speciation is dominated by highly mobile uranyl ions. The bioaccumulation was found to be the potential mechanism involved in uranium biosorption by Bacillus sp. dwc-2, and the bioaccumulated uranium was deposited in the cell interior as needle shaped particles at pH 3.0, as revealed by TEM analysis as well as EDX spectra. FTIR analysis further suggested that the absorbed uranium was bound to amino, phosphate and carboxyl groups of bacterial cells. Additionally, PIXE and EPBS results confirmed that ion-exchange also contributed to the adsorption process of uranium. All the results implied that the biosorption mechanism of uranium on Bacillus sp. is complicated and at least involves bioaccumulation, ion exchange and complexation process. - Highlights: • We examined U (VI) biosorption by a bacterial strain isolated from Southwest China. • We studied the involved mechanisms between uranium and this bacterium. • U (VI) was intracellularly bioaccumulated as needlelike granules by this bacterium. • The biosorption mechanisms involved ion exchange, complexation and bioccumulation

  1. [Biosorption of crystal violet and malachite green by Rhodotorula graminis Y-5].

    Science.gov (United States)

    Hu, Rong; Huang, Jian-Bo; Yang, Zhou-Ping; Cheng, Zi-Zhang; Jing, De-Jun; Huang, Qian-Ming

    2011-12-01

    With a shaker, this paper studied the characteristics of the biosorption of crystal violet and malachite green by Rhodotorula graminis Y-5 under different adsorption time, initial pH, and temperature, as well as the desorption and recycling use of the dyes. The biosorption of crystal violet and malachite green by R. graminis Y-5 had the peaks (93.8% and 87.7%, respectively) at pH 7.0, dye concentration 50 mg x L(-1), 150 r x min(-1), 30 degrees C, and lasting 10 hours. After desorption, the biosorption rate of crystal violet and malachite green by R. graminis was 85.5% and 78.5%, respectively, indicating that the biosorption of crystal violet and malachite green was reversible, and the recycling use of the dyes by R. graminis was quite good, i. e., the dyes were renewable and could be recycled. Biosorption could be the mechanism of the decolorization of the dyes. The dyes were mostly adsorbed on the R. graminis surface -OH. The adsorption process was fast, efficient, and reversible, suggesting that R. graminis had a high potential for waste water treatment.

  2. Biosorption of Fe, Al and Mn of acid drainage from coal mine using brown seaweed sargassum sp. in continuous process

    International Nuclear Information System (INIS)

    Diaz, Andrea; Arias, John; Gelves, Genaro; Maldonado, Alfonso; Laverde, Dionisio; Pedraza, Julio; Escalante, Humberto

    2003-01-01

    The acid mine drainage (AMD) are leaches as result of a coal mining running, it have low ph and high concentrations of heavy metals that convert them in strong polluter; with the purpose of reduce its concentration, a continuous biosorption system was designed by removing heavy metals from drainages using a cheap biosorbent material. The brown seaweed was pre-treatment with solutions 0,1 N of NaOH, Ca(OH) 2 NaCl, CaCl 2 , NaSO 4 y H 2 SO 4 for to study the effect on biosorption process; the removal percentage were determined, which are better than 80% with the exception of pre-treatment with H 2 SO 4 who cancel the algae sorption capacity. The seaweed was packed in plastic mesh and polyester tulle in the shape of a rectangular prism; there isn't effect on the biosorption process by using this packet. The continuous biosorption process was studied in two units of operation: a packed-bed flow-through sorption column and an horizontal vessel like a canal with baffles, which treated adequately 3,5 and 4,71 of AMD respectively, using in each one of them 100 g of algae. The burning of algae was studied like an alternative for the problem of handling of residual algae. The ashes kept the metals removed from AMD, furthermore keep stable too by the attack of solutions of different pH

  3. Studies on Biosorption of Methylene Blue from Aqueous Solutions by Powdered Palm Tree Flower (Borassus flabellifer

    Directory of Open Access Journals (Sweden)

    M. Srinivas Kini

    2014-01-01

    Full Text Available Biosorption experiments were carried out for the removal of methylene blue (MB using palm tree male flower (PTMF as the biosorbent at various pH, temperature, biosorbent, and adsorbate concentration. The optimum pH was found to be 6.0. The kinetic data were fitted in pseudofirst-order and second-order models. The equilibrium data were well-fitted in Langmuir isotherm and the maximum equilibrium capacities of the biosorbent were found to be 143.6, 153,9, 157.3 mg/g at 303, 313, and 323 K, respectively. Thermodynamic data for the adsorption system indicated spontaneous and endothermic process. The enthalpy and entropy values for adsorption were obtained as 15.06 KJ/mol and 0.129 KJ/mol K, respectively, in the temperature range of 303–323 K. A mathematical model for MB transported by molecular diffusion from the bulk of the solution to the surface of PTMF was derived and the values of liquid phase diffusivity and external mass transfer coefficient were estimated.

  4. Studies on biosorption of heavy metals

    African Journals Online (AJOL)

    Gulnaz

    2012-10-18

    Oct 18, 2012 ... 1Department of Chemical Engineering, Faculty of Engineering and Science, ... The results show that the introduction of microbial biomass into the palm ..... equilibrium, kinetic and thermodynamic parameters of biosorption of.

  5. Biosorption of Cd(II), Ni(II) and Pb(II) from aqueous solution by dried biomass of aspergillus niger: application of response surface methodology to the optimization of process parameters

    Energy Technology Data Exchange (ETDEWEB)

    Amini, Malihe; Younesi, Habibollah [Department of Environmental Science, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor (Iran)

    2009-10-15

    In this study, the biosorption of Cd(II), Ni(II) and Pb(II) on Aspergillus niger in a batch system was investigated, and optimal condition determined by means of central composite design (CCD) under response surface methodology (RSM). Biomass inactivated by heat and pretreated by alkali solution was used in the determination of optimal conditions. The effect of initial solution pH, biomass dose and initial ion concentration on the removal efficiency of metal ions by A. niger was optimized using a design of experiment (DOE) method. Experimental results indicated that the optimal conditions for biosorption were 5.22 g/L, 89.93 mg/L and 6.01 for biomass dose, initial ion concentration and solution pH, respectively. Enhancement of metal biosorption capacity of the dried biomass by pretreatment with sodium hydroxide was observed. Maximal removal efficiencies for Cd(II), Ni(III) and Pb(II) ions of 98, 80 and 99% were achieved, respectively. The biosorption capacity of A. niger biomass obtained for Cd(II), Ni(II) and Pb(II) ions was 2.2, 1.6 and 4.7 mg/g, respectively. According to these observations the fungal biomass of A. niger is a suitable biosorbent for the removal of heavy metals from aqueous solutions. Multiple response optimization was applied to the experimental data to discover the optimal conditions for a set of responses, simultaneously, by using a desirability function. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  6. Performance of dead Azolla filiculoides biomass in Biosorption of Au from wastewater.

    Science.gov (United States)

    Umali, L J; Duncan, J R; Burgess, J E

    2006-01-01

    Dried milled biomass of Azolla filiculoides removed up to 98.2% of gold from wastewater from a gold plating factory containing 5 mg gold/l in solution in batch biosorption. The gold uptake capacity of the biomass was 98 mg/g. Whole dried biomass used in a continuous flow column removed up to 100% of gold from diluted wastewater. A similar column was linked to a sulphide precipitation process to provide a two-step system which was able to remove 98% of gold from undiluted wastewater containing 41 mg Au/l. The lifetime of the column was five days.

  7. Removal of Cr(VI) and Ni(II) from aqueous solution by fused yeast: Study of cations release and biosorption mechanism

    International Nuclear Information System (INIS)

    Yin Hua; He Baoyan; Peng Hui; Ye Jinshao; Yang Feng; Zhang Na

    2008-01-01

    Biosorption of Cr(VI) and Ni(II) by a fused yeast from Candida tropicalis and Candida lipolytica under varying range of pH, initial metal concentration and reaction time was investigated. Net cation release and Cr removal reached 2.000 mmol/l and 81.37% when treating 20 mg/l Cr(VI) at pH 2 with 25 mg/l biomass for 30 min, while for Ni were 0.351 mmol/l and 64.60%, respectively. Trace metal elements such as Co, Cu, Mn, Mo, Se and Zn played active role in biosorption as important ingredients of functional enzymes. Cr(VI) was reduced to less toxic Cr(III) and chelated with extracellular secretions, and further accumulated inside the cells. For Ni biosorption, however, largely a passive uptake process influenced by ion gradient led to lower adsorption capacity and cations release. Fourier transform infrared (FTIR) spectrum analysis indicated that amide and pyridine on cells were involved in binding with Cr, but for Ni, bound-OH and nitro-compounds were the main related functional groups. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) analysis confirmed that considerable amounts of metals precipitated on cell surface when dealing with high concentration metals

  8. Heavy metal recovery from contaminated biomass ashes by chemical leaching, bioleaching and biosorption

    International Nuclear Information System (INIS)

    Pirker, K.

    2000-01-01

    Ashes from biomass combustion plants contain plant nutrients which makes their application as fertilizers economically interesting. The possibility of recycling the ash can be looked upon as a contribution to obtain a sustainable energy utilization from biomass. The ash contains heavy metals which have to be removed. The possibility of decontaminating the ash by chemical and biological leaching was investigated. The leaching capacity of commercially available organic and inorganic acids and of citric acid produced by the fungus Penicillium simplicissimus were determined. A process for heavy metal recovery from biomass ashes consisting of four steps was designed. All environmentally relevant heavy metals (except lead) were removed from contaminated biomass ashes by chemical leaching. The heavy metals were recovered and enriched by precipitation and subsequent biosorption. Inactivated bacteria and fungi were used as biosorbents. The overall costs and the washing-out of plant nutrients from the ashes by chemical leaching were drawbacks of the metal recovering process. Biosorption in combination with existing processes of waste water treatment would offer another promising possibility for achieving the low Austrian limiting values for heavy metals in waste water. (author)

  9. Short and long term biosorption of silica-coated iron oxide nanoparticles in heterotrophic biofilms

    International Nuclear Information System (INIS)

    Herrling, Maria P.; Lackner, Susanne; Tatti, Oleg; Guthausen, Gisela; Delay, Markus; Franzreb, Matthias; Horn, Harald

    2016-01-01

    The increased application of engineered nanoparticles (ENP) in industrial processes and consumer products has raised concerns about their impact on health and environmental safety. When ENP enter the global water cycle by e.g. wastewater streams, wastewater treatment plants (WWTP) represent potential sinks for ENP. During biological WWT, the attachment of ENP to biofilms is responsible for the desired removal of ENP from the water phase avoiding their release into the aquatic environment. However, the fundamental mechanisms guiding the interactions between ENP and biofilms are not yet fully understood. Therefore, this study investigates the behavior and biosorption of inorganic ENP, here magnetic iron oxide nanoparticles coated with silica (scFe_3O_4-NP), with heterotrophic biofilms at different time scales. Their magnetic properties enable to follow scFe_3O_4-NP in the biofilm system by a magnetic susceptibility balance and magnetic resonance imaging. Biofilms were exposed to scFe_3O_4-NP at short contact times (5 min) in flow cells and complementary, scFe_3O_4-NP were introduced into a moving bed biofilm reactor (MBBR) to be observed for 27 d. Mass balances revealed that scFe_3O_4-NP sorbed to the biofilm within a few minutes, but that the total biosorption was rather low (3.2 μg Fe/mg TSS). scFe_3O_4-NP mainly sorbed to the biofilm surface inducing the detachment of outer biofilm parts starting after an exposure time of 3 h in the MBBR. The biosorption depended on the exposure concentration of scFe_3O_4-NP, but less on the contact time. Most scFe_3O_4-NP exited the flow cell (up to 65%) and the MBBR (57%) via the effluent. This effect was favored by the stabilization of scFe_3O_4-NP in the bulk liquid by organic matter leading to a low retention capacity of the MBBR system. The results contribute to improve our understanding about the fate of ENP in environmental and in technical biofilm systems and give indications for future investigations needed

  10. Kinetics of biosorption of hazardous metals by green soil supplement

    Science.gov (United States)

    Bagla, Hemlata; Khilnani, Roshan

    2016-04-01

    The process of metal retention by soil may include ion exchange, adsorption and precipitation. These reaction mechanisms have been defined through fitting the data into different equilibrium and kinetic models. The natural organic matter in soil consists of various fractions like macro-organic material, plant residues, soil biomass and stable humus. Most of the organic matter is dominated with large amount of humic substances. Humic fractions in soil are known to have indirect and direct effects on plant growth and crop production. Humic substances increase the cation exchange capacity, providing a strong buffer capacity to resist sudden drastic chemical changes in soil which enhance soil fertility and environmental quality. The cation-humic interactions exert control on the reactivity of the cation, influencing its bioavailability in the soil system. The investigation of metal concentrations adsorbed with time can be useful to estimate the metal bioavailability in soil. Understanding how metals interact and compete for adsorption sites is of great interest to those involved in environmental remediation. Cow Dung is bio-organic, complex, polymorphic fecal matter of the bovine species, enriched with 'Humic acid' (HA), 'Fulvic Acid', etc. The HA in Cow Dung has been successfully extracted using neutralization reaction and its presence was confirmed by comparison with FTIR spectra of standard HA (IHSS). Since, dry Cow dung powder (DCP) is being added as a soil supplement to enhance the quality of soil, it is important to understand the kinetics associated with it. This work reports kinetic studies of various toxic and hazardous elements such as Cr(III), Cr(VI), Sr(II), Cd(II), Hg(II) and Co(II) adsorption by dry Cow dung powder. Kinetic experiments demonstrated rapid metal uptake. The Kinetic biosorption data were obtained by Batch experiments to explore the rate of biosorption by DCP at optimum parameters and varying the time of reaction from 1-30 min. The dynamics

  11. Biosorption of Acid Yellow 17 from aqueous solution by non-living aerobic granular sludge

    International Nuclear Information System (INIS)

    Gao Jingfeng; Zhang Qian; Su Kai; Chen Ranni; Peng Yongzhen

    2010-01-01

    Batch biosorption experiments were carried out for the removal of Acid Yellow 17 from aqueous solution using non-living aerobic granular sludge as an effective biosorbent. The effects of solution pH value, biosorbent dosage, initial Acid Yellow 17 concentration, NaCl concentration and temperature on the biosorption were investigated. The experimental results indicate that this process was highly dependent on pH value and the pH value of 2.0 was favorable. The Temkin isotherm was more applicable for describing the biosorption equilibrium at the whole concentration range than the Freundlich and Langmuir isotherm. The results of kinetics study show that the pseudo-second-order model fitted to the experimental data well. Both intraparticle diffusion and boundary layer diffusion might affect the biosorption rate. Thermodynamic studies demonstrate that the biosorption process was spontaneous and exothermic. The FTIR analysis before and after Acid Yellow 17 binding indicated that functional groups such as amine, hydroxyl, carboxyl and either on the non-living aerobic granular sludge would be the active binding sites for the biosorption of the studied dye. These results show that non-living aerobic granular sludge could be effectively used as a low-cost and alternative biosorbent for the removal of Acid Yellow 17 dye from wastewater.

  12. Biosorption of heavy metals and radionuclide from aqueous solutions by pre-treated arca shell biomass

    International Nuclear Information System (INIS)

    Dahiya, Sudhir; Tripathi, R.M.; Hegde, A.G.

    2008-01-01

    In this study biosorption potential of pre-treated arca shell biomass for lead, copper, nickel, cobalt and cesium was explored from the artificially prepared solution containing known amount of metals. The effects of pH, initial concentration, biosorbent dosage and contact time were studied in batch experiments. Effects of common ions like sodium, potassium, calcium and magnesium on the sorption capacity of pre-treated arca biomasses were also studied. To analyse the homogeneity of the biomaterial, experiments were performed for eight lots arca shell biomass for all the studies elements and it was observed that relative standard deviation in uptake capacity was within 10% for all elements. At equilibrium, the maximum total uptake by shell biomaterial was 18.33 ± 0.44, 17.64 ± 0.31, 9.86 ± 0.17, 3.93 ± 0.11 and 7.82 ± 0.36 mg/g for lead, copper, nickel, cesium and cobalt, respectively, under the optimised condition of pH, initial concentration, biosorbent dose and contact time. Effect of all the common ions jointly up to concentration of 50 ppm was negligible for all the elements but at higher levels the cations affects the uptake capacity. Sorption isotherms were studied to explain the removal mechanism of both elements by fitting isotherms data into Lagergren, Freundlich and Langmuir equations. Halls separation factor estimated under optimised condition also favours the sorption potential of these elements using arca shell biomass. Arca shell biomass can be effectively and efficiently employed for removal of studied elements after optimisation of parameters

  13. Biosorption study of radiotoxic nuclide and toxic heavy metals using green adsorbent

    International Nuclear Information System (INIS)

    Bagla, Hemlata K.

    2014-01-01

    Our research scientifically illuminates the pioneering and successful application of the ancient Indian epitome of energy, Dry Cow Dung Powder, DCP, a combo humiresin, in its naive 'as it is form' for the bioremediation of toxic pollutants. The potential of DCP to sequester toxic heavy metal ions such as Cr(III), Cr(VI). Cd(II), Hg(II) and radionuclide 90 Sr(II) has been successfully demonstrated, employing tracer technique. The Batch equilibration method and all the important parameters such as pH, dose of sorbent, metal ion concentration, contact time, agitation speed, temperature and interference of different salts have been studied and optimized. The study on thermodynamic, kinetic and isotherm modeling of biosorption indicates that it is feasible, eco-friendly and efficient process to employ DCP for the removal of metal ions from aqueous medium. Spectroscopic analysis by FTIR and EDAX effectively explain the mechanism involved in the biosorption by DCP. The adsorption capacity and the pseudo-second order rate constant were also obtained by regression analysis. Thus DCP proves to be Eco-friendly resin for the removal of these toxic pollutants such as Cr(III), Cr(VI), Cd(II), Hg(II) and 90 Sr(II) from aqueous medium. (author)

  14. Cadmium biosorption properties of the metal-resistant ochrobactrum cytisi Azn6.2

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Llorente, Ignacio D.; Gamane, Djamila; Lafuente, Alejandro; Dary, Mohammed; El Hamdaoui, Abdelaziz; Delgadillo, Julian; Doukkali, Bouchra; Caviedes, Miguel A.; Pajuelo, Eloisa [Departamento de Microbiologia, Facultad de Farmacia, Universidad de Sevilla, Sevilla (Spain)

    2010-02-15

    The aim of this work was to establish the conditions for using Ochrobactrum cytisi Azn6.2 as a metal biosorbent. Azn6.2 is a novel strain from the legume symbiont O. cytisi that has been isolated from nodules of Medicago polymorpha plants grown on heavy metal-polluted soils. Compared with the strain ESC1, Azn6.2 showed some biochemical differences, as well as antibiotic susceptibility, Azn6.2 was multi-resistant to heavy metals, such as Cu, Cd and Zn, and bacterial pellets were able to biosorb high amounts of Cd and Zn. As shown by scanning electron microscopy coupled to energy dispersive X-ray, most of Cd was attached to the cell surface. Optimal conditions for Cd biosorption were established, being 1 mM Cd ions in solution and 2 h of contact with the biosorbent at room temperature. At these conditions, maximal Cd loading capacity reached 32-34 mg/g. Cd desorption from bacterial pellets was achieved after washing with EDTA or, at higher efficiency, at pH 1.0. These results indicated that biosorption/desorption on O. cytisi Azn6.2 biomass should be a cost-effective method for Cd recovery from contaminated solutions. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  15. [Biosorption of heavy metals in fluoritum decoction by fungal mycelium].

    Science.gov (United States)

    Cui, Pei-wu; Hu, Wei; Hu, Ya-qiang; Tan, Zhao-yang

    2014-09-01

    To explore the biosorption technology of heavy metals in Fluoritum decoction by fungal mycelium. Four factors including fungal mycelium amount, adsorption time, pH value and temperature were employed to estimate the fungal biomass adsorption conditions for removing the heavy metals in Fluoritum decoction. Then an orthogonal experimental design was taken to optimize the biosorption process, and the removal efficiency was also evaluated. Under the optimized conditions of 1.0 g/50 mL Fluoritum decoction, 3 hours adsorption time, pH 5.0 and 40 degrees C, a result of 70.12% heavy metals removal rate was accomplished with 35.99% calcium ion loss. The study indicates that removing of heavy metals in Fluoritum decoction through fungal mycelium is feasible, and the experiment results can also provide a basis for further research on biosorption of heavy metals in traditional Chinese medicine

  16. Study on biosorption of uranium by alginate immobilized saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Wang Baoe; Xu Weichang; Xie Shuibo; Guo Yangbin

    2005-01-01

    Saccharomyces cerevisiae has great capability of biosorption of uranium. The maxium uptake is 172.4 mg/g according to this study. To adapt to the application of the biomass in the field, the biosorption of uranium by cross-linked and alginate calcium immobilized Saccharomyces cerevisiae is studied. Results indicate the maxium uptake is 185.2 mg/g by formaldehyde cross-linked biomass, and it is 769.2 mg/g by alginate calcium immobilized biomass. (authors)

  17. Heavy metal biosorption by bacterial cells

    NARCIS (Netherlands)

    Vecchio, A; Finoli, C; Di Simine, D; Andreoni, [No Value

    Microbial biomass provides available ligand groups on which metal ions bind by different mechanisms. Biosorption of these elements from aqueous solutions represents a remediation technology suitable for the treatment of metal-contaminated effluents. The purpose of the present investigation was the

  18. Cadmium biosorption by Aspergillus niger; Biossorcao de cadmio pelo Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Silva, E.P.; Barros Junior, L.M.; Duarte, M.M.L.; Macedo, G.R. [Universidade Federal do Rio Grande do Norte, Natal, RN (Brazil)]. E-mail: edmilson@eq.ufrn.br

    2003-07-01

    Biosorption is a property of certain types of inactive, dead, microbial biomass to bind and concentrate heavy metals from even very dilute aqueous solutions. Biomass exhibits this property, acting just as a chemical substance, as an ion exchanger of biological origin. It is particularly the cell wall structure of certain algae, fungi and bacteria which was found responsible for this phenomenon. Some of the biomass types come as a waste by-product of large-scale industrial fermentations (the mold Rhizopus or the bacterium Bacillus subtilis). Other metal-binding biomass types, certain abundant seaweeds (particularly brown algae e.g. Sargassum, Ecklonia), can be readily collected from the oceans. These biomass types, serving as a basis for metal biosorption processes, can accumulate in excess of 25% of their dry weight in deposited heavy metals: Pb, Cd, U, Cu, Zn, even Cr and others. Sorption experiments using the Aspergillus niger fungus for cadmium removal were carried out to study the factors influencing and optimizing the biosorption of this metal. The effects of pH, time, biomass concentration, and initial concentration of the heavy metal on the rate of metallic biosorption were examined. (author)

  19. Biosorption of nickel with barley straw.

    Science.gov (United States)

    Thevannan, Ayyasamy; Mungroo, Rubeena; Niu, Catherine Hui

    2010-03-01

    Wastewater containing nickel sulphate generated from a nickel plating industry is of great concern. In the present work, biosorption of nickel by barley straw from nickel sulphate solution was investigated. Nickel uptake at room temperature (23+/-0.5 degrees C) was very sensitive to solution pH, showing a better uptake value at a pH of 4.85+/-0.10 among the tested values. The nickel biosorption isotherm fitted well the Langmuir equation. When the ionic strength (IS) of the solution was increased from less than 0.02-0.6M, nickel uptake was reduced to 12% of that obtained at IS of less than 0.02 M. Barley straw showed a higher nickel uptake (0.61 mmol/g) than acid washed crab shells (0.04 mmol/g), demonstrating its potential as an adsorbent for removal of nickel. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  20. Biosorption of copper(II) from aqueous solutions by green alga Cladophora fascicularis.

    Science.gov (United States)

    Deng, Liping; Zhu, Xiaobin; Wang, Xinting; Su, Yingying; Su, Hua

    2007-08-01

    Biosorption is an effective means of removal of heavy metals from wastewater. In this work the biosorption behavior of Cladophora fascicularis was investigated as a function of pH, amount of biosorbent, initial Cu2+ concentration, temperature, and co-existing ions. Adsorption equilibria were well described by Langmuir isotherm models. The enthalpy change for the biosorption process was found to be 6.86 kJ mol(-1) by use of the Langmuir constant b. The biosorption process was found to be rapid in the first 30 min. The presence of co-existing cations such as Na+, K+, Mg2+, and Ca2+ and anions such as chloride, nitrate, sulfate, and acetate did not significantly affect uptake of Cu2+ whereas EDTA substantially affected adsorption of the metal. When experiments were performed with different desorbents the results indicated that EDTA was an efficient desorbent for the recovery of Cu2+ from biomass. IR spectral analysis suggested amido or hydroxy, C=O, and C-O could combine strongly with Cu2+.

  1. Short and long term biosorption of silica-coated iron oxide nanoparticles in heterotrophic biofilms

    Energy Technology Data Exchange (ETDEWEB)

    Herrling, Maria P. [Engler-Bunte-Institut, Chair of Water Chemistry and Water Technology, Karlsruhe Institute of Technology (KIT), Engler-Bunte-Ring 1, 76131 Karlsruhe (Germany); Lackner, Susanne [Engler-Bunte-Institut, Chair of Water Chemistry and Water Technology, Karlsruhe Institute of Technology (KIT), Engler-Bunte-Ring 1, 76131 Karlsruhe (Germany); Urban Bioengineering for Resource Recovery, Bauhaus-Institute for Infrastructure Solutions, Bauhaus-Universität Weimar, Coudraystraße 7, 99423 Weimar (Germany); Tatti, Oleg [Engler-Bunte-Institut, Chair of Water Chemistry and Water Technology, Karlsruhe Institute of Technology (KIT), Engler-Bunte-Ring 1, 76131 Karlsruhe (Germany); Guthausen, Gisela [Pro" 2NMR, Institute for Biological Interfaces 4 and Institute for Mechanical Process Engineering and Mechanics, Karlsruhe Institute of Technology, Adenauerring 20b, 76131 Karlsruhe (Germany); Delay, Markus [Engler-Bunte-Institut, Chair of Water Chemistry and Water Technology, Karlsruhe Institute of Technology (KIT), Engler-Bunte-Ring 1, 76131 Karlsruhe (Germany); Franzreb, Matthias [Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Horn, Harald, E-mail: harald.horn@kit.edu [Engler-Bunte-Institut, Chair of Water Chemistry and Water Technology, Karlsruhe Institute of Technology (KIT), Engler-Bunte-Ring 1, 76131 Karlsruhe (Germany); DVGW Research Laboratories for Water Chemistry and Water Technology, Engler-Bunte-Ring 1, 76131 Karlsruhe (Germany)

    2016-02-15

    The increased application of engineered nanoparticles (ENP) in industrial processes and consumer products has raised concerns about their impact on health and environmental safety. When ENP enter the global water cycle by e.g. wastewater streams, wastewater treatment plants (WWTP) represent potential sinks for ENP. During biological WWT, the attachment of ENP to biofilms is responsible for the desired removal of ENP from the water phase avoiding their release into the aquatic environment. However, the fundamental mechanisms guiding the interactions between ENP and biofilms are not yet fully understood. Therefore, this study investigates the behavior and biosorption of inorganic ENP, here magnetic iron oxide nanoparticles coated with silica (scFe{sub 3}O{sub 4}-NP), with heterotrophic biofilms at different time scales. Their magnetic properties enable to follow scFe{sub 3}O{sub 4}-NP in the biofilm system by a magnetic susceptibility balance and magnetic resonance imaging. Biofilms were exposed to scFe{sub 3}O{sub 4}-NP at short contact times (5 min) in flow cells and complementary, scFe{sub 3}O{sub 4}-NP were introduced into a moving bed biofilm reactor (MBBR) to be observed for 27 d. Mass balances revealed that scFe{sub 3}O{sub 4}-NP sorbed to the biofilm within a few minutes, but that the total biosorption was rather low (3.2 μg Fe/mg TSS). scFe{sub 3}O{sub 4}-NP mainly sorbed to the biofilm surface inducing the detachment of outer biofilm parts starting after an exposure time of 3 h in the MBBR. The biosorption depended on the exposure concentration of scFe{sub 3}O{sub 4}-NP, but less on the contact time. Most scFe{sub 3}O{sub 4}-NP exited the flow cell (up to 65%) and the MBBR (57%) via the effluent. This effect was favored by the stabilization of scFe{sub 3}O{sub 4}-NP in the bulk liquid by organic matter leading to a low retention capacity of the MBBR system. The results contribute to improve our understanding about the fate of ENP in environmental and in

  2. Breadnut peel as a highly effective low-cost biosorbent for methylene blue: Equilibrium, thermodynamic and kinetic studies

    Directory of Open Access Journals (Sweden)

    Linda B.L. Lim

    2017-05-01

    Full Text Available This work reports the potential use of peel of breadnut, Artocarpus camansi, as an effective low-cost biosorbent for the removal of methylene blue (MB. Oven dried A. camansi peel (ACP, which had a point of zero charge at pH = 4.8, showed maximum biosorption capacity which was far superior to most literature reported fruit biomasses, including samples that have been activated. Isotherm studies on biosorption of MB onto ACP gave a maximum biosorption capacity of 409 mg g−1. The Langmuir model was found to give the best fit among various isotherm models investigated and error analyses performed. Kinetics studies were fast with 50% dye being removed in less than 8 min from a 50 mg L−1 dye solution and further, kinetics followed the pseudo second order. Thermodynamic studies indicated that the biosorption process was both spontaneous and exothermic. Fourier transform infrared (FT-IR of ACP before and after MB adsorption was investigated. It can be concluded that oven dried breadnut peel is a highly promising low-cost biosorbent with great potential for the removal of MB.

  3. Biosorption of Sr(II) from aqueous solutions using aerobic granules. Equilibrium and mechanisms

    International Nuclear Information System (INIS)

    Li Wang; Xiang Liu; Xiao-feng Chen; Duu-Jong Lee; Joo-Hwa Tay; Yi Zhang; Chun-li Wan

    2015-01-01

    Aqueous strontium biosorption using aerobic granules was investigated. Parameters affecting the biosorption were optimized, including initial pH, biomass dosage, temperature, and rotation speed. The equilibrium data were fitted using Langmuir and Freundlich models, and both could well describe the process (R 2 = 0.987 and 0.989, respectively). Ion exchange and water-desorption experiments were conducted, and ion exchange together with physical adsorption were found to be the main mechanisms. The aerobic granules were characterized with methods including scanning electron microscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy. The results showed that surface complexation could also be involved in the Sr(II) biosorption. (author)

  4. Biosorption of strontium ions from aqueous solution using Ca-alginate biopolymer beads

    International Nuclear Information System (INIS)

    Goek, C.; Aytas, S.; Gerstmann, U.

    2009-01-01

    Biosorption of strontium ions from aqueous solution onto calcium alginate biopolymer beads was investigated in a batch system. Ca-alginate biopolymer beads were prepared from Na-alginate via cross-linking with divalent calcium ions according to the egg box model. Optimum biosorption conditions were determined as a function of initial solution pH, initial Sr concentration, contact time, biomass dosage and temperature. Langmuir, Freundlich and Dubinin-Radushkevich (D-R) models were applied to describe the biosorption isotherm of Sr ions by Ca-alginate biopolymer beads. The thermodynamic parameters (ΔH, ΔS, ΔG) for Sr sorption onto biosorbent were also determined from the temperature dependence. The results indicate that this biosorbent has a good potential for removal of Sr ions from dilute aqueous solution.

  5. Biosorption of bovine serum albumin by Ulva lactuca biomass from industrial wastewater: Equilibrium, kinetic and thermodynamic study

    International Nuclear Information System (INIS)

    Rathinam, Aravindhan; Zou, Linda

    2010-01-01

    Batch biosorption experiments have been carried out for the removal of bovine serum albumin (BSA) from simulated industrial wastewater onto Ulva lactuca seaweed. Various vital parameters influencing the biosorption process such as initial concentration of BSA, pH of the solution, adsorbent dosage and temperature have been determined. The biosorption kinetics follows a pseudo-second order kinetic model. Equilibrium isotherm studies demonstrate that the biosorption followed the Freundlich isotherm model, which implies a heterogeneous sorption phenomenon. Various thermodynamic parameters such as changes in enthalpy, free energy and entropy have been calculated. The positive value of ΔH o and the negative value of ΔG o show that the sorption process is endothermic and spontaneous. The positive value of change in entropy ΔS o shows increased randomness at the solid-liquid interface during the biosorption of BSA onto U. lactuca seaweed.

  6. Iron oxide impregnated Morus alba L. fruit peel for biosorption of Co(II): biosorption properties and mechanism.

    Science.gov (United States)

    Koduru, Janardhan Reddy; Chang, Yoon-Young; Yang, Jae-Kyu; Kim, Im-Soon

    2013-01-01

    Biosorption is an ecofriendly wastewater treatment technique with high efficiency and low operating cost involving simple process for the removal of heavy metal ions from aqueous solution. In the present investigation, Morus alba L. fruit peel powder (MAFP) and iron oxide impregnated Morus alba L. fruit peel powder (IO-MAFP) were prepared and used for treating Co(II) contaminated aqueous solutions. Further the materials were characterized by using FTIR and SEM-EDX analysis. From FT-IR analysis it was found that hydroxyl, methoxy, and carbonyl groups are responsible for Co(II) biosorption. The kinetic data obtained for both biosorbents was well fitted with pseudo-second-order kinetic model. The equilibrium data was in tune with the Langmuir and Freundlich isotherm models. The thermodynamic studies were also carried and it was observed that sorption process was endothermic at 298-328 K. These studies demonstrated that both biosorbents were promising, efficient, economic, and biodegradable sorbents.

  7. Biosorption of Basic Green 4 from aqueous solution by Ananas comosus (pineapple) leaf powder.

    Science.gov (United States)

    Chowdhury, Shamik; Chakraborty, Sagnik; Saha, Papita

    2011-06-01

    Biosorption characteristics of Ananas comosus (pineapple) leaf powder was investigated for decolorization of Basic Green 4 (BG 4), a cationic dye from its aqueous solutions employing a batch experimental set-up. Parameters that influence the sorption process such as pH, biosorbent dosage, contact time, initial dye concentration and temperature were systematically studied. The optimum conditions for removal of BG 4 were found to be pH 9.0, contact time=150 min, biosorbent dosage=5.0 g L(-1), initial dye concentration=50 mg L(-1). The temperature had a strong influence on the biosorption process. Further, the biosorbent was characterized by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and Brunauer, Emmett, Teller (BET) surface area and pore size analysis. Experimental biosorption data were modeled by Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherms. The biosorption process followed the Langmuir isotherm model with high coefficients of correlation (R(2)>0.99) at different temperatures. The pseudo second order kinetic model fitted well in correlation to the experimental results. Activation energy of the biosorption process (E(a)) was found to be 45.79 kJ mol(-1) by using the Arrhenius equation, indicating chemisorption nature of BG 4 sorption onto pineapple leaf powder. Thermodynamic parameters suggest that the biosorption process is spontaneous and exothermic in nature. Overall, the present findings suggest that this environmentally friendly, efficient and low-cost biosorbent may be useful for the removal of BG 4 from aqueous media. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Biosorption of bovine serum albumin by Ulva lactuca biomass from industrial wastewater: Equilibrium, kinetic and thermodynamic study

    Energy Technology Data Exchange (ETDEWEB)

    Rathinam, Aravindhan [Chemical Laboratory, Central Leather Research Institute, Adyar, Chennai 600020 (India); Zou, Linda, E-mail: linda.zou@unisa.edu.au [SA Water Centre for Water Management and Reuse, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095 (Australia)

    2010-12-15

    Batch biosorption experiments have been carried out for the removal of bovine serum albumin (BSA) from simulated industrial wastewater onto Ulva lactuca seaweed. Various vital parameters influencing the biosorption process such as initial concentration of BSA, pH of the solution, adsorbent dosage and temperature have been determined. The biosorption kinetics follows a pseudo-second order kinetic model. Equilibrium isotherm studies demonstrate that the biosorption followed the Freundlich isotherm model, which implies a heterogeneous sorption phenomenon. Various thermodynamic parameters such as changes in enthalpy, free energy and entropy have been calculated. The positive value of {Delta}H{sup o} and the negative value of {Delta}G{sup o} show that the sorption process is endothermic and spontaneous. The positive value of change in entropy {Delta}S{sup o} shows increased randomness at the solid-liquid interface during the biosorption of BSA onto U. lactuca seaweed.

  9. Biosorption of bovine serum albumin by Ulva lactuca biomass from industrial wastewater: equilibrium, kinetic and thermodynamic study.

    Science.gov (United States)

    Rathinam, Aravindhan; Zou, Linda

    2010-12-15

    Batch biosorption experiments have been carried out for the removal of bovine serum albumin (BSA) from simulated industrial wastewater onto Ulva lactuca seaweed. Various vital parameters influencing the biosorption process such as initial concentration of BSA, pH of the solution, adsorbent dosage and temperature have been determined. The biosorption kinetics follows a pseudo-second order kinetic model. Equilibrium isotherm studies demonstrate that the biosorption followed the Freundlich isotherm model, which implies a heterogeneous sorption phenomenon. Various thermodynamic parameters such as changes in enthalpy, free energy and entropy have been calculated. The positive value of ΔH° and the negative value of ΔG° show that the sorption process is endothermic and spontaneous. The positive value of change in entropy ΔS° shows increased randomness at the solid-liquid interface during the biosorption of BSA onto U. lactuca seaweed. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Heavy Metal Biosorption sites in Penicillium cyclopium *a ...

    African Journals Online (AJOL)

    DR. MIKE HORSFALL

    ABSTRACT: The biomass of Penicillium cyclopium was subjected to chemical treatment to study the role of the functional groups ... fermentation industries to produce varied metabolites ..... biosorption potential of Aspergillus and Rhizopus sp.

  11. Biosorption of diethyl phthalate ester by living and nonliving Burkholderia cepacia and the role of its cell surface components.

    Science.gov (United States)

    Luo, Si; Li, Langlang; Chen, Anwei; Zeng, Qingru; Xia, Hao; Gu, Ji-Dong

    2017-07-01

    In this study, the dibutyl phthalate (DBP) binding properties of a DBP-tolerant bacterium (B. cepacia) were characterized in terms of adsorption kinetics and isotherm. Living and nonliving cells both exhibited rapid removal of DBP, achieving more than 80% of maximum sorption within 30 min of contact and reached the equilibrium after 3 h. The adsorption isotherms were well fitted with the Sips model and the nonliving cells have greater biosorption capacity and affinity for DBP than the living cells. Furthermore, the absence of an active mechanism dependent on metabolism implied that the DBP bioaccumulation by living cells was mainly attribute to passive surface binding. The optimum pH for DBP adsorption by living and nonliving cells were both observed to be 6.0. The biosorptive mechanism of DBP binding by B. cepacia was further confirmed by FTIR analysis and various chemical treatments. FTIR results indicated that the phosphate and CH 2 groups on B. cepacia were the main bounding sites for DBP. Furthermore, 2.28, 2.15, 1.93 and 0.87 g of pretreated cells were obtained from 2.40 g of native cells via extracellular polymeric substances (EPS), superficial layer-capsule, lipids components and cell membrane removal treatments, respectively. Total binding amount of DBP on the native cells, EPS-removed cells, capsule-removed cells, lipids-extracted cells and membrane-removed cells were 26.69, 24.84, 24.93, 16.11 and 10.80 mg, respectively, suggesting that the cell wall lipids, proteins or peptidoglycan might play important roles in the sorption of DBP by B. cepacia. The information could be applied in understanding on the mobility, transport and ultimate fate of PAEs in soil and related environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Predictive approach for simultaneous biosorption of hexavalent ...

    African Journals Online (AJOL)

    Chromium and pentachlorophenol are the major environmental pollutants emanating from tannery effluent. Indigenous Bacillus cereus isolate was employed for biosorption and PCP degradation studies under varied environmental conditions such as pH, temperature, contact time, presence of other heavy metals, initial ...

  13. An Evaluation of Kinetic Parameters of Cadmium and Copper Biosorption by Immobilized Cells

    Directory of Open Access Journals (Sweden)

    Nelly Georgieva

    2007-10-01

    Full Text Available Bioremediation is the use of living organisms to reduce or eliminate environmental hazards resulting from the accumulation of toxic chemicals and other hazardous wastes. This technology is based on the utilization of microorganisms to transform organic and inorganic compounds. The filamentous yeast Trichosporon cutaneum strain R57, immobilized and free cells was cultivated as batch culture on a liquid medium in the presence of various concentrations of cadmium and copper ions. The simultaneous uptake and accumulation of Cd2+ and Cu2+ ions by Tr. cutaneum cells depending on the initial concentration of Cd2+ and Cu2+ in the medium were studied. The potential use of the free and immobilized cells of Trichosporon cutaneum to remove cadmium and copper ions, from aqueous solutions was evaluated. Two important physicochemical aspects for the evaluation of the sorption process as a unit operation are the equilibrium of sorption and the kinetics. The Cd2+ and Cu2+ ions biosorption capacities of all tested adsorbent were presented as a function of the initial concentration of metal ions within the aqueous biosorption medium. The individual, as well as bicomponent sorption kinetics of copper and cadmium ions by immobilised cells of Trichosporon cutaneum R57 is presented. A second order kinetic model obtains kinetic parameters for the copper and cadmium ions.

  14. Remediation of radionuclide pollutants through biosorption - an overview

    Energy Technology Data Exchange (ETDEWEB)

    Das, Nilanjana [Environmental Biotechnology Division, School of Biosciences and Technology, VIT University, Vellore (India)

    2012-01-15

    The development of nuclear science and technology has led to the increase of nuclear wastes containing radionuclides to be released and disposed in the environment. Pollution caused by radionuclides is a serious problem throughout the world. To solve the problem, substantial research efforts have been directed worldwide to adopt sustainable technologies for the treatment of radionuclide containing wastes. Biosorption represents a technological innovation as well as a cost effective excellent remediation technology for cleaning up radionuclides from aqueous environment. A variety of biomaterials viz. algae, fungi, bacteria, plant biomass, etc. have been reported for radionuclide remediation with encouraging results. This paper reviews the achievements and current status of radionuclide remediation through biosorption which will provide insights into this research frontier. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Batch study of uranium biosorption by Elodea canadensis biomass

    International Nuclear Information System (INIS)

    Zheng-ji Yi; University of Science and Technology Beijing, Haidian District, Beijing; Jun Yao; Chinese University of Geosciences, Beijing; Mi-jia Zhu; Hui-lun Chen; Fei Wang; Zhi-min Yuan; Xing Liu

    2016-01-01

    The adsorption of U(VI) onto Elodea canadensis was studied via a batch equilibrium method. Kinetic investigation indicated that the U(VI) adsorption by E. canadensis reached an equilibrium in 120 min and followed pseudo-second-order kinetics. The solution pH was the most important parameter controlling adsorption of U(VI) and the optimum pH for U(VI) removal is 6.0. The U(VI) biosorption can be well described by Langmuir model. IR spectrum analysis revealed that -NH 2 , -OH, C=O and C-O could bind strongly with U(VI). XPS spectrum analysis implied that ion exchange and coordination mechanism could be involved in the U(VI) biosorption process. (author)

  16. Biosorption of Zn(II) from industrial effluents using sugar beet pulp and F. vesiculosus: From laboratory tests to a pilot approach.

    Science.gov (United States)

    Castro, Laura; Blázquez, M Luisa; González, Felisa; Muñoz, Jesús A; Ballester, Antonio

    2017-11-15

    The aim of this work was to demonstrate the feasibility of the application of biosorption in the treatment of metal polluted wastewaters through the development of several pilot plants to be implemented by the industry. The use as biosorbents of both the brown seaweed Fucus vesiculosus and a sugar beet pulp was investigated to remove heavy metal ions from a wastewater generated in an electroplating industry: Industrial Goñabe (Valladolid, Spain). Batch experiments were performed to study the effects of pH, contact time and initial metal concentration on metal biosorption. It was observed that the adsorption capacity of the biosorbents strongly depended on the pH, increasing as the pH rises from 2 to 5. The adsorption kinetic was studied using three models: pseudo first order, pseudo second order and Elovich models. The experimental data were fitted to Langmuir and Freundlich isotherm models and the brown alga F. vesiculosus showed higher metal uptake than the sugar beet pulp. The biomasses were also used for zinc removal in fixed-bed columns. The performance of the system was evaluated in different experimental conditions. The mixture of the two biomasses, the use of serial columns and the inverse flow can be interesting attempts to improve the biosorption process for large-scale applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Biosorptive removal of Pb 2+ , Cd 2+ and Zn 2+ ions from water by ...

    African Journals Online (AJOL)

    Biosorption was highly pH-dependent, and the optimal pH for investigated metals was in the range of 4.5 to 6.0. The effects of temperature demonstrated that biosorption of the metals is a chemical process. SEM analysis revealed interesting morphological changes after acid refinement of the raw biosorbent and metal ...

  18. Exploring multi-metal biosorption by indigenous metal-hyperresistant Enterobacter sp. J1 using experimental design methodologies

    International Nuclear Information System (INIS)

    Lu, W.-B.; Kao, W.-C.; Shi, J.-J.; Chang, J.-S.

    2008-01-01

    A novel experimental design, combining mixture design and response surface methodology (RSM), was developed to investigate the competitive adsorption behavior of lead, copper and cadmium by an indigenous isolate Enterobacter sp. J1 able to tolerate high concentrations of a variety of heavy metals. Using the proposed combinative experimental design, two different experiment designs in a ternary metal biosorption system can be integrated to a succinct experiment and the number of experimental trials was markedly reduced from 38 to 26 by reusing the mutual experimental data. Triangular contour diagrams and triangular three-dimensional surface plots were generated to describe the ternary metal biosorption equilibrium data in mixture design systems. The results show that the preference of metal sorption of Enterobacter sp. J1 decreased in the order of Pb 2+ > Cu 2+ > Cd 2+ . The presence of other metals resulted in a competitive effect. The influence of the other two metals in ternary metal biosorption system can be easily determined by comparing the stray distance from the single metal biosorption. The behavior of competitive biosorption was successfully described and predicted using a combined Langmuir-Freundlich model along with new three-dimensional contour-surface plots

  19. Exploring multi-metal biosorption by indigenous metal-hyperresistant Enterobacter sp. J1 using experimental design methodologies

    Energy Technology Data Exchange (ETDEWEB)

    Lu, W.-B. [Department of Cosmetic Science, Chung Hwa University of Medical Technology, Tainan, Taiwan (China); Kao, W.-C.; Shi, J.-J. [Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan (China); Chang, J.-S. [Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan (China)], E-mail: changjs@mail.ncku.edu.tw

    2008-05-01

    A novel experimental design, combining mixture design and response surface methodology (RSM), was developed to investigate the competitive adsorption behavior of lead, copper and cadmium by an indigenous isolate Enterobacter sp. J1 able to tolerate high concentrations of a variety of heavy metals. Using the proposed combinative experimental design, two different experiment designs in a ternary metal biosorption system can be integrated to a succinct experiment and the number of experimental trials was markedly reduced from 38 to 26 by reusing the mutual experimental data. Triangular contour diagrams and triangular three-dimensional surface plots were generated to describe the ternary metal biosorption equilibrium data in mixture design systems. The results show that the preference of metal sorption of Enterobacter sp. J1 decreased in the order of Pb{sup 2+} > Cu{sup 2+} > Cd{sup 2+}. The presence of other metals resulted in a competitive effect. The influence of the other two metals in ternary metal biosorption system can be easily determined by comparing the stray distance from the single metal biosorption. The behavior of competitive biosorption was successfully described and predicted using a combined Langmuir-Freundlich model along with new three-dimensional contour-surface plots.

  20. Kinetic and isotherm studies of Cu(II) biosorption onto valonia tannin resin

    Energy Technology Data Exchange (ETDEWEB)

    Sengil, I. Ayhan [Department of Environmental Engineering, Engineering Faculty, Sakarya University, 54100 Sakarya (Turkey)], E-mail: asengil@sakarya.edu.tr; Ozacar, Mahmut [Department of Chemistry, Science and Arts Faculty, Sakarya University, 54100 Sakarya (Turkey); Tuerkmenler, Harun [Institute of Sciences and Technology, Sakarya University, 54040 Sakarya (Turkey)

    2009-03-15

    The biosorption of Cu(II) from aqueous solutions by valonia tannin resin was investigated as a function of particle size, initial pH, contact time and initial metal ion concentration. The aim of this study was to understand the mechanisms that govern copper removal and find a suitable equilibrium isotherm and kinetic model for the copper removal in a batch reactor. The experimental isotherm data were analysed using the Langmuir, Freundlich and Temkin equations. The equilibrium data fit well in the Langmuir isotherm. The experimental data were analysed using four sorption kinetic models - the pseudo-first- and second-order equations, the Elovich and the intraparticle diffusion model equation - to determine the best fit equation for the biosorption of copper ions onto valonia tannin resin. Results show that the pseudo-second-order equation provides the best correlation for the biosorption process, whereas the Elovich equation also fits the experimental data well.

  1. Influence of operating conditions on the removal of brilliant vital red dye from aqueous media by bio-sorption using rice husk

    International Nuclear Information System (INIS)

    Rehman, R.; Anwar, J.; Mahmud, T.; Salman, M.; Shafique, U.

    2011-01-01

    Bio-sorption is emerging as an economical and eco friendly methodology for the removal of hazardous and toxic chemicals from waste water. The operating conditions have a great influence on the efficiency of this process. Conventional and indigenous bio sorbents like bagasse, wheat husk and rice husk have been evaluated for their removing efficiency of Brilliant Vital Red dye from water. Rice husk is proved better among them. The effect of important operating conditions for the removal of the dye using rice husk were studied. The observed optimum values for various factors are; 0.2 g of bio sorbent, 25 ppm initial dye concentration, 30 deg. C temperature, 15 minutes contact time, 300 rpm stirring speed and 2.0 ph. Langmuir adsorption isotherm model was also applied to evaluate maximum adsorption capacity of rice husk for Brilliant Vital Red dye. Q/sub max/ value was 15.06 which indicated that rice husk can effectively be used for the removal of Brilliant Vital Red dye from wastewater using the optimized operational conditions. This study would be accommodative with regard to practical wastewater treatment. (author)

  2. Biosorption removal of benzene and toluene by three dried macroalgae at different ionic strength and temperatures: Algae biochemical composition and kinetics.

    Science.gov (United States)

    Flores-Chaparro, Carlos E; Chazaro Ruiz, Luis Felipe; Alfaro de la Torre, Ma Catalina; Huerta-Diaz, Miguel Angel; Rangel-Mendez, Jose Rene

    2017-05-15

    Release of low-molecular aromatic hydrocarbons (HC) into natural waters brings severe consequences to our environment. Unfortunately very limited information is available regarding the treatment of these pollutants. This work evaluated the use of brown, green and red macroalgae biomass as biosorbents of benzene and toluene, two of the most soluble HC. Raw seaweed biomasses were completely characterized, then evaluated under different temperatures and ionic strengths to assess their potential as biosorbents and to elucidate the biosorption mechanisms involved. Brown macroalgae registered the highest removal capacities for benzene and toluene (112 and 28 mg·g -1 , respectively), and these were not affected at ionic strength < 0.6 M. Langmuir and Sips isotherm equations well described biosorption data, and the pseudo-second order model provided the best fit to the kinetics rate. Hydrocarbons are adsorbed onto the diverse chemical components of the cell wall by London forces and hydrophobic interactions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Maximum Throughput in a C-RAN Cluster with Limited Fronthaul Capacity

    OpenAIRE

    Duan , Jialong; Lagrange , Xavier; Guilloud , Frédéric

    2016-01-01

    International audience; Centralized/Cloud Radio Access Network (C-RAN) is a promising future mobile network architecture which can ease the cooperation between different cells to manage interference. However, the feasibility of C-RAN is limited by the large bit rate requirement in the fronthaul. This paper study the maximum throughput of different transmission strategies in a C-RAN cluster with transmission power constraints and fronthaul capacity constraints. Both transmission strategies wit...

  4. Genetic characterization, nickel tolerance, biosorption, kinetics, and uptake mechanism of a bacterium isolated from electroplating industrial effluent.

    Science.gov (United States)

    Nagarajan, N; Gunasekaran, P; Rajendran, P

    2015-04-01

    Electroplating industries in Madurai city produce approximately 49,000 L of wastewater and 1200 L of sludge every day revealing 687-5569 ppm of nickel (Ni) with other contaminants. Seventeen Ni-tolerant bacterial strains were isolated from nutrient-enriched effluents. Among them one hyper Ni accumulating strain was scored and identified as Bacillus cereus VP17 on the basis of morphology, biochemical tests, 16S rDNA gene sequencing, and phylogenetic analysis. Equilibrium data of Ni(II) ions using the bacterium as sorbent at isothermal conditions (37 °C) and pH 6 were best adjusted by Langmuir (R(2) = 0.6268) and Freundlich models (R(2) = 0.9505). Experimental validation reveals Ni sorption takes place on a heterogeneous surface of the biosorbent, and predicted metal sorption capacity is 434 ppm. The pseudo-second-order kinetic model fitted the biosorption kinetic data better than the pseudo-first-order kinetic model (R(2) = 0.9963 and 0.3625). Scanning electron microscopy, energy dispersive X-ray, and Fourier transform infrared spectroscopy studies of the bacterial strain with and without Ni(II) ion reveals the biosorption mechanism. The results conclude possibilities of using B. cereus VP17 for Ni bioremediation.

  5. Studi Karakteristik Biopolimer Gracilaria Verrucosa Sebagai Bahan Penjerap

    OpenAIRE

    Ariyanti, Dessy; Nurcahyani, Intan

    2012-01-01

    The presence of heavy metals such as Cu in industrial wastewater can lead to the environment contamination. The algae Gracilaria verrucosa is intended to be the environmentally friendly polymer used in biosorption process of heavy metals Cu. In this research, the characteristics and adsorption ability of biopolymers Gracilaria verrucosa against heavy metals Cu was studied respectively. Results shown that the maximum biosorption capacity of Gracilaria verrucosa in adsorbing Cu2+ was 38.34 mg/g...

  6. REMOVAL OF ARSENIC FROM AN AQUEOUS SOLUTION BY PRETREATED WASTE TEA FUNGAL BIOMASS

    Directory of Open Access Journals (Sweden)

    S. Mamisahebei , Gh. R. Jahed Khaniki, A. Torabian, S. Nasseri, K. Naddafi

    2007-04-01

    Full Text Available Arsenic contamination in water poses a serious threat on human health. The tea fungus known as Kombucha is a waste produced during black tea fermentation. The objective of this study was to examine the main aspect of a possible strategy for the removal of arsenates employing tea fungal biomass. The pretreatment of biomass with FeCl3 was found to improve the biosorption efficiency. Arsenics uptake was found to be rapid for all concentrations and reached to 79% of equilibrium capacity of biosorption in 20 min and reached equilibrium in 90 min. The pseudo second-order and first-order models described the biosorption kinetics of As (V with good correlation coefficient (R2>0.93 and better than the other equations. The data obtained from the experiment of biosorption isotherm were analyzed using the Freundlich and Langmuir isotherm models. The equation described the isotherm of As (V biosorption with relatively high correlation coefficient (R2>0.93. According to the Langmuir model, the maximum uptake capacities (qm of tea fungal biomass for As (V were obtained 3.9810-3 mmol/gr. The effect of Na+, K+, Mg+2 and Ca+2 on equilibrium capacities of As was not significant. The variation of sorption efficiency with pH showed that optimum biosorption takes place in the pH ranges of 6 to 8. Promising results were obtained in laboratory experiments and effective As (V removals were observed.

  7. Biosorption of Uranium by Magnetically Modified Wheat Bran

    Czech Academy of Sciences Publication Activity Database

    Wang, H.; Yanqin, J.; Tian, Q.; Horská, Kateřina; Shao, X.; Maděrová, Zdeňka; Miao, X.; Šafaříková, Miroslava; Šafařík, Ivo

    2014-01-01

    Roč. 49, č. 16 (2014), s. 2534-2539 ISSN 0149-6395 R&D Projects: GA MŠk LH12190 Institutional support: RVO:67179843 Keywords : magnetic separation * biosorption * magnetic wheat bran * uranium Subject RIV: CE - Biochemistry Impact factor: 1.171, year: 2014

  8. Biosorption: An Interplay between Marine Algae and Potentially Toxic Elements-A Review.

    Science.gov (United States)

    Bilal, Muhammad; Rasheed, Tahir; Sosa-Hernández, Juan Eduardo; Raza, Ali; Nabeel, Faran; Iqbal, Hafiz M N

    2018-02-19

    In recent decades, environmental pollution has emerged as a core issue, around the globe, rendering it of fundamental concern to eco-toxicologists, environmental biologists, eco-chemists, pathologists, and researchers from other fields. The dissolution of polluting agents is a leading cause of environmental pollution of all key spheres including the hydrosphere, lithosphere, and biosphere, among others. The widespread occurrence of various pollutants including toxic heavy metals and other emerging hazardous contaminants is a serious concern. With increasing scientific knowledge, socioeconomic awareness, human health problems, and ecological apprehensions, people are more concerned about adverse health outcomes. Against this background, several removal methods have been proposed and implemented with the aim of addressing environmental pollution and sustainable and eco-friendly development. Among them, the biosorption of pollutants using naturally inspired sources, e.g., marine algae, has considerable advantages. In the past few years, marine algae have been extensively studied due to their natural origin, overall cost-effective ratio, and effectiveness against a broader pollutant range; thus, they are considered a potential alternative to the conventional methods used for environmental decontamination. Herein, an effort has been made to highlight the importance of marine algae as naturally inspired biosorbents and their role in biosorption. Biosorption mechanisms and factors affecting biosorption activities are also discussed in this review. The utilization of marine algae as a biosorbent for the removal of numerous potentially toxic elements has also been reviewed.

  9. Biosorption: An Interplay between Marine Algae and Potentially Toxic Elements—A Review

    Science.gov (United States)

    Bilal, Muhammad; Rasheed, Tahir; Raza, Ali; Nabeel, Faran

    2018-01-01

    In recent decades, environmental pollution has emerged as a core issue, around the globe, rendering it of fundamental concern to eco-toxicologists, environmental biologists, eco-chemists, pathologists, and researchers from other fields. The dissolution of polluting agents is a leading cause of environmental pollution of all key spheres including the hydrosphere, lithosphere, and biosphere, among others. The widespread occurrence of various pollutants including toxic heavy metals and other emerging hazardous contaminants is a serious concern. With increasing scientific knowledge, socioeconomic awareness, human health problems, and ecological apprehensions, people are more concerned about adverse health outcomes. Against this background, several removal methods have been proposed and implemented with the aim of addressing environmental pollution and sustainable and eco-friendly development. Among them, the biosorption of pollutants using naturally inspired sources, e.g., marine algae, has considerable advantages. In the past few years, marine algae have been extensively studied due to their natural origin, overall cost-effective ratio, and effectiveness against a broader pollutant range; thus, they are considered a potential alternative to the conventional methods used for environmental decontamination. Herein, an effort has been made to highlight the importance of marine algae as naturally inspired biosorbents and their role in biosorption. Biosorption mechanisms and factors affecting biosorption activities are also discussed in this review. The utilization of marine algae as a biosorbent for the removal of numerous potentially toxic elements has also been reviewed. PMID:29463058

  10. Biosorption: An Interplay between Marine Algae and Potentially Toxic Elements—A Review

    Directory of Open Access Journals (Sweden)

    Muhammad Bilal

    2018-02-01

    Full Text Available In recent decades, environmental pollution has emerged as a core issue, around the globe, rendering it of fundamental concern to eco-toxicologists, environmental biologists, eco-chemists, pathologists, and researchers from other fields. The dissolution of polluting agents is a leading cause of environmental pollution of all key spheres including the hydrosphere, lithosphere, and biosphere, among others. The widespread occurrence of various pollutants including toxic heavy metals and other emerging hazardous contaminants is a serious concern. With increasing scientific knowledge, socioeconomic awareness, human health problems, and ecological apprehensions, people are more concerned about adverse health outcomes. Against this background, several removal methods have been proposed and implemented with the aim of addressing environmental pollution and sustainable and eco-friendly development. Among them, the biosorption of pollutants using naturally inspired sources, e.g., marine algae, has considerable advantages. In the past few years, marine algae have been extensively studied due to their natural origin, overall cost-effective ratio, and effectiveness against a broader pollutant range; thus, they are considered a potential alternative to the conventional methods used for environmental decontamination. Herein, an effort has been made to highlight the importance of marine algae as naturally inspired biosorbents and their role in biosorption. Biosorption mechanisms and factors affecting biosorption activities are also discussed in this review. The utilization of marine algae as a biosorbent for the removal of numerous potentially toxic elements has also been reviewed.

  11. Kinetic, Equilibrium and thermodynamic studies on the biosorption ...

    African Journals Online (AJOL)

    Michael Horsfall

    the biosorption process of the metal ion followed the pseudo-second-order and intraparticle diffusion models ... is feasible, spontaneous, endothermic and highly disordered in nature under the experimental conditions. ... method of heavy metal recovery (Sari et al., 2008; .... favourably bound to the negatively charged active.

  12. Separation of uranium by biosorption

    International Nuclear Information System (INIS)

    Volesky, B.; Tsezos, M.

    1983-01-01

    This invention relates to metal ion separation processes and more particularly to processes of extraction of specific ions of or containing heavy metals from waste liquids by means of biosorption. The invention is based upon the discovery that the biomass produced as the result of the growth of a certain carefully selected microbial genus, namely species of the genus Rhizopus, such as Rhizopus arihizus, has an outstanding ability for selective adsorption of uranium and thorium ions from aqueous solution or suspension

  13. Biosorption optimization of lead(II), cadmium(II) and copper(II) using response surface methodology and applicability in isotherms and thermodynamics modeling

    International Nuclear Information System (INIS)

    Singh, Rajesh; Chadetrik, Rout; Kumar, Rajender; Bishnoi, Kiran; Bhatia, Divya; Kumar, Anil; Bishnoi, Narsi R.; Singh, Namita

    2010-01-01

    The present study was carried out to optimize the various environmental conditions for biosorption of Pb(II), Cd(II) and Cu(II) by investigating as a function of the initial metal ion concentration, temperature, biosorbent loading and pH using Trichoderma viride as adsorbent. Biosorption of ions from aqueous solution was optimized in a batch system using response surface methodology. The values of R 2 0.9716, 0.9699 and 0.9982 for Pb(II), Cd(II) and Cu(II) ions, respectively, indicated the validity of the model. The thermodynamic properties ΔG o , ΔH o , ΔE o and ΔS o by the metal ions for biosorption were analyzed using the equilibrium constant value obtained from experimental data at different temperatures. The results showed that biosorption of Pb(II) ions by T. viride adsorbent is more endothermic and spontaneous. The study was attempted to offer a better understating of representative biosorption isotherms and thermodynamics with special focuses on binding mechanism for biosorption using the FTIR spectroscopy.

  14. Biosorption optimization of lead(II), cadmium(II) and copper(II) using response surface methodology and applicability in isotherms and thermodynamics modeling

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Rajesh; Chadetrik, Rout; Kumar, Rajender; Bishnoi, Kiran; Bhatia, Divya; Kumar, Anil [Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana (India); Bishnoi, Narsi R., E-mail: nrbishnoi@gmail.com [Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana (India); Singh, Namita [Department of Bio and Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana (India)

    2010-02-15

    The present study was carried out to optimize the various environmental conditions for biosorption of Pb(II), Cd(II) and Cu(II) by investigating as a function of the initial metal ion concentration, temperature, biosorbent loading and pH using Trichoderma viride as adsorbent. Biosorption of ions from aqueous solution was optimized in a batch system using response surface methodology. The values of R{sup 2} 0.9716, 0.9699 and 0.9982 for Pb(II), Cd(II) and Cu(II) ions, respectively, indicated the validity of the model. The thermodynamic properties {Delta}G{sup o}, {Delta}H{sup o}, {Delta}E{sup o} and {Delta}S{sup o} by the metal ions for biosorption were analyzed using the equilibrium constant value obtained from experimental data at different temperatures. The results showed that biosorption of Pb(II) ions by T. viride adsorbent is more endothermic and spontaneous. The study was attempted to offer a better understating of representative biosorption isotherms and thermodynamics with special focuses on binding mechanism for biosorption using the FTIR spectroscopy.

  15. Bio-sorption of uranium and plutonium with Eichhornia crassipes (Water Hyacinth)

    International Nuclear Information System (INIS)

    Pulhani, Vandana; Dafauti, Sunita; Hegde, A.G.

    2010-01-01

    The continuous expansion in nuclear energy program and an aim of zero discharge makes waste management a challenging task. Waste effluents containing long-lived radionuclides such as 137 Cs, 90 Sr, 238+239+240 Pu and uranium along with other toxic elements have to he suitably treated to bring down the radioactivity levels before it is discharged in to the environment. Biological materials have emerged as an economic and eco-friendly option for removal of toxic heavy metals to an environmentally safe level. Bio-sorption is a phenomenon of rapid passive metal uptake, an ideal alternative for decontamination of metal containing effluents. Bio-sorption of uranium and plutonium from aqueous solutions by dried biomass of Eichhornia crassipes or water hyacinth, a hyper-accumulator, which can tolerate highly toxic condition, was studied. The adsorption of Pu by roots biomass was seen to be more in the pH range from 3-8 and a similar trend was shown by leaves. The adsorption of U by both roots and leaves was more in the pH range of 4-8. Distribution coefficient for Pu in roots and leaf was an average of 1349 ml/g and 3152 ml/g for uranium studied using a wide activity range from 10 Bq to 200 Bq. The presence of anions inhibited the uptake and showed the trend sulphate> nitrate> chloride>> carbonates. The effect of other cations on the absorption capacity was also checked. Effluent solutions from an effluent treatment plant were also subjected to remediation with this biomass. Biomass related metal removal processes may not necessarily replace existing treatment processes but may complement them. (author)

  16. Biotechnological potential of Azolla filiculoides for biosorption of Cs and Sr: Application of micro-PIXE for measurement of biosorption.

    Science.gov (United States)

    Ghorbanzadeh Mashkani, Saeid; Tajer Mohammad Ghazvini, Parisa

    2009-03-01

    The presence of Cs and Sr in culture medium of Azolla filiculoides caused about 27.4% and 46.3% inhibition of biomass growth, respectively, in comparison to A. filiculoides control weight which had not metals. Biosorption batch experiments were conducted to determine the Cs and Sr binding ability of native biomass and chemically modified biosorbents derived from Azolla namely ferrocyanide Azolla sorbents type 1 and type 2 (FAS1 and FAS2) and hydrogen peroxide Azolla sorbent (HAS). The best Cs and Sr removal results were obtained when A. filiculoides was treated by 2M MgCl(2) and 30ml H(2)O(2) 8mM at pH 7 for 12h and it was then washed by NaOH solution at pH 10.5 for 6h. Pretreatment of Azolla have been suggested to modify the surface characteristics which could improve biosorption process. The binding of Cs and Sr on the cell wall of Azolla was studied with micro-PIXE and FT-IR.

  17. Biosorption of Cu(II) from aqueous solutions by mimosa tannin gel

    Energy Technology Data Exchange (ETDEWEB)

    Sengil, I. Ayhan [Department of Environmental Engineering, Engineering Faculty, Sakarya University, 54100 Sakarya (Turkey)], E-mail: asengil@sakarya.edu.tr; Ozacar, Mahmut [Department of Chemistry, Science and Arts Faculty, Sakarya University, 54100 Sakarya (Turkey)

    2008-09-15

    The biosorption of Cu(II) from aqueous solutions by mimosa tannin resin (MTR) was investigated as a function of particle size, initial pH, contact time and initial metal ion concentration. The aim of this study was to understand the mechanisms that govern copper removal and find a suitable equilibrium isotherm and kinetic model for the copper removal in a batch reactor. The experimental isotherm data were analysed using the Langmuir, Freundlich and Temkin equations. The equilibrium data fit well in the Langmiur isotherm. The experimental data were analysed using four sorption kinetic models - the pseudo-first- and second-order equations, and the Elovich and the intraparticle diffusion equation - to determine the best fit equation for the biosorption of copper ions onto mimosa tannin resin. Results show that the pseudo-second-order equation provides the best correlation for the biosorption process, whereas the Elovich equation also fits the experimental data well. Thermodynamic parameters such as the entropy change, enthalpy change and Gibb's free energy change were found out to be 153.0 J mol{sup -1} K{sup -1}, 42.09 kJ mol{sup -1} and -2.47 kJ mol{sup -1}, respectively.

  18. It is time to abandon "expected bladder capacity." Systematic review and new models for children's normal maximum voided volumes.

    Science.gov (United States)

    Martínez-García, Roberto; Ubeda-Sansano, Maria Isabel; Díez-Domingo, Javier; Pérez-Hoyos, Santiago; Gil-Salom, Manuel

    2014-09-01

    There is an agreement to use simple formulae (expected bladder capacity and other age based linear formulae) as bladder capacity benchmark. But real normal child's bladder capacity is unknown. To offer a systematic review of children's normal bladder capacity, to measure children's normal maximum voided volumes (MVVs), to construct models of MVVs and to compare them with the usual formulae. Computerized, manual and grey literature were reviewed until February 2013. Epidemiological, observational, transversal, multicenter study. A consecutive sample of healthy children aged 5-14 years, attending Primary Care centres with no urologic abnormality were selected. Participants filled-in a 3-day frequency-volume chart. Variables were MVVs: maximum of 24 hr, nocturnal, and daytime maximum voided volumes. diuresis and its daytime and nighttime fractions; body-measure data; and gender. The consecutive steps method was used in a multivariate regression model. Twelve articles accomplished systematic review's criteria. Five hundred and fourteen cases were analysed. Three models, one for each of the MVVs, were built. All of them were better adjusted to exponential equations. Diuresis (not age) was the most significant factor. There was poor agreement between MVVs and usual formulae. Nocturnal and daytime maximum voided volumes depend on several factors and are different. Nocturnal and daytime maximum voided volumes should be used with different meanings in clinical setting. Diuresis is the main factor for bladder capacity. This is the first model for benchmarking normal MVVs with diuresis as its main factor. Current formulae are not suitable for clinical use. © 2013 Wiley Periodicals, Inc.

  19. Heavy metal biosorption sites in Penicillium cyclopium | Tsekova ...

    African Journals Online (AJOL)

    The biomass of Penicillium cyclopium was subjected to chemical treatment to study the role of the functional groups in the biosorption of heavy metal ions. The modifications of the functional groups were examined with infrared spectroscopy. Hydroxyl groups were identified as providing the major sites of heavy metal ...

  20. Kinetic, Equilibrium and thermodynamic studies on the biosorption ...

    African Journals Online (AJOL)

    The kinetics, equilibrium and thermodynamics of the biosorption of Cd (II) from aqueous solution by the leaf biomass of Calotropis procera popularly known in western Nigeria as 'bom bom'and genrally known as Sodom apple were investigated at different experimental conditions. Optimum conditions of pH, contact time, ...

  1. Biosorption characteristics of Aspergillus fumigatus in removal of ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-09-01

    Sep 1, 2009 ... in growth medium, thus about 20% of the isolates can grow up to 50 mg Cd/100 ml medium and only ... have the highest Cd biosorption, compared to yeast malt extract (YM) and sabourad (Sb) media. ... chemical parameters of the solution, say, temperature, ...... inactivated Phanerochaete chrysosporium.

  2. Development of engineering parameters for the design of metal biosorption waste treatment systems

    Energy Technology Data Exchange (ETDEWEB)

    Graham, W.S.

    1991-12-03

    Untreated landfill leachates and wastes from metal plating and mining operations are sources of environmental contamination by heavy metals. Because of their toxicity and potential for accumulation, the discharge of heavy metals must be controlled. Standard physical and chemical treatments used to remove metals from wastes such as concentration by electro-precipitation, ion exchange, solvent extraction, evaporative recovery, and conventional precipitation, are usually expensive and produce high quantities of sludge. Biosorption is the removal of metals from aqueous solutions by microorganisms. It is called biosorption rather than bioadsorption or bioaccumulation because the mechanisms of removal are not restricted to adsorption or metabolic uptake and so the more general term is preferable and has come to be accepted. In this thesis the focus is one two microorganisms and two metals. However, the possible combinations of conditions such as pH, relative metal molarities, time of contact, and organism are numerous. These experiments are designed to provide optimized parameters to facilitate the design of a functioning biosorption system. The two metals chosen for study are copper and lead in aqueous solution. The two types of microorganisms chosen for testing include an actinomycete and a fungus. The purpose of this research is to identify the significant engineering parameters to be evaluated include reaction rates, equilibrium partitioning of metal ions between those in solution and those removed to the cells, optimum pH for achieving the removal or recovery goal, and biosorption selectivity for one metal over another.

  3. Biosorption and toxicity responses to arsenite (As[III]) in Scenedesmus quadricauda.

    Science.gov (United States)

    Zhang, Jianying; Ding, Tengda; Zhang, Chunlong

    2013-08-01

    Toxicity and biosorption responses to arsenite (As[III]) were examined in a 96-h exposure study using Scenedesmus quadricauda, one of the most popular green algae distributed in freshwaters in China. Results indicated that the pH-dependent distribution of two arsenite species (H2AsO3(-) and H3AsO3) played an important role in biosorption and toxicity. The undissociated H3AsO3 was more toxic than its monoanionic H2AsO3(-) through comparison of algal cell numbers, chlorophyll-a contents, and algal ultrastructural changes observed with transmission electron microscopy. An effective biosorption of 89.0mgg(-1) at 100mgL(-1) As[III] was found in the treatments with an initial pH of 9.3 and 25.2μgg(-1) at 0.03mgL(-1) As[III] at an initial pH of 8.2 as a result of the predominant species of H2AsO3(-) under the ambient pH and Eh conditions. Our results imply that S. quadricauda may provide a new means for the removal of toxic arsenite species present in contaminated surface water. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. The effects of a pilates-aerobic program on maximum exercise capacity of adult women

    Directory of Open Access Journals (Sweden)

    Milena Mikalački

    Full Text Available ABSTRACT Introduction: Physical exercise such as the Pilates method offers clinical benefits on the aging process. Likewise, physiologic parameters may be improved through aerobic exercise. Methods: In order to compare the differences of a Pilates-Aerobic intervention program on physiologic parameters such as the maximum heart rate (HRmax, relative maximal oxygen consumption (relative VO2max and absolute (absolute VOmax, maximum heart rate during maximal oxygen consumption (VO2max-HRmax, maximum minute volume (VE and forced vital capacity (FVC, a total of 64 adult women (active group = 48.1 ± 6.7 years; control group = 47.2 ± 7.4 years participated in the study. The physiological parameters, the maximal speed and total duration of test were measured by maximum exercise capacity testing through Bruce protocol. The HRmax was calculated by a cardio-ergometric software. Pulmonary function tests, maximal speed and total time during the physical test were performed in a treadmill (Medisoft, model 870c. Likewise, the spirometry analyzed the impact on oxygen uptake parameters, including FVC and VE. Results: The VO2max (relative and absolute, VE (all, P<0.001, VO2max-HRmax (P<0.05 and maximal speed of treadmill test (P<0.001 showed significant difference in the active group after a physical exercise interventional program. Conclusion: The present study indicates that the Pilates exercises through a continuous training program might significantly improve the cardiovascular system. Hence, mixing strength and aerobic exercises into a training program is considered the optimal mechanism for healthy aging.

  5. Determination of Optimal Temperature for Biosorption of Heavy Metal Mixture from Aqueous Solution by Pretreated Biomass of Aspergillus niger

    Directory of Open Access Journals (Sweden)

    Javad Yousefi

    2012-01-01

    Full Text Available Biosorption is a novel technology that uses dead and inactive biomass for removal of heavy metals from aqueous solution. Some parameters such as temperature, contact time, solution pH, initial metal concentration, biosorbent dose and also agitating speed of solution and biosorbent mixing can affect the amount of metal sorption by biosorbent. The aim of this study was to investigate the effects of different treatments of temperatures (25, 35, 45 and 55oC on biosorption of metals mixture in order to determine optimal temperature for more metals removal from aqueous solution. This study uses dead and pretreated biomass of Aspergillus niger with 0.5N NaOH for removal of Zn(II, Co(II and Cd(II. In all temperature treatments and in the case of all of heavy metals, maximum amount of metal sorption and concentration decrease was occurred in first 5 minutes and achieved to equilibrium after 20 minute. The percent of metals sorption show growth trend with temperature increase. Between 4 experimental treatments, 55oC treatment was shown maximum sorption and 25oC was shown minimum sorption amount. The percent of Cr(II sorption was increase from 28.5% in 25oC to 44.7% in 55oC. Also, this increase was from 40% to 58% for Cd(II and from 37.7% to 65.6% for Zn(II. About 60% of increase in sorption by A. niger was due to increase in temperature. Therefore the amount of metals sorption can be increase, only with temperature increase and without any biomass addition.

  6. Biosorption of metal and salt tolerant microbial isolates from a former uranium mining area. Their impact on changes in rare earth element patterns in acid mine drainage.

    Science.gov (United States)

    Haferburg, Götz; Merten, Dirk; Büchel, Georg; Kothe, Erika

    2007-12-01

    The concentration of metals in microbial habitats influenced by mining operations can reach enormous values. Worldwide, much emphasis is placed on the research of resistance and biosorptive capacities of microorganisms suitable for bioremediation purposes. Using a collection of isolates from a former uranium mining area in Eastern Thuringia, Germany, this study presents three Gram-positive bacterial strains with distinct metal tolerances. These strains were identified as members of the genera Bacillus, Micrococcus and Streptomyces. Acid mine drainage (AMD) originating from the same mining area is characterized by high metal concentrations of a broad range of elements and a very low pH. AMD was analyzed and used as incubation solution. The sorption of rare earth elements (REE), aluminum, cobalt, copper, manganese, nickel, strontium, and uranium through selected strains was studied during a time course of four weeks. Biosorption was investigated after one hour, one week and four weeks by analyzing the concentrations of metals in supernatant and biomass. Additionally, dead biomass was investigated after four weeks of incubation. The maximum of metal removal was reached after one week. Up to 80% of both Al and Cu, and more than 60% of U was shown to be removed from the solution. High concentrations of metals could be bound to the biomass, as for example 2.2 mg/g U. The strains could survive four weeks of incubation. Distinct and different patterns of rare earth elements of the inoculated and non-inoculated AMD water were observed. Changes in REE patterns hint at different binding types of heavy metals regarding incubation time and metabolic activity of the cells. (c) 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Role of S-layer proteins in the biosorption capacity of lead by Lactobacillus kefir.

    Science.gov (United States)

    Gerbino, Esteban; Carasi, Paula; Araujo-Andrade, Cuauhtémoc; Tymczyszyn, E Elizabeth; Gómez-Zavaglia, Andrea

    2015-04-01

    The role of S-layer proteins (SLP) on the Pb(2+) sequestrant capacity by Lactobacillus kefir CIDCA 8348 and JCM 5818 was investigated. Cultures in the stationary phase were treated with proteinase K. A dot blot assay was carried out to assess the removal of SLP. Strains with and without SLP were exposed to 0-0.5 mM Pb(NO3)2. The maximum binding capacity (q max ) and the affinity coefficient (b) were calculated using the Langmuir equation. The structural effect of Pb(2+) on microorganisms with and without SLP was determined using Raman spectroscopy. The bacterial interaction with Pb(2+) led to a broadening in the phosphate bands (1,300-1,200 cm(-1) region) and strong alterations on amide and carboxylate-related bands (νCOO(-) as and νCOO(-) s). Microorganisms without SLP removed higher percentages of Pb(2+) and had higher q max than those bearing SLP. Isolated SLP had much lower q max and also removed lower percentages of Pb(2+) than the corresponding whole microorganisms. The hydrofobicity of both strains dramatically dropped when removing SLP. When bearing SLP, strains do not expose a large amount of charged groups on their surfaces, thus making less efficient the Pb(2+) removal. On the contrary, the extremely low hydrofobicity of microorganisms without SLP (and consequently, their higher capacity to remove Pb(2+)) can be explained on the basis of a greater exposure of charged chemical groups for the interaction with Pb(2+). The viability of bacteria without SLP was not significantly lower than that of bacteria bearing SLP. However, microorganisms without SLP were more prone to the detrimental effect of Pb(2+), thus suggesting that SLP acts as a protective rather than as a sequestrant layer.

  8. Effects of different strength training frequencies on maximum strength, body composition and functional capacity in healthy older individuals.

    Science.gov (United States)

    Turpela, Mari; Häkkinen, Keijo; Haff, Guy Gregory; Walker, Simon

    2017-11-01

    There is controversy in the literature regarding the dose-response relationship of strength training in healthy older participants. The present study determined training frequency effects on maximum strength, muscle mass and functional capacity over 6months following an initial 3-month preparatory strength training period. One-hundred and six 64-75year old volunteers were randomly assigned to one of four groups; performing strength training one (EX1), two (EX2), or three (EX3) times per week and a non-training control (CON) group. Whole-body strength training was performed using 2-5 sets and 4-12 repetitions per exercise and 7-9 exercises per session. Before and after the intervention, maximum dynamic leg press (1-RM) and isometric knee extensor and plantarflexor strength, body composition and quadriceps cross-sectional area, as well as functional capacity (maximum 7.5m forward and backward walking speed, timed-up-and-go test, loaded 10-stair climb test) were measured. All experimental groups increased leg press 1-RM more than CON (EX1: 3±8%, EX2: 6±6%, EX3: 10±8%, CON: -3±6%, Ptraining frequency would induce greater benefit to maximum walking speed (i.e. functional capacity) despite a clear dose-response in dynamic 1-RM strength, at least when predominantly using machine weight-training. It appears that beneficial functional capacity improvements can be achieved through low frequency training (i.e. 1-2 times per week) in previously untrained healthy older participants. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Interaction of polybrominated diphenyl ethers and aerobic granular sludge: biosorption and microbial degradation.

    Science.gov (United States)

    Ni, Shou-Qing; Cui, Qingjie; Zheng, Zhen

    2014-01-01

    As a new category of persistent organic pollutants, polybrominated diphenyl ethers (PBDEs) have become ubiquitous global environmental contaminants. No literature is available on the aerobic biotransformation of decabromodiphenyl ether (BDE-209). Herein, we investigated the interaction of PBDEs with aerobic granular sludge. The results show that the removal of BDE-209 from wastewater is mainly via biosorption onto aerobic granular sludge. The uptake capacity increased when temperature, contact time, and sludge dosage increased or solution pH dropped. Ionic strength had a negative influence on BDE-209 adsorption. The modified pseudo first-order kinetic model was appropriate to describe the adsorption kinetics. Microbial debromination of BDE-209 did not occur during the first 30 days of operation. Further study found that aerobic microbial degradation of 4,4(')-dibromodiphenyl ether happened with the production of lower BDE congeners.

  10. Interaction of Polybrominated Diphenyl Ethers and Aerobic Granular Sludge: Biosorption and Microbial Degradation

    Directory of Open Access Journals (Sweden)

    Shou-Qing Ni

    2014-01-01

    Full Text Available As a new category of persistent organic pollutants, polybrominated diphenyl ethers (PBDEs have become ubiquitous global environmental contaminants. No literature is available on the aerobic biotransformation of decabromodiphenyl ether (BDE-209. Herein, we investigated the interaction of PBDEs with aerobic granular sludge. The results show that the removal of BDE-209 from wastewater is mainly via biosorption onto aerobic granular sludge. The uptake capacity increased when temperature, contact time, and sludge dosage increased or solution pH dropped. Ionic strength had a negative influence on BDE-209 adsorption. The modified pseudo first-order kinetic model was appropriate to describe the adsorption kinetics. Microbial debromination of BDE-209 did not occur during the first 30 days of operation. Further study found that aerobic microbial degradation of 4,4′-dibromodiphenyl ether happened with the production of lower BDE congeners.

  11. Evaluation of sorption capacity of modified wood biomass for arsenic five-valent oxyanions

    International Nuclear Information System (INIS)

    Littera, P.; Antoska, R.; Cernansky, S.; Sevc, J.; Kolencik, M.; Budzakova, M.

    2009-01-01

    In the present work is assessed bio-sorption of arsenic oxyanions, which represent one of two most common special arsenic occurring in contaminated waters. A wood biomass was used as sorbent, which was modified by amorphous oxohydroxides of iron to increase sorption capacity, to whom arsenic has high affinity. The work estimated sorption capacity of wood biomass adjusted by oxohydroxides of iron. The Langmuir model as well as the Freundlich model were suitable for evaluation of experimental results. Maximal sorption capacity of investigated sorbent was 9.259 mg/g, what is comparable with values published by other authors.

  12. Biosorption of lead (II and copper (II by biomass of some marine algae

    Directory of Open Access Journals (Sweden)

    Chaisuksant, Y.

    2004-09-01

    Full Text Available Biosorption of heavy metal ions by algae is a potential technology for treating wastewater contaminated with heavy metals. Adsorption of lead (II and copper (II in aqueous solutions by some marine algae available in large quantities in Pattani Bay including Gracilaria fisheri, Ulva reticulata and Chaetomorpha sp. were investigated. The effect of pH on metal sorption of the algal biomass and the metal uptake capacity of the algal biomass comparing to that of synthetic adsorbents including activated carbon and siliga gel were studied by using batch equilibrium experiments. Each dried adsorbent was stirred in metal ions solutions with different pH or different concentration at room temperature for 24 hours and the residual metal ions were analysed using atomic absorption spectrophotometer. The initial concentrations of lead and copper ionswere 70 µg/l and 20 mg/l, respectively. It was found that the effect of pH on metal sorption was similar in each algal biomass. The metal uptake capacity increased as pH of the solution increased from 2.0 to 4.0 and reached a plateau at pH 5.0-7.0. The metal uptake capacities of each algal biomass were similar. At low concentrations of metal ions, the metal adsorption occurred rapidly while at higher metal concentration less metal adsorption by each algal biomass was observed. The metal adsorption of activated carbon and silica gel occurred gradually and was less than those of algal biomass. The equilibrium data of copper and lead ions fitted well to the Langmuir and Freundlich isotherm models. The maximum sorption capacity (Qm values (mean±SD of Chaetomorpha sp., U. reticulata, G. fisheri, activated carbon and silica gel for lead ions were 1.26±0.14, 1.19±0.14, 1.18±0.15, 1.14±0.11 and 1.15±0.12 mg/g, respectively. For copper adsorption, the Qm values for G. fisheri, U. reticulata and Chaetomorpha biomass were 15.87±1.03, 14.71±1.02 and 12.35± 1.03 mg/g, respectively. While those of activated carbon and

  13. Kinetics, equilibrium and thermodynamic studies on biosorption of Ag(I) from aqueous solution by macrofungus Pleurotus platypus.

    Science.gov (United States)

    Das, Devlina; Das, Nilanjana; Mathew, Lazar

    2010-12-15

    Reports are available on silver binding capacity of some microorganisms. However, reports on the equilibrium studies on biosorption of silver by macrofungi are seldom known. The present study was carried out in a batch system using dead biomass of macrofungus Pleurotus platypus for the sorption of Ag(I). P. platypus exhibited the highest silver uptake of 46.7 mg g(-1) of biomass at pH 6.0 in the presence of 200 mg L(-1) Ag(I) at 20°C. Kinetic studies based on fractional power, zero order, first order, pseudo-first order, Elovich, second order and pseudo-second order rate expressions have been carried out. The results showed a very good compliance with the pseudo-first order model. The experimental data were analyzed using two parameter isotherms (Langmuir, Freundlich, Dubinin-Radushkevich, Temkin and Halsey), three parameter isotherms (Redlich-Peterson, Sips, Khan, Koble-Corrigan, Hill, Toth, Radke-Prausmitz, Jossens, Langmuir-Freundlich), four parameter isotherms (Weber-van Vliet, Fritz-Schlunder, Baudu) and five parameter isotherm (Fritz-Schlunder). Thermodynamic parameters of the biosorption (ΔG, ΔH and ΔS) were also determined. The present study confirmed that macrofungus P. platypus may be used as a cost effective efficient biosorbent for the removal of Ag(I) ions from aqueous solution. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Description of two-metal biosorption equilibria by Langmuir-type models.

    Science.gov (United States)

    Chong, K H; Volesky, B

    1995-08-20

    A biosorbent prepared from Ascophyllum nodosum seaweed biomass, FCAN2, was examined for its sorption capacity. Equilibrium batch sorption studies were performed using two-matal systems containing either (Cu + Zn), (Cu + Cd), or (Zn + Cd). In the evaluation of the two-metal sorption system performance, simple isotherm curves had to be replaced by three-dimensional sorption isotherm surfaces. In order to describe the isotherm surfaces mathematically, three Langmuir-type models were evaluated. The apparent one-parameter Langmuir constant (b) was used to quantify FCAN2 "affinity" for one metal in the presence of another one. The uptake of Zn decreased drastically when Cu or Cd were present. The uptake of Cd wasmuch more sensitive to the presence of Cu than to that of Zn. The presence of Cd and Zn alter the "affinity" of FCAN2 for Cu the least at high Cu equilibrium concentrations. The mathematical model of the two-metal sorption system enabled quantitative estimation of one-metal (bio)sorption inhibition due to the influence of a second metal. (c) 1995 John Wiley & Sons Inc.

  15. Biosorption of Cd(II) and Pb(II) ions by aqueous solutions of novel alkalophillic Streptomyces VITSVK5 spp. biomass

    Science.gov (United States)

    Saurav, Kumar; Kannabiran, Krishnan

    2011-03-01

    Discharge of heavy metals from metal processing industries is known to have adverse effects on the environment. Biosorption of heavy metals by metabolically inactive biomass of microbial organisms is an innovative and alternative technology for removal of these pollutants from aqueous solution. The search of marine actinobacteria with potential heavy metal biosorption ability resulted in the identification of a novel alkalophilic Streptomyces VITSVK5 species. The biosorption property of Streptomyces VITSVK5 spp. was investigated by absorbing heavy metals Cadmium (Cd) and Lead (Pb). Physiochemical characteristics and trace metal concentration analysis of the backwater showed the concentrations of different metals were lead 13±2.1 μg L-1, cadmium 3.1±0.3μg L-1, zinc 8.4±2.6μg L-1 and copper 0.3±0.1μg L-1, whereas mercury was well below the detection limit. The effect of pH and biomass dosage on removal efficiency of heavy metal ions was also investigated. The optimum pH for maximal biosorption was 4.0 for Cd (II) and 5.0 for Pb (II) with 41% and 84% biosorption respectively. The biosorbent dosage was optimized as 3 g L-1 for both the trace metals. Fourier transform infrared absorption spectrum results indicated the chemical interactions of hydrogen atoms in carboxyl (-COOH), hydroxyl (-CHOH) and amine (-NH2) groups of biomass with the metal ions. This could be mainly involved in the biosorption of Cd (II) and Pb (II) onto Streptomyces VITSVK5 spp. The results of our study revealed Streptomyces metabolites could be used to develop a biosorbent for adsorbing metal ions from aqueous environments.

  16. Artificial intelligence modeling of cadmium(II) biosorption using rice straw

    Science.gov (United States)

    Nasr, Mahmoud; Mahmoud, Alaa El Din; Fawzy, Manal; Radwan, Ahmed

    2017-05-01

    The biosorption efficiency of Cd2+ using rice straw was investigated at room temperature (25 ± 4 °C), contact time (2 h) and agitation rate (5 Hz). Experiments studied the effect of three factors, biosorbent dose BD (0.1 and 0.5 g/L), pH (2 and 7) and initial Cd2+ concentration X (10 and 100 mg/L) at two levels "low" and "high". Results showed that, a variation in X from high to low revealed 31 % increase in the Cd2+ biosorption. However, a discrepancy in pH and BD from low to high achieved 28.60 and 23.61 % increase in the removal of Cd2+, respectively. From 23 factorial design, the effects of BD, pH and X achieved p value equals to 0.2248, 0.1881 and 0.1742, respectively, indicating that the influences are in the order X > pH > BD. Similarly, an adaptive neuro-fuzzy inference system indicated that X is the most influential with training and checking errors of 10.87 and 17.94, respectively. This trend was followed by "pH" with training error (15.80) and checking error (17.39), after that BD with training error (16.09) and checking error (16.29). A feed-forward back-propagation neural network with a configuration 3-6-1 achieved correlation ( R) of 0.99 (training), 0.82 (validation) and 0.97 (testing). Thus, the proposed network is capable of predicting Cd2+ biosorption with high accuracy, while the most significant variable was X.

  17. Biosorptive removal of Hg(II) ions by Rhizopus oligosporus ...

    African Journals Online (AJOL)

    In this study, corn processing wastewater was used as a new low-cost substrate to produce Rhizopus oligosporus. Dried biomass of R. oligosporus was evaluated as a biosorbent for treatment of synthetically contaminated waters with Hg(II) ions. The biosorption process was carried out in a batch process and the effects of ...

  18. Polyethylenimine-modified fungal biomass as a high-capacity biosorbent for Cr(VI) anions: sorption capacity and uptake mechanisms.

    Science.gov (United States)

    Deng, Shubo; Ting, Yen Peng

    2005-11-01

    Heavy metal pollution in the aqueous environment is a problem of global concern. Biosorption has been considered as a promising technology for the removal of low levels of toxic metals from industrial effluents and natural waters. A modified fungal biomass of Penicillium chrysogenum with positive surface charges was prepared by grafting polyethylenimine (PEI) onto the biomass surface in a two-step reaction. The presence of PEI on the biomass surface was verified by FTIR and X-ray photoelectron spectroscopy (XPS) analyses. Due to the high density of amine groups in the long chains of PEI molecules on the surface, the modified biomass was found to possess positive zeta potential at pH below 10.4 as well as high sorption capacity for anionic Cr(VI). Using the Langmuir adsorption isotherm, the maximum sorption capacity for Cr(VI) at a pH range of 4.3-5.5 was 5.37 mmol/g of biomass dry weight, the highest sorption capacity for Cr(VI) compared to other sorbents reported in the literature. Scanning electronic microscopy (SEM) provided evidence of chromium aggregates formed on the biomass surface. XPS results verified the presence of Cr(III) on the biomass surface in the pH range 2.5-10.5, suggesting that some Cr(VI) anions were reduced to Cr(III) during the sorption. The sorption kinetics indicated that redox reaction occurred on the biomass surface, and whether the converted Cr(III) ions were released to solution or adsorbed on the biomass depended on the solution pH. Sorption mechanisms including electrostatic interaction, chelation, and precipitation were found to be involved in the complex sorption of chromium on the PEI-modified biomass.

  19. Biosorption of americium-241 by immobilized Rhizopus arrihizus

    International Nuclear Information System (INIS)

    Liao Jiali; Yang Yuanyou; Luo Shunzhong; Liu Ning; Jin Jiannan; Zhang Taiming; Zhao Pengji

    2004-01-01

    Rhizopus arrihizus (R. arrihizus), a fungus, which in previous experiments had shown encouraging ability to remove 241 Am from solutions, was immobilized by calcium alginate and other reagents. The various factors affecting 241 Am biosorption by the immobilized R. arrihizus were investigated. The results showed that not only can immobilized R. arrihizus adsorb 241 Am as efficiently as free R. arrihizus, but that also can be used repeatedly or continuously. The biosorption equilibrium was achieved within 2 h, and more than 94% of 241 Am was removed from 241 Am solutions of 1.08 MBq/l by immobilized R. arrihizu in the pH range 1-7. Temperature did not affect the adsorption on immobilized R. arrihizus in the range 15-45 deg. C. After repeated adsorption for 8 times, the immobilized R. arrihizus still adsorbed more than 97% of 241 Am. At this time, the total adsorption of 241 Am was more than 88.6 KBq/g, and had not yet reached saturation. Ninety-five percent of the adsorbed 241 Am was desorbed by saturated EDTA solution and 98% by 2 mol/l HNO 3

  20. Agroindustrial Waste for Lead and Chromium Biosorption

    Directory of Open Access Journals (Sweden)

    Susana P. Boeykens

    2018-06-01

    Full Text Available There is a need to re-evaluate the residues generated in industrial processes for the production of new raw material, reducing the volume of waste. In this regard, the biosorption is a low-cost alternative method for treating effluents compared to conventional methods. The main objectives of this research were: the evaluation of the biosorbent capacity of six waste materials for the extraction of chromium(VI and lead(II ions from aqueous solutions and, the determination of the adsorption and kinetic parameters for the more efficient system. The materials evaluated were: peanut shell (Arachis hypagaea, sugarcane bagasse (Saccharum officinarum, avocado peel (Persea americana, pecan nutshell (Carya illinoinensis, wheat bran (Triticum aestivum and banana peel (Mussa paradisiaca. The highest percentage of lead removal was obtained with wheat bran (89%. For chromium, the percentage was generally much lower compared with lead for all tested biosorbents, the banana peel being the most efficient with a 10% removal. The models that better describe the adsorption processes were: Langmuir and Freundlich. The pseudo-second order kinetic model allowed obtaining the parameters for both systems. The equilibrium time, in both systems, was reached after 60 minutes. The study of Fourier Transformed Infrared spectra and the results of desorption experiments allowed to hypothesize on the mechanisms involved in the adsorption of these metals.

  1. Biosorption of heavy metals under anaerobic conditions. Final report; Biosorption von Schwermetallen unter anaeroben Bedingungen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Kreikenbohm, R.

    1996-12-31

    The precipitation of heavy metals as hydroxides is the standard technique for the decontamination of waste water streams polluted by these elements. On the other side, progress in research has been made concerning the biosorption onto dead biomass and bioprecipitation supported by physiologically active bacteria. As the aim of this study, a flexible strategy has been envisaged cleaning a waste water with definite heavy metal load underlying the process mentioned above. Suitable bacteria were enriched and the process was tested in a technical plant. As result, a very high efficiency of heavy metal elimination has been found. The field of application covered by the acquired process is identical with the whole range of the waste water streams polluted by heavy metals. In addition, a second stage may be necessary if there are any further contaminants to be removed. (orig.) [Deutsch] Bei der Reinigung von schwermetallhaltigen Abwaessern ist der derzeitige Stand der Technik gegeben durch die Neutralisationsfaellung als Hydroxide, waehrend in der Forschung damit begonnen wurde, Biosorption an devitaler Biomasse oder Biopraezipitation durch physiologisch aktive Bakterien zu untersuchen. Ziel des Vorhabens war die Ermittlung einer flexiblen Strategie fuer die Prozessfuehrung zur Abwasserreinigung bei vorgegebener Schadstoffbelastung auf der Basis des zuletzt genannten Prozesses. Dazu wurden geeignete Bakterien angereichert und das Verfahren in einer Technikumsanlage erprobt. Als Ergebnis wurde bei Zufuhr verschiedener Industrieabwaesser eine sehr hohe Effizienz in der Schwermetallelimination gefunden. Das Anwendungsgebiet des erarbeiteten Verfahrens erstreckt sich auf eine Vielzahl schwermetallbelasteter Abwaesser, wobei - je nach Art der weiteren Inhaltsstoffe - eine zusaetzliche Reinigungsstufe vor- oder nachgeschaltet werden muss. (orig.)

  2. Toxic metals biosorption by Jatropha curcas deoiled cake: equilibrium and kinetic studies.

    Science.gov (United States)

    Rawat, Anand P; Rawat, Monica; Rai, J P N

    2013-08-01

    The equilibrium sorption of Cr(VI) and Cu(II) from aqueous solution using Jatropha curcas deoiled cake, has been studied with respect to adsorbent dosage, contact time, pH, and initial metal concentration in batch mode experiments. Removal of Cu(II) by deoiled cake was greater than that of Cr(VI). The adsorbent chemical characteristics, studied by Fourier transform-infrared analysis, suggested that the presence of Cr(VI) and Cu(II) in the biomass influenced the bands corresponding to hydroxyl and carboxyl groups. Desorption studies revealed that maximum metals recovery was achieved by HNO3 followed by CH3COOH and HCl. The Freundlich isotherm model showed good fit to the equilibrium adsorption data. The adsorption kinetics followed the pseudo-second-order model, which provided the best correlation for the biosorption process, and suggested that J. curcas deoiled cake can be used as an efficient biosorbent over other commonly used sorbents for decontamination of Cr(VI)- and Cu(II)-containing wastewater.

  3. On the biosorption, by brown seaweed, Lobophora variegata, of Ni(II) from aqueous solutions: equilibrium and thermodynamic studies.

    Science.gov (United States)

    Basha, Shaik; Jaiswar, Santlal; Jha, Bhavanath

    2010-09-01

    The biosorption equilibrium isotherms of Ni(II) onto marine brown algae Lobophora variegata, which was chemically-modified by CaCl(2) were studied and modeled. To predict the biosorption isotherms and to determine the characteristic parameters for process design, twenty-three one-, two-, three-, four- and five-parameter isotherm models were applied to experimental data. The interaction among biosorbed molecules is attractive and biosorption is carried out on energetically different sites and is an endothermic process. The five-parameter Fritz-Schluender model gives the most accurate fit with high regression coefficient, R (2) (0.9911-0.9975) and F-ratio (118.03-179.96), and low standard error, SE (0.0902-0.0.1556) and the residual or sum of square error, SSE (0.0012-0.1789) values to all experimental data in comparison to other models. The biosorption isotherm models fitted the experimental data in the order: Fritz-Schluender (five-parameter) > Freundlich (two-parameter) > Langmuir (two-parameter) > Khan (three-parameter) > Fritz-Schluender (four-parameter). The thermodynamic parameters such as DeltaG (0), DeltaH (0) and DeltaS (0) have been determined, which indicates the sorption of Ni(II) onto L. variegata was spontaneous and endothermic in nature.

  4. Programmed gradient descent biosorption of strontium ions by Saccaromyces cerevisiae and ashing analysis: A decrement solution for nuclide and heavy metal disposal

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Mingxue [Life Science and Engineering College, Southwest University of Science and Technology, Mianyang, 621010 (China); Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education of China, Mianyang, 621010 (China); Dong, Faqin, E-mail: fqdong@swust.edu.cn [Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education of China, Mianyang, 621010 (China); Zhang, Wei [Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education of China, Mianyang, 621010 (China); Nie, Xiaoqin [Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Mianyang, 621010 (China); Sun, Shiyong [Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education of China, Mianyang, 621010 (China); Wei, Hongfu; Luo, Lang; Xiang, Sha; Zhang, Gege [Life Science and Engineering College, Southwest University of Science and Technology, Mianyang, 621010 (China)

    2016-08-15

    Highlights: • A programmed gradient descent biosorption process was designed. • The adsorption and bioaccumulation quantity of strontium ions by yeast cell were measured. • The decrement of biosorbents after biosorption by ashing was analyzed. • A technological flow process of decrement solution for waste disposal was proposed. - Abstract: One of the waste disposal principles is decrement. The programmed gradient descent biosorption of strontium ions by Saccaromyces cerevisiae regarding bioremoval and ashing process for decrement were studied in present research. The results indicated that S. cerevisiae cells showed valid biosorption for strontium ions with greater than 90% bioremoval efficiency for high concentration strontium ions under batch culture conditions. The S. cerevisiae cells bioaccumulated approximately 10% of strontium ions in the cytoplasm besides adsorbing 90% strontium ions on cell wall. The programmed gradient descent biosorption presented good performance with a nearly 100% bioremoval ratio for low concentration strontium ions after 3 cycles. The ashing process resulted in a huge volume and weight reduction ratio as well as enrichment for strontium in the ash. XRD results showed that SrSO{sub 4} existed in ash. Simulated experiments proved that sulfate could adjust the precipitation of strontium ions. Finally, we proposed a technological flow process that combined the programmed gradient descent biosorption and ashing, which could yield great decrement and allow the supernatant to meet discharge standard. This technological flow process may be beneficial for nuclides and heavy metal disposal treatment in many fields.

  5. Biosorption of heavy metals by a marine bacterium

    Energy Technology Data Exchange (ETDEWEB)

    Iyer, Anita [Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat (India); Mody, Kalpana [Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat (India)]. E-mail: khmody@csmcri.org; Jha, Bhavanath [Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat (India)

    2005-03-01

    Heavy metal chelation property of exopolysaccharide produced by Enterobacter cloaceae, a marine bacterium, isolated from the West Coast of India, is reported in this paper. The exopolysaccharide demonstrated excellent chelating properties with respect to cadmium (65%) followed by copper (20%) and cobalt (8%) at 100 mg/l heavy metal concentration. However, it could not chelate mercury. A comparative study of the percentage biosorption of the above mentioned metals is presented here.

  6. Biosorption of heavy metals by a marine bacterium

    International Nuclear Information System (INIS)

    Iyer, Anita; Mody, Kalpana; Jha, Bhavanath

    2005-01-01

    Heavy metal chelation property of exopolysaccharide produced by Enterobacter cloaceae, a marine bacterium, isolated from the West Coast of India, is reported in this paper. The exopolysaccharide demonstrated excellent chelating properties with respect to cadmium (65%) followed by copper (20%) and cobalt (8%) at 100 mg/l heavy metal concentration. However, it could not chelate mercury. A comparative study of the percentage biosorption of the above mentioned metals is presented here

  7. Application of Sargassum biomass to remove heavy metal ions from synthetic multi-metal solutions and urban storm water runoff.

    Science.gov (United States)

    Vijayaraghavan, K; Teo, Ting Ting; Balasubramanian, R; Joshi, Umid Man

    2009-05-30

    The ability of Sargassum sp. to biosorb four metal ions, namely lead, copper, zinc, and manganese from a synthetic multi-solute system and real storm water runoff has been investigated for the first time. Experiments on synthetic multi-solute systems revealed that Sargassum performed well in the biosorption of all four metal ions, with preference towards Pb, followed by Cu, Zn, and Mn. The solution pH strongly affected the metal biosorption, with pH 6 being identified as the optimal condition for achieving maximum biosorption. Experiments at different biosorbent dosages revealed that good biosorption capacity as well as high metal removal efficiency was observed at 3g/L. The biosorption kinetics was found to be fast with equilibrium being attained within 50 min. According to the Langmuir isotherm model, Sargassum exhibited maximum uptakes of 214, 67.5, 24.2 and 20.2mg/g for lead, copper, zinc, and manganese, respectively in single-solute systems. In multi-metal systems, strong competition between four metal ions in terms of occupancy binding sites was observed, and Sargassum showed preference in the order of Pb>Cu>Zn>Mn. The application of Sargassum to remove four heavy metal ions in real storm water runoff revealed that the biomass was capable of removing the heavy metal ions. However, the biosorption performance was slightly lower compared to that of synthetic metal solutions. Several factors were responsible for this difference, and the most important factor is the presence of other contaminants such as anions, organics, and other trace metals in the runoff.

  8. Weakly and strongly polynomial algorithms for computing the maximum decrease in uniform arc capacities

    Directory of Open Access Journals (Sweden)

    Ghiyasvand Mehdi

    2016-01-01

    Full Text Available In this paper, a new problem on a directed network is presented. Let D be a feasible network such that all arc capacities are equal to U. Given a t > 0, the network D with arc capacities U - t is called the t-network. The goal of the problem is to compute the largest t such that the t-network is feasible. First, we present a weakly polynomial time algorithm to solve this problem, which runs in O(log(nU maximum flow computations, where n is the number of nodes. Then, an O(m2n time approach is presented, where m is the number of arcs. Both the weakly and strongly polynomial algorithms are inspired by McCormick and Ervolina (1994.

  9. Biosorption of Foron turquoise SBLN using mixed biomass of white ...

    African Journals Online (AJOL)

    In the present study, biosorption of Foron turquoise SBLN using mixed biomass of white rot fungi was investigated in batch mode. The effect of process parameters such as pH of solution, medium temperature, biosorbent concentration, dye initial concentration, contact time etc. was investigated for enhanced removal of the ...

  10. Mechanism of thorium biosorption by the cells of the soil fungal isolate Geotrichum sp. dwc-1

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Congcong; Feng, Su [Sichuan Univ., Chengdu (China). Key Laboratory of Biological Resource and Ecological Environment; Li, Xiaolong [Sichuan Univ., Chengdu (China). Key Laboratory of Radiation Physics and Technology; and others

    2014-04-01

    In order to understand the impact of microorganisms on the fate of thorium in soils, we investigated the thorium biosorption behavior and the corresponding mechanisms by the cells of Geotrichum sp. dwc-1, one of the dominant species of fungal group isolated from 3.5 m depth soil layer in Southwest China. It was observed that fast thorium adsorption onto cells of G. sp. dwc-1 could take place, with a high distribution coefficient K{sub d} (0.93 mL/mg) obtained, when Geotrichum sp. dwc-1and thorium concentrations were 5 g/L and 10 mg/L, respectively. The thorium biosorption behavior was dependent on the pH value, and the lower pH could disrupt cell membrane of G. sp. dwc-1. At pH 1, thorium was accumulated in the cytoplasmic region of the cells. When pH was higher than 1, thorium was adsorbed on the cell surface of G. sp. dwc-1, like in periplasmic region or in the outer membrane. FTIR study combined with biosorption experiments further indicated that the thorium distribution and binding behavior on cell surface were associated with amino, hydroxyl groups and phosphate or sulphur functional groups, and might also be governed by electrostatic interaction. Moreover, PIXE and EPBS showed that ion-exchange mechanism contributed to the thorium biosorption process, in which the tetravalent thorium ions replaced smaller counter-ions (K{sup +}, Ca{sup 2+} and Fe{sup 3+}) occuring on the cell surface. (orig.)

  11. Lead biosorption of probiotic bacteria: effects of the intestinal content from laying hens.

    Science.gov (United States)

    Xing, Sicheng; Wang, Jie; Liang, Juan Boo; Jahromi, Mohammad Faseleh; Zhu, Cui; Shokryazdan, Parisa; Laudadio, Vito; Tufarelli, Vincenzo; Liao, Xindi

    2017-05-01

    This study investigated the effects and the possible mechanisms of intestinal content (IC) from laying hens on in vitro lead (Pb 2+ ) biosorption of four probiotic bacterial strains (Bifidobacterium longum BB79, Lactobacillus paracasei Kgl6, Lactobacillus pentosus ITA23, and Lactobacillus acidipiscis ITA44). The total Pb 2+ removal capacity of the four probiotic strains, with and without capsule polysaccharides (CPSs), increased in the presence of IC compared to the control (without IC). SEM imaging revealed certain unidentified particles from the IC adhered on the surface of bacterial cells sorted out using flow cytometry. Follow-up experiment showed an overall trend of increase in the Pb 2+ removal capacity of the sorted bacteria, but statistically significant for L. pentosus ITA23 and B. longum BB79 after incubation with IC, particularly with the suspended solid portion of the IC. In addition, the Fourier transform infrared spectrophotometer data showed that functional groups such as C-H, O-H, C=O, and C-O-C which possibly associated with Pb 2+ binding were mainly presented in the suspended solid portion of IC. Putting the above together, we postulated that the enhanced Pb 2+ binding capacity the probiotic bacteria incubated in IC is due to the adherence of the yet to be identified particles which could much exist in suspended solid portion of IC containing negatively charged functional groups which bind with the positive Pb 2+ ions.

  12. Liquid-phase separation of reactive dye by wood-rotting fungus: a biotechnological approach.

    Science.gov (United States)

    Binupriya, Arthur R; Sathishkumar, Muthuswamy; Dhamodaran, Kavitha; Jayabalan, Rasu; Swaminathan, Krishnaswamy; Yun, Sei Eok

    2007-08-01

    The live and pretreated mycelial pellets/biomass of Trametes versicolor was used for the biosorption of a textile dye, reactive blue MR (RBMR) from aqueous solution. The parameters that affect the biosorption of RBMR, such as contact time, concentration of dye and pH, on the extent of RBMR adsorption were investigated. To develop an effective and accurate design model for removal of dye, adsorption kinetics and equilibrium data are essential basic requirements. Lagergren first-order, second-order and Bangham's model were used to fit the experimental data. Results of the kinetic studies showed that the second order kinetic model fitted well for the present experimental data. The Langmuir, Freundlich and Temkin adsorption models were used for the mathematical description of the biosorption equilibrium. The biosorption equilibrium data obeyed well for Langmuir isotherm and the maximum adsorption capacities were found to be 49.8, 51.6, 47.4 and 46.7 mg/g for live, autoclaved, acid- and alkali-pretreated biomass. The dye uptake capacity order of the fungal biomass was found as autoclaved > live > acid-treated > alkali-pretreated. The Freundlich and Temkin models were also able to describe the biosorption equilibrium on RBMR on live and pretreated fungal biomass. Acidic pH was favorable for the adsorption of dye. Studies on pH effect and desorption show that chemisorption seems to play a major role in the adsorption process. On comparison with fixed bed adsorption, batch mode adsorption was more efficient in adsorption of RBMR.

  13. The use of some local plants for removal of radioactive and trace elements from aqueous media

    International Nuclear Information System (INIS)

    Al-Masri, M. S.; Amin, Y.; Al-Akel, B; Al-Naama, T.

    2008-02-01

    The removal of metal ions from aqueous solutions by biosorption plays an important role in water pollution control. In this study, dried leaves of Barbary, Jew's mallow and poplar, branches of poplar trees and creeping club as biomass for removal of toxic elements (Cd, Pb and U) and some radionuclides ( 133 Ba, 137 Cs and 226 Ra) from aqueous solution have been evaluated. The results show that all studied plants can be effectively used for removing U and Ba from aqueous solutions, while Pb was removed using branches of poplar trees. In addition, Cd was removed using Barbary, Jew's mallow and branches of poplar trees. The adsorption of U and Cd by leaves of Barbary reached 3.3 mg g -1 and 3.5 mg g -1 , respectively. Moreover, the leaves of poplar trees were the best plant for biosorping Pb, its maximum capacity reached a value 1.7 mg g -1 . On the other hand, the maximum capacity for studied radionuclide was less than 10-6 mg g -1 . Further more, the effect of many factors such as, plant pretreatment, solution temperature, pH, plant particles size and contact time, on biosorption process were performed and the best conditions of biosorption were recognized. The studied plants were used for removing 226 Ra and some trace elements from real polluted water. The results show that the method is effective.(author)

  14. Sorption and desorption of lead (II) from wastewater by green algae Cladophora fascicularis.

    Science.gov (United States)

    Deng, Liping; Su, Yingying; Su, Hua; Wang, Xinting; Zhu, Xiaobin

    2007-05-08

    Biosorption is an effective method to remove heavy metals from wastewater. In this work, adsorption features of Cladophora fascicularis were investigated as a function of time, initial pH, initial Pb(II) concentrations, temperature and co-existing ions. Kinetics and equilibria were obtained from batch experiments. The biosorption kinetics followed the pseudo-second order model. Adsorption equilibria were well described by the Langmuir and Freundlich isotherm models. The maximum adsorption capacity was 198.5 mg/g at 298K and pH 5.0. The adsorption processes were endothermic and the biosorption heat was 29.6 kJ/mol. Desorption experiments indicated that 0.01 mol/L Na(2)EDTA was an efficient desorbent for the recovery of Pb(II) from biomass. IR spectrum analysis suggested amido or hydroxy, CO and C-O could combine intensively with Pb(II).

  15. Response surface approach for the biosorption of Cr{sup 6+} ions by mucor racemosus

    Energy Technology Data Exchange (ETDEWEB)

    Jabasingh, Sekarathil A. [Department of Chemical Engineering, Sathyabama University, Jeppiaar Nagar, Chennai, Tamil Nadu (India); Pavithra, Garre [Department of Biotechnology, Sathyabama University, Jeppiaar Nagar, Chennai, Tamil Nadu (India)

    2010-06-15

    Response surface methodology (RSM) employing the Box-Behnken design was used to optimize the biosorption of chromium (Cr{sup 6+}) by Mucor racemosus in submerged culture. The initial Cr{sup 6+} concentration (20-100 mg/L), pH (3.0-7.0), biomass dosage (5.0-9.0 mg), and time of sorption (2.0-6.0 h) were chosen as the process variables for the optimization. Two response values were chosen, i.e., sorption capacity (mg/g) and sorption percentage are optimized. A four-factor-three-level Box-Behnken design was used to evaluate the effects of these parameters on the sorption percentage. A second-order quadratic model suggested the optimum conditions (initial Cr{sup 6+} concentration 100 mg/L, pH of 5.0, biomass dosage of 5.0 mg, and time of sorption 4 h) resulted in the improvement of sorption of Cr{sup 6+} from 12.47 to 49.98% as well as the improvement of the sorption capacity from 0.1036 to 0.5 mg/g. Analysis of variance (ANOVA) for the above-mentioned response variables yielded a high coefficient of determination (R{sup 2}) value of 0.9985 and 0.9025 for the sorption capacity and sorption percentage, respectively. The desirability plot and overlay plot suggested the significance of the designed model. This is the first report on Cr{sup 6+} sorption by M. racemosus using statistical experimental design employing RSM. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  16. The biosorption of heavy metals from aqueous solution by Spirogyra and Cladophora filamentous macroalgae.

    Science.gov (United States)

    Lee, Yi-Chao; Chang, Shui-Ping

    2011-05-01

    The aim of this research was to develop a low cost adsorbent for wastewater treatment. The prime objective of this study was to search for suitable freshwater filamentous algae that have a high heavy metal ion removal capability. This study evaluated the biosorption capacity from aqueous solutions of the green algae species, Spirogyra and Cladophora, for lead (Pb(II)) and copper (Cu(II)). In comparing the analysis of the Langmuir and Freundlich isotherm models, the adsorption of Pb(II) and Cu(II) by these two types of biosorbents showed a better fit with the Langmuir isotherm model. In the adsorption of heavy metal ions by these two types of biosorbents, chemical and physical adsorption of particle surfaces was perhaps more significant than diffusion and adsorption between particles. Continuous adsorption-desorption experiments discovered that both types of biomass were excellent biosorbents with potential for further development. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Biosorption of multi-heavy metals by coral associated phosphate solubilising bacteria Cronobacter muytjensii KSCAS2.

    Science.gov (United States)

    Saranya, Kailasam; Sundaramanickam, Arumugam; Shekhar, Sudhanshu; Meena, Moorthy; Sathishkumar, Rengasamy Subramaniyan; Balasubramanian, Thangavel

    2018-06-02

    This paper examines the potential detoxification efficiency of heavy metals by phosphate solubilising bacteria (PSB) that were isolated from coral, sea grass and mangrove environment. Initially, four potential bacterial isolates were selected based on their phosphate solubilisation index from 42 strains and were used for the metal tolerance test. Among the four isolates, KSCAS2 exhibited maximum tolerance to heavy metals and the phenotype indicated the production of extra polymeric substances. In a multi-heavy metal experimental setup at two concentrations (100 and 200 mg L -l ), it has been demonstrated that the bacteria have extracellularly sequestered metal ions in amorphous deposits and this has been confirmed by scanning electron microscopy. In experiments with a 100 mg L -1 initial metal concentration, the percentages of metal removal by bacteria were 55.23% of Cd, 72.45% of Cr, 76.51% of Cu and 61.51% of Zn, respectively. In subsequent experiments, when the metal concentration was increased up to 200 mg L -l , the metal removal capacity decreased as follows: 44.62%, 63.1%, 67% and 52.80% for Cd, Cr, Cu and Zn, respectively. In addition, the biosorption of heavy metals was confirmed by the Fourier transform infrared Spectroscopy (FT-IR) and scanning electron microscopy (SEM) analysis. The heavy metal concentrations in a broth culture were analysed by inductively coupled plasma-optical emission spectroscopy (ICP-OES). The study suggests that PSB Cronobacter muytjensii KSCAS2 can efficiently remove the heavy metals and these bacteria could be used for the metal removal from the agricultural soils. Copyright © 2018. Published by Elsevier Ltd.

  18. On the low SNR capacity of maximum ratio combining over rician fading channels with full channel state information

    KAUST Repository

    Benkhelifa, Fatma; Rezki, Zouheir; Alouini, Mohamed-Slim

    2013-01-01

    In this letter, we study the ergodic capacity of a maximum ratio combining (MRC) Rician fading channel with full channel state information (CSI) at the transmitter and at the receiver. We focus on the low Signal-to-Noise Ratio (SNR) regime and we show that the capacity scales as L ΩK+L SNRx log(1SNR), where Ω is the expected channel gain per branch, K is the Rician fading factor, and L is the number of diversity branches. We show that one-bit CSI feedback at the transmitter is enough to achieve this capacity using an on-off power control scheme. Our framework can be seen as a generalization of recently established results regarding the fading-channels capacity characterization in the low-SNR regime. © 2012 IEEE.

  19. On the low SNR capacity of maximum ratio combining over rician fading channels with full channel state information

    KAUST Repository

    Benkhelifa, Fatma

    2013-04-01

    In this letter, we study the ergodic capacity of a maximum ratio combining (MRC) Rician fading channel with full channel state information (CSI) at the transmitter and at the receiver. We focus on the low Signal-to-Noise Ratio (SNR) regime and we show that the capacity scales as L ΩK+L SNRx log(1SNR), where Ω is the expected channel gain per branch, K is the Rician fading factor, and L is the number of diversity branches. We show that one-bit CSI feedback at the transmitter is enough to achieve this capacity using an on-off power control scheme. Our framework can be seen as a generalization of recently established results regarding the fading-channels capacity characterization in the low-SNR regime. © 2012 IEEE.

  20. Evaluation of hybrid neutralization/biosorption process for zinc ions removal from automotive battery effluent by dolomite and fish scales.

    Science.gov (United States)

    Ribeiro, C; Scheufele, F B; Alves, H J; Kroumov, A D; Espinoza-Quiñones, F R; Módenes, A N; Borba, C E

    2018-02-26

    This work focused in the evaluation of Oreochromis niloticus fish scales (FS) as biosorbent material in the removal of Zn from a synthetic effluent based on automotive battery industry effluent and, further, a hybrid neutralization/biosorption process, aiming at a high-quality treated effluent, by a cooperative use of dolomite and FS. For this, a physicochemical and morphological characterization (i.e. SEM-EDX, FTIR, XRD, and TXRF) was performed, which helped to clarify a great heterogeneity of active sites (phosphate, carbonate, amide, and hydroxyl) on the biosorbent; also the inorganic constituents (apatites) leaching from the FS was identified. Biosorption results pointed out to a pH-dependent process due to changes in the functional group's anionic character (i.e. electrostatic interactions), where an initial pH = 3 favored the Zn uptake. Kinetic and equilibrium studies confirmed the heterogeneous surface and cooperative sorption, wherein experimental data were described by Generalized Elovich kinetic model and the favorable isotherm profile by Langmuir-Freundlich isotherm ([Formula: see text] = 15.38 mg g -1 and [Formula: see text]). Speciation diagram of Zn species along with the leached species demonstrated that, for the studied pH range, the biosorption was the most likely phenomena rather than precipitation. Finally, the hybrid neutralization/biosorption process showed great potential since both the Zn concentration levels and the pH reached the legislation standards (C Zn  = 4 mg L -1 ; pH = 5). Hence, based on the characterization and biosorption results, a comprehensive evaluation of the involved mechanisms in such complex system helped to verify the prospective of FS biosorbent for the Zn treatment from solution, in both individual and hybrid processes.

  1. Biosorption of Fe (II) and Cd (II) ions from aqueous solution using a ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Biosorption of Fe (II) and Cd (II) ions from aqueous solution using a low cost ... human activities in the environment poses a lot of risk ... ion exchange or reverse osmosis, electrochemical treatment ..... is the adsorption coefficient, n indicates the.

  2. Biosorptive removal of Pb2+, Cd2+ and Zn2+ ions from water by ...

    African Journals Online (AJOL)

    2010-09-20

    Sep 20, 2010 ... such as seaweeds (Williams and Edyvean, 1997), sugarcane bagasse ... due to their structural composition (they mainly contain cel- lulose ...... study of chromium biosorption by red, green and brown seaweed biomass.

  3. Removal of oxytetracycline and determining its biosorption properties on aerobic granular sludge.

    Science.gov (United States)

    Mihciokur, Hamdi; Oguz, Merve

    2016-09-01

    This study investigates biosorption of Oxytetracycline, a broad-spectrum antibiotic, using aerobic granular sludge as an adsorbent in aqueous solutions. A sequencing batch reactor fed by a synthetic wastewater was operated to create aerobic granular sludge. Primarily, the pore structure and surface area of granular sludge, the chemical structure and the molecular sizes of the pharmaceutical, operating conditions, such as pH, stirring rate, initial concentration of Oxytetracycline, during adsorption process was verified. Subsequently, thermodynamic and kinetic aspects of the adsorption were examined and adsorption isotherm studies were carried out. It was shown that the aerobic granular sludge was a good alternative for biosorption of this pharmaceutical. The pharmaceutical was adsorbed better at pH values of 6-8. The adsorption efficiency increased with rising ionic strength. Also, it was seen that the adsorption process was an exothermic process in terms of thermodynamics. The adsorption can be well explained by Langmuir isotherm model. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Removal of Cu(II) from aqueous solution by agricultural by-product: Peanut hull

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Chunshui, E-mail: silk588@126.com [School of Environment Science and Spatial Informatics, China university of Mining and technology, Xuzhou, Jiangsu 221008 (China) and School of Chemical Engineering, Huai-hai institute of Technology, Lian Yungang, Jiangsu 222005 (China); Wang Liping [School of Environment Science and Spatial Informatics, China university of Mining and technology, Xuzhou, Jiangsu 221008 (China); Chen Wenbin [School of Environment Science and Spatial Informatics, China university of Mining and technology, Xuzhou, Jiangsu 221008 (China); School of Chemical Engineering, Huai-hai institute of Technology, Lian Yungang, Jiangsu 222005 (China)

    2009-09-15

    Peanut hull, an agricultural by-product abundant in China, was used as adsorbent for the removal of Cu(II) from aqueous solutions. The extent of adsorption was investigated as a function of pH, contact time, adsorbate concentration and reaction temperature. The Cu(II) removal was pH-dependent, reaching a maximum at pH 5.5. The biosorption process followed pseudo-second-order kinetics and equilibrium was attained at 2 h. The rate constant increased with the increase of temperature indicates endothermic nature of biosorption. The activation energy (E{sub a}) of Cu(II) biosorption was determined at 17.02 kJ/mol according to Arrhenius equation which shows that biosorption may be an activated chemical biosorption. Other activation parameters such as {Delta}H{sup numbersign}, {Delta}S{sup numbersign}, and {Delta}G{sup numbersign} were also determined from Eyring equation. The equilibrium data were analyzed using the Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) isotherm models depending on temperature. The equilibrium biosorption capacity of Cu(II) determined from the Langmuir equation was 21.25 mg/g at 30 deg. C. The mean free energy E (kJ/mol) got from the D-R isotherm also indicated a chemical ion-exchange mechanism. The thermodynamic parameters such as changes in Gibbs free energy ({Delta}G{sup 0}), enthalpy ({Delta}H{sup 0}) and entropy ({Delta}S{sup 0}) were used to predict the nature of biosorption process. The negative {Delta}G{sup 0} values at various temperatures confirm the biosorption processes are spontaneous.

  5. Study on the primary mechanism of uranium biosorption by rhodotorula glutinis

    International Nuclear Information System (INIS)

    Bai Jing; Zhang Li'na; Fan Fangli; Lin Maosheng; Ding Huajie; Qin Zhi

    2008-01-01

    In this paper, the primary mechanism of uranium biosorption by Rhodotorula glutinis was studied using SEM and FTIR. Obvious changes were observed in the biomass SEM picture before and after uranium adsorption, and the peak of UO 2 at wave number of 904 cm -1 was detected by FTIR, indicated that uranium was really absorbed to Rhodotorula glutinis. (authors)

  6. REMOVAL OF CRYSTAL VIOLET BY BIOSORPTION ONTO DATE STONES

    OpenAIRE

    NOUREDDINE EL MESSAOUDI; MOHAMMED EL KHOMRI; SAFAE BENTAHAR; ABDELLAH DBIK; ABDELLAH LACHERAI

    2016-01-01

    The biosorption has the advantage that it can be applied to effluent disposal and thus brings various responses to the regulatory requirements for environmental protection. This study presents the results obtained from the use of date stones (DS) for the elimination of crystal violet (CV) from aqueous medium. Several analysis techniques were used to determine the different characteristics of biosorbent studied (FTIR, TGA-DTA, SEM and pHzpc).The physico-chemical parameters influence of the bio...

  7. The maximum reservoir capacity of soils for persistent organic pollutants: implications for global cycling

    International Nuclear Information System (INIS)

    Dalla Valle, M.; Jurado, E.; Dachs, J.; Sweetman, A.J.; Jones, K.C.

    2005-01-01

    The concept of maximum reservoir capacity (MRC), the ratio of the capacities of the surface soil and of the atmospheric mixed layer (AML) to hold chemical under equilibrium conditions, is applied to selected persistent organic pollutants (POPs) in the surface 'skin' (1 mm) of soils. MRC is calculated as a function of soil organic matter (SOM) content and temperature-dependent K OA and mapped globally for selected PCB congeners (PCB-28; -153; -180) and HCB, to identify regions with a higher tendency to retain POPs. It is shown to vary over many orders of magnitude, between compounds, locations and time (seasonally/diurnally). The MRC approach emphasises the very large capacity of soils as a storage compartment for POPs. The theoretical MRC concept is compared to reality and its implications for the global cycling of POPs are discussed. Sharp gradients in soil MRC can exist in mountainous areas and between the land and ocean. Exchanges between oceans and land masses via the atmosphere is likely to be an important driver to the global cycling of these compounds, and net ocean-land transfers could occur in some areas. - Major global terrestrial sinks/stores for POPs are identified and the significance of gradients between them discussed

  8. Equilibrium modeling of removal of drimarine yello HG-3GL dye from aqueous solutions by low cost agricultural waste

    International Nuclear Information System (INIS)

    Bhatti, S.N.H.N.; Sadaf, S.; Sadaf, S.; Farrukh, Z.; Noreen, S.

    2014-01-01

    Pollution control is one of the leading issues of society today. The present study was designed to remove the Drimarine Yellow HF-3GL dye from aqueous solutions through biosorption. Sugarcane bagasse was used as biosorbent in native, acetic acid treated and immobilized form. Batch study was conducted to optimize different system variables like pH of solution, medium temperature, biosorbent concentration, initial dye concentration and contact time. Maximum dye removal was observed at pH 2, biosorbent dose of 0.05 g/50 mL and 40 degree C temperature. The equilibrium was achieved in 45-90 min. Different kinetic and equilibrium models were applied to the experimental results. The biosorption kinetic data was found to follow the pseudo second order kinetic model. Freundlich adsorption isotherm model showed a better fitness to the equilibrium data. The value of Gibbs free energy revealed that biosorption of Drimarine Yellow HF-3GL dye by native and pretreated sugarcane bagasse was a spontaneous process. Presence of salt and heavy metal ions in aqueous solution enhanced the biosorption capacity while presence of surfactants decreased the biosorption potential of biosorbent. Dye was desorbed by 1M NaOH solution. Fixed bed column study of Drimarine Yellow HF-3GL was carried out to optimize different parameters like bed height, flow rate and initial dye concentration. It was observed that biosorption capacity increases with increase in initial dye concentration and bed height but decreases with the increase in flow rate. The data of column study was explained very well by BDST model. FT-IR analysis confirmed the involvement of various functional groups, mainly hydroxyl, carboxyl and amine groups. The results proved that sugarcane bagasse waste biomass can be used as a favorable biosorbent for the removal of dyes from aqueous solutions. (author)

  9. The effect of silica concentration on the biosorption of Cu 2+ and Co ...

    African Journals Online (AJOL)

    cations were studied to ascertain the optimal conditions for biosorption to take place. Test solutions contained 0.002 M, 0.07 M and 0.2 M of either copper or cobalt ions. The Bacillus strains removed the copper and cobalt more efficiently from ...

  10. Equilibrium and kinetic studies of copper biosorption by dead Ceriporia lacerata biomass isolated from the litter of an invasive plant in China.

    Science.gov (United States)

    Li, Xiaona; Li, Airong; Long, Mingzhong; Tian, Xingjun

    2015-01-01

    Ceriporia lacerata, a strain of white-rot fungus isolated from the litter of an invasive plant (Solidago canadensis) in China, was little known about its properties and utilization. In this work, the copper(II) biosorption characteristics of formaldehyde inactivated C. lacerata biomass were examined as a function of initial pH, initial copper(II) concentration and contact time, and the adsorptive equilibrium and kinetics were simulated, too. The optimum pH was found to be 6.0 at experimental conditions of initial copper(II) concentration 100 mg/L, biomass dose 2 g/L, contact time 12 h, shaking rate 150 r/min and temperature 25°C. Biosorption equilibrium cost about 1 hour at experimental conditions of pH 6.0, initial copper(II) concentration 100 mg/L, C. lacerata dose 2 g/L, shaking rate 150 r/min and temperature 25°C. At optimum pH 6.0, highest copper(II) biosorption amounts were 6.79 and 7.76 mg/g for initial copper(II) concentration of 100 and 200 mg/L, respectively (with other experimental parameters of C. lacerata dose 2 g/L, shaking rate 150 r/min and temperature 25°C). The pseudo second-order adsorptive model gave the best adjustment for copper(II) biosorption kinetics. The equilibrium data fitted very well to both Langmuir and Freundlich adsorptive isotherm models. Without further acid or alkali treatment for improving adsorption properties, formaldehyde inactivated C. lacerata biomass possesses good biosorption characteristics on copper(II) removal from aqueous solutions.

  11. Metal biosorption-flotation. Application to cadmium removal.

    Science.gov (United States)

    Matis, K A; Zouboulis, A I; Grigoriadou, A A; Lazaridis, N K; Ekateriniadou, L V

    1996-05-01

    Biosorption using suspended non-living biomass, and flotation (for consequent solid/liquid separation of the metal-loaded biomass) have been studied in the laboratory as a possible combined process, for the removal of toxic metals (i.e., cadmium) from dilute aqueous solutions. The various parameters of the process were investigated in depth, including re-use of biosorbent. A filter aid (contained in the biomass industrial waste used) was found not really to interfere. Zeta-potential measurements of the aforementioned system were also carried out. Promising results were obtained during continuous-flow experiments. A flotation residence time of 4 min was achieved. Metal removal and suspended biomass recovery were generally over 95%.

  12. Biosorption of uranium, radium, and cesium

    International Nuclear Information System (INIS)

    Strandberg, G.W.

    1982-01-01

    Some fundamental aspects of the biosorption of metals by microbial cells were investigated. These studies were carried out in conjunction with efforts to develop a process to utilize microbial cells as biosorbents for the removal of radionuclides from waste streams generated by the nuclear fuel cycle. It was felt that an understanding of the mechanism(s) of metal uptake would potentially enable the enhancement of the metal uptake phenomenon through environmental or genetic manipulation of the microorganisms. Also presented are the results of a preliminary investigation of the applicability of microorganisms for the removal of 137 cesium and 226 radium from existing waste solutions. The studies were directed primarily at a characterization of uranium uptake by the yeast, Saccharomyces cerevisiae, and the bacterium, Pseudomonas aeruginosa

  13. Caracterización de la biomasa inactiva de Aspergillus niger O-5 como sorbente de Pb (II

    Directory of Open Access Journals (Sweden)

    Yusleydi Enamorado Horrutiner

    2011-01-01

    Full Text Available The inactive biomass of fungus Aspergillus niger O-5 obtained in Cuba was characterized as sorbent of Pb2+ by several structural analysis and others techniques. In addition, the biomass was studied for the separation / preconcentration of Pb2+ from aqueous solution. The maximum biosorption capacity was obtained for the contact time of 30 min and pH 5. The kinetic of sorption process occurred according to the model of Ho. The Freundlich or Langmuir models suitably described the experimental adsorption isotherms. The biomass can be used as sorbent for Pb2+ with a maximum capacity of 4.7 - 6.2 mg g-1. The pretreatment with NaOH solution improved its sorption capacity.

  14. Biosorption and biodegradation of a sulfur dye in high-strength dyeing wastewater by Acidithiobacillus thiooxidans.

    Science.gov (United States)

    Nguyen, Thai Anh; Fu, Chun-Chieh; Juang, Ruey-Shin

    2016-11-01

    The ability of the bacterial strain Acidithiobacillus thiooxidans to remove sulfur blue 15 (SB15) dye from water samples was examined. This bacterium could not only oxidize sulfur compounds to sulfuric acid but also promote the attachment of the cells to the surface of sulfidic particles, therefore serving as an efficient biosorbent. The biosorption isotherms were better described by the Langmuir equation than by the Freundlich or Dubinin-Radushkevich equation. Also, the biosorption process followed the pseudo-second-order kinetics. At pH 8.3 and SB15 concentrations up to 2000 mg L(-1) in the biomass/mineral salt solution, the dye removal and decolorization were 87.5% and 91.4%, respectively, following the biosorption process. Biodegradation was proposed as a subsequent process for the remaining dye (250-350 mg L(-1)). A central composite design was used to analyze independent variables in the response surface methodology study. Under the optimal conditions (i.e., initial dye concentration of 300 mg L(-1), initial biomass concentration of 1.0 g L(-1), initial pH of 11.7, and yeast extract dose of 60 mg L(-1)), up to 50% of SB15 was removed after 4 days of biodegradation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. A REVIEW OF BIOSORPTION OF CHROMIUM IONS BY MICROORGANISMS

    Directory of Open Access Journals (Sweden)

    Inga Zinicovscaia

    2012-12-01

    Full Text Available Due to its widespread industrial use, chromium has become a serious pollutant in diverse environmental settings. The main source of chromium pollution including the Republic o Moldova is industry. It is a great need to develop new eco-friendly methods of chromium removal. Biosorption of heavy metals is a most promising technology involved in the removal of toxic metals from industrial waste streams and natural waters. This article is an extended abstract of a communication presented at the Conference Ecological Chemistry 2012

  16. The role of pH in heavy metal detoxification by biosorption from ...

    African Journals Online (AJOL)

    The high level of toxic metal pollution in the environment is a result of increased human activities. The hydrogen ion concentration of solutions has been known to affect reactions in solutions. The role of pH in As(V), Pb(II) and Hg(II) ions detoxification by bio-sorption from aqueous solutions using coconut fiber and sawdust ...

  17. Calcium alginate as an eco-friendly supporting material for Baker’s yeast strain in chromium bioremediation

    Directory of Open Access Journals (Sweden)

    M.S. Mahmoud

    2017-12-01

    Full Text Available In this study, Baker’s yeast strain (Saccharomyces cerevisiae biomass was immobilized in alginate extract 3% forming Biomass/Polymer Matrices Beads (BPMB. These beads were investigated for chromium biosorption from aqueous solution. Factors such as solution pH, contact times, temperature values, stirring rates, BPMB dosages and initial chromium ions concentrations were experimentally tested using repeated-batch process to determine the sorption capacity for chromium (VI ions. Batch experiments were conducted at pH range from 1.5 to 7.5. The optimum pH value was 3.5 for direct chromium removal. The effect of chromium concentration was studied using different concentrations from 200 to 1000 ppm. Freundlich’s isothermal model showed better representation of data than Langmuir’s isothermal model with correlation coefficient 0.922. The maximum biosorption capacity of chromium was found to be 154 mg g−1 at initial concentration 200 ppm under optimum conditions. At the end of the experiments, BPMB were investigated for chromium biosorption from tannery effluent sample. Results showed decrease in chromium concentration up to 85%. The availability of recycling of the BPMB was also studied for three subsequent cycles. The surface sequestration of metal ions by BPMB was characterized before and after metal binding using a scanning electron microscope (SEM equipped with an energy dispersive X-ray analysis (EDXA and FTIR spectroscopy in order to determine the mechanisms of chromium biosorption.

  18. Biomass of Spirulina maxima enriched by biosorption process as a new feed supplement for swine.

    Science.gov (United States)

    Saeid, A; Chojnacka, K; Korczyński, M; Korniewicz, D; Dobrzański, Z

    2013-04-01

    This paper deals with the new mineral feed additives with Cu produced in a biosorption process from a semi-technical scale. The natural biomass of edible microalga Spirulina sp. was enriched with Cu(II) and then used as a mineral supplement in feeding experiments on swine to assess its nutrition properties. A total of 24 piglets divided into two groups (control and experimental) were used to determine the bioavailability of a new generation of mineral feed additives based on Spirulina maxima . The control group was feed using traditional inorganic supplements of microelements, while the experimental group was fed with the feed containing the biomass of S. maxima enriched with Cu by biosorption. The apparent absorption was 30 % ( P  maxima -is a promising alternative to currently used inorganic salts as the source of nutritionally important microelements.

  19. Biosorption of Cd(II) and Cs(I) from aqueous solution by live and dead cells of Saccharomyces carlsbergensis PTCC 5051.

    Science.gov (United States)

    Sayyadi, Shayan; Ahmady-Asbchin, Salman; Kamali, Kasra

    2018-02-01

    The biosorption characteristics of Cd(II) and Cs(I) using live and dead cells of Saccharomyces carlsbergensis PTCC 5051 as biosorbents have been investigated in the present research. The influence of different experimental parameters such as initial pH (pHi), shaking rate, sorption time and initial metal concentration was evaluated. The optimum pH was obtained as 4 for Cd(II) and 7 for Cs(I). The experimental adsorption data were fitted to the Langmuir linear equation adsorption model. The highest metal uptake values of 0.593 and 0.473 mmol g -1 were calculated for Cd(II) and Cs(I), respectively. The results of Fourier transform infrared analysis suggested the involvement of amine, carboxyl and hydroxyl groups during the biosorption process and also indicated that more functional groups were involved in the biosorption process of live adsorbents, compared with those linked to dead biomass. The results showed that the biomass of S. carlsbergensis PTCC 5051 is a suitable biosorbent for the removal of Cd(II) and Cs(I) from the aqueous solutions.

  20. Uranium and neodymium biosorption using novel chelating polysaccharide.

    Science.gov (United States)

    Elsalamouny, Ahmed R; Desouky, Osman A; Mohamed, Saad A; Galhoum, Ahmed A; Guibal, Eric

    2017-11-01

    A direct reaction is described to prepare hydrophobic α-aminomethylphosphonic acid as a novel chitosan-based material. It exhibits chelating properties for polyvalent metal ions such as U(VI) and Nd(III) ions. The new sorbent was fully characterized using Elemental analysis, scanning electron microscope (SEM) and FTIR spectra. Different parameters were examined in order to evaluate the optimum conditions for U(VI) and Nd(III) ions biosorption. Sorption mechanisms of metal ions were investigated using kinetic and isotherm models. In addition, the sorbent selectivity was tested for both metal ions together in a binary solution. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. The biosorption of Cd2+ ions by wood pulp of Pinus negra Arnold

    International Nuclear Information System (INIS)

    Loucka, T.; Janos, P.

    2001-01-01

    Biosorption is one of those processes that use biomass (mostly inanimate) for elimination of various chemical substances (e.g. heavy metals) from environment. Until now algae have been studied as bio-sorbents in most cases, but we can also take advantage of wood pulp (or sawdust) that is normal waste material resulting in large amounts from various productions. Considering the fact that bio-sorbent can be taken as natural ion exchanger containing slightly acidic or basic functional groups (2,3,4), it is necessary to suppose that part of functional groups is filled by various metals before starting the measurements. Substituting these bound metallic cations by protonization we can gain biomass in given condition and some important information about the content of cations bound to bio-sorbent through ion exchange. The material used for biosorption observation was sawdust of Pinus negra Arnold. For measurements we used the part which passed through the 0.6 mm sieve. By dehydrating at the 1200 C for the time of 24 hours we gained the water part that was 5.44% of original weight

  2. Immobilization of aluminum by biomass of microscopic fungi - an introduction to the study of processes of biosorption and bioaccumulation in the environment

    International Nuclear Information System (INIS)

    Simkova, L.; Urik, M.; Matus, P.; Cernansky, S.; Simonovicova, A.

    2010-01-01

    The aim of this work was to study Al immobilization from aqueous solutions using biomass of microscopic fungi (Aspergillus niger, Aspergillus clavatus, Neosartorya fischeri) in vitro. For this purpose, have been studied the processes of its biosorption and bioaccumulation by compact form and pelletising of biomass with respect to the further optimization of experimental conditions for the streamlining of the procedures. Effect of both processes was observed, the course of pH and impact of potential metabolism of biomass on biosorption of aluminium.

  3. Modeling the effect of pH on biosorption of heavy metals by citrus peels

    International Nuclear Information System (INIS)

    Schiewer, Silke; Patil, Santosh B.

    2008-01-01

    Biosorption by materials such as citrus peels could be a cost effective technique for removing toxic heavy metals from wastewater. Orange peels, lemon peels and lemon-based protonated pectin peels (PPP) had Langmuir sorption capacities of 0.7-1.2 mequiv./g (39-67 mg/g) of Cd per biosorbent dry weight. A potentiometric titration was interpreted using a continuous pK a spectrum approach. It revealed four acidic sites with pK a values of 3.8, 6.4, 8.4 and 10.7, and a total site quantity of 1.14 mequiv./g. Sorption isotherms of untreated citrus peels showed an unusual shape with two plateau values. Protonated pectin peels on the other hand showed a typical Langmuir behavior with a higher sorption capacity than untreated peels. At lower pH, metal binding was reduced due to increased competition by protons. This was modeled using pH-sensitive isotherm equations. It was not necessary to assume four binding sites; using one site with pK a 3.8 and a quantity of 1.14 mequiv./g was sufficient. It was possible to accurately predict metal uptake at one pH using the metal binding constant determined at a different pH. A 1:1 stoichiometry model fit the sorption isotherms shape better than a 1:2 stoichiometry. For constant pH, the 1:1 stoichiometry reduces to the Langmuir model

  4. Modeling the effect of pH on biosorption of heavy metals by citrus peels

    Energy Technology Data Exchange (ETDEWEB)

    Schiewer, Silke [Department of Civil and Environmental Engineering, University of Alaska Fairbanks, PO Box 755900, Fairbanks, AK 99775 (United States)], E-mail: ffsos@uaf.edu; Patil, Santosh B. [Department of Civil and Environmental Engineering, University of Alaska Fairbanks, PO Box 755900, Fairbanks, AK 99775 (United States)

    2008-08-30

    Biosorption by materials such as citrus peels could be a cost effective technique for removing toxic heavy metals from wastewater. Orange peels, lemon peels and lemon-based protonated pectin peels (PPP) had Langmuir sorption capacities of 0.7-1.2 mequiv./g (39-67 mg/g) of Cd per biosorbent dry weight. A potentiometric titration was interpreted using a continuous pK{sub a} spectrum approach. It revealed four acidic sites with pK{sub a} values of 3.8, 6.4, 8.4 and 10.7, and a total site quantity of 1.14 mequiv./g. Sorption isotherms of untreated citrus peels showed an unusual shape with two plateau values. Protonated pectin peels on the other hand showed a typical Langmuir behavior with a higher sorption capacity than untreated peels. At lower pH, metal binding was reduced due to increased competition by protons. This was modeled using pH-sensitive isotherm equations. It was not necessary to assume four binding sites; using one site with pK{sub a} 3.8 and a quantity of 1.14 mequiv./g was sufficient. It was possible to accurately predict metal uptake at one pH using the metal binding constant determined at a different pH. A 1:1 stoichiometry model fit the sorption isotherms shape better than a 1:2 stoichiometry. For constant pH, the 1:1 stoichiometry reduces to the Langmuir model.

  5. Recovery of gold as a type of porous fiber by using biosorption followed by incineration.

    Science.gov (United States)

    Park, Seong-In; Kwak, In Seob; Bae, Min A; Mao, Juan; Won, Sung Wook; Han, Do Hyeong; Chung, Yong Sik; Yun, Yeoung-Sang

    2012-01-01

    This study introduces a new process for the recovery of gold in porous fiber form by the incineration of Au-loaded biosorbent fiber from gold-cyanide solutions. For the recovery of gold from such aqueous solutions, polyethylenimine (PEI)-modified bacterial biosorbent fiber (PBBF) and PEI-modified chitosan fiber (PCSF) were developed and used. The maximum uptakes of Au(I) ions were estimated as 421.1 and 251.7 mg/g at pH 5.5 for PBBF and PCSF, respectively. Au-loaded biosorbents were freeze-dried and then incinerated to oxidize their organic constituents while simultaneously obtaining reduced gold. As a result, porous metallic gold fibers were obtained with 60 μm of diameter. Scanning electron microscopic (SEM) analysis and mercury porosimetry revealed the fibers to have 60 μm of diameter and to be highly porous and hollow. The proposed process therefore offers the potential for the efficient recovery of metallic porous gold fibers using combined biosorption and incineration. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Cadmium ion removal using biosorbents derived from fruit peel wastes

    Directory of Open Access Journals (Sweden)

    Wanna Saikaew

    2009-11-01

    Full Text Available The ability of fruit peel wastes, corn, durian, pummelo, and banana, to remove cadmium ions from aqueous solution by biosorption were investigated. The experiments were carried out by batch method at 25oC. The influence of particle sizes, solution pH, and initial cadmium ion concentrations were evaluated on the biosorption studies. The result showed that banana peel had the highest cadmium ions removal followed by durian, pummelo, and corn peels at cadmium ions removal of 73.15, 72.17, 70.56, and 51.22%, respectively. There was a minimal effect when using different particle sizes of corn peel as biosorbent, while the particle size of the others had no influence on the removal of cadmium ions. The cadmium ions removal increased significantly as the pH of the solution increased rapidly from 1 to 5. At pH 5, the cadmium ions removal reached a maximum value. The equilibrium process was best described by the Langmuir isotherms, with maximum biosorption capacities of durian, pummelo, and banana peel of 18.55, 21.83, and 20.88 mg/g respectively. Fourier Transform Infrared Spectroscopy revealed that carboxyl, hydroxyl, and amide groups on the fruit peels’ surface and these groups were involved in the adsorption of the cadmium ions.

  7. Removal of copper(II) ions from aqueous solutions by Azolla rongpong: batch and continuous study.

    Science.gov (United States)

    Nedumaran, B; Velan, M

    2008-01-01

    Batch and packed bed continuous biosorption studies were conducted to investigate the kinetics and isotherms of Cu(II) ions on the biomass of blue green alga Azolla rongpong. It is observed that the biosorption capacity of algae depends on initial pH and dosage. The biosorption capacity increases with increasing concentration and follows Freundlich isotherm model well with k and n values 0.06223 and 0.949 respectively. The optimum pH of 3.5 with an algae dosage of 1 g/L was observed. The results indicate that with the advantage of high metal biosorption capacity and recovery of Cu(II) ions, A. rongpong can be used as an efficient and economic biosorbent for the removal and recovery of toxic heavy metals from aqueous wastes even at higher concentration.

  8. Removal of heavy metals from waste water of tanning leather ...

    African Journals Online (AJOL)

    The most dominant A. candidus on the isolation plates exhibited the highest activity for biosorption of heavy metals. The results indicate that fungi of contaminated soils have high level of metal biosorption capacities. Keywords: Fungi, industrial wastewater, biosorption, heavy metals. African Journal of Biotechnology Vol.

  9. Pecan nutshell as biosorbent to remove Cu(II), Mn(II) and Pb(II) from aqueous solutions.

    Science.gov (United States)

    Vaghetti, Julio C P; Lima, Eder C; Royer, Betina; da Cunha, Bruna M; Cardoso, Natali F; Brasil, Jorge L; Dias, Silvio L P

    2009-02-15

    In the present study we reported for the first time the feasibility of pecan nutshell (PNS, Carya illinoensis) as an alternative biosorbent to remove Cu(II), Mn(II) and Pb(II) metallic ions from aqueous solutions. The ability of PNS to remove the metallic ions was investigated by using batch biosorption procedure. The effects such as, pH, biosorbent dosage on the adsorption capacities of PNS were studied. Four kinetic models were tested, being the adsorption kinetics better fitted to fractionary-order kinetic model. Besides that, the kinetic data were also fitted to intra-particle diffusion model, presenting three linear regions, indicating that the kinetics of adsorption should follow multiple sorption rates. The equilibrium data were fitted to Langmuir, Freundlich, Sips and Redlich-Peterson isotherm models. Taking into account a statistical error function, the data were best fitted to Sips isotherm model. The maximum biosorption capacities of PNS were 1.35, 1.78 and 0.946mmolg(-1) for Cu(II), Mn(II) and Pb(II), respectively.

  10. Co-biosorption of copper and glyphosate by Ulva lactuca.

    Science.gov (United States)

    Trinelli, María Alcira; Areco, María Mar; Afonso, María dos Santos

    2013-05-01

    This study investigated the adsorption of glyphosate (PMG) onto the green algae Ulva lactuca. PMG was not adsorbed by U. lactuca but PMG was adsorbed when the process was mediated by Cu(II) with molar ratios Cu(II):PMG≥1.5:1. U. lactuca was characterized by water adsorption surface area, FTIR, SEM and EDS. The Langmuir and Freundlich models were applied. Results showed that the biosorption processes for copper and PMG in the presence of copper were described described by the Langmuir model (qmax=0.85±0.09 mmol g(-1), KL=0.55±0.14 l mmol(-1) and qmax=3.65±0.46 mmol g(-1), KL=0.103±0.03 l mmol(-1), respectively). Copper adsorption was greater in the presence of PMG than in the absence of the pesticide and the adsorption can only be represented by the Freundlich model (KF=0.08±0.01, 1/n=1.86±0.07). In all cases studied, the maximum metal uptake (qmax) increased with increasing pH. Surface complexes with a stoichiometry ranging from ≡Cu-PMG-Cu to ≡Cu-PMG-Cu3 are suggested as reaction products of the process. Due to the increasing amounts of PMG applied in Argentina, natural reservoirs present considerable amounts of this herbicide. The value of this work resides in using U. lactuca, a marine seaweed commonly found along coastlines all over the world, as a biosorbent for PMG. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Assessment of precast beam-column using capacity demand response spectrum subject to design basis earthquake and maximum considered earthquake

    Science.gov (United States)

    Ghani, Kay Dora Abd.; Tukiar, Mohd Azuan; Hamid, Nor Hayati Abdul

    2017-08-01

    Malaysia is surrounded by the tectonic feature of the Sumatera area which consists of two seismically active inter-plate boundaries, namely the Indo-Australian and the Eurasian Plates on the west and the Philippine Plates on the east. Hence, Malaysia experiences tremors from far distant earthquake occurring in Banda Aceh, Nias Island, Padang and other parts of Sumatera Indonesia. In order to predict the safety of precast buildings in Malaysia under near field ground motion the response spectrum analysis could be used for dealing with future earthquake whose specific nature is unknown. This paper aimed to develop of capacity demand response spectrum subject to Design Basis Earthquake (DBE) and Maximum Considered Earthquake (MCE) in order to assess the performance of precast beam column joint. From the capacity-demand response spectrum analysis, it can be concluded that the precast beam-column joints would not survive when subjected to earthquake excitation with surface-wave magnitude, Mw, of more than 5.5 Scale Richter (Type 1 spectra). This means that the beam-column joint which was designed using the current code of practice (BS8110) would be severely damaged when subjected to high earthquake excitation. The capacity-demand response spectrum analysis also shows that the precast beam-column joints in the prototype studied would be severely damaged when subjected to Maximum Considered Earthquake (MCE) with PGA=0.22g having a surface-wave magnitude of more than 5.5 Scale Richter, or Type 1 spectra.

  12. Biosorption and biotransformation of chromium by Serratia sp. isolated from tannery effluent.

    Science.gov (United States)

    Srivastava, Shaili; Thakur, Indu Shekhar

    2012-01-01

    A bacterium isolated from soil and sediment ofa leather tanning mill's effluent was identified as Serratia sp. by the analysis of 16S rDNA. Scanning electron microscopy-energy dispersive X-ray analysis (SEM-EDX) and transmission electron microscopy (TEM) were used to assess morphological changes and confirm chromium biosorption in Serratia sp. both in a shake-flask culture containing chromium and in a tannery wastewater. The SEMEDX and the elemental analysis of the chromate-containing samples confirmed the binding of chromium with the bacterial biomass. The TEM exhibited chromium accumulation throughout the bacterial cell, with some granular deposits in the cell periphery and in the cytoplasm. X-ray diffraction analysis (XRD) was used to quantify the chromium and to determine the chemical nature of the metal-microbe interaction. The XRD data showed the crystalline character of the precipitates, which consisted of mainly calcium chromium oxide, chromium fluoride phosphate and related organo-Cr(III) complex crystals. The XRD data also revealed a strong involvement of cellular carboxyl and phosphate groups in chromium binding by the bacterial biomass. The results of the study indicated that a combined mechanism of ion-exchange, complexation, croprecipitation and immobilization was involved in the biosorption of chromium by bacterial cells in contaminated environments.

  13. Bayesian modeling of the assimilative capacity component of nutrient total maximum daily loads

    Science.gov (United States)

    Faulkner, B. R.

    2008-08-01

    Implementing stream restoration techniques and best management practices to reduce nonpoint source nutrients implies enhancement of the assimilative capacity for the stream system. In this paper, a Bayesian method for evaluating this component of a total maximum daily load (TMDL) load capacity is developed and applied. The joint distribution of nutrient retention metrics from a literature review of 495 measurements was used for Monte Carlo sampling with a process transfer function for nutrient attenuation. Using the resulting histograms of nutrient retention, reference prior distributions were developed for sites in which some of the metrics contributing to the transfer function were measured. Contributing metrics for the prior include stream discharge, cross-sectional area, fraction of storage volume to free stream volume, denitrification rate constant, storage zone mass transfer rate, dispersion coefficient, and others. Confidence of compliance (CC) that any given level of nutrient retention has been achieved is also determined using this approach. The shape of the CC curve is dependent on the metrics measured and serves in part as a measure of the information provided by the metrics to predict nutrient retention. It is also a direct measurement, with a margin of safety, of the fraction of export load that can be reduced through changing retention metrics. For an impaired stream in western Oklahoma, a combination of prior information and measurement of nutrient attenuation was used to illustrate the proposed approach. This method may be considered for TMDL implementation.

  14. Evaluation of the individuality of white rot macro fungus for the decolorization of synthetic dye.

    Science.gov (United States)

    Pandey, Priyanka; Singh, Ram Praksh; Singh, Kailash Nath; Manisankar, Paramasivam

    2013-01-01

    A biosorbent was developed by simple dried Agaricus bisporus (SDAB) and effectively used for the biosorption of cationic dyes, Crystal Violet and Brilliant Green. For the evaluation of the biosorbent system, all the batch equilibrium parameters like pH, biomass dose, contact time, and temperature were optimized to determine the decolorization efficiency of the biosorbent. The maximum yields of dye removal were achieved at pH 4.0 for Crystal Violet (CV) and pH 5.0 for Brilliant Green (BG), which are closer to their natural pH also. Equilibrium was established at 60 and 40 min for CV and BG, respectively. Pseudo first-order, pseudo second-order, and intraparticle-diffusion kinetic models were studied at different temperatures. Isotherm models such as Freundlich, Langmuir, and Dubinin-Radushkevich were also studied. Biosorption processes were successfully described by Langmuir isotherm model and the pseudo second-order kinetic model. The biosorption capacity of A. bisporus over CV and BG were found as 21.74 and 12.16 mg gm(-1). Thermodynamic parameters indicated that the CV and BG dye adsorption onto A. bisporus is spontaneous and exothermic in the single and ternary systems. Scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy were used for the surface morphology, crystalline structure of biosorbent, and dye-biosorbent interaction, respectively. This analysis of the biosorption data confirmed that these biosorption processes are ecofriendly and economical. Thus, this biomass system may be useful for the removal of contaminating cationic dyes.

  15. Simultaneous biosorption of selenium, arsenic and molybdenum with modified algal-based biochars.

    Science.gov (United States)

    Johansson, Charlotte L; Paul, Nicholas A; de Nys, Rocky; Roberts, David A

    2016-01-01

    Ash disposal waters from coal-fired power stations present a challenging water treatment scenario as they contain high concentrations of the oxyanions Se, As and Mo which are difficult to remove through conventional techniques. In an innovative process, macroalgae can be treated with Fe and processed through slow pyrolysis into Fe-biochar which has a high affinity for oxyanions. However, the effect of production conditions on the efficacy of Fe-biochar is poorly understood. We produced Fe-biochar from two algal sources; "Gracilaria waste" (organic remnants after agar is extracted from cultivated Gracilaria) and the freshwater macroalgae Oedogonium. Pyrolysis experiments tested the effects of the concentration of Fe(3+) in pre-treatment, and pyrolysis temperatures, on the efficacy of the Fe-biochar. The efficacy of Fe-biochar increased with increasing concentrations of Fe(3+) in the pre-treatment solutions, and decreased with increasing pyrolysis temperatures. The optimized Fe-biochar for each biomass was produced by treatment with a 12.5% w/v Fe(3+) solution, followed by slow pyrolysis at 300 °C. The Fe-biochar produced in this way had higher a biosorption capacity for As and Mo (62.5-80.7 and 67.4-78.5 mg g(-1) respectively) than Se (14.9-38.8 mg g(-1)) in single-element mock effluents, and the Fe-biochar produced from Oedogonium had a higher capacity for all elements than the Fe-biochar produced from Gracilaria waste. Regardless, the optimal Fe-biochars from both biomass sources were able to effectively treat Se, As and Mo simultaneously in an ash disposal effluent from a power station. The production of Fe-biochar from macroalgae is a promising technique for treatment of complex effluents containing oxyanions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Biosorption of uranium by Pseudomonas aeruginosa strain CSU: Characterization and comparison studies

    International Nuclear Information System (INIS)

    Hu, M.Z.C.; Norman, J.M.; Faison, B.D.; Reeves, M.E.

    1996-01-01

    Pseudomonas aeruginosa strain CSU, a nongenetically engineered bacterial strain known to bind dissolved hexavalent uranium (as UO 2 2+ and/or its cationic hydroxo complexes) was characterized with respect to its sorptive activity. The uranium biosorption equilibrium could be described by the Langmuir isotherm. The rate of uranium adsorption increased following permeabilization of the outer and/or cytoplasmic membrane by organic solvents such as acetone. P. aeruginosa CSU biomass was significantly more sorptive toward uranium than certain novel, patented biosorbents derived from algal or fungal biomass sources. P. aeruginosa CSU biomass was also competitive with commercial cation-exchange resins, particularly in the presence of dissolved transition metals. Uranium binding by P. aeruginosa CSU was clearly pH dependent. Uranium loading capacity increased with increasing pH under acidic conditions, presumably as a function of uranium speciation and due to the H + competition at some binding sites. Nevertheless, preliminary evidence suggests that this microorganism is also capable of binding anionic hexavalent uranium complexes. Ferric iron was a strong inhibitor of uranium binding to P. aeruginosa CSU biomass, and the presence of uranium also decreased the Fe 3+ loading when the biomass was not saturated with Fe 3+ . Thus, a two-state process in which iron and uranium are removed in consecutive steps was proposed for efficient use of the biomass as a biosorbent in uranium removal from mine wastewater, especially acidic leachates

  17. Biosorption of methylene blue from aqueous solution by fallen phoenix tree's leaves

    International Nuclear Information System (INIS)

    Han Runping; Zou Weihua; Yu Weihong; Cheng Shujian; Wang Yuanfeng; Shi Jie

    2007-01-01

    A new adsorbent, the fallen phoenix tree's leaf, has been investigated in order to remove methylene blue (MB) from aqueous solutions. Variables of the system, including contact time, leaf dose, solution pH, salt concentration and initial MB concentration, were adopted to study their effects on MB biosorption. The results showed that as the dose of leaf increased, the percentage of MB sorption increased accordingly. There was no significant difference about the quantity of MB adsorbed onto leaf as the pH was within the range 4.5-10.0. The salt concentration has negative effect on MB removal. The equilibrium data were analyzed using the Langmuir and the Freundlich isotherms. The results of non-linear regressive analysis are that the Langmuir isotherm is better fit than the Freundlich isotherm at different temperature according to the values of determined coefficients (R 2 ) and χ 2 -statistic (SS). The Langmuir monolayer saturation capacities of MB adsorbed onto leaf are 80.9, 83.8, 89.7 mg g -1 at 295, 309 and 323 K, respectively. Using the equilibrium concentration contents obtained at different temperatures, various thermodynamic parameters, such as ΔG o , ΔH o and ΔS o , have been calculated. The thermodynamics parameters of MB/leaf system indicate spontaneous and endothermic process. It was concluded that an increase in temperature be advantage to adsorb MB onto leaf

  18. Biosorption of Microelements by Spirulina: Towards Technology of Mineral Feed Supplements

    Science.gov (United States)

    Chojnacka, Katarzyna

    2014-01-01

    Surface characterization and metal ion adsorption properties of Spirulina sp. and Spirulina maxima were verified by various instrumental techniques. FTIR spectroscopy and potentiometric titration were used for qualitative and quantitative determination of metal ion-binding groups. Comparative FTIR spectra of natural and Cu(II)-treated biomass proved involvement of both phosphoryl and sulfone groups in metal ions sorption. The potentiometric titration data analysis provided the best fit with the model assuming the presence of three types of surface functional groups and the carboxyl group as the major binding site. The mechanism of metal ions biosorption was investigated by comparing the results from multielemental analyses by ICP-OES and SEM-EDX. Biosorption of Cu(II), Mn(II), Zn(II), and Co(II) ions by lyophilized Spirulina sp. was performed to determine the metal affinity relationships for single- and multicomponent systems. Obtained results showed the replacement of naturally bound ions: Na(I), K(I), or Ca(II) with sorbed metal ions in a descending order of Mn(II) > Cu(II) > Zn(II) > Co(II) for single- and Cu(II) > Mn(II) > Co(II) > Zn(II) for multicomponent systems, respectively. Surface elemental composition of natural and metal-loaded material was determined both by ICP-OES and SEM-EDX analysis, showing relatively high value of correlation coefficient between the concentration of Na(I) ions in algal biomass. PMID:25386594

  19. Biosorptive removal of inorganic arsenic species and fluoride from aqueous medium by the stem of Tecomella undulate.

    Science.gov (United States)

    Brahman, Kapil Dev; Kazi, Tasneem Gul; Baig, Jameel Ahmed; Afridi, Hassan Imran; Arain, Sadaf Sadia; Saraj, Saima; Arain, Muhammad B; Arain, Salma Aslam

    2016-05-01

    Simultaneous removal of fluoride (F(-)), inorganic arsenic species, As(III) and As(V), from aqueous samples has been performed using an economic indigenous biosorbent (Stem of Tecomella undulata). The inorganic As species in water samples before and after biosorption were determined by cloud point and solid phase extraction methods, while F(-) was determined by ion chromatography. Batch experiments were carried out to evaluate the equilibrium adsorption isotherm studies for As(III), As(V) and F(-) in aqueous solutions. Several parameters of biosorption were optimized such as pH, biomass dosage, analytes concentration, time and temperature. The surface of biosorbent was characterized by SEM and FTIR. The FTIR study indicated the presence of carbonyl and amine functional groups which may have important role in the sorption/removal of these ions. Thermodynamic and kinetic study indicated that the biosorption of As(III), As(V) and F(-) were spontaneous, exothermic and followed by pseudo-second-order. Meanwhile, the interference study revealed that there was no significant effect of co-existing ions for the removal of inorganic As species and F(-) from aqueous samples (p > 0.05). It was observed that the indigenous biosorbent material simultaneously adsorbed As(III) (108 μg g(-1)), As(V) (159 μg g(-1)) and F(-) (6.16 mg g(-1)) from water at optimized conditions. The proposed biosorbent was effectively regenerated and efficiently used for several experiments, to remove the As(III), As(V) and F(-) from real water sample collected from endemic area of Pakistan. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Equilibrium, thermodynamic and kinetic studies for the biosorption of aqueous lead(II), cadmium(II) and nickel(II) ions on Spirulina platensis

    Energy Technology Data Exchange (ETDEWEB)

    Seker, Ayseguel [Department of Chemistry, Izmir Institute of Technology, Urla 35430, Izmir (Turkey)], E-mail: aysegulseker@iyte.edu.tr; Shahwan, Talal [Department of Chemistry, Izmir Institute of Technology, Urla 35430, Izmir (Turkey)], E-mail: talalshahwan@iyte.edu.tr; Eroglu, Ahmet E. [Department of Chemistry, Izmir Institute of Technology, Urla 35430, Izmir (Turkey)], E-mail: ahmeteroglu@iyte.edu.tr; Yilmaz, Sinan [Department of Chemistry, Izmir Institute of Technology, Urla 35430, Izmir (Turkey)], E-mail: sinanyilmaz@iyte.edu.tr; Demirel, Zeliha [Department of Biology, Ege University, Bornova 35100, Izmir (Turkey)], E-mail: zelihademirel@gmail.com; Dalay, Meltem Conk [Department of Bioengineering, Ege University, Bornova 35100, Izmir (Turkey)], E-mail: meltemconkdalay@gmail.com

    2008-06-15

    The biosorption of lead(II), cadmium(II) and nickel(II) ions from aqueous solution by Spirulina platensis was studied as a function of time, concentration, temperature, repetitive reactivity, and ionic competition. The kinetic results obeyed well the pseudo second-order model. Freundlich, Dubinin Radushkevich and Temkin isotherm models were applied in describing the equilibrium partition of the ions. Freundlich isotherm was applied to describe the design of a single-stage batch sorption system. According to the thermodynamic parameters such as {delta}G{sup o}, {delta}H{sup o}and {delta}S{sup o} calculated, the sorption process was endothermic and largely driven towards the products. Sorption activities in a three metal ion system were studied which indicated that there is a relative selectivity of the biosorbent towards Pb{sup 2+} ions. The measurements of the repetitive reusability of S. platensis indicated a large capacity towards the three metal ions.

  1. Metallic Biosorption Using Yeasts in Continuous Systems

    Directory of Open Access Journals (Sweden)

    Karla Miriam Hernández Mata

    2013-01-01

    Full Text Available Mining effluents were found to be the main source of pollution by heavy metals of the surface water in the San Pedro River in Sonora, Mexico. The overall objective of this study was to determine the biosorption of Zn, Cu, Mn, and Fe with yeasts isolated from San Pedro River in a continuous system. The tests conducted in two reactors packed with zeolite connected in series. The first reactor was inoculated mixing two yeasts species, and the effluent of the first reactor was fed to second reactor. Subsequently, the first reactor was fed with contaminated water of San Pedro River and effluent from this was the second reactor influent. After 40 days of the experiment a reduction of 81.5% zinc, 76.5% copper, manganese 95.5%, and 99.8% of iron was obtained. These results show that the selected yeasts are capable of biosorbing zinc, copper, manganese, and iron under these conditions.

  2. Adsorption of thorium(IV) from aqueous solution by non-living biomass of mangrove endophytic fungus Fusarium sp. ZZF51

    International Nuclear Information System (INIS)

    Yang, S.K.; Tan, N.; Yan, X.M.; Chen, F.; Lin, Y.C.

    2013-01-01

    The adsorption of thorium(IV) from aqueous solution by mangrove endophytic fungus Fusarium sp. ZZF51 is studied by using a batch experiments. The parameters that affect the thorium(IV) sorption, such as solution pH, initial thorium(IV) concentration, contact time, and biomass dose, are discussed in detail. The maximum biosorption of thorium(IV) and the equilibrium sorption capacity are found to be 91 ± 1 % and 11.35 mg g -1 respectively at pH 3.0, contact time 20 min, initial thorium(IV) concentration 50 mg L -1 and non-living biomass dose 4.0 g L -1 . Kinetics data follow the pseudo-second-order model and equilibrium data agree with the Temkin isotherm model very well. FT-IR analysis indicates that hydroxyl and carbonyl groups play an important role in the biosorption process. (author)

  3. Seaweeds for the remediation of wastewaters contaminated with zinc(II) ions

    International Nuclear Information System (INIS)

    Senthilkumar, R.; Vijayaraghavan, K.; Thilakavathi, M.; Iyer, P.V.R.; Velan, M.

    2006-01-01

    Eleven different species of marine macroalgae were screened at different pH conditions on the basis of zinc(II) biosorption potential. Among the seaweeds, a green alga, Ulva reticulata, exhibited a highest uptake of 36.1 mg/g at pH 5.5 and 100 mg/l initial zinc(II) concentration. Further experiments were conducted to evaluate the zinc(II) biosorption potential of U. reticulata. Sorption isotherm data obtained at different pH (5-6) and temperature (25-35 deg. C) conditions were fitted well with Sips model followed by Freundlich, Redlich-Peterson and Langmuir models. A maximum zinc(II) biosorption capacity of 135.5 mg/g was observed at optimum conditions of 5.5 (pH) and 30 deg. C (temperature), according to the Langmuir model. It was observed from the kinetic data that the zinc(II) biosorption process using U. reticulata follows pseudo-second-order kinetics. Various thermodynamic parameters, such as ΔG o , ΔH o and ΔS o were calculated and they indicated that the present system was a spontaneous and an endothermic process. The influence of the co-ions (Na + , K + , Ca 2+ and Mg 2+ ) along with zinc(II) present in the wastewater was also studied. Desorption of zinc(II) ions from the zinc(II)-loaded biomass were examined using 0.1 M CaCl 2 at different pH conditions in three sorption-desorption cycles. A fixed-bed column (2 cm i.d. and 35 cm height) was employed to evaluate the continuous biosorption performance of U. reticulata. The column experiments at different bed heights and flow rates revealed that the maximum zinc(II) uptake was obtained at the highest bed height (25 cm) and the lowest flow rate (5 ml/min). Column data were fitted well with Thomas, Yoon-Nelson and modified dose-response models. The column regeneration studies were carried out for three sorption-desorption cycles. A loss of sorption performance was observed during regeneration cycles indicated by a shortened breakthrough time and a decreased zinc(II) uptake

  4. Isolation and identification of Trichoderma harzianum from groundwater: An effective biosorbent for defluoridation of groundwater.

    Science.gov (United States)

    Koshle, Shalini; Mahesh, S; Swamy, S Nanjunda

    2016-01-01

    The ability of non-viable form of Trichoderma harzianum, isolated from fluoride rich groundwater, was investigated as biosorbent for defluoridation of groundwater. Biosorption experiments were carried out at laboratory scale for removal of fluoride from groundwater. Significant effect of operational parameters on fluoride biosorption using Trichoderma harzianum as biosorbent was evaluated by varying operational parameters such as: initial fluoride concentration (2-8 mgl(-1)), biosorbent dose (0.4-1.6g/100ml), groundwater pH (6-10), temperature (30-50 degrees C) and biosorption time (30-120 min). The fluoride adsorption isotherms were modeled by Langmuir and Freundlich isotherms. Our result showed that fluoride biosorption, significantly increased with increase in groundwater pH, biosorbent dose, temperature and biosorption time, whereas increase in initial fluoride concentration reduced fluoride removal. The fluoride biosorption was rapid and maximum fluoride uptake was attained with 1.6g 100ml(-1) biosorbent within 60 min. Optimal pH 10 and temperature 50 degrees C gave maximum defluoridation efficiency. Freundlich isotherm fits well for defluoridation of groundwater using Trichoderma harzianum as biosorbent which indicated that biosorbent surface sites were heterogeneous in nature and fitted into heterogeneous site binding model.

  5. Maximum capacity model of grid-connected multi-wind farms considering static security constraints in electrical grids

    International Nuclear Information System (INIS)

    Zhou, W; Oodo, S O; He, H; Qiu, G Y

    2013-01-01

    An increasing interest in wind energy and the advance of related technologies have increased the connection of wind power generation into electrical grids. This paper proposes an optimization model for determining the maximum capacity of wind farms in a power system. In this model, generator power output limits, voltage limits and thermal limits of branches in the grid system were considered in order to limit the steady-state security influence of wind generators on the power system. The optimization model was solved by a nonlinear primal-dual interior-point method. An IEEE-30 bus system with two wind farms was tested through simulation studies, plus an analysis conducted to verify the effectiveness of the proposed model. The results indicated that the model is efficient and reasonable.

  6. Maximum capacity model of grid-connected multi-wind farms considering static security constraints in electrical grids

    Science.gov (United States)

    Zhou, W.; Qiu, G. Y.; Oodo, S. O.; He, H.

    2013-03-01

    An increasing interest in wind energy and the advance of related technologies have increased the connection of wind power generation into electrical grids. This paper proposes an optimization model for determining the maximum capacity of wind farms in a power system. In this model, generator power output limits, voltage limits and thermal limits of branches in the grid system were considered in order to limit the steady-state security influence of wind generators on the power system. The optimization model was solved by a nonlinear primal-dual interior-point method. An IEEE-30 bus system with two wind farms was tested through simulation studies, plus an analysis conducted to verify the effectiveness of the proposed model. The results indicated that the model is efficient and reasonable.

  7. Valorization of aquaculture waste in removal of cadmium from aqueous solution: optimization by kinetics and ANN analysis

    Science.gov (United States)

    Aditya, Gautam; Hossain, Asif

    2018-05-01

    Cadmium is one of the most hazardous heavy metal concerning human health and aquatic pollution. The removal of cadmium through biosorption is a feasible option for restoration of the ecosystem health of the contaminated freshwater ecosystems. In compliance with this proposition and considering the efficiency of calcium carbonate as biosorbent, the shell dust of the economically important snail Bellamya bengalensis was tested for the removal of cadmium from aqueous medium. Following use of the flesh as a cheap source of protein, the shells of B. bengalensis made up of CaCO3 are discarded as aquaculture waste. The biosorption was assessed through batch sorption studies along with studies to characterize the morphology and surface structures of waste shell dust. The data on the biosorption were subjected to the artificial neural network (ANN) model for optimization of the process. The biosorption process changed as functions of pH of the solution, concentration of heavy metal, biomass of the adsorbent and time of exposure. The kinetic process was well represented by pseudo second order ( R 2 = 0.998), and Langmuir equilibrium ( R 2 = 0.995) had better fits in the equilibrium process with 30.33 mg g-1 of maximum sorption capacity. The regression equation ( R 2 = 0.948) in the ANN model supports predicted values of Cd removal satisfactorily. The normalized importance analysis in ANN predicts Cd2+ concentration, and pH has the most influence in removal than biomass dose and time. The SEM and EDX studies show clear peaks for Cd confirming the biosorption process while the FTIR study depicts the main functional groups (-OH, C-H, C=O, C=C) responsible for the biosorption process. The study indicated that the waste shell dust can be used as an efficient, low cost, environment friendly, sustainable adsorbent for the removal of cadmium from aqueous solution.

  8. A breakthrough biosorbent in removing heavy metals: Equilibrium, kinetic, thermodynamic and mechanism analyses in a lab-scale study

    Energy Technology Data Exchange (ETDEWEB)

    Abdolali, Atefeh [Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007 (Australia); Ngo, Huu Hao, E-mail: h.ngo@uts.edu.au [Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007 (Australia); Guo, Wenshan [Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007 (Australia); Lu, Shaoyong [Chinese Research Academy of Environmental Science, Beijing 100012 (China); Chen, Shiao-Shing; Nguyen, Nguyen Cong [Institute of Environmental Engineering and Management, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao E. Rd, Taipei 106, Taiwan (China); Zhang, Xinbo [Department of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384 (China); Wang, Jie; Wu, Yun [School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387 (China)

    2016-01-15

    A breakthrough biosorbent namely multi-metal binding biosorbent (MMBB) made from a combination of tea wastes, maple leaves and mandarin peels, was prepared to evaluate their biosorptive potential for removal of Cd(II), Cu(II), Pb(II) and Zn(II) from multi-metal aqueous solutions. FTIR and SEM were conducted, before and after biosorption, to explore the intensity and position of the available functional groups and changes in adsorbent surface morphology. Carboxylic, hydroxyl and amine groups were found to be the principal functional groups for the sorption of metals. MMBB exhibited best performance at pH 5.5 with maximum sorption capacities of 31.73, 41.06, 76.25 and 26.63 mg/g for Cd(II), Cu(II), Pb(II) and Zn(II), respectively. Pseudo-first and pseudo-second-order models represented the kinetic experimental data in different initial metal concentrations very well. Among two-parameter adsorption isotherm models, the Langmuir equation gave a better fit of the equilibrium data. For Cu(II) and Zn(II), the Khan isotherm describes better biosorption conditions while for Cd(II) and Pb(II), the Sips model was found to provide the best correlation of the biosorption equilibrium data. The calculated thermodynamic parameters indicated feasible, spontaneous and exothermic biosorption process. Overall, this novel MMBB can effectively be utilized as an adsorbent to remove heavy metal ions from aqueous solutions. - Highlights: • A novel multi-metal binding biosorbent (MMBB) was studied. • The biosorption of Cd{sup 2+}, Cu{sup 2+}, Pb{sup 2+} and Zn{sup 2+} on MMBB was evaluated. • Hydroxyl, carbonyl and amine groups are involved in metal binding of MMBB. • Equilibrium data were presented and the best fitting models were identified. • The obtained results recommend this MMBB as potentially low-cost biosorbent.

  9. Bioadsorption characteristics of Pseudomonas aeruginosa PAOI

    Directory of Open Access Journals (Sweden)

    Kőnig-Péter Anikó

    2014-01-01

    Full Text Available Biosorption of Cd(II and Pb(II ions from aqueous solution using lyophilized Pseudomonas aeruginosa (PAOI cells were observed under various experimental conditions. The effect of pH, initial metal concentration, equilibration time and temperature on bioadsorption was investigated. The optimum pH value for Pb(II adsorption was found to be 5.0, and for Cd(II 5.0 − 6.0. The Pb(II and Cd(II bioadsorption equilibrium were analyzed by using Freundlich and Langmuir model using nonlinear least-squares estimation. The experimental maximum uptake capacity of Pb(II and Cd(II was estimated to be 164 mg g-1 and 113 mg g-1, respectively. For biosorption kinetic study the pseudo second-order kinetic model was applied at various temperatures. The temperature had no significant effect on Pb(II bioadsorption. In case of Cd(II bioadsorption the adsorbed amount decreased with increasing temperature.

  10. Phage based green chemistry for gold ion reduction and gold retrieval.

    Science.gov (United States)

    Setyawati, Magdiel I; Xie, Jianping; Leong, David T

    2014-01-22

    The gold mining industry has taken its toll on the environment, triggering the development of more environmentally benign processes to alleviate the waste load release. Here, we demonstrate the use of bacteriophages (phages) for biosorption and bioreduction of gold ions from aqueous solution, which potentially can be applied to remediate gold ions from gold mining waste effluent. Phage has shown a remarkably efficient sorption of gold ions with a maximum gold adsorption capacity of 571 mg gold/g dry weight phage. The product of this phage mediated process is gold nanocrystals with the size of 30-630 nm. Biosorption and bioreduction processes are mediated by the ionic and covalent interaction between gold ions and the reducing groups on the phage protein coat. The strategy offers a simple, ecofriendly and feasible option to recover of gold ions to form readily recoverable products of gold nanoparticles within 24 h.

  11. Characterization of Cd-, Pb-, Zn-resistant endophytic Lasiodiplodia sp. MXSF31 from metal accumulating Portulaca oleracea and its potential in promoting the growth of rape in metal-contaminated soils.

    Science.gov (United States)

    Deng, Zujun; Zhang, Renduo; Shi, Yang; Hu, Li'ao; Tan, Hongming; Cao, Lixiang

    2014-02-01

    The aim of this study was to characterize the features of a Cd-, Pb-, and Zn-resistant endophytic fungus Lasiodiplodia sp. MXSF31 and to investigate the potential of MXSF31 to remove metals from contaminated water and soils. The endophytic fungus was isolated from the stem of Portulaca oleracea growing in metal-contaminated soils. The maximum biosorption capacities of MXSF31 were 3.0 × 10(3), 1.1 × 10(4), and 1.3 × 10(4) mg kg(-1) for Cd, Pb, and Zn, respectively. The biosorption processes of Cd, Pb, and Zn by MXSF31 were well characterized with the pseudo-second-order kinetic model. The biosorption isotherm processes of Pb and Zn by the fungus were fitted better with the Langmuir model, while the biosorption processes of Cd was better fitted with the Freundlich model. The biosorption process of MXSF31 was attributed to the functional groups of hydroxyl, amino, carbonyl, and benzene ring on the cell wall. The active biomass of the strain removed more Cd, Pb, and Zn (4.6 × 10(4), 5.6 × 10(5), and 7.0 × 10(4) mg kg(-1), respectively) than the dead biomass. The inoculation of MXSF31 increased the biomass of rape (Brassica napus L.), the translocation factor of Cd, and the extraction amount of Cd by rape in the Cd+Pb-contaminated soils. The results indicated that the endophytic fungus strain had the potential to remove heavy metals from water and soils contaminated by multiple heavy metals, and plants accumulating multiple metals might harbor diverse fungi suitable for bioremediation of contaminated media.

  12. Water

    Directory of Open Access Journals (Sweden)

    E. Sanmuga Priya

    2017-05-01

    Full Text Available Phytoremediation through aquatic macrophytes treatment system (AMATS for the removal of pollutants and contaminants from various natural sources is a well established environmental protection technique. Water hyacinth (Eichhornia crassipes, a worst invasive aquatic weed has been utilised for various research activities over the last few decades. The biosorption capacity of the water hyacinth in minimising various contaminants present in the industrial wastewater is well studied. The present review quotes the literatures related to the biosorption capacity of the water hyacinth in reducing the concentration of dyestuffs, heavy metals and minimising certain other physiochemical parameters like TSS (total suspended solids, TDS (total dissolved solids, COD (chemical oxygen demand and BOD (biological oxygen demand in textile wastewater. Sorption kinetics through various models, factors influencing the biosorption capacity, and role of physical and chemical modifications in the water hyacinth are also discussed.

  13. The effect of biomass concentration on polymer alginate in the immobilized biosorbent formation during the sorption processof heavy metal Cu2+

    Science.gov (United States)

    Rinanti, A.; Jonathan, D.; Silalahi, M. D. S.; Fachrul, M. F.; Hadisoebroto, R.

    2018-01-01

    A research in environmental biotechnology has been done to analysis adsorption of ion Cu2+ by biomass of microalgae (Chlorella sp, Ankistrodesmus braunii, Scenedesmus quadricauda) and Saccharomyces cerevisiae onto alginate polymeras immobilized biosorbent on laboratory scale. The purpose of this study is to achieve the optimum biomass concentration which gives the best biosorption performance. Biosorption of Cu2+ was carried out in continuous fixed-bed column reactor system, volume of 1.5 L, equipped with peristaltic pump with a flow rate of 13 mL/min. Biosorption of Cu2+ was investigated using immobilized biosorbent with concentration of (g biomass/g polymer) 0.25; 0.5; 1, at pH4,initial concentration Cu2+15 mg/L and 26°C±1. The results of this study showed that the increasing of biomass concentration (0 to 0.5 g/g) would result in better biosorption performance but soon decreased its performance at biomass concentration of 1 g/g. Biosorption capacity and highest removal efficiency of 0.1025 mg Cu2+/g biosorbent and 66.36% occurred by immobilized biosorbent with 0.5 g/g concentration. The connection between the variation of biomass concentration in alginate to the biosorption performance by immobilized biosorbent shown by breakthrough curve, total adsorbed metal mass(qtotal ), efficiency of removal (%R) and biosorption capacity at breakthrough(qe ). Excessive biomass concentrations lead to reduced porosity of the beads thus slowing down the adsorption process.

  14. Isotherm studies for determination of removal capacity of bi-metal (Ni and Cr) ions by aspergillus niger

    International Nuclear Information System (INIS)

    Munir, K.; Yusuf, M.; Hameed, A.; Noreen, Z.; Hafeez, F.Y.; Faryal, R.

    2010-01-01

    Pakistan is among the developing countries where there is a need to establish new industries to meet the demands of a growing population. This has led to industrial setup in various sectors, without proper planning and consideration for treatment of contamination, leading to disposal of untreated wastewater into nearby land and water bodies. This study was planned to investigate an indigenous Aspergillus niger for development of biosorbent for the removal of metal ions. The Aspergillus isolate's Ni and Cr removal efficiency was determined in batch mode over various pH (4.0-10.0) and temperature (25-40 deg. C) as single as well as bimetal ions. Using a single metal ion, maximum biosorption potential was obtained at pH 5.0-6.0 and 30-35 deg. C for both ions. On the other hand, Ni removal was reduced in the presence of Cr, while Ni removal influenced Cr removal with an increase showing maximum removal at an initial adsorbate concentration of 50mg/L, pH 6.0 and 35 deg. C. Effect of presence of bimetal in a solution on biosorption potential of Aspergillus niger was predicted by using equilibrium modeling. Adsorption trends for both nickel (R2 0.9916) and chromium (R2 0.8548) followed Langmuir isotherm in single metal removal system, but under bimetal condition chromium adsorption fitted better to Freundlich model and that of nickel followed Temkin isotherm, suggesting considerable change in behavior and interaction between biosorbent and metal ions. Therefore, we concluded that Aspergillus niger a viable strain for development of a biosorbent for removal of a mixture of metal ions. (author)

  15. Continuous biosorption of Pb/Cu and Pb/Cd in fixed-bed column using algae Gelidium and granulated agar extraction algal waste.

    Science.gov (United States)

    Vilar, Vítor J P; Loureiro, José M; Botelho, Cidália M S; Boaventura, Rui A R

    2008-06-15

    Continuous metal ions biosorption from Pb/Cu and Pb/Cd solutions onto seaweed Gelidium sesquipedale and a composite material prepared from an industrial algal waste was performed in a packed bed column. A binary Langmuir equation describes well the equilibrium data and indicates a good adsorption capacity. In the sorption process, Cd and Cu break through the column faster than Pb due to its lower affinity for the biosorbent. An overshoot in the outlet Cd concentration was observed and explained by competitive adsorption between Pb and Cd, whereby the higher Pb affinity for the biosorbent displaces bound Cd ions. A small overshoot happens for Cu adsorption in the presence of Pb ions. Desorption using 0.1 M HNO3 as eluant, was 100% effective. A mass transfer model for the adsorption and desorption processes, considering an external and intraparticle film resistance, adequately simulates the column performance. A binary Langmuir equation was used to describe equilibrium for the saturation process and a mass action law for the desorption process. Elution process is defined as an ion exchange mechanism, between protons and metal ions.

  16. Continuous biosorption of Pb/Cu and Pb/Cd in fixed-bed column using algae Gelidium and granulated agar extraction algal waste

    Energy Technology Data Exchange (ETDEWEB)

    Vilar, Vitor J.P. [LSRE-Laboratory of Separation and Reaction Engineering, Departamento de Engenharia Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal)], E-mail: vilar@fe.up.pt; Loureiro, Jose M. [LSRE-Laboratory of Separation and Reaction Engineering, Departamento de Engenharia Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal)], E-mail: loureiro@fe.up.pt; Botelho, Cidalia M.S. [LSRE-Laboratory of Separation and Reaction Engineering, Departamento de Engenharia Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal)], E-mail: cbotelho@fe.up.pt; Boaventura, Rui A.R. [LSRE-Laboratory of Separation and Reaction Engineering, Departamento de Engenharia Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal)], E-mail: bventura@fe.up.pt

    2008-06-15

    Continuous metal ions biosorption from Pb/Cu and Pb/Cd solutions onto seaweed Gelidium sesquipedale and a composite material prepared from an industrial algal waste was performed in a packed bed column. A binary Langmuir equation describes well the equilibrium data and indicates a good adsorption capacity. In the sorption process, Cd and Cu break through the column faster than Pb due to its lower affinity for the biosorbent. An overshoot in the outlet Cd concentration was observed and explained by competitive adsorption between Pb and Cd, whereby the higher Pb affinity for the biosorbent displaces bound Cd ions. A small overshoot happens for Cu adsorption in the presence of Pb ions. Desorption using 0.1 M HNO{sub 3} as eluant, was 100% effective. A mass transfer model for the adsorption and desorption processes, considering an external and intraparticle film resistance, adequately simulates the column performance. A binary Langmuir equation was used to describe equilibrium for the saturation process and a mass action law for the desorption process. Elution process is defined as an ion exchange mechanism, between protons and metal ions.

  17. Continuous biosorption of Pb/Cu and Pb/Cd in fixed-bed column using algae Gelidium and granulated agar extraction algal waste

    International Nuclear Information System (INIS)

    Vilar, Vitor J.P.; Loureiro, Jose M.; Botelho, Cidalia M.S.; Boaventura, Rui A.R.

    2008-01-01

    Continuous metal ions biosorption from Pb/Cu and Pb/Cd solutions onto seaweed Gelidium sesquipedale and a composite material prepared from an industrial algal waste was performed in a packed bed column. A binary Langmuir equation describes well the equilibrium data and indicates a good adsorption capacity. In the sorption process, Cd and Cu break through the column faster than Pb due to its lower affinity for the biosorbent. An overshoot in the outlet Cd concentration was observed and explained by competitive adsorption between Pb and Cd, whereby the higher Pb affinity for the biosorbent displaces bound Cd ions. A small overshoot happens for Cu adsorption in the presence of Pb ions. Desorption using 0.1 M HNO 3 as eluant, was 100% effective. A mass transfer model for the adsorption and desorption processes, considering an external and intraparticle film resistance, adequately simulates the column performance. A binary Langmuir equation was used to describe equilibrium for the saturation process and a mass action law for the desorption process. Elution process is defined as an ion exchange mechanism, between protons and metal ions

  18. Potential use of algae for heavy metal bioremediation, a critical review.

    Science.gov (United States)

    Zeraatkar, Amin Keyvan; Ahmadzadeh, Hossein; Talebi, Ahmad Farhad; Moheimani, Navid R; McHenry, Mark P

    2016-10-01

    Algae have several industrial applications that can lower the cost of biofuel co-production. Among these co-production applications, environmental and wastewater bioremediation are increasingly important. Heavy metal pollution and its implications for public health and the environment have led to increased interest in developing environmental biotechnology approaches. We review the potential for algal biosorption and/or neutralization of the toxic effects of heavy metal ions, primarily focusing on their cellular structure, pretreatment, modification, as well as potential application of genetic engineering in biosorption performance. We evaluate pretreatment, immobilization, and factors affecting biosorption capacity, such as initial metal ion concentration, biomass concentration, initial pH, time, temperature, and interference of multi metal ions and introduce molecular tools to develop engineered algal strains with higher biosorption capacity and selectivity. We conclude that consideration of these parameters can lead to the development of low-cost micro and macroalgae cultivation with high bioremediation potential. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Treatment of uranium mining and milling wastewater using biological adsorbents

    International Nuclear Information System (INIS)

    Tsezos, M.

    1983-01-01

    Selected samples of waste microbial biomass originating from various industrial fermentation processes and biological treatment plants have been screened for biosorbent properties in conjunction with uranium, thorium and radium in aqueous solutions. Biosorption isotherms were used for the evaluation of biosorptive uptake capacity of the biomass. The biomass was also compared to synthetic adsorbents such as activated carbon. Determined uranium, thorium and radium biosorption isotherms were independent of the initial solution concentrations. Solution pH affected uptake. Rhizopus arrhizus at pH 4 exhibited the highest uranium and thorium biosorptive uptake capacity in excess of 180 Mg/g. It removed about 2.5 and 3.3 times more uranium than the ion exchange resin and activated carbon tested. Penicillium chrysogenum adsorbed 50000 pCi/g radium at pH 7 and at an equilibrium radium concentration of 1000 pCi/L. The most effective biomass types studied exhibited removals in excess of 99% of the radium in solution

  20. Liposomal solubilization of new 3-hydroxy-quinolinone derivatives with promising anticancer activity: a screening method to identify maximum incorporation capacity

    DEFF Research Database (Denmark)

    Di Cagno, Massimiliano; Styskala, Jakub; Hlaváč, Jan

    2011-01-01

    Four new 3-hydroxy-quinolinone derivatives with promising anticancer activity could be solubilized using liposomes as vehicle to an extent that allows their in vitro and in vivo testing without use of toxic solvent(s). A screening method to identify the maximum incorporation capacity of hydrophobic......, resulting in a 200-500-fold increase in apparent solubility. Drug-to-lipid ratios in the range of 2-5 µg/mg were obtained. Interestingly, the four quinolinone derivatives have shown different association tendencies with liposomes, probably due to the physicochemical properties of the different group bonded...

  1. Characterization and lead(II) ions removal of modified Punica granatum L. peels.

    Science.gov (United States)

    Ay, Çiğdem; Özcan, Asiye Safa; Erdoğan, Yunus; Özcan, Adnan

    2017-04-03

    The aim of the present study was to enhance the biosorption capacity of a waste biomass of Punica granatum L. peels (PGL) using various chemical modification agents. Among these agents, hexamethylenediamine (HMDA) indicated the best performance with regard to the improvement of lead(II) ions removal from aqueous solution. The characterization of HMDA-modified P. granatum L. peels (HMDA-PGL) was achieved by using elemental analysis, FT-IR, thermogravimetric (TG) analysis and zeta potential measurement techniques. Based on FT-IR study, the chemical modification of P. granatum L. peels take place with its carboxyl, carbonyl, hydroxyl, etc. groups and these groups are responsible for the biosorption of lead(II) ions onto modified biomass. Biosorption equilibrium and kinetic data fitted well the Langmuir isotherm and the pseudo-second-order kinetic models, respectively. The highest biosorption capacity obtained from Langmuir isotherm model was 371.36 mg g -1 . Biosorption process was spontaneous and endothermic in nature according to the thermodynamic results and it quickly reached the equilibrium within 60 minutes. The validity of kinetic models used in this study can be quantitatively tested by using a normalized standard deviation Δq(%).

  2. Capacity Expansion and Reliability Evaluation on the Networks Flows with Continuous Stochastic Functional Capacity

    Directory of Open Access Journals (Sweden)

    F. Hamzezadeh

    2014-01-01

    Full Text Available In many systems such as computer network, fuel distribution, and transportation system, it is necessary to change the capacity of some arcs in order to increase maximum flow value from source s to sink t, while the capacity change incurs minimum cost. In real-time networks, some factors cause loss of arc’s flow. For example, in some flow distribution systems, evaporation, erosion or sediment in pipes waste the flow. Here we define a real capacity, or the so-called functional capacity, which is the operational capacity of an arc. In other words, the functional capacity of an arc equals the possible maximum flow that may pass through the arc. Increasing the functional arcs capacities incurs some cost. There is a certain resource available to cover the costs. First, we construct a mathematical model to minimize the total cost of expanding the functional capacities to the required levels. Then, we consider the loss of flow on each arc as a stochastic variable and compute the system reliability.

  3. Engineering bacterial biopolymers for the biosorption of heavy metals; new products and novel formulations

    International Nuclear Information System (INIS)

    Gutnick, D.L.; Bach, H.

    2000-01-01

    Bioremediation of heavy metal pollution remains a major challenge in environmental biotechnology. One of the approaches considered for application involves biosorption either to biomass or to isolated biopolymers. Many bacterial polysaccharides have been shown to bind heavy metals with varying degrees of specificity and affinity. While various approaches have been adopted to generate polysaccharide variants altered in both structure and activity, metal biosorption has not been examined. Polymer engineering has included structural modification through the introduction of heterologous genes of the biosynthetic pathway into specific mutants, leading either to alterations in polysaccharide backbone or side chains, or to sugar modification. In addition, novel formulations can be designed which enlarge the family of available bacterial biopolymers for metal-binding and subsequent recovery. An example discussed here is the use of amphipathic bioemulsifiers such as emulsan, produced by the oil-degrading Acinetobacter lwoffii RAG-1, that forms stable, concentrated (70%), oil-in-water emulsions (emulsanosols). In this system metal ions bind primarily at the oil/water interface, enabling their recovery and concentration from relatively dilute solutions. In addition to the genetic modifications described above, a new approach to the generation of amphipathic bioemulsifying formulations is based on the interaction of native or recombinant esterase and its derivatives with emulsan and other water-soluble biopolymers. Cation-binding emulsions are generated from a variety of hydrophobic substrates. The features of these and other systems will be discussed, together with a brief consideratiton of possible applications. (orig.)

  4. Fungal Biosorption, An Innovative Treatment for the Decolourisation and Detoxification of Textile Effluents

    Directory of Open Access Journals (Sweden)

    Antonella Pannocchia

    2010-08-01

    Full Text Available Textile effluents are among the most difficult-to-treat wastewaters, due to their considerable amount of recalcitrant and toxic substances. Fungal biosorption is viewed as a valuable additional treatment for removing pollutants from textile wastewaters. In this study the efficiency of Cunninghamella elegans biomass in terms of contaminants, COD and toxicity reduction was tested against textile effluents sampled in different points of wastewater treatment plants. The results showed that C. elegans is a promising candidate for the decolourisation and detoxification of textile wastewaters and its versatility makes it very competitive compared with conventional sorbents adopted in industrial processes.

  5. Indian jujuba seed powder as an eco-friendly and a low-cost biosorbent for removal of acid blue 25 from aqueous solution.

    Science.gov (United States)

    Krishna, L Sivarama; Reddy, A Sreenath; Zuhairi, W Y Wan; Taha, M R; Reddy, A Varada

    2014-01-01

    Indian jujuba seed powder (IJSP) has been investigated as a low-cost and an eco-friendly biosorbent, prepared for the removal of Acid Blue 25 (AB25) from aqueous solution. The prepared biomaterial was characterized by using FTIR and scanning electron microscopic studies. The effect of operation variables, such as IJSP dosage, contact time, concentration, pH, and temperature on the removal of AB25 was investigated, using batch biosorption technique. Removal efficiency increased with increase of IJSP dosage but decreased with increase of temperature. The equilibrium data were analyzed by the Langmuir and the Freundlich isotherm models. The data fitted well with the Langmuir model with a maximum biosorption capacity of 54.95 mg g(-1). The pseudo-second-order kinetics was the best for the biosorption of AB25 by IJSP, with good correlation. Thermodynamic parameters such as standard free energy change (ΔG(0)), standard enthalpy changes (ΔH(0)), and standard entropy changes (ΔS(0)) were analyzed. The removal of AB25 from aqueous solution by IJSP was a spontaneous and exothermic adsorption process. The results suggest that IJSP is a potential low-cost and an eco-friendly biosorbent for the AB25 removal from synthetic AB25 wastewater.

  6. Corynebacterium glutamicum MTCC 2745 immobilized on granular activated carbon/MnFe2O4 composite: A novel biosorbent for removal of As(III) and As(V) ions.

    Science.gov (United States)

    Podder, M S; Majumder, C B

    2016-11-05

    The optimization of biosorption/bioaccumulation process of both As(III) and As(V) has been investigated by using the biosorbent; biofilm of Corynebacterium glutamicum MTCC 2745 supported on granular activated carbon/MnFe2O4 composite (MGAC). The presence of functional groups on the cell wall surface of the biomass that may interact with the metal ions was proved by FT-IR. To determine the most appropriate correlation for the equilibrium curves employing the procedure of the non-linear regression for curve fitting analysis, isotherm studies were performed for As(III) and As(V) using 30 isotherm models. The pattern of biosorption/bioaccumulation fitted well with Vieth-Sladek isotherm model for As(III) and Brouers-Sotolongo and Fritz-Schlunder-V isotherm models for As(V). The maximum biosorption/bioaccumulation capacity estimated using Langmuir model were 2584.668mg/g for As(III) and 2651.675mg/g for As(V) at 30°C temperature and 220min contact time. The results showed that As(III) and As(V) removal was strongly pH-dependent with an optimum pH value of 7.0. D-R isotherm studies specified that ion exchange might play a prominent role. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Electrospun alginate nanofibres as potential bio-sorption agent of heavy metals in water treatment

    CSIR Research Space (South Africa)

    Mokhena, Teboho C

    2017-03-01

    Full Text Available nanofibres as potential bio-sorption agent of heavy metals in water treatment T.C. Mokhena1,2, N.V Jacobs1,3, A.S. Luyt4* 1 CSIR Materials Science and Manufacturing, Polymers and Composites, Port Elizabeth, South Africa 2 Department of Chemistry...-303 (2011). http://dx.doi.org/10.1016/j.jare.2011.01.008 [2] Taha A.A., Wu Y.-N., Wang H., Li F.: Preparation and application of functionalized cellulose acetate/silica composite nanofibrous membrane via electrospinning for Cr (VI) ion removal from...

  8. Microalgal-biochar immobilized complex: A novel efficient biosorbent for cadmium removal from aqueous solution.

    Science.gov (United States)

    Shen, Ying; Li, Huan; Zhu, Wenzhe; Ho, Shih-Hsin; Yuan, Wenqiao; Chen, Jianfeng; Xie, Youping

    2017-11-01

    The feasibility of the bioremediation of cadmium (Cd) using microalgal-biochar immobilized complex (MBIC) was investigated. Major operating parameters (e.g., pH, biosorbent dosage, initial Cd(II) concentration and microalgal-biochar ratio) were varied to compare the treatability of viable algae (Chlorella sp.), biochar and MBIC. The biosorption isotherms obtained by using algae or biochar were found to have satisfactory Langmuir predictions, while the best fitting adsorption isotherm model for MBIC was the Sips model. The maximum Cd(II) adsorption capacity of MBIC with a Chlorella sp.: biochar ratio of 2:3 (217.41mgg -1 ) was higher than that of Chlorella sp. (169.92mgg -1 ) or biochar (95.82mgg -1 ) alone. The pseudo-second-order model fitted the biosorption process of MBIC well (R 2 >0.999). Moreover, zeta potential, SEM and FTIR studies revealed that electrostatic attraction, ion exchange and surface complexation were the main mechanisms responsible for Cd removal when using MBIC. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Performance of heat engines with non-zero heat capacity

    International Nuclear Information System (INIS)

    Odes, Ron; Kribus, Abraham

    2013-01-01

    Highlights: ► Finite heat capacity is a second irreversibility mechanism in addition to thermal resistance. ► Heat capacity introduces thermal transients and reverse heat flow. ► Engine maximum power and efficiency are lower for finite heat capacity. ► Implementing the optimal engine cycle requires active control. - Abstract: The performance of a heat engine is analyzed subject to two types of irreversibility: a non-zero heat capacity, together with the more common finite heat transfer rate between the engine and the external heat reservoirs. The heat capacity represents an engine body that undergoes significant temperature variations during the engine cycle. An option to cut off the heat exchange between the engine and the external surrounding for part of the engine cycle is also explored. A variational approach was taken to find the engine’s internal temperature profile (which defines the internal thermodynamic cycle) that would produce maximum power. The maximum power is shown to be lower than the case of zero heat capacity, due to a loss of heat that is stored in the engine body and then lost, bypassing the thermodynamic cycle. The maximum efficiency and the efficiency at maximum power are also lower than the zero heat capacity case. Similar to the Curzon–Ahlborn analysis, power can be traded for increased efficiency, but for high heat capacity, the range of efficiency that is available for such a trade is diminished. Isolating the engine during part of the cycle reduces maximum power, but the efficiency at maximum power and the maximum efficiency are improved, due to better exploitation of heat stored in the engine body. This might be useful for real engines that are limited by the internal energy change during a single engine cycle or by the operating frequency, leading to a broader power–efficiency curve.

  10. Lanthanide and actinide ion phytoextraction: investigations of biosorption chemistry

    International Nuclear Information System (INIS)

    Rayson, Gary D.; Serna, Debbie D.; Moore, Jessica L.

    2009-01-01

    Investigations of the chemical interactions responsible for passive biosorption of a lanthanide (Eu (III)) and an actinide (U (VI)) metal ion is described. Spectroscopic methods for the elucidation of chemical functionalities on cultured anther cell walls from the plant Datura innoxia include metal ion luminescence measurements. These have revealed the presence of distinctly different binding environments involving one, two, and three carboxylate moieties for Eu (III) and UO 2 2+ binding and sulfonates (or sulfates) and phosphates for sequestration of Eu (III) on the uranyl ion, respectively. Additional investigations of the apparent affinities of these metals to this material have revealed the presence of both low and high affinity sites for the binding of Eu (III) with weak electrostatic attractions proposed for binding at high metal concentrations (i.e., low affinities) and surface coordination interactions responsible for higher affinities. Conversely, total uranyl ion binding revealed only a single distribution of interactions based on apparent affinities. (author)

  11. Studies on adsorption capacity of clay-Sargassum sp biosorbent for Cr (VI) removal in wastewater from electroplating industry

    Science.gov (United States)

    Aprianti, Tine; Aprilyanti, Selvia; Apriani, Rachmawati; Sisnayati

    2017-11-01

    Various raw biosorbents have been studied for pollutant treatment of heavy metals contained in wastewater. In this study, clay and brown seaweed, Sargassum sp, are used for hexavalent chromium [Cr (VI)] biosorption. The adsorption capacity is adequately improved by combining clay and Sargassum sp as the adsorbent agent. Ion exchange of metal ions has shown strong coordination cross-linkage due to organic functional hydroxyl groups (OH-) contained in brown seaweed that provide sites to capture and bind the metal ions. Clay is known as an inexpensive adsorbent due to its wide availability besides its large specific surface area. Combining clay and Sargassum sp as biosorbent resulting better adsorption, the adsorption capacity reaches most favorable results of 99.39% at Sargassum: clay ratio of 40:60 on contact time 10 h. This study has proven that composit biosorbent used has succeeded in reducing hexavalent chromium pollutant in wastewater.

  12. Biosorption of platinum and palladium for their separation/preconcentration prior to graphite furnace atomic absorption spectrometric determination

    Energy Technology Data Exchange (ETDEWEB)

    Godlewska-Zylkiewicz, Beata E-mail: bgodlew@uwb.edu.pl

    2003-08-15

    Inexpensive baker's yeast Saccharomyces cerevisiae and green algae Chlorella vulgaris, either free or immobilized on silica gel have been shown to selectively accumulate platinum and palladium from water samples in acidic medium (pH 1.6-1.8). Optimization of conditions of metals biosorption (sample pH, algae and yeast masses, adsorption time, temperature) was performed in batch mode. The procedure of matrix separation based on biosorption of platinum and palladium on algae C. vulgaris covalently immobilized on silica gel in flow mode was developed. The use of algae in flow procedure offers several advantages compared with its use in the batch mode. The procedure shows better reproducibility (<2%), improved efficiency of platinum retention on the column (93.3{+-}1.6%), is less laborious and less time consuming. The best recovery of biosorbed metals from column (87.7{+-}3.3% for platinum and 96.8{+-}1.1 for palladium) was obtained with solution of 0.3 mol l{sup -1} thiourea in 1 mol l{sup -1} hydrochloric acid. The influence of thiourea on analytical signals of examined metals during GFAAS determination is discussed. The procedure has been applied for separation of noble metals from tap and waste water samples spiked with platinum and palladium.

  13. Isolation, identification, Pb(II) biosorption isotherms and kinetics of a lead adsorbing penicillium sp. MRF-1 from South Korean mine soil.

    Science.gov (United States)

    Velmurugan, Natarajan; Hwang, Grim; Sathishkumar, Muthuswamy; Choi, Tae Kie; Lee, Kui-Jae; Oh, Byung-Taek; Lee, Yang-Soo

    2010-01-01

    A heavy metal contaminated soil sample collected from a mine in Chonnam Province of South Korea was found to be a source of heavy metal adsorbing biosorbents. Chemical analyses showed high contents of lead (Pb) at 357 mg/kg and cyanide (CN) at 14.6 mg/kg in the soil. The experimental results showed that Penicillium sp. MRF-1 was the best lead resistant fungus among the four individual metal tolerant fungal species isolated from the soil. Molecular characterization of Penicillium sp. MRF-1 was determined using ITS regions sequences. Effects of pH, temperature and contact time on adsorption of Pb(II) by Penicillium sp. MRF-1 were studied. Favorable conditions for maximum biosportion were found at pH 4 with 3 hr contact time. Biosorption of Pb(II) gradually increased with increasing temperature. Efficient performance of the biosorbent was described using Langmuir and Freundlich isotherms. Adsorption kinetics was studied using pseudo first-order and pseudo second-order models. Biosorbent Penicillium sp. MRF-1 showed the maximum desorption in alkali conditions. Consistent adsorption/desorption potential of the biosorbent in repetitive cycles validated the efficacy of it in large scale. SEM studies given notes on surface modification of fungal biomass under metal stress and FT-IR results showed the presence of amino groups in the surface structure of the biosorbent. In conclusion, the new biosorbent Penicillium sp. MRF-1 may potentially be used as an inexpensive, easily cultivatable material for the removal of lead from aqueous solution.

  14. Optimization of copper, lead and cadmium biosorption onto newly isolated bacterium using a Box-Behnken design.

    Science.gov (United States)

    Choińska-Pulit, Anna; Sobolczyk-Bednarek, Justyna; Łaba, Wojciech

    2018-03-01

    Due to the progressive development of industrial and technological activities, heavy metal contamination is increasing each year and it poses a serious health and environmental risk. Microorganisms are capable of removing heavy metals from a contaminated environment. In this work, 51 microbial strains were isolated from heavy metal contaminated water and soil. The JAW1 strain, identified as Pseudomonas azotoformans, was selected and applied in bioremediation of the specific mixture of metals (Cd, Cu, and Pb) in an aqueous medium. The Box-Behnken design was used to optimize the biosorption process, with three factors: pH, initial metal concentration, concentration of the biosorbent. For the strain P. azotoformans JAW1, the optimal conditions were pH = 6.0, 25mg/L of each metal and 2g/L, following removal levels were achieved: Cd 44,67%; Cu 63,32%; Pb 78,23%. The possible interactions of cell-metal ions were evaluated using FT-IR analysis. The study indicated the presence of groups, which may be responsible for bonding of metal ions. The studies conducted on bioremediation mechanisms indicated that metal accumulation could occur on the cell surface (biosorption) where the amount of adsorbed metals reached: Cd 98,57%, Cu 69,76%, Pb 88,58%. P. azotoformans JAW1 exhibited a potential for application in the bioremediation of mining wastewater with complex metal contaminations. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Maximum Acceptable Weight of Lift reflects peak lumbosacral extension moments in a Functional Capacity Evaluation test using free style, stoop, and squat lifting

    OpenAIRE

    Kuijer, P.P.F.M.; van Oostrom, S.H.; Duijzer, K.; van Dieen, J.H.

    2012-01-01

    It is unclear whether the maximum acceptable weight of lift (MAWL), a common psychophysical method, reflects joint kinetics when different lifting techniques are employed. In a within-participants study (n = 12), participants performed three lifting techniques - free style, stoop and squat lifting from knee to waist level - using the same dynamic functional capacity evaluation lifting test to assess MAWL and to calculate low back and knee kinetics. We assessed which knee and back kinetic para...

  16. Biosorption kinetics of Cd (II), Cr (III) and Pb (II) in aqueous solutions by olive stone

    OpenAIRE

    M. Calero; F. Hernáinz; G. Blázquez; M. A. Martín-Lara; G. Tenorio

    2009-01-01

    A by-product from olive oil production, olive stone, was investigated for the removal of Cd (II), Cr (III) and Pb (II) from aqueous solutions. The kinetics of biosorption are studied, analyzing the effect of the initial concentration of metal and temperature. Pseudo-first-order, pseudo-second-order, Elovich and intraparticle diffusion models have been used to represent the kinetics of the process and obtain the main kinetic parameters. The results show that the pseudo-second order model is th...

  17. Maximum acceptable weight of lift reflects peak lumbosacral extension moments in a functional capacity evaluation test using free style, stoop and squat lifting.

    Science.gov (United States)

    Kuijer, P P F M; van Oostrom, S H; Duijzer, K; van Dieën, J H

    2012-01-01

    It is unclear whether the maximum acceptable weight of lift (MAWL), a common psychophysical method, reflects joint kinetics when different lifting techniques are employed. In a within-participants study (n = 12), participants performed three lifting techniques--free style, stoop and squat lifting from knee to waist level--using the same dynamic functional capacity evaluation lifting test to assess MAWL and to calculate low back and knee kinetics. We assessed which knee and back kinetic parameters increased with the load mass lifted, and whether the magnitudes of the kinetic parameters were consistent across techniques when lifting MAWL. MAWL was significantly different between techniques (p = 0.03). The peak lumbosacral extension moment met both criteria: it had the highest association with the load masses lifted (r > 0.9) and was most consistent between the three techniques when lifting MAWL (ICC = 0.87). In conclusion, MAWL reflects the lumbosacral extension moment across free style, stoop and squat lifting in healthy young males, but the relation between the load mass lifted and lumbosacral extension moment is different between techniques. Tests of maximum acceptable weight of lift (MAWL) from knee to waist height are used to assess work capacity of individuals with low-back disorders. This article shows that the MAWL reflects the lumbosacral extension moment across free style, stoop and squat lifting in healthy young males, but the relation between the load mass lifted and lumbosacral extension moment is different between techniques. This suggests that standardisation of lifting technique used in tests of the MAWL would be indicated if the aim is to assess the capacity of the low back.

  18. Kinetic modelling for zinc (II) ions biosorption onto Luffa cylindrica

    International Nuclear Information System (INIS)

    Oboh, I.; Aluyor, E.; Audu, T.

    2015-01-01

    The biosorption of Zinc (II) ions onto a biomaterial - Luffa cylindrica has been studied. This biomaterial was characterized by elemental analysis, surface area, pore size distribution, scanning electron microscopy, and the biomaterial before and after sorption, was characterized by Fourier Transform Infra Red (FTIR) spectrometer. The kinetic nonlinear models fitted were Pseudo-first order, Pseudo-second order and Intra-particle diffusion. A comparison of non-linear regression method in selecting the kinetic model was made. Four error functions, namely coefficient of determination (R 2 ), hybrid fractional error function (HYBRID), average relative error (ARE), and sum of the errors squared (ERRSQ), were used to predict the parameters of the kinetic models. The strength of this study is that a biomaterial with wide distribution particularly in the tropical world and which occurs as waste material could be put into effective utilization as a biosorbent to address a crucial environmental problem

  19. Application of macrophytes as biosorbents for radioactive liquid waste treatment; Aplicacao de macrofitas como biossorventes no tratamento de rejeitos radioativos liquidos

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Ludmila Cabreira

    2016-07-01

    Radioactive waste as any other type of waste should be treated and disposed adequately. It is necessary to consider its physical, chemical and radiological characteristics for choosing the appropriate action for the treatment and final disposal. Many treatment techniques currently used are economically costly, often invalidating its use and favoring the study of other treatment techniques. One of these techniques is biosorption, which demonstrates high potential when applied to radioactive waste. This technology uses materials of biological origin for removing metals. Among potential biosorbents found, macrophyte aquatics are useful because they may remove uranium present in the liquid radioactive waste at low cost. This study aims to evaluate the biosorption capacity of macrophyte aquatics Pistia stratiotes, Limnobium laevigatum, Lemna sp and Azolla sp in the treatment of liquid radioactive waste. This study was divided into two stages, the first one is characterization and preparation of biosorption and the other is tests, carried out with uranium solutions and real samples. The biomass was tested in its raw form and biosorption assays were performed in polypropylene vials containing 10 ml of solution of uranium or 10ml of radioactive waste and 0.20g of biomass. The behavior of biomass was evaluated by sorption kinetics and isotherm models. The highest sorption capacities found was 162.1 mg / g for the macrophyte Lemna sp and 161.8 mg / g for the Azolla sp. The equilibrium times obtained were 1 hour for Lemna sp, and 30 minutes for Azolla sp. With the real waste, the macrophyte Azolla sp presented a sorption capacity of 2.6 mg / g. These results suggest that Azolla sp has a larger capacity of biosorption, therefore it is more suitable for more detailed studies of treatment of liquid radioactive waste. (author)

  20. Application of macrophytes as biosorbents for radioactive liquid waste treatment

    International Nuclear Information System (INIS)

    Vieira, Ludmila Cabreira

    2016-01-01

    Radioactive waste as any other type of waste should be treated and disposed adequately. It is necessary to consider its physical, chemical and radiological characteristics for choosing the appropriate action for the treatment and final disposal. Many treatment techniques currently used are economically costly, often invalidating its use and favoring the study of other treatment techniques. One of these techniques is biosorption, which demonstrates high potential when applied to radioactive waste. This technology uses materials of biological origin for removing metals. Among potential biosorbents found, macrophyte aquatics are useful because they may remove uranium present in the liquid radioactive waste at low cost. This study aims to evaluate the biosorption capacity of macrophyte aquatics Pistia stratiotes, Limnobium laevigatum, Lemna sp and Azolla sp in the treatment of liquid radioactive waste. This study was divided into two stages, the first one is characterization and preparation of biosorption and the other is tests, carried out with uranium solutions and real samples. The biomass was tested in its raw form and biosorption assays were performed in polypropylene vials containing 10 ml of solution of uranium or 10ml of radioactive waste and 0.20g of biomass. The behavior of biomass was evaluated by sorption kinetics and isotherm models. The highest sorption capacities found was 162.1 mg / g for the macrophyte Lemna sp and 161.8 mg / g for the Azolla sp. The equilibrium times obtained were 1 hour for Lemna sp, and 30 minutes for Azolla sp. With the real waste, the macrophyte Azolla sp presented a sorption capacity of 2.6 mg / g. These results suggest that Azolla sp has a larger capacity of biosorption, therefore it is more suitable for more detailed studies of treatment of liquid radioactive waste. (author)

  1. Removal of chromium (vi) by using eucalyptus bark (biosorption)

    International Nuclear Information System (INIS)

    Khatoon, S.; Anwar, J.; Fatima, H.B.

    2009-01-01

    Adsorption of Chromium (VI) on the Eucalyptus bark has been studied with variation in parameters. Different parameters like particle size of adsorbent, concentration of adsorbate, amount of adsorbent, stirring speed, time, temperature and pH were studied. The adsorption has been carried out in batch process. The adsorption capacity increases with decreasing the particle size of adsorbent. The optimum conditions for the maximum adsorption are attained with 2.0 g of adsorbent, 40 ppm metal ion concentration, at room temperature (10 degree C), with 90 min contact time, with 300 rpm agitation speed and at pH 2. (author)

  2. Nutrient removal using biosorption activated media: Preliminary biogeochemical assessment of an innovative stormwater infiltration basin

    International Nuclear Information System (INIS)

    O'Reilly, Andrew M.; Wanielista, Martin P.; Chang, Ni-Bin; Xuan, Zhemin; Harris, Willie G.

    2012-01-01

    Soil beneath a stormwater infiltration basin receiving runoff from a 23 ha predominantly residential watershed in north-central Florida, USA, was amended using biosorption activated media (BAM) to study the effectiveness of this technology in reducing inputs of nitrogen and phosphorus to groundwater. The functionalized soil amendment BAM consists of a 1.0:1.9:4.1 mixture (by volume) of tire crumb (to increase sorption capacity), silt and clay (to increase soil moisture retention), and sand (to promote sufficient infiltration), which was applied to develop an innovative stormwater infiltration basin utilizing nutrient reduction and flood control sub-basins. Comparison of nitrate/chloride (NO 3 − /Cl − ) ratios for the shallow groundwater indicates that prior to using BAM, NO 3 − concentrations were substantially influenced by nitrification or variations in NO 3 − input. In contrast, for the new basin utilizing BAM, NO 3 − /Cl − ratios indicate minor nitrification and NO 3 − losses with the exception of one summer sample that indicated a 45% loss. Biogeochemical indicators (denitrifier activity derived from real-time polymerase chain reaction and variations in major ions, nutrients, dissolved and soil gases, and stable isotopes) suggest that NO 3 − losses are primarily attributable to denitrification, whereas dissimilatory nitrate reduction to ammonium is a minor process. Denitrification was likely occurring intermittently in anoxic microsites in the unsaturated zone, which was enhanced by the increased soil moisture within the BAM layer and resultant reductions in surface/subsurface oxygen exchange that produced conditions conducive to increased denitrifier activity. Concentrations of total dissolved phosphorus and orthophosphate (PO 4 3− ) were reduced by more than 70% in unsaturated zone soil water, with the largest decreases in the BAM layer where sorption was the most likely mechanism for removal. Post-BAM PO 4 3− /Cl − ratios for shallow

  3. Biosorption of uranium by immobilized cells of Rhodotorula glutinis

    International Nuclear Information System (INIS)

    Jing Bai; Zhan Li; Fangli Fan; Xiaolei Wu; Xiaojie Yin; Longlong Tian; Zhi Qin; Junsheng Guo

    2014-01-01

    Biosorption of uranium ions from diluted solution (≤40 mg L -1 ) onto immobilized cells of Rhodotorula glutinis was investigated in a batch system. Equilibrium, kinetic and thermodynamic studies were conducted by considering the effect of initial uranium concentration, contact time and temperature. Non-linear forms of Langmuir, Freundlich and Sips isotherm models were used to fit the equilibrium data, Sips model was designated as the best one. Kinetic data were simulated by non-linear pseudo-first-order, pseudo-second-order and intra-particle diffusion equations. Pseudo-first-order kinetic equation described the experimental data better than pseudo-second-order equation and intra-particle diffusion equation can fit the kinetic data with two independent curves. Thermodynamic parameters, including ∆H 0, ∆G 0 and ∆S 0, were evaluated, the sorption process was determined to be spontaneous and endothermic. Uranium sorption from pure uranium solutions and uranium pit wastewater by immobilized biomass and blank beads, as well as the regeneration results indicated that immobilized R. glutinis can be use to recovery uranium from uranium pit wastewater. (author)

  4. 33 CFR 183.41 - Persons capacity: Outboard boats.

    Science.gov (United States)

    2010-07-01

    ... tank weight from table 4 of subpart H of this part; or (2) For boats with a maximum persons capacity less than 550 pounds, the maximum persons capacity determined in the following manner: (i) Float the... control weight, battery weight, and full portable fuel tank weight, if any, shown in table 4 of subpart H...

  5. Biomass selection for biosorption study of 226 Ra and 137 Cd radionuclides

    International Nuclear Information System (INIS)

    Costa, Wilson Cervi da

    2003-01-01

    The main goal of this work was to verify the potentialities to apply the biosorption technique to synthetic and real solution containing 226 Ra and 137 Cs, utilizing the seaweed Sargassum sp. and the microorganisms Penicillium sp., Saccharomyces cerevisiae and Monoraphidium sp. Indeed, the screening of the most effective biomass to remove the radionuclides was also a central objective. 226 Ra was selected due to its high radiotoxicity and the fact that it can be assimilated and incorporated by living organism through substitution og Mg 2+ and Ca 2+ , two essential nutrients. On the other hand, the selection of 137 Cs, a radionuclide of medium toxicity, was due to its mobility in the environment, which increases the possibility to be assimilated by the organisms as the essential nutrients Na + and K + . (author)

  6. Simulations of floor cooling system capacity

    International Nuclear Information System (INIS)

    Odyjas, Andrzej; Górka, Andrzej

    2013-01-01

    Floor cooling system capacity depends on its physical and operative parameters. Using numerical simulations, it appears that cooling capacity of the system largely depends on the type of cooling loads occurring in the room. In the case of convective cooling loads capacity of the system is small. However, when radiation flux falls directly on the floor the system significantly increases productivity. The article describes the results of numerical simulations which allow to determine system capacity in steady thermal conditions, depending on the type of physical parameters of the system and the type of cooling load occurring in the room. Moreover, the paper sets out the limits of system capacity while maintaining a minimum temperature of the floor surface equal to 20 °C. The results are helpful for designing system capacity in different type of cooling loads and show maximum system capacity in acceptable thermal comfort condition. -- Highlights: ► We have developed numerical model for simulation of floor cooling system. ► We have described floor system capacity depending on its physical parameters. ► We have described floor system capacity depending on type of cooling loads. ► The most important in the obtained cooling capacities is the type of cooling loads. ► The paper sets out the possible maximum cooling floor system capacity

  7. Study of parameters that influence the process of biosorption in the removal of heavy metals; Estudo de parametros que influenciam o processo de biossorcao na remocao de metais pesados

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Albina S.; Duarte, Marcia M.L.; Nandenha, Julio; Macedo, Gorete R. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2004-07-01

    The removal of heavy metal by microbial biomass have been investigated as an alternative to the traditional methods. The removal of the heavy metals copper and iron from discarded lubricating-oil was studied using the biosorbent Sargassum sp. It was chosen a discarded lubricating-oil of a bus fleet from the city of Natal-RN-Brazil. The oil was characterized to determine and quantify the heavy metals present. The effect of biomass protonation was performed in order to increase the removal efficiency of the metals. The equilibrium time between the oil and the biomass was determined. It was found that after 10 hours the equilibrium was reached. It was also studied the influence of biomass quantity. The results showed that the biomass quantity is an important parameter to the efficiency and biosorption capacity. The protonated biomass was shown more efficient to removal of Fe and Cu, removing 37,53% and 31,63% respectively. (author)

  8. Assessment of Maximum Aerobic Capacity and Anaerobic Threshold of Elite Ballet Dancers.

    Science.gov (United States)

    Wyon, Matthew A; Allen, Nick; Cloak, Ross; Beck, Sarah; Davies, Paul; Clarke, Frances

    2016-09-01

    An athlete's cardiorespiratory profile, maximal aerobic capacity, and anaerobic threshold is affected by training regimen and competition demands. The present study aimed to ascertain whether there are company rank differences in maximal aerobic capacity and anaerobic threshold in elite classical ballet dancers. Seventy-four volunteers (M 34, F 40) were recruited from two full-time professional classical ballet companies. All participants completed a continuous incremental treadmill protocol with a 1-km/hr speed increase at the end of each 1-min stage until termination criteria had been achieved (e.g., voluntary cessation, respiratory exchange ratio ballet companies are probably due to the different rehearsal and performance demands.

  9. Mechanism of uranium(VI) uptake by Saccharomyces cerevisiae under environmentally relevant conditions: Batch, HRTEM, and FTIR studies

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xia, E-mail: lux2009@lzu.edu.cn; Zhou, Xiao-jiao; Wang, Tie-shan, E-mail: tswang@lzu.edu.cn

    2013-11-15

    Highlights: • Equilibrium reaches very rapid within 15 min. • pH shift towards neutral indicates release of hydroxyl ions. • High ionic strength inhabits biosorption capacity. • Uptake capacity of heat-killed cells is an order of magnitude higher than live one. • Electrostatic interaction, precipitation, and complexation are the main mechanisms. -- Abstract: Biosorption is of significance for the safety evaluation of high-level nuclear wastes repositories and remediation of radioactive contamination places. Quantitive study and structural characterization of uranium uptake by both live and heat-killed Saccharomyces cerevisiae at environmentally relevant uranium concentration and with different ionic strengths were carried out. Kinetic investigation showed the equilibrium reached within 15 min. In equilibrium studies, pH shift towards neutral indicated release of hydroxyl ions. pH was the most important factor, which partly affected electrostatic interaction between uranyl ions and S. cerevisiae surface. The high ionic strength inhibited biosorption capacity, which can be explained by a competitive reaction between sodium ions and uranyl ions. Heat killing process significantly enhanced biosorption capacity, showing an order of magnitude higher than that of live cells. High resolution transmission electron microscopy (HRTEM) coupled with energy dispersive X-ray (EDX) showed needle-like uranium-phosphate precipitation formed on the cell walls for both live and heat-killed cells. Besides, dark-field micrographs displayed considerable similar uranium-phosphate precipitation presented outside the heat-killed cells. The phosphate released during heat-killing process. FTIR illustrated function groups hydroxyl, carboxyl, phosphate, and amino groups played important role in complexation with uranium.

  10. Capacity in the energy underwriting market - an overview

    International Nuclear Information System (INIS)

    Mulhall, L.

    1992-01-01

    It is important to clarify the different definitions of capacity, and in the insurance business this work has two distinct interpretations. The capacity of a Lloyd's syndicate is described by its ability to write premium income. Of more interest is the maximum ability and willingness of an underwriter, whether Lloyds's or Company, to commit itself to catastrophe loss policies. Or put more simply, what is the size of their line? It is this capacity for covering high value catastrophic exposure or Target Risks that will be discussed using the definition that capacity in this case is: ''The ability of insurance markets to cover any single maximum loss''. (Author)

  11. Removal of Pb(II), Cu(II) and Cd(II) from aqueous solution by some fungi and natural adsorbents in single and multiple metal systems

    International Nuclear Information System (INIS)

    Shoaib, A.; Badar, T.; Aslam, N.

    2011-01-01

    Six fungal and 10 natural biosorbents were analyzed for their Cu(II), Cd(II) and Pb(II) uptake capacity from single, binary and ternary metal ion system. Preliminary screening biosorption of assays revealed 2 fungi (Aspergillus niger and Cunninghamella echinulata) and three natural [Cicer arietinum husk, Moringa oleifera flower and soil (clay)] adsorbents hold considerable high adsorption efficiency and capacity for 3 meta l ions amongst the adsorbents. Further biosorption trials with five elected adsorbents showed a considerable reduction in metal uptake capability of adsorbents in binary- and ternary systems as compared to singly metal system. Cd(II) manifested the highest inhibitory effect on the biosorption of other metal ions, followed by Pb(II) and Cu(II). On account of metal preference, the selectivity order for metal ion towards the studied biomass matrices was Pb(II) (40-90%) > Cd(II) (2-53%) > Cu(II) (2-30%). (author)

  12. Estimation of Maximum Allowable PV Connection to LV Residential Power Networks

    DEFF Research Database (Denmark)

    Demirok, Erhan; Sera, Dezso; Teodorescu, Remus

    2011-01-01

    Maximum photovoltaic (PV) hosting capacity of low voltage (LV) power networks is mainly restricted by either thermal limits of network components or grid voltage quality resulted from high penetration of distributed PV systems. This maximum hosting capacity may be lower than the available solar...... potential of geographic area due to power network limitations even though all rooftops are fully occupied with PV modules. Therefore, it becomes more of an issue to know what exactly limits higher PV penetration level and which solutions should be engaged efficiently such as over sizing distribution...

  13. A sigmoidal model for biosorption of heavy metal cations from aqueous media.

    Science.gov (United States)

    Özen, Rümeysa; Sayar, Nihat Alpagu; Durmaz-Sam, Selcen; Sayar, Ahmet Alp

    2015-07-01

    A novel multi-input single output (MISO) black-box sigmoid model is developed to simulate the biosorption of heavy metal cations by the fission yeast from aqueous medium. Validation and verification of the model is done through statistical chi-squared hypothesis tests and the model is evaluated by uncertainty and sensitivity analyses. The simulated results are in agreement with the data of the studied system in which Schizosaccharomyces pombe biosorbs Ni(II) cations at various process conditions. Experimental data is obtained originally for this work using dead cells of an adapted variant of S. Pombe and represented by Freundlich isotherms. A process optimization scheme is proposed using the present model to build a novel application of a cost-merit objective function which would be useful to predict optimal operation conditions. Copyright © 2015. Published by Elsevier Inc.

  14. Maximum Likelihood Blind Channel Estimation for Space-Time Coding Systems

    Directory of Open Access Journals (Sweden)

    Hakan A. Çırpan

    2002-05-01

    Full Text Available Sophisticated signal processing techniques have to be developed for capacity enhancement of future wireless communication systems. In recent years, space-time coding is proposed to provide significant capacity gains over the traditional communication systems in fading wireless channels. Space-time codes are obtained by combining channel coding, modulation, transmit diversity, and optional receive diversity in order to provide diversity at the receiver and coding gain without sacrificing the bandwidth. In this paper, we consider the problem of blind estimation of space-time coded signals along with the channel parameters. Both conditional and unconditional maximum likelihood approaches are developed and iterative solutions are proposed. The conditional maximum likelihood algorithm is based on iterative least squares with projection whereas the unconditional maximum likelihood approach is developed by means of finite state Markov process modelling. The performance analysis issues of the proposed methods are studied. Finally, some simulation results are presented.

  15. Application of Opuntia ficus-indica in bioremediation of wastewaters. A critical review.

    Science.gov (United States)

    Nharingo, Tichaona; Moyo, Mambo

    2016-01-15

    Heavy metal ion, pesticide and dye wastewaters cause severe ecological contamination with conventional treatment methods proving inadequate, unsuccessful or expensive to apply. Several biomaterials have recently been explored for the biosorption and biocoagulation-flocculation of pollutants from wastewaters. In the past 10 years, there has been an extensive research output on the use of biological materials such as agricultural wastes, chitosan, Moringa Oleifera, Eichhornia crassipes, bacteria, algae, Cactus plants etc. in environmental remediation. The present paper reviews the scattered information about the green technology involving Opuntia ficus-indica derived biomaterials in wastewater decontamination. Its characterization, physicochemical compositions, its application in biosorption and flocculation of dyes, pesticides and metallic species focussing on equilibrium, kinetics and thermodynamic properties are reviewed. The main results obtained in the depollution of a variety of contaminated wastewaters using cladodes, fruit pulp and peels mucilage and electrolytes show very high and promising pollutant maximum sorption capacities and removal percentages in the range -125.4-1000 mg/g and 0.31-2251.56 mg/g for the biosorption of dyes and metallic species respectively and removal % ranges of 50-98.7%, 11-93.62% and 17-100% for turbidity, chemical oxygen demand and heavy metals respectively by coagulation-flocculation process. The biomaterials proved to be efficient in pollutant removal that there is need to explore the scaling up of the study from the laboratory scale to community pilot plants and eventually to industrial levels. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Dowex anion exchanger-loaded-baker's yeast as bi-functionalized biosorbents for selective extraction of anionic and cationic mercury(II) species

    International Nuclear Information System (INIS)

    Mahmoud, Mohamed E.; Yakout, Amr A.; Osman, Maher M.

    2009-01-01

    Dowex anion exchanger-immobilized-baker's yeast [Dae-yeast] were synthesized and potentially applied as environmental friendly biosorbents to evaluate the up-take process of anionic and cationic mercury(II) species as well as other metal ions. Optimization of mass ratio of Dowex anion exchanger versus yeast (1:1-1:10) in presence of various interacting buffer solutions (pH 4.0-9.0) was performed and evaluated. Surface modification of [Dae-yeast] was characterized by scanning electron microscopy (SEM) and infrared spectroscopy. The maximum metal biosorption capacity values of [Dae-yeast] towards mercury(II) were found in the range of 0.800-0.960, 0.840-0.950 and 0.730-0.900 mmol g -1 in presence of buffer solutions pH 2.0, 4.0 and 7.0, respectively. Three possible and different mechanisms are proposed to account for the biosorption of mercury and mercuric species under these three buffering conditions based on ion exchange, ion pair and chelation interaction processes. Factors affecting biosorption of mercury from aqueous medium including the pH effect of aqueous solutions (1.0-7.0), shaking time (1-30 min) and interfering ions were searched. The potential applications of modified biosorbents for selective biosorption and extraction of mercury from different real matrices including dental filling waste materials, industrial waste water samples and mercury lamp waste materials were also explored. The results denote to excellent percentage extraction values, from nitric acid as the dissolution solvent with a pH 2.0, as determined in the range of 90.77-97.91 ± 3.00-5.00%, 90.00-93.40 ± 4.00-5.00% and 92.31-100.00 ± 3.00-4.00% for the three tested samples, respectively.

  17. The Efficiency of Inactive Saccharomyces Cerevisiae Biomass on Removing Arsenic from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    MH Ehrampoush

    2014-05-01

    Methods:This experimental study was performed in laboratory scale and was performed on 243 synthetic samples in a batch system. In this study the effect of parameters such as contact time (5,15,30,60,120,min and 24 h, pH (5,7,9, fluoride concentration (100, 250, 500, 750,1000 µg/l and absorbent dosages (0.5,1,2/5,5g/l was evaluated. Finally biosorption kinetic and equilibrium isotherms of adsorbent was investigated. Results: The removal efficiency of inactive Saccharomyces cerevisiae was 89.49% at pH 5, adsorbent dose of 1g/L and initial metal concentration of 100 mg/L. Maximum uptake was observed after the Contact time of 60 minutes. In addition absorption isotherm followed pseudo-second order model with a maximum R2 = 0.999. Conclusion:The results of study showed that biosorption efficiency decreases with increase in pH of solution. Optimum pH of biosorption was 5. The Removal efficiency of arsenic enhanced with increase in mass of Saccharomyces cerevisiae up to 1 g/L, but The Removal efficiency decreased with increase in initial concentration of arsenic. Maximum absorption was observed in 15 minutes.

  18. MEASUREMENT OF SPECIFIC HEAT CAPACITY OF SALTSTONE

    International Nuclear Information System (INIS)

    Harbour, J.; Williams, V.

    2008-01-01

    One of the goals of the Saltstone variability study is to identify (and quantify the impact of) the operational and compositional variables that control or influence the important processing and performance properties of Saltstone grout mixtures. The heat capacity of the Saltstone waste form is one of the important properties of Saltstone mixes that was last measured at SRNL in 1997. It is therefore important to develop a core competency for rapid and accurate analysis of the specific heat capacity of the Saltstone mixes in order to quantify the impact of compositional and operational variations on this property as part of the variability study. The heat capacity, coupled with the heat of hydration data obtained from isothermal calorimetry for a given Saltstone mix, can be used to predict the maximum temperature increase in the cells within the vaults of the Saltstone Disposal Facility (SDF). The temperature increase controls the processing rate and the pour schedule. The maximum temperature is also important to the performance properties of the Saltstone. For example, in mass pours of concrete or grout of which Saltstone is an example, the maximum temperature increase and the maximum temperature difference (between the surface and the hottest location) are controlled to ensure durability of the product and prevent or limit the cracking caused by the thermal gradients produced during curing. This report details the development and implementation of a method for the measurement of the heat capacities of Saltstone mixes as well as the heat capacities of the cementitious materials of the premix and the simulated salt solutions used to batch the mixes. The developed method utilizes the TAM Air isothermal calorimeter and takes advantage of the sophisticated heat flow measurement capabilities of the instrument. Standards and reference materials were identified and used to validate the procedure and ensure accuracy of testing. Heat capacities of Saltstone mixes were

  19. MEASUREMENT OF SPECIFIC HEAT CAPACITY OF SALTSTONE

    Energy Technology Data Exchange (ETDEWEB)

    Harbour, J; Vickie Williams, V

    2008-09-29

    One of the goals of the Saltstone variability study is to identify (and quantify the impact of) the operational and compositional variables that control or influence the important processing and performance properties of Saltstone grout mixtures. The heat capacity of the Saltstone waste form is one of the important properties of Saltstone mixes that was last measured at SRNL in 1997. It is therefore important to develop a core competency for rapid and accurate analysis of the specific heat capacity of the Saltstone mixes in order to quantify the impact of compositional and operational variations on this property as part of the variability study. The heat capacity, coupled with the heat of hydration data obtained from isothermal calorimetry for a given Saltstone mix, can be used to predict the maximum temperature increase in the cells within the vaults of the Saltstone Disposal Facility (SDF). The temperature increase controls the processing rate and the pour schedule. The maximum temperature is also important to the performance properties of the Saltstone. For example, in mass pours of concrete or grout of which Saltstone is an example, the maximum temperature increase and the maximum temperature difference (between the surface and the hottest location) are controlled to ensure durability of the product and prevent or limit the cracking caused by the thermal gradients produced during curing. This report details the development and implementation of a method for the measurement of the heat capacities of Saltstone mixes as well as the heat capacities of the cementitious materials of the premix and the simulated salt solutions used to batch the mixes. The developed method utilizes the TAM Air isothermal calorimeter and takes advantage of the sophisticated heat flow measurement capabilities of the instrument. Standards and reference materials were identified and used to validate the procedure and ensure accuracy of testing. Heat capacities of Saltstone mixes were

  20. Study of the interaction mechanism in the biosorption of copper(II) ions onto posidonia oceanica and peat

    Energy Technology Data Exchange (ETDEWEB)

    Izquierdo, Marta; Marzal, Paula; Gabaldon, Carmen [Departamento de Ingenieria Quimica, Escuela Tecnica Superior de Ingenieria, Universitat de Valencia, Valencia (Spain); Silvetti, Margherita; Castaldi, Paola [Dipartimento di Scienze Ambientali e Agrarie e Biotecnologie Agro-Alimentari, Sez. Chimica Agraria ed Ambientale, University of Sassari, Sassari (Italy)

    2012-04-15

    A systematic approach was used to characterize the biosorption of copper(II) onto two biosorbents, Posidonia oceanica and peat, focusing on the interaction mechanisms, the copper(II) sorption-desorption process and the thermal behavior of the biosorbents. Sorption isotherms at pH 4-6 were obtained and the experimental data were fitted to the Langmuir model with a maximum uptake (q{sub max}) at pH 6 of 85.78 and 49.69 mg g{sup -1}, for P. oceanica and peat, respectively. A sequential desorption (SD) with water, Ca(NO{sub 3}){sub 2}, and EDTA was applied to copper-saturated biosorbents. Around 65-70% copper(II) were desorbed with EDTA, indicating that this heavy metal was strongly bound. The reversibility of copper(II) sorption was obtained by desorption with HCl and SD. Fourier transform IR spectroscopy (FTIR) analysis detected the presence of peaks associated with OH groups in aromatic and aliphatic structures, CH, CH{sub 2}, and CH{sub 3} in aliphatic structures, COO{sup -} and COOH groups and unsaturated aromatic structures on the surface of both biosorbents, as well as peaks corresponding to Si-O groups on the surface of peat. The results of SEM-EDX and FTIR analysis of copper-saturated samples demonstrated that ion exchange was one of the mechanisms involved in copper(II) retention. Thermal analysis of biosorbent samples showed that copper(II) sorption-desorption processes affected the thermal stability of the biosorbents. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Biosorption of malachite green onto Haematococcus pluvialis observed through synchrotron-FTIR microspectroscopy.

    Science.gov (United States)

    Liu, J H; Zhang, L; Zha, D C; Chen, L Q; Chen, X X; Qi, Z M

    2018-06-28

    Microalgae have emerged as promising biosorbents for the treatment of malachite green in wastewater. However, the underlying mechanism for the biosorption of malachite green onto microalgae is still unclear and needs further intensive study. In this work, synchrotron Fourier-transform infrared (synchrotron-FTIR) microspectroscoy in combination with biochemical assay is employed to evaluate malachite green removal efficiency (95.2%, 75.6% and 66.5%) by three stages of Haematococcus pluvialis. Meanwhile, the various vital changes of algal cells including lipids, proteins, polysaccharides and carotenoids, is distinguished and quantified in situ. This study illustrates that synchrotron-FTIR microspectroscopy is an effective and powerful tool to scrutinize the mechanism for the interactions between the malachite green dye and microalgal cells and it even provides an effective and none-invasive new approach to screen potentially proper biosorbents for the removal of dyes from wastewater. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  2. Modeling of the adsorptive removal of arsenic(III) using plant biomass: a bioremedial approach

    Science.gov (United States)

    Roy, Palas; Dey, Uttiya; Chattoraj, Soumya; Mukhopadhyay, Debasis; Mondal, Naba Kumar

    2017-06-01

    In the present work, the possibility of using a non-conventional finely ground (250 μm) Azadirachta indica (neem) bark powder [AiBP] has been tested as a low-cost biosorbent for the removal of arsenic(III) from water. The removal of As(III) was studied by performing a series of biosorption experiments (batch and column). The biosorption behavior of As(III) for batch and column operations were examined in the concentration ranges of 50-500 µg L-1 and 500.0-2000.0 µg L-1, respectively. Under optimized batch conditions, the AiBP could remove up to 89.96 % of As(III) in water system. The artificial neural network (ANN) model was developed from batch experimental data sets which provided reasonable predictive performance ( R 2 = 0.961; 0.954) of As(III) biosorption. In batch operation, the initial As(III) concentration had the most significant impact on the biosorption process. For column operation, central composite design (CCD) was applied to investigate the influence on the breakthrough time for optimization of As(III) biosorption process and evaluation of interacting effects of different operating variables. The optimized result of CCD revealed that the AiBP was an effective and economically feasible biosorbent with maximum breakthrough time of 653.9 min, when the independent variables were retained at 2.0 g AiBP dose, 2000.0 µg L-1 initial As(III) concentrations, and 3.0 mL min-1 flow rate, at maximum desirability value of 0.969.

  3. A polynomial time algorithm for solving the maximum flow problem in directed networks

    International Nuclear Information System (INIS)

    Tlas, M.

    2015-01-01

    An efficient polynomial time algorithm for solving maximum flow problems has been proposed in this paper. The algorithm is basically based on the binary representation of capacities; it solves the maximum flow problem as a sequence of O(m) shortest path problems on residual networks with nodes and m arcs. It runs in O(m"2r) time, where is the smallest integer greater than or equal to log B , and B is the largest arc capacity of the network. A numerical example has been illustrated using this proposed algorithm.(author)

  4. Removal of Cr (VI) from aqueous solutions using peanut shell as adsorbent

    International Nuclear Information System (INIS)

    Ilyas, M.; Ahmad, A.; Saeed, M.

    2013-01-01

    The biosorption of Cr (VI) ions from aqueous solution by peanut shell (PNS) biosorbent was studied in a batch mode system. Factors affecting Cr (VI) biosorption such as pH (2-7), initial chromium ion concentrations (20-60 mg/l), contact time (6 h), adsorbent dosage (0.2-1.0 g) and temperature (293-313 K) were investigated. The adsorption equilibrium was established at 360 minutes. A comparison of the kinetic models has showed that pseudo-second order equation best described adsorption kinetics. Maximum adsorption was achieved at pH 2.0 and 3.0. The adsorption equilibrium data was fitted well to the Langmuir adsorption isotherm as compared to the Freundlich adsorption isotherm. The values of separation factor, R/sub L/ was found between 0.0235 and 0.0633 (0 < R/sub L/ < 1) which pointed out favorable adsorption of Cr (VI) on PNS adsorbent. The adsorption capacity was measured in terms of monolayer adsorption and was found to be 4.32 mg/g at 313 K. The thermodynamic parameters (ΔG, ΔH and ΔS) values indicated the endothermic, non spontaneous and entropy driven system of the adsorption process. (author)

  5. Sequestration of chromium by exopolysaccharides of Nostoc and Gloeocapsa from dilute aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Mona [Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar-125 001 (India); Kaushik, Anubha [Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar-125 001 (India)], E-mail: aks_10@yahoo.com; Somvir,; Bala, Kiran; Kamra, Anjana [Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar-125 001 (India)

    2008-09-15

    This article reports the chromium removal potential of exopolysaccharides (EPS) of two indigenously isolated cyanobacterial strains, Gloeocapsa calcarea and Nostoc punctiforme. The biosorption was studied by varying pH from 2 to 6 and initial chromium concentration from 5 to 20 mg/L to find out the optimized conditions for maximum chromium removal by EPS. Two equilibrium models, Langmuir and Freundlich, were used to explain these results. The Freundlich model was found to be better applicable to the experimental data as compared to Langmuir as inferred from high value of coefficient of determination whereas the optimal conditions were found to be same for the two (pH 2 and initial chromium concentration 20 mg/L). EPS production by the two strains was also studied which was found to be higher for Gloeocapsa. On the basis of experimental results and model parameters, it can be inferred that the EPS extracted from Nostoc has comparatively high biosorption capacity and can be utilized for the removal of chromium from dilute aqueous solution. Adsorption of chromium on EPS was further confirmed by surface morphology observed in scanning electron micrographs.

  6. Sequestration of chromium by exopolysaccharides of Nostoc and Gloeocapsa from dilute aqueous solutions

    International Nuclear Information System (INIS)

    Sharma, Mona; Kaushik, Anubha; Somvir,; Bala, Kiran; Kamra, Anjana

    2008-01-01

    This article reports the chromium removal potential of exopolysaccharides (EPS) of two indigenously isolated cyanobacterial strains, Gloeocapsa calcarea and Nostoc punctiforme. The biosorption was studied by varying pH from 2 to 6 and initial chromium concentration from 5 to 20 mg/L to find out the optimized conditions for maximum chromium removal by EPS. Two equilibrium models, Langmuir and Freundlich, were used to explain these results. The Freundlich model was found to be better applicable to the experimental data as compared to Langmuir as inferred from high value of coefficient of determination whereas the optimal conditions were found to be same for the two (pH 2 and initial chromium concentration 20 mg/L). EPS production by the two strains was also studied which was found to be higher for Gloeocapsa. On the basis of experimental results and model parameters, it can be inferred that the EPS extracted from Nostoc has comparatively high biosorption capacity and can be utilized for the removal of chromium from dilute aqueous solution. Adsorption of chromium on EPS was further confirmed by surface morphology observed in scanning electron micrographs

  7. Potential adsorption of methylene blue from aqueous solution using green macroalgaePosidonia oceanica.

    Science.gov (United States)

    Allouche, F.-N.; Yassaa, N.

    2018-03-01

    The use of inexpensive biological materials, such as marine algae for removing dyes from contaminated industrial effluents appears as a potential alternative method. The aim of this study is to investigate the aptitude of marine macroalgae Posidonia Oceanica local biomass abundant on the coasts of Algeria for selective sorption of methylene blue (MB) from an aqueous solution in batch experiments at 20 °C. A maximum percentage removal of Posidonia oceanica occurs at pH 5. Equilibrium isotherm data were analyzed using the Langmuir and the Freundlich isotherms. The adsorption equilibrium of methylene blue was best describe by Langmuir model than the Freundlich model. The maximum sorption capacity was 357 mgg-1at pH 5. The sorption data were very well described by the pseudo-second-order model. Keywords: Posidonia oceanica, Methylene blue (MB), Biosorption, Isotherm Equilibrium, Kinetics; Modelling.

  8. Liquid films on shake flask walls explain increasing maximum oxygen transfer capacities with elevating viscosity.

    Science.gov (United States)

    Giese, Heiner; Azizan, Amizon; Kümmel, Anne; Liao, Anping; Peter, Cyril P; Fonseca, João A; Hermann, Robert; Duarte, Tiago M; Büchs, Jochen

    2014-02-01

    In biotechnological screening and production, oxygen supply is a crucial parameter. Even though oxygen transfer is well documented for viscous cultivations in stirred tanks, little is known about the gas/liquid oxygen transfer in shake flask cultures that become increasingly viscous during cultivation. Especially the oxygen transfer into the liquid film, adhering on the shake flask wall, has not yet been described for such cultivations. In this study, the oxygen transfer of chemical and microbial model experiments was measured and the suitability of the widely applied film theory of Higbie was studied. With numerical simulations of Fick's law of diffusion, it was demonstrated that Higbie's film theory does not apply for cultivations which occur at viscosities up to 10 mPa s. For the first time, it was experimentally shown that the maximum oxygen transfer capacity OTRmax increases in shake flasks when viscosity is increased from 1 to 10 mPa s, leading to an improved oxygen supply for microorganisms. Additionally, the OTRmax does not significantly undermatch the OTRmax at waterlike viscosities, even at elevated viscosities of up to 80 mPa s. In this range, a shake flask is a somehow self-regulating system with respect to oxygen supply. This is in contrary to stirred tanks, where the oxygen supply is steadily reduced to only 5% at 80 mPa s. Since, the liquid film formation at shake flask walls inherently promotes the oxygen supply at moderate and at elevated viscosities, these results have significant implications for scale-up. © 2013 Wiley Periodicals, Inc.

  9. BIOSSORÇÃO DE Pb(II POR CASCA DE URUCUM (Bixa orellana EM SOLUÇÕES AQUOSAS: ESTUDO CINÉTICO, EQUILÍBRIO E TERMODINÂMICO

    Directory of Open Access Journals (Sweden)

    Klaiani B. Fontana

    Full Text Available This study describes the application of new and low cost biosorbent, shells of urucum (Bixa Orellana, for removal of lead ions (Pb(II from water solution. The urucum shells were characterized by Fourier transform infrared spectroscopy and scanning electron microscopy techniques. Batch adsorption experiments were performed in order to evaluate the effect of pH, agitation speed, adsorbent dosage, contact time, temperature, presence of interfering ions and matrix effect on the adsorption of process. The kinetics of biosorption followed pseudo-second-order model. Langmuir and Freundlich isotherm models were applied to describe the biosorption of Pb(II by urucum shells. The Langmuir model showed better fit and the estimated biosorption capacity was 43.6 mg g-1. The negative Gibbs free energy, ΔG°, confirms the spontaneous nature and positive value of enthalpy, ΔH°, the endothermic character of the process. Furthermore, we also performed an evaluation of matrix and others ions effect on the biosorption process.

  10. Capacity factors of a mixed speed railway network

    DEFF Research Database (Denmark)

    Harrod, Steven

    2009-01-01

    Fifty-four combinations of track network and speed differential are evaluated within a linear, discrete time network model that maximizes an objective function of train volume, delays, and idle train time. The results contradict accepted dispatching practice by suggesting that when introducing...... a priority, high-speed train onto a network, maximum network now is attained when the priority train operates at maximum speed. in addition, increasing siding capacity at meeting points may offer a network capacity improvement comparable to partial double track. (C) 2009 Elsevier Ltd. All rights reserved....

  11. Eigenstructures of MIMO Fading Channel Correlation Matrices and Optimum Linear Precoding Designs for Maximum Ergodic Capacity

    Directory of Open Access Journals (Sweden)

    Hamid Reza Bahrami

    2007-01-01

    Full Text Available The ergodic capacity of MIMO frequency-flat and -selective channels depends greatly on the eigenvalue distribution of spatial correlation matrices. Knowing the eigenstructure of correlation matrices at the transmitter is very important to enhance the capacity of the system. This fact becomes of great importance in MIMO wireless systems where because of the fast changing nature of the underlying channel, full channel knowledge is difficult to obtain at the transmitter. In this paper, we first investigate the effect of eigenvalues distribution of spatial correlation matrices on the capacity of frequency-flat and -selective channels. Next, we introduce a practical scheme known as linear precoding that can enhance the ergodic capacity of the channel by changing the eigenstructure of the channel by applying a linear transformation. We derive the structures of precoders using eigenvalue decomposition and linear algebra techniques in both cases and show their similarities from an algebraic point of view. Simulations show the ability of this technique to change the eigenstructure of the channel, and hence enhance the ergodic capacity considerably.

  12. Efficient removal of Acid Green 25 dye from wastewater using activated Prunus Dulcis as biosorbent: Batch and column studies.

    Science.gov (United States)

    Jain, Suyog N; Gogate, Parag R

    2018-03-15

    Biosorbent synthesized from dead leaves of Prunus Dulcis with chemical activation during the synthesis was applied for the removal of Acid Green 25 dye from wastewater. The obtained biosorbent was characterized using Brunauer-Emmett-Teller analysis, Fourier transform-infrared spectroscopy and scanning electron microscopy measurements. It was demonstrated that alkali treatment during the synthesis significantly increased surface area of biosorbent from 67.205 to 426.346 m 2 /g. The effect of various operating parameters on dye removal was investigated in batch operation and optimum values of parameters were established as pH of 2, 14 g/L as the dose of natural biosorbent and 6 g/L as the dose of alkali treated biosorbent. Relative error values were determined to check fitting of obtained data to the different kinetic and isotherm models. It was established that pseudo-second order kinetic model and Langmuir isotherm fitted suitably to the obtained batch experimental data. Maximum biosorption capacity values were estimated as 22.68 and 50.79 mg/g for natural biosorbent and for alkali activated Prunus Dulcis, respectively. Adsorption was observed as endothermic and activation energy of 6.22 kJ/mol confirmed physical type of adsorption. Column experiments were also conducted to probe the effectiveness of biosorbent for practical applications in continuous operation. Breakthrough parameters were established by studying the effect of biosorbent height, flow rate of dye solution and initial dye concentration on the extent of dye removal. The maximum biosorption capacity under optimized conditions in the column operation was estimated as 28.57 mg/g. Thomas and Yoon-Nelson models were found to be suitably fitted to obtained column data. Reusability study carried out in batch and continuous column operations confirmed that synthesized biosorbent can be used repeatedly for dye removal from wastewater. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. 49 CFR 237.71 - Determination of bridge load capacities.

    Science.gov (United States)

    2010-10-01

    ... capacity shall be determined. (g) Bridge load capacity may be expressed in terms of numerical values related to a standard system of bridge loads, but shall in any case be stated in terms of weight and...) Bridge load capacity may be expressed in terms of both normal and maximum load conditions. Operation of...

  14. Recovery of gold from industrial wastewater by extracellular proteins obtained from a thermophilic bacterium Tepidimonas fonticaldi AT-A2.

    Science.gov (United States)

    Han, Yin-Lung; Wu, Jen-Hao; Cheng, Chieh-Lun; Nagarajan, Dillirani; Lee, Ching-Ray; Li, Yi-Heng; Lo, Yung-Chung; Chang, Jo-Shu

    2017-09-01

    Biosorption has emerged as a promising alternative approach for treating wastewater with dilute metal contents in a green and cost effective way. In this study, extracellular proteins of an isolated thermophilic bacterium (Tepidimonas fonticaldi AT-A2) were used as biosorbent to recover precious metal (i.e., Au) from wastewater. The Au (III) adsorption capacity on the T. fonticaldi AT-A2 proteins was the highest when the pH was set at about 4.0-5.0. The adsorption capacity increased with increasing temperature from 15 to 70°C. Adsorption isotherm studies show that both Langmuir and Freundrich models could describe the adsorption equilibrium. The maximum adsorption capacity of Au (III) at 50°C and pH 5 could reach 9.7mg Au/mg protein. The protein-based biosorbent was also used for the recovery of Au from a wastewater containing 15mg/L of Au, achieving a high adsorption capacity of 1.45mg Au/mg protein and a removal efficiency of 71%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Sorption and desorption studies of chromium(VI) from nonviable cyanobacterium Nostoc muscorum biomass

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, V.K. [Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667 (India)], E-mail: vinodfcy@iitr.ernet.in; Rastogi, A. [Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667 (India)

    2008-06-15

    This communication presents results pertaining to the sorptive and desorptive studies carried out on chromium(VI) removal onto nonviable freshwater cyanobacterium (Nostoc muscorum) biomass. Influence of varying the conditions for removal of chromium(VI), such as the pH of aqueous solution, the dosage of biosorbent, the contact time with the biosorbent, the temperature for the removal of chromium, the effect of light metal ions and the adsorption-desorption studies were investigated. Sorption interaction of chromium on to cyanobacterial species obeyed both the first and the second-order rate equation and the experimental data showed good fit with both the Langmuir and freundlich adsorption isotherm models. The maximum adsorption capacity was 22.92 mg/g at 25 {sup o}C and pH 3.0. The adsorption process was endothermic and the values of thermodynamic parameters of the process were calculated. Various properties of the cyanobacterium, as adsorbent, explored in the characterization part were chemical composition of the adsorbent, surface area calculation by BET method and surface functionality by FTIR. Sorption-desorption of chromium into inorganic solutions and distilled water were observed and this indicated the biosorbent could be regenerated using 0.1 M HNO{sub 3} and EDTA with upto 80% recovery. The biosorbents were reused in five biosorption-desorption cycles without a significant loss in biosorption capacity. Thus, this study demonstrated that the cyanobacterial biomass N. muscorum could be used as an efficient biosorbent for the treatment of chromium(VI) bearing wastewater.

  16. Sorption and desorption studies of chromium(VI) from nonviable cyanobacterium Nostoc muscorum biomass

    International Nuclear Information System (INIS)

    Gupta, V.K.; Rastogi, A.

    2008-01-01

    This communication presents results pertaining to the sorptive and desorptive studies carried out on chromium(VI) removal onto nonviable freshwater cyanobacterium (Nostoc muscorum) biomass. Influence of varying the conditions for removal of chromium(VI), such as the pH of aqueous solution, the dosage of biosorbent, the contact time with the biosorbent, the temperature for the removal of chromium, the effect of light metal ions and the adsorption-desorption studies were investigated. Sorption interaction of chromium on to cyanobacterial species obeyed both the first and the second-order rate equation and the experimental data showed good fit with both the Langmuir and freundlich adsorption isotherm models. The maximum adsorption capacity was 22.92 mg/g at 25 o C and pH 3.0. The adsorption process was endothermic and the values of thermodynamic parameters of the process were calculated. Various properties of the cyanobacterium, as adsorbent, explored in the characterization part were chemical composition of the adsorbent, surface area calculation by BET method and surface functionality by FTIR. Sorption-desorption of chromium into inorganic solutions and distilled water were observed and this indicated the biosorbent could be regenerated using 0.1 M HNO 3 and EDTA with upto 80% recovery. The biosorbents were reused in five biosorption-desorption cycles without a significant loss in biosorption capacity. Thus, this study demonstrated that the cyanobacterial biomass N. muscorum could be used as an efficient biosorbent for the treatment of chromium(VI) bearing wastewater

  17. Urban development control based on transportation carrying capacity

    Science.gov (United States)

    Miharja, M.; Sjafruddin, A. H.

    2017-06-01

    Severe transportation problems in Indonesian urban areas are stimulated by one fundamental factor, namely lack of awareness on transportation carrying capacity in these areas development control. Urban land use development towards more physical coverage is typically not related with the capability of transportation system to accommodate additional trips volume. Lack of clear connection between development permit with its implication on the transportation side has led to a phenomenon of exceeding transport demand over supply capacity. This paper discusses the concept of urban land use development control which will be related with transport carrying capacity. The discussion would cover both supply and demand sides of transportation. From supply side, the analysis regarding the capacity of transport system would take both existing as well as potential road network capacity could be developed. From demand side, the analysis would be through the control of a maximum floor area and public transport provision. Allowed maximum floor area for development would be at the level of generating traffic at reasonable volume. Ultimately, the objective of this paper is to introduce model to incorporate transport carrying capacity in Indonesian urban land use development control.

  18. Artificial intelligence and regression analysis for Cd(II) ion biosorption from aqueous solution by Gossypium barbadense waste.

    Science.gov (United States)

    Fawzy, Manal; Nasr, Mahmoud; Nagy, Heba; Helmi, Shacker

    2018-02-01

    In this study, batch biosorption experiments were conducted to determine the removal efficiency of Cd(II) ion from aqueous solutions by Gossypium barbadense waste. The biosorbent was characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) connected with energy dispersive X-ray (EDX). The sorption mechanism was described by complexation/chelation of Cd 2+ with the functional groups of O-H, C=O, -COO-, and C-O, as well as, cation-exchange with Mg 2+ and K + . At initial Cd(II) ion concentration (C o ), 50 mg/L, the adsorption equilibrium of 89.2% was achieved after 15 min under the optimum experimental factors of pH 6.0, biosorbent dosage 10 g/L, and particle diameter 0.125-0.25 mm. Both Langmuir and Freundlich models fitted well to the sorption data, suggesting the co-existence of monolayer coverage along with heterogenous surface biosorption. Artificial neural network (ANN) with a structure of 5-10-1 was performed to predict the Cd(II) ion removal efficiency. The ANN model provided high fit (R 2 0.923) to the experimental data and indicated that C o was the most influential input. A pure-quadratic model was developed to determine the effects of experimental factors on Cd(II) ion removal efficiency, which indicated the limiting nature of pH and biosorbent dosage on Cd(II) adsorption. Based on the regression model (R 2 0.873), the optimum experimental factors were pH 7.61, biosorbent dosage 24.74 g/L, particle size 0.125-0.25 mm, and adsorption time 109.77 min, achieving Cd 2+ removal of almost 100% at C o 50 mg/L.

  19. Uptake of Cationic Dyes from Aqueous Solution by Biosorption Using Granulized Annona squmosa Seed

    Directory of Open Access Journals (Sweden)

    T. Santhi

    2009-01-01

    Full Text Available A new, low cost, locally available biomaterial was tested for its ability to remove cationic dyes from aqueous solution. A sample of granulized Annona squmosa seeds had been utilized as a sorbent for uptake of three cationic dyes, methylene blue (MB, methylene red (MR and malachite green (MG. The effects of various experimental parameters (e.g., contact time, dye concentration, adsorbent dose and pH were investigated and optimal experimental conditions were ascertained. Above the value of initial pH 5, three dyes studied could be removed effectively. The isothermal data fitted the Langmuir model in the case of MB sorption and the Freundlich model for all three dyes sorption. The biosorption processes followed the pseudo first order rate kinetics. The results in this study indicated that granulized Annona squmosa seed was an attractive candidate for removing cationic dyes from the dye wastewater.

  20. PERHITUNGAN IDLE CAPACITY DENGAN MENGGUNAKAN CAM-I CAPACITY MODEL DALAM RANGKA EFISIENSI BIAYA PADA PT X

    Directory of Open Access Journals (Sweden)

    Muammar Aditya

    2015-09-01

    Full Text Available Aim for this research are to analyze capacity cost which incure from company production machines and human resources whose operate the production machine using CAM-I capacity model. CAM-I capacity model is an approach which focus  upon how to manage company resources. This research initiated at PT X which focus to production activity that used small mixer machine, extruder machine, oven drying machine, enrober machine, pan coting machine which consist of hot and cold pan coating machine, and packing machine which consist of vertical packing machine and horizontal packing machine as well as human resources that operates those machine. This research focus on rate capacity, productive capacity, idle capacity, and nonproductive capacity to measure capacity cost. Result of this research shows most of the capacity owned by either by production machine or human resources are not utilized to its maximum potential. There are need to reduce capacity cost owned by production machine and human resoures to increase the product sales but if its unachieveable there will be need to increase efficiency from production machine and human resources by reducing their quantityDOI: 10.15408/ess.v4i1.1961

  1. Application of biosorbents in treatment of the radioactive liquid waste; Aplicacao de biossorventes no tratamento de rejeitos radioativos liquidos

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Rafael Vicente de Padua

    2014-07-01

    Radioactive liquid waste containing organic compounds need special attention, because the treatment processes available are expensive and difficult to manage. The biosorption is a potential treatment technique that has been studied in simulated wastes. The biosorption term is used to describe the removal of metals, non-metals and/or radionuclides by a material from a biological source, regardless of its metabolic activity. Among the potential biomasses, agricultural residues have very attractive features, as they allow for the removal of radionuclides present in the waste using a low cost biosorbent. The aim of this study was to evaluate the potential use of different biomass originating from agricultural products (coconut fiber, coffee husk and rice husk) in the treatment of real radioactive liquid organic waste. Experiments with these biomass were made including 1) Preparation, activation and characterization of biomasses; 2) Conducting biosorption assays; and 3) Evaluation of the product of immobilization of biomasses in cement. The biomasses were tested in raw and activated forms. The activation was carried out with diluted HNO{sub 3} and NaOH solutions. Biosorption assays were performed in polyethylene bottles, in which were added 10 mL of radioactive waste or waste dilutions in deionized water with the same pH and 2% of the biomass (w/v). At the end of the experiment, the biomass was separated by filtration and the remaining concentration of radioisotopes in the filtrate was determined by ICP-OES and gamma spectrometry. The studied waste contains natural uranium, americium-241 and cesium-137. The adopted contact times were 30 min, 1, 2 and 4 hours and the concentrations tested ranged between 10% and 100%. The results were evaluated by maximum experimental sorption capacity and isotherm and kinetics ternary models. The highest sorption capacity was observed with raw coffee husk, with approximate values of 2 mg/g of U (total), 40 x 10{sup -6} mg/g of Am-241 and

  2. Application of biosorbents in treatment of the radioactive liquid waste

    International Nuclear Information System (INIS)

    Ferreira, Rafael Vicente de Padua

    2014-01-01

    Radioactive liquid waste containing organic compounds need special attention, because the treatment processes available are expensive and difficult to manage. The biosorption is a potential treatment technique that has been studied in simulated wastes. The biosorption term is used to describe the removal of metals, non-metals and/or radionuclides by a material from a biological source, regardless of its metabolic activity. Among the potential biomasses, agricultural residues have very attractive features, as they allow for the removal of radionuclides present in the waste using a low cost biosorbent. The aim of this study was to evaluate the potential use of different biomass originating from agricultural products (coconut fiber, coffee husk and rice husk) in the treatment of real radioactive liquid organic waste. Experiments with these biomass were made including 1) Preparation, activation and characterization of biomasses; 2) Conducting biosorption assays; and 3) Evaluation of the product of immobilization of biomasses in cement. The biomasses were tested in raw and activated forms. The activation was carried out with diluted HNO 3 and NaOH solutions. Biosorption assays were performed in polyethylene bottles, in which were added 10 mL of radioactive waste or waste dilutions in deionized water with the same pH and 2% of the biomass (w/v). At the end of the experiment, the biomass was separated by filtration and the remaining concentration of radioisotopes in the filtrate was determined by ICP-OES and gamma spectrometry. The studied waste contains natural uranium, americium-241 and cesium-137. The adopted contact times were 30 min, 1, 2 and 4 hours and the concentrations tested ranged between 10% and 100%. The results were evaluated by maximum experimental sorption capacity and isotherm and kinetics ternary models. The highest sorption capacity was observed with raw coffee husk, with approximate values of 2 mg/g of U (total), 40 x 10 -6 mg/g of Am-241 and 50 x10 -9

  3. Light dependence of carboxylation capacity for C3 photosynthesis models

    Science.gov (United States)

    Photosynthesis at high light is often modelled by assuming limitation by the maximum capacity of Rubisco carboxylation at low carbon dioxide concentrations, by electron transport capacity at higher concentrations, and sometimes by triose-phosphate utilization rate at the highest concentrations. Pho...

  4. Removal of Pb(II) from aqueous solution by seed powder of Prosopis juliflora DC.

    Science.gov (United States)

    Jayaram, K; Prasad, M N V

    2009-09-30

    Biosorption potential of Prosopis juliflora seed powder (PJSP) for Pb(II) from aqueous solution was investigated. The effects of pH, contact time and different metal concentrations were studied in batch experiments. The maximum uptake of metal ions was obtained at pH 6.0. Adsorption equilibrium was established at 360 min. The pseudo-first-order and pseudo-second-order kinetic models were applied to study the kinetics of the biosorption processes. The pseudo-second-order kinetic model provided the best correlation (R(2)=0.9992) of the experimental data compared to the pseudo-first-order kinetic model. The maximum Pb(II) adsorbed was found to be 40.322 mg/g and it was found that the biosorption of Pb(II) on PJSP has correlated well (R(2)=0.9719) with the Langmuir equation compared to Freundlich isotherm equation (R(2)=0.9282) in the concentration range studied. Negative values of DeltaG indicated that the adsorption process was spontaneous and exothermic in nature. The FTIR study revealed the presence of various functional groups which are responsible for the adsorption process. The overall results show that PJSP can be envisaged as a vibrant, biosorbent for metal cleanup operations.

  5. Cowpea pod (Vigna unguiculata) biomass as a low-cost biosorbent for removal of Pb(II) ions from aqueous solution.

    Science.gov (United States)

    Guyo, U; Moyo, M

    2017-01-01

    The use of cowpea pod (CPP) biomass for the removal of Pb(II) ions from aqueous solution was investigated. The effects of factors such as dosage concentration (0.2 to 1.6 g L -1 ), pH (2 to 8), contact time (5 to 120 min), metal ion concentrations (10 to 80 mg L -1 ) and temperature (20 to 50 °C) were examined through batch studies. The biosorption data conformed best to the Langmuir model at the three working temperatures (20, 30 and 40 °C) as revealed by the correlation coefficients (R 2 ) which were greater than 0.940. The maximum sorption capacity of the CPP for Pb(II) was 32.96 mg g -1 at 313 K. Furthermore, the kinetic data fitted well to the pseudo-second-order model as it had the lowest sum of square error (SSE) values and correlation coefficients close to unity (R 2  > 0.999). The thermodynamic parameters (ΔG°, ΔS° and ΔH°) showed that the biosorption process was spontaneous, feasible and endothermic. The results obtained in the present study indicated that cowpea pod biomass could be used for the effective removal of Pb(II) from aqueous solution.

  6. Bark, a suitable bio-sorbent for the removal of uranium from wastewater - From laboratory to industry

    International Nuclear Information System (INIS)

    Jauberty, L.; Delpech, V.; Gloaguen, V.; Astier, C.; Krausz, P.; Berland, A.; Granger, V.; Niort, I.; Royer, A.; Decossas, J.L.

    2011-01-01

    This paper shows that natural materials such as barks can successfully replace synthetic resins for industrial purposes. Evaluated in batch conditions, bio-sorption of uranium on suitably prepared Douglas fir barks took place in less than 10 min and appeared to be optimum at pH>4. The bio-sorption process of uranium (uranyl form UO 2 2+ ) was characterized in the optimal physico-chemical conditions and could be mathematically modeled as a Langmuir isotherm. With a maximum uranium specific uptake q max value of 1.16 meq.g -1 (138 mgU.g -1 ) it was found that the sorption capability of Douglas fir barks was at least five times higher for uranium than for other heavy metals such as lead. Adsorption of uranium contained in water leached from a former uranium mine was then monitored over a one-month period in a laboratory-scale chromatography column. The fixation capacity remained fairly constant throughout the whole testing period. Water radioactivity decreased from 1500 mBq.L -1 (0.12 mgU.L -1 ) to -1 (0.4 μgU.L -1 ) at the column exit. This technology was successfully transferred and tested through a pilot project under industrial conditions with the support of AREVA NC. (authors)

  7. Removal of heavy metals from waste water of tanning leather ...

    African Journals Online (AJOL)

    LG

    2013-07-03

    Jul 3, 2013 ... The results indicate that fungi of contaminated soils have high level of metal biosorption capacities. ... such as mercury, lead, cadmium, selenium, copper, chromium and ... considered as an alternative remediation for heavy.

  8. Ultrastructural localization of uranium biosorption in Penicillium digitatum by stem x-ray microanalysis

    International Nuclear Information System (INIS)

    Galun, M.; Galun, E.

    1987-01-01

    When Penicillium digitatum Saccardo cultures are exposed to aqueous solutions containing soluble uranium salts, considerable amounts of this element are accumulated in the fungal mycelium. The accumulated uranium is retained after thorough rinsing with distilled water but is removed by alkali carbonate solutions. Analysis of thick sections (0.5 μm) of the fungal hyphae with TEM, after incubation in UO 2 Cl 2 solutions of varying concentrations under both light and dark conditions, revealed conspicuous crystal-like deposits in UO 2 Cl 2 -exposed hyphae, but none in the control hyphae. Thick sections were necessary for crystal visualization. Using energy-dispersive X-ray analysis, uranium was detected as the only heavy element in these crystals. Uranium crystal biosorption was localized on the outside surface of the hyphal cell wall (following short exposures to relatively low uranium concentrations) or inside the cell wall (following long exposure to relatively high uranium concentrations). In some cases, crystal-like deposits of uranium salts were located on the outside surface as well as inside the cell. (author)

  9. Experimental binding of lead to a low cost on biosorbent: Nopal (Opuntia streptacantha).

    Science.gov (United States)

    Miretzky, Patricia; Muñoz, Carolina; Carrillo-Chávez, Alejandro

    2008-03-01

    The use of nopal cladodes (Opuntia streptacantha) as raw material for Pb(2+) biosorption was investigated. Batch experiments were carried out to determine Pb(2+) sorption capacity and the efficiency of the sorption process under different pH, initial Pb(2+) and nopal biomass concentrations. The experimental data showed a good fit to Langmuir and Freundlich isotherms models. The maximum adsorption capacity for Pb(2+) was 0.14 mmol g(-1) with an efficiency higher than 94% (pH 5.0 and 2.5 g L(-1) nopal biomass). The Pb(2+) kinetics were best described by the pseudo-second-order rate model. The rate constant, the initial sorption rate and the equilibrium sorption capacity were determined. The practical implication of this study is the development of an effective and economic technology in which the nopal biomass did not undergo any chemical or physical pretreatment, which added to nopal abundance in Mexico and its low cost makes it a good option for Pb(2+) removal from contaminated waters.

  10. Evaluating Maximum Photovoltaic Integration in District Distribution Systems Considering Optimal Inverter Dispatch and Cloud Shading Conditions

    DEFF Research Database (Denmark)

    Ding, Tao; Kou, Yu; Yang, Yongheng

    2017-01-01

    . However, the intermittency of solar PV energy (e.g., due to passing clouds) may affect the PV generation in the district distribution network. To address this issue, the voltage magnitude constraints under the cloud shading conditions should be taken into account in the optimization model, which can......As photovoltaic (PV) integration increases in distribution systems, to investigate the maximum allowable PV integration capacity for a district distribution system becomes necessary in the planning phase, an optimization model is thus proposed to evaluate the maximum PV integration capacity while...

  11. Spectroscopic characterization of Au 3+ biosorption by waste biomass of Saccharomyces cerevisiae

    Science.gov (United States)

    Lin, Zhongyu; Wu, Jianming; Xue, Ru; Yang, Yong

    2005-02-01

    Some spectroscopic characteristics of Au 3+ biosorption by waste biomass of Saccharomyces cerevisiae have been reported in this paper. The effect of temperature on the correlation parameters of chemical kinetics and thermodynamics of the binding reaction was investigated by using AAS. XRD diffraction pattern of gold-loaded biomass revealed that the Au 3+ bound on the cell wall of the biomass had been reduced into gold particle. FTIR spectrophotometry on blank and gold-loaded biomass demonstrated that active groups such as the hydroxyl group of saccharides, and the carboxylate anion of amino-acid residues, from the peptidoglycan layer on the cell wall seem to be the sites for the Au 3+ binding, and the free aldehyde group of the hemiacetalic hydroxyl group from reducing sugars, i.e. the hydrolysates of the polysaccharides on the peptidoglycan layer, serving as the electron donor, in situ reduced the Au 3+ to Au 0. XPS and IR characterizations of the interaction between glucose and Au 3+ further supported that the reduction of Au 3+ to Au 0 can directly occur at the aldehyde group of the reducing sugars.

  12. Quantum reading capacity

    International Nuclear Information System (INIS)

    Pirandola, Stefano; Braunstein, Samuel L; Lupo, Cosmo; Mancini, Stefano; Giovannetti, Vittorio

    2011-01-01

    The readout of a classical memory can be modelled as a problem of quantum channel discrimination, where a decoder retrieves information by distinguishing the different quantum channels encoded in each cell of the memory (Pirandola 2011 Phys. Rev. Lett. 106 090504). In the case of optical memories, such as CDs and DVDs, this discrimination involves lossy bosonic channels and can be remarkably boosted by the use of nonclassical light (quantum reading). Here we generalize these concepts by extending the model of memory from single-cell to multi-cell encoding. In general, information is stored in a block of cells by using a channel-codeword, i.e. a sequence of channels chosen according to a classical code. Correspondingly, the readout of data is realized by a process of ‘parallel’ channel discrimination, where the entire block of cells is probed simultaneously and decoded via an optimal collective measurement. In the limit of a large block we define the quantum reading capacity of the memory, quantifying the maximum number of readable bits per cell. This notion of capacity is nontrivial when we suitably constrain the physical resources of the decoder. For optical memories (encoding bosonic channels), such a constraint is energetic and corresponds to fixing the mean total number of photons per cell. In this case, we are able to prove a separation between the quantum reading capacity and the maximum information rate achievable by classical transmitters, i.e. arbitrary classical mixtures of coherent states. In fact, we can easily construct nonclassical transmitters that are able to outperform any classical transmitter, thus showing that the advantages of quantum reading persist in the optimal multi-cell scenario. (paper)

  13. Construction and Capacity Analysis of High-Rank LoS MIMO Channels in High Speed Railway Scenarios

    Directory of Open Access Journals (Sweden)

    Jingya Yang

    2012-01-01

    Full Text Available The validity of the maximum capacity criterion applied to realize high-rank line-of-sight (LoS multiple-input multiple-output (MIMO channels is investigated for high speed railway scenarios. Performance is evaluated by ergodic capacity. Numerical results demonstrate that by simply adjusting antenna spacing according to the maximum capacity criterion, significant capacity gains are achievable. We find relatively low sensitivity of the system to displacements from the optimal point and angle in relatively short range. Thus, we present two proposals to reconfigure antenna arrays so as to maximize LoS MIMO capacity in the high speed railway scenarios

  14. A further insight into the biosorption mechanism of Pt(IV by infrared spectrometry

    Directory of Open Access Journals (Sweden)

    Xu Zhenling

    2009-07-01

    Full Text Available Abstract Background Platinum nanomaterial is one of the significant noble metal catalysts, and the interaction of platinum with microbe is one of the key factors in influencing the size and the distribution of the platinum nanoparticles on the microbial biomass. Some properties of Pt(IV adsorption and reduction by resting cells of Bacillus megatherium D01 biomass have once been investigated, still the mechanism active in the platinum biosorption remains to be seen and requires further elucidating. Result A further insight into the biosorption mechanism of Pt(IV onto resting cells of Bacillus megatherium D02 biomass on a molecular level has been obtained. The image of scanning electron microscopy (SEM of the D02 biomass challenged with Pt(IV displayed a clear distribution of bioreduced platinum particles with sizes of nanometer scale on the biomass. The state of Pt(IV bioreduced to elemental Pt(0 examined via X-ray photoelectron spectroscopy (XPS suggested that the biomass reduces the Pt(IV to Pt(II followed by a slower reduction to Pt(0. The analysis of glucose content in the hydrolysates of D02 biomass for different time intervals using ultraviolet-visible (UV-vis spectrophotometry indicated that certain reducing sugars occur in the hydrolyzed biomass and that the hydrolysis of polysaccharides of the biomass is a rapid process. The infrared (IR spectrometry on D02 biomass and that challenged with Pt(IV, and on glucose and that reacted with Pt(IV demonstrated that the interaction of the biomass with Pt(IV seems to be through oxygenous or nitrogenous chemical functional groups on the cell wall biopolymers; that the potential binding sites for Pt species include hydroxyl of saccharides, carboxylate anion and carboxyl of amino acid residues, peptide bond, etc.; and that the free monosaccharic group bearing hemiacetalic hydroxyl from the hydrolyzed biomass behaving as an electron donor, in situ reduces the Pt(IV to Pt(0. And moreover, the binding of

  15. STUDY ON MAXIMUM SPECIFIC SLUDGE ACIVITY OF DIFFERENT ANAEROBIC GRANULAR SLUDGE BY BATCH TESTS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The maximum specific sludge activity of granular sludge from large-scale UASB, IC and Biobed anaerobic reactors were investigated by batch tests. The limitation factors related to maximum specific sludge activity (diffusion, substrate sort, substrate concentration and granular size) were studied. The general principle and procedure for the precise measurement of maximum specific sludge activity were suggested. The potential capacity of loading rate of the IC and Biobed anaerobic reactors were analyzed and compared by use of the batch tests results.

  16. Pullout capacity of batter pile in sand.

    Science.gov (United States)

    Nazir, Ashraf; Nasr, Ahmed

    2013-03-01

    Many offshore structures are subjected to overturning moments due to wind load, wave pressure, and ship impacts. Also most of retaining walls are subjected to horizontal forces and bending moments, these forces are due to earth pressure. For foundations in such structures, usually a combination of vertical and batter piles is used. Little information is available in the literature about estimating the capacity of piles under uplift. In cases where these supporting piles are not vertical, the behavior under axial pullout is not well established. In order to delineate the significant variables affecting the ultimate uplift shaft resistance of batter pile in dry sand, a testing program comprising 62 pullout tests was conducted. The tests are conducted on model steel pile installed in loose, medium, and dense sand to an embedded depth ratio, L/d, vary from 7.5 to 30 and with various batter angles of 0°, 10°, 20°, and 30°. Results indicate that the pullout capacity of a batter pile constructed in dense and/or medium density sand increases with the increase of batter angle attains maximum value and then decreases, the maximum value of Pα occurs at batter angle approximately equal to 20°, and it is about 21-31% more than the vertical pile capacity, while the pullout capacity for batter pile that constructed in loose sand decreases with the increase of pile inclination. The results also indicated that the circular pile is more resistant to pullout forces than the square and rectangular pile shape. The rough model piles tested is experienced 18-75% increase in capacity compared with the smooth model piles. The suggested relations for the pullout capacity of batter pile regarding the vertical pile capacity are well predicted.

  17. Pullout capacity of batter pile in sand

    Directory of Open Access Journals (Sweden)

    Ashraf Nazir

    2013-03-01

    Full Text Available Many offshore structures are subjected to overturning moments due to wind load, wave pressure, and ship impacts. Also most of retaining walls are subjected to horizontal forces and bending moments, these forces are due to earth pressure. For foundations in such structures, usually a combination of vertical and batter piles is used. Little information is available in the literature about estimating the capacity of piles under uplift. In cases where these supporting piles are not vertical, the behavior under axial pullout is not well established. In order to delineate the significant variables affecting the ultimate uplift shaft resistance of batter pile in dry sand, a testing program comprising 62 pullout tests was conducted. The tests are conducted on model steel pile installed in loose, medium, and dense sand to an embedded depth ratio, L/d, vary from 7.5 to 30 and with various batter angles of 0°, 10°, 20°, and 30°. Results indicate that the pullout capacity of a batter pile constructed in dense and/or medium density sand increases with the increase of batter angle attains maximum value and then decreases, the maximum value of Pα occurs at batter angle approximately equal to 20°, and it is about 21–31% more than the vertical pile capacity, while the pullout capacity for batter pile that constructed in loose sand decreases with the increase of pile inclination. The results also indicated that the circular pile is more resistant to pullout forces than the square and rectangular pile shape. The rough model piles tested is experienced 18–75% increase in capacity compared with the smooth model piles. The suggested relations for the pullout capacity of batter pile regarding the vertical pile capacity are well predicted.

  18. Evaluation model for safety capacity of chemical industrial park based on acceptable regional risk

    Institute of Scientific and Technical Information of China (English)

    Guohua Chen; Shukun Wang; Xiaoqun Tan

    2015-01-01

    The paper defines the Safety Capacity of Chemical Industrial Park (SCCIP) from the perspective of acceptable regional risk. For the purpose of exploring the evaluation model for the SCCIP, a method based on quantitative risk assessment was adopted for evaluating transport risk and to confirm reasonable safety transport capacity of chemical industrial park, and then by combining with the safety storage capacity, a SCCIP evaluation model was put forward. The SCCIP was decided by the smaller one between the largest safety storage capacity and the maximum safety transport capacity, or else, the regional risk of the park will exceed the acceptable level. The developed method was applied to a chemical industrial park in Guangdong province to obtain the maximum safety transport capacity and the SCCIP. The results can be realized in the regional risk control of the park effectively.

  19. Biosorption studies on waste cotton seed for cationic dyes sequestration: equilibrium and thermodynamics

    Science.gov (United States)

    Sivarajasekar, N.; Baskar, R.; Ragu, T.; Sarika, K.; Preethi, N.; Radhika, T.

    2017-07-01

    The immature Gossypium hirsutum seeds—an agricultural waste was converted into a novel adsorbent and its effectiveness for cationic dyes removal was discussed in this study. Characterization revealed that sulfuric acid activated waste Gossypium hirsutum seed (WGSAB) contains surface area 496 m2 g-1. The ability of WGSAB to adsorb basic red 2 (BR2) and basic violet 3 (BV3) from aqueous solutions has been studied. Batch adsorption studies were carried out at different initial dye concentrations (100-300 mg l-1), contact time (1-5 h), pH (2-12) and temperature (293-323 K) to understand the adsorption mechanism. Adsorption data were modeled using Langmuir, Freundlich and Toth adsorption isotherms. Equilibrium data of the adsorption process fitted very well to the Toth model for both dyes. The Langmuir maximum adsorption capacity was 66.69 mg g-1 for BV3 and 50.11 mg g-1 for BR2 at optimum conditions. The near unity value of Toth isotherm constant (BR2: 0.999 and BV3: 1.0) indicates that WGSAB surface is heterogeneous in nature. The maximum adsorption capacity predicted by Toth isotherm of BV3 (66.699 mg g-1) is higher than BR2 (50.310 mg g-1). The kinetic investigation revealed that the BR2 and BV3 were chemisorbed on WGSAB surface following Avrami fractional order kinetics. Further, the fractional order and rate constant values are almost similar for every concentration in both the dyes. The thermodynamic parameters such as Δ H 0, Δ S 0 and Δ G 0 were evaluated. The dye adsorption process was found to be spontaneous and endothermic for the two dyes. Regeneration of WGSAB exhausted by the two dyes could be possible via acetic acid as elutant.

  20. Evaluation of the Marine Algae Gracilaria and its Activated Carbon for the Adsorption of Ni(II from Wastewater

    Directory of Open Access Journals (Sweden)

    A. Esmaeili

    2011-01-01

    Full Text Available The batch removal of Ni2+ from aqueous solution and wastewater using marine dried (MD red algae Gracilaria and its activated carbon (AC was studied. For these experiments, adsorption of Ni2+ was used to form two biomasses of AC and MD. Both methods used different pH values, biomass and initial concentration of Ni2+. Subsequently adsorption models and kinetic studies were carried out. The maximum efficiencies of Ni2+ removal were 83.55% and 99.04% for MD and AC respectively developed from it. The experimental adsorption data were fitted to the Langmuir adsorption model. The nickel(II uptake by the biosorbents was best described by pseudo-second order rate model. The kinetic studies showed that the heavy metal uptake was observed more rapidly by the AC with compared to MD. AC method developed from MD biomass exhibited higher biosorption capacity. Adsorption capacity is related to the pH of solution, pH 5.0 is optimal for nickel. The maximum efficiencies of Ni2+ removal were for AC method. The capacity is related to the pH of solution, pH 5.0 is optimal for nickel. The equilibrium adsorption data are correlated by Langmuir isotherm equation. The adsorption kinetic data can be described by the second order kinetic models

  1. Dual capacity reciprocating compressor

    Science.gov (United States)

    Wolfe, Robert W.

    1984-01-01

    A multi-cylinder compressor 10 particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor 16 rotation is provided with an eccentric cam 38 on a crank pin 34 under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180.degree. apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons 24 whose connecting rods 30 ride on a crank pin 36 without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation.

  2. Inhibition delay increases neural network capacity through Stirling transform

    Science.gov (United States)

    Nogaret, Alain; King, Alastair

    2018-03-01

    Inhibitory neural networks are found to encode high volumes of information through delayed inhibition. We show that inhibition delay increases storage capacity through a Stirling transform of the minimum capacity which stabilizes locally coherent oscillations. We obtain both the exact and asymptotic formulas for the total number of dynamic attractors. Our results predict a (ln2) -N-fold increase in capacity for an N -neuron network and demonstrate high-density associative memories which host a maximum number of oscillations in analog neural devices.

  3. Biosorption of arsenic from groundwater using Vallisneria gigantea plants. Kinetics, equilibrium and photophysical considerations.

    Science.gov (United States)

    Iriel, Analia; Lagorio, M Gabriela; Fernández Cirelli, Alicia

    2015-11-01

    Arsenic (V) uptake from groundwater by using Vallisneria gigantea plants was studied using batch experiments. Reflectance and fluorescence of intact plants were investigated and changes in photophysical properties following arsenic absorption were reported. Good correlations have been found between arsenic concentration in groundwater and parameters derived from reflectance and fluorescence measurements. This system reached its equilibrium after seven days when the removal quantities were strongly dependent on the initial arsenic concentration. Interestingly, Vallisneria plants were able to accumulate from 100 to 600 mg As kg(-1) in roots and fronds although the translocation factors were low (0.6-1.6). Kinetic data for biosorption process followed a first-order law. At low arsenic concentrations the uptake in plants was governed by diffusion aspects. Langmuir, Freundlich and Dubinin-Radushkevich models were applied and results demonstrated that arsenic uptake was better described by the Langmuir model. As a final remark we concluded that a plant of this species should be able to remove 1mg As per week. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. A plausible mechanism of biosorption in dual symbioses by vesicular-arbuscular mycorrhizal in plants.

    Science.gov (United States)

    Azmat, Rafia; Hamid, Neelofer

    2015-03-01

    Dual symbioses of vesicular-arbuscular mycorrhizal (VAM) fungi with growth of Momordica charantia were elucidated in terms of plausible mechanism of biosorption in this article. The experiment was conducted in green house and mixed inoculum of the VAM fungi was used in the three replicates. Results demonstrated that the starch contents were the main source of C for the VAM to builds their hyphae. The increased plant height and leaves surface area were explained in relation with an increase in the photosynthetic rates to produce rapid sugar contents for the survival of plants. A decreased in protein, and amino acid contents and increased proline and protease activity in VAM plants suggested that these contents were the main bio-indicators of the plants under biotic stress. The decline in protein may be due to the degradation of these contents, which later on converted into dextrose where it can easily be absorbed by for the period of symbioses. A mechanism of C chemisorption in relation with physiology and morphology of plant was discussed.

  5. A theoretical model to determine the capacity performance of shape-specific electrodes

    Science.gov (United States)

    Yue, Yuan; Liang, Hong

    2018-06-01

    A theory is proposed to explain and predict the electrochemical process during reaction between lithium ions and electrode materials. In the model, the process of reaction is proceeded into two steps, surface adsorption and diffusion of lithium ions. The surface adsorption is an instantaneous process for lithium ions to adsorb onto the surface sites of active materials. The diffusion of lithium ions into particles is determined by the charge-discharge condition. A formula to determine the maximum specific capacity of active materials at different charging rates (C-rates) is derived. The maximum specific capacity is correlated to characteristic parameters of materials and cycling - such as size, aspect ratio, surface area, and C-rate. Analysis indicates that larger particle size or greater aspect ratio of active materials and faster C-rates can reduce maximum specific capacity. This suggests that reducing particle size of active materials and slowing the charge-discharge speed can provide enhanced electrochemical performance of a battery cell. Furthermore, the model is validated by published experimental results. This model brings new understanding in quantification of electrochemical kinetics and capacity performance. It enables development of design strategies for novel electrodes and future generation of energy storage devices.

  6. Carrying capacity of Chaetoceros gracilis in Homa Lagoon and the ...

    African Journals Online (AJOL)

    The possibility for nutrient limitation to affect C. gracilis was assessed from two different ecosystems (Izmir Bay and Homa Lagoon). Our goal was to determine the growth rate of all nutrients and the maximum levels of the C. gracilis phytoplankton biomass (the maximum biomass carrying capacity) on the extent of its full ...

  7. Research on configuration of railway self-equipped tanker based on minimum cost maximum flow model

    Science.gov (United States)

    Yang, Yuefang; Gan, Chunhui; Shen, Tingting

    2017-05-01

    In the study of the configuration of the tanker of chemical logistics park, the minimum cost maximum flow model is adopted. Firstly, the transport capacity of the park loading and unloading area and the transportation demand of the dangerous goods are taken as the constraint condition of the model; then the transport arc capacity, the transport arc flow and the transport arc edge weight are determined in the transportation network diagram; finally, the software calculations. The calculation results show that the configuration issue of the tankers can be effectively solved by the minimum cost maximum flow model, which has theoretical and practical application value for tanker management of railway transportation of dangerous goods in the chemical logistics park.

  8. Lung function profiles and aerobic capacity of adult cigarette and ...

    African Journals Online (AJOL)

    Lung function profiles and aerobic capacity of adult cigarette and hookah smokers after 12 weeks intermittent training. ... All subjects performed 30 min of interval exercise (2 min of work followed by 1 min of rest) three times a week for 12 weeks at an intensity estimated at 70% of the subject's maximum aerobic capacity ...

  9. Capacity competition in electricity markets

    International Nuclear Information System (INIS)

    Crampes, Claude; Creti, Anna

    2005-01-01

    The article analyzed a two-stage game where capacity constrained electricity generators first choose how much capacity they make available and then compete in a uniform-rice auction. It is studied how capacity withholding can be used strategically to enforce market power and how uniform auctions in the price game change the results of capacity constrained competition models. The uniform auction procedure gives strong incentives to capacity restriction. At equilibrium, however, power shortage never occurs. Though auctions in electricity markets have already been studied by several economists, yet an important feature of spot trading is the capacity availability decision. In fact, for technical reasons, such as equipment maintenance or failures, the installed capacity may not work at maximum operating level and the spot market rules oblige generators to announce which plants they are willing to use and simultaneously their offer prices. Beside technical reasons, the so-called 'capacity declarations' also offer a strategic instrument for firms: by restricting capacity, operators can benefit from scarcity rents. Assessing whether generators withhold capacity is an intriguing issue for real electricity markets, though proving it is a difficult task. Several theoretical papers show that generators are able to keep wholesale prices high as compared to their generation costs. In our model, a generator is not obliged to declare all installed capacity as available, but decides on the amount of MW of electricity that is available. Hence the available capacity is an endogenous variable while the installed one is exogenous. The distinction between installed capacities and 'available' capacities allows to explain clearly whether generators exert market power by declaring unavailable some production units. Although we find multiple sub game perfect equilibria that cannot be eliminated by Pareto-dominance, all the outcomes are characterized by market price at the highest

  10. Heat capacity characterization at phase transition temperature of Agl superionic

    International Nuclear Information System (INIS)

    Widowati, Arie

    2000-01-01

    The phase transition of Agl superionic conductor was investigated by calorometric. A single phase transition was found at (153±5) o C which corresponds to the α - β transition. Calorimetric measurement showed an anomalously high heat capacity with a large discontinues change in the Arrhenius plot, was found above the transition temperature of β - α phase. The maximum heat capacity was found to be ±19.7 cal/gmol. Key words : superionic conductor, thermal capacity

  11. Biosorption of cadmium by Brevundimonas sp. ZF12 strain, a novel biosorbent isolated from hot-spring waters in high background radiation areas

    International Nuclear Information System (INIS)

    Masoudzadeh, Nasrin; Zakeri, Fardideh; Lotfabad, Tayebe bagheri; Sharafi, Hakimeh; Masoomi, Fatemeh; Zahiri, Hoseein Shahbani; Ahmadian, Gholamreza; Noghabi, Kambiz Akbari

    2011-01-01

    Highlights: ► Isolation and characterization of a novel cadmium-biosorbent (Brevundimonas sp. ZF12) from high background radiation areas. ► Brevundimonas sp. ZF12 caused 50% removal of cadmium at the concentration level of 250 ppm. ► Solution pH values used for the reusability study have powerful desorptive features to recover Cd ions sorbed onto the biomass. ► This is the first study carried out so far for the cadmium removal from aqueous solutions by a novel biosorbent Brevundimonas sp. ZF12. ► In our opinion, the isolate can be an attractive alternative to remove the cadmium-containing wastewaters. - Abstract: The aim of this study is to screen cadmium biosorbing bacterial strains isolated from soils and hot-springs containing high concentrations of radium ( 226 Ra) in Ramsar using a batch system. Brevundimonas sp. ZF12 strain isolated from the water with high 226 Ra content caused 50% removal of cadmium at a concentration level of 250 ppm. The biosorption equilibrium data are fitted well by the Langmuir adsorption isotherm and kinetic studies indicated that the biosorption follows pseudo second-order model. The effect of different physico-chemical parameters like biomass concentration, pH, cadmium concentration, temperature and contact time on cadmium sorption was also investigated using FTIR, SEM and XRD analytical techniques. A high desorption efficiency (above 90%) was obtained using a pH range of 2.0–4.0. Reusability of the biomass was examined under consecutive biosorption–desorption cycles repeated thrice. In conclusion, Brevundimonas sp. ZF12 is proposed as an excellent cadmium biosorbent that may have important applications in Cd removal from wastewaters.

  12. Effect of the gamma irradiation on the bio-sorption of Cr (Vi) by orange peel

    International Nuclear Information System (INIS)

    Lugo L, V.; Barrera D, C. E.; Sanchez M, V.; Urena N, F.

    2009-01-01

    The orange peel (Citrus sp.) is a bioadsorbent that contains functional groups able to remove Cr (Vi). To study the effect of gamma irradiation in the sorption capacity, the Nn materials were irradiated with gamma rays using a Co 60 source to dose from 10 to 3500 KGy (Nlγ). The biomass irradiation with gamma rays was successful since it increased the hexavalent chromium removal obtaining a maximum removal percentage of 100%. Sorption isotherms were realized to determine the concentration effect of initial Cr (Vi), the ph effect of the solution and the relationship m/v. (Author)

  13. Biosorptive behavior of some dead biomasses in the removal of Sr(85+89) from aqueous solutions

    International Nuclear Information System (INIS)

    Mishra, S.P.; Tiwari, D.

    2002-01-01

    Biosorptive behavior of some dead biomasses (viz., bark of Azadirachta indica and Mangifera indica and rice hulls) was assessed for the removal of an important fission fragment, Sr(II) ions from aqueous solutions using radiotracer technique. Single batch experiments revealed that the increase in sorptive concentration (1.0 x 10 -8 to 1.0 x 10 -2 mol x dm -3 ), temperature (298 to 328 K) and solution pH (3.0 to 10.5) greatly enhanced the removal of Sr(II) ions and the 'ion-exchange' along with surface complexation type uptake of Sr(II) followed the Freundlich adsorption isotherm for the entire concentration range (1.0 x 10 -2 to 1.0 x 10 -8 mol x dm -3 ). Desorption experiments suggest that the uptake is irreversible and the irradiation of these materials enhanced their applicability as showed greater stability towards ionizing radiations from a 300 mCi (Ra-Be) neutron source. (author)

  14. Exercise therapy improves aerobic capacity of inpatients with major depressive disorder.

    Science.gov (United States)

    Kerling, Arno; von Bohlen, Anne; Kück, Momme; Tegtbur, Uwe; Grams, Lena; Haufe, Sven; Gützlaff, Elke; Kahl, Kai G

    2016-06-01

    Unipolar depression is one of the most common diseases worldwide and is associated with a higher cardiovascular risk partly due to reduced aerobic capacity. Therefore, the aim of our study was to examine whether a structured aerobic training program can improve aerobic capacity in inpatients with MDD (major depressive disorder). Overall, 25 patients (13 women, 12 men) diagnosed with MDD were included in the study. Parameters of aerobic capacity, such as maximum performance, maximum oxygen consumption, and VAT (ventilatory anaerobic threshold), were assessed on a bicycle ergometer before and 6 weeks after a training period (three times per week for 45 min on two endurance machines). In addition, a constant load test was carried out at 50% of the maximum performance prior to and after the training period. The performance data were compared with 25 healthy controls matched for sex, age, and body mass index before and after the training period. Compared to controls, patients with MDD had significantly lower aerobic capacity. After training, there was a significant improvement in their performance data. A significant difference remained only for VAT between patients with MDD and healthy controls. With regard to the coincidence of MDD with cardiovascular and cardiometabolic disorders, a structured supervised exercise program carried out during hospitalization is a useful supplement for patients with MDD.

  15. Overview of Maximum Power Point Tracking Techniques for Photovoltaic Energy Production Systems

    DEFF Research Database (Denmark)

    Koutroulis, Eftichios; Blaabjerg, Frede

    2015-01-01

    A substantial growth of the installed photovoltaic systems capacity has occurred around the world during the last decade, thus enhancing the availability of electric energy in an environmentally friendly way. The maximum power point tracking technique enables maximization of the energy production...... of photovoltaic sources during stochastically varying solar irradiation and ambient temperature conditions. Thus, the overall efficiency of the photovoltaic energy production system is increased. Numerous techniques have been presented during the last decade for implementing the maximum power point tracking...... process in a photovoltaic system. This article provides an overview of the operating principles of these techniques, which are suited for either uniform or non-uniform solar irradiation conditions. The operational characteristics and implementation requirements of these maximum power point tracking...

  16. Copper removal by algae Gelidium, agar extraction algal waste and granulated algal waste: kinetics and equilibrium.

    Science.gov (United States)

    Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R

    2008-03-01

    Biosorption of copper ions by an industrial algal waste, from agar extraction industry has been studied in a batch system. This biosorbent was compared with the algae Gelidium itself, which is the raw material for agar extraction, and the industrial waste immobilized with polyacrylonitrile (composite material). The effects of contact time, pH, ionic strength (IS) and temperature on the biosorption process have been studied. Equilibrium data follow both Langmuir and Langmuir-Freundlich models. The parameters of Langmuir equilibrium model were: q(max)=33.0mgg(-1), K(L)=0.015mgl(-1); q(max)=16.7mgg(-1), K(L)=0.028mgl(-1) and q(max)=10.3mgg(-1), K(L)=0.160mgl(-1) respectively for Gelidium, algal waste and composite material at pH=5.3, T=20 degrees C and IS=0.001M. Increasing the pH, the number of deprotonated active sites increases and so the uptake capacity of copper ions. In the case of high ionic strengths, the contribution of the electrostatic component to the overall binding decreases, and so the uptake capacity. The temperature has little influence on the uptake capacity principally for low equilibrium copper concentrations. Changes in standard enthalpy, Gibbs energy and entropy during biosorption were determined. Kinetic data at different solution pH (3, 4 and 5.3) were fitted to pseudo-first-order and pseudo-second-order models. The adsorptive behaviour of biosorbent particles was modelled using a batch reactor mass transfer kinetic model, which successfully predicts Cu(II) concentration profiles.

  17. Kinetic modeling of the biosorption of Cd2+ ions from aqueous solutions onto Eichhornia crassipes roots using potentiometry: low-cost alternative to conventional methods

    Directory of Open Access Journals (Sweden)

    Carolina Martínez-Sánchez

    2013-01-01

    Full Text Available This work presents the use of potentiometric measurements for kinetic studies of biosorption of Cd2+ ions from aqueous solutions on Eichhornia crassipes roots. The open circuit potential of the Cd/Cd2+ electrode of the first kind was measured during the bioadsorption process. The amount of Cd2+ ions accumulated was determined in real time. The data were fit to different models, with the pseudo-second-order model proving to be the best in describing the data. The advantages and limitations of the methodology proposed relative to the traditional method are discussed.

  18. Effective capacity of multiple antenna channels: Correlation and keyhole

    KAUST Repository

    Zhong, Caijun; Ratnarajah, Tharm; Wong, Kaikit; Alouini, Mohamed-Slim

    2012-01-01

    In this study, the authors derive the effective capacity limits for multiple antenna channels which quantify the maximum achievable rate with consideration of link-layer delay-bound violation probability. Both correlated multiple-input single

  19. Biosorption of clofibric acid and carbamazepine in aqueous solution by agricultural waste rice straw.

    Science.gov (United States)

    Liu, Zhanguang; Zhou, Xuefei; Chen, Xiaohua; Dai, Chaomeng; Zhang, Juan; Zhang, Yalei

    2013-12-01

    Due to their widespread use, clofibric acid (CA) and carbamazepine (CBZ) have been frequently detected simultaneously at relatively high concentrations in aquatic environments. In this study, agricultural waste rice straw was employed as a potentially low-cost, effective and easy-to-operate biosorbent (RSB) to remove CA and CBZ. The adsorption of both pharmaceuticals followed pseudo second-order kinetics, and intraparticle diffusion was an important rate-limiting step. The adsorption isotherms of both drugs were fit well with Freundlich model. The adsorption of CA onto RSB was exothermic and was more likely to be dominated by physical processes, while the adsorption of CBZ was endothermic. Solution pH was determined to be the most important factor for CA adsorption, such that the adsorption capacity of CA onto RSB increased with the decline of solution pH. In the lower range of solution pH below 3.1, the CA removal efficiency was enhanced with the increase of biosorbent dosage. The CBZ removal efficiency was enhanced with the increase of RSB dosage without pH control. The maximum adsorption capacities were 126.3 mg/g for CA and 40.0 mg/g for CBZ.

  20. Artificial Neural Network In Maximum Power Point Tracking Algorithm Of Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Modestas Pikutis

    2014-05-01

    Full Text Available Scientists are looking for ways to improve the efficiency of solar cells all the time. The efficiency of solar cells which are available to the general public is up to 20%. Part of the solar energy is unused and a capacity of solar power plant is significantly reduced – if slow controller or controller which cannot stay at maximum power point of solar modules is used. Various algorithms of maximum power point tracking were created, but mostly algorithms are slow or make mistakes. In the literature more and more oftenartificial neural networks (ANN in maximum power point tracking process are mentioned, in order to improve performance of the controller. Self-learner artificial neural network and IncCond algorithm were used for maximum power point tracking in created solar power plant model. The algorithm for control was created. Solar power plant model is implemented in Matlab/Simulink environment.

  1. Fourier Transform Infrared (FTIR) Analysis of Trapa bispinosa: A Novel Adsorbent for the Removal of Cu (II) from Aqueous Solution in Chemically Treated Form

    International Nuclear Information System (INIS)

    Yousaf, M.; Nadeem, R.; Saeed, M.; Zahoor, T.

    2013-01-01

    Current study explored biosorption mechanism and kinetics of Cu (II) onto Trapa bispinosa peels (TBPs) biomass in surfactant (SDS, CTAB, and Triton X-100), organic acid (CA, TA, AA) and in Native (N) form during batch experiment. Equilibrium sorption capacity was determined at various solution parameters like pH, contact time and initial concentration. Increment in sorption capacity was observed with increase in pH until maximum is achieved at pH 5. Optimized time and concentration were 120 minutes and 100 ppm respectively. Best fitted pseudo-second order kinetic model on the data showed that sorption of Cu (II) is rate-controlling. Sorption capacity (mg g-1) for Cu (II) ions increased while % removal decreased. SDS TBPs in comparison to all TBPs show highest sorption tendency as after SDS pretreatment TBPs surface is loaded with the negatively charged groups that provide more attachment sites for Cu (II) ions. Langmuir isotherm give best description of monolayer adsorption over the surface as it fitted better to data. FTIR analysis showed presence of functional groups like amine, carbonyl and hydroxyl groups. Ionization states of these functional groups are changed with pH. (author)

  2. Maximum Profit Configurations of Commercial Engines

    Directory of Open Access Journals (Sweden)

    Yiran Chen

    2011-06-01

    Full Text Available An investigation of commercial engines with finite capacity low- and high-price economic subsystems and a generalized commodity transfer law [n ∝ Δ (P m] in commodity flow processes, in which effects of the price elasticities of supply and demand are introduced, is presented in this paper. Optimal cycle configurations of commercial engines for maximum profit are obtained by applying optimal control theory. In some special cases, the eventual state—market equilibrium—is solely determined by the initial conditions and the inherent characteristics of two subsystems; while the different ways of transfer affect the model in respects of the specific forms of the paths of prices and the instantaneous commodity flow, i.e., the optimal configuration.

  3. Use of agricultural waste sugar beet pulp for the removal of Gemazol turquoise blue-G reactive dye from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Aksu, Zuemriye [Hacettepe University, Department of Chemical Engineering, 06532 Beytepe, Ankara (Turkey)]. E-mail: zaksu@hacettepe.edu.tr; Isoglu, I. Alper [Hacettepe University, Department of Chemical Engineering, 06532 Beytepe, Ankara (Turkey)

    2006-09-01

    The potential use of dried sugar beet pulp, an agricultural solid waste by-product, as an biosorbent for Gemazol turquoise blue-G, a copper-pthalocyanine reactive dye commonly used in dyeing of cotton, was investigated in the present study. Batch adsorption studies were carried out to examine the influence of various parameters such as initial pH, temperature and initial dye concentration. The results indicated that adsorption was strongly pH-dependent and slightly temperature-dependent. At 800 mg l{sup -1} initial Gemazol turquoise blue-G concentration, dried sugar beet pulp exhibited the highest Gemazol turquoise blue-G uptake capacity of 234.8 mg g{sup -1} at 25 deg. C and at an initial pH value of 2.0. The Freundlich, Langmuir, Redlich-Peterson and Langmuir-Freundlich, the two and three parameters adsorption models were used for the mathematical description of the biosorption equilibrium and isotherm constants were evaluated depending on temperature. Both the Langmuir and Redlich-Peterson models were applicable for describing the dye biosorption by dried sugar beet pulp in the concentration (100-800 mg l{sup -1}) and temperature (25-45 deg. C) ranges studied. Simple mass transfer and kinetic models were applied to the experimental data to examine the mechanisms of biosorption and potential rate controlling steps such as external mass transfer, intraparticle diffusion and biosorption process. The sorption process was found to be controlled by both surface and pore diffusion with surface diffusion at the earlier stages followed by pore diffusion at the later stages. Pseudo first-order, pseudo second-order and saturation type kinetic models described the biosorption kinetics accurately at all concentrations and temperatures studied. The thermodynamic analysis indicated that the sorption process was exothermic and the biosorption of dye on dried sugar beet pulp might be physical in nature.

  4. Use of agricultural waste sugar beet pulp for the removal of Gemazol turquoise blue-G reactive dye from aqueous solution.

    Science.gov (United States)

    Aksu, Zümriye; Isoglu, I Alper

    2006-09-01

    The potential use of dried sugar beet pulp, an agricultural solid waste by-product, as an biosorbent for Gemazol turquoise blue-G, a copper-pthalocyanine reactive dye commonly used in dyeing of cotton, was investigated in the present study. Batch adsorption studies were carried out to examine the influence of various parameters such as initial pH, temperature and initial dye concentration. The results indicated that adsorption was strongly pH-dependent and slightly temperature-dependent. At 800 mg l(-1) initial Gemazol turquoise blue-G concentration, dried sugar beet pulp exhibited the highest Gemazol turquoise blue-G uptake capacity of 234.8 mg g(-1) at 25 degrees C and at an initial pH value of 2.0. The Freundlich, Langmuir, Redlich-Peterson and Langmuir-Freundlich, the two and three parameters adsorption models were used for the mathematical description of the biosorption equilibrium and isotherm constants were evaluated depending on temperature. Both the Langmuir and Redlich-Peterson models were applicable for describing the dye biosorption by dried sugar beet pulp in the concentration (100-800 mg l(-1)) and temperature (25-45 degrees C) ranges studied. Simple mass transfer and kinetic models were applied to the experimental data to examine the mechanisms of biosorption and potential rate controlling steps such as external mass transfer, intraparticle diffusion and biosorption process. The sorption process was found to be controlled by both surface and pore diffusion with surface diffusion at the earlier stages followed by pore diffusion at the later stages. Pseudo first-order, pseudo second-order and saturation type kinetic models described the biosorption kinetics accurately at all concentrations and temperatures studied. The thermodynamic analysis indicated that the sorption process was exothermic and the biosorption of dye on dried sugar beet pulp might be physical in nature.

  5. Bounds on the Capacity of Weakly constrained two-dimensional Codes

    DEFF Research Database (Denmark)

    Forchhammer, Søren

    2002-01-01

    Upper and lower bounds are presented for the capacity of weakly constrained two-dimensional codes. The maximum entropy is calculated for two simple models of 2-D codes constraining the probability of neighboring 1s as an example. For given models of the coded data, upper and lower bounds...... on the capacity for 2-D channel models based on occurrences of neighboring 1s are considered....

  6. Evaluation of maximum voided volume in Korean children by use of a 48-h frequency volume chart.

    Science.gov (United States)

    Kim, Sun-Ouck; Kim, Kyung Do; Kim, Young Sig; Kim, Jun Mo; Moon, Du Geon; Park, Sungchan; Lee, Sang Don; Chung, Jae Min; Cho, Won Yeol

    2012-08-01

    Study Type - Diagnostic (validating cohort). Level of Evidence 2a. What's known on the subject? and What does the study add? The relationship between the maximum voided volume followed a linear curve. The formula presented, bladder capacity (mL) = 12 ×[age (years) + 11], is thought to be a reasonable one for Korean children. Korean children have a smaller bladder capacity than that reported in previous Western studies. • To develop practical guidelines for the prediction of normal bladder capacity in Korean children measured by a frequency volume chart (FVC), maximum voided volume (MVV) is an important factor in the diagnosis of children with abnormal voiding function. • In all, 298 children, aged 3-13 years, with no history of voiding disorders volunteered for the study. The MVV was determined in 219 subjects by use of a completely recorded FVC. • Linear regression analysis was used to define the exact relationship between age and bladder capacity. An approximate formula related age to bladder capacity as follows: bladder capacity (mL) = 12 ×[age (years) + 11]. • The relationship between the MVV measured by a FVC by age (3-13 years) of Korean children followed a linear curve. • When applied to normal voiding patterns, the formula presented appears to be a reasonable one for Korean children. © 2011 BJU INTERNATIONAL.

  7. Evaluation of lung volumes, vital capacity and respiratory muscle strength after cervical, thoracic and lumbar spinal surgery.

    Science.gov (United States)

    Oliveira, Marcio Aparecido; Vidotto, Milena Carlos; Nascimento, Oliver Augusto; Almeida, Renato; Santoro, Ilka Lopes; Sperandio, Evandro Fornias; Jardim, José Roberto; Gazzotti, Mariana Rodrigues

    2015-01-01

    Studies have shown that physiopathological changes to the respiratory system can occur following thoracic and abdominal surgery. Laminectomy is considered to be a peripheral surgical procedure, but it is possible that thoracic spinal surgery exerts a greater influence on lung function. The aim of this study was to evaluate the pulmonary volumes and maximum respiratory pressures of patients undergoing cervical, thoracic or lumbar spinal surgery. Prospective study in a tertiary-level university hospital. Sixty-three patients undergoing laminectomy due to diagnoses of tumors or herniated discs were evaluated. Vital capacity, tidal volume, minute ventilation and maximum respiratory pressures were evaluated preoperatively and on the first and second postoperative days. Possible associations between the respiratory variables and the duration of the operation, surgical diagnosis and smoking status were investigated. Vital capacity and maximum inspiratory pressure presented reductions on the first postoperative day (20.9% and 91.6%, respectively) for thoracic surgery (P = 0.01), and maximum expiratory pressure showed reductions on the first postoperative day in cervical surgery patients (15.3%; P = 0.004). The incidence of pulmonary complications was 3.6%. There were reductions in vital capacity and maximum respiratory pressures during the postoperative period in patients undergoing laminectomy. Surgery in the thoracic region was associated with greater reductions in vital capacity and maximum inspiratory pressure, compared with cervical and lumbar surgery. Thus, surgical manipulation of the thoracic region appears to have more influence on pulmonary function and respiratory muscle action.

  8. Sodium fire aerosol loading capacity of several sand and gravel filters

    International Nuclear Information System (INIS)

    Barreca, J.R.; McCormack, J.D.

    1980-04-01

    Improved specific loading capacity for sodium fire aerosols was the objective of a sand and gravel test series. The aerosol capacity and related differential pressure of eight aggregate filters is presented. A maximum specific aerosol capacity, for dry aerosol, of 2.4 kg (Na) m -2 was obtained. This filter was loaded to a final differential pressure of 2.6 kPa. The average superficial face velocity was 0.5 cm/s and the average efficiency was 99.8%. The test results indicate that filter capacity increases with aerosol moisture content and with decreasing superficial velocity

  9. Bio-Remediation of Acid Mine Drainage in the Sarcheshmeh Porphyry Copper Mine by Fungi: Batch and Fixed Bed Process

    Directory of Open Access Journals (Sweden)

    Hanieh Soleimanifar

    2012-12-01

    Full Text Available Acid mine drainage (AMD containing high concentrations of iron and sulphate, low pH and variableconcentrations of heavy metals leads to many environmental problems. The concentrations of Cu and Mnare high in the AMD of the Sarcheshmeh porphyry copper mine, Kerman province, south of Iran. In thisstudy, the bio-remediation of Cu and Mn ions from acid mine drainage was investigated using two nativefungi called Aspergillus niger and Phanerochaete chrysosporium which were extracted from the soil andsediment samples of the Shour River at the Sarcheshmeh mine. The live fungi was first harvested andthen killed by boiling in 0.5 N NaOH solution. The biomass was finally dried at 60 C for 24 h andpowdered. The optimum biosorption parameters including pH, temperature, the amount of biosorbent andcontact time were determined in a batch system. The optimum pH varied between 5 and 6. It was foundthat the biosorption process increased with an increase in temperature and the amount of biosorbent.Biosorption data were attempted by Langmuir and Freundlich isotherm models and showed a good match.Kinetic studies were also carried out in the present study. The results show that the second-order kineticsmodel fits well the experimental data. The biosorption experiments were further investigated with acontinuous system to compare the biosorption capacities of two systems. The results show thatbiosorption process using a continuous system increases efficiency up to 99%. A desorption process waseventually performed in order to recover Copper and Manganese ions. This process was successful andfungi could be used again.

  10. Removal of pharmaceutical pollutants from synthetic wastewater using chemically modified biomass of green alga Scenedesmus obliquus.

    Science.gov (United States)

    Ali, Mohamed E M; Abd El-Aty, Azza M; Badawy, Mohamed I; Ali, Rizka K

    2018-04-30

    Pharmaceutical compounds are considered emerging environmental pollutants that have a potential harmful impact on environment and human health. In this study, the biomass of alga (Scenedesmus obliquus) was modified using alkaline solution, and used for the biosorption of tramadol (TRAM) and other pharmaceuticals. The adsorption kinetics and isotherms were investigated. The obtained results reveal high adsorption capacity of tramadol over modified algal biomass (MAB) after 45min with removal percentage of 91%. Pseudo-second order model was well fitted with the experimental data with correlation coefficient (0.999). Biosorption of tramadol on modified algal biomass proceeds with Freundlich isotherm model with correlation coefficient (0.942) that emphasized uptake of TRAM by MAB is driven by chemisorption. FTIR spectra of MAB before and after the adsorption were analyzed; some IR bands were detected with slight shift and low intensity suggesting their involving in adsorption. The tramadol biosorption by MAB is a chemical process as confirmed by Dubinin-Radushkevich. The adsorption of pharmaceutical over MAB is mainly preceded by hydrophilic interactions between amino and carbonyl groups in pharmaceutical molecules and hydroxyl and carbonyl functional groups on surface of biosorbent. It was emphasized by disappearance O-H and C-O from biomass IR spectra after adsorption. In matrix of pharmaceutical, the recorded adsorption capacities for CEFA, PARA, IBU, TRAM and CIP are 68, 58, 42, 42 and 39mg/g over MAB at natural pH and MAB dose of 0.5g/L. Furthermore, oxygen uptake by bacteria was applied for estimate the toxicity of pharmaceutical. The recorded result concluded the efficient reusability of modified algal biomass for biosorption of pharmaceuticals, as well only the adsorption efficiency decreased by 4.5% after three runs. Subsequently, the modified algal biomass is a promising reusable adsorbent for decontamination of wastewater from pharmaceuticals. Copyright

  11. Removal of lead (II) from aqueous solutions using rice straw.

    Science.gov (United States)

    Amer, Hayam; El-Gendy, Ahmed; El-Haggar, Salah

    2017-09-01

    Lead (Pb 2+ ) is a heavy metal which is utilized in several industries and can have severe impact on the environment and human health. Research work has been carried out lately on the feasibility of using various low cost materials in the removal of heavy metals from wastewater. In this study, the feasibility of utilizing raw rice straw for removal of Pb 2+ from water through biosorption was investigated using batch equilibrium experiments. The effect of several operating parameters on the removal of Pb 2+ using rice straw was studied, revealing the optimum parameters at an initial Pb 2+ concentration of 40 mg/l were: 30 min contact time at a pH of 5.5, particle size 75-150 μm and a dose of 4 g/l. A maximum removal of 94% was achieved under optimum conditions. Langmuir and Freundlich isotherm models were used for the evaluation of the equilibrium experimental data. The maximum adsorption capacity of rice straw calculated using the Langmuir isotherm was 42.55 mg/g.

  12. Enhanced biosorption of mercury(II) and cadmium(II) by cold-induced hydrophobic exobiopolymer secreted from the psychrotroph Pseudomonas fluorescens BM07

    Energy Technology Data Exchange (ETDEWEB)

    Zamil, Sheikh Shawkat; Choi, Mun Hwan; Song, Jung Hyun; Park, Hyunju; Xu, Ju; Yoon, Sung Chul [Gyeongsang National Univ., Jinju (Korea). Nano-Biomaterials Science Lab.; Chi, Ki-Whan [Ulsan Univ. (Korea). Dept. of Chemistry

    2008-09-15

    The cells of psychrotrophic Pseudomonas fluorescens BM07 were found to secrete large amounts of exobiopolymer (EBP) composed of mainly hydrophobic (water insoluble) polypeptide(s) (as contain {proportional_to}50 mol% hydrophobic amino acids, lacking cysteine residue) when grown on fructose containing limited M1 medium at the temperatures as low as 0-10 C but trace amount at high (30 C, optimum growth) temperature. Two types of nonliving BM07 cells (i.e., cells grown at 30 C and 10 C) as well as the freeze-dried EBP were compared for biosorption of mercury (Hg(II)) and cadmium (Cd(II)). The optimum adsorption pH was found 7 for Hg(II) but 6 for Cd(II), irrespective of the type of biomass. Equilibrium adsorption data well fitted the Langmuir adsorption model. The maximum adsorption (Q{sub max}) was 72.3, 97.4, and 286.2 mg Hg(II)/g dry biomass and 18.9, 27.0, and 61.5 mg Cd(II)/g dry biomass for cells grown at 30 C and 10 C and EBP, respectively, indicating major contribution of heavy metal adsorption by cold-induced EBP. Mercury(II) binding induced a significant shift of infrared (IR) amide I and II absorption of EBP whereas cadmium(II) binding showed only a very little shift. These IR shifts demonstrate that mercury(II) and cadmium(II) might have different binding sites in EBP, which was supported by X-ray diffraction and differential scanning calorimetric analysis and sorption results of chemically modified biomasses. This study implies that the psychrotrophs like BM07 strain may play an important role in the bioremediation of heavy metals in the temperate regions especially in the inactive cold season. (orig.)

  13. Statistical optimization of adsorption processes for removal of 2,4-dichlorophenol by activated carbon derived from oil palm empty fruit bunches

    Institute of Scientific and Technical Information of China (English)

    Md. Zahangir ALAM; Suleyman A. MUYIBI; Juria TORAMAE

    2007-01-01

    The adsorption capacity of activated carbon produced from oil palm empty fruit bunches through removal of 2,4-dichlorophenol from aqueous solution was carried out in the laboratory. The activated carbon was produced by thermal activation at 800℃ with 30 min of activation time. The adsorption process conditions were determined with the statistical optimization followed by central composite design. A developed polynomial model for operating conditions of adsorption process indicated that the optimum conditions for maximum adsorption of phenolic compound were: agitation rate of 100 r/min, contact time of 8 h, initial adsorbate concentration of 250 mg/L and pH 4. Adsorption isotherms were conducted to evaluate biosorption process. Langmuir isotherm was more favorable (R2=0.93) for removal of 2,4-dichlorophenol by the activated carbon produced rather than the Freundlich isotherm (R2=0.88).

  14. The use of biosorbents for heavy metals removal from aqueous media

    International Nuclear Information System (INIS)

    Al-Masri, M. S.; Amin, Y.

    2010-04-01

    Biomaterials, which could be adsorbed heavy metals, such bacteria, algae, yeasts, fungi and agricultural waste, is called Biomass. Recently, they are widely used for heavy metal removal from aqueous media, due to their large available quantities, low cost and good performance. The biosorbent, unlike mono functional ion exchange resins, contains variety of functional sites including carboxyl, imidazole, sulphydryl, amino, phosphate, sulfate, thioether, phenol, carbonyl, amide and hydroxyl moieties. In this paper, the biosorbents word widely and nationally used for heavy metal removal were reviewed. Their biosorption performance, their pretreatment and modification, aiming to improve their sorption capacity, and regeneration/reuse was introduced and evaluated. The potential application of biosorption and biosorbents was discussed. (author)

  15. Capacity of weakly (d,k)-constrained sequences

    NARCIS (Netherlands)

    Schouhamer Immink, K.A.; Janssen, A.J.E.M.

    2000-01-01

    In the presentation we find an analytic expression for the maximum of the normalized entropy - ¿ieT pi In pi / ¿ieT ipi where the set T is the disjoint union of sets Sn of positive integers that are assigned probabilities Pn, ¿n Pn = 1. This result is applied to the computation of the capacity of

  16. Rocky Mountain Regional CO{sub 2} Storage Capacity and Significance

    Energy Technology Data Exchange (ETDEWEB)

    Laes, Denise; Eisinger, Chris; Esser, Richard; Morgan, Craig; Rauzi, Steve; Scholle, Dana; Matthews, Vince; McPherson, Brian

    2013-08-30

    The purpose of this study includes extensive characterization of the most promising geologic CO{sub 2} storage formations on the Colorado Plateau, including estimates of maximum possible storage capacity. The primary targets of characterization and capacity analysis include the Cretaceous Dakota Formation, the Jurassic Entrada Formation and the Permian Weber Formation and their equivalents in the Colorado Plateau region. The total CO{sub 2} capacity estimates for the deep saline formations of the Colorado Plateau region range between 9.8 metric GT and 143 metric GT, depending on assumed storage efficiency, formations included, and other factors.

  17. Biossorção de níquel e cromo de um efluente de galvanoplastia utilizando alga marinha pré-tratada em coluna = Biosorption of nickel and chromium from a galvanization effluent using seaweed pre-treated on a fixed-bed column

    Directory of Open Access Journals (Sweden)

    Márcia Teresinha Veit

    2009-04-01

    Full Text Available Este trabalho teve por objetivo o estudo da biossorção dos íons cromo e níquel presentes no efluente do processo de uma indústria de galvanoplastia, utilizando como biossorvente a biomassa de alga marinha pré-tratada Sargassum filipendula. As condições deoperação da coluna foram: massa de biossorvente de 8 g, pH do efluente de alimentação 3,85, temperatura de 30ºC, vazão de 6 mL min.-1 e concentrações iniciais de alimentação (cromo+níquel de 7,12 e 3,66 meq L-1. Foi empregado um modelo matemático para representar a dinâmica da biossorção em coluna de leito fixo. O modelo da isotermamulticomponente de Langmuir (qm= 2,78 meq g-1, bCr = 0,85 L meq-1, bNi = 0,08 L meq-1 foi utilizado para representar os dados de equilíbrio da coluna e para simular a dinâmica de biossorção dos íons. Os resultados da simulação demonstraram que o modelo matemáticoempregado foi capaz de descrever satisfatoriamente a complexa dinâmica de biossorção dos íons presentes no efluente.This work investigated the biosorption of chromium (III and nickel (II present in the effluent of a galvanoplasty plant using the pre-treated biomass of Sargassum filipendula seaweed. The column operation conditions were 8 g of biosorbent mass, 3.85 pH for the feed effluent, 30ºC temperature, 6 mL min.-1 flow rate, 7.12 meq L-1 initial chromium concentration and 3.66 meq L-1 initialnickel concentration. A mathematical model was used to represent the dynamics of biosorption of the metals in a fixed-bed column. The Langmuir multicomponent isotherm model (qm = 2.78 meq g-1, bCr = 0.85 L meq-1, bNi = 0.08 L meq-1 was used to represent the equilibrium data of the column and to simulate the biosorption dynamics of the ions. The simulation results showed that the mathematical model described satisfactory the complex binary biosorption of chromium and nickel in the effluent.

  18. Effective capacity of multiple antenna channels: Correlation and keyhole

    KAUST Repository

    Zhong, Caijun

    2012-01-01

    In this study, the authors derive the effective capacity limits for multiple antenna channels which quantify the maximum achievable rate with consideration of link-layer delay-bound violation probability. Both correlated multiple-input single-output and multiple-input multiple-output keyhole channels are studied. Based on the closed-form exact expressions for the effective capacity of both channels, the authors look into the asymptotic high and low signal-to-noise ratio regimes, and derive simple expressions to gain more insights. The impact of spatial correlation on effective capacity is also characterised with the aid of a majorisation theory result. It is revealed that antenna correlation reduces the effective capacity of the channels and a stringent quality-of-service requirement causes a severe reduction in the effective capacity but can be alleviated by increasing the number of antennas. © 2012 The Institution of Engineering and Technology.

  19. Phosphorus retention capacity of sediments in Mandovi estuary (Goa)

    Digital Repository Service at National Institute of Oceanography (India)

    Rajagopal, M.D.; Reddy, C

    Experiments carried out under controlled conditions to study P retention capacity of sediments indicate that the processes of adsorption and desorption of P are pH dependent. Adsorption of P is maximum (58-99%) at pH 4. Both the exchangeable P...

  20. Low-SNR Capacity of MIMO Optical Intensity Channels

    KAUST Repository

    Chaaban, Anas; Rezki, Zouheir; Alouini, Mohamed-Slim

    2017-01-01

    The capacity of the multiple-input multiple-output (MIMO) optical intensity channel is studied, under both average and peak intensity constraints. We focus on low SNR, which can be modeled as the scenario where both constraints proportionally vanish, or where the peak constraint is held constant while the average constraint vanishes. A capacity upper bound is derived, and is shown to be tight at low SNR under both scenarios. The capacity achieving input distribution at low SNR is shown to be a maximally-correlated vector-binary input distribution. Consequently, the low-SNR capacity of the channel is characterized. As a byproduct, it is shown that for a channel with peak intensity constraints only, or with peak intensity constraints and individual (per aperture) average intensity constraints, a simple scheme composed of coded on-off keying, spatial repetition, and maximum-ratio combining is optimal at low SNR.

  1. Low-SNR Capacity of MIMO Optical Intensity Channels

    KAUST Repository

    Chaaban, Anas

    2017-09-18

    The capacity of the multiple-input multiple-output (MIMO) optical intensity channel is studied, under both average and peak intensity constraints. We focus on low SNR, which can be modeled as the scenario where both constraints proportionally vanish, or where the peak constraint is held constant while the average constraint vanishes. A capacity upper bound is derived, and is shown to be tight at low SNR under both scenarios. The capacity achieving input distribution at low SNR is shown to be a maximally-correlated vector-binary input distribution. Consequently, the low-SNR capacity of the channel is characterized. As a byproduct, it is shown that for a channel with peak intensity constraints only, or with peak intensity constraints and individual (per aperture) average intensity constraints, a simple scheme composed of coded on-off keying, spatial repetition, and maximum-ratio combining is optimal at low SNR.

  2. Copper Tolerance and Biosorption of Saccharomyces cerevisiae during Alcoholic Fermentation

    Science.gov (United States)

    Liu, Ling-ling; Jia, Bo; Zhao, Fang; Huang, Wei-dong; Zhan, Ji-cheng

    2015-01-01

    At high levels, copper in grape mash can inhibit yeast activity and cause stuck fermentations. Wine yeast has limited tolerance of copper and can reduce copper levels in wine during fermentation. This study aimed to understand copper tolerance of wine yeast and establish the mechanism by which yeast decreases copper in the must during fermentation. Three strains of Saccharomyces cerevisiae (lab selected strain BH8 and industrial strains AWRI R2 and Freddo) and a simple model fermentation system containing 0 to 1.50 mM Cu2+ were used. ICP-AES determined Cu ion concentration in the must decreasing differently by strains and initial copper levels during fermentation. Fermentation performance was heavily inhibited under copper stress, paralleled a decrease in viable cell numbers. Strain BH8 showed higher copper-tolerance than strain AWRI R2 and higher adsorption than Freddo. Yeast cell surface depression and intracellular structure deformation after copper treatment were observed by scanning electron microscopy and transmission electron microscopy; electronic differential system detected higher surface Cu and no intracellular Cu on 1.50 mM copper treated yeast cells. It is most probably that surface adsorption dominated the biosorption process of Cu2+ for strain BH8, with saturation being accomplished in 24 h. This study demonstrated that Saccharomyces cerevisiae strain BH8 has good tolerance and adsorption of Cu, and reduces Cu2+ concentrations during fermentation in simple model system mainly through surface adsorption. The results indicate that the strain selected from China’s stress-tolerant wine grape is copper tolerant and can reduce copper in must when fermenting in a copper rich simple model system, and provided information for studies on mechanisms of heavy metal stress. PMID:26030864

  3. Copper Tolerance and Biosorption of Saccharomyces cerevisiae during Alcoholic Fermentation.

    Directory of Open Access Journals (Sweden)

    Xiang-Yu Sun

    Full Text Available At high levels, copper in grape mash can inhibit yeast activity and cause stuck fermentations. Wine yeast has limited tolerance of copper and can reduce copper levels in wine during fermentation. This study aimed to understand copper tolerance of wine yeast and establish the mechanism by which yeast decreases copper in the must during fermentation. Three strains of Saccharomyces cerevisiae (lab selected strain BH8 and industrial strains AWRI R2 and Freddo and a simple model fermentation system containing 0 to 1.50 mM Cu2+ were used. ICP-AES determined Cu ion concentration in the must decreasing differently by strains and initial copper levels during fermentation. Fermentation performance was heavily inhibited under copper stress, paralleled a decrease in viable cell numbers. Strain BH8 showed higher copper-tolerance than strain AWRI R2 and higher adsorption than Freddo. Yeast cell surface depression and intracellular structure deformation after copper treatment were observed by scanning electron microscopy and transmission electron microscopy; electronic differential system detected higher surface Cu and no intracellular Cu on 1.50 mM copper treated yeast cells. It is most probably that surface adsorption dominated the biosorption process of Cu2+ for strain BH8, with saturation being accomplished in 24 h. This study demonstrated that Saccharomyces cerevisiae strain BH8 has good tolerance and adsorption of Cu, and reduces Cu2+ concentrations during fermentation in simple model system mainly through surface adsorption. The results indicate that the strain selected from China's stress-tolerant wine grape is copper tolerant and can reduce copper in must when fermenting in a copper rich simple model system, and provided information for studies on mechanisms of heavy metal stress.

  4. REDUCTION CAPACITY OF SALTSTONE AND SALTSTONE COMPONENTS

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, K.; Kaplan, D.

    2009-11-30

    The duration that saltstone retains its ability to immobilize some key radionuclides, such as technetium (Tc), plutonium (Pu), and neptunium (Np), depends on its capacity to maintain a low redox status (or low oxidation state). The reduction capacity is a measure of the mass of reductants present in the saltstone; the reductants are the active ingredients that immobilize Tc, Pu, and Np. Once reductants are exhausted, the saltstone loses its ability to immobilize these radionuclides. The reduction capacity values reported here are based on the Ce(IV)/Fe(II) system. The Portland cement (198 {micro}eq/g) and especially the fly ash (299 {micro}eq/g) had a measurable amount of reduction capacity, but the blast furnace slag (820 {micro}eq/g) not surprisingly accounted for most of the reduction capacity. The blast furnace slag contains ferrous iron and sulfides which are strong reducing and precipitating species for a large number of solids. Three saltstone samples containing 45% slag or one sample containing 90% slag had essentially the same reduction capacity as pure slag. There appears to be some critical concentration between 10% and 45% slag in the Saltstone formulation that is needed to create the maximum reduction capacity. Values from this work supported those previously reported, namely that the reduction capacity of SRS saltstone is about 820 {micro}eq/g; this value is recommended for estimating the longevity that the Saltstone Disposal Facility will retain its ability to immobilize radionuclides.

  5. Preparation and characterization of magnetic polymer nanospheres with high protein binding capacity

    International Nuclear Information System (INIS)

    Liu Xianqiao; Guan Yueping; Liu Huizhou; Ma Zhiya; Yang Yu; Wu Xiaobing

    2005-01-01

    A novel magnetic support with high protein binding capacity was prepared by mini-emulsion polymerization. The magnetic poly(methacrylate-divinylbenzene) nanospheres prepared are 390 nm in diameter with narrow size distribution and star-like external morphology which leads to a large increase in specific surface area. Experimental results indicate that the maximum protein binding capacity is 316 mg bovine hemoglobin (BHb)/g support

  6. Nutrient removal using biosorption activated media: preliminary biogeochemical assessment of an innovative stormwater infiltration basin

    Science.gov (United States)

    O'Reilly, Andrew M.; Wanielista, Martin P.; Chang, Ni-Bin; Xuan, Zhemin; Harris, Willie G.

    2012-01-01

    Soil beneath a stormwater infiltration basin receiving runoff from a 22.7 ha predominantly residential watershed in central Florida, USA, was amended using biosorption activated media (BAM) to study the effectiveness of this technology in reducing inputs of nitrogen and phosphorus to groundwater. The functionalized soil amendment BAM consists of a 1.0:1.9:4.1 mixture (by volume) of tire crumb (to increase sorption capacity), silt and clay (to increase soil moisture retention), and sand (to promote sufficient infiltration), which was applied to develop a prototype stormwater infiltration basin utilizing nutrient reduction and flood control sub-basins. Comparison of nitrate/chloride (NO3-/Cl-) ratios for the shallow groundwater indicate that prior to using BAM, NO3- concentrations were substantially influenced by nitrification or variations in NO3- input. In contrast, for the prototype basin utilizing BAM, NO3-/Cl- ratios indicate minor nitrification and NO3- losses with the exception of one summer sample that indicated a 45% loss. Biogeochemical indicators (denitrifier activity derived from real-time polymerase chain reaction and variations in major ions, nutrients, dissolved and soil gases, and stable isotopes) suggest NO3- losses are primarily attributable to denitrification, whereas dissimilatory nitrate reduction to ammonium is a minor process. Denitrification was likely occurring intermittently in anoxic microsites in the unsaturated zone, which was enhanced by increased soil moisture within the BAM layer and resultant reductions in surface/subsurface oxygen exchange that produced conditions conducive to increased denitrifier activity. Concentrations of total dissolved phosphorus and orthophosphate (PO43-) were reduced by more than 70% in unsaturated zone soil water, with the largest decreases in the BAM layer where sorption was the most likely mechanism for removal. Post-BAM PO43-/Cl- ratios for shallow groundwater indicate predominantly minor increases and

  7. Characterization of the binding capacity of mercurial species in Lactobacillus strains.

    Science.gov (United States)

    Alcántara, Cristina; Jadán-Piedra, Carlos; Vélez, Dinoraz; Devesa, Vicenta; Zúñiga, Manuel; Monedero, Vicente

    2017-12-01

    Metal sequestration by bacteria has been proposed as a strategy to counteract metal contamination in foodstuffs. Lactobacilli can interact with metals, although studies with important foodborne metals such as inorganic [Hg(II)] or organic (CH 3 Hg) mercury are lacking. Lactobacilli were evaluated for their potential to bind these contaminants and the nature of the interaction was assessed by the use of metal competitors, chemical and enzymatical treatments, and mutants affected in the cell wall structure. Lactobacillus strains efficiently bound Hg(II) and CH 3 Hg. Mercury binding by Lactobacillus casei BL23 was independent of cell viability. In BL23, both forms of mercury were cell wall bound. Their interaction was not inhibited by cations and it was resistant to chelating agents and protein digestion. Lactobacillus casei mutants affected in genes involved in the modulation of the negative charge of the cell wall anionic polymer lipoteichoic acid showed increased mercury biosorption. In these mutants, mercury toxicity was enhanced compared to wild-type bacteria. These data suggest that lipoteichoic acid itself or the physicochemical characteristics that it confers to the cell wall play a major role in mercury complexation. This is the first example of the biosorption of Hg(II) and CH 3 Hg in lactobacilli and it represents a first step towards their possible use as agents for diminishing mercury bioaccessibility from food at the gastrointestinal tract. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  8. Seismic fragility capacity of equipment--horizontal shaft pump test

    International Nuclear Information System (INIS)

    Iijima, T.; Abe, H.; Suzuki, K.

    2005-01-01

    The current seismic fragility capacity of horizontal shaft pump is 1.6 x 9.8 m/s 2 (1.6 g), which was decided from previous vibration tests and we believe that it must have sufficient margin. The purpose of fragility capacity test is to obtain realistic seismic fragility capacity of horizontal shaft pump by vibration tests. Reactor Building Closed Cooling Water (RCW) Pump was tested as a typical horizontal shaft pump, and then bearings and liner rings were tested as important parts to evaluate critical acceleration and dispersion. Regarding RCW pump test, no damage was found, though maximum input acceleration level was 6 x 9.8 m/s 2 (6 g). Some kinds of bearings and liner rings were tested on the element test. Input load was based on seismic motion which was same with the RCW pump test, and maximum load was equivalent to over 20 times of design seismic acceleration. There was not significant damage that caused emergency stop of pump but degradation of surface roughness was found on some kinds of bearings. It would cause reduction of pump life, but such damage on bearings occurred under large seismic load condition that was equivalent to over 10 to 20 g force. Test results show that realistic fragility capacity of horizontal shaft pump would be at least four times as higher as current value which has been used for our seismic PSA. (authors)

  9. Parallel implementation of D-Phylo algorithm for maximum likelihood clusters.

    Science.gov (United States)

    Malik, Shamita; Sharma, Dolly; Khatri, Sunil Kumar

    2017-03-01

    This study explains a newly developed parallel algorithm for phylogenetic analysis of DNA sequences. The newly designed D-Phylo is a more advanced algorithm for phylogenetic analysis using maximum likelihood approach. The D-Phylo while misusing the seeking capacity of k -means keeps away from its real constraint of getting stuck at privately conserved motifs. The authors have tested the behaviour of D-Phylo on Amazon Linux Amazon Machine Image(Hardware Virtual Machine)i2.4xlarge, six central processing unit, 122 GiB memory, 8  ×  800 Solid-state drive Elastic Block Store volume, high network performance up to 15 processors for several real-life datasets. Distributing the clusters evenly on all the processors provides us the capacity to accomplish a near direct speed if there should arise an occurrence of huge number of processors.

  10. The system capacity view of aging and longevity

    Institute of Scientific and Technical Information of China (English)

    Jing-Dong J.Han; Lei Hou; Na Sun; Chi Xu; Joseph McDermott; Dan Wang

    2017-01-01

    Background:Aging is a complex systems level problem that needs a systems level solution.However,system models of aging and longevity,although urgently needed,are still lacking,largely due to the paucity of conceptual frameworks for modeling such a complex process.Results:We propose that aging can be viewed as a decline in system capacity,defined as the maximum level of output that a system produces to fulfill demands.Classical aging hallmarks and anti-aging strategies can be well-aligned to system capacity.Genetic variants responsible for lifespan variation across individuals or species can also be explained by their roles in system capacity.We further propose promising directions to develop systems approaches to modulate system capacity and thus extend both healthspan and lifespan.Conclusions:The system capacity model of aging provides an opportunity to examine aging at the systems level.This model predicts that the extent to which aging can be modulated is normally limited by the upper bound of the system capacity of a species.Within such a boundary,aging can be delayed by moderately increasing an individual's system capacity.Beyond such a boundary,increasing the upper bound is required,which is not unrealistic given the unlimited potential of regenerative medicine in the future,but it requires increasing the capacity of the whole system instead of only part of it.

  11. Modelling of carrying capacity in National Park - Fruška Gora (Serbia case study

    Directory of Open Access Journals (Sweden)

    Vujko Aleksandra

    2017-03-01

    Full Text Available Negative effects of tourism development in a destination are usually the consequence of the high concentration of tourists, accommodation facilities and the activities that are practiced in a relatively restricted area. One of the most important measures to protect the areas is to calculate the maximum number of tourists that can simultaneously reside in a region, i.e. the determination of the carrying capacity. This paper outlines a method for determining carrying capacity based on zoning of environmental resources and zoning within a region. The paper argues for a return to the idea of identifying maximum appropriate number of users. The main hypothesis of the paper is based on the statement that the development of tourism in Fruška Gora (Mountain National Park in Northern Serbia must be in accordance with the basic principles of sustainability, including the determination of carrying capacity. The main research goal was to show the opinion of local residents about the uncontrolled development of tourism, and to determine the carrying capacity in four sports and recreational zones of the mountain. The carrying capacity of the area is calculated by Lavery and Stanev formulas.

  12. 30 CFR 75.601-3 - Short circuit protection; dual element fuses; current ratings; maximum values.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Short circuit protection; dual element fuses... Trailing Cables § 75.601-3 Short circuit protection; dual element fuses; current ratings; maximum values. Dual element fuses having adequate current-interrupting capacity shall meet the requirements for short...

  13. Biosorption of Cr(VI) from aqueous solution using A. hydrophila in up-flow column. Optimization of process variables

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, S.H.; Srivastava, P.; Ranjan, D. [Banaras Hindu Univ., Varanasi (India). Water Pollution Research Lab.; Talat, M. [Banaras Hindu Univ., Varanasi (India). Dept. of Biochemistry

    2009-06-15

    In the present study, continuous up-flow fixed-bed column study was carried out using immobilized dead biomass of Aeromonas hydrophila for the removal of Cr(VI) from aqueous solution. Different polymeric matrices were used to immobilized biomass and polysulfone-immobilized biomass has shown to give maximum removal. The sorption capacity of immobilized biomass for the removal of Cr(VI) evaluating the breakthrough curves obtained at different flow rate and bed height. A maximum of 78.58% Cr(VI) removal was obtained at bed height of 19 cm and flow rate of 2 mL/min. Bed depth service time model provides a good description of experimental results with high correlation coefficient (>0.996). An attempt has been made to investigate the individual as well as cumulative effect of the process variables and to optimize the process conditions for the maximum removal of chromium from water by two-level two-factor full-factorial central composite design with the help of Minitab {sup registered} version 15 statistical software. The predicted results are having a good agreement (R{sup 2}=98.19%) with the result obtained. Sorption-desorption studies revealed that polysulfone-immobilized biomass could be reused up to 11 cycles and bed was completely exhausted after 28 cycles. (orig.)

  14. Relationship between maximum dynamic force of inferior members and body balance in strength training apprentices

    Directory of Open Access Journals (Sweden)

    Ariane Martins

    2010-08-01

    Full Text Available The relationship between force and balance show controversy results and has directimplications in exercise prescription practice. The objective was to investigate the relationshipbetween maximum dynamic force (MDF of inferior limbs and the static and dynamic balances.Participated in the study 60 individuals, with 18 to 24 years old, strength training apprentices.The MDF was available by mean the One Maximum Repetition (1MR in “leg press” and “kneeextension” and motor testes to available of static and dynamic balances. The correlation testsand multiple linear regression were applied. The force and balance variables showed correlationin females (p=0.038. The corporal mass and static balance showed correlation for the males(p=0.045. The explication capacity at MDF and practices time were small: 13% for staticbalance in males, 18% and 17%, respectively, for static and dynamic balance in females. Inconclusion: the MDF of inferior limbs showed low predictive capacity for performance in staticand dynamic balances, especially for males.

  15. 基于5A景区最大承载量和游客接待量的旅游供需关系模型研究%Study of Mathematical Model Between Tourism Supply and Demand Based on Relationship of the 5A Level Scenic Spots' Maximum Carrying Capacity and the Amount of the Tourists

    Institute of Scientific and Technical Information of China (English)

    刘静; 刘耀龙; 段锦

    2017-01-01

    旅游承载量是反映旅游供给能力的重要指标,游客接待量是衡量旅游需求状况的常用指标.在分析我国5A级景区最大承载量空间分异特征的基础上,对2014年各省市5A级景区日最大承载量和年游客接待量进行相关性和回归分析,构建基于景区承载量和游客接待量的旅游供需关系模型.结果表明:(1)5A级景区最大承载量和游客接待量之间存在显著的正相关关系;(2)旅游供需关系模型可由复合函数定量表征;(3)模型能够预测旅游供需变化,对旅游业发展具有一定的指示意义.%Tourism carrying capacity is an important index to reflect the tourism supply capacity, and the amount of the tourists is a common index to measure tourism demand. On the basis of the analysis of the spatial distribution characteristics of 5A level scenic spots' maximum carrying capacity, the paper carries out correlation and regression analysis about the 5A level scenic' maximum carrying capacity and the amount of the tourists. Sample data is calculated or statistical results of 31 provinces in 2014. Tourism supply and demand model is constructed based on the relationship between the 5A level scenic spots' maximum carrying capacity and the amount of the tourists. Results indicate: (1)There is a significant positive correlation between the 5A level scenic spot'maximum carrying capacity and the amount of tourists; (2)The model of tourism supply and demand relations can be quantitatively characterized by complex functions;(3)The model can predict the change of tourism supply and demand, which have referential meaning to the development of tourism.

  16. Biosorption and retention of several actinide and fission-product elements by biomass from Mycobacterium phlei

    International Nuclear Information System (INIS)

    Bouby, M.; MacCordick, H.J.; Billard, I.

    1996-01-01

    The properties of mobile, 5% w/w cell suspensions of Mycobacterium phlei have been examined for their capacity to adsorb and retain uranyl(VI) and neptunyl(V) cations from nitrate-buffered solutions at pH 1. Equilibrium conditions of sorption were attained after 3 hours for concentrations (C) in the range 0.015-18 mM cation and indicated a maximum specific adsorption capacity (Qe max ) of 182 μmol/g dry biomass for C ≥ 10 mM. NpO 2 + generally showed higher Qe values than UO 2 2+ at corresponding concentrations. Lixiviation tests with cation-loaded biomass in neutral and acidic media indicated that the extent of desorption did not vary extensively between pH 7 and pH 1 and did not exceed 3% for U and 1% for Np ions at pH 7 during 7-day periods of treatment. Analogous experiments with U-loaded biomass subjected to neutron activation prior to lixiviation enabled retention measurements for various fission-product isotopes produced in situ and showed that retention of 239 Np formed within the cellular matrix was >99% at pH 7 and ≥94% at pH 1. (author). 13 refs., 5 figs., 3 tabs

  17. Biosorption of aluminum on Pseudomonas aeruginosa loaded on Chromosorb 106 prior to its graphite furnace atomic absorption spectrometric determination

    International Nuclear Information System (INIS)

    Tuzen, Mustafa; Soylak, Mustafa

    2008-01-01

    A biosorption procedure for separation-enrichment of aluminum in environmental samples has been presented in this work. Pseudomonas aeruginosa loaded on Chromosorb 106 has been used as biosorbent for that purpose. P. aeruginosa is a gram-negative, aerobic rod. The influences of pH of the aqueous solution, eluent type, eluent volume, sample volume, etc. were examined on the quantitative recovery of aluminum in P. aeruginosa loaded on Chromosorb 106. The effects of concomitant ions on the recoveries of aluminum were also investigated. The detection limit based on 3 sigma for aluminum is 30 ng L -1 . Three certified reference materials (LGC 6010 Hard Drinking Water, NIST-SRM 1568a Rice Flour and NRCC-DORM-2 Dogfish Muscle) were analyzed for the validation of the presented procedure. The proposed procedure was applied to the determination of aluminum in environmental samples including natural water and food samples. The concentration of aluminum in real samples was found at ppb level

  18. Latitudinal and seasonal capacity of the surface oceans as a reservoir of polychlorinated biphenyls

    International Nuclear Information System (INIS)

    Jurado, Elena; Lohmann, Rainer; Meijer, Sandra; Jones, Kevin C.; Dachs, Jordi

    2004-01-01

    The oceans play an important role as a global reservoir and ultimate sink of persistent organic pollutants (POPs) such as polychlorinated biphenyls congeners (PCBs). However, the physical and biogeochemical variables that affect the oceanic capacity to retain PCBs show an important spatial and temporal variability which have not been studied in detail, so far. The objective of this paper is to assess the seasonal and spatial variability of the ocean's maximum capacity to act as a reservoir of atmospherically transported and deposited PCBs. A level I fugacity model is used which incorporates the environmental variables of temperature, phytoplankton biomass, and mixed layer depth, as determined from remote sensing and from climatological datasets. It is shown that temperature, phytoplankton biomass and mixed layer depth influence the potential PCB reservoir of the oceans, being phytoplankton biomass specially important in the oceanic productive regions. The ocean's maximum capacities to hold PCBs are estimated. They are compared to a budget of PCBs in the surface oceans derived using a level III model that assumes steady state and which incorporates water column settling fluxes as a loss process. Results suggest that settling fluxes will keep the surface oceanic reservoir of PCBs well below its maximum capacity, especially for the more hydrophobic compounds. The strong seasonal and latitudinal variability of the surface ocean's storage capacity needs further research, because it plays an important role in the global biogeochemical cycles controlling the ultimate sink of PCBs. Because this modeling exercise incorporates variations in downward fluxes driven by phytoplankton and the extent of the water column mixing, it predicts more complex latitudinal variations in PCBs concentrations than those previously suggested. - Model calculations estimate the latitudinal and seasonal storage capacity of the surface oceans for PCBs

  19. 40 CFR Appendix D to Part 72 - Calculation of Potential Electric Output Capacity

    Science.gov (United States)

    2010-07-01

    ... efficiency of the boiler. (3) To express this in MWe, the standards conversion of 3413 Btu to 1 kw-hr is used... design heat input from the boiler by the following equation: EC10NO91.003 For example: (1) Assume a boiler with a maximum design heat input capacity of 340 million Btu/hr. (2) One-third of the maximum...

  20. Peak capacity and peak capacity per unit time in capillary and microchip zone electrophoresis.

    Science.gov (United States)

    Foley, Joe P; Blackney, Donna M; Ennis, Erin J

    2017-11-10

    The origins of the peak capacity concept are described and the important contributions to the development of that concept in chromatography and electrophoresis are reviewed. Whereas numerous quantitative expressions have been reported for one- and two-dimensional separations, most are focused on chromatographic separations and few, if any, quantitative unbiased expressions have been developed for capillary or microchip zone electrophoresis. Making the common assumption that longitudinal diffusion is the predominant source of zone broadening in capillary electrophoresis, analytical expressions for the peak capacity are derived, first in terms of migration time, diffusion coefficient, migration distance, and desired resolution, and then in terms of the remaining underlying fundamental parameters (electric field, electroosmotic and electrophoretic mobilities) that determine the migration time. The latter expressions clearly illustrate the direct square root dependence of peak capacity on electric field and migration distance and the inverse square root dependence on solute diffusion coefficient. Conditions that result in a high peak capacity will result in a low peak capacity per unit time and vice-versa. For a given symmetrical range of relative electrophoretic mobilities for co- and counter-electroosmotic species (cations and anions), the peak capacity increases with the square root of the electric field even as the temporal window narrows considerably, resulting in a significant reduction in analysis time. Over a broad relative electrophoretic mobility interval [-0.9, 0.9], an approximately two-fold greater amount of peak capacity can be generated for counter-electroosmotic species although it takes about five-fold longer to do so, consistent with the well-known bias in migration time and resolving power for co- and counter-electroosmotic species. The optimum lower bound of the relative electrophoretic mobility interval [μ r,Z , μ r,A ] that provides the maximum

  1. Biosorption of lead phosphates by lead-tolerant bacteria as a mechanism for lead immobilization.

    Science.gov (United States)

    Rodríguez-Sánchez, Viridiana; Guzmán-Moreno, Jesús; Rodríguez-González, Vicente; Flores-de la Torre, Juan Armando; Ramírez-Santoyo, Rosa María; Vidales-Rodríguez, Luz Elena

    2017-08-01

    The study of metal-tolerant bacteria is important for bioremediation of contaminated environments and development of green technologies for material synthesis due to their potential to transform toxic metal ions into less toxic compounds by mechanisms such as reduction, oxidation and/or sequestration. In this study, we report the isolation of seven lead-tolerant bacteria from a metal-contaminated site at Zacatecas, México. The bacteria were identified as members of the Staphylococcus and Bacillus genera by microscopic, biochemical and 16S rDNA analyses. Minimal inhibitory concentration of these isolates was established between 4.5 and 7.0 mM of Pb(NO 3 ) 2 in solid and 1.0-4.0 mM of Pb(NO 3 ) 2 in liquid media. A quantitative analysis of the lead associated to bacterial biomass in growing cultures, revealed that the percentage of lead associated to biomass was between 1 and 37% in the PbT isolates. A mechanism of complexation/biosorption of lead ions as inorganic phosphates (lead hydroxyapatite and pyromorphite) in bacterial biomass, was determined by Fourier transform infrared spectroscopy and X-ray diffraction analyses. Thus, the ability of the lead-tolerant isolates to transform lead ions into stable and highly insoluble lead minerals make them potentially useful for immobilization of lead in mining waste.

  2. Anomalous Behavior of Electronic Heat Capacity of Strongly Correlated Iron Monosilicide

    Science.gov (United States)

    Povzner, A. A.; Volkov, A. G.; Nogovitsyna, T. A.

    2018-04-01

    The paper deals with the electronic heat capacity of iron monosilicide FeSi subjected to semiconductor-metal thermal transition during which the formation of its spintronic properties is observed. The proposed model which considers pd-hybridization of strongly correlated d-electrons with non-correlated p-electrons, demonstrates a connection of their contribution to heat capacity in the insulator phase with paramagnon effects and fluctuations of occupation numbers for p- and d-states. In a slitless state, the temperature curve of heat capacity is characterized by a maximum appeared due to normalization of the electron density of states using fluctuating exchange fields. At higher temperatures, a linear growth in heat capacity occurs due to paramagnon effects. The correlation between the model parameters and the first-principles calculation provides the electron contribution to heat capacity, which is obtained from the experimental results on phonon heat capacity. Anharmonicity of phonons is connected merely with the thermal expansion of the crystal lattice.

  3. Steam separator uprating by elimination of capacity-limiting mechanisms

    International Nuclear Information System (INIS)

    Parkinson, J.R.; Pruster, W.P.; Kidwell, J.H.; Schneider, W.G.

    1985-01-01

    Advanced steam/water separation equipment for nuclear steam generator application is required for new equipment manufacture and also for retrofit. For new equipment applications, the desire for higher capacity is driven by competitiveness which requires maximum throughput in the most compact package. For retrofit applications, which have arisen due to the poor performance of some of the original equipment, the need is for high capacity separators which can fit into the existing pressure vessel envelope and not only correct the performance problem, but also allow for uprated plant output. This paper describes the development of such advanced steam separators

  4. High capacity V-based metal hydride electrodes for rechargeable batteries

    OpenAIRE

    Yang, Heng; Weadock, Nicholas J.; Tan, Hongjin; Fultz, Brent

    2017-01-01

    We report the successful development of Ti_(29)V_(62−x)Ni_9Cr_x (x = 0, 6, 12) body centered cubic metal hydride (MH) electrodes by addressing vanadium corrosion and dissolution in KOH solutions. By identifying oxygen as the primary source of corrosion and eliminating oxygen with an Ar-purged cell, the Cr-free Ti_(29)V_(62)Ni_9 alloy electrode achieved a maximum capacity of 594 mAh g^(-1), double the capacity of commercial AB_5 MH electrodes. With coin cells designed to minimize oxygen evolut...

  5. Studies on efficiency of guava (Psidium guajava) bark as bioadsorbent for removal of Hg (II) from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Lohani, Minaxi B. [Integral University, Kursi Road, Lucknow 226026, UP (India)], E-mail: minaxi_lohani@sify.com; Singh, Amarika; Rupainwar, D.C. [Institute of Engineering and Technology Sitapur Road, Lucknow 226021, UP (India); Dhar, D.N. [IIT Kanpur (India)

    2008-11-30

    Biosorption of Hg (II) was investigated in this study by using guava bark powder (GBP). In the batch system, effects of various parameters like contact time, initial concentration, pH and temperature were investigated. Removal of Hg (II) was pH dependent and was found maximum at pH 9.0. Based on this study, the thermodynamic parameters like change in standard Gibb's free energy ({delta}G{sup 0}), standard enthalpy ({delta}H{sup 0}) and standard entropy ({delta}S{sup 0}) were evaluated. The rate kinetic study was found to follow second-order. The applicability of Freundlich adsorption isotherm model was tested. The value of regression coefficient was greater than 0.99. This indicated that the isotherm model adequately described the experimental data of the biosorption of Hg (II). Maximum adsorption of 3.364 mg g{sup -1} was reached at 80 min. The results of the study showed that guava bark powder can be efficiently used as a low-cost alternative for the removal of divalent mercury from aqueous solutions.

  6. Studies on efficiency of guava (Psidium guajava) bark as bioadsorbent for removal of Hg (II) from aqueous solutions

    International Nuclear Information System (INIS)

    Lohani, Minaxi B.; Singh, Amarika; Rupainwar, D.C.; Dhar, D.N.

    2008-01-01

    Biosorption of Hg (II) was investigated in this study by using guava bark powder (GBP). In the batch system, effects of various parameters like contact time, initial concentration, pH and temperature were investigated. Removal of Hg (II) was pH dependent and was found maximum at pH 9.0. Based on this study, the thermodynamic parameters like change in standard Gibb's free energy (ΔG 0 ), standard enthalpy (ΔH 0 ) and standard entropy (ΔS 0 ) were evaluated. The rate kinetic study was found to follow second-order. The applicability of Freundlich adsorption isotherm model was tested. The value of regression coefficient was greater than 0.99. This indicated that the isotherm model adequately described the experimental data of the biosorption of Hg (II). Maximum adsorption of 3.364 mg g -1 was reached at 80 min. The results of the study showed that guava bark powder can be efficiently used as a low-cost alternative for the removal of divalent mercury from aqueous solutions

  7. Capacity Prediction Model Based on Limited Priority Gap-Acceptance Theory at Multilane Roundabouts

    Directory of Open Access Journals (Sweden)

    Zhaowei Qu

    2014-01-01

    Full Text Available Capacity is an important design parameter for roundabouts, and it is the premise of computing their delay and queue. Roundabout capacity has been studied for decades, and empirical regression model and gap-acceptance model are the two main methods to predict it. Based on gap-acceptance theory, by considering the effect of limited priority, especially the relationship between limited priority factor and critical gap, a modified model was built to predict the roundabout capacity. We then compare the results between Raff’s method and maximum likelihood estimation (MLE method, and the MLE method was used to predict the critical gaps. Finally, the predicted capacities from different models were compared, with the observed capacity by field surveys, which verifies the performance of the proposed model.

  8. Biosorption phenomena of chromium, copper, iron and zink by dispersed bacterial extracellular polymeric substance

    International Nuclear Information System (INIS)

    Zainus Salimin; Endang Nuraeni; Mirawaty

    2015-01-01

    Heavy metals removing is generally performed using chemical coagulant that generates the chemical pollutant, so it is necessary to replace it by another alternative material as the Extracellular Polymeric Substance (EPS) resulting from the extraction of bacteria. The EPS contains the negatively functional groups (RCOOH, ROPO 3 H, ROPO 3 Na, ROSO 3 H, ROSO 3 Na, etc) as the cation sorbent and the positively functional groups (ROH, RC(NH 2 )HCOOH, etc) as the anion sorbent. The EPS absorbs the ion pollutants, then EPS containing the loaded metals be settled by gravitation. The utilization of EPS for removing of chromium, copper, iron, and zink was performed for biosorption phenomena study. Two hundred mg of EPS is mixed with 300 ml of the liquid waste having the pH of 2,4 containing 3,06 ppm of chromium; 4,83 ppm of copper; 1,6 ppm of iron and 15,07 ppm of zink. The solution is then agitated on 150 rpm and the pH of 7. The separated water supernatant is then sampled every 2 hours for its analysis of metals content. The experiment is repeated again for the solution pH of 4 and 8. The results of experiment indicates that the EPS composition are 11% of polysaccharides, 77% of protein, and 11% of fat ,and EPS contains the chemical bounding of C-H, OH, NH, and C=O. Indicating that EPS contains RCOOH, ROH and (RC(NH 2 )HCOOH. The best condition for metals biosorption is pH 8, and on the 6 hours of process time, the metal concentration on the water supernatant for chromium, copper, iron and zinc are 0,99 ppm; 0,51 ppm; 0,17 ppm; and 4,61 ppm respectively. Its selectivities are Fe 3+ > Cr 3+ >Cu 2+ >Fe 2+ >Zn 2+ , on the 6 hours of process time the location of cations functional groups was filled by the cations of Cr 3+ ,Cu 2+ , dan Fe 2+ . The cation of Zn 2+ enters to that location on the end of period so on the 6 hours of process time its concentration of 4,61 ppm not conforms to its concentration of regulation value of 2 ppm. On the process time of 6 hours the removing

  9. Effect of a High-intensity Interval Training method on maximum oxygen consumption in Chilean schoolchildren

    Directory of Open Access Journals (Sweden)

    Sergio Galdames-Maliqueo

    2017-12-01

    Full Text Available Introduction: The low levels of maximum oxygen consumption (VO2max evaluated in Chilean schoolchildren suggest the startup of trainings that improve the aerobic capacity. Objective: To analyze the effect of a High-intensity Interval Training method on maximum oxygen consumption in Chilean schoolchildren. Materials and methods: Thirty-two high school students from the eighth grade, who were divided into two groups, were part of the study (experimental group = 16 students and control group = 16 students. The main analyzed variable was the maximum oxygen consumption through the Course Navette Test. A High-intensity Interval training method was applied based on the maximum aerobic speed obtained through the Test. A mixed ANOVA was used for statistical analysis. Results: The experimental group showed a significant increase in the Maximum Oxygen Consumption between the pretest and posttest when compared with the control group (p < 0.0001. Conclusion: The results of the study showed a positive effect of the High-intensity Interval Training on the maximum consumption of oxygen. At the end of the study, it is concluded that High-intensity Interval Training is a good stimulation methodology for Chilean schoolchildren.

  10. Bioaccumulation versus adsorption of reactive dye by immobilized growing Aspergillus fumigatus beads

    International Nuclear Information System (INIS)

    Wang, B.-E.; Hu Yongyou

    2008-01-01

    The removal of reactive brilliant blue KN-R using growing Aspergillus fumigatus (abbr. A. fumigatus) immobilized on carboxymethylcellulose (CMC) beads with respect to initial dye concentration was investigated. Bioaccumulation was the dominant mechanism of the dye removal. According to the UV-vis spectra and the results of three sets of experiments, it could be concluded that the bioaccumulation using immobilized growing A. fumigatus beads was achieved by metabolism-dependent accumulation and metabolism-independent adsorption (15-23% proportion of overall dye removal), which included biosorption by mycelia entrapped in them and adsorption on immobilization matrix. The transmission electron microscope (TEM) images showed the intracellular structures of mycelia and the toxicity of dye. It was found that the fungus had a considerable tolerance to reactive brilliant blue KN-R at initial dye concentrations of <114.7 mg/l. Though at high initial dye concentrations the growth of mycelia was inhibited significantly by the dye molecules in the growth medium, the bioaccumulation capacity was not markedly affected and the maximum bioaccumulation capacity was 190.5 ± 2.0 mg/g at an initial dye concentration of 374.4 mg/l. The bioaccumulation rates were not constant over the contact time

  11. Approximate maximum parsimony and ancestral maximum likelihood.

    Science.gov (United States)

    Alon, Noga; Chor, Benny; Pardi, Fabio; Rapoport, Anat

    2010-01-01

    We explore the maximum parsimony (MP) and ancestral maximum likelihood (AML) criteria in phylogenetic tree reconstruction. Both problems are NP-hard, so we seek approximate solutions. We formulate the two problems as Steiner tree problems under appropriate distances. The gist of our approach is the succinct characterization of Steiner trees for a small number of leaves for the two distances. This enables the use of known Steiner tree approximation algorithms. The approach leads to a 16/9 approximation ratio for AML and asymptotically to a 1.55 approximation ratio for MP.

  12. On capacity tradeoffs in secure DS-CDMA packet communications with QOS constraints

    International Nuclear Information System (INIS)

    Sattar, F.; Mufti, M.

    2012-01-01

    This paper presents a mathematical framework for analysis of effect of counter mode (CTR) encryption on the traffic capacity of packet communication systems based on direct-sequence, code-division, multiple-access (DS-CDMA). We specify QoS constraints in terms of minimum acceptable mean opinion score (MOS) of voice payload, maximum permissible resource utilization for CTR-mode re-keying and DS-CDMA processing gain. We quantify the trade-offs in system capacity as a function of these constraints. Results show that application of CTR encryption causes error expansion and respecting the QoS constraints while satisfying the desired encryption parameters results in reduction of traffic capacity. (author)

  13. Peak capacity, peak-capacity production rate, and boiling point resolution for temperature-programmed GC with very high programming rates

    Science.gov (United States)

    Grall; Leonard; Sacks

    2000-02-01

    Recent advances in column heating technology have made possible very fast linear temperature programming for high-speed gas chromatography. A fused-silica capillary column is contained in a tubular metal jacket, which is resistively heated by a precision power supply. With very rapid column heating, the rate of peak-capacity production is significantly enhanced, but the total peak capacity and the boiling-point resolution (minimum boiling-point difference required for the separation of two nonpolar compounds on a nonpolar column) are reduced relative to more conventional heating rates used with convection-oven instruments. As temperature-programming rates increase, elution temperatures also increase with the result that retention may become insignificant prior to elution. This results in inefficient utilization of the down-stream end of the column and causes a loss in the rate of peak-capacity production. The rate of peak-capacity production is increased by the use of shorter columns and higher carrier gas velocities. With high programming rates (100-600 degrees C/min), column lengths of 6-12 m and average linear carrier gas velocities in the 100-150 cm/s range are satisfactory. In this study, the rate of peak-capacity production, the total peak capacity, and the boiling point resolution are determined for C10-C28 n-alkanes using 6-18 m long columns, 50-200 cm/s average carrier gas velocities, and 60-600 degrees C/min programming rates. It was found that with a 6-meter-long, 0.25-mm i.d. column programmed at a rate of 600 degrees C/min, a maximum peak-capacity production rate of 6.1 peaks/s was obtained. A total peak capacity of about 75 peaks was produced in a 37-s long separation spanning a boiling-point range from n-C10 (174 degrees C) to n-C28 (432 degrees C).

  14. Relating saturation capacity to charge density in strong cation exchangers.

    Science.gov (United States)

    Steinebach, Fabian; Coquebert de Neuville, Bertrand; Morbidelli, Massimo

    2017-07-21

    In this work the relation between physical and chemical resin characteristics and the total amount of adsorbed protein (saturation capacity) for ion-exchange resins is discussed. Eleven different packing materials with a sulfo-functionalization and one multimodal resin were analyzed in terms of their porosity, pore size distribution, ligand density and binding capacity. By specifying the ligand density and binding capacity by the total and accessible surface area, two different groups of resins were identified: Below a ligand density of approx. 2.5μmol/m 2 area the ligand density controls the saturation capacity, while above this limit the accessible surface area becomes the limiting factor. This results in a maximum protein uptake of around 2.5mg/m 2 of accessible surface area. The obtained results allow estimating the saturation capacity from independent resin characteristics like the saturation capacity mainly depends on "library data" such as the accessible and total surface area and the charge density. Hence these results give an insight into the fundamentals of protein adsorption and help to find suitable resins, thus limiting the experimental effort in early process development stages. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Biosorption of Congo Red from aqueous solution onto burned root of Eichhornia crassipes biomass

    Science.gov (United States)

    Roy, Tapas Kumar; Mondal, Naba Kumar

    2017-07-01

    Biosorption is becoming a promising alternative to replace or supplement the present dye removal processes from dye containing waste water. In this work, adsorption of Congo Red (CR) from aqueous solution on burned root of Eichhornia crassipes ( BREC) biomass was investigated. A series of batch experiments were performed utilizing BREC biomass to remove CR dye from aqueous systems. Under optimized batch conditions, the BREC could remove up to 94.35 % of CR from waste water. The effects of operating parameters such as initial concentration, pH, adsorbent dose and contact time on the adsorption of CR were analyzed using response surface methodology. The proposed quadratic model for central composite design fitted very well to the experimental data. Response surface plots were used to determine the interaction effects of main factors and optimum conditions of the process. The optimum adsorption conditions were found to be initial CR concentration = 5 mg/L-1, pH = 7, adsorbent dose = 0.125 g and contact time = 45 min. The experimental isotherms data were analyzed using Langmuir, Freundlich, Temkin and Dubinin-Radushkevich (D-R) isotherm equations and the results indicated that the Freundlich isotherm showed a better fit for CR adsorption. Thermodynamic parameters were calculated from Van't Hoff plot, confirming that the adsorption process was spontaneous and exothermic. The high CR adsorptive removal ability and regeneration efficiency of this adsorbent suggest its applicability in industrial/household systems and data generated would help in further upscaling of the adsorption process.

  16. Effect of water cooking on antioxidant capacity of carotenoid-rich vegetables in Taiwan

    OpenAIRE

    Fuh-Juin Kao; Yu-Shan Chiu; Wen-Dee Chiang

    2014-01-01

    Carotenoid-rich green leafy vegetables including cilantro, Thai basil leaves, sweet potato leaves, and choy sum were selected to evaluate the effects of water cooking or boiling on their total carotenoid content (TCC), total phenolic content (TPC), and total antioxidant capacity (TAC). The percentage inhibition of peroxidation (%IP), Trolox equivalent antioxidant capacity (TEAC), and metal-chelating effect were used to evaluate TAC. The results indicated that TCC reached the maximum after boi...

  17. COMPARISON OF NORMALIZED MAXIMUM AEROBIC CAPACITY AND BODY COMPOSITION OF SUMO WRESTLERS TO ATHLETES IN COMBAT AND OTHER SPORTS

    Directory of Open Access Journals (Sweden)

    Matthew D. Beekley

    2006-07-01

    Full Text Available Sumo wrestling is unique in combat sport, and in all of sport. We examined the maximum aerobic capacity and body composition of sumo wrestlers and compared them to untrained controls. We also compared "aerobic muscle quality", meaning VO2max normalized to predicted skeletal muscle mass (SMM (VO2max /SMM, between sumo wrestlers and controls and among previously published data for male athletes from combat, aerobic, and power sports. Sumo wrestlers, compared to untrained controls, had greater (p < 0.05 body mass (mean ± SD; 117.0 ± 4.9 vs. 56.1 ± 9.8 kg, percent fat (24.0 ± 1.4 vs. 13.3 ± 4.5, fat-free mass (88.9 ± 4.2 vs. 48.4 �� 6.8 kg, predicted SMM (48.2 ± 2.9 vs. 20.6 ± 4.7 kg and absolute VO2max (3.6 ± 1.3 vs. 2.5 ± 0.7 L·min-1. Mean VO2max /SMM (ml·kg SMM-1·min-1 was significantly different (p < 0.05 among aerobic athletes (164.8 ± 18.3, combat athletes (which was not different from untrained controls; 131.4 ± 9.3 and 128.6 ± 13.6, respectively, power athletes (96.5 ± 5.3, and sumo wrestlers (71.4 ± 5.3. There was a strong negative correlation (r = - 0.75 between percent body fat and VO2max /SMM (p < 0.05. We conclude that sumo wrestlers have some of the largest percent body fat and fat-free mass and the lowest "aerobic muscle quality" (VO2max /SMM, both in combat sport and compared to aerobic and power sport athletes. Additionally, it appears from analysis of the relationship between SMM and absolute VO2max for all sports that there is a "ceiling" at which increases in SMM do not result in additional increases in absolute VO2max

  18. Carrying capacity of water resources in Bandung Basin

    Science.gov (United States)

    Marganingrum, D.

    2018-02-01

    The concept of carrying capacity is widely used in various sectors as a management tool for sustainable development processes. This idea has also been applied in watershed or basin scale. Bandung Basin is the upstream of Citarum watershed known as one of the national strategic areas. This area has developed into a metropolitan area loaded with various environmental problems. Therefore, research that is related to environmental carrying capacity in this area becomes a strategic issue. However, research on environmental carrying capacity that has been done in this area is still partial either in water balance terminology, land suitability, ecological footprint, or balance of supply and demand of resources. This paper describes the application of the concept of integrated environmental carrying capacity in order to overcome the increasing complexity and dynamic environmental problems. The sector that becomes the focus of attention is the issue of water resources. The approach method to be carried out is to combine the concept of maximum balance and system dynamics. The dynamics of the proposed system is the ecological dynamics and population that cannot be separated from one another as a unity of the Bandung Basin ecosystem.

  19. CHARACTERISTICS OF MAXIMUM PERFORMANCE OF PEDALING EXERCISE IN RECUMBENT AND SUPINE POSITIONS

    Directory of Open Access Journals (Sweden)

    Morimasa Kato

    2011-09-01

    Full Text Available To determine the characteristics of maximum pedaling performance in the recumbent and supine positions, maximum isokinetic leg muscle strength was measured in eight healthy male subjects during pedaling at three velocities (300°/s, 480°/s, and 660°/s, and maximum incremental tests were performed for each position. The maximum isokinetic muscle strength in the recumbent position was 210.0 ± 29.2 Nm at 300°/s, 158.4 ± 19.8 Nm at 480°/s, and 110.6 ± 13.2 at 660°/s. In contrast, the muscle strength in the supine position was 229.3 ± 36.7 Nm at 300°/s, 180. 7 ± 20.3 Nm at 480°/s, and 129.6 ± 14.0 Nm at 660°/s. Thus, the maximum isokinetic muscle strength showed significantly higher values in the supine position than in the recumbent position at all angular velocities. The knee and hip joint angles were measured at peak torque using a goniometer; the knee joint angle was not significantly different between both positions, whereas the hip joint angle was greater in the supine position than in the recumbent position (Supine position: 137.3 ± 9. 33 degree at 300°/s, 140.0 ± 11.13 degrees at 480°/s, and 141.0 ± 9.61 degrees at 660°/s. Recumbent position: 99.5 ± 12.21 degrees at 300°/s, 101.6 ± 12.29 degrees at 480°/s, and 105.8 ± 14.28 degrees at 660°/s. Peak oxygen uptake was higher in the recumbent position (50.3 ± 4.43 ml·kg-1·min-1 than in the supine position (48.7 ± 5.10 ml·kg-1·min-1. At maximum exertion, the heart rate and whole-body rate of perceived exertion (RPE were unaffected by position, but leg muscle RPE was higher in the supine position (19.5 ± 0.53 than in the recumbent position (18.8 ± 0.71. These results suggest that the supine position is more suitable for muscle strength exertion than the recumbent position, and this may be due to different hip joint angles between the positions. On the contrary, the endurance capacity was higher in the recumbent position than in the supine position. Since leg muscle

  20. Interception storage capacities of tropical rainforest canopy trees

    Science.gov (United States)

    Herwitz, Stanley R.

    1985-04-01

    The rainwater interception storage capacities of mature canopy trees in a tropical rainforest site in northeast Queensland, Australia, were approximated using a combination of field and laboratory measurements. The above-ground vegetative surfaces of five selected species (three flaky-barked; two smooth-barked) were saturated under laboratory conditions in order to establish their maximum interception storage capacities. Average leaf surface interception storages ranged from 112 to 161 ml m -2. The interception storages of bark ranged from 0.51 to 0.97 ml cm -3. These standardized interception storages were applied to estimates of leaf surface area and bark volume for 51 mature canopy trees representing the selected species in the field site. The average whole tree interception storage capacities of the five species ranged from 110 to 5281 per tree and 2.2 to 8.3 mm per unit projected crown area. The highly significant interspecific differences in interception storage capacity suggest that both floristic and demographic data are needed in order to accurately calculate a forest-wide interception storage capacity for species-rich tropical rainforest vegetation. Species with large woody surface areas and small projected crown areas are capable of storing the greatest depth equivalents of rainwater under heavy rainfall conditions. In the case of both the flaky-barked and the smooth-barked species, bark accounted for > 50% of the total interception storage capacity under still-air conditions, and > 80% under turbulent air conditions. The emphasis in past interception studies on the role of leaf surfaces in determining the interception storage capacity of a vegetative cover must be modified for tropical rainforests to include the storage capacity provided by the bark tissue on canopy trees.

  1. DESIGN OF STRUCTURAL ELEMENTS IN THE EVENT OF THE PRE-SET RELIABILITY, REGULAR LOAD AND BEARING CAPACITY DISTRIBUTION

    Directory of Open Access Journals (Sweden)

    Tamrazyan Ashot Georgievich

    2012-10-01

    Full Text Available Accurate and adequate description of external influences and of the bearing capacity of the structural material requires the employment of the probability theory methods. In this regard, the characteristic that describes the probability of failure-free operation is required. The characteristic of reliability means that the maximum stress caused by the action of the load will not exceed the bearing capacity. In this paper, the author presents a solution to the problem of calculation of structures, namely, the identification of reliability of pre-set design parameters, in particular, cross-sectional dimensions. If the load distribution pattern is available, employment of the regularities of distributed functions make it possible to find the pattern of distribution of maximum stresses over the structure. Similarly, we can proceed to the design of structures of pre-set rigidity, reliability and stability in the case of regular load distribution. We consider the element of design (a monolithic concrete slab, maximum stress S which depends linearly on load q. Within a pre-set period of time, the probability will not exceed the values according to the Poisson law. The analysis demonstrates that the variability of the bearing capacity produces a stronger effect on relative sizes of cross sections of a slab than the variability of loads. It is therefore particularly important to reduce the coefficient of variation of the load capacity. One of the methods contemplates the truncation of the bearing capacity distribution by pre-culling the construction material.

  2. Case Study: Physical Capacity and Nutritional Status Before and After a Single-Handed Yacht Race.

    Science.gov (United States)

    Ghiani, Giovanna; Magnani, Sara; Doneddu, Azzurra; Sainas, Gianmarco; Pinna, Virginia; Caboi, Marco; Palazzolo, Girolamo; Tocco, Filippo; Crisafulli, Antonio

    2017-12-18

    During solitary sailing the sailor is exposed to sleep deprivation and difficulties in consuming regular meals. Sailor weight loss is often reported. In the present case study we describe changes in the physical capacity and the nutritional status of an athlete attempting a single-handed yacht race around the globe. An Italian male ocean racer (GM) asked for our help to reach an optimum level of physical and nutritional preparation. We planned his diet after assessing his anthropometric parameters and body composition as well as his usual energy intake and nutritional expenditure. The diet consisted in 120 meals stored in sealed plastic bags. Before his departure, GM performed two incremental exercise tests (cycle- and arm crank- ergometry) to assess his physical capacity. Cardiac functions were also estimated by Doppler echocardiography. All measures and exercise tests were repeated 10 days after GM finished the race, which lasted 64 days. Anthropometric measures did not change significantly, with the exception of Arm Fat Area and Thigh Muscle area, which decreased. There were evident increments in maximum oxygen intake and maximum workload during arm cranking after the race. On the contrary, maximum oxygen uptake and maximum workload decreased during cycling. Finally, End Diastolic and Stroke Volume decreased after the race. It was concluded that nutritional counseling was useful to avoid excessive changes in the nutritional status and body composition due to 64 days of solitary navigation. However, a reduction in physical leg capacity and cardiovascular functions secondary to legs disuse were present.

  3. Maximum permissible dose

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    This chapter presents a historic overview of the establishment of radiation guidelines by various national and international agencies. The use of maximum permissible dose and maximum permissible body burden limits to derive working standards is discussed

  4. Enhanced load-carrying capacity of hairy surfaces floating on water.

    Science.gov (United States)

    Xue, Yahui; Yuan, Huijing; Su, Weidong; Shi, Yipeng; Duan, Huiling

    2014-05-08

    Water repellency of hairy surfaces depends on the geometric arrangement of these hairs and enables different applications in both nature and engineering. We investigate the mechanism and optimization of a hairy surface floating on water to obtain its maximum load-carrying capacity by the free energy and force analyses. It is demonstrated that there is an optimum cylinder spacing, as a result of the compromise between the vertical capillary force and the gravity, so that the hairy surface has both high load-carrying capacity and mechanical stability. Our analysis makes it clear that the setae on water striders' legs or some insects' wings are in such an optimized geometry. Moreover, it is shown that surface hydrophobicity can further increase the capacity of a hairy surface with thick cylinders, while the influence is negligible when the cylinders are thin.

  5. Storage Capacity and Sedimentation of Loch Lomond Reservoir, Santa Cruz, California, 1998

    Science.gov (United States)

    McPherson, Kelly R.; Harmon, Jerry G.

    2000-01-01

    In 1998, a bathymetric survey was done to determine the storage capacity and the loss of capacity owing to sedimentation of Loch Lomond Reservoir in Santa Cruz County, California. Results of the survey indicate that the maximum capacity of the reservoir is 8,991 acre-feet in November 1998. The results of previous investigations indicate that storage capacity of the reservoir is less than 8,991 acre-feet. The storage capacity determined from those investigations probably were underestimated because of limitations of the methods and the equipment used. The volume of sedimentation in a reservoir is considered equal to the decrease in storage capacity. To determine sedimentation in Loch Lomond Reservoir, change in storage capacity was estimated for an upstream reach of the reservoir. The change in storage capacity was determined by comparing a 1998 thalweg profile (valley floor) of the reservoir with thalweg profiles from previous investigations; results of the comparison indicate that sedimentation is occurring in the upstream reach. Cross sections for 1998 and 1982 were compared to determine the magnitude of sedimentation in the upstream reach of the reservoir. Results of the comparison, which were determined from changes in the cross-sectional areas, indicate that the capacity of the reservoir decreased by 55 acre-feet.

  6. Climate controls photosynthetic capacity more than leaf nitrogen contents

    Science.gov (United States)

    Ali, A. A.; Xu, C.; McDowell, N. G.

    2013-12-01

    Global vegetation models continue to lack the ability to make reliable predictions because the photosynthetic capacity varies a lot with growth conditions, season and among species. It is likely that vegetation models link photosynthetic capacity to concurrent changes in leaf nitrogen content only. To improve the predictions of the vegetation models, there is an urgent need to review species growth conditions and their seasonal response to changing climate. We sampled the global distribution of the Vcmax (maximum carboxylation rates) data of various species across different environmental gradients from the literature and standardized its value to 25 degree Celcius. We found that species explained the largest variation in (1) the photosynthetic capacity and (2) the proportion of nitrogen allocated for rubisco (PNcb). Surprisingly, climate variables explained more variations in photosynthetic capacity as well as PNcb than leaf nitrogen content and/or specific leaf area. The chief climate variables that explain variation in photosynthesis and PNcb were radiation, temperature and daylength. Our analysis suggests that species have the greatest control over photosynthesis and PNcb. Further, compared to leaf nitrogen content and/or specific leaf area, climate variables have more control over photosynthesis and PNcb. Therefore, climate variables should be incorporated in the global vegetation models when making predictions about the photosynthetic capacity.

  7. Evolutionary History Underlies Plant Physiological Responses to Global Change Since the Last Glacial Maximum

    Science.gov (United States)

    Becklin, K. M.; Medeiros, J. S.; Sale, K. R.; Ward, J. K.

    2014-12-01

    Assessing family and species-level variation in physiological responses to global change across geologic time is critical for understanding factors that underlie changes in species distributions and community composition. Ancient plant specimens preserved within packrat middens are invaluable in this context since they allow for comparisons between co-occurring plant lineages. Here we used modern and ancient plant specimens preserved within packrat middens from the Snake Range, NV to investigate the physiological responses of a mixed montane conifer community to global change since the last glacial maximum. We used a conceptual model to infer relative changes in stomatal conductance and maximum photosynthetic capacity from measures of leaf carbon isotopes, stomatal characteristics, and leaf nitrogen content. Our results indicate that most of the sampled taxa decreased stomatal conductance and/or photosynthetic capacity from glacial to modern times. However, plant families differed in the timing and magnitude of these physiological responses. Additionally, leaf-level responses were more similar within plant families than within co-occurring species assemblages. This suggests that adaptation at the level of leaf physiology may not be the main determinant of shifts in community composition, and that plant evolutionary history may drive physiological adaptation to global change over recent geologic time.

  8. A Unified Simulation Approach for the Fast Outage Capacity Evaluation over Generalized Fading Channels

    KAUST Repository

    Rached, Nadhir B.; Kammoun, Abla; Alouini, Mohamed-Slim; Tempone, Raul

    2016-01-01

    The outage capacity (OC) is among the most important performance metrics of communication systems over fading channels. The evaluation of the OC, when equal gain combining (EGC) or maximum ratio combining (MRC) diversity techniques are employed

  9. Utilization of chemically modified citrus reticulata peels for biosorptive removal of acid yellow-73 dye from water

    International Nuclear Information System (INIS)

    Rehman, R.; Salman, M.; Mahmud, T.; Kanwal, F.; Zaman, W.

    2013-01-01

    Textile effluents contain several varieties of natural and synthetic dyes, which are non-biodegradable. Acid Yellow-73 is one of them. In this research work, adsorptive removal of this dye was investigated using chemically modified Citrus reticulata peels, in batch mode. It was noted that adsorption of dye on Citrus reticulata peels increased by increasing contact time and decreased in basic pH conditions. Langmuir and Freundlich isothermal models were followed by equilibrium data, but the first isotherm fitted the data better, showing that chemisorption occurred more as compared to physiosorption, showing maximum adsorption capacity 96.46 mg.g-1.L-1. The thermodynamic study showed that adsorption of Acid Yellow-73 on chemically modified Citrus reticulata peels was favorable in nature, following pseudo-second order kinetics. (author)

  10. Comparison Uptake of Cadmium (II from Aqueous Solution, onto Algae Brown Fucus Serratus and Cystoseira Indica

    Directory of Open Access Journals (Sweden)

    Naser Jafari

    2015-01-01

    Full Text Available The cadmium metal not only has detrimental effects on the nervous system, the kidneys, and the human fetus but is also lethal because of its carcinogenic effects. Biological absorption of cadmium has a number of advantages over conventional methods that include high removal efficiency for eliminating heavy metals from dilute solutions, availability and abundance of the required materials in nature, and reproducibility and reusability of the materials. In this study, the biosorption of cadmium (II ions onto the dry biomass of two brown algae, Cystoseira indica and Fucus serratus, was investigated. Cystoseira indica was collected from the coastal areas of the Oman Sea and Fucus serratus was collected from the coastal area of the Atlantic Ocean. The algae were first dried, washed three times with tap water, and finally washed with distilled water without ions before they were isolated in pieces 0.5-1.5 mm in diameter. In all the experiments, distilled water was used to which known amounts of cadmium were added before the algae were introduced into the solution. The metal ion concentrations in the solution were measured using the atomic absorption spectrophotometer before and after the metal came into contact with the algae. The optimum pH for the adsorption of cadmium was found to be 3/0 ± 5/6 and 3/0 ± 5/5 for Cystoseira indica and Fucus serratus, respectively. The maximum metal uptakes by both algae were observed in acidic pH conditions. The time required for the biosorption of the metal to reach equilibrium was 360 minutes for Cystoseira indica and 300 minutes Fucus serratus. The adsorption capacities for Cystoseira indica and Fucus serratus using the Langmuir isotherm were determined as 44/58 and 54/95 mg /g, respectively. Moreover, the functional groups involved in cadmium uptake in both algae were identified. Finally, the results of this study showed that Fucus serratus algae had a higher capacity for adsorbing cadmium ions than did

  11. Application of a DC–DC boost converter with maximum power point tracking for low power thermoelectric generators

    International Nuclear Information System (INIS)

    Mamur, Hayati; Ahiska, Rasit

    2015-01-01

    Highlights: • Charges with direct and MPPT conditions have been compared. • Perturb and observation method has been practically tested on a new TEG. • Matched load condition has been experimentally investigated. • To increase the efficiency of a TEG, the charge with MPPT should be used. • The charge with MPPT provides twice-fold increase in efficiency. - Abstract: Thermoelectric generators (TEGs) directly generate electrical power from the geothermal/waste heat as well as contribute to efficient usage of the energy. TEGs cannot be operated at full capacity without additional electronic equipments, since the internal resistances of TEGs are not equal to the device resistances connected across TEGs. For this reason, in this paper, the application of a DC–DC boost converter with maximum power point tracking (MPPT) based on microcontroller embedded in perturb and observe (P&O) algorithm has been proposed to obtain maximum power from a newly designed portable TEG (pTEG) in a real TEG system. The matched condition load for the pTEG has been experimentally investigated. Firstly, the pTEG has been directly charged to the battery pack, secondly it has been charged through the improved convertor with MPPT. In the first one, the pTEG operated with less efficiency than half of its full capacity, whereas, in the second, the pTEG operated efficiency near its full capacity

  12. A further insight into the mechanism of Ag + biosorption by Lactobacillus sp. strain A09

    Science.gov (United States)

    Lin, Zhongyu; Zhou, Chaohui; Wu, Jianming; Zhou, Jianzhang; Wang, Lin

    2005-04-01

    The mechanism of Ag + biosorption by resting cell of Lactobacillus sp. strain A09 has been further investigated at the molecular level using spectroscopic techniques. The values of estimated equilibrium constants, rate constants, half-life periods and apparent enthalpies of the binding reaction were calculated via the determination of Ag + adsorbed by the biomass using atomic absorption spectrophotometry (AAS). The reductive ratio of the Ag + to Ag 0 by the A09 biomass was examined by X-ray photoelectron spectroscopy (XPS). Analysis for sulfur and nitrogen atomic contents in dry powder of the biomass with EA-1110 elemental analysis (EA) showed that amino acid residues retaining the reductive property of Ag + to Ag 0 are very small quantity, whereas glucose content in the hydrolysates of the biomass analyzed by ultraviolet-visible spectrophotometry (UV-vis) indicated that the amount of reducing sugars in the biomass is much larger than 2.71%. The fourier transform infrared (FTIR) spectrophotometry on blank and silver-loaded biomass demonstrated that the chemical functional group such as the free aldehyde group of the hemiacetalic hydroxyl group from reducing sugars, i.e. the hydrolysates of the polysaccharides from the cell wall plays a leading role in serving as the electron donor for reducing the Ag + to Ag 0. This result was further supported by characterizations on the interaction of the Ag + with glucose using X-ray powder diffractometry (XRD) and FTIR spectroscopy.

  13. Novel Methods to Determine Feeder Locational PV Hosting Capacity and PV Impact Signatures

    Energy Technology Data Exchange (ETDEWEB)

    Reno, Matthew J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Coogan, Kyle [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Seuss, John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Broderick, Robert Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-05-01

    Often PV hosting capacity analysis is performed for a limited number of distribution feeders. For medium - voltage distribution feeders, previous results generally analyze less than 20 feeders, and then the results are extrapolated out to similar types of feeders. Previous hosting capacity research has often focused on determining a single value for the hosting capacity for the entire feeder, whereas this research expands previous hosting capacity work to investigate all the regions of the feeder that may allow many different hosting capacity values wit h an idea called locational hosting capacity (LHC)to determine the largest PV size that can be interconnected at different locations (buses) on the study feeders. This report discusses novel methods for analyzing PV interconnections with advanced simulati on methods. The focus is feeder and location - specific impacts of PV that determine the locational PV hosting capacity. Feeder PV impact signature are used to more precisely determine the local maximum hosting capacity of individual areas of the feeder. T he feeder signature provides improved interconnection screening with certain zones that show the risk of impact to the distribution feeder from PV interconnections.

  14. Outage and Capacity Performance Evaluation of Distributed MIMO Systems over a Composite Fading Channel

    Directory of Open Access Journals (Sweden)

    Wenjie Peng

    2014-01-01

    Full Text Available The exact closed-form expressions regarding the outage probability and capacity of distributed MIMO (DMIMO systems over a composite fading channel are derived. This is achieved firstly by using a lognormal approximation to a gamma-lognormal distribution when a mobile station (MS in the cell is in a fixed position, and the so-called maximum ratio transmission/selected combining (MRT-SC and selected transmission/maximum ratio combining (ST-MRC schemes are adopted in uplink and downlink, respectively. Then, based on a newly proposed nonuniform MS cell distribution model, which is more consistent with the MS cell hotspot distribution in an actual communication environment, the average outage probability and capacity formulas are further derived. Finally, the accuracy of the approximation method and the rationality of the corresponding theoretical analysis regarding the system performance are proven and illustrated by computer simulations.

  15. Electrochemical performances and capacity fading behaviors of activated carbon/hard carbon lithium ion capacitor

    International Nuclear Information System (INIS)

    Sun, Xianzhong; Zhang, Xiong; Liu, Wenjie; Wang, Kai; Li, Chen; Li, Zhao; Ma, Yanwei

    2017-01-01

    Highlights: • Three-electrode pouch cell is used to investigate the capacity fading of AC/HC LIC. • the electrode potential swing is critical for the cycleability of a LIC cell. • Different capacity fading behaviors are discussed. • A large-capacity LIC pouch cell has been assembled with a specific energy of 18.1 Wh kg −1 based on the total weight. - Abstract: Lithium ion capacitor (LIC) is one of the most promising electrochemical energy storage devices, which offers rapid charging-discharging capability and long cycle life. We have fabricated LIC pouch cells using an electrochemically-driven lithium pre-doping method through a three-electrode pouch cell structure. The active materials of cathode and anode of LIC cell are activated carbon and pre-lithiated hard carbon, respectively. The electrochemical performances and the capacity fading behaviors of LICs in the voltage range of 2.0 − 4.0 V have been studied. The specific energy and specific power reach 73.6 Wh kg −1 and 11.9 kW kg −1 based on the weight of the active materials in both cathode and anode, respectively. Since the cycling performance is actually determined by hard carbon anode, the anode potential swings are emphasized. The capacity fading of LIC upon cycling is proposed to be caused by the increases of internal resistance and the consumption of lithium stored in anode. Finally, a large-capacity LIC pouch cell has been assembled with a maximum specific energy of 18.1 Wh kg −1 and a maximum specific power of 3.7 kW kg −1 based on the weight of the whole cell.

  16. Carrying Capacity Model Applied to Coastal Ecotourism of Baluran National Park, Indonesia

    Science.gov (United States)

    Armono, H. D.; Rosyid, D. M.; Nuzula, N. I.

    2017-07-01

    The resources of Baluran National Park have been used for marine and coastal ecotourism. The increasing number of visitors has led to the increasing of tourists and its related activities. This condition will cause the degradation of resources and the welfare of local communities. This research aims to determine the sustainability of coastal ecotourism management by calculating the effective number of tourists who can be accepted. The study uses the concept of tourism carrying capacity, consists the ecological environment, economic, social and physical carrying capacity. The results of the combined carrying capacity analysis in Baluran National Park ecotourism shows that the number of 3.288 people per day (151.248 tourists per year) is the maximum number of accepted tourists. The current number of tourist arrivals is only 241 people per day (87.990 tourists per year) which is far below the carrying capacity.

  17. Room at the Mountain: Estimated Maximum Amounts of Commercial Spent Nuclear Fuel Capable of Disposal in a Yucca Mountain Repository

    International Nuclear Information System (INIS)

    Kessler, John H.; Kemeny, John; King, Fraser; Ross, Alan M.; Ross, Benjamen

    2006-01-01

    The purpose of this paper is to present an initial analysis of the maximum amount of commercial spent nuclear fuel (CSNF) that could be emplaced into a geological repository at Yucca Mountain. This analysis identifies and uses programmatic, material, and geological constraints and factors that affect this estimation of maximum amount of CSNF for disposal. The conclusion of this initial analysis is that the current legislative limit on Yucca Mountain disposal capacity, 63,000 MTHM of CSNF, is a small fraction of the available physical capacity of the Yucca Mountain system assuming the current high-temperature operating mode (HTOM) design. EPRI is confident that at least four times the legislative limit for CSNF (∼260,000 MTHM) can be emplaced in the Yucca Mountain system. It is possible that with additional site characterization, upwards of nine times the legislative limit (∼570,000 MTHM) could be emplaced. (authors)

  18. Benefits of pulmonary rehabilitation in patients with COPD and normal exercise capacity.

    Science.gov (United States)

    Lan, Chou-Chin; Chu, Wen-Hua; Yang, Mei-Chen; Lee, Chih-Hsin; Wu, Yao-Kuang; Wu, Chin-Pyng

    2013-09-01

    Pulmonary rehabilitation (PR) is beneficial for patients with COPD, with improvement in exercise capacity and health-related quality of life. Despite these overall benefits, the responses to PR vary significantly among different individuals. It is not clear if PR is beneficial for patients with COPD and normal exercise capacity. We aimed to investigate the effects of PR in patients with normal exercise capacity on health-related quality of life and exercise capacity. Twenty-six subjects with COPD and normal exercise capacity were studied. All subjects participated in 12-week, 2 sessions per week, hospital-based, out-patient PR. Baseline and post-PR status were evaluated by spirometry, the St George's Respiratory Questionnaire, cardiopulmonary exercise test, respiratory muscle strength, and dyspnea scores. The mean FEV1 in the subjects was 1.29 ± 0.47 L/min, 64.8 ± 23.0% of predicted. After PR there was significant improvement in maximal oxygen uptake and work rate. Improvements in St George's Respiratory Questionnaire scores of total, symptoms, activity, and impact were accompanied by improvements of exercise capacity, respiratory muscle strength, maximum oxygen pulse, and exertional dyspnea scores (all P exercise after PR. Exercise training can result in significant improvement in health-related quality of life, exercise capacity, respiratory muscle strength, and exertional dyspnea in subjects with COPD and normal exercise capacity. Exercise training is still indicated for patients with normal exercise capacity.

  19. LTE-A cellular networks multi-hop relay for coverage, capacity and performance enhancement

    CERN Document Server

    Yahya, Abid

    2017-01-01

    In this book, three different methods are presented to enhance the capacity and coverage area in LTE-A cellular networks. The scope involves the evaluation of the effect of the RN location in terms of capacity and the determination of the optimum location of the relay that provides maximum achievable data rate for users with limited interference at the cell boundaries. This book presents a new model to enhance both capacity and coverage area in LTE-A cellular network by determining the optimum location for the RN with limited interference. The new model is designed to enhance the capacity of the relay link by employing two antennas in RN. This design enables the relay link to absorb more users at cell edge regions. An algorithm called the Balance Power Algorithm (BPA) is developed to reduce MR power consumption. The book pertains to postgraduate students and researchers in wireless & mobile communications. Provides a variety of methods for enhancing capacity and coverage in LTE-A cellular networks Develop...

  20. Functional Capacity in Adults With Cerebral Palsy: Lower Limb Muscle Strength Matters.

    Science.gov (United States)

    Gillett, Jarred G; Lichtwark, Glen A; Boyd, Roslyn N; Barber, Lee A

    2018-05-01

    To investigate the relation between lower limb muscle strength, passive muscle properties, and functional capacity outcomes in adults with cerebral palsy (CP). Cross-sectional study. Tertiary institution biomechanics laboratory. Adults with spastic-type CP (N=33; mean age, 25y; range, 15-51y; mean body mass, 70.15±21.35kg) who were either Gross Motor Function Classification System (GMFCS) level I (n=20) or level II (n=13). Not applicable. Six-minute walk test (6MWT) distance (m), lateral step-up (LSU) test performance (total repetitions), timed up-stairs (TUS) performance (s), maximum voluntary isometric strength of plantar flexors (PF) and dorsiflexors (DF) (Nm.kg -1 ), and passive ankle joint and muscle stiffness. Maximum isometric PF strength independently explained 61% of variance in 6MWT performance, 57% of variance in LSU test performance, and 50% of variance in TUS test performance. GMFCS level was significantly and independently related to all 3 functional capacity outcomes, and age was retained as a significant independent predictor of LSU and TUS test performance. Passive medial gastrocnemius muscle fascicle stiffness and ankle joint stiffness were not significantly related to functional capacity measures in any of the multiple regression models. Low isometric PF strength was the most important independent variable related to distance walked on the 6MWT, fewer repetitions on the LSU test, and slower TUS test performance. These findings suggest lower isometric muscle strength contributes to the decline in functional capacity in adults with CP. Copyright © 2018 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.