Ándonios D. Tsolakis
2011-01-01
Full Text Available Problem statement: Main purpose of this study was to investigation toothed gear loading problems using the Finite Element Method. Approach: We used Niemann's equations to compare maximum bending stress which was developed at critical gear-tooth flank point during gear meshing, applied for three distinct spur-gear sizes, each having different teeth number, module and power rating. Results: The results emerging after the application of Niemann's equations were compared to the results derived by application of the Finite Element Method (FEM for the same gear-loading input data. Results are quite satisfactory, since von Mises' equivalent stresses calculated with FEM are of the same order with the results of classical analytical method. Conclusion: Judging from the emerging results, deviation of the two methods, analytical (Niemann's equations and computational (FEM, referring to maximum bending stress is fairly slight, independently of the applied geometrical and loading data of each gear.
Bending stresses in Facetted Glass Shells
Bagger, Anne; Jönsson, Jeppe; Almegaard, Henrik
2008-01-01
A shell structure of glass combines a highly effective structural principle with a material of optimal permeability to light. A facetted shell structure has a piecewise plane geometry, and together the facets form an approximation to a curved surface. A distributed load on a plane-based facetted...... structure will locally cause bending moments in the loaded facets. The bending stresses are dependent on the stiffness of the joints. Approximate solutions are developed to estimate the magnitude of the bending stresses. A FE-model of a facetted glass shell structure is used to validate the expressions...
Effects of rim thickness on spur gear bending stress
Bibel, G. D.; Reddy, S. K.; Savage, M.; Handschuh, R. F.
1991-01-01
Thin rim gears find application in high-power, light-weight aircraft transmissions. Bending stresses in thin rim spur gear tooth fillets and root areas differ from the stresses in solid gears due to rim deformations. Rim thickness is a significant design parameter for these gears. To study this parameter, a finite element analysis was conducted on a segment of a thin rim gear. The rim thickness was varied and the location and magnitude of the maximum bending stresses reported. Design limits are discussed and compared with the results of other researchers.
Pure plate bending in couple stress theories
Hadjesfandiari, Ali R; Dargush, Gary F
2016-01-01
In this paper, we examine the pure bending of plates within the framework of modified couple stress theory (M-CST) and consistent couple stress theory (C-CST). In this development, it is demonstrated that M-CST does not describe pure bending of a plate properly. Particularly, M-CST predicts no couple-stresses and no size effect for the pure bending of the plate into a spherical shell. This contradicts our expectation that couple stress theory should predict some size effect for such a deformation pattern. Therefore, this result clearly demonstrates another inconsistency of indeterminate symmetric modified couple stress theory (M-CST), which is based on considering the symmetric torsion tensor as the curvature tensor. On the other hand, the fully determinate skew-symmetric consistent couple stress theory (C-CST) predicts results for pure plate bending that tend to agree with mechanics intuition and experimental evidence. Particularly, C-CST predicts couple-stresses and size effects for the pure bending of the ...
Reducing bending stress in external spur gears by redesign of the standard cutting tool
Pedersen, Niels Leergaard
2009-01-01
. In this work the bending stress of involute teeth is minimized by shape optimizing the tip of the standard cutting tool. By redesign of the tip of the standard cutting tool we achieve that the functional part of the teeth stays the same while at the same time the root shape is changed so that a reduction......For the design of gears the stress due to bending plays a significant role. The stress from bending is largest in the root of the gear teeth, and the magnitude of the maximum stress is controlled by the nominal bending stress and stress concentration due to the geometric shape of the tooth...... of the stresses results. The tool tip shape is described by different parameterizations that use the super ellipse as the central shape. For shape optimization it is important that the shape is given analytically. The shape of the cut tooth that is the envelope of the cutting tool is found analytically...
Photoelastic stress analysis in mitred bend under internal pressure
Sawa, Yoshiaki
1987-12-01
The stress analysis and stress relaxation in mitred bend subjected to internal pressure have been studied by means of the photoelastic stress freezing method. The experimental results show that stress concentration occurs in the wedge tip of the intersectional plane and it is considerably influenced by the bent angle. Then, the stress relaxation was obtained by planing the wedge tip.
The Impact of Bending Stress on the Performance of Giant Magneto-Impedance (GMI Magnetic Sensors
Julie Nabias
2017-03-01
Full Text Available The flexibility of amorphous Giant Magneto-Impedance (GMI micro wires makes them easy to use in several magnetic field sensing applications, such as electrical current sensing, where they need to be deformed in order to be aligned with the measured field. The present paper deals with the bending impact, as a parameter of influence of the sensor, on the GMI effect in 100 µm Co-rich amorphous wires. Changes in the values of key parameters associated with the GMI effect have been investigated under bending stress. These parameters included the GMI ratio, the intrinsic sensitivity, and the offset at a given bias field. The experimental results have shown that bending the wire resulted in a reduction of GMI ratio and sensitivity. The bending also induced a net change in the offset for the considered bending curvature and the set of used excitation parameters (1 MHz, 1 mA. Furthermore, the field of the maximum impedance, which is generally related to the anisotropy field of the wire, was increased. The reversibility and the repeatability of the bending effect were also evaluated by applying repetitive bending stresses. The observations have actually shown that the behavior of the wire under the bending stress was roughly reversible and repetitive.
Stress Analysis of a Secondary-Bending Specimen
1993-11-01
Control Office Ansett Airlines of Australia, Library 0 Qantas Airways Limited Hawker de Havilland Aust Pty Ltd, Victoria, Library Hawker de Havilland...MELBOURNE, VICTORIA Technical Note 58 STRESS ANALYSIS OF A SECONDARY-BENDING SPECIMEN 0 by R.L. EVANS M. HELLER Approved for public release C) COMMONWEALTH...AND TECHNOLOGY ORGANISATION AERONAUTICAL RESEARCH LABORATORY Technical Note 58 0 STRESS ANALYSIS OF A SECONDARY-BENDING SPECIMEN by R.L. EVANS 0 M
Improving bending stress in spur gears using asymmetric gears and shape optimization
Pedersen, Niels Leergaard
2010-01-01
Bending stress plays a significant role in gear design wherein its magnitude is controlled by the nominal bending stress and the stress concentration due to the geometrical shape. The bending stress is indirectly related to shape changes made to the cutting tool. This work shows that the bending...
A Study on Residual Stress of U-Bending Heat Transfer Tube using Rotary Draw Bending Processing
Kwak, Ok Gyu; Jang, Kye Hwan; Kim, Won Seok [BHI Co., Haman (Korea, Republic of); Ku, Tae Wan [Pusan National University, Busan (Korea, Republic of)
2016-05-15
The heat transfer tubes can be considered a kind of heat exchange boundary that is direct heat exchange from inside the steam generator. The heat transfer tubes of the steam generator have various bending radius. The heat transfer tubes have the U-shape and L-shape, depending on installed location and arrangement. The forming of the heat transfer tubes can be applied to process of rotary draw bending, roll bending, ram bending and etc. The rotary draw bending process is mainly used, when the bending radius is small. Recently, Alloy 600 or Alloy 690 tubes have been used as material for the heat transfer tubes of the steam generator. The purpose of this study is to evaluate the residual stress of the heat transfer row-1 tubes for deriving the remaining residual stress after U-Bending processing, as a primary study. In this study, the samples of U-Bending tube were made using Rotary Draw Bending Machine by Alloy690 straight tube. This study was measured Residual Stresses of the Row-1 Heat Transfer Tube in Steam Generator. The measurement methods are used two type of the analytical method (FEM) and experimental method (HDM). It was confirmed that the correlation of the measurement of the FEM and HDM methods. The FEM and HDM both methods showed compressive residual stresses. In numerical terms, the HDM is shown that higher value than the FEM.
49 CFR 230.24 - Maximum allowable stress.
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Maximum allowable stress. 230.24 Section 230.24... Allowable Stress § 230.24 Maximum allowable stress. (a) Maximum allowable stress value. The maximum allowable stress value on any component of a steam locomotive boiler shall not exceed 1/4 of the ultimate...
Engel, Frank; Rhoads, Bruce L.
2016-01-01
Compound meander bends with multiple lobes of maximum curvature are common in actively evolving lowland rivers. Interaction among spatial patterns of mean flow, turbulence, bed morphology, bank failures and channel migration in compound bends is poorly understood. In this paper, acoustic Doppler current profiler (ADCP) measurements of the three-dimensional (3D) flow velocities in a compound bend are examined to evaluate the influence of channel curvature and hydrologic variability on the structure of flow within the bend. Flow structure at various flow stages is related to changes in bed morphology over the study timeframe. Increases in local curvature within the upstream lobe of the bend reduce outer bank velocities at morphologically significant flows, creating a region that protects the bank from high momentum flow and high bed shear stresses. The dimensionless radius of curvature in the upstream lobe is one-third less than that of the downstream lobe, with average bank erosion rates less than half of the erosion rates for the downstream lobe. Higher bank erosion rates within the downstream lobe correspond to the shift in a core of high velocity and bed shear stresses toward the outer bank as flow moves through the two lobes. These erosion patterns provide a mechanism for continued migration of the downstream lobe in the near future. Bed material size distributions within the bend correspond to spatial patterns of bed shear stress magnitudes, indicating that bed material sorting within the bend is governed by bed shear stress. Results suggest that patterns of flow, sediment entrainment, and planform evolution in compound meander bends are more complex than in simple meander bends. Moreover, interactions among local influences on the flow, such as woody debris, local topographic steering, and locally high curvature, tend to cause compound bends to evolve toward increasing planform complexity over time rather than stable configurations.
Piezoelectric Pre-Stressed Bending Mechanism for Impact-Driven Energy Harvester
Abdal, A. M.; Leong, K. S.
2017-06-01
This paper experimentally demonstrates and evaluates a piezoelectric power generator bending mechanism based on pre-stressed condition whereby the piezoelectric transducer being bended and remained in the stressed condition before applying a force on the piezoelectric bending structure, which increase the stress on the piezoelectric surface and hence increase the generated electrical charges. An impact force is being exerted onto bending the piezoelectric beam and hence generating electrical power across an external resistive load. The proposed bending mechanism prototype has been manufactured by employing 3D printer technology in order to conduct the evaluation. A free fall test has been conducted as the evaluation method with varying force using a series of different masses and different fall heights. A rectangular piezoelectric harvester beam with the size of 32mm in width, 70mm in length, and 0.55mm in thickness is used to demonstrate the experiment. It can be seen from the experiment that the instantaneous peak to peak AC volt output measured at open-circuit is increasing and saturated at about of 70V when an impact force of about 80N is being applied. It is also found that a maximum power of about 53mW is generated at an impact force of 50N when it is connected to an external resistive load of 0.7KΩ. The reported mechanism is a promising candidate in the application of energy harvesting for powering various wireless sensor nodes (WSN) which is the core of Internet of Things (IoT).
Characterization of Optical Fiber Strength Under Applied Tensile Stress and Bending Stress
P.E. Klingsporn
2011-08-01
Various types of tensile testing and bend radius tests were conducted on silica core/silica cladding optical fiber of different diameters with different protective buffer coatings, fabricated by different fiber manufacturers. The tensile tests were conducted to determine not only the average fiber strengths at failure, but also the distribution in fracture strengths, as well as the influence of buffer coating on fracture strength. The times-to-failure of fiber subjected to constant applied bending stresses of various magnitudes were measured to provide a database from which failure times of 20 years or more, and the corresponding minimum bend radius, could be extrapolated in a statistically meaningful way. The overall study was done to provide an understanding of optical fiber strength in tensile loading and in applied bending stress as related to applications of optical fiber in various potential coizfgurations for weapons and enhanced surveillance campaigns.
Xyloglucan for Generating Tensile Stress to Bend Tree Stem
Kei'ichi Baba; Yong Woo Park; Tomomi Kaku; Rumi Kaida; Miyuki Takeuchi; Masato Yoshida; Yoshihiro Hosoo; Yasuhisa Ojio; Takashi Okuyama; Toru Taniguchi; Yasunori Ohmiya; Teiji Kondo; Ziv Shani; Oded Shoseyov; Tatsuya Awano; Satoshi Serada; Naoko Norioka; Shigemi Norioka; Takahisa Hayashi
2009-01-01
In response to environmental variation, angiosperm trees bend their stems by forming tension wood, which consists of a cellulose-rich G (gelatinous)-Iayer in the walls of fiber cells and generates abnormal tensile stress in the sec-ondary xylem. We produced transgenic poplar plants overexpressing several endoglycanases to reduce each specific poly-saccharide in the cell wall, as the secondary xylem consists of primary and secondary wall layers. When placed horizontally, the basal regions of stems of transgenic poplars overexpressing xyloglucanase alone could not bend upward due to low strain in the tension side of the xylem. In the wild-type plants, xyloglucan was found in the inner surface of G-layers during multiple layering. In situ xyloglucan endotransglucosylase (XET) activity showed that the incorporation of whole xylo-glucan, potentially for wall tightening, began at the inner surface layers S1 and S2 and was retained throughout G-layer development, while the incorporation of xyloglucan heptasaccharide (XXXG) for wall loosening occurred in the primary wall of the expanding zone. We propose that the xyloglucan network is reinforced by XET to form a further connection between wall-bound and secreted xyloglucans in order to withstand the tensile stress created within the cellulose G-layer microfibrils.
Safdar, Shakeel; Li, Lin; Sheikh, M. A.; Zhu Liu
2007-09-01
Laser forming has received considerable attention in recent years. Within laser forming, tube bending is an important industrial activity, with applications in critical engineering systems like micro-machines, heat exchangers, hydraulic systems, boilers, etc. Laser tube bending utilizes the thermal stresses generated during laser scanning to achieve the desired bends. The parameters to control the process are usually laser power, beam diameter, scanning velocity and number of scans. Recently axial scanning has been used for tube bending instead of commonly used circumferential scans. However the comparison between the scanning schemes has involved dissimilar laser beam geometries with circular beam used for circumferential scanning and a rectangular beam for the axial scan. Thermal stresses generated during laser scanning are strongly dependent upon laser beam geometry and scanning direction and hence it is difficult to isolate the contribution made by these two variables. It has recently been established at the Corrosion and Protection Centre, University of Manchester, that corrosion properties of material during laser forming are affected by the number of laser passes. Depending on the material, the corrosion behaviour is either adversely or favourably affected by number of passes. Thus it is of great importance to know how different scanning schemes would affect laser tube bending. Moreover, any scanning scheme which results in greater bending angle would eliminate the need for higher number of passes, making the process faster. However, it is not only the bending angle which is critical, distortions in other planes are also extremely important. Depending on the use of the final product, unwanted distortions may be the final selection criteria. This paper investigates the effect of scanning direction on laser tube bending. Finite-element modelling has been used for the study of the process with some results also validated by experiments.
汤任基; 汤昕燕
2001-01-01
Using the single crack solution and the regular solution of plane harmonic function, the problem of Saint-Venant bending of a cracked cylinder by a transverse force was reduced to solving two sets of integral equations and its general solution was then obtained. Based on the obtained solution, a method to calculate the bending center and the stress intensity factors of the cracked cylinger whose cross-section is not thin-walled, but of small torsion rigidity is proposed. Some numerical examples are given.
Stress Relaxation Of Superelastic Shape Memory Alloy Under Bending And Torsional Load
Sakib Tanvir
2015-08-01
Full Text Available Stress Relaxation of Superelastic Shape memory NiTi Alloy under bending and torsion is uncommon in literature. Therefore experimental set up has been devised and test results are obtained for superelastic SMA.Unlike the other common engineering materials superelastic SMA it gives dramatic reduction in stress. In this paper therefore results of stress relaxation of superelastic shape memory alloy under bending and torsion are presented graphically and interpreted in terms of stress induced martensitic transformation.
Effects of mechanical-bending and process-induced stresses on metal effective work function
Yang, Xiaodong; Chu, Min; Huang, Anping; Thompson, Scott
2013-01-01
Effective work function (EWF) change is investigated under both externally-applied mechanical stresses and process-induced stresses. Four-point wafer bending and ring bending techniques are used to generate uniaxial and biaxial mechanical stresses, respectively. For the process-induced stresses, bowing technique and charge pumping method are used for stress characterization and interface state measurement. It was found that higher stress presents in devices with thinner metal gate, regardless the thermal treatment cycle. EWF decreases under both tensile and compressive stress was observed due to the increase of defect activation energy lowering induced donor-like interface states.
Channel width dependence of electrical characteristics of a-Si:H TFTs under bending stresses
Oh, Hyungon; Cho, Kyoungah; Kim, Sangsig
2017-04-01
In this study, we investigate the electrical characteristics of bendable a-Si:H thin-film transistors (TFTs) with various channel widths as a function of bending stress. Compared with a narrower channel TFT, a wider channel TFT exhibits a stable performance even at a bending strain of 1.3%. Our stress and strain distribution analysis reveals an inverse relationship between the channel width and the channel stress. As the channel width widens from 8 to 50 μm, the stress experienced by the middle channel region decreases from 545 to 277 MPa. Moreover, a 50 μm-channel-width TFT operates stably even after a 15 000 bending cycle while the 8 μm-channel-width TFT fails to operate after a 2000 bending cycle.
Standard Practice for Making and Using U-Bend Stress-Corrosion Test Specimens
American Society for Testing and Materials. Philadelphia
2009-01-01
1.1 This practice covers procedures for making and using U-bend specimens for the evaluation of stress-corrosion cracking in metals. The U-bend specimen is generally a rectangular strip which is bent 180° around a predetermined radius and maintained in this constant strain condition during the stress-corrosion test. Bends slightly less than or greater than 180° are sometimes used. Typical U-bend configurations showing several different methods of maintaining the applied stress are shown in Fig. 1. 1.2 U-bend specimens usually contain both elastic and plastic strain. In some cases (for example, very thin sheet or small diameter wire) it is possible to form a U-bend and produce only elastic strain. However, bent-beam (Practice G 39 or direct tension (Practice G 49)) specimens are normally used to study stress-corrosion cracking of strip or sheet under elastic strain only. 1.3 This practice is concerned only with the test specimen and not the environmental aspects of stress-corrosion testing which are discus...
Fraternali, Fernando; Marcelli, Gianluca
2011-01-01
We present a meshfree method for the curvature estimation of membrane networks based on the Local Maximum Entropy approach recently presented in (Arroyo and Ortiz, 2006). A continuum regularization of the network is carried out by balancing the maximization of the information entropy corresponding to the nodal data, with the minimization of the total width of the shape functions. The accuracy and convergence properties of the given curvature prediction procedure are assessed through numerical applications to benchmark problems, which include coarse grained molecular dynamics simulations of the fluctuations of red blood cell membranes (Marcelli et al., 2005; Hale et al., 2009). We also provide an energetic discrete-to-continuum approach to the prediction of the zero-temperature bending rigidity of membrane networks, which is based on the integration of the local curvature estimates. The Local Maximum Entropy approach is easily applicable to the continuum regularization of fluctuating membranes, and the predict...
Fatigue life prediction method for contact wire using maximum local stress
Kim, Yong Seok; Haochuang, Li; Seok, Chang Sung; Koo, Jae Mean [Sungkyunkwan University, Suwon (Korea, Republic of); Lee, Ki Won; Kwon, Sam Young; Cho, Yong Hyeon [Korea Railroad Research Institute, Uiwang (Korea, Republic of)
2015-01-15
Railway contact wires supplying electricity to trains are exposed to repeated mechanical strain and stress caused by their own weight and discontinuous contact with a pantograph during train operation. Since the speed of railway transportation has increased continuously, railway industries have recently reported a number of contact wire failures caused by mechanical fatigue fractures instead of normal wear, which has been a more common failure mechanism. To secure the safety and durability of contact wires in environments with increased train speeds, a bending fatigue test on contact wire has been performed. The test equipment is too complicated to evaluate the fatigue characteristics of contact wire. Thus, the axial tension fatigue test was performed for a standard specimen, and the bending fatigue life for the contact wire structure was then predicted using the maximum local stress occurring at the top of the contact wire. Lastly, the tested bending fatigue life of the structure was compared with the fatigue life predicted by the axial tension fatigue test for verification.
Stress Distribution on Sandwich Structure with Triangular Grid Cores Suffered from Bending Load
Cui Xu
2015-01-01
Full Text Available Triangular grid reinforced by carbon fiber/epoxy (CF/EP was designed and manufactured. The sandwich structure was prepared by gluing the core and composite skins. The mechanical properties of the sandwich structure were investigated by the finite element analysis (FEA and three-point bending methods. The calculated bending stiffness and core shear stress were compared to the characteristics of a honeycomb sandwich structure. The results indicated that the triangular core ultimately failed under a bending load of 11000 N; the principal stress concentration was located at the loading region; and the cracks occurred on the interface top skin and triangular core. In addition, the ultimate stress bearing of the sandwich structure was 8828 N. The experimental results showed that the carbon fiber reinforced triangular grid was much stiffer and stronger than the honeycomb structure.
Salau Tajudeen A.O.
2014-01-01
Full Text Available This study reported a simulation approach to the understanding of the interactions between a buried pipe and the soil system by computing the bending stress variation of harmonically-excited buried pipes. The established principles of linear dynamics theory and simple beam theory were utilised in the analysis of the problem of buried pipe bending stress accumulation and its dynamics. With regards to the parameters that influence the bending stress variations, the most important are the isolation factor, uniform external load, and the corresponding limiting conditions. The simulated mathematical expressions, containing static and dynamic parameters of the buried pipe and earth, were coded in Fortran programming language and applied in the simulation experiment. The results obtained showed that harmonically-excited buried thick-walled pipe became stable and effective when the ratio of the natural frequency of vibration to the forced frequency is greater than 2.0, whenever the damped factor is used as the control parameter for the maximum bending stress. The mirror image of the stress variation produces variation in the location of the maximum bending stress in quantitative terms. The acceptable pipe materials for the simulated cases must have yield strength in bending greater than or equal to 13.95 MPa. The results obtained in this work fill a gap in the literature and will be useful to pipeline engineers and designers, as well as to environmental scientists in initialising and controlling environmental issues and policy formulation concerning the influence of buried pipe on the soil and water in the environment.
Xifeng LI; Kaifeng ZHANG; Changli WANG; Wenbo HAN; Guofeng WANG
2007-01-01
The amorphous Fe78Si9B13 ribbons were bend stress relaxed at various temperature well below the crystallization temperature (Tx) for different time. The effect of pre-annealing on the subsequent bend stress relaxation was examined. The variation of the microstructure and microhardness during bend stress relaxation process was studied using X-ray diffraction (XRD), atomic force microscopy (AFM) and Vickers microhardness test,respectively. Curvature radius of the amorphous Fe78Si9B13 ribbons decreased with increase bend stress relaxation temperature and time. The microhardness of the stress relaxed specimens increased with time at 300℃ due to the forming of nanocrystals during bend stress relaxation. The pre-annealing reduced the decrease rate of the curvature radius of stress relaxed specimens.
On some method of the space elevator maximum stress reduction
Ambartsumian S. A.
2007-03-01
Full Text Available The possibility of the realization and exploitation of the space elevator project is connected with a number of complicated problems. One of them are large elastic stresses arising in the space elevator ribbon body, which are considerably bigger that the limit of strength of modern materials. This note is devoted to the solution of problem of maximum stress reduction in the ribbon by the modification of the ribbon cross-section area.
Residual compressive surface stress increases the bending strength of dental zirconia.
Inokoshi, Masanao; Zhang, Fei; Vanmeensel, Kim; De Munck, Jan; Minakuchi, Shunsuke; Naert, Ignace; Vleugels, Jozef; Van Meerbeek, Bart
2017-04-01
To assess the influence of surface treatment and thermal annealing on the four-point bending strength of two ground dental zirconia grades. Fully-sintered zirconia specimens (4.0×3.0×45.0mm(3)) of Y-TZP zirconia (LAVA Plus, 3M ESPE) and Y-TZP/Al2O3 zirconia (ZirTough, Kuraray Noritake) were subjected to four surface treatments: (1) 'GROUND': all surfaces were ground with a diamond-coated grinding wheel on a grinding machine; (2) 'GROUND+HEAT': (1) followed by annealing at 1100°C for 30min; (3) 'GROUND+Al2O3 SANDBLASTED': (1) followed by sandblasting using Al2O3; (4) 'GROUND+CoJet SANDBLASTED': (1) followed by tribochemical silica (CoJet) sandblasting. Micro-Raman spectroscopy was used to assess the zirconia-phase composition and potentially induced residual stress. The four-point bending strength was measured using a universal material-testing machine. Weibull analysis revealed a substantially higher Weibull modulus and slightly higher characteristic strength for ZirTough (Kuraray Noritake) than for LAVA Plus (3M ESPE). For both zirconia grades, the 'GROUND' zirconia had the lowest Weibull modulus in combination with a high characteristic strength. Sandblasting hardly changed the bending strength but substantially increased the Weibull modulus of the ground zirconia, whereas a thermal treatment increased the Weibull modulus of both zirconia grades but resulted in a significantly lower bending strength. Micro-Raman analysis revealed a higher residual compressive surface stress that correlated with an increased bending strength. Residual compressive surface stress increased the bending strength of dental zirconia. Thermal annealing substantially reduced the bending strength but increased the consistency (reliability) of 'GROUND' zirconia. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Laser bending of pre-stressed thin-walled nickel micro-tubes
Che Jamil, M. S.; Imam Fauzi, E. R.; Juinn, C. S.; Sheikh, M. A.
2015-10-01
Laser forming is an innovative technique of producing bending, spatial forming and alignment of both metallic and non-metallic parts by introducing thermal stresses into a work piece with a laser beam. It involves a complex interaction of process parameters to mechanical and thermal characteristics of materials. This paper presents a comprehensive experimental and numerical study of laser bending process of thin-walled micro-tubes. The effect of input parameters, namely laser power, pulse length and pre-stress constraint, on the process and the final product characteristics are investigated. Results of the analysis show that the bending angle of the tube increases considerably when a constraint is imposed at the tube's free end during the heating period. The introduction of compressive pre-stresses (from mechanical bending) in the irradiated region increases the final deformation which varies almost linearly with the amount of pre-stress. Due to high thermal conductivity and thin-walled structure of the tube, the heat dissipates quickly from the irradiated region to its surrounding material. Therefore, a combination of short pulse duration and high power is preferable to generate a higher thermal gradient and induce plastic strain. Design of experiment and regression analysis are implemented to develop an empirical model based on simulation results. Sensitivity analysis is also performed to determine the influence of independent variables on output response. It is evident that initial displacement and pulse length have a stronger positive effect on the output response as compared to laser power.
Displacements and stresses in bending of circular perforated plate
Atanasiu, C.; Sorohan, St.
2016-08-01
The flat plates, perforated by a large number of holes are widely used in the engineering, especially in the component of the process equipment. Strength calculations and experimental methods used in the actual literature for study perforated plates, do not present the problem in all its complexity for stress distribution and displacements. Research and doctoral theses in last decades, with methods characteristic of the respective periods were engaged either perforated plates considered infinite and requested the median plane or rarely, plate loaded normal to the median plane, with a small number of holes. In this work the stress distribution and displacement is presented for a circular plate perforated by 96 holes arranged in a grid of squares, simply supported on the outline and loaded through a central concentrated force or by uniformly distributed load. It conducted a numerical analysis by finite element method (FEM) with a proper meshing of the plate and an experimental study by holographic interferometry. Holographic interferometry method permits to measure, with high accuracy, extremely small displacements and comparing the results with those obtained by FEM becomes sustainable. Supplementary, an analysis of a non-perforated plate with the same dimensions and stiffness, similar loaded, was performed, determining the coefficient of stress concentration for a particular arrangement of holes.
The effect of multiple bending of wire on the residual stresses of high carbon steel wires
R. Kruzel
2013-01-01
Full Text Available Steel tire cord, springs and rope wires belong to the group of metal products from which the low residual stresses are required. In this paper the effect of multiple bending of wire on residual stresses of high carbon steel wires has been assessed. It was found that the application of the multi-roller straightening machine in the banding wire process enables to reduce the residual stresses in the drawn wires. It should be also noted that the value of the residual stresses depends on the type of straightener construction. The residual stresses on the basis of stress-strain curve has been determined. It has been stated that the application of seven-rolls straightener gives the best effect of straightening.
Finite Element Simulation of Magnesium Alloy AZ31 Tube Bending
Wu Wenyun
2016-01-01
Full Text Available A finite element method based model has been developed for magnesium alloy AZ31 tube bending process simulation, using the tensile (for bend outer radius and compressive (for bend inner radius properties of the AZ31 alloy at the bending temperature of 150°C. The results shown that very high compressive stresses are developed in the bend inner radius, limiting the minimum bend radius for the AZ31 tube. The simulation results suggest the minimum centerline bend radius to the tube outer diameter ratio is 1.5 to 2. The maximum diameter to thickness ratio is 30.
CALCULATION OF RESIDUAL STRESSES RESULTING FROM BENDING OF COLD FORMED STEEL BARS
Gökmen ATLIHAN
2007-01-01
Full Text Available In this study, the residual stresses in the forming of the seed capsule which used in manifacturing the ferforje was carried out. These residual stresses were made up in the process which bars with 8 mm diameter were converted to 6 x 6 mm2 square profiles. This process was actually a Rolling process performed at three levels. Plastic constant and strain hardening parameter were calculated at each level . Then, elasto-plastic stress analysis of the bar subjected to bending was analzed by means of Newton Cotes formulation. The load value that cause residual stresses on the steel bar was assumed to be constant in elasto-plastic analysis. Elastic, plastic and residual stresses under the load value were determined in each level and results were presented in the graphical format.
The effect of applied stress on damage mode of 3D C/C composites under bend-bend fatigue loading
LIAO XiaoLing; LI HeJun; XU WenFeng; LI KeZhi
2007-01-01
The bend-bend fatigue behavior of 3D integral braided carbon/carbon composites (3D C/C) was examined. Fatigue test was conducted under load control at a sinusoidal frequency of 10 Hz to obtain stress-fracture cycles (S-N) relationship. The fatigue limit of the C/C was found to be 203 MPa (92% of the static flexural strength), the lag loops of fatigue load-displacement were transformed from elasticity to anelasticity and the flexibility of specimens were enhanced with increase in applied stress. It is revealed that the interfacial sliding abrasion played an important role in the fatigue failure process, and the extent and speed of sliding abrasion were controlled by the level of applied stress.
The effect of applied stress on damage mode of 3D C/C composites under bend-bend fatigue loading
2007-01-01
The bend-bend fatigue behavior of 3D integral braided carbon/carbon composites (3D C/C) was examined. Fatigue test was conducted under load control at a sinu-soidal frequency of 10 Hz to obtain stress-fracture cycles (S-N) relationship. The fatigue limit of the C/C was found to be 203 MPa (92% of the static flexural strength), the lag loops of fatigue load-displacement were transformed from elasticity to anelasticity and the flexibility of specimens were enhanced with increase in applied stress. It is revealed that the interfacial sliding abrasion played an important role in the fatigue failure process, and the extent and speed of sliding abrasion were con-trolled by the level of applied stress.
Murat Tolga Özkan
2013-01-01
Full Text Available Notch, hole, tap and a variety of geometric shapes such as curves or discontinuities can be found with various reasons in the design of Machine Element. Stress is caused by sudden changes in section aggregating. Stress concentration can occur with the reason of material features of size or direction of forces application. This type of stress concentration in the material brings out the effect of notch. Notch impact can lead to distortions and breakage of materials. In this study, the notch sensitivity factor values have been modelled Artificial Neural Networks (ANN for shafts that is under the influence of bending stress, and the accuracy of the model has been verified by using Statistica software. The model has been developed using Pythia. With this software, the user can be obtained the accurate value by inputing shaft dimension and the applied force without the need for notch sensitivity factor tables and any calculations.
Fitzenz, D.D.; Miller, S.A.
2004-01-01
Understanding the stress field surrounding and driving active fault systems is an important component of mechanistic seismic hazard assessment. We develop and present results from a time-forward three-dimensional (3-D) model of the San Andreas fault system near its Big Bend in southern California. The model boundary conditions are assessed by comparing model and observed tectonic regimes. The model of earthquake generation along two fault segments is used to target measurable properties (e.g., stress orientations, heat flow) that may allow inferences on the stress state on the faults. It is a quasi-static model, where GPS-constrained tectonic loading drives faults modeled as mostly sealed viscoelastic bodies embedded in an elastic half-space subjected to compaction and shear creep. A transpressive tectonic regime develops southwest of the model bend as a result of the tectonic loading and migrates toward the bend because of fault slip. The strength of the model faults is assessed on the basis of stress orientations, stress drop, and overpressures, showing a departure in the behavior of 3-D finite faults compared to models of 1-D or homogeneous infinite faults. At a smaller scale, stress transfers from fault slip transiently induce significant perturbations in the local stress tensors (where the slip profile is very heterogeneous). These stress rotations disappear when subsequent model earthquakes smooth the slip profile. Maps of maximum absolute shear stress emphasize both that (1) future models should include a more continuous representation of the faults and (2) that hydrostatically pressured intact rock is very difficult to break when no material weakness is considered. Copyright 2004 by the American Geophysical Union.
Deformation effect on plastic and elastic stress components in grains with different bending
Kozlov, Eduard; Kiseleva, Svetlana; Popova, Natalya; Koneva, Nina
2016-11-01
The paper presents the investigations of deformation processes in polycrystal. Austenitic steel of the type 1.1C-13Mn-Fe is subjected to tensile deformation on a test machine at a rate of 3.4×10-4 s-1 and room temperature. The suggested experimental methodology implies the recovery of internal stresses using the parameters of the bend extinction contours observed on TEM images of the deformed polycrystal structure. The contribution of plastic and elastic stress components is determined in this paper. The analysis of these components is given for grains with different bending in deformed austenitic steel specimens. TEM images are obtained for a single polycrystal grain at different goniometer inclinations. The experimental findings are given for different degrees of steel deformation resulting in its rupture. It is shown that in the vicinity of the material rupture (ɛ = 36%), the plastic component mostly contributes to the internal stresses, while the contribution of elastic component is considerably reduced. The obtained results are compared to the defective structure of austenitic steel specimens.
Koneva, N. A., E-mail: koneva@tsuab.ru; Kozlov, E. V. [Tomsk State University of Architecture and Building, 634003, Tomsk, Solyanaya Sq., 2 (Russian Federation)
2016-01-15
Generalization of the results of electron microscopy investigations of the crystal lattice bending-torsion (χ) and the internal stresses (IS) was conducted. The deformed polycrystalline alloys and steels were investigated. The sources of χ and IS origin were established. The regularities of their change with the distance from the sources and the evolution with deformation were revealed. The contribution of IS into the deformation resistance was determined. The nature of formation of two sequences of dislocation substructure transformations during deformation of alloys was established.
Shiue, Sham-Tsong; Lin, Hung-Chien; Shen, Ting-Ying; Ouyang, Hao
2005-06-01
The residual stress measurement in carbon coatings of optical fibers is theoretically and experimentally investigated. A simple formula used to measure the residual stresses in the thin film deposited on a cylindrical substrate with the bending curvature is proposed. During a temperature drop, the carbon-coated optical fiber is bent due to the nonuniform deposition of coating materials. The axial residual stresses in carbon coatings of optical fibers can be measured from the fiber bending curvature and coating thickness difference. Furthermore, if Young's modulus of carbon coatings is known, the thermal expansion coefficient of carbon coatings can be determined.
Numerical analysis of stress state during single point bending in DMTA examinations
A. Gnatowski
2008-05-01
Full Text Available Purpose: Determination of stresses at the change of Young′s modulus values in temperature function for samples made of PA 6.6 filled with glass fibre, by DMTA method, was the aim of work.Design/methodology/approach: Investigations were carried out for samples subjected to the one-axial bending. The change in the value of the dynamic Young modulus and the mechanical loss tangent in function of temperature and oscillation frequency by the DMTA method was determined. The computer simulations of changes of the stress and strain distribution within the range of elastic strains and the glass transition phase were done.Findings: Examinations made possible the determination of dynamic mechanical proprieties PA 6.6 filled with glass fibre and changes in the stress distribution during the dynamic loading of the sample in function of temperature. Higher values of the Young modulus were observed within the range of elasticity and the glass transition phase. The stress increased with the increase in Young′s modulus, at the strain generated from push rot oscillation.Research limitations/implications: The accuracy of used approximate method for computer simulations was not sufficient to indicate the Bielajew point.Practical implications: Investigated polymeric composite is characterized by viscoelastic properties, so all indicators of the physical and chemical properties depend on not only the time but and also the temperature.Originality/value: To characterize properties of investigated composite and to estimate the composite usage in particular conditions, dependences of the storage module and the mechanical losses tangent was determined in function of temperature at the one-axial bending.
Ahmad Jabir Rahyussalim
2016-01-01
Full Text Available Adult scoliosis is defined as a spinal deformity in a skeletally mature patient with a Cobb angle of more than 10 degrees in the coronal plain. Posterior-only approach with rod and screw corrective manipulation to add strength of contra bending manipulation has correction achievement similar to that obtained by conventional combined anterior release and posterior approach. It also avoids the complications related to the thoracic approach. We reported a case of 25-year-old male adult idiopathic scoliosis with double curve. It consists of main thoracic curve of 150 degrees and lumbar curve of 89 degrees. His curve underwent direct contra bending posterior approach using rod and screw corrective manipulation technique to achieve optimal correction. After surgery the main thoracic Cobb angle becomes 83 degrees and lumbar Cobb angle becomes 40 degrees, with 5 days length of stay and less than 800 mL blood loss during surgery. There is no complaint at two months after surgery; he has already come back to normal activity with good functional activity.
Termini, Donatella
2016-12-01
The cross-sectional circulation, which develops in meandering bends, exerts an important role in velocity and the boundary shear stress redistributions. This paper considers the effect of vegetation on cross-sectional flow and bed shear distribution along a high-curvature bend. The analysis is conducted with the aid of data collected in a large-amplitude meandering flume during a reference experiment without vegetation and an experiment with vegetation on the bed. The results show that the presence of vegetation modifies the curvature-induced flow pattern and the directionality of turbulent structures. In fact, in the presence of vegetation, the turbulent structures tend to develop within and between the vegetated elements. The pattern of cross-sectional flow, modified by the presence of vegetation, affects the bed shear stress distribution along the bend so that the core of the highest value of the bed shear stress does not reach the outer bank.
GAO Ling; YANG Haitao; DU Daming; ZHAO Shikun; LI Huaping; YUAN Runzhang
2005-01-01
The residual stresses on the surface of the differently ground and polished silicon nitride ceramics were measured using X-ray diffraction and identified by SEM.The effect of the residual stress on the bending strength was investigated.The investigations show that the grinding process can introduce subatantial tensile residual stresses up to 290MPa on the surface of silicon nitride ceramics,which has a significant effect on reducing the bending strength of the ceramics after grinding.Thus,in comparison with the ceramics with a rough surface,the ceramics with a mirror image surface may have a lower strength.Polishing can smooth the residual stresses.When we evaluate the quality of the ceramic components after grinding,we must take residual stress into consideration. The grinding methods and grinding conditions must be carefully selected in order to get the favorite residual stress as well as the surface smoothness.
Stress-relaxation in bending of zircaloy-4 at 673 K, as a function of cold-work
Povolo, F. (Comision Nacional de Energia Atomica, Buenos Aires (Argentina). Dept. de Materiales); Pezskin, P.N. (Comision de Investigaciones de la Provincia de Buenos Aires (Argentina))
1983-01-01
Stress-relaxation data, in bending, in Zircaloy-4 with different degrees of cold-work are presented. The measurements were performed at 673 K, with six different initial stresses and up to times of the order of 1000 h. The stress-relaxation curves are interpreted in terms of a creep model involving jog-drag and cell formation and some dislocation parameters are calculated from the experimental results. The influence of cold-work on these parameters is discussed.
张英世; 张行
2004-01-01
On the basis about studying free bending for box beam with rectangular crosssection filled by honeycomb core, supplementary displacements and stresses of restrained bending for such beam were analyzed. The hypothesis for separated variables was adopted to solve displacement. According to this, three aspect equations of geometrical, physical and balance were obtained. With Galerkin's method, it is summed up as two-order ordinary differential equations with the attenuation character. Analysis makes clear that attenuation speed of stress is concerned with a big load or a small one, geometric dimensions of crosssection of beam, and physical parameter of material.
Faszynka Sebastian
2016-03-01
Full Text Available The paper presents an analysis of the state of stress and crack tip opening displacement (strain in specimens with rectangular cross-section subjected to torsion and combined bending with torsion. The specimens were made of the EN AW-2017A aluminium alloy. The specimens had an external unilateral notch, which was 2 mm deep and its radius was 22.5 mm. The tests were performed at constant moment amplitude MT = MBT = 15.84 N·m and under stress ratio R = −1. The exemplary results of numerical computations being obtained by using the FRANC3D software were shown in the form of stress and crack tip opening displacement (CTOD maps. The paper presents the differences of fatigue cracks growth under torsion and bending with torsion being derived by using the FRANC3D software.
Measuring permeability, Young's modulus, and stress relaxation by the beam-bending technique
Vichit-Vadakan, Wilasa
Recent interest in the permeability of cement paste, mortars, and concrete lies in the need to gain further understanding of mechanisms affecting the durability of these materials. Conventional techniques for measuring permeability are cumbersome and often take days to complete just one measurement. This thesis proposes a new technique for measuring the permeability. The advantage of this technique is that the results are obtained in a few minutes to a few hours; moreover, there is no problem with leaks or need for high pressures. The method is particularly well suited for examining the changes in permeability and viscoelastic properties of young cement paste samples. When a saturated rod of a porous material is instantaneously deflected under three-point bending, two types of relaxation processes occur simultaneously: hydrodynamic relaxation, caused by the flow of liquid in the porous body to restore ambient pressure, and viscoelastic relaxation of the solid network. By measuring the decrease in the force required to sustain a constant deflection, it is possible to obtain the permeability and Young's modulus from the hydrodynamic relaxation function, in addition to the stress relaxation function of the sample. The exact viscoelastic solution is developed and the total relaxation is shown to be very closely approximated as the product of the hydrodynamic and stress relaxation functions. The analytical results are verified on porous VycorRTM glass saturated in various solvents, including normal alcohols, water, and glycerol. The results show excellent agreement with the theory. Consistent with observations of previous workers, the permeability is found to be influenced by the size of the solvent molecule; by assuming that the pore surfaces are covered with a monolayer of immobile solvent, the observed variation can be explained. The evolution of the permeability, Young's modulus, and stress relaxation function are reported for Type III Portland cement paste with
Chen, L.-T.; Dugundji, J.
1979-01-01
A preliminary study conducted by Kerrebrock et al. (1976) has shown that the torsional rigidity of untwisted thin blades of a transonic compressor can be reduced significantly by transient thermal stresses. The aerodynamic loads have various effects on blade vibration. One effect is that gas bending loads may result in a bending-torsion coupling which may change the characteristics of the torsion and bending vibration of the blade. For a general study of transient-temperature distribution within a rotor stage, a finite-element heat-conduction analysis was developed. The blade and shroud are divided into annular elements. With a temperature distribution obtained from the heat-conduction analysis and a prescribed gas bending load distribution along the blade span, the static deformation and moment distributions of the blade can be solved iteratively using the finite-element method. The reduction of the torsional rigidity of pretwisted blades caused by the thermal stress effect is then computed. The dynamic behavior of the blade is studied by a modified Galerkin's method.
Chen, L.-T.; Dugundji, J.
1979-01-01
A preliminary study conducted by Kerrebrock et al. (1976) has shown that the torsional rigidity of untwisted thin blades of a transonic compressor can be reduced significantly by transient thermal stresses. The aerodynamic loads have various effects on blade vibration. One effect is that gas bending loads may result in a bending-torsion coupling which may change the characteristics of the torsion and bending vibration of the blade. For a general study of transient-temperature distribution within a rotor stage, a finite-element heat-conduction analysis was developed. The blade and shroud are divided into annular elements. With a temperature distribution obtained from the heat-conduction analysis and a prescribed gas bending load distribution along the blade span, the static deformation and moment distributions of the blade can be solved iteratively using the finite-element method. The reduction of the torsional rigidity of pretwisted blades caused by the thermal stress effect is then computed. The dynamic behavior of the blade is studied by a modified Galerkin's method.
Martone, Patrick T; Denny, Mark W
2008-11-01
Previous studies have demonstrated that fleshy seaweeds resist wave-induced drag forces in part by being flexible. Flexibility allows fronds to 'go with the flow', reconfiguring into streamlined shapes and reducing frond area projected into flow. This paradigm extends even to articulated coralline algae, which produce calcified fronds that are flexible only because they have distinct joints (genicula). The evolution of flexibility through genicula was a major event that allowed articulated coralline algae to grow elaborate erect fronds in wave-exposed habitats. Here we describe the mechanics of genicula in the articulated coralline Calliarthron and demonstrate how segmentation affects bending performance and amplifies bending stresses within genicula. A numerical model successfully predicted deflections of articulated fronds by assuming genicula to be assemblages of cables connecting adjacent calcified segments (intergenicula). By varying the dimensions of genicula in the model, we predicted the optimal genicular morphology that maximizes flexibility while minimizing stress amplification. Morphological dimensions of genicula most prone to bending stresses (i.e. genicula near the base of fronds) match model predictions.
Cai, Jiaying; Cizek, Karel; Long, Brenton; McAferty, Kenyon; Campbell, Casey G.; Allee, David R.; Vogt, Bryan D.; La Belle, Jeff; Wang, Joseph
2009-01-01
The influence of the mechanical bending, rolling and crimping of flexible screen-printed electrodes upon their electrical properties and electrochemical behavior has been elucidated. Three different flexible plastic substrates, Mylar, polyethylene naphthalate (PEN), and Kapton, have been tested in connection to the printing of graphite ink working electrodes. Our data indicate that flexible printed electrodes can be bent to extremely small radii of curvature and still function well, despite a marginal increase the electrical resistance. Below critical radii of curvature of ~8 mm, full recovery of the electrical resistance occurs upon strain release. The electrochemical response is maintained for sub-mm bending radii and a 180° pinch of the electrode does not lead to device failure. The electrodes appear to be resistant to repeated bending. Such capabilities are demonstrated using model compounds, including ferrocyanide, trinitrotoluene (TNT) and nitronaphthalene (NN). These printed electrodes hold great promise for widespread applications requiring flexible, yet robust non-planar sensing devices. PMID:20160861
Maximum twin shear stress factor criterion for sliding mode fracture initiation
黎振兹; 李慧剑; 黎晓峰; 周洪彬; 郝圣旺
2002-01-01
Previous researches on the mixed mode fracture initiation criteria were mostly focused on opening mode fracture. In this study, the authors proposed a new criterion for mixed mode sliding fracture initiation, which is the maximum twin shear stress factor criterion. The authors studied a finite width plate with central slant crack, subject to a far-field uniform uniaxial tensile or compressive stress.
Binienda, Wieslaw K.; Roberts, Gary D.; Papadopoulos, Demetrios S.
1992-01-01
The results of in-plane four-point bend experiments on unidirectionally reinforced composite beams are presented for graphite/epoxy (T300/934) and graphite/polyimide (G30-500/PMR-15) composites. The maximum load and the location of cracks formed during failure were measured for testpieces with fibers oriented at various angles to the beam axis. Since most of the beams failed near one or more of the load points, the strength of the beams was evaluated in terms of a proposed model, for the local stress distribution. In this model, an exact solution to the problem of a localized contact force acting on a unidirectionally reinforced half plane is used to describe the local stress field. The stress singularity at the load points is treated in a manner similar to the stress singularity at a crack tip in fracture mechanisms problems. Using this approach, the effect of fiber angle and elastic material properties on the strength of the beam is described in terms of a load intensity factor. For fiber angles less than 45 deg from the beam axis, a single crack is initiated near one of the load points at a critical value of the load intensity factor. The critical load intensity factor decreases with the increasing fiber angle. For larger fiber angles, multiple cracks occur at locations both near and away from the load points, and the load intensity factor at failure increases sharply with increasing fiber angle.
Binienda, W. K.; Roberts, G. D.; Papadopoulos, D. S.
1992-01-01
The results of in-plane four-point bend experiments on unidirectionally reinforced composite beams are presented for graphite/epoxy (T300/934) and graphite/polyimide (G30-500/PMR-15) composites. The maximum load and the location of cracks formed during failure were measured for testpieces with fibers oriented at various angles to the beam axis. Since most of the beams failed near one or more of the load points, the strength of the beams was evaluated in terms of a proposed model for the local stress distribution. In this model, an exact solution to the problem of a localized contact force acting on a unidirectionally reinforced half plane is used to describe the local stress field. The stress singularity at the load points is treated in a manner similar to the stress singularity at a crack tip in fracture mechanisms problems. Using this approach, the effect of fiber angle and elastic material properties on the strength of the beam is described in terms of a load intensity factor. For fiber angles less than 45 deg from the beam axis, a single crack is initiated near one of the load points at a critical value of the load intensity factor. The critical load intensity factor decreases with increasing fiber angle. For larger fiber angles, multiple cracks occur at locations both near and away from the load points, and the load intensity factor at failure increases sharply with increasing fiber angle.
Binienda, W. K.; Roberts, G. D.; Papadopoulos, D. S.
1992-01-01
The results of in-plane four-point bend experiments on unidirectionally reinforced composite beams are presented for graphite/epoxy (T300/934) and graphite/polyimide (G30-500/PMR-15) composites. The maximum load and the location of cracks formed during failure were measured for testpieces with fibers oriented at various angles to the beam axis. Since most of the beams failed near one or more of the load points, the strength of the beams was evaluated in terms of a proposed model for the local stress distribution. In this model, an exact solution to the problem of a localized contact force acting on a unidirectionally reinforced half plane is used to describe the local stress field. The stress singularity at the load points is treated in a manner similar to the stress singularity at a crack tip in fracture mechanisms problems. Using this approach, the effect of fiber angle and elastic material properties on the strength of the beam is described in terms of a load intensity factor. For fiber angles less than 45 deg from the beam axis, a single crack is initiated near one of the load points at a critical value of the load intensity factor. The critical load intensity factor decreases with increasing fiber angle. For larger fiber angles, multiple cracks occur at locations both near and away from the load points, and the load intensity factor at failure increases sharply with increasing fiber angle.
A comparison of two reciprocating instruments using bending stress and cyclic fatigue tests
Pantaleo SCELZA
2015-01-01
Full Text Available The aim of this study was to comparatively evaluate the bending resistance at 45º, the static and dynamic cyclic fatigue life, and the fracture type of the WaveOne (Dentsply Maillefer, Ballaigues, Switzerland 25-08 and Reciproc (VDW, Munich, Germany 25-08 instruments. A total of 60 nickel-titanium (NiTi instruments (30 Reciproc and 30 WaveOne from three different lots, each of which was 25 mm in length, were tested. The bending resistance was evaluated through the results of a cantilever-bending test conducted using a universal testing machine. Static and dynamic cyclic fatigue testing was conducted using a custom-made device. For the static and dynamic tests, a cast Ni-Cr-Mo-Ti alloy metal block with an artificial canal measuring 1.77 mm in diameter and 20.00 mm in total length was used. A scanning electron microscope was used to determine the type of fracture. Statistical analyses were performed on the results. The WaveOne instrument was less flexible than the Reciproc (p < 0.05. The Reciproc instrument showed better resistance in the static and dynamic cyclic fatigue tests (p < 0.05. The transverse cross-section and geometry of the instruments were important factors in their resistance to bending and cyclic fracture. Both of the instruments showed ductile-type fracture characteristics. It can be concluded that the Reciproc 25-08 instrument was more resistant to static and dynamic cyclic fatigue than the WaveOne 25-08 instrument, while the WaveOne 25-08 instrument was less flexible. Bending and resistance to cyclic fracture were influenced by the instruments’ geometries and transverse cross-sections. Both of the instruments showed ductile-type fracture characteristics.
A comparison of two reciprocating instruments using bending stress and cyclic fatigue tests.
Scelza, Pantaleo; Harry, Davidowicz; Silva, Licinio Esmeraldo da; Barbosa, Igor Bastos; Scelza, Miriam Zaccaro
2015-01-01
The aim of this study was to comparatively evaluate the bending resistance at 45º, the static and dynamic cyclic fatigue life, and the fracture type of the WaveOne (Dentsply Maillefer, Ballaigues, Switzerland) 25-08 and Reciproc (VDW, Munich, Germany) 25-08 instruments. A total of 60 nickel-titanium (NiTi) instruments (30 Reciproc and 30 WaveOne) from three different lots, each of which was 25 mm in length, were tested. The bending resistance was evaluated through the results of a cantilever-bending test conducted using a universal testing machine. Static and dynamic cyclic fatigue testing was conducted using a custom-made device. For the static and dynamic tests, a cast Ni-Cr-Mo-Ti alloy metal block with an artificial canal measuring 1.77 mm in diameter and 20.00 mm in total length was used. A scanning electron microscope was used to determine the type of fracture. Statistical analyses were performed on the results. The WaveOne instrument was less flexible than the Reciproc (p bending and cyclic fracture. Both of the instruments showed ductile-type fracture characteristics. It can be concluded that the Reciproc 25-08 instrument was more resistant to static and dynamic cyclic fatigue than the WaveOne 25-08 instrument, while the WaveOne 25-08 instrument was less flexible. Bending and resistance to cyclic fracture were influenced by the instruments' geometries and transverse cross-sections. Both of the instruments showed ductile-type fracture characteristics.
Jung Jin Park
2016-05-01
Full Text Available Magnetostrictive Fe-Ga and Fe-Al alloys are promising materials for use in bending-mode vibrational energy harvesters. For this study, 50.8 mm × 5.0 mm × 0.5 mm strips of Fe-Ga and Fe-Al were cut from 0.50-mm thick rolled sheet. An atmospheric anneal was used to develop a Goss texture through an abnormal grain growth process. The anneal lead to large (011 grains that covered over 90% of sample surface area. The resulting highly-textured Fe-Ga and Fe-Al strips exhibited saturation magnetostriction values (λsat = λ∥ − λ⊥ of ∼280 ppm and ∼130 ppm, respectively. To maximize 90° rotation of magnetic moments during bending of the strips, we employed compressive stress annealing (SA. Samples were heated to 500°C, and a 100-150 MPa compressive stress was applied while at 500°C for 30 minutes and while being cooled. The effectiveness of the SA on magnetic moment rotation was inferred by comparing post-SA magnetostriction with the maximum possible yield of rotated magnetic moments, which is achieved when λ∥ = λsat and λ⊥ = 0. The uniformity of the SA along the sample length and the impact of the SA on sensing/energy harvesting performance were then assessed by comparing pre- and post-SA bending-stress-induced changes in magnetization at five different locations along the samples. The SA process with a 150 MPa compressive load improved Fe-Ga actuation along the sample length from 170 to 225 ppm (from ∼60% to within ∼80% of λsat. The corresponding sensing/energy harvesting performance improved by as much as a factor of eight in the best sample, however the improvement was not at all uniform along the sample length. The SA process with a 100 MPa compressive load improved Fe-Al actuation along the sample length from 60 to 73 ppm (from ∼46% to ∼56% of λsat, indicating only a marginally effective SA and suggesting the need for modification of the SA protocol. In spite of this, the SA was effective at improving the sensing
Park, Jung Jin; Na, Suok-Min; Raghunath, Ganesh; Flatau, Alison B.
2016-05-01
Magnetostrictive Fe-Ga and Fe-Al alloys are promising materials for use in bending-mode vibrational energy harvesters. For this study, 50.8 mm × 5.0 mm × 0.5 mm strips of Fe-Ga and Fe-Al were cut from 0.50-mm thick rolled sheet. An atmospheric anneal was used to develop a Goss texture through an abnormal grain growth process. The anneal lead to large (011) grains that covered over 90% of sample surface area. The resulting highly-textured Fe-Ga and Fe-Al strips exhibited saturation magnetostriction values (λsat = λ∥ - λ⊥) of ˜280 ppm and ˜130 ppm, respectively. To maximize 90° rotation of magnetic moments during bending of the strips, we employed compressive stress annealing (SA). Samples were heated to 500°C, and a 100-150 MPa compressive stress was applied while at 500°C for 30 minutes and while being cooled. The effectiveness of the SA on magnetic moment rotation was inferred by comparing post-SA magnetostriction with the maximum possible yield of rotated magnetic moments, which is achieved when λ∥ = λsat and λ⊥ = 0. The uniformity of the SA along the sample length and the impact of the SA on sensing/energy harvesting performance were then assessed by comparing pre- and post-SA bending-stress-induced changes in magnetization at five different locations along the samples. The SA process with a 150 MPa compressive load improved Fe-Ga actuation along the sample length from 170 to 225 ppm (from ˜60% to within ˜80% of λsat). The corresponding sensing/energy harvesting performance improved by as much as a factor of eight in the best sample, however the improvement was not at all uniform along the sample length. The SA process with a 100 MPa compressive load improved Fe-Al actuation along the sample length from 60 to 73 ppm (from ˜46% to ˜56% of λsat, indicating only a marginally effective SA and suggesting the need for modification of the SA protocol. In spite of this, the SA was effective at improving the sensing/energy harvesting
Incorporation of Mean/Maximum Stress Effects in the Multiaxial Racetrack Filter
Marco Antonio Meggiolaro
2016-10-01
Full Text Available This work extends the Multiaxial Racetrack Filter (MRF to incorporate mean or maximum stress effects, adopting a filter amplitude that depends on the current stress level along the stress or strain path. In this way, a small stress or strain amplitude event can be filtered out if associated with a non-damaging low mean or peak stress level, while another event with the very same amplitude can be preserved if happening under a more damaging high mean or peak stress level. The variable value of the filter amplitude must be calculated in real time, thus it cannot depend on the peak or mean stresses along a load event, because it would require cycle identification and as so information about future events. Instead, mean/maximum stress effects are modeled in the filter as a function of the current (instantaneous hydrostatic or normal stress along the multiaxial load path, respectively for invariantbased and critical-plane models. The MRF efficiency is evaluated from tension-torsion experiments in 316L stainless steel tubular specimens under non-proportional (NP load paths, showing it can robustly filter out nondamaging events even under multiaxial NP variable amplitude loading histories
Araújo, Marcelo Marotta; Lauria, Andrezza; Mendes, Marcelo Breno Meneses; Claro, Ana Paula Rosifini Alves; Claro, Cristiane Aparecida de Assis; Moreira, Roger William Fernandes
2015-12-01
The aim of this study was to analyze, through Vickers hardness test and photoelasticity analysis, pre-bent areas, manually bent areas, and areas without bends of 10-mm advancement pre-bent titanium plates (Leibinger system). The work was divided into three groups: group I-region without bend, group II-region of 90° manual bend, and group III-region of 90° pre-fabricated bends. All the materials were evaluated through hardness analysis by the Vickers hardness test, stress analysis by residual images obtained in a polariscope, and photoelastic analysis by reflection during the manual bending. The data obtained from the hardness tests were statistically analyzed using ANOVA and Tukey's tests at a significance level of 5 %. The pre-bent plate (group III) showed hardness means statistically significantly higher (P < 0.05) than those of the other groups (I-region without bends, II-90° manually bent region). Through the study of photoelastic reflection, it was possible to identify that the stress gradually increased, reaching a pink color (1.81 δ / λ), as the bending was performed. A general analysis of the results showed that the bent plate region of pre-bent titanium presented the best results.
In-shoe plantar tri-axial stress profiles during maximum-effort cutting maneuvers.
Cong, Yan; Lam, Wing Kai; Cheung, Jason Tak-Man; Zhang, Ming
2014-12-18
Soft tissue injuries, such as anterior cruciate ligament rupture, ankle sprain and foot skin problems, frequently occur during cutting maneuvers. These injuries are often regarded as associated with abnormal joint torque and interfacial friction caused by excessive external and in-shoe shear forces. This study simultaneously investigated the dynamic in-shoe localized plantar pressure and shear stress during lateral shuffling and 45° sidestep cutting maneuvers. Tri-axial force transducers were affixed at the first and second metatarsal heads, lateral forefoot, and heel regions in the midsole of a basketball shoe. Seventeen basketball players executed both cutting maneuvers with maximum efforts. Lateral shuffling cutting had a larger mediolateral braking force than 45° sidestep cutting. This large braking force was concentrated at the first metatarsal head, as indicated by its maximum medial shear stress (312.2 ± 157.0 kPa). During propulsion phase, peak shear stress occurred at the second metatarsal head (271.3 ± 124.3 kPa). Compared with lateral shuffling cutting, 45° sidestep cutting produced larger peak propulsion shear stress (463.0 ± 272.6 kPa) but smaller peak braking shear stress (184.8 ± 181.7 kPa), of which both were found at the first metatarsal head. During both cutting maneuvers, maximum medial and posterior shear stress occurred at the first metatarsal head, whereas maximum pressure occurred at the second metatarsal head. The first and second metatarsal heads sustained relatively high pressure and shear stress and were expected to be susceptible to plantar tissue discomfort or injury. Due to different stress distribution, distinct pressure and shear cushioning mechanisms in basketball footwear might be considered over different foot regions.
Kim, K. M.; Smetana, P.
1990-03-01
Growth of large diameter Czochralski (CZ) silicon crystals require complete elimination of dislocations by means of Dash technique, where the seed diameter is reduced to a small size typically 3 mm in conjunction with increase in the pull rate. The maximum length of the large CZ silicon is estimated at the fracture stress limit of the seed neck diameter ( d). The maximum lengths for 200 and 300 mm CZ crystals amount to 197 and 87 cm, respectively, with d = 0.3 cm; the estimated maximum weight is 144 kg.
Hiroshi Yoshihara
2014-06-01
Full Text Available The Mode I critical stress intensity factor (KIc obtained by single-edge-notched bending (SENB tests of medium-density fiberboard (MDF was experimentally analyzed. In the SENB test, the critical load for crack propagation (Pc was determined from the relationship between load/loading-line displacement and load/crack opening displacement (COD. A double cantilever beam (DCB test was also conducted and the results were compared with those of SENB tests. The value of Mode I critical stress intensity factor was obtained by introducing an additional crack length, when the crack length ranged from 0.5 to 0.7 times the depth of the specimen. This range coincided well with that used to derive the appropriate KIc value in the single-edge-notched tension (SENT test, which was conducted using the specimens with a similar confi guration cut from the MDF panel used in this study.
Hsu, Chang-Hung; Chang, Yeong-Hwa; Lee, Chun-Yao; Yao, Chia-Shiang; He, Yan-Lou; Chu, Huei-Lung; Chang, Chia-Wen; Chan, Wei-Shou
2012-04-01
This paper explores the influence of bending stresses on the magnetic characteristics of three-phase transformers with amorphous cores. Different types of core structures, including C-cores and toroidal cores, and their magnetic properties are compared using VSM and XRD. The losses in the magnetic core of the three-phase transformer are analyzed using the finite element analysis for both design and measurement. In addition, experimental results indicated that amorphous-core transformers with rectangular corners had higher audible noise and vibration intensities. This is because the condensed distribution of magnetic flux lines in the corners of the core may create high magnetic inductions associated with high magnetostriction. Finally, experiments with three-phase amorphous-core transformers were performed to study the effects of magnetism and magnetostriction on their performance in terms of core loss, vibration, and audible noise.
Creep measurements confirm steady flow after stress maximum in extension of branched polymer melts
Javier Alvarez, Nicolas; Román Marín, José Manuel; Huang, Qian;
2013-01-01
We provide conclusive evidence of nonmonotonic mechanical behavior in the extension of long-chain branched polymer melts. While nonmonotonic behavior is known to occur for solids, for the case of polymeric melts, this phenomenon is in direct contrast with current theoretical models. We rule out...... the possibility of the overshoot being an experimental artifact by confirming the existence of steady flow after a maximum in the ratio of stress to strain rate versus strain under both constant stress and constant strain-rate kinematics. This observation indicates the omission of important physics from current...
Design of reinforced concrete walls casted in place for the maximum normal stress of compression
T. C. Braguim
Full Text Available It is important to evaluate which designing models are safe and appropriate to structural analysis of buildings constructed in Concrete Wall system. In this work it is evaluated, through comparison of maximum normal stress of compression, a simple numerical model, which represents the walls with frame elements, with another much more robust and refined, which represents the walls with shells elements. The designing of the normal stress of compression it is done for both cases, based on NBR 16055, to conclude if the wall thickness initially adopted, it is enough or not.
A Numerical Study of the Spring-Back Phenomenon in Bending with a Rebar Bending Machine
Chang Hwan Choi; Lawrence Kulinsky; Joon Soo Jun; Jin Ho Kim
2014-01-01
Recently, the rebar bending methodology started to change from field processing to utilizing rebar bending machines at plant sites prior to transport to the construction locations. Computerized control of rebar plant bending machines provides more accurate and faster bending of rebars than the low quality inefficient field processing alternative. The bending process involves plastic deformation of rebars, where bending stress beyond the yield point of the material is applied. When the bending...
A closed form large deformation solution of plate bending with surface effects.
Liu, Tianshu; Jagota, Anand; Hui, Chung-Yuen
2017-01-04
We study the effect of surface stress on the pure bending of a finite thickness plate under large deformation. The surface is assumed to be isotropic and its stress consists of a part that can be interpreted as a residual stress and a part that stiffens as the surface increases its area. Our results show that residual surface stress and surface stiffness can both increase the overall bending stiffness but through different mechanisms. For sufficiently large residual surface tension, we discover a new type of instability - the bending moment reaches a maximum at a critical curvature. Effects of surface stress on different stress components in the bulk of the plate are discussed and the possibility of self-bending due to asymmetry of the surface properties is also explored. The results of our calculations provide insights into surface stress effects in the large deformation regime and can be used as a test for implementation of finite element methods for surface elasticity.
Optimal design of the gerotor (2-ellipses) for reducing maximum contact stress
Kwak, Hyo Seo; Li, Sheng Huan [Dept. of Mechanical Convergence Technology, Pusan National University, Busan (Korea, Republic of); Kim, Chul [School of Mechanical Design and Manufacturing, Busan Institute of Science and Technology, Busan (Korea, Republic of)
2016-12-15
The oil pump, which is used as lubricator of engines and auto transmission, supplies working oil to the rotating elements to prevent wear. The gerotor pump is used widely in the automobile industry. When wear occurs due to contact between an inner rotor and an outer rotor, the efficiency of the gerotor pump decreases rapidly, and elastic deformation from the contacts also causes vibration and noise. This paper reports the optimal design of a gerotor with a 2-ellipses combined lobe shape that reduces the maximum contact stress. An automatic program was developed to calculate Hertzian contact stress of the gerotor using the Matlab and the effect of the design parameter on the maximum contact stress was analyzed. In addition, the method of theoretical analysis for obtaining the contact stress was verified by performing the fluid-structural coupled analysis using the commercial software, Ansys, considering both the driving force of the inner rotor and the fluid pressure, which is generated by working oil.
A MIXED MODE FRACTURE CRITERION BASED ON THE MAXIMUM TANGENTIAL STRESS IN BRITTLE INCLUSION
Ji Changjiang; Li Zhonghua; Sun Jun
2005-01-01
A closed-form solution for predicting the tangential stress of an inclusion located in mixed mode Ⅰ and Ⅱ crack tip field was developed based on the Eshelby equivalent inclusion theory. Then a mixed mode fracture criterion, including the fracture direction and the critical load, was established based on the maximum tangential stress in the inclusion for brittle inclusioninduced fracture materials. The proposed fracture criterion is a function of the inclusion fracture stress, its size and volume fraction, as well as the elastic constants of the inclusion and the matrix material. The present criterion will reduce to the conventional one as the inclusion having the same elastic behavior as the matrix material. The proposed solutions are in good agreement with detailed finite element analysis and measurement.
Finite Element Analysis of the Maximum Stress at the Joints of the Transmission Tower
Itam, Zarina; Beddu, Salmia; Liyana Mohd Kamal, Nur; Bamashmos, Khaled H.
2016-03-01
Transmission towers are tall structures, usually a steel lattice tower, used to support an overhead power line. Usually, transmission towers are analyzed as frame-truss systems and the members are assumed to be pin-connected without explicitly considering the effects of joints on the tower behavior. In this research, an engineering example of joint will be analyzed with the consideration of the joint detailing to investigate how it will affect the tower analysis. A static analysis using STAAD Pro was conducted to indicate the joint with the maximum stress. This joint will then be explicitly analyzed in ANSYS using the Finite Element Method. Three approaches were used in the software which are the simple plate model, bonded contact with no bolts, and beam element bolts. Results from the joint analysis show that stress values increased with joint details consideration. This proves that joints and connections play an important role in the distribution of stress within the transmission tower.
Latham, J.P.; Xiang, J.; Belayneh, M.; Nick, H.M.; Tsang, C.F.; Blunt, M.J.
2013-01-01
The influence of in-situ stresses on flow processes in fractured rock is investigated using a novel modelling approach. The combined finite-discrete element method (FEMDEM) is used to model the deformation of a fractured rock mass. The fracture wall displacements and aperture changes are modelled in
面内弯矩作用下弯管应力高次解%HIGH ORDER STRESSES FOR ELBOW UNDER IN-PLANE BENDING MOMENT
段志祥
2012-01-01
该文采用应变分析和能量法得出了面内弯矩作用下弯管环向和轴向应力的解析解，并提出了高次解的求解方法。该方法的计算结果与其他各种解析解的结果进行比较表明：该文提出的方法能得到更精确的结果，并适用于所有弯曲系数的弯管。该方法可用于计算弯管在面内闭合弯矩和面内张开弯矩下的应力。%By the strain analysis and energy method, the expressions of the axial stress and circumferential stress of an elbow under the action of an in-plane bending moment are gained, and the high order stress solution for an elbow subjected to an in-plane bending moment is suggested. The high order stress solution for an elbow subjected to an in-plane bending moment is compared with the solution using the other methods. It is obtained from the comparison that the high order solution is more accurate and is suitable for elbows without the limit of 2. The high order stress solution is suitable for an elbow under an in-plane close-bending moment or an in-plane open-bending moment.
Andrea Bulletti; Lorenzo Capineri
2015-01-01
Interdigital transducers fabricated with piezopolymer film have been realized to excite ultrasonic Lamb waves in a composite laminate subjected to pure bending stresses. Lamb waves were generated and detected in a cross-ply [0°/90°] 4 mm thick carbon-fiber composite, by using two interdigital transducers in pitch-catch configuration. We demonstrate that the choice of the piezopolymer transducer technology is suitable for this type of investigation and the advantages of the proposed transducer...
Gonzalez, L.G. [Departamento de Electronica y Comunicaciones, Universidad de los Andes, nucleo la Hechicera, 5101 Merida (Venezuela); Figueres, E.; Garcera, G. [Grupo de Sistemas Electronicos Industriales, Universidad Politecnica de Valencia, Camino de vera s/n, 46022 Valencia (Spain); Carranza, O. [Escuela Superior de Computo, Instituto Politecnico Nacional, Av. Juan de Dios Batiz s/n, 07738 DF (Mexico)
2010-07-15
This paper presents an improved maximum-power-point tracking algorithm for wind-energy-conversion-systems. The proposed method significantly reduces the turbine mechanical stress with regard to conventional techniques, so that both the maintenance needs and the medium time between failures are expected to be improved. To achieve these objectives, a sensorless speed control loop receives its reference signal from a modified Perturb and Observe algorithm, in which the typical steps on the reference speed have been substituted by a fixed and well-defined slope ramp signal. As a result, it is achieved a soft dynamic response of both the torque and the speed of the wind turbine, so that the whole system suffers from a lower mechanical stress than with conventional P and O techniques. The proposed method has been applied to a wind turbine based on a permanent magnet synchronous generator operating at variable speed, which is connected to the distribution grid by means of a back to back converter. (author)
Dennis Lau; Y. S. Chan; S. W. Ricky Lee; Lifeng Fu; Yuming Ye; Sang Liu
2007-01-01
Reliability test is a very important step for any electronic products before they can be sold to the market. In the previous decades, various types of test have been developed. One of the widely used testing methods is the board bending test. A major issue of performing a reliability test is that numbers of testing samples are required since the test has to be repeated until consistent and satisfactory results can be obtained. A long time will be spent on the specimen design, the assembly processes and the testing procedures. In case the reliability test is not satisfied, the specimen will need to be redesigned,reproduced and retested. This is costly and not efficient from the commercial point of view. To simplify the reliability testing process, computational simulation is proposed to predict the reliability of printed circuit board assemblies (PCBA) at the early design stage. In the present study, 3-point bending test is the reliability test adopted. Finite element model validation and two case studies regarding the application of the model are the objectives of this work.Comparison between experimental results and computational results is carried out for model validation. The physical properties (stiffness and strain) of the model show a good agreement with the experiments at both the elastic deformation stage and the plastic deformation stage under the 3-point bending condition. The maximum von Mises stress at the solder joints of the model at which the samples are found to be failed is also very close to the strength of the solder. This further validates the model. For application, this stress data is used as a failure criterion to indicate whether a PCBA is reliable under different bending conditions.In the first study case, the stress analysis methodology is used to investigate the reliability of a PCBA with increased printed circuit board (PCB) thickness. The corresponding models are built and through the stress analysis on solder joints, the maximum
Jui-Chang Lin
2015-01-01
Full Text Available The three-dimensional tube (or pipe is manufactured by CNC tube bending machine. The key techniques are determined by tube diameter, wall thickness, material, and bending radius. The obtained technique through experience and the trial and error method is unreliable. Finite element method (FEM simulation for the tube bending process before production can avoid wasting manpower and raw materials. The computer-aided engineering (CAE software ABAQUS 6.12 is applied to simulate bending characteristics and to explore the maximum stress and strain conditions. The Taguchi method is used to find the optimal parameters of bending. The confirmation experiment is performed according to optimal parameters. Results indicate that the strain error between CAE simulation and bending experiments is within 6.39%.
Li Xuejun; Qiu Weiliang; Yuan Yincai; Li Ping
2006-01-01
The relation between the maximum contact stress ratio and deflection angle is derived from Hertz contact theory when the deflection of rotary kiln supporting wheel happens. According to the analysis of practical example, the maximum contact stress ratio within the deflection range of rotary kiln supporting wheel is listed. The contact stress will increase largely when rotary kiln supporting wheel deflects with little angle,which probably will result in accidents correlating to safety. This will provide theory conference for the design,the operating condition analysis and adjusting of the rotary kiln.
Sung Woo Park
2015-03-01
Full Text Available The safety of a multi-span waler beam subjected simultaneously to a distributed load and deflections at its supports can be secured by limiting the maximum stress of the beam to a specific value to prevent the beam from reaching a limit state for failure or collapse. Despite the fact that the vast majority of accidents on construction sites occur at waler beams in retaining wall systems, no safety monitoring model that can consider deflections at the supports of the beam is available. In this paper, a maximum stress estimation model for a waler beam based on average strains measured from vibrating wire strain gauges (VWSGs, the most frequently used sensors in construction field, is presented. The model is derived by defining the relationship between the maximum stress and the average strains measured from VWSGs. In addition to the maximum stress, support reactions, deflections at supports, and the magnitudes of distributed loads for the beam structure can be identified by the estimation model using the average strains. Using simulation tests on two multi-span beams, the performance of the model is evaluated by estimating maximum stress, deflections at supports, support reactions, and the magnitudes of distributed loads.
Djoković Jelena M.
2015-12-01
Full Text Available In this paper it is analyzed the welded T-joint exposed to the axial tensile force and the bending moment, for determining the impact of the weld geometry on the fracture mechanics parameters. The stress intensity factor was calculated analytically, based on the concept of the linear elastic fracture mechanics (LEFM, by application of the Mathematica® programming routine. The presence of the weld was taken into account through the corresponding correction factors. The results show that increase of the size of the triangular welds leads to decrease of the stress intensity factor, while the SIF increases with increase of the welds’ width. The ratio of the two welded plates’ thicknesses shows that plate thicknesses do not exhibit significant influence on the stress intensity factor behavior.
Djoković, Jelena M.; Nikolić, Ružica R.; Bujňák, Ján
2015-12-01
In this paper it is analyzed the welded T-joint exposed to the axial tensile force and the bending moment, for determining the impact of the weld geometry on the fracture mechanics parameters. The stress intensity factor was calculated analytically, based on the concept of the linear elastic fracture mechanics (LEFM), by application of the Mathematica® programming routine. The presence of the weld was taken into account through the corresponding correction factors. The results show that increase of the size of the triangular welds leads to decrease of the stress intensity factor, while the SIF increases with increase of the welds' width. The ratio of the two welded plates' thicknesses shows that plate thicknesses do not exhibit significant influence on the stress intensity factor behavior.
Andrea Bulletti
2015-01-01
Full Text Available Interdigital transducers fabricated with piezopolymer film have been realized to excite ultrasonic Lamb waves in a composite laminate subjected to pure bending stresses. Lamb waves were generated and detected in a cross-ply [0°/90°] 4 mm thick carbon-fiber composite, by using two interdigital transducers in pitch-catch configuration. We demonstrate that the choice of the piezopolymer transducer technology is suitable for this type of investigation and the advantages of the proposed transducer assembly and bonding are described. A full set-up is described to determine the relationship between the time of flight of the recorded signals and the applied bending moment. Interdigital transducers were designed according to simulations of the dispersion curves, in order to operate at a central frequency of 450 kHz. This frequency corresponds to a central wavelength of 16 mm and to a group velocity of about 6000 m/s for the first symmetric guided wave mode. The variations in the time of flight of ultrasonic recorded signals were measured as a function of the variations in the bending moment. The static and dynamic load tests were in good agreement with strain gage measurements performed in the micro deformation range (0–1400 µm/m.
Vasile Cojocaru
2016-12-01
Full Text Available Several methods can be used in the FEM studies to apply the loads on a plain bearing. The paper presents a comparative analysis of maximum stress obtained for three loading scenarios: resultant force applied on the shaft – bearing assembly, variable pressure with sinusoidal distribution applied on the bearing surface, variable pressure with parabolic distribution applied on the bearing surface.
Yankovskii, A. P.
2016-03-01
Within the hypotheses of Tymoshenko and Timoshenko-Reissner theories, problems on the equal-stressed reinforcement (ER) are formulated for metal-composite plates in transverse bending at steady-state creep. The plates are reinforced with fibers of constant cross section. A qualitative analysis is performed for the corresponding systems of resolving equations and boundary conditions. The method of secant modulus is used. It is shown that, at each iteration, the systems of resolving equations are systems of quasi-linear equations of mixed-compound type with nonlinear static boundary conditions. From these conditions follows the possibility of existence of several alternative solutions which can be controlled by varying the densities of reinforcement on the edge of plates. It is revealed that the trajectories of reinforcement are the actual characteristics of the system of resolving equations. Within the framework of the Timoshenko-Reissner theory, model ER problems on the cylindrical bending of elongated rectangular plates in the cases where one of the longitudinal edges is subjected to different loadings, but the others are rigidly fixed, are considered. By particular examples, the possibility of existence of two alternative solutions to the ER problem, one regular and the other singular, is shown. The emergence of edge effects deeply penetrating into the plate is revealed in the presence of torque applied to the edge, which has a significant effect not only on the stress-strain state of the binder material, but also on the structure of reinforcement.
Blackwood, R.L.
1980-05-15
There are now available sufficient data from in-situ, pre-mining stress measurements to allow a first attempt at predicting the maximum stress magnitudes likely to occur in a given mining context. The sub-horizontal (lateral) stress generally dominates the stress field, becoming critical to stope stability in many cases. For cut-and-fill mining in particular, where developed fill pressures are influenced by lateral displacement of pillars or stope backs, extraction maximization planning by mathematical modelling techniques demands the best available estimate of pre-mining stresses. While field measurements are still essential for this purpose, in the present paper it is suggested that the worst stress case can be predicted for preliminary design or feasibility study purposes. In the Eurpoean continent the vertical component of pre-mining stress may be estimated by adding 2 MPa to the pressure due to overburden weight. The maximum lateral stress likely to be encountered is about 57 MPa at depths of some 800m to 1000m below the surface.
Coello, J.; Miguel, V.; Ferrer, C.; Calatayud, A.; Martinez, A.
2012-11-01
Die radius is a critical area from the viewpoint of friction in forming processes. Moreover the sheet, that has been previously deformed in flange area, suffers bending and unbending stresses. Then, die-sheet contact in die radius must be especially considered in order to guarantee the suitable lubrication conditions. In the present work, a test method is carried out for evaluating an AISI 304 DDQ steel under similar conditions to those existing in the die radius area and that, usually, are not really reproduced in traditional bending under tensions tests. Deformation under pure shear condition, the bending and the radius angle have been established as variables of the tests. Results allow to obtain the apparent pressure sheet-bending tool, that increases with bending angle and decreases with tool radius. This last variable is the most significant while the bending angle has lesser influence. Although experimental results present some concordances with values obtained by analytical methods, some corrections must be considered in them in order to improve the theoretical values. (Author) 18 refs.
弯曲箱型结构焊接顺序对残余应力的影响%Influence of Welding Sequence of Bend Box Structure on Welding Residual Stress
韩双宗; 王发展
2016-01-01
Finite element model of bend box structure was established.Different welding schemes were analyzed by local to whole hierarchical optimization method.The influence laws of welding sequence on the residual stress were studied,and then the optimum welding scheme was proposed.The results show that the welding sequence which can reduce transient heat input concentration could reduce the maximum residual tensile stress prominently for single weld bead,and the reduction rate is 17.7％.The change of welding sequence and direction could control the residual stress for dissimilar weld beads to some degree.But,the change of whole welding sequence could not change the value and distribution of residual stress prominently.%建立了弯曲箱形结构的有限元模型,采用从局部到整体的逐层优化法,对不同焊接方案进行分析,研究了焊接顺序对残余应力的影响规律,进而提出最优焊接方案.结果表明:对于单条焊道,减少瞬时热输入集中的焊接顺序能大幅降低残余拉应力的最大值,降低率达到17.7％;改变焊道间的焊接顺序及焊接方向也能在一定程度上控制残余应力,但是整体焊接顺序的变化并没有显著改变残余应力的大小和分布状况.
Sivak, David Alexander
DNA bending elasticity on length scales of tens of basepairs is of critical importance in numerous biological contexts. Even the simplest models of DNA bending admit of few simple analytic results, thus there is a need for numerical methods to calculate experimental observables, such as distance distributions, forces, FRET efficiencies, and timescales of particular large-scale motions. We have implemented and helped develop a coarse-grained representation of DNA and various other covalently-linked groups that allows simple calculation of such observables for varied experimental systems. The simple freely-jointed chain (FJC) model and extremely coarse resolution proved useful in understanding DNA threading through nanopores, identifying steric occlusion by other parts of the chain as a prime culprit for slower capture as distance to the pore decreased. Enhanced sampling techniques of a finer resolution discrete wormlike chain (WLC) model permitted calculation of cyclization rates for small chains and identified the ramifications of a thermodynamically-sound treatment of thermal melts. Adding treatment of double-stranded DNA's helical nature and single-stranded DNA provided a model system that helped demonstrate the importance of statistical fluctuations in even highly-stressed DNA mini-loops, and allowed us to verify that even these constructs show no evidence of excitation-induced softening. Additional incorporation of salt-sensitivity to the model allowed us to calculate forces and FRET efficiencies for such mini-loops and their uncircularized precursors, thereby furthering the understanding of the nature of IHF binding and bending of its recognition sequence. Adding large volume-excluding spheres linked to the ends of the dsDNA permits calculation of distance distributions and thus small-angle X-ray scattering, whereby we demonstrated the validity of the WLC in describing bending fluctuations in DNA chains as short as 42 bp. We also make important connections
Shao, Y. F.; Song, F.; Jiang, C. P.; Xu, X. H.; Wei, J. C.; Zhou, Z. L.
2016-02-01
We study the difference in the maximum stress on a cylinder surface σmax using the measured surface heat transfer coefficient hm instead of its average value ha during quenching. In the quenching temperatures of 200, 300, 400, 500, 600 and 800°C, the maximum surface stress σmmax calculated by hm is always smaller than σamax calculated by ha, except in the case of 800°C; while the time to reach σmax calculated by hm (fmmax) is always earlier than that by ha (famax). It is inconsistent with the traditional view that σmax increases with increasing Biot number and the time to reach σmax decreases with increasing Biot number. Other temperature-dependent properties also have a small effect on the trend of their mutual ratios with quenching temperatures. Such a difference between the two maximum surface stresses is caused by the dramatic variation of hm with temperature, which needs to be considered in engineering analysis.
Analysis of Maximum Shear Stress of Asphalt Pavement%沥青路面最大剪应力分析
陈光伟; 费国新; 陈荣生
2012-01-01
Factors and variation of the maximum shear stress of the typical semi-rigid asphalt pavement and bridge deck pavement in Jiangsu were calculated and analyzed using ABAQUS software. The maximum shear stress distribution was consistent with the semi-rigid asphalt pavement and bridge deck pavement and the maximum shear stress level was close under the level. The maximum shear stress showed a positive correlation with the verticaland horizontal vehicle loads and was significantly affected by the loads. The maximum shear stress decreased as the pavement thickness and modulus increase, and increased as the semi-rigid base thickness and modulus increase, but the increase value was small. Thereby these analysis above would provides an academic basis for solving the rutting problem.%采用ABAQUS软件对典型半刚性基层沥青路面及桥面铺装层中最大剪应力影响因素及变化规律进行了计算与分析。分析表明：半刚性基层沥青路面与水泥混凝土桥面铺装层最大剪应力分布与变化规律基本一致，在相同荷载条件作用下，最大剪应力水平亦接近；最大剪应力与车辆垂直荷载和水平荷载作用呈正比关系，最大剪应力受其影响显著；最大剪应力随着面层或铺装层厚度、模量的增加而相应地变小，随着半刚性基层厚度与模量的增加而变大。以上抗剪影响因素及变化规律的研究为解决车辙问题提供了一定的理论基础。
A Numerical Study of the Spring-Back Phenomenon in Bending with a Rebar Bending Machine
Chang Hwan Choi
2014-10-01
Full Text Available Recently, the rebar bending methodology started to change from field processing to utilizing rebar bending machines at plant sites prior to transport to the construction locations. Computerized control of rebar plant bending machines provides more accurate and faster bending of rebars than the low quality inefficient field processing alternative. The bending process involves plastic deformation of rebars, where bending stress beyond the yield point of the material is applied. When the bending stress is removed, spring back is caused by the elastic restoring stress. Therefore, an accurate numerical analysis of the spring-back process is required to reduce the bending process errors. The most sensitive factors affecting the spring-back process are the bending radius, the bending angle, the diameter of the rebar, the friction coefficient, and the yielding strength of material. In this paper, we suggest a numerical modeling method using these factors. The finite element modeling of the dynamic mechanical behavior of the material during bending is performed using a commercial dynamic analysis program “DAFUL.” We use the least squares approach to derive the spring-back deflection as a function of the rebar bending parameters.
Gentzler, Marc; Stader, Sally
2010-01-01
These ergonomic evaluations analyze the threat of musculoskeletal injuries primarily due to awkward and extreme postures across two post-fire tasks and a patient care task. The participants were firefighters and emergency medical technicians (EMTs) in an urban U.S. fire department. Ergonomic tools used for the evaluation included the National Institute of Occupational Safety Health (NIOSH) lifting equation, Rapid Entire Body Assessment (REBA), Rapid Upper Limb Assessment (RULA), and anthropometric measurements of equipment and persons. High to very high risks were found for lifting the hose above the shoulder to drain it of excess water and for rolling the hoses on the ground. Extreme risk was found for lifting the hose from chest height to above the shoulders during hose drainage. High risk was found for EMT patient care tasks that require reaching for overhead equipment or seated tasks that require horizontal bending and twisting. The risk was high enough for these tasks to warrant modification and changes. The recommendations given included creating new mechanical and technical devices, modifying existing devises, and making workers aware of associated risks to reduce the threat of injury.
Wijesekara, Waruna; Rosendahl, Lasse; Wu, NingYu;
Oxide thermoelectric materials are promising candidates for energy harvesting from mid to high temperature heat sources. In this work, the oxide thermoelectric materials and the final design of the high temperature thermoelectric module were developed. Also, prototypes of oxide thermoelectric...... generator were built for high temperature applications. This paper specifically discusses the thermoelectric module design and the prototype validations of the design. Here p type calcium cobalt oxide and n type aluminum doped ZnO were developed as the oxide thermoelectric materials. Hot side and cold side...... temperatures were used as 1100 K and 400 K respectively. Using analytical methods, the optimum thermoelement length and the thermoelements area ratio were explored in order to provide the maximum power output by the uni-couple and it is compared to methods reported in literature. Based on operating conditions...
Sung Woo Park; Byung Kwan Oh; Hyo Seon Park
2015-01-01
The safety of a multi-span waler beam subjected simultaneously to a distributed load and deflections at its supports can be secured by limiting the maximum stress of the beam to a specific value to prevent the beam from reaching a limit state for failure or collapse. Despite the fact that the vast majority of accidents on construction sites occur at waler beams in retaining wall systems, no safety monitoring model that can consider deflections at the supports of the beam is available. In this...
Springback Mechanism Analysis and Experiments on Robotic Bending of Rectangular Orthodontic Archwire
Jiang, Jin-Gang; Han, Ying-Shuai; Zhang, Yong-De; Liu, Yan-Jv; Wang, Zhao; Liu, Yi
2017-05-01
Fixed-appliance technology is the most common and effective malocclusion orthodontic treatment method, and its key step is the bending of orthodontic archwire. The springback of archwire did not consider the movement of the stress-strain-neutral layer. To solve this problem, a springback calculation model for rectangular orthodontic archwire is proposed. A bending springback experiment is conducted using an orthodontic archwire bending springback measurement device. The springback experimental results show that the theoretical calculation results using the proposed model coincide better with the experimental testing results than when movement of the stress-strain-neutral layer was not considered. A bending experiment with rectangular orthodontic archwire is conducted using a robotic orthodontic archwire bending system. The patient expriment result show that the maximum and minimum error ratios of formed orthodontic archwire parameters are 22.46% and 10.23% without considering springback and are decreased to 11.35% and 6.13% using the proposed model. The proposed springback calculation model, which considers the movement of the stress-strain-neutral layer, greatly improves the orthodontic archwire bending precision.
Baek, Tae Hyun
Photoelasticity is one of the most widely used whole-field optical methods for stress analysis. The technique of birefringent coatings, also called the method of photoelastic coatings, extends the classical procedures of model photoelasticity to the measurement of surface strains in opaque models made of any structural material. Photoelastic phase-shifting method can be used for the determination of the phase values of isochromatics and isoclinics. In this paper, photoelastic phase-shifting technique and conventional Babinet-Soleil compensation method were utilized to analyze a specimen with a triangular hole and a circular hole under bending. Photoelastic phase-shifting technique is whole-field measurement. On the other hand, conventional compensation method is point measurement. Three groups of results were obtained by phase-shifting method with reflective polariscope arrangement, conventional compensation method and FEM simulation, respectively. The results from the first two methods agree with each other relatively well considering experiment error. The advantage of photoelastic phase-shifting method is that it is possible to measure the stress distribution accurately close to the edge of holes.
非对称齿轮的设计及弯曲应力分析%Design and Bending Stress Analysis of Asymmetric Gear
张海伟
2013-01-01
设计了一种新型齿条刀具用于加工非对称齿轮,推导出了非对称齿轮的齿形轮廓方程,分析了齿轮传动过程中5个典型点的受力情况,对5种压力角组合20°/20°、25°/20°、30°/20°、35°/20°和40°/20°下的齿形进行了弯曲应力分析,得到了弯曲应力最小情况下的压力角组合.%A new type of rack cutter for cutting asymmetric gear is designed, the profile equations are deduced, the force of five typical points are analyzed in the transmission process, and five sets of asymmetric gears with the pressure angles of 20°/20°, 25°/20°,30°/20°, 35°/20° and 40°/20° are established to quantitatively check the stress distributions at the fillet of the drive side of these teeth, the combination of pressure angle is got in the minimum bending stress is got.
Bending fracture in carbon nanotubes.
Kuo, Wen-Shyong; Lu, Hsin-Fang
2008-12-10
A novel approach was adopted to incur bending fracture in carbon nanotubes (CNTs). Expanded graphite (EG) was made by intercalating and exfoliating natural graphite flakes. The EG was deposited with nickel particles, from which CNTs were grown by chemical vapor deposition. The CNTs were tip-grown, and their roots were fixed on the EG flakes. The EG flakes were compressed, and many CNTs on the surface were fragmented due to the compression-induced bending. Two major modes of the bending fracture were observed: cone-shaped and shear-cut. High-resolution scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to examine the crack growth within the graphene layers. The bending fracture is characterized by two-region crack growth. An opening crack first appears around the outer-tube due to the bending-induced tensile stress. The crack then branches to grow along an inclined direction toward the inner-tube due to the presence of the shear stress in between graphene layers. An inner-tube pullout with inclined side surface is formed. The onset and development of the crack in these two regions are discussed.
M. Mohammadimehr
2013-12-01
Full Text Available In this article, the bending and free vibration analysis of functionally graded (FG nanocomposites Timoshenko beam model reinforced by single-walled boron nitride nanotube (SWBNNT using micro-mechanical approach embedded in an elastic medium is studied. The modified coupled stress (MCST and nonlocal elasticity theories are developed to take into account the size-dependent effect. The mechanical properties of FG boron nitride nanotube-reinforced composites are assumed to be graded in the thickness direction and estimated through the micro-mechanical approach. The governing equations of motion are obtained using Hamilton’s principle based on Timoshenko beam theory. The Navier's type solution is implemented to solve the equations that satisfy the simply supported boundary conditions. Furthermore, the influences of the slenderness ratio, length of nanocomposite beam, material length scale parameter, nonlocal parameter, power law index, axial wave number, and Winkler and Pasternak coefficients on the natural frequency of nanocomposite beam are investigated. Also, the effect of material length scale parameter on the dimensionless deflection of FG nanocomposite beam is studied.
Mechanical analysis of substrate bending deformation caused by film stress%薄膜应力造成基片弯曲变形的力学分析
赵明炬
2014-01-01
针对平板力学理论结构进行分析，研究薄膜应力造成基片弯曲变形的数学结构与力学行为。推算出两者间精确解与Stoney公式比较，探讨两者推导机制差异，进一步分析Stoney公式误差原因。利用电脑软件ABAQUS建立合理模型来提供数值解，探讨数学模式的正确性。%The mechanical structure of flat-panel was analyzed,and the mathematical model and mechanical behavior of the substrate bending deformation caused by film stress were studied. The numerical solution was calculated and compared with that calculated by Stoney formula,the difference of both derivation mechanisms was discussed,and Stoney formula error was furtherly analyzed. With computer software ABAQUS,the reasonable model was established to provide numerical solution and explore the correctness of mathematical model is correct.
Bending characteristics of resin concretes
Ribeiro Maria Cristina Santos
2003-01-01
Full Text Available In this research work the influence of composition and curing conditions in bending strength of polyester and epoxy concrete is analyzed. Various mixtures of resin and aggregates were considered in view of an optimal combination. The Taguchi methodology was applied in order to reduce the number of tests, and in order to evaluate the influence of various parameters in concrete properties. This methodology is very useful for the planning of experiments. Test results, analyzed by this methodology, shown that the most significant factors affecting bending strength properties of resin concretes are the type of resin, resin content and charge content. An optimal formulation leading to a maximum bending strength was achieved in terms of material parameters.
Mills, Dean E; Johnson, Michael A; McPhilimey, Martin J; Williams, Neil C; Gonzalez, Javier T; Barnett, Yvonne A; Sharpe, Graham R
2014-04-15
The influence of oxidative stress, diaphragm fatigue, and inspiratory muscle training (IMT) on the cytokine response to maximum sustainable voluntary ventilation (MSVV) is unknown. Twelve healthy males were divided equally into an IMT or placebo (PLA) group, and before and after a 6-wk intervention they undertook, on separate days, 1 h of (1) passive rest and (2) MSVV, whereby participants undertook volitional hyperpnea at rest that mimicked the breathing and respiratory muscle recruitment patterns commensurate with heavy cycling exercise. Plasma cytokines remained unchanged during passive rest. There was a main effect of time (P ventilation and increases in plasma IL-6 concentration. In conclusion, increases in plasma IL-1β and IL-6 concentrations during MSVV were not due to diaphragm fatigue or DNA damage in PBMC. Increases in plasma IL-6 concentration during MSVV are attenuated following IMT, and the plasma IL-6 response is dependent upon the level of respiratory muscle work and minute ventilation.
ZERODUR: bending strength data for etched surfaces
Hartmann, Peter; Leys, Antoine; Carré, Antoine; Kerz, Franca; Westerhoff, Thomas
2014-07-01
In a continuous effort since 2007 a considerable amount of new data and information has been gathered on the bending strength of the extremely low thermal expansion glass ceramic ZERODUR®. By fitting a three parameter Weibull distribution to the data it could be shown that for homogenously ground surfaces minimum breakage stresses exist lying much higher than the previously applied design limits. In order to achieve even higher allowable stress values diamond grain ground surfaces have been acid etched, a procedure widely accepted as strength increasing measure. If surfaces are etched taking off layers with thickness which are comparable to the maximum micro crack depth of the preceding grinding process they also show statistical distributions compatible with a three parameter Weibull distribution. SCHOTT has performed additional measurement series with etch solutions with variable composition testing the applicability of this distribution and the possibility to achieve further increase of the minimum breakage stress. For long term loading applications strength change with time and environmental media are important. The parameter needed for prediction calculations which is combining these influences is the stress corrosion constant. Results from the past differ significantly from each other. On the basis of new investigations better information will be provided for choosing the best value for the given application conditions.
Forming characteristics of thin-walled tube bending process with small bending radius
LI Heng; YANG He; ZHAN Mei; GU Rui-Jie
2006-01-01
Currently requirements of thin-walled tube with small bending radius cause the defects such as wrinkling,overthinning and cross-section distortion more prone to occur in bending process. Based on the analysis of the forming characteristics by analytical and experimental methods,a complete 3D elastic-plastic FEM model of the process was developed using ABAQUS/Explicit code,including bending process,balls retracting and unloading process,and thus the plastic deformation characteristics with small bending radius were investigated. The main results show that: 1) The utmost deformation feature of the NC bending process is its continuous progressive deformation. 2) The occurring conditions of the defects such as wrinkling and tension instability in the process are obtained. The wrinkling is traditional on the double compressive stresses state and the tension instability is on the double tension stresses state. 3) The enhanced non-uniform deformation in thin-walled tube with small bending radius is demonstrated by comparing the stress/ strains distributions under the 1.5D and 1D bending conditions. 4) For 1D small bending process,a new method-"stepped mandrel retraction" is proposed to improve the bending quality in experiment according to the FE simulation. The simulation results are verified by experiment.
A study on springback of bending linear flow split profiles
Mahajan, P.; Taplick, C.; Özel, M.; Groche, P.
2016-11-01
The bending of linear flow split profiles made up of high strength materials involves high bending loads leading to high springback and geometrical defects. In addition, the linear flow split profiles are made stronger due to the high plastic deformation applied by the process itself. The bending method proposed in this paper combines the linear flow splitting process with a movable bending tool. The aim of the research was to investigate the effect of superimposed stresses exerted by the linear flow splitting process on bending load and springback of the profile by using a finite element model. The latter was validated by means of experimental results. The results show that the bending loads and the springback were reduced by increasing the superposition of stress applied by the linear flow splitting process. The reduction in the bending loads leads to a reduction in the cross-sectional distortion. Furthermore, the springback was compensated by controlling the amount of superimposed stress.
H. Xiao
2003-01-01
Full Text Available The self-consistent Eulerian rate-type elastoplastic model based on the logarithmic rate is used to study finite bending of a compressible elastic-perfectly plastic rectangular block. It is found that an explicit closed-form solution for this typical inhomogeneous finite deformation , mode may be available in a general case of compressible deformation with a stretch normal to the bending plane, where the maximum circumferential stretch at the outer surface serves as an Independent parameter. Expressions are given for the bending angle, the bending moment, the the outer and the inner radii, and the radii of the two moving elastic-plastic interfaces, etc. The exact stress distribution on any circumferential cross-section of the deformed block is accordingly determined.
Salces Judit
2011-08-01
Full Text Available Abstract Background Reference genes with stable expression are required to normalize expression differences of target genes in qPCR experiments. Several procedures and companion software have been proposed to find the most stable genes. Model based procedures are attractive because they provide a solid statistical framework. NormFinder, a widely used software, uses a model based method. The pairwise comparison procedure implemented in GeNorm is a simpler procedure but one of the most extensively used. In the present work a statistical approach based in Maximum Likelihood estimation under mixed models was tested and compared with NormFinder and geNorm softwares. Sixteen candidate genes were tested in whole blood samples from control and heat stressed sheep. Results A model including gene and treatment as fixed effects, sample (animal, gene by treatment, gene by sample and treatment by sample interactions as random effects with heteroskedastic residual variance in gene by treatment levels was selected using goodness of fit and predictive ability criteria among a variety of models. Mean Square Error obtained under the selected model was used as indicator of gene expression stability. Genes top and bottom ranked by the three approaches were similar; however, notable differences for the best pair of genes selected for each method and the remaining genes of the rankings were shown. Differences among the expression values of normalized targets for each statistical approach were also found. Conclusions Optimal statistical properties of Maximum Likelihood estimation joined to mixed model flexibility allow for more accurate estimation of expression stability of genes under many different situations. Accurate selection of reference genes has a direct impact over the normalized expression values of a given target gene. This may be critical when the aim of the study is to compare expression rate differences among samples under different environmental
邹翔; 王三民; 袁茹
2013-01-01
在直齿面齿轮齿面仿真的基础上,利用Matlab与ANSYS相结合实现了面齿轮副在有限元软件中从参数化建模到承载接触分析的自动化.为解决面齿轮强度设计的应力计算问题,研究了点接触面齿轮载荷与弯曲应力的确切关系,并提出了一种采用人工神经网络预测面齿轮弯曲应力的方法,该方法以有限元分析结果为样本,能够完成面齿轮弯曲应力的快速定量计算,在训练神经网络的样本参数范围内,该方法具有很高的精度,为面齿轮的强度设计奠定了基础.%Based on tooth surface simulation of spur face gear, the automation from parametric modeling to load tooth contact analysis of face gear pair in finite element software is achieved by using Matlab and ANSYS. To solve the problem of stress calculation while design face gear, the exact relationship between load and bending stress of face gear is researched, and a method to predict the bending stress by artificial neural network is presented which regard the result of finite element analysis as samples, the method can rapidly calculate the bending stress with high accuracy while parameters are within sample scope. The foundation for strength design of face gear is laid.
How Does The Bone Shaft Geometry Affect its Bending Properties?
Kaveh P. Saffar
2009-01-01
Full Text Available In this research, ten fresh specimens of sheep tibiae were provided from slaughtered animals. Whole bone specimens were loaded in three-point bending according to standard wet bone test protocols. Mechanical properties were determined and compared with the results which were obtained from two dry bone tests. The results showed that fracture bending moment and bone extrinsic stiffness had significant relations with fracture cross-section dependent parameters (i.e., cross-section area and area moment of inertia. Where, fracture energy and ultimate strength did not have such a relation with these parameters. Finite element modeling of bone shaft was made with simplified geometry (neglecting cross-section variations along bone shaft in two steps: First, by elliptical cross-section and second, by circular cross-section, assuming linear elastic and isotropic properties for the specimens. Elastic (Youngs modulus and fracture load, evaluated from curves obtained from tests, were applied to the finite element model and close results of maximum stress in both test specimen and first (elliptical cross-section model showed up. There was an average difference of about 2% between ultimate strength of wet bone specimens and maximum (tensile stress occurred in the elliptical models. However, this value for circular models was about 16%.
李继兰; 李国芬; 陈耀章
2012-01-01
The decking on the top of bridge pier of the continuous steel-concrete composite beam is easily cracked by the action of non-load factors. The support forced displacement method is one of the effective methods to control or slow down the crack. To discuss the pre-compressed stress effect of the forced displacement method in the negative bending moment area of the decking of the composite beam bridge, taken the 6 x90 m continuous steel-concrete composite beam bridge at Hankou side of Erqi Changjiang River Bridge as research object, the improvement on traditional support forced displacement method was conducted. Besides, a local simulation analysis was accomplished on the basis of a hybrid finite element model of large "beam-shell-solid" which was established through APDL of ANSYS. A conclusion drawn from the theoretical and measured values shows that enough pre-compressed stress reserves, the maximum compressive stress of which was 18. 5 MPa, was produced in the decking of the negative moment area by the improved support forced displacement method. On this basis, the pre-compressed stress reserves by the improved method gained more than 0. 41 - 0. 46 times in the negative moment area on bridge decks. This study provided a reference for design and construction of super long-span continuous steel-concrete composite beam bridge.%针对连续钢-混叠合梁桥墩项区桥面板,在非荷载因素作用下受拉易产生裂缝,采用支座强迫位移法解决上述问题.为研究支座强迫位移法对叠合梁桥负弯矩区桥面板产生的预压应力效应,以武汉二七长江大桥汉口侧6×90m连续钢-混叠合梁桥为研究对象,对传统的支座强迫位移法进行了改进,同时利用ANSYS的APDL语言建立大型“梁-壳-实”有限元混合模型,并对其进行局部仿真分析和实测.理论和实测值均表明,改进的支座强迫位移在负弯矩区桥面板中产生了足够的预压应力储备,最大压应力大小为18.5 MPa.在
Permanent bending and alignment of ZnO nanowires.
Borschel, Christian; Spindler, Susann; Lerose, Damiana; Bochmann, Arne; Christiansen, Silke H; Nietzsche, Sandor; Oertel, Michael; Ronning, Carsten
2011-05-06
Ion beams can be used to permanently bend and re-align nanowires after growth. We have irradiated ZnO nanowires with energetic ions, achieving bending and alignment in different directions. Not only the bending of single nanowires is studied in detail, but also the simultaneous alignment of large ensembles of ZnO nanowires. Computer simulations reveal how the bending is initiated by ion beam induced damage. Detailed structural characterization identifies dislocations to relax stresses and make the bending and alignment permanent, even surviving annealing procedures.
Permanent bending and alignment of ZnO nanowires
Borschel, Christian; Spindler, Susann; Oertel, Michael; Ronning, Carsten [Institut fuer Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, Max-Wien-Platz 1, 07743 Jena (Germany); Lerose, Damiana [MPI fuer Mikrostrukturphysik, Weinberg 2, 06120 Halle/Saale (Germany); Institut fuer Photonische Technologien, Albert-Einstein-Strasse 9, 07745 Jena (Germany); Bochmann, Arne [Institut fuer Photonische Technologien, Albert-Einstein-Strasse 9, 07745 Jena (Germany); Christiansen, Silke H. [Institut fuer Photonische Technologien, Albert-Einstein-Strasse 9, 07745 Jena (Germany); MPI fuer die Physik des Lichts, Guenther-Scharowsky-Str. 1, 91058 Erlangen (Germany); Nietzsche, Sandor [Zentrum fuer Elektronenmikroskopie, Friedrich-Schiller-Universitaet Jena, Ziegelmuehlenweg 1, 07743 Jena (Germany)
2011-07-01
Ion beams can be used to bend or re-align nanowires permanently, after they have been grown. We have irradiated ZnO nanowires with ions of different species and energy, achieving bending and alignment in various directions. We study the bending of single nanowires as well as the simultaneous alignment of large ensembles of ZnO nanowires in detail. Computer simulations show that the bending is initiated by ion beam induced damage. Dislocations are identified to relax stresses and make the bending and alignment permanent and resistant against annealing procedures.
2002-01-01
A Japanese team has found a way to bend and shape silicon substrates by growing a thin layer of diamond on top. The technique has been proposed as an alternative to mechanical bending, which is currently used to make reflective lenses for X-ray systems and particle physics systems (2 paragraphs).
Occipital bending in schizophrenia.
Maller, Jerome J; Anderson, Rodney J; Thomson, Richard H; Daskalakis, Zafiris J; Rosenfeld, Jeffrey V; Fitzgerald, Paul B
2017-01-01
To investigate the prevalence of occipital bending (an occipital lobe crossing or twisting across the midline) in subjects with schizophrenia and matched healthy controls. Occipital bending prevalence was investigated in 37 patients with schizophrenia and 44 healthy controls. Ratings showed that prevalence was nearly three times higher among schizophrenia patients (13/37 [35.1%]) than in control subjects (6/44 [13.6%]). Furthermore, those with schizophrenia had greater normalized gray matter volume but less white matter volume and had larger brain-to-cranial ratio. The results suggest that occipital bending is more prevalent among schizophrenia patients than healthy subjects and that schizophrenia patients have different gray matter-white matter proportions. Although the cause and clinical ramifications of occipital bending are unclear, the results infer that occipital bending may be a marker of psychiatric illness.
Bending artificial muscle from nylon filaments
Mirvakili, Seyed M.; Hunter, Ian W.
2016-04-01
Highly oriented nylon and polyethylene fibers shrink in length and expand in diameter when heated. Using this property, in this work, for the first time we are introducing a type of bending artificial muscle from nylon filaments such as fishing line. Reversible radius of curvature of 0.23 mm-1 was achieved with maximum reversible bending amplitude of 115 mm for the nylon bending actuator. Peak force of up to 2040 mN was measured with a catch-state force of up to 40% of the active force. A 3 dB roll-off frequency of around 0.7 Hz was observed in the frequency response of the bending actuator in water.
李飒; 黄纯; 熊国平; 袁理
2012-01-01
mesially under tip-back bends with different angles. Stress distributions were relatively more uniform when the mesial forces of 1. 0,1. 5 and 2. 0 N were loaded at both buccal and lingual sides under tip-back bends of 15°,20° and 25° respectively than forces loaded at buccal side only. But the same features could not be found when 2. 0 N was loaded with 5° tip-back bend,and 1. 0 N was loaded with 30° tip-back bend. The maximum stress values of Von Mises closed to optimal stress of periodontal membrane could be obtained when the mesial force of 1. 0 N was loaded at both buccal and lingual sides under tip-back bends of 10°, 15° and 20°. Conclusion In order to obtain an optimal stress of periodontal membrane when the mandibular second molar was mesially moved,low friction system should be chosen. The loading pattern should be a mesial force of 1. 0 N loaded at both buccal and lingual sides on Australian WireCO. 018 inch)archwire with 15° to 20° tip-back bends after fully aligning and leveling.
Liu, Wei; Lu, Jian; Leung, Lai-Yung R.; Xie, Shang-Ping; Liu, Zhengyu; Zhu, Jiang
2015-02-22
This paper investigates the changes of the Southern Westerly Winds (SWW) and Southern Ocean (SO) upwelling between the Last Glacial Maximum (LGM) and preindustrial (PI) in the PMIP3/CMIP5 simulations, highlighting the role of the Antarctic sea ice in modulating the wind stress effect on the ocean. Particularly, a discrepancy may occur between the changes in SWW and westerly wind stress, caused primarily by an equatorward expansion of winter Antarctic sea ice that undermines the wind stress in driving the liquid ocean. Such discrepancy may reflect the LGM condition in reality, in view of that the model simulates this condition has most credible simulation of modern SWW and Antarctic sea ice. The effect of wind stress on the SO upwelling is further explored via the wind-induced Ekman pumping, which is reduced under the LGM condition in all models, in part by the sea-ice “capping” effect present in the models.
Bending behavior of double-row stabilizing piles with constructional time delay
Yang YU; Yue-quan SHANG; Hong-yue SUN
2012-01-01
The bending behavior of double-row stabilizing plies is associated with the constructional time delay (CTD),which can be defined as the time interval between the installations of the front stabilizing pile and the rear stabilizing pile.This paper investigates the effect of CTD on the bending moments of double-row stabilizing piles and a method for determining the optimal CTD is proposed.The stabilizing pile is modeled as a cantilever pile embedded in the Winkler elastic foundation.A triangular distributed earth pressure is assumed on the pile segment in the sliding layer.The front stabilizing pile and the rear stabilizing pile are connected by a beam with pinned joints.The analytical solutions of bending moments on the front and the rear stabilizing piles are derived and the accuracy of bending moment solutions is validated by comparing the tensile strain measured from the Hongyan landslide project,Taizhou,Zhejiang,China.It is concluded that CTD has a significant influence on the bending moments of double-row stabilizing piles.An optimal CTD can be obtained when the maximum tensile stress in the front stabilizing pile is equal to that in the rear stabilizing pile,which is 1.4 months for the Hongyan landslide project.
Miguel, V.; Coello, J.; Martinez, A.; Calatayud, A.
2013-09-01
In this paper, a methodology has been developed for evaluating the spring back of AISI 304 DDQ stainless steel sheet based on a bending under tension test. The main difference of the methodology herein carried out is that tests are made under the multiaxial stresses state that take place in deep drawing processes. This affects to the level of stress value in the test and to the hardening state of the sheet. Springback evaluation has been done in two different areas. Bending area has been evaluated from elastic recovery ratio defined as the ratio between the bending radius after and before bending. Bending and unbending extreme has been studied from the measured curvature radius in this area and taking into account the geometric equivalence of the test with the drawing cups process. Results found allow to state that drawing ratio or deformation ratio have a negligible influence on the springback into the range of values experimented here. Bending radius has hardly influence as well while bending angle is the most significant variable. The results obtained are compared to those measured in deep-drawn cups, finding a great agreement. (Author)
Kekalo, I. B.; Mogil'nikov, P. S.
2015-07-01
When studying the amorphous alloy Co69Fe3.7Cr3.8Si12.5B11 with a near-zero magnetostriction (|λs| ≤ 10-7), uncommon (anomalous) effects of bending stresses (of the diameter D of toroidal samples) on the hysteretic magnetic properties ( H c, μ5) measured in a dynamic regime at frequencies f of the ac magnetic field from 0.1 to 20 kHz have been revealed. At low frequencies ( f < 1 kHz), the coercive force H c of the alloy is almost independent of D. The permeability μ5 ( H = 5 mOe) is independent of D at high frequencies and depends on D at low frequencies. In samples subjected to high-temperature annealing (390°C) with subsequent water quenching, uncommon regularities are observed; the permeability μ5 increases with decreasing radius of the toroidal samples, i.e., with increasing bending stresses.
INVESTIGATION INTO THE SPRINGBACK OF PIPE BENDING USING INDUCTION HEATING
1998-01-01
Stresses and deformation states of pipe bending are investigated under loading or unloading with various pipe materials, size, bending radius and deformation temperature. A theorem of springback of large diameter pipe bending is presented. The experiments are carried out with pipe materials of 20, 10CrMo910 and 12Cr1MoV steel. Results of computations are in good agreement with experiments.
49 CFR 192.315 - Wrinkle bends in steel pipe.
2010-10-01
... 49 Transportation 3 2010-10-01 2010-10-01 false Wrinkle bends in steel pipe. 192.315 Section 192... Transmission Lines and Mains § 192.315 Wrinkle bends in steel pipe. (a) A wrinkle bend may not be made on steel pipe to be operated at a pressure that produces a hoop stress of 30 percent, or more, of SMYS. (b) Each...
孙宗颀
2001-01-01
When a crack is subjected to shear force, crack branching usually occurs. Theoretical study shows that the crack branching under shear loading is caused by tensile stress, but not caused by shear fracture. The co-plane shear fracture could be obtained if compressive stress with given direction is applied to the specimen, subsequently, calculated shear fracture toughness, KⅡ C, is larger than KⅠ C. A prerequisite of possible occurrence of mode Ⅱ fracture was proposed. The study of shear fracture shows that the maximum circumferential stress theory considered its criterion as a parametric equation of a curve in KⅠ, KⅡ plane is incorrect; the predicted ratio KⅡ C/KⅠ C=0.866 is incorrect too.
A transparent bending-insensitive pressure sensor
Lee, Sungwon; Reuveny, Amir; Reeder, Jonathan; Lee, Sunghoon; Jin, Hanbit; Liu, Qihan; Yokota, Tomoyuki; Sekitani, Tsuyoshi; Isoyama, Takashi; Abe, Yusuke; Suo, Zhigang; Someya, Takao
2016-05-01
Measuring small normal pressures is essential to accurately evaluate external stimuli in curvilinear and dynamic surfaces such as natural tissues. Usually, sensitive and spatially accurate pressure sensors are achieved through conformal contact with the surface; however, this also makes them sensitive to mechanical deformation (bending). Indeed, when a soft object is pressed by another soft object, the normal pressure cannot be measured independently from the mechanical stress. Here, we show a pressure sensor that measures only the normal pressure, even under extreme bending conditions. To reduce the bending sensitivity, we use composite nanofibres of carbon nanotubes and graphene. Our simulations show that these fibres change their relative alignment to accommodate bending deformation, thus reducing the strain in individual fibres. Pressure sensitivity is maintained down to a bending radius of 80 μm. To test the suitability of our sensor for soft robotics and medical applications, we fabricated an integrated sensor matrix that is only 2 μm thick. We show real-time (response time of ∼20 ms), large-area, normal pressure monitoring under different, complex bending conditions.
A transparent bending-insensitive pressure sensor.
Lee, Sungwon; Reuveny, Amir; Reeder, Jonathan; Lee, Sunghoon; Jin, Hanbit; Liu, Qihan; Yokota, Tomoyuki; Sekitani, Tsuyoshi; Isoyama, Takashi; Abe, Yusuke; Suo, Zhigang; Someya, Takao
2016-05-01
Measuring small normal pressures is essential to accurately evaluate external stimuli in curvilinear and dynamic surfaces such as natural tissues. Usually, sensitive and spatially accurate pressure sensors are achieved through conformal contact with the surface; however, this also makes them sensitive to mechanical deformation (bending). Indeed, when a soft object is pressed by another soft object, the normal pressure cannot be measured independently from the mechanical stress. Here, we show a pressure sensor that measures only the normal pressure, even under extreme bending conditions. To reduce the bending sensitivity, we use composite nanofibres of carbon nanotubes and graphene. Our simulations show that these fibres change their relative alignment to accommodate bending deformation, thus reducing the strain in individual fibres. Pressure sensitivity is maintained down to a bending radius of 80 μm. To test the suitability of our sensor for soft robotics and medical applications, we fabricated an integrated sensor matrix that is only 2 μm thick. We show real-time (response time of ∼20 ms), large-area, normal pressure monitoring under different, complex bending conditions.
Peeling, sliding, pulling and bending
Lister, John; Peng, Gunnar
2016-11-01
The peeling of an elastic sheet away from thin layer of viscous fluid is a simply-stated and generic problem, that involves complex interactions between the flow and elastic deformation on a range of length scales. Consider an analogue of capillary spreading, where a blister of injected viscous fluid spreads due to tension in the overlying elastic sheet. Here the tension is coupled to the deformation of the sheet, and thus varies in time and space. A key question is whether or not viscous shear stresses ahead of the blister are sufficient to prevent the sheet sliding inwards and relieving the tension. Our asymptotic analysis reveals a dichotomy between fast and slow spreading, and between two-dimensional and axisymmetric spreading. In combination with bending stresses and gravity, which may dominate parts of the flow but not others, there is a plethora of dynamical regimes.
Vestergaard Lukassen, Troels; Glejbøl, Kristian; Lyckegaard, Anders
2016-01-01
variations will allow for performance optimization of the armour layers. To study the detailed stress variations in flexible pipes during dynamic loading, a comprehensive three-dimensional implicit nonlinear finite element model has been developed. The predicted numerical stress variations will be compared......To predict the lifetime and long-term properties of tensile armour wires in a dynamically loaded pipe, it is essential to have a tool which allows detailed prediction of the stress variations in the tensile armour wires during global pipe loading. Furthermore, detailed understanding of the stress...
王家滨; 牛荻涛; 张永利
2016-01-01
In order to research the carbonation of shotcrete single-layer lining in tunnel,the accelerator carbona-tion of shotcrete with and without steel fiber under bending stress which the ratios of flexural strength were 0, 0.25,0.5 and 0.75,respectively were studied.The carbonation depth of shotcrete obeys Fick's first law and in-creased with the carbonation age and bending stress improved.In the similar experiment conditions,the carbon-ation depth of shotcrete was small than ordinary concrete.Meanwhile,the carbonation depth of steel fiber rein-forced shotcrete was much less than ordinary shotcrete at the same age.Based on the influence coefficients of bending stress,steel fiber and construction mode,the carbonation depth prediction model of ordinary concrete was modified.%为了研究隧道喷射混凝土单层衬砌碳化规律,采用快速碳化实验方法,研究了不同弯曲应力(0,0.25,0.5及0.75)作用下喷射混凝土及钢纤维喷射混凝土受拉区碳化深度变化规律.结果表明,喷射混凝土碳化深度经时变化规律服从Fick第一定律,碳化深度随着碳化龄期和弯曲应力的增加而增大.同实验条件下,喷射混凝土碳化深度小于普通混凝土,而钢纤维的加入进一步减小喷射混凝土同龄期碳化深度.在考虑弯曲应力影响系数、钢纤维影响系数及施工方式影响系数基础上对普通混凝土碳化深度预测模型进行修正,使其能够较好预测喷射混凝土碳化深度.
H. Hernández Herrera
2004-09-01
Full Text Available En el trabajo se presenta el cálculo de las tensiones de cortante en la sección de la garganta para las uniones soldadassometidas a flexión con costuras de filete de sección transversal asimétrica cuando el plano de carga no pasa por el centrode flexión o no coincide con los ejes centroidales principales de inercia. Los resultados obtenidos por las expresiones decálculo propuestas se comparan con los obtenidos por el Método de los Elementos Finitos demostrando de esta manera lavalidez de las mismas.Palabras claves: Flexión, uniones soldadas, soldadura de filete.___________________________________________________________________________Abstract.In this paper is presented the bending shear stresses calculation in the throat area for asymmetric welded joints with filletweldings, when the load plane does not go by the flexion center or it do not coincide with the mains inertia centroidal axes.The results obtained by the proposed expressions are compared with those obtained by the Finite Elements Methoddemonstrating by this way the validity of the same ones.Key words: Bending, welded joints, fillet weldings.
Higashida, F.; Ogawa, K. (Kyoto University, Kyoto (Japan). Faculty of Engineering)
1990-10-15
Fiber reinforced plastics (FRP) are widely used as high ratio strength structural material and strong interest is taken in their impact strength. In their impact bending test, observation is made of stress waveform, with which largely interferes high frequency fluctuation. Various measurement methods being studied to eliminate that interference, the present report used a split-Hopkinson bar technique, not influenced by the reflection of stress wave in the tester, and made impact three-point bending tests, up to about 15cm/s in impact speed, on CFRP and GFRP by having loosely ramped incident stress act. The result gave a smooth relation, almost free from high frequency fluctuation, between the load and time, which relation could accurately derive bending rigidity, breaking strength, etc. Of the CFRP and GFRP, elucidation was further made of independency of bending strength upon the strain speed, relation between the maximum stress and strain speed, effect of deformation speed on the three-point bending strength, etc. 35 refs., 8 figs., 1 tab.
A preliminary bending fatigue spectrum for steel monostrand cables
Winkler, Jan; Fischer, Gregor; Georgakis, Christos T.;
2011-01-01
This paper presents the results of the experimental study on the bending fatigue resistance of high-strength steel monostrand cables. From the conducted fatigue tests in the high-stress, low-cycle region, a preliminary bending fatigue spectrum is derived for the estimation of monostrand cable...... service life expectancy. The presented preliminary bending fatigue spectrum of high-strength monostrands is currently unavailable in the published literature. The presented results provide relevant information on the bending mechanism and fatigue characteristics of monostrand steel cables in tension...
Bending strain tolerance of MgB2 superconducting wires
Kováč, P.; Hušek, I.; Melišek, T.; Kulich, M.; Kopera, L.
2016-04-01
This work describes the strain tolerance of MgB2 superconductors subjected to variable bending stresses. Bending of MgB2 wire was done at room temperature in different modes: (i) direct bending of straight annealed samples to variable diameters and by (ii) indirect bending by straightening of bent and annealed samples. I c-bending strain characteristics of samples made by in situ PIT and by the internal magnesium diffusion (IMD) process were measured at 4.2 K. The results show a good agreement between the direct and indirect bending mode, which allows easier estimation of limits important for the winding process of MgB2 superconductors with brittle filaments. A comparison of MgB2 wires made by in situ PIT and IMD processes showed improved strain tolerance for IMD due to better grain connectivity the low annealing temperature, which does not appear to reduce the mechanical strength of sheath material.
The maximum bending moment resistance of plate girders
Abspoel, R.
2014-01-01
In many steel structures like buildings, industrial halls and bridges, standard hot-rolled sections like IPE, HEA, HEB, HEM, HED and UNP in Europe and similar profiles in other regions of the world are used. The range of hot-rolled sections is limited and therefore fabricated plate girders are used
The maximum bending moment resistance of plate girders
Abspoel, R.
2014-01-01
In many steel structures like buildings, industrial halls and bridges, standard hot-rolled sections like IPE, HEA, HEB, HEM, HED and UNP in Europe and similar profiles in other regions of the world are used. The range of hot-rolled sections is limited and therefore fabricated plate girders are used
Savaidis, G. (Technische Hochschule Darmstadt (Germany). Fachgebiet Werkstoffmechanik); Seeger, T. (Technische Hochschule Darmstadt (Germany). Fachgebiet Werkstoffmechanik)
1994-04-01
Fatigue test results from unnotched specimens of 42CrMo4 under constant amplitude- and two-step-bending were analyzed using both the Local Strain Approach (LSA) and the Nominal Stress Concept (NSC). These analyses were carried out in order to compare the predictive accuracy of both concepts. As a first approximation it was assumed that only the materials ultimate tensile strength or the experimentally attained constant amplitude life curve at R = 0 respectively is known. Within the scope of LSA two damage parameters were applied. The parameter P[sub J] considering mean stresses and load sequence effects and the parameter P[sub SWT] considering mean stresses only. For the above mentioned assumptions the predictions of the LSA using the parameter P[sub SWT] are slightly better than those obtained by the NSC. A pronounced improvement can be attained using the parameter P[sub J]. However, compared to the predictions by the LSA in combination with P[sub SWT] and cyclic material properties, the fatigue life calculated by the NSC using experimental constant amplitude loading curves are closer to the experimental results. Based on these findings, which can be interpreted as trends valid for other cases as well, the frequent use of the parameter P[sub J] within the framework of the LSA is recommended. If available, experimentally attained constant amplitude loading curves should be used to adjust the P-Woehler curves. (orig.)
Tunable thermoelectric properties in bended graphene nanoribbons
Chang-Ning, Pan; Jun, He; Mao-Fa, Fang
2016-07-01
The ballistic thermoelectric properties in bended graphene nanoribbons (GNRs) are systematically investigated by using atomistic simulation of electron and phonon transport. We find that the electron resonant tunneling effect occurs in the metallic-semiconducting linked ZZ-GNRs (the bended GNRs with zigzag edge leads). The electron-wave quantum interference effect occurs in the metallic-metallic linked AA-GNRs (the bended GNRs with armchair edge leads). These different physical mechanisms lead to the large Seebeck coefficient S and high electron conductance in bended ZZ-GNRs/AA-GNRs. Combined with the reduced lattice thermal conduction, the significant enhancement of the figure of merit ZT is predicted. Moreover, we find that the ZTmax (the maximum peak of ZT) is sensitive to the structural parameters. It can be conveniently tuned by changing the interbend length of bended GNRs. The magnitude of ZT ranges from the 0.15 to 0.72. Geometry-controlled ballistic thermoelectric effect offers an effective way to design thermoelectric devices such as thermocouples based on graphene. Project supported by the National Natural Science Foundation of China (Grant No. 61401153) and the Natural Science Foundation of Hunan Province, China (Grant Nos. 2015JJ2050 and 14JJ3126).
Tunable thermoelectric properties in bended graphene nanoribbons
潘长宁; 何军; 方卯发
2016-01-01
The ballistic thermoelectric properties in bended graphene nanoribbons (GNRs) are systematically investigated by using atomistic simulation of electron and phonon transport. We find that the electron resonant tunneling effect occurs in the metallic–semiconducting linked ZZ-GNRs (the bended GNRs with zigzag edge leads). The electron-wave quan-tum interference effect occurs in the metallic–metallic linked AA-GNRs (the bended GNRs with armchair edge leads). These different physical mechanisms lead to the large Seebeck coefficient S and high electron conductance in bended ZZ-GNRs/AA-GNRs. Combined with the reduced lattice thermal conduction, the significant enhancement of the figure of merit ZT is predicted. Moreover, we find that the ZTmax (the maximum peak of ZT) is sensitive to the structural parameters. It can be conveniently tuned by changing the interbend length of bended GNRs. The magnitude of ZT ranges from the 0.15 to 0.72. Geometry-controlled ballistic thermoelectric effect offers an effective way to design thermoelectric devices such as thermocouples based on graphene.
Simulation and prediction in laser bending of silicon sheet
WANG Xu-yue; XU Wei-xing; XU Wen-ji; HU Ya-feng; LIANG Yan-de; WANG Lian-ji
2011-01-01
The laser bending of single-crystal silicon sheet (0.2 mm in thickness) was investigated with JK701 Nd:YAG laser. The models were developed to describe the beam characteristics of pulsed laser. In order to simulate the process of laser bending, the FEM softvare ANSYS was used to predict the heat temperature and stress-strain fields. The periodic transformation of temperature field and stress-strain distribution was analyzed during pulsed laser scanning silicon sheet. The results indicate that the mechanism of pulsed laser bending silicon is a hybrid mechanism in silicon bending, rather than a simple mechanism of TGM or BM. This work also gets silicon sheet bent after scanning 6 times with pulsed laser, and its bending angle is up to 6.5°. The simulation and prediction results reach well agreement with the verifying experiments.
CERN PhotoLab
1981-01-01
During 1981, the PS South-Hall, no longer used for physics experiments, was cleared for the installation of the Low Energy Antiproton Ring, LEAR. In October 1981, 3 of the 4 bending magnet quadrants were in place, this is one of them.
Numerical simulation of hydrodynamics and bank erosion in a river bend
Rinaldi, Massimo; Mengoni, Beatrice; Luppi, Laura; Darby, Stephen E.; Mosselman, Erik
2008-09-01
We present an integrated analysis of bank erosion in a high-curvature bend of the gravel bed Cecina River (central Italy). Our analysis combines a model of fluvial bank erosion with groundwater flow and bank stability analyses to account for the influence of hydraulic erosion on mass failure processes, the key novel aspect being that the fluvial erosion model is parameterized using outputs from detailed hydrodynamic simulations. The results identify two mechanisms that explain how most bank retreat usually occurs after, rather than during, flood peaks. First, in the high curvature bend investigated here the maximum flow velocity core migrates away from the outer bank as flow discharge increases, reducing sidewall boundary shear stress and fluvial erosion at peak flow stages. Second, bank failure episodes are triggered by combinations of pore water and hydrostatic confining pressures induced in the period between the drawdown and rising phases of multipeaked flow events.
Chen, X.; Le, T.; Ewing, D.; Ching, C. Y.
2016-12-01
The mass transfer to turbulent flow through back-to-back pipe bends arranged in a 180° configuration with different lengths of pipe between the bends was measured using a dissolving gypsum test section in water. The measurements were performed for bends with a radius of curvature of 1.5 times the pipe diameter ( D) at a Reynolds numbers of 70,000 and Schmidt number of 1280. The maximum mass transfer in the bends decreased from approximately 1.8 times the mass transfer in the upstream pipe when there was no separation distance between the bends to 1.7 times when there was a 1 D or 5 D length of pipe between the bends. The location of the maximum mass transfer was on the inner sidewall downstream of the second bend when there was no separation distance between the bends. This location changed to the inner wall at the beginning of the second bend when there was a 1 D long pipe between the bends, and to the inner sidewall at the end of the first bend when there was a 5 D long pipe between the bends.
Composite failure prediction of π-joint structures under bending
HUANG Hong-me; YUAN Shen-fang
2012-01-01
In this article,the composite π-joint is investigated under bending loads.The "L" preform is the critical component regarding composite π-joint failure.The study is presented in the failure detection of a carbon fiber composite π-joint structure under bending loads using fiber Bragg grating (FBG) sensor.Firstly,based on the general finite element method (FEM)software,the 3-D finite element (FE) model of composite π-joint is established,and the failure process and every lamina failure load of composite π-joint are investigated by maximum stress criteria.Then,strain distributions along the length of FBG are extracted,and the reflection spectra of FBG are calculated according to the strain distribution.Finally,to verify the numerical results,a test scheme is performed and the experimental spectra of FBG are recorded.The experimental results indicate that the failure sequence and the corresponding critical loads of failure are consistent with the numerical predictions,and the computational error of failure load is less than 6.4％.Furthermore,it also verifies the feasibility of the damage detection system.
A multipurpose tissue bending machine.
Vesely, I; Boughner, D R
1985-01-01
A unique tissue bending machine was developed to test the bending properties of normal and bioprosthetic heart valve material. It can be operated in air or in a tissue bath and can measure bending torques with an accuracy in excess of 1.0 microN m. Three contrasting substances were tested to compare their stiffness and to demonstrate the machine.
Energy Dissipation Analysis of Bended SMA Bar in Isothermal State
PENG Gang; LI Li; TAN Jia-xiang
2004-01-01
The theory calculation formula is deduced about stress distribution in cross section and changes in Martensite percentages with the section height of random section shape bar under the action of the bending moment according to the Brinson's Constitutive Relation.The bar's energy dissipation capability under circulation of bending moment was analyzed and the calculation theory was set up. By using MATLAB program and the numerical calculation for uniform rectangle cross section bar, the relationships among the maximal stress and strain on cross section edge with bend load, the stress and Martensite percent's with cross section height, the energy dissipation capability with cross section height, and the energy dissipation capability with maximal strain on cross section edge are gained, also those curves are discused. It is put forward that the SMA material can be used for passive structure vibration control to dissipate energy of bend load.
BOUROUIS FAIROUZ
2012-04-01
Full Text Available Sandwich beams loaded in three points bending may fail in several ways including tension or compression failure of facings. In this paper , The effect of the transverse shear on the face yielding and face wrinkling failure modes of sandwich beams loaded in three points bending have been studied, the beams were made of various composites materials carbon/epoxy, kevlar/epoxy, glass/epoxy at sequence [+θ/-θ]3s, [0°/90°]3s. . The stresses in the face were calculated using maximum stress criterion and the simple beam theory. The obtained different results show that the sandwich beams with carbon/epoxy, and glass/epoxy face sheets are the best materials, inreturn the kevlar /epoxy facing characterised by low resistance of transverse shear in compression and tensile.
Ultrasonic fatigue testing device under biaxial bending
C. Brugger
2016-07-01
Full Text Available A new fatigue testing device has been developed to test specimens under biaxial loading at 20 kHz. A flat smooth specimen with a disc geometry is placed on a torus frame and cyclically loaded at the center of its upper face. Disc bending generates a biaxial proportional stress state at the center of the lower face. Any positive loading ratio can be applied. A cast aluminum alloy (used to produce cylinder heads has been tested under biaxial bending using this device in order to determine its fatigue strength at 109 cycles under high hydrostatic pressure. Self-heating is moderate but macroscopic fatigue cracks after testing are very long. First results in VHCF regime are consistent with literature results obtained under similar stress state but in HCF regime and at 20 Hz.
Lee, H.; Haimson, B.
2007-12-01
drillhole wall conditions is drastically different from that conventionally expected, but is compatible with breakout formation mechanism in granite (Haimson, Int. J. Rock Mech., 2007). All the 'unjacketed' true triaxial strength data can be fitted by a simple function in the octahedral shear stress versus octahedral normal stress domain, yielding a Nadai-type true triaxial strength criterion. The criterion can be used in conjunction with breakouts that have been located within the cored zone to yield the maximum horizontal in situ stress σH when the other two principal stress are known. Assuming that the state of stress at breakout-drillhole intersections (located for example by BHTV logging) is sufficient to bring about brittle failure (Vernik and Zoback, 1992), one can substitute the known principal stresses there (obtained from the Kirsch solution) for the corresponding values in the criterion. The in situ σv is given by the overburden density, σh is typically obtained from hydrofrac shut-in pressures, breakout width is extracted from BHTV logs, borehole fluid pressure is a function of its density, and the Poisson's ratio is obtained from mechanical lab testing. The only unknown, σH, is thus readily computed. An actual computation was not carried out because data on hydrofrac pressures and breakout dimensions were not available at the time of this submission.
Stored Energy of Plastic Deformation in Tube Bending Processes
Śloderbach, Z.; Pająk, J.
2013-03-01
The paper presents an aproximate analytic method for determination of the stored energy of plastic deformation during cold bending of metal tubes at bending machines. Calculations were performed for outer points of the tube layers subjected to tension and compression (the points of maximum strains). The percentage of stored energy related to the plastic strain work was determined and the results were presented in graphs. The influence and importance of the stored energy of plastic deformation on the service life of pipeline bends are discussed.
Kinkhabwala, Ali
2013-01-01
The most fundamental problem in statistics is the inference of an unknown probability distribution from a finite number of samples. For a specific observed data set, answers to the following questions would be desirable: (1) Estimation: Which candidate distribution provides the best fit to the observed data?, (2) Goodness-of-fit: How concordant is this distribution with the observed data?, and (3) Uncertainty: How concordant are other candidate distributions with the observed data? A simple unified approach for univariate data that addresses these traditionally distinct statistical notions is presented called "maximum fidelity". Maximum fidelity is a strict frequentist approach that is fundamentally based on model concordance with the observed data. The fidelity statistic is a general information measure based on the coordinate-independent cumulative distribution and critical yet previously neglected symmetry considerations. An approximation for the null distribution of the fidelity allows its direct conversi...
Probing the elastic limit of DNA bending
Le, Tung T
2014-01-01
Many structures inside the cell such as nucleosomes and protein-mediated DNA loops contain sharply bent double-stranded (ds) DNA. Therefore, the energetics of strong dsDNA bending constitutes an essential part of cellular thermodynamics. Although the thermomechanical behavior of long dsDNA is well described by the worm-like chain (WLC) model, the length limit of such elastic behavior remains controversial. To investigate the energetics of strong dsDNA bending, we measured the opening rate of small dsDNA loops with contour lengths of 40-200 bp using Fluorescence Resonance Energy Transfer (FRET). From the measured relationship of loop stability to loop size, we observed a transition between two separate bending regimes at a critical loop size below 100 bp. Above this loop size, the loop lifetime decreased with decreasing loop size in a manner consistent with an elastic bending stress. Below the critical loop size, however, the loop lifetime became less sensitive to loop size, indicative of softening of the doub...
Active vibration control of structures undergoing bending vibrations
Pla, Frederic G. (Inventor); Rajiyah, Harindra (Inventor)
1995-01-01
An active vibration control subassembly for a structure (such as a jet engine duct or a washing machine panel) undergoing bending vibrations caused by a source (such as the clothes agitator of the washing machine) independent of the subassembly. A piezoceramic actuator plate is vibratable by an applied electric AC signal. The plate is connected to the structure such that vibrations in the plate induced by the AC signal cause canceling bending vibrations in the structure and such that the plate is compressively pre-stressed along the structure when the structure is free of any bending vibrations. The compressive prestressing increases the amplitude of the canceling bending vibrations before the critical tensile stress level of the plate is reached. Preferably, a positive electric DC bias is also applied to the plate in its poling direction.
FEM Simulation of Bending Formability for Laminate Steel/Resin/Steel Lightweight Composite Sheet
Guancheng Ll; Yonglin KANG
2003-01-01
The ANSYS simulation software was used to analyze the bending formability of laminate steel/resin/steel lightweight composite sheet. The skin steel at external side produces relative slipping-off change during the bending due to its composite structure. The internal stress strain states, materials effect tools parameters and intermediate layer resin of lightweight sheet on slipping-off change were analyzed. The spring back and shear stress state after bending have also been discussed.
Influence of plywood grain direction on sandwich panel bending properties
Jaroslav Kljak; Mladen Brezović; Alan Antonović
2009-01-01
This paper investigates the influence of plywood grain direction on bending properties of a sandwich panel, as well as on stress distribution in each layer. Experimental sandwich panels (tnom= 29 mm) were made of two three-ply plywood panels and a rigid PVC core between them. Grain directions of plywood panels were between 0° and 90°, continuously raised by 15°. Seven models of sandwich panels were made. Bending properties of a sandwich panel was determined by three point bending method and s...
Damage Analysis of Rectangular Section Composite Beam under Pure Bending
Liu, Yiping; Xiao, Fan; Liu, Zejia; Tang, Liqun; Fang, Daining
2013-02-01
Laminated composite beams are commonly used in engineering applications involving macro to nano structures. Based on the assumption that plain sections remain plain after deformation, this paper analyzes stress distributions in cross-ply laminated composite beams with rectangular cross-sections, and formulates the basic damage equations through Kachanov's damage definition and Janson's failure criterion. The location of the neutral axis and the ultimate bending moment are obtained for pure bending cases. The effect of the elastic modulus of the two layers on the damage evolution is analyzed; a reasonable damage composite beam model is proposed to predict the ultimate bending moment.
NUMERICAL SIMULATION FOR LASER BENDING OF SHEET METAL
1998-01-01
The new flexible forming technique of sheet metal-laser bending process is numerically simulated by using finite element method of large elastic-plastic deformation. The temperature fields and stress-strain distribution in deformation area are calculated, forming process is described and relationship between bend angle and width of sheet is discussed. It is shown that the calculated values are in good accordance with the experiments.
EXPERIMENTAL STUDY ON BED SCOUR IN A 90°CHANNEL BEND
Masoud GHODSIAN; S. Kamal MOUSAVI
2006-01-01
The special feature of bend flow leads to scouring of the bed and bank. Various parameters like flow depth, flow velocity or discharge, geometry of bend and characteristics of bed material may affect the scour process. Experiments were carried out to study the effect of some important parameters on bend scour under clear water condition. Experiments were conducted in a 0.6m wide and 0.7m high flume with 90 degree bend. The lateral variations of bed slope were studied. The maximum depth of scour was correlated to densimetric Froude number, relative bend radius and relative depth of flow.
Klein, Fred W.
2016-04-01
Several lines of earthquake evidence indicate that the lithospheric plate is broken under the load of the island of Hawai`i, where the geometry of the lithosphere is circular with a central depression. The plate bends concave downward surrounding a stress-free hole, rather than bending concave upward as with past assumptions. Earthquake focal mechanisms show that the center of load stress and the weak hole is between the summits of Mauna Loa and Mauna Kea where the load is greatest. The earthquake gap at 21 km depth coincides with the predicted neutral plane of flexure where horizontal stress changes sign. Focal mechanism P axes below the neutral plane display a striking radial pattern pointing to the stress center. Earthquakes above the neutral plane in the north part of the island have opposite stress patterns; T axes tend to be radial. The M6.2 Honomu and M6.7 Kiholo main shocks (both at 39 km depth) are below the neutral plane and show radial compression, and the M6.0 Kiholo aftershock above the neutral plane has tangential compression. Earthquakes deeper than 20 km define a donut of seismicity around the stress center where flexural bending is a maximum. The hole is interpreted as the soft center where the lithospheric plate is broken. Kilauea's deep conduit is seismically active because it is in the ring of maximum bending. A simplified two-dimensional stress model for a bending slab with a load at one end yields stress orientations that agree with earthquake stress axes and radial P axes below the neutral plane. A previous inversion of deep Hawaiian focal mechanisms found a circular solution around the stress center that agrees with the model. For horizontal faults, the shear stress within the bending slab matches the slip in the deep Kilauea seismic zone and enhances outward slip of active flanks.
Optimal Orthogonal Graph Drawing with Convex Bend Costs
Bläsius, Thomas; Wagner, Dorothea
2012-01-01
Traditionally, the quality of orthogonal planar drawings is quantified by either the total number of bends, or the maximum number of bends per edge. However, this neglects that in typical applications, edges have varying importance. Moreover, as bend minimization over all planar embeddings is NP-hard, most approaches focus on a fixed planar embedding. We consider the problem OptimalFlexDraw that is defined as follows. Given a planar graph G on n vertices with maximum degree 4 and for each edge e a cost function cost_e : N_0 --> R defining costs depending on the number of bends on e, compute an orthogonal drawing of G of minimum cost. Note that this optimizes over all planar embeddings of the input graphs, and the cost functions allow fine-grained control on the bends of edges. In this generality OptimalFlexDraw is NP-hard. We show that it can be solved efficiently if 1) the cost function of each edge is convex and 2) the first bend on each edge does not cause any cost (which is a condition similar to the posi...
王毅
2015-01-01
对Ti6 Al4 V材料零件利用侧铣进行加工，其被加工表面会产生一内应力(即残余应力)层。为了测量加工引起的随深度变化的残余应力，通过对零件的应力层进行腐蚀剥层，并测量此过程中零件挠度的变化。根据弯矩与挠度的关系以及应力与弯矩的关系，最终计算得到铣削加工引起的随深度变化的残余应力。将计算得到的应力值带入有限元模型中进行计算，将计算得到的挠度的变化与实验测得的挠度的变化进行对比，发现两条曲线的重合度很高，由此说明此测量方法精度很高，可以运用与实践中加工残余应力的测量。%Flank milling was used to machine Ti6Al4V parts, and there would be high residual stress in-duced by milling in the superficial layer of the parts. The stress layers were removed gradually and the chan-ges of parts’ bending deflection were also measured. Based on the relationship between the bending deflec-tion and the bending moment, the bending moment and the residual stresses, the stresses values were calcu-lated out at last. The calculated stress values were loaded to the FEM model, a compasion of the bending deflection calculated by FEM and that measured in the experiments was made, it can be seen that they corre-spond to each other very well, so it can be concluded that the accuracy of this method is high enough, and it can be used to measure the residual stresses induced by milling in practice.
Turbulent flow computation in a circular U-Bend
Miloud Abdelkrim
2014-03-01
Full Text Available Turbulent flows through a circular 180° curved bend with a curvature ratio of 3.375, defined as the the bend mean radius to pipe diameter is investigated numerically for a Reynolds number of 4.45×104. The computation is performed for a U-Bend with full long pipes at the entrance and at the exit. The commercial ANSYS FLUENT is used to solve the steady Reynolds–Averaged Navier–Stokes (RANS equations. The performances of standard k-ε and the second moment closure RSM models are evaluated by comparing their numerical results against experimental data and testing their capabilities to capture the formation and extend this turbulence driven vortex. It is found that the secondary flows occur in the cross-stream half-plane of such configurations and primarily induced by high anisotropy of the cross-stream turbulent normal stresses near the outer bend.
Sheet Bending using Soft Tools
Sinke, J.
2011-05-01
Sheet bending is usually performed by air bending and V-die bending processes. Both processes apply rigid tools. These solid tools facilitate the generation of software for the numerical control of those processes. When the lower rigid die is replaced with a soft or rubber tool, the numerical control becomes much more difficult, since the soft tool deforms too. Compared to other bending processes the rubber backed bending process has some distinct advantages, like large radius-to-thickness ratios, applicability to materials with topcoats, well defined radii, and the feasibility of forming details (ridges, beads). These advantages may give the process exclusive benefits over conventional bending processes, not only for industries related to mechanical engineering and sheet metal forming, but also for other disciplines like Architecture and Industrial Design The largest disadvantage is that also the soft (rubber) tool deforms. Although the tool deformation is elastic and recovers after each process cycle, the applied force during bending is related to the deformation of the metal sheet and the deformation of the rubber. The deformation of the rubber interacts with the process but also with sheet parameters. This makes the numerical control of the process much more complicated. This paper presents a model for the bending of sheet materials using a rubber lower die. This model can be implemented in software in order to control the bending process numerically. The model itself is based on numerical and experimental research. In this research a number of variables related to the tooling and the material have been evaluated. The numerical part of the research was used to investigate the influence of the features of the soft lower tool, like the hardness and dimensions, and the influence of the sheet thickness, which also interacts with the soft tool deformation. The experimental research was focused on the relation between the machine control parameters and the most
Longitudinal-bending mode micromotor using multilayer piezoelectric actuator.
Yao, K; Koc, B; Uchino, K
2001-07-01
Longitudinal-bending mode ultrasonic motors with a diameter of 3 mm were fabricated using stacked multilayer piezoelectric actuators, which were self-developed from hard lead zirconate titanate (PZT) ceramic. A bending vibration was converted from a longitudinal vibration with a longitudinal-bending coupler. The motors could be bidirectionally operated by changing driving frequency. Their starting and braking torque were analyzed based on the transient velocity response. With a load of moment of inertia 2.5 x 10(-7) kgm2, the motor showed a maximum starting torque of 127.5 microNm. The braking torque proved to be a constant independent on the motor's driving conditions and was roughly equivalent to the maximum starting torque achievable with our micromotors.
Effect of Bend Radius on Magnitude and Location of Erosion in S-Bend
Quamrul H. Mazumder
2015-01-01
Full Text Available Solid particle erosion is a mechanical process that removes material by the impact of solid particles entrained in the flow. Erosion is a leading cause of failure of oil and gas pipelines and fittings in fluid handling industries. Different approaches have been used to control or minimize damage caused by erosion in particulated gas-solid or liquid-solid flows. S-bend geometry is widely used in different fluid handling equipment that may be susceptible to erosion damage. The results of a computational fluid dynamic (CFD simulation of diluted gas-solid and liquid-solid flows in an S-bend are presented in this paper. In addition to particle impact velocity, the bend radius may have significant influence on the magnitude and the location of erosion. CFD analysis was performed at three different air velocities (15.24 m/s–45.72 m/s and three different water velocities (0.1 m/s–10 m/s with entrained solid particles. The particle sizes used in the analysis range between 50 and 300 microns. Maximum erosion was observed in water with 10 m/s, 250-micron particle size, and a ratio of 3.5. The location of maximum erosion was observed in water with 10 m/s, 300-micron particle size, and a ratio of 3.5. Comparison of CFD results with available literature data showed reasonable and good agreement.
A cylindrical standing wave ultrasonic motor using bending vibration transducer.
Liu, Yingxiang; Chen, Weishan; Liu, Junkao; Shi, Shengjun
2011-07-01
A cylindrical standing wave ultrasonic motor using bending vibration transducer was proposed in this paper. The proposed stator contains a cylinder and a bending vibration transducer. The two combining sites between the cylinder and the transducer locate at the adjacent wave loops of bending vibration of the transducer and have a distance that equal to the half wave length of bending standing wave excited in the cylinder. Thus, the bending mode of the cylinder can be excited by the bending vibration of the transducer. Two circular cone type rotors are pressed in contact to the end rims of the teeth, and the preload between the rotors and stator is accomplished by a spring and nut system. The working principle of the proposed motor was analyzed. The motion trajectories of teeth were deduced. The stator was designed and analyzed with FEM. A prototype motor was fabricated and measured. Typical output of the prototype is no-load speed of 165rpm and maximum torque of 0.45Nm at an exciting voltage of 200V(rms).
Silva, Danilo Machado L. da; Rodrigues, Marcos V. [Det Norske Veritas (DNV), Rio de Janeiro, RJ (Brazil); Venaas, Asle [Det Norske Veritas (DNV), Oslo (Norway); Medeiros, Antonio Roberto de [Subsea 7 (Brazil)
2009-12-19
Bending is a primary loading experienced by pipelines during installation and operation. Significant bending in the presence of tension is experienced during installation by the S-lay method, as the pipe conforms to the curvature of the stinger and beyond in the over bend region. Bending in the presence of external pressure is experienced in the sag bend of all major installation methods (e.g., reeling, J-lay, S-lay) as well as in free-spans on the sea floor. Bending is also experienced by pipelines during installation by horizontal directional drilling. HDD procedures are increasingly being utilized around the world not only for crossings of rivers and other obstacles but also for shore approach of offshore pipelines. During installation the pipeline experience a combination of tensile, bending, and compressive stresses. The magnitude of these stresses is a function of the approach angle, bending radius, pipe diameter, length of the borehole, and the soil properties at the site. The objective of this paper is to present an overview of some aspects related to bending of the product pipe during HDD operations, which is closely related to the borehole path as the pipeline conforms to the curvature of the hole. An overview of the aspects related to tensile forces is also presented. The combined effect of bending and tensile forces during the pullback operation is discussed. (author)
Secondary turbulent flow in an infinte bend
Christensen, H. Bo; Gislason, Kjartan; Fredsøe, Jørgen
1999-01-01
The flow in an infinite circular bend is inverstigated in both the laminar and fully turbulent flow case, by use of laminar flow solver, a k-e turbulence model, and a fully Reynolds stress turbulence model. The topic of the analysis is to investigate whether a counter-rotating secondary flow cell...... is formed near the surface at the outer bank. This cell might help to stabilise the bank and hereby be an important factor for the morphology in a meandering river. In the laminar runs stability criterion related to a Dean number was estabilshed. In the simulations with the k-e model and the Reynolds stress...... model, the influence of the curvature ratio and cross section geometry on the vortex pattern is investigated. Furthermore, it is demonstrated that an-isotropy of turbulence plays an important role for the structure of flow pattern and existence of an extra flow cell....
Bending moment of galvanized iron glass fiber sandwich panel
Gurustal Somnath Swamy
2016-05-01
Full Text Available The main objective of this project is to prepare a laminated with Galvanized iron thickness fractions, fiber volume fractions and orientation in the layers of GF were fabricated by hand lay-up method and evaluated for their bending moment properties of the sandwich panel using universal testing machine. This paper theoretically calculates the bending behavior of sandwich panel. The recent need to develop a new range of materials has resulted in the development of high performance lightweight composites with excellent properties. Metal– composite systems consist of alternating layers of metal and fiber-reinforced polymer composites which are bonded by an adhesive. Sandwich beams were tested under Air Bending. Stress-strain and stress-displacement were recorded by using AIMIL UTM. The beam face sheets exhibited a softening non-linearity on the bending side. Experimental results were in good agreement with predictions from simple models. On an overall basis, the sandwich panel exhibited better bending moment performance than the monolithic galvanized iron
Konstandinos G. Raptis
2012-01-01
Full Text Available Purpose of this study is the consideration of loading and contact problems encountered at rotating machine elements and especially at toothed gears. The later are some of the most commonly used mechanical components for rotary motion and power transmission. This fact proves the necessity for improved reliability and enhanced service life, which require precise and clear knowledge of the stress field at gear tooth. This study investigates the maximum allowable stresses occurring during spur gear tooth meshing computed using Niemannâs formulas at Highest Point of Single Tooth Contact (HPSTC. Gear material, module, power rating and number of teeth are considered as variable parameters. Furthermore, the maximum allowable stresses for maximum power transmission conditions are considered keeping the other parameters constant. After the application of Niemannâs formulas to both loading cases, the derived results are compared to the respective estimations of Finite Element Method (FEM using ANSYS software. Comparison of the results derived from Niemannâs formulas and FEM show that deviations between the two methods are kept at low level for both loading cases independently of the applied power (either random or maximum and the respective tangential load.
INVESTIGATION OF STRESSES IN ARM TYPE ROTATING FLYWHEEL
S. M. Dhengle
2012-02-01
Full Text Available There are many causes of flywheel failure. Among them, maximum tensile and bending stresses induced in the rim and tensile stresses induced in the arm under the action of centrifugal forces are the main causes of flywheel failure. Hence in this work evaluation of stresses in the rim and arm are studied using finite element method and results are validated by analytical calculations .The models of flywheel having four, six and eight no. arms are developed for FE analysis. The FE analysis is carried out for different cases of loading applied on the flywheel and the maximum Von mises stresses and deflection in the rim are determined. From this analysis it is found that Maximum stresses induced are in the rim and arm junction. Due to tangential forces, maximum bending stresses occurs near the hub end of the arm. It is also observed that for low angular velocity the effect gravity on stresses and deflection of rim and arm is predominant.
Tube bending on the roll machine
Nepershin, Rostislav I.
2013-10-01
Computer simulation of the elastic-plastic tube bending by pushing on three-roll machine with work hardening effect consideration is presented. Non-steady tube bending process for specified curvature is simulated with axis of bending roll displacement, followed by transfer to the steady-state bending process. Estimation of curvature, constrained by tube section elliptical distortion modeled by plastic hinge mechanism is given. Elastic-plastic bending moment versus curvature and critical curvature estimation reasonably correlated with experiments.
无
2000-01-01
A new kind of bend sensor is introduced.It can be used to detect the bend angle of an object or inclination between two objects.It has characteristics of small size, lightweight, high reliability, fine flexibility and plasticity.When this bend sensor is used with a proper converting circuit, it can implement dynamic measuring the bend angle of an object conveniently.The application of the bend sensor in dataglove is also described.
Design of an impedance matching acoustic bend
Yang, Yuzhen; Jia, Han; Lu, Wenjia; Sun, Zhaoyong; Yang, Jun
2017-01-01
We propose the design of an impedance matching acoustic bend in this article. The bending structure is composed of sub-wavelength unit cells with perforated plates and side pipes, whose mass density and bulk modulus can be tuned simultaneously. So the refraction index and the impedance of the acoustic bend can be modulated simultaneously to guarantee both the bending effect and the high transmission. The simulation results of sound pressure field distribution show that the bending effect of t...
Simulation of non-Newtonian oil-water core annular flow through return bends
Jiang, Fan; Wang, Ke; Skote, Martin; Wong, Teck Neng; Duan, Fei
2017-07-01
The volume of fluid (VOF) model is used together with the continuum surface force (CSF) model to numerically simulate the non-Newtonian oil-water core annular flow across return bends. A comprehensive study is conducted to generate the profiles of pressure, velocity, volume fraction and wall shear stress for different oil properties, flow directions, and bend geometries. It is revealed that the oil core may adhere to the bend wall under certain operating conditions. Through the analysis of the total pressure gradient and fouling angle, suitable bend geometric parameters are identified for avoiding the risk of fouling.
A NOVEL METHOD FOR ESTIMATING SOIL PRECOMPRESSION STRESS FROM UNIAXIAL CONFINED COMPRESSION TESTS
Lamandé, Mathieu; Schjønning, Per; Labouriau, Rodrigo
2017-01-01
The concept of precompression stress is used for estimating soil strength of relevance to fieldtraffic. It represents the maximum stress experienced by the soil. The most recently developed fitting method to estimate precompression stress (Gompertz) is based on the assumption of an S-shape stress......-strain curve, which is not always fulfilled. A new simple numerical method was developed to estimate precompression stress from stress-strain curves, based solely on the sharp bend on the stress-strain curve partitioning the curve into an elastic and a plastic section. Our study had three objectives: (i......) Assessing the utility of the numerical method by comparison with the Gompertz method; (ii) Comparing the estimated precompression stress to the maximum preload of test samples; (iii) Determining the influence that soil type, bulk density and soil water potential have on the estimated precompression stress...
Elastostatic bending of a bimaterial plate with a circular interface
Ogbonna, Nkem
2015-08-01
The elastostatic bending of an arbitrarily loaded bimaterial plate with a circular interface is analysed. It is shown that the deflections in the composite solid are directly related to the deflection in the corresponding homogeneous material by integral and differential operators. It is further shown that, by a simple transformation of elastic constants, the Airy stress function induced in the composite by a stretching singularity can be deduced from the deflection induced by a bending singularity. This result is significant for reduction of mathematical labour and for systematic construction of solutions for more complex structures with circular geometry.
Origin of bending in uncoated microcantilever - Surface topography?
Lakshmoji, K.; Prabakar, K.; Tripura Sundari, S., E-mail: sundari@igcar.gov.in; Jayapandian, J.; Tyagi, A. K.; Sundar, C. S. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)
2014-01-27
We provide direct experimental evidence to show that difference in surface topography on opposite sides of an uncoated microcantilever induces bending, upon exposure to water molecules. Examination on opposite sides of the microcantilever by atomic force microscopy reveals the presence of localized surface features on one side, which renders the induced stress non-uniform. Further, the root mean square inclination angle characterizing the surface topography shows a difference of 73° between the opposite sides. The absence of deflection in another uncoated microcantilever having similar surface topography confirms that in former microcantilever bending is indeed induced by differences in surface topography.
Strain localization and damage development in 2060 alloy during bending
Xiao Jin; Bao-qin Fu; Cheng-lu Zhang; Wei Liu
2015-01-01
The microstructure evolution and damage development of the third-generation Al–Li alloy 2060 (T8) were studied using in situ bending tests. Specimens were loaded with a series of punches of different radii, and the microstructure evolution was studied by scanning electron microscopy, electron backscatter diffraction, and digital image correlation (DIC) methods. The evolution of the microscopic fracture strain distribution and microstructure in 2060 alloy during bending was characterized, where the dispersion distribution of precipitates was recorded by backscattered electron imaging and later inputted into a DIC system for strain calculations. The experimental results showed that strain localization in the free surface of bent specimens induced damage to the microstructure. The region of crack initiation lies on the free surface with maximum strain, and the shear crack propagates along the macro-shear band in the early stages of bending. Crack propagation in the later stages was interpreted on the basis of the conventional mechanism of ductile fracture.
EXPERIMENTAL STUDY OF 3-D TURBULENT BEND FLOWS IN OPEN CHANNEL
LIU Yue-qin; ZHENG Shao-wen; WU Qiang
2005-01-01
A generalized bend flow model, treating a 90° single bend and 60° continuous bends, was designed to quantitatively describe 3-D turbulence mechanism of circulating not-fully-developed flow in open channels with bends.The 3-D fluctuating velocities of turbulent flow were measured and analyzed with a 3-D acoustic-Doppler velocimeter.Formula for 3-D turbulent intensity was derived using the dimension analysis approach.Expressions of vertical turbulent-intensity distributions were obtained with the multivariant-regression theory, which agree with experiment data.Distributions of turbulent intensity and turbulent stress were characterized, and their relationships were concluded.In the bend-turbulent-flow core region, longitudinal and lateral turbulent-intensity distributions are coincident with linear distribution, but in near-wall region are coincident with the Gamma distribution.Vertical turbulent intensity distributions are coincident with the Rayleigh distribution.Herein, it is concluded that the bend turbulence is anisotropic.
王珊
2013-01-01
通过引入弯矩函数和恰当的变换，环扇形薄板弯曲问题可导入到二类变量的辛空间，应用分离变量以及辛本征函数展开的数学物理方法进行解析求解。首先，从环扇形薄板弯曲问题的通解出发，讨论了两直边固支，以及一直边自由、另一直边固支边界条件的板，给出了这两种边界条件下相关问题的辛本征解。其次，对相应边界条件下V形切口尖端应力奇异性进行了讨论。环扇形薄板弯曲问题的成功求解再次验证了辛对偶体系方法的有效性。%By introducing bending moment functions and appropriate transformations ,the bending problem of a circular sector thin plate can be led into the symplectic space with two kinds of variables and solved using the methods of mathematical physics of a scheme of separation of variables and symplectic eigenexpansion . Firstly , based on the general solution for the bending problem of the circular sector thin plate ,plates with both straight sides clamped ,and with one straight side free and the other straight side clamped are discussed , and their symplectic eigensolutions are obtained . Secondly ,the stress singularities around the V-shaped notch in a thin plate are analyzed .The validity of methodology of symplectic duality system is verified by the successful solution of bending problem of a circular sector thin plate .
Mohammad Derikvand; Ghanbar Ebrahimi
2014-01-01
We studied the effect of loose tenon dimensions on stress and strain distributions in T-shaped mortise and loose tenon (M<) furni-ture joints under uniaxial bending loads, and determined the effects of loose tenon length (30, 45, 60, and 90 mm) and loose tenon thickness (6 and 8 mm) on bending moment capacity of M< joints constructed with polyvinyl acetate (PVAc) adhesive. Stress and strain distributions in joint elements were then estimated for each joint using ANSYS finite element (FE) software. The bending moment capacity of joints increased significantly with thickness and length of the tenon. Based on the FE analysis results, under uniaxial bending, the highest shear stress values were obtained in the middle parts of the tenon, while the highest shear elastic strain values were estimated in glue lines between the tenon sur-faces and walls of the mortise. Shear stress and shear elastic strain values in joint elements generally increased with tenon dimensions and corre-sponding bending moment capacities. There was consistency between predicted maximum shear stress values and failure modes of the joints.
Hysteresis of the resonance frequency of magnetostrictive bending cantilevers
Löffler, Michael; Kremer, Ramona; Sutor, Alexander; Lerch, Reinhard
2015-05-01
Magnetostrictive bending cantilevers are applicable for wirelessly measuring physical quantities such as pressure and strain. Exploiting the ΔE-effect, the resonance frequency of the cantilevers is shifted because of a change in the magnetic biasing field. The biasing field, in turn, depends on the applied pressure or strain, respectively. With a view to the application as a reliable sensor, maximum sensitivity but minimum hysteresis in the biasing field/resonance frequency dependence is preferred. In this contribution, monomorph bending cantilevers fabricated using magnetostrictive Fe49Co49V2 and Metglas 2605SA1 are investigated regarding their applicability for future sensors. For this purpose, the biasing field-dependent polarization of the magnetostrictive materials and bending of the cantilevers are determined. Furthermore, a setup to magnetically bias the cantilevers and determine the bending resonance frequency is presented. Here, the resonance frequency is identified by measuring the impulse response employing a laser Doppler vibrometer. The measurement results reveal that cantilevers made of Fe49Co49V2 possess a distinct hysteretic behaviour at low magnetic biasing field magnitudes. This is ascribed to the polarization and bending hysteresis. Cantilevers fabricated using Metglas 2605SA1 feature a lower resonance frequency shift compared to cantilevers with Fe49Co49V2, which would result in a lower sensitivity of the sensor. However, their resonance frequency hysteresis is almost negligible.
The Influence of Secondary Bending on Fatigue Life Improvement in Bolted Joints
1993-08-01
Canberra) ASTA Engineering, Document Control Office Ansett Airlines of Australia, Library Qantas Airways Limit»! . Hawker de Havilland Aast Pty Ltd...320 MPa. The four non-bending specimens were tested at a net-area stress level of 350 MPa only. SPATE (Stress Pattern Analysis by measurement of...Lives A two-way analysis of variance of the fatigue data from the secondary-bending specimens (Table 4) indicated that cold expansion provides a
Brightness of synchrotron radiation from undulators and bending magnets
Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2014-07-15
We consider the maximum of the Wigner distribution (WD) of synchrotron radiation (SR) fields as a possible definition of SR source brightness. Such figure of merit was originally introduced in the SR community by Kim. The brightness defined in this way is always positive and, in the geometrical optics limit, can be interpreted as maximum density of photon flux in phase space. For undulator and bending magnet radiation from a single electron, the WD function can be explicitly calculated. In the case of an electron beam with a finite emittance the brightness is given by the maximum of the convolution of a single electron WD function and the probability distribution of the electrons in phase space. In the particular case when both electron beam size and electron beam divergence dominate over the diffraction size and the diffraction angle, one can use a geometrical optics approach. However, there are intermediate regimes when only the electron beam size or the electron beam divergence dominate. In this asymptotic cases the geometrical optics approach is still applicable, and the brightness definition used here yields back once more the maximum photon flux density in phase space. In these intermediate regimes we find a significant numerical disagreement between exact calculations and the approximation for undulator brightness currently used in literature. We extend the WD formalism to a satisfactory theory for the brightness of a bending magnet. We find that in the intermediate regimes the usually accepted approximation for bending magnet brightness turns out to be inconsistent even parametrically.
Bending behavior of lapped plastic ehv cables
Morgan, G H; Muller, A C
1980-01-01
One of the factors delaying the development of lapped polymeric cables has been their reputed poor bending characteristics. Complementary programs were begun at BNL several years ago to mathematically model the bending of synthetic tape cables and to develop novel plastic tapes designed to have moduli more favorable to bending. A series of bend tests was recently completed to evaluate the bending performance of several tapes developed for use in experimental superconducting cables. The program is discussed and the results of the bend tests are summarized.
Hormonal regulation of gravitropic bending
Hu, X.; Cui, D.; Xu, X.; Hu, L.; Cai, W.
Gravitropic bending is an important subject in the research of plant Recent data support the basics of the Cholodny-Went hypothesis indicating that differential growth in gravitropism is due to redistribution of auxin to the lower sides of gravistimulated roots but little is known regarding the molecular details of such effects So we carried a series of work surround the signals induced by auxin end center We found the endogenous signaling molecules nitric oxide NO and cGMP mediate responses to gravistimulation in primary roots of soybean Glycine max Horizontal orientation of soybean roots caused the accumulation of both NO and cGMP in the primary root tip Fluorescence confocal microcopy revealed that the accumulation of NO was asymmetric with NO concentrating in the lower side of the root Auxin induced NO accumulation in root protoplasts and asymmetric NO accumulation in root tips Gravistimulation NO and auxin also induced the accumulation of cGMP a response inhibited by removal of NO or by inhibitors of guanylyl cyclase compounds that also reduced gravitropic bending Asymmetric NO accumulation and gravitropic bending were both inhibited by an auxin transport inhibitor and the inhibition of bending was overcome by treatment with NO or 8-bromo-cGMP a cell-permeable analog of cGMP These data indicate that auxin-induced NO and cGMP mediate gravitropic curvature in soybean roots From Hu et al Plant Physiol 2005 137 663-670 The asymmetric distribution of auxin plays a fundamental role in plant gravitropic bending
A Novel Rotary Piezoelectric Motor Using First Bending Hybrid Transducers
Yingxiang Liu
2015-08-01
Full Text Available We report a novel rotary piezoelectric motor using bending transducers in this work. Three transducers are used to drive a disk-shaped rotor together by the elliptical movements of their driving tips; these motions are produced by the hybrid of two first bending vibration modes. The proposed piezoelectric transducer has a simple structure as it only contains an aluminum alloy beam and four pieces of PZT plates. Symmetrical structure is the only necessary condition in the design process as it will ensure the resonance frequencies of the two orthogonal first bending modes are equal. Transducers with first bending resonance frequency of about 53 kHz were fabricated and assembled into a rotary motor. The proposed motor exhibits good performance on speed and torque control. Under a working frequency of 53.2 kHz, the maximum no-load speed and the maximum torque of the prototype are tested to be 53.3 rpm and of 27 mN·m.
Bending of the looping heart: differential growth revisited.
Shi, Yunfei; Yao, Jiang; Xu, Gang; Taber, Larry A
2014-08-01
In the early embryo, the primitive heart tube (HT) undergoes the morphogenetic process of c-looping as it bends and twists into a c-shaped tube. Despite intensive study for nearly a century, the physical forces that drive looping remain poorly understood. This is especially true for the bending component, which is the focus of this paper. For decades, experimental measurements of mitotic rates had seemingly eliminated differential growth as the cause of HT bending, as it has commonly been thought that the heart grows almost exclusively via hyperplasia before birth and hypertrophy after birth. Recently published data, however, suggests that hypertrophic growth may play a role in looping. To test this idea, we developed finite-element models that include regionally measured changes in myocardial volume over the HT. First, models based on idealized cylindrical geometry were used to simulate the bending process in isolated hearts, which bend without the complicating effects of external loads. With the number of free parameters in the model reduced to the extent possible, stress and strain distributions were compared to those measured in embryonic chick hearts that were isolated and cultured for 24 h. The results show that differential growth alone yields results that agree reasonably well with the trends in our data, but adding active changes in myocardial cell shape provides closer quantitative agreement with stress measurements. Next, the estimated parameters were extrapolated to a model based on realistic 3D geometry reconstructed from images of an actual chick heart. This model yields similar results and captures quite well the basic morphology of the looped heart. Overall, our study suggests that differential hypertrophic growth in the myocardium (MY) is the primary cause of the bending component of c-looping, with other mechanisms possibly playing lesser roles.
Zhang, Xiangyang; Li, Yong; Van Hoa, Suong; Xiao, Jun; Chu, Qiyi
2017-08-01
Skin/stiffener debonding has been a longstanding concern for the users of stiffened composite panels in long-term service. Z-pinning technology is an emerging solution to reinforce the composite assembly joints. This work experimentally characterizes the progressive debonding of Z-pinned skin/stiffener interface with the skin under static bend loading. The three-stage failure process is identified as: flange edge debonding, pin/laminate debonding, and ultimate structural failure. Three different distribution patterns were compared in terms of the static debonding properties revealed the affirmative fact that locating pins in high normal stress regions, that is close to the flange edges in skin/stiffener structures, is more beneficial to utilize the full potential of Z-pinning reinforcement. The unit strip FE model was developed and demonstrated effective to analysis the effect of Z-pin distribution on the ultimate debond load. On the other hand, the evolution of fatigue cracks at Z-pinned skin/flange interface was investigated with a series of displacement-controlled fatigue bending tests and microscopic observations. Results show that Z-pinning postpones crack initiations at low displacement levels, and the remarkable crack-arresting function of pins enables the structure a prolonged fatigue life. However, pins become less effective when the maximum displacement exceeds the crack initiation level due to gradually pullout of pins.
Rotary-bending fatigue characteristics of medical-grade Nitinol wire.
Pelton, A R; Fino-Decker, J; Vien, L; Bonsignore, C; Saffari, P; Launey, M; Mitchell, M R
2013-11-01
The rotary bending fatigue properties of medical-grade Nitinol wires were investigated under conditions of 0.5-10% strain amplitudes to a maximum of 10(7) cycles. The results from this study provide insight into the behavior of Nitinol under fully reversed (εmin/εmax=-1) fatigue conditions for three compositions, two surface conditions and three test temperatures. For pseudoelastic conditions there are four distinct regions of the strain-cycle curves that are related to phases (austenite, stress-induced martensite, and R-Phase) and their respective strain accommodation mechanisms. In contrast, there are only two regions for the strain-cycle curves for thermal martensite. It was further observed that the strain amplitude to achieve 10(7)-cycles increases with both decreasing test temperature and increasing transformation temperature. Fatigue behavior was not, however, strongly influenced by wire surface condition. SEM of the fracture surfaces showed that the fatigue fracture area increased with decreasing strain amplitude. Finite element analysis was used to illustrate strain distributions across the wire as well as to calculate the tension-compression contributions to the rotary bending curves. The results from this investigation are discussed with respect to mechanisms of strain accommodation under cyclic tensile and compressive conditions.
Analytical formulation for the bend-loss in single-ring hollow-core photonic crystal fibers
Frosz, Michael H; Günendi, Mehmet C; Russell, Philip St J
2016-01-01
Understanding bend-loss in single-ring hollow-core photonic crystal fibers is becoming of increasing importance as the fibers enter practical applications. While purely numerical approaches are useful, there is a need for a simpler analytical formalism that provides physical insight and can be directly used in the design of PCFs with low bend-loss. We show theoretically and experimentally that a wavelength-dependent critical bend radius exists below which the bend-loss reaches a maximum, and that this can be calculated from the structural parameters of a fiber using a simple analytical formula. This allows straightforward design of single-ring PCFs that are bend-insensitive for specified ranges of bend radius and wavelength. It also can be used to derive an expression for the bend radius that yields optimal higher-order mode suppression for a given fiber structure.
FFAG lattice without opposite bends
Trbojevic, Dejan; Courant, Ernest D.; Garren, Al
2000-08-01
A future "neutrino factory" or Muon Collider requires fast muon acceleration before the storage ring. Several alternatives for fast muon acceleration have previously been considered. One of them is the FFAG (Fixed Field Alternating Gradient) synchrotron. The FFAG concept was developed in 1952 by K. R. Symon (ref. 1). The advantages of this design are the fixed magnetic field, large range of particle energy, simple RF; power supplies are simple, and there is no transition energy. But a drawback is that reverse bending magnets are included in the configuration; this increases the size and cost of the ring. Recently some modified FFAG lattice designs have been described where the amount of opposite bending was significantly reduced (ref. 2, ref. 3).
FFAG lattice without opposite bends
Trbojevic, D; Garren, A
2000-01-01
A future 'neutrino factory' or Muon Collider requires fast muon acceleration before the storage ring. Several alternatives for fast muon acceleration have previously been considered. One of them is the FFAG (Fixed Field Alternating Gradient) synchrotron. The FFAG concept was developed in 1952 by K. R. Symon (ref. 1). The advantages of this design are the fixed magnetic field, large range of particle energy, simple RF; power supplies are simple, and there is no transition energy. But a drawback is that reverse bending magnets are included in the configuration; this increases the size and cost of the ring. Recently some modified FFAG lattice designs have been described where the amount of opposite bending was significantly reduced (ref. 2, ref. 3).
Scour and flow field around a spur dike in a 90° bend
Majid FAZLI; Masoud GHODSIAN; Seyed Ali Akbar Salehi NEYSHABOURI
2008-01-01
Spur dike is an important element in river training that creates rapid variations in flow field,sediment transport and bed topography.The mechanism of flow and sediment transport in a channel bend is very complex,especially when a spur dike is constructed in a bend.Most of previous investigations on flow behavior and scour around spur dike were carried out in straight channels.In this paper results of experiments on flow field and scour around a spur dike in a 90 degree channel bend are presented.Sand with uniform grain size was used as the bed material.Experiments were conducted for different locations and different lengths of spur dikes at the bend with different values of discharge.The three dimensional flow fields around a spur dike were investigated.The maximum depth of scour was correlated to the Froude numbers,lengths and the locations of spur dike in the bend.
Bending Characteristics of Foldable Touch Display Panel with a Protection Structure Design
Hsien-Chie Cheng
2015-01-01
Full Text Available The study proposes and demonstrates an enhancement of a touch display panel (TDP through a polymer-based protection structure to achieve higher bendability and reliability. The bending performance of the TDP without or with the protection structure designs is addressed using three-dimensional geometry-nonlinear finite element analysis and mechanical testing. The elastic properties of the components in the TDP structure are derived from nanoindentation and uniaxial tensile/compressive testing. The calculated results are compared with each other and also against the experimental bending fatigue test data. At last, a design guideline and optimal factor setting for enhanced bending performance are sought through parametric FE analysis and Taguchi experimental design, respectively. The optimal design is compared with the original in terms of bending stress. The simulation results show that bending would create significant tensile and compressive bending stresses on the indium tin oxide/dielectric layers, which are the main cause of several commonly observed failures, such as thin film cracking and delamination, in a thin rigid film coating on a thick compliant substrate. It also turns out that a substrate with a lower stiffness has a better mechanical stability against bending stress.
Bending Moment Calculations for Piles Based on the Finite Element Method
Yu-xin Jie
2013-01-01
Full Text Available Using the finite element analysis program ABAQUS, a series of calculations on a cantilever beam, pile, and sheet pile wall were made to investigate the bending moment computational methods. The analyses demonstrated that the shear locking is not significant for the passive pile embedded in soil. Therefore, higher-order elements are not always necessary in the computation. The number of grids across the pile section is important for bending moment calculated with stress and less significant for that calculated with displacement. Although computing bending moment with displacement requires fewer grid numbers across the pile section, it sometimes results in variation of the results. For displacement calculation, a pile row can be suitably represented by an equivalent sheet pile wall, whereas the resulting bending moments may be different. Calculated results of bending moment may differ greatly with different grid partitions and computational methods. Therefore, a comparison of results is necessary when performing the analysis.
Electrical Reliability of a Film-Type Connection during Bending
Ryosuke Mitsui
2015-10-01
Full Text Available With the escalating demands for downsizing and functionalizing mobile electronics, flexible electronics have become an important aspect of future technologies. To address limitations concerning junction deformation, we developed a new connection method using a film-type connector that is less than 0.1 mm thick. The film-type connector is composed of an organic film substrate, a UV-curable adhesive that deforms elastically under pressure, and electrodes that are arranged on the adhesive. The film-type connection relies on a plate-to-plate contact, which ensures a sufficient contact area. The electrical reliability of the film-type connection was investigated based on changes in the resistance during bending at curvature radii of 70, 50, 25, 10, 5, and 2.5 mm. The connection was bent 1000 times to investigate the reproducibility of the connector’s bending properties. The tests showed that no disconnections occurred due to bending in the vertical direction of the electrode, but disconnections were observed due to bending in the parallel direction at curvature radii of 10, 5, and 2.5 mm. In addition, the maximum average change in resistance was less than 70 milliohms unless a disconnection was generated. These results support the application of the new film-type connection in future flexible devices.
Bending and stretching of plates
Mansfield, E H; Hemp, W S
1964-01-01
The Bending and Stretching of Plates deals with elastic plate theory, particularly on small- and large-deflexion theory. Small-deflexion theory concerns derivation of basic equations, rectangular plates, plates of various shapes, plates whose boundaries are amenable to conformal transformation, plates with variable rigidity, and approximate methods. Large-deflexion theory includes general equations and some exact solutions, approximate methods in large-deflexion theory, asymptotic large-deflexion theories for very thin plates. Asymptotic theories covers membrane theory, tension field theory, a
Proteomic Analysis of Fruit Bending in Cucumber (Cucumis sativus L.)
WANG Li-li; ZHANG Peng; QIN Zhi-wei; ZHOU Xiu-yan
2014-01-01
In cucumber, fruit shape is an important quality criterion, and fruit bending is known to limit growth, yield, and taste. To investigate the post-transcriptional changes that regulate fruit bending and to better understand the underlying molecular mechanisms, we generated a proteomic proifle of the abdomen and back of cucumber bending fruit. Two-dimensional gel electrophoresis (2-DE) allowed the detection of approximately 900 distinct protein spots in each gel, 32 of which were differentially expressed in the abdomen and back of bending cucumber fruit. Ten of the differentially expressed proteins were analyzed using matrix-assisted laser ionization time of lfight mass spectrometry (MALDI-TOF/MS). A search of primary databases showed that the identiifed proteins are involved in various metabolic processes and cellular responses, including photosynthesis metabolism, energy metabolism, defense and stress response, and regulation. The identiifed proteins included large subunits of ribulose-1,5-bisphosphate carboxylase/oxygenase, which are involved in photosynthesis and photorespiratory metabolism, and isocitrate dehydrogenase, which is involved in the tricarboxylic acid cycle. It is possible that imbalances in catabolic and anabolic processes directly affect the bending of cucumber fruit. The predicted function of the cobalamin-independent methionine synthase isozyme is closely related to ethylene biosynthesis; fruit bending may be regulated by ethylene, or by ethylene signaling crosstalk during fruit development. The 14-3-3 protein is usually considered to be a regulation-related protein, which plays a role in regulating cell hyperplasia, cell differentiation during growth, and apoptosis during senescence. Involvement of guanosine triphosphate (GTP)-binding proteins in signal transmission is known to regulate the development of cells in cucumber fruits and to play a role in fruit shape variation. Patterns of protein expression showed high repeatability. We hypothesize
Particle deposition in industrial duct bends.
Peters, Thomas M; Leith, David
2004-07-01
A study of particle deposition in industrial duct bends is presented. Particle deposition by size was measured by comparing particle size distributions upstream and downstream of bends that had geometries and flow conditions similar to those used in industrial ventilation. As the interior surface of the duct bend was greased to prevent particle bounce, the results are applicable to liquid drops and solid particles where duct walls are sticky. Factors investigated were: (i) flow Reynolds number (Re = 203 000, 36 000); (ii) particle Reynolds number (10 vertical); and (vii) construction technique (smooth, gored, segmented). Measured deposition was compared with models developed for bends in small diameter sampling lines (Re 20 microm, deposition was slightly greater in the horizontal-to-horizontal orientation than in the horizontal-to-vertical orientation due to gravitational settling. Penetration was not a multiplicative function of bend angle as theory predicts, due to the developing nature of turbulent flow in bends. Deposition in a smooth bend was similar to that in a gored bend; however, a tight radius segmented bend (R0 = 1.7) exhibited much lower deposition. For more gradual bends (3 < R0 < 12), curvature ratio had negligible effect on deposition.
Mechano sorptive behaviour of notched beams in bending
Jensen, Signe Kamp; Hoffmeyer, Preben
1996-01-01
Short term bending tests with end-notched beams at constant or varying moisture content have shown an apparent contradictory dependency between moisture content and strength. The higher the moisture content the higher the strength. Varying moisture results in particularly significant differences...... and by neglecting deformation due to shear. Compression stresses perpendicular to grain in excess of 6 MPa were found in the vicinity of the notch following a period of adsorption. Similarly, small tension stresses of the order 1 MPa were registered in this area when the specimens were at their most dry condition...
Garment-Integrated Bend Sensor
Guido Gioberto
2014-09-01
Full Text Available Garment-integrated sensors equip clothes with a smart sensing capability, while preserving the comfort of the user. However, this benefit can be to the detriment of sensing accuracy due to the unpredictability of garment movement (which affects sensor positioning and textile folds (which can affect sensor orientation. However, sensors integrated directly into garments or fabric structures can also be used to detect the movement of the garment during wearing. Specifically, a textile bend sensor could be used to sense folds in the garment. We tested a garment-integrated stitched sensor for five types of folds, stitched on five different weights of un-stretchable denim fabric and analyzed the effects of fold complexity and fabric stiffness, under un-insulated and insulated conditions. Results show that insulation improves the linearity and repeatability of the sensor response, particularly for higher fold complexity. Stiffer fabrics show greater sensitivity, but less linearity. Sensor response amplitude is larger for more complex fold geometries. The utility of a linear bending response (insulated and a binary shorting response (un-insulated is discussed. Overall, the sensor exhibits excellent repeatability and accuracy, particularly for a fiber-based, textile-integrated sensor.
BENDING BEHAVIOR OF RAYON AND WOOL TYPE POLYESTER FIBERS THERMAL TREATED
BORDEIANU Demetra L ă cr ă mioara
2014-05-01
Full Text Available Given the fact that bending rigidity influences to a great extent the product handle and considering that the market demands products with a soft, pleasant handle, one must pay a special attention to these characteristics and especially to the treatments that modify the bending rigidity. It was found that any mechanical or thermal treatment brings modifications of the bending rigidity, in terms of the fibers nature and treatment conditions. In most of the methods meant to determine the bending rigidity one must measure the amount of deflection of the fibers end in constant cross-section either under t he action of the weight. The textile products are subjected to flexion, to repeated and frequent bending due to knotting and kinking during both the processing and exploitation. All these result in the appearance of stresses of various natures depending on the fibers type. The strains and fiber destruction as the result of these stresses depend on a series of factors related to the fibers composition and in termolecular and intra-molecular structure, their yarn count, elastic modulus, fiber flexibility, finishing procedures or products texture, etc. Following the performed measurements, we calculated the bending rigidity for the witness samples and for thermally cured fibers; then we divided them in classes and we graphically represented their distribution in terms of the bending rigidity.
Residual stress around the cortical surface in bovine femoral diaphysis.
Yamada, Satoshi; Tadano, Shigeru
2010-04-01
Residual stress in living tissue plays an important role in mechanical strength. We have reported that residual stress exists in the bone tissue of a rabbit's tibiofibula. The purpose of this study is to measure the residual stress around the outer cortical region of bovine femoral diaphysis and to discuss the distribution of the stress. This work proposed the sin(2) psi method of X-ray diffraction to the measurement of residual stresses in bone tissue. In this method, residual stress can be estimated from the variation in the interplanar spacings orientated to a number of directions without the lattice strain in the stress direction. Four-point bending tests of strip specimens taken from bovine femoral diaphysis were carried out during X-ray irradiation in advance. In the proximal, middle, and distal sections of bovine femoral diaphyses, the residual stresses at the cortical surface were measured using characteristic Mo-Kalpha X-rays. The bending tests of strip specimens with X-ray irradiation showed that the method could reliably estimate residual stresses in the bone tissue. The residual stress of the bone axial direction was larger than that of the circumferential direction. The stresses in the middle part of five diaphyses along the bone axial direction were tensile. The maximum stress was 162 MPa at the lateral position and the minimum was 78 MPa at the posterior position. The residual stress in the bone axial direction varies around the circumferential region. In addition, the bone axial distributions of residual stresses were different in the proximal, middle, and distal sections of the individual femur. Furthermore, it was confirmed that residual stress in the bone tissue was released by the cutting out of the specimen. The residual stresses in bone tissue could be measured by this method. The results show that residual stress in the bone axial direction at the cortical surface in bovine femoral diaphysis is tensile and varies around the circumferential
FACTORS INFLUENCING BENDING RIGIDITY OF SUBMERGED VEGETATION
WU Long-hua; YANG Xiao-li
2011-01-01
The bending rigidity of submerged vegetation is closely related with vegetative drag force.This work aims at determining the effects of flow conditions and characteristics of vegetation on the bending rigidity of submerged vegetation.Based on the dimensional analysis method,the factors influencing the bending rigidity of individual submerged vegetation were analyzed.The relationship between the relative bending rigidity and its influencing factors was investigated by experimental observation,and a relative bending rigidity expression for submerged vegetation was obtained by means of multiple linear regression method.The results show that the submerged vegetation has three states under different inflow conditions,and the each critical relative bending rigidity of individual submerged vegetation was determined for the different states of submerged vegetation.
Elastic bending modulus of monolayer graphene
Lu Qiang; Huang Rui [Department of Aerospace Engineering and Engineering Mechanics, University of Texas, Austin, TX 78712 (United States); Arroyo, Marino [Department of Applied Mathematics 3, LaCaN, Universitat Politecnica de Catalunya (UPC), Barcelona 08034 (Spain)
2009-05-21
An analytic formula is derived for the elastic bending modulus of monolayer graphene based on an empirical potential for solid-state carbon atoms. Two physical origins are identified for the non-vanishing bending stiffness of the atomically thin graphene sheet, one due to the bond-angle effect and the other resulting from the bond-order term associated with the dihedral angles. The analytical prediction compares closely with ab initio energy calculations. Pure bending of graphene monolayers into cylindrical tubes is simulated by a molecular mechanics approach, showing slight nonlinearity and anisotropy in the tangent bending modulus as the bending curvature increases. An intrinsic coupling between bending and in-plane strain is noted for graphene monolayers rolled into carbon nanotubes. (fast track communication)
A model of the response of thermoplastic composites to bend-forming operations
Talbott, M.F.
1991-01-01
The model discussed in this dissertation describes the response of a thermoplastic composite laminate made from unidirection prepreg tape to operations which bend it into an arbitrarily complex singly-curved shape. It predicts, for any such bending, the extent of relative ply sliding and the stresses and strains which arise. The model contains several options for the process definition: for different locations along the laminate, the user may specify the curvatures, the perpendicular forces imposed, or the vertical displacements.
Design of U-Geometry Parameters Using Statistical Analysis Techniques in the U-Bending Process
Wiriyakorn Phanitwong; Untika Boochakul; Sutasn Thipprakmas
2017-01-01
The various U-geometry parameters in the U-bending process result in processing difficulties in the control of the spring-back characteristic. In this study, the effects of U-geometry parameters, including channel width, bend angle, material thickness, tool radius, as well as workpiece length, and their design, were investigated using a combination of finite element method (FEM) simulation, and statistical analysis techniques. Based on stress distribution analyses, the FEM simulation results ...
Bending characteristic of a cantilevered magnetostrictive film-substrate system
B.; Narsu
2007-01-01
The bending problem of a film-substrate cantilever with arbitrary film-to-substrate thickness ratio is solved exactly by employing the force equilibrium equation, and then the optimization and application of the bending characteristic of the magne-tostrictive cantilever is discussed. Furthermore, the influence of geometrical and physical parameters of the two cantilever components on the maximum free-end deflection of the cantilever is addressed. The results indicate that as the substrate thickness is kept constant, the greater film-to-substrate stiffness ratio will induce a larger deflection, while for the case of fixed total cantilever thickness, the optimal cantilever deflection is independent of the physical parameters of the materials such as Young’s modulus and Poisson’s ratio.
Bending characteristic of a cantilevered magnetostrictive film-substrate system
B. Narsu; YUN GuoHong
2007-01-01
The bending problem of a film-substrate cantilever with arbitrary film-to-substrate thickness ratio is solved exactly by employing the force equilibrium equation, and then the optimization and application of the bending characteristic of the magnetostrictive cantilever is discussed. Furthermore, the influence of geometrical and physical parameters of the two cantilever components on the maximum free-end deflection of the cantilever is addressed. The results indicate that as the substrate thickness is kept constant, the greater film-to-substrate stiffness ratio will induce a larger deflection, while for the case of fixed total cantilever thickness, the optimal cantilever deflection is independent of the physical parameters of the materials such as Young's modulus and Poisson's ratio.
Brightness of synchrotron radiation from undulators and bending magnets.
Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni
2015-03-01
The maximum of the Wigner distribution (WD) of synchrotron radiation (SR) fields is considered as a possible definition of SR source brightness. Such a figure of merit was originally introduced in the SR community by Kim [(1986), Nucl. Instrum. Methods Phys. Res. A, 246, 71-76]. The brightness defined in this way is always positive and, in the geometrical optics limit, can be interpreted as the maximum density of photon flux in phase space. For undulator and bending magnet radiation from a single electron, the WD function can be explicitly calculated. In the case of an electron beam with a finite emittance the brightness is given by the maximum of the convolution of a single electron WD function and the probability distribution of the electrons in phase space. In the particular case when both electron beam size and electron beam divergence dominate over the diffraction size and the diffraction angle, one can use a geometrical optics approach. However, there are intermediate regimes when only the electron beam size or the electron beam divergence dominate. In these asymptotic cases the geometrical optics approach is still applicable, and the brightness definition used here yields back once more to the maximum photon flux density in phase space. In these intermediate regimes a significant numerical disagreement is found between exact calculations and the approximation for undulator brightness currently used in the literature. The WD formalism is extended to a satisfactory theory for the brightness of a bending magnet. It is found that in the intermediate regimes the usually accepted approximation for bending magnet brightness turns out to be inconsistent even parametrically.
Ovalization of Tubes Under Bending and Compression
Demer, L J; Kavanaugh, E S
1944-01-01
An empirical equation has been developed that gives the approximate amount of ovalization for tubes under bending loads. Tests were made on tubes in the d/t range from 6 to 14, the latter d/t ratio being in the normal landing gear range. Within the range of the series of tests conducted, the increase in ovalization due to a compression load in combination with a bending load was very small. The bending load, being the principal factor in producing the ovalization, is a rather complex function of the bending moment, d/t ratio, cantilever length, and distance between opposite bearing faces. (author)
... diabetes. Shopdiabetes.org: Your Stress-Free System for Family Dinners! - 2017-03-book-oclock-scramble.html Shopdiabetes.org Your Stress-Free System for Family Dinners! A year of delicious meals to help prevent ...
... sudden negative change, such as losing a job, divorce, or illness Traumatic stress, which happens when you ... stress, so you can avoid more serious health effects. NIH: National Institute of Mental Health
Effects of stem structure and cell wall components on bending strength in wheat
无
2006-01-01
Morphological traits, anatomical features, chemical components and bending stress in the stems of three genotypes of wheat (Triticum aestivum L.), namely Xiaoyan54, 8602 and Xiaoyan81, were examined by means of light microscopy coupled with Fourier transform infrared spectroscopy (FTIR). Noticeable changes in morphological and anatomical traits were observed, including outer radius of stem, the ratio of stem outer radius to stem wall thickness, various tissue proportions and variations among different types of vascular bundles. The results of chemical analysis revealed that Xiaoyan81 had the highest cellulose content in comparison with Xiaoyan54 and 8602, whereas lignin level in Xiaoyan81 was lower than that in 8602 but higher that that in Xiaoyan54. Bending stress analysis demonstrated that Xiaoyan81 may be the main target for identification, for it had the highest bending stress among the stems of three genotypes. Associated with bending stress, all the results presented here suggested that the ratio of stem wall thickness to its outer radius, schlerenchyma tissue proportion, the average number of big VB per unit and the cellulose content are four important factors affecting the mechanical strength of Xiaoyan81 wheat stems, which can be considered as the key parameters for selecting varieties with bending stress. Therefore, it was suggested that in the selection of lodging resistant cultivars one should consider those characterized with large ratio of outer radius of stem to stem wall thickness, greaterschlerenchyma tissue proportion, high average number of big VB per unit with high cellulose content in their stems.
How two-dimensional bending can extraordinarily stiffen thin sheets
Pini, V.; Ruz, J. J.; Kosaka, P. M.; Malvar, O.; Calleja, M.; Tamayo, J.
2016-07-01
Curved thin sheets are ubiquitously found in nature and manmade structures from macro- to nanoscale. Within the framework of classical thin plate theory, the stiffness of thin sheets is independent of its bending state for small deflections. This assumption, however, goes against intuition. Simple experiments with a cantilever sheet made of paper show that the cantilever stiffness largely increases with small amounts of transversal curvature. We here demonstrate by using simple geometric arguments that thin sheets subject to two-dimensional bending necessarily develop internal stresses. The coupling between the internal stresses and the bending moments can increase the stiffness of the plate by several times. We develop a theory that describes the stiffness of curved thin sheets with simple equations in terms of the longitudinal and transversal curvatures. The theory predicts experimental results with a macroscopic cantilever sheet as well as numerical simulations by the finite element method. The results shed new light on plant and insect wing biomechanics and provide an easy route to engineer micro- and nanomechanical structures based on thin materials with extraordinary stiffness tunability.
Klein, Fred W.
2016-01-01
Several lines of earthquake evidence indicate that the lithospheric plate is broken under the load of the island of Hawai`i, where the geometry of the lithosphere is circular with a central depression. The plate bends concave downward surrounding a stress-free hole, rather than bending concave upward as with past assumptions. Earthquake focal mechanisms show that the center of load stress and the weak hole is between the summits of Mauna Loa and Mauna Kea where the load is greatest. The earthquake gap at 21 km depth coincides with the predicted neutral plane of flexure where horizontal stress changes sign. Focal mechanism P axes below the neutral plane display a striking radial pattern pointing to the stress center. Earthquakes above the neutral plane in the north part of the island have opposite stress patterns; T axes tend to be radial. The M6.2 Honomu and M6.7 Kiholo main shocks (both at 39 km depth) are below the neutral plane and show radial compression, and the M6.0 Kiholo aftershock above the neutral plane has tangential compression. Earthquakes deeper than 20 km define a donut of seismicity around the stress center where flexural bending is a maximum. The hole is interpreted as the soft center where the lithospheric plate is broken. Kilauea's deep conduit is seismically active because it is in the ring of maximum bending. A simplified two-dimensional stress model for a bending slab with a load at one end yields stress orientations that agree with earthquake stress axes and radial P axes below the neutral plane. A previous inversion of deep Hawaiian focal mechanisms found a circular solution around the stress center that agrees with the model. For horizontal faults, the shear stress within the bending slab matches the slip in the deep Kilauea seismic zone and enhances outward slip of active flanks.
Bending Angle Prediction Model Based on BPNN-Spline in Air Bending Springback Process
Zhefeng Guo; Wencheng Tang
2017-01-01
In order to rapidly and accurately predict the springback bending angle in V-die air bending process, a springback bending angle prediction model on the combination of error back propagation neural network and spline function (BPNN-Spline) is presented in this study. An orthogonal experimental sample set for training BPNN-Spline is obtained by finite element simulation. Through the analysis of network structure, the BPNN-Spline black box function of bending angle prediction is established, an...
Maximum Autocorrelation Factorial Kriging
Nielsen, Allan Aasbjerg; Conradsen, Knut; Pedersen, John L.
2000-01-01
This paper describes maximum autocorrelation factor (MAF) analysis, maximum autocorrelation factorial kriging, and its application to irregularly sampled stream sediment geochemical data from South Greenland. Kriged MAF images are compared with kriged images of varimax rotated factors from...
Flow resistance in a compound gravel-bed bend
Hossein Afzalimehr; Manouchehr Heidarpour; Alireza Salimi
2006-12-01
In this paper, the effect of a gravel-bed in a compound bend (similar to sinusoidal top view) of a natural river (Zayandehrud River ﬂowing through Isfahan, Iran) has been investigated for ﬂow resistance analysis, measuring the velocity with a micro current meter. The data were analysed and the following observations were made. In a compound bend, the law of the wall can be valid for up to 66% of the ﬂow depth from the bed. The parabolic law is the most effective method for the determination of shear velocity. Based on the existing criteria for verifying the equilibrium boundary layer, the ﬂow cannot be in equilibrium. The shear stress distribution and the sediment transport parameters have considerable inﬂuence on resistance to ﬂow. Froude number and the ﬂow depth relative to the representative gravel size have little effect on the ﬂow resistance estimation.
An analytic solution to asymmetrical bending problem of diaphragm coupling
无
2008-01-01
Because rigidity of either hub or rim of diaphragm coupling is much greater than that of the disk, and asymmetrical bending is under the condition of high speed revolution, an assumption is made that each circle in the middle plane before deforma-tion keeps its radius unchanged after deformation, but the plane on which the circle lies has a varying deflecting angle. Based on this assumption, and according to the principle of energy variation, the corresponding Euler's equation can be obtained, which has the primary integral. By neglecting some subsidiary factors, an analytic solution is obtained. Applying these formulas to a hyperbolic model of diaphragm, the results show that the octahedral shear stress varies less along either radial or thickness direction, but fluctu-ates greatly and periodically along circumferential direction. Thus asymmetrical bending significantly affects the material's fatigue.
Bending and rotational behaviour of semi-continuous composite beams
2008-01-01
Stresses and deflections were measured in various semi-continuous composite beams.The bending and rotational capacities of the composite connections were measured in terms of beam curvatures and deflections by using two full-scale semi-rigid composite frames with monotonic loadings.The effect of semi-rigid connections on the performance of composite beams with various loadings was compared with predictions and codes.The tests show that the semi-continuous composite beams are more economic and effective than the simple or continuous composite beams.The semi-rigid connections affect the bending capacities and beam deflections,so the connection behavior should be considered in the design of composite beams.Yielding analysis of the steel beam bottom flange has some influence on the deflection calculation of composite beams.
Suzuki, Toshiya; Mochizuki, Takashi; Ushimizu, Hidetaka; Miyazawa, Shinya; Tsurui, Nobuhiro; Masuda, Kohji
2017-07-01
Although we have already experimented on the bending of a thin catheter with acoustic radiation force using a single transducer, it is necessary to develop a method of bending a catheter in an arbitrary direction because the installation position of ultrasound transducers on a body surface is limited for application to various shapes of in vivo blood vessels. Therefore, we examined the bending of a thin catheter in the direction perpendicular to ultrasound propagation using a two-dimensional array transducer (1 MHz), which realizes not only the temporospatial design but also the dynamic variation of acoustic fields. Forming two focal points with opposite phases, where the amplitudes of the two points instantaneously have the positive and negative relationship, we confirmed the bending of a thin catheter in the direction perpendicular to ultrasound propagation. We used a thin catheter (diameter, 200 µm length, 50 mm) to obtain the maximum displacement of 220 µm, where the displacement was proportional to the square of the maximum sound pressure and the duty ratio. From these results, the acoustic energy densities observed in front of and behind the catheter are dominant for the bending of the thin catheter independent of ultrasound propagation. We also found that the distance between two focal points may improve the bending performance without requiring a precise position setting.
Discontinious Galerkin formulations for thin bending problems
Nguyen, T.D.
2008-01-01
A structural thin bending problem is essentially associated with a fourth-order partial differential equation. Within the finite element framework, the numerical solution of thin bending problems demands the use of C^1 continuous shape functions. Elements using these functions are challenging and di
Restorying the Self: Bending toward Textual Justice
Thomas, Ebony Elizabeth; Stornaiuolo, Amy
2016-01-01
In this essay, Ebony Elizabeth Thomas and Amy Stornaiuolo explore new trends in reader response for a digital age, particularly the phenomenon of bending texts using social media. They argue that bending is one form of "restorying," a process by which people reshape narratives to represent a diversity of perspectives and experiences that…
Anharmonic Bend-Stretch Coupling in Water
Lindner, Jörg; Vöhringer, Peter; Pshenichnikov, Maxim S.; Cringus, Dan; Wiersma, Douwe A.; Corkum, Paul; Jonas, David M.; Miller, R.J. Dwayne.; Weiner, Andrew M.
2006-01-01
Following excitation of the H-O-H bending mode of water molecules in solution the stretching mode region is monitored over its entire width. The anharmonic coupling between the two modes results in a substantial change of the transient stretch absorption that decays with the bend depopulation time.
Bandwidth engineering of photonic crystal waveguide bends
Borel, Peter Ingo; Frandsen, Lars Hagedorn; Harpøth, Anders;
2004-01-01
An effective design principle has been applied to photonic crystal waveguide bends fabricated in silicon-on-insulator material using deep UV lithography resulting in a large increase in the low-loss bandwidth of the bends. Furthermore, it is experimentally demonstrated that the absolute bandwidth...
Bends and splitters in graphene nanoribbon waveguides
Zhu, Xiaolong; Yan, Wei; Mortensen, N. Asger
2013-01-01
We investigate the performance of bends and splitters in graphene nanoribbon waveguides. Although the graphene waveguides are lossy themselves, we show that bends and splitters do not induce any additional loss provided that the nanoribbon width is sub-wavelength. We use transmission line theory...
Millett, A. U.
1977-01-01
Combination protractor and scale for measuring tube bends has novel pivot that allows tube to remain in contact with scale arms for all bend angles. Device permits rapid and accurate scribing and measurement of mockup fluid lines to obtain production data.
Plausible cloth animation using dynamic bending model
Chuan Zhou; Xiaogang Jin; Charlie C.L. Wang; Jieqing Feng
2008-01-01
Simulating the mechanical behavior of a cloth is a very challenging and important problem in computer animation. The models of bending in most existing cloth simulation approaches are taking the assumption that the cloth is little deformed from a plate shape.Therefore, based on the thin-plate theory, these bending models do not consider the condition that the current shape of the cloth under large deformations cannot be regarded as the approximation to that before deformation, which leads to an unreal static bending. [This paper introduces a dynamic bending model which is appropriate to describe large out-plane deformations such as cloth buckling and bending, and develops a compact implementation of the new model on spring-mass systems. Experimental results show that wrinkles and folds generated using this technique in cloth simulation, can appear and vanish in a more natural way than other approaches.
Wire and Cable Cold Bending Test
Colozza, Anthony
2010-01-01
One of the factors in assessing the applicability of wire or cable on the lunar surface is its flexibility under extreme cold conditions. Existing wire specifications did not address their mechanical behavior under cold, cryogenic temperature conditions. Therefore tests were performed to provide this information. To assess this characteristic 35 different insulated wire and cable pieces were cold soaked in liquid nitrogen. The segments were then subjected to bending and the force was recorded. Any failure of the insulation or jacketing was also documented for each sample tested. The bending force tests were performed at room temperature to provide a comparison to the change in force needed to bend the samples due to the low temperature conditions. The results from the bending tests were plotted and showed how various types of insulated wire and cable responded to bending under cold conditions. These results were then used to estimate the torque needed to unroll the wire under these low temperature conditions.
Asymmetry in the effect of magnetic field on photon detection and dark counts in bended nanostrips
Semenov, A; Lusche, R; Ilin, K; Siegel, M; Hubers, H -W; Bralovic, N; Dopf, K; Vodolazov, D Yu
2015-01-01
Current crowding in the bends of superconducting nano-structures not only restricts measurable critical current in such structures but also redistributes local probabilities for dark and light counts to appear. Using structures from strips in the form of a square spiral which contain bends with the very same curvature with respect to the directions of bias current and external magnetic field, we have shown that dark counts as well as light count at small photon energies originate from areas around the bends. The minimum in the rate of dark counts reproduces the asymmetry of the maximum critical current density as function of the magnetic field. Contrary, the minimum in the rate of light counts demonstrate opposite asymmetry. The rate of light counts become symmetric at large currents and fields. Comparing locally computed absorption probabilities for photons and the simulated threshold detection current we found approximate location of areas near bends which deliver asymmetric light counts. Any asymmetry is a...
LI Xiang-yu; DING Hao-jiang; CHEN Wei-qiu
2006-01-01
This paper considers the pure bending problem of simply supported transversely isotropic circular plates with elastic compliance coefficients being arbitrary functions of the thickness coordinate. First, the partial differential equation, which is satisfied by the stress functions for the axisymmetric deformation problem is derived. Then, stress functions are obtained by proper manipulation. The analytical expressions of axial force, bending moment and displacements are then deduced through integration.And then, stress functions are employed to solve problems of transversely isotropic functionally graded circular plate, with the integral constants completely determined from boundary conditions. An elasticity solution for pure bending problem, which coincides with the available solution when degenerated into the elasticity solutions for homogenous circular plate, is thus obtained.A numerical example is finally presented to show the effect of material inhomogeneity on the elastic field in a simply supported circular plate of transversely isotropic functionally graded material (FGM).
Experimental Study of the Effect of W-weir on Reduction of Scour Depth at 90 Degree Sharp Bend
Vida Atashi
2017-02-01
Full Text Available Introduction: Flow patterns within the river bend is three dimensional. Occurrence of secondary flow due to centrifugal force and formation of helicoidally vortex in river bend usually causes the outer bank of river erodes whilst the sediment are deposited in inner bend which appears in the form of point bars. To reduce the river bank scour, many techniques have been developed which may be classified as covering technique and modified flow patterns methods. The W-weir is among such structures. In the present paper, by measuring three components of flow velocity with and without presence of W-weir, variation of flow patterns and shear stress distribution in a 90-degree sharp bend have been investigated. The main purpose of this study is to see the installation of different locations of W-weir in the bend on reduction of outer bank scour. In the present paper, by measuring three components of flow velocity with and without presence of W-weir, variation of flow patterns and shear stress distribution in a 90-degree sharp bend have been investigated. The analyses of data showed more uniform flow upstream of the weir and also revealed that the effect of transverse and centrifugal forces are modified in such a way that the secondary flow is diminished. The results showed that for 30, 60 and 90-degree bends maximum erosion depth in the vicinity of the outer bank with Froude number of 0.206 in comparison with 0.137 has increased up to 84, 90 and 118 % respectively. In both Froude numbers, installation of W-Weir in 30 degree has the most reduction in bed in comparison with 60 and 90 degree. Materials and Methods: To reach the goal of this study a physical model of 90 degree sharp bend was constructed in the hydraulic lab of Shahid Chamran university of Ahvaz. The ratio of R(radius/b(flume width was less than 2 which shows a sharp bend. The W-weir was built with 1mm galvanized steel. Flume bed was covered with sediment of D50=1.5mm. The W-weir was
49 CFR 195.212 - Bending of pipe.
2010-10-01
... 49 Transportation 3 2010-10-01 2010-10-01 false Bending of pipe. 195.212 Section 195.212... PIPELINE Construction § 195.212 Bending of pipe. (a) Pipe must not have a wrinkle bend. (b) Each field bend must comply with the following: (1) A bend must not impair the serviceability of the pipe. (2) Each...
A derivation of the generalized model of strains during bending of metal tubes at bending machines
Śloderbach Z.
2014-01-01
According to the postulate concerning a local change of the “actual active radius” with a bending angle in the bend zone, a generalized model of strain during metal tube bending was derived. The tubes should be subjected to bending at tube bending machines by the method of wrapping at the rotating template and with the use of a lubricated steel mandrel. The model is represented by three components of strain in the analytic form, including displacement of the neutral axis. Generalization of th...
Laser Micro Bending Process of Ti6Al4V Square Bar
Gang Chen
2014-06-01
Full Text Available Laser micro bending process of Ti6Al4V square bar are carried out using a 3D thermo-mechanical finite element analytical model (FEM. The transient temperature fields, displacement fields, stress fields and strain fields are obtained and analyzed. The results show that the bending angel during laser micro bending process is in good agreement with experimental measurements. The effects of process parameters on temperature and deformation are also investigated here. During the bending process the temperature increases with the increase of the laser power and the irradiation time. Radiation of the laser beam yields to a rapid temperature increase at the irradiated surface, which leads to the high temperature gradients between the irradiated surface and the unirradiated surface, which suggest that the mechanism of laser micro bending is the temperature gradient mechanism. The z displacement of forward direction and reverse direction increase when the laser power and irradiation time increase. Laser micro bending process can obtain the larger bending angles reverse to laser beam using higher laser power and shorter irradiation time.
Design of U-Geometry Parameters Using Statistical Analysis Techniques in the U-Bending Process
Wiriyakorn Phanitwong
2017-06-01
Full Text Available The various U-geometry parameters in the U-bending process result in processing difficulties in the control of the spring-back characteristic. In this study, the effects of U-geometry parameters, including channel width, bend angle, material thickness, tool radius, as well as workpiece length, and their design, were investigated using a combination of finite element method (FEM simulation, and statistical analysis techniques. Based on stress distribution analyses, the FEM simulation results clearly identified the different bending mechanisms and effects of U-geometry parameters on the spring-back characteristic in the U-bending process, with and without pressure pads. The statistical analyses elucidated that the bend angle and channel width have a major influence in cases with and without pressure pads, respectively. The experiments were carried out to validate the FEM simulation results. Additionally, the FEM simulation results were in agreement with the experimental results, in terms of the bending forces and bending angles.
Elastoplastic dynamic analysis of strike-slip faults with bends using finite element method
Duan, B.; Day, S. M.
2006-12-01
Nonelastic off-fault response may play a role in rupture dynamics on geometrically complex faults, particularly in the vicinity of bends or other points of stress concentration. In this study, we have performed nonelastic dynamic analysis of strike-slip faults with bends by using a finite element method. The Coulomb yield criterion has been implemented in the code to model off-fault nonelastic response. We find that a smooth scheme (such as viscoplasticity) is required to regularize the numerical calculation of plastic yielding near a fault bend. The method is extensible to other material rheologies (e.g., damage mechanics models, tensile failure, etc), and amenable to parallel implementation. Compared with those from a calculation with elastic off-fault response, results from a calculation with nonelastic off-fault response show that (1) bends are locations of large plastic deformation; (2) stress near a bend is less heterogeneous; (3) less radiation is generated from a bend; (4) lower strong ground motion is produced.
Effect of laser shock peening on bending fatigue performance of AISI 9310 steel spur gear
Peng, Chong; Xiao, Yuzhe; Wang, Yanzhong; Guo, Wei
2017-09-01
The effect of laser shock peening (LSP) on bending fatigue performance of AISI 9310 steel spur gear has been investigated in this study. To help to explain bending fatigue test results, residual stress distribution induced by LSP is studied by means of finite element modelling, results of which are verified by X-ray diffraction analysis. It is found that a compressive layer of desirable depth can be induced on the gear root fillet after LSP, and both magnitude and depth of compressive stress increase with laser energy. The bending fatigue test is conducted using the single-tooth bending method to compare fatigue performance of laser peened teeth and non-peened teeth, which is followed by relevant statistical analysis. S-N curves acquired from the fatigue test reveal that bending fatigue lives of gear teeth has been significantly improved after LSP in comparison with those non-peened teeth, and the bending fatigue limit is enhanced correspondingly. It is noticeable that higher laser energy does not necessarily lead to much better fatigue performance of test gears.
Plastic deformation analysis and forming quality prediction of tube NC bending
Lu Shiqiang; Fang Jun; Wang Kelu
2016-01-01
Plane strain assumption and exponent hardening law are used to investigate the plastic deformation in tube bending. Some theoretical formulae including stress, curvature radius of neu-tral layer, angle of neutral layer deviation, bending moment, wall thickness variation and cross-section distortion, are developed to explain the phenomena in tube bending and their magnitudes are also determined. During unloading process, the springback angle is deduced using the virtual work principle, and springback radius is also given according to the length of the neutral layer which remains unchanged before and after springback. The theoretical formulae are validated by the experimental results or the validated simulation results in literature, which can be used to quickly predict the forming quality of tube numerical control (NC) bending.
Flex Fatigue Behavior Of Plastic Optical Fibers With Low Bending Cycles
Huang Juan
2015-06-01
Full Text Available Flex fatigue behaviour of plastic optical fibres (POFs with the diameters of 0.2 and 0.3 mm under different pretensions is measured with fatigue life curve by flexometer. The fatigue sensitivity coefficient is calculated by the linear fitting curve of normalised stress versus logarithm of bending cycles. The residual modulus is investigated during the flex fatigue processes. The results exhibit the exponential relationship between applied pretension and numbers of bending cycles at break. It is indicated that the flex fatigue of POFs might be sensitive with high swing angle or swing speed. There is an evident loss of modulus for two POFs with pretensions of 4 and 10% of ultimate tensile strength during 10-times bending cycles. The values of residual modulus of two POFs almost keep constant after 10-times bending cycles.
Plastic deformation analysis and forming quality prediction of tube NC bending
Lu Shiqiang
2016-10-01
Full Text Available Plane strain assumption and exponent hardening law are used to investigate the plastic deformation in tube bending. Some theoretical formulae including stress, curvature radius of neutral layer, angle of neutral layer deviation, bending moment, wall thickness variation and cross-section distortion, are developed to explain the phenomena in tube bending and their magnitudes are also determined. During unloading process, the springback angle is deduced using the virtual work principle, and springback radius is also given according to the length of the neutral layer which remains unchanged before and after springback. The theoretical formulae are validated by the experimental results or the validated simulation results in literature, which can be used to quickly predict the forming quality of tube numerical control (NC bending.
Bending Fatigue of Carburized Steel at Very Long Lives
Nelson, D. V.; Long, Z.
2016-01-01
The bending fatigue behavior of two carburized steels is investigated for lives between approximately 105 and 108 cycles. Cracks are observed to start at sub-surface inclusions and develop features on fracture surfaces resembling "fish eyes" in appearance. This type of sub-surface cracking tends to govern fatigue strength at long lives. Previous studies of "fish eye" fatigue in carburized steel have been relatively few and have mainly considered failures originating at depths beneath a carburized case, where compressive residual stresses are minimal and hardness values approach those in the core. This study provides fatigue data for cracks originating within cases at various depths where compressive residual stresses are substantial and hardness is much higher than in the core. Fatigue strength is predicted by a simple model, accounting for the influence of residual stresses and hardness values at the different depths at which cracks started. Predictions of fatigue strength are compared with data generated in this study.
Low Loss S-Bend Structure With Tapered Curved Waveguides
无
2003-01-01
A novel S-bend with tapered curved waveguides is proposed. The normalized transmitted power is greater than the conventional bend with weakly guided waveguides. Small size and low loss can be reached by the proposed S-bend.
Jelen, L. (Vitkovicke Zelezarny Klementa Gottwalda, Ostrava (Czechoslovakia). Vyzkumny Ustav Materialu)
1984-05-01
For austenitic stainless steel 08Ch18N10T determinations were made of two material constants, the coefficients of strength and of deformation hardening, and of hardening curves which represent the dependence of the natural deformation resistance on the size of deformation. Tests of tube bending by overpressure showed that the weakening of the outer wall caused by bending is sufficiently offset by material hardening. The effect of cold deformation on material resistance to intergranular corrosion was studied. The effect of small deformations (3 to 10%) was not proved. Intergranular corrosion is limited by the quality of the surface of heat exchange tubes. The level was assessed of internal stress near bends with the following parameters: R=65 mm, ..cap alpha..=180deg. The presence of residual stress which would have unfavourable effect on the state of bending stress under operating load, was not observed.
何庆华; 卫星
2013-01-01
曲线箱形梁兼具弯梁桥与箱形梁两者的特点,由于曲率的影响,竖向荷载作用下曲线箱梁弯矩与扭矩互相耦合同时存在.根据国内外既有研究成果,对曲线箱形梁空间受力特点及影响因素进行了总结.以60m单跨单箱形截面曲线混凝土简支梁为例,利用有限元软件TDV建立空间板单元模型,分析自重作用下,不同曲线半径下主梁截面正应力及剪应力分布,根据弯曲变形与应变的关系,比较曲线梁桥与直线梁桥正应力横向分布规律,提出用应力增大系数来表征曲线内外侧弧长不同引起的应力变化.研究结果表明,除了受剪力滞后效应影响,曲线箱梁桥截面正应力分布还与内外侧弧长不等引起的应力增大系数有关.%Curved box girder has both characters of curved girder and box girder, and the coupling effect between bending moment and torsion moment caused by the curvature under vertical load should be taken into account. Based on research results of curved girder at home and abroad, the spatial mechanical characters and influencing factors of curved box girder were summarized in this thesis. Choosing a 60m single-span curved PC simply supported girder with single cell boxed cross-section as the example, spatial plate element models were established by TDV finite element software. Then the distributions of normal stress and shear stress of cross-section of main girder with different curve radius under the action of dead load were analyzed. Afterwards, according to the relationship between bending deformation and strains, and by comparing the transverse distributions of normal stress of curved bridge with that of straight bridge, the thesis put forward a view point that the stress variation caused by the arc length difference between the internal arc and external arc of the curve can be expressed by a magnification coefficient. Analysis results show that, except the effect of shear lag, the distributions of
Bidirectional bending splitter of designer surface plasmons
Jin Zhou, Yong; Jiang, Quan; Jun Cui, Tie
2011-09-01
We propose and experimentally verify a bidirectional bending splitter of designer surface plasmons which is composed of two metallic gratings of trapezoid grooves. A metal wire is used to excite the designer surface plasmons propagating along the gratings. A full-wave numerical method has been used to simulate the performance of the bending splitter. The experimental verifications in the microwave frequencies have excellent agreements to the simulations. It is demonstrated that the splitter can not only split the electromagnetic waves at different frequencies, but also guide the electromagnetic waves effectively for large-angle bending.
Analyzing refractive index changes and differential bending in microcantilever arrays
Huber, François; Lang, Hans Peter; Hegner, Martin; Despont, Michel; Drechsler, Ute; Gerber, Christoph
2008-08-01
A new microcantilever array design is investigated comprising eight flexible microcantilevers introducing two solid bars, enabling to subtract contributions from differences in refractive index in an optical laser read out system. Changes in the refractive index do not contribute undesirably to bending signals at picomolar to micromolar DNA or protein concentrations. However, measurements of samples with high salt concentrations or serum are affected, requiring corrections for refractive index artifacts. Moreover, to obtain a deeper understanding of molecular stress formation, the differential curvature of cantilevers is analyzed by positioning the laser spots along the surface of the levers during pH experiments.
Multiphase forces on bend structures
Nennie, E.D.; Belfroid, S.P.C.
2016-01-01
Piping structures are generally subjected to high dynamic loading due to multiphase forces. In particular subsea structures are very vulnerable as large flexibility is required to cope for instance with thermal stresses. The forces due to multiphase flow are characterized by a broadband spectrum wit
Multiphase forces on bend structures
Nennie, E.D.; Belfroid, S.P.C.
2016-01-01
Piping structures are generally subjected to high dynamic loading due to multiphase forces. In particular subsea structures are very vulnerable as large flexibility is required to cope for instance with thermal stresses. The forces due to multiphase flow are characterized by a broadband spectrum wit
刘志杰
2014-01-01
利用PRO/E强大的三维实体设计功能，精确地实现了直齿圆柱齿轮的三维建模。通过PRO/E与ANSYS的连接，将模型导入ANSYS软件中。在精确建模的基础上，应用有限元法分析了轮齿的变形及齿根应力。提出了精确、迅速计算最大齿根应力的方法，较常规的计算方法更符合实际情况，得到的结果更为可靠。%Due to the great 3-D solid design function of PRO/E, 3-D modeling of Cylindrical Spur Gear is exactly achieved. The model is introduced into the software of ANSYS, through the connection of PRO/E and ANSYS. Based on the exact modeling, the deformation of gear teeth and the stress of the root are analyzed by finite element method. Then an exact and rapid way of calculating the maximal stress of the root is proposed, which is more consistent with practical situation and can lead to more liable results, compared with regular calculating methods.
Prediction of three dimensional maximum isometric neck strength.
Fice, Jason B; Siegmund, Gunter P; Blouin, Jean-Sébastien
2014-09-01
We measured maximum isometric neck strength under combinations of flexion/extension, lateral bending and axial rotation to determine whether neck strength in three dimensions (3D) can be predicted from principal axes strength. This would allow biomechanical modelers to validate their neck models across many directions using only principal axis strength data. Maximum isometric neck moments were measured in 9 male volunteers (29±9 years) for 17 directions. The 3D moments were normalized by the principal axis moments, and compared to unity for all directions tested. Finally, each subject's maximum principal axis moments were used to predict their resultant moment in the off-axis directions. Maximum moments were 30±6 N m in flexion, 32±9 N m in lateral bending, 51±11 N m in extension, and 13±5 N m in axial rotation. The normalized 3D moments were not significantly different from unity (95% confidence interval contained one), except for three directions that combined ipsilateral axial rotation and lateral bending; in these directions the normalized moments exceeded one. Predicted resultant moments compared well to the actual measured values (r2=0.88). Despite exceeding unity, the normalized moments were consistent across subjects to allow prediction of maximum 3D neck strength using principal axes neck strength.
Keller, Hanne Dauer
2015-01-01
Kapitlet handler om stress som følelse, og det trækker primært på de få kvalitative undersøgelser, der er lavet af stressforløb.......Kapitlet handler om stress som følelse, og det trækker primært på de få kvalitative undersøgelser, der er lavet af stressforløb....
Keller, Hanne Dauer
2015-01-01
Kapitlet handler om stress som følelse, og det trækker primært på de få kvalitative undersøgelser, der er lavet af stressforløb.......Kapitlet handler om stress som følelse, og det trækker primært på de få kvalitative undersøgelser, der er lavet af stressforløb....
On the Effect of Green Water on Deck on the Wave Bending Moment
Wang, Zhaohui; Jensen, Jørgen Juncher; Xia, Jinzhu
1998-01-01
The aim of the present work is to investigate whether green water on deck in severe sea states have a notable effect on the maximum wave bending moments. The analysis is carried out for an S175 container ship for which results from model experiments are available. The static water head and a mome...
EFFECT OF CHANNEL BENDS ON TRANSVERSE MIXING
user
1986-09-01
Sep 1, 1986 ... The first study of transverse mixing in bends of turbulent open channel flows ... Rozovskii's transverse velocity distribution for fully developed turbulent flow ... Yotsukura et al (3) employed a simulation procedure to predict the.
This is a slice of a LEP dipole bending magnet, made as a concrete and iron sandwich The bending field needed in LEP is small (about 1000 Gauss), equivalent to two of the magnets people stick on fridge doors. Because it is very difficult to keep a low field steady, a high field was used in iron plates embedded in concrete. A CERN breakthrough in magnet design, LEP dipoles can be tuned easily and are cheaper than conventional magnets.
This is a slice of a LEP dipole bending magnet, made as a concrete and iron sandwich. The bending field needed in LEP is small (about 1000 Gauss), equivalent to two of the magnets people stick on fridge doors. Because it is very difficult to keep a low field steady, a high field was used in iron plates embedded in concrete. A CERN breakthrough in magnet design, LEP dipoles can be tuned easily and are cheaper than conventional magnets.
Pipes under internal pressure and bending
Catinaccio, A
2009-01-01
This article covers the general behaviour of a straight uniform pipe, with built-in open ends, subject to internal pressure and in plane bending or curvature. It is intended as a summary of the basic equations driving the unintuitive phenomena of bending and instability of pipes under internal pressure. The analysis covers in addition the investigation of opposite pressure stabilisation effects that can be observed in some orthotropic material pipes like composite pressure hoses.
Kai Lu
2016-05-01
Full Text Available In order to improve the properties of silica sol shell for investment casting process, various contents of cattail fibers were added into the slurry to prepare a fiber-reinforced shell in the present study. The bending strength of fiber-reinforced shell was investigated and the fracture surfaces of shell specimens were observed using SEM. It is found that the bending strength increases with the increase of fiber content, and the bending strength of a green shell with 1.0 wt.% fiber addition increases by 44% compared to the fiber-free shell. The failure of specimens of the fiber-reinforced green shell results from fiber rupture and debonding between the interface of fibers and adhesive under the bending load. The micro-crack propagation in the matrix is inhibited by the micro-holes for ablation of fibers in specimens of the fiber-reinforced shell during the stage of being fired. As a result, the bending strength of specimens of the fired shell had no significant drop. Particularly, the bending strength of specimens of the fired shell reinforced with 0.6wt.% fiber reached the maximum value of 4.6 MPa.
Effects of Pre-bending on Defect and Dimensional Precision in Hydroforming of Aluminum Alloy Tube
CAI Yang
2017-09-01
Full Text Available Hydroformed aluminum hollow components with various sections have been widely used in the field of automotive lightweight engineering. The main manufacturing process of the component is that the tube is pre-formed by CNC bending, and then hydro-formed into the desired shape. The springback, cross section distortion and wrinkling defects caused by bending will affect subsequent hydro-forming process. Theoretical model of tube plastic bending and model of material were established, and the theoretical springback value of any bending angle was obtained by the combination of equilibrium equation and total strain theory, the undercut defect was avoided effectively during hydroforming. The cross section un-roundness was decreased from 7.55% to 1.43% by the improvement of the core shaft, and the fracture of bend tube during hydroforming can be significantly avoided. The wrinkle defects formed in tube bending cannot be eliminated by hydroforming. The 6063 aluminum components with various sections were developed by the technology experiment, and the parts without any defects were obtained. The dimensional precision of 47 hydroformed components were measured, and the maximum dimensional deviation is 1.08mm (1.63%, and the dimensional precision meets the requirements.
Bending sound in graphene: Origin and manifestation
Adamyan, V.M., E-mail: vadamyan@onu.edu.ua [Department of Theoretical Physics, Odessa I.I. Mechnikov National University, 2 Dvoryanska St., Odessa 65026 (Ukraine); Bondarev, V.N., E-mail: bondvic@onu.edu.ua [Department of Theoretical Physics, Odessa I.I. Mechnikov National University, 2 Dvoryanska St., Odessa 65026 (Ukraine); Zavalniuk, V.V., E-mail: vzavalnyuk@onu.edu.ua [Department of Theoretical Physics, Odessa I.I. Mechnikov National University, 2 Dvoryanska St., Odessa 65026 (Ukraine); Department of Fundamental Sciences, Odessa Military Academy, 10 Fontanska Road, Odessa 65009 (Ukraine)
2016-11-11
Highlights: • The origin of sound-like dispersion of graphene bending mode is disclosed. • The speed of graphene bending sound is determined. • The renormalized graphene bending rigidity is derived. • The intrinsic corrugations of graphene are estimated. - Abstract: It is proved that the acoustic-type dispersion of bending mode in graphene is generated by the fluctuation interaction between in-plane and out-of-plane terms in the free energy arising with account of non-linear components in the graphene strain tensor. In doing so we use an original adiabatic approximation based on the alleged (confirmed a posteriori) significant difference of sound speeds for in-plane and bending modes. The explicit expression for the bending sound speed depending only on the graphene mass density, in-plane elastic constants and temperature is deduced as well as the characteristics of the microscopic corrugations of graphene. The obtained results are in good quantitative agreement with the data of real experiments and computer simulations.
New Equation for Bending Development of Arbitrary Rods and Application to Palm Fronds Bending
Abdullah, Mikrajuddin
2016-01-01
A new general equation to explain bending of arbitrary rods (from arbitrary materials, cross sections, densities, strengthnesses, bending angles, etc) was proposed. This equation can solve several problems found in classical equations, which have many limitations such as only applies for small bending angles or must be solved using very complex schemes. Experiments were also conducted to confirm the theoretical predictions. The equation might be used to explain bending of palm fronds in a very simple way. The proposed equation may be used to obtain solution of several problems which are usually obtain with iteration procedures.
Maximum Autocorrelation Factorial Kriging
Nielsen, Allan Aasbjerg; Conradsen, Knut; Pedersen, John L.; Steenfelt, Agnete
2000-01-01
This paper describes maximum autocorrelation factor (MAF) analysis, maximum autocorrelation factorial kriging, and its application to irregularly sampled stream sediment geochemical data from South Greenland. Kriged MAF images are compared with kriged images of varimax rotated factors from an ordinary non-spatial factor analysis, and they are interpreted in a geological context. It is demonstrated that MAF analysis contrary to ordinary non-spatial factor analysis gives an objective discrimina...
Ilin, Konstantin, E-mail: konstantin.ilin@kit.edu; Siegel, Michael, E-mail: michael.siegel@kit.edu
2014-08-15
Highlights: • Critical state in mesoscopic superconducting TaN structures has been studied. • Suppression of the current crowding by magnetic field has been investigated. • Maximum of critical current of bended TaN bridges is at non-zero magnetic field. • The critical current of 90° bended bridges increases by 37% in magnetic field. • Significant bulk pinning is in ultra-thin TaN mesoscopic structures. - Abstract: An increase of the supercurrent density in the vicinity of sharp bends of mesoscopic superconducting strips (the current crowding) leads to a decrease of the potential barrier for vortex penetration and thus to a decrease of the measured critical current I{sub C} of the strip in comparison to the de-pairing critical current. However, it has been shown that the Meissner currents induced by an external magnetic field of appropriate direction reduce the effect of current crowding resulting in an increase of the measured I{sub C} of superconducting mesoscopic structures with bends. We performed a detailed experimental investigation of the dependence of critical current on magnetic field in straight and bended bridges made from thin TaN films. Indeed, in the case of bridges with bends, the critical current reaches a maximum at non-zero magnetic fields which value increases with an increase of the angle of bends.
Jensen, Line Skov; Lova, Lotte; Hansen, Zandra Kulikovsky; Schønemann, Emilie; Larsen, Line Lyngby; Colberg Olsen, Maria Sophia; Juhl, Nadja; Magnussen, Bogi Roin
2012-01-01
Stress er en tilstand som er meget omdiskuteret i samfundet, og dette besværliggør i en vis grad konkretiseringen af mulige løsningsforslag i bestræbelsen på at forebygge den såkaldte folkesygdom. Hovedkonklusionen er, at selv om der bliver gjort meget for at forebygge, er der ikke meget der aktivt kan sættes i værk for at reducere antallet af stressramte, før en fælles forståelse af stressårsager og effektiv stresshåndtering er fremlagt. Problemformuleringen er besvaret gennem en undersø...
Effects of repetitive bending on the magnetoresistance of a flexible spin-valve
Kwon, J.-H.; Kwak, W.-Y.; Cho, B. K., E-mail: chobk@gist.ac.kr [School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Choi, H. Y. [Department of Physics, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Kim, G. H. [Department of Physics, Sejong University, Seoul 143-747 (Korea, Republic of)
2015-05-07
A positive magnetostrictive single layer (CoFe) and top-pinned spin-valve structure with positive magnetostrictive free (NiFe) and pinned (CoFe) layers were deposited on flexible polyethylene terephthalate film to investigate the changes in the magnetic properties in flexible environments, especially with a repetitive bending process. It was found that the stress, applied by repetitive bending, changes significantly the magnetic anisotropy of both layers in a single and spin-valve structure depending on the direction of applied stress. The changes in magnetic anisotropy were understood in terms of the inverse magnetostriction effect (the Villari effect) and the elastic recovery force from the flexibility of the polymer substrate. Repetitive bending with tensile stress transverse (or parallel) to the magnetic easy axis was found to enhance (or reduce) the magnetic anisotropy and, consequently, the magnetoresistance ratio of a spin-valve. The observed effects of bending stress in this study should be considered for the practical applications of electro-magnetic devices, especially magneto-striction sensor.
Kic size effect study on two high-strength steels using notched bend specimens
Stonesifer, F. R.
1974-01-01
Five methods are used to calculate plane strain fracture toughness (K sub Q) values for bend-specimens of various sizes from two high-strength steels. None of the methods appeared to satisfactorily predict valid stress intensity factor (K sub IC) values from specimens of sizes well below that required by E399 standard tests.
任振华; 曾宪桃; 周丰峻
2012-01-01
RC beams can be strengthened with Carbon Fiber Reinforced Plastic (CFRP) and pre-stressed Helical Rib Bar ( HRB) that are inserted into the concrete cover of tensile region in the concrete beams , which can effectively improve force performance of the beams . In order to analyze the failure form, ultimate state and normal section bearing capacity of RC beams composites strengthened with near-surface mounted carbon fiber reinforced plastic bar and pre-stressed helical rib bar , the bearing capacity equation of strengthened beams corresponding to different failure modes was supplied by analyzing force in each stage of beams in pre-stress state, bearing capacity calculating and limit state. In order to inspect and verify the rationality and the reliability of the conclusions and the veracity of the equation, the flexural experimental studies were tested on seven concrete beams strengthened with near-surface mounted carbon fiber reinforced plastic bar and pre-stressed helical rib bar. The results indicate that the failure modes and limit state of strengthened beams are reasonable, the equation can veraciously calculate the bend capacity of strengthened beams.%用碳纤维筋和预应力螺旋肋钢筋共同嵌入到混凝土梁受拉区保护层中对混凝土梁进行加固,能更有效地改善混凝土梁的受力性能.为更有效地分析复合内嵌碳纤维筋预应力螺旋肋钢筋加固混凝土梁的破坏形态、极限状态及正截面承载力,通过对预应力状态下梁各阶段受力情况分析、承载力计算及界限状态的判别,提出了加固混凝土梁对应不同破坏形态下承载力的计算公式.为验证所得分析结论的合理性和可靠性及计算公式的准确性,对7根碳纤维筋预应力螺旋肋钢筋加固的混凝土梁进行弯曲试验,结果表明,被加固梁的破坏形态、极限状态分析是合理的,所提出的计算公式能准确计算加固梁抗弯承载能力.
Bend-insensitive optical fibers for FTTH applications
Li, Ming-Jun
2009-01-01
This paper reviews recent development in bend-insensitive fibers for fiber-to-the-home (FTTH) applications. First, requirements for bend-insensitive fibers are discussed. Then different design approaches for reducing fiber bending loss are described and compared. A new bend-insensitive fiber using the nano-engineered ring design is presented in detail.
Microstructure-Based RVE Approach for Stretch-Bending of Dual-Phase Steels
Huang, Sheng; He, ChunFeng; Zhao, YiXi
2016-03-01
Fracture behavior and micro-failure mechanism in stretch-bending of dual-phase (DP) steels are still unclear. Representative volume elements (RVE) have been proved to be an applicable approach for describing microstructural deformation in order to reveal the micro-failure mechanism. In this paper, 2D RVE models are built. The deformation behavior of DP steels under stretch-bending is investigated by means of RVE models based on the metallographic graphs with particle geometry, distribution, and morphology. Microstructural failure modes under different loading conditions in stretch-bending tests are studied, and different failure mechanisms in stretch-bending are analyzed. The computational results and stress-strain distribution analysis indicate that in the RVE models, the strain mostly occurs in ferrite phase, while martensite phase undertakes most stress without significant strain. The failure is the results of the deformation inhomogeneity between martensite phase and ferrite phase. The various appearance and growth of initial voids are different depending on the bending radius.
Influence of punch radius on elastic modulus of three-point bending tests
Pengliang Hou; Hongwei Zhao; Zhichao Ma; Shizhong Zhang; Jianping Li; Xiaolong Dong; Yujiao Sun; Zhongwei Zhu
2016-01-01
Three-point bending is one of the most common methods of studying the mechanical performance of materials. The influence of punch radius in the measurements is not considered in the previous studies. This article focuses on the influence of the punch radius on the elastic modulus. The experiment is set up to measure the elastic modulus of 6061 aluminum alloy (6061 Al) and copper as the specimens, in which several different radii of punches are used. The maximum bending deflection of the middl...
Four-point bending test of the Bauschinger effect in prestrained IF steel thin sheet
Kato, Hiroyuki, E-mail: hkato@eng.hokudai.ac.jp [Mechanical and Space Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Sasaki, Kazuaki [Mechanical and Space Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Mori, T. [National Defense Academy, Yokosuka 239-0811 (Japan)
2015-08-26
The Bauschinger effect in a 1 mm thick sheet of interstitial free (IF) steel was examined by tensile testing (prestraining) and subsequent four-point bending. The effect was absent when the prestrain was below 4% and was present when the prestrain was above 4%. The Bauschinger effect parameter determined the elastic back stress which developed after prestraining. The occurrence of back stress coincided with the development of dislocation cell structures, observed with transmission electron microscopy.
2010-11-24
... Forest Service Bend/Ft. Rock Ranger District; Deschutes National Forest; Deschutes County, OR; West Bend... Jeffries, District Ranger, Bend-Fort Rock Ranger District, Red Oaks Square, 1230 NE. Third Street, Suite A...-Fort Rock Ranger District, Red Oaks Square, 1230 NE. Third Street, Suite A-262, Bend, Oregon 97701...
Bending Angle Prediction Model Based on BPNN-Spline in Air Bending Springback Process
Zhefeng Guo
2017-01-01
Full Text Available In order to rapidly and accurately predict the springback bending angle in V-die air bending process, a springback bending angle prediction model on the combination of error back propagation neural network and spline function (BPNN-Spline is presented in this study. An orthogonal experimental sample set for training BPNN-Spline is obtained by finite element simulation. Through the analysis of network structure, the BPNN-Spline black box function of bending angle prediction is established, and the advantage of BPNN-Spline is discussed in comparison with traditional BPNN. The results show a close agreement with simulated and experimental results by application examples, which means that the BPNN-Spline model in this study has higher prediction accuracy and better applicable ability. Therefore, it could be adopted in a numerical control bending machine system.
Maximum likely scale estimation
Loog, Marco; Pedersen, Kim Steenstrup; Markussen, Bo
2005-01-01
A maximum likelihood local scale estimation principle is presented. An actual implementation of the estimation principle uses second order moments of multiple measurements at a fixed location in the image. These measurements consist of Gaussian derivatives possibly taken at several scales and/or ...
The quantitative check-measure of the bend strain parameters of the rotating components
李文华; 乔中涛
2002-01-01
Based on the principle of the electric-magnetic check-measure, this paper puts forward a new technology and method that use the magnetic marks to check and measure the dynamic physical parameters such as angle speed, bending strain,stress and bending moment. The principles of the check-measure and the dealing and exchanging technology about signals have been demonstrated and the rotating components have been made up. The timely and quantitative check-measure of the dynamic physical parameters during the component in working has been realized by using computer control.
Zamanzade, Mohammad, E-mail: m.zamanzade@matsci.uni-sb.de [Saarland University, Institute of Material Science and Methods, Saarbrücken (Germany); Velayarce, Jorge Rafael [Saarland University, Institute of Material Science and Methods, Saarbrücken (Germany); Abad, Oscar Torrents [INM-Leibniz Institute for New Materials and Saarland University, Saarbrücken (Germany); Motz, Christian [Saarland University, Institute of Material Science and Methods, Saarbrücken (Germany); Barnoush, Afrooz [Norwegian University of Science and Technology (NTNU), Trondheim (Norway)
2016-01-15
Various local testing methods, namely, nanoindentation, compression and bending tests of micropillars were used to better understand the influence of ternary Cr atoms on the extrinsic and intrinsic mechanical properties of Fe{sub 3}Al intermetallics with the D0{sub 3} super lattice. Using such local techniques enables us to quantify the influence of Cr on the enhancement of the Young´s modulus. Furthermore, the effect of Cr on the yield stress, strain hardening and appearance of slip traces was studied based on the stress–strain curves and secondary electron micrographs of the bended and compressed pillars.
Transport and deposition of nanoparticles in bend tube with circular cross-section
Peifeng Lin; Jianzhong Lin
2009-01-01
Transport and deposition of nanoparticles in bend tube with circular cross-section were simulated numerically for different Reynolds numbers and Dean numbers.A finite-volume code and the SIMPLE scheme were used to solve the equations.The results show that the distribution of nanoparticle concentration is symmetrical with respect to the top and bottom sides of the tube.The diameter of the nanoparticles has a weak effect on the distribution of nanoparticle concentration.The maximum and minimum of the deposition enhancement factor occur near the outside and inside walls of the bend tube,respectively.The higher the Reynolds number is,the shorter is the time for nanoparticle deposition.The bend curvature radius has a slight effect on the deposition enhancement factor.
Robotic Arm Comprising Two Bending Segments
Mehling, Joshua S.; Difler, Myron A.; Ambrose, Robert O.; Chu, Mars W.; Valvo, Michael C.
2010-01-01
The figure shows several aspects of an experimental robotic manipulator that includes a housing from which protrudes a tendril- or tentacle-like arm 1 cm thick and 1 m long. The arm consists of two collinear segments, each of which can be bent independently of the other, and the two segments can be bent simultaneously in different planes. The arm can be retracted to a minimum length or extended by any desired amount up to its full length. The arm can also be made to rotate about its own longitudinal axis. Some prior experimental robotic manipulators include single-segment bendable arms. Those arms are thicker and shorter than the present one. The present robotic manipulator serves as a prototype of future manipulators that, by virtue of the slenderness and multiple- bending capability of their arms, are expected to have sufficient dexterity for operation within spaces that would otherwise be inaccessible. Such manipulators could be especially well suited as means of minimally invasive inspection during construction and maintenance activities. Each of the two collinear bending arm segments is further subdivided into a series of collinear extension- and compression-type helical springs joined by threaded links. The extension springs occupy the majority of the length of the arm and engage passively in bending. The compression springs are used for actively controlled bending. Bending is effected by means of pairs of antagonistic tendons in the form of spectra gel spun polymer lines that are attached at specific threaded links and run the entire length of the arm inside the spring helix from the attachment links to motor-driven pulleys inside the housing. Two pairs of tendons, mounted in orthogonal planes that intersect along the longitudinal axis, are used to effect bending of each segment. The tendons for actuating the distal bending segment are in planes offset by an angle of 45 from those of the proximal bending segment: This configuration makes it possible to
Kim, Byoung-Joon; Shin, Hae-A.-Seul; Lee, Ji-Hoon; Joo, Young-Chang
2016-06-01
The electrical reliability of a multi-layer metal film on a polymer substrate during cyclic inner bending and outer bending is investigated using a bending fatigue system. The electrical resistance of a Cu film on a polymer substrate during cyclic outer bending increases due to fatigue damage formation, such as cracks and extrusion. Cyclic inner bending also leads to fatigue damage and a similar increase in the electrical resistance. In a sample having a NiCr under-layer, however, the electrical resistance increases significantly during outer bending but not during inner bending mode. Cross-sectional observations reveal that brittle cracking in the hard under-layer results in different fatigue behaviors according to the stress mode. By applying an Al over-layer, the fatigue resistance is improved during both outer bending and inner bending by suppressing fatigue damage formation. The effects of the position, materials, and thickness of the inter-layer on the electrical reliability of a multi-layer sample are also investigated. This study can provide meaningful information for designing a multi-layer structure under various mechanical deformations including tensile and compressive stress.
Wavelength Dependence of Photoinduced Microcantilever Bending in the UV-VIS Range
Mark Helm
2008-01-01
Full Text Available Micromechanical devices such as microcantilevers (MC respond to irradiationwith light by at least two different, photon-mediated processes, which induce MC bendingas a consequence of differential surface stress. The first and slow bending is due to theabsorption of photons, whose energy is transformed into heat and causes bending ofbimetallic microcantilevers due to thermal expansion. The second type of deflection is fastand caused by photons of sufficient energy to promote electrons across the Schottky barrierand thus create charge carriers, resulting in photoinduced stress that causes MC bending. Inthis study, the MC bending response to irradiation with light of wavelengths ranging from250 to 700 nm was investigated. Measurements of the immediate mechanical response tophotoinduced stress as a function of the wavelength of incident light provide an avenue tothe determination of the cut-off wavelength/energy of the Schottky barrier in the MCdevices under investigation. For a gold coated Si3Ni4 microcantilever we measured a cutoffwavelength of 1206 nm, which lies in the range of the literature value of 1100 nm.
Calculation of muscle forces during normal gait under consideration of femoral bending moments.
Lutz, Frederick; Mastel, Roland; Runge, Martin; Stief, Felix; Schmidt, André; Meurer, Andrea; Witte, Hartmut
2016-09-01
This paper introduces a new approach for computing lower extremity muscle forces by incorporating equations that consider "bone structure" and "prevention of bending by load reduction" into existing optimization algorithms. Lower extremity muscle and joint forces, during normal gait, were calculated and compared using two different optimization approaches. We added constraint equations that prevent femoral bending loads to an existing approach that considers "minimal total muscular force". Gait parameters such as kinematics, ground reaction forces, and surface electromyographic activation patterns were examined using standardized gait analysis. A subject-specific anatomic model of the lower extremities, obtained from magnetic resonance images of a healthy male, was used for the simulations. Finite element analysis was used to calculate femoral loads. The conventional method of calculating muscle forces leads to higher rates of femoral bending and structural stress than the new approach. Adding equations with structural subject-specific parameters in our new approach resulted in reduced femoral stress patterns. These findings show that our new approach improves the accuracy of femoral stress and strain simulations. Structural overloads caused by bending can be avoided during inverse calculation of muscle forces.
Fuzzy analysis of serviceability limit state of slender steel beam under bending
Kala, Zdeněk; Valeš, Jan [Brno University of Technology, Faculty of Civil Engineering, Department of Structural Mechanics Vevefi St. 95, ZIP 602 00, Brno (Czech Republic)
2015-03-10
In the present paper, deformations of a beam under equal end moments solved with influence of lateral buckling are studied. It has been found by numerical studies that the lateral deflection of slender beam under major axis bending can be relatively high.The acceptability of high values of lateral deflections within the framework of serviceability limit state is discussed. In the next part of the paper, the limit value of maximum deflection was introduced as a fuzzy number. The fuzzy analysis of the maximum moment which causes the maximum deflection was carried out. The slendernesses of beams for which the serviceability limit state is the limiting state for design were identified.
Maximum information photoelectron metrology
Hockett, P; Wollenhaupt, M; Baumert, T
2015-01-01
Photoelectron interferograms, manifested in photoelectron angular distributions (PADs), are a high-information, coherent observable. In order to obtain the maximum information from angle-resolved photoionization experiments it is desirable to record the full, 3D, photoelectron momentum distribution. Here we apply tomographic reconstruction techniques to obtain such 3D distributions from multiphoton ionization of potassium atoms, and fully analyse the energy and angular content of the 3D data. The PADs obtained as a function of energy indicate good agreement with previous 2D data and detailed analysis [Hockett et. al., Phys. Rev. Lett. 112, 223001 (2014)] over the main spectral features, but also indicate unexpected symmetry-breaking in certain regions of momentum space, thus revealing additional continuum interferences which cannot otherwise be observed. These observations reflect the presence of additional ionization pathways and, most generally, illustrate the power of maximum information measurements of th...
Are "uncharacteristic" earthquakes spatially linked to strike-slip restraining bends?
Mann, P.
2011-12-01
On the basis of a compilation of paleoseismological data from the Wasatch and San Andreas faults, Schwartz and Coppersmith (1984) proposed that both plate boundary and intraplate faults tend to generate essentially same size earthquakes having a relatively narrow range of magnitudes near the maximum. They referred to these earthquakes as "characteristic earthquakes". Their hypothesis suggests that the historical record of earthquakes documented for periods of time ranging from centuries to millennia in different parts of the world that could allow predictions of future ruptures. The characteristic earthquake model works surprisingly well for major strike-slip faults like the North Anatolian fault of Turkey and the North Tabriz strike-slip fault in Iran which both show a progressive, uni-direction pattern of rupture starting at one point and "unzippering" over a distance of hundreds of kilometers in a series of earthquakes. This regular periodicity has been attributed to systematic changes in Coulomb failure stress on individual faults or interconnected fault networks defined by distinctive changes in fault strike, or stepover faults, or by the intersection of a neighboring fault. However, studies of the San Andreas, Wasatch, and Dead Sea faults show that earthquake ruptures are not periodic and instead form clusters of events with no obvious "recurrence interval" as predicted by the characteristic earthquake model. Some of these hard-to-forecast "uncharacteristic" earthquakes initiate as blind thrust faults formed at deeper levels in the crust near the brittle-plastic transition zone as illustrated by the 1989 M 6.9 Loma Prieta earthquake of California. Such events would produce little or no surface rupture of the main fault plane so the effects of this type of earthquake would remain impossible for future paleoseismologists to discern (other than from shaking effects and the broad vertical uplift related to vertical motions on deeply buried faults). More recently
Chen, Rong; Li, Kang; Xia, Kaiwen; Lin, Yuliang; Yao, Wei; Lu, Fangyun
2016-10-01
A dynamic load superposed on a static pre-load is a key problem in deep underground rock engineering projects. Based on a modified split Hopkinson pressure bar test system, the notched semi-circular bend (NSCB) method is selected to investigate the fracture initiation toughness of rocks subjected to pre-load. In this study, a two-dimensional ANSYS finite element simulation model is developed to calculate the dimensionless stress intensity factor. Three groups of NSCB specimen are tested under a pre-load of 0, 37 and 74 % of the maximum static load and with the loading rate ranging from 0 to 60 GPa m1/2 s-1. The results show that under a given pre-load, the fracture initiation toughness of rock increases with the loading rate, resembling the typical rate dependence of materials. Furthermore, the dynamic rock fracture toughness decreases with the static pre-load at a given loading rate. The total fracture toughness, defined as the sum of the dynamic fracture toughness and initial stress intensity factor calculated from the pre-load, increases with the pre-load at a given loading rate. An empirical equation is used to represent the effect of loading rate and pre-load force, and the results show that this equation can depict the trend of the experimental data.
Tubular lining material for pipelines having bends
Moringa, A.; Sakaguchi, Y.; Hyodo, M.; Yagi, I.
1987-03-24
A tubular lining material for pipelines having bends or curved portions comprises a tubular textile jacket made of warps and wefts woven in a tubular form overlaid with a coating of a flexible synthetic resin. It is applicable onto the inner surface of a pipeline having bends or curved portions in such manner that the tubular lining material with a binder onto the inner surface thereof is inserted into the pipeline and allowed to advance within the pipeline, with or without the aid of a leading rope-like elongated element, while turning the tubular lining material inside out under fluid pressure. In this manner the tubular lining material is applied onto the inner surface of the pipeline with the binder being interposed between the pipeline and the tubular lining material. The lining material is characterized in that a part of all of the warps are comprised of an elastic yarn around which, over the full length thereof, a synthetic fiber yarn or yarns have been left-and/or right-handedly coiled. This tubular lining material is particularly suitable for lining a pipeline having an inner diameter of 25-200 mm and a plurality of bends, such as gas service pipelines or house pipelines, without occurrence of wrinkles in the lining material in a bend.
RELIABILITY ANALYSIS OF BENDING ELIABILITY ANALYSIS OF ...
eobe
performance of any structural system be eva ... by the Joint crete slabs, bending, shear, deflection, reliability, design codes. ement such as ... could be sensitive to this distribution. Table 1: ..... Ang, A. H-S and Tang, W. H. Probability Concepts in.
Monitoring the Bending Stiffness of DNA
Yuan, Chongli; Lou, Xiongwen; Rhoades, Elizabeth; Chen, Huimin; Archer, Lynden
2007-03-01
In eukaryotic cells, the accessibility of genomic sequences provides an inherent regulation mechanism for gene expression through variations in bending stiffness encoded by the nucleic acid sequence. Cyclization of dsDNA is the prevailing method for determining DNA bending stiffness. Recent cyclization data for short dsDNA raises several fundamental questions about the soundness of the cyclization method, particularly in cases where the probability of highly bent DNA conformations is low. We herein evaluate the role of T4 DNA ligase in the cyclization reaction by inserting an environmental sensitive base analogue, 2-amino purine, to the DNA molecule. By monitoring the 2-AP fluorescence under standard cyclization conditions, it is found that in addition to trapping highly-bent cyclic DNA conformations, T4 DNA ligase enhances the apparent base pair flip out rate, thus exaggerating the measured flexibility. This result is further confirmed using fluorescence anisotropy experiments. We show that fluorescence resonance energy transfer (FRET) measurements on suitably labeled dsDNA provides an alternative approach for quantifying the bending stiffness of short fragments. DNA bending stiffness results obtained using FRET are compared with literature values.
Demonstration model of LEP bending magnet
CERN PhotoLab
1981-01-01
To save iron and raise the flux density, the LEP bending magnet laminations were separated by spacers and the space between the laminations was filled with concrete. This is a demonstration model, part of it with the spaced laminations only, the other part filled with concrete.
A process model for air bending
de Vin, L.J.; de Vin, L.J.; Streppel, A.H.; Singh, U.P.; Kals, H.J.J.
1996-01-01
A so called `three-section¿ model for air bending is presented. It is assumed that a state of plane strain exists and that Bernoulli's law is valid. The material behaviour is described with Swift's equation, and the change of Young's modulus under deformation is addressed. As compared with other
Design of a hydraulic bending machine
Steven G. Hankel; Marshall Begel
2004-01-01
To keep pace with customer demands while phasing out old and unserviceable test equipment, the staff of the Engineering Mechanics Laboratory (EML) at the USDA Forest Service, Forest Products Laboratory, designed and assembled a hydraulic bending test machine. The EML built this machine to test dimension lumber, nominal 2 in. thick and up to 12 in. deep, at spans up to...
Spring-back deformation in tube bending
Da-xin E; Hua-hui He; Xiao-yi Liu; Ru-xin Ning
2009-01-01
The spring-back of a bending metal tube was studied through extensive experiments and finite element method (FEM) analysis. An approximate equation for the spring-back angle of bending was deduced. It is noted that the mechanical properties of the material (in a tubular form) are quite different from those found in the standard tensile tests (when the materials are in bar forms). This is one of the major reasons that result in the discrepancies in the outcomes of experimental study, FEM calculations, and spring-back analysis. It is therefore of crucial importance to study the mechanical properties of the materials in their tubular forms. The experiments and FEM simulations prove that the spring-back angle is significantly affected by the mechanical properties of the materials. The angle decreases accordingly with plastic modulus, but changes inversely with the hardening index and elastic modulus. The spring-back angle is also affected by the conditions of tube deformation: it increases accordingly with the relative bending radius but changes inversely with the relative wall thickness. In addition, the spring-back angle increases nonlinearly with the bending an-gle.
Inelastic Deformation Analysis of Aluminum Bending Members
CHENG Ming; SHI Yongjiu; WANG Yuanqing
2006-01-01
Aluminum alloys are typical nonlinear materials, and consequently bending members made of this material exhibit a nonlinear behavior. Most design codes do not pay much attention to such deformations and adopt a simple linear analysis for the calculation of deflections. This paper presents an investigation of the nonlinear deformation of aluminum bending members using the finite-element analysis (FEA). The plastic adaptation coefficient, which can be used to limit the residual deflection, is introduced, and the influence of residual deflection is investigated. A method for evaluating the plastic adoption coefficient is proposed. This paper also shows the load-deflection curve of aluminum bending members and the influence of several parameters. A semi-empirical formula is derived, and some numerical examples are given by FEA. The coefficients of the semi-empirical formula are modified by the FEA results using the nonlinear fitting method. Based on these results, two improved design methods for strength and deformation of aluminum bending members are proposed. Through the comparison with test data, these methods are proved to be suitable for structural design.
Finger-jointed beams in bending
Andreasen, Lotte; Hoffmeyer, Preben
1997-01-01
An investigation of the dynamic and static fatique of finger-jointed beams in bending was carried out. Results were obtained for five different frequencies from static loading to a load cycle period of two minutes. A total of seven series were long-term tested and five series were short-term tested...
Fuzzy model for Laser Assisted Bending Process
Giannini Oliviero
2016-01-01
Full Text Available In the present study, a fuzzy model was developed to predict the residual bending in a conventional metal bending process assisted by a high power diode laser. The study was focused on AA6082T6 aluminium thin sheets. In most dynamic sheet metal forming operations, the highly nonlinear deformation processes cause large amounts of elastic strain energy stored in the formed material. The novel hybrid forming process was thus aimed at inducing the local heating of the mechanically bent workpiece in order to decrease or eliminate the related springback phenomena. In particular, the influence on the extent of springback phenomena of laser process parameters such as source power, scan speed and starting elastic deformation of mechanically bent sheets, was experimentally assessed. Consistent trends in experimental response according to operational parameters were found. Accordingly, 3D process maps of the extent of the springback phenomena according to operational parameters were constructed. The effect of the inherent uncertainties on the predicted residual bending caused by the approximation in the model parameters was evaluated. In particular, a fuzzy-logic based approach was used to describe the model uncertainties and the transformation method was applied to propagate their effect on the residual bending.
Aerosol deposition in bends with turbulent flow
McFarland, A.R.; Gong, H.; Wente, W.B. [Texas A& M Univ., College Station, TX (United States)] [and others
1997-08-01
The losses of aerosol particles in bends were determined numerically for a broad range of design and operational conditions. Experimental data were used to check the validity of the numerical model, where the latter employs a commercially available computational fluid dynamics code for characterizing the fluid flow field and Lagrangian particle tracking technique for characterizing aerosol losses. Physical experiments have been conducted to examine the effect of curvature ratio and distortion of the cross section of bends. If it curvature ratio ({delta} = R/a) is greater than about 4, it has little effect on deposition, which is in contrast with the recommendation given in ANSI N13.1-1969 for a minimum curvature ratio of 10. Also, experimental results show that if the tube cross section is flattened by 25% or less, the flattening also has little effect on deposition. Results of numerical tests have been used to develop a correlation of aerosol penetration through a bend as a function of Stokes number (Stk), curvature ratio ({delta}) and the bend angle ({theta}). 17 refs., 10 figs., 2 tabs.
Head movements while steering around bends
Erp, J.B.F. van; Oving, A.B.
2012-01-01
In this study, the determinants of head motions (rotations) when driving around bends were investigated when drivers viewed the scene through a head-mounted display. The scene camera was either fixed or coupled to head motions along 2 or 3 axes of rotation. Eight participants drove around a
The first ANDES elements: 9-DOF plate bending triangles
Militello, Carmelo; Felippa, Carlos A.
1991-01-01
New elements are derived to validate and assess the assumed natural deviatoric strain (ANDES) formulation. This is a brand new variant of the assumed natural strain (ANS) formulation of finite elements, which has recently attracted attention as an effective method for constructing high-performance elements for linear and nonlinear analysis. The ANDES formulation is based on an extended parametrized variational principle developed in recent publications. The key concept is that only the deviatoric part of the strains is assumed over the element whereas the mean strain part is discarded in favor of a constant stress assumption. Unlike conventional ANS elements, ANDES elements satisfy the individual element test (a stringent form of the patch test) a priori while retaining the favorable distortion-insensitivity properties of ANS elements. The first application of this formulation is the development of several Kirchhoff plate bending triangular elements with the standard nine degrees of freedom. Linear curvature variations are sampled along the three sides with the corners as gage reading points. These sample values are interpolated over the triangle using three schemes. Two schemes merge back to conventional ANS elements, one being identical to the Discrete Kirchhoff Triangle (DKT), whereas the third one produces two new ANDES elements. Numerical experiments indicate that one of the ANDES element is relatively insensitive to distortion compared to previously derived high-performance plate-bending elements, while retaining accuracy for nondistorted elements.
Electrical Bending and Mechanical Buckling Instabilities in Electrospinning Jets
Han, Tao; Reneker, Darrell H.
2007-03-01
The electrospinning jet was a continuous fluid flow ejected from the surface of a fluid when the applied electrical force overcomes the surface tension. The jet moved straight away from the tip and then became unstable and bent into coils. This phenomenon is the electrical bending instability [1]. When the distance between the tip and collector was reduced to less than the maximal straight segment length, the electrical bending instability did not occur. The periodic buckling of a fluid jet incident onto a surface is a striking fluid mechanical instability [2]. When axial compressive stress along the jet reached a sufficient value, it produced the fluid mechanics analogue to the buckling of a slender solid column. In the electrospinning, the buckling instability occurred just above the collector where the jet was compressed as it encountered the collector. The buckling frequencies of these jets are in the range of 10^4 to 10^5 Hz. The buckling lengths of these jets are in the range of 10 to 100μm. *Reneker,D.H.; Yarin, A. L.; Fong, H.; Koombhongse, S., Journal of Applied Physics, 87, 4531, 2000 *Tchavdarov B.; Yarin, A. L.; Radev S., Journal of Fluid Mechanics; 253, 593,1993
Thermal fluctuations and bending rigidity of bilayer membranes.
Tarazona, Pedro; Chacón, Enrique; Bresme, Fernando
2013-09-07
We present a new scheme to estimate the elastic properties of biological membranes in computer simulations. The method analyzes the thermal fluctuations in terms of a coupled undulatory mode, which disentangle the mixing of the mesoscopic undulations and the high-q protrusions. This approach makes possible the accurate estimation of the bending modulus both for membranes under stress and in tensionless conditions; it also extends the applicability of the fluctuation analysis to the small membrane areas normally used in atomistic simulations. Also we clarify the difference between the surface tension imposed in simulations through a pressure coupling barostat, and the surface tension that can be extracted from the analysis of the low wave vector dependence of the coupled undulatory fluctuation spectrum. The physical analysis of the peristaltic mode is also refined, by separating the bulk and protrusions contributions. We illustrate the procedure by analyzing 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine bilayers. The bending moduli obtained from our analysis, shows good agreement with available experiments.
Starbuck, J. Michael; Guerdal, Zafer; Pindera, Marek-Jerzy; Poe, Clarence C.
1990-01-01
Damage states in laminated composites were studied by considering the model problem of a laminated beam subjected to three-point bending. A combination of experimental and theoretical research techniques was used to correlate the experimental results with the analytical stress distributions. The analytical solution procedure was based on the stress formulation approach of the mathematical theory of elasticity. The solution procedure is capable of calculating the ply-level stresses and beam displacements for any laminated beam of finite length using the generalized plane deformation or plane stress state assumption. Prior to conducting the experimental phase, the results from preliminary analyses were examined. Significant effects in the ply-level stress distributions were seen depending on the fiber orientation, aspect ratio, and whether or not a grouped or interspersed stacking sequence was used. The experimental investigation was conducted to determine the different damage modes in laminated three-point bend specimens. The test matrix consisted of three-point bend specimens of 0 deg unidirectional, cross-ply, and quasi-isotropic stacking sequences. The dependence of the damage initiation loads and ultimate failure loads were studied, and their relation to damage susceptibility and damage tolerance of the mean configuration was discussed. Damage modes were identified by visual inspection of the damaged specimens using an optical microscope. The four fundamental damage mechanisms identified were delaminations, matrix cracking, fiber breakage, and crushing. The correlation study between the experimental results and the analytical results were performed for the midspan deflection, indentation, damage modes, and damage susceptibility.
Design and optimization of a bend-and-sweep compliant mechanism
Tummala, Y.; Frecker, M. I.; Wissa, A. A.; Hubbard, J. E., Jr.
2013-09-01
A novel contact aided compliant mechanism called bend-and-sweep compliant mechanism is presented in this paper. This mechanism has nonlinear stiffness properties in two orthogonal directions. An angled compliant joint (ACJ) is the fundamental element of this mechanism. Geometric parameters of ACJs determine the stiffness of the compliant mechanism. This paper presents the design and optimization of bend-and-sweep compliant mechanism. A multi-objective optimization problem was formulated for design optimization of the bend-and-sweep compliant mechanism. The objectives of the optimization problem were to maximize or minimize the bending and sweep displacements, depending on the situation, while minimizing the von Mises stress and mass of each mechanism. This optimization problem was solved using NSGA-II (a genetic algorithm). The results of this optimization for a single ACJ during upstroke and downstroke are presented in this paper. Results of two different loading conditions used during optimization of a single ACJ for upstroke are presented. Finally, optimization results comparing the performance of compliant mechanisms with one and two ACJs are also presented. It can be inferred from these results that the number of ACJs and the design of each ACJ determines the stiffness of the bend-and-sweep compliant mechanism. These mechanisms can be used in various applications. The goal of this research is to improve the performance of ornithopters by passively morphing their wings. In order to achieve a bio-inspired wing gait called continuous vortex gait, the wings of the ornithopter need to bend, and sweep simultaneously. This can be achieved by inserting the bend-and-sweep compliant mechanism into the leading edge wing spar of the ornithopters.
Experimental Characterization of Stretch-Bending Formability of AHSS Sheets
Kitting, Daniela; Ofenheimer, Aldo; Pauli, Heinrich; Till, Edwin T.
2011-05-01
Deformation conditions of combined stretching and bending are known to enhance material formability compared to forming conditions without bending (e.g. in-plane stretching). These phenomena can be observed for most conventional steel grades but is even more pronounced for Advanced High Strength Steel (AHSS) sheets. Consequently, there is an urgent need in industry to quantify the phenomena of enhanced material formability due to bending effects. In this work new stretch-bend test setups are presented which can be used in addition to the conventional Angular Stretch Bend Test to systematically investigate the influence of various stretch-bending deformation conditions on the formability of AHSS sheets.
Bending effects on lasing action of semiconductor nanowires.
Yang, Weisong; Ma, Yaoguang; Wang, Yipei; Meng, Chao; Wu, Xiaoqin; Ye, Yu; Dai, Lun; Tong, Limin; Liu, Xu; Yang, Qing
2013-01-28
High flexibility has been one of advantages for one-dimensional semiconductor nanowires (NWs) in wide application of nanoscale integrated circuits. We investigate the bending effects on lasing action of CdSe NWs. Threshold increases and differential efficiency decreases gradually when we decrease the bending radius step by step. Red shift and mode reduction in the output spectra are also observed. The bending loss of laser oscillation is considerably larger than that of photoluminescence (PL), and both show the exponential relationship with the bending radius. Diameter and mode dependent bending losses are investigated. Furthermore, the polarizations of output can be modulated linearly by bending the NWs into different angles continuously.
Three-dimensional motion analysis of lumbopelvic rhythm during lateral trunk bending
Tojima, Michio; Ogata, Naoshi; Inokuchi, Haruhi; Haga, Nobuhiko
2016-01-01
[Purpose] To examine the variations in the lumbopelvic rhythm and lumbar-hip ratio in the frontal plane. [Subjects and Methods] Markers were placed on the T10 and T12 spinous processes, bilateral paravertebral muscles at the T11 level, the pelvis, and the femur. Lumbar spine and hip angles were measured during lateral trunk bending using three-dimensional motion analysis. Data from the trunk lateral bending movement were categorized into descending (start of hip movement to when the hip angle reached its maximum value) and ascending (from the maximum hip angle to the end of movement) phases. The lumbar-hip ratio was calculated as the ratio of the lumbar spine angle to the hip angle. [Results] The lumbar-hip ratio decreased from 5.9 to 3.6 in the descending phase, indicating lumbar spinal movement was less than hip movement. In the ascending phase, the lumbar-hip ratio was reversed. The lumbopelvic rhythm was better expressed by a cubic or quadratic function rather than a linear function. These functions indicate that when the hip inclines by 1° that the lumbar spine bends laterally by 2.4°. [Conclusion] The lumbopelvic rhythm and lumbar-hip ratio indicate lumbar lateral bending instead of a limitation of hip inclination. PMID:27630428
Maximum Likelihood Associative Memories
Gripon, Vincent; Rabbat, Michael
2013-01-01
Associative memories are structures that store data in such a way that it can later be retrieved given only a part of its content -- a sort-of error/erasure-resilience property. They are used in applications ranging from caches and memory management in CPUs to database engines. In this work we study associative memories built on the maximum likelihood principle. We derive minimum residual error rates when the data stored comes from a uniform binary source. Second, we determine the minimum amo...
Maximum likely scale estimation
Loog, Marco; Pedersen, Kim Steenstrup; Markussen, Bo
2005-01-01
A maximum likelihood local scale estimation principle is presented. An actual implementation of the estimation principle uses second order moments of multiple measurements at a fixed location in the image. These measurements consist of Gaussian derivatives possibly taken at several scales and....../or having different derivative orders. Although the principle is applicable to a wide variety of image models, the main focus here is on the Brownian model and its use for scale selection in natural images. Furthermore, in the examples provided, the simplifying assumption is made that the behavior...... of the measurements is completely characterized by all moments up to second order....
Bending induced electrical response variations in ultra-thin flexible chips and device modeling
Heidari, Hadi; Wacker, Nicoleta; Dahiya, Ravinder
2017-09-01
Electronics that conform to 3D surfaces are attracting wider attention from both academia and industry. The research in the field has, thus far, focused primarily on showcasing the efficacy of various materials and fabrication methods for electronic/sensing devices on flexible substrates. As the device response changes are bound to change with stresses induced by bending, the next step will be to develop the capacity to predict the response of flexible systems under various bending conditions. This paper comprehensively reviews the effects of bending on the response of devices on ultra-thin chips in terms of variations in electrical parameters such as mobility, threshold voltage, and device performance (static and dynamic). The discussion also includes variations in the device response due to crystal orientation, applied mechanics, band structure, and fabrication processes. Further, strategies for compensating or minimizing these bending-induced variations have been presented. Following the in-depth analysis, this paper proposes new mathematical relations to simulate and predict the device response under various bending conditions. These mathematical relations have also been used to develop new compact models that have been verified by comparing simulation results with the experimental values reported in the recent literature. These advances will enable next generation computer-aided-design tools to meet the future design needs in flexible electronics.
The Dependency of Nematic and Twist-bend Mesophase Formation on Bend Angle
Mandle, Richard J.; Archbold, Craig T.; Sarju, Julia P.; Andrews, Jessica L.; Goodby, John W.
2016-11-01
We have prepared and studied a family of cyanobiphenyl dimers with varying linking groups with a view to exploring how molecular structure dictates the stability of the nematic and twist-bend nematic mesophases. Using molecular modelling and 1D 1H NOESY NMR spectroscopy, we determine the angle between the two aromatic core units for each dimer and find a strong dependency of the stability of both the nematic and twist-bend mesophases upon this angle, thereby satisfying earlier theoretical models.
Homogenization of long fiber reinforced composites including fiber bending effects
Poulios, Konstantinos; Niordson, Christian F.
2016-09-01
This paper presents a homogenization method, which accounts for intrinsic size effects related to the fiber diameter in long fiber reinforced composite materials with two independent constitutive models for the matrix and fiber materials. A new choice of internal kinematic variables allows to maintain the kinematics of the two material phases independent from the assumed constitutive models, so that stress-deformation relationships, can be expressed in the framework of hyper-elasticity and hyper-elastoplasticity for the fiber and the matrix materials respectively. The bending stiffness of the reinforcing fibers is captured by higher order strain terms, resulting in an accurate representation of the micro-mechanical behavior of the composite. Numerical examples show that the accuracy of the proposed model is very close to a non-homogenized finite-element model with an explicit discretization of the matrix and the fibers.
Study on Thickness Effect of Three-Point-Bend Specimen
Kikuchi, Masanori; Ishihara, Takehito
The thickness effect of a three-point-bend (3PB) specimen on dimple fracture behavior is studied experimentally and numerically. At first, fracture toughness tests were conducted using 3PB specimens of different thicknesses. Fracture toughness values and R-curves are obtained, and the thickness effect is discussed. Using scanning electron microscopy (SEM), dimple fracture surfaces are observed precisely. It is found that the thickness effect appears clearly in the void growth process. Finite element (FEM) analyses are conducted based on these experimental data. Using Gurson’s constitutive equation, the nucleation and growth of voids during the dimple fracture process are simulated. The distribution patterns of stress triaxiality and the crack growth process are obtained. The results show a good agreement with experimental ones qualitatively. The effects of specimen thickness on R-curves are explained well on the basis of these numerical simulations.
Degradation of bimorph piezoelectric bending beams in energy harvesting applications
Pillatsch, P.; Xiao, B. L.; Shashoua, N.; Gramling, H. M.; Yeatman, E. M.; Wright, P. K.
2017-03-01
Piezoelectric energy harvesting is an attractive alternative to battery powering for wireless sensor networks. However, in order for it to be a viable long term solution the fatigue life needs to be assessed. Many vibration harvesting devices employ bimorph piezoelectric bending beams as transduction elements to convert mechanical to electrical energy. This paper introduces two degradation studies performed under symmetrical and asymmetrical sinusoidal loading. It is shown that besides a loss in output power, the most dramatic effect of degradation is a shift in resonance frequency which is highly detrimental to resonant harvester designs. In addition, micro-cracking was shown to occur predominantly in piezoelectric layers under tensile stress. This opens the opportunity for increased life time through compressive operation or pre-loading of piezoceramic layers.
Bending Fatigue Strength of Austempered Ductile Iron Spur Gears
Yamanaka, Masashi; Tamura, Ryo; Inoue, Katsumi; Narita, Yukihito
This paper deals with an experimental evaluation of bending fatigue strength for austempered ductile iron (ADI) spur gears. The module is 2.5 and the number of teeth is 26 in the test gears. The material of the test gears corresponds to Japan Industrial Standard (JIS) FCAD1100-15. Some gears are processed by one of two types of fine particle bombarding (FPB). The surface roughness is slightly increased by FPB. The obtained strengths are 623 MPa for the as-austempered gears, and 1011 and 1085 MPa for the gears after FPB. The strength is expressed by the fillet stress level, which is calculated by FEM. The strength of a gear with the same dimensions made of carburized SCr420H alloy steel is 1205 MPa, and the strength of the ADI gear is approximately half that of the carburized steel gear. The FPB process has a significant effect on the ADI gear, improving its strength by 62-74%.
A mechanical model for FRP-strengthened beams in bending
P. S. Valvo
2012-10-01
Full Text Available We analyse the problem of a simply supported beam, strengthened with a fibre-reinforced polymer (FRP strip bonded to its intrados and subjected to bending couples applied to its end sections. A mechanical model is proposed, whereby the beam and FRP strip are modelled according to classical beam theory, while the adhesive and its neighbouring layers are modelled as an interface having a piecewise linear constitutive law defined over three intervals (elastic response – softening response – debonding. The model is described by a set of differential equations with appropriate boundary conditions. An analytical solution to the problem is determined, including explicit expressions for the internal forces, displacements and interfacial stresses. The model predicts an overall non-linear mechanical response for the strengthened beam, ranging over several stages: from linearly elastic behaviour to damage, until the complete detachment of the FRP reinforcement.
Substantiation of concrete core rational parameters for bending composite structures
Vatulia Glib
2017-01-01
Full Text Available In order to provide bending structures rationalization for reducing the materials consumption, labor and power inputs, construction or renovation terms, the authors considered the possibility of utilizing the structures with external steel sheet reinforcement and concrete layer made from fibers of different types. Experimental researches of various authors, both domestic and overseas, have been analyzed during the preliminary investigations. As a result, the steel and basalt fibers were selected for further inquiry, proved their rational sizes, percentage to concrete mass in structures worked under thermal and force impacts. It was developed the algorithm and software, helps to determine the stress-strain state and carrying capacity of composite floor slabs with different end and load conditions. It was concluded the necessity of physical-mechanical and thermal physic properties clarification of heated fibrous concrete. The experiment planning was performed to obtain the temperature dependences of strength and modulus of deformation, thermal conductivity and specific heat capacity of fibrous concrete mix.
Amaritsakul, Yongyut; Chao, Ching-Kong; Lin, Jinn
2014-09-01
Pedicle screws are used for treating several types of spinal injuries. Although several commercial versions are presently available, they are mostly either fully cylindrical or fully conical. In this study, the bending strengths of seven types of commercial pedicle screws and a newly designed double dual core screw were evaluated by finite element analyses and biomechanical tests. All the screws had an outer diameter of 7 mm, and the biomechanical test consisted of a cantilever bending test in which a vertical point load was applied using a level arm of 45 mm. The boundary and loading conditions of the biomechanical tests were applied to the model used for the finite element analyses. The results showed that only the conical screws with fixed outer diameter and the new double dual core screw could withstand 1,000,000 cycles of a 50-500 N cyclic load. The new screw, however, exhibited lower stiffness than the conical screw, indicating that it could afford patients more flexible movements. Moreover, the new screw produced a level of stability comparable to that of the conical screw, and it was also significantly stronger than the other screws. The finite element analysis further revealed that the point of maximum tensile stress in the screw model was comparable to the point at which fracture occurred during the fatigue test. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.
The Effects of Hot Bending on the Low Cycle Fatigue Behaviors of 347 SS in PWR Primary Environment
Kim, Ho-Sub; Hong, Jong-Dae; Lee, Junho; Jang, Changheui [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)
2014-10-15
Fatigue damage could be significant for some locations, especially the welds and bends where stress concentration is typically high. As a possible solution, a large radius hot-bending method has been suggested to eliminate some weld joints and all tight bends. However, for the hot-bending process which involves a high temperature thermal cycle, there is a concern about changes in mechanical properties including low cycle fatigue behaviors. In APR1400, Type 347 SS have been used as surge line pipes. Therefore, to verify the applicability of hot-bending on 347 SS surge line pipes, an environmental fatigue test program was initiated. In this paper, the preliminary results of the on-going test program are introduced. Also, the low cycle fatigue behaviors of 347 SS are compared with those of other grade of stainless steels. The effects of hot bending on the low cycle fatigue behavior of 347 SS were quantitatively evaluated. The fatigue life was compared with the estimated values per NUREG 6909 rev. 1. There are no distinct differences between NUREG 6909 and LCF tests. According to fractography and cross section analysis in progress, basically, the reduction of LCF life of 347 SS in PWR water was caused by operation of HIC mechanism. The cyclic stress responses shows that there is no secondary hardening in 330 .deg.C air and PWR water.
F. TopsÃƒÂ¸e
2001-09-01
Full Text Available Abstract: In its modern formulation, the Maximum Entropy Principle was promoted by E.T. Jaynes, starting in the mid-fifties. The principle dictates that one should look for a distribution, consistent with available information, which maximizes the entropy. However, this principle focuses only on distributions and it appears advantageous to bring information theoretical thinking more prominently into play by also focusing on the "observer" and on coding. This view was brought forward by the second named author in the late seventies and is the view we will follow-up on here. It leads to the consideration of a certain game, the Code Length Game and, via standard game theoretical thinking, to a principle of Game Theoretical Equilibrium. This principle is more basic than the Maximum Entropy Principle in the sense that the search for one type of optimal strategies in the Code Length Game translates directly into the search for distributions with maximum entropy. In the present paper we offer a self-contained and comprehensive treatment of fundamentals of both principles mentioned, based on a study of the Code Length Game. Though new concepts and results are presented, the reading should be instructional and accessible to a rather wide audience, at least if certain mathematical details are left aside at a rst reading. The most frequently studied instance of entropy maximization pertains to the Mean Energy Model which involves a moment constraint related to a given function, here taken to represent "energy". This type of application is very well known from the literature with hundreds of applications pertaining to several different elds and will also here serve as important illustration of the theory. But our approach reaches further, especially regarding the study of continuity properties of the entropy function, and this leads to new results which allow a discussion of models with so-called entropy loss. These results have tempted us to speculate over
The Problem of Bending of Rectangular Plate Taking into Account the Transversal Shear
Baghdasaryan Z.R.
2008-06-01
Full Text Available In this work the problems on the bending of rectangular plate on the basis of classical theory by Kirchhoff and Ambartsumyan’s theory is observed. It is shown, that when the plate is leaned free on two opposite sides, and on two others is hinge joint, the exactness of Kirchhoff's hypothesis is the neglecting of a related thickness in comparison with unit. Formulas for a deflection and also for shear stress resultant and generalized shear stress resultant are received. In different private cases expressions of maximal deflection and shear stress resultant are received.
EXPERIMENTAL STUDY ON CRACK CURVING PROPAGATION IN BENDING BEAMS UNDER IMPULSIVE LOAD
Fang Jing; Yao Xuefeng; Xiong Chunyang
2000-01-01
Dynamic fracture behaviour of crack curving in bent beams has been investigated.In order to understand the propagation mechanism of such cracks under impact,an experimental method is used that combines dynamic photoelasticity with dynamic caustics to study the interaction of the flexural waves and the crack.From the state change of the transient stresses in polymer specimen,the curving fracture in the impulsively loaded beams is analyzed.The dynamic responses of crack tips are evaluated by the stress intensity factors for the cracks running in varying curvature paths under bending stress wave.
A miniature ultransonic pump using a bending disk transducer and a gap.
Hasegawa, Takeshi; Nakamura, Kentaro; Ueha, Sadayuki
2006-12-22
It is known that if a pipe end is faced at a vibrating surface in liquid with a small gap, liquid is suctioned into the pipe. As a miniature configuration, we introduce a bending disk transducer 30 mm in diameter using a ring-shaped PZT element. The disk vibrator is worked at the fundamental resonance frequency of 19 kHz of the bending mode. To optimize the pipe geometry, we experimentally investigated the effect of the outer diameter on the pump performance. As a result, the outer/inner diameter ratio of 3:2 is optimum for the gap smaller than 20 microm. We achieved the maximum pump pressure of 14.8 kPa and the maximum flow rate of 10 ml/min. using the prototype pump.
A wearable, highly stable, strain and bending sensor based on high aspect ratio graphite nanobelts
Alaferdov, A. V.; Savu, R.; Rackauskas, T. A.; Rackauskas, S.; Canesqui, M. A.; de Lara, D. S.; Setti, G. O.; Joanni, E.; de Trindade, G. M.; Lima, U. B.; de Souza, A. S.; Moshkalev, S. A.
2016-09-01
A simple and scalable method was developed for the fabrication of wearable strain and bending sensors, based on high aspect ratio (length/thickness ˜103) graphite nanobelt thin films deposited by a modified Langmuir-Blodgett technique onto flexible polymer substrates. The sensing mechanism is based on the changes in contact resistance between individual nanobelts upon substrate deformation. Very high sensor response stability for more than 5000 strain-release cycles and a device power consumption as low as 1 nW were achieved. The device maximum stretchability is limited by the metal electrodes and the polymer substrate; the maximum strain that could be applied to the polymer used in this work was 40%. Bending tests carried out for various radii of curvature demonstrated distinct sensor responses for positive and negative curvatures. The graphite nanobelt thin flexible films were successfully tested for acoustic vibration and heartbeat sensing.
Regularized maximum correntropy machine
Wang, Jim Jing-Yan
2015-02-12
In this paper we investigate the usage of regularized correntropy framework for learning of classifiers from noisy labels. The class label predictors learned by minimizing transitional loss functions are sensitive to the noisy and outlying labels of training samples, because the transitional loss functions are equally applied to all the samples. To solve this problem, we propose to learn the class label predictors by maximizing the correntropy between the predicted labels and the true labels of the training samples, under the regularized Maximum Correntropy Criteria (MCC) framework. Moreover, we regularize the predictor parameter to control the complexity of the predictor. The learning problem is formulated by an objective function considering the parameter regularization and MCC simultaneously. By optimizing the objective function alternately, we develop a novel predictor learning algorithm. The experiments on two challenging pattern classification tasks show that it significantly outperforms the machines with transitional loss functions.
Study and analysis of the stress state in a ceramic, button-head, tensile specimen
Jenkins, M.G.; Ferber, M.K.; Martin, R.L.; Jenkins, V.T.; Tennery, V.J.
1991-09-01
The final results are reported for a study to identify and correct the causes of nongage-section failures (notably button-head failures) in ceramic tensile specimens observed in several laboratories. Numerical modeling of several candidate specimen gripping systems has shown inherent stress concentrations near the specimen button head at which the maximum stress may approach 75 to 100% of the gage-section stress for certain grip conditions. Empirical comparisons of both tapered- and straight-collet gripping systems revealed compromises in both systems. The straight-collet system, with deformable collets, is simpler to use but produces statistically significant greater average percent bending for all tests than those produced for the tapered-collet system, which is slightly more difficult to use. Empirical tensile tests of {approximately}50 aluminium oxide and {approximately}50 silicon nitride specimens were conducted to evaluate the loading capability of both gripping systems, the percent bending in each system, and the potential of consistently producing successful test results. These tests revealed that, due to variations in individuals specimens or the individual specimen/grip interfaces, neither of the gripping systems can consistently produce bending of less than 3 to 4% at failure although occasional values of {approximately}0.5% bending were attained. Refinements of grinding procedures and dimensional measurement techniques have shown critical details in both the practices and consistency of machining necessary for achieving the dimensional tolerances while minimizing subsurface damage. Numerical integration techniques indicate that up to a consistent 5.0% bending during fast- fracture tests can be tolerated before large influences are detected in the determination of the Weibull modulus and the Weibull characteristic strength.
Oide Effect and Radiation in Bending Magnets
Blanco, Oscar; Bambade, Philip
2014-01-01
Including radiation effects during lattice design optimization is crucial in high energy accelerators. Oide effect and radiation in bending magnets are reviewed aiming to include them in the optical design process to minimize the IP beam size. The Oide double integral is expressed in simpler terms in order to speed up calculations, concluding in how longer quadrupoles with lower gradients may help reducing the Oide effect. Radiation in bending magnets is reviewed for linear lattices, generalizing to the case when the final dispersion is different from zero and making comparisons with theoretical results and particle tracking. An agreement between the theory, the implemented approximation included in MAPCLASS2 and the six-dimensional tracking in PLACET has been found.
Vortex breakdown in simple pipe bends
Ault, Jesse; Shin, Sangwoo; Stone, Howard
2016-11-01
Pipe bends and elbows are one of the most common fluid mechanics elements that exists. However, despite their ubiquity and the extensive amount of research related to these common, simple geometries, unexpected complexities still remain. We show that for a range of geometries and flow conditions, these simple flows experience unexpected fluid dynamical bifurcations resembling the bubble-type vortex breakdown phenomenon. Specifically, we show with simulations and experiments that recirculation zones develop within the bends under certain conditions. As a consequence, fluid and particles can remain trapped within these structures for unexpectedly-long time scales. We also present simple techniques to mitigate this recirculation effect which can potentially have impact across industries ranging from biomedical and chemical processing to food and health sciences.
Rock bending creep and disturbance effects
付志亮; 郑颖人; 刘元雪
2008-01-01
The bending creep and its disturbance effects of red sandstone rock beam and oil shale rock beam were studied by adopting the self-developed gravitation level style rock creep test machine and bending creep test system,and the constitutive equations were established.It is found that fracture morphology of rock beams under no disturbance load is regular,cracking position of fractures is on part of loading concentration,the crack starts from a neutral plane.However,fracture morphology of rock beams under disturbance load is irregular,cracking position of fractures deviates from a neutral plane.Delayed instability of rock beam occurs for some time under constant disturbance load.When disturbance load is beyond a certain range,suddenly instability of occurs rock beam in a certain time.The results show that there is a guiding significance for creep stability in the geotechnical engineering fields.
Thermal Analysis of Bending Under Tension Test
Ceron, Ermanno; Martins, Paulo A.F.; Bay, Niels
2014-01-01
The tribological conditions in deep drawing can be simulated in the Bending Under Tension test to evaluate the performance of new lubricants, tool materials, etc. Deep drawing production with automatic handling runs normally at high rate. This implies considerable heating of the tools, which...... sometimes can cause lubricant film breakdown and galling. In order to replicate the production conditions in bending under tension testing it is thus important to control the tool/workpiece interface temperature. This can be done by pre-heating the tool, but it is essential that the interface temperature...... during testing is similar to the one in the production tool. A universal sheet tribo-tester has been developed, which can run multiple tests automatically from coil. This allows emulating the temperature increase as in production. The present work performs finite element analysis of the evolution...
Parallel monostrand stay cable bending fatigue
Winkler, Jan Pawel
of damage and replacement of bridge stay cables due to wind and traffic-induced fatigue. The understanding of fatigue mechanisms in most steel structures is well established. However, in the case of cables composed of steel strands, many important aspects related with bending fatigue remain to be clarified......This dissertation investigates the bending fatigue response of high-strength steel monostrands and multistrand stay cables to cyclic transverse deformations. Increasing bridge stock numbers and a push for longer cable-supported span lengths have led to an increased number of reported incidents...... associated with variable loading, and different testing procedures. As most of the contemporary stay cables are comprised of a number of individual highstrength steel monostrands, the research study started with an extensive experimental work on the fatigue response of a single monostrand to cyclic flexural...
Approach to hot bending process simulation
Carmignani, B.; Daneri, A.; Toselli, G. [ENEA, Bologna (Italy). Centro Ricerche Energia `E. Clementel` - Area Energia e Innovazione
1995-06-01
An approach to the simulation of the thermal shaping or bending of large steel sheets, by ABAQUS/Standard code, will be presented. A thermal source representation, which can produce a temperature distribution, adequate to the processes which must be considered, has been set up. Some problems connected with the hot sheet shaping or bending process simulation have been approached and calculations have been executed in order to single out how to perform the sheet heating, so that the required sheet shape may be obtained. The results for one reference model for different source situations and one heating line, object of the first phase of the analyses performed, will be presented and discussed. The work will be presented at the 8th International Abaqus Users` Conference at Paris, 31 May - 2 June 1995.
Holey fibers for low bend loss
Nakajima, Kazuhide; Saito, Kotaro; Yamada, Yusuke; Kurokawa, Kenji; Shimizu, Tomoya; Fukai, Chisato; Matsui, Takashi
2013-12-01
Bending-loss insensitive fiber (BIF) has proved an essential medium for constructing the current fiber to the home (FTTH) network. By contrast, the progress that has been made on holey fiber (HF) technologies provides us with novel possibilities including non-telecom applications. In this paper, we review recent progress on hole-assisted type BIF. A simple design consideration is overviewed. We then describe some of the properties of HAF including its mechanical reliability. Finally, we introduce some applications of HAF including to high power transmission. We show that HAF with a low bending loss has the potential for use in various future optical technologies as well as in the optical communication network.
Cyclic stretch-bending: mechanics, stability and formability
Emmens, W.C.; van den Boogaard, Antonius H.
2011-01-01
Cyclic stretch-bending has been studied using the so-called Continuous-Bending-under-Tension (CBT) test. This is a modified tensile test where the specimen is subjected to repetitive bending at the same time. A wide variety of materials have been tested this way. A simple mechanical model is
Wooden Model of Wide AA Bending Magnet
1978-01-01
The very particular lattice of the AA required 2 types of dipoles (bending magnets: BLG, long and narrow; BST, short and wide). The wide ones had a steel length of 2.71 m, a "good field" width of 0.564 m, and a weight of about 75 t. Here we see a wooden model, built in 1978, to gain dimensional experience with such a monster.
Electron cooling device without bending magnets
Sharapa, A. N.; Shemyakin, A. V.
1993-11-01
The scheme of an axisymmetric electron cooling device without bending magnets is proposed. Solutions for the most important elements, i.e., a gun and a recuperator, are considered. The main characteristics of the recuperator of the Faraday cup type having a reflector and a gun with a ring emitter are explored. In the gun, the beam is formed, the diameter of which is 40 mm and the dimension of a disturbance region is several millimeters.
AA, assembly of wide bending magnet
1980-01-01
The very particular lattice of the AA required 2 types of dipoles (bending magnets; BST, short and wide; BLG, long and narrow). The wide ones had a steel length of 2.71 m, a "good field" width of 0.564 m, and a weight of about 75 t. Here we see the copper coils being hoisted onto the lower half of a BST. See also 7811105, 8006050. For a BLG, see 8001044.
Drag Reduction, from Bending to Pruning
Lopez, Diego; Michelin, Sébastien; de Langre, Emmanuel
2013-01-01
Most plants and benthic organisms have evolved efficient reconfiguration mechanisms to resist flow-induced loads. These mechanisms can be divided into bending, in which plants reduce their sail area through elastic deformation, and pruning, in which the loads are decreased through partial breakage of the structure. In this work, we show by using idealized models that these two mechanisms or, in fact, any combination of the two, are equally efficient to reduce the drag experienced by terrestrial and aquatic vegetation.
Big Bend National Park, TX, USA, Mexico
1991-01-01
The Sierra del Carmen of Mexico, across the Rio Grande River from Big Bend National Park, TX, (28.5N, 104.0W) is centered in this photo. The Rio Grande River bisects the scene; Mexico to the east, USA to the west. The thousand ft. Boquillas limestone cliff on the Mexican side of the river changes colors from white to pink to lavender at sunset. This severely eroded sedimentary landscape was once an ancient seabed later overlaid with volcanic activity.
Multiculturalism, Gender and Bend it Like Beckham
Gamal Abdel-Shehid
2015-06-01
Full Text Available In this article, we explore the efficacy of sport as an instrument for social inclusion through an analysis of the film Bend it Like Beckham. The film argues for the potential of sport to foster a more inclusive society in terms of multiculturalism and gender equity by showing how a hybrid culture can be forged through the microcosm of an English young women’s football club, while simultaneously challenging assumptions about traditional masculinities and femininities. Yet, despite appearances, Bend it Like Beckham does little to challenge the structure of English society. Ultimately, the version of multiculturalism offered by the film is one of assimilation to a utopian English norm. This conception appears progressive in its availability to all Britons regardless of ethnicity, but falls short of conceptions of hybrid identity that do not privilege one hegemonic culture over others. Likewise, although the film presents a feminist veneer, underneath lurks a troubling reassertion of the value of chastity, masculinity, and patriarchy. Bend it Like Beckham thus provides an instructive case study for the potential of sport as a site of social inclusion because it reveals how seductive it is to imagine that structural inequalities can be overcome through involvement in teams.
SYMPLECTIC SOLUTION SYSTEM FOR REISSNER PLATE BENDING
姚伟岸; 隋永枫
2004-01-01
Based on the Hellinger-Reissner variatonal principle for Reissner plate bending and introducing dual variables, Hamiltonian dual equations for Reissner plate bending were presented. Therefore Hamiltonian solution system can also be applied to Reissner plate bending problem, and the transformation from Euclidian space to symplectic space and from Lagrangian system to Hamiltonian system was realized. So in the symplectic space which consists of the original variables and their dual variables, the problem can be solved via effective mathematical physics methods such as the method of separation of variables and eigenfunction-vector expansion. All the eigensolutions and Jordan canonical form eigensolutions for zero eigenvalue of the Hamiltonian operator matrix are solved in detail,and their physical meanings are showed clearly. The adjoint symplectic orthonormal relation of the eigenfunction vectors for zero eigenvalue are formed. It is showed that the all eigensolutions for zero eigenvalue are basic solutions of the Saint-Venant problem and they form a perfect symplectic subspace for zero eigenvalue. And the eigensolutions for nonzero eigenvalue are covered by the Saint-Venant theorem. The symplectic solution method is not the same as the classical semi- inverse method and breaks through the limit of the traditional semi-inverse solution. The symplectic solution method will have vast application.
Equalized near maximum likelihood detector
2012-01-01
This paper presents new detector that is used to mitigate intersymbol interference introduced by bandlimited channels. This detector is named equalized near maximum likelihood detector which combines nonlinear equalizer and near maximum likelihood detector. Simulation results show that the performance of equalized near maximum likelihood detector is better than the performance of nonlinear equalizer but worse than near maximum likelihood detector.
ANALYTICAL SOLUTION FOR BENDING BEAM SUBJECT TO LATERAL FORCE WITH DIFFERENT MODULUS
姚文娟; 叶志明
2004-01-01
A bending beam,subjected to state of plane stress,was chosen to investigate.The determination of the neutral surface of the structure was made,and the calculating formulas of neutral axis,normal stress,shear stress and displacement were derived.It is concluded that, for the elastic bending beam with different tension-compression modulus in the condition of complex stress, the position of the neutral axis is not related with the shear stress, and the analytical solution can be derived by normal stress used as a criterion, improving the multiple cyclic method which determines the position of neutral point by the principal stress. Meanwhile, a comparison is made between the results of the analytical solution and those calculated from the classic mechanics theory, assuming the tension modulus is equal to the compression modulus, and those from the finite element method (FEM) numerical solution. The comparison shows that the analytical solution considers well the effects caused by the condition of different tension and compression modulus. Finally, a calculation correction of the structure with different modulus is proposed to optimize the structure.
Cheeseman, Peter; Stutz, John
2005-01-01
A long standing mystery in using Maximum Entropy (MaxEnt) is how to deal with constraints whose values are uncertain. This situation arises when constraint values are estimated from data, because of finite sample sizes. One approach to this problem, advocated by E.T. Jaynes [1], is to ignore this uncertainty, and treat the empirically observed values as exact. We refer to this as the classic MaxEnt approach. Classic MaxEnt gives point probabilities (subject to the given constraints), rather than probability densities. We develop an alternative approach that assumes that the uncertain constraint values are represented by a probability density {e.g: a Gaussian), and this uncertainty yields a MaxEnt posterior probability density. That is, the classic MaxEnt point probabilities are regarded as a multidimensional function of the given constraint values, and uncertainty on these values is transmitted through the MaxEnt function to give uncertainty over the MaXEnt probabilities. We illustrate this approach by explicitly calculating the generalized MaxEnt density for a simple but common case, then show how this can be extended numerically to the general case. This paper expands the generalized MaxEnt concept introduced in a previous paper [3].
Adu, Stephen Aboagye
Laminated carbon fiber-reinforced polymer composites (CFRPs) possess very high specific strength and stiffness and this has accounted for their wide use in structural applications, most especially in the aerospace industry, where the trade-off between weight and strength is critical. Even though they possess much larger strength ratio as compared to metals like aluminum and lithium, damage in the metals mentioned is rather localized. However, CFRPs generate complex damage zones at stress concentration, with damage progression in the form of matrix cracking, delamination and fiber fracture or fiber/matrix de-bonding. This thesis is aimed at performing; stiffness degradation analysis on composite coupons, containing embedded delamination using the Four-Point Bend Test. The Lamb wave-based approach as a structural health monitoring (SHM) technique is used for damage detection in the composite coupons. Tests were carried-out on unidirectional composite coupons, obtained from panels manufactured with pre-existing defect in the form of embedded delamination in a laminate of stacking sequence [06/904/0 6]T. Composite coupons were obtained from panels, fabricated using vacuum assisted resin transfer molding (VARTM), a liquid composite molding (LCM) process. The discontinuity in the laminate structure due to the de-bonding of the middle plies caused by the insertion of a 0.3 mm thick wax, in-between the middle four (4) ninety degree (90°) plies, is detected using lamb waves generated by surface mounted piezoelectric (PZT) actuators. From the surface mounted piezoelectric sensors, response for both undamaged (coupon with no defect) and damaged (delaminated coupon) is obtained. A numerical study of the embedded crack propagation in the composite coupon under four-point and three-point bending was carried out using FEM. Model validation was then carried out comparing the numerical results with the experimental. Here, surface-to-surface contact property was used to model the
2012-06-15
... COMMISSION PPL Bell Bend, LLC; Bell Bend Nuclear Power Plant Combined License Application; Notice of Intent... its Bell Bend Nuclear Power Plant (BBNPP) site, located west of the existing Susquehanna Steam... by relocating the power block footprint and other plant components. For purposes of developing...
2013-01-22
... COMMISSION PPL Bell Bend, LLC; Combined License Application for Bell Bend Nuclear Power Plant; Exemption 1.0... Approvals for Nuclear Power Plants.'' This reactor is to be identified as Bell Bend Nuclear Power Plant... (RCOL) application for UniStar's Calvert Cliffs Nuclear Power Plant, Unit 3 (CCNPP3). The......
2011-12-29
... COMMISSION PPL Bell Bend, LLC; Combined License Application for Bell Bend Nuclear Power Plant; Exemption 1.0..., Certifications, and Approvals for Nuclear Power Plants.'' This reactor is to be identified as Bell Bend Nuclear Power Plant (BBNPP), in Salem County, Pennsylvania. The BBNPP COL application incorporates by...
somayeh rahimi
2017-06-01
flume. The water elevation was regulated using the sliding gate installed at the end of the flume. Plexiglas with a thickness of 0.01m was used for impermeable part of spurs and the permeable part prepared by using steel roll piles with 4mm diameter. The most erodible area along the bend was determined and after installing the spurs, the bed surface was leveled by a plate attached to the carriage mounted on the channel. Then the inlet valve was opened slowly and the gate at the end of the flume was first closed. The discharge increased to a predetermined value so that no scour occurs at the straight reaches of the flume. Each experimental case was carried out for 3 hours under clear-water scour condition. At the end of experiments, water was carefully drained out and measurement of bed topography was done using laser bed profiles. Results and Discussion: The most erodible area along the bend was determined using the procedure described by the U.S. Army Corps of Engineers and in each experimental case specified the critical spur in terms of the maximum erosion around it that happened at the exit of the bend (sections of 80 to 90 degree of bend and downstream straight reach in all conditions. The centrifugal force will occur has increased the water depth at the exit of the bend. This increase in flow depth is associated with longitudinal negative pressure gradient due to this maximum velocity occurs at the exit of the bend and by this high velocity flow the shear stress increases. The characteristics of the scour hole have been shown to be affected by Froude number and this parameter has a direct relation to maximum relative scour depth and dimensions of the scour hole. The results showed that by increasing the permeability percentage, the amount of maximum relative scour hole depth, length and width decreased. The amount of relative scour depth in permeable and bandal-like spur dike decreased (62% and 55%, and (87% and 76% for permeability of 33% and 64%, respectively in
Tunable waveguide bends with graphene-based anisotropic metamaterials
Chen, Zhao-xian
2016-01-15
We design tunable waveguide bends filled with graphene-based anisotropic metamaterials to achieve a nearly perfect bending effect. The anisotropic properties of the metamaterials can be described by the effective medium theory. The nearly perfect bending effect is demonstrated by finite element simulations of various structures with different bending curvatures and shapes. This effect is attributed to zero effective permittivity along the direction of propagation and matched effective impedance at the interfaces between the bending part and the dielectric waveguides. We envisage that the design will be applicable in the far-infrared and terahertz frequency ranges owing to the tunable dielectric responses of graphene.
Tunable waveguide bends with graphene-based anisotropic metamaterials
Chen, Zhao-xian; Chen, Ze-guo; Ming, Yang; Wu, Ying; Lu, Yan-qing
2016-02-01
We design tunable waveguide bends filled with graphene-based anisotropic metamaterials to achieve a nearly perfect bending effect. The anisotropic properties of the metamaterials can be described by the effective medium theory. The nearly perfect bending effect is demonstrated by finite element simulations of various structures with different bending curvatures and shapes. This effect is attributed to zero effective permittivity along the direction of propagation and matched effective impedance at the interfaces between the bending part and the dielectric waveguides. We envisage that the design will be applicable in the far-infrared and terahertz frequency ranges owing to the tunable dielectric responses of graphene.
Parameter prediction in laser bending of aluminum alloy sheet
Xuyue WANG; Weixing XU; Hua CHEN; Jinsong WANG
2008-01-01
Based on the basic platform of BP neural net-works, a BP network model is established to predict the bending angle in the laser bending process of an aluminum alloy sheet (1-2 mm in thickness) and to optimize laser bending parameters for bending control. The sample experimental data is used to train the BP network. The nonlinear regularities of sample data are fitted through the trained BP network; the predicted results include laser bending angles and parameters. Experimental results indi-cate that the prediction allowance is controlled less than 5%-8% and can provide a theoretical and experimental basis for industry purpose.
Recent developments in bend-insensitive and ultra-bend-insensitive fibers
Boivin, David; de Montmorillon, Louis-Anne; Provost, Lionel; Montaigne, Nelly; Gooijer, Frans; Aldea, Eugen; Jensma, Jaap; Sillard, Pierre
2010-02-01
Designed to overcome the limitations in case of extreme bending conditions, Bend- and Ultra-Bend-Insensitive Fibers (BIFs and UBIFs) appear as ideal solutions for use in FTTH networks and in components, pigtails or patch-cords for ever demanding applications such as military or sensing. Recently, however, questions have been raised concerning the Multi-Path-Interference (MPI) levels in these fibers. Indeed, they are potentially subject to interferences between the fundamental mode and the higher-order mode that is also bend resistant. This MPI is generated because of discrete discontinuities such as staples, bends and splices/connections that occur on distance scales that become comparable to the laser coherent length. In this paper, we will demonstrate the high MPI tolerance of all-solid single-trench-assisted BIFs and UBIFs. We will present the first comprehensive study combining theoretical and experimental points of view to quantify the impact of fusion splices on coherent MPI. To be complete, results for mechanical splices will also be reported. Finally, we will show how the single-trench- assisted concept combined with the versatile PCVD process allows to tightly control the distributions of fibers characteristics. Such controls are needed to massively produce BIFs and to meet the more stringent specifications of the UBIFs.
Anton, Steven R; Erturk, Alper; Inman, Daniel
2012-06-01
The topic of multifunctional material systems using active or smart materials has recently gained attention in the research community. Multifunctional piezoelectric systems present the ability to combine multiple functions into a single active piezoelectric element, namely, combining sensing, actuation, or energy conversion ability with load-bearing capacity. Quantification of the bending strength of various piezoelectric materials is, therefore, critical in the development of load-bearing piezoelectric systems. Three-point bend tests are carried out on a variety of piezoelectric ceramics including soft monolithic piezoceramics (PZT-5A and PZT-5H), hard monolithic ceramics (PZT-4 and PZT-8), single-crystal piezoelectrics (PMN-PT and PMN-PZT), and commercially packaged composite devices (which contain active PZT-5A layers). A common 3-point bend test procedure is used throughout the experimental tests. The bending strengths of these materials are found using Euler-Bernoulli beam theory to be 44.9 MPa for PMN-PZT, 60.6 MPa for PMN-PT, 114.8 MPa for PZT- 5H, 123.2 MPa for PZT-4, 127.5 MPa for PZT-8, 140.4 MPa for PZT-5A, and 186.6 MPa for the commercial composite. The high strength of the commercial configuration is a result of the composite structure that allows for shear stresses on the surfaces of the piezoelectric layers, whereas the low strength of the single-crystal materials is due to their unique crystal structure, which allows for rapid propagation of cracks initiating at flaw sites. The experimental bending strength results reported, which are linear estimates without nonlinear ferroelastic considerations, are intended for use in the design of multifunctional piezoelectric systems in which the active device is subjected to bending loads.
Standard test methods for bend testing of material for ductility
American Society for Testing and Materials. Philadelphia
2009-01-01
1.1 These test methods cover bend testing for ductility of materials. Included in the procedures are four conditions of constraint on the bent portion of the specimen; a guided-bend test using a mandrel or plunger of defined dimensions to force the mid-length of the specimen between two supports separated by a defined space; a semi-guided bend test in which the specimen is bent, while in contact with a mandrel, through a specified angle or to a specified inside radius (r) of curvature, measured while under the bending force; a free-bend test in which the ends of the specimen are brought toward each other, but in which no transverse force is applied to the bend itself and there is no contact of the concave inside surface of the bend with other material; a bend and flatten test, in which a transverse force is applied to the bend such that the legs make contact with each other over the length of the specimen. 1.2 After bending, the convex surface of the bend is examined for evidence of a crack or surface irregu...
Influence of Synthetic Fibers Angle Orientation on Bending Properties of Composite Plywood
Mladen Brezović; Jaroslav Kljak; Stjepan Pervan; Alan Antonović
2010-01-01
This paper presents the results of research on carbon fiber angle orientation and quantity of carbon fi bers in yarn on bending properties of plywood. For that purpose the specimens have been defined as multilayer composites made from carbon fibers and veneer. Carbon fibers were inserted in the second and third glue line of the composite with angle variation of 15°. Stresses and strain were analyzed in significant layers together with displacement of the whole composite plate. The influence o...
Noma, Nobuyasu; Kuwabara, Toshihiko
2011-01-01
Draw-bending experiment is carried out using a 1.2 mm-thick high strength steel sheet with a tensile strength of 980 MPa and the residual curvature of the draw-bent specimens are precisely measured. The die profile of the draw-bending testing machine rotates, so that the effect of friction force on the curvature data after springback can be neglected. Moreover, in order to quantitatively evaluate the Bauschinger effect of the test material, stress reversal tests are performed using an in-plane stress reversal testing machine. Furthermore, the finite element analyses (FEA) of the draw-bending experiment are carried out. The effect of the work hardening models (isotropic or combined), element types (shell or solid), and the number of integration points in the through-thickness direction on the amount of springback (residual curvature) are investigated in detail.
Cricket antennae shorten when bending (Acheta domesticus L.
Catherine eLoudon
2014-06-01
Full Text Available Insect antennae are important mechanosensory and chemosensory organs. Insect appendages, such as antennae, are encased in a cuticular exoskeleton and are thought to bend only between segments or subsegments where the cuticle is thinner, more flexible, or bent into a fold. There is a growing appreciation of the dominating influence of folds in the mechanical behavior of a structure, and the bending of cricket antennae was considered in this context. Antennae will bend or deflect in response to forces, and the resulting bending behavior will affect the sensory input of the antennae. In some cricket antennae, such as in those of Acheta domesticus, there are a large number (>100 of subsegments (flagellomeres that vary in their length. We evaluated whether these antennae bend only at the joints between flagellomeres, which has always been assumed but not tested. In addition we questioned whether an antenna undergoes a length change as it bends, which would result from some patterns of joint deformation. Measurements using light microscopy and SEM were conducted on both male and female adult crickets (Acheta domesticus with bending in four different directions: dorsal, ventral, medial and lateral. Bending occurred only at the joints between flagellomeres, and antennae shortened a comparable amount during bending, regardless of sex or bending direction. The cuticular folds separating antennal flagellomeres are not very deep, and therefore as an antenna bends, the convex side (in tension does not have a lot of slack cuticle to unfold and does not lengthen during bending. Simultaneously on the other side of the antenna, on the concave side in compression, there is an increasing overlap in the folded cuticle of the joints during bending. Antennal shortening during bending would prevent stretching of antennal nerves and may promote hemolymph exchange between the antenna and head.
Wininger, Fred A; Kapatkin, Amy S; Radin, Alex; Shofer, Frances S; Smith, Gail K
2007-12-01
To compare failure mode and bending moment of a canine pancarpal arthrodesis construct using either a 2.7 mm/3.5 mm hybrid dynamic compression plate (HDCP) or a 3.5 mm dynamic compression plate (DCP). Paired in vitro biomechanical testing of canine pancarpal arthrodesis constructs stabilized with either a 2.7/3.5 HDCP or 3.5 DCP. Paired cadaveric canine antebrachii (n=5). Pancarpal arthrodesis constructs were loaded to failure (point of maximum load) in 4-point bending using a materials-testing machine. Using this point of failure, bending moments were calculated from system variables for each construct and the 2 plating systems compared using a paired t-test. To examine the relationship between metacarpal diameter and screw diameter failure loads, linear regression was used and Pearson' correlation coefficient was calculated. Significance was set at Pbending strength. There was a significant linear correlation r=0.74 (P-slope=.014) and 0.8 (P-slope=.006) between metacarpal diameter and failure loads for the HDCP and 3.5 DCP, respectively. There was a small but significant difference between bending moment at failure between 2.7/3.5 HDCP and 3.5 DCP constructs; however, the difference may not be clinically evident in all patients. The 2.7/3.5 HDCP has physical and mechanical properties making it a more desirable plate for pancarpal arthrodesis.
Design, Manufacture and Testing of A Bend-Twist D-Spar
Ong, Cheng-Huat; Tsai, Stephen W.
1999-06-01
Studies have indicated that an adaptive wind turbine blade design can significantly enhance the performance of the wind turbine blade on energy capture and load mitigation. In order to realize the potential benefits of aeroelastic tailoring, a bend-twist D-spar, which is the backbone of a blade, was designed and fabricated to achieve the objectives of having maximum bend-twist coupling and fulfilling desirable structural properties (031 & GJ). Two bend-twist D-spars, a hybrid of glass and carbon fibers and an all-carbon D-spar, were fabricated using a bladder process. One of the D-spars, the hybrid D-spar, was subjected to a cantilever static test and modal testing. Various parameters such as materials, laminate schedule, thickness and internal rib were examined in designing a bend-twist D-spar. The fabrication tooling, the lay-up process and the joint design for two symmetric clamshells are described in this report. Finally, comparisons between the experimental test results and numerical results are presented. The comparisons indicate that the numerical analysis (static and modal analysis) agrees well with test results.
Luo, Y.; Ren, L.; Xie, L. Z.; Ai, T.; He, B.
2017-08-01
The brittle fracture behavior of rocks under mixed-mode loading is important in rock engineering. First, a new configuration called the notched deep beam (NDB) specimen was introduced for the fracture testing of rock materials under mixed-mode I/II loading, and a series of finite element analyses were performed to calibrate the dimensionless fracture parameters (i.e., Y I, Y II and T^{*}). The results showed that an NDB specimen subjected to three-point bending is able to generate pure mode I loading, pure mode II loading, and any mixed-mode loading in between. Then, several NDB specimens made of sandstone were used to investigate the brittle fracture behavior of rock under mixed-mode I/II loading. The fracture surfaces were theoretically described using a statistical method, and the results indicated that all the fracture surfaces generated under different mixed-mode loading were statistically identical; to some extent, these results experimentally showed that only tensile fracture occurs under mixed-mode I/II loading. The obtained fracture strengths were then analyzed using several brittle fracture criteria. The empirical criterion, maximum energy release rate criterion, generalized maximum tangential stress (GMTS) criterion, and improved R-criterion accurately predicted the fracture strength envelope of the sandstone. Finally, based on the concepts of point stress and mean stress, the micro-crack zones (MCZs) under different mixed-mode loading were theoretically estimated based on the MTS and GMTS criteria. The critical radius of MCZ in the crack propagation direction was not a constant for all mixed-mode loading conditions regardless of whether the T-stress was considered. This result suggests that the size of the core region used to predict the crack initiation direction and fracture strength based on the GMTS criterion should be chosen more carefully.
Insights into the damage zones in fault-bend folds from geomechanical models and field data
Ju, Wei; Hou, Guiting; Zhang, Bo
2014-01-01
Understanding the rock mass deformation and stress states, the fracture development and distribution are critical to a range of endeavors including oil and gas exploration and development, and geothermal reservoir characterization and management. Geomechanical modeling can be used to simulate the forming processes of faults and folds, and predict the onset of failure and the type and abundance of deformation features along with the orientations and magnitudes of stresses. This approach enables the development of forward models that incorporate realistic mechanical stratigraphy (e.g., the bed thickness, bedding planes and competence contrasts), include faults and bedding-slip surfaces as frictional sliding interfaces, reproduce the geometry of the fold structures, and allow tracking strain and stress through the whole deformation process. In this present study, we combine field observations and finite element models to calibrate the development and distribution of fractures in the fault-bend folds, and discuss the mechanical controls (e.g., the slip displacement, ramp cutoff angle, frictional coefficient of interlayers and faults) that are able to influence the development and distribution of fractures during fault-bend folding. A linear relationship between the slip displacement and the fracture damage zone, the ramp cutoff angle and the fracture damage zone, and the frictional coefficient of interlayers and faults and the fracture damage zone was established respectively based on the geomechanical modeling results. These mechanical controls mentioned above altogether contribute to influence and control the development and distribution of fractures in the fault-bend folds.
Tensile and Bending Properties of Surface Strengthened Sliced Wood Sheets%表面强化刨切薄板拉伸、弯曲性能
赵钟声
2012-01-01
Sliced wood sheets of Populus ussuriensis were dipped in water under normal temperature until water-saturated, then were compressed perpendicular to grain without heat softening pretreatment. Tensile and bending properties of the wood sheets after hot compression and fixation for 1 ~24 h under 160 or 180 degrees C were analyzed before and after compression in order to probe the feasibility of this strengthening method of wood sheets. Results show that the tensile strength and tensile elastic modulus of the wood are greatly improved compared to the uncompressed strengthened material. The bending elastic modulus decreases with increasing heat treatment duration. The bending strength and fracture stress are both substantially reduced compared to the uncompressed strengthened material. The average strain at maximum stress and the average strain at fracture stress both decrease with increasing heat treatment duration.%以黑龙江产大青杨刨切薄板为研究对象,用常温水浸泡至饱水状态,不经热软化预处理即进行横纹压缩强化,通过160、180℃高温定型处理1～24 h,分析横纹压缩强化前、后木材的拉伸、弯曲性能的变化,探讨此方法强化木材薄板的可行性和有待改进、完善之处.结果表明:与未压缩强化素材相比,木材的拉伸强度和拉伸弹性模量均有较大幅度提高；弯曲弹性模量随着热处理时间的增加而下降；弯曲强度和断裂应力有所降低；最大应力时应变平均值、断裂应力时应变平均值都随着热处理时间的增加而下降.
Rahmah, Fitri; Sekartedjo, Sekartedjo; Hatta, Agus Muhamad
2016-11-01
Modelling of load effect on macro-bend losses for a singlemode-multimode-singlemode (SMS) fiber structure with small bend radius is presented. Load effect on macro-bend losses for the SMS fiber structure placed between two high-density polyethylene (HDPE) boards are investigated theoretically and experimentally. A model on macro-bend losses for SMS fiber structure is constructed by using the light transmission formula in a straight SMS fiber structure and taking into account the effective number of guided modes due to the macrobending. In the experimental, a mandrel with a diameter of 0.8 mm is used to induce the bend. When the loads are applied on the system, the mandrel will affect the bend losses for the SMS fiber structure. It is shown numerically and experimentally that the bend-loss of SMS fiber structure strongly depends on the applied loads and the multimode fiber (MMF) lengths.
Bending of Pinus jeffreyi in response to wind
Stephen H. Bullock
2015-12-01
Full Text Available Aim of study: To evaluate the degree of trunk sway in relation to wind velocity, with varying temporal integration and to compare this relation among seasons.Area of study: Sierra de Juárez, Baja California, MéxicoMaterials and Methods: Displacements of a 19 m tall Jeffrey pine tree were recorded at 6 m from a three dimensional digital compass during one year, at c. 4 Hz. Adjacent wind speed at 6 m was recorded at 1 Hz.Main results: Sway was essentially unaffected by wind in the same second but increasing dependence of cumulative displacement on average sustained wind speed was found for intervals of 1 to 60 minutes (r2 up to 0.89. The relation is generally log-linear but apparently differs in parameters between seasons.Research highlights: Wind-sway relations are clear from integration of several-to-many minutes. However, to estimate cumulative stress, sub-second data on sway are essential. Sub-second, precision measurements of sway can be registered from small, inexpensive sensors.Keywords: biomechanics; Pinus jeffreyi; seasonality; stress accumulation; time series; tree bending.
Light bending in $f(T)$ gravity
Ruggiero, Matteo Luca
2016-01-01
In the framework of $f(T)$ gravity, we focus on a weak-field and spherically symmetric solution for the Lagrangian $f(T)=T+\\alpha T^{2}$, where $\\alpha$ is a small constant which parameterizes the departure from General Relativity. In particular, we study the propagation of light and obtain the correction to the general relativistic bending angle. Moreover, we discuss the impact of this correction on some gravitational lensing observables, and evaluate the possibility of constraining the theory parameter $\\alpha$ by means of observations.
Anomalous bending effect in photonic crystal fibers.
Tu, Haohua; Jiang, Zhi; Marks, Daniel L; Boppart, Stephen A
2008-04-14
An unexpected transmission loss up to 50% occurs to intense femtosecond pulses propagating along an endlessly single-mode photonic crystal fiber over a length of 1 m. A specific leaky-fiber mode gains amplification along the fiber at the expense of the fundamental fiber mode through stimulated four-wave mixing and Raman scattering, leading to this transmission loss. Bending near the fiber entrance dissipates the propagating seed of this leaky mode, preventing the leaky mode amplification and therefore enhancing the transmission of these pulses.
Thermoelastic bending of locally heated orthotropic shells
Shevchenko, V. P.; Gol'tsev, A. S.
2007-03-01
The thermoelastic bending of locally heated orthotropic shells is studied using the classical theory of thermoelasticity of thin shallow orthotropic shells and the method of fundamental solutions. Linear distribution of temperature over thickness and the Newton's law of cooling are assumed. Numerical analysis is carried out for orthotropic shells of arbitrary Gaussian curvature made of a strongly anisotropic material. The behavior of thermal forces and moments near the zone of local heating is studied for two areas of thermal effect: along a coordinate axis and along a circle of unit radius. Generalized conclusions are drawn
Extension versus Bending for Continuum Robots
George Grimes
2008-11-01
Full Text Available In this paper, we analyze the capabilities of a novel class of continuous-backbone ("continuum" robots. These robots are inspired by biological "trunks, and tentacles". However, the capabilities of established continuum robot designs, which feature controlled bending but not extension, fall short of those of their biological counterparts. In this paper, we argue that the addition of controlled extension provides dual and complementary functionality, and correspondingly enhanced performance, in continuum robots. We present an interval-based analysis to show how the inclusion of controllable extension significantly enhances the workspace and capabilities of continuum robots.
Wooden Model of Wide AA Bending Magnet
1978-01-01
The very particular lattice of the AA required 2 types of dipoles (bending magnets: BLG, long and narrow; BST, short and wide). A wide one had a steel length of 2.71 m, a "good field" width of 0.564 m, and a weight of about 75 t. A wooden model was build in 1978, to gain dimensional experience. Here, Peter Zettwoch, one of the largest men at CERN at that time, is putting a hand in the mouth of the wooden BST monster.
Clinical bending of nickel titanium wires
Stephen Chain
2015-01-01
Full Text Available Since the evolution and the involvement of Nickel Titanium wires in the field of Orthodontics. The treatment plan has evolved with the use of low force Nickel Titanium wires. Because of their high springback, low stiffness, they are the key initial wires in leveling and alignment but have poor formability. Since poor formability limits its ability to create variable arch forms thus; limits the form of treatment. We have devised a method to bend the Nickel Titanium wires to help in our inventory but also customized the wire according to the treatment.
Schellart, W. P.
2009-10-01
Three-dimensional laboratory subduction models are presented investigating the influence of the slab/upper mantle viscosity ratio (η SP/η UM) on the slab bending radius ( RB), with η SP/η UM = 66-1375. Here, RB is non-dimensionalized by dividing it by the upper mantle thickness ( TUM). The results show that RB/ TUM varies with time, reaching a maximum when the subduction velocity is maximum. Furthermore, RB/ TUM increases approximately linearly with increasing η SP/η UM for the investigated viscosity range. The model results show that the slab bending force ( FBe) and the energy dissipation during bending (Ф Be) are small compared to the negative buoyancy force of the slab ( FBu) and the potential energy release during sinking (Ф Bu). Maxima in Ф Be/Ф Bu (≈ FBe/ FBu) are reached in the early stage of subduction when RB/ TUM is minimum and the slab tip is at 220-440 km depth. Maximum Ф Be/Ф Bu increases with increasing η SP/η UM, with Ф Be/Ф Bu(max) = 0.06, 0.11, 0.18 and 0.22 for η SP/η UM = 66, 217, 709 and 1375, respectively. For subduction depths > 220-440 km, Ф Be/Ф Bu = 0.02-0.11 for all viscosity ratios. Assuming that in nature η SP/η UM glucose syrup and silicone oil as modelling materials, highlight the importance of accurate control on temperature during an experiment. New material investigations show that the viscosity of these two materials decreases exponentially with temperature in the range 3-33 °C, their density decreases approximately linearly with temperature, and their coefficient of thermal volumetric expansion is 3.8-4.2 × 10 - 4 C - 1 (glucose syrup) and 9.2 × 10 - 4 C - 1 (silicone oil).
Interfacial stress state present in a 'thin-slice' fibre push-out test
Kallas, M. N.; Koss, D. A.; Hahn, H. T.; Hellmann, J. R.
1992-01-01
An analysis of the stress distributions along the fiber-matrix interface in a 'thin-slice' fiber push-out test is presented for selected test geometries. For the small specimen thicknesses often required to displace large-diameter fibers with high interfacial shear strengths, finite element analysis indicates that large bending stresses may be present. The magnitude of these stresses and their spatial distribution can be very sensitive to the test configuration. For certain test geometries, the specimen configuration itself may alter the interfacial failure process from one which initiates due to a maximum in shear stress near the top surface adjacent to the indentor, to one which involves mixed mode crack growth up from the bottom surface and/or yielding within the matrix near the interface.
Bosch, T.; Eck, J. van; Knitel, K.; Looze, M.P. de
2016-01-01
Exoskeletons may form a new strategy to reduce the risk of developing low back pain in stressful jobs. In the present study we examined the potential of a so-called passive exoskeleton on muscle activity, discomfort and endurance time in prolonged forward-bended working postures.Eighteen subjects pe
Bosch, T.; Eck, J. van; Knitel, K.; Looze, M.P. de
2016-01-01
Exoskeletons may form a new strategy to reduce the risk of developing low back pain in stressful jobs. In the present study we examined the potential of a so-called passive exoskeleton on muscle activity, discomfort and endurance time in prolonged forward-bended working postures.Eighteen subjects
On the Simulation of Floods in a Narrow Bending Valley: The Malpasset Dam Break Case Study
Chiara Biscarini
2016-11-01
Full Text Available In this paper, we investigate the performance of three-dimensional (3D hydraulic modeling when dealing with river sinuosity and meander bends. In river bends, the flow is dominated by a secondary current, which has a key role on the flow redistribution. The secondary flow induces transverse components of the bed shear stress and increases the velocity in outward direction, thus generating local erosion and riverbed modifications. When in river bends, the 3D processes prevail, and a 3D computational fluid dynamics (CFD model is required to correctly predict the flow structure. An accurate description of the different hydrodynamic processes in mildly and sharply curved bends find a relevant application in meanders migration modeling. The mechanisms that drive the velocity redistribution in meandering channels depend on the river’s roughness, the flow depth (H, the radius curvature (R, the width (B and the bathymetric variations. Here, the hydro-geomorphic characterization of sharp and mild meanders is performed by means of the ratios R/B, B/H, and R/H, and of the sinuosity index. As a case study, we selected the Malpasset dam break on the Reyran River Valley (FR, as it is perfectly suited for investigating performances and issues of a 3D model in simulating the inundation dynamics in a river channel with a varying curvature radius.
Potential of acoustic emissions from three point bending tests as rock failure precursors
Agioutantis Z.; Kaklis K.; Mavrigiannakis S.; Verigakis M.; Vallianatos F.; Saltas V.
2016-01-01
Development of failure in brittle materials is associated with microcracks, which release energy in the form of elastic waves called acoustic emissions. This paper presents results from acoustic emission mea-surements obtained during three point bending tests on Nestos marble under laboratory conditions. Acoustic emission activity was monitored using piezoelectric acoustic emission sensors, and the potential for accurate prediction of rock damage based on acoustic emission data was investigated. Damage local-ization was determined based on acoustic emissions generated from the critically stressed region as scat-tered events at stresses below and close to the strength of the material.
Displacement analysis of a bend plate test with mechanical loading and laser heating
Lam, P.S.
1997-09-01
The surface displacment of a steel plate caused by a permanent deformation as a result of local yielding was modeled by a finite element analysis. The local yielding occurs when a small area of the plate is heated by a laser beam. The calculated displacments are in good agreement with the preliminary experimental data obtained using a bend specimen with laser heating at the University of Alabama at Huntsville. It has been shown computuationally and optically that the relative displacments are less than 1mm near the laser heated area of the specimen. The results demonstrate that the experimental approach is a feasible technique for determining the residual stress under multiaxial stress field.
Investigations on bending condition for welded carbon steel pipe by high frequency induction heating
Matsumoto, Toshimi; Matsumoto, Teruo; Tamai, Yasumasa
1987-08-01
The induction heating bent pipes of carbon steel welded pipes are used for the piping in nuclear power plants, in place of elbows. This application is useful to suppress the radiation exposure at in-service inspection. The quality of the bent pipes are controlled on the technical standards of welding for electrical equipments. However, the influence of the bending condition has not been yet sufficiently understood on the mechanical properties of the bent pipes. The purpose of this investigation is to establish the appropriate bending condition for the carbon steel weld pipe which corresponds to the carbon steel pipe STPT 42 in JIS G 3456, in relation to the transformation of the structures of the base metal and the weld metal during bending. The results are summarized as follows: (1) The maximum heating temperature should be set in the range from 900 deg C to 1000 deg C, in order to assure the high Charpy impact properties. (2) The maximum heating temperature which is lower than 900 deg C causes the imperfect transformation of the base metal and the weld metal, then is likely to spoil the Charpy impact properties. (3) Higher heating rate causes the increase of A/sub c1/ point, remarkably for the base metal which has higher carbon content than weld metal. (4) Higher cooling rate causes hardening of the base metal and weld metal, however, the transformation temperature does not change remarkably, except for the Ar/sub 1/ point of base metal.
Flexible bending of aluminum profiles with polyurethane pad
HE Zhu-bin; LIU Gang; WANG Zhong-ren
2006-01-01
The high flexibility of profile bending with hyperelastic pad enables it to be a promising method for small lot or single part production, especially for space frame and roof-rail parts in automotive and aerospace industries. Bending of two aluminum profiles with different sections was carried out to investigate the effect of main process parameters on the bending process. Results show that the shape of the cross-section and its relative thickness and section modulus in bending are the main factors that determine the bending properties of the profiles. Roller stroke, properties of polyurethane pad and constraints on profiles are key factors that determine the bending radius and section deformation of bent profiles. Failures and quality problems met in experiments were also analyzed.
Reduction Bending of Thin Crystalline Silicon Solar Cells
SHEN Lan-xian; LIU Zu-ming; LIAO Hua; TU Jie-lei; DENG Shu-kang
2009-01-01
Reported are the results of reduction the bending of thin crystalline silicon solar ceils after printing and sintering of back electrode by changing the back electrode paste and adjusting the screen printing parameters without effecting the electrical properties of the cell. Theory and experiments showed that the bending of the cell is changed with its thickness of suhstrate, the thinner cell, the more serious bending. The bending of the cell is decreased with the thickness decrease of the back contact paste. The substrate with the thickness of 190μm printing with sheet aluminum paste shows a relatively lower bend compared with that of the substrate printing with ordinary aluminum paste, and the minimum bend is 0.55 mm which is reduced by52%.
BEND3 mediates transcriptional repression and heterochromatin organization.
Khan, Abid; Prasanth, Supriya G
2015-01-01
Transcription repression plays a central role in gene regulation. Transcription repressors utilize diverse strategies to mediate transcriptional repression. We have recently demonstrated that BEND3 (BANP, E5R and Nac1 domain) protein represses rDNA transcription by stabilizing a NoRC component. We discuss the role of BEND3 as a global regulator of gene expression and propose a model whereby BEND3 associates with chromatin remodeling complexes to modulate gene expression and heterochromatin organization.
Multiple-cladding fibers with reduced bend loss
Tomljenovic-Hanic, Snjezana; Bulla, Douglas A. P.; Ankiewicz, Adrian; Love, John D.; Bailey, Ron
2007-04-01
We demonstrate that a highly bend-resistant fiber can be realized. It is shown theoretically that, by introducing both depressed and elevated rings into the cladding, bending loss can be reduced significantly. A fiber based on this design has been fabricated and characterized as a first step toward achieving this goal. The results show that a multiple-cladding fiber is highly bend resistant when compared with the standard telecom single-mode fiber.
Bending response of single layer MoS2.
Xiong, Si; Cao, Guoxin
2016-03-11
Using molecular mechanics (or dynamics) simulations, three different approaches, including the targeted molecular mechanics, four-point bending and nanotube methods, are employed to investigate the bending response of single layer MoS2 (SLMoS2), among which four-point bending is the most accurate approach to determine the bending stiffness according to the continuum theory. It is found that when the bending curvature radius is large enough (e.g. >4 nm), three approaches will give the same bending stiffness of SLMoS2 and the bending behavior is isotropic for SLMoS2, whereas the nanotube method with small tubes (e.g. bending stiffness. Compared with the reported result from the MoS2 nanotube calculated by density functional theory, the revised Stillinger-Weber (SW) and reactive empirical bond-order (REBO) potentials can give the reasonable bending stiffness of SLMoS2 (8.7-13.4 eV) as well as the effective deformed conformation. In addition, since the Mo-S bond deformation of SLMoS2 under bending is similar to that under in-plane tension/compression, the continuum bending theory can quite accurately predict the bending stiffness of SLMoS2 if a reasonable thickness of SLMoS2 is given. For SLMoS2, the reasonable thickness should be larger than the distance between its two S atomic planes and lower than the distance between two Mo atomic planes of bulk MoS2 crystal, e.g. 0.375-0.445 nm.
Bending response of single layer MoS2
Xiong, Si; Cao, Guoxin
2016-03-01
Using molecular mechanics (or dynamics) simulations, three different approaches, including the targeted molecular mechanics, four-point bending and nanotube methods, are employed to investigate the bending response of single layer MoS2 (SLMoS2), among which four-point bending is the most accurate approach to determine the bending stiffness according to the continuum theory. It is found that when the bending curvature radius is large enough (e.g. >4 nm), three approaches will give the same bending stiffness of SLMoS2 and the bending behavior is isotropic for SLMoS2, whereas the nanotube method with small tubes (e.g. <4 nm) cannot give the correct bending stiffness. Compared with the reported result from the MoS2 nanotube calculated by density functional theory, the revised Stillinger-Weber (SW) and reactive empirical bond-order (REBO) potentials can give the reasonable bending stiffness of SLMoS2 (8.7-13.4 eV) as well as the effective deformed conformation. In addition, since the Mo-S bond deformation of SLMoS2 under bending is similar to that under in-plane tension/compression, the continuum bending theory can quite accurately predict the bending stiffness of SLMoS2 if a reasonable thickness of SLMoS2 is given. For SLMoS2, the reasonable thickness should be larger than the distance between its two S atomic planes and lower than the distance between two Mo atomic planes of bulk MoS2 crystal, e.g. 0.375-0.445 nm.
Study on the Effects of End-bend Cantilevered Stator in a 2-stage Axial Compressor
Songtao WANG; Xin DU; Zhongqi WANG
2009-01-01
Leading edge recambering is applied to the cantilevered stator vanes in a 2-stage compressor in this paper. Dif-ferent curving effects are produced when the end-bend stator vanes are stacked in different ways. Stacking on the leading edge induces a positive curving effect near the casing.When it is stacked on the centre of gravity, a nega-tive curving effect takes place. The numerical investigation shows that the flow field is redistributed when the end-bend stators with leading edge stacking are applied. The variations in the stage matching for the mainstream and near the hub have an impact on the performance of the 2-stage compressor. The isentropic efficiency and the total pressure ratio of the compressor are increased near the design condition. The compressor total pressure ratio is decreased near choke and near stall. The maximum flow rate is reduced and the stall margin is decreased.
Maximum life spiral bevel reduction design
Savage, M.; Prasanna, M. G.; Coe, H. H.
1992-07-01
Optimization is applied to the design of a spiral bevel gear reduction for maximum life at a given size. A modified feasible directions search algorithm permits a wide variety of inequality constraints and exact design requirements to be met with low sensitivity to initial values. Gear tooth bending strength and minimum contact ratio under load are included in the active constraints. The optimal design of the spiral bevel gear reduction includes the selection of bearing and shaft proportions in addition to gear mesh parameters. System life is maximized subject to a fixed back-cone distance of the spiral bevel gear set for a specified speed ratio, shaft angle, input torque, and power. Significant parameters in the design are: the spiral angle, the pressure angle, the numbers of teeth on the pinion and gear, and the location and size of the four support bearings. Interpolated polynomials expand the discrete bearing properties and proportions into continuous variables for gradient optimization. After finding the continuous optimum, a designer can analyze near optimal designs for comparison and selection. Design examples show the influence of the bearing lives on the gear parameters in the optimal configurations. For a fixed back-cone distance, optimal designs with larger shaft angles have larger service lives.
Hot bending with a fiber coupled solid state laser
Bammer, F.; Schumi, T.; Schuöcker, D.
2010-09-01
For bending of brittle materials it is necessary to heat up the forming zone. This can be done with a fiber coupled solid state laser, whose beam is evenly distributed on the bending line with a beam splitter installed in the lower tool (die) of a bending press. With polarization optics the laser beam is divided there into partial beams that are evenly distributed on the bending line with lenses and prisms. A setup for a bending length of 200mm heated by a fiber-coupled 3kW Nd:YAG-laser shows the feasibility of the concept. Successful operation was shown for the Mg-alloy AZ31, which breaks during forming at room temperature, but can be well formed at temperatures in the range of 200-300°C. Other materials benefiting from this method are Ti-alloys, high-strength-Al-alloys, and high-strength-steels. Typical heating times are in the range of up to 5s and much of the heat input is generated during the bending operation where the laser continues to work. Laser Assisted Bending with a fiber coupled solid state laser is a straightforward way to perform the bending of brittle materials in a process as simple as cold bending.
PERMEABILITY OF SALTSTONE MEASUREMENT BY BEAM BENDING
Harbour, J; Tommy Edwards, T; Vickie Williams, V
2008-01-30
One of the goals of the Saltstone variability study is to identify (and, quantify the impact of) the operational and compositional variables that control or influence the important processing and performance properties of Saltstone mixes. A performance property for Saltstone mixes that is important but not routinely measured is the liquid permeability or saturated hydraulic conductivity of the cured Saltstone mix. The value for the saturated hydraulic conductivity is an input into the Performance Assessment for the SRS Z-Area vaults. Therefore, it is important to have a method available that allows for an accurate and reproducible measurement of permeability quickly and inexpensively. One such method that could potentially meet these requirements for the measurement of saturated hydraulic conductivity is the technique of beam bending, developed by Professor George Scherer at Princeton University. In order to determine the feasibility of this technique for Saltstone mixes, a summer student, David Feliciano, was hired to work at Princeton under the direction of George Scherer. This report details the results of this study which demonstrated the feasibility and applicability of the beam bending method to measurement of permeability of Saltstone samples. This research effort used samples made at Princeton from a Modular Caustic side solvent extraction Unit based simulant (MCU) and premix at a water to premix ratio of 0.60. The saturated hydraulic conductivities for these mixes were measured by the beam bending technique and the values determined were of the order of 1.4 to 3.4 x 10{sup -9} cm/sec. These values of hydraulic conductivity are consistent with independently measured values of this property on similar MCU based mixes by Dixon and Phifer. These values are also consistent with the hydraulic conductivity of a generic Saltstone mix measured by Langton in 1985. The high water to premix ratio used for Saltstone along with the relatively low degree of hydration for
佐々木, 善教; 大津, 雅亮; 松村, 正三; 森下, 和幸; 田中, 大樹; 八木, 秀樹; 関根, 雄一郎; 浅川, 基男
2015-01-01
In forming of glasses frame, bending and inverse bending of rim wires with 4 rolls are usually employed. Only an inverse bending roll, the 4th roll, can change the position to control the curvature of the rim wire. A deriving method of inverse bending roll position is proposed in this study. The proposed method requires not the computational simulations but only some simple steady inverse bending experiments to obtain a relationship between inverse bending roll position and bent curvature whi...
Notch effects on room temperature tensile and bend properties of Ni3Al and Ni3Al+B
Khadkikar, P. S.; Rigney, J. D.; Lewandowski, J. J.; Vedula, K.
1989-01-01
The notched mechanical properties of Ni3Al and Ni3Al+B prepared by powder metallurgy techniques have been determined in both tension and bending at room temperature. Tensile tests performed using double-notched specimens containing relatively blunt notches produced intergranular fracture in both Ni3Al and Ni3Al+B, with evidence of fracture initiating in an intergranular manner ahead of the blunt notch in both cases. Estimates of notched fracture toughness from bend tests and of local grain boundary fracture stress from the notched tensile tests suggest an increase in these values with boron addition.
Effects of the three-dimensional residual stresses on the mechanical properties of arterial walls.
Zheng, Xianbing; Ren, Jiusheng
2016-03-21
Effects of the three-dimensional residual stresses on the mechanical properties of arterial walls are analyzed in this paper, based on the model which considered the bending and stretching both in the circumferential and axial directions of the three distinct arterial layers. Moreover, different constitutive models are proposed to quantify the nonlinear mechanics of the three distinct layers and the important constituents, i.e. elastin, collagen fibers and smooth muscle cells (SMCs), are all taken into account. The stress distributions and pressure-radius curves of the arterial wall are given in details. Results demonstrate that the maximum values of the circumferential stress and the corresponding stress gradient in the media under the mean arterial pressure are reduced significantly as a consequence of the SMCs. The bending in the axial direction of the media and the opening angle of the intima have an obvious impact on the mechanical behaviors of arterial walls. This study may not only develop the understanding of effects of the three-dimensional residual stresses on the arterial wall response, but also can increase the accuracy of the analyses for patient-specific studies used for the treatments of arterial diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.
YANG He; LI Heng; ZHAN Mei; GU Rui-jie
2006-01-01
The wrinkling has become the main defect in the thin-walled tube NC bending process. In the study, a dynamic explicit FE model for aluminum alloy thin-walled tube NC bending process is developed to predict the wrinkling by using FE code ABAQUS/Explicit. Attention was paid to the influences of mass scaling, loading rate scaling, mesh density and element type on accurate wrinkling prediction. So the wrinkling modes and mechanism are revealed based on the reliable FE model. Then a two step strategy is proposed to capture the critical bifurcation point for the optimal design process. The results show: 1) The boundary conditions determine the tube materials response greatly so that the frequency analysis is meaningless to the simulation. It is the contact conditions that make the effect of the mass scaling and loading rate less significant.2) There are two wrinkling modes in the tube bending process. One refers to that local ripples occur initially in the straight regions contacted with wiper die and mandrel; the other refers to that local wrinkles occur in the curved regions due to the relative slipping between tube and clamp die. 3) Both the difference of the in-plane compressive stresses and the relative slipping distance are chosen to be the quantitative indexes to represent the critical point and wrinkling tendency. The experiment of aluminum alloy (5052 O) tube bending was carried out to verify whether the above wrinkle modes exist and the indexes proposed are reasonable to catch the critical bifurcation point. The results may help better understanding of the wrinkling mechanism and the process optimization of the tube bending.
Representation of horizontal strain due to tidal bending by observation and modeling
Rack, Wolfgang; King, Matt; Marsh, Oliver; Wild, Christian; Floricioiu, Dana
2017-04-01
An important control of ice sheet mass balance is the ice dynamics in the grounding zones around Antarctica. On many outflow glaciers a large temporal variability in ice flow has been observed, which is at least partly related to tides. Here we investigate the tide induced short term ice deformation in an ice shelf grounding zone and the related bending stresses and strain. We make use of the arguably most precise measurement method, differential SAR interferometry, in combination with ground based measurements and model assumptions for tidal bending. Ground validation and satellite data have been acquired within a dedicated field campaign. The Southern McMurdo Ice Shelf in the Western Ross Ice Shelf region was chosen as the experiment site. This area is optimal for the data interpretation because of a simple grounding line configuration, small ice flux, and favourable satellite imaging geometry. It is also a safe area which allowed the installation of tiltmeters and GPS stations, and glaciological measurements such as ice thickness and snow accumulation. From November 2014 to January 2015 the tidal movement was recorded over a period of 2.5 months. TerrSAR-X radar images have been acquired over the same period as a basis to derive ice shelf flexure maps. Despite the viscoelastic effects in ice shelf bending a simple elastic bending model for a beam of finite ice thickness can largely explain the GPS-observed surface strain. Using the same model and taking into account the viewing geometry of the satellite radar, it is now possible to separate horizontal and vertical displacement components in the satellite data. As a result we can obtain more realistic ice shelf flexure profiles from the interferometric SAR measurement. The newly derived flexure profiles are therefore more suitable to recover viscoelastic effects of tidal bending in grounding zones of ice shelves and outlet glaciers. These effects would have otherwise remained unnoticed.
FIXED FIELD ALTERNATING GRADIENT LATTICE DESIGN WITHOUT OPPOSITE BEND.
TRBOJEVIC,D.; BLASKIEWICZ,M.; COURANT,E.D.; GARREN,A.
2002-06-02
This report presents an attempt of the lattice design with a fixed field alternating gradient (FFAG) magnets without the usual opposite bends. It should allow particle acceleration through a small aperture. An example was made for the muon beam acceleration in an energy range 10-20 GeV with distributed RF cavities. The dispersion function for the central energy of 15 GeV has maximum value of the order of 7 cm. The lattice is composed of a combined function elements and sextupoles. We present the magnet configuration, orbit, chromaticities, tunes, and betatron function dependence on momentum (energies) during acceleration. For the lattice design we used SYNCH an MAD programs. For these large momentum offsets {delta}p/p = +-33% we found discrepancies between analytical and codes' results. This will be corrected in the new versions of codes (MAD-X). Because of uncertainties of the programs MAD and SYNCH some details of the presented results might not be correct.
Soft Pneumatic Bending Actuator with Integrated Carbon Nanotube Displacement Sensor
Tim Giffney
2016-02-01
Full Text Available The excellent compliance and large range of motion of soft actuators controlled by fluid pressure has lead to strong interest in applying devices of this type for biomimetic and human-robot interaction applications. However, in contrast to soft actuators fabricated from stretchable silicone materials, conventional technologies for position sensing are typically rigid or bulky and are not ideal for integration into soft robotic devices. Therefore, in order to facilitate the use of soft pneumatic actuators in applications where position sensing or closed loop control is required, a soft pneumatic bending actuator with an integrated carbon nanotube position sensor has been developed. The integrated carbon nanotube position sensor presented in this work is flexible and well suited to measuring the large displacements frequently encountered in soft robotics. The sensor is produced by a simple soft lithography process during the fabrication of the soft pneumatic actuator, with a greater than 30% resistance change between the relaxed state and the maximum displacement position. It is anticipated that integrated resistive position sensors using a similar design will be useful in a wide range of soft robotic systems.
On the gravitational seesaw and light bending
Accioly, Antonio; Shapiro, Ilya L
2016-01-01
Local gravitational theories with more than four derivatives are superrenormalizable, and also may be unitary in the Lee-Wick sense. It makes sense to study low-energy properties of these theories, e.g., identify observables which might be useful for experimental detection of higher derivatives. Using an analogy with neutrino Physics, we explore the possibility of a gravitational seesaw mechanism, in which several dimensional parameters of the same order of magnitude produce a hierarchy in the masses of propagating particles and make a relatively light degree of freedom detectable by frequency dependence in the gravitational light bending. It turns out that such a seesaw mechanism in the six- and more-derivative theories is unable to reduce the lightest mass more than in the simplest four-derivative model. Adding more derivatives can only make heavier masses even larger. This fact may be favorable for protecting the theory from instabilities, but makes experimental detection of higher derivatives more difficu...
Design Study: ELENA Bending Magnet Prototype
Schoerling, D
2013-01-01
The ELENA bending magnet prototype shall prove that the proposed design meets the requirements set by the ELENA beam dynamics. The following points will be discussed in detail: (i) production process of a magnetic yoke diluted with stainless steel plates, (ii) the stability and repeatability of the field homogeneity of such a yoke over the full working range, (iii) choice of soft magnetic steel, (iv) hysteresis effects, (v) mechanical deformations, (vi) thermal insulation to intercept heat load from baking for activation of NEG coating in the vacuum chamber, (vii) end shim design. In order to verify these points the following measurements will be performed: (i) Hall probe scanning, (ii) integrated field homogeneity measurement (DC), (iii) integrated field homogeneity measurement (AC).
Bend-insensitive fiber based vibration sensor
Xu, Yanping; Lu, Ping; Baset, Farhana; Bhardwaj, Vedula Ravi; Bao, Xiaoyi
2014-05-01
We report two novel fiber-optic vibration sensors based on standard telecom bend-insensitive fiber (BIF). A tapered BIF forming a fiber Mach-Zehnder interferometer could measure continuous and damped vibration from 1 Hz up to 500 kHz. An enclosed microcantilever is fabricated inside the BIF by chemical etching and fusion spliced with a readout singlemode fiber that exhibits a frequency range from 5 Hz to 10 kHz with high signal-to-noise ratio (SNR) up to 68 dB. The unique double cladding structure of the BIF ensures both sensors with advantages of compactness, high resistance to the external disturbance and stronger mechanical strength.
Bending of pipes with inconel cladding
Nachpitz, Leonardo; Menezes, Carlos Eduardo B.; Vieira, Carlos R. Tavares [Primus Processamento de Tubos S.A. (PROTUBO), Macae, RJ (Brazil)
2009-07-01
The high-frequency induction bending process, using API pipes coated with Inconel 625 reconciled to a mechanical transformation for a higher degree of resistance, was developed through a careful specification and control of the manufacturing parameters and inherent heat treatments. The effects of this technology were investigated by a qualification process consisting of a sequence of tests and acceptance criteria typically required by the offshore industry, and through the obtained results was proved the effectiveness of this entire manufacturing process, without causing interference in the properties and the quality of the inconel cladding, adding a gain of resistance to the base material, guaranteed by the requirements of the API 5L Standard. (author)
Overall bolt stress optimization
Pedersen, Niels Leergaard
2013-01-01
The state of stress in bolts and nuts with International Organization for Standardization metric thread design is examined and optimized. The assumed failure mode is fatigue, so the applied preload and the load amplitude together with the stress concentrations define the connection strength....... Maximum stress in the bolt is found at the fillet under the head, at the thread start, or at the thread root. To minimize the stress concentration, shape optimization is applied. Nut shape optimization also has a positive effect on the maximum stress. The optimization results show that designing a nut......, which results in a more evenly distribution of load along the engaged thread, has a limited influence on the maximum stress due to the stress concentration at the first thread root. To further reduce the maximum stress, the transition from bolt shank to the thread must be optimized. Stress reduction...
丁皓江; 陈伟球; 徐荣桥
2001-01-01
A method based on newly presented state space formulations is developed for analyzing the bending, vibration and stability of laminated transversely isotropic rectangular plates with simply supported edges. By introducing two displacement functions and two stress functions, two independent state equations were constructed based on the three-dimensional elasticity equations for transverse isotropy. The original differential equations are thus decoupled with the order reduced that will facilitate obtaining solutions of various problems.For the simply supported rectangular plate, two relations between the state variables at the top and bottom surfaces were established. In particular, for the free vibration (stability)problem, it is found that there exist two independent classes: One corresponds to the pure in-plane vibration (stability) and the other to the general bending vibration ( stability).Numerical examples are finally presented and the effects of some parameters are discussed.
AXISYMMETRIC BENDING OF TWO-DIRECTIONAL FUNCTIONALLY GRADED CIRCULAR AND ANNULAR PLATES
Guojun Nie; Zheng Zhong
2007-01-01
Assuming the material properties varying with an exponential law both in the thickness and radial directions, axisymmetric bending of two-directional functionally graded circular and annular plates is studied using the semi-analytical numerical method in this paper. The deflections and stresses of the plates are presented. Numerical results show the well accuracy and convergence of the method. Compared with the finite element method, the semi-analytical numerical method is with great advantage in the computational efficiency. Moreover, study on axisymmetric bending of two-directional functionally graded annular plate shows that such plates have better performance than those made of isotropic homogeneous materials or one-directional functionally graded materials. Two-directional functionally graded material is a potential alternative to the one-directional functionally graded material. And the integrated design of materials and structures can really be achieved in two-directional functionally graded materials.
Draw-Bending Analysis of a Cold Rolled DP980 Steel Sheet
Verma, Rahul K.; Noma, Nobuyasu; Chung, Kwansoo; Kuwabara, Toshihiko
2011-05-01
To assess the springback prediction accuracy of the recently proposed model (Verma et. al., 2011), simulations for tension-compression (TC) and draw-bending of a cold rolled DP980 steel sheet (Noma and Kuwabara, 2010b) were performed. Using a rotating die and a specimen specially designed to introduce the uniaxial state of stress during the draw bending test, friction could be neglected and the shape of the yield surface did not play any role in accurate simulations. The effects of incorporating permanent softening and the plastic strain dependent Young's modulus were studied in detail and it was found that the incorporation of permanent softening and the plastic strain dependent Young's modulus both was important for accurate springback prediction.
Computational comparison of the bending behavior of aortic stent-grafts
Demanget, Nicolas; Badel, Pierre; Orgéas, Laurent; Geindreau, Christian; Albertini, Jean-Noël; Favre, Jean-Pierre; 10.1016/j.jmbbm.2011.09.006
2012-01-01
Secondary interventions after endovascular repair of abdominal aortic aneurysms are frequent because stent-graft (SG) related complications may occur (mainly endoleak and SG thrombosis). Complications have been related to insufficient SG flexibility, especially when devices are deployed in tortuous arteries. Little is known on the relationship between SG design and flexibility. Therefore, the aim of this study was to simulate numerically the bending of two manufactured SGs (Aorfix-Lombard Medical (A) and Zenith-Cook Medical Europe (Z)) using finite element analysis (FEA). Global SG behavior was studied by assessing stent spacing variation and cross-section deformation. Four criteria were defined to compare flexibility of SGs: maximal luminal reduction rate, torque required for bending, maximal membrane strains in graft and maximal Von Mises stress in stents. For angulation greater than 60\\degree, values of these four criteria were lower with A-SG, compared to Z-SG. In conclusion, A-SG was more flexible than Z...
Coupled-Mode Flutter of Bending-Bending Type in Highly-Flexible Uniform Airfoils
Pourazarm, Pariya; Modarres-Sadeghi, Yahya
2016-11-01
We study the behavior of a highly flexible uniform airfoil placed in wind both numerically and experimentally. It is shown that for a non-rotating highly-flexible cantilevered airfoil, placed at very small angles of attack (less than 1 degree), the airfoil loses its stability by buckling. For slightly higher angles of attack (more than 1 degree) a coupled-mode flutter in which the first and the second flapwise modes coalesce toward a flutter mode is observed, and thus the observed flutter has a bending-bending nature. The flutter onset and frequency found experimentally matched the numerical predictions. If the same airfoil is forced to rotate about its fixed end, the static deflection decreases and the observed couple-mode flutter becomes of flapwise-torsional type, same as what has already been observed for flutter of rotating wind turbine blades. The support provided by the National Science Foundation, CBET-1437988, is greatly acknowledged.
Vacuum Chamber for the Booster Bending Magnets
1974-01-01
To minimise eddy currents, induced by the rising magnetic field, the chamber was made from thin stainless steel of high specific electric resistance. For mechanical strength, it was corrugated in a hydro-forming process. The cross-section was designed for maximum strength and maximum aperture. To accept particles with simultaneous large amplitudes in both planes, the cross-section approaches a rectangular shape (see also 7402463).
Pozzo, L; Cavallarin, L; Antoniazzi, S; Guerre, P; Biasibetti, E; Capucchio, M T; Schiavone, A
2013-05-01
The European Commission Recommendation 2006/576/EC indicates that the maximum tolerable level of ochratoxin A (OTA) in poultry feeds is 0.1 mg OTA/kg. Thirty-six 1-day-old male broiler chicks were divided into two groups, a control (basal diet) and an OTA (basal diet + 0.1 mg OTA/kg) group. The OTA concentration was quantified in serum, liver, kidney, breast and thigh samples. The thiobarbituric acid reactive substances (TBARS) content were evaluated in the liver, kidney, breast and thigh samples. The glutathione (GSH) content, and catalase (CAT) and superoxide dismutase (SOD) activity were measured in the liver and kidney samples. Histopathological traits were evaluated for the spleen, bursa of Fabricius and liver samples. Moreover, the chemical composition of the meat was analysed in breast and thigh samples. In the OTA diet-fed animals, a serum OTA concentration of 1.15 ± 0.35 ng/ml was found, and OTA was also detected in kidney and liver at 3.58 ± 0.85 ng OTA/g f.w. and 1.92 ± 0.21 ng OTA/g f.w., respectively. The TBARS content was higher in the kidney of the ochratoxin A group (1.53 ± 0.18 nmol/mg protein vs. 0.91 ± 0.25 nmol/mg protein). Feeding OTA at 0.1 mg OTA/kg also resulted in degenerative lesions in the spleen, bursa of Fabricius and liver. The maximum tolerable level of 0.1 mg OTA/kg, established for poultry feeds by the EU, represents a safe limit for the final consumer, because no OTA residues were found in breast and thigh meat. Even though no clinical signs were noticed in the birds fed the OTA-contaminated diet, moderate histological lesions were observed in the liver, spleen and bursa of Fabricius.
Imhan, Khalil Ibraheem; Baharudin, B. T. H. T.; Zakaria, Azmi; Ismail, Mohd Idris Shah B.; Alsabti, Nasseer Mahdi Hadi; Ahmad, Ahmad Kamal
2017-10-01
Nowadays, laser tube bending process has become commonly used in laser material processing and fabrication fields because of its ability to produce such forms and shapes that cannot be achieved by normal mechanical bending tools. The process can avoid and overcome most of bending defects like wall thinning, wrinkling, spring back and ovalization. This investigation focused on the experimental, analytical modeling, and numerical simulation to give more understanding of the process. In this work a high power pulsed Nd-Yag laser of maximum average power laser 300 (W) emitting at 1064 nm and fiber coupled has been used to irradiate stainless steel 304 tubes of diameter 12.7 mm, 0.6 mm thickness and 60 mm in length. An analytical model has been used to determine the bending angle by using Matlab program software. The changes of material specification during the laser tube bending process due to the temperature rise has been studied and the analytical model has been modified and enhanced. Particle Swarm Optimization (PSO) was used to optimize the analytical and experimental results and reduce the mean absolute error.
Stress changes of lateral collateral ligament at different
ZHONG Yan-lin
2011-04-01
Full Text Available 【Abstract】 Objective: To create a 3-dimensional finite element model of knee ligaments and to analyse the stress changes of lateral collateral ligament (LCL with or without displaced movements at different knee flexion conditions. Methods: A four-major-ligament contained knee specimen from an adult died of skull injury was prepared for CT scanning with the detectable ligament insertion footprints, locations and orientations precisely marked in advance. The CT scanning images were converted to a 3-dimensional model of the knee with the 3-dimensional reconstruction technique and transformed into finite element model by the software of ANSYS. The model was validated using experimental and numerical results obtained by other scientists. The natural stress changes of LCL at five different knee flexion angles (0°, 30°, 60°, 90°, 120° and under various motions of anterior-posterior tibial translation, tibial varus rotation and internal-external tibial rotation were measured. Results: The maximum stress reached to 87%-113% versus natural stress in varus motion at early 30° of knee flexions. The stress values were smaller than the peak value of natural stress at 0° (knee full extension when knee bending was over 60° of flexion in anterior-posterior tibial translation and internal-external rotation. Conclusion: LCL is vulnerable to varus motion in almost all knee bending positions and susceptible to anterior- posterior tibial translation or internal-external rotation at early 30° of knee flexions. Key words: Knee joint; Collateral ligaments; Finite element analysis
Bending the Curve: Sensitivity to Bending of Curved Paths and Application in Room-Scale VR.
Langbehn, Eike; Lubos, Paul; Bruder, Gerd; Steinicke, Frank
2017-04-01
Redirected walking (RDW) promises to allow near-natural walking in an infinitely large virtual environment (VE) by subtle manipulations of the virtual camera. Previous experiments analyzed the human sensitivity to RDW manipulations by focusing on the worst-case scenario, in which users walk perfectly straight ahead in the VE, whereas they are redirected on a circular path in the real world. The results showed that a physical radius of at least 22 meters is required for undetectable RDW. However, users do not always walk exactly straight in a VE. So far, it has not been investigated how much a physical path can be bent in situations in which users walk a virtual curved path instead of a straight one. Such curved walking paths can be often observed, for example, when users walk on virtual trails, through bent corridors, or when circling around obstacles. In such situations the question is not, whether or not the physical path can be bent, but how much the bending of the physical path may vary from the bending of the virtual path. In this article, we analyze this question and present redirection by means of bending gains that describe the discrepancy between the bending of curved paths in the real and virtual environment. Furthermore, we report the psychophysical experiments in which we analyzed the human sensitivity to these gains. The results reveal encouragingly wider detection thresholds than for straightforward walking. Based on our findings, we discuss the potential of curved walking and present a first approach to leverage bent paths in a way that can provide undetectable RDW manipulations even in room-scale VR.
Bending of a nonlinear beam reposing on an unilateral foundation
Machalová J.
2011-06-01
Full Text Available This article is going to deal with bending of a nonlinear beam whose mathematical model was proposed by D. Y. Gao in (Gao, D. Y., Nonlinear elastic beam theory with application in contact problems and variational approaches,Mech. Research Communication, 23 (1 1996. The model is based on the Euler-Bernoulli hypothesis and under assumption of nonzero lateral stress component enables moderately large deflections but with small strains. This is here extended by the unilateralWinkler foundation. The attribution unilateral means that the foundation is not connected with the beam. For this problem we demonstrate a mathematical formulation resulting from its natural decomposition which leads to a saddle-point problem with a proper Lagrangian. Next we are concerned with methods of solution for our problem by means of the finite element method as the paper (Gao, D. Y., Nonlinear elastic beam theory with application in contact problems and variational approaches, Mech. Research Communication, 23 (1 1996 has no mention of it. The main alternatives are here the solution of a system of nonlinear nondifferentiable equations or finding of a saddle point through the use of the augmented Lagrangian method. This is illustrated by an example in the final part of the article.
Wenchun JIANG; Bin YANG; Xuewei GUAN; Yun LUO
2013-01-01
The finite element method was used to study the springback induced by the punching of the core.In order to simulate the springback accurately,a mixed isotropic-nonlinear kinematic hardening model is used to define the material mechanical behavior during plastic deformation.The effects of the friction coefficient,the plate thickness and the die radius have been investigated.The results show that the springback of the sheet with diamond hole is different from the homogenous sheet.Not only bending springback,but also a twisting springback along the truss is generated because of the non-uniform distribution of the bending stress along the truss length.The plate thickness should be around 1.3 mm with larger friction coefficient and smaller die radius,which is useful to decrease the bending and twisting springback.
TIAN Ruijun; DU Xiuli; PENG Yijiang
2008-01-01
To study the bending strength of mass concrete under dynamic loading.the pure bending zone of three-graded concrete beam is considered as a three-phase composite composed of atrix.aggregate and interface between them on meso-level.Dynamic constitutive model considering strain-rate strengthening effect and damage softening effect is adopted to describe the cocrete and meso-element's damage.The failure mechanisms of beam under impact loading.triagle wave load.dynamic load coupling with initial static loading were sireulated by using displace-ment-controlled FEM.Furthermore.stress-strain curve of the specimens and their dynamic bending strength were obtained.The results obtained from numerical simulation agreed well with experimental data.
无
2005-01-01
This paper is based on the fundamental loading model of pure bending and the analytical model of a circular beam element with arbitrary initial deflection. The L.W. Guo solution is modified and generalized according to the elastic theory, and the analytical solution for the stress of the beam element with arbitrary initial deflection under pure bending is derived. Using yield theory of edge strength, an expression for the safety margin of one point in the arbitrary curved beam under pure bending (ACPB) is built. This paper modifies the model for weak points of service structures and establishes a foundation for safe design and inspection of imperfect structures. Also, according to the theory of the method of advanced first-order second-moment(AFOSM), this paper derives an expression for the reliability index of one point in ACPB. Lastly, it modifies the solution for weak points by solving the minimal reliability index.
Xiao, Qibin; Yu, Guo; Liu-Zeng, Jing; Oskin, Michael E.; Shao, Guihang
2017-05-01
Large restraining bends along active strike-slip faults locally enhance the accumulation of clamping tectonic normal stresses that may limit the size of major earthquakes. In such settings, uncertain fault geometry at depth limits understanding of how effectively a bend arrests earthquake ruptures. Here we demonstrate fault imaging within a major restraining bend along the Altyn Tagh Fault of western China using the magnetotelluric (MT) method. The new MT data were collected along two profiles across the Aksay restraining double bend, which is bounded by two subparallel strands of the Altyn Tagh Fault: Northern (NATF) and Southern (SATF). Both two-dimensional (2-D) and three-dimensional (3-D) inversion models show that the Aksay bend may be the center of a positive flower structure, imaged as a high-resistivity body extending to an 40 km depth and bounded by subvertical resistivity discontinuities corresponding to the NATF and SATF. In the western section of the Aksay bend, both the NATF and SATF show similar low-resistivity structure, whereas in the eastern part of the bend, the low-resistivity anomaly below the SATF is wider and more prominent than that below the NATF. This observation indicates that the SATF shear zone may be wider and host more fluid than the NATF, lending structural support to the contention that fault slip at depth is asymmetrically focused on the SATF, even though surface slip is focused on the NATF. A south dipping, low-resistivity interface branching upward from the SATF toward the NATF indicates a fault link between these strands at depth.
36 CFR 7.41 - Big Bend National Park.
2010-07-01
... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Big Bend National Park. 7.41 Section 7.41 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.41 Big Bend National Park. (a) Fishing; closed...
Rule bending by morally disengaged detectives : an ethnographic study
Loyens, Kim
2014-01-01
Rule bending is a well-known practice in policing worldwide, often linked to 'noble cause corruption'. This ethnographic study shows how police detectives sometimes consider to creatively bend rules when rule abidance would lead to other values being jeopardized. This paper illustrates that the theo
On the Bending Problem for Large Scale Mapping
Esteban, I.; Booij, O.; Dijk, J.; Groen, F.
2010-01-01
During Simultaneous Localization And Mapping, geometrical constraints are established between map features. These constraints, introduced through measurements and motion prediction, produce a bending effect in the event of closing a large loop. In this paper we present a discussion of the bending pr
On the bending problem for large scale mapping
I. Esteban; O. Booij; J. Dijk; F. Groen
2009-01-01
During Simultaneous Localization And Mapping, geometrical constraints are established between map features. These constraints, introduced through measurements and motion prediction, produce a bending effect in the event of closing a large loop. In this paper we present a discussion of the bending pr
Bending Resistance of Steel Plate-Reinforced Concrete Beam
TIAN Zhimin; CHEN Jie
2006-01-01
The formulas for calculating bending-resistant capacity of a steel plate-reinforced concrete composite beam are derived.To validate the formulas,experiments of the composite beam under three-point bending are carried out.Calculated results based on the formulas are in good agreement with experimental results.
On the bending problem for large scale mapping
Esteban, I.; Booij, O.; Dijk, J.; Groen, F.
2009-01-01
During Simultaneous Localization And Mapping, geometrical constraints are established between map features. These constraints, introduced through measurements and motion prediction, produce a bending effect in the event of closing a large loop. In this paper we present a discussion of the bending
APPLICABILITY OF THE BEND DEVELOPMENT THEORY IN NATURAL ALLUVIAL RIVERS
M.M.RAHMAN; M.A.HAQUE; M.M.HOQUE
2002-01-01
The theoretical conditions for the bend development or attenuation have been reviewed and tested for a study reach of the Meghna river.The field observations in the natural alluvial meander do not support the theories developed for bend development.The limitations of the theory to apply in the natural meandering river are discussed.
Flexible DNA bending in HU-DNA cocrystal structures.
Swinger, Kerren K; Lemberg, Kathryn M; Zhang, Ying; Rice, Phoebe A
2003-07-15
HU and IHF are members of a family of prokaryotic proteins that interact with the DNA minor groove in a sequence-specific (IHF) or non-specific (HU) manner to induce and/or stabilize DNA bending. HU plays architectural roles in replication initiation, transcription regulation and site-specific recombination, and is associated with bacterial nucleoids. Cocrystal structures of Anabaena HU bound to DNA (1P71, 1P78, 1P51) reveal that while underlying proline intercalation and asymmetric charge neutralization mechanisms of DNA bending are similar for IHF and HU, HU stabilizes different DNA bend angles ( approximately 105-140 degrees ). The two bend angles within a single HU complex are not coplanar, and the resulting dihedral angle is consistent with negative supercoiling. Comparison of HU-DNA and IHF-DNA structures suggests that sharper bending is correlated with longer DNA binding sites and smaller dihedral angles. An HU-induced bend may be better modeled as a hinge, not a rigid bend. The ability to induce or stabilize varying bend angles is consistent with HU's role as an architectural cofactor in many different systems that may require differing geometries.
Anharmonic bend-stretch coupling in neat liquid water
Lindner, Joerg; Cringus, Dan; Pshenichnikov, Maxim S.; Voehringer, Peter
2007-01-01
Femtosecond mid-IR spectroscopy is used to study the vibrational relaxation dynamics in neat liquid water. By exciting the bending vibration and probing the stretching mode, it is possible to reliably determine the bending and librational lifetimes of water. The anharmonic coupling between the bendi
Kim, Hyunok; Mohr, William; Yang, Yu-Ping; Zelenak, Paul; Kimchi, Menachem
2011-08-01
Numerical modeling of local formability, such as hole-edge cracking and shear fracture in bending of AHSS, is one of the challenging issues for simulation engineers for prediction and evaluation of stamping and crash performance of materials. This is because continuum-mechanics-based finite element method (FEM) modeling requires additional input data, "failure criteria" to predict the local formability limit of materials, in addition to the material flow stress data input for simulation. This paper presents a numerical modeling approach for predicting hole-edge failures during static bend tests of AHSS structures. A local-strain-based failure criterion and a stress-triaxiality-based failure criterion were developed and implemented in LS-DYNA simulation code to predict hole-edge failures in component bend tests. The holes were prepared using two different methods: mechanical punching and water-jet cutting. In the component bend tests, the water-jet trimmed hole showed delayed fracture at the hole-edges, while the mechanical punched hole showed early fracture as the bending angle increased. In comparing the numerical modeling and test results, the load-displacement curve, the displacement at the onset of cracking, and the final crack shape/length were used. Both failure criteria also enable the numerical model to differentiate between the local formability limit of mechanical-punched and water-jet-trimmed holes. The failure criteria and static bend test developed here are useful to evaluate the local formability limit at a structural component level for automotive crash tests.
Atmospheric Refractive Electromagnetic Wave Bending and Propagation Delay
Mangum, Jeffrey G
2014-01-01
In this tutorial we summarize the physics and mathematics behind refractive electromagnetic wave bending and delay. Refractive bending and delay through the Earth's atmosphere at both radio/millimetric and optical/IR wavelengths are discussed, but with most emphasis on the former, and with Atacama Large Millimeter Array (ALMA) applications in mind. As modern astronomical measurements often require sub-arcsecond position accuracy, care is required when selecting refractive bending and delay algorithms. For the spherically-uniform model atmospheres generally used for all refractive bending and delay algorithms, positional accuracies $\\lesssim 1^{\\prime\\prime}$ are achievable when observing at zenith angles $\\lesssim 75^\\circ$. A number of computationally economical approximate methods for atmospheric refractive bending and delay calculation are presented, appropriate for astronomical observations under these conditions. For observations under more realistic atmospheric conditions, for zenith angles $\\gtrsim 75^...
Sorting of bending magnets for the SSRF booster
HOU Jie; LIU Gui-Min; LI Hao-Hu; ZHANG Man-Zhou
2008-01-01
The Shanghai Synchrotron Radiation Facility(SSRF)booster ring,a full energy injector for the storage ring,is deigned to accelerate the electron beam energy from 150MeV to 3.5GeV that demands high extraction efficiency at the extraction energy with low beam loss rate when electrons are ramping.Closed orbit distortion(COD)caused by bending magnet field uniformity errors which affects the machine performance harmfully could be effectively reduced by bending magnet location sorting.Considering the affections of random errors in measurement,both ideal sorting and realistic sorting are studied based on measured bending magnet field uniformity errors and one reasonable combination of bending magnets which can reduce the horizontal COD by a factor of 5is given as the final installation sequence of the booster bending magnets in this paper.
Sorting of bending magnets for the SSRF booster
Hou, Jie; Liu, Gui-Min; Li, Hao-Hu; Zhang, Man-Zhou
2008-04-01
The Shanghai Synchrotron Radiation Facility (SSRF)booster ring, a full energy injector for the storage ring, is deigned to accelerate the electron beam energy from 150 MeV to 3.5 GeV that demands high extraction efficiency at the extraction energy with low beam loss rate when electrons are ramping. Closed orbit distortion (COD) caused by bending magnet field uniformity errors which affects the machine performance harmfully could be effectively reduced by bending magnet location sorting. Considering the affections of random errors in measurement, both ideal sorting and realistic sorting are studied based on measured bending magnet field uniformity errors and one reasonable combination of bending magnets which can reduce the horizontal COD by a factor of 5 is given as the final installation sequence of the booster bending magnets in this paper. Supported by SSRF Project
Revisit the anomalous bending elasticity of sharply bent DNA
Cong, Peiwen; Chen, Hu; van der Maarel, Johan R C; Doyle, Patrick S; Yan, Jie
2015-01-01
Several recent experiments have suggested that sharply bent DNA has a surprisingly high bending flexibility, but the cause is poorly understood. It has been demonstrated that excitation of flexible defects can explain the results; while whether such defects can be excited under the level of DNA bending in those experiments has remained unclear and been debated. Interestingly, due to experimental design DNA contained pre-existing nicks in nearly all those experiments, while the potential effect of nicks have never been considered. Here, using full-atom molecular dynamics (MD) simulations, we show that nicks promote DNA basepair disruption at the nicked sites which drastically reduced DNA bending energy. In the absence of nicks, basepair disruption can also occur, but it requires a higher level of DNA bending. Overall, our results challenge the interpretations of previous sharp DNA bending experiments and highlight that the micromechanics of sharply bent DNA still remains an open question.
Role of xyloglucan in gravitropic bending of azuki bean epicotyl.
Ikushima, Toshimitsu; Soga, Kouichi; Hoson, Takayuki; Shimmen, Teruo
2008-04-01
The mechanism of the gravitropic bending was studied in azuki bean epicotyls. The cell wall extensibility of the lower side became higher than that of the upper side in the epicotyl bending upward. The contents of matrix polysaccharides of the cell wall (pectin and xyloglucan in hemicellulose-II) in the lower side became smaller than those in the upper side. The molecular mass of xyloglucans in the lower side decreased. After an epicotyl was fixed to a metal rod to prevent the bending, gravistimulation was applied. Fundamentally the same results were obtained with respect to rheological and chemical characteristics of the cell wall as those of epicotyls showing gravitropic bending. The present results suggested that the initial gravitropic bending was caused by the increase in extensibility of the lower side and the decrease in extensibility of the upper side via the change of the cell wall matrix, especially xyloglucans.
Analysis and Simulation of Adiabatic Bend Transitions in Optical Fibers
YAO Lei; LOU Shu-Qin; JIAN Shui-Sheng
2009-01-01
A low-loss criterion for bend transitions in optical fibers is proposed. An optical fiber can be tightly bent with low loss to be adiabatic for the fundamental mode, provided that an approximate upper bound on the rate of change of bend curvature for a given bend curvature is satisfied. Two typical adiabatic bend transition paths, the optimum profile and linear profile, are analyzed and studied numerically. A realizable adiabatic transition with an Archimedean spiral profile is introduced for low bend loss in tightly bent optical fibers. Design of the transitions is based on modeling of the propagation and coupling characteristics of the core and cladding modes,which clearly illustrate the physical processes involved.
Bend-Induced Distortion in Large Mode Area Holey Fibre
TAN Xiao-Ling; GENG You-Fu; ZHANG Tie-Li; WANG Wei-Neng; WANG Peng; YAO Jian-Quan
2008-01-01
A simplified scheme of bend-induced mode distortion is introduced into bent holey fibres,the distorted mode distribution and mode effective area reduction are investigated using the finite difference method.Numerical results show that the modes of bent holey fibres with small bend radius shift away from the core and are deformed greatly,and the mode areas drop significantly as the bend radius decreases,which severely affects the fibre laser performance.The propagation characteristics of bent holey fibres at given wavelength are determined by fill factor and normalized bend radius.Finally,the transition normalized bend radius that represents the location of the mode area beginning to fall off is obtained.
GONG Sheng-wu; ZHAO Fu-jun
2008-01-01
The breakage mechanism of the polycrystalline diamond compact(PDC) cutters was analyzed by the energy theory of bending waves. The cutting tests of granite block were conducted on a multifunctional testing device by using the cutter at three kinds of negative fore angles of 30°, 45° and 60°. The results show that, when the edge of the PDC layer is broken, the layer of tungsten cobalt is broken a little under the angle of 30°, while the layer of tungsten cobalt is broken continuously under the angle of60°, their maximum depths are about 2 and 7 mm respectively in the two cases. The eccentric distance mainly depends on the negative fore angle of the cutter. When the cutter thrusts into the rock under an attack angle of 60°, the energy of bending waves reaches the maximum since the eccentric distance is the maximum. So the damage of cutter is the most serious. This test result is consistent with the conclusion of theoretical analysis well. The eccentric distance from the axial line of cutter to the point of action between the rock and cutter has great effect on the breakage of the cutter. Thus during the process of cutting, the eccentric distance should be reduced to improve the service life of PDC cutters.
Keivani, M.; Abadian, N.; Koochi, A.; Mokhtari, J.; Abadyan, M.
2016-10-01
It has been well established that the physical performance of nanodevices might be affected by the microstructure. Herein, a two-degree-of-freedom model base on the modified couple stress theory is developed to incorporate the impact of microstructure in the torsion/bending coupled instability of rotational nanoscanner. Effect of microstructure dependency on the instability parameters is determined as a function of the microstructure parameter, bending/torsion coupling ratio, van der Waals force parameter and geometrical dimensions. It is found that the bending/torsion coupling substantially affects the stable behavior of the scanners especially those with long rotational beam elements. Impact of microstructure on instability voltage of the nanoscanner depends on coupling ratio and the conquering bending mode over torsion mode. This effect is more highlighted for higher values of coupling ratio. Depending on the geometry and material characteristics, the presented model is able to simulate both hardening behavior (due to microstructure) and softening behavior (due to torsion/bending coupling) of the nanoscanners.
郑文杰; 贺鸿志; 黄峙; 杨芳; 郭宝江
2003-01-01
研究了硒(Na 2SeO3)和碲(Na 2TeO 3)胁迫对钝顶螺旋藻(Spirulina platensis)和极大螺旋藻(Spirulina maximum)生长的影响.结果表明,两种藻对硒、碲表现出不同的耐性.对于S.platenis,CSe≤200mg/L促进生长,CTe＜100mg/L影响不大,CTe≥100mg/L抑制生长,CSa≥800mg/L或CTe=400mg/L藻死亡;而对于S.maiximum,CSe=25 mg/L时促进生长,CTe≤25mg/L无影响,CTe≥50 mg/L明显抑制生长,Cse≥800mg/L或CTe≥600 mg/L则死亡.而在培养周期内分次添加硒、碲,当累计达到CSe(CTe)=800mg/L,两种藻仍能正常生长.表明硒、碲添加方式不同,产生明显不同的效应.
Imperfection analysis of flexible pipe armor wires in compression and bending
Østergaard, Niels Højen; Lyckegaard, Anders; Andreasen, Jens H.
2012-01-01
The work presented in this paper is motivated by a specific failure mode known as lateral wire buckling occurring in the tensile armor layers of flexible pipes. The tensile armor is usually constituted by two layers of initially helically wound steel wires with opposite lay directions. During pipe...... laying in ultra deep waters, a flexible pipe experiences repeated bending cycles and longitudinal compression. These loading conditions are known to impose a danger to the structural integrity of the armoring layers, if the compressive load on the pipe exceeds the total maximum compressive load carrying...
彭利平; 刘初升; 宋宝成; 武继达; 王帅
2015-01-01
Demand for large vibrating screen is huge in the mineral processing industry. As bending and random vibration are not considered in a traditional design method for beam structures of a large vibrating screen, fatigue damage occurs frequently to affect the screening performance. This work aims to conduct a systematic mechanics analysis of the beam structures and improve the design method. Total motion of a beam structure in screening process can be decomposed into the traditional followed rigid translation (FRT), bending vibration (BV) and axial linear-distributed random rigid translation (ALRRT) excited by the side-plates. When treated as a generalized single-degree-of-freedom (SDOF) elastic system analytically, the BV can be solved by the Rayleigh’s method. Stochastic analysis for random process is conducted for the detailed ALRRT calculation. Expressions for the mechanics property, namely, the shearing force and bending-moment with respect to BV and ALRRT, are derived, respectively. Experimental and numerical investigations demonstrate that the largest BV exists at the beam center and can be nearly ignored in comparison with the FRT during a simplified engineering design. With the BV and FRT considered, the mechanics property accords well with the practical situation with the maximum error of 6.33%, which is less than that obtained by traditional method.
Influence of punch radius on elastic modulus of three-point bending tests
Pengliang Hou
2016-05-01
Full Text Available Three-point bending is one of the most common methods of studying the mechanical performance of materials. The influence of punch radius in the measurements is not considered in the previous studies. This article focuses on the influence of the punch radius on the elastic modulus. The experiment is set up to measure the elastic modulus of 6061 aluminum alloy (6061 Al and copper as the specimens, in which several different radii of punches are used. The maximum bending deflection of the middle point is 1.0 mm. Moreover, a finite element simulation is constructed to simulate the bending process of specimen, which is consistent with the experimental results. According to the results, the punch radius has affected the measurement of elastic modulus, and the elastic modulus, the contact length, and the peak load increase with the increase in the punch radius. Combining the experiment result (E1 and the standard result (E3 of Changchun research institute for testing machines, it is found that the appropriate punch radius is in the range from 2.5 to 3.0 mm for this experiment, when the specimen’s dimension is 30.0 mm × 6.0 mm × 1.0 mm.
Wang, Yusuo; Hu, Xiaozhi
2017-01-01
Direct tensile strength and fracture toughness of rock and concrete, important properties for many applications, are cumbersome to measure directly. In this study, granite is chosen as an example to show how the tensile strength and fracture toughness can be measured from small three-point-bend samples of a single size but with different notches. An existing fracture mechanics model has been extended to include the stable fictitious crack growth before peak loads, which is then linked to the granite grain size. Both tensile strength and fracture toughness of granite can be estimated by the maximum load measurements from those notched three-point-bend samples. In total, 72 three-point-bend granite samples with different notches have been tested, and the estimated tensile strength and fracture toughness are compared with those available in the literature. The modified fracture mechanics model is then used to predict the fracture behaviour of smaller samples of the same granite. The theoretical prediction is confirmed by the experimental results of those smaller samples. Finally, the fracture model and its relation with the American Society for Testing and Materials (ASTM) standard on fracture toughness are discussed.
Bending strength of delaminated aerospace composites.
Kinawy, Moustafa; Butler, Richard; Hunt, Giles W
2012-04-28
Buckling-driven delamination is considered among the most critical failure modes in composite laminates. This paper examines the propagation of delaminations in a beam under pure bending. A pre-developed analytical model to predict the critical buckling moment of a thin sub-laminate is extended to account for propagation prediction, using mixed-mode fracture analysis. Fractography analysis is performed to distinguish between mode I and mode II contributions to the final failure of specimens. Comparison between experimental results and analysis shows agreement to within 5 per cent in static propagation moment for two different materials. It is concluded that static fracture is almost entirely driven by mode II effects. This result was unexpected because it arises from a buckling mode that opens the delamination. For this reason, and because of the excellent repeatability of the experiments, the method of testing may be a promising means of establishing the critical value of mode II fracture toughness, G(IIC), of the material. Fatigue testing on similar samples showed that buckled delamination resulted in a fatigue threshold that was over 80 per cent lower than the static propagation moment. Such an outcome highlights the significance of predicting snap-buckling moment and subsequent propagation for design purposes.
2014 land cover land use horseshoe bend
Hanson, Jenny L.; Hoy, Erin E.; Robinson, Larry R.
2016-01-01
This collection of conservation areas consists of the floodplain of the combined streams of the Iowa River and the Cedar River. The study area begins just southeast of Wapello, IA, and continues southeast until the Horseshoe Bend Division, Port Louisa NWR. The area is currently managed to maintain meadow or grassland habitat which requires intensive management due to vegetative succession. In addition, this floodplain area contains a high proportion of managed lands and private lands in the Wetland Reserve Program and is a high priority area for cooperative conservation actions. This project provides a late-summer baseline vegetation inventory to assess future management actions in an adaptive process. Changes in levees, in addition to increased water flows and flood events due to climate change and land use practices, make restoration of floodplain processes more complex. Predictive models could help determine more efficient and effective restoration and management techniques. Successful GIS tools developed for this project would be applicable to other floodplain refuges and conservation areas.
OECD Maximum Residue Limit Calculator
With the goal of harmonizing the calculation of maximum residue limits (MRLs) across the Organisation for Economic Cooperation and Development, the OECD has developed an MRL Calculator. View the calculator.
Zhang, Y.; Abraham, O.; Chapeleau, X.; Cottineau, L.-M.; Tournat, V.; Le Duff, A.; Lascoup, B.; Durand, O.
2013-01-01
Coda Wave Interferometry (CWI) is an ultrasonic NDT method suitable for complex material such as concrete that can precisely measure small propagation velocity variation (10-2%). By measuring variation of propagation velocity in concrete caused by acoustoelasticity phenomena, CWI analysis can be used to monitor concrete's internal stress level. For the first time, CWI is used to measure propagation velocity variations due to a stress field in a concrete beam under four-points bending test, which contains simultaneously compressive and tensile stress. Embedded optical-fiber sensors, strain gauges are used in the experiment, in order to confirm and validate the CWI analysis result. Thermocouples are also embedded into concrete beams for monitoring internal temperature fluctuations.
PROGRESS IN STUDIES ON ICE ACCUMULATION IN RIVER BENDS
WANG Jun; CHEN Pang-pang; SUI Jue-yi
2011-01-01
River ice is an important hydraulic element in temperate and polar environments and would affect hydrodynamic conditions of rivers through changes both in the boundary conditions and the thermal regime.The river bend has been reported as the common location for the initiation of ice jams because the water flow along a river bend is markedly affected by the channel curvature.In this article,the experimental studies about the ice accumulation in a river bend are reviewed.Based on experiments conducted so far,the criteria for the formation of ice jams in the river bend,the mechanisms of the ice accumulation in the river bend and the thickness profile of the ice accumulation in the river bend are discussed.The k- ε two-equation turbulence model is used to simulate the ice accumulation under an ice cover along a river bend.A formula is proposed for describing the deformation of the ice jam bottom.Our results indicate that all simulated thickness of the ice accumulation agrees reasonably well with the measured thickness of the ice accumulation in the laboratory.
Fixed bending current for Elekta SL25 linear accelerators.
Kok, J G
2001-01-01
In a medical linear accelerator a bending magnet is used to bend the electron beam produced by the accelerator tube, in the treatment direction. For each electron energy the strength of the magnetic field has to be set to a specific level. Changing the magnetic field strength is done by changing the electric current through the bending magnet. When electron energy and magnetic field strength are not matched, performance of the linac can be affected. As electron energy, magneticfield strength and electrical current through the bending magnet are related to each other, it is reasonable to assume that for each electron energy the correct bending current can be predetermined. This calculated bending current reduces the number of variable parameters used to set up a treatment beam. Predetermining a variable simplifies the tuning procedures. It also prevents a deviation of the electron beam energy being compensated by variation of the bending current. Preventing false machine settings can contribute to increase linac performance and reduce down time and cost of ownership.
Sergio Baragetti
2016-01-01
Full Text Available Hydraulic actuators are commonly adopted in machines and structures to provide translating forces with significant magnitudes. Although their application dates back to the industrial revolution, their bending behavior under compression is typically addressed by simple Euler’s instability analysis on the rod, neglecting effects such as the cylinder inertia and stiffness, the presence of contact elements in the cylinder-rod junction and on the piston, geometrical misalignments and imperfections, and friction moments at the support. Such simplifications lead to unjustified reduced critical load calculations on the component. In the present paper, a complete mathematical formulation, which accounts for such effects, is presented and validated against experimental data. A numerical sensitivity analysis is conducted, to assess the contributions of initial rectilinear imperfections, wear rings stiffness and dimension, and supports friction on the actuator’s limit buckling load and bending behavior under compression. Results are presented, including the effect of the cited parameters on the buckling load, providing a reliable tool for the mechanical designer. In particular, an optimum position for the wear ring distance is found. Moreover, increased wear ring stiffness and reduced imperfections increase the buckling load and reduce the bending stresses before the critical load.
EFFECT OF CORROSION ON BOND BEHAVIOR AND BENDING STRENGTH OF REINFORCED CONCRETE BEAMS
无
2001-01-01
There is growing concern for corrosion damage in reinforced concrete structures with several decades' service. Pullout tests and beam tests were carried out to study the effect of reinforcement corrosion on the bond behavior and bending strength of reinforced concrete beams. The bond strength of plain bars and concrete initially increases with increasing corrosion, then declines. The turning point depends on the cracking of the concrete cover. The bond strength of deformed bars and concrete increases with corrosion up to a certain amount, but with progressive increase in corrosion, the bond strength decreases, and the cracking of the concrete cover seems to have no effect on the bond strength. On the basis of test data, the bond strength coefficient recommended here, which, together with the bond strength of uncorroded steel bars and concrete, can be used to easily calculate the bond strength of corroded steel bars and concrete. The bond strength coefficient proposed in this paper can be used to study the bond stress-slip relationship of corroded steel bars and concrete. The bending strength of corroded reinforced concrete beams declines with increasing reinforcement corrosion. Decreased bending strength of corroded RC beam is due to reduction in steel bar cross section, reduction of yield strength of steel bar, and reduction of bond capacity between steel bar and concrete.
The use of experimental bending tests to more accurate numerical description of TBC damage process
Sadowski, T.; Golewski, P.
2016-04-01
Thermal barrier coatings (TBCs) have been extensively used in aircraft engines to protect critical engine parts such as blades and combustion chambers, which are exposed to high temperatures and corrosive environment. The blades of turbine engines are additionally exposed to high mechanical loads. These loads are created by the high rotational speed of the rotor (30 000 rot/min), causing the tensile and bending stresses. Therefore, experimental testing of coated samples is necessary in order to determine strength properties of TBCs. Beam samples with dimensions 50×10×2 mm were used in those studies. The TBC system consisted of 150 μm thick bond coat (NiCoCrAlY) and 300 μm thick top coat (YSZ) made by APS (air plasma spray) process. Samples were tested by three-point bending test with various loads. After bending tests, the samples were subjected to microscopic observation to determine the quantity of cracks and their depth. The above mentioned results were used to build numerical model and calibrate material data in Abaqus program. Brittle cracking damage model was applied for the TBC layer, which allows to remove elements after reaching criterion. Surface based cohesive behavior was used to model the delamination which may occur at the boundary between bond coat and top coat.
Nestola, Yago; Storti, Fabrizio; Cavozzi, Cristian; Magistroni, Corrado; Meda, Marco; Piero Righetti, Fabrizio
2016-04-01
Structural inheritance plays a fundamental role during crustal deformation because pre-existing fault and shear zones typically provide weakness zone suitable to fail again when affected by a new regional stress field. Re-activation of structural inheritance is expected to unavoidably increase the complexity of structural architectures, whose geometric and kinematic patterns can significantly deviate from what expected in newly deformed crustal sectors. Availability of templates from analogue models can provide a very effective tool to help unraveling such a structural complexity. For this purpose, we simulated the reworking of a set of basement hosted pre-existing fault zones at strike-slip restraining fault bends. In the models, the mechanical stratigraphy consists of a basement, made of a mixture of dry kaolin and sand to slightly increase cohesion, and a sedimentary cover made by pure dry sand. Inherited fault zones are confined to the basement and coated by a thin veneer of silicone putty. In the experimental programme, the geometry of the left-lateral restraining bend is maintained the same, with a bending angle of 30° of the restraining fault segment. The strike of the inherited fault zones, measured counterclockwise with respect to that of the master strike-slip fault zone outside the restraining bend, was 0°, 30°, and 60° in different experiments, respectively. An end member experiment without inheritance was also run for comparison. Our experimental results show that the angle that the inherited fault zones make with the restraining bend plays a fundamental role in governing the deformation pattern. When structural inheritance is near parallel to the master strike-slip fault zone, synthetic shears form and severely compartmentalize the transpressional pop-up anticline growing on top of the restraining bend. Fault-bounded blocks undergo sinistral escape during transpression. On the other hand, when structural inheritance makes a high angle to the
Mathieson, Haley Aaron
This thesis investigates experimentally and analytically the structural performance of sandwich panels composed of glass fibre reinforced polymer (GFRP) skins and a soft polyurethane foam core, with or without thin GFRP ribs connecting skins. The study includes three main components: (a) out-of-plane bending fatigue, (b) axial compression loading, and (c) in-plane bending of sandwich beams. Fatigue studies included 28 specimens and looked into establishing service life (S-N) curves of sandwich panels without ribs, governed by soft core shear failure and also ribbed panels governed by failure at the rib-skin junction. Additionally, the study compared fatigue life curves of sandwich panels loaded under fully reversed bending conditions (R=-1) with panels cyclically loaded in one direction only (R=0) and established the stiffness degradation characteristics throughout their fatigue life. Mathematical models expressing fatigue life and stiffness degradation curves were calibrated and expanded forms for various loading ratios were developed. Approximate fatigue thresholds of 37% and 23% were determined for non-ribbed panels loaded at R=0 and -1, respectively. Digital imaging techniques showed significant shear contribution significantly (90%) to deflections if no ribs used. Axial loading work included 51 specimens and examined the behavior of panels of various lengths (slenderness ratios), skin thicknesses, and also panels of similar length with various rib configurations. Observed failure modes governing were global buckling, skin wrinkling or skin crushing. In-plane bending involved testing 18 sandwich beams of various shear span-to-depth ratios and skin thicknesses, which failed by skin wrinkling at the compression side. The analytical modeling components of axially loaded panels include; a simple design-oriented analytical failure model and a robust non-linear model capable of predicting the full load-displacement response of axially loaded slender sandwich panels
The analysis of the bending stiffness and intensity of cylindrical tubes
SONG YuQuan; GUAN ZhiPing; NIE YuQin; GUAN XiaoFang
2007-01-01
Based on the mechanics of material, the bending stiffness and intensity of cylindrical bar and tube are analyzed. By comparing the cylindrical tube whose ratio of outside diameter to internal diameter is 0.7 with the cylindrical bar, it is concluded that when both of them have the same mass, the section stiffness of the cylindrical tube is three times that of the cylindrical bar; when both of them have the same external diameter, the mass of the cylindrical tube is only 1/2 that of the cylindrical bar, but the section stiffness of the cylindrical tube is 3/4 that of the cylindrical bar.By virtue of the elemental elastic-plastic theory, the yield stress of the liquid-filled cylindrical tube is investigated. Due to the incompressibility of liquid and the strain hardening effect of material, the yield stress of the liquid-filled tube is enlarged compared with the hollow tube, thus raising its bending intensity. Under the dynamic load, compared with the hollow tube, the impact resistance of the liquid-filled tube is also raised due to elastic recovery. Because the hydraulic pressures perpendicular to the inner surface are identical everywhere, the local stress concentration resulting from the ovalisation of the tube would be decreased, and the resistance to buckling would be improved.
The analysis of the bending stiffness and intensity of cylindrical tubes
2007-01-01
Based on the mechanics of material,the bending stiffness and intensity of cylin-drical bar and tube are analyzed. By comparing the cylindrical tube whose ratio of outside diameter to internal diameter is 0.7 with the cylindrical bar,it is concluded that when both of them have the same mass,the section stiffness of the cylindrical tube is three times that of the cylindrical bar;when both of them have the same external diameter,the mass of the cylindrical tube is only 1/2 that of the cylindrical bar,but the section stiffness of the cylindrical tube is 3/4 that of the cylindrical bar. By virtue of the elemental elastic-plastic theory,the yield stress of the liquid-filled cylindrical tube is investigated. Due to the incompressibility of liquid and the strain hardening effect of material,the yield stress of the liquid-filled tube is enlarged compared with the hollow tube,thus raising its bending intensity. Under the dy-namic load,compared with the hollow tube,the impact resistance of the liquid-filled tube is also raised due to elastic recovery. Because the hydraulic pressures per-pendicular to the inner surface are identical everywhere,the local stress concen-tration resulting from the ovalisation of the tube would be decreased,and the re-sistance to buckling would be improved.
Four point bending setup for characterization of semiconductor piezoresistance
Richter, Jacob; Arnoldus, Morten Berg; Hansen, Ole
2008-01-01
We present a four point bending setup suitable for high precision characterization of piezoresistance in semiconductors. The compact setup has a total size of 635 cm3. Thermal stability is ensured by an aluminum housing wherein the actual four point bending fixture is located. The four point...... bending fixture is manufactured in polyetheretherketon and a dedicated silicon chip with embedded piezoresistors fits in the fixture. The fixture is actuated by a microstepper actuator and a high sensitivity force sensor measures the applied force on the fixture and chip. The setup includes heaters...
Hamiltonian system for orthotropic plate bending based on analogy theory
无
2001-01-01
Based on analogy between plane elasticity and plate bending as well as variational principles of mixed energy, Hamiltonian system is further led to orthotropic plate bending problems in this paper. Thus many effective methods of mathematical physics such as separation of variables and eigenfunction expansion can be employed in orthotropic plate bending problems as they are used in plane elasticity. Analytical solutions of rectangular plate are presented directly, which expands the range of analytical solutions. There is an essential distinction between this method and traditional semi-inverse method. Numerical results of orthotropic plate with two lateral sides fixed are included to demonstrate the effectiveness and accuracy of this method.
Bends in nanotubes allow electric spin control and coupling
Flensberg, Karsten; Marcus, Charles Masamed
2010-01-01
We investigate combined effects of spin-orbit coupling and magnetic field in carbon nanotubes containing one or more bends along their length. We show how bends can be used to provide electrical control of confined spins, while spins confined in straight segments remain insensitive to electric...... fields. Device geometries that allow general rotation of single spins are presented and analyzed. In addition, capacitive coupling along bends provides coherent spin-spin interaction, including between otherwise disconnected nanotubes, completing a universal set of one- and two-qubit gates....
Buffers affect the bending rigidity of model lipid membranes.
Bouvrais, Hélène; Duelund, Lars; Ipsen, John H
2014-01-14
In biophysical and biochemical studies of lipid bilayers the influence of the used buffer is often ignored or assumed to be negligible on membrane structure, elasticity, or physical properties. However, we here present experimental evidence, through bending rigidity measurements performed on giant vesicles, of a more complex behavior, where the buffering molecules may considerably affect the bending rigidity of phosphatidylcholine bilayers. Furthermore, a synergistic effect on the bending modulus is observed in the presence of both salt and buffer molecules, which serves as a warning to experimentalists in the data interpretation of their studies, since typical lipid bilayer studies contain buffer and ion molecules.
Experimental study and stress analysis of rock bolt anchorage performance
Yu Chen
2014-10-01
Full Text Available A new method was developed to apply pull-and-shear loads to the bolt specimen in order to evaluate the anchorage performance of the rebar bolt and the D-Bolt. In the tests, five displacing angles (0°, 20°, 40°, 60°, and 90°, two joint gaps (0 mm and 30 mm, and three kinds of host rock materials (weak concrete, strong concrete, and concrete-granite were considered, and stress–strain measurements were conducted. Results show that the ultimate loads of both the D-Bolt and the rebar bolt remained constant with any displacing angles. The ultimate displacement of the D-Bolt changed from 140 mm at the 0° displacing angle (pure pull to approximately 70 mm at a displacing angle greater than 40°. The displacement capacity of the D-Bolt is approximately 3.5 times that of the rebar bolt under pure pull and 50% higher than that of the rebar bolt under pure shear. The compressive stress exists at 50 mm from the bolt head, and the maximum bending moment value rises with the increasing displacing angle. The rebar bolt mobilises greater applied load than the D-Bolt when subjected to the maximum bending. The yielding length (at 0° of the D-Bolt is longer than that of the rebar bolt. The displacement capacity of the bolts increased with the joint gap. The bolt subjected to joint gap effect yields more quickly with greater bending moment and smaller applied load. The displacement capacities of the D-Bolt and the rebar bolt are greater in the weak host rock than that in the hard host rock. In pure shear condition, the ultimate load of the bolts slightly decreases in the hard rock. The yielding speed in the hard rock is higher than that in the weak rock.
蒋春松; 彭金方; 沈明学; 宋川; 朱一林; 朱旻昊
2013-01-01
The bending fretting process of 316L stainless steel component was simulated by ABAQUS finite element software.The Smith-Watson-Topper (SWT) multiaxial fatigue criterion was applied to predicting bending fretting crack initiation locations and component lifetimes.The 3D simulation results show that the contact pressure stress distribution along the flat width direction on the upper surface of the contact center presented the tendency that the edge value was larger and the central value was small,and the maximum was given near the edge but not at the edge.With the increase of bending load the maximum marginal contact pressure stress increased,while the central pressure stress reduced to zero.That means when the bending load increased,the warping phenomenon would be more severe.The fretting fatigue crack initiated from the subsurface,about 93 μm under the contact surface.The fatigue life prediction results of the SWT parameters were in agreement with experimental results.%利用ABAQUS软件对316L不锈钢构件的弯曲微动过程进行了有限元模拟,采用SWT多轴疲劳准则预测了弯曲微动裂纹萌生的位置和构件的疲劳寿命.结果表明:三维模型模拟显示上表面接触中心沿平板宽度方向的接触压应力分布呈边缘大、中间小的趋势,但最大值并未出现在最边缘,而是在非常靠近边缘的地方；随着弯曲载荷的增大,边缘最大接触压应力随之增大,中间压应力则随之降低直至为零,即随着弯曲载荷的增大,翘曲现象更加严重；疲劳裂纹最易萌生于距接触表面约93μm的次表层,构件疲劳寿命的预测值与试验结果吻合较好.
Light-induced nonhomogeneity and gradient bending in photochromic liquid crystal elastomers
JIN; Lihua; JIANG; Xin; HUO; Yongzhong
2006-01-01
The recently reported opto-mechanical effect of some photochromic liquid crystal elastomers (LCEs) is studied. It is found that in such LCEs, material parameters such as the Young's modulus and the stress-free strains will become nonhomogeneous Analytical expressions for the dependence of the material parameters on the space variable and possibly on the time variable are obtained. Exponential dependence can be derived under certain approximations. As an example, the light-induced bending of a beam is studied. Two neutral planes are found in the beam. Thus, along the thickness of the beam,there are extensions in the upper and lower parts and contractions in the middle.
ANALYTICAL SOLUTION OF BENDING-COMPRESSION COLUMN USING DIFFERENT TENSION-COMPRESSION MODULUS
姚文娟; 叶志明
2004-01-01
Based on elastic theory of different tension-compression modulus, the analytical solution was deduced for bending-compression column subject to combined loadings by the flowing coordinate system and phased integration method. The formulations for the neutral axis, stress, strain and displacement were developed, the finite element program was compiled for calculation, and the comparison between the result of finite element and analytical solution were given too. Finally, compare and analyze the result of different modulus and the same modulus, obtain the difference of two theories in result, and propose the reasonable suggestion for the calculation of this structure.
Mechanical stability of roll-to-roll printed solar cells under cyclic bending and torsion
Finn, Mickey; Martens, Christian James; Zaretski, Aliaksandr V.
2018-01-01
The ability of printed organic solar cells (OSCs) to survive repeated mechanical deformation is critical to large-scale implementation. This paper reports an investigation into the mechanical stability of OSCs through bending and torsion testing of whole printed modules. Two types of modules...... strain cycles. Failure during torsion occurs through crack propagation initiated at stress concentrations on the edges of the module that were imposed by their rectangular geometry and ultimately leads to bifurcation of the entire module. Rather than the differences in electrode materials...
Simulation analysis of minimum bending radius for lead frame copper alloys
Su, Juanhua; Shuguo, Jia; Fengzhang, Ren
2013-01-01
Copper alloy has a lot of excellent properties, so it becomes an important alloy for lead frame materials for the integrated circuit. The minimum bending radius of three different copper alloys (Cu-Fe-P, Cu-Ni-Si, Cu-Cr-Sn-Zn) for lead frame materials was analyzed by using finite element. Tensile tests for the three kinds of materials were done to obtain yield stress, ultimate strength and other parameters. The strain-hardening exponent n and normal anisotropy index r of the materials were ob...
"Bending the cost curve" in gastroenterology.
Slattery, E; Harewood, G C; Murray, F; Patchett, S
2013-12-01
Increasing attention is being focused on reigning in escalating costs of healthcare, i.e. trying to 'bend the cost curve'. In gastroenterology (GI), inpatient hospital care represents a major component of overall costs. This study aimed to characterize the trend in cost of care for GI-related hospitalizations in recent years and to identify the most costly diagnostic groups. All hospital inpatients admitted between January 2008 and December 2009 with a primary diagnosis of one of the six most common GI-related Diagnosis Related Groups (DRGs) in this hospital system were identified; all DRGs contained at least 40 patients during the study period. Patient Level Costing (PLC) was used to express the total cost of hospital care for each patient; PLC comprised a weighted daily bed cost plus cost of all medical services provided (e.g., radiology, pathology tests) calculated according to an activity-based costing approach; cost of medications were excluded. All costs were discounted to 2009 values. Mean length of stay (LOS) was also calculated for each DRG. Over 2 years, 470 patients were admitted with one of the six most common GI DRGs. Mean cost of care increased from 2008 to 2009 for all six DRGs with the steepest increases seen in 'GI hemorrhage (non-complex)' (31 % increase) and 'Cirrhosis/Alcoholic hepatitis (non-complex)' (45 % increase). No differences in readmission rates were observed over time. There was a strong correlation between year-to-year change in costs and change in mean LOS, r = 0.93. The cost of GI-related inpatient care appears to be increasing in recent years with the steepest increases observed in non-complex GI hemorrhage and non-complex Cirrhosis/Alcoholic hepatitis. Efforts to control the increasing costs should focus on these diagnostic categories.
Maximum margin Bayesian network classifiers.
Pernkopf, Franz; Wohlmayr, Michael; Tschiatschek, Sebastian
2012-03-01
We present a maximum margin parameter learning algorithm for Bayesian network classifiers using a conjugate gradient (CG) method for optimization. In contrast to previous approaches, we maintain the normalization constraints on the parameters of the Bayesian network during optimization, i.e., the probabilistic interpretation of the model is not lost. This enables us to handle missing features in discriminatively optimized Bayesian networks. In experiments, we compare the classification performance of maximum margin parameter learning to conditional likelihood and maximum likelihood learning approaches. Discriminative parameter learning significantly outperforms generative maximum likelihood estimation for naive Bayes and tree augmented naive Bayes structures on all considered data sets. Furthermore, maximizing the margin dominates the conditional likelihood approach in terms of classification performance in most cases. We provide results for a recently proposed maximum margin optimization approach based on convex relaxation. While the classification results are highly similar, our CG-based optimization is computationally up to orders of magnitude faster. Margin-optimized Bayesian network classifiers achieve classification performance comparable to support vector machines (SVMs) using fewer parameters. Moreover, we show that unanticipated missing feature values during classification can be easily processed by discriminatively optimized Bayesian network classifiers, a case where discriminative classifiers usually require mechanisms to complete unknown feature values in the data first.
Maximum Entropy in Drug Discovery
Chih-Yuan Tseng
2014-07-01
Full Text Available Drug discovery applies multidisciplinary approaches either experimentally, computationally or both ways to identify lead compounds to treat various diseases. While conventional approaches have yielded many US Food and Drug Administration (FDA-approved drugs, researchers continue investigating and designing better approaches to increase the success rate in the discovery process. In this article, we provide an overview of the current strategies and point out where and how the method of maximum entropy has been introduced in this area. The maximum entropy principle has its root in thermodynamics, yet since Jaynes’ pioneering work in the 1950s, the maximum entropy principle has not only been used as a physics law, but also as a reasoning tool that allows us to process information in hand with the least bias. Its applicability in various disciplines has been abundantly demonstrated. We give several examples of applications of maximum entropy in different stages of drug discovery. Finally, we discuss a promising new direction in drug discovery that is likely to hinge on the ways of utilizing maximum entropy.
Lithospheric bending at subduction zones based on depth soundings and satellite gravity
Levitt, Daniel A.; Sandwell, David T.
1995-01-01
A global study of trench flexure was performed by simultaneously modeling 117 bathymetric profiles (original depth soundings) and satellite-derived gravity profiles. A thin, elastic plate flexure model was fit to each bathymetry/gravity profile by minimization of the L(sub 1) norm. The six model parameters were regional depth, regional gravity, trench axis location, flexural wavelength, flexural amplitude, and lithospheric density. A regional tilt parameter was not required after correcting for age-related trend using a new high-resolution age map. Estimates of the density parameter confirm that most outer rises are uncompensated. We find that flexural wavelength is not an accurate estimate of plate thickness because of the high curvatures observed at a majority of trenches. As in previous studies, we find that the gravity data favor a longer-wavelength flexure than the bathymetry data. A joint topography-gravity modeling scheme and fit criteria are used to limit acceptable parameter values to models for which topography and gravity yield consistent results. Even after the elastic thicknesses are converted to mechanical thicknesses using the yield strength envelope model, residual scatter obscures the systematic increase of mechanical thickness with age; perhaps this reflects the combination of uncertainties inherent in estimating flexural wavelength, such as extreme inelastic bending and accumulated thermoelastic stress. The bending moment needed to support the trench and outer rise topography increases by a factor of 10 as lithospheric age increases from 20 to 150 Ma; this reflects the increase in saturation bending moment that the lithosphere can maintain. Using a stiff, dry-olivine rheology, we find that the lithosphere of the GDH1 thermal model (Stein and Stein, 1992) is too hot and thin to maintain the observed bending moments. Moreover, the regional depth seaward of the oldest trenches (approximately 150 Ma) exceeds the GDH1 model depths by about 400 m.
Kemper, Andrew R; McNally, Craig; Pullins, Clayton A; Freeman, Laura J; Duma, Stefan M; Rouhana, Stephen M
2007-10-01
The purpose of this study was to quantify both the tensile material properties and structural response of human ribs in order to determine which variables contribute to regional variation in the strength of human ribs. This was done by performing 94 matched tests on human rib specimens; 46 tension coupon tests, 48 three-point bending tests. Contralateral matched specimens were dissected from anterior and lateral regions of ribs 4 through 7 of six male fresh frozen post mortem human subjects ranging from 42 to 81 years of age. Tension coupons were taken from one side of the thorax, while three-point bending specimens were taken from the opposite side as the tension coupons at corresponding anatomical locations. The results of the tension coupon testing showed that there were no significant differences with respect to region or rib level: ultimate stress (p=0.90; p=0.53), ultimate strain (p=0.49; p=0.86), or modulus (p=0.72; p=0.81). In contrast, lateral three-point bending specimens were found to have a significantly higher peak bending moment (pbending specimens also had a significantly larger area moment of inertia (pradius of gyration (pradius of gyration (p=0.04) were found to be significantly different with respect to rib level. For lateral specimens, the area moment of inertia (pradius of gyration (p=0.03) were found to be significantly different with respect to rib level. These results clearly illustrate that there is variation in the structural response of human ribs with respect to anatomical region and rib level and this variation is due to changes in local geometry of each rib while the material properties remain constant.
板料自由弯曲成形及回弹理论解析%Theoretic analysis of forming and springback for sheet metal air bending
李建; 赵军; 展培培; 孙红磊; 马瑞
2009-01-01
对宽板自由弯曲成形及弹复过程进行理论分析,将弯曲过程分为板料未包覆凸模和已包覆凸模两个成形阶段,在每个成形阶段将弯曲板料分为弹性和弹塑性变形区.基于单向应力和小变形假设,分别建立了两个成形阶段的回弹计算模型,导出了任一成形阶段中性层上任一质点卸载前后的转角和弯曲半径数学表达式.基于VC++软件平台,对回弹计算模型进行编程计算,并进行了实验验证,计算结果与实验结果吻合较好,最大误差为0.58°.%With theoretic analysis on the forming and springback processes for sheet metal forming, the sheet metal air bending process can be divided into two stages including one stage of not wrapping the sheet about the punch surface and the other stage of having wrapped up the punch surface. In each forming stage, the deformed region of the sheet metal is considered to be composed of elastic region and elastic-plastic region. Using the assumptions of uniaxial stress and the little deforming theory, the analytical model of springback prediction is constructed. The equations for the rotation angle and radius of each point in neutral surface for any bending process are derived. The code is developed to calculate the springback amount based on VC++ program. The air bending experiment is conducted to verify the validation of the theoretic model of springback prediction. The comparison shows that the theoretical results of springback prediction fit well with experimental data and the maximum error is 0.58°.
Advantages of customer/supplier involvement in the upgrade of River Bend`s IST program
Womack, R.L.; Addison, J.A.
1996-12-01
At River Bend Station, IST testing had problems. Operations could not perform the test with the required repeatability; engineering could not reliably trend test data to detect degradation; licensing was heavily burdened with regulatory concerns; and maintenance could not do preventative maintenance because of poor prediction of system health status. Using Energy`s Total Quality principles, it was determined that the causes were: lack of ownership, inadequate test equipment usage, lack of adequate procedures, and lack of program maintenance. After identifying the customers and suppliers of the IST program data, Energy management put together an upgrade team to address these concerns. These customers and suppliers made up the IST upgrade team. The team`s mission was to supply River Bend with a reliable, functional, industry correct and user friendly IST program. The IST program in place went through a verification process that identified and corrected over 400 individual program discrepancies. Over 200 components were identified for improved testing methods. An IST basis document was developed. The operations department was trained on ASME Section XI testing. All IST tests have been simplified and shortened, due to heavy involvement by operations in the procedure development process. This significantly reduced testing time, resulting in lower cost, less dose and greater system availability.
ZHONG Yan-lin; WANG You; WANG Hai-peng; RONG Ke; XIE Le
2011-01-01
Objective: To create a 3-dimensional finite element model of knee ligaments and to analyse the stress changes of lateral collateral ligament (LCL) with or without displaced movements at different knee flexion conditions.Methods: A four-major-ligament contained knee specimen from an adult died of skull injury was prepared for CT scanning with the detectable ligament insertion footprints,locations and orientations precisely marked in advance. The CT scanning images were converted to a 3-dimensional model of the knee with the 3-dimensional reconstruction technique and transformed into finite element model by the software of ANSYS. The model was validated using experimental and numerical results obtained by other scientists.The natural stress changes of LCL at five different knee flexion angles (0°, 30°, 60°, 90°, 120°) and under various motions of anterior-posterior tibial translation, tibial varus rotation and internal-external tibial rotation were measured.Results: The maximum stress reached to 87%-113%versus natural stress in varus motion at early 30° of knee flexions. The stress values were smaller than the peak value of natural stress at 0° (knee full extension) when knee bending was over 60° of flexion in anterior-posterior tibial translation and internal-external rotation.Conclusion: LCL is vulnerable to varus motion in almost all knee bending positions and susceptible to anterlor-posterior tibial translation or internal-external rotation at early 30° of knee flexions.
Activation of Organic Photovoltaic Light Detectors Using Bend Leakage from Optical Fibers.
Griffith, Matthew J; Willis, Matthew S; Kumar, Pankaj; Holdsworth, John L; Bezuidenhout, Henco; Zhou, Xiaojing; Belcher, Warwick; Dastoor, Paul C
2016-03-01
This work investigates the detection and subsequent utilization of leaked light from bends in a silica optical fiber using organic photovoltaic detectors. The optic power lost by single mode and multimode silica optical fibers was calibrated for bend radii between 1 and 7 mm for 532 and 633 nm light, exhibiting excellent agreement with previous theoretical solutions. The spatial location of maximum power leakage on the exterior of the fiber was found to exist in the same plane as the fiber, with a 10° offset from the normal. Two different organic photovoltaic detectors fabricated using a poly(3-hexylthiophene):indene-C60-bisadduct donor-acceptor blend cast from chloroform and chlorobenzene were fabricated to detect the leaked light. The two detectors exhibited different photovoltaic performances, predominantly due to different active layer thicknesses. Both devices showed sensitivity to leakage light, exhibiting voltages between 200 and 300 mV in response to leaked light from the fiber. The temporal responses of the devices were observed to differ, with a rise time from 10% to 90% of maximum voltage of 1430 μs for the chlorobenzene device, and a corresponding rise time of 490 μs for the higher performing chloroform device. The two OPVs were used to simultaneously detect leaked light from induced bends in the optical fiber, with the differing temporal profiles employed to create a unique time-correlated detection signal with enhanced security. The delay between detection of each OPV voltage could be systematically varied, allowing for either a programmable and secure single detection signal or triggering of multiple events with variable time resolution. The results reported in this study present exciting avenues toward the deployment of this simple and noninvasive optical detection system in a range of different applications.
Monitoring Composites under Bending Tests with Infrared Thermography
Carosena Meola
2012-01-01
Full Text Available The attention of the present paper is focused on the use of an infrared imaging device to monitor the thermal response of composite materials under cyclic bending. Three types of composites are considered including an epoxy matrix reinforced with either carbon fibres (CFRP or glass fibres (GFRP and a hybrid composite involving glass fibres and aluminium layers (FRML. The specimen surface, under bending, displays temperature variations pursuing the load variations with cooling down under tension and warming up under compression; such temperature variations are in agreement with the bending moment. It has been observed that the amplitude of temperature variations over the specimen surface depends on the material characteristics. In particular, the presence of a defect inside the material affects the temperature distribution with deviation from the usual bending moment trend.
Fishery Manangement Plan : Holla Bend National Wildlife Refuge
US Fish and Wildlife Service, Department of the Interior — This plan describes fishery management for Holla Bend National Wildlife Refuge in 1990. The plan outlines goals, objectives for fishery management for the benefit of...
Holla Bend National Wildlife Refuge: Comprehensive Conservation Plan
US Fish and Wildlife Service, Department of the Interior — This Comprehensive Conservation Plan (CCP) was written to guide management on Holla Bend NWR for the next 15 years. This plan outlines the Refuge vision and purpose...
Novel boundary element method for resolving plate bending problems
陈颂英; 王乐勤; 焦磊
2003-01-01
This paper discusses the application of the boundary contour method for resolving plate bending problems. The exploitation of the integrand divergence free property of the plate bending boundary integral equation based on the Kirchhoff hypothesis and a very useful application of Stokes' Theorem are presented to convert surface integrals on boundary elements to the computation of bending potential functions on the discretized boundary points, even for curved surface elements of arbitrary shape. Singularity and treatment of the discontinued corner point are not needed at all. The evaluation of the physics variant at internal points is also shown in this article. Numerical results are presented for some plate bending problems and compared against analytical and previous solutions.
Low Cycle Fatigue of Steel in Strain Controled Cyclic Bending
Kulesa Anna
2016-03-01
Full Text Available The paper presents a comparison of the fatigue life curves based on test of 15Mo3 steel under cyclic, pendulum bending and tension-compression. These studies were analyzed in terms of a large and small number of cycles where strain amplitude is dependent on the fatigue life. It has been shown that commonly used Manson-Coffin-Basquin model cannot be used for tests under cyclic bending due to the impossibility of separating elastic and plastic strains. For this purpose, some well-known models of Langer and Kandil and one new model of authors, where strain amplitude is dependent on the number of cycles, were proposed. Comparing the results of bending with tension-compression it was shown that for smaller strain amplitudes the fatigue life for both test methods were similar, for higher strain amplitudes fatigue life for bending tests was greater than for tension-compression.
Gender differences in variability patterns of forward bending
Villumsen, Morten; Madeleine, Pascal; Jørgensen, Marie Birk
2016-01-01
The variability pattern is highly relevant in the analysis of occupational physical exposures. It is hypothesized that gender differences exist in the variability pattern of forward bending between work and leisure....
1984 Deer Harvest Summary for Holla Bend National Wildlife Refuge
US Fish and Wildlife Service, Department of the Interior — This memo summarizes the 1984 deer harvest for Holla Bend National Wildlife Refuge. Tables summarize numerical findings, including bucks, does, and points.
Narrative report 1968: U. L. Bend National Wildlife Refuge
US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Ul Bend NWR outlines Refuge accomplishments during the 1968 calendar year. The report begins by summarizing the weather conditions,...
Wildlife Inventory Plan : Holla Bend National Wildlife Refuge
US Fish and Wildlife Service, Department of the Interior — This plan describes wildlife inventory in Holla Bend National Wildlife Refuge in 1983. This plan helps achieve refuge objectives by detailing the plan, purpose, and...
Magnetically Assisted Bilayer Composites for Soft Bending Actuators
Sung-Hwan Jang
2017-06-01
Full Text Available This article presents a soft pneumatic bending actuator using a magnetically assisted bilayer composite composed of silicone polymer and ferromagnetic particles. Bilayer composites were fabricated by mixing ferromagnetic particles to a prepolymer state of silicone in a mold and asymmetrically distributed them by applying a strong non-uniform magnetic field to one side of the mold during the curing process. The biased magnetic field induces sedimentation of the ferromagnetic particles toward one side of the structure. The nonhomogeneous distribution of the particles induces bending of the structure when inflated, as a result of asymmetric stiffness of the composite. The bilayer composites were then characterized with a scanning electron microscopy and thermogravimetric analysis. The bending performance and the axial expansion of the actuator were discussed for manipulation applications in soft robotics and bioengineering. The magnetically assisted manufacturing process for the soft bending actuator is a promising technique for various applications in soft robotics.
Preliminary Project Investigation : Holla Bend National Wildlife Refuge
US Fish and Wildlife Service, Department of the Interior — This report covers the proposed expansion of Holla Bend National Wildlife Refuge to increase the quantity and quality of wintering habitat primarily for mallards and...
Tidal bending of glaciers: a linear viscoelastic approach
Reeh, Niels; Christensen, Erik Lintz; Mayer, Christoph;
2003-01-01
In theoretical treatments of tidal bending of floating glaciers, the glacier is usually modelled as an elastic beam with uniform thickness, resting on an elastic foundation. With a few exceptions, values of the elastic (Young's) modulus E of ice derived from tidal deflection records of floating...... glaciers are in the range 0.9-3 GPa. It has therefore been suggested that the elastic-beam model with a single value of E approximate to 1 GPa adequately describes tidal bending of glaciers.In contrast, laboratory experiments with ice give E =93 GPa, i.e. 3-10 times higher than the glacier-derived values....... This suggests that ice creep may have a significant influence on tidal bending of glaciers. Moreover, detailed tidal-deflection and tilt data from Nioghalvfjerdsfjorden glacier, northeast Greenland, cannot be explained by elastic-beam theory. We present a theory of tidal bending of glaciers based on linear...
1984 Deer Harvest Summary for Holla Bend National Wildlife Refuge
US Fish and Wildlife Service, Department of the Interior — This memo summarizes the 1985 deer harvest for Holla Bend National Wildlife Refuge. Tables summarize numerical findings, including bucks, does, and points.
Computational Strategies for the Architectural Design of Bending Active Structures
Tamke, Martin; Nicholas, Paul
2013-01-01
Active bending introduces a new level of integration into the design of architectural structures, and opens up new complexities for the architectural design process. In particular, the introduction of material variation reconfigures the design space. Through the precise specification...... of their stiffness, it is possible to control and pre-calibrate the bending behaviour of a composite element. This material capacity challenges architecture’s existing methods for design, specification and prediction. In this paper, we demonstrate how architects might connect the designed nature of composites...... with the design of bending-active structures, through computational strategies. We report three built structures that develop architecturally oriented design methods for bending-active systems using composite materials. These projects demonstrate the application and limits of the introduction of advanced...
Bending elastic moduli of lipid bilayers : modulation by solutes
Duwe, H.P.; Kaes, J.; Sackmann, E.
1990-01-01
We present high precision measurements of the bending elastic moduli for bilayers of a variety of different lipids and of modifications of the flexural rigidity by solutes. The measurements are based on the Fourier analysis of thermally excited membrane undulations (vesicle shape fluctuations) using a recently developed dynamic image processing method. Measurements of the bending modulus as a function of the undulation wave vector provide information on the limitation of the excitations by th...
An Analysis of Elasto-Plastic Bending of Rectangular Plate
Matsuda, Hiroshi; Sakiyama, Takeshi
1988-01-01
In this paper, a discrete method for analyzing the problem of elasto-plastic bending of a rectangular plate is proposed. The solutions for partial differential equation of rectangular plate are obtained in discrete forms by applying numerical integnltion. An incremental variable elasticity procedure has been used for the clasta-plastic analysis of the rectangular plate. As the applications of the proposed method, clasta-plastic bending of rectangular plate with four types of boundary conditio...
Localized bending fatigue behavior of high-strength steel monostrands
Winkler, Jan; Fischer, Gregor; Georgakis, Christos T.
2012-01-01
In this paper, the localized bending fatigue behavior of pretensioned high strength steel monostrands is investigated. Furthermore, a new methodology using an optical photogrammetry system, which can quantify surface deformations on the strand is presented. The system allows measurement of the st......In this paper, the localized bending fatigue behavior of pretensioned high strength steel monostrands is investigated. Furthermore, a new methodology using an optical photogrammetry system, which can quantify surface deformations on the strand is presented. The system allows measurement...
Investigation of meso-failure behaviors of Jinping marble using SEM with bending loading system
Jianping Zuo; Xu Wei; Jianliang Pei; Xiaoping Zhao
2015-01-01
In this study, the meso-failure mechanism and fracture surface of Jinping marble were investigated by means of scanning electron microscope (SEM) with bending loading system and laser-scanner equip-ment. The Yantang and Baishan marbles specimens from Jinping II hydropower station were used. Test results show that the fracture toughness and mechanical behaviors of Yantang marble were basically higher than those of Baishan marble. This is mainly due to the fact that Baishan marble contains a large percentage of dolomite and minor mica. Crack propagation path and fracture morphology indicated that the direction of tensile stress has a significant effect on the mechanical behaviors and fracture toughness of Baishan marble. For Yantang and Baishan marbles, a large number of microcracks around the main crack tip were observed when the direction of tensile stress was parallel to the bedding plane. Conversely, few microcracks occurred when the direction of tensile stress was perpendicular to the bedding plane. The presence of a large number of microcracks at the main crack tip decreased the global fracture toughness of marble. The results of three-point bending tests showed that the average bearing capacity of intact marble is 3.4 times the notched marble, but the ductility property of the defective marble after peak load is better than that of the intact marble. Hence, large deformation may be generated before failure of intact marbles at Jinping II hydropower station. The fractal dimension of fracture surface was also calculated by the cube covering method. Observational result showed that the largest fractal dimension of Yantang marble is captured when the direction of tensile stress is parallel to the bedding plane. However, the fractal dimension of fracture surface of Yantang and Baishan marbles with tensile stress vertical to the bedding plane is relatively small. The fractal dimension can also be used to characterize the roughness of fracture surface of rock
黄家寅
2004-01-01
Under the case of ignoring the body forces and considering components caused by diversion of membrane in vertical direction ( z-direction ), the constitutive equations of the problem of the nonlinear unsymmetrical bending for orthotropic rectangular thin plate with variable thickness are given; then introducing the dimensionless variables and three small parameters, the dimensionaless governing equations of the deflection function and stress function are given.
无
2008-01-01
A numerical model is developed in this paper to calculate the bending moments of flexural members through integration in 3D solid finite element analyses according to the nonlinear constitutive model of concrete and the elastoplastic constitutive model of steel,utilizing the stress condition of the cross-section,considering the destruction characteristic of reinforced concrete members,and based on the plane cross-section assumption.The results of this model give good agreement with those of the classical me...
Greenslade, Thomas B., Jr.
1985-01-01
Discusses a series of experiments performed by Thomas Hope in 1805 which show the temperature at which water has its maximum density. Early data cast into a modern form as well as guidelines and recent data collected from the author provide background for duplicating Hope's experiments in the classroom. (JN)
Abolishing the maximum tension principle
Dabrowski, Mariusz P
2015-01-01
We find the series of example theories for which the relativistic limit of maximum tension $F_{max} = c^2/4G$ represented by the entropic force can be abolished. Among them the varying constants theories, some generalized entropy models applied both for cosmological and black hole horizons as well as some generalized uncertainty principle models.
Abolishing the maximum tension principle
Mariusz P. Da̧browski
2015-09-01
Full Text Available We find the series of example theories for which the relativistic limit of maximum tension Fmax=c4/4G represented by the entropic force can be abolished. Among them the varying constants theories, some generalized entropy models applied both for cosmological and black hole horizons as well as some generalized uncertainty principle models.
Tunable characteristics of bending resonance frequency in magnetoelectric laminated composites
Chen Lei; Li Ping; Wen Yu-Mei; Zhu Yong
2013-01-01
As the magnetoelectric (ME) effect in piezoelectric/magnetostrictive laminated composites is mediated by mechanical deformation,the ME effect is significantly enhanced in the vicinity of resonance frequency.The bending resonance frequency (fr) of bilayered Terfenol-D/PZT (MP) laminated composites is studied,and our analysis predicts that (i) the bending resonance frequency of an MP laminated composite can be tuned by an applied dc magnetic bias (Hdc) due to the △E effect; (ii) the bending resonance frequency of the MP laminated composite can be controlled by incorporating FeCuNbSiB layers with different thicknesses.The experimental results show that with Hdc increasing from 0Oe (1 Oe=79.5775 A/m)to 700 Oe,the bending resonance frequency can be shifted in a range of 32.68 kHz ≤ fr ≤ 33.96 kHz.In addition,with the thickness of the FeCuNbSiB layer increasing from 0 μm to 90 μm,the bending resonance frequency of the MP laminated composite gradually increases from 33.66 kHz to 39.18 kHz.This study offers a method of adjusting the strength of dc magnetic bias or the thicknesses of the FeCuNbSiB layer to tune the bending resonance frequency for ME composite,which plays a guiding role in the ME composite design for real applications.
Rozumek, D.; Macha, E. [Opole University of Technology, Department of Mechanics and Machine Design, Opole (Poland)
2009-10-15
The paper presents the results of tests on fatigue crack growth under proportional torsion with bending in AlCu4Mg1 aluminium alloy. Specimens with rectangular cross-sections and stress concentrator in the form of external one-sided sharp notch were used. The tests were performed under the different ratios of torsion to bending moments. The results of the experimental tests have been described by a nonlinear formula based on {delta}J-integral range. The tests have shown that the change of ratio of torsion to bending moments from 0.58 to 1.73 caused an increase in crack growth rate. It has been shown that at the constant loading and the change of stress ratio (R) from - 1 to 0, the fatigue crack growth rate also increases. (Abstract Copyright [2009], Wiley Periodicals, Inc.)
Li, Heng; Yang, He; Zhan, Mei
2010-06-01
Thin-walled tube bending(TWTB) method of Al-alloy tube has attracted wide applications in aerospace, aviation and automobile,etc. While, under in-plane double tensile stress states at the extrados of bending tube, the over-thinning induced ductile fracture is one dominant defect in Al-alloy tube bending. The main objective of this study is to predict the critical wall-thinning of Al-alloy tube bending by coupling two ductile fracture criteria(DFCs) into FE simulation. The DFCs include Continuum Damage Mechanics(CDM)-based model and GTN porous model. Through the uniaxial tensile test of the curved specimen, the basic material properties of the Al-alloy 5052O tube is obtained; via the inverse problem solution, the damage parameters of both the two fracture criteria are interatively determined. Thus the application study of the above DFCs in the TWTB is performed, and the more reasonable one is selected to obtain the critical thinning of Al-alloy tube in bending. The virtual damage initiation and evolution (when and where the ductile fracture occurs) in TWTB are investigated, and the fracture mechanisms of the voided Al-alloy tube in tube bending are consequently discussed.