WorldWideScience

Sample records for maximum applied stress

  1. The maximum possible stress intensity factor for a crack in an unknown residual stress field

    International Nuclear Information System (INIS)

    Coules, H.E.; Smith, D.J.

    2015-01-01

    Residual and thermal stress fields in engineering components can act on cracks and structural flaws, promoting or inhibiting fracture. However, these stresses are limited in magnitude by the ability of materials to sustain them elastically. As a consequence, the stress intensity factor which can be applied to a given defect by a self-equilibrating stress field is also limited. We propose a simple weight function method for determining the maximum stress intensity factor which can occur for a given crack or defect in a one-dimensional self-equilibrating stress field, i.e. an upper bound for the residual stress contribution to K I . This can be used for analysing structures containing defects and subject to residual stress without any information about the actual stress field which exists in the structure being analysed. A number of examples are given, including long radial cracks and fully-circumferential cracks in thick-walled hollow cylinders containing self-equilibrating stresses. - Highlights: • An upper limit to the contribution of residual stress to stress intensity factor. • The maximum K I for self-equilibrating stresses in several geometries is calculated. • A weight function method can determine this maximum for 1-dimensional stress fields. • Simple MATLAB scripts for calculating maximum K I provided as supplementary material.

  2. 49 CFR 230.24 - Maximum allowable stress.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Maximum allowable stress. 230.24 Section 230.24... Allowable Stress § 230.24 Maximum allowable stress. (a) Maximum allowable stress value. The maximum allowable stress value on any component of a steam locomotive boiler shall not exceed 1/4 of the ultimate...

  3. The Influence of Pressure Distribution on the Maximum Values of Stress in FEM Analysis of Plain Bearings

    Directory of Open Access Journals (Sweden)

    Vasile Cojocaru

    2016-12-01

    Full Text Available Several methods can be used in the FEM studies to apply the loads on a plain bearing. The paper presents a comparative analysis of maximum stress obtained for three loading scenarios: resultant force applied on the shaft – bearing assembly, variable pressure with sinusoidal distribution applied on the bearing surface, variable pressure with parabolic distribution applied on the bearing surface.

  4. Magnetic memory signals variation induced by applied magnetic field and static tensile stress in ferromagnetic steel

    International Nuclear Information System (INIS)

    Huang, Haihong; Yang, Cheng; Qian, Zhengchun; Han, Gang; Liu, Zhifeng

    2016-01-01

    Stress can induce a spontaneous magnetic field in ferromagnetic steel under the excitation of geomagnetic field. In order to investigate the impact of applied magnetic field and tensile stress on variation of the residual magnetic signals on the surface of ferromagnetic materials, static tensile tests of Q235 structural steel were carried out, with the normal component of the residual magnetic signals, H p (y), induced by applied magnetic fields with different intensities measured through the tensile tests. The H p (y), its slope coefficient K S and maximum gradient K max changing with the applied magnetic field H and tensile stress were observed. Results show that the magnitude of H p (y) and its slope coefficient K S increase linearly with the increase of stress in the elastic deformation stage. Under yield stress, H p (y) and K S reach its maximum, and then decrease slightly with further increase of stress. Applied magnetic field affects the magnitude of H p (y) instead of changing the signal curve′s profile; and the magnitude of H p (y), K S , K max and the change rate of K S increase with the increase of applied magnetic field. The phenomenon is also discussed from the viewpoint of magnetic charge in ferromagnetic materials. - Highlights: • We investigated how applied magnetic field and tensile stress impact H p (y) signals. • Magnitude of H p (y), K S and K max increase with the increase of applied magnetic field. • Both applied magnetic field and tensile stress impact material magnetic permeability. • Applied magnetic field can help to evaluate the stress distribution of components.

  5. Magnetic memory signals variation induced by applied magnetic field and static tensile stress in ferromagnetic steel

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Haihong, E-mail: huanghaihong@hfut.edu.cn; Yang, Cheng; Qian, Zhengchun; Han, Gang; Liu, Zhifeng

    2016-10-15

    Stress can induce a spontaneous magnetic field in ferromagnetic steel under the excitation of geomagnetic field. In order to investigate the impact of applied magnetic field and tensile stress on variation of the residual magnetic signals on the surface of ferromagnetic materials, static tensile tests of Q235 structural steel were carried out, with the normal component of the residual magnetic signals, H{sub p}(y), induced by applied magnetic fields with different intensities measured through the tensile tests. The H{sub p}(y), its slope coefficient K{sub S} and maximum gradient K{sub max} changing with the applied magnetic field H and tensile stress were observed. Results show that the magnitude of H{sub p}(y) and its slope coefficient K{sub S} increase linearly with the increase of stress in the elastic deformation stage. Under yield stress, H{sub p}(y) and K{sub S} reach its maximum, and then decrease slightly with further increase of stress. Applied magnetic field affects the magnitude of H{sub p}(y) instead of changing the signal curve′s profile; and the magnitude of H{sub p}(y), K{sub S}, K{sub max} and the change rate of K{sub S} increase with the increase of applied magnetic field. The phenomenon is also discussed from the viewpoint of magnetic charge in ferromagnetic materials. - Highlights: • We investigated how applied magnetic field and tensile stress impact H{sub p}(y) signals. • Magnitude of H{sub p}(y), K{sub S} and K{sub max} increase with the increase of applied magnetic field. • Both applied magnetic field and tensile stress impact material magnetic permeability. • Applied magnetic field can help to evaluate the stress distribution of components.

  6. In-shoe plantar tri-axial stress profiles during maximum-effort cutting maneuvers.

    Science.gov (United States)

    Cong, Yan; Lam, Wing Kai; Cheung, Jason Tak-Man; Zhang, Ming

    2014-12-18

    Soft tissue injuries, such as anterior cruciate ligament rupture, ankle sprain and foot skin problems, frequently occur during cutting maneuvers. These injuries are often regarded as associated with abnormal joint torque and interfacial friction caused by excessive external and in-shoe shear forces. This study simultaneously investigated the dynamic in-shoe localized plantar pressure and shear stress during lateral shuffling and 45° sidestep cutting maneuvers. Tri-axial force transducers were affixed at the first and second metatarsal heads, lateral forefoot, and heel regions in the midsole of a basketball shoe. Seventeen basketball players executed both cutting maneuvers with maximum efforts. Lateral shuffling cutting had a larger mediolateral braking force than 45° sidestep cutting. This large braking force was concentrated at the first metatarsal head, as indicated by its maximum medial shear stress (312.2 ± 157.0 kPa). During propulsion phase, peak shear stress occurred at the second metatarsal head (271.3 ± 124.3 kPa). Compared with lateral shuffling cutting, 45° sidestep cutting produced larger peak propulsion shear stress (463.0 ± 272.6 kPa) but smaller peak braking shear stress (184.8 ± 181.7 kPa), of which both were found at the first metatarsal head. During both cutting maneuvers, maximum medial and posterior shear stress occurred at the first metatarsal head, whereas maximum pressure occurred at the second metatarsal head. The first and second metatarsal heads sustained relatively high pressure and shear stress and were expected to be susceptible to plantar tissue discomfort or injury. Due to different stress distribution, distinct pressure and shear cushioning mechanisms in basketball footwear might be considered over different foot regions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Studying Maximum Plantar Stress per Insole Design Using Foot CT-Scan Images of Hyperelastic Soft Tissues

    Directory of Open Access Journals (Sweden)

    Ali Sarikhani

    2016-01-01

    Full Text Available The insole shape and the resulting plantar stress distribution have a pivotal impact on overall health. In this paper, by Finite Element Method, maximum stress value and stress distribution of plantar were studied for different insoles designs, which are the flat surface and the custom-molded (conformal surface. Moreover, insole thickness, heel’s height, and different materials were used to minimize the maximum stress and achieve the most uniform stress distribution. The foot shape and its details used in this paper were imported from online CT-Scan images. Results show that the custom-molded insole reduced maximum stress 40% more than the flat surface insole. Upon increase of thickness in both insole types, stress distribution becomes more uniform and maximum stress value decreases up to 10%; however, increase of thickness becomes ineffective above a threshold of 1 cm. By increasing heel height (degree of insole, maximum stress moves from heel to toes and becomes more uniform. Therefore, this scenario is very helpful for control of stress in 0.2° to 0.4° degrees for custom-molded insole and over 1° for flat insole. By changing the material of the insole, the value of maximum stress remains nearly constant. The custom-molded (conformal insole which has 0.5 to 1 cm thickness and 0.2° to 0.4° degrees is found to be the most compatible form for foot.

  8. Enhancement of power output by a new stress-applied mode on circular piezoelectric energy harvester

    Science.gov (United States)

    Shu, Fangming; Yang, Tongqing; Liu, Yaoze

    2018-04-01

    A new stress-applied mode is proposed on piezoelectric circular diaphragm energy harvester. Differing from the usual mode used in previous researches, the mass stick at the center of the diaphragm (PZT-51) is designed into an annular hollow shape. In this case, stress of the mass is applied along the edge of the copper sheet. A screw bonded with the undersurface of the diaphragm transfers force from the vibrator to the diaphragm. This device has a cylindrical shape and its volume is ˜7.9 cm3. With this new stress-applied mode, the piezoelectric energy harvester (with an optimal load of 18 kΩ, a mass of 30 g) could generate a maximum power output of ˜20.8 mW under 9.8 m.s-2 at its resonant frequency of ˜237 Hz. Meanwhile, the greater the hardness ratio between the ceramic and the copper sheet, the greater the advantages of the new structure.

  9. Optimal design of the gerotor (2-ellipses) for reducing maximum contact stress

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Hyo Seo; Li, Sheng Huan [Dept. of Mechanical Convergence Technology, Pusan National University, Busan (Korea, Republic of); Kim, Chul [School of Mechanical Design and Manufacturing, Busan Institute of Science and Technology, Busan (Korea, Republic of)

    2016-12-15

    The oil pump, which is used as lubricator of engines and auto transmission, supplies working oil to the rotating elements to prevent wear. The gerotor pump is used widely in the automobile industry. When wear occurs due to contact between an inner rotor and an outer rotor, the efficiency of the gerotor pump decreases rapidly, and elastic deformation from the contacts also causes vibration and noise. This paper reports the optimal design of a gerotor with a 2-ellipses combined lobe shape that reduces the maximum contact stress. An automatic program was developed to calculate Hertzian contact stress of the gerotor using the Matlab and the effect of the design parameter on the maximum contact stress was analyzed. In addition, the method of theoretical analysis for obtaining the contact stress was verified by performing the fluid-structural coupled analysis using the commercial software, Ansys, considering both the driving force of the inner rotor and the fluid pressure, which is generated by working oil.

  10. Overall bolt stress optimization

    DEFF Research Database (Denmark)

    Pedersen, Niels Leergaard

    2013-01-01

    The state of stress in bolts and nuts with International Organization for Standardization metric thread design is examined and optimized. The assumed failure mode is fatigue, so the applied preload and the load amplitude together with the stress concentrations define the connection strength....... Maximum stress in the bolt is found at the fillet under the head, at the thread start, or at the thread root. To minimize the stress concentration, shape optimization is applied. Nut shape optimization also has a positive effect on the maximum stress. The optimization results show that designing a nut......, which results in a more evenly distribution of load along the engaged thread, has a limited influence on the maximum stress due to the stress concentration at the first thread root. To further reduce the maximum stress, the transition from bolt shank to the thread must be optimized. Stress reduction...

  11. Monodimensional estimation of maximum Reynolds shear stress in the downstream flow field of bileaflet valves.

    Science.gov (United States)

    Grigioni, Mauro; Daniele, Carla; D'Avenio, Giuseppe; Barbaro, Vincenzo

    2002-05-01

    Turbulent flow generated by prosthetic devices at the bloodstream level may cause mechanical stress on blood particles. Measurement of the Reynolds stress tensor and/or some of its components is a mandatory step to evaluate the mechanical load on blood components exerted by fluid stresses, as well as possible consequent blood damage (hemolysis or platelet activation). Because of the three-dimensional nature of turbulence, in general, a three-component anemometer should be used to measure all components of the Reynolds stress tensor, but this is difficult, especially in vivo. The present study aimed to derive the maximum Reynolds shear stress (RSS) in three commercially available prosthetic heart valves (PHVs) of wide diffusion, starting with monodimensional data provided in vivo by echo Doppler. Accurate measurement of PHV flow field was made using laser Doppler anemometry; this provided the principal turbulence quantities (mean velocity, root-mean-square value of velocity fluctuations, average value of cross-product of velocity fluctuations in orthogonal directions) needed to quantify the maximum turbulence-related shear stress. The recorded data enabled determination of the relationship, the Reynolds stresses ratio (RSR) between maximum RSS and Reynolds normal stress in the main flow direction. The RSR was found to be dependent upon the local structure of the flow field. The reported RSR profiles, which permit a simple calculation of maximum RSS, may prove valuable during the post-implantation phase, when an assessment of valve function is made echocardiographically. Hence, the risk of damage to blood constituents associated with bileaflet valve implantation may be accurately quantified in vivo.

  12. Effect of applied stress on the compressive residual stress introduced by laser peening

    International Nuclear Information System (INIS)

    Sumiya, Rie; Tazawa, Toshiyuki; Narazaki, Chihiro; Saito, Toshiyuki; Kishimoto, Kikuo

    2016-01-01

    Peening is the process which is able to be generated compressive residual stress and is known to be effective for preventing SCC initiation and improvement of fatigue strength. Laser peening is used for the nuclear power plant components in order to prevent SCC initiation. Although it is reported that the compressive residual stress decreases due to applied stresses under general operating condition, the change of residual stress might be large under excessive loading such as an earthquake. The objectives of this study are to evaluate the relaxation behavior of the compressive residual stress due to laser peening and to confirm the surface residual stress after loading. Therefore laser peened round bar test specimens of SUS316L which is used for the reactor internals of nuclear power plant were loaded at room temperature and elevated temperature and then surface residual stresses were measured by X-ray diffraction method. In the results of this test, it was confirmed that the compressive residual stress remained after applying uniform stress larger than 0.2% proof stress, and the effect of cyclic loading on the residual stress was small. The effect of applying compressive stress on the residual stress relaxation was confirmed to be less than that of applying tensile stress. Plastic deformation through a whole cross section causes the change in the residual stress distribution. As a result, the surface compressive residual stress is released. It was shown that the effect of specimen size on residual stress relaxation and the residual stress relaxation behavior in the stress concentration region can be explained by assumed stress relaxation mechanism. (author)

  13. Towards the prediction of pre-mining stresses in the European continent. [Estimates of vertical and probable maximum lateral stress in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Blackwood, R. L.

    1980-05-15

    There are now available sufficient data from in-situ, pre-mining stress measurements to allow a first attempt at predicting the maximum stress magnitudes likely to occur in a given mining context. The sub-horizontal (lateral) stress generally dominates the stress field, becoming critical to stope stability in many cases. For cut-and-fill mining in particular, where developed fill pressures are influenced by lateral displacement of pillars or stope backs, extraction maximization planning by mathematical modelling techniques demands the best available estimate of pre-mining stresses. While field measurements are still essential for this purpose, in the present paper it is suggested that the worst stress case can be predicted for preliminary design or feasibility study purposes. In the Eurpoean continent the vertical component of pre-mining stress may be estimated by adding 2 MPa to the pressure due to overburden weight. The maximum lateral stress likely to be encountered is about 57 MPa at depths of some 800m to 1000m below the surface.

  14. Maximum stress estimation model for multi-span waler beams with deflections at the supports using average strains.

    Science.gov (United States)

    Park, Sung Woo; Oh, Byung Kwan; Park, Hyo Seon

    2015-03-30

    The safety of a multi-span waler beam subjected simultaneously to a distributed load and deflections at its supports can be secured by limiting the maximum stress of the beam to a specific value to prevent the beam from reaching a limit state for failure or collapse. Despite the fact that the vast majority of accidents on construction sites occur at waler beams in retaining wall systems, no safety monitoring model that can consider deflections at the supports of the beam is available. In this paper, a maximum stress estimation model for a waler beam based on average strains measured from vibrating wire strain gauges (VWSGs), the most frequently used sensors in construction field, is presented. The model is derived by defining the relationship between the maximum stress and the average strains measured from VWSGs. In addition to the maximum stress, support reactions, deflections at supports, and the magnitudes of distributed loads for the beam structure can be identified by the estimation model using the average strains. Using simulation tests on two multi-span beams, the performance of the model is evaluated by estimating maximum stress, deflections at supports, support reactions, and the magnitudes of distributed loads.

  15. Maximum Stress Estimation Model for Multi-Span Waler Beams with Deflections at the Supports Using Average Strains

    Directory of Open Access Journals (Sweden)

    Sung Woo Park

    2015-03-01

    Full Text Available The safety of a multi-span waler beam subjected simultaneously to a distributed load and deflections at its supports can be secured by limiting the maximum stress of the beam to a specific value to prevent the beam from reaching a limit state for failure or collapse. Despite the fact that the vast majority of accidents on construction sites occur at waler beams in retaining wall systems, no safety monitoring model that can consider deflections at the supports of the beam is available. In this paper, a maximum stress estimation model for a waler beam based on average strains measured from vibrating wire strain gauges (VWSGs, the most frequently used sensors in construction field, is presented. The model is derived by defining the relationship between the maximum stress and the average strains measured from VWSGs. In addition to the maximum stress, support reactions, deflections at supports, and the magnitudes of distributed loads for the beam structure can be identified by the estimation model using the average strains. Using simulation tests on two multi-span beams, the performance of the model is evaluated by estimating maximum stress, deflections at supports, support reactions, and the magnitudes of distributed loads.

  16. First wall thermal stress analysis for suddenly applied heat fluxes

    International Nuclear Information System (INIS)

    Dalessandro, J.A.

    The failure criterion for a solid first wall of an inertial confinement reactor is investigated. Analytical expressions for induced thermal stresses in a plate are given. Two materials have been chosen for this investigation: grade H-451 graphite and chemically vapor deposited (CVD) β-silicon carbide. Structural failure can be related to either the maximum compressive stress produced on the surface or the maximum tensile stress developed in the interior of the plate; however, it is shown that compressive failure would predominate. A basis for the choice of the thermal shock figure of merit, k(1 - ν) sigma/E α kappa/sup 1/2/, is identified. The result is that graphite and silicon carbide rank comparably

  17. Effect of Applied Stress and Temperature on Residual Stresses Induced by Peening Surface Treatments in Alloy 600

    Science.gov (United States)

    Telang, A.; Gnäupel-Herold, T.; Gill, A.; Vasudevan, V. K.

    2018-04-01

    In this study, the effects of applied tensile stress and temperature on laser shock peening (LSP) and cavitation shotless peening (CSP)-induced compressive residual stresses were investigated using neutron and x-ray diffraction. Residual stresses on the surface, measured in situ, were lower than the applied stress in LSP- and CSP-treated Alloy 600 samples (2 mm thick). The residual stress averaged over the volume was similar to the applied stress. Compressive residual stresses on the surface and balancing tensile stresses in the interior relax differently due to hardening induced by LSP. Ex situ residual stress measurements, using XRD, show that residual stresses relaxed as the applied stress exceeded the yield strength of the LSP- and CSP-treated Alloy 600. Compressive residual stresses induced by CSP and LSP decreased by 15-25% in magnitude, respectively, on exposure to 250-450 °C for more than 500 h with 10-11% of relaxation occurring in the first few hours. Further, 80% of the compressive residual stresses induced by LSP and CSP treatments in Alloy 600 were retained even after long-term aging at 350 °C for 2400 h.

  18. Optimization of Bolt Stress

    DEFF Research Database (Denmark)

    Pedersen, Niels Leergaard

    2013-01-01

    The state of stress in bolts and nuts with ISO metric thread design is examined and optimized. The assumed failure mode is fatigue so the applied preload and the load amplitude together with the stress concentrations define the connection strength. Maximum stress in the bolt is found at, the fillet...... under the head, at the thread start or at the thread root. To minimize the stress concentration shape optimization is applied....

  19. Influence of Thread Root Radius on Maximum Local Stresses at Large Diameter Bolts under Axial Loading

    Directory of Open Access Journals (Sweden)

    Cojocaru Vasile

    2014-06-01

    Full Text Available In the thread root area of the threaded bolts submitted to axial loading occur local stresses, higher that nominal stresses calculated for the bolts. These local stresses can generate failure and can reduce the fatigue life of the parts. The paper is focused on the study of the influence of the thread root radius on the maximum local stresses. A large diameter trapezoidal bolt was subjected to a static analysis (axial loading using finite element simulation.

  20. Statistical study on applied stress dependence of failure time in stress corrosion cracking of Zircaloy-4 alloy

    International Nuclear Information System (INIS)

    Hirao, Keiichi; Yamane, Toshimi; Minamino, Yoritoshi; Tanaka, Akiei.

    1988-01-01

    Effects of applied stress on failure time in stress corrosion cracking of Zircaloy-4 alloy were investigated by Weibull distribution method. Test pieces in the evaculated silica tubes were annealed at 1,073 K for 7.2 x 10 3 s, and then quenched into ice-water. These species under constant applied stresses of 40∼90 % yield stress were immersed in CH 3 OH-1 w% I 2 solution at room temperature. The probability distribution of failure times under applied stress of 40 % of yield stress was described as single Weibull distribution, which had one shape parameter. The probability distributions of failure times under applied stress above 60 % of yield stress were described as composite and mixed Weibull distributions, which had the two shape parameters of Weibull distributions for the regions of the shorter time and longer one of failure. The values of these shape parameters in this study were larger than the value of 1 which corresponded to that of wear out failure. The observation of fracture surfaces and the stress dependence of the shape parameters indicated that the shape parameters both for the times of failure under 40 % of yield stress and for the longer ones above 60 % of yield stress corresponded to intergranular cracking, and that for shorter times of failure corresponded to transgranular cracking and dimple fracture. (author)

  1. Correlation between electron-irradiation defects and applied stress in graphene: A molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Kida, Shogo; Yamamoto, Masaya; Kawata, Hiroaki; Hirai, Yoshihiko; Yasuda, Masaaki, E-mail: yasuda@pe.osakafu-u.ac.jp [Department of Physics and Electronics, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Tada, Kazuhiro [Department of Electrical and Control Systems Engineering, National Institute of Technology, Toyama College, Toyama 939-8630 (Japan)

    2015-09-15

    Molecular dynamics (MD) simulations are performed to study the correlation between electron irradiation defects and applied stress in graphene. The electron irradiation effect is introduced by the binary collision model in the MD simulation. By applying a tensile stress to graphene, the number of adatom-vacancy (AV) and Stone–Wales (SW) defects increase under electron irradiation, while the number of single-vacancy defects is not noticeably affected by the applied stress. Both the activation and formation energies of an AV defect and the activation energy of an SW defect decrease when a tensile stress is applied to graphene. Applying tensile stress also relaxes the compression stress associated with SW defect formation. These effects induced by the applied stress cause the increase in AV and SW defect formation under electron irradiation.

  2. Numerical analysis of residual stresses in preforms of stress applying part for PANDA-type polarization maintaining optical fibers in view of technological imperfections of the doped zone geometry

    Science.gov (United States)

    Trufanov, Aleksandr N.; Trufanov, Nikolay A.; Semenov, Nikita V.

    2016-09-01

    The experimental data analysis of the stress applying rod section geometry for the PANDA-type polarization maintaining optical fiber has been performed. The dependencies of the change in the radial dimensions of the preform and the doping boundary on the angular coordinate have been obtained. The original algorithm of experimental data statistic analysis, which enables determination of the specimens' characteristic form of section, has been described. The influence of actual doped zone geometry on the residual stress fields formed during the stress rod preform fabrication has been investigated. It has been established that the deviation of the boundary between pure silica and the doped zone from the circular shape results in dissymmetry and local concentrations of the residual stress fields along the section, which can cause preforms destruction at high degrees of doping. The observed geometry deviations of up to 10% lead to the increase of the maximum stress intensity value by over 20%.

  3. Modeling cell elongation during germ band retraction: cell autonomy versus applied anisotropic stress

    International Nuclear Information System (INIS)

    Lynch, Holley E; Shane Hutson, M; Veldhuis, Jim; Wayne Brodland, G

    2014-01-01

    The morphogenetic process of germ band retraction in Drosophila embryos involves coordinated movements of two epithelial tissues—germ band and amnioserosa. The germ band shortens along its rostral–caudal or head-to-tail axis, widens along its perpendicular dorsal-ventral axis, and uncurls from an initial ‘U’ shape. The amnioserosa mechanically assists this process by pulling on the crook of the U-shaped germ band. The amnioserosa may also provide biochemical signals that drive germ band cells to change shape in a mechanically autonomous fashion. Here, we use a finite-element model to investigate how these two contributions reshape the germ band. We do so by modeling the response to laser-induced wounds in each of the germ band’s spatially distinct segments (T1–T3, A1–A9) during the middle of retraction when segments T1–A3 form the ventral arm of the ‘U’, A4–A7 form its crook, and A8–A9 complete the dorsal arm. We explore these responses under a range of externally applied stresses and internal anisotropy of cell edge tensions—akin to a planar cell polarity that can drive elongation of cells in a direction parallel to the minimum edge tension—and identify regions of parameter space (edge-tension anisotropy versus stress anisotropy) that best match previous experiments for each germ band segment. All but three germ band segments are best fit when the applied stress anisotropy and the edge-tension anisotropy work against one another—i.e., when the isolated effects would elongate cells in perpendicular directions. Segments in the crook of the germ band (A4–A7) have cells that elongate in the direction of maximum external stress, i.e., external stress anisotropy is dominant. In most other segments, the dominant factor is internal edge-tension anisotropy. These results are consistent with models in which the amnioserosa pulls on the crook of the germ band to mechanically assist retraction. In addition, they suggest a mechanical cue for

  4. Pressurizer /Auxiliary Spray Piping Stress Analysis For Determination Of Lead Shielding Maximum Allow Able Load

    International Nuclear Information System (INIS)

    Setjo, Renaningsih

    2000-01-01

    Piping stress analysis for PZR/Auxiliary Spray Lines Nuclear Power Plant AV Unit I(PWR Type) has been carried out. The purpose of this analysis is to establish a maximum allowable load that is permitted at the time of need by placing lead shielding on the piping system on class 1 pipe, Pressurizer/Auxiliary Spray Lines (PZR/Aux.) Reactor Coolant Loop 1 and 4 for NPP AV Unit one in the mode 5 and 6 during outage. This analysis is intended to reduce the maximum amount of radiation dose for the operator during ISI ( In service Inspection) period.The result shown that the maximum allowable loads for 4 inches lines for PZR/Auxiliary Spray Lines is 123 lbs/feet

  5. Fatigue life prediction method for contact wire using maximum local stress

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Seok; Haochuang, Li; Seok, Chang Sung; Koo, Jae Mean [Sungkyunkwan University, Suwon (Korea, Republic of); Lee, Ki Won; Kwon, Sam Young; Cho, Yong Hyeon [Korea Railroad Research Institute, Uiwang (Korea, Republic of)

    2015-01-15

    Railway contact wires supplying electricity to trains are exposed to repeated mechanical strain and stress caused by their own weight and discontinuous contact with a pantograph during train operation. Since the speed of railway transportation has increased continuously, railway industries have recently reported a number of contact wire failures caused by mechanical fatigue fractures instead of normal wear, which has been a more common failure mechanism. To secure the safety and durability of contact wires in environments with increased train speeds, a bending fatigue test on contact wire has been performed. The test equipment is too complicated to evaluate the fatigue characteristics of contact wire. Thus, the axial tension fatigue test was performed for a standard specimen, and the bending fatigue life for the contact wire structure was then predicted using the maximum local stress occurring at the top of the contact wire. Lastly, the tested bending fatigue life of the structure was compared with the fatigue life predicted by the axial tension fatigue test for verification.

  6. Fatigue life prediction method for contact wire using maximum local stress

    International Nuclear Information System (INIS)

    Kim, Yong Seok; Haochuang, Li; Seok, Chang Sung; Koo, Jae Mean; Lee, Ki Won; Kwon, Sam Young; Cho, Yong Hyeon

    2015-01-01

    Railway contact wires supplying electricity to trains are exposed to repeated mechanical strain and stress caused by their own weight and discontinuous contact with a pantograph during train operation. Since the speed of railway transportation has increased continuously, railway industries have recently reported a number of contact wire failures caused by mechanical fatigue fractures instead of normal wear, which has been a more common failure mechanism. To secure the safety and durability of contact wires in environments with increased train speeds, a bending fatigue test on contact wire has been performed. The test equipment is too complicated to evaluate the fatigue characteristics of contact wire. Thus, the axial tension fatigue test was performed for a standard specimen, and the bending fatigue life for the contact wire structure was then predicted using the maximum local stress occurring at the top of the contact wire. Lastly, the tested bending fatigue life of the structure was compared with the fatigue life predicted by the axial tension fatigue test for verification.

  7. Applying a Weighted Maximum Likelihood Latent Trait Estimator to the Generalized Partial Credit Model

    Science.gov (United States)

    Penfield, Randall D.; Bergeron, Jennifer M.

    2005-01-01

    This article applies a weighted maximum likelihood (WML) latent trait estimator to the generalized partial credit model (GPCM). The relevant equations required to obtain the WML estimator using the Newton-Raphson algorithm are presented, and a simulation study is described that compared the properties of the WML estimator to those of the maximum…

  8. Influence of applied stress on swelling behavior in Type 304 stainless steel

    International Nuclear Information System (INIS)

    Igata, N.; Fujihira, T.; Kohno, Y.; Tsunakawa, M.

    1984-01-01

    The swelling behavior of Type 304 stainless steel during stress application was investigated by means of electron irradiation using a high-voltage electron microscope (HVEM). The dose dependence of swelling under stress is similar to the linearafter-incubation swelling scheme of other electron irradiation studies. The effect of applied stress on the swelling characteristics appeared through the control of incubation regime of swelling rather than of the swelling rate. The incubation dose first increases, then decreases, and increases again with increasing applied stress. The prominent finding in this study, based on the advantage of HVEM in situ observation, is that the saturated void density is equal to the number density of interstitial dislocation loops observed in the early stage of irradiation. Essentially, applied stress affects the loop nucleation process. The dislocation loop density then affects the incubation dose of swelling through its control of dislocation behavior and the saturation dose of dislocation density

  9. Critical applied stresses for a crack initiation from a sharp V-notch

    Directory of Open Access Journals (Sweden)

    L. Náhlík

    2014-10-01

    Full Text Available The aim of the paper is to estimate a value of the critical applied stress for a crack initiation from a sharp V-notch tip. The classical approach of the linear elastic fracture mechanics (LELM was generalized, because the stress singularity exponent differs from 0.5 in the studied case. The value of the stress singularity exponent depends on the V-notch opening angle. The finite element method was used for a determination of stress distribution in the vicinity of the sharp V-notch tip and for the estimation of the generalized stress intensity factor depending on the V-notch opening angle. Critical value of the generalized stress intensity factor was obtained using stability criteria based on the opening stress component averaged over a critical distance d from the V-notch tip and generalized strain energy density factor. Calculated values of the critical applied stresses were compared with experimental data from the literature and applicability of the LEFM concept is discussed.

  10. Numerical estimates of the maximum sustainable pore pressure in anticline formations using the tensor based concept of pore pressure-stress coupling

    Directory of Open Access Journals (Sweden)

    Andreas Eckert

    2015-02-01

    Full Text Available The advanced tensor based concept of pore pressure-stress coupling is used to provide pre-injection analytical estimates of the maximum sustainable pore pressure change, ΔPc, for fluid injection scenarios into generic anticline geometries. The heterogeneous stress distribution for different prevailing stress regimes in combination with the Young's modulus (E contrast between the injection layer and the cap rock and the interbedding friction coefficient, μ, may result in large spatial and directional differences of ΔPc. A single value characterizing the cap rock as for horizontal layered injection scenarios is not obtained. It is observed that a higher Young's modulus in the cap rock and/or a weak mechanical coupling between layers amplifies the maximum and minimum ΔPc values in the valley and limb, respectively. These differences in ΔPc imposed by E and μ are further amplified by different stress regimes. The more compressional the stress regime is, the larger the differences between the maximum and minimum ΔPc values become. The results of this study show that, in general compressional stress regimes yield the largest magnitudes of ΔPc and extensional stress regimes provide the lowest values of ΔPc for anticline formations. Yet this conclusion has to be considered with care when folded anticline layers are characterized by flexural slip and the friction coefficient between layers is low, i.e. μ = 0.1. For such cases of weak mechanical coupling, ΔPc magnitudes may range from 0 MPa to 27 MPa, indicating imminent risk of fault reactivation in the cap rock.

  11. Influence of the maximum applied magnetic field on the angular dependence of Magnetic Barkhausen Noise in API5L steels

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-Ortiz, P. [Laboratorio de Evaluación No Destructiva Electromagnética (LENDE), ESIME-SEPI, Edif. Z-4, Instituto Politécnico Nacional, Zacatenco, México D.F. (Mexico); Pérez-Benítez, J.A., E-mail: japerezb@ipn.mx [Laboratorio de Evaluación No Destructiva Electromagnética (LENDE), ESIME-SEPI, Edif. Z-4, Instituto Politécnico Nacional, Zacatenco, México D.F. (Mexico); Espina-Hernández, J.H. [Laboratorio de Evaluación No Destructiva Electromagnética (LENDE), ESIME-SEPI, Edif. Z-4, Instituto Politécnico Nacional, Zacatenco, México D.F. (Mexico); Caleyo, F. [Departamento de Ingeniería Metalúrgica, ESIQIE, UPALM Edif. 7, Instituto Politécnico Nacional, Zacatenco, C.P. 07738 México D.F. (Mexico); Mehboob, N.; Grössinger, R. [Institute of Solid State Physics, Vienna University of Technology, Vienna A-1040 (Austria); Hallen, J.M. [Departamento de Ingeniería Metalúrgica, ESIQIE, UPALM Edif. 7, Instituto Politécnico Nacional, Zacatenco, C.P. 07738 México D.F. (Mexico)

    2016-03-01

    This work studies the influence of the maximum applied magnetic field on the angular dependence of the energy of the Magnetic Barkhausen Noise signal in three different API5L pipeline steels. The results show that the shape of the angular dependence of the Magnetic Barkhausen Noise energy changes with the increase of the amplitude of the applied magnetic field. This phenomenon is a consequence of the presence of unlike magnetization processes at different magnitudes of the applied magnetic field. The outcomes reveal the importance of controlling the value of the maximum applied field as parameter for the improvement of the MBN angular dependence measurements. - Highlights: • Study the angular dependence of MBN with applied field in three pipeline steels. • Reveals the change of this angular dependence with the increase applied field. • Explains this dependence based on the domain wall dynamics theory.

  12. Influence of the maximum applied magnetic field on the angular dependence of Magnetic Barkhausen Noise in API5L steels

    International Nuclear Information System (INIS)

    Martínez-Ortiz, P.; Pérez-Benítez, J.A.; Espina-Hernández, J.H.; Caleyo, F.; Mehboob, N.; Grössinger, R.; Hallen, J.M.

    2016-01-01

    This work studies the influence of the maximum applied magnetic field on the angular dependence of the energy of the Magnetic Barkhausen Noise signal in three different API5L pipeline steels. The results show that the shape of the angular dependence of the Magnetic Barkhausen Noise energy changes with the increase of the amplitude of the applied magnetic field. This phenomenon is a consequence of the presence of unlike magnetization processes at different magnitudes of the applied magnetic field. The outcomes reveal the importance of controlling the value of the maximum applied field as parameter for the improvement of the MBN angular dependence measurements. - Highlights: • Study the angular dependence of MBN with applied field in three pipeline steels. • Reveals the change of this angular dependence with the increase applied field. • Explains this dependence based on the domain wall dynamics theory.

  13. Quantification of Applied Stresses of C-Ring Specimens for Stress Corrosion Cracking Tests

    International Nuclear Information System (INIS)

    Kim, Woo Gon; Kim, Sun Jae; Rhee, Chang Kyu; Kuk, Il Hiun; Choi, Jong Ho

    1997-01-01

    For comparing their resistances for stress-corrosion cracking(SCC) in the K600-MA, K690-MA, and K600-TT tubes, C-ring specimens were fabricated with the various thermal-treatments to control the distributions of the precipitates like Cr-carbides. The bending stresses were analyzed to determine the amounts to make the stress quantitatively to all the C-ring samples, and then the stresses were calculated with the relation to the outer diameter(O.D) deflection(δ) of the C-rings. To measure accurately the bending strains of the C-ring specimens, the strain gauges were used and the compression test was also carried out. In the elastic region, the stresses in both the transverse and the circumferential directions were different with the locations of the strain gauges as attached at α= 30 .deg., 45 .deg., and 90 .deg. to the principal stress direction, but those in the longitudinal direction were independent of their attached locations. Calculated stresses from the strains obtained using the strain gauges were well agreed with the theoretical. In the plastic region over δ=1.0mm, the stresses for the TT tubes showed lower values of about 400MPa than those for the MA tubes. However, the stresses among the TT tubes showed almost the similar values in this region. Therefore, the states of the stresses applied to the C-ring specimens would be different with the material conditions, i.e, the chemical compositions, the thermal treatments such as MA and TT

  14. Development of technique to apply induction heating stress improvement to recirculation inlet nozzle

    International Nuclear Information System (INIS)

    Chiba, Kunihiko; Nihei, Kenichi; Ootaka, Minoru

    2009-01-01

    Stress corrosion cracking (SCC) have been found in the primary loop recirculation (PLR) systems of boiling water reactors (BWR). Residual stress in welding heat-affected zone is one of the factors of SCC, and the residual stress improvement is one of the most effective methods to prevent SCC. Induction heating stress improvement (IHSI) is one of the techniques to improve reduce residual stress. However, it is difficult to apply IHSI to the place such as the recirculation inlet nozzle where the flow stagnates. In this present study, the technique to apply IHSI to the recirculation inlet nozzle was developed using water jet which blowed into the crevice between the nozzle safe end and the thermal sleeve. (author)

  15. Computational modeling applied to stress gradient analysis for metallic alloys

    International Nuclear Information System (INIS)

    Iglesias, Susana M.; Assis, Joaquim T. de; Monine, Vladimir I.

    2009-01-01

    Nowadays composite materials including materials reinforced by particles are the center of the researcher's attention. There are problems with the stress measurements in these materials, connected with the superficial stress gradient caused by the difference of the stress state of particles on the surface and in the matrix of the composite material. Computer simulation of diffraction profile formed by superficial layers of material allows simulate the diffraction experiment and gives the possibility to resolve the problem of stress measurements when the stress state is characterized by strong gradient. The aim of this paper is the application of computer simulation technique, initially developed for homogeneous materials, for diffraction line simulation of composite materials and alloys. Specifically we applied this technique for siluminum fabricated by powder metallurgy. (author)

  16. Mathematical model to determine the surface stress acting on the tooth of gear

    Directory of Open Access Journals (Sweden)

    Hinojosa-Torres J.

    2010-01-01

    Full Text Available Surface stress on the surface contact of gear tooth calculated by the Buckingham equation constitutes the basis for The American Gear Manufacturers Association (AGMA pitting resistance formula, which is based on a normal stress that does not cause failure since the yielding in contact problems is caused by shear stresses. An alternative expression based on the maximum-shear-stress is proposed in this paper. The new expression is obtained by using the maximum-shear-stress distribution and the Tresca failure criteria in order to know the maximum-shear-stress value and its location beneath the contact surface. Remarkable differences between the results using the proposed equation and those when the AGMA equation is applied are found.

  17. Analysis of domain wall dynamics based on skewness of magnetic Barkhausen noise for applied stress determination

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Song [College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing, Jiangsu 211816 (China); School of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016 (China); Tian, GuiYun, E-mail: tian280@hotmail.com [School of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016 (China); School of Electrical and Electronic Engineering, Merz Court, University of Newcastle upon Tyne, Newcastle NE1 7RU (United Kingdom); Dobmann, Gerd; Wang, Ping [School of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016 (China)

    2017-01-01

    Skewness of Magnetic Barkhausen Noise (MBN) signal is used as a new feature for applied stress determination. After experimental studies, skewness presents its ability for measuring applied tensile stress compared with conventional feature, meanwhile, a non-linear behavior of this new feature and an independence of the excitation conditions under compressive stress are found and discussed. Effective damping during domain wall motion influencing the asymmetric shape of the MBN statistical distribution function is discussed under compressive and tensile stress variation. Domain wall (DW) energy and distance between pinning edges of the DW are considered altering the characteristic relaxation time, which is the reason for the non-linear phenomenon of skewness. - Highlights: • The skewness of magnetic Barkhausen noise profile is proposed as a new feature for applied stress determination. • The skewness is sensitive to applied stress and independent to excitation frequency. • Domain wall energy and pinning distance influence the relaxation time of domain wall, which leads to a non-linear behavior of skewness under compressive stress.

  18. Grain boundary cavity growth under applied stress and internal pressure

    International Nuclear Information System (INIS)

    Mancuso, J.F.

    1977-08-01

    The growth of grain boundary cavities under applied stress and internal gas pressure was investigated. Methane gas filled cavities were produced by the C + 4H reversible CH4 reaction in the grain boundaries of type 270 nickel by hydrogen charging in an autoclave at 500 0 C with a hydrogen pressure of either 3.4 or 14.5 MPa. Intergranular fracture of nickel was achieved at a charging temperature of 300 0 C and 10.3 MPa hydrogen pressure. Cavities on the grain boundaries were observed in the scanning electron microscope after fracture. Photomicrographs of the cavities were produced in stereo pairs which were analyzed so as to correct for perspective distortion and also to determine the orientational dependence of cavity growth under an applied tensile stress

  19. To reduce the maximum stress and the stress shielding effect around a dental implant-bone interface using radial functionally graded biomaterials.

    Science.gov (United States)

    Asgharzadeh Shirazi, H; Ayatollahi, M R; Asnafi, A

    2017-05-01

    In a dental implant system, the value of stress and its distribution plays a pivotal role on the strength, durability and life of the implant-bone system. A typical implant consists of a Titanium core and a thin layer of biocompatible material such as the hydroxyapatite. This coating has a wide range of clinical applications in orthopedics and dentistry due to its biocompatibility and bioactivity characteristics. Low bonding strength and sudden variation of mechanical properties between the coating and the metallic layers are the main disadvantages of such common implants. To overcome these problems, a radial distributed functionally graded biomaterial (FGBM) was proposed in this paper and the effect of material property on the stress distribution around the dental implant-bone interface was studied. A three-dimensional finite element simulation was used to illustrate how the use of radial FGBM dental implant can reduce the maximum von Mises stress and, also the stress shielding effect in both the cortical and cancellous bones. The results, of course, give anybody an idea about optimized behaviors that can be achieved using such materials. The finite element solver was validated by familiar methods and the results were compared to previous works in the literature.

  20. The relationship between the applied torque and stresses in post-tension structures

    International Nuclear Information System (INIS)

    Liew, F.K.; Hamdan, S.; Osman, M.S.

    2008-01-01

    This paper presents the nondestructive testing (NDT) method to determine the resultant stresses in mild steel bar usually employed in structures. The technique utilized ultrasonic pulse-echo that determined the wave velocity change due to torque applied between bolt and nut. Mild steel bar with nominal diameter of 19 and 25mm were used. The specimen was loaded by means of a torque wrench that gave the required amount of moment (∼300Nm). This was carefully achieved manually. In order to measure the strain, strain gauges were employed. The direct strain gauge method gives the strain values. This strain is used to calculate the stress due to the applied load. The experiment had been carried out in a control environment with constant temperature. The relationship between torque-velocity, torque-strain and stress-strain is obtained and compared. The test results indicate that ultrasonic wave velocity decrease with the applied torque. This is due to degradation or loss of strength of the material. The potential of this NDT method to obtain structure quality and strength determination is discussed. (author)

  1. The relationship between the applied torque and stresses in post-tension structures

    Energy Technology Data Exchange (ETDEWEB)

    Liew, F.K.; Hamdan, S.; Osman, M.S. [Univ. Malaysia Sarawak, Faculty of Engineering, Kota Samarahan, Sarawak (Malaysia)

    2008-09-15

    This paper presents the nondestructive testing (NDT) method to determine the resultant stresses in mild steel bar usually employed in structures. The technique utilized ultrasonic pulse-echo that determined the wave velocity change due to torque applied between bolt and nut. Mild steel bar with nominal diameter of 19 and 25mm were used. The specimen was loaded by means of a torque wrench that gave the required amount of moment (∼300Nm). This was carefully achieved manually. In order to measure the strain, strain gauges were employed. The direct strain gauge method gives the strain values. This strain is used to calculate the stress due to the applied load. The experiment had been carried out in a control environment with constant temperature. The relationship between torque-velocity, torque-strain and stress-strain is obtained and compared. The test results indicate that ultrasonic wave velocity decrease with the applied torque. This is due to degradation or loss of strength of the material. The potential of this NDT method to obtain structure quality and strength determination is discussed. (author)

  2. Evaluation of Stress Loaded Steel Samples Using Selected Electromagnetic Methods

    International Nuclear Information System (INIS)

    Chady, T.

    2004-01-01

    In this paper the magnetic leakage flux and eddy current method were used to evaluate changes of materials' properties caused by stress. Seven samples made of ferromagnetic material with different level of applied stress were prepared. First, the leakage magnetic fields were measured by scanning the surface of the specimens with GMR gradiometer. Next, the same samples were evaluated using an eddy current sensor. A comparison between results obtained from both methods was carried out. Finally, selected parameters of the measured signal were calculated and utilized to evaluate level of the applied stress. A strong coincidence between amount of the applied stress and the maximum amplitude of the derivative was confirmed

  3. THE EFFECT OF APPLIED STRESS ON THE GRAPHITIZATION OF PYROLYTIC GRAPHITE

    Energy Technology Data Exchange (ETDEWEB)

    Bragg, R H; Crooks, D D; Fenn, Jr, R W; Hammond, M L

    1963-06-15

    Metallographic and x-ray diffraction studies were made of the effect of applied stress at high temperature on the structure of pyrolytic graphite (PG). The dominant factor was whether the PG was above or below its graphitization temperature, which, in turn, was not strongly dependent on applied stress. Below the graphitization temperature, the PG showed a high proportion of disordered layers (0.9), a fairly large mean tilt angle (20 deg ) and a small crystailite size (La --150 A). Fracture occurred at low stress and strain and the materiai exhibited a high apparent Young's modulus ( approximates 4 x 10/sup 6/ psi). Above the graphitization temperature, graphitization was considerably enhanced by strain up to about 8%. The disorder parameter was decreased from a zero strain value of 0.3 to 0.l5 with strain, the mean tilt angle was decreased to 4 deg , and a fivefold increase in crystallite size occurred. When the strainenhanced graphitization was complete, the material exhibited a low apparent modulus ( approximates 0.5 x 10/sup 6/ psi) and large plastic strains (>100%) for a constant stress ( approximates 55 ksi). Graphitization was shown to be a spontaneous process that is promoted by breaking cross-links thermally, and the process is furthered by chemical attack and plastic strain. (auth)

  4. 19 mm sized bileaflet valve prostheses' flow field investigated by bidimensional laser Doppler anemometry (part II: maximum turbulent shear stresses)

    Science.gov (United States)

    Barbaro, V; Grigioni, M; Daniele, C; D'Avenio, G; Boccanera, G

    1997-11-01

    The investigation of the flow field generated by cardiac valve prostheses is a necessary task to gain knowledge on the possible relationship between turbulence-derived stresses and the hemolytic and thrombogenic complications in patients after valve replacement. The study of turbulence flows downstream of cardiac prostheses, in literature, especially concerns large-sized prostheses with a variable flow regime from very low up to 6 L/min. The Food and Drug Administration draft guidance requires the study of the minimum prosthetic size at a high cardiac output to reach the maximum Reynolds number conditions. Within the framework of a national research project regarding the characterization of cardiovascular endoprostheses, an in-depth study of turbulence generated downstream of bileaflet cardiac valves is currently under way at the Laboratory of Biomedical Engineering of the Istituto Superiore di Sanita. Four models of 19 mm bileaflet valve prostheses were used: St Jude Medical HP, Edwards Tekna, Sorin Bicarbon, and CarboMedics. The prostheses were selected for the nominal Tissue Annulus Diameter as reported by manufacturers without any assessment of valve sizing method, and were mounted in aortic position. The aortic geometry was scaled for 19 mm prostheses using angiographic data. The turbulence-derived shear stresses were investigated very close to the valve (0.35 D0), using a bidimensional Laser Doppler anemometry system and applying the Principal Stress Analysis. Results concern typical turbulence quantities during a 50 ms window at peak flow in the systolic phase. Conclusions are drawn regarding the turbulence associated to valve design features, as well as the possible damage to blood constituents.

  5. A pulsed magnetic stress applied to Drosophila melanogaster flies

    International Nuclear Information System (INIS)

    Delle Side, D; Giuffreda, E; Nassisi, V; Velardi, L; Bozzetti, M P; Friscini, A; Specchia, V

    2014-01-01

    We report the development of a system to feed pulsed magnetic stress to biological samples. The device is based on a RLC circuit that transforms the energy stored in a high voltage capacitor into a magnetic field inside a coil. The field has been characterized and we found that charging the capacitor with 24 kV results in a peak field of 0.4 T. In order to test its effect, we applied such a stress to the Drosophila melanogaster model and we examined its bio-effects. We analysed, in the germ cells, the effects on the control of specific DNA repetitive sequences that are activated after different environmental stresses. The deregulation of these sequences causes genomic instability and chromosomes breaks leading to sterility. The magnetic field treatment did not produce effects on repetitive sequences in the germ cells of Drosophila. Hence, this field doesn't produce deleterious effects linked to repetitive sequences derepression.

  6. A pulsed magnetic stress applied to Drosophila melanogaster flies

    Science.gov (United States)

    Delle Side, D.; Bozzetti, M. P.; Friscini, A.; Giuffreda, E.; Nassisi, V.; Specchia, V.; Velardi, L.

    2014-04-01

    We report the development of a system to feed pulsed magnetic stress to biological samples. The device is based on a RLC circuit that transforms the energy stored in a high voltage capacitor into a magnetic field inside a coil. The field has been characterized and we found that charging the capacitor with 24 kV results in a peak field of 0.4 T. In order to test its effect, we applied such a stress to the Drosophila melanogaster model and we examined its bio-effects. We analysed, in the germ cells, the effects on the control of specific DNA repetitive sequences that are activated after different environmental stresses. The deregulation of these sequences causes genomic instability and chromosomes breaks leading to sterility. The magnetic field treatment did not produce effects on repetitive sequences in the germ cells of Drosophila. Hence, this field doesn't produce deleterious effects linked to repetitive sequences derepression.

  7. Effect of applied mechanical stress on absorption coefficient of compounds

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Manoj Kumar, E-mail: mkgupta.sliet@gmail.com [Department of Applied Sciences, Bhai Gurdas Institute of Engineering and Technology, Sangrur (India); Singh, Gurinderjeet; Dhaliwal, A. S.; Kahlon, K. S. [Department of Physics, Sant Longowal Institute of Engineering & Technology Deemed University, Longowal (Sangrur) India-148106 (India)

    2015-08-28

    The absorption coefficient of given materials is the parameter required for the basic information. The measurement of absorption coefficient of compounds Al{sub 2}O{sub 3}, CaCO{sub 3}, ZnO{sub 2}, SmO{sub 2} and PbO has been taken at different incident photon energies 26, 59.54, 112, 1173, 1332keV. The studies involve the measurements of absorption coefficient of the self supporting samples prepared under different mechanical stress. This mechanical stress is render in terms of pressure up to 0-6 ton by using hydraulic press. Measurements shows that absorption coefficient of a material is directly proportional to applied mechanical stress on it up to some extent then become independent. Experimentally measured results are in fairly good agreement with in theoretical values obtained from WinXCOM.

  8. A modeling of radiation induced microstructural evolution under applied stress in austenitic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tanigawa, Hiroyasu; Kohyama, Akira [Kyoto Univ., Uji (Japan). Inst. of Advanced Energy; Katoh, Yutai; Kohno, Yutaka

    1996-10-01

    Effects of applied stress on interstitial type Frank loop evolution at early stages of irradiation were investigated by both numerical calculation and irradiation experiments. In the experimental part of this work, microstructural inspection has been made by transmission electron microscopy with a special emphasis on Frank loops and perfect loops on every {l_brace}111{r_brace} plane. The results of the TEM observation revealed that Frank loop concentration on a {l_brace}111{r_brace} plane increased as the resolved normal stress to a {l_brace}111{r_brace} plane increased and that small perfect loops were more likely produced on {l_brace}111{r_brace} planes where larger resolved shear stress was applied. The model of a stress effect on Frank loop unfaulting was provided, which is triggered by nucleation of a Shockley partial dislocation loop in a Frank loop, was proposed. The results of the numerical calculation was successful to predict the strong dependence of Frank loop concentration on the resolved normal stress to {l_brace}111{r_brace} plane, which was the characteristic feature seen in the irradiation experiments. (author)

  9. Elastic stress transmission and transformation (ESTT) by confined liquid: A new mechanics for fracture in elastic lithosphere of the earth

    Science.gov (United States)

    Xu, Xing-Wang; Peters, Stephen; Liang, Guang-He; Zhang, Bao-Lin

    2016-01-01

    We report on a new mechanical principle, which suggests that a confined liquid in the elastic lithosphere has the potential to transmit a maximum applied compressive stress. This stress can be transmitted to the internal contacts between rock and liquid and would then be transformed into a normal compressive stress with tangential tensile stress components. During this process, both effective compressive normal stress and tensile tangential stresses arise along the liquid–rock contact. The minimum effective tensile tangential stress causes the surrounding rock to rupture. Liquid-driven fracture initiates at the point along the rock–liquid boundary where the maximum compressive stress is applied and propagates along a plane that is perpendicular to the minimum effective tensile tangential stress and also is perpendicular to the minimum principal stress.

  10. SIGMARZ, Stress Analysis of Axisymmetric or Plane Structures

    International Nuclear Information System (INIS)

    1978-01-01

    1 - Nature of the physical problem solved: Classic stress analysis program for axisymmetric or plane geometric structures. 2 - Method of solution: The finite element method is used. Input are the finite element nodes, the imposed displacements, the applied forces at the nodes and the volumetric distributed forces. The linear equation system is solved by the Cholesky method. 3 - Restrictions on the complexity of the problem: Maximum number of nodes: 800; Maximum number of elements: 1300; Maximum number of displacements: 300; Maximum band width: 72

  11. Parent Perspectives of Applying Mindfulness-Based Stress Reduction Strategies to Special Education.

    Science.gov (United States)

    Burke, Meghan M; Chan, Neilson; Neece, Cameron L

    2017-06-01

    Parents of children with (versus without) intellectual and developmental disabilities report greater stress; such stress may be exacerbated by dissatisfaction with school services, poor parent-school partnerships, and the need for parent advocacy. Increasingly, mindfulness interventions have been used to reduce parent stress. However, it is unclear whether parents apply mindfulness strategies during the special education process to reduce school-related stress. To investigate whether mindfulness may reduce school-related stress, interviews were conducted with 26 parents of children with intellectual and developmental disabilities who completed a mindfulness-based stress reduction intervention. Participants were asked about their stress during meetings with the school, use of mindfulness strategies in communicating with the school, and the impact of such strategies. The majority of parent participants reported: special education meetings were stressful; they used mindfulness strategies during IEP meetings; and such strategies affected parents' perceptions of improvements in personal well-being, advocacy, family-school relationships, and access to services for their children. Implications for future research, policy, and practice are discussed.

  12. Cyclic fatigue of near-isotopic graphite: influence of stress cycle and neutron irradiation

    International Nuclear Information System (INIS)

    Price, R.J.

    1977-11-01

    Near-isotropic graphites H-451 and PGX were tested in uniaxial cyclic fatigue, and fatigue life (S-N) curves were generated to a maximum of 10 5 cycles. The stress ratio, R (minimum stress during a cycle divided by maximum stress) ranged from -1 to +0.5. With R = - 1, the homologous stress limits (maximum applied fatigue stress divided by the tensile strength) for 50% specimen survival to 10 5 cycles averaged 0.63 in the axial direction and 0.74 in the radial direction. Corresponding homologous stress limits for 99% specimen survival (99/95 tolerance limits) were 0.48 and 0.53. Higher R-values resulted in longer fatigue lives and increased stress limits. H-451 graphite specimens irradiated with fast neutrons at 1173 to 1263 0 K at fluences of up to 10 26 n/m 2 (equivalent fission fluence) showed fatigue stress limits of about twice the unirradiated levels when the unirradiated tensile strength was used as the basis for normalization

  13. Fatigue crack growth behavior under cyclic thermal transient stress

    International Nuclear Information System (INIS)

    Ueda, Masahiro; Kano, Takashi; Yoshitoshi, Atsushi.

    1986-01-01

    Thermal fatigue tests were performed using straight pipe specimens subjected to cyclic thermal shocks of liquid sodium, and crack growth behaviors were estimated using striation patterns observed clearly on any crack surface. Crack growth rate under cyclic thermal strain reaches the maximum at one depth, and after that it decreases gradually with crack depth. The peak location of crack growth rate becomes deeper by superposition of constant primary stress. Parallel cracks co-existing in the neighborhood move the peak to shallower location and decrease the maximum crack growth rate. The equivalent stress intensity factor range calculated by Walker's formula is successfully applied to the case of negative stress ratio. Fatigue crack growth rate under cyclic thermal strain agreed well with that under the constant temperature equal to the maximum value in the thermal cycle. Simplified methods for calculating the stress intensity factor and the crack interference factor have been developed. Crack growth behavior under thermal fatigue could be well predicted using numerical analysis results. (author)

  14. Fatigue crack growth behavior under cyclic transient thermal stress

    International Nuclear Information System (INIS)

    Ueda, Masahiro; Kano, Takashi; Yoshitoshi, Atsushi.

    1987-01-01

    Thermal fatigue tests were performed using straight pipe specimens subjected to cyclic thermal shocks of liquid sodium, and crack growth behaviors were estimated using striation patterns observed clearly on any crack surface. Crack growth rate under cyclic thermal strain reaches the maximum at one depth, and after that it decreases gradually with crack depth. The peak location of crack growth rate becomes deeper by superposition of constant primary stress. Parallel cracks co-existing in the neighborhood move the peak to shallower location and decrease the maximum crack growth rate. The equivalent stress intensity factor range calculated by Walker's formula is successfully applied to the case of negative stress ratio. Fatigue crack growth rate under cyclic thermal strain agreed well with that under the constant temperature equal to the maximum value in the thermal cycle. Simplified methods for calculating the stress intensity factor and the crack interference factor have been developed. Crack growth behavior under thermal fatigue could be well predicted using numerical analysis results. (author)

  15. Rigid MATLAB drivetrain model of a 500 kW wind turbine for predicting maximum gear tooth stresses in a planetary gearbox using multibody gear constraints

    DEFF Research Database (Denmark)

    Jørgensen, Martin Felix; Pedersen, Niels Leergaard; Sørensen, Jens Nørkær

    2014-01-01

    multiple planetary gears are not taken into account. Finite Element Method (FEM) calculations show that when the wind turbine runs close to the maximum wind speed, the maximum gear tooth stress is in the range of 500–700 MPa, which is considered to be realistic using a “worst-case” method. The presented...... for not only transferring torque but also for calculating the gear tooth and internal body reaction forces. The method is appropriate for predicting gear tooth stresses without considering all the complexity of gear tooth geometries. This means that, e.g. gear tooth load-sharing and load-distribution among...

  16. The effect of stress, applied immediately before stunning, on pork quality

    NARCIS (Netherlands)

    Wal, van der P.G.; Engel, B.; Reimert, H.G.M.

    1999-01-01

    The effect on meat quality characteristics of stress, applied during a short period just before stunning, was studied on slaughterpigs (113 boars, 85 gilts). Sexes were kept separately and only pigs that had been stunned correctly were included. Aggressive behaviour during lairage occurred more

  17. The Impact of Simultaneously Applying Normal Stress and Vibrotactile Stimulation for Feedback of Exteroceptive Information.

    Science.gov (United States)

    Reza Motamedi, M; Otis, Martin; Duchaine, Vincent

    2017-06-01

    Commercially available prosthetic hands do not convey any tactile information, forcing amputees to rely solely on visual attention. A promising solution to this problem is haptics, which could lead to new prostheses in which tactile information is conveyed between the amputee and the artificial limb. However, the haptic feedback must be optimized so that amputees can use it effectively; and although several studies have examined how specific haptic feedback systems can transmit certain types of tactile information, there has not yet been much research on the effects of superposing two or more types of feedback at the same location, which might prove to be more effective than using a single type of feedback alone. This paper investigates how the simultaneous application of two different types of haptic feedback-vibration and normal stress-impacts the human sensory perception of each separate feedback type. These stimuli were applied to glabrous skin on the forearms of 14 participants. Our experiments tested whether participants experienced more accurate sensory perception, compared to vibration or normal stress alone, when vibration was applied at the same time as the normal stress, at either the same location, or at a different location 6 cm away. Results indicate that although participants' perception of the normal stress diminished when vibration was applied at the same location, the same combination improved their perception of the vibration. Apparently, vibration has a negative impact upon the ability to perceive normal stress, whether applied at the same or a different location; whereas the opposite is true for the effect of normal stress upon the perception of vibration.

  18. Evaluating stress distribution in two different designs of class I partial removable dentures

    Directory of Open Access Journals (Sweden)

    F. Geramipanah

    1998-05-01

    Full Text Available In Present study a digital model of hemimaxillectomy was reconstructed by computer and stress distribution of removable partial dentures in tissues, periodontal ligament and bone were thoroughly evaluated. The maximum stress of two different removable partial denture designs which contained buccal and lingual c-shaped clasps respectively were analyzed and compared. It was assumed that a 90 gram force which is equal to an average obturator’s weight is applied outwardly. The results showed that the maximum stress distribution in these two designs is not significantly different.

  19. Thermal stress and seismogenesis

    International Nuclear Information System (INIS)

    Zhou Huilan; Wei Dongping

    1989-05-01

    In this paper, the Fourier stress method was applied to deal with the problem of plane thermal stress, and a computing formula was given. As an example, we set up a variate temperature field to describe the uplifted upper mantle in Bozhong area of China, and the computing results shows that the maximum value of thermal plane shear stress is up to nearly 7x10 7 P α in two regions of this area. Since the Bohai earthquake (18 July, 1969, M s = 7.4) occurred at the edge of one of them and Tangshan earthquake (28 July, 1976, M s = 7.8) within another, their occurrences can be related reasonably to the thermal stress. (author). 15 refs, 7 figs

  20. On the residual stress modeling of shot-peened AISI 4340 steel: finite element and response surface methods

    Science.gov (United States)

    Asgari, Ali; Dehestani, Pouya; Poruraminaie, Iman

    2018-02-01

    Shot peening is a well-known process in applying the residual stress on the surface of industrial parts. The induced residual stress improves fatigue life. In this study, the effects of shot peening parameters such as shot diameter, shot speed, friction coefficient, and the number of impacts on the applied residual stress will be evaluated. To assess these parameters effect, firstly the shot peening process has been simulated by finite element method. Then, effects of the process parameters on the residual stress have been evaluated by response surface method as a statistical approach. Finally, a strong model is presented to predict the maximum residual stress induced by shot peening process in AISI 4340 steel. Also, the optimum parameters for the maximum residual stress are achieved. The results indicate that effect of shot diameter on the induced residual stress is increased by increasing the shot speed. Also, enhancing the friction coefficient magnitude always cannot lead to increase in the residual stress.

  1. The Effect of Applied Tensile Stress on Localized Corrosion in Sensitized AA5083

    Science.gov (United States)

    2015-09-01

    corrosion, but if exposed to elevated temperature for prolonged periods of time the alloy becomes sensitized. Since the β phase is more anodic than the...degree of localized corrosion for sensitized AA5083 under an applied tensile stress. AA5083 is an aluminum -magnesium alloy that experiences severe...direction. 14. SUBJECT TERMS Aluminum alloy , AA5083, IGSCC, intergranular stress corrosion cracking, localized corrosion, sensitized aluminum 15

  2. Optimization of hip joint replacement location to decrease maximum von Mi ses Stress

    International Nuclear Information System (INIS)

    Pourjamali, H.; Najarian, S.; Katoozian, H. R.

    2001-01-01

    Hip replacement is used for inoperable femur head injuries and femur fractures where internal fixation can not be used. This operation is one of the most common orthopedic operations that many research have been done about it. Among these we can mention implant and cement materials and composites optimization and also implant shape optimization. This study was designed to optimize artificial hip joint position (placement) to decrease maximal von mi sees stress. First, a model of femur and implant were made and then a computer program was written with the ability to change the position of implant through an acceptable range in the femur. In each of these positions, the program simulated femur and implant according to finite element method and made, applied forces were weight and muscle traction. Our findings show that a small deviation of the implant from femur bone center causes a considerable decrease in von mi sees stress that consequently results in longer maintenance of the implant

  3. Finite element calculation of stress induced heating of superconductors

    International Nuclear Information System (INIS)

    Akin, J.E.; Moazed, A.

    1976-01-01

    This research is concerned with the calculation of the amount of heat generated due to the development of mechanical stresses in superconducting composites. An emperical equation is used to define the amount of stress-induced heat generation per unit volume. The equation relates the maximum applied stress and the experimental measured hysteresis loop of the composite stress-strain diagram. It is utilized in a finite element program to calculate the total stress-induced heat generation for the superconductor. An example analysis of a solenoid indicates that the stress-induced heating can be of the same order of magnitude as eddy current effects

  4. EFFECT OF CAFFEINE ON OXIDATIVE STRESS DURING MAXIMUM INCREMENTAL EXERCISE

    Directory of Open Access Journals (Sweden)

    Guillermo J. Olcina

    2006-12-01

    Full Text Available Caffeine (1,3,7-trimethylxanthine is an habitual substance present in a wide variety of beverages and in chocolate-based foods and it is also used as adjuvant in some drugs. The antioxidant ability of caffeine has been reported in contrast with its pro- oxidant effects derived from its action mechanism such as the systemic release of catecholamines. The aim of this work was to evaluate the effect of caffeine on exercise oxidative stress, measuring plasma vitamins A, E, C and malonaldehyde (MDA as markers of non enzymatic antioxidant status and lipid peroxidation respectively. Twenty young males participated in a double blind (caffeine 5mg·kg- 1 body weight or placebo cycling test until exhaustion. In the exercise test, where caffeine was ingested prior to the test, exercise time to exhaustion, maximum heart rate, and oxygen uptake significantly increased, whereas respiratory exchange ratio (RER decreased. Vitamins A and E decreased with exercise and vitamin C and MDA increased after both the caffeine and placebo tests but, regarding these particular variables, there were no significant differences between the two test conditions. The results obtained support the conclusion that this dose of caffeine enhances the ergospirometric response to cycling and has no effect on lipid peroxidation or on the antioxidant vitamins A, E and C

  5. Meniscal shear stress for punching.

    Science.gov (United States)

    Tuijthof, Gabrielle J M; Meulman, Hubert N; Herder, Just L; van Dijk, C Niek

    2009-01-01

    Experimental determination of the shear stress for punching meniscal tissue. Meniscectomy (surgical treatment of a lesion of one of the menisci) is the most frequently performed arthroscopic procedure. The performance of a meniscectomy is not optimal with the currently available instruments. To design new instruments, the punching force of meniscal tissue is an important parameter. Quantitative data are unavailable. The meniscal punching process was simulated by pushing a rod through meniscal tissue at constant speed. Three punching rods were tested: a solid rod of Oslash; 3.00 mm, and two hollow tubes (Oslash; 3.00-2.60 mm) with sharpened cutting edges of 0.15 mm and 0.125 mm thick, respectively. Nineteen menisci acquired from 10 human cadaveric knee joints were punched (30 tests). The force and displacement were recorded from which the maximum shear stress was determined (average added with three times the standard deviation). The maximum shear stress for the solid rod was determined at 10.2 N/mm2. This rod required a significantly lower punch force in comparison with the hollow tube having a 0.15 mm cutting edge (plt;0.01). The maximum shear stress for punching can be applied to design instruments, and virtual reality training environments. This type of experiment is suitable to form a database with material properties of human tissue similar to databases for the manufacturing industry.

  6. An atomic resolution scanning tunneling microscope that applies external tensile stress and strain in an ultrahigh vacuum

    International Nuclear Information System (INIS)

    Fujita, D; Kitahara, M; Onishi, K; Sagisaka, K

    2008-01-01

    We have developed an ultrahigh vacuum scanning tunneling microscope with an in situ external stress application capability in order to determine the effects of stress and strain on surface atomistic structures. It is necessary to understand these effects because controlling them will be a key technology that will very likely be used in future nanometer-scale fabrication processes. We used our microscope to demonstrate atomic resolution imaging under external tensile stress and strain on the surfaces of wafers of Si(111) and Si(001). We also successfully observed domain redistribution induced by applying uniaxial stress at an elevated temperature on the surface of a wafer of vicinal Si(100). We confirmed that domains for which an applied tensile stress is directed along the dimer bond become less stable and shrink. This suggests that it may be feasible to fabricate single domain surfaces in a process that controls surface stress and strain

  7. Maximum neutron flux in thermal reactors

    International Nuclear Information System (INIS)

    Strugar, P.V.

    1968-12-01

    Direct approach to the problem is to calculate spatial distribution of fuel concentration if the reactor core directly using the condition of maximum neutron flux and comply with thermal limitations. This paper proved that the problem can be solved by applying the variational calculus, i.e. by using the maximum principle of Pontryagin. Mathematical model of reactor core is based on the two-group neutron diffusion theory with some simplifications which make it appropriate from maximum principle point of view. Here applied theory of maximum principle are suitable for application. The solution of optimum distribution of fuel concentration in the reactor core is obtained in explicit analytical form. The reactor critical dimensions are roots of a system of nonlinear equations and verification of optimum conditions can be done only for specific examples

  8. Effects of emotional and perceptual-motor stress on a voice recognition system's accuracy: An applied investigation

    Science.gov (United States)

    Poock, G. K.; Martin, B. J.

    1984-02-01

    This was an applied investigation examining the ability of a speech recognition system to recognize speakers' inputs when the speakers were under different stress levels. Subjects were asked to speak to a voice recognition system under three conditions: (1) normal office environment, (2) emotional stress, and (3) perceptual-motor stress. Results indicate a definite relationship between voice recognition system performance and the type of low stress reference patterns used to achieve recognition.

  9. Shape optimization of a perforated pressure vessel cover under linearized stress constraints

    International Nuclear Information System (INIS)

    Choi, Woo-Seok; Kim, Tae-Wan; Seo, Ki-Seog

    2008-01-01

    One of the general methods to evaluate a failure condition is to compare a maximum stress with an allowable stress. A failure condition for a stress is usually applied to a concerned point rather than a concerned section. In an optimization procedure, these stress conditions are applied as constraints. But the ASME code that prescribes its general rules upon the design of a NSSS (nuclear steam supply system) has quite a different view on a failure condition. According to the ASME code Sec. III, a stress linearization should be performed to evaluate a failure condition of a structure. Since a few programs provide a procedure for a stress linearization through a post-processing stage, an extra calculation of the linearized stresses and the derivatives of a linearized stress are conducted to adopt the stress linearization results to an optimization procedure as constraints. In this research, an optimization technique that utilizes the results of a stress linearization as a constraint is proposed. The proposed method was applied to the shape design of a perforated pressure vessel cover

  10. Credal Networks under Maximum Entropy

    OpenAIRE

    Lukasiewicz, Thomas

    2013-01-01

    We apply the principle of maximum entropy to select a unique joint probability distribution from the set of all joint probability distributions specified by a credal network. In detail, we start by showing that the unique joint distribution of a Bayesian tree coincides with the maximum entropy model of its conditional distributions. This result, however, does not hold anymore for general Bayesian networks. We thus present a new kind of maximum entropy models, which are computed sequentially. ...

  11. Exercise-induced maximum metabolic rate scaled to body mass by ...

    African Journals Online (AJOL)

    Exercise-induced maximum metabolic rate scaled to body mass by the fractal ... rate scaling is that exercise-induced maximum aerobic metabolic rate (MMR) is ... muscle stress limitation, and maximized oxygen delivery and metabolic rates.

  12. Estimation of fracture conditions of ceramics by thermal shock with laser beams based on the maximum compressive stress criterion

    International Nuclear Information System (INIS)

    Akiyama, Shigeru; Amada, Shigeyasu.

    1992-01-01

    Structural ceramics are attracting attention in the development of space planes, aircraft and nuclear fusion reactors because they have excellent wear-resistant and heat-resistant characteristics. However, in some applications it is anticipated that they will be exposed to very-high-temperature environments of the order of thousands of degrees. Therefore, it is very important to investigate their thermal shock characteristics. In this report, the distributions of temperatures and thermal stresses of cylindrically shaped ceramics under irradiation by laser beams are discussed using the finite-element computer code (MARC) with arbitrary quadrilateral axisymmetric ring elements. The relationships between spot diameters of laser beams and maximum values of compressive thermal stresses are derived for various power densities. From these relationships, a critical fracture curve is obtained, and it is compared with the experimental results. (author)

  13. The role of cold work and applied stress on surface oxidation of 304 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Lozano-Perez, Sergio, E-mail: sergio.lozano-perez@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Rd., Oxford OX1 3PH (United Kingdom); Kruska, Karen [Department of Materials, University of Oxford, Parks Rd., Oxford OX1 3PH (United Kingdom); Iyengar, Ilya [Winchester College, College Street, Winchester SO23 9LX (United Kingdom); Terachi, Takumi; Yamada, Takuyo [Institute of Nuclear Safety System (INSS), 64 Sata, Mihama-cho, Mikata-gun, Fukui 919-1205 (Japan)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer FIB 3D sequential sectioning is an ideal technique to characterize surface oxidation. Black-Right-Pointing-Pointer 3D models of the oxide can be produced with nanometre resolution. Black-Right-Pointing-Pointer The effects of stress and cold work in grain boundary oxidation have been analysed. Black-Right-Pointing-Pointer At least three different oxidation modes are observed when stress is applied. - Abstract: FIB 3-dimensional (3D) sequential sectioning has been used to characterize environmental degradation of 304 stainless steels in pressurized water reactor (PWR) simulated primary water. In particular, the effects of cold work and applied stress on oxidation have been studied in detail. It was found that a description of the oxidation behaviour of this alloy is only complete if it is treated statistically, since it can suffer from high variability depending on the feature described.

  14. Applied methods for mitigation of damage by stress corrosion in BWR type reactors

    International Nuclear Information System (INIS)

    Hernandez C, R.; Diaz S, A.; Gachuz M, M.; Arganis J, C.

    1998-01-01

    The Boiling Water nuclear Reactors (BWR) have presented stress corrosion problems, mainly in components and pipes of the primary system, provoking negative impacts in the performance of energy generator plants, as well as the increasing in the radiation exposure to personnel involucred. This problem has caused development of research programs, which are guided to find solution alternatives for the phenomena control. Among results of greater relevance the control for the reactor water chemistry stands out particularly in the impurities concentration and oxidation of radiolysis products; as well as the supervision in the materials selection and the stresses levels reduction. The present work presents the methods which can be applied to diminish the problems of stress corrosion in BWR reactors. (Author)

  15. The concept of the average stress in the fracture process zone for the search of the crack path

    Directory of Open Access Journals (Sweden)

    Yu.G. Matvienko

    2015-10-01

    Full Text Available The concept of the average stress has been employed to propose the maximum average tangential stress (MATS criterion for predicting the direction of fracture angle. This criterion states that a crack grows when the maximum average tangential stress in the fracture process zone ahead of the crack tip reaches its critical value and the crack growth direction coincides with the direction of the maximum average tangential stress along a constant radius around the crack tip. The tangential stress is described by the singular and nonsingular (T-stress terms in the Williams series solution. To demonstrate the validity of the proposed MATS criterion, this criterion is directly applied to experiments reported in the literature for the mixed mode I/II crack growth behavior of Guiting limestone. The predicted directions of fracture angle are consistent with the experimental data. The concept of the average stress has been also employed to predict the surface crack path under rolling-sliding contact loading. The proposed model considers the size and orientation of the initial crack, normal and tangential loading due to rolling–sliding contact as well as the influence of fluid trapped inside the crack by a hydraulic pressure mechanism. The MATS criterion is directly applied to equivalent contact model for surface crack growth on a gear tooth flank.

  16. Speed of human tooth movement in growers and non-growers: Selection of applied stress matters.

    Science.gov (United States)

    Iwasaki, L R; Liu, Y; Liu, H; Nickel, J C

    2017-06-01

    To test that the speed of tooth translation is not affected by stress magnitude and growth status. Advanced Education Orthodontic clinics at the Universities of Nebraska Medical Center and Missouri-Kansas City. Forty-six consenting subjects with orthodontic treatment plans involving maxillary first premolar extractions. This randomized split-mouth study used segmental mechanics with definitive posterior anchorage and individual vertical-loop maxillary canine retraction appliances and measured three-dimensional tooth movements. Height and cephalometric superimposition changes determined growing (G) and non-growing (NG) subjects. Subjects were appointed for 9-11 visits over 84 days for maxillary dental impressions to measure three-dimensional tooth movement and to ensure retraction forces were continuously applied via calibrated nitinol coil springs. Springs were custom selected to apply two different stresses of 4, 13, 26, 52 or 78 kPa to maxillary canines in each subject. Statistical analyses (α=0.050) included ANOVA, effect size (partial η 2 ) and Tukey's Honest Significant Difference (HSD) and two-group t tests. Distolateral translation speeds were 0.034±0.015, 0.047±0.019, 0.066±0.025, 0.068±0.016 and 0.079±0.030 mm/d for 4, 13, 26, 52 and 78 kPa, respectively. Stress significantly affected speed and partial η 2 =0.376. Overall, more distopalatal rotation was shown by teeth moved by 78 kPa (18.03±9.50º) compared to other stresses (3.86±6.83º), and speeds were significantly higher (P=.001) in G (0.062±0.026 mm/d) than NG subjects (0.041±0.019 mm/d). Stress magnitude and growth status significantly affected the speed of tooth translation. Optimal applied stresses were 26-52 kPa, and overall speeds were 1.5-fold faster in G compared to NG subjects. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Effectiveness of stress release geometries on reducing residual stress in electroforming metal microstructure

    Science.gov (United States)

    Song, Chang; Du, Liqun; Zhao, Wenjun; Zhu, Heqing; Zhao, Wen; Wang, Weitai

    2018-04-01

    Micro electroforming, as a mature micromachining technology, is widely used to fabricate metal microdevices in micro electro mechanical systems (MEMS). However, large residual stress in the local positions of the micro electroforming layer often leads to non-uniform residual stress distributions, dimension accuracy defects and reliability issues during fabrication of the metal microdevice. To solve this problem, a novel design method of presetting stress release geometries in the topological structure of the metal microstructure is proposed in this paper. First, the effect of stress release geometries (circular shape, annular groove shape and rivet shape) on the residual stress in the metal microstructure was investigated by finite element modeling (FEM) analysis. Two evaluation parameters, stress concentration factor K T and stress non-uniformity factor δ were calculated. The simulation results show that presetting stress release geometries can effectively reduce and homogenize the residual stress in the metal microstructures were measured metal microstructure. By combined use with stress release geometries of annular groove shape and rivet shape, the stress concentration factor K T and the stress non-uniformity factor δ both decreased at a maximum of 49% and 53%, respectively. Meanwhile, the average residual stress σ avg decreased at a maximum of 20% from  -292.4 MPa to  -232.6 MPa. Then, micro electroforming experiments were carried out corresponding to the simulation models. The residual stresses in the metal microstructures were measured by micro Raman spectroscopy (MRS) method. The results of the experiment proved that the stress non-uniformity factor δ and the average residual stress σ avg also decreased at a maximum with the combination use of annular groove shape and rivet shape stress release geometries, which is in agreement with the results of FEM analysis. The stress non-uniformity factor δ has a maximum decrease of 49% and the

  18. Computational stress and damage modelling for rolling contact fatigue

    DEFF Research Database (Denmark)

    Cerullo, Michele

    Rolling contact fatigue in radial roller bearings is studied by means of a 2D plane strain nite element program. The Dang Van multiaxial fatigue criterion is firstly used, in a macroscopic study modeling the bearing raceway, to investigate the region where fatigue cracks are more likely to nucleate...... and of compressive residual stresses are also analyzed. The stress history of a material point at the depth where the maximum Dang Van damage factor is reached is then recorded and used in a subsequent micro-mechanical analysis. The stress history is applied as periodic boundary conditions in a representative volume...

  19. Optical stress investigations of notched bars with superimposed types of loads

    International Nuclear Information System (INIS)

    Richard, H.A.; Theis, W.

    1982-01-01

    Starting from the notch effect for various types of load, notch stresses are determined by optical methods for superimposed tensile and shearing stress and for superimposed tensile and bending stress. The superimposed stresses are induced by a device developed at the Technical Mechanics Department of Kaiserslautern University; only tensile stress needs to be applied to this testing device. The investigations have shown that in notched bars subject to superimposed tensile and shearing stress, stress increases will be higher than the maximum values of the two types of stress. For superimposed tensile and bending stress, notches on the outer side of the test piece and eccentric notches on the inner side may lead to a considerable stress increase. However, the stress distribution can be improved by an optimum arrangement of notches. (orig.) [de

  20. Role of phytohormones under induced drought stress in wheat

    International Nuclear Information System (INIS)

    Bano, A.; Yasmeen, S.

    2010-01-01

    The performance of plants (grown in pots) was studied for drought induced at critical stages of grain filling. Furthermore, the effect of abscisic acid (ABA) and benzyladenine (BA), were also studied on the physiology of plants during grain filling. Seeds of two wheat varieties cv Margalla-99 (cv1) and cv Manthar-2003 (cv2) were sown in pots. Stress treatments were imposed immediately after anthesis. Drought stress resulted in maximum decrease in IAA and GA content but proline and ABA content of leaves showed maximum increase at hard dough stage in cv1. With decrease in soil moisture content under induced drought stress, the percentage decrease in IAA and GA and increase in proline and ABA was greater in leaves and spikes of potted plants. All parameters showed greater decrease in cv2 than in cv1. Application of both ABA and BA, each at 10-6 M applied at anthesis stage, was involved in osmoregulation by the production of proline. The adverse effect of drought started at anthesis stage reaching maximum at hard dough stage. ABA was more effective at the later stages of grain filling whereas, BA was more effective at early stages. (author)

  1. Effect of Chinese traditional medicine anti-fatigue prescription on the concentration of the serum testosterone and cortisol in male rats under stress of maximum intensive training

    International Nuclear Information System (INIS)

    Dong Ling; Si Xulan

    2008-01-01

    Objective: To study the effect of chinese traditional medicine anti-fatigue prescription on the concentration of the serum testosterone (T) and cortisol (C) in male rats under the stress of maximum intensive training. Methods: Wistar male rat models of stress under maximum intensity training were established (n=40) and half of them were treated with Chinese traditional medicine anti-fatigue prescription twenty undisturbed rats served as controls. Testosterone and cortisol serum levels were determined with RIA at the end of the seven weeks' experiment. Results: Maximum intensive training would cause the level of the serum testosterone lowered, the concentration of the cortisol elevated and the ratio of T/C reduced. The serum T levels and T/C ratio were significantly lower and cortisol levels significantly higher in the untreated models than those in the treated models and controls (P<0.01). The levels of the two hormones were markedly corrected in the treated models with no significantly differences from those in the controls. However, the T/C ratio was still significantly lower than that in the controls (P <0.05) due to a relatively slightly greater degree of reduction of T levels. Conclusion: Anti-fatigue prescription can not only promote the recovery of fatigue after the maximum intensive training but also strengthen the anabolism of the rats. (authors)

  2. Stress regimes in the northwest of Iran from stress inversion of earthquake focal mechanisms

    Science.gov (United States)

    Afra, Mahsa; Moradi, Ali; Pakzad, Mehrdad

    2017-11-01

    Northwestern Iran is one of the seismically active regions with a high seismic risk in the world. This area is a part of the complex tectonic system due to the interaction between Arabia, Anatolia and Eurasia. The purpose of this study is to deduce the stress regimes in the northwestern Iran and surrounding regions from stress inversion of earthquake focal mechanisms. We compile 92 focal mechanisms data from the Global CMT catalogue and other sources and also determine the focal mechanisms of 14 earthquakes applying the moment tensor inversion. We divide the studied region into 9 zones using similarity of the horizontal GPS velocities and existing focal mechanisms. We implement two stress inversion methods, Multiple Inverse Method and Iterative Joint Inversion Method, which provide comparable results in terms of orientations of maximum horizontal stress axes SHmax. The similar results of the two methods should make us more confident about the interpretations. We consider zones of exclusion surrounding all the earthquakes according to independent focal mechanisms hypothesis. The hypothesis says that the inversion should involve events that are far enough from each other in order that any previous event doesn't affect the stress field near the earthquake under consideration. Accordingly we deal with the matter by considering zones of exclusion around all the events. The result of exclusion is only significant for eastern Anatolia. The stress regime in this region changes from oblique to strike slip faulting because of the exclusion. In eastern Anatolia, the direction of maximum horizontal stress is nearly north-south. The direction alters to east-west in Talesh region. Errors of σ1 are lower in all zones comparing with errors of σ2 and σ3 and there is a trade-off between data resolution and covariance of the model. The results substantiate the strike-slip and thrust faulting stress regimes in the northwest of Iran.

  3. Modeling of grain boundary stresses in Alloy 600

    Energy Technology Data Exchange (ETDEWEB)

    Kozaczek, K.J. [Oak Ridge National Lab., TN (United States); Sinharoy, A.; Ruud, C.O. [Pennsylvania State Univ., University Park, PA (United States); Mcllree, A.R. [Electric Power Research Inst., Palo Alto, CA (United States)

    1995-04-01

    Corrosive environments combined with high stress levels and susceptible microstructures can cause intergranular stress corrosion cracking (IGSCC) of Alloy 600 components on both primary and secondary sides of pressurized water reactors. One factor affecting the IGSCC is intergranular carbide precipitation controlled by heat treatment of Alloy 600. This study is concerned with analysis of elastic stress fields in vicinity of M{sub 7}C{sub 3} and M{sub 23}C{sub 6} carbides precipitated in the matrix and at a grain boundary triple point. The local stress concentration which can lead to IGSCC initiation was studied using a two-dimensional finite element model. The intergranular precipitates are more effective stress raisers than the intragranular precipitates. The combination of the elastic property mismatch and the precipitate shape can result in a local stress field substantially different than the macroscopic stress. The maximum local stresses in the vicinity of the intergranular precipitate were almost twice as high as the applied stress.

  4. Maximum allowable load on wheeled mobile manipulators

    International Nuclear Information System (INIS)

    Habibnejad Korayem, M.; Ghariblu, H.

    2003-01-01

    This paper develops a computational technique for finding the maximum allowable load of mobile manipulator during a given trajectory. The maximum allowable loads which can be achieved by a mobile manipulator during a given trajectory are limited by the number of factors; probably the dynamic properties of mobile base and mounted manipulator, their actuator limitations and additional constraints applied to resolving the redundancy are the most important factors. To resolve extra D.O.F introduced by the base mobility, additional constraint functions are proposed directly in the task space of mobile manipulator. Finally, in two numerical examples involving a two-link planar manipulator mounted on a differentially driven mobile base, application of the method to determining maximum allowable load is verified. The simulation results demonstrates the maximum allowable load on a desired trajectory has not a unique value and directly depends on the additional constraint functions which applies to resolve the motion redundancy

  5. Tensile stress dependence of the magnetostatic interaction between Fe-rich wires

    International Nuclear Information System (INIS)

    Gawronski, P.; Zhukov, A.; Blanco, J.M.; Gonzalez, J.; KuIakowski, K.

    2005-01-01

    We study the influence of the applied tensile stress on the magnetostatic interaction between two amorphous Fe-rich wires. The hysteresis loop is measured for: (i) conventional wires produced by in-rotation-water method, with diameter of 125μm (ii) cold-drawn wires with diameter of 50μm. The stress dependence of the interaction field is evaluated from the shape of the hysteresis loops, which show characteristic two-step behaviour. These steps mark the values of the switching field of the wires. For the conventional wires the tensile stress dependence of the interaction field can be explained as a result of the tensile stress dependence of the magnetization. For the cold-drawn wires, the interaction field shows a maximum with the applied stress. This behaviour is interpreted as a consequence of a local variation of the domain structure at the wire ends. It modifies the stray field, and-as a consequence-the switching field of the neighbouring wire

  6. Applying the Stress and ‘Strength’ Hypothesis to Black Women’s Breast Cancer Screening Delays

    Science.gov (United States)

    Black, Angela Rose; Woods-Giscombé, Cheryl

    2013-01-01

    Associations between stress and breast cancer highlight stressful life events as barriers to breast cancer screening, increased stress due to a breast cancer scare or diagnosis, or the immunosuppressive properties of stress as a risk factor for breast cancer occurrence. Little is known, however, about how women’s reactions to stressful life events impact their breast health trajectory. In this study, we explore how reactions to stressors serve as a potential barrier to breast cancer screening among Black women. We apply a gender-specific, culturally responsive stress-process framework, the Stress and ‘Strength’ Hypothesis (“strength hypothesis”), to understand links between the ‘Strong Black Woman role’ role, Black women’s stress reactions and their observed screening delays. We conceptualize strength as a culturally prescribed coping style that conditions resilience, self-reliance and psychological hardiness as a survival response to race-related and gender-related stressors. Using qualitative methods, we investigate the potential for this coping mechanism to manifest as extraordinary caregiving, emotional suppression and self-care postponement. These manifestations may result in limited time for scheduling and attending screening appointments, lack of or delay in acknowledgement of breast health symptoms and low prioritization of breast care. Limitations and future directions are discussed. PMID:23129558

  7. Residual Stress Studies Using the Cairo Fourier Diffractometer Facility

    International Nuclear Information System (INIS)

    Maayouf, R.M.A.; El-Shaer, Y.H.

    2002-01-01

    The present paper deals with residual stress studies using the Cairo Fourier diffractometer facility CFDF. The CFDF is a reverse - time of -flight (RTOF) diffractometer; applies a Fourier chopper. The measurements were performed for copper samples in order to study the residual stress after welding. The maximum modulation of the Fourier chopper during the measurements was 136 khz; leading to a time resolution half-width of about 7 μ s. It has been found from the present measurements that, the resulting diffraction spectra could be successfully used for studying the residual stress; in the wavelength range between 0.7-2.9 A degree at ∼ 0.45 % relative resolution

  8. Applied rolling and sensitivity of Bi(2223)/Ag tapes on Ic degradation by mechanical stress

    International Nuclear Information System (INIS)

    Kovac, P.; Bukva, P.; Husek, I.; Richens, P.E.; Jones, H.

    1999-01-01

    An experimental study of multicore Bi(2223)/Ag tapes, roll-sintered by different methods and subjected to bending and tension stresses has been performed. The tapes, of various technological histories, were bent and tensioned and subsequently the transport current was measured at each stressed state. Comparison of I c degradation curves shows that applied rolling may influence the sensitivity of Bi-2223 filaments against the mechanical stress. The existence of transverse microcracks caused by intermediate rolling leads to a higher sensitivity of the tape to bending. A lowering of critical current degradation was observed for two-axially rolled tapes having a higher filament density and better homogeneity prior to sintering treatment. (author)

  9. Using X-ray microbeam diffraction to study the long-range internal stresses in aluminum processed by ECAP

    International Nuclear Information System (INIS)

    Lee, I-Fang; Phan, Thien Q.; Levine, Lyle E.; Tischler, Jonathan Z.; Geantil, Peter T.; Huang, Yi; Langdon, Terence G.; Kassner, Michael E.

    2013-01-01

    Aluminum alloy 1050 was processed by equal-channel angular pressing (ECAP) using a single pass (equivalent uniaxial strain of about 0.88). Long-range internal stresses (LRISs) were assessed in the grain/subgrain interiors using X-ray microbeam diffraction to measure the spacing of {5 3 1} planes, with normals oriented approximately +27.3°, +4.9° and −17.5° off the pressing (axial) direction. The results are consistent with mechanical analysis that suggests the maximum tensile plastic-strain after one pass is expected for +22.5°, roughly zero along the pressing axis, and maximum compressive strain for the −67.5° direction. The magnitude of the measured maximum compressive long-range internal stress is about 0.13σ a (applied stress) in low-dislocation regions within the grain/subgrain interiors. This work is placed in the context of earlier work where convergent beam electron diffraction was used to analyze LRISs in close proximity to the deformation-induced boundaries. The results are complementary and the measured stresses are consistent with a composite model for long-range internal stresses

  10. Pressure Dependence of the Peierls Stress in Aluminum

    Science.gov (United States)

    Dang, Khanh; Spearot, Douglas

    2018-03-01

    The effect of pressure applied normal to the {111} slip plane on the Peierls stress in Al is studied via atomistic simulations. Edge, screw, 30°, and 60° straight dislocations are created using the Volterra displacement fields for isotropic elasticity. For each dislocation character angle, the Peierls stress is calculated based on the change in the internal energy, which is an invariant measure of the dislocation driving force. It is found that the Peierls stress for dislocations under zero pressure is in general agreement with previous results. For screw and 60° dislocations, the Peierls stress versus pressure relationship has maximum values associated with stacking fault widths that are multiples of the Peierls period. For the edge dislocation, the Peierls stress decreases with increasing pressure from tension to compression. Compared with the Mendelev potential, the Peierls stress calculated from the Mishin potential is more sensitive to changes in pressure.

  11. Modelling maximum canopy conductance and transpiration in ...

    African Journals Online (AJOL)

    There is much current interest in predicting the maximum amount of water that can be transpired by Eucalyptus trees. It is possible that industrial waste water may be applied as irrigation water to eucalypts and it is important to predict the maximum transpiration rates of these plantations in an attempt to dispose of this ...

  12. Effect of cold working and annealing on stress corrosion cracking of AISI 304 stainless steel

    International Nuclear Information System (INIS)

    Yeon, Y.M.; Kwun, S.I.

    1983-01-01

    A study was made of the effects of cold working and annealing on the stress corrosion cracking of AISI 304 stainless steel in boiling 42% MgCl 2 solution. When the 60% or 76% of yield stress was applied, the resistance to SCC showed maximum at 30% of cold work. However, when the same load was applied to the annealed specimens after cold working, the resistance to SCC decreased abruptly at 675degC annealing. The fracture mode changed mode change mixed → intergranular → transgranular as the amount of cold work increased. (Author)

  13. SAFE-PLANE, Stress Analysis of Planar Structure by Finite Elements Method

    International Nuclear Information System (INIS)

    Cornell, D.C.; Reich, Morris

    1967-01-01

    1 - Description of problem or function: SAFE-PLANE is applied to two- dimensional structures of arbitrary geometry under in-plane loads. Either plane stress or plane strain conditions may be imposed. Mechanical and thermal loads are permitted. 2 - Method of solution: The finite-element method is used to construct a mathematical model by assembling discrete elements. The total potential energy of the structure is determined and subsequently minimized by iteration on components of the displacement field until static equilibrium of the structure is attained. Strains and stresses are computed from the resulting displacements. 3 - Restrictions on the complexity of the problem: Multi-material structures with varying rigidities converge very slowly. Not valid for incompressible materials. Maximum number of nodal points = 675. Maximum number of elements = 1350

  14. Residual stress effects in LMFBR fracture assessment procedures

    International Nuclear Information System (INIS)

    Hooton, D.G.

    1984-01-01

    Two post-yield fracture mechanics methods, which have been developed into fully detailed failure assessment procedures for ferritic structures, have been reviewed from the point of view of the manner in which as-welded residual stress effects are incorporated, and comparisons then made with finite element and theoretical models of centre-cracked plates containing residual/thermal stresses in the form of crack-driving force curves. Applying the procedures to austenitic structures, comparisons are made in terms of failure assessment curves and it is recommended that the preferred method for the prediction of critical crack sizes in LMFBR austenitic structures containing as-welded residual stresses is the CEGB-R6 procedure based on a flow stress defined at 3% strain in the parent plate. When the prediction of failure loads in such structures is required, it is suggested that the CEGB-R6 procedure be used with residual/thermal stresses factored to give a maximum total stress of flow stress magnitude

  15. Maximum-principle-satisfying space-time conservation element and solution element scheme applied to compressible multifluids

    KAUST Repository

    Shen, Hua; Wen, Chih-Yung; Parsani, Matteo; Shu, Chi-Wang

    2016-01-01

    A maximum-principle-satisfying space-time conservation element and solution element (CE/SE) scheme is constructed to solve a reduced five-equation model coupled with the stiffened equation of state for compressible multifluids. We first derive a sufficient condition for CE/SE schemes to satisfy maximum-principle when solving a general conservation law. And then we introduce a slope limiter to ensure the sufficient condition which is applicative for both central and upwind CE/SE schemes. Finally, we implement the upwind maximum-principle-satisfying CE/SE scheme to solve the volume-fraction-based five-equation model for compressible multifluids. Several numerical examples are carried out to carefully examine the accuracy, efficiency, conservativeness and maximum-principle-satisfying property of the proposed approach.

  16. Maximum-principle-satisfying space-time conservation element and solution element scheme applied to compressible multifluids

    KAUST Repository

    Shen, Hua

    2016-10-19

    A maximum-principle-satisfying space-time conservation element and solution element (CE/SE) scheme is constructed to solve a reduced five-equation model coupled with the stiffened equation of state for compressible multifluids. We first derive a sufficient condition for CE/SE schemes to satisfy maximum-principle when solving a general conservation law. And then we introduce a slope limiter to ensure the sufficient condition which is applicative for both central and upwind CE/SE schemes. Finally, we implement the upwind maximum-principle-satisfying CE/SE scheme to solve the volume-fraction-based five-equation model for compressible multifluids. Several numerical examples are carried out to carefully examine the accuracy, efficiency, conservativeness and maximum-principle-satisfying property of the proposed approach.

  17. Iodine stress corrosion cracking (SCC) of unirradiated Zircaloy-4 tubing by means of internal gas pressurization, (1)

    International Nuclear Information System (INIS)

    Onchi, Takeo; Inoue, Tadashi

    1982-01-01

    The internal gas pressurization tests were conducted at 360 0 C, to examine the influence of iodine concentration on the iodine stress corrosion cracking (SCC) susceptibility of Zircaloy-4 tubing of 17 x 17 type PWR design. The iodine contents studied were ranging of 0.06 to 6 mg/cm 2 , corresponding to 30 from 0.3 mg/cm 3 . Applied hoop stress vs. time-to-failure relationships were obtained in argon gas with iodine, as well as without iodine, from the tests of maximum holding times up to 72 hrs. The relationships obtained were insensitive to iodine contents. The applied stress lowering in iodine atmosphere approached a threshold stress below which SCC failure did not occur within the holding time, but not in argon gas alone. The threshold stresses were approximately 25.5 kg/mm 2 (250 Mpa), independent on iodine concentrations. Based on fracture mechanics approach and fractographic analysis, an interpretation was made of those applied stress and time-to-failure relationships. (author)

  18. Maximum Entropy in Drug Discovery

    Directory of Open Access Journals (Sweden)

    Chih-Yuan Tseng

    2014-07-01

    Full Text Available Drug discovery applies multidisciplinary approaches either experimentally, computationally or both ways to identify lead compounds to treat various diseases. While conventional approaches have yielded many US Food and Drug Administration (FDA-approved drugs, researchers continue investigating and designing better approaches to increase the success rate in the discovery process. In this article, we provide an overview of the current strategies and point out where and how the method of maximum entropy has been introduced in this area. The maximum entropy principle has its root in thermodynamics, yet since Jaynes’ pioneering work in the 1950s, the maximum entropy principle has not only been used as a physics law, but also as a reasoning tool that allows us to process information in hand with the least bias. Its applicability in various disciplines has been abundantly demonstrated. We give several examples of applications of maximum entropy in different stages of drug discovery. Finally, we discuss a promising new direction in drug discovery that is likely to hinge on the ways of utilizing maximum entropy.

  19. The consequences of a reduction in the administratively applied maximum annual dose equivalent level for an individual in a group of occupationally exposed workers

    International Nuclear Information System (INIS)

    Harrison, N.T.

    1980-02-01

    An analysis is described for predicting the consequences of a reduction in the administratively applied maximum dose equivalent level to individuals in a group of workers occupationally exposed to ionising radiations, for the situation in which no changes are made to the working environment. This limitation of the maximum individual dose equivalent is accommodated by allowing the number of individuals in the working group to increase. The derivation of the analysis is given, together with worked examples, which highlight the important assumptions that have been made and the conclusions that can be drawn. The results are obtained in the form of the capacity of the particular working environment to accommodate the limitation of the maximum individual dose equivalent, the increase in the number of workers required to carry out the productive work and any consequent increase in the occupational collective dose equivalent. (author)

  20. Maximum parsimony on subsets of taxa.

    Science.gov (United States)

    Fischer, Mareike; Thatte, Bhalchandra D

    2009-09-21

    In this paper we investigate mathematical questions concerning the reliability (reconstruction accuracy) of Fitch's maximum parsimony algorithm for reconstructing the ancestral state given a phylogenetic tree and a character. In particular, we consider the question whether the maximum parsimony method applied to a subset of taxa can reconstruct the ancestral state of the root more accurately than when applied to all taxa, and we give an example showing that this indeed is possible. A surprising feature of our example is that ignoring a taxon closer to the root improves the reliability of the method. On the other hand, in the case of the two-state symmetric substitution model, we answer affirmatively a conjecture of Li, Steel and Zhang which states that under a molecular clock the probability that the state at a single taxon is a correct guess of the ancestral state is a lower bound on the reconstruction accuracy of Fitch's method applied to all taxa.

  1. Flow and Stress Field Analysis of Different Fluids and Blades for Fermentation Process

    Directory of Open Access Journals (Sweden)

    Cheng-Chi Wang

    2014-02-01

    Full Text Available Fermentation techniques are applied for the biotechnology and are widely used for food manufacturing, materials processing, chemical reaction, and so forth. Different fluids and types of blades in the tank for fermentation cause distinct flow and stress field distributions on the surface between fluid and blade and various flow reactions in the tank appear. This paper is mainly focused on the analysis of flow field with different fluid viscosities and also studied the stress field acting on the blades with different scales and shapes of them under specific rotational speed. The results show that the viscosity of fluid influences the flow field and stress distributions on the blades. The maximum stress that acts on the blade is increased with the increasing of viscosity. On the other hand, the ratio of blade length to width influences stress distributions on the blade. At the same time, the inclined angle of blade is also the key parameter for the consideration of design and appropriate inclined angle of blade will decrease the maximum stress. The results provide effective means of gaining insights into the flow and stress distribution of fermentation process.

  2. The direct-stress fatigue strength of 17S-T aluminum alloy throughout the range from 1/2 to 500,000,000 cycles of stress

    Science.gov (United States)

    Hartmann, E C; Stickley, G W

    1942-01-01

    Fatigue-test were conducted on six specimens made from 3/4-inch-diameter 17S-T rolled-and-drawn rod for the purpose of obtaining additional data on the fatigue life of the material at stresses up to the static strength. The specimens were tested in direct tension using a stress range from zero to a maximum in tension. A static testing machine was used to apply repeated loads in the case of the first three specimens; the other three specimens were tested in a direct tension-compression fatigue machine. The direct-stress fatigue curve obtained for the material indicates that, in the range of stresses above about two-thirds the tensile strength, the fatigue strength is higher than might be expected by simply extrapolating the ordinary curve of stress plotted against the number of cycles determined at lower stresses.

  3. PRINCIPAL STRESSES IN NON-LINEAR ANALYSIS OF BAKUN CONCRETE FACED ROCKFILL DAM

    Directory of Open Access Journals (Sweden)

    Mohd Hilton Ahmad

    2017-11-01

    Full Text Available With rapid population growth and accelerating economic development, much of the world’s WATER which requires urgent attention to ensure sustainable use. Nowadays, Concrete Faced Rockfill Dam (CFRD is preferred among dam consultant due to its advantages. They are designed to withstand all applied loads; namely gravity load due to its massive weight and hydrostatic load due to water thrust from the reservoir. Bakun CFRD, which ranks as the second highest CFRD in the world when completed, is analyzed to its safety due to both loads mentioned earlier by using Finite Element Method. 2-D plane strain finite element analysis of non-linear Duncan-Chang hyperbolic Model which formulated by Duncan and Chang is used to study the structural response of the dam in respect to the deformation and stresses of Main dam of Bakun’s CFRD project. Dead-Birth-Ghost element technique was used to simulate sequences of construction of the dam as well as during reservoir fillings. The comparison of rigid and flexible foundation on the behaviour of the dam was discussed. The maximum and minimum principal stresses are the maximum and minimum possible values of the normal stresses. The maximum principal stress controls brittle fracture. In the finite element modeling the concrete slab on the upstream was represented through six-noded element, while the interface characteristic between dam body and concrete slab was modeled using interface element. The maximum settlement and stresses of the cross section was founded and the distribution of them were discussed and tabulated in form of contours.

  4. Maximum magnitude of injection-induced earthquakes: A criterion to assess the influence of pressure migration along faults

    Science.gov (United States)

    Norbeck, Jack H.; Horne, Roland N.

    2018-05-01

    The maximum expected earthquake magnitude is an important parameter in seismic hazard and risk analysis because of its strong influence on ground motion. In the context of injection-induced seismicity, the processes that control how large an earthquake will grow may be influenced by operational factors under engineering control as well as natural tectonic factors. Determining the relative influence of these effects on maximum magnitude will impact the design and implementation of induced seismicity management strategies. In this work, we apply a numerical model that considers the coupled interactions of fluid flow in faulted porous media and quasidynamic elasticity to investigate the earthquake nucleation, rupture, and arrest processes for cases of induced seismicity. We find that under certain conditions, earthquake ruptures are confined to a pressurized region along the fault with a length-scale that is set by injection operations. However, earthquakes are sometimes able to propagate as sustained ruptures outside of the zone that experienced a pressure perturbation. We propose a faulting criterion that depends primarily on the state of stress and the earthquake stress drop to characterize the transition between pressure-constrained and runaway rupture behavior.

  5. Thermal stresses at nozzles of nuclear steel containments under LOCA-conditions

    International Nuclear Information System (INIS)

    Sanchez Sarmiento, G.; Bergmann, A.N.

    1986-01-01

    During a loss of coolant accident (LOCA) of a PWR-nuclear power plant, a considerable heating of the containment atmosphere is expected to occur. Transient thermal stresses will appear at the containment as a consequence of a non-uniform rise of its temperature. Applying computer codes based on the finite element method, dimensionless general thermal stresses at nozzles of spherical steel containment have been calculated, varying the principal geometrical parameters and the Biot number for the containment internal surface. Atmosphere temperature and Biot number are assumed constant after the accident. Several plots of the maximum principal stresses are provided, which constitute general results applicable to stress analysis of any particular containment of this kind. (orig.)

  6. 40 CFR 1045.140 - What is my engine's maximum engine power?

    Science.gov (United States)

    2010-07-01

    ...) Maximum engine power for an engine family is generally the weighted average value of maximum engine power... engine family's maximum engine power apply in the following circumstances: (1) For outboard or personal... value for maximum engine power from all the different configurations within the engine family to...

  7. Welding-induced local maximum residual stress in heat affected zone of low-carbon austenitic stainless steel with machined surface layer and its influential factors

    International Nuclear Information System (INIS)

    Okano, Shigetaka; Ihara, Ryohei; Kanamaru, Daisuke; Mochizuki, Masahito

    2015-01-01

    In this study, the effects of work-hardening and pre-existing stress in the machined surface layer of low-carbon austenitic stainless steel on the welding-induced residual stress were experimentally investigated through the use of weld specimens with three different surface layers; as-cutout, mechanically-polished and electrolytically-polished. The high tensile and compressive stresses exist in the work-hardened surface layer of the as-cutout and mechanically-polished specimens, respectively. Meanwhile, no stress and work-hardened surface layer exist in the electrolytically-polished specimen. TIG bead-on-plate welding under the same welding heat input conditions was performed to introduce the residual stress into these specimens. Using these welded specimens, the distributions of welding-induced residual stress were measured by the X-ray diffraction method. Similarly, the distributions of hardness in welds were estimated by the Vickers hardness test. And then, these distributions were compared with one another. Based on the results, the residual stress in the weld metal (WM) is completely unaffected by the machined surface layer because the work-hardened surface layer disappears through the processes of melting and solidification during welding. The local maximum longitudinal tensile residual stress in the heat affected zone (HAZ) depends on the work-hardening but not on the existing stress, regardless of whether tensile or compressive, in the machined surface layer before welding. At the base metal far from WM and HAZ, the residual stress is formed by the addition of the welding-induced residual stress to the pre-existing stress in the machined surface layer before welding. The features of the welding-induced residual stress in low-carbon austenitic stainless steel with the machined surface layer and their influential factors were thus clarified. (author)

  8. Extreme warmth and heat-stressed plankton in the tropics during the Paleocene-Eocene Thermal Maximum.

    Science.gov (United States)

    Frieling, Joost; Gebhardt, Holger; Huber, Matthew; Adekeye, Olabisi A; Akande, Samuel O; Reichart, Gert-Jan; Middelburg, Jack J; Schouten, Stefan; Sluijs, Appy

    2017-03-01

    Global ocean temperatures rapidly warmed by ~5°C during the Paleocene-Eocene Thermal Maximum (PETM; ~56 million years ago). Extratropical sea surface temperatures (SSTs) met or exceeded modern subtropical values. With these warm extratropical temperatures, climate models predict tropical SSTs >35°C-near upper physiological temperature limits for many organisms. However, few data are available to test these projected extreme tropical temperatures or their potential lethality. We identify the PETM in a shallow marine sedimentary section deposited in Nigeria. On the basis of planktonic foraminiferal Mg/Ca and oxygen isotope ratios and the molecular proxy [Formula: see text], latest Paleocene equatorial SSTs were ~33°C, and [Formula: see text] indicates that SSTs rose to >36°C during the PETM. This confirms model predictions on the magnitude of polar amplification and refutes the tropical thermostat theory. We attribute a massive drop in dinoflagellate abundance and diversity at peak warmth to thermal stress, showing that the base of tropical food webs is vulnerable to rapid warming.

  9. The evolution of crack-tip stresses during a fatigue overload event

    International Nuclear Information System (INIS)

    Steuwer, A.; Rahman, M.; Shterenlikht, A.; Fitzpatrick, M.E.; Edwards, L.; Withers, P.J.

    2010-01-01

    The mechanisms responsible for the transient retardation or acceleration of fatigue crack growth subsequent to overloading are a matter of intense debate. Plasticity-induced closure and residual stresses have often been invoked to explain these phenomena, but closure mechanisms are disputed, especially under conditions approximating to generalised plane strain. In this paper we exploit synchrotron radiation to report very high spatial resolution two-dimensional elastic strain and stress maps at maximum and minimum loading measured under plane strain during a normal fatigue cycle, as well as during and after a 100% overload event, in ultra-fine grained AA5091 aluminium alloy. These observations provide direct evidence of the material stress state in the vicinity of the crack-tip in thick samples. Significant compressive residual stresses were found both in front of and behind the crack-tip immediately following the overload event. The effective stress intensity at the crack-tip was determined directly from the local stress field measured deep within the bulk (plane strain) by comparison with linear elastic fracture mechanical theory. This agrees well with that nominally applied at maximum load and 100% overload. After overload, however, the stress fields were not well described by classical K fields due to closure-related residual stresses. Little evidence of overload closure was observed sometime after the overload event, in our case possibly because the overload plastic zone was very small.

  10. Ceramic ball grid array package stress analysis

    Science.gov (United States)

    Badri, S. H. B. S.; Aziz, M. H. A.; Ong, N. R.; Sauli, Z.; Alcain, J. B.; Retnasamy, V.

    2017-09-01

    The ball grid array (BGA), a form of chip scale package (CSP), was developed as one of the most advanced surface mount devices, which may be assembled by an ordinary surface ball bumps are used instead of plated nickel and gold (Ni/Au) bumps. Assembly and reliability of the BGA's printed circuit board (PCB), which is soldered by conventional surface mount technology is considered in this study. The Ceramic Ball Grid Array (CBGA) is a rectangular ceramic package or square-shaped that will use the solder ball for external electrical connections instead of leads or wire for connections. The solder balls will be arranged in an array or grid at the bottom of the ceramic package body. In this study, ANSYS software is used to investigate the stress on the package for 2 balls and 4 balls of the CBGA package with the various force range of 1-3 Newton applied to the top of the die, top of the substrate and side of the substrate. The highest maximum stress was analyzed and the maximum equivalent stress was observed on the solder ball and the die. From the simulation result, the CBGA package with less solder balls experience higher stress compared to the package with many solder balls. Therefore, less number of solder ball on the CBGA package results higher stress and critically affect the reliability of the solder balls itself, substrate and die which can lead to the solder crack and also die crack.

  11. Personnel contamination protection techniques applied during the TMI-2 [Three Mile Island Unit 2] cleanup

    International Nuclear Information System (INIS)

    Hildebrand, J.E.

    1988-01-01

    The severe damage to the Three Mile Island Unit 2 (TMI-2) core and the subsequent discharge of reactor coolant to the reactor and auxiliary buildings resulted in extremely hostile radiological environments in the TMI-2 plant. High fission product surface contamination and radiation levels necessitated the implementation of innovative techniques and methods in performing cleanup operations while assuring effective as low as reasonably achievable (ALARA) practices. The approach utilized by GPU Nuclear throughout the cleanup in applying protective clothing requirements was to consider the overall health risk to the worker including factors such as cardiopulmonary stress, visual and hearing acuity, and heat stress. In applying protective clothing requirements, trade-off considerations had to be made between preventing skin contaminations and possibly overprotecting the worker, thus impacting his ability to perform his intended task at maximum efficiency and in accordance with ALARA principles. The paper discusses the following topics: protective clothing-general use, beta protection, skin contamination, training, personnel access facility, and heat stress

  12. Maximum entropy deconvolution of low count nuclear medicine images

    International Nuclear Information System (INIS)

    McGrath, D.M.

    1998-12-01

    Maximum entropy is applied to the problem of deconvolving nuclear medicine images, with special consideration for very low count data. The physics of the formation of scintigraphic images is described, illustrating the phenomena which degrade planar estimates of the tracer distribution. Various techniques which are used to restore these images are reviewed, outlining the relative merits of each. The development and theoretical justification of maximum entropy as an image processing technique is discussed. Maximum entropy is then applied to the problem of planar deconvolution, highlighting the question of the choice of error parameters for low count data. A novel iterative version of the algorithm is suggested which allows the errors to be estimated from the predicted Poisson mean values. This method is shown to produce the exact results predicted by combining Poisson statistics and a Bayesian interpretation of the maximum entropy approach. A facility for total count preservation has also been incorporated, leading to improved quantification. In order to evaluate this iterative maximum entropy technique, two comparable methods, Wiener filtering and a novel Bayesian maximum likelihood expectation maximisation technique, were implemented. The comparison of results obtained indicated that this maximum entropy approach may produce equivalent or better measures of image quality than the compared methods, depending upon the accuracy of the system model used. The novel Bayesian maximum likelihood expectation maximisation technique was shown to be preferable over many existing maximum a posteriori methods due to its simplicity of implementation. A single parameter is required to define the Bayesian prior, which suppresses noise in the solution and may reduce the processing time substantially. Finally, maximum entropy deconvolution was applied as a pre-processing step in single photon emission computed tomography reconstruction of low count data. Higher contrast results were

  13. Maximum entropy beam diagnostic tomography

    International Nuclear Information System (INIS)

    Mottershead, C.T.

    1985-01-01

    This paper reviews the formalism of maximum entropy beam diagnostic tomography as applied to the Fusion Materials Irradiation Test (FMIT) prototype accelerator. The same formalism has also been used with streak camera data to produce an ultrahigh speed movie of the beam profile of the Experimental Test Accelerator (ETA) at Livermore

  14. Effects of applied stress ratio on the fatigue behavior of additively manufactured porous biomaterials under compressive loading.

    Science.gov (United States)

    de Krijger, Joep; Rans, Calvin; Van Hooreweder, Brecht; Lietaert, Karel; Pouran, Behdad; Zadpoor, Amir A

    2017-06-01

    Additively manufactured (AM) porous metallic biomaterials are considered promising candidates for bone substitution. In particular, AM porous titanium can be designed to exhibit mechanical properties similar to bone. There is some experimental data available in the literature regarding the fatigue behavior of AM porous titanium, but the effect of stress ratio on the fatigue behavior of those materials has not been studied before. In this paper, we study the effect of applied stress ratio on the compression-compression fatigue behavior of selective laser melted porous titanium (Ti-6Al-4V) based on the diamond unit cell. The porous titanium biomaterial is treated as a meta-material in the context of this work, meaning that R-ratios are calculated based on the applied stresses acting on a homogenized volume. After morphological characterization using micro computed tomography and quasi-static mechanical testing, the porous structures were tested under cyclic loading using five different stress ratios, i.e. R = 0.1, 0.3, 0.5, 0.7 and 0.8, to determine their S-N curves. Feature tracking algorithms were used for full-field deformation measurements during the fatigue tests. It was observed that the S-N curves of the porous structures shift upwards as the stress ratio increases. The stress amplitude was the most important factor determining the fatigue life. Constant fatigue life diagrams were constructed and compared with similar diagrams for bulk Ti-6Al-4V. Contrary to the bulk material, there was limited dependency of the constant life diagrams to mean stress. The notches present in the AM biomaterials were the sites of crack initiation. This observation and other evidence suggest that the notches created by the AM process cause the insensitivity of the fatigue life diagrams to mean stress. Feature tracking algorithms visualized the deformation during fatigue tests and demonstrated the root cause of inclined (45°) planes of specimen failure. In conclusion, the R

  15. Laser quench hardening of steel: Effects of superimposed elastic pre-stress on the hardness and residual stress distribution

    Science.gov (United States)

    Meserve, Justin

    Cold drawn AISI 4140 beams were LASER surface hardened with a 2 kW CO2 LASER. Specimens were treated in the free state and while restrained in a bending fixture inducing surface tensile stresses of 94 and 230 MPa. Knoop hardness indentation was used to evaluate the through thickness hardness distribution, and a layer removal methodology was used to evaluate the residual stress distribution. Results showed the maximum surface hardness attained was not affected by pre-stress during hardening, and ranged from 513 to 676 kg/mm2. The depth of effective hardening varied at different magnitudes of pre-stress, but did not vary proportionately to the pre-stress. The surface residual stress, coinciding with the maximum compressive residual stress, increased as pre-stress was increased, from 1040 MPa for the nominally treated specimens to 1270 MPa for specimens pre-stressed to 230 MPa. The maximum tensile residual stress observed in the specimens decreased from 1060 MPa in the nominally treated specimens to 760 MPa for specimens pre-stressed to 230 MPa. Similarly, thickness of the compressive residual stress region increased and the depth at which maximum tensile residual stress occurred increased as the pre-stress during treatment was increased Overall, application of tensile elastic pre-stress during LASER hardening is beneficial to the development of compressive residual stress in AISI 4140, with minimal impact to the hardness attained from the treatment. The newly developed approach for LASER hardening may support efforts to increase both the wear and fatigue resistance of parts made from hardenable steels.

  16. On the Use of Maximum Force Criteria to Predict Localised Necking in Metal Sheets under Stretch-Bending

    Directory of Open Access Journals (Sweden)

    Domingo Morales-Palma

    2017-11-01

    Full Text Available The maximum force criteria and their derivatives, the Swift and Hill criteria, have been extensively used in the past to study sheet formability. Many extensions or modifications of these criteria have been proposed to improve necking predictions under only stretching conditions. This work analyses the maximum force principle under stretch-bending conditions and develops two different approaches to predict necking. The first is a generalisation of classical maximum force criteria to stretch-bending processes. The second approach is an extension of a previous work of the authors based on critical distance concepts, suggesting that necking of the sheet is controlled by the damage of a critical material volume located at the inner side of the sheet. An analytical deformation model is proposed to characterise the stretch-bending process under plane-strain conditions. Different parameters are considered, such as the thickness reduction, the gradient of variables through the sheet thickness, the thickness stress and the anisotropy of the material. The proposed necking models have been successfully applied to predict the failure in different materials, such as steel, brass and aluminium.

  17. Stress responses of Calluna vulgaris to reduced and oxidised N applied under 'real world conditions'

    International Nuclear Information System (INIS)

    Sheppard, Lucy J.; Leith, Ian D.; Crossley, A.; Van Dijk, N.; Fowler, D.; Sutton, M.A.; Woods, C.

    2008-01-01

    Effects and implications of reduced and oxidised N, applied under 'real world' conditions, since May 2002, are reported for Calluna growing on an ombrotrophic bog. Ammonia has been released from a 10 m line source generating monthly concentrations of 180-6 μg m -3 , while ammonium chloride and sodium nitrate are applied in rainwater at nitrate and ammonium concentrations below 4 mM and providing up to 56 kg N ha -1 year -1 above a background deposition of 10 kg N ha -1 year -1 . Ammonia concentrations, >8 μg m -3 have significantly enhanced foliar N concentrations, increased sensitivity to drought, frost and winter desiccation, spring frost damage and increased the incidence of pathogen outbreaks. The mature Calluna bushes nearest the NH 3 source have turned bleached and moribund. By comparison the Calluna receiving reduced and oxidised N in rain has shown no significant visible or stress related effects with no significant increase in N status. - Exposure to NH 3 reduces stress resistance and increases visible damage in mature Calluna

  18. Stress analysis of different prosthesis materials in implant-supported fixed dental prosthesis using 3D finite element method

    Directory of Open Access Journals (Sweden)

    Pedram Iranmanesh

    2014-01-01

    Full Text Available Introduction: In the present study, the finite element method (FEM was used to investigate the effects of prosthesis material types on stress distribution of the bone surrounding implants and to evaluate stress distribution in three-unit implant-supported fixed dental prosthesis (FDP. Materials and Methods: A three-dimensional (3D finite element FDP model of the maxillary second premolar to the second molar was designed. Three load conditions were statically applied on the functional cusps in horizontal (57.0 N, vertical (200.0 N, and oblique (400.0 N, θ = 120° directions. Four standard framework materials were evaluated: Polymethyl methacrylate (PMMA, base-metal, porcelain fused to metal, andporcelain. Results: The maximum of von Mises stress in the oblique direction was higher than the vertical and horizontal directions in all conditions. In the bone-crestal section, the maximum von Mises stress (53.78 MPa was observed in PMMA within oblique load. In FDPs, the maximum stress was generated at the connector region in all conditions. Conclusion: A noticeable difference was not observed in the bone stress distribution pattern with different prosthetic materials. Although, higher stress value could be seen in polymethyl methacrylate, all types of prosthesis yielded the same stress distribution pattern in FDP. More clinical studies are needed to evaluate the survival rate of these materials.

  19. New algorithm using only one variable measurement applied to a maximum power point tracker

    Energy Technology Data Exchange (ETDEWEB)

    Salas, V.; Olias, E.; Lazaro, A.; Barrado, A. [University Carlos III de Madrid (Spain). Dept. of Electronic Technology

    2005-05-01

    A novel algorithm for seeking the maximum power point of a photovoltaic (PV) array for any temperature and solar irradiation level, needing only the PV current value, is proposed. Satisfactory theoretical and experimental results are presented and were obtained when the algorithm was included on a 100 W 24 V PV buck converter prototype, using an inexpensive microcontroller. The load of the system used was a battery and a resistance. The main advantage of this new maximum power point tracking (MPPT), when is compared with others, is that it only uses the measurement of the photovoltaic current, I{sub PV}. (author)

  20. Maximum entropy beam diagnostic tomography

    International Nuclear Information System (INIS)

    Mottershead, C.T.

    1985-01-01

    This paper reviews the formalism of maximum entropy beam diagnostic tomography as applied to the Fusion Materials Irradiation Test (FMIT) prototype accelerator. The same formalism has also been used with streak camera data to produce an ultrahigh speed movie of the beam profile of the Experimental Test Accelerator (ETA) at Livermore. 11 refs., 4 figs

  1. Transmission of vertical stress in a real soil profile. Part III

    DEFF Research Database (Denmark)

    Lamandé, Mathieu; Schjønning, Per

    2011-01-01

    The transmission of stress in soils is extremely sensitive to changes in water content. According to the elasticity theory, for a given load applied to a given soil, an increase in soil water content yields a higher concentration of stresses under the centre of the load and a deeper propagation...... of stresses. We quantified the effect of soil water content of topsoil/subsoil layers (wet/wet, wet/dry, and dry/dry) on stress transmission. 3D measurements of vertical stresses under a towed wheel (800/50R34) were performed in situ in a Stagnic Luvisol. The tyre was loaded with 60 kN, and we used...... were measured in separate tests. Increase of water content in the topsoil by 114% increased the contact area by 149%, decreased the vertical stresses at the tyre–soil interface by 50%, and decreased the maximum vertical stress at 0.3 and 0.6 m depth by 46 and 63%, respectively. Stress attenuation...

  2. Indirect Measurement of Energy Density of Soft PZT Ceramic Utilizing Mechanical Stress

    Science.gov (United States)

    Unruan, Muangjai; Unruan, Sujitra; Inkong, Yutthapong; Yimnirun, Rattikorn

    2017-11-01

    This paper reports on an indirect measurement of energy density of soft PZT ceramic utilizing mechanical stress. The method works analogous to the Olsen cycle and allows for a large amount of electro-mechanical energy conversion. A maximum energy density of 350 kJ/m3/cycle was found under 0-312 MPa and 1-20 kV/cm of applied mechanical stress and electric field, respectively. The obtained result is substantially higher than the results reported in previous studies of PZT materials utilizing a direct piezoelectric effect.

  3. The mechanical behaviour of NBR/FEF under compressive cyclic stress strain

    Science.gov (United States)

    Mahmoud, W. E.; El-Eraki, M. H. I.; El-Lawindy, A. M. Y.; Hassan, H. H.

    2006-06-01

    Acrylonitrile butadiene rubber compounds filled with different concentrations of fast extrusion furnace (FEF) carbon black were experimentally investigated. The stress-strain curves of the composites were studied, which suggest good filler-matrix adhesion. The large reinforcement effect of the filler followed the Guth model for non-spherical particles. The effect of FEF carbon black on the cyclic fatigue and hysteresis was also examined. The loading and unloading stress-strain relationships for any cycle were described by applying Ogden's model for rubber samples. The dissipation energy that indicates the vibration damping capacity for all samples was determined. A simple model was proposed, to investigate the relation between maximum stress and the number of cyclic fatigue.

  4. The mechanical behaviour of NBR/FEF under compressive cyclic stress-strain

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoud, W E [Faculty of Science, Physics Department, Suez Canal University, Ismailia (Egypt); El-Eraki, M H I [Faculty of Science, Physics Department, Suez Canal University, Ismailia (Egypt); El-Lawindy, A M Y [Faculty of Science, Physics Department, Suez Canal University, Ismailia (Egypt); Hassan, H H [Faculty of Science, Physics Department, Cairo University, Giza (Egypt)

    2006-06-07

    Acrylonitrile butadiene rubber compounds filled with different concentrations of fast extrusion furnace (FEF) carbon black were experimentally investigated. The stress-strain curves of the composites were studied, which suggest good filler-matrix adhesion. The large reinforcement effect of the filler followed the Guth model for non-spherical particles. The effect of FEF carbon black on the cyclic fatigue and hysteresis was also examined. The loading and unloading stress-strain relationships for any cycle were described by applying Ogden's model for rubber samples. The dissipation energy that indicates the vibration damping capacity for all samples was determined. A simple model was proposed, to investigate the relation between maximum stress and the number of cyclic fatigue.

  5. The mechanical behaviour of NBR/FEF under compressive cyclic stress-strain

    International Nuclear Information System (INIS)

    Mahmoud, W E; El-Eraki, M H I; El-Lawindy, A M Y; Hassan, H H

    2006-01-01

    Acrylonitrile butadiene rubber compounds filled with different concentrations of fast extrusion furnace (FEF) carbon black were experimentally investigated. The stress-strain curves of the composites were studied, which suggest good filler-matrix adhesion. The large reinforcement effect of the filler followed the Guth model for non-spherical particles. The effect of FEF carbon black on the cyclic fatigue and hysteresis was also examined. The loading and unloading stress-strain relationships for any cycle were described by applying Ogden's model for rubber samples. The dissipation energy that indicates the vibration damping capacity for all samples was determined. A simple model was proposed, to investigate the relation between maximum stress and the number of cyclic fatigue

  6. Zipf's law, power laws and maximum entropy

    International Nuclear Information System (INIS)

    Visser, Matt

    2013-01-01

    Zipf's law, and power laws in general, have attracted and continue to attract considerable attention in a wide variety of disciplines—from astronomy to demographics to software structure to economics to linguistics to zoology, and even warfare. A recent model of random group formation (RGF) attempts a general explanation of such phenomena based on Jaynes' notion of maximum entropy applied to a particular choice of cost function. In the present paper I argue that the specific cost function used in the RGF model is in fact unnecessarily complicated, and that power laws can be obtained in a much simpler way by applying maximum entropy ideas directly to the Shannon entropy subject only to a single constraint: that the average of the logarithm of the observable quantity is specified. (paper)

  7. The effect of initial stress induced during the steel manufacturing process on the welding residual stress in multi-pass butt welding

    Directory of Open Access Journals (Sweden)

    Jeong-ung Park

    2018-03-01

    Full Text Available A residual stress generated in the steel structure is broadly categorized into initial residual stress during manufacturing steel material, welding residual stress caused by welding, and heat treatment residual stress by heat treatment. Initial residual stresses induced during the manufacturing process is combined with welding residual stress or heat treatment residual stress, and remained as a final residual stress. Because such final residual stress affects the safety and strength of the structure, it is of utmost importance to measure or predict the magnitude of residual stress, and to apply this point on the design of the structure. In this study, the initial residual stress of steel structures having thicknesses of 25 mm and 70 mm during manufacturing was measured in order to investigate initial residual stress (hereinafter, referred to as initial stress. In addition, thermal elastic plastic FEM analysis was performed with this initial condition, and the effect of initial stress on the welding residual stress was investigated. Further, the reliability of the FE analysis result, considering the initial stress and welding residual stress for the steel structures having two thicknesses, was validated by comparing it with the measured results. In the vicinity of the weld joint, the initial stress is released and finally controlled by the weld residual stress. On the other hand, the farther away from the weld joint, the greater the influence of the initial stress. The range in which the initial stress affects the weld residual stress was not changed by the initial stress. However, in the region where the initial stress occurs in the compressive stress, the magnitude of the weld residual compressive stress varies with the compression or tension of the initial stress. The effect of initial stress on the maximum compression residual stress was far larger when initial stress was considered in case of a thickness of 25 mm with a value of 180

  8. Tectonic stress history and the relationship with uranium mineralization in Shenchong mining area

    International Nuclear Information System (INIS)

    Zhu Mingqiang; Lin Yinshan; Kang Zili

    1996-01-01

    The rejection method of maximum statistical for principal stress axis is applied to complex granite body, this paper divide mining area tectonic process into six epochs. The relationship between the tectonic process and uranium mineralization is also discussed, and the later 3 times fracture process of Diwa epoch control the removing and gathering of Uranium in this area

  9. Maximum entropy reconstructions for crystallographic imaging; Cristallographie et reconstruction d`images par maximum d`entropie

    Energy Technology Data Exchange (ETDEWEB)

    Papoular, R

    1997-07-01

    The Fourier Transform is of central importance to Crystallography since it allows the visualization in real space of tridimensional scattering densities pertaining to physical systems from diffraction data (powder or single-crystal diffraction, using x-rays, neutrons, electrons or else). In turn, this visualization makes it possible to model and parametrize these systems, the crystal structures of which are eventually refined by Least-Squares techniques (e.g., the Rietveld method in the case of Powder Diffraction). The Maximum Entropy Method (sometimes called MEM or MaxEnt) is a general imaging technique, related to solving ill-conditioned inverse problems. It is ideally suited for tackling undetermined systems of linear questions (for which the number of variables is much larger than the number of equations). It is already being applied successfully in Astronomy, Radioastronomy and Medical Imaging. The advantages of using MAXIMUM Entropy over conventional Fourier and `difference Fourier` syntheses stem from the following facts: MaxEnt takes the experimental error bars into account; MaxEnt incorporate Prior Knowledge (e.g., the positivity of the scattering density in some instances); MaxEnt allows density reconstructions from incompletely phased data, as well as from overlapping Bragg reflections; MaxEnt substantially reduces truncation errors to which conventional experimental Fourier reconstructions are usually prone. The principles of Maximum Entropy imaging as applied to Crystallography are first presented. The method is then illustrated by a detailed example specific to Neutron Diffraction: the search for proton in solids. (author). 17 refs.

  10. Influence of Diamondlike Carbon Coating of Screws on Axial Tightening Force and Stress Distribution on Overdenture Bar Frameworks with Different Fit Levels and Materials.

    Science.gov (United States)

    dos Santos, Mateus Bertolini Fernandes; Bacchi, Atais; Consani, Rafael Leonardo Xediek; Correr-Sobrinho, Lourenço

    2015-01-01

    The aim of this study was to evaluate the axial tightening force applied by conventional and diamondlike carbon (DLC)-coated screws and to verify, through three-dimensional finite element analysis (FEA), the stress distribution caused by different framework materials and prosthetic screws in overdenture frameworks with different misfit levels. The axial tightening force applied by the screw was evaluated by means of a titanium matrix connected to a load cell. Conventional titanium or DLC-coated screws were tightened with a digital torque wrench, and the load values were recorded. The values were applied in an FEA to a bar-clip attachment system connected to two 4.0 × 11-mm external-hexagon titanium implants placed in an anterior edentulous arch. DLC-coated and conventional screws were modeled with their respective axial forces obtained on the experimental evaluation for three bar framework materials (titanium, nickel-chromium, and cobalt-chromium) and three levels of misfit (100, 150, and 200 μm). Von Mises stresses for prosthetic components and maximum principal stress and microstrains (maximum principal strains) for bone tissue were measured. The mean force applied by the conventional screw was 25.55 N (± 1.78); the prosthetic screw coated with a DLC layer applied a mean force of 31.44 N (± 2.11), a statistically significant difference. In the FEA, the DLC screw led to higher stresses on the framework; however, the prosthetic screw suffered lower stress. No influence of screw type was seen in the bone tissue. Titanium frameworks reduced the stress transmitted to the bone tissue and the bar framework but had no influence on the screws. Higher misfit values resulted in an increased stress/strain in bone tissue and bar framework, which was not the case for retention screws.

  11. Stress transfer mechanisms at the submicron level for graphene/polymer systems.

    Science.gov (United States)

    Anagnostopoulos, George; Androulidakis, Charalampos; Koukaras, Emmanuel N; Tsoukleri, Georgia; Polyzos, Ioannis; Parthenios, John; Papagelis, Konstantinos; Galiotis, Costas

    2015-02-25

    The stress transfer mechanism from a polymer substrate to a nanoinclusion, such as a graphene flake, is of extreme interest for the production of effective nanocomposites. Previous work conducted mainly at the micron scale has shown that the intrinsic mechanism of stress transfer is shear at the interface. However, since the interfacial shear takes its maximum value at the very edge of the nanoinclusion it is of extreme interest to assess the effect of edge integrity upon axial stress transfer at the submicron scale. Here, we conduct a detailed Raman line mapping near the edges of a monolayer graphene flake that is simply supported onto an epoxy-based photoresist (SU8)/poly(methyl methacrylate) matrix at steps as small as 100 nm. We show for the first time that the distribution of axial strain (stress) along the flake deviates somewhat from the classical shear-lag prediction for a region of ∼ 2 μm from the edge. This behavior is mainly attributed to the presence of residual stresses, unintentional doping, and/or edge effects (deviation from the equilibrium values of bond lengths and angles, as well as different edge chiralities). By considering a simple balance of shear-to-normal stresses at the interface we are able to directly convert the strain (stress) gradient to values of interfacial shear stress for all the applied tensile levels without assuming classical shear-lag behavior. For large flakes a maximum value of interfacial shear stress of 0.4 MPa is obtained prior to flake slipping.

  12. Possible ecosystem impacts of applying maximum sustainable yield policy in food chain models.

    Science.gov (United States)

    Ghosh, Bapan; Kar, T K

    2013-07-21

    This paper describes the possible impacts of maximum sustainable yield (MSY) and maximum sustainable total yield (MSTY) policy in ecosystems. In general it is observed that exploitation at MSY (of single species) or MSTY (of multispecies) level may cause the extinction of several species. In particular, for traditional prey-predator system, fishing under combined harvesting effort at MSTY (if it exists) level may be a sustainable policy, but if MSTY does not exist then it is due to the extinction of the predator species only. In generalist prey-predator system, harvesting of any one of the species at MSY level is always a sustainable policy, but harvesting of both the species at MSTY level may or may not be a sustainable policy. In addition, we have also investigated the MSY and MSTY policy in a traditional tri-trophic and four trophic food chain models. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Temperature and stress calculation for final disposal

    International Nuclear Information System (INIS)

    Tarandi, T.

    1979-02-01

    Temperature and stress distribution in and around the final storage facility has been calculated for three different arrangements of the tunnels: - 2 planes with 60 m vertical distance between them - 2 planes with 100 m distance and - 1 plane. The highest temperatures and stresses occur for the 2 plane alternative with distance 60 m between planes. The maximum compressive stress is in this case 24.0 MPa 140 years after the time of deposition, compared with 12.6 MPa in the 1 plane case. The maximum tensile stress exists at the surface and is in the 2 plane case 6.0 MPa 800 - 1,500 years after deposition, compared with 4.2 MPa for the 1 plane variant. An estimation of maximum tensile stresses between the tunnel planes yields a value of 1.5 MPa. The above-mentioned stresses are due to temperature distribution induced by the radioactive waste. To obtain the total stresses, initial stresses in the undisturbed rock, which vary according to location, are to be added to these stresses. (author)

  14. Electrochemical noise measurements techniques and the reversing dc potential drop method applied to stress corrosion essays

    International Nuclear Information System (INIS)

    Aly, Omar Fernandes; Andrade, Arnaldo Paes de; MattarNeto, Miguel; Aoki, Idalina Vieira

    2002-01-01

    This paper aims to collect information and to discuss the electrochemical noise measurements and the reversing dc potential drop method, applied to stress corrosion essays that can be used to evaluate the nucleation and the increase of stress corrosion cracking in Alloy 600 and/or Alloy 182 specimens from Angra I Nuclear Power Plant. Therefore we will pretend to establish a standard procedure to essays to be realized on the new autoclave equipment on the Laboratorio de Eletroquimica e Corrosao do Departamento de Engenharia Quimica da Escola Politecnica da Universidade de Sao Paulo - Electrochemical and Corrosion Laboratory of the Chemical Engineering Department of Polytechnical School of Sao Paulo University, Brazil. (author)

  15. Topics in Bayesian statistics and maximum entropy

    International Nuclear Information System (INIS)

    Mutihac, R.; Cicuttin, A.; Cerdeira, A.; Stanciulescu, C.

    1998-12-01

    Notions of Bayesian decision theory and maximum entropy methods are reviewed with particular emphasis on probabilistic inference and Bayesian modeling. The axiomatic approach is considered as the best justification of Bayesian analysis and maximum entropy principle applied in natural sciences. Particular emphasis is put on solving the inverse problem in digital image restoration and Bayesian modeling of neural networks. Further topics addressed briefly include language modeling, neutron scattering, multiuser detection and channel equalization in digital communications, genetic information, and Bayesian court decision-making. (author)

  16. 3D multiscale crack propagation using the XFEM applied to a gas turbine blade

    Science.gov (United States)

    Holl, Matthias; Rogge, Timo; Loehnert, Stefan; Wriggers, Peter; Rolfes, Raimund

    2014-01-01

    This work presents a new multiscale technique to investigate advancing cracks in three dimensional space. This fully adaptive multiscale technique is designed to take into account cracks of different length scales efficiently, by enabling fine scale domains locally in regions of interest, i.e. where stress concentrations and high stress gradients occur. Due to crack propagation, these regions change during the simulation process. Cracks are modeled using the extended finite element method, such that an accurate and powerful numerical tool is achieved. Restricting ourselves to linear elastic fracture mechanics, the -integral yields an accurate solution of the stress intensity factors, and with the criterion of maximum hoop stress, a precise direction of growth. If necessary, the on the finest scale computed crack surface is finally transferred to the corresponding scale. In a final step, the model is applied to a quadrature point of a gas turbine blade, to compute crack growth on the microscale of a real structure.

  17. Stress state of main stop valve with 500 mm nominal diameter white thermomechanical loading

    International Nuclear Information System (INIS)

    Koklyuev, G.A.; Plotnikov, V.P.

    1987-01-01

    The method of finite elements was applied to calculate the stress-strain state of the main isolation valve case with 500 mm nominal diameter while thermomechanical loading. Maximum stress takes place in the zone of joining nozzles with a spherical case and it attains the value of 138 MPa at working pressure of 12.5 MPa. The stress level in the point of nozzle-case welding is essentially lower than in zones of stres concentration and when excluding water hitting the slot of the lack of fusion in the route of the weld the weld service life is attained during the calculated service life

  18. Thermal stresses in long prisms by relaxation methods

    International Nuclear Information System (INIS)

    Cummins, J.D.

    1959-07-01

    A general method is presented for calculating the elastic thermal stresses in long prisms which are producing heat and are not solvable by simple analytical methods. The problem of an inverted lattice i.e. an hexagonal coolant passage surrounded by hexagonal fuel elements is considered and the temperature and principal thermal stress distributions evaluated for the particular case of 20% coolant. The maximum thermal stress for this type of fuel element is about the same as the maximum thermal stress in a cylindrical fuel element surrounded by a sea of coolant assuming the existence of the same maximum temperature drop and material properties. (author)

  19. Thermal stresses in long prisms by relaxation methods

    Energy Technology Data Exchange (ETDEWEB)

    Cummins, J D [Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1959-07-15

    A general method is presented for calculating the elastic thermal stresses in long prisms which are producing heat and are not solvable by simple analytical methods. The problem of an inverted lattice i.e. an hexagonal coolant passage surrounded by hexagonal fuel elements is considered and the temperature and principal thermal stress distributions evaluated for the particular case of 20% coolant. The maximum thermal stress for this type of fuel element is about the same as the maximum thermal stress in a cylindrical fuel element surrounded by a sea of coolant assuming the existence of the same maximum temperature drop and material properties. (author)

  20. Comparison of gravimetric and mantle flow solutions for sub-lithopsheric stress modeling and their combination

    Science.gov (United States)

    Eshagh, Mehdi; Steinberger, Bernhard; Tenzer, Robert; Tassara, Andrés

    2018-05-01

    Based on Hager and O'Connell's solution to mantle flow equations, the stresses induced by mantle convection are determined using the density and viscosity structure in addition to topographic data and a plate velocity model. The solution to mantle flow equations requires the knowledge of mantle properties that are typically retrieved from seismic information. Large parts of the world are, however, not yet covered sufficiently by seismic surveys. An alternative method of modeling the stress field was introduced by Runcorn. He formulated a direct relation between the stress field and gravity data, while adopting several assumptions, particularly disregarding the toroidal mantle flow component and mantle viscosity variations. A possible way to overcome theoretical deficiencies of Runcorn's theory as well as some practical limitations of applying Hager and O'Connell's theory (in the absence of seismic data) is to combine these two methods. In this study, we apply a least-squares analysis to combine these two methods based on the gravity data inversion constraint on mantle flow equations. In particular, we use vertical gravity gradients from the Gravity field and steady state Ocean Circulation Explorer that are corrected for the gravitational contribution of crustal density heterogeneities prior to applying a localized gravity-gradient inversion. This gravitational contribution is estimated based on combining the Vening Meinesz-Moritz and flexural isostatic theories. Moreover, we treat the non-isostatic effect implicitly by applying a band-limited kernel of the integral equation during the inversion. In numerical studies of modeling, the stress field within the South American continental lithosphere we compare the results obtained after applying Runcorn and Hager and O'Connell's methods as well as their combination. The results show that, according to Hager and O'Connell's (mantle flow) solution, the maximum stress intensity is inferred under the northern Andes

  1. Evaluation of stress distribution of implant-retained mandibular overdenture with different vertical restorative spaces: A finite element analysis

    Science.gov (United States)

    Ebadian, Behnaz; Farzin, Mahmoud; Talebi, Saeid; Khodaeian, Niloufar

    2012-01-01

    Background: Available restorative space and bar height is an important factor in stress distribution of implant-supported overdentures. The purpose of this study was to evaluate the effect of different vertical restorative spaces and different bar heights on the stress distribution around implants by 3D finite element analysis. Materials and Methods: 3D finite element models were developed from mandibular overdentures with two implants in the interforaminal region. In these models, four different bar heights from gingival crest (0.5, 1, 1.5, 2 mm) with 15 mm occlusal plane height and three different occlusal plane heights from gingival crest (9, 12, 15 mm) with 2 mm bar height were analyzed. A vertical unilateral and a bilateral load of 150 N were applied to the central occlusal fossa of the first molar and the stress of bone around implant was analyzed by finite element analysis. Results: By increasing vertical restorative space, the maximum stress values around implants were found to be decreased in unilateral loading models but slightly increased in bilateral loading cases. By increasing bar height from gingival crest, the maximum stress values around implants were found to be increased in unilateral loading models but slightly decreased in bilateral loading cases. In unilateral loading models, maximum stress was found in a model with 9 mm occlusal plane height and 1.5 mm bar height (6.254 MPa), but in bilateral loading cases, maximum stress was found in a model with 15 mm occlusal plane height and 0.5 mm bar height (3.482 MPa). Conclusion: The reduction of bar height and increase in the thickness of acrylic resin base in implant-supported overdentures are biomechanically favorable and may result in less stress in periimplant bone. PMID:23559952

  2. Recovery and deformation substructures of zircaloy-4 in high temperature plasticity under stationary or non-stationary stress

    International Nuclear Information System (INIS)

    Bocek, M.; Armas, I.

    1982-01-01

    It was the aim of the present investigation to examine how the recovery rate in creep is influenced by a non-stationary stress. For purposes of phenomenological analysis it is postulated that, irrespective of whether the applied stress is stationary or not, for large strains the mean internal stress sigmasub(i) approaches a stationary value sigmasub(i,s). The stationary recovery rate Rsub(s) for constant load creep turns out be governed by the applied stress indicating that the recovery mechanism is dynamic in nature. For sigma-ramp loading, Rsub(s) is dependent on the stress rate sigma. In tensional stress cycling, Rsub(s) is governed by the maximum stress sigmasub(M) and is also dependent on the ratio of sigmasub(M) to the minimum stress sigma 0 . TEM examination of Zircaloy-4 specimens crept at 800 0 C at constant and cycling load respectively could not reveal any differences in the deformation substructure for the two loading types. Subgrain formation did not appear, individual dislocations were observed only rarely. However, typical networks were formed as well as pileups which perhaps are responsible for the back stress in high temperature plasticity (HTP). (orig.)

  3. Functional Maximum Autocorrelation Factors

    DEFF Research Database (Denmark)

    Larsen, Rasmus; Nielsen, Allan Aasbjerg

    2005-01-01

    MAF outperforms the functional PCA in concentrating the interesting' spectra/shape variation in one end of the eigenvalue spectrum and allows for easier interpretation of effects. Conclusions. Functional MAF analysis is a useful methods for extracting low dimensional models of temporally or spatially......Purpose. We aim at data where samples of an underlying function are observed in a spatial or temporal layout. Examples of underlying functions are reflectance spectra and biological shapes. We apply functional models based on smoothing splines and generalize the functional PCA in......\\verb+~+\\$\\backslash\\$cite{ramsay97} to functional maximum autocorrelation factors (MAF)\\verb+~+\\$\\backslash\\$cite{switzer85,larsen2001d}. We apply the method to biological shapes as well as reflectance spectra. {\\$\\backslash\\$bf Methods}. MAF seeks linear combination of the original variables that maximize autocorrelation between...

  4. An analytical nonlinear magnetoelectric coupling model of laminated composites under combined pre-stress and magnetic bias loadings

    International Nuclear Information System (INIS)

    Zhou, Hao-Miao; Qu, Shao-Xing; Ou, Xiao-Wei; Xiao, Ying; Wu, Hua-Ping

    2013-01-01

    Based on the equivalent circuit method, this paper adopts the nonlinear magnetostrictive constitutive relations to establish an analytical nonlinear magnetoelectric coefficient model for magnetostrictive/piezoelectric/magnetostrictive laminated magnetoelectric composites. When the pre-stress is set to zero in the model, the predicted results of the magnetoelectric coefficient coincide well with the available experimental results both qualitatively and quantitatively. Using the model, we can qualitatively predict the influence of the pre-stress, magnetic bias fields and the volume fraction of the magnetostrictive material on the magnetoelectric coefficient. The predicted results show that the influences of the pre-stress on the magnetoelectric coefficient, which varies with the magnetic bias field, before and after reaching the magnetoelectric coefficient maximum, are opposite. That is, the influence of the pre-stress on curves of the magnetoelectric coefficient reverses when the magnetoelectric coefficient reaches its maximum. Therefore, the correct setting of the pre-stress can lower the applied magnetic bias field and improve the magnetoelectric coefficient. The established nonlinear magnetoelectric effect model can provide a theoretical basis for regulating the magnetoelectric coefficient by the pre-stress and magnetic bias field and make it possible to design high-precision miniature magnetoelectric devices. (paper)

  5. On the Pontryagin maximum principle for systems with delays. Economic applications

    Science.gov (United States)

    Kim, A. V.; Kormyshev, V. M.; Kwon, O. B.; Mukhametshin, E. R.

    2017-11-01

    The Pontryagin maximum principle [6] is the key stone of finite-dimensional optimal control theory [1, 2, 5]. So beginning with opening the maximum principle it was important to extend the maximum principle on various classes of dynamical systems. In t he paper we consider some aspects of application of i-smooth analysis [3, 4] in the theory of the Pontryagin maximum principle [6] for systems with delays, obtained results can be applied by elaborating optimal program controls in economic models with delays.

  6. The genetics of aging in optimal and stressful environments

    International Nuclear Information System (INIS)

    Parsons, P.A.

    1978-01-01

    The genetic basis of aging in Drosophila varies according to environment, as shown by variations in temperatures and levels of 60 Co-γ irradiation. Under conditions of extreme stress large additive differences occur not found under less acute stresses. In addition, longevities of strains are not necessarily correlated across levels of 60 C0-γ irradiation or temperatures, so that studies of the genetics of aging are not only relevant to the environment selected. Given these results on experimental animals, it appears impossible to separate clearly genetic and environmental factors determining longevity in man - a conclusion that in any case appears likely from human studies. In experimental organisms such as Drosophila, differences between genotypes for longevity are magnified under stress compared with optimal environments. Hybrid and heterozygote superiority frequently occur for density-independent physical stresses of the environment as well as density-dependent behavioral stresses due to crowding levels. It is argued that these conclusions apply to man, so that for maximum longevity genotypes are likely to be highly heterozygous. (author)

  7. Maximum neutron flux in thermal reactors; Maksimum neutronskog fluksa kod termalnih reaktora

    Energy Technology Data Exchange (ETDEWEB)

    Strugar, P V [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1968-07-01

    Direct approach to the problem is to calculate spatial distribution of fuel concentration if the reactor core directly using the condition of maximum neutron flux and comply with thermal limitations. This paper proved that the problem can be solved by applying the variational calculus, i.e. by using the maximum principle of Pontryagin. Mathematical model of reactor core is based on the two-group neutron diffusion theory with some simplifications which make it appropriate from maximum principle point of view. Here applied theory of maximum principle are suitable for application. The solution of optimum distribution of fuel concentration in the reactor core is obtained in explicit analytical form. The reactor critical dimensions are roots of a system of nonlinear equations and verification of optimum conditions can be done only for specific examples.

  8. Reynolds-Stress and Triple-Product Models Applied to a Flow with Rotation and Curvature

    Science.gov (United States)

    Olsen, Michael E.

    2016-01-01

    Turbulence models, with increasing complexity, up to triple product terms, are applied to the flow in a rotating pipe. The rotating pipe is a challenging case for turbulence models as it contains significant rotational and curvature effects. The flow field starts with the classic fully developed pipe flow, with a stationary pipe wall. This well defined condition is then subjected to a section of pipe with a rotating wall. The rotating wall introduces a second velocity scale, and creates Reynolds shear stresses in the radial-circumferential and circumferential-axial planes. Furthermore, the wall rotation introduces a flow stabilization, and actually reduces the turbulent kinetic energy as the flow moves along the rotating wall section. It is shown in the present work that the Reynolds stress models are capable of predicting significant reduction in the turbulent kinetic energy, but triple product improves the predictions of the centerline turbulent kinetic energy, which is governed by convection, dissipation and transport terms, as the production terms vanish on the pipe axis.

  9. What Is Better Than Coulomb Failure Stress? A Ranking of Scalar Static Stress Triggering Mechanisms from 105 Mainshock-Aftershock Pairs

    Science.gov (United States)

    Meade, Brendan J.; DeVries, Phoebe M. R.; Faller, Jeremy; Viegas, Fernanda; Wattenberg, Martin

    2017-11-01

    Aftershocks may be triggered by the stresses generated by preceding mainshocks. The temporal frequency and maximum size of aftershocks are well described by the empirical Omori and Bath laws, but spatial patterns are more difficult to forecast. Coulomb failure stress is perhaps the most common criterion invoked to explain spatial distributions of aftershocks. Here we consider the spatial relationship between patterns of aftershocks and a comprehensive list of 38 static elastic scalar metrics of stress (including stress tensor invariants, maximum shear stress, and Coulomb failure stress) from 213 coseismic slip distributions worldwide. The rates of true-positive and false-positive classification of regions with and without aftershocks are assessed with receiver operating characteristic analysis. We infer that the stress metrics that are most consistent with observed aftershock locations are maximum shear stress and the magnitude of the second and third invariants of the stress tensor. These metrics are significantly better than random assignment at a significance level of 0.005 in over 80% of the slip distributions. In contrast, the widely used Coulomb failure stress criterion is distinguishable from random assignment in only 51-64% of the slip distributions. These results suggest that a number of alternative scalar metrics are better predictors of aftershock locations than classic Coulomb failure stress change.

  10. Maximum-entropy description of animal movement.

    Science.gov (United States)

    Fleming, Chris H; Subaşı, Yiğit; Calabrese, Justin M

    2015-03-01

    We introduce a class of maximum-entropy states that naturally includes within it all of the major continuous-time stochastic processes that have been applied to animal movement, including Brownian motion, Ornstein-Uhlenbeck motion, integrated Ornstein-Uhlenbeck motion, a recently discovered hybrid of the previous models, and a new model that describes central-place foraging. We are also able to predict a further hierarchy of new models that will emerge as data quality improves to better resolve the underlying continuity of animal movement. Finally, we also show that Langevin equations must obey a fluctuation-dissipation theorem to generate processes that fall from this class of maximum-entropy distributions when the constraints are purely kinematic.

  11. Experiment on relationship between the magnetic gradient of low-carbon steel and its stress

    International Nuclear Information System (INIS)

    Jian Xingliang; Jian Xingchao; Deng Guoyong

    2009-01-01

    In geomagnetic field, a series of tensile experiments on the low-carbon steel sticks were carried out. A special homemade detector was used to measure the magnetic gradient on the material surface. The results showed that the relationship between the magnetic gradient and the stress varied with different conditions of measurement. There was no obvious correlation between the magnetic gradient and the tensile stress if the sample remained on the material test machine. If the sample was taken off from the machine, the measured magnetic gradient was linear with the prior maximum stress. In Nanjing, PR China, a place of 32 o N latitude, the slope of the linear relationship was about 67 (uT/m)/MPa. This offered a new method of non-destructive stress testing by measuring the magnetic gradient on the ferromagnetic component surface. The prior maximum applied stress of the sample could be tested by measuring the present surface magnetic gradient. Actually this phenomenon was the metal magnetic memory (MMM). The magnetic gradient near the stress concentration zone of the sample, the necking point, was much larger than other area. Thus, the hidden damage in the ferromagnetic component could be detected early by measuring the magnetic gradient distribution on its surface. In addition, the magnetic memory signal gradually weakened as the sample was taken off and laid aside. Therefore, it was effective for a given period of time to detect the stress or stress concentration based on the MMM testing.

  12. Selection of the Maximum Spatial Cluster Size of the Spatial Scan Statistic by Using the Maximum Clustering Set-Proportion Statistic.

    Science.gov (United States)

    Ma, Yue; Yin, Fei; Zhang, Tao; Zhou, Xiaohua Andrew; Li, Xiaosong

    2016-01-01

    Spatial scan statistics are widely used in various fields. The performance of these statistics is influenced by parameters, such as maximum spatial cluster size, and can be improved by parameter selection using performance measures. Current performance measures are based on the presence of clusters and are thus inapplicable to data sets without known clusters. In this work, we propose a novel overall performance measure called maximum clustering set-proportion (MCS-P), which is based on the likelihood of the union of detected clusters and the applied dataset. MCS-P was compared with existing performance measures in a simulation study to select the maximum spatial cluster size. Results of other performance measures, such as sensitivity and misclassification, suggest that the spatial scan statistic achieves accurate results in most scenarios with the maximum spatial cluster sizes selected using MCS-P. Given that previously known clusters are not required in the proposed strategy, selection of the optimal maximum cluster size with MCS-P can improve the performance of the scan statistic in applications without identified clusters.

  13. THE GENERALIZED MAXIMUM LIKELIHOOD METHOD APPLIED TO HIGH PRESSURE PHASE EQUILIBRIUM

    Directory of Open Access Journals (Sweden)

    Lúcio CARDOZO-FILHO

    1997-12-01

    Full Text Available The generalized maximum likelihood method was used to determine binary interaction parameters between carbon dioxide and components of orange essential oil. Vapor-liquid equilibrium was modeled with Peng-Robinson and Soave-Redlich-Kwong equations, using a methodology proposed in 1979 by Asselineau, Bogdanic and Vidal. Experimental vapor-liquid equilibrium data on binary mixtures formed with carbon dioxide and compounds usually found in orange essential oil were used to test the model. These systems were chosen to demonstrate that the maximum likelihood method produces binary interaction parameters for cubic equations of state capable of satisfactorily describing phase equilibrium, even for a binary such as ethanol/CO2. Results corroborate that the Peng-Robinson, as well as the Soave-Redlich-Kwong, equation can be used to describe phase equilibrium for the following systems: components of essential oil of orange/CO2.Foi empregado o método da máxima verossimilhança generalizado para determinação de parâmetros de interação binária entre os componentes do óleo essencial de laranja e dióxido de carbono. Foram usados dados experimentais de equilíbrio líquido-vapor de misturas binárias de dióxido de carbono e componentes do óleo essencial de laranja. O equilíbrio líquido-vapor foi modelado com as equações de Peng-Robinson e de Soave-Redlich-Kwong usando a metodologia proposta em 1979 por Asselineau, Bogdanic e Vidal. A escolha destes sistemas teve como objetivo demonstrar que o método da máxima verosimilhança produz parâmetros de interação binária, para equações cúbicas de estado capazes de descrever satisfatoriamente até mesmo o equilíbrio para o binário etanol/CO2. Os resultados comprovam que tanto a equação de Peng-Robinson quanto a de Soave-Redlich-Kwong podem ser empregadas para descrever o equilíbrio de fases para o sistemas: componentes do óleo essencial de laranja/CO2.

  14. Stress analysis in high-temperature superconductors under pulsed field magnetization

    Science.gov (United States)

    Wu, Haowei; Yong, Huadong; Zhou, Youhe

    2018-04-01

    Bulk high-temperature superconductors (HTSs) have a high critical current density and can trap a large magnetic field. When bulk superconductors are magnetized by the pulsed field magnetization (PFM) technique, they are also subjected to a large electromagnetic stress, and the resulting thermal stress may cause cracking of the superconductor due to the brittle nature of the sample. In this paper, based on the H-formulation and the law of heat transfer, we can obtain the distributions of electromagnetic field and temperature, which are in qualitative agreement with experiment. After that, based on the dynamic equilibrium equations, the mechanical response of the bulk superconductor is determined. During the PFM process, the change in temperature has a dramatic effect on the radial and hoop stresses, and the maximum radial and hoop stress are 24.2 {{MPa}} and 22.6 {{MPa}}, respectively. The mechanical responses of a superconductor for different cases are also studied, such as the peak value of the applied field and the size of bulk superconductors. Finally, the stresses are also presented for different magnetization methods.

  15. The maximum economic depth of groundwater abstraction for irrigation

    Science.gov (United States)

    Bierkens, M. F.; Van Beek, L. P.; de Graaf, I. E. M.; Gleeson, T. P.

    2017-12-01

    Over recent decades, groundwater has become increasingly important for agriculture. Irrigation accounts for 40% of the global food production and its importance is expected to grow further in the near future. Already, about 70% of the globally abstracted water is used for irrigation, and nearly half of that is pumped groundwater. In many irrigated areas where groundwater is the primary source of irrigation water, groundwater abstraction is larger than recharge and we see massive groundwater head decline in these areas. An important question then is: to what maximum depth can groundwater be pumped for it to be still economically recoverable? The objective of this study is therefore to create a global map of the maximum depth of economically recoverable groundwater when used for irrigation. The maximum economic depth is the maximum depth at which revenues are still larger than pumping costs or the maximum depth at which initial investments become too large compared to yearly revenues. To this end we set up a simple economic model where costs of well drilling and the energy costs of pumping, which are a function of well depth and static head depth respectively, are compared with the revenues obtained for the irrigated crops. Parameters for the cost sub-model are obtained from several US-based studies and applied to other countries based on GDP/capita as an index of labour costs. The revenue sub-model is based on gross irrigation water demand calculated with a global hydrological and water resources model, areal coverage of crop types from MIRCA2000 and FAO-based statistics on crop yield and market price. We applied our method to irrigated areas in the world overlying productive aquifers. Estimated maximum economic depths range between 50 and 500 m. Most important factors explaining the maximum economic depth are the dominant crop type in the area and whether or not initial investments in well infrastructure are limiting. In subsequent research, our estimates of

  16. Maximum length scale in density based topology optimization

    DEFF Research Database (Denmark)

    Lazarov, Boyan Stefanov; Wang, Fengwen

    2017-01-01

    The focus of this work is on two new techniques for imposing maximum length scale in topology optimization. Restrictions on the maximum length scale provide designers with full control over the optimized structure and open possibilities to tailor the optimized design for broader range...... of manufacturing processes by fulfilling the associated technological constraints. One of the proposed methods is based on combination of several filters and builds on top of the classical density filtering which can be viewed as a low pass filter applied to the design parametrization. The main idea...

  17. Estimation of basal shear stresses from now ice-free LIA glacier forefields in the Swiss Alps

    Science.gov (United States)

    Fischer, Mauro; Haeberli, Wilfried; Huss, Matthias; Paul, Frank; Linsbauer, Andreas; Hoelzle, Martin

    2013-04-01

    In most cases, assessing the impacts of climatic changes on glaciers requires knowledge about the ice thickness distribution. Miscellaneous methodological approaches with different degrees of sophistication have been applied to model glacier thickness so far. However, all of them include significant uncertainty. By applying a parameterization scheme for ice thickness determination relying on assumptions about basal shear stress by Haeberli and Hoelzle (1995) to now ice-free glacier forefields in the Swiss Alps, basal shear stress values can be calculated based on a fast and robust experimental approach. In a GIS, the combination of recent (1973) and Little Ice Age (LIA) maximum (around 1850) glacier outlines, central flowlines, a recent Digital Elevation Model (DEM) and a DEM of glacier surface topography for the LIA maximum allows extracting local ice thickness over the forefield of individual glaciers. Subsequently, basal shear stress is calculated via the rheological assumption of perfect-plasticity relating ice thickness and surface slope to shear stress. The need of only very few input data commonly stored in glacier inventories permits an application to a large number of glaciers. Basal shear stresses are first calculated for subsamples of glaciers belonging to two test sites where the LIA maximum glacier surface is modeled with DEMs derived from accurate topographic maps for the mid 19th century. Neglecting outliers, the average resulting mean basal shear stress is around 80 kPa for the Bernina region (range 25-100 kPa) and 120 kPa (range 50-150 kPa) for the Aletsch region. For the entire Swiss Alps it is 100 kPa (range 40-175 kPa). Because complete LIA glacier surface elevation information is lacking there, a DEM is first created from reconstructed height of LIA lateral moraines and trimlines by using a simple GIS-based tool. A sensitivity analysis of the input parameters reveals that the performance of the developed approach primarily depends on the

  18. A practical exact maximum compatibility algorithm for reconstruction of recent evolutionary history.

    Science.gov (United States)

    Cherry, Joshua L

    2017-02-23

    Maximum compatibility is a method of phylogenetic reconstruction that is seldom applied to molecular sequences. It may be ideal for certain applications, such as reconstructing phylogenies of closely-related bacteria on the basis of whole-genome sequencing. Here I present an algorithm that rapidly computes phylogenies according to a compatibility criterion. Although based on solutions to the maximum clique problem, this algorithm deals properly with ambiguities in the data. The algorithm is applied to bacterial data sets containing up to nearly 2000 genomes with several thousand variable nucleotide sites. Run times are several seconds or less. Computational experiments show that maximum compatibility is less sensitive than maximum parsimony to the inclusion of nucleotide data that, though derived from actual sequence reads, has been identified as likely to be misleading. Maximum compatibility is a useful tool for certain phylogenetic problems, such as inferring the relationships among closely-related bacteria from whole-genome sequence data. The algorithm presented here rapidly solves fairly large problems of this type, and provides robustness against misleading characters than can pollute large-scale sequencing data.

  19. Effect of processing conditions on residual stress distributions by bead-on-plate welding after surface machining

    International Nuclear Information System (INIS)

    Ihara, Ryohei; Mochizuki, Masahito

    2014-01-01

    Residual stress is important factor for stress corrosion cracking (SCC) that has been observed near the welded zone in nuclear power plants. Especially, surface residual stress is significant for SCC initiation. In the joining processes of pipes, butt welding is conducted after surface machining. Residual stress is generated by both processes, and residual stress distribution due to surface machining is varied by the subsequent butt welding. In previous paper, authors reported that residual stress distribution generated by bead on plate welding after surface machining has a local maximum residual stress near the weld metal. The local maximum residual stress shows approximately 900 MPa that exceeds the stress threshold for SCC initiation. Therefore, for the safety improvement of nuclear power plants, a study on the local maximum residual stress is important. In this study, the effect of surface machining and welding conditions on residual stress distribution generated by welding after surface machining was investigated. Surface machining using lathe machine and bead on plate welding with tungsten inert gas (TIG) arc under various conditions were conducted for plate specimens made of SUS316L. Then, residual stress distributions were measured by X-ray diffraction method (XRD). As a result, residual stress distributions have the local maximum residual stress near the weld metal in all specimens. The values of the local maximum residual stresses are almost the same. The location of the local maximum residual stress is varied by welding condition. It could be consider that the local maximum residual stress is generated by same generation mechanism as welding residual stress in surface machined layer that has high yield stress. (author)

  20. [Effect of zirconia abutment angulation on stress distribution in the abutment and the bone around implant: a finite element study].

    Science.gov (United States)

    Yang, Yan-zhong; Tian, Xiao-hua; Zhou, Yan-min

    2015-08-01

    To investigate the effect of three different zirconia angular abutments on the stress distribution in bone and abutment using three-dimensional finite element analysis, and provide instruction for clinical application. Finite element analysis (FEA) was applied to analyze the stress distribution of three different zirconia/titanium angular abutments and bone around implant. The maximum Von Minses stress that existed in abutment, bolt and bone of the angular abutment model was significantly higher than that existed in the straight abutment model. The maximum Von Minses stress that existed in abutment, bolt and bone of the 20 ° angular abutment model was significantly higher than that existed in 15 ° angular abutment model. There was no significant difference between zirconia abutment model and titanium abutment model. The abutment angulation has a significant influence on the stress distribution in the abutment, bolt and bone, and exacerbates as the angulation increases, which suggest that we should take more attention to the implant orientation and use straight abutment or little angular abutment. The zirconia abutment can be used safely, and there is no noticeable difference between zirconia abutment and titanium abutment on stress distribution.

  1. Experimental And Theoretical Stress Analysis For Composite Plate Under Combined Load

    Directory of Open Access Journals (Sweden)

    Emad Qasim Hussein

    2017-12-01

    Full Text Available The combined effects of thermal and mechanical loadings on the distribution of stress-strain for E-glass fiber /polyester composite plates are investigated experimentally and numerically. The experimental work has been carried out by applying to a uniform temperature and tensile load on the composite plate inside the furnace and the deformation of plate measured by a dial gauge. Two parameter studies, the fiber volume fraction and fiber orientation on the stress-strain for plates subjected to identical mechanical and temperature gradient. The results presented showed that, the maximum absolute of total strain in longitudinal direction occurred at 50 N tension load and fiber angle 60º, while the minimum absolute values of it occurred at 15 N tension loads and fiber angle 0º. However the maximum absolute of total strain in transverse direction occurred at 15N tension load and fiber angle 0º, while the minimum absolute values of it are obtained at 50 N tension loads and fiber angle 60º. Also, the total strain in longitudinal and transverse direction decrease with increasing the fiber volume fraction. Comparison of the results in the experimental test with the numerical analysis of the total strain and evaluated the agreement between the two methods used, the maximum discrepancywas 20%.

  2. Vortex configuration in the presence of local magnetic field and locally applied stress

    Energy Technology Data Exchange (ETDEWEB)

    Wissberg, Shai; Kremen, Anna; Shperber, Yishai; Kalisky, Beena, E-mail: beena@biu.ac.il

    2017-02-15

    Highlights: • We discuss different ways to determine vortex configuration using a scanning SQUID. • We determined the vortex configuration by approaching the sample during cooling. • We observed an accumulation of vortices when contact was made with the sample. • We show how we can manipulate local vortex configuration using contact. - Abstract: Vortex configuration is determined by the repulsive interaction, which becomes dominant with increasing vortex density, by the pinning potential, and by other considerations such as the local magnetic fields, currents flowing in the sample, or as we showed recently, by local stress applied on the sample. In this work we describe different ways to control vortex configuration using scanning SQUID microscopy.

  3. Vortex configuration in the presence of local magnetic field and locally applied stress

    International Nuclear Information System (INIS)

    Wissberg, Shai; Kremen, Anna; Shperber, Yishai; Kalisky, Beena

    2017-01-01

    Highlights: • We discuss different ways to determine vortex configuration using a scanning SQUID. • We determined the vortex configuration by approaching the sample during cooling. • We observed an accumulation of vortices when contact was made with the sample. • We show how we can manipulate local vortex configuration using contact. - Abstract: Vortex configuration is determined by the repulsive interaction, which becomes dominant with increasing vortex density, by the pinning potential, and by other considerations such as the local magnetic fields, currents flowing in the sample, or as we showed recently, by local stress applied on the sample. In this work we describe different ways to control vortex configuration using scanning SQUID microscopy.

  4. ITER vacuum vessel dynamic stress analysis of a disruption

    International Nuclear Information System (INIS)

    Riemer, B.W.; Conner, D.L.; Strickler, D.J.; Williamson, D.E.

    1994-01-01

    Dynamic stress analysis of the International Thermonuclear Experimental Reactor vacuum vessel loaded by disruption forces was performed. The deformation and stress results showed strong inertial effects when compared to static analyses. Maximum stress predicted dynamically was 300 MPa, but stress shown by static analysis from loads at the same point in time reached only 80 MPa. The analysis also provided a reaction load history in the vessel's supports which is essential in evaluating support design. The disruption forces were estimated by assuming a 25-MA plasma current decaying at 1 MA/ms while moving vertically. In addition to forces developed within the vessel, vertical loadings from the first wall/strong back assemblies and the divertor were applied to the vessel at their attachment points. The first 50 natural modes were also determined. The first mode's frequency was 6.0 Hz, and its shape is characterized by vertical displacement of the vessel inner leg. The predicted deformation of the vessel appeared similar to its first mode shape combined with radial contraction. Kinetic energy history from the analysis also correlated with the first mode frequency

  5. The "moving valgus stress test" for medial collateral ligament tears of the elbow.

    Science.gov (United States)

    O'Driscoll, Shawn W M; Lawton, Richard L; Smith, Adam M

    2005-02-01

    The diagnosis of a painful partial tear of the medial collateral ligament in overhead-throwing athletes is challenging, even for experienced elbow surgeons and despite the use of sophisticated imaging techniques. The "moving valgus stress test" is an accurate physical examination technique for diagnosis of medial collateral ligament attenuation in the elbow. Cohort study (diagnosis); Level of evidence, 2. Twenty-one patients underwent surgical intervention for medial elbow pain due to medial collateral ligament insufficiency or other abnormality of chronic valgus overload, and they were assessed preoperatively with an examination called the moving valgus stress test. To perform the moving valgus stress test, the examiner applies and maintains a constant moderate valgus torque to the fully flexed elbow and then quickly extends the elbow. The test is positive if the medial elbow pain is reproduced at the medial collateral ligament and is at maximum between 120 degrees and 70 degrees. The moving valgus stress test was highly sensitive (100%, 17 of 17 patients) and specific (75%, 3 of 4 patients) when compared to assessment of the medial collateral ligament by surgical exploration or arthroscopic valgus stress testing. The mean shear range (ie, the arc within which pain was produced with the moving valgus stress test) was 120 degrees to 70 degrees. The mean angle at which pain was at a maximum was 90 degrees of elbow flexion. The moving valgus stress test is an accurate physical examination technique that, when performed and interpreted correctly, is highly sensitive for medial elbow pain arising from the medial collateral ligament.

  6. Applicability of initial stress measurement methods to Horonobe Siliceous rocks and initial stress state around Horonobe Underground Research Laboratory

    International Nuclear Information System (INIS)

    Sanada, Hiroyuki; Niunoya, Sumio; Matsui, Hiroya; Fujii, Yoshiaki

    2009-01-01

    Understanding initial stress condition in deep underground is important for such construction as rock cavern for geological disposal of HLW and underground power plant. Neogene sedimentary rock is widely distributed in Japan. There are only a few studies of initial stress measurement in Neogene sedimentary rock mass in Japan due to difficulty of measurement. Evaluation of initial stress condition around Horonobe Underground Research Laboratory Project was carried out in order to understand initial stress condition and applicability of AE, DSCA and hydraulic fracturing (HF) methods to Neogene sedimentary rock. Initial stress values obtained from AE method is smaller than overburden pressure due to time dependency of Kaizer effect. It would be difficult to use AE method as initial stress measurement method for Horonobe Siliceous rocks. Principal stress values by DSCA are similar to those by HF tests. Directions of maximum horizontal principal stresses are approximately in E-W and corresponded to HF results. In HF, rod type and wire-line type systems were compared. Workability of rod type was much better than wire-line type. However, re-opening pressure were not able to be precisely measured in case of rod type system due to the large compliance of the packers and rods. Horizontal maximum and minimum principal stresses increase linearly in HF results. Deviatoric stress is acting at shallow depth. Initial stress condition approaches hydrostatic condition with depth. Direction of maximum horizontal principal stress was in E-W direction which was similar to tectonic movement around Horonobe URL by triangular surveying. (author)

  7. Effect of Drought Stress on Growth and Morphological Characteristics of Two Garlic (Allium sativum L. Ecotypes in Different Planting Densities

    Directory of Open Access Journals (Sweden)

    shiva akbari

    2017-10-01

    underground organs and leaf area from measured samples of treatments were used. Results and Discussion The results showed that the highest value of maximum leaf area index (LAI, maximum total dry matter accumulation (TDM, maximum crop growth rate (CGR and maximum of net assimilation rate (NAR were observed at 100% ETc with the value of 5.537, 387.53 gr.m-2, 10.47 gr m-2day-1 and 4.92 gr.m-2leaf.day-1 respectively; and by applying the irrigation treatment of 80% ETc these values decreased to 3.745, 262.60 gr.m-2, 6.31 gr.m-2day-1 and 3.71 gr.m-2leaf.day-1 respectively. Drought stress can decrease cell development and division and plant photosynthesis, and thus, it can decrease leaf area index and consequently decrease light absorption, photosynthetic area, dry matter and crop growth rate. Difference between ecotypes in terms of number of leaves, maximum total dry matter accumulation and maximum crop growth rate was significant. Maximum crop growth rate (CGR in Toroud ecotype was higher than Tabas ecotype but number of leaves and maximum concentration of total dry matter (TDM in Tabas ecotype were higher than corresponding values in Toruod ecotype. The effect of planting density on maximum leaf area index (LAI, maximum total dry matter (TDM and maximum net assimilation rate (NAR was significant. The highest value of maximum leaf area index (5.017 and maximum total dry matter (358.57 g.m-2 concentration were obtained from 50 plant.m-2 density. The highest value of maximum net assimilation rate (4.61 was obtained from 30 plant.m-2 density. It could be because of having leaves exposed to more light and less shading. Conclusion Applying drought stress at the irrigation treatment of 80% ETc decreased studied growth characteristics of garlic. Therefore, it is recommended that garlic should be avoided from facing drought stress and its water requirement must be met as much as possible. In general, under drought stress, two studied ecotypes did not have any preference related to the

  8. Effects of fasting on maximum thermogenesis in temperature-acclimated rats

    Science.gov (United States)

    Wang, L. C. H.

    1981-09-01

    To further investigate the limiting effect of substrates on maximum thermogenesis in acute cold exposure, the present study examined the prevalence of this effect at different thermogenic capabilities consequent to cold- or warm-acclimation. Male Sprague-Dawley rats (n=11) were acclimated to 6, 16 and 26‡C, in succession, their thermogenic capabilities after each acclimation temperature were measured under helium-oxygen (21% oxygen, balance helium) at -10‡C after overnight fasting or feeding. Regardless of feeding conditions, both maximum and total heat production were significantly greater in 6>16>26‡C-acclimated conditions. In the fed state, the total heat production was significantly greater than that in the fasted state at all acclimating temperatures but the maximum thermogenesis was significant greater only in the 6 and 16‡C-acclimated states. The results indicate that the limiting effect of substrates on maximum and total thermogenesis is independent of the magnitude of thermogenic capability, suggesting a substrate-dependent component in restricting the effective expression of existing aerobic metabolic capability even under severe stress.

  9. Effect of polyethylene glycol induced drought stress on physio-hormonal attributes of soybean

    International Nuclear Information System (INIS)

    Hamayun, M.; Khan, A.L.; Ahmad, N.; Lee, In-Jung; Khan, S.A.; Shinwari, Z.K.

    2010-01-01

    Drought stress is a major abiotic constraint limiting crop production world wide. In current study, we investigated the adverse effects of drought stress on growth, yield and endogenous phytohormones of soybean. Polyethylene glycol (PEG) solutions of elevated strength (8% and 16%) were used for drought stress induction. Drought stress period span for two weeks each at pre and post flowering growth stage. It was observed that soybean growth and yield attributes significantly reduced under drought stress at both pre and post flowering period, while maximum reduction was caused by PEG (16%) applied at pre flowering time. The endogenous bioactive GA/sub 1/ and GA/sub 4/ content decreased under elevated drought stress. On the other hand, jasmonic acid (JA), salicylic acid (SA) and abscisic acid (ABA) content increased under drought stress. On the basis of current study, we concluded that application of earlier drought stress severely reduced growth and yield attributes of soybean when compared to its later application. Furthermore, increases in the endogenous contents of JA, SA and ABA in response to drought stress demonstrate the involvement of these hormones in drought stress resistance. (author)

  10. Physiological studies on photochemical oxidant injury in rice plants. III. Relationship between abscisic acid (ABA) and water metabolism in water-stressed rice plants

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Y.H.; Ota, Y.

    1981-12-01

    Several experiments were carried out to determine the effects of exogenously applied ABA on water metabolism, and to clarify the endogenous ABA relationships in ozone-sensitivity under different soil water content in rice plants. The rice plants were cultivated in soil with 60, 80, and 100% of maximum water holding capacity and under submerged condition. The results of the experiments were as follows: ozone injury was reduced with increasing ABA content of which production was increased under water stress conditions. Under water stressed conditions, the rate of water loss was decreased with increasing concentration of ABA applied exogenously. It may be assumed that the ozone-sensitivity is closely related to the stomatal closure caused by the increased ABA content due to water stress. 5 references, 4 tables.

  11. Strategy for a Rock Mechanics Site Descriptive Model. Development and testing of an approach to modelling the state of stress

    Energy Technology Data Exchange (ETDEWEB)

    Hakami, Eva; Hakami, Hossein [Itasca Geomekanik AB, Solna (Sweden); Cosgrove, John [Imperial College of Science and Technology, London (United Kingdom)

    2002-05-01

    The overall objective of this project has been to develop, test and establish a method for creating a Rock Mechanics Site Descriptive Model for a site considered in the site investigation programme. The work was divided into three parts, the empirical and theoretical 'property models' and the 'stress model'. The work on the stress model is presented in this report. The work consisted of i) a literature review about geological factors controlling in situ stress and a review about the use of numerical models for this subject, ii) the development of recommendations on the methodology to be applied during a site investigation and iii) the Test Case exercise, where the suggested methods were tested. The main mechanism controlling the in situ stress magnitudes in Sweden is plate tectonics causing the stress field to show similarities in most parts of north-western Europe, having a NW-SE trend of the maximum principal stress. The orientation of the stress field is largely determined by the relative movements by the plates. However, the stress orientation may also be influenced by the presence of large regional weak zones, such as the Tornquist deformation zone that lies between Sweden and Denmark. The strike of the Tornquist deformation zone is parallel to the maximum principal stress as observed in central and southern Sweden. The magnitude of the stress is more difficult to estimate, but the general pattern is an increase in magnitude with depth, at least for the upper kilometres. To determine the stress magnitude at a certain site and depth, with reasonable certainty, stress measurement should be used. A methodology for building a stress model has been proposed. It involves different steps starting with a preliminary stress estimation, followed by steps for interpreting site-specific information. If the stress pattern and structural geology of the site are complex, including major fracture zones intersecting the area, numerical analyses of the

  12. Strategy for a Rock Mechanics Site Descriptive Model. Development and testing of an approach to modelling the state of stress

    International Nuclear Information System (INIS)

    Hakami, Eva; Hakami, Hossein; Cosgrove, John

    2002-05-01

    The overall objective of this project has been to develop, test and establish a method for creating a Rock Mechanics Site Descriptive Model for a site considered in the site investigation programme. The work was divided into three parts, the empirical and theoretical 'property models' and the 'stress model'. The work on the stress model is presented in this report. The work consisted of i) a literature review about geological factors controlling in situ stress and a review about the use of numerical models for this subject, ii) the development of recommendations on the methodology to be applied during a site investigation and iii) the Test Case exercise, where the suggested methods were tested. The main mechanism controlling the in situ stress magnitudes in Sweden is plate tectonics causing the stress field to show similarities in most parts of north-western Europe, having a NW-SE trend of the maximum principal stress. The orientation of the stress field is largely determined by the relative movements by the plates. However, the stress orientation may also be influenced by the presence of large regional weak zones, such as the Tornquist deformation zone that lies between Sweden and Denmark. The strike of the Tornquist deformation zone is parallel to the maximum principal stress as observed in central and southern Sweden. The magnitude of the stress is more difficult to estimate, but the general pattern is an increase in magnitude with depth, at least for the upper kilometres. To determine the stress magnitude at a certain site and depth, with reasonable certainty, stress measurement should be used. A methodology for building a stress model has been proposed. It involves different steps starting with a preliminary stress estimation, followed by steps for interpreting site-specific information. If the stress pattern and structural geology of the site are complex, including major fracture zones intersecting the area, numerical analyses of the stress field is

  13. Interpretation of the Haestholmen in situ state of stress based on core damage observations

    International Nuclear Information System (INIS)

    Hakala, M.

    2000-01-01

    At the Haestholmen investigation site, direct in situ stress measurements, overcoring and hydraulic fracturing have been unsuccessful because of ring disking and horizontal hydraulic fracturing. Prior to this study, a detailed study on both core disking and ring disking was made, and based on those results an in situ state of stress interpretation method was developed. In this work this method is applied to the Haestholmen site. The interpretation is based on disk fracture type, spacing and shape. Also, the Hoek-Brown strength envelope and Poisson's ratio of intact rock are needed. The interpretation result is most reliable if both core disking and ring disking information at the same depth levels is available. A detailed core logging showed that ring disking is systematic below the -365 m level in the vertical overcoring stress measurement hole, HH-KR6. On the other hand, no representative core disking exists except for two points in two differently oriented subvertical boreholes HH-KR2 and HHKR7. Because the interpretation has to be based on ring disking only, upper and lower estimates for the vertical stress were set. These were gravitational and 67% of gravitational. Furthermore, the in situ stress state was assumed to be in horizontal and vertical planes, because the disking in vertical borehole HH-KR6 was not inclined. The interpretation resulted in a good estimate for the major horizontal stress but none of the horizontal stress rations ( 0.25, 0.5, 0.75 and 1.0 ) or vertical stress assumptions studied are clearly more probable the others. At the 500 m level the resulting maximum horizontal stress is 41 MPa. If a linear fit through the zero depth and zero stress point is applied, the maximum horizontal stress gradient is 0.0818 z MPa/m with a standard deviation between 5 and 12 per cent. The orientation of the major horizontal stress is 108 with standard deviation of 21 degrees. The interpreted major horizontal stress state also indicated that systematic

  14. The Benefits of Leisure Stress.

    Science.gov (United States)

    Mitchell, Jr., Richard G.

    1982-01-01

    Leisure bereft of all stress is action without purpose. Maximum motivation and gratification are achieved when a balance is achieved between abilities and responsibilities. Stress is an essential leisure ingredient that provides meaning and clarity to social experience. (CJ)

  15. Maximum-confidence discrimination among symmetric qudit states

    International Nuclear Information System (INIS)

    Jimenez, O.; Solis-Prosser, M. A.; Delgado, A.; Neves, L.

    2011-01-01

    We study the maximum-confidence (MC) measurement strategy for discriminating among nonorthogonal symmetric qudit states. Restricting to linearly dependent and equally likely pure states, we find the optimal positive operator valued measure (POVM) that maximizes our confidence in identifying each state in the set and minimizes the probability of obtaining inconclusive results. The physical realization of this POVM is completely determined and it is shown that after an inconclusive outcome, the input states may be mapped into a new set of equiprobable symmetric states, restricted, however, to a subspace of the original qudit Hilbert space. By applying the MC measurement again onto this new set, we can still gain some information about the input states, although with less confidence than before. This leads us to introduce the concept of sequential maximum-confidence (SMC) measurements, where the optimized MC strategy is iterated in as many stages as allowed by the input set, until no further information can be extracted from an inconclusive result. Within each stage of this measurement our confidence in identifying the input states is the highest possible, although it decreases from one stage to the next. In addition, the more stages we accomplish within the maximum allowed, the higher will be the probability of correct identification. We will discuss an explicit example of the optimal SMC measurement applied in the discrimination among four symmetric qutrit states and propose an optical network to implement it.

  16. 44 CFR 208.12 - Maximum Pay Rate Table.

    Science.gov (United States)

    2010-10-01

    ...) Physicians. DHS uses the latest Special Salary Rate Table Number 0290 for Medical Officers (Clinical... Personnel, in which case the Maximum Pay Rate Table would not apply. (3) Compensation for Sponsoring Agency... organizations, e.g., HMOs or medical or engineering professional associations, under the revised definition of...

  17. Application of Maximum Entropy Distribution to the Statistical Properties of Wave Groups

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The new distributions of the statistics of wave groups based on the maximum entropy principle are presented. The maximum entropy distributions appear to be superior to conventional distributions when applied to a limited amount of information. Its applications to the wave group properties show the effectiveness of the maximum entropy distribution. FFT filtering method is employed to obtain the wave envelope fast and efficiently. Comparisons of both the maximum entropy distribution and the distribution of Longuet-Higgins (1984) with the laboratory wind-wave data show that the former gives a better fit.

  18. Efficiency of autonomous soft nanomachines at maximum power.

    Science.gov (United States)

    Seifert, Udo

    2011-01-14

    We consider nanosized artificial or biological machines working in steady state enforced by imposing nonequilibrium concentrations of solutes or by applying external forces, torques, or electric fields. For unicyclic and strongly coupled multicyclic machines, efficiency at maximum power is not bounded by the linear response value 1/2. For strong driving, it can even approach the thermodynamic limit 1. Quite generally, such machines fall into three different classes characterized, respectively, as "strong and efficient," "strong and inefficient," and "balanced." For weakly coupled multicyclic machines, efficiency at maximum power has lost any universality even in the linear response regime.

  19. Stress response in medically important Mucorales.

    Science.gov (United States)

    Singh, Pankaj; Paul, Saikat; Shivaprakash, M Rudramurthy; Chakrabarti, Arunaloke; Ghosh, Anup K

    2016-10-01

    Mucorales are saprobes, ubiquitously distributed and able to infect a heterogeneous population of human hosts. The fungi require robust stress responses to survive in human host. We tested the growth of Mucorales in the presence of different abiotic stress. Eight pathogenic species of Mucorales, including Rhizopus arrhizus, Rhizopus microsporus, Rhizomucor pusillus, Apophysomyces elegans, Licthemia corymbifera, Cunninghamella bertholletiae, Syncephalastrum racemosum and Mucor racemosus, were exposed to different stress inducers: osmotic (sodium chloride and d-sorbitol), oxidative (hydrogen peroxide and menadione), pH, cell wall and metal ions (Cu, Zn, Fe and Mg). Wide variation in stress responses was noted: R. arrhizus showed maximum resistance to both osmotic and oxidative stresses, whereas R. pusillus and M. indicus were relatively sensitive. Rhizopus arrhizus and R. microsporus showed maximum resistance to alkaline pH, whereas C. bertholletiae, L. corymbifera, M. racemosus and A. elegans were resistant to acidic pH. Maximum tolerance was noted in R. microsporus to Cu, R. microsporus and R. arrhizus to Fe and C. bertholletiae to Zn. In contrast, L. corymbifera, A. elegans and M. indicus were sensitive to Cu, Zn and Fe respectively. In conclusion, R. arrhizus showed high stress tolerance in comparison to other species of Mucorales, and this could be the possible reason for high pathogenic potential of this fungi. © 2016 Blackwell Verlag GmbH.

  20. Multiaxial Stress-Strain Modeling and Effect of Additional Hardening due to Nonproportional Loading

    International Nuclear Information System (INIS)

    Rashed, G.; Ghajar, R.; Farrahi, G.

    2007-01-01

    Most engineering components are subjected to multiaxial rather than uniaxial cyclic loading, which causes multiaxial fatigue. The pre-requisite to predict the fatigue life of such components is to determine the multiaxial stress strain relationship. In this paper the multiaxial cyclic stress-strain model under proportional loading is derived using the modified power law stress-strain relationship. The equivalent strain amplitude consisted of the normal strain excursion and maximum shear strain amplitude is used in the proportional model to include the additional hardening effect due to nonproportional loading. Therefore a new multiaxial cyclic stress-strain relationship is devised for out of phase nonproportional loading. The model is applied to the nonproportional loading case and the results are compared with the other researchers' experimental data published in the literature, which are in a reasonable agreement with the experimental data. The relationship presented here is convenient for the engineering applications

  1. A New Method of Stress Measurement Based upon Elastic Deformation of Core Sample with Stress Relief by Drilling

    Science.gov (United States)

    Ito, T.; Funato, A.; Tamagawa, T.; Tezuka, K.; Yabe, Y.; Abe, S.; Ishida, A.; Ogasawara, H.

    2017-12-01

    When rock is cored at depth by drilling, anisotropic expansion occurs with the relief of anisotropic rock stresses, resulting in a sinusoidal variation of core diameter with a period of 180 deg. in the core roll angle. The circumferential variation of core diameter is given theoretically as a function of rock stresses. These new findings can lead various ideas to estimate the rock stress from circumferential variation of core diameter measured after the core retrieving. In the simplest case when a single core sample is only available, the difference between the maximum and minimum components of rock stress in a plane perpendicular to the drilled hole can be estimated from the maximum and minimum core diameters (see the detail in, Funato and Ito, IJRMMS, 2017). The advantages of this method include, (i) much easier measurement operation than those in other in-situ or in-lab estimation methods, and (ii) applicability in high stress environment where stress measurements need pressure for packers or pumping system for the hydro-fracturing methods higher than their tolerance levels. We have successfully tested the method at deep seismogenic zones in South African gold mines, and we are going to apply it to boreholes collared at 3 km depth and intersecting a M5.5 rupture plane several hundred meters below the mine workings in the ICDP project of "Drilling into Seismogenic zones of M2.0 - M5.5 earthquakes in deep South African gold mines" (DSeis) (e.g., http://www.icdp-online.org/projects/world/africa/orkney-s-africa/details/). If several core samples with different orientation are available, all of three principal components of 3D rock stress can be estimated. To realize this, we should have several boreholes drilled in different directions in a rock mass where the stress field is considered to be uniform. It is commonly carried out to dill boreholes in different directions from a mine gallery. Even in a deep borehole drilled vertically from the ground surface, the

  2. Stress Measurement around a Circular Role in a Cantilever Beam under Bending Moment Using Strain Gage and Reflective Photoelasticity

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Tae Hyun; Park, Tae Geun; Yang, Min Bok [Kunsan National University, Gunsan (Korea, Republic of)

    2006-10-15

    It is necessary to study on the stress concentration experimentally, which is the main reason to avoid mechanical dilapidation and failure, when designing a mechanical structure. Stress concentration factor of a specimen of cantilever beam with a circular hole in the center was measured using both strain gage and photoelastic methods in this paper. In strain-gage measurement, three strain gages along the line near a hole of the specimen were installed and maximum strain was extrapolated from three measurements. In photoelastic measurement, two methods were employed. First, the Babinet-Soleil compensation method was used to measure the maximum strain. Secondly, photoelastic 4-step phase shilling method was applied to observe the strain distribution around the hole. Measurements obtained by different experiments were comparable within the range of experimental error

  3. Stress Measurement around a Circular Role in a Cantilever Beam under Bending Moment Using Strain Gage and Reflective Photoelasticity

    International Nuclear Information System (INIS)

    Baek, Tae Hyun; Park, Tae Geun; Yang, Min Bok

    2006-01-01

    It is necessary to study on the stress concentration experimentally, which is the main reason to avoid mechanical dilapidation and failure, when designing a mechanical structure. Stress concentration factor of a specimen of cantilever beam with a circular hole in the center was measured using both strain gage and photoelastic methods in this paper. In strain-gage measurement, three strain gages along the line near a hole of the specimen were installed and maximum strain was extrapolated from three measurements. In photoelastic measurement, two methods were employed. First, the Babinet-Soleil compensation method was used to measure the maximum strain. Secondly, photoelastic 4-step phase shilling method was applied to observe the strain distribution around the hole. Measurements obtained by different experiments were comparable within the range of experimental error

  4. Maximum mass ratio of AM CVn-type binary systems and maximum white dwarf mass in ultra-compact X-ray binaries

    Directory of Open Access Journals (Sweden)

    Arbutina Bojan

    2011-01-01

    Full Text Available AM CVn-type stars and ultra-compact X-ray binaries are extremely interesting semi-detached close binary systems in which the Roche lobe filling component is a white dwarf transferring mass to another white dwarf, neutron star or a black hole. Earlier theoretical considerations show that there is a maximum mass ratio of AM CVn-type binary systems (qmax ≈ 2/3 below which the mass transfer is stable. In this paper we derive slightly different value for qmax and more interestingly, by applying the same procedure, we find the maximum expected white dwarf mass in ultra-compact X-ray binaries.

  5. Experimental Investigation of Principal Residual Stress and Fatigue Performance for Turned Nickel-Based Superalloy Inconel 718.

    Science.gov (United States)

    Hua, Yang; Liu, Zhanqiang

    2018-05-24

    Residual stresses of turned Inconel 718 surface along its axial and circumferential directions affect the fatigue performance of machined components. However, it has not been clear that the axial and circumferential directions are the principle residual stress direction. The direction of the maximum principal residual stress is crucial for the machined component service life. The present work aims to focuses on determining the direction and magnitude of principal residual stress and investigating its influence on fatigue performance of turned Inconel 718. The turning experimental results show that the principal residual stress magnitude is much higher than surface residual stress. In addition, both the principal residual stress and surface residual stress increase significantly as the feed rate increases. The fatigue test results show that the direction of the maximum principal residual stress increased by 7.4%, while the fatigue life decreased by 39.4%. The maximum principal residual stress magnitude diminished by 17.9%, whereas the fatigue life increased by 83.6%. The maximum principal residual stress has a preponderant influence on fatigue performance as compared to the surface residual stress. The maximum principal residual stress can be considered as a prime indicator for evaluation of the residual stress influence on fatigue performance of turned Inconel 718.

  6. Experimental Investigation of Principal Residual Stress and Fatigue Performance for Turned Nickel-Based Superalloy Inconel 718

    Directory of Open Access Journals (Sweden)

    Yang Hua

    2018-05-01

    Full Text Available Residual stresses of turned Inconel 718 surface along its axial and circumferential directions affect the fatigue performance of machined components. However, it has not been clear that the axial and circumferential directions are the principle residual stress direction. The direction of the maximum principal residual stress is crucial for the machined component service life. The present work aims to focuses on determining the direction and magnitude of principal residual stress and investigating its influence on fatigue performance of turned Inconel 718. The turning experimental results show that the principal residual stress magnitude is much higher than surface residual stress. In addition, both the principal residual stress and surface residual stress increase significantly as the feed rate increases. The fatigue test results show that the direction of the maximum principal residual stress increased by 7.4%, while the fatigue life decreased by 39.4%. The maximum principal residual stress magnitude diminished by 17.9%, whereas the fatigue life increased by 83.6%. The maximum principal residual stress has a preponderant influence on fatigue performance as compared to the surface residual stress. The maximum principal residual stress can be considered as a prime indicator for evaluation of the residual stress influence on fatigue performance of turned Inconel 718.

  7. Stress-optimised shape memory devices for the use in microvalves

    International Nuclear Information System (INIS)

    Skrobanek, K.D.; Kohl, M.; Miyazaki, S.

    1997-01-01

    A gas valve of 6 x 6 x 2 mm 3 size has been developed for high pressure applications. Stress-optimised shape memory microbeams of 100 μm thickness are used to control the deflection of a membrane above a valve chamber. The shape memory thin sheets have been fabricated by melting and rolling, which creates specific textures. Investigations by X-ray diffraction revealed major orientations of [111] and [011] in rolling direction. The corresponding maximum anisotropy of transformation strain was 20%. The microbeams have been fabricated by laser cutting. For stress-optimisation, the lateral widths of the beams are designed for homogeneous stress distributions along the beam surfaces allowing an optimised use of the shape memory effect and a minimisation of fatigue effects. For actuation, a rhombohedral phase transformation is used. This allows operation below pressure differences of 1200 hPa in designs with one valve chamber and below 4500 hPa in pressure-compensated designs with a second valve chamber above the membrane. Maximum gas flows of 1600 seem (seem cm 2 at standart conditions/minute) and work outputs of 35 μNm are achieved for a driving power of 210 mW. The response times for closing the valves vary between 0.5 and 1.2 s and for opening between 1 and 2 s depending on the applied pressure difference. (orig.)

  8. Initial stress and nonlinear material behavior in patient-specific AAA wall stress analysis

    NARCIS (Netherlands)

    Speelman, L.; Bosboom, E.M.H.; Schurink, G.W.H.; Buth, J.; Breeuwer, M.; Jacobs, M.J.; Vosse, van de F.N.

    2009-01-01

    Rupture risk estimation of abdominal aortic aneurysms (AAA) is currently based on the maximum diameter of the AAA. A more critical approach is based on AAA wall stress analysis. For that, in most cases, the AAA geometry is obtained from CT-data and treated as a stress free geometry. However, during

  9. Interfacial stresses in a bi-material assembly with a compliant bonding layer

    International Nuclear Information System (INIS)

    Suhir, E; Vujosevic, M

    2008-01-01

    We examine an elongated bi-material adhesively bonded or soldered assembly with a continuous compliant attachment (bonding layer). The assembly is subjected to external tensile forces or to bending moments applied to one of the assembly components. We develop simple predictive analytical ('mathematical') models for the evaluation of interfacial shearing (in the case of external tensile forces) and peeling (in the case of external bending moments) stresses and strains in the bonding material. The developed models can be helpful in stress-strain analyses of assemblies of the type in question and particularly for printed-circuit-board (PCB)/surface-mounted-device (SMD) assemblies employed in electronic packaging. These models enable one to particularly evaluate the maximum interfacial stresses in the bonding material from the predicted or measured strains in the PCB in the vicinity of but still outside the surface-mounted package

  10. Generic maximum likely scale selection

    DEFF Research Database (Denmark)

    Pedersen, Kim Steenstrup; Loog, Marco; Markussen, Bo

    2007-01-01

    in this work is on applying this selection principle under a Brownian image model. This image model provides a simple scale invariant prior for natural images and we provide illustrative examples of the behavior of our scale estimation on such images. In these illustrative examples, estimation is based......The fundamental problem of local scale selection is addressed by means of a novel principle, which is based on maximum likelihood estimation. The principle is generally applicable to a broad variety of image models and descriptors, and provides a generic scale estimation methodology. The focus...

  11. Phase Transition Mapping by Means of Neutron Imaging in SOFC Anode Supports During Reduction Under Applied Stress

    DEFF Research Database (Denmark)

    Makowska, Malgorzata; Strobl, M.; Lauridsen, E. M.

    2015-01-01

    Mechanical and electrochemical performance of layers composed of Ni-YSZ cermet in solid oxide fuel and electrolysis cells (SOC) depends on their microstructure and initial internal stresses. After sintering, the manufacturing conditions, i.e. temperature, atmosphere and loads, can influence...... the microstructure and in particular the internal stresses in the Ni-YSZ layer and thereby the cell performance. Spatially resolved observation of the phase transition during reduction can provide information on how parameters like temperature and external load influence the reaction progress. This information...... is crucial for optimization of the SOC performance. In this work the measurements with energy resolved neutron imaging of the phase transition during the NiOYSZ reduction performed at different temperatures with and without applied load, are presented. The results indicate a link between reduction rate...

  12. Measurement of the uniaxial mechanical properties of rat skin using different stress-strain definitions.

    Science.gov (United States)

    Karimi, A; Navidbakhsh, M

    2015-05-01

    The mechanical properties of skin tissue may vary according to the anatomical locations of a body. There are different stress-strain definitions to measure the mechanical properties of skin tissue. However, there is no agreement as to which stress-strain definition should be implemented to measure the mechanical properties of skin at different anatomical locations. Three stress definitions (second Piola-Kichhoff stress, engineering stress, and true stress) and four strain definitions (Almansi-Hamel strain, Green-St. Venant strain, engineering strain, and true strain) are employed to determine the mechanical properties of skin tissue at back and abdomen locations of a rat body. The back and abdomen skins of eight rats are excised and subjected to a series of tensile tests. The elastic modulus, maximum stress, and strain of skin tissues are measured using three stress definitions and four strain definitions. The results show that the effect of varying the stress definition on the maximum stress measurements of the back skin is significant but not when calculating the elastic modulus and maximum strain. No significant effects are observed on the elastic modulus, maximum stress, and strain measurements of abdomen skin by varying the stress definition. In the true stress-strain diagram, the maximum stress (20%), and elastic modulus (35%) of back skin are significantly higher than that of abdomen skin. The true stress-strain definition is favored to measure the mechanical properties of skin tissue since it gives more accurate measurements of the skin's response using the instantaneous values. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Stress analysis of thermal sprayed coatings using a semi-destructive hole-drilling strain gauge method

    International Nuclear Information System (INIS)

    Dolhof, V.; Musil, J.; Cepera, M.; Zeman, J.

    1995-01-01

    Residual stress is an important parameter in coating technology since it often relates to the maximum coating thickness which can be deposited without spallation, and this applies to coatings produced by different thermal spray and thin film technologies. Indeed, the mechanisms by which residual stress is built up or locked into a coating depends markedly on the deposition process and coating structure (growth structure, phase composition) in the same way too. Methods for determining residual stresses in materials include both destructive and non-destructive methods. This contribution describes semi-destructive hole-drilling strain gauge method modified for measurement of residual stresses in thermal sprayed coatings. This method of stress analysis was used for determination of stress levels in thermal sprayed WC-17% Co coatings onto 13% Cr steel substrates. Results show that deposition conditions and final coating structure influence directly the residual stress level in the coatings. It is proved that semi-destructive hole-tube drilling measurement is effective reproducible method of coating stress analysis and good solution for optimization of deposition process

  14. Intervarietal variations in various oxidative stress markers and antioxidant potential of finger millet (Eleusine coracana) subjected to drought stress.

    Science.gov (United States)

    Bartwal, Arti; Pande, Anjali; Sharma, Priyadarshini; Arora, Sandeep

    2016-07-01

    Drought is a major form of abiotic stress leading to lower crop productivity. Experiment was carried out for selecting the most tolerant genotype among six different genotypes of finger millet under drought stress. Seeds of six finger millet genotypes were sown in pots and grown for 35 days. After this period, drought was induced by withholding watering for stressed plants while control plants were watered regularly for comparison. Among all six different varieties of finger millet screened (PR202, PES400, PRM6107, VL283, VL328 and VL149) under varying intensities of drought stress,PRM6107 and PR202 showed highest stress tolerance by limiting excessive accumulation of reactive oxygen species (ROS) through activation of ROS scavenging antioxidative enzymes. A 200% increase in ascorbate content was recorded in PRM6107 and PR202, while in other varieties limited increase in ascorbate content was observed. Maximum decrease in chlorophyll content was observed in VL328 (83%) while least drop was observed in VL149 (65%). Relative water content indicated that PR202 was able to retain maximum water content under stress, as it recorded least drop in relative water content (55%), contributing to its better survival under stress. In conclusion finger millet genotypes PRM6107 and PR202 possessed maximum drought tolerance potential and thus may be used for allele mining of drought tolerant genes, which can further be employed for the development of more drought stress tolerant staple crops using biotechnological approach.

  15. NMR-Based Metabonomic Investigation of Heat Stress in Myotubes Reveals a Time-Dependent Change in the Metabolites

    DEFF Research Database (Denmark)

    Straadt, Ida K; Young, Jette F; Bross, Peter

    2010-01-01

    NMR-based metabonomics was applied to elucidate the time-dependent stress responses in mouse myotubes after heat exposure of either 42 or 45 degrees C for 1 h. Principal component analysis (PCA) revealed that the gradual time-dependent changes in metabolites contributing to the clustering...... and separation of the control samples from the different time points after heat stress primarily are in the metabolites glucose, leucine, lysine, phenylalanine, creatine, glutamine, and acetate. In addition, PC scores revealed a maximum change in metabolite composition 4 h after the stress exposure; thereafter......, samples returned toward control samples, however, without reaching the control samples even 10 h after stress. The results also indicate that the myotubes efficiently regulate the pH level by release of lactate to the culture medium at a heat stress level of 42 degrees C, which is a temperature level...

  16. Pressure-induced forces and shear stresses on rubble mound breakwater armour layers in regular waves

    DEFF Research Database (Denmark)

    Jensen, Bjarne; Christensen, Erik Damgaard; Sumer, B. Mutlu

    2014-01-01

    This paper presents the results from an experimental investigation of the pressure-induced forces in the core material below the main armour layer and shear stresses on the armour layer for a porous breakwater structure. Two parallel experiments were performed which both involved pore pressure...... structure i.e. no additional filter layers were applied. For both experiments, high-speed video recordings were synchronised with the pressure measurements for a detailed investigation of the coupling between the run-up and run-down flow processes and the measured pressure variations. Outward directed...... and turbulence measurements showed that the large outward directed pressure gradients in general coincide, both in time and space, with the maximum bed-shear stresses on the armour layer based on the Reynolds-stresses. The bed-shear stresses were found to result in a Shields parameter in the same order...

  17. Effect of Taper on Stress Distribution of All Ceramic Fixed Partial Dentures: a 3D-FEA Study

    Directory of Open Access Journals (Sweden)

    F. Gerami-Panah

    2005-09-01

    Full Text Available Statement of Problem: Mechanical failure of ceramic materials is controlled by brittle fracture, mostly occurred in tension. In 3-unit all-ceramic FPDs the connector area is considered to be at fracture risk because of tensile stress concentrations.Purpose: The aim of this FE analysis was to evaluate the effect of taper on stress distribution in all-ceramic FPDs.Materials and Methods: In this experimental study two 3-D finite element models of thee-unit IPS-Empress 2 FPDs replacing mandible second premolar were created by means of finite element software. The digital images were obtained from CT scan of human skull. Abutment was reduced with 12 and 22 degrees of taper. The cement layer,PDL, cancellous bone and cortical bone were also modeled. Frameworks of core material were fabricated. A static load of 100 N was applied at mid pontic area.Resolved stresses were calculated according to the Von Mises criterion and principal stresses.Results: In both models stresses were concentrated at the connectors. The maximum stresses were lower in the model with larger taper. The maximum Von Mises stress was recorded at the connector region of the premolar and the pontic. In model with larger taper the patterns of stresses were also more distributed and less concentrated.Conclusion: The highest Von Mises and principal stress were recorded at the connectors. Tensile stresses developed at the gingival connector of premolar and pontic was higher than molar. The stress level in model with 22-degree taper was lower compare to 12-degree and the stress pattern was more distributed, lowered the risk ofconcentrations.

  18. Sensitivity of total stress to changes in externally applied water pressure in KBS-3 buffer bentonite

    Energy Technology Data Exchange (ETDEWEB)

    Harrington, J.F.; Birchall, D.J. [British Geological Survey, Chemical and Biological Hazards Programme, Kingsley Dunham Centre (United Kingdom)

    2007-04-15

    In the current Swedish repository design concept, composite copper and steel canisters containing spent nuclear fuel will be placed in large diameter disposal boreholes drilled into the floor of the repository tunnels. The space around each canister will be filled with pre-compacted bentonite which over time will draw in the surrounding ground water and swell, closing up any construction joints. However, for the purposes of performance assessment, it is necessary to consider the effect of glacial loading of a future repository and its impact on the mechanical behaviour of the bentonite, in particular, the sensitivity of total stress to changes in porewater pressure (backpressure). Two experimental histories have been undertaken using a custom-designed constant volume and radial flow (CVRF) apparatus. In both tests backpressure was varied in a number of incremental and decremental cycles while total stress, porewater pressure and volumetric flow rate were continuously monitored. The swelling pressure of the buffer clay at dry densities of 1.8 Mg/m{sup 3} and 1.61 Mg/m{sup 3} was determined to be around 5.5 MPa and 7.2 MPa respectively. For initial ascending porewater pressure histories the average proportionality factor {alpha} ranged from 0.86 and 0.92. Data exhibited a general trend of increasing {alpha} with increasing backpressure. In test Mx80-11 this was supported by analysis of the water inflow data which indicated a reduction in system compressibility. Asymptotic values of porewater pressure within the clay are in good agreement with externally applied backpressure values. Inspection of data provides no evidence for the development of hydraulic thresholds within the clay, subject to the boundary conditions of this test geometry. Analysis of the stress data demonstrates significant hysteresis between ascending and descending porewater pressure histories. The amount of hysteresis appears to be linked to the magnitude of the backpressure applied to the specimen

  19. Sensitivity of total stress to changes in externally applied water pressure in KBS-3 buffer bentonite

    International Nuclear Information System (INIS)

    Harrington, J.F.; Birchall, D.J.

    2007-04-01

    In the current Swedish repository design concept, composite copper and steel canisters containing spent nuclear fuel will be placed in large diameter disposal boreholes drilled into the floor of the repository tunnels. The space around each canister will be filled with pre-compacted bentonite which over time will draw in the surrounding ground water and swell, closing up any construction joints. However, for the purposes of performance assessment, it is necessary to consider the effect of glacial loading of a future repository and its impact on the mechanical behaviour of the bentonite, in particular, the sensitivity of total stress to changes in porewater pressure (backpressure). Two experimental histories have been undertaken using a custom-designed constant volume and radial flow (CVRF) apparatus. In both tests backpressure was varied in a number of incremental and decremental cycles while total stress, porewater pressure and volumetric flow rate were continuously monitored. The swelling pressure of the buffer clay at dry densities of 1.8 Mg/m 3 and 1.61 Mg/m 3 was determined to be around 5.5 MPa and 7.2 MPa respectively. For initial ascending porewater pressure histories the average proportionality factor α ranged from 0.86 and 0.92. Data exhibited a general trend of increasing α with increasing backpressure. In test Mx80-11 this was supported by analysis of the water inflow data which indicated a reduction in system compressibility. Asymptotic values of porewater pressure within the clay are in good agreement with externally applied backpressure values. Inspection of data provides no evidence for the development of hydraulic thresholds within the clay, subject to the boundary conditions of this test geometry. Analysis of the stress data demonstrates significant hysteresis between ascending and descending porewater pressure histories. The amount of hysteresis appears to be linked to the magnitude of the backpressure applied to the specimen, suggesting some

  20. Gamma-ray spectra deconvolution by maximum-entropy methods

    International Nuclear Information System (INIS)

    Los Arcos, J.M.

    1996-01-01

    A maximum-entropy method which includes the response of detectors and the statistical fluctuations of spectra is described and applied to the deconvolution of γ-ray spectra. Resolution enhancement of 25% can be reached for experimental peaks and up to 50% for simulated ones, while the intensities are conserved within 1-2%. (orig.)

  1. Stress dependent fluid flow in porous rock: experiments and network modelling

    Energy Technology Data Exchange (ETDEWEB)

    Flornes, Olav

    2005-07-01

    During the lifetime of a hydrocarbon reservoir, the pore pressure decreases because fluids are drained. Changed pore pressure causes a deformation of the reservoir rock, and the flow channels may be narrowed by the increased weight carried by the rock matrix. Knowledge of how the rocks ability to transport fluids, the permeability, is changed by increased stress can be important for effective reservoir management. In this work, we present experimental results for how permeability changes with applied stress. The materials tested are several different sandstones and one limestone, all having porosities higher than 19 percent. Application of stress is done in a number of different ways. We subject the sample to an isotropic stress, and see how changing this applied stress affects permeability as opposed to changing the pore fluid pressure. This allows for investigating the effective stress law for permeability. Permeability decreased by 10 to 20 percent, when we deformed the materials hydro statically within the elastic regime. For all of our samples, we observed a higher permeability change than predicted by a conventional model for relating porosity and permeability, the Kozeny Carman model. For Red Wildmoor, a sandstone having some clay content, we observed that a change in pore pressure was slightly more important for permeability than a change in the applied stress with the same amount. A sandstone with no clay content, Bad Durckheim, showed the opposite behavior, with applied stress slightly more important than pore pressure. We present a new method for measuring permeability in two directions in the same experiment. We apply different anisotropic stresses, and see if a high stress in one direction causes a difference in permeability changes parallel and perpendicular to maximum stress. We observe that deforming the sample axially, causes a larger decrease in axial permeability than in the radial at low confining pressure. At high confining pressure, the

  2. Foliar-applied urea modulates nitric oxide synthesis metabolism and glycinebetaine accumulation in drought-stressed maize

    International Nuclear Information System (INIS)

    Zhang, L.; Tian, L.; Lai, J.; Zheng, P.; Liang, Z.; Alva, A

    2014-01-01

    Foliar urea has been proved to play a better positive role in enhancing accumulation of nitric oxide (NO) and glycinebetaine (GB) in maize (Zea mays L.) under drought stress (DS). However, it is unclear how foliar urea affects biosynthetic metabolism of NO and its relationship with GB accumulation. This study was on investigating the effect of foliar- applied urea on seedlings of maize cultivar Zhengdan 958 grown in a hydroponic medium under DS or No DS. Contents of NO and GB and nitric oxide synthase (NOS) activity increased and peaked 12 h after the treatment. Nitrate reductase activity (NRA) followed the similar pattern 6h after the treatment. Under DS foliar urea application increased NR and NOS activity and, thereby, increased NO formation. Therefore, enhancement in activities of both NRA and NOS resulted in an increase of NO accumulation. Foliar- applied urea could induce an increased NO burst by enhanced NO synthesis metabolism as a nitrogen signal, possibly resulting in GB accumulation under DS. (author)

  3. Physiological and Biochemical Responses in Two Ornamental Shrubs to Drought Stress.

    Science.gov (United States)

    Toscano, Stefania; Farieri, Elisa; Ferrante, Antonio; Romano, Daniela

    2016-01-01

    Drought stress is one of the most important abiotic stress limiting the plant survival and growth in the Mediterranean environment. In this work, two species typically grown in Mediterranean areas with different drought responses were used. Two shrubs, with slow (Photinia × fraseri Dress 'Red Robin') or fast (Eugenia uniflora L. 'Etna Fire') adaptation ability to drought, were subjected to three water regimes: well-watered (WW), moderate (MD), and severe (SD) drought stress conditions for 30 days. Net photosynthetic rate, stomatal conductance, maximum quantum efficiency of PSII photochemistry (Fv/Fm), relative water content (RWC), chlorophyll content, proline, malondialdehyde (MDA), and antioxidant enzyme activities (superoxide dismutase, catalase, and peroxidase) were measured. Results showed that RWC and proline were higher in Eugenia than in Photinia, demonstrating the greater tolerance of the latter to the water stress. The drought stress levels applied did not compromise photosynthetic efficiency through stomatal regulation, while a reduction of Fv/Fm ratio was observed at the end of the experimental period. MDA significantly increased after 30 days in both species. The antioxidant enzyme activities showed different responses to water stress conditions. In both species, the water stress scores showed positive, while proline content showed negative correlations with all physiological parameters.

  4. [Effects of exogenous silicon on the pollination and fertility characteristics of hybrid rice under heat stress during anthesis].

    Science.gov (United States)

    Wu, Chen-Yang; Chen, Dan; Luo, Hai-Wei; Yao, Yi-min; Wang, Zhi-Wei; Tsutomu, Matsui; Tian, Xiao-Hai

    2013-11-01

    Taking two medium-maturing indica rice hybrids Jinyou 63 and Shanyou 63 as test materials, this paper studied the effects of applying silicon fertilizer on the flag leaf chlorophyll content, photosynthetic properties, antioxidant enzyme activities, malondialdehyde (MDA) content, pollen vigor, anther acid invertase activity, pollination, and seed-setting of hybrid rice under the heat stress during anthesis. This study was conducted in pots and under growth chamber. Soluble solution of silicon fertilizer applied as Na2SiO3 x 9H2O was sprayed on the growing plants after early jointing stage, with three times successively and at an interval of one week. The pots were then moved into growth chamber to subject to normal temperature vs. high temperature (termed as heat stress) for five days. In treatment normal temperature, the average daily temperature was set at 26.6 degrees C, and the maximum daily temperature was set at 29.4 degres C; in treatment high temperature, the average and the maximum daily temperature were set at 33.2 degrees C and 40.1 degrees C, respectively. As compared with the control, applying silicon increased the flag leaf chlorophyll content significantly, improved the net photosynthetic rate and stomatal conductance, decreased the accumulative inter- cellular CO2 concentration, improved the leaf photosynthesis, reduced the MDA content, and improved the activities of SOD, POD and CAT under heat stress. In addition, applying silicon improved the anther acid invertase activity and the pollen vigor, increased the anther basal dehiscence width, total number of pollination per stigma, germinated number, germination rate of pollen, and percentage of florets with more than 10 germinated pollen grains, decreased the percentage of florets with fewer than 20 germinated pollen grains, and thus, alleviated the fertility loss of Jinyou 63 and Shanyou 63 under heat stress by 13.4% and 14.1%, respectively. It was suggested that spraying exogenous silicon in the

  5. Determine variation of poisson ratios and thermal creep stresses and strain rates in an isotropic disc

    Directory of Open Access Journals (Sweden)

    Gupta Nishi

    2016-01-01

    Full Text Available Seth's transition theory is applied to the problem of thermal creep transition stresses and strain rates in a thin rotating disc with shaft having variable density by finite deformation. Neither the yield criterion nor the associated flow rule is assumed here. The results obtained here are applicable to compressible materials. If the additional condition of incompressibility is imposed, then the expression for stresses corresponds to those arising from Tresca yield condition. Thermal effect decreased value of radial stress at the internal surface of the rotating isotropic disc made of compressible material as well as incompressible material and this value of radial stress further much increases with the increase in angular speed. With the introduction of thermal effects, the maximum value of strain rates further increases at the internal surface for compressible materials as compare to incompressible material.

  6. Studies on laws of stress-magnetization based on magnetic memory testing technique

    Science.gov (United States)

    Ren, Shangkun; Ren, Xianzhi

    2018-03-01

    Metal magnetic memory (MMM) testing technique is a novel testing method which can early test stress concentration status of ferromagnetic components. Under the different maximum tensile stress, the relationship between the leakage magnetic field of at certain point of cold rolled steel specimen and the tensile stress was measured during the process of loading and unloading by repeated. It shows that when the maximum tensile stress is less than 610 MPa, the relationship between the magnetic induction intensity and the stress is linear; When the maximum tensile stress increase from 610 MPa to 653 MPa of yield point, the relationship between the magnetic induction intensity and the tensile becomes bending line. The location of the extreme point of the bending line will move rapidly from the position of smaller stress to the larger stress position, and the variation of magnetic induction intensity increases rapidly. When the maximum tensile stress is greater than the 653 MPa of yield point, the variation of the magnetic induction intensity remains large, and the position of the extreme point moves very little. In theoretical aspects, tensile stress is to be divided into ordered stress and disordered stress. In the stage of elastic stress, a microscopic model of the order stress magnetization is established, and the conclusions are in good agreement with the experimental data. In the plastic deformation stage, a microscopic model of disordered stress magnetization is established, and the conclusions are in good agreement with the experimental data, too. The research results can provide reference for the accurate quantitative detection and evaluation of metal magnetic memory testing technology.

  7. Fracture criteria of reactor graphite under multiaxial stresses

    International Nuclear Information System (INIS)

    Sato, S.; Kawamata, K.; Kurumada, A.; Oku, T.

    1987-01-01

    New fracture criteria for graphite under multiaxial stresses are presented for designing core and support materials of a high temperature gas cooled reactor. Different kinds of fracture strength tests are carried out for a near isotropic graphite IG-11. Results show that, under the stress state in which tensile stresses are predominant, the maximum principal stress theory is seen as applicable for brittle fracture. Under the stress state in which compressive stresses are predominant there may be two fracture modes for brittle fracture, namely, slipping fracture and mode II fracture. For the former fracture mode the maximum shear stress criterion is suitable, but for the latter fracture mode a new mode II fracture criterion including a restraint effect for cracks is verified to be applicable. Also a statistical correction for brittle fracture criteria under multiaxial stresses is discussed. By considering the allowable stress values for safe design, the specified minimum ultimate strengths corresponding to a survival probability of 99% at the 95% confidence level are presented. (orig./HP)

  8. What controls the maximum magnitude of injection-induced earthquakes?

    Science.gov (United States)

    Eaton, D. W. S.

    2017-12-01

    Three different approaches for estimation of maximum magnitude are considered here, along with their implications for managing risk. The first approach is based on a deterministic limit for seismic moment proposed by McGarr (1976), which was originally designed for application to mining-induced seismicity. This approach has since been reformulated for earthquakes induced by fluid injection (McGarr, 2014). In essence, this method assumes that the upper limit for seismic moment release is constrained by the pressure-induced stress change. A deterministic limit is given by the product of shear modulus and the net injected fluid volume. This method is based on the assumptions that the medium is fully saturated and in a state of incipient failure. An alternative geometrical approach was proposed by Shapiro et al. (2011), who postulated that the rupture area for an induced earthquake falls entirely within the stimulated volume. This assumption reduces the maximum-magnitude problem to one of estimating the largest potential slip surface area within a given stimulated volume. Finally, van der Elst et al. (2016) proposed that the maximum observed magnitude, statistically speaking, is the expected maximum value for a finite sample drawn from an unbounded Gutenberg-Richter distribution. These three models imply different approaches for risk management. The deterministic method proposed by McGarr (2014) implies that a ceiling on the maximum magnitude can be imposed by limiting the net injected volume, whereas the approach developed by Shapiro et al. (2011) implies that the time-dependent maximum magnitude is governed by the spatial size of the microseismic event cloud. Finally, the sample-size hypothesis of Van der Elst et al. (2016) implies that the best available estimate of the maximum magnitude is based upon observed seismicity rate. The latter two approaches suggest that real-time monitoring is essential for effective management of risk. A reliable estimate of maximum

  9. Stress analysis on passenger deck due to modification from passenger ship to vehicle-carrying ship

    Science.gov (United States)

    Zubaydi, A.; Sujiatanti, S. H.; Hariyanto, T. R.

    2018-03-01

    Stress is a basic concept in learning about material mechanism. The main focus that needs to be brought to attention in analyzing stress is strength, which is the structural capacity to carry or distribute loads. The structural capacity not only measured by comparing the maximum stress with the material’s yield strength but also with the permissible stress required by the Indonesian Classification Bureau (BKI), which certainly makes it much safer. This final project analyzes stress in passenger deck that experiences modification due to load changes, from passenger load to vehicle one, carrying: 6-wheels truck with maximum weight of 14 tons, a passenger car with maximum weight of 3.5 tons, and a motorcycle with maximum weight of 0.4 tons. The deck structure is modelled using finite element software. The boundary conditions given to the structural model are fix and simple constraint. The load that works on this deck is the deck load which comes from the vehicles on deck with three vehicles’ arrangement plans. After that, software modelling is conducted for analysis purpose. Analysis result shows a variation of maximum stress that occurs i.e. 135 N/mm2, 133 N/mm2, and 152 N/mm2. Those maximum stresses will not affect the structure of passenger deck’s because the maximum stress that occurs indicates smaller value compared to the Indonesian Classification Bureau’s permissible stress (175 N/mm2) as well as the material’s yield strength (235 N/mm2). Thus, the structural strength of passenger deck is shown to be capable of carrying the weight of vehicles in accordance with the three vehicles’ arrangement plans.

  10. Numerical modeling of tectonic stress field and fault activity in North China

    Directory of Open Access Journals (Sweden)

    Li Yan

    2012-02-01

    Full Text Available On the basis of a 3-dimension visco-elastic finite element model of lithosphere in North China, we numerically simulate the recent mutative figures of tectonic stress field. Annual change characteristics of stress field are; 1 Maximum principal tensile stress is about 3–9 kPaa−1 and its azimuth lie in NNW-SSE. 2 Maximum principal compressive stress is about 1–6 kPaa−1 and its azimuth lie in NEE-SWW. 3 Maximum principal tensile stress is higher both in the west region and Liaoning Province. 4 Variation of tectonic stress field benefits fault movement in the west part and northeast part of North China. 5 Annual accumulative rates of Coulomb fracture stress in Tanlu fault belt have segmentation patterns: Jiashan-Guangji segment is the highest (6 kPaa−1, Anshan-Liaodongwan segment is the second (5 kPaa−1, and others are relatively lower (3–4 kPaa−1.

  11. [Effect of exogenous sucrose on growth and active ingredient content of licorice seedlings under salt stress conditions].

    Science.gov (United States)

    Liu, Fu-zhi; Yang, Jun

    2015-11-01

    Licorice seedlings were taken as experimental materials, an experiment was conducted to study the effects of exogenous sucrose on growth and active ingredient content of licorice seedlings under NaCl stress conditions. The results of this study showed that under salt stress conditions, after adding a certain concentration of exogenous sucrose, the licorice seedlings day of relative growth rate was increasing, and this stress can be a significant weakening effect, indicating that exogenous sucrose salt stress-relieving effect. The total flavonoids and phenylalanine ammonia lyase (PAL) activity were significantly increased, the exogenous sucrose can mitigated the seedling roots under salt stress, the licorice flavonoid content in the enhanced growth was largely due to the activity of PAL an increased, when the concentration of exogenous sucrose wae 10 mmol x L(-1), PAL activity reaching a maximum, when the concentration of exogenous sucrose was 15 mmol x L(-1), PAL activity turned into a downward trend, the results indicating that this mitigation has concentration effect. After applying different concentrations of exogenous sugar, the contents of liquiritin changes with the change of flavonoids content was similar. After applying different concentrations of exogenous sucrose, the content of licorice acid under salt stress was higher than the levels were not reached during salt stress, the impact of exogenous sucrose concentration gradient of licorice acid accumulation was not obvious.

  12. Stress analysis of steam generator row-1 tubes

    International Nuclear Information System (INIS)

    Kim, Woo Gon; Ryu, Woo Seog; Lee, Ho Jin; Kim, Sung Chung

    2000-01-01

    Residual stresses induced in U-bending and tube-to-tubesheet joining processes of PWR's steam generator row-1 tube were measured by X-ray method and Hole-Drilling Method(HDM). The stresses resulting from the internal pressure and the temperature gradient in the steam generator were also estimated theoretically. In U-bent regions, the residual stresses at extrados were induced with compressive stress(-), and its maximum value reached -319 Mpa in axial direction at ψ=0 .deg. in position. Maximum tensile residual stress of 170 MPa was found to be at the flank side at position of ψ=90 deg., i.e., at apex region. In tube-to-tubesheet joining methods, the residual stresses induced by the explosive joint method were found to be lower than that by the mechanical roll method. The gradient of residual stress along the expanded tube was highest at the transition region, and the residual stress in circumferential direction was found to be higher than the residual stress in axial direction. Hoop stress due to an internal pressure between primary and secondary side was analyzed to be 76 MPa and thermal stress was 45 MPa

  13. Vitamin K3 increased BMD at 1 and 2 months post-surgery and the maximum stress of the middle femur in the rat.

    Science.gov (United States)

    Hong, You-jia; Liu, Sheng; Jiang, Ning-yi; Jiang, Sen; Liang, Jiu-gen

    2015-02-01

    The therapeutic effects of vitamin K3 (VK3) on osteoporosis are still unknown. In this study, we hypothesized that VK3 possesses therapeutic effects on osteoporosis; to verify this hypothesis, the ovariectomized rat was used as an osteoporosis model. Fifty-six Sprague-Dawley female rats aged 8 to 9 months were randomly assigned to 4 groups: sham surgery, ovariectomy with saline, ovariectomy with low-dose VK3, and ovariectomy with high-dose VK3. Intramuscular injection of VK3 was performed every other day beginning 1 month postoperatively. The therapeutic effects of VK3 on osteoporosis were evaluated by measurement of bone mineral density (BMD), bone biochemical markers, biomechanical properties, and bone morphometric parameters. The overall average BMD in VK3-treated groups increased to a level between those of the ovariectomy group and the sham surgery group. The procollagen I N-terminal peptide level peaked at 2 months after surgery in all groups except in the group that had undergone ovariectomy with low-dose VK3. The tartrate-resistant acid phosphatase 5b level increased more slowly at 4 months after surgery than at 2 months after surgery in the VK3-treated groups. The ovariectomy with high-dose VK3 group had the highest maximum stress of the middle femur of all groups. With VK3 treatment, the trabecular bone area percentage increased. All morphometric indicators for the middle tibia in the VK3-treated groups reached the levels found in the sham surgery group. In summary, VK3 therapy increased BMD at 1 and 2 months postsurgery and the maximum stress of the middle femur. In addition, VK3 therapy slowed the increase in bone turnover in ovariectomized rats. Furthermore, VK3 can improve morphometric indicators for the middle tibia. Our preliminary study indicates that VK3 has a potential therapeutic effect on osteoporosis and is worthy of further investigation. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Reconstruction of orientation of stresses acting in infinity within the Kovdor ore body based on field determinations

    Directory of Open Access Journals (Sweden)

    Rybin V. V.

    2017-03-01

    Full Text Available Mining Institute KSC RAS has conducted research which aim is to study the possibilities of increasing the tilt angles of pit walls in massifs of solid rock. One of the problems the solution of which will contribute to achieving this goal is to determine the direction of the maximum component of principal stresses in intact massif on the "infinity" necessary to work out mathematical models of rock massif including quarry recess. To solve this problem it has been proposed to use the results of parameters' measurement of stress state by the unloading method in near-wall rock massif. The basic research of near-wall rock massif has been conducted on mine quarry "Zhelezny" (JSC "Kovdor ore processing plant". The measurements have been performed by the discharge method in option of end measurements directly from the quarry ledges on special observation stations using horizontal wells. The direction of maximum compression acting in sub-meridional course in the Kovdor apatiteshtafelyte-baddeleite deposit (the Kovdor ore cluster has been determined by the conformal mapping method on the basis of experimental estimations of stress parameters in the rock massif. The results obtained are of great importance for assessing a level of stresses acting directly in a near open-pit zone. They are applied to set boundary conditions when modeling stress-strain state of near-wall rock massif and assess slope stability.

  15. Variation behavior of residual stress distribution by manufacturing processes in welded pipes of austenitic stainless steel

    International Nuclear Information System (INIS)

    Ihara, Ryohei; Hashimoto, Tadafumi; Mochizuki, Masahito

    2012-01-01

    Stress corrosion cracking (SCC) has been observed near heat affected zone (HAZ) of primary loop recirculation pipes made of low-carbon austenitic stainless steel type 316L in the nuclear power plants. For the non-sensitization material, residual stress is the important factor of SCC, and it is generated by machining and welding. In the actual plants, welding is conducted after machining as manufacturing processes of welded pipes. It could be considered that residual stress generated by machining is varied by welding as a posterior process. This paper presents residual stress variation due to manufacturing processes of pipes using X-ray diffraction method. Residual stress distribution due to welding after machining had a local maximum stress in HAZ. Moreover, this value was higher than residual stress generated by welding or machining. Vickers hardness also had a local maximum hardness in HAZ. In order to clarify hardness variation, crystal orientation analysis with EBSD method was performed. Recovery and recrystallization were occurred by welding heat near the weld metal. These lead hardness decrease. The local maximum region showed no microstructure evolution. In this region, machined layer was remained. Therefore, the local maximum hardness was generated at machined layer. The local maximum stress was caused by the superposition effect of residual stress distributions due to machining and welding. Moreover, these local maximum residual stress and hardness are exceeded critical value of SCC initiation. In order to clarify the effect of residual stress on SCC initiation, evaluation including manufacturing processes is important. (author)

  16. Bone stress in runners with tibial stress fracture.

    Science.gov (United States)

    Meardon, Stacey A; Willson, John D; Gries, Samantha R; Kernozek, Thomas W; Derrick, Timothy R

    2015-11-01

    Combinations of smaller bone geometry and greater applied loads may contribute to tibial stress fracture. We examined tibial bone stress, accounting for geometry and applied loads, in runners with stress fracture. 23 runners with a history of tibial stress fracture & 23 matched controls ran over a force platform while 3-D kinematic and kinetic data were collected. An elliptical model of the distal 1/3 tibia cross section was used to estimate stress at 4 locations (anterior, posterior, medial and lateral). Inner and outer radii for the model were obtained from 2 planar x-ray images. Bone stress differences were assessed using two-factor ANOVA (α=0.05). Key contributors to observed stress differences between groups were examined using stepwise regression. Runners with tibial stress fracture experienced greater anterior tension and posterior compression at the distal tibia. Location, but not group, differences in shear stress were observed. Stepwise regression revealed that anterior-posterior outer diameter of the tibia and the sagittal plane bending moment explained >80% of the variance in anterior and posterior bone stress. Runners with tibial stress fracture displayed greater stress anteriorly and posteriorly at the distal tibia. Elevated tibial stress was associated with smaller bone geometry and greater bending moments about the medial-lateral axis of the tibia. Future research needs to identify key running mechanics associated with the sagittal plane bending moment at the distal tibia as well as to identify ways to improve bone geometry in runners in order to better guide preventative and rehabilitative efforts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Influence of Connector Width on the Stress Distribution of Posterior Bridges under Loading

    Directory of Open Access Journals (Sweden)

    A. Azary

    2011-06-01

    Full Text Available Objective: In all ceramic fixed partial dentures the connector area is a common fracture location. The survival time of three-unit fixed partial dentures may be improved by altering the connector design in regions of maximum tension. The purpose of this study was to determine the effect of buccolingual increase of the connector width on the stress distribution in posterior fixed partial dentures made of IPS Empress 2. To simulate the anatomical condition, we used three-dimensional finite element analysis to generate.Materials and Methods: Three models of three-unit bridges replacing the first molar were prepared. The buccolingual connector width varied from 3.0 to 5.0 mm. Bridges were vertically loaded with 600 N at one point on the central fossa of the pontic, at 12 points along the cusp-fossa contact (50 N each, or at eight points along the cusp-marginal ridge contact (75 N each. Alternatively, a load of 225 N was applied at a 45º angle from the lingual side.Results: Stress concentrations were observed within or near the connectors. The von Mises stress decreased by increasing connector width, regardless of whether the loading was applied vertically or at an angle.Conclusion: Within the limitations of this study, we conclude that increasing the connector width decreases the failure probability when a vertical or angled load is applied.

  18. Analyses of Deformation and Stress of Oil-free Scroll Compressor Scroll

    Science.gov (United States)

    Peng, Bin; Li, Yaohong; Zhao, Shenxian

    2017-12-01

    The solid model of orbiting and fixed scroll is created by the Solidworks The deformation and stress of scrolls under gas force, temperature field, inertia force and the coupling field are analyzed using the Ansys software. The deformation for different thickness and height scroll tooth is investigated. The laws of deformation and stress for scrolls are gotten. The research results indicate that the stress and deformation of orbiting scroll are mainly affected by the temperature field. The maximum deformation occurs in the tooth head of scroll wrap because of the largest gas forces and the highest temperature in the tooth head of scroll wrap. The maximum stress is located in the end of the tooth, and the maximum stress of the coupling field is not the sum of loads. The scroll tooth is higher, and the deformation is bigger. The scroll tooth is thicker, and the deformation is smaller.

  19. Thermal and stress analyses of meltdown cups for LMFBR safety experiments using SLSF in-reactor loops

    International Nuclear Information System (INIS)

    Blomquist, C.A.; Ariman, T.; Pierce, R.D.; Pedersen, D.R.

    1977-01-01

    A description of a meltdown cup to be used in the SLSF in-reactor experiments is presented. Thermal analyses have shown that the cup is capable of containing and cooling the postulated quantities of molten fuel and steel. The basic loadings for stress analyses were defined and failure modes were determined. It was shown that both the maximum bending stress and maximum tangential stress in the Inconel vessel are below the material yield stress. Additionally, the axial stress in the Inconel vessel was found to be negligible. The shear stress in the wire-formed retaining ring is much below the maximum shear stress. Therefore, the meltdown cup is capable of performing its required function

  20. Stress analysis of the HFIR HB-2 and HB-3 beam tube nozzles

    International Nuclear Information System (INIS)

    Williams, P.T.

    1998-08-01

    The results of three-dimensional linear elastic stress analyses of the HFIR HB-2 and HB-3 nozzles are presented in this report. Finite element models were developed using the PATRAN pre-processing code and translated into ABAQUS input file format. A scoping analysis using simple geometries with internal pressure loading was carried out to assess the capabilities of the ABAQUS/Standard code to calculate maximum principal stress distributions within cylinders with and without holes. These scoping calculations were also used to provide estimates for the variation in tangential stress around the rim of a nozzle using the superposition of published closed-form solutions for the stress around a hole in an infinite flat plate under uniaxial tension. From the results of the detailed finite element models, peak stress concentration factors (based on the maximum principal stresses in tension) were calculated to be 3.0 for the HB-2 nozzle and 2.8 for the HB-3 nozzle. Submodels for each nozzle were built to calculate the maximum principal stress distribution in the weldment region around the nozzle, where displacement boundary conditions for the submodels were automatically calculated by ABAQUS using the results of the global nozzle models. Maximum principal stresses are plotted and tabulated for eight positions around each nozzle and nozzle weldment

  1. Spectrum unfolding in X-ray spectrometry using the maximum entropy method

    International Nuclear Information System (INIS)

    Fernandez, Jorge E.; Scot, Viviana; Di Giulio, Eugenio

    2014-01-01

    The solution of the unfolding problem is an ever-present issue in X-ray spectrometry. The maximum entropy technique solves this problem by taking advantage of some known a priori physical information and by ensuring an outcome with only positive values. This method is implemented in MAXED (MAXimum Entropy Deconvolution), a software code contained in the package UMG (Unfolding with MAXED and GRAVEL) developed at PTB and distributed by NEA Data Bank. This package contains also the code GRAVEL (used to estimate the precision of the solution). This article introduces the new code UMESTRAT (Unfolding Maximum Entropy STRATegy) which applies a semi-automatic strategy to solve the unfolding problem by using a suitable combination of MAXED and GRAVEL for applications in X-ray spectrometry. Some examples of the use of UMESTRAT are shown, demonstrating its capability to remove detector artifacts from the measured spectrum consistently with the model used for the detector response function (DRF). - Highlights: ► A new strategy to solve the unfolding problem in X-ray spectrometry is presented. ► The presented strategy uses a suitable combination of the codes MAXED and GRAVEL. ► The applied strategy provides additional information on the Detector Response Function. ► The code UMESTRAT is developed to apply this new strategy in a semi-automatic mode

  2. Bending stress modeling of dismountable furniture joints applied with a use of finite element method

    Directory of Open Access Journals (Sweden)

    Milan Šimek

    2009-01-01

    Full Text Available Presented work focuses on bending moment stress modeling of dismountable furniture joints with a use of Finite Element Method. The joints are created from Minifix and Rondorfix cams combined with non-glued wooden dowels. Laminated particleboard 18 mm of thickness is used as a connected material. The connectors were chosen such as the most applied kind in furniture industry for the case furniture. All gained results were reciprocally compared to each other and also in comparison to experimental testing by the mean of stiffness. The non-linear numerical model of chosen joints was successfully created using the software Ansys Workbench. The detailed analysis of stress distribution in the joint was achieved with non-linear numerical simulation. A relationship between numerical si­mu­la­tion and experimental testing was showed by comparison stiffness tangents. A numerical simulation of RTA joint loads also demonstrated the important role of non-glued dowels in the tested joints. The low strength of particleboard in the tension parallel to surface (internal bond is the most likely the cause of the joint failure. Results are applicable for strength designing of furniture with the aid of Computer Aided Engineering.

  3. Parameter-free method for the shape optimization of stiffeners on thin-walled structures to minimize stress concentration

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yang; Shibutan, Yoji [Osaka University, Osaka (Japan); Shimoda, Masatoshi [Toyota Technological Institute, Nagoya (Japan)

    2015-04-15

    This paper presents a parameter-free shape optimization method for the strength design of stiffeners on thin-walled structures. The maximum von Mises stress is minimized and subjected to the volume constraint. The optimum design problem is formulated as a distributed-parameter shape optimization problem under the assumptions that a stiffener is varied in the in-plane direction and that the thickness is constant. The issue of nondifferentiability, which is inherent in this min-max problem, is avoided by transforming the local measure to a smooth differentiable integral functional by using the Kreisselmeier-Steinhauser function. The shape gradient functions are derived by using the material derivative method and adjoint variable method and are applied to the H{sup 1} gradient method for shells to determine the optimal free-boundary shapes. By using this method, the smooth optimal stiffener shape can be obtained without any shape design parameterization while minimizing the maximum stress. The validity of this method is verified through two practical design examples.

  4. Stress impedance effects in flexible amorphous FeCoSiB magnetoelastic films

    International Nuclear Information System (INIS)

    Zhang Wanli; Peng Bin; Su Ding; Tang Rujun; Jiang Hongchuan

    2008-01-01

    Amorphous FeCoSiB films were deposited on the flexible polyimide substrates (Kapton type (VN)) by DC magnetron sputtering. Stress impedance (SI) effects of the flexible amorphous FeCoSiB magnetoelastic films were investigated in details. The results show that a large stress impedance effect can be observed in the flexible amorphous FeCoSiB magnetoelastic films. And the results also show a bias magnetic field plays an important role in the stress impedance of FeCoSiB films. Applied a bias magnetic field during depositing can induce obvious in-plane anisotropy in the FeCoSiB films, and a larger SI effect can be obtained with a stronger anisotropy in FeCoSiB films. Argon pressure has a significant effect on the SI effect of the FeCoSiB films. The SI of the FeCoSiB films reaches a maximum of 7.6% at argon pressure of 1.5 Pa, which can be explained by the change of residual stress in FeCoSiB films

  5. Selective effects of weight and inertia on maximum lifting.

    Science.gov (United States)

    Leontijevic, B; Pazin, N; Kukolj, M; Ugarkovic, D; Jaric, S

    2013-03-01

    A novel loading method (loading ranged from 20% to 80% of 1RM) was applied to explore the selective effects of externally added simulated weight (exerted by stretched rubber bands pulling downward), weight+inertia (external weights added), and inertia (covariation of the weights and the rubber bands pulling upward) on maximum bench press throws. 14 skilled participants revealed a load associated decrease in peak velocity that was the least associated with an increase in weight (42%) and the most associated with weight+inertia (66%). However, the peak lifting force increased markedly with an increase in both weight (151%) and weight+inertia (160%), but not with inertia (13%). As a consequence, the peak power output increased most with weight (59%), weight+inertia revealed a maximum at intermediate loads (23%), while inertia was associated with a gradual decrease in the peak power output (42%). The obtained findings could be of importance for our understanding of mechanical properties of human muscular system when acting against different types of external resistance. Regarding the possible application in standard athletic training and rehabilitation procedures, the results speak in favor of applying extended elastic bands which provide higher movement velocity and muscle power output than the usually applied weights. © Georg Thieme Verlag KG Stuttgart · New York.

  6. Pareto versus lognormal: a maximum entropy test.

    Science.gov (United States)

    Bee, Marco; Riccaboni, Massimo; Schiavo, Stefano

    2011-08-01

    It is commonly found that distributions that seem to be lognormal over a broad range change to a power-law (Pareto) distribution for the last few percentiles. The distributions of many physical, natural, and social events (earthquake size, species abundance, income and wealth, as well as file, city, and firm sizes) display this structure. We present a test for the occurrence of power-law tails in statistical distributions based on maximum entropy. This methodology allows one to identify the true data-generating processes even in the case when it is neither lognormal nor Pareto. The maximum entropy approach is then compared with other widely used methods and applied to different levels of aggregation of complex systems. Our results provide support for the theory that distributions with lognormal body and Pareto tail can be generated as mixtures of lognormally distributed units.

  7. Alleviation of Water Stress Effects on MR220 Rice by Application of Periodical Water Stress and Potassium Fertilization

    Directory of Open Access Journals (Sweden)

    Nurul Amalina Mohd Zain

    2014-02-01

    Full Text Available The use of periodical water stress and potassium fertilization may enhance rice tolerance to drought stress and improve the crop’s instantaneous water use efficiency without much yield reduction. This study was conducted to assess the effects of different periodical water stress combined with potassium fertilization regimes on growth, yield, leaf gas exchanges and biochemical changes in rice grown in pots and compare them with standard local rice grower practices. Five treatments including (1 standard local grower’s practice (control, 80CF = 80 kg K2O/ha + control flooding; (2 120PW15 = 120 kg K2O/ha + periodical water stress for 15 days; (3 120DS15V = 120 kg K2O/ha + drought stress for 15 days during the vegetative stage; (4 120DS25V = 120 kg K2O/ha + drought stress for 25 days and (5 120DS15R = 120 kg K2O/ha + drought stress for 15 days during the reproductive stage, were evaluated in this experiment. Control and 120PW15 treatments were stopped at 100 DAS, and continuously saturated conditions were applied until harvest. It was found that rice under 120PW15 treatment showed tolerance to drought stress evidenced by increased water use efficiency, peroxidase (POX, catalase (CAT and proline levels, maximum efficiency of photosystem II (fv/fm and lower minimal fluorescence (fo, compared to other treatments. Path coefficient analysis revealed that most of parameters contribute directly rather than indirectly to rice yield. In this experiment, there were four factors that are directly involved with rice yield: grain soluble sugar, photosynthesis, water use efficiency and total chlorophyll content. The residual factors affecting rice yield are observed to be quite low in the experiment (0.350, confirming that rice yield was mostly influenced by the parameters measured during the study.

  8. Maximum Principle for General Controlled Systems Driven by Fractional Brownian Motions

    International Nuclear Information System (INIS)

    Han Yuecai; Hu Yaozhong; Song Jian

    2013-01-01

    We obtain a maximum principle for stochastic control problem of general controlled stochastic differential systems driven by fractional Brownian motions (of Hurst parameter H>1/2). This maximum principle specifies a system of equations that the optimal control must satisfy (necessary condition for the optimal control). This system of equations consists of a backward stochastic differential equation driven by both fractional Brownian motions and the corresponding underlying standard Brownian motions. In addition to this backward equation, the maximum principle also involves the Malliavin derivatives. Our approach is to use conditioning and Malliavin calculus. To arrive at our maximum principle we need to develop some new results of stochastic analysis of the controlled systems driven by fractional Brownian motions via fractional calculus. Our approach of conditioning and Malliavin calculus is also applied to classical system driven by standard Brownian motions while the controller has only partial information. As a straightforward consequence, the classical maximum principle is also deduced in this more natural and simpler way.

  9. Application of heat stress in situ demonstrates a protective role of irradiation on photosynthetic performance in alpine plants

    OpenAIRE

    Buchner, Othmar; STOLL, Magdalena; Karadar, Matthias; Kranner, Ilse; Neuner, Gilbert

    2014-01-01

    The impact of sublethal heat on photosynthetic performance, photosynthetic pigments and free radical scavenging activity was examined in three high mountain species, R hododendron ferrugineum, S enecio incanus and R anunculus glacialis using controlled in situ applications of heat stress, both in darkness and under natural solar irradiation. Heat treatments applied in the dark reversibly reduced photosynthetic performance and the maximum quantum efficiency of photosystem II (Fv/Fm), which rem...

  10. Reynolds stress turbulence model applied to two-phase pressurized thermal shocks in nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Mérigoux, Nicolas, E-mail: nicolas.merigoux@edf.fr; Laviéville, Jérôme; Mimouni, Stéphane; Guingo, Mathieu; Baudry, Cyril

    2016-04-01

    Highlights: • NEPTUNE-CFD is used to model two-phase PTS. • k-ε model did produce some satisfactory results but also highlights some weaknesses. • A more advanced turbulence model has been developed, validated and applied for PTS. • Coupled with LIM, the first results confirmed the increased accuracy of the approach. - Abstract: Nuclear power plants are subjected to a variety of ageing mechanisms and, at the same time, exposed to potential pressurized thermal shock (PTS) – characterized by a rapid cooling of the internal Reactor Pressure Vessel (RPV) surface. In this context, NEPTUNE-CFD is used to model two-phase PTS and give an assessment on the structural integrity of the RPV. The first available choice was to use standard first order turbulence model (k-ε) to model high-Reynolds number flows encountered in Pressurized Water Reactor (PWR) primary circuits. In a first attempt, the use of k-ε model did produce some satisfactory results in terms of condensation rate and temperature field distribution on integral experiments, but also highlights some weaknesses in the way to model highly anisotropic turbulence. One way to improve the turbulence prediction – and consequently the temperature field distribution – is to opt for more advanced Reynolds Stress turbulence Model. After various verification and validation steps on separated effects cases – co-current air/steam-water stratified flows in rectangular channels, water jet impingements on water pool free surfaces – this Reynolds Stress turbulence Model (R{sub ij}-ε SSG) has been applied for the first time to thermal free surface flows under industrial conditions on COSI and TOPFLOW-PTS experiments. Coupled with the Large Interface Model, the first results confirmed the adequacy and increased accuracy of the approach in an industrial context.

  11. Stress transfer around a broken fiber in unidirectional fiber-reinforced composites considering matrix damage evolution and interface slipping

    Science.gov (United States)

    Yang, Zhong; Zhang, BoMing; Zhao, Lin; Sun, XinYang

    2011-02-01

    A shear-lag model is applied to study the stress transfer around a broken fiber within unidirectional fiber-reinforced composites (FRC) subjected to uniaxial tensile loading along the fiber direction. The matrix damage and interfacial debonding, which are the main failure modes, are considered in the model. The maximum stress criterion with the linear damage evolution theory is used for the matrix. The slipping friction stress is considered in the interfacial debonding region using Coulomb friction theory, in which interfacial clamping stress comes from radial residual stress and mismatch of Poisson's ratios of constituents (fiber and matrix). The stress distributions in the fiber and matrix are obtained by the shear-lag theory added with boundary conditions, which includes force continuity and displacement compatibility constraints in the broken and neighboring intact fibers. The result gives axial stress distribution in fibers and shear stress in the interface and compares the theory reasonably well with the measurement by a polarized light microscope. The relation curves between damage, debonding and ineffective region lengths with external strain loading are obtained.

  12. A practical exact maximum compatibility algorithm for reconstruction of recent evolutionary history

    OpenAIRE

    Cherry, Joshua L.

    2017-01-01

    Background Maximum compatibility is a method of phylogenetic reconstruction that is seldom applied to molecular sequences. It may be ideal for certain applications, such as reconstructing phylogenies of closely-related bacteria on the basis of whole-genome sequencing. Results Here I present an algorithm that rapidly computes phylogenies according to a compatibility criterion. Although based on solutions to the maximum clique problem, this algorithm deals properly with ambiguities in the data....

  13. Influence of applied compressive stress on the hysteresis curves and magnetic domain structure of grain-oriented transverse Fe-3%Si steel

    International Nuclear Information System (INIS)

    Perevertov, O; Schäfer, R

    2012-01-01

    The influence of an applied compressive stress on the hysteresis curve and domain structure in conventional (1 1 0) [0 0 1] Fe-3%Si steel cut transverse to the rolling direction is studied. Quasistatic hysteresis loops under compressive stress up to 75 MPa were measured. The magnetic domains and magnetization processes were observed by longitudinal Kerr microscopy at different levels of stress. It is shown that the bulk hysteresis loop can be described with a good accuracy by the action of an effective field, which is the product of the stress and a function of magnetization. Domain observations have shown that the reasons for the effective field are demagnetizing fields due to the disappearance of supplementary domains along [0 1 0] and [1 0 0] at low fields and different domain systems in different grains at moderate fields. The latter are caused by differences in grain sensitivity to stress depending on the degree of misorientation. A decrease in the effective field above 1 T is connected with a transformation of all grains into the same domain system—the column pattern. (paper)

  14. Use of the maximum entropy method in X-ray astronomy

    International Nuclear Information System (INIS)

    Willingale, R.

    1981-01-01

    An algorithm used to apply the maximum entropy method in X-ray astronomy is described. It is easy to programme on a digital computer and fast enough to allow processing of two-dimensional images. The method gives good noise suppression without loss of instrumental resolution and has been successfully applied to several data analysis problems in X-ray astronomy. The restoration of a high-resolution image from the Einstein Observatory demonstrates the use of the algorithm. (author)

  15. Mechanical properties of jammed packings of frictionless spheres under an applied shear stress

    International Nuclear Information System (INIS)

    Liu Hao; Tong Hua; Xu Ning

    2014-01-01

    By minimizing a thermodynamic-like potential, we unbiasedly sample the potential energy landscape of soft and frictionless spheres under a constant shear stress. We obtain zero-temperature jammed states under desired shear stresses and investigate their mechanical properties as a function of the shear stress. As a comparison, we also obtain the jammed states from the quasistatic-shear sampling in which the shear stress is not well-controlled. Although the yield stresses determined by both samplings show the same power-law scaling with the compression from the jamming transition point J at zero temperature and shear stress, for finite size systems the quasistatic-shear sampling leads to a lower yield stress and a higher critical volume fraction at point J. The shear modulus of the jammed solids decreases with increasing shear stress. However, the shear modulus does not decay to zero at yielding. This discontinuous change of the shear modulus implies the discontinuous nature of the unjamming transition under nonzero shear stress, which is further verified by the observation of a discontinuous jump in the pressure from the jammed solids to the shear flows. The pressure jump decreases upon decompression and approaches zero at the critical-like point J, in analogy with the well-known phase transitions under an external field. The analysis of the force networks in the jammed solids reveals that the force distribution is more sensitive to the increase of the shear stress near point J. The force network anisotropy increases with increasing shear stress. The weak particle contacts near the average force and under large shear stresses it exhibit an asymmetric angle distribution. (special topic — non-equilibrium phenomena in soft matters)

  16. On the variation in crack-opening stresses at different locations in a three-dimensional body

    Science.gov (United States)

    Chermahini, R. G.; Blom, Anders F.

    1990-01-01

    Crack propagation and closure behavior of thin, and thick middle crack tension specimens under constant amplitude loading were investigated using a three dimensional elastic plastic finite element analysis of fatigue crack propagation and closure. In the thin specimens the crack front closed first on the exterior (free) surface and closed last in the interior during the unloading portion of cyclic loading; a load reduced displacement technique was used to determine crack opening stresses at specified locations in the plate from the displacements calculated after the seven cycle. All the locations were on the plate external surface and were located near the crack tip, behind the crack tip, at the centerline of the crack. With this technique, the opening stresses at the specified points were found to be 0.52, 0.42, and 0.39 times the maximum applied stress.

  17. Approximate maximum parsimony and ancestral maximum likelihood.

    Science.gov (United States)

    Alon, Noga; Chor, Benny; Pardi, Fabio; Rapoport, Anat

    2010-01-01

    We explore the maximum parsimony (MP) and ancestral maximum likelihood (AML) criteria in phylogenetic tree reconstruction. Both problems are NP-hard, so we seek approximate solutions. We formulate the two problems as Steiner tree problems under appropriate distances. The gist of our approach is the succinct characterization of Steiner trees for a small number of leaves for the two distances. This enables the use of known Steiner tree approximation algorithms. The approach leads to a 16/9 approximation ratio for AML and asymptotically to a 1.55 approximation ratio for MP.

  18. On the morphological change of solids by vacancy diffusion under the effect of interfacial tensions and applied stresses

    International Nuclear Information System (INIS)

    Felsen, M.F.

    1979-01-01

    The morphological change of solids by diffusion under the effect of interfacial tensions and applied stresses is studied by voids annealing and diffusion creep at intermediate and elevated temperatures respectively. In all cases, it has been shown that the evolution kinetic is controlled by vacancy diffusion and that interfaces are ideal sinks. Furthermore, the influence of additional elements on the surface tension of a pure metal is determined for the first time with the voids annealing technique, assuming that the self diffusion coefficient of the metal is not affected by small amount of impurities. The diffusion creep theory is modified to include the interfacial tension effects in the boundary conditions of the diffusion problem which gives a zero creep stress expression very different to those yet published, but the creep equation retains its classical form. The above experiments were carried out using an original device which allows verification of the creep equation to a great precision and to study the range of stresses between Nabarro and Weertman creep. Finally, some creep tests realised on two-phase alloys show that the strain is induced by diffusion [fr

  19. A Bayes-Maximum Entropy method for multi-sensor data fusion

    Energy Technology Data Exchange (ETDEWEB)

    Beckerman, M.

    1991-01-01

    In this paper we introduce a Bayes-Maximum Entropy formalism for multi-sensor data fusion, and present an application of this methodology to the fusion of ultrasound and visual sensor data as acquired by a mobile robot. In our approach the principle of maximum entropy is applied to the construction of priors and likelihoods from the data. Distances between ultrasound and visual points of interest in a dual representation are used to define Gibbs likelihood distributions. Both one- and two-dimensional likelihoods are presented, and cast into a form which makes explicit their dependence upon the mean. The Bayesian posterior distributions are used to test a null hypothesis, and Maximum Entropy Maps used for navigation are updated using the resulting information from the dual representation. 14 refs., 9 figs.

  20. Multilevel maximum likelihood estimation with application to covariance matrices

    Czech Academy of Sciences Publication Activity Database

    Turčičová, Marie; Mandel, J.; Eben, Kryštof

    Published online: 23 January ( 2018 ) ISSN 0361-0926 R&D Projects: GA ČR GA13-34856S Institutional support: RVO:67985807 Keywords : Fisher information * High dimension * Hierarchical maximum likelihood * Nested parameter spaces * Spectral diagonal covariance model * Sparse inverse covariance model Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.311, year: 2016

  1. Effects of stress on swelling in reactor fuel cladding

    International Nuclear Information System (INIS)

    Bates, J.F.; Gilbert, E.R.

    1977-01-01

    The purpose of this report is to describe the effect of stress on swelling in both annealed and 20% cold worked 316 stainless steel. An effect of stress on swelling in irradiated metals has been postulated for some time. Low fluence data confirmed that indeed a tensile stress can increase swelling in irradiated annealed 316 stainless steel and that the maximum swelling occurs at an intermediate stress level which is approximately equal to the proportional elastic limit of the material. The specimens discussed above were examined by transmission electron microscopy and an effect of stress on the microstructure of the annealed and 20% cold worked 316 specimens has been observed. Howver, as yet, copious swelling had not occurred in the 20% cold worked material. Specimens of 20% cold worked 316 fabricated from the same heat of material as those described above have now been irradiated to sufficiently high neutron fluences that swelling has occurred in both the annealed and cold worked conditions. Swelling increases linearly with stress for both materials. However, for solution annealed 316, swelling reaches a maximum at approximately 136 MPa, whereupon further increases in stress result in reduced swelling. It is felt that this reduction in swelling is related to the onset of plastic yielding in the material. The swelling observed in the 20% CW 316 and the solution annealed 316 below the maximum swelling stress can be adequately described by an equation of the form: S = S 0 (1 + Psigma). No strong effect of stress on changing the incubation period associated with void nucleation was found. (Auth.)

  2. Internal stresses in α-plutonium during deformation

    International Nuclear Information System (INIS)

    Merz, M.D.

    1976-01-01

    Internal stresses were measured in fine grained (2 μm) and coarse grained (20 μm) α-plutonium. In the fine grained metal the internal stress sigmasub(i), which was interpreted as the stress driving recovery processes near grain boundaries, was weakly dependent on applied stress, sigmasub(a). The effective stress, sigmasub(e) = sigma sub(a) - sigmasub(i), which is the stress to move dislocations, increased nearly 1:1 with applied stress, especially at high applied stresses. The strain rate obeyed the relation epsilon=K(T)sigmasub(e)sup(n) where K(T) is a temperature dependent term and n approximately = 3. The recovery rate in fine grained α-plutonium during creep was concluded to be very sensitive to internal stress. The internal stress in α-plutonium with 20 μm grain size was much higher than in the finer grain metal. (Auth.)

  3. Finite Element Analysis of the Effect of Superstructure Materials and Loading Angle on Stress Distribution around the Implant

    Directory of Open Access Journals (Sweden)

    Jafari K

    2014-12-01

    Full Text Available Statement of Problem: A general process in implant design is to determine the reason of possible problems and to find the relevant solutions. The success of the implant depends on the control technique of implant biomechanical conditions. Objectives: The goal of this study was to evaluate the influence of both abutment and framework materials on the stress of the bone around the implant by using threedimensional finite element analysis. Materials and Methods: A three-dimensional model of a patient’s premaxillary bone was fabricated using Cone Beam Computed Tomography (CBCT. Then, three types of abutment from gold, nickel-chromium and zirconia and also three types of crown frame from silver-palladium, nickel-chromium and zirconia were designed. Finally, a 178 N force at angles of zero, 30 and 45 degrees was exerted on the implant axis and the maximum stress and strain in the trabecular, cortical bones and cement was calculated. Results: With changes of the materials and mechanical properties of abutment and frame, little difference was observed in the level and distribution pattern of stress. The stress level was increased with the rise in the angle of pressure exertion. The highest stress concentration was related to the force at the angle of 45 degrees. The results of the cement analysis proved an inverse relationship between the rate of elastic modulus of the frame material and that of the maximum stress in the cement. Conclusions: The impact of the angle at which the force was applied was more significant in stress distribution than that of abutment and framework core materials.

  4. Sufficient Stochastic Maximum Principle in a Regime-Switching Diffusion Model

    Energy Technology Data Exchange (ETDEWEB)

    Donnelly, Catherine, E-mail: C.Donnelly@hw.ac.uk [Heriot-Watt University, Department of Actuarial Mathematics and Statistics (United Kingdom)

    2011-10-15

    We prove a sufficient stochastic maximum principle for the optimal control of a regime-switching diffusion model. We show the connection to dynamic programming and we apply the result to a quadratic loss minimization problem, which can be used to solve a mean-variance portfolio selection problem.

  5. Sufficient Stochastic Maximum Principle in a Regime-Switching Diffusion Model

    International Nuclear Information System (INIS)

    Donnelly, Catherine

    2011-01-01

    We prove a sufficient stochastic maximum principle for the optimal control of a regime-switching diffusion model. We show the connection to dynamic programming and we apply the result to a quadratic loss minimization problem, which can be used to solve a mean-variance portfolio selection problem.

  6. Estimation of Lithological Classification in Taipei Basin: A Bayesian Maximum Entropy Method

    Science.gov (United States)

    Wu, Meng-Ting; Lin, Yuan-Chien; Yu, Hwa-Lung

    2015-04-01

    In environmental or other scientific applications, we must have a certain understanding of geological lithological composition. Because of restrictions of real conditions, only limited amount of data can be acquired. To find out the lithological distribution in the study area, many spatial statistical methods used to estimate the lithological composition on unsampled points or grids. This study applied the Bayesian Maximum Entropy (BME method), which is an emerging method of the geological spatiotemporal statistics field. The BME method can identify the spatiotemporal correlation of the data, and combine not only the hard data but the soft data to improve estimation. The data of lithological classification is discrete categorical data. Therefore, this research applied Categorical BME to establish a complete three-dimensional Lithological estimation model. Apply the limited hard data from the cores and the soft data generated from the geological dating data and the virtual wells to estimate the three-dimensional lithological classification in Taipei Basin. Keywords: Categorical Bayesian Maximum Entropy method, Lithological Classification, Hydrogeological Setting

  7. Anisotropic swim stress in active matter with nematic order

    Science.gov (United States)

    Yan, Wen; Brady, John F.

    2018-05-01

    Active Brownian particles (ABPs) transmit a swim pressure {{{\\Pi }}}{{swim}}=n\\zeta {D}{{swim}} to the container boundaries, where ζ is the drag coefficient, D swim is the swim diffusivity and n is the uniform bulk number density far from the container walls. In this work we extend the notion of the isotropic swim pressure to the anisotropic tensorial swim stress {{\\boldsymbol{σ }}}{{swim}}=-n\\zeta {{\\boldsymbol{D}}}{{swim}}, which is related to the anisotropic swim diffusivity {{\\boldsymbol{D}}}{{swim}}. We demonstrate this relationship with ABPs that achieve nematic orientational order via a bulk external field. The anisotropic swim stress is obtained analytically for dilute ABPs in both 2D and 3D systems. The anisotropy, defined as the ratio of the maximum to the minimum of the three principal stresses, is shown to grow exponentially with the strength of the external field. We verify that the normal component of the anisotropic swim stress applies a pressure {{{\\Pi }}}{{swim}}=-({{\\boldsymbol{σ }}}{{swim}}\\cdot {\\boldsymbol{n}})\\cdot {\\boldsymbol{n}} on a wall with normal vector {\\boldsymbol{n}}, and, through Brownian dynamics simulations, this pressure is shown to be the force per unit area transmitted by the active particles. Since ABPs have no friction with a wall, the difference between the normal and tangential stress components—the normal stress difference—generates a net flow of ABPs along the wall, which is a generic property of active matter systems.

  8. Study on the essential variables for pipe outer surface irradiated laser stress improvement process (L-SIP). Development of pipe outer surface irradiated laser stress improvement process (L-SIP)

    International Nuclear Information System (INIS)

    Ohta, Takahiro; Kamo, Kazuhiko; Muroya, Itaru; Asada, Seiji; Nakamura, Yasuo

    2009-01-01

    The new process called L-SIP (outer surface irradiated Laser Stress Improvement Process) is developed to improve the tensile residual stress of the inner surface near the butt welded joints of pipes in the compression stress. The temperature gradient occurs in the thickness of pipes in heating the outer surface rapidly by laser beam. By the thermal expansion difference between the inner surface and the outer surface, the compression stress occurs near the inner surface of pipes. In this paper, the essential variables for L-SIP is studied by experimental and FEM analysis. The range of the essential variables for L-SIP, which are defined by thermo-elastic FEM analysis, are Tmax=550 - 650degC, L Q /√rh ≥ 3, W Q /√rh ≥ 1.7, and, 0.04 ≤ F 0 ≤ 0.10 where Tmax is maximum temperature on the monitor point of the outer surface, F 0 is k x τ 0 /h 2 , k is thermal diffusivity coefficient, τ 0 is the temperature rise time from 100degC to maximum temperature on the monitor point of the outer surface, W Q is τ 0 x v, υ is moving velocity, L Q is the uniform temperature length in the axial direction, h is thickness of the pipe, and r is average radius of the pipe. It is showed by thermo-elastic-plastic FEM analysis that the residual stresses near the inner surface of pipes are improved in 4 different size pipes under the same essential variables. L-SIP is actually applied to welding joints of 4B x Sch160 and 2B x Sch80 SUS304 type stainless steel pipes within the defined range of the essential variables. The measured welding residual stresses on the inner surface near the welding joints are tensile. The residual stresses on the inner surface change to compression in all joints by L-SIP. (author)

  9. The influence of the weld toe grinding and wig remelting weld toe rehabilitation techniques, on variable stresses, in case of cross fillet welds, reinforced with additional welding rows

    Directory of Open Access Journals (Sweden)

    Babis Claudiu

    2017-01-01

    Full Text Available Variable stresses where the load value varies between a maximum and a minimum value, or varies the position in time, cause after accumulating a large number of load cycles in those structures, the emergence of drug fatigue. Fatigue is characterized by failure on values of the applied stress from the load cycles, below the material flow, values which in case of static stress would not have caused problems. Knowing that the variable stressed structures are sensitive to stress concentrators, the paper aims to highlight the influence of two techniques to reduce stress concentrator weld toe grinding and WIG remelting weld toe, on the behavior of variable tensile test of cross corner welded specimens, reinforced with additional welding rows.

  10. Evaluating penalized logistic regression models to predict Heat-Related Electric grid stress days

    Energy Technology Data Exchange (ETDEWEB)

    Bramer, L. M.; Rounds, J.; Burleyson, C. D.; Fortin, D.; Hathaway, J.; Rice, J.; Kraucunas, I.

    2017-11-01

    Understanding the conditions associated with stress on the electricity grid is important in the development of contingency plans for maintaining reliability during periods when the grid is stressed. In this paper, heat-related grid stress and the relationship with weather conditions is examined using data from the eastern United States. Penalized logistic regression models were developed and applied to predict stress on the electric grid using weather data. The inclusion of other weather variables, such as precipitation, in addition to temperature improved model performance. Several candidate models and datasets were examined. A penalized logistic regression model fit at the operation-zone level was found to provide predictive value and interpretability. Additionally, the importance of different weather variables observed at different time scales were examined. Maximum temperature and precipitation were identified as important across all zones while the importance of other weather variables was zone specific. The methods presented in this work are extensible to other regions and can be used to aid in planning and development of the electrical grid.

  11. Maximum Correntropy Unscented Kalman Filter for Spacecraft Relative State Estimation

    Directory of Open Access Journals (Sweden)

    Xi Liu

    2016-09-01

    Full Text Available A new algorithm called maximum correntropy unscented Kalman filter (MCUKF is proposed and applied to relative state estimation in space communication networks. As is well known, the unscented Kalman filter (UKF provides an efficient tool to solve the non-linear state estimate problem. However, the UKF usually plays well in Gaussian noises. Its performance may deteriorate substantially in the presence of non-Gaussian noises, especially when the measurements are disturbed by some heavy-tailed impulsive noises. By making use of the maximum correntropy criterion (MCC, the proposed algorithm can enhance the robustness of UKF against impulsive noises. In the MCUKF, the unscented transformation (UT is applied to obtain a predicted state estimation and covariance matrix, and a nonlinear regression method with the MCC cost is then used to reformulate the measurement information. Finally, the UT is adopted to the measurement equation to obtain the filter state and covariance matrix. Illustrative examples demonstrate the superior performance of the new algorithm.

  12. Stress corrosion cracking tests on electron beam welded carbon steel specimens in carbonate-bicarbonate solution

    International Nuclear Information System (INIS)

    Parkins, R.N.

    1985-04-01

    Stress corrosion cracking tests have been performed on tapered carbon steel test pieces containing electron beam welds with a view to defining susceptibility to such cracking in a carbonate-bicarbonate solution at 90 C and an appropriate electrode potential. The tests involved applying cyclic loads to the specimens and it is shown that the threshold stress for cracking reduces linearly with increase in the magnitude of the cyclic load component. Extrapolation of these trends to zero fluctuating stress indicates static load threshold stresses in the vicinity of the yield stress (i.e. about 300 N/mm 2 for parent plate without a weld, 400 N/mm 2 for specimens with welds on one side only and 600 N/mm 2 for specimens having welds penetrating through the thickness of the specimen). The averages of the maximum crack velocities observed were least for parent plate material and greatest for weld metal, the former being essentially intergranular in morphology and the latter mostly transgranular, with heat affected zone material being intermediate between these extremes. (author)

  13. Assessment of extreme value distributions for maximum temperature in the Mediterranean area

    Science.gov (United States)

    Beck, Alexander; Hertig, Elke; Jacobeit, Jucundus

    2015-04-01

    Extreme maximum temperatures highly affect the natural as well as the societal environment Heat stress has great effects on flora, fauna and humans and culminates in heat related morbidity and mortality. Agriculture and different industries are severely affected by extreme air temperatures. Even more under climate change conditions, it is necessary to detect potential hazards which arise from changes in the distributional parameters of extreme values, and this is especially relevant for the Mediterranean region which is characterized as a climate change hot spot. Therefore statistical approaches are developed to estimate these parameters with a focus on non-stationarities emerging in the relationship between regional climate variables and their large-scale predictors like sea level pressure, geopotential heights, atmospheric temperatures and relative humidity. Gridded maximum temperature data from the daily E-OBS dataset (Haylock et al., 2008) with a spatial resolution of 0.25° x 0.25° from January 1950 until December 2012 are the predictands for the present analyses. A s-mode principal component analysis (PCA) has been performed in order to reduce data dimension and to retain different regions of similar maximum temperature variability. The grid box with the highest PC-loading represents the corresponding principal component. A central part of the analyses is the model development for temperature extremes under the use of extreme value statistics. A combined model is derived consisting of a Generalized Pareto Distribution (GPD) model and a quantile regression (QR) model which determines the GPD location parameters. The QR model as well as the scale parameters of the GPD model are conditioned by various large-scale predictor variables. In order to account for potential non-stationarities in the predictors-temperature relationships, a special calibration and validation scheme is applied, respectively. Haylock, M. R., N. Hofstra, A. M. G. Klein Tank, E. J. Klok, P

  14. Application of heat stress in situ demonstrates a protective role of irradiation on photosynthetic performance in alpine plants.

    Science.gov (United States)

    Buchner, Othmar; Stoll, Magdalena; Karadar, Matthias; Kranner, Ilse; Neuner, Gilbert

    2015-04-01

    The impact of sublethal heat on photosynthetic performance, photosynthetic pigments and free radical scavenging activity was examined in three high mountain species, Rhododendron ferrugineum, Senecio incanus and Ranunculus glacialis using controlled in situ applications of heat stress, both in darkness and under natural solar irradiation. Heat treatments applied in the dark reversibly reduced photosynthetic performance and the maximum quantum efficiency of photosystem II (Fv /Fm), which remained impeded for several days when plants were exposed to natural light conditions subsequently to the heat treatment. In contrast, plants exposed to heat stress under natural irradiation were able to tolerate and recover from heat stress more readily. The critical temperature threshold for chlorophyll fluorescence was higher under illumination (Tc (')) than in the dark (Tc). Heat stress caused a significant de-epoxidation of the xanthophyll cycle pigments both in the light and in the dark conditions. Total free radical scavenging activity was highest when heat stress was applied in the dark. This study demonstrates that, in the European Alps, heat waves can temporarily have a negative impact on photosynthesis and, importantly, that results obtained from experiments performed in darkness and/or on detached plant material may not reliably predict the impact of heat stress under field conditions. © 2014 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.

  15. Efeito do hexazinone isolado e em mistura na eficiência fotossintética de Panicum maximum Effect of hexazinone applied alone and in combination on the photosynthetic efficiency of Panicum maximum

    Directory of Open Access Journals (Sweden)

    M. Girotto

    2012-06-01

    Full Text Available Esta pesquisa teve como objetivo avaliar a velocidade e intensidade de ação do hexazinone isolado e em mistura com outros inibidores do fotossistema II, através da eficiência fotossintética de Panicum maximum em pós-emergência. O ensaio foi constituído de seis tratamentos: hexazinone (250 g ha-1, tebuthiuron (1,0 kg ha-1, hexazinone + tebuthiuron (125 g ha-1 + 0,5 kg ha-1, diuron (2.400 g ha-1, hexazinone + diuron (125 + 1.200 g ha-1, metribuzin (1.440 g ha-1, hexazinone + metribuzin (125 + 720 g ha-1 e uma testemunha. O experimento foi instalado em delineamento inteiramente casualizado, com quatro repetições. Após a aplicação dos tratamentos, as plantas foram transportadas para casa de vegetação sob condições controladas de temperatura e umidade, onde ficaram durante o período experimental, sendo realizadas as seguintes avaliações: taxa de transporte de elétrons e análise visual de intoxicação. A avaliação com o fluorômetro foi realizada nos intervalos de 1, 2, 6, 24, 48, 72, 120 e 168 horas após a aplicação, e as avaliações visuais, aos três e sete dias após a aplicação. Os resultados demonstraram diferença nos tratamentos, enfatizando a aplicação do diuron, que reduziu lentamente o transporte de elétrons comparado com os outros herbicidas e, em mistura com hexazinone, apresentou efeito sinérgico. Verificou-se com o uso do fluorômetro a intoxicação antecipada em plantas de P. maximum após a aplicação de herbicidas inibidores do fotossistema II de forma isolada e em mistura.This work aimed to evaluate the speed and intensity of action of hexazinone applied alone and in combination with other photo-system II inhibitors on the photosynthetic efficiency of Panicum maximum in post-emergence. The assay consisted of six treatments: hexazinone (250 g ha-1, tebuthiuron (1.0 kg ha-1, hexazinone + tebuthiuron (125 g ha-1+ 0.5 kg ha-1, diuron (2,400 g ha-1, hexazinone + diuron (125 + 1,200 g ha-1, metribuzin

  16. Neutron-diffraction measurements of stress

    International Nuclear Information System (INIS)

    Holden, T.M.

    1995-01-01

    Experiments on bent steam-generator tubing have shown that different diffraction peaks, (1 1 1) or (0 0 2), give different results for the sign and magnitude of the stress and strain. From an engineering standpoint, the macroscopic stress field cannot be both positive and negative in the same volume, so this difference must be due to intergranular effects superposed on the macroscopic stress field. Uniaxial tensile test experiments with applied stresses beyond the 0.2% offset yield stress, help to understand this anomaly, by demonstrating the different strain response to applied stress along different crystallographic axes.When Zr-alloys are cooled from elevated temperatures, thermal stresses always develop, so that it is difficult to obtain a stress-free lattice spacing from which residual strains may be derived. From measurements of the temperature dependence of lattice spacing, the temperature at which the thermal stresses vanish may be found. From the lattice spacing at this temperature the stress-free lattice spacings at room temperature can be obtained readily.To interpret the measured strains in terms of macroscopic stress fields it is necessary to know the diffraction elastic constants. Neutron diffraction measurements of the diffraction elastic constants in a ferritic steel for the [1 1 0], [0 0 2] and [2 2 2] crystallographic axes, in directions parallel and perpendicular to the applied stress are compared with theoretical diffraction elastic constants. (orig.)

  17. Application of a Full Reynolds Stress Model to High Lift Flows

    Science.gov (United States)

    Lee-Rausch, E. M.; Rumsey, C. L.; Eisfeld, B.

    2016-01-01

    A recently developed second-moment Reynolds stress model was applied to two challenging high-lift flows: (1) transonic flow over the ONERA M6 wing, and (2) subsonic flow over the DLR-F11 wing-body configuration from the second AIAA High Lift Prediction Workshop. In this study, the Reynolds stress model results were contrasted with those obtained from one- and two{equation turbulence models, and were found to be competitive in terms of the prediction of shock location and separation. For an ONERA M6 case, results from multiple codes, grids, and models were compared, with the Reynolds stress model tending to yield a slightly smaller shock-induced separation bubble near the wing tip than the simpler models, but all models were fairly close to the limited experimental surface pressure data. For a series of high-lift DLR{F11 cases, the range of results was more limited, but there was indication that the Reynolds stress model yielded less-separated results than the one-equation model near maximum lift. These less-separated results were similar to results from the one-equation model with a quadratic constitutive relation. Additional computations need to be performed before a more definitive assessment of the Reynolds stress model can be made.

  18. Blockade of central vasopressin receptors reduces the cardiovascular response to acute stress in freely moving rats.

    Science.gov (United States)

    Stojicić, S; Milutinović-Smiljanić, S; Sarenac, O; Milosavljević, S; Paton, J F R; Murphy, D; Japundzić-Zigon, N

    2008-04-01

    To investigate the contribution of central vasopressin receptors to blood pressure (BP) and heart rate (HR) response to stress we injected non-peptide selective V(1a) (SR49059), V(1b) (SSR149415), V(2) (SR121463) receptor antagonists, diazepam or vehicle in the lateral cerebral ventricle of conscious freely moving rats stressed by blowing air on their heads for 2 min. Cardiovascular effects of stress were evaluated by analyzing maximum increase of BP and HR (MAX), latency of maximum response (LAT), integral under BP and HR curve (integral), duration of their recovery and spectral parameters of BP and HR indicative of increased sympathetic outflow (LF(BP) and LF/HF(HR)). Moreover, the increase of serum corticosterone was measured. Exposure to air-jet stress induced simultaneous increase in BP and HR followed by gradual decline during recovery while LF(BP) oscillation remained increased as well as serum corticosterone level. Rats pre-treated with vasopressin receptor antagonists were not sedated while diazepam induced sedation that persisted during exposure to stress. V(1a), V(1b) and V(2) receptor antagonists applied separately did not modify basal values of cardiovascular parameters but prevented the increase in integral(BP). In addition, V(1b) and V(2) receptor antagonists reduced BP(MAX) whereas V(1a), V(1b) antagonist and diazepam reduced HR(MAX) induced by exposure to air-jet stress. All drugs shortened the recovery period, prevented the increase of LF(BP) without affecting the increase in serum corticosterone levels. Results indicate that vasopressin receptors located within the central nervous system mediate, in part, the cardiovascular response to air-jet stress without affecting either the neuroendocrine component or inducing sedation. They support the view that the V(1b) receptor antagonist may be of potential therapeutic value in reducing arterial pressure induced by stress-related disorders.

  19. A proposed residual stress model for oblique turning

    International Nuclear Information System (INIS)

    Elkhabeery, M. M.

    2001-01-01

    A proposed mathematical model is presented for predicting the residual stresses caused by turning. Effects of change in tool free length, cutting speed, feed rate, and the tensile strength of work piece material on the maximum residual stress are investigated. The residual stress distribution in the surface region due to turning under unlubricated condition is determined using a deflection etching technique. To reduce the number of experiments required and build the mathematical model for these variables, Response Surface Methodology (RSM) is used. In addition, variance analysis and an experimental check are conducted to determine the prominent parameters and the adequacy of the model. The results show that the tensile stress of the work piece material, cutting speed, and feed rate have significant effects on the maximum residual stresses. The proposed model, that offering good correlation between the experimental and predicted results, is useful in selecting suitable cutting parameters for the machining of different materials. (author)

  20. Lithology-dependent In Situ Stress in Heterogeneous Carbonate Reservoirs

    Science.gov (United States)

    Pham, C. N.; Chang, C.

    2017-12-01

    Characterization of in situ stress state for various geomechanical aspects in petroleum development may be particularly difficult in carbonate reservoirs in which rock properties are generally heterogeneous. We demonstrate that the variation of in situ stress in highly heterogeneous carbonate reservoirs is closely related to the heterogeneity in rock mechanical property. The carbonate reservoir studied consists of numerous sequential layers gently folded, exhibiting wide ranges of porosity (0.01 - 0.29) and Young's modulus (25 - 85 GPa) depending on lithology. Wellbore breakouts and drilling-induced tensile fractures (DITFs) observed in the image logs obtained from several wells indicate that the in situ state of stress orientation changes dramatically with depth and location. Even in a wellbore, the azimuth of the maximum horizontal stress changes by as much as 60° within a depth interval of 500 m. This dramatic change in stress orientation is inferred to be due to the contrast in elastic properties between different rock layers which are bent by folding in the reservoir. The horizontal principal stress magnitudes are constrained by back-calculating stress conditions necessary to induce the observed wellbore failures using breakout width and the presence of DITFs. The horizontal stresses vary widely, which cannot be represented by a constant stress gradient with depth. The horizontal principal stress gradient increases with Young's modulus of layer monotonically, indicating that a stiffer layer conveys a higher horizontal stress. This phenomenon can be simulated using a numerical modelling, in which the horizontal stress magnitudes depend on stiffness of individual layers although the applied far-field stress conditions are constant. The numerical results also suggest that the stress concentration at the wellbore wall is essentially higher in a stiffer layer, promoting the possibility of wellbore breakout formation. These results are in agreement with our

  1. Calculation of thermal stresses in graphite fuel blocks

    International Nuclear Information System (INIS)

    Lejeail, Y.; Cabrillat, M.T.

    2005-01-01

    This paper presents a parametric study of temperature and thermal stress calculations inside a HTGR core graphite block, taking into account the effect of fluence on the thermal and mechanical properties, up to 4. 10 21 n/cm 2 . The Finite Element model, realized with Cast3M CEA code, includes the effects of irradiation creep, which tends to produce secondary stress relaxation. Then, the Weibull weakest link theory is recalled, evaluating the possible effects of volume, stress field distribution (loading factor), and multiaxiality for graphite-type materials, and giving the methodology to compare the stress to rupture for the structure to the one obtained from characterization, in the general case. The maximum of the Weibull stress in Finite Element calculations is compared to the value for tensile specimens. It is found that the maximum of the stress corresponds to the end of the irradiation cycle, after reactor shutdown, since both thermal conductivity and Young's modulus increase with time. However, this behaviour is partly counterbalanced by the increase of material strength with irradiation. (authors)

  2. maximum neutron flux at thermal nuclear reactors

    International Nuclear Information System (INIS)

    Strugar, P.

    1968-10-01

    Since actual research reactors are technically complicated and expensive facilities it is important to achieve savings by appropriate reactor lattice configurations. There is a number of papers, and practical examples of reactors with central reflector, dealing with spatial distribution of fuel elements which would result in higher neutron flux. Common disadvantage of all the solutions is that the choice of best solution is done starting from the anticipated spatial distributions of fuel elements. The weakness of these approaches is lack of defined optimization criteria. Direct approach is defined as follows: determine the spatial distribution of fuel concentration starting from the condition of maximum neutron flux by fulfilling the thermal constraints. Thus the problem of determining the maximum neutron flux is solving a variational problem which is beyond the possibilities of classical variational calculation. This variational problem has been successfully solved by applying the maximum principle of Pontrjagin. Optimum distribution of fuel concentration was obtained in explicit analytical form. Thus, spatial distribution of the neutron flux and critical dimensions of quite complex reactor system are calculated in a relatively simple way. In addition to the fact that the results are innovative this approach is interesting because of the optimization procedure itself [sr

  3. Predicting the Outcome of NBA Playoffs Based on the Maximum Entropy Principle

    OpenAIRE

    Ge Cheng; Zhenyu Zhang; Moses Ntanda Kyebambe; Nasser Kimbugwe

    2016-01-01

    Predicting the outcome of National Basketball Association (NBA) matches poses a challenging problem of interest to the research community as well as the general public. In this article, we formalize the problem of predicting NBA game results as a classification problem and apply the principle of Maximum Entropy to construct an NBA Maximum Entropy (NBAME) model that fits to discrete statistics for NBA games, and then predict the outcomes of NBA playoffs using the model. Our results reveal that...

  4. Does combined strength training and local vibration improve isometric maximum force? A pilot study.

    Science.gov (United States)

    Goebel, Ruben; Haddad, Monoem; Kleinöder, Heinz; Yue, Zengyuan; Heinen, Thomas; Mester, Joachim

    2017-01-01

    The aim of the study was to determine whether a combination of strength training (ST) and local vibration (LV) improved the isometric maximum force of arm flexor muscles. ST was applied to the left arm of the subjects; LV was applied to the right arm of the same subjects. The main aim was to examine the effect of LV during a dumbbell biceps curl (Scott Curl) on isometric maximum force of the opposite muscle among the same subjects. It is hypothesized, that the intervention with LV produces a greater gain in isometric force of the arm flexors than ST. Twenty-seven collegiate students participated in the study. The training load was 70% of the individual 1 RM. Four sets with 12 repetitions were performed three times per week during four weeks. The right arm of all subjects represented the vibration trained body side (VS) and the left arm served as the traditional trained body side (TTS). A significant increase of isometric maximum force in both body sides (Arms) occurred. VS, however, significantly increased isometric maximum force about 43% in contrast to 22% of the TTS. The combined intervention of ST and LC improves isometric maximum force of arm flexor muscles. III.

  5. Stress in ion-implanted CVD Si3N4 films

    International Nuclear Information System (INIS)

    EerNisse, E.P.

    1977-01-01

    The compressive stress buildup caused in chemical-vapor-deposited (CVD) Si 3 N 4 films by ion implantation is shown to be caused entirely by atomic collision effects, ionization effects being unimportant. The stress introduction rate is shown to be independent of CVD processing variables and O content of the film. The maximum attainable compressive stress change is 3.5 x 10 10 dyn/cm 2 , resulting in a maximum net compressive stress of 2 x 10 10 dyn/cm 2 for films on Si where the as-deposited films inherently have 1.5 x 10 10 dyn/cm 2 tensile stress before ion implantation. Results are presented which show that O in the films inhibits thermal annealing of the ion-implantation-induced compressive stress. Results for introduction rate and annealing effects are presented in normalized form so that workers can use the effects for intentional stress level adjustment in the films to reduce probability of cracking and detachment

  6. Three-Dimensional Finite Element Analysis of the Stress Distribution at the Internal Implant-Abutment Connection.

    Science.gov (United States)

    Cho, Sung-Yong; Huh, Yoon-Hyuk; Park, Chan-Jin; Cho, Lee-Ra

    2016-01-01

    This study investigated stress distribution in four different implant-abutment interface conditions in the internal tapered connection implant system. Four different implant diameters (3.5 mm, 4.0 mm, 4.5 mm, and 5.0 mm) and two abutment types (hexagonal and conical) were simulated. Four unique implant-abutment interface conditions were assumed based on wall thickness, mating surface length, distance to the vertical stop, and abutment shape. Axial and oblique loading was applied during abutment screw preload, and the Von Mises stresses were measured at the implant-abutment and abutment-screw interfaces. The implant-abutment interface stress decreased as the wall thickness increased. As the mating surface increased, the stress distribution trended downward, and when the distance to the implant vertical stop was 0 μm, the Von Mises stress was extremely high at the vertical stop. Despite their different shapes, the abutments showed similar stress distributions. However, the maximum Von Mises stress was higher in the conical connection than in the hexagonal connection, particularly at the contralateral side to loading. To decrease the stress distribution at the implant-abutment interface, the implant wall thickness, mating surface contact length, distance to the vertical stop, and abutment shape should be carefully considered.

  7. Stress corrosion cracking mitigation by ultrasound induced cavitation technique

    Energy Technology Data Exchange (ETDEWEB)

    Fong, C.; Lee, Y.C. [Industrial Technology Research Inst., Taiwan (China); Yeh, T.K. [National Tsing Hua Univ., Taiwan (China)

    2014-07-01

    Cavitation is usually considered as a damaging mechanism under erosion corrosion condition. However, if used appropriately, cavitation can be applied as a peening technique for surface stress modification process. The aim of surface stress modification is to alter the stress state of processed surface through direct or indirect thermo-mechanical treatments to reduce cracking problems initiated from surface. Ultrasonic devices are used to generate cavitation bubbles which when collapse will produce high intensity shock waves and high velocity micro-jet streams. The cavitation impact when properly controlled will create plastically deformed compressive layers in nearby surfaces and minimize cracking susceptibility in corrosive environments. This study is to investigate the effectiveness of Ultrasound Induced Cavitation (UIC) technique in surface stress improvement. Ultrasonic cavitation treatment of SS304 stainless steel under pure water is carried out with different controlling parameters. The cavitation impact on SS304 surface is measured in terms of surface roughness, surface strain, hardness, and microstructural characteristics. The in-depth residual stress distribution and crack mitigation effect are also evaluated. Test result indicates ultrasound induced cavitation treatment only has minor effect on surface physical characteristics. The extent of compressive stress produced on top surface exceeds the yield strength and can reach a depth above 150 μm. The maximum surface strain measured is generally below 20%, which is not considered detrimental to accelerate crack initiation. Stress corrosion verification tests show UIC treatment is capable in preventing environmental assisted cracking of stainless steels in severely corrosive conditions. In view of the test results, UIC technique has demonstrated to be a low cost, low contaminating, and effective surface stress improvement technology. (author)

  8. Stress corrosion cracking mitigation by ultrasound induced cavitation technique

    International Nuclear Information System (INIS)

    Fong, C.; Lee, Y.C.; Yeh, T.K.

    2014-01-01

    Cavitation is usually considered as a damaging mechanism under erosion corrosion condition. However, if used appropriately, cavitation can be applied as a peening technique for surface stress modification process. The aim of surface stress modification is to alter the stress state of processed surface through direct or indirect thermo-mechanical treatments to reduce cracking problems initiated from surface. Ultrasonic devices are used to generate cavitation bubbles which when collapse will produce high intensity shock waves and high velocity micro-jet streams. The cavitation impact when properly controlled will create plastically deformed compressive layers in nearby surfaces and minimize cracking susceptibility in corrosive environments. This study is to investigate the effectiveness of Ultrasound Induced Cavitation (UIC) technique in surface stress improvement. Ultrasonic cavitation treatment of SS304 stainless steel under pure water is carried out with different controlling parameters. The cavitation impact on SS304 surface is measured in terms of surface roughness, surface strain, hardness, and microstructural characteristics. The in-depth residual stress distribution and crack mitigation effect are also evaluated. Test result indicates ultrasound induced cavitation treatment only has minor effect on surface physical characteristics. The extent of compressive stress produced on top surface exceeds the yield strength and can reach a depth above 150 μm. The maximum surface strain measured is generally below 20%, which is not considered detrimental to accelerate crack initiation. Stress corrosion verification tests show UIC treatment is capable in preventing environmental assisted cracking of stainless steels in severely corrosive conditions. In view of the test results, UIC technique has demonstrated to be a low cost, low contaminating, and effective surface stress improvement technology. (author)

  9. Regular and platform switching: bone stress analysis varying implant type.

    Science.gov (United States)

    Gurgel-Juarez, Nália Cecília; de Almeida, Erika Oliveira; Rocha, Eduardo Passos; Freitas, Amílcar Chagas; Anchieta, Rodolfo Bruniera; de Vargas, Luis Carlos Merçon; Kina, Sidney; França, Fabiana Mantovani Gomes

    2012-04-01

    This study aimed to evaluate stress distribution on peri-implant bone simulating the influence of platform switching in external and internal hexagon implants using three-dimensional finite element analysis. Four mathematical models of a central incisor supported by an implant were created: External Regular model (ER) with 5.0 mm × 11.5 mm external hexagon implant and 5.0 mm abutment (0% abutment shifting), Internal Regular model (IR) with 4.5 mm × 11.5 mm internal hexagon implant and 4.5 mm abutment (0% abutment shifting), External Switching model (ES) with 5.0 mm × 11.5 mm external hexagon implant and 4.1 mm abutment (18% abutment shifting), and Internal Switching model (IS) with 4.5 mm × 11.5 mm internal hexagon implant and 3.8 mm abutment (15% abutment shifting). The models were created by SolidWorks software. The numerical analysis was performed using ANSYS Workbench. Oblique forces (100 N) were applied to the palatal surface of the central incisor. The maximum (σ(max)) and minimum (σ(min)) principal stress, equivalent von Mises stress (σ(vM)), and maximum principal elastic strain (ε(max)) values were evaluated for the cortical and trabecular bone. For cortical bone, the highest stress values (σ(max) and σ(vm) ) (MPa) were observed in IR (87.4 and 82.3), followed by IS (83.3 and 72.4), ER (82 and 65.1), and ES (56.7 and 51.6). For ε(max), IR showed the highest stress (5.46e-003), followed by IS (5.23e-003), ER (5.22e-003), and ES (3.67e-003). For the trabecular bone, the highest stress values (σ(max)) (MPa) were observed in ER (12.5), followed by IS (12), ES (11.9), and IR (4.95). For σ(vM), the highest stress values (MPa) were observed in IS (9.65), followed by ER (9.3), ES (8.61), and IR (5.62). For ε(max) , ER showed the highest stress (5.5e-003), followed by ES (5.43e-003), IS (3.75e-003), and IR (3.15e-003). The influence of platform switching was more evident for cortical bone than for trabecular bone, mainly for the external hexagon

  10. Statistical Significance of the Maximum Hardness Principle Applied to Some Selected Chemical Reactions.

    Science.gov (United States)

    Saha, Ranajit; Pan, Sudip; Chattaraj, Pratim K

    2016-11-05

    The validity of the maximum hardness principle (MHP) is tested in the cases of 50 chemical reactions, most of which are organic in nature and exhibit anomeric effect. To explore the effect of the level of theory on the validity of MHP in an exothermic reaction, B3LYP/6-311++G(2df,3pd) and LC-BLYP/6-311++G(2df,3pd) (def2-QZVP for iodine and mercury) levels are employed. Different approximations like the geometric mean of hardness and combined hardness are considered in case there are multiple reactants and/or products. It is observed that, based on the geometric mean of hardness, while 82% of the studied reactions obey the MHP at the B3LYP level, 84% of the reactions follow this rule at the LC-BLYP level. Most of the reactions possess the hardest species on the product side. A 50% null hypothesis is rejected at a 1% level of significance.

  11. The Influence of Red Fruit Oil on Creatin Kinase Level at Maximum Physical Activity

    Science.gov (United States)

    Apollo Sinaga, Fajar; Hotliber Purba, Pangondian

    2018-03-01

    Heavy physical activities can cause the oxidative stress which resulting in muscle damage with an indicator of elevated levels of Creatin Kinase (CK) enzyme. The oxidative stress can be prevented or reduced by antioxidant supplementation. One of natural resources which contain antioxidant is Red Fruit (Pandanus conoideus) Oil (RFO). This study aims to see the effect of Red Fruit Oil on Creatin Kinase (CK) level at maximum physical activity. This study is an experimental research by using the design of randomized control group pretest-posttest. This study was using 24 male mice divided into four groups, the control group was given aquadest, the treatment groups P1, P2, and P3 were given the RFO orally of 0.15 ml/kgBW, 0.3 ml/kgBW, and 0.6 ml/kgBW, respectively, for a month. The level of CK was checked for all groups at the beginning of study and after the maximum physical activity. The obtained data were then tested statistically by using t-test and ANOVA. The result shows the RFO supplementation during exercise decreased the CK level in P1, P2, and P3 groups with p<0.05, and the higher RFO dosage resulted in decreased CK level at p<0.05. The conclusion of this study is the Red Fruit Oil could decrease the level of CK at maximum physical activity.

  12. [Influence of different designs of marginal preparation on stress distribution in the mandibular premolar restored with endocrown].

    Science.gov (United States)

    Guo, Jing; Wang, Xiao-Yu; Li, Xue-Sheng; Sun, Hai-Yang; Liu, Lin; Li, Hong-Bo

    2016-02-01

    To evaluate the effect of different designs of marginal preparation on stress distribution in the mandibular premolar restored with endocrown using three-dimensional finite element method. Four models with different designs of marginal preparation, including the flat margin, 90° shoulder, 135° shoulder and chamfer shoulder, were established to imitate mandibular first premolar restored with endocrown. A load of 100 N was applied to the intersection of the long axis and the occlusal surface, either parallel or with an angle of 45° to the long axis of the tooth. The maximum values of Von Mises stress and the stress distribution around the cervical region of the abutment and the endocrown with different designs of marginal preparation were analyzed. The load parallel to the long axis of the tooth caused obvious stress concentration in the lingual portions of both the cervical region of the tooth tissue and the restoration. The stress distribution characteristics on the cervical region of the models with a flat margin and a 90° shoulder were more uniform than those in the models with a 135° shoulder and chamfer shoulder. Loading at 45° to the long axis caused stress concentration mainly on the buccal portion of the cervical region, and the model with a flat margin showed the most favorable stress distribution patterns with a greater maximum Von Mises stress under this circumstance than that with a parallel loading. Irrespective of the loading direction, the stress value was the lowest in the flat margin model, where the stress value in the cervical region of the endocrown was greater than that in the counterpart of the tooth tissue. The stress level on the enamel was higher than that on the dentin nearby in the flat margin model. From the stress distribution point of view, endocrowns with flat margin followed by a 90° shoulder are recommended.

  13. Stress transmission in soil

    DEFF Research Database (Denmark)

    Lamandé, Mathieu; Schjønning, Per

    We urgently need increased quantitative knowledge on stress transmission in real soils loaded with agricultural machinery. 3D measurements of vertical stresses under tracked wheels were performed in situ in a Stagnic Luvisol (clay content 20 %) continuously cropped with small grain cereals......). Seven load cells were inserted horizontally from a pit with minimal disturbance of soil in each of three depths (0.3, 0.6 and 0.9 m), covering the width of the wheeled area. The position of the wheel relative to the transducers was recorded using a laser sensor. Finally, the vertical stresses near...... the soil-tyre interface were measured in separate tests by 17 stress transducers across the width of the tyres. The results showed that the inflation pressure controlled the level of maximum stresses at 0.3 m depth, while the wheel load was correlated to the measured stresses at 0.9 m depth. This supports...

  14. Comparison of Some Mechanical and Physical Methods for Measurement of Residual Stresses in Brush-Plated Nickel Hardened Gold and Silver Coatings

    Directory of Open Access Journals (Sweden)

    Harri LILLE

    2016-05-01

    Full Text Available Hard gold and silver are applied in coating owing to their high hardness, good wear and corrosion resistance for engineering application (e.g. on generators slip rings, sliding contacts and small machine parts and are typically plated on copper (mostly, brass and bronze. The studied nickel-hardened gold and silver coatings were brush plated on open thin-walled copper ring substrates. Residual stresses in the coatings were calculated from the curvature changes of the substrates. Biaxial intrinsic residual stresses were also determined by nanoindentation testing and by the X-ray technique. The values of the residual stresses represented tensile stresses and when determined by the techniques used they were comparable within a maximum limit of measurement uncertainty. These stresses relax; the dependence of relaxation time was approximated by a linear-fractional function.DOI: http://dx.doi.org/10.5755/j01.ms.22.1.7439

  15. Scintigraphic ventriculography and stress testing

    International Nuclear Information System (INIS)

    Goris, M.L.; Hung, J.; Debusk, R.F.

    1982-01-01

    Scintigraphic stress ventriculography yields information which is complex and defies description by the difference in ejection fraction between rest and maximum exercise only. The complexity results in part from the ''derived'' nature of the ejection fraction measurement, which is physiologically secondary to stroke volume and end-diastolic volume. Furthermore, the nature of the stress test in which the pulse (stress) is not independent from the response forces an analysis which considers ''when'' as much as ''what'' happens. Automation in data processing, however, has made oversimplification unnecessary and allows a more exhaustive but correct analysis

  16. Sequential Indentation Tests to Investigate the Influence of Confining Stress on Rock Breakage by Tunnel Boring Machine Cutter in a Biaxial State

    Science.gov (United States)

    Liu, Jie; Cao, Ping; Han, Dongya

    2016-04-01

    The influence of confining stress on rock breakage by a tunnel boring machine cutter was investigated by conducting sequential indentation tests in a biaxial state. Combined with morphology measurements of breaking grooves and an analysis of surface and internal crack propagation between nicks, the effects of maximum confining stress and minimum stress on indentation efficiency, crack propagation and chip formation were investigated. Indentation tests and morphology measurements show that increasing a maximum confining stress will result in increased consumed energy in indentations, enlarged groove volumes and promoted indentation efficiency when the corresponding minimum confining stress is fixed. The energy consumed in indentations will increase with increase in minimum confining stress, however, because of the decreased groove volumes as the minimum confining stress increases, the efficiency will decrease. Observations of surface crack propagation show that more intensive fractures will be induced as the maximum confining stress increases, whereas the opposite occurs for an increase of minimum confining stress. An observation of the middle section, cracks and chips shows that as the maximum confining stress increases, chips tend to form in deeper parts when the minimum confining stress is fixed, whereas they tend to formed in shallower parts as the minimum confining stress increases when the maximum confining stress is fixed.

  17. Latitudinal Change of Tropical Cyclone Maximum Intensity in the Western North Pacific

    OpenAIRE

    Choi, Jae-Won; Cha, Yumi; Kim, Hae-Dong; Kang, Sung-Dae

    2016-01-01

    This study obtained the latitude where tropical cyclones (TCs) show maximum intensity and applied statistical change-point analysis on the time series data of the average annual values. The analysis results found that the latitude of the TC maximum intensity increased from 1999. To investigate the reason behind this phenomenon, the difference of the average latitude between 1999 and 2013 and the average between 1977 and 1998 was analyzed. In a difference of 500 hPa streamline between the two ...

  18. Psychological stress as a risk factor for postoperative keloid recurrence.

    Science.gov (United States)

    Furtado, Fabianne; Hochman, Bernardo; Farber, Paulo Luiz; Muller, Marisa Campio; Hayashi, Lilian Fukusima; Ferreira, Lydia Masako

    2012-04-01

    To investigate psychological stress on the prognosis of the postoperative recurrence of keloids. Patients with keloids (n=25), candidates for surgical resection and postoperative radiotherapy, had their psychological stress evaluated on the day before the surgical procedure. The parameters evaluated were pain and itching (Visual Numerical Scale), quality of life (Questionnaire QualiFibro/Cirurgia Plástica-UNIFESP), perceived stress (Perceived Stress Scale), depression and anxiety (Hospital Depression and Anxiety Scale), salivary cortisol and minimum and maximum galvanic skin responses (GSR) at rest and under stress (i.e., while the questionnaires were being filled out). Patients were evaluated during the 3rd, 6th, 9th and 12th months of postoperative care. During each return visit, two experts classified the lesions as non-recurrent and recurrent. The recurrence group presented the greatest values in GSR during a stressful situation. The chance of recurrence increased by 34% at each increase of 1000 arbitrary units in maximum GSR during stress. Psychological stress influenced the recurrence of keloids. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Minimization of Residual Stress in an Al-Cu Alloy Forged Plate by Different Heat Treatments

    Science.gov (United States)

    Dong, Ya-Bo; Shao, Wen-Zhu; Jiang, Jian-Tang; Zhang, Bao-You; Zhen, Liang

    2015-06-01

    In order to improve the balance of mechanical properties and residual stress, various quenching and aging treatments were applied to Al-Cu alloy forged plate. Residual stresses determined by the x-ray diffraction method and slitting method were compared. The surface residual stress measured by x-ray diffraction method was consistent with that measured by slitting method. The residual stress distribution of samples quenched in water with different temperatures (20, 60, 80, and 100 °C) was measured, and the results showed that the boiling water quenching results in a 91.4% reduction in residual stress magnitudes compared with cold water quenching (20 °C), but the tensile properties of samples quenched in boiling water were unacceptably low. Quenching in 80 °C water results in 75% reduction of residual stress, and the reduction of yield strength is 12.7%. The residual stress and yield strength level are considerable for the dimensional stability of aluminum alloy. Quenching samples into 30% polyalkylene glycol quenchants produced 52.2% reduction in the maximum compressive residual stress, and the reduction in yield strength is 19.7%. Moreover, the effects of uphill quenching and thermal-cold cycling on the residual stress were also investigated. Uphill quenching and thermal-cold cycling produced approximately 25-40% reduction in residual stress, while the effect on tensile properties is quite slight.

  20. A novel method for estimating soil precompression stress from uniaxial confined compression tests

    DEFF Research Database (Denmark)

    Lamandé, Mathieu; Schjønning, Per; Labouriau, Rodrigo

    2017-01-01

    . Stress-strain curves were obtained by performing uniaxial, confined compression tests on undisturbed soil cores for three soil types at three soil water potentials. The new method performed better than the Gompertz fitting method in estimating precompression stress. The values of precompression stress...... obtained from the new method were linearly related to the maximum stress experienced by the soil samples prior to the uniaxial, confined compression test at each soil condition with a slope close to 1. Precompression stress determined with the new method was not related to soil type or dry bulk density......The concept of precompression stress is used for estimating soil strength of relevance to fieldtraffic. It represents the maximum stress experienced by the soil. The most recently developed fitting method to estimate precompression stress (Gompertz) is based on the assumption of an S-shape stress...

  1. Assesment of economic benefits of foliarly applied osmoprotectants in alleviating the adverse effects of water stress on growth and yield of cotton (gossypium hirsutum L.)

    International Nuclear Information System (INIS)

    Zafar, Z. U.; Hussain, K.; Athar, H. U. R.

    2015-01-01

    Water stress reduces crop growth and productivity by affecting various physiological and biochemical processes. Although foliar application of osmoprotectants alleviates the detrimental effects of drought stress growth and productivity of crops, its economic benefits on large scale has not been explored yet. The studies were carried out to quantify the interactive effects of some osmoprotectantsand various watering regimes on cotton crop. The treatments consisted of water stress and osmoprotectant applications ((a) two watering regimes (well watered, 2689m /sup 3/ water; drought stressed, 2078m /sup 3/), and (b) three osmoprotectants (untreated check; water spray containing 0.1 percentage Tween-80; salicylic acid (100 mg L /sup -1/); proline (100 mg L /sup -1/); glycine betaine (100 mg L /sup -1/)) in split plot design. The crop was subjected to drought stress at day 45 after sowing, i.e. at the flowering stage. The solutions of osmoprotectants were foliarly applied after two weeks of imposition of water stress (at the peak flowering stage). The results showed that imposition of water stress caused substantial reduction in plant growth, biological yield, fruit production, and fiber characteristics as compared to fully irrigated cotton crop. However, the application of osmoprotectants was found effective in off-setting the negative impacts of drought stress. The exogenous application of salicylic acid (100 mgL /sup -1/) caused improvement by 47.9 percentage, 36.5 percentage, 17.4 percentage, 4.86 percentage and 9.9 percentage in main stem height, biological yield, fruit production, fiber length and seed cotton yield over an untreated check, respectively. The efficiency of various osmoprotectants was in order of salicylic acid > glycinebetaine > proline in alleviating the harmful effects of drought stress. The usage of osmoprotectants was also found most cost-effective and the value for money. The cost-benefit ratio was 1:9.1, 1:3.9 and 1:1.7 by spraying of salicylic

  2. Predicting the Outcome of NBA Playoffs Based on the Maximum Entropy Principle

    Directory of Open Access Journals (Sweden)

    Ge Cheng

    2016-12-01

    Full Text Available Predicting the outcome of National Basketball Association (NBA matches poses a challenging problem of interest to the research community as well as the general public. In this article, we formalize the problem of predicting NBA game results as a classification problem and apply the principle of Maximum Entropy to construct an NBA Maximum Entropy (NBAME model that fits to discrete statistics for NBA games, and then predict the outcomes of NBA playoffs using the model. Our results reveal that the model is able to predict the winning team with 74.4% accuracy, outperforming other classical machine learning algorithms that could only afford a maximum prediction accuracy of 70.6% in the experiments that we performed.

  3. Internal stresses in α-plutonium during deformation

    International Nuclear Information System (INIS)

    Merz, M.D.

    1975-01-01

    Internal stresses were measured in fine-grained (2 μm) and coarse-grained (20 μm) α-plutonium. A stress drop technique (strain transient dip test) was used and the measurements were made for applied creep stresses, sigma/sub a/, from 45 MPa (6250 psi) to 207 MPa (30000 psi) and temperatures from 60 to 113 0 C. The internal stress sigma/sub i/ varied from 17 to 84 MPa and had a weak dependence on applied stress. The effective stress, given by sigma/sub e/ = sigma/sub a/-sigma/sub i/, which is associated with the stress to move dislocations, increased nearly one to one with applied stress, especially at high stresses. The strain rate obeyed the relation epsilon = K(T)sigma/sub e//sup n/ where K(T) is a temperature-dependent term given approximately by Kexp (-104 KJ/mol/RT) and n approximately equal to 3. In fine-grained α-plutonium, the internal stress was interpreted as the stress driving recovery processes near grain boundaries. Measurements of internal stress in α- plutonium with 20-μm grain size indicated a much higher internal stress than for the 2-μm grain size. (5 fig) (auth)

  4. Guidance document on the derivation of maximum permissible risk levels for human intake of soil contaminants

    NARCIS (Netherlands)

    Janssen PJCM; Speijers GJA; CSR

    1997-01-01

    This report contains a basic step-to-step description of the procedure followed in the derivation of the human-toxicological Maximum Permissible Risk (MPR ; in Dutch: Maximum Toelaatbaar Risico, MTR) for soil contaminants. In recent years this method has been applied for a large number of compounds

  5. Maximum permissible dose

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    This chapter presents a historic overview of the establishment of radiation guidelines by various national and international agencies. The use of maximum permissible dose and maximum permissible body burden limits to derive working standards is discussed

  6. Maximum entropy method in momentum density reconstruction

    International Nuclear Information System (INIS)

    Dobrzynski, L.; Holas, A.

    1997-01-01

    The Maximum Entropy Method (MEM) is applied to the reconstruction of the 3-dimensional electron momentum density distributions observed through the set of Compton profiles measured along various crystallographic directions. It is shown that the reconstruction of electron momentum density may be reliably carried out with the aid of simple iterative algorithm suggested originally by Collins. A number of distributions has been simulated in order to check the performance of MEM. It is shown that MEM can be recommended as a model-free approach. (author). 13 refs, 1 fig

  7. Regularized maximum correntropy machine

    KAUST Repository

    Wang, Jim Jing-Yan; Wang, Yunji; Jing, Bing-Yi; Gao, Xin

    2015-01-01

    In this paper we investigate the usage of regularized correntropy framework for learning of classifiers from noisy labels. The class label predictors learned by minimizing transitional loss functions are sensitive to the noisy and outlying labels of training samples, because the transitional loss functions are equally applied to all the samples. To solve this problem, we propose to learn the class label predictors by maximizing the correntropy between the predicted labels and the true labels of the training samples, under the regularized Maximum Correntropy Criteria (MCC) framework. Moreover, we regularize the predictor parameter to control the complexity of the predictor. The learning problem is formulated by an objective function considering the parameter regularization and MCC simultaneously. By optimizing the objective function alternately, we develop a novel predictor learning algorithm. The experiments on two challenging pattern classification tasks show that it significantly outperforms the machines with transitional loss functions.

  8. Regularized maximum correntropy machine

    KAUST Repository

    Wang, Jim Jing-Yan

    2015-02-12

    In this paper we investigate the usage of regularized correntropy framework for learning of classifiers from noisy labels. The class label predictors learned by minimizing transitional loss functions are sensitive to the noisy and outlying labels of training samples, because the transitional loss functions are equally applied to all the samples. To solve this problem, we propose to learn the class label predictors by maximizing the correntropy between the predicted labels and the true labels of the training samples, under the regularized Maximum Correntropy Criteria (MCC) framework. Moreover, we regularize the predictor parameter to control the complexity of the predictor. The learning problem is formulated by an objective function considering the parameter regularization and MCC simultaneously. By optimizing the objective function alternately, we develop a novel predictor learning algorithm. The experiments on two challenging pattern classification tasks show that it significantly outperforms the machines with transitional loss functions.

  9. Influence of parafunctional loading and prosthetic connection on stress distribution: a 3D finite element analysis.

    Science.gov (United States)

    Torcato, Leonardo Bueno; Pellizzer, Eduardo Piza; Verri, Fellippo Ramos; Falcón-Antenucci, Rosse Mary; Santiago Júnior, Joel Ferreira; de Faria Almeida, Daniel Augusto

    2015-11-01

    Clinicians should consider parafunctional occlusal load when planning treatment. Prosthetic connections can reduce the stress distribution on an implant-supported prosthesis. The purpose of this 3-dimensional finite element study was to assess the influence of parafunctional loading and prosthetic connections on stress distribution. Computer-aided design software was used to construct 3 models. Each model was composed of a bone and an implant (external hexagon, internal hexagon, or Morse taper) with a crown. Finite element analysis software was used to generate the finite element mesh and establish the loading and boundary conditions. A normal force (200-N axial load and 100-N oblique load) and parafunctional force (1000-N axial and 500-N oblique load) were applied. Results were visualized as the maximum principal stress. Three-way analysis of variance and Tukey test were performed, and the percentage of contribution of each variable to the stress concentration was calculated from sum-of squares-analysis. Stress was concentrated around the implant at the cortical bone, and models with the external hexagonal implant showed the highest stresses (PProsthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  10. Maximum time-dependent space-charge limited diode currents

    Energy Technology Data Exchange (ETDEWEB)

    Griswold, M. E. [Tri Alpha Energy, Inc., Rancho Santa Margarita, California 92688 (United States); Fisch, N. J. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States)

    2016-01-15

    Recent papers claim that a one dimensional (1D) diode with a time-varying voltage drop can transmit current densities that exceed the Child-Langmuir (CL) limit on average, apparently contradicting a previous conjecture that there is a hard limit on the average current density across any 1D diode, as t → ∞, that is equal to the CL limit. However, these claims rest on a different definition of the CL limit, namely, a comparison between the time-averaged diode current and the adiabatic average of the expression for the stationary CL limit. If the current were considered as a function of the maximum applied voltage, rather than the average applied voltage, then the original conjecture would not have been refuted.

  11. Maximum Power Point Tracking of Photovoltaic System for Traffic Light Application

    Directory of Open Access Journals (Sweden)

    Riza Muhida

    2013-07-01

    Full Text Available Photovoltaic traffic light system is a significant application of renewable energy source. The development of the system is an alternative effort of local authority to reduce expenditure for paying fees to power supplier which the power comes from conventional energy source. Since photovoltaic (PV modules still have relatively low conversion efficiency, an alternative control of maximum power point tracking (MPPT method is applied to the traffic light system. MPPT is intended to catch up the maximum power at daytime in order to charge the battery at the maximum rate in which the power from the battery is intended to be used at night time or cloudy day. MPPT is actually a DC-DC converter that can step up or down voltage in order to achieve the maximum power using Pulse Width Modulation (PWM control. From experiment, we obtained the voltage of operation using MPPT is at 16.454 V, this value has error of 2.6%, if we compared with maximum power point voltage of PV module that is 16.9 V. Based on this result it can be said that this MPPT control works successfully to deliver the power from PV module to battery maximally.

  12. A Research on Maximum Symbolic Entropy from Intrinsic Mode Function and Its Application in Fault Diagnosis

    Directory of Open Access Journals (Sweden)

    Zhuofei Xu

    2017-01-01

    Full Text Available Empirical mode decomposition (EMD is a self-adaptive analysis method for nonlinear and nonstationary signals. It has been widely applied to machinery fault diagnosis and structural damage detection. A novel feature, maximum symbolic entropy of intrinsic mode function based on EMD, is proposed to enhance the ability of recognition of EMD in this paper. First, a signal is decomposed into a collection of intrinsic mode functions (IMFs based on the local characteristic time scale of the signal, and then IMFs are transformed into a serious of symbolic sequence with different parameters. Second, it can be found that the entropies of symbolic IMFs are quite different. However, there is always a maximum value for a certain symbolic IMF. Third, take the maximum symbolic entropy as features to describe IMFs from a signal. Finally, the proposed features are applied to evaluate the effect of maximum symbolic entropy in fault diagnosis of rolling bearing, and then the maximum symbolic entropy is compared with other standard time analysis features in a contrast experiment. Although maximum symbolic entropy is only a time domain feature, it can reveal the signal characteristic information accurately. It can also be used in other fields related to EMD method.

  13. Soil mechanical stresses in high wheel load agricultural field traffic: a case study

    DEFF Research Database (Denmark)

    Lamandé, Mathieu; Schjønning, Per

    2017-01-01

    highly skewed. Across tyres, the maximum stress in the contact area correlated linearly with, but was much higher than, the mean ground pressure. For each of the three soil depths, the maximum stresses under the tyres were significantly correlated with the wheel load, but not with other loading......Subsoil compaction is a serious long-term threat to soil functions. Only a few studies have quantified the mechanical stresses reaching deep subsoil layers for modern high wheel load machinery. In the present study we measured the vertical stresses in the tyre–soil contact area and at 0.3, 0...

  14. Residual stresses in laser direct metal deposited Waspaloy

    Energy Technology Data Exchange (ETDEWEB)

    Moat, R.J., E-mail: richard.moat@manchester.ac.uk [School of Materials, University of Manchester, Grosvenor Street, Manchester M1 7HS (United Kingdom); Pinkerton, A.J.; Li, L. [Laser Processing Research Centre, School of Mechanical, Aerospace and Civil Engineering, University of Manchester, M60 1QD (United Kingdom); Withers, P.J.; Preuss, M. [School of Materials, University of Manchester, Grosvenor Street, Manchester M1 7HS (United Kingdom)

    2011-03-15

    Research highlights: {yields} Neutron diffraction and the contour method show good agreement. {yields} Tensile stresses found parallel to the surfaces. {yields} Compressive stresses within the bulk of the structures. {yields} Residual stress weakly dependent on the laser pulse parameters. {yields} Maximum tensile residual stress unaffected across range of pulse parameters used. - Abstract: This paper reports a study into the effect of laser pulse length and duty cycle on the residual stress distributions in multi-track laser direct metal deposits of Waspaloy onto an Inconel 718 substrate. The residual stresses have been evaluated using neutron diffraction and the contour method, while electron microscopy and micro hardness indentation have been used to map the concomitant microstructural variation. In all cases, near the tops of the deposited walls, the longitudinal stresses are tensile towards the mid-length of the wall, while the stresses perpendicular to the substrate are negligible. By contrast near the base of the walls, the stresses along the direction of deposition are small, while the stresses perpendicular to the substrate are compressive at the centre and tensile towards the ends. Consistent with previous observations, the stresses parallel to free surfaces are tensile, balanced by compressive stresses in the interior (an inverse quench stress profile). These profiles have been found to be weakly dependent on the laser pulse parameters, most notably an increase in tensile stress gradient with increasing duty cycle, but the maximum residual stresses are largely unaffected. Furthermore, microstructural analysis has shown that the effect of laser pulse parameters on grain morphology in multi-track thick walls is less marked than previously reported for single-track wall structures.

  15. Residual stresses in laser direct metal deposited Waspaloy

    International Nuclear Information System (INIS)

    Moat, R.J.; Pinkerton, A.J.; Li, L.; Withers, P.J.; Preuss, M.

    2011-01-01

    Research highlights: → Neutron diffraction and the contour method show good agreement. → Tensile stresses found parallel to the surfaces. → Compressive stresses within the bulk of the structures. → Residual stress weakly dependent on the laser pulse parameters. → Maximum tensile residual stress unaffected across range of pulse parameters used. - Abstract: This paper reports a study into the effect of laser pulse length and duty cycle on the residual stress distributions in multi-track laser direct metal deposits of Waspaloy onto an Inconel 718 substrate. The residual stresses have been evaluated using neutron diffraction and the contour method, while electron microscopy and micro hardness indentation have been used to map the concomitant microstructural variation. In all cases, near the tops of the deposited walls, the longitudinal stresses are tensile towards the mid-length of the wall, while the stresses perpendicular to the substrate are negligible. By contrast near the base of the walls, the stresses along the direction of deposition are small, while the stresses perpendicular to the substrate are compressive at the centre and tensile towards the ends. Consistent with previous observations, the stresses parallel to free surfaces are tensile, balanced by compressive stresses in the interior (an inverse quench stress profile). These profiles have been found to be weakly dependent on the laser pulse parameters, most notably an increase in tensile stress gradient with increasing duty cycle, but the maximum residual stresses are largely unaffected. Furthermore, microstructural analysis has shown that the effect of laser pulse parameters on grain morphology in multi-track thick walls is less marked than previously reported for single-track wall structures.

  16. Stress distribution in dental prosthesis under an occlusal combined dynamic loading

    International Nuclear Information System (INIS)

    Merdji, A.; Bachir Bouiadjra, B.; Ould Chikh, B.; Mootanah, R.; Aminallah, L.; Serier, B.; Muslih, I.M.

    2012-01-01

    Highlights: ► The mechanical stress reaches the highest in areas of cortical bones. ► The mechanical stress in the cancellous bone reaches greatest in the bottom of the dental implant. ► Implant with low-volume bone might cause increased stress concentration in the cortical bone. -- Abstract: The biomechanical behavior of osseointegrated dental prostheses systems plays an important role in its functional longevity inside the bone. Simulation of these systems requires an accurate modeling of the prosthesis components, the jaw bone, the implant–bone interface, and the response of the system to different types of applied forces. The purpose of this study was to develop a new three-dimensional model of an osseointegrated molar dental prosthesis and to carry out finite element analysis to evaluate stress distributions in the bone and the dental prosthesis compounds under an occlusal combined dynamic load was applied to the top of the occlusale face of the prosthesis crown. The jaw bone model containing cortical bone and cancellous bone was constructed by using computer tomography scan pictures and Computer Aided Design tools. The dental prosthesis compounds were constructed, simulating the commercially available cylindrical implant of 4.8 mm diameter and 10 mm length. Both finite element models were created in Abaqus finite element software. All materials used in the models were considered to be isotropic, homogeneous and linearly elastic. The elastic properties, loads and constraints used in the model were taken from published data. Results of our finite element analyses, indicated that the maximum stresses were located around the mesial neck of the implant, in the marginal bone. Thus, this area should be preserved clinically in order to maintain the bone–implant interface structurally and functionally.

  17. Maximum likelihood approach for several stochastic volatility models

    International Nuclear Information System (INIS)

    Camprodon, Jordi; Perelló, Josep

    2012-01-01

    Volatility measures the amplitude of price fluctuations. Despite it being one of the most important quantities in finance, volatility is not directly observable. Here we apply a maximum likelihood method which assumes that price and volatility follow a two-dimensional diffusion process where volatility is the stochastic diffusion coefficient of the log-price dynamics. We apply this method to the simplest versions of the expOU, the OU and the Heston stochastic volatility models and we study their performance in terms of the log-price probability, the volatility probability, and its Mean First-Passage Time. The approach has some predictive power on the future returns amplitude by only knowing the current volatility. The assumed models do not consider long-range volatility autocorrelation and the asymmetric return-volatility cross-correlation but the method still yields very naturally these two important stylized facts. We apply the method to different market indices and with a good performance in all cases. (paper)

  18. Influence of prosthesis design and implantation technique on implant stresses after cementless revision THR

    Directory of Open Access Journals (Sweden)

    Duda Georg N

    2011-05-01

    Full Text Available Abstract Background Femoral offset influences the forces at the hip and the implant stresses after revision THR. For extended bone defects, these forces may cause considerable bending moments within the implant, possibly leading to implant failure. This study investigates the influences of femoral anteversion and offset on stresses in the Wagner SL revision stem implant under varying extents of bone defect conditions. Methods Wagner SL revision stems with standard (34 mm and increased offset (44 mm were virtually implanted in a model femur with bone defects of variable extent (Paprosky I to IIIb. Variations in surgical technique were simulated by implanting the stems each at 4° or 14° of anteversion. Muscle and joint contact forces were applied to the reconstruction and implant stresses were determined using finite element analyses. Results Whilst increasing the implant's offset by 10 mm led to increased implant stresses (16.7% in peak tensile stresses, altering anteversion played a lesser role (5%. Generally, larger stresses were observed with reduced bone support: implant stresses increased by as much as 59% for a type IIIb defect. With increased offset, the maximum tensile stress was 225 MPa. Conclusion Although increased stresses were observed within the stem with larger offset and increased anteversion, these findings indicate that restoration of offset, key to restoring joint function, is unlikely to result in excessive implant stresses under routine activities if appropriate fixation can be achieved.

  19. Effect of Local Strain Distribution of Cold-Rolled Alloy 690 on Primary Water Stress Corrosion Crack Growth Behavior

    Directory of Open Access Journals (Sweden)

    Kim S.-W.

    2017-06-01

    Full Text Available This work aims to study the stress corrosion crack growth behavior of cold-rolled Alloy 690 in the primary water of a pressurized water reactor. Compared with Alloy 600, which shows typical intergranular cracking along high angle grain boundaries, the cold-rolled Alloy 690, with its heterogeneous microstructure, revealed an abnormal crack growth behavior in mixed mode, that is, in transgranular cracking near a banded region, and in intergranular cracking in a matrix region. From local strain distribution analysis based on local mis-orientation, measured along the crack path using the electron back scattered diffraction method, it was suggested that the abnormal behavior was attributable to a heterogeneity of local strain distribution. In the cold-rolled Alloy 690, the stress corrosion crack grew through a highly strained area formed by a prior cold-rolling process in a direction perpendicular to the maximum principal stress applied during a subsequent stress corrosion cracking test.

  20. A Piezoelectric Shear Stress Sensor

    Science.gov (United States)

    Kim, Taeyang; Saini, Aditya; Kim, Jinwook; Gopalarathnam, Ashok; Zhu, Yong; Palmieri, Frank L.; Wohl, Christopher J.; Jiang, Xiaoning

    2016-01-01

    In this paper, a piezoelectric sensor with a floating element was developed for shear stress measurement. The piezoelectric sensor was designed to detect the pure shear stress suppressing effects of normal stress generated from the vortex lift-up by applying opposite poling vectors to the: piezoelectric elements. The sensor was first calibrated in the lab by applying shear forces and it showed high sensitivity to shear stress (=91.3 +/- 2.1 pC/Pa) due to the high piezoelectric coefficients of PMN-33%PT (d31=-1330 pC/N). The sensor also showed almost no sensitivity to normal stress (less than 1.2 pC/Pa) because of the electromechanical symmetry of the device. The usable frequency range of the sensor is 0-800 Hz. Keywords: Piezoelectric sensor, shear stress, floating element, electromechanical symmetry

  1. Effects of the implant design on peri-implant bone stress and abutment micromovement: three-dimensional finite element analysis of original computer-aided design models.

    Science.gov (United States)

    Yamanishi, Yasufumi; Yamaguchi, Satoshi; Imazato, Satoshi; Nakano, Tamaki; Yatani, Hirofumi

    2014-09-01

    Occlusal overloading causes peri-implant bone resorption. Previous studies examined stress distribution in alveolar bone around commercial implants using three-dimensional (3D) finite element analysis. However, the commercial implants contained some different designs. The purpose of this study is to reveal the effect of the target design on peri-implant bone stress and abutment micromovement. Six 3D implant models were created for different implant-abutment joints: 1) internal joint model (IM); 2) external joint model (EM); 3) straight abutment (SA) shape; 4) tapered abutment (TA) shapes; 5) platform switching (PS) in the IM; and 6) modified TA neck design (reverse conical neck [RN]). A static load of 100 N was applied to the basal ridge surface of the abutment at a 45-degree oblique angle to the long axis of the implant. Both stress distribution in peri-implant bone and abutment micromovement in the SA and TA models were analyzed. Compressive stress concentrated on labial cortical bone and tensile stress on the palatal side in the EM and on the labial side in the IM. There was no difference in maximum principal stress distribution for SA and TA models. Tensile stress concentration was not apparent on labial cortical bone in the PS model (versus IM). Maximum principal stress concentrated more on peri-implant bone in the RN than in the TA model. The TA model exhibited less abutment micromovement than the SA model. This study reveals the effects of the design of specific components on peri-implant bone stress and abutment displacement after implant-supported single restoration in the anterior maxilla.

  2. Maximum likelihood estimation of ancestral codon usage bias parameters in Drosophila

    DEFF Research Database (Denmark)

    Nielsen, Rasmus; Bauer DuMont, Vanessa L; Hubisz, Melissa J

    2007-01-01

    : the selection coefficient for optimal codon usage (S), allowing joint maximum likelihood estimation of S and the dN/dS ratio. We apply the method to previously published data from Drosophila melanogaster, Drosophila simulans, and Drosophila yakuba and show, in accordance with previous results, that the D...

  3. Application of photoelasticity to study stress in component of the fuel element of nuclear reator

    International Nuclear Information System (INIS)

    Diniz, S.M.C.

    1987-11-01

    The fuel assembly, in the core of the nuclear reactor, is submitted to a system of forces (weight, buoyancy and hydraulic lift-up) with a resultant oriented in the direction of the coolant flow. To assure the assembly stability, under all operation conditions of the nuclear reactor, a holding-down device composed of four leaf springs is used. The safe/operation of the reactor depends on the capacity of such springs to support the maximum loads applied on them. The strictly mathematical methods for stress analysis of these springs are very complex, due to several factors such as: tri-dimensional geometry, changing loading, plastic strains and stress concentration. The stress analysis of these springs was performed using the photoelastic method. This technique has been proved to be adequate to the leaf spring analysis. In order to permit the evaluation of the potentialities of the employed method the Photoelasticity is decribed in its multiples purposes; that is, two-dimensional problems, stress frozen technique and reflection photoelasticity. The results obtained certify the role of the Photoelasticity, as a powerfull tool to the stress analyst and to the nuclear industry as well. (author) [pt

  4. Stress engineering for the design of morphotropic phase boundary in piezoelectric material

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, Tomoya, E-mail: ohno@mail.kitami-it.ac.jp [Department of Materials Science, Kitami Institute of Technology, 165 Kouen-cho, Kitami 090-8507 (Japan); Yanagida, Hiroshi; Maekawa, Kentaroh [Department of Materials Science, Kitami Institute of Technology, 165 Kouen-cho, Kitami 090-8507 (Japan); Arai, Takashi; Sakamoto, Naonori; Wakiya, Naoki; Suzuki, Hisao [Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8561 (Japan); Satoh, Shigeo [Graduate School of Science and Engineering, Ibaragi University, 4-12-1 Nakanarusawa-cho, Hitachi, Ibaragi 316-0033 (Japan); Matsuda, Takeshi [Department of Materials Science, Kitami Institute of Technology, 165 Kouen-cho, Kitami 090-8507 (Japan)

    2015-06-30

    Alkoxide-derived lead zirconate titanate thin films having Zr/Ti = 50/50 to 60/40 compositions with different residual stress conditions were deposited on a Si wafer to clarify the effects of the residual stress on the morphotropic phase boundary shift. The residual stress condition was controlled to − 0.1 to − 0.9 GPa by the design of the buffer layer structure on the Si wafer. Results show that the maximum effective piezoelectric constant d{sub 33} was obtained at 58/42 composition under − 0.9 GPa compressive residual stress condition. Moreover, the MPB composition shifted linearly to Zr-rich phase with increasing compressive residual stress. - Highlights: • The residual stress in lead zirconate titanate film on silicon was controlled. • The maximum residual stress in lead zirconate titanate film was − 0.9 GPa. • The morphotropic phase boundary shifted to zirconium rich phase by the strain.

  5. Influence of the residual stresses on crack initiation in brittle materials and structures

    International Nuclear Information System (INIS)

    Henninger, C.

    2007-11-01

    Many material assemblies subjected to thermo-mechanical loadings develop thermal residual stresses which modify crack onset conditions. Besides if one of the components has a plastic behaviour, plastic residual deformations may also have a contribution. One of the issues in brittle fracture mechanics is to predict crack onset without any pre-existing defect. Leguillon proposed an onset criterion based on both a Griffth-like energetic condition and a maximum stress criterion. The analysis uses matched asymptotics and the theory of singularity. The good fit between the model and experimental measurements led on homogeneous isotropic materials under pure mechanical loading incited us to take into account residual stresses in the criterion. The comparison between the modified criterion and the experimental measurements carried out on an aluminum/epoxy assembly proves to be satisfying concerning the prediction of failure of the interface between the two components. Besides, it allows, through inversion, identifying the fracture properties of this interface. The modified criterion is also applied to the delamination of the tile/structure interface in the plasma facing components of the Tore Supra tokamak. Indeed thermal and plastic residual stresses appear in the metallic part of these coating tiles. (author)

  6. Stress distributions of coils for toroidal magnetic field

    International Nuclear Information System (INIS)

    Kajita, Tateo; Miyamoto, Kenro.

    1976-01-01

    The stress distributions of a D shaped coil and a circular coil are computed by the finite element method. The dependences of the stress distribution on the geometrical parameters of the stress distribution on the geometrical parameters of the coils and supporting methods are examined. The maximum amount of the stress in the D shaped coil is not much smaller than that of the circular one. However, the stress distribution of the D shaped coil becomes much more uniform. The supporting method has as much effect as the geometrical parameters of the coil on the stress distribution. (auth.)

  7. Does the stress generation hypothesis apply to eating disorders?: an examination of stress generation in eating, depressive, and anxiety symptoms.

    Science.gov (United States)

    Bodell, Lindsay P; Hames, Jennifer L; Holm-Denoma, Jill M; Smith, April R; Gordon, Kathryn H; Joiner, Thomas E

    2012-12-15

    The stress generation hypothesis posits that individuals actively contribute to stress in their lives. Although stress generation has been studied frequently in the context of depression, few studies have examined whether this stress generation process is unique to depression or whether it occurs in other disorders. Although evidence suggests that stress contributes to the development of eating disorders, it is unclear whether eating disorders contribute to subsequent stress. A prospective design was used to examine the influence of eating disorder symptoms on negative life stressors. Two hundred and ninety female undergraduates completed questionnaires at two time points that examined eating disorder, depressive and anxiety symptoms and the presence of negative life events. Regression analyses found that while eating disorder symptoms (i.e. bulimic symptoms and drive for thinness) were independent, significant predictors of negative life events, they did not predict negative life events above and beyond symptoms of depression. Limitations include the use of self-report measures and a college-based sample, which may limit generalizability of the results. Findings suggest that if stress generation is present in individuals with symptoms of eating disorders, it is likely attributable to symptoms of depression. Thus, it may be important for clinicians to target depressive symptoms in order to reduce the frequency of negative life stressors among individuals with eating disorders. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Precise charge density studies by maximum entropy method

    CERN Document Server

    Takata, M

    2003-01-01

    For the production research and development of nanomaterials, their structural information is indispensable. Recently, a sophisticated analytical method, which is based on information theory, the Maximum Entropy Method (MEM) using synchrotron radiation powder data, has been successfully applied to determine precise charge densities of metallofullerenes and nanochannel microporous compounds. The results revealed various endohedral natures of metallofullerenes and one-dimensional array formation of adsorbed gas molecules in nanochannel microporous compounds. The concept of MEM analysis was also described briefly. (author)

  9. PRESENTDAY STRESS STATE OF THE SHANXI TECTONIC BELT

    Directory of Open Access Journals (Sweden)

    Wang Kaiying

    2012-01-01

    Full Text Available The Shanxi tectonic belt is a historically earthquakeabundant area. For the majority of strong earthquakes in this area, the distribution of earthquake foci was controlled by the N–S oriented local structures on the tectonic belt. Studies of the present stress state of the Shanxi tectonic belt can contribute to the understanding of the relationship between strong earthquakes’ occurrence and their structural distribution and also facilitate assessments of regional seismic danger and determination of the regions wherein strong earthquakes may occur in future. Using the Cataclastic Analysis Method (CAM, we performed stress inversion based on the focal mechanism data of earthquakes which took place in the Shanxi tectonic belt from 1967 to 2010. Our results show that orientations of the maximum principal compressive stress axis of the Shanxi tectonic belt might have been variable before and after the 2001 Kunlun MS=8.1 strong earthquake, with two different superior trends of the NW–SE and NE–SW orientation in different periods. When the maximum principal compressive stress axis is oriented in the NE–SW direction, the pattern of the space distribution of the seismic events in the Shanxi tectonic belt shows a trend of their concentration in the N–S oriented tectonic segments. At the same time, the stress state is registered as horizontal shearing and horizontal extension in the N–S and NE–SW oriented local segments in turn. When the maximum principal compressive stress axis is NW–SE oriented, the stress state of the N–S and NE–SW oriented tectonic segments is primarily registered as horizontal shearing. Estimations of plunges of stress axes show that seismicity in the Shanxi belt  corresponds primarily to the activity of lowangle faults, and highangle stress sites are located in the NE–SW oriented extensional tectonic segments of the Shanxi belt. This indicates that the stress change of the Shanxi belt is

  10. Use of Maximum Likelihood-Mixed Models to select stable reference genes: a case of heat stress response in sheep

    Directory of Open Access Journals (Sweden)

    Salces Judit

    2011-08-01

    Full Text Available Abstract Background Reference genes with stable expression are required to normalize expression differences of target genes in qPCR experiments. Several procedures and companion software have been proposed to find the most stable genes. Model based procedures are attractive because they provide a solid statistical framework. NormFinder, a widely used software, uses a model based method. The pairwise comparison procedure implemented in GeNorm is a simpler procedure but one of the most extensively used. In the present work a statistical approach based in Maximum Likelihood estimation under mixed models was tested and compared with NormFinder and geNorm softwares. Sixteen candidate genes were tested in whole blood samples from control and heat stressed sheep. Results A model including gene and treatment as fixed effects, sample (animal, gene by treatment, gene by sample and treatment by sample interactions as random effects with heteroskedastic residual variance in gene by treatment levels was selected using goodness of fit and predictive ability criteria among a variety of models. Mean Square Error obtained under the selected model was used as indicator of gene expression stability. Genes top and bottom ranked by the three approaches were similar; however, notable differences for the best pair of genes selected for each method and the remaining genes of the rankings were shown. Differences among the expression values of normalized targets for each statistical approach were also found. Conclusions Optimal statistical properties of Maximum Likelihood estimation joined to mixed model flexibility allow for more accurate estimation of expression stability of genes under many different situations. Accurate selection of reference genes has a direct impact over the normalized expression values of a given target gene. This may be critical when the aim of the study is to compare expression rate differences among samples under different environmental

  11. Early counterpulse technique applied to vacuum interrupters

    International Nuclear Information System (INIS)

    Warren, R.W.

    1979-01-01

    Interruption of dc currents using counterpulse techniques is investigated with vacuum interrupters and a novel approach in which the counterpulse is applied before contact separation. Important increases have been achieved in this way in the maximum interruptible current and large reductions in contact erosion. The factors establishing these new limits are presented and ways are discussed to make further improvements to the maximum interruptible current

  12. Efficient heuristics for maximum common substructure search.

    Science.gov (United States)

    Englert, Péter; Kovács, Péter

    2015-05-26

    Maximum common substructure search is a computationally hard optimization problem with diverse applications in the field of cheminformatics, including similarity search, lead optimization, molecule alignment, and clustering. Most of these applications have strict constraints on running time, so heuristic methods are often preferred. However, the development of an algorithm that is both fast enough and accurate enough for most practical purposes is still a challenge. Moreover, in some applications, the quality of a common substructure depends not only on its size but also on various topological features of the one-to-one atom correspondence it defines. Two state-of-the-art heuristic algorithms for finding maximum common substructures have been implemented at ChemAxon Ltd., and effective heuristics have been developed to improve both their efficiency and the relevance of the atom mappings they provide. The implementations have been thoroughly evaluated and compared with existing solutions (KCOMBU and Indigo). The heuristics have been found to greatly improve the performance and applicability of the algorithms. The purpose of this paper is to introduce the applied methods and present the experimental results.

  13. Application of maximum radiation exposure values and monitoring of radiation exposure

    International Nuclear Information System (INIS)

    1996-01-01

    The guide presents the principles to be applied in calculating the equivalent dose and the effective dose, instructions on application of the maximum values for radiation exposure, and instruction on monitoring of radiation exposure. In addition, the measurable quantities to be used in monitoring the radiation exposure are presented. (2 refs.)

  14. Stress distribution of metatarsals during forefoot strike versus rearfoot strike: A finite element study.

    Science.gov (United States)

    Li, Shudong; Zhang, Yan; Gu, Yaodong; Ren, James

    2017-12-01

    Due to the limitations of experimental approaches, comparison of the internal deformation and stresses of the human man foot between forefoot and rearfoot landing is not fully established. The objective of this work is to develop an effective FE modelling approach to comparatively study the stresses and energy in the foot during forefoot strike (FS) and rearfoot strike (RS). The stress level and rate of stress increase in the Metatarsals are established and the injury risk between these two landing styles is evaluated and discussed. A detailed subject specific FE foot model is developed and validated. A hexahedral dominated meshing scheme was applied on the surface of the foot bones and skin. An explicit solver (Abaqus/Explicit) was used to stimulate the transient landing process. The deformation and internal energy of the foot and stresses in the metatarsals are comparatively investigated. The results for forefoot strike tests showed an overall higher average stress level in the metatarsals during the entire landing cycle than that for rearfoot strike. The increase rate of the metatarsal stress from the 0.5 body weight (BW) to 2 BW load point is 30.76% for forefoot strike and 21.39% for rearfoot strike. The maximum rate of stress increase among the five metatarsals is observed on the 1st metatarsal in both landing modes. The results indicate that high stress level during forefoot landing phase may increase potential of metatarsal injuries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Principle of maximum Fisher information from Hardy's axioms applied to statistical systems.

    Science.gov (United States)

    Frieden, B Roy; Gatenby, Robert A

    2013-10-01

    Consider a finite-sized, multidimensional system in parameter state a. The system is either at statistical equilibrium or general nonequilibrium, and may obey either classical or quantum physics. L. Hardy's mathematical axioms provide a basis for the physics obeyed by any such system. One axiom is that the number N of distinguishable states a in the system obeys N=max. This assumes that N is known as deterministic prior knowledge. However, most observed systems suffer statistical fluctuations, for which N is therefore only known approximately. Then what happens if the scope of the axiom N=max is extended to include such observed systems? It is found that the state a of the system must obey a principle of maximum Fisher information, I=I(max). This is important because many physical laws have been derived, assuming as a working hypothesis that I=I(max). These derivations include uses of the principle of extreme physical information (EPI). Examples of such derivations were of the De Broglie wave hypothesis, quantum wave equations, Maxwell's equations, new laws of biology (e.g., of Coulomb force-directed cell development and of in situ cancer growth), and new laws of economic fluctuation and investment. That the principle I=I(max) itself derives from suitably extended Hardy axioms thereby eliminates its need to be assumed in these derivations. Thus, uses of I=I(max) and EPI express physics at its most fundamental level, its axiomatic basis in math.

  16. Concurrent grain boundary motion and grain rotation under an applied stress

    International Nuclear Information System (INIS)

    Gorkaya, Tatiana; Molodov, Konstantin D.; Molodov, Dmitri A.; Gottstein, Guenter

    2011-01-01

    Simultaneous shear coupling and grain rotation were observed experimentally during grain boundary migration in high-purity Al bicrystals subjected to an external mechanical stress at elevated temperatures. This behavior is interpreted in terms of the structure of the investigated planar 18.2 o non-tilt grain boundary with a 20 o twist component. For characterization of the grain rotation after annealing under stress the bicrystal surface topography across the boundary was measured by atomic force microscopy. The temperature dependence of the boundary migration rate was measured and the migration activation energy determined.

  17. Phase-matched light amplification by three-wave mixing process in a birefringent fiber due to externally applied stress

    International Nuclear Information System (INIS)

    Ohashi, M.; Kitayama, K.; Ishida, Y.; Uchida, N.

    1982-01-01

    A novel method to achieve phase-matched light amplification in a birefringent fiber via the three-wave mixing is proposed by using frequency shift change due to the stress applied to the fiber. It is confirmed that the signal power from a cw laser diode at lambda = 1.292 μm is amplified by 6.1 x 10 3 times in the birefringent fiber pumped with a Q-switched Nd: yttrium aluminum garnet laser at lambda = 1.064 μm. This will provide a new fiber-optic light signal amplifier having a good tolerance for variation of signal wavelengths

  18. Maximum entropy decomposition of quadrupole mass spectra

    International Nuclear Information System (INIS)

    Toussaint, U. von; Dose, V.; Golan, A.

    2004-01-01

    We present an information-theoretic method called generalized maximum entropy (GME) for decomposing mass spectra of gas mixtures from noisy measurements. In this GME approach to the noisy, underdetermined inverse problem, the joint entropies of concentration, cracking, and noise probabilities are maximized subject to the measured data. This provides a robust estimation for the unknown cracking patterns and the concentrations of the contributing molecules. The method is applied to mass spectroscopic data of hydrocarbons, and the estimates are compared with those received from a Bayesian approach. We show that the GME method is efficient and is computationally fast

  19. Maximum Profit Configurations of Commercial Engines

    Directory of Open Access Journals (Sweden)

    Yiran Chen

    2011-06-01

    Full Text Available An investigation of commercial engines with finite capacity low- and high-price economic subsystems and a generalized commodity transfer law [n ∝ Δ (P m] in commodity flow processes, in which effects of the price elasticities of supply and demand are introduced, is presented in this paper. Optimal cycle configurations of commercial engines for maximum profit are obtained by applying optimal control theory. In some special cases, the eventual state—market equilibrium—is solely determined by the initial conditions and the inherent characteristics of two subsystems; while the different ways of transfer affect the model in respects of the specific forms of the paths of prices and the instantaneous commodity flow, i.e., the optimal configuration.

  20. Countermeasures to stress corrosion cracking by stress improvement

    International Nuclear Information System (INIS)

    Umemoto, Tadahiro

    1983-01-01

    One of the main factors of the grain boundary stress corrosion cracking occurred in the austenitic stainless steel pipes for reactor cooling system was the tensile residual stress due to welding, and a number of methods have been proposed to reduce the residual stress or to change it to compressive stress. In this paper, on the method of improving residual stress by high frequency heating, which has been applied most frequently, the principle, important parameters and the range of application are explained. Also the other methods of stress improvement are outlined, and the merit and demerit of respective methods are discussed. Austenitic stainless steel and high nickel alloys have good corrosion resistance, high toughness and good weldability, accordingly they have been used for reactor cooling system, but stress corrosion cracking was discovered in both BWRs and PWRs. It occurs when the sensitization of materials, tensile stress and the dissolved oxygen in high temperature water exceed certain levels simultaneously. The importance of the residual stress due to welding, induction heating stress improvement, and other methods such as heat sink welding, last pass heat sink welding, back lay welding and TIG torch heating stress improvement are described. (Kako, I.)

  1. Electron energy spectrum and maximum disruption angle under multi-photon beamstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Yokoya, Kaoru; Chen, Pisin

    1989-03-01

    The final electron energy spectrum under multi-photon beamstrahlung process is derived analytically in the classical and the intermediate regimes. The maximum disruption angle from the low energy tail of the spectrum is also estimated. The results are then applied to the TLC and the CLIC parameters. 6 refs., 1 fig., 1 tab.

  2. Control of welding residual stress for ensuring integrity against fatigue and stress-corrosion cracking

    International Nuclear Information System (INIS)

    Mochizuki, Masahito

    2007-01-01

    The availability of several techniques for residual stress control is discussed in this paper. The effectiveness of these techniques in protecting from fatigue and stress-corrosion cracking is verified by numerical analysis and actual experiment. In-process control during welding for residual stress reduction is easier to apply than using post-weld treatment. As an example, control of the welding pass sequence for multi-pass welding is applied to cruciform joints and butt-joints with an X-shaped groove. However, residual stress improvement is confirmed for post-weld processes. Water jet peening is useful for obtaining a compressive residual stress on the surface, and the tolerance against both fatigue and stress-corrosion cracking is verified. Because cladding with a corrosion-resistant material is also effective for preventing stress-corrosion cracking from a metallurgical perspective, the residual stress at the interface of the base metal is carefully considered. The residual stress of the base metal near the clad edge is confirmed to be within the tolerance of crack generation. Controlling methods both during and after welding processes are found to be effective for ensuring the integrity of welded components

  3. Applied dynamics

    CERN Document Server

    Schiehlen, Werner

    2014-01-01

    Applied Dynamics is an important branch of engineering mechanics widely applied to mechanical and automotive engineering, aerospace and biomechanics as well as control engineering and mechatronics. The computational methods presented are based on common fundamentals. For this purpose analytical mechanics turns out to be very useful where D’Alembert’s principle in the Lagrangian formulation proves to be most efficient. The method of multibody systems, finite element systems and continuous systems are treated consistently. Thus, students get a much better understanding of dynamical phenomena, and engineers in design and development departments using computer codes may check the results more easily by choosing models of different complexity for vibration and stress analysis.

  4. Reevaluation of the stress-life relation in rolling-element bearings

    Science.gov (United States)

    Parker, R. J.; Zaretsky, E. V.

    1972-01-01

    Four groups of 12.7 millimeter diameter vacuum-degassed AISI 52100 balls were tested, each at a maximum Hertz stress in the range of 4.5 times 10 to 9th power to 6.0 times 10 to 9th power N/m2. Tests were run in the five-ball fatigue tester at a contact angle of 30 deg and a shaft speed of 10,000 rpm. The 10 percent fatigue lives at the four stress levels indicated that fatigue life is inversely proportional to maximum Hertz stress raised to the power of 12. This result agrees with a survey of the literature which suggests that a stress-life exponent of approximately 12 is typical of vacuum-processed bearing steels rather than the exponent of 9 which has been generally accepted by the bearing industry.

  5. Stress and Protists: No life without stress.

    Science.gov (United States)

    Slaveykova, Vera; Sonntag, Bettina; Gutiérrez, Juan Carlos

    2016-08-01

    We report a summary of the symposium "Stress and Protists: No life without stress", which was held in September 2015 on the VII European Congress of Protistology in partnership with the International Society of Protistologists (Seville, Spain). We present an overview on general comments and concepts on cellular stress which can be also applied to any protist. Generally, various environmental stressors may induce similar cell responses in very different protists. Two main topics are reported in this manuscript: (i) metallic nanoparticles as environmental pollutants and stressors for aquatic protists, and (ii) ultraviolet radiation - induced stress and photoprotective strategies in ciliates. Model protists such as Chlamydomonas reinhardtii and Tetrahymena thermophila were used to assess stress caused by nanoparticles while stress caused by ultraviolet radiation was tested with free living planktonic ciliates as well as with the symbiont-bearing model ciliate Paramecium bursaria. For future studies, we suggest more intensive analyses on protist stress responses to specific environmental abiotic and/or biotic stressors at molecular and genetic levels up to ecological consequences and food web dynamics. Copyright © 2016 Elsevier GmbH. All rights reserved.

  6. Stress Distribution during Rapid Canine Retraction with a Distraction Device: A Finite Element Study

    Directory of Open Access Journals (Sweden)

    Nareen Chakravarthy Challagulla

    2013-01-01

    Conclusion: The periodontium in the maxillary first molar region showed the maximum stress and the canine showed unequal stress distribution with more stress at the crest of the alveolar bone and lesser stress at the apical region which lessens root resorption.

  7. Stress-constrained topology optimization for compliant mechanism design

    DEFF Research Database (Denmark)

    de Leon, Daniel M.; Alexandersen, Joe; Jun, Jun S.

    2015-01-01

    This article presents an application of stress-constrained topology optimization to compliant mechanism design. An output displacement maximization formulation is used, together with the SIMP approach and a projection method to ensure convergence to nearly discrete designs. The maximum stress...... is approximated using a normalized version of the commonly-used p-norm of the effective von Mises stresses. The usual problems associated with topology optimization for compliant mechanism design: one-node and/or intermediate density hinges are alleviated by the stress constraint. However, it is also shown...

  8. Combining ability studies on yield related traits in wheat under normal and water stress conditions

    International Nuclear Information System (INIS)

    Saeed, A.; Khan, A.S.; Khaliq, I.

    2010-01-01

    Six diverse wheat cultivars/lines viz; Baviacore, Nesser, 9247, 9252, 9258 and 9267 were crossed in a complete diallel fashion to develop 30 F1 crosses, which were tested along with their parents under normal and water stress conditions. Numerical analysis was made for spike density, number of grains per spike, 100-grain weight, biological yield, grain yield and harvest index. Significant differences among genotypic mean were observed in all of the traits under both conditions. GCA and SCA differences were significant for all the traits under study except spike density and 100-grain weight in both conditions. Wheat variety Nesser showed maximum general combining ability value for spike density under water stress conditions and maximum GCA value for biological yield and grain yield under irrigated condition. The variety Baviacore proved best general combiner for number of grains per spike and harvest index under both conditions while biological yield and grain yield under water stress condition. Variety 9252 found best general combiner for 100-grain weight under both condition. The cross 9252 x Nesser showed maximum specific combining ability value for spike density and biological yield under irrigated while for 100-grain weight under water stress condition. 9258 x 9252 exhibited maximum SCA for number of grains per spike under irrigated while 9258 x Nesser under water stress condition. 9267 x Nesser showed maximum SCA for 100-grain weight under irrigated condition while spike density under water stress condition. 9258 x 9247 was proved best combiner for grain yield and harvest index irrigated while 9267 x 9258 for biological yield, grain yield and harvest index under water stress condition. (author)

  9. A Maximum Principle for SDEs of Mean-Field Type

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Daniel, E-mail: danieand@math.kth.se; Djehiche, Boualem, E-mail: boualem@math.kth.se [Royal Institute of Technology, Department of Mathematics (Sweden)

    2011-06-15

    We study the optimal control of a stochastic differential equation (SDE) of mean-field type, where the coefficients are allowed to depend on some functional of the law as well as the state of the process. Moreover the cost functional is also of mean-field type, which makes the control problem time inconsistent in the sense that the Bellman optimality principle does not hold. Under the assumption of a convex action space a maximum principle of local form is derived, specifying the necessary conditions for optimality. These are also shown to be sufficient under additional assumptions. This maximum principle differs from the classical one, where the adjoint equation is a linear backward SDE, since here the adjoint equation turns out to be a linear mean-field backward SDE. As an illustration, we apply the result to the mean-variance portfolio selection problem.

  10. A Maximum Principle for SDEs of Mean-Field Type

    International Nuclear Information System (INIS)

    Andersson, Daniel; Djehiche, Boualem

    2011-01-01

    We study the optimal control of a stochastic differential equation (SDE) of mean-field type, where the coefficients are allowed to depend on some functional of the law as well as the state of the process. Moreover the cost functional is also of mean-field type, which makes the control problem time inconsistent in the sense that the Bellman optimality principle does not hold. Under the assumption of a convex action space a maximum principle of local form is derived, specifying the necessary conditions for optimality. These are also shown to be sufficient under additional assumptions. This maximum principle differs from the classical one, where the adjoint equation is a linear backward SDE, since here the adjoint equation turns out to be a linear mean-field backward SDE. As an illustration, we apply the result to the mean-variance portfolio selection problem.

  11. FEM simulation study on relationship of interfacial morphology and residual stress in TBCs

    Energy Technology Data Exchange (ETDEWEB)

    Liqiang Chen; Shengkai Gong; Huibin Xu [School of Materials Science and Engineering, Beihang Univ., Beijing, BJ (China)

    2005-07-01

    It is generally believed that the failure of TBCs is attributed to the spallation occurred in the ceramic coat. The spallation is closed linked with sinuate morphology factors, including its amplitude and period, at the TGO/bond coat interface. In this work, dependence of the residual stress distribution on the sinuate morphology in the TBCs has been studied by means of finite element method (FEM) simulation for isothermally annealed specimens. The simulation results indicated that the maximum value of residual stress existed inside the TGO layer. It was also found that the maximum residual stress occurred at different points, near the TGO/bond coat interface at the peak of the sinuate interface, while near the TGO/ceramic coat interface at the valley, respectively. And the maximum residual stress increased with increasing the ratio of the amplitude to period in the sine morphology, which has been proved by the thermal cycle experimental results. (orig.)

  12. Residual stress analysis in thick uranium films

    International Nuclear Information System (INIS)

    Hodge, A.M.; Foreman, R.J.; Gallegos, G.F.

    2005-01-01

    Residual stress analysis was performed on thick, 1-25 μm, depleted uranium (DU) films deposited on an Al substrate by magnetron sputtering. Two distinct characterization techniques were used to measure substrate curvature before and after deposition. Stress evaluation was performed using the Benabdi/Roche equation, which is based on beam theory of a bi-layer material. The residual stress evolution was studied as a function of coating thickness and applied negative bias voltage (0, -200, -300 V). The stresses developed were always compressive; however, increasing the coating thickness and applying a bias voltage presented a trend towards more tensile stresses and thus an overall reduction of residual stresses

  13. Prediction of flow- induced dynamic stress in an axial pump impeller using FEM

    International Nuclear Information System (INIS)

    Gao, J Y; Hou, Y S; Xi, S Z; Cai, Z H; Yao, P P; Shi, H L

    2013-01-01

    Axial pumps play an important role in water supply and flood control projects. Along with growing requirements for high reliability and large capacity, the dynamic stress of axial pumps has become a key problem. Unsteady flow is a significant reason which results structural dynamic stress of a pump. This paper reports on a flow-induced dynamic stress simulation in an axial pump impeller at three flow conditions by using FEM code. The pressure pulsation obtained from flow simulation using CFD code was set as the force boundary condition. The results show that the maximum stress of impeller appeared at joint between blade and root flange near trailing edge or joint between blade and root flange near leading edge. The dynamic stress of the two zones was investigated under three flow conditions (0.8Q d , 1.0Q d , 1.1Q d ) in time domain and frequency domain. The frequencies of stress at zones of maximum stress are 22.9Hz and 37.5Hz as the fundamental frequency and its harmonics. The fundamental frequencies are nearly equal to vane passing frequency (22.9 Hz) and 3 times blade passing frequency (37.5Hz). The first dominant frequency at zones of maximum stress is equal to the vane passing frequency due to rotor-stator interaction between the vane and the blade. This study would be helpful for axial pumps in reducing stress, improving structure design and fatigue life

  14. Single-cell analysis of S. cerevisiae growth recovery after a sublethal heat-stress applied during an alcoholic fermentation.

    Science.gov (United States)

    Tibayrenc, Pierre; Preziosi-Belloy, Laurence; Ghommidh, Charles

    2011-06-01

    Interest in bioethanol production has experienced a resurgence in the last few years. Poor temperature control in industrial fermentation tanks exposes the yeast cells used for this production to intermittent heat stress which impairs fermentation efficiency. Therefore, there is a need for yeast strains with improved tolerance, able to recover from such temperature variations. Accordingly, this paper reports the development of methods for the characterization of Saccharomyces cerevisiae growth recovery after a sublethal heat stress. Single-cell measurements were carried out in order to detect cell-to-cell variability. Alcoholic batch fermentations were performed on a defined medium in a 2 l instrumented bioreactor. A rapid temperature shift from 33 to 43 °C was applied when ethanol concentration reached 50 g l⁻¹. Samples were collected at different times after the temperature shift. Single cell growth capability, lag-time and initial growth rate were determined by monitoring the growth of a statistically significant number of cells after agar medium plating. The rapid temperature shift resulted in an immediate arrest of growth and triggered a progressive loss of cultivability from 100 to 0.0001% within 8 h. Heat-injured cells were able to recover their growth capability on agar medium after a lag phase. Lag-time was longer and more widely distributed as the time of heat exposure increased. Thus, lag-time distribution gives an insight into strain sensitivity to heat-stress, and could be helpful for the selection of yeast strains of technological interest.

  15. High shear stress relates to intraplaque haemorrhage in asymptomatic carotid plaques

    DEFF Research Database (Denmark)

    Tuenter, A.; Selwaness, M.; Arias Lorza, A.

    2016-01-01

    estimating equations analysis, adjusting for age, sex and carotid wall thickness. RESULTS: The study group consisted of 93 atherosclerotic carotid arteries of 74 participants. In plaques with higher maximum shear stresses, IPH was more often present (OR per unit increase in maximum shear stress (log......BACKGROUND AND AIMS: Carotid artery plaques with vulnerable plaque components are related to a higher risk of cerebrovascular accidents. It is unknown which factors drive vulnerable plaque development. Shear stress, the frictional force of blood at the vessel wall, is known to influence plaque...... formation. We evaluated the association between shear stress and plaque components (intraplaque haemorrhage (IPH), lipid rich necrotic core (LRNC) and/or calcifications) in relatively small carotid artery plaques in asymptomatic persons. METHODS: Participants (n = 74) from the population-based Rotterdam...

  16. Geomechanical effects of stress shadow created by large-scale destress blasting

    Directory of Open Access Journals (Sweden)

    Isaac Vennes

    2017-12-01

    Full Text Available This study aims to determine if large-scale choked panel destress blasting can provide sufficient beneficial stress reduction in highly-stressed remnant ore pillar that is planned for production. The orebody is divided into 20 stopes over 2 levels, and 2 panels are choke-blasted in the hanging wall to shield the ore pillar by creating a stress shadow around it. A linear-elastic model of the mining system is constructed with finite difference code FLAC3D. The effect of destress blasting in the panels is simulated by applying a fragmentation factor (α to the rock mass stiffness and a stress reduction factor (β to the current state of stress in the region occupied by the destress panels. As an extreme case, the destress panel is also modeled as a void to obtain the maximum possible beneficial effects of destressing and stress shadow. Four stopes are mined in the stress shadow of the panels in 6 lifts and then backfilled. The effect of destress blasting on the remnant ore pillar is quantified based on stress change and brittle shear ratio (BSR in the stress shadow zone compared to the base case without destress blasting. To establish realistic rock fragmentation and stress reduction factors, model results are compared to measured stress changes reported for case studies at Fraser and Brunswick mines. A 1.5 MPa immediate stress decrease was observed 20 m away from the panel at Fraser Mine, and a 4 MPa immediate stress decrease was observed 25 m away at Brunswick Mine. Comparable results are obtained from the current model with a rock fragmentation factor α of 0.2 and a stress reduction factor β of 0.8. It is shown that a destress blasting with these parameters reduces the major principal stress in the nearest stopes by 10–25 MPa. This yields an immediate reduction of BSR, which is deemed sufficient to reduce volume of ore at risk in the pillar.

  17. Interactions between the phase stress and the grain-orientation-dependent stress in duplex stainless steel during deformation

    International Nuclear Information System (INIS)

    Jia, N.; Peng, R. Lin; Wang, Y.D.; Chai, G.C.; Johansson, S.; Wang, G.; Liaw, P.K.

    2006-01-01

    The development of phase stress and grain-orientation-dependent stress under uniaxial compression was investigated in a duplex stainless steel consisting of austenite and ferrite. Using in situ neutron diffraction measurements, the strain response of several h k l planes to the applied compressive stress was mapped as a function of applied stress and sample direction. Analysis based on the experimental results and elastoplastic self-consistent simulations shows that phase stresses of thermal origin further increase during elastic loading but decrease with increased plastic deformation. Grain-orientation-dependent stresses become significant in both austenite and ferrite after loading into the plastic region. After unloading from the plastic regime, a considerable intergranular stress remains in the austenitic phase and dominates over the phase stress. This study provides fundamental experimental inputs for future micromechanical modeling aiming at the evaluation and prediction of the mechanical performance of multiphase materials

  18. An experimental study on the mechanical properties of rat brain tissue using different stress-strain definitions.

    Science.gov (United States)

    Karimi, Alireza; Navidbakhsh, Mahdi

    2014-07-01

    There are different stress-strain definitions to measure the mechanical properties of the brain tissue. However, there is no agreement as to which stress-strain definition should be employed to measure the mechanical properties of the brain tissue at both the longitudinal and circumferential directions. It is worth knowing that an optimize stress-strain definition of the brain tissue at different loading directions may have implications for neuronavigation and surgery simulation through haptic devices. This study is aimed to conduct a comparative study on different results are given by the various definitions of stress-strain and to recommend a specific definition when testing brain tissues. Prepared cylindrical samples are excised from the parietal lobes of rats' brains and experimentally tested by applying load on both the longitudinal and circumferential directions. Three stress definitions (second Piola-Kichhoff stress, engineering stress, and true stress) and four strain definitions (Almansi-Hamel strain, Green-St. Venant strain, engineering strain, and true strain) are used to determine the elastic modulus, maximum stress and strain. The highest non-linear stress-strain relation is observed for the Almansi-Hamel strain definition and it may overestimate the elastic modulus at different stress definitions at both the longitudinal and circumferential directions. The Green-St. Venant strain definition fails to address the non-linear stress-strain relation using different definitions of stress and triggers an underestimation of the elastic modulus. The results suggest the application of the true stress-true strain definition for characterization of the brain tissues mechanics since it gives more accurate measurements of the tissue's response using the instantaneous values.

  19. Catastrophic Disruption Threshold and Maximum Deflection from Kinetic Impact

    Science.gov (United States)

    Cheng, A. F.

    2017-12-01

    The use of a kinetic impactor to deflect an asteroid on a collision course with Earth was described in the NASA Near-Earth Object Survey and Deflection Analysis of Alternatives (2007) as the most mature approach for asteroid deflection and mitigation. The NASA DART mission will demonstrate asteroid deflection by kinetic impact at the Potentially Hazardous Asteroid 65803 Didymos in October, 2022. The kinetic impactor approach is considered to be applicable with warning times of 10 years or more and with hazardous asteroid diameters of 400 m or less. In principle, a larger kinetic impactor bringing greater kinetic energy could cause a larger deflection, but input of excessive kinetic energy will cause catastrophic disruption of the target, leaving possibly large fragments still on collision course with Earth. Thus the catastrophic disruption threshold limits the maximum deflection from a kinetic impactor. An often-cited rule of thumb states that the maximum deflection is 0.1 times the escape velocity before the target will be disrupted. It turns out this rule of thumb does not work well. A comparison to numerical simulation results shows that a similar rule applies in the gravity limit, for large targets more than 300 m, where the maximum deflection is roughly the escape velocity at momentum enhancement factor β=2. In the gravity limit, the rule of thumb corresponds to pure momentum coupling (μ=1/3), but simulations find a slightly different scaling μ=0.43. In the smaller target size range that kinetic impactors would apply to, the catastrophic disruption limit is strength-controlled. A DART-like impactor won't disrupt any target asteroid down to significantly smaller size than the 50 m below which a hazardous object would not penetrate the atmosphere in any case unless it is unusually strong.

  20. Yield stress of alumina-zirconia suspensions

    International Nuclear Information System (INIS)

    Ramakrishnan, V.; Pradip; Malghan, S.G.

    1996-01-01

    The yield stress of concentrated suspensions of alumina, zirconia, and mixed alumina-zirconia powders was measured by the vane technique as a function of solids loading, relative amounts of alumina and zirconia, and pH. At the isoelectric point (IEP), the yield stress varied as the fourth power of the solids loading. The relative ratio of alumina and zirconia particles was important in determining the yield stress of the suspension at the IEP. The yield stress of single and mixed suspensions showed a marked variation with pH. The maximum value occurred at or near the IEP of the suspension. The effect of electrical double-layer forces on the yield stress can be described on the basis of the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. A normalized yield stress--that is, the ratio of the yield stress at a given pH to the yield stress at the IEP predicted by this model--showed good correlation with experimental data

  1. Piping Stress analysis for primary system of nuclear power plant AP-600

    International Nuclear Information System (INIS)

    Tjahjono, Hendro; Arhatari, B.D.; W, Pustandyo; Sitandung, J.B; Sudarmaji, Djoko

    1999-01-01

    Piping stress analysis for AP-600 primary system has been done using software CAEPIPE and PS-CAEPIPE. The loading applied to the system are static and seismic category I and II piping in reactor building have been analysed, those are PXS-900, CVS-110, PCS-030, CAS-700 and CCS-050. These system contain pipes with the normal diameter of 1 , 2 , 4 a nd 8 . The design pressures are in the range of 150oF to 300oF. The acceleration taken as input in PS-CAEPIPE is based on seismic response spectra of floor the piping is located. In CAEPIPE, the acceleration taken from the peak of response spectra multiplied by 1.7 all of the acceleration in this case are no more than 0.36g. The result shows that after locating some supports, all system are acceptable without snubbers. The maximum stress are 11210 psi for deadweight load and 35593 psi for total load (the allowable values are 15000 psi and 45000 psi). The maximum displacement are 0.123 in for deadweight load, 1.474 in for hot load seismic load (the allowable values are 0.125 in for deadweight and 2.5 in for total load). The difference results of the both software is mainly in seismic calculation where mare parameters can be evaluated by PS-CAEPIPE including to evaluate valves acceleration in seismic condition

  2. Perspectives on Inmate Communication and Interpersonal Relations in the Maximum Security Prison.

    Science.gov (United States)

    Van Voorhis, Patricia; Meussling, Vonne

    In recent years, scholarly and applied inquiry has addressed the importance of interpersonal communication patterns and problems in maximum security institutions for males. As a result of this research, the number of programs designed to improve the interpersonal effectiveness of prison inmates has increased dramatically. Research suggests that…

  3. Stress/strain/time properties of highly compacted bentonite

    International Nuclear Information System (INIS)

    Pusch, R.

    1983-05-01

    In this paper, a recently developed creep theory based on statistical mechanics has been used to analyze a number of experimental creep curves, the conclusion being that the creep behavior of dense MX-80 bentonite is in agreement with the physical model, and that the average bond strength is within the hydrogen bond region. The latter conclusion thus indicates that interparticle displacements leading to macroscopic creep takes place in interparticle and intraparticle water lattices. These findings were taken as a justification to apply the creep theory to a prediction of the settlement over a one million year period. It gave an estimated settlement of 1 cm at maximum, which is of no practical significance. The thixotropic and viscous properties of highly compacted bentonite present certain difficulties in the determination and evaluation of the stress/strain/time parameters that are required for ordinary elastic and elasto-plastic analyses. Still, these parameters could be sufficiently well identified to allow for a preliminary estimation of the stresses induced in the metal canisters by slight rock displacements. The analysis, suggests that a 1 cm rapid shear perpendicular to the axes of the canisters can take place without harming them. (author)

  4. Mid-depth temperature maximum in an estuarine lake

    Science.gov (United States)

    Stepanenko, V. M.; Repina, I. A.; Artamonov, A. Yu; Gorin, S. L.; Lykossov, V. N.; Kulyamin, D. V.

    2018-03-01

    The mid-depth temperature maximum (TeM) was measured in an estuarine Bol’shoi Vilyui Lake (Kamchatka peninsula, Russia) in summer 2015. We applied 1D k-ɛ model LAKE to the case, and found it successfully simulating the phenomenon. We argue that the main prerequisite for mid-depth TeM development is a salinity increase below the freshwater mixed layer, sharp enough in order to increase the temperature with depth not to cause convective mixing and double diffusion there. Given that this condition is satisfied, the TeM magnitude is controlled by physical factors which we identified as: radiation absorption below the mixed layer, mixed-layer temperature dynamics, vertical heat conduction and water-sediments heat exchange. In addition to these, we formulate the mechanism of temperature maximum ‘pumping’, resulting from the phase shift between diurnal cycles of mixed-layer depth and temperature maximum magnitude. Based on the LAKE model results we quantify the contribution of the above listed mechanisms and find their individual significance highly sensitive to water turbidity. Relying on physical mechanisms identified we define environmental conditions favouring the summertime TeM development in salinity-stratified lakes as: small-mixed layer depth (roughly, ~wind and cloudless weather. We exemplify the effect of mixed-layer depth on TeM by a set of selected lakes.

  5. Comparative analysis of stress in a new proposal of dental implants.

    Science.gov (United States)

    Valente, Mariana Lima da Costa; de Castro, Denise Tornavoi; Macedo, Ana Paula; Shimano, Antonio Carlos; Dos Reis, Andréa Cândido

    2017-08-01

    The purpose of this study was to compare, through photoelastic analysis, the stress distribution around conventional and modified external hexagon (EH) and morse taper (MT) dental implant connections. Four photoelastic models were prepared (n=1): Model 1 - conventional EH cylindrical implant (Ø 4.0mm×11mm - Neodent®), Model 2 - modified EH cylindrical implant, Model 3 - conventional MT Conical implant (Ø 4.3mm×10mm - Neodent®) and Model 4 - modified MT conical implant. 100 and 150N axial and oblique loads (30° tilt) were applied in the devices coupled to the implants. A plane transmission polariscope was used in the analysis of fringes and each position of interest was recorded by a digital camera. The Tardy method was used to quantify the fringe order (n), that calculates the maximum shear stress (τ) value in each selected point. The results showed lower stress concentration in the modified cylindrical implant (EH) compared to the conventional model, with application of 150N axial and 100N oblique loads. Lower stress was observed for the modified conical (MT) implant with the application of 100 and 150N oblique loads, which was not observed for the conventional implant model. The comparative analysis of the models showed that the new design proposal generates good stress distribution, especially in the cervical third, suggesting the preservation of bone tissue in the bone crest region. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. The effect of stress state on zirconium hydride reorientation

    Science.gov (United States)

    Cinbiz, Mahmut Nedim

    correlating the finite element stress-state results with the spatial distribution of hydride microstructures observed within the optical micrographs for each sample. Experiments showed that the hydride reorientation was enhanced as the stress biaxiality increased. The threshold stress decreased from 150 MPa to 80 MPa when stress biaxiality ratio increased from uniaxial tension to near-equibiaxial tension. This behavior was also predicted by classical nucleation theory based on the Gibbs free energy of transformation being assisted by the far-field stress. An analysis of in situ X-ray diffraction data obtained during a thermo-mechanical cycle typical of vacuum drying showed a complex lattice-spacing behavior of the hydride phase during the dissolution and precipitation. The in-plane hydrides showed bilinear lattice expansion during heating with the intrinsic thermal expansion rate of the hydrides being observed only at elevated temperatures as they dissolve. For radial hydrides that precipitate during cooling under stress, the spacing of the close-packed {111} planes oriented normal to the maximum applied stress was permanently higher than the corresponding {111} plane spacing in the other directions. This behavior is believed to be a result of a complex stress state within the precipitating plate-like hydrides that induces a strain component within the hydrides normal to its "plate" face (i.e., the applied stress direction) that exceeds the lattice spacing strains in the other directions. During heat-up, the lattice spacing of these same "plate" planes actually contract due to the reversion of the stress state within the plate-like hydrides as they dissolve. The presence of radial hydrides and their connectivity with in-plane hydrides was shown to increase the ductile-to-brittle transition temperature during tensile testing. This behavior can be understood in terms of the role of radial hydrides in promoting the initiation of a long crack that subsequently propagates under

  7. Computation of stress on the surface of a soft homogeneous arbitrarily shaped particle.

    Science.gov (United States)

    Yang, Minglin; Ren, Kuan Fang; Wu, Yueqian; Sheng, Xinqing

    2014-04-01

    Prediction of the stress on the surface of an arbitrarily shaped particle of soft material is essential in the study of elastic properties of the particles with optical force. It is also necessary in the manipulation and sorting of small particles with optical tweezers, since a regular-shaped particle, such as a sphere, may be deformed under the nonuniform optical stress on its surface. The stress profile on a spherical or small spheroidal soft particle trapped by shaped beams has been studied, however little work on computing the surface stress of an irregular-shaped particle has been reported. We apply in this paper the surface integral equation with multilevel fast multipole algorithm to compute the surface stress on soft homogeneous arbitrarily shaped particles. The comparison of the computed stress profile with that predicted by the generalized Lorenz-Mie theory for a water droplet of diameter equal to 51 wavelengths in a focused Gaussian beam show that the precision of our method is very good. Then stress profiles on spheroids with different aspect ratios are computed. The particles are illuminated by a Gaussian beam of different waist radius at different incidences. Physical analysis on the mechanism of optical stress is given with help of our recently developed vectorial complex ray model. It is found that the maximum of the stress profile on the surface of prolate spheroids is not only determined by the reflected and refracted rays (orders p=0,1) but also the rays undergoing one or two internal reflections where they focus. Computational study of stress on surface of a biconcave cell-like particle, which is a typical application in life science, is also undertaken.

  8. Soil compaction: Evaluation of stress transmission and resulting soil structure

    Science.gov (United States)

    Naveed, Muhammad; Schjønning, Per; Keller, Thomas; Lamande, Mathieu

    2016-04-01

    Accurate estimation of stress transmission and resultant deformation in soil profiles is a prerequisite for the development of predictive models and decision support tools for preventing soil compaction. Numerous studies have been carried out on the effects of soil compaction, whilst relatively few studies have focused on the cause (mode of stress transmission in the soil). We have coupled both cause and effects together in the present study by carrying out partially confined compression tests on (1) wet aggregates, (2) air dry aggregates, and (3) intact soils to quantify stress transmission and compaction-resulted soil structure at the same time. Stress transmission was quantified using both X-ray CT and Tactilus sensor mat, and soil-pore structure was quantified using X-ray CT. Our results imply that stress transmission through soil highly depends on the magnitude of applied load and aggregate strength. As soon as the applied load is lower than the aggregate strength, the mode of stress transmission is discrete as stresses were mainly transmitted through chain of aggregates. With increasing applied load soil aggregates start deforming that transformed heterogeneous soil into homogenous, as a result stress transmission mode was shifted from discrete towards more like a continuum. Continuum-like stress transmission mode was better simulated with Boussinesq (1885) model based on theory of elasticity compared to discrete. The soil-pore structure was greatly affected by increasing applied stresses. Total porosity was reduced 5-16% and macroporosity 50-85% at 620 kPa applied stress for the intact soils. Similarly, significant changes in the morphological indices of the macropore space were also observed with increasing applied stresses.

  9. Stress analysis of two-dimensional cellular materials with thick cell struts

    International Nuclear Information System (INIS)

    Lim, Do Hyung; Kim, Han Sung; Kim, Young Ho; Kim, Yoon Hyuk; Al-Hassani, S.T.S.

    2008-01-01

    Finite element analyses (FEA) were performed to thoroughly validate the collapse criteria of cellular materials presented in our previous companion paper. The maximum stress (von-Mises stress) on the cell strut surface and the plastic collapse stress were computed for two-dimensional (2D) cellular materials with thick cell struts. The results from the FEA were compared with those from theoretical criteria of authors. The FEA results were in good agreement with the theoretical results. The results indicate that when bending moment, axial and shear forces are considered, the maximum stress on the strut surface gives significantly different values in the tensile and compressive parts of the cell wall as well as in the two loading directions. Therefore, for the initial yielding of ductile cellular materials and the fracture of brittle cellular materials, in which the maximum stress on the strut surface is evaluated, it is necessary to consider not only the bending moment but also axial and shear forces. In addition, this study shows that for regular cellular materials with the identical strut geometry for all struts, the initial yielding and the plastic collapse under a biaxial state of stress occur not only in the inclined cell struts but also in the vertical struts. These FEA results support the theoretical conclusion of our previous companion paper that the anisotropic 2D cellular material has a truncated yield surface not only on the compressive quadrant but also on the tensile quadrant

  10. Maximizing Lipid Yield in Neochloris oleoabundans Algae Extraction by Stressing and Using Multiple Extraction Stages with N-Ethylbutylamine as Switchable Solvent

    Science.gov (United States)

    2017-01-01

    The extraction yield of lipids from nonbroken Neochloris oleoabundans was maximized by using multiple extraction stages and using stressed algae. Experimental parameters that affect the extraction were investigated. The study showed that with wet algae (at least) 18 h extraction time was required for maximum yield at room temperature and a solvent/feed ratio of 1:1 (w/w). For fresh water (FW), nonstressed, nonbroken Neochloris oleoabundans, 13.1 wt % of lipid extraction yield (based on dry algae mass) was achieved, which could be improved to 61.3 wt % for FW stressed algae after four extractions, illustrating that a combination of stressing the algae and applying the solvent N-ethylbutylamine in multiple stages of extraction results in almost 5 times higher yield and is very promising for further development of energy-efficient lipid extraction technology targeting nonbroken wet microalgae. PMID:28781427

  11. Maximum Power Point Tracking Based on Sliding Mode Control

    Directory of Open Access Journals (Sweden)

    Nimrod Vázquez

    2015-01-01

    Full Text Available Solar panels, which have become a good choice, are used to generate and supply electricity in commercial and residential applications. This generated power starts with the solar cells, which have a complex relationship between solar irradiation, temperature, and output power. For this reason a tracking of the maximum power point is required. Traditionally, this has been made by considering just current and voltage conditions at the photovoltaic panel; however, temperature also influences the process. In this paper the voltage, current, and temperature in the PV system are considered to be a part of a sliding surface for the proposed maximum power point tracking; this means a sliding mode controller is applied. Obtained results gave a good dynamic response, as a difference from traditional schemes, which are only based on computational algorithms. A traditional algorithm based on MPPT was added in order to assure a low steady state error.

  12. Physically elastic analysis of a cylindrical ring as a unit cell of a complete composite under applied stress in the complex plane using cubic polynomials

    Science.gov (United States)

    Monfared, Vahid

    2018-03-01

    Elastic analysis is analytically presented to predict the behaviors of the stress and displacement components in the cylindrical ring as a unit cell of a complete composite under applied stress in the complex plane using cubic polynomials. This analysis is based on the complex computation of the stress functions in the complex plane and polar coordinates. Also, suitable boundary conditions are considered and assumed to analyze along with the equilibrium equations and bi-harmonic equation. This method has some important applications in many fields of engineering such as mechanical, civil and material engineering generally. One of the applications of this research work is in composite design and designing the cylindrical devices under various loadings. Finally, it is founded that the convergence and accuracy of the results are suitable and acceptable through comparing the results.

  13. Transmission of vertical stress in a real soil profile. Part II

    DEFF Research Database (Denmark)

    Lamandé, Mathieu; Schjønning, Per

    2011-01-01

    used rated tyre inflation pressures for traffic in the field (≤10 km h−1 driving speed). Seven load cells were inserted horizontally from a pit with minimal disturbance of soil at each of three depths (0.3, 0.6 and 0.9 m), covering the width of the wheeled area. The position of the wheel relative...... to the transducers was recorded using a laser sensor. Finally, the vertical stresses near the tyre–soil interface were measured in separate tests by 17 stress transducers across the width of the tyres. The level of maximum stress at 0.3 m depth was related to the surface-related stress expressions like the mean...... ground pressure and the tyre inflation pressure. The maximum stresses measured at 0.9 m depth were correlated with the wheel load (57 and 60 kPa at 60 kN load; 27 and 25 kPa at 30 kN load) and did not reflect the surface-related stress expressions. Our results show that the use of wide, low pressure...

  14. Experimental stress analysis of four machined 10-in. NPS piping elbows with specified geometric distortions

    International Nuclear Information System (INIS)

    Moore, S.E.; Dodge, W.G.; Bolt, S.E.

    1983-09-01

    Four specially fabricated nominal 10-in. NPS, 90 0 , long-radius, schedule 40, carbon-steel piping elbows, welded to short lengths of straight pipe, were stress analyzed both experimentally and analytically. One elbow had a circular cross section and a uniform wall thickness, while the other three had either a circular or elliptical cross section with either a uniform or variable wall thickness. The objectives of the tests were primarily to study the influence of out of roundness and wall-thickness variations on the stresses in piping elbows under internal pressure and/or applied moment loadings. Analytical studies were made to isolate the various effects by comparing the experimental data with theoretical baseline solutions. Results of the studies showed that analytical solutions based on no-end-effects (NEE) theory capture the major characteristics of the stress distributions for elbows loaded with pressure and/or in-plane, out-of-plane, or torsional moment loadings. Of the four second-order effects addressed in this study, and effects had the most influence on the stresses, followed in order by out of roundness, wall-thickness variations, and pressure-moment interactions. Of these, the only significant increase in maximum stresses above those predicted by NEE theory was for the case of out of roundness with internal-pressure loading

  15. Effect of power history on the shape and the thermal stress of a large sapphire crystal during the Kyropoulos process

    Science.gov (United States)

    Nguyen, Tran Phu; Chuang, Hsiao-Tsun; Chen, Jyh-Chen; Hu, Chieh

    2018-02-01

    In this study, the effect of the power history on the shape of a sapphire crystal and the thermal stress during the Kyropoulos process are numerically investigated. The simulation results show that the thermal stress is strongly dependent on the power history. The thermal stress distributions in the crystal for all growth stages produced with different power histories are also studied. The results show that high von Mises stress regions are found close to the seed of the crystal, the highly curved crystal surface and the crystal-melt interface. The maximum thermal stress, which occurs at the crystal-melt interface, increases significantly in value as the crystal expands at the crown. After this, there is reduction in the maximum thermal stress as the crystal lengthens. There is a remarkable enhancement in the maximum von Mises stress when the crystal-melt interface is close to the bottom of the crucible. There are two obvious peaks in the maximum Von Mises stress, at the end of the crown stage and in the final stage, when cracking defects can form. To alleviate this problem, different power histories are considered in order to optimize the process to produce the lowest thermal stress in the crystal. The optimal power history is found to produce a significant reduction in the thermal stress in the crown stage.

  16. Cosmic shear measurement with maximum likelihood and maximum a posteriori inference

    Science.gov (United States)

    Hall, Alex; Taylor, Andy

    2017-06-01

    We investigate the problem of noise bias in maximum likelihood and maximum a posteriori estimators for cosmic shear. We derive the leading and next-to-leading order biases and compute them in the context of galaxy ellipticity measurements, extending previous work on maximum likelihood inference for weak lensing. We show that a large part of the bias on these point estimators can be removed using information already contained in the likelihood when a galaxy model is specified, without the need for external calibration. We test these bias-corrected estimators on simulated galaxy images similar to those expected from planned space-based weak lensing surveys, with promising results. We find that the introduction of an intrinsic shape prior can help with mitigation of noise bias, such that the maximum a posteriori estimate can be made less biased than the maximum likelihood estimate. Second-order terms offer a check on the convergence of the estimators, but are largely subdominant. We show how biases propagate to shear estimates, demonstrating in our simple set-up that shear biases can be reduced by orders of magnitude and potentially to within the requirements of planned space-based surveys at mild signal-to-noise ratio. We find that second-order terms can exhibit significant cancellations at low signal-to-noise ratio when Gaussian noise is assumed, which has implications for inferring the performance of shear-measurement algorithms from simplified simulations. We discuss the viability of our point estimators as tools for lensing inference, arguing that they allow for the robust measurement of ellipticity and shear.

  17. Distribution of steady state temperatures and thermoelastic stresses in a cylindrical shell with internal heat generation and cooled on both sides or only on one side

    International Nuclear Information System (INIS)

    Melese d'Hospital, G.B.

    1979-10-01

    General expressions for steady state temperatures and elastic thermal stress distributions are derived for a hollow fuel element cooled on both sides. The main simplifying assumptions consist of one dimensional heat transfer and a single medium. Dimensionless numerical results are plotted in the case of uniform internal heat generation and for constant thermal conductivity. Solid rods and flat plates are treated as special cases. As could be expected, cooling on both sides rather than on only one side, leads to significant reduction in maximum fuel temperature and thermal stresses for a given power density, or to a significant increase in power density for either given maximum temperature drop in the fuel or for maximum tensile thermal stress. Typically, for a rod diameter ratio of 2, the power density could be increased by a factor of 3 to 4 without increasing the maximum stress. Similarly, for the same power density, replacing internal cooling of a hollow fuel element by external cooling reduces the maximum fuel temperature drop by a factor of 1.5 and the average fuel temperature drop (or maximum tensile stress) by a factor of 2, with the same maximum compressive stress

  18. Photoelastic Stress Analysis Surrounding Implant-Supported Prosthesis and Alveolar Ridge on Mandibular Overdentures

    Directory of Open Access Journals (Sweden)

    Dorival Pedroso da Silva

    2010-01-01

    Full Text Available The purpose of this research was to evaluate the maximum stress around osseointegrated implants and alveolar ridge, in a mandible with left partial resection through a photoelastic mandibular model. The first group consisted of two implants: traditional model (T, implants placed in the position of both canines; fulcrum model (F, implants placed in the position of left canine CL and right lateral incisor LiR. Both models linked through a bar and clips. The second group was consisted of three implants, with implants placed in the position of both canines (CR and CL and the right lateral incisor (LiR, which composed four groups: (1 model with 3 “O” rings, (2 model 2 ERAs, bar with clips, (3 model 2 ERAs bar without clips; (4 model “O” ring bar and ERA. An axial and an oblique load of 6.8 kgf was applied on a overdenture at the 1st Pm, 2nd Pm, and 1st M. Results showed that the area around the left canine (CL was practically free of stress; the left lateral incisor (LiL developed only small tensions, and low stress in all the other cases; the right canine tooth suffered the largest concentrations of stress, mainly with the ERA retention mechanism.

  19. Stress distribution and displacement of abutment of middle implant-natural teeth fixed bridge under different loading

    International Nuclear Information System (INIS)

    Chen Erjun; Zhou Yanmin; Ma Chenchun; Cong Zhiqiang; Jiang Yonghua

    2004-01-01

    Objective: To study stress distribution and displacement of abutment of middle implant-natural teeth fixed bridge under different loading. Methods: The stress distribution and displacement of abutment were studied and analyzed by means of three-dimensional finite element when different loading was applied. Results: The biggest stress of middle implant was 4-5 times as big as that of natural teeth. Under concentrated vertical loading, the biggest stress of implant was about 2 times higher than that under dispersed vertical loading. There was no significant difference of biggest stress on the implant between concentrated oblique loading and dispersed oblique loading. The biggest stress of implant under oblique loading was 3 times as big as that under dispersed vertical loading. The biggest stress of natural teeth under dispersed loading was lower than that under concentrated loading. The maximum displacement of implant in occlusal-gum direction was great lower than that of natural teeth. Both in buccal-lingual direction and medial-distal direction, the displacement of implant were about equal to that of natural teeth. Conclusion: The oblique loading is the main force to destroy the middle implant-natural teeth fixed bridge. The lean of cusp should be reduced. The abnormally high occlusal points should be deleted. The bite points should be well distributed. The fixed bridge is feasible. (authors)

  20. The state of stress in British rocks

    International Nuclear Information System (INIS)

    Klein, R.J.; Brown, E.T.

    1983-03-01

    When designing underground works, it is necessary to take account of not only the vertical stresses arising predictably from the weight of the rock overhead, but also horizontal stresses which may vary from one direction to another as a result of past tectonic action. This report discussed the techniques that have been used to measure such stresses. Few determinations have been made in Great Britain, so it has been necessary to augment what little is known by reference to fault systems, relying on correlations between the measured magnitude and direction of maximum horizontal stress with local tectonic history. This has enabled general conclusions to be reached for Great Britain. (author)

  1. Finite element analysis of maxillary bone stress caused by Aramany Class IV obturator prostheses.

    Science.gov (United States)

    Miyashita, Elcio Ricardo; Mattos, Beatriz Silva Câmara; Noritomi, Pedro Yoshito; Navarro, Hamilton

    2012-05-01

    The retention of an Aramany Class IV removable partial dental prosthesis can be compromised by a lack of support. The biomechanics of this obturator prosthesis result in an unusual stress distribution on the residual maxillary bone. This study evaluated the biomechanics of an Aramany Class IV obturator prosthesis with finite element analysis and a digital 3-dimensional (3-D) model developed from a computed tomography scan; bone stress was evaluated according to the load placed on the prosthesis. A 3-D model of an Aramany Class IV maxillary resection and prosthesis was constructed. This model was used to develop a finite element mesh. A 120 N load was applied to the occlusal and incisal platforms corresponding to the prosthetic teeth. Qualitative analysis was based on the scale of maximum principal stress; values obtained through quantitative analysis were expressed in MPa. Under posterior load, tensile and compressive stresses were observed; the tensile stress was greater than the compressive stress, regardless of the bone region, and the greatest compressive stress was observed on the anterior palate near the midline. Under an anterior load, tensile stress was observed in all of the evaluated bone regions; the tensile stress was greater than the compressive stress, regardless of the bone region. The Aramany Class IV obturator prosthesis tended to rotate toward the surgical resection when subjected to posterior or anterior loads. The amount of tensile and compressive stress caused by the Aramany Class IV obturator prosthesis did not exceed the physiological limits of the maxillary bone tissue. (J Prosthet Dent 2012;107:336-342). Copyright © 2012 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  2. Stress Concentration Factor and Stress Intensity Factor with U-notch and Crack in the Beam

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Bo Seong; Lee, Kwang Ho [Kyungpook National Univ., Daegu (Korea, Republic of)

    2016-05-15

    The stress concentration factors and stress intensity factors for a simple beam and a cantilever are analyzed by using finite element method and photoelasticity. Using the analyzed results, the estimated graphs on stress concentration factors and stress intensity factors are obtained. To analyze stress concentration factors of notch, the dimensionless notch length H(height of specimen)/h=1.1-2 and dimensionless gap space r(radius at the notch tip)/h=0.1~0.5 are used, where h=H-c and c is the notch length. As the notch gap length increases and the gap decreases, the stress concentration factors increase. Stress concentration factors of a simple beam are greater than those of a cantilever beam. However, actually, the maximum stress values under a load, a notch length and a gap occur more greatly in the cantilever beam than in the simple beam. To analyze stress intensity factors, the normalized crack length α(crack length)/H=0.2~0.5 is used. As the length of the crack increases, the normalized stress intensity factors increase. The stress intensity factors under a constant load and a crack length occur more greatly in the cantilever beam than in the simple beam.

  3. Simulation of bending stress variation in long buried thick-walled pipes under the earth’s movement using combined linear dynamics and beam theories

    Directory of Open Access Journals (Sweden)

    Salau Tajudeen A.O.

    2014-01-01

    Full Text Available This study reported a simulation approach to the understanding of the interactions between a buried pipe and the soil system by computing the bending stress variation of harmonically-excited buried pipes. The established principles of linear dynamics theory and simple beam theory were utilised in the analysis of the problem of buried pipe bending stress accumulation and its dynamics. With regards to the parameters that influence the bending stress variations, the most important are the isolation factor, uniform external load, and the corresponding limiting conditions. The simulated mathematical expressions, containing static and dynamic parameters of the buried pipe and earth, were coded in Fortran programming language and applied in the simulation experiment. The results obtained showed that harmonically-excited buried thick-walled pipe became stable and effective when the ratio of the natural frequency of vibration to the forced frequency is greater than 2.0, whenever the damped factor is used as the control parameter for the maximum bending stress. The mirror image of the stress variation produces variation in the location of the maximum bending stress in quantitative terms. The acceptable pipe materials for the simulated cases must have yield strength in bending greater than or equal to 13.95 MPa. The results obtained in this work fill a gap in the literature and will be useful to pipeline engineers and designers, as well as to environmental scientists in initialising and controlling environmental issues and policy formulation concerning the influence of buried pipe on the soil and water in the environment.

  4. Soil compaction: Evaluation of stress transmission and resulting soil structure

    DEFF Research Database (Denmark)

    Naveed, Muhammad; Schjønning, Per; Keller, Thomas

    strength. As soon as the applied load is lower than the aggregate strength, the mode of stress transmission is discrete as stresses were mainly transmitted through chain of aggregates. With increasing applied load soil aggregates start deforming that transformed heterogeneous soil into homogenous......, as a result stress transmission mode was shifted from discrete towards more like a continuum. Continuum-like stress transmission mode was better simulated with Boussinesq (1885) model based on theory of elasticity compared to discrete. The soil-pore structure was greatly affected by increasing applied...... and compaction-resulted soil structure at the same time. Stress transmission was quantified using both X-ray CT and Tactilus sensor mat, and soil-pore structure was quantified using X-ray CT. Our results imply that stress transmission through soil highly depends on the magnitude of applied load and aggregate...

  5. Sustainability of compressive residual stress by stress improvement processes

    International Nuclear Information System (INIS)

    Nishikawa, Satoru; Okita, Shigeru; Yamaguchi, Atsunori

    2013-01-01

    Stress improvement processes are countermeasures against stress corrosion cracking in nuclear power plant components. It is necessary to confirm whether compressive residual stress induced by stress improvement processes can be sustained under operation environment. In order to evaluate stability of the compressive residual stress in 60-year operating conditions, the 0.07% cyclic strains of 200 times at 593 K were applied to the welded specimens, then a thermal aging treatment for 1.66x10 6 s at 673 K was carried out. As the result, it was confirmed that the compressive residual stresses were sustained on both surfaces of the dissimilar welds of austenitic stainless steel (SUS316L) and nickel base alloy (NCF600 and alloy 182) processed by laser peening (LP), water jet peening (WJP), ultrasonic shot peening (USP), shot peening (SP) and polishing under 60-year operating conditions. (author)

  6. The stress field and transient stress generation at shallow depths in the Canadian shield

    International Nuclear Information System (INIS)

    Hasegawa, H.S.

    1984-01-01

    A prominent feature of the stress field in eastern Canada is the high horizontal stress at shallow depths. Possible causative factors to this shallow stress field are remanent stresses from a previous tectonic orogeny, plate tectonic stresses and glacial-related stresses (glacial drag and flexual stress). The inherent difficulty in differentiating residual from current stress is one of the reasons why the relative contributions to the stress field from the phenomena described above are not properly understood. Maximum stress-strain changes an underground vault is likely to encounter from natural phenomena should occur when the periphery of the advancing or retreating glacier is near the vault. Theoretical calculations indicate that lithospheric flexure, differential postglacial uplift and possibly glacial drag may be able to generate significant horizontal stresses around a vault. In order to calculate the earthquake potential of these induced stress changes, the ambient tectonic stress field should also be included and a suitable failure criterion (e.g. Coulomb-Mohr) used. For earthquakes to generate appreciable stress-strain concentrations near a vault; the seismic signal must contain appreciable energy at appropriate frequencies (wavelengths comparable to vault dimensions) and be of appreciable duration; the particle velocity must be high (> 10 cm/s), induced strain is a function of particle velocity; and, the hypocentre must be less than half a fault length from the vault for residual deformation (strain and tilt) to be significant. The most severe case is when the causative fault intersects the vault

  7. Role of catecholamines in maternal-fetal stress transfer in sheep.

    Science.gov (United States)

    Rakers, Florian; Bischoff, Sabine; Schiffner, Rene; Haase, Michelle; Rupprecht, Sven; Kiehntopf, Michael; Kühn-Velten, W Nikolaus; Schubert, Harald; Witte, Otto W; Nijland, Mark J; Nathanielsz, Peter W; Schwab, Matthias

    2015-11-01

    We sought to evaluate whether in addition to cortisol, catecholamines also transfer psychosocial stress indirectly to the fetus by decreasing uterine blood flow (UBF) and increasing fetal anaerobic metabolism and stress hormones. Seven pregnant sheep chronically instrumented with uterine ultrasound flow probes and catheters at 0.77 gestation underwent 2 hours of psychosocial stress by isolation. We used adrenergic blockade with labetalol to examine whether decreased UBF is catecholamine mediated and to determine to what extent stress transfer from mother to fetus is catecholamine dependent. Stress induced transient increases in maternal cortisol and norepinephrine (NE). Maximum fetal plasma cortisol concentrations were 8.1 ± 2.1% of those in the mother suggesting its maternal origin. In parallel to the maternal NE increase, UBF decreased by maximum 22% for 30 minutes (P Fetal NE remained elevated for >2 hours accompanied by a prolonged blood pressure increase (P fetal NE and blood pressure increase and the shift toward anaerobic metabolism. We conclude that catecholamine-induced decrease of UBF is a mechanism of maternal-fetal stress transfer. It may explain the influence of maternal stress on fetal development and on programming of adverse health outcomes in later life especially during early pregnancy when fetal glucocorticoid receptor expression is limited. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Maximum likelihood as a common computational framework in tomotherapy

    International Nuclear Information System (INIS)

    Olivera, G.H.; Shepard, D.M.; Reckwerdt, P.J.; Ruchala, K.; Zachman, J.; Fitchard, E.E.; Mackie, T.R.

    1998-01-01

    Tomotherapy is a dose delivery technique using helical or axial intensity modulated beams. One of the strengths of the tomotherapy concept is that it can incorporate a number of processes into a single piece of equipment. These processes include treatment optimization planning, dose reconstruction and kilovoltage/megavoltage image reconstruction. A common computational technique that could be used for all of these processes would be very appealing. The maximum likelihood estimator, originally developed for emission tomography, can serve as a useful tool in imaging and radiotherapy. We believe that this approach can play an important role in the processes of optimization planning, dose reconstruction and kilovoltage and/or megavoltage image reconstruction. These processes involve computations that require comparable physical methods. They are also based on equivalent assumptions, and they have similar mathematical solutions. As a result, the maximum likelihood approach is able to provide a common framework for all three of these computational problems. We will demonstrate how maximum likelihood methods can be applied to optimization planning, dose reconstruction and megavoltage image reconstruction in tomotherapy. Results for planning optimization, dose reconstruction and megavoltage image reconstruction will be presented. Strengths and weaknesses of the methodology are analysed. Future directions for this work are also suggested. (author)

  9. Prevalence and predictors of posttraumatic stress disorder among victims of violence applying for state compensation.

    Science.gov (United States)

    Kunst, Maarten; Winkel, Frans Willem; Bogaerts, Stefan

    2010-09-01

    Many studies have focused on the predictive value of victims' emotions experienced shortly after violence exposure to identify those vulnerable for development of posttraumatic stress disorder (PTSD). However, many victims remain unidentified during the initial recovery phase, yet may still be highly in need of psychological help after substantial time since victimization has passed. Professionals involved in the settlement of civil damage claims filed by victims of violence may play an important role in referring victims with current psychological problems to appropriate treatment services, as they are likely to maintain relations with victims until all compensation possibilities have been exhausted. As an exploratory examination of this topic, the current study investigates the potential utility of file characteristics as predictors of chronic PTSD among 686 victims of violence who had applied for state compensation with the Dutch Victim Compensation Fund (DVCF) in 2006. Identification of significant predictors is preceded by estimating prevalence rates of PTSD. Results indicate that approximately 1 of 2 victims applying for state compensation in the Netherlands still have PTSD many years after victimization and claim settlement. Age, female sex, time since victimization, acquaintance with the perpetrator, violence-related hospitalization, and compensation for immaterial damage prove to be predictive of PTSD, although female sex and immaterial damage compensation fail to reach significance after adjusting for recalled peritraumatic distress severity. Implications for policy practice as well as strengths and limitations of the study are discussed.

  10. Effect of Water Deficit Stress on Peach Growth under Commercial Orchard Management Conditions

    Directory of Open Access Journals (Sweden)

    M. Rahmati

    2015-06-01

    Full Text Available In order to study the sensitivity of vegetative growth to water deficit stress of a late-maturing peach (Prunus persica L. cv. Elberta under orchard conditions, an experiment was conducted as randomized complete-block design with three treatments and four repetitions in Shahdiran commercial orchard in Mashhad during 2011. Three irrigation treatments including 360 (low stress, 180 (moderate stress and 90 (severe stress m3ha-1week-1 using a drip irrigation system (minimum stem water potential near harvest: -1.2, -1.5 and -1.7 MPa, respectively from the mid-pit hardening stage (12th of June until harvest (23rd of Sep. applied. Predawn, stem and leaf water potentials, leaf photosynthesis, transpiration, stomatal conductance and leaf temperature, the number of new shoots on fruit bearing shoots and vegetative shoots lengths during growing season as well as leaf area at harvest were measured. The results showed that water deficit stress had negative effects on peach tree water status, thereby resulting in decreased leaf gas exchange and tree vegetative growth. As significant decreased assimilate production of tree was resulted from both decreased leaf assimilation rate (until about 23 % and 50 %, respectively under moderate and severe stress conditions compared to low stress conditions and decreased leaf area of tree (until about 57% and 79%, respectively under moderate and severe stress conditions compared to low stress conditions at harvest. The significant positive correlation between leaf water potential and vegetative growth of peach revealed that shoot growth would decrease by 30% and 50% of maximum at leaf water potential of –1.56 and –2.30 MPa, respectively.

  11. Effect of temperature on cyclic deformation behavior and residual stress relaxation of deep rolled under-aged aluminium alloy AA6110

    International Nuclear Information System (INIS)

    Juijerm, P.; Altenberger, I.

    2007-01-01

    Mechanical surface treatment (deep rolling) was performed at room temperature on the under-aged aluminium wrought alloy AA6110 (Al-Mg-Si-Cu). Afterwards, specimens were cyclically deformed at room and elevated temperatures up to 250 deg. C. The cyclic deformation behavior and s/n-curves of deep rolled under-aged AA6110 were investigated by stress-controlled fatigue tests and compared to the as-polished condition as a reference. The stability of residual stresses as well as diffraction peak broadening under high-loading and/or elevated-temperature conditions was investigated by X-ray diffraction methods before and after fatigue tests. Depth profiles of near-surface residual stresses as well as full width at half maximum (FWHM) values before and after fatigue tests at elevated temperatures are presented. Thermal residual stress relaxation of deep rolled under-aged AA6110 was investigated and analyzed by applying a Zener-Wert-Avrami function. Thermomechanical residual stress relaxation was analyzed through thermal residual stress relaxation and depth profiles of residual stresses before and after fatigue tests. Finally, an effective border line for the deep rolling treatment due to instability of near-surface work hardening was found and established in a stress amplitude-temperature diagram

  12. Elastic-plastic stress distributions near the endcap of a fuel element

    International Nuclear Information System (INIS)

    Tayal, M.; Hallgrimson, K.D.; Sejnoha, R.; Singh, P.N.

    1993-06-01

    This paper discusses the stress patterns in and near the endcap of a CANDU fuel element from the perspective of stress corrosion cracking. Simulations of out-reactor burst tests suggest that local plastic strains stay comparatively low for internal pressures below 26-30 MPa. Photoelastic measurements as well as analytical assessments show that the reentrant corner at the sheath/endcap junction results in high concentration of stresses and strains. Analytical assessments show that the in-reactor stresses and strains at the reentrant corner are highly multiaxial, and well into the plastic range. The maximum principal stress correlates well with the location and the direction of circumferential endcap cracks observed in fuel that failed in the Bruce reactor. Thus the maximum principal stress appears promising in ranking various geometries of the sheath/endcap junction with respect to their relative susceptibility to stress corrosion cracking. Design studies suggest that the most effective practical ways of lowering the stresses near the weld, in order of decreasing importance, are to provide a larger interference-free length between the ridge and the endcaps; to increase the pellet/sheath radial gap; to increase the pellet/endcap axial gap; and to keep the gas pressure low. (author). 16 refs., 16 figs

  13. Global Harmonization of Maximum Residue Limits for Pesticides.

    Science.gov (United States)

    Ambrus, Árpád; Yang, Yong Zhen

    2016-01-13

    International trade plays an important role in national economics. The Codex Alimentarius Commission develops harmonized international food standards, guidelines, and codes of practice to protect the health of consumers and to ensure fair practices in the food trade. The Codex maximum residue limits (MRLs) elaborated by the Codex Committee on Pesticide Residues are based on the recommendations of the FAO/WHO Joint Meeting on Pesticides (JMPR). The basic principles applied currently by the JMPR for the evaluation of experimental data and related information are described together with some of the areas in which further developments are needed.

  14. Standard practice for preparation and use of Bent-Beam stress-corrosion test specimens

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This practice covers procedures for designing, preparing, and using bent-beam stress-corrosion specimens. 1.2 Different specimen configurations are given for use with different product forms, such as sheet or plate. This practice applicable to specimens of any metal that are stressed to levels less than the elastic limit of the material, and therefore, the applied stress can be accurately calculated or measured (see Note 1). Stress calculations by this practice are not applicable to plastically stressed specimens. Note 1—It is the nature of these practices that only the applied stress can be calculated. Since stress-corrosion cracking is a function of the total stress, for critical applications and proper interpretation of results, the residual stress (before applying external stress) or the total elastic stress (after applying external stress) should be determined by appropriate nondestructive methods, such as X-ray diffraction (1). 1.3 Test procedures are given for stress-corrosion testing by ex...

  15. Maximum likelihood pixel labeling using a spatially variant finite mixture model

    International Nuclear Information System (INIS)

    Gopal, S.S.; Hebert, T.J.

    1996-01-01

    We propose a spatially-variant mixture model for pixel labeling. Based on this spatially-variant mixture model we derive an expectation maximization algorithm for maximum likelihood estimation of the pixel labels. While most algorithms using mixture models entail the subsequent use of a Bayes classifier for pixel labeling, the proposed algorithm yields maximum likelihood estimates of the labels themselves and results in unambiguous pixel labels. The proposed algorithm is fast, robust, easy to implement, flexible in that it can be applied to any arbitrary image data where the number of classes is known and, most importantly, obviates the need for an explicit labeling rule. The algorithm is evaluated both quantitatively and qualitatively on simulated data and on clinical magnetic resonance images of the human brain

  16. Minority Stress and Stress Proliferation Among Same-Sex and Other Marginalized Couples.

    Science.gov (United States)

    LeBlanc, Allen J; Frost, David M; Wight, Richard G

    2015-02-01

    Drawing from 2 largely isolated approaches to the study of social stress-stress proliferation and minority stress-the authors theorize about stress and mental health among same-sex couples. With this integrated stress framework, they hypothesized that couple-level minority stressors may be experienced by individual partners and jointly by couples as a result of the stigmatized status of their same-sex relationship-a novel concept. They also consider dyadic minority stress processes, which result from the relational experience of individual-level minority stressors between partners. Because this framework includes stressors emanating from both status- (e.g., sexual minority) and role-based (e.g., partner) stress domains, it facilitates the study of stress proliferation linking minority stress (e.g., discrimination), more commonly experienced relational stress (e.g., conflict), and mental health. This framework can be applied to the study of stress and health among other marginalized couples, such as interracial/ethnic, interfaith, and age-discrepant couples.

  17. Stress urinary incontinence in the female

    International Nuclear Information System (INIS)

    Baldelli, S.; Giovagnoni, A.; Bichi Secchi, E.; Argaglia, G.; Caraceni, E.; Muzzonigro, G.

    1988-01-01

    This work is aimed at demonstrating the validity of conventional radiological procedures, correlated with urodynamics, in the study of female urinary stress incontinence. In a study population of 110 patients with a clinical-urodynamic diagnosis of stress incontinence, radiological evaluation was performed by means of retrograde cystography, bead chain cystourethrography, and voiding cystourethrography. Radiographic findings were correlated with urodynamic data, and in particular with urethral pressure profile (fuctional lenght of the urethra, maximum closing pressure, maximum urethral pressure). In all patients the posterior urethro-vesical angle values were higher than 100 grade centigrades; moreover, a correlation was proven to exist between an increase in the angle of front urethral inclination, the lowering and mobility of the urethro-vesical junction, and the severeness of urodynamic findings. Furtheremore, in the different stages of urodynamic severeness, urethral funnelling was most frequent, and the flattening of the posterior vesical floor in voiding cystourethrography. The high reliability of the radiographic findings, although obtained by means of conventional techniques, and the variability of the morphodynamic results confirm the importance of a combined radiographic and urodynamic study in the evaluation of stress incontinence

  18. Investigation of smooth specimen scc test procedures; variations in environment, specimen size, stressing frame, and stress state. [for high strength aluminum alloys

    Science.gov (United States)

    Lifka, B. W.; Sprowls, D. O.; Kelsey, R. A.

    1975-01-01

    The variables studied in the stress-corrosion cracking performance of high strength aluminum alloys were: (1) corrosiveness of the environment, (2) specimen size and stiffness of the stressing system, (3) interpretation of transgranular cracking, and (4) interaction of the state of stress and specimen orientation in a product with an anisotropic grain structure. It was shown that the probability of failure and time to fracture for a specimen loaded in direct tension are influenced by corrosion pattern, the stressing assembly stiffness, and the notch tensile strength of the alloy. Results demonstrate that the combination of a normal tension stress and a shear stress acting on the plane of maximum susceptibility in a product with a highly directional grain cause the greatest tendency for stress-corrosion cracking.

  19. The Maximum Entropy Method for Optical Spectrum Analysis of Real-Time TDDFT

    International Nuclear Information System (INIS)

    Toogoshi, M; Kano, S S; Zempo, Y

    2015-01-01

    The maximum entropy method (MEM) is one of the key techniques for spectral analysis. The major feature is that spectra in the low frequency part can be described by the short time-series data. Thus, we applied MEM to analyse the spectrum from the time dependent dipole moment obtained from the time-dependent density functional theory (TDDFT) calculation in real time. It is intensively studied for computing optical properties. In the MEM analysis, however, the maximum lag of the autocorrelation is restricted by the total number of time-series data. We proposed that, as an improved MEM analysis, we use the concatenated data set made from the several-times repeated raw data. We have applied this technique to the spectral analysis of the TDDFT dipole moment of ethylene and oligo-fluorene with n = 8. As a result, the higher resolution can be obtained, which is closer to that of FT with practically time-evoluted data as the same total number of time steps. The efficiency and the characteristic feature of this technique are presented in this paper. (paper)

  20. On the Effects of Thermal History on the Development and Relaxation of Thermo-Mechanical Stress in Cryopreservation.

    Science.gov (United States)

    Eisenberg, David P; Steif, Paul S; Rabin, Yoed

    2014-01-01

    This study investigates the effects of the thermal protocol on the development and relaxation of thermo-mechanical stress in cryopreservation by means of glass formation, also known as vitrification. The cryopreserved medium is modeled as a homogeneous viscoelastic domain, constrained within either a stiff cylindrical container or a highly compliant bag. Annealing effects during the cooling phase of the cryopreservation protocol are analyzed. Results demonstrate that an intermediate temperature-hold period can significantly reduce the maximum tensile stress, thereby decreasing the potential for structural damage. It is also demonstrated that annealing at temperatures close to glass transition significantly weakens the dependency of thermo-mechanical stress on the cooling rate. Furthermore, a slower initial rewarming rate after cryogenic storage may drastically reduce the maximum tensile stress in the material, which supports previous experimental observations on the likelihood of fracture at this stage. This study discusses the dependency of the various stress components on the storage temperature. Finally, it is demonstrated that the stiffness of the container wall can affect the location of maximum stress, with implications on the development of cryopreservation protocols.

  1. Maximum Acceleration Recording Circuit

    Science.gov (United States)

    Bozeman, Richard J., Jr.

    1995-01-01

    Coarsely digitized maximum levels recorded in blown fuses. Circuit feeds power to accelerometer and makes nonvolatile record of maximum level to which output of accelerometer rises during measurement interval. In comparison with inertia-type single-preset-trip-point mechanical maximum-acceleration-recording devices, circuit weighs less, occupies less space, and records accelerations within narrower bands of uncertainty. In comparison with prior electronic data-acquisition systems designed for same purpose, circuit simpler, less bulky, consumes less power, costs and analysis of data recorded in magnetic or electronic memory devices. Circuit used, for example, to record accelerations to which commodities subjected during transportation on trucks.

  2. Neutron spectra unfolding with maximum entropy and maximum likelihood

    International Nuclear Information System (INIS)

    Itoh, Shikoh; Tsunoda, Toshiharu

    1989-01-01

    A new unfolding theory has been established on the basis of the maximum entropy principle and the maximum likelihood method. This theory correctly embodies the Poisson statistics of neutron detection, and always brings a positive solution over the whole energy range. Moreover, the theory unifies both problems of overdetermined and of underdetermined. For the latter, the ambiguity in assigning a prior probability, i.e. the initial guess in the Bayesian sense, has become extinct by virtue of the principle. An approximate expression of the covariance matrix for the resultant spectra is also presented. An efficient algorithm to solve the nonlinear system, which appears in the present study, has been established. Results of computer simulation showed the effectiveness of the present theory. (author)

  3. Maximum Power from a Solar Panel

    Directory of Open Access Journals (Sweden)

    Michael Miller

    2010-01-01

    Full Text Available Solar energy has become a promising alternative to conventional fossil fuel sources. Solar panels are used to collect solar radiation and convert it into electricity. One of the techniques used to maximize the effectiveness of this energy alternative is to maximize the power output of the solar collector. In this project the maximum power is calculated by determining the voltage and the current of maximum power. These quantities are determined by finding the maximum value for the equation for power using differentiation. After the maximum values are found for each time of day, each individual quantity, voltage of maximum power, current of maximum power, and maximum power is plotted as a function of the time of day.

  4. Consistent stress-strain ductile fracture model as applied to two grades of beryllium

    International Nuclear Information System (INIS)

    Priddy, T.G.; Benzley, S.E.; Ford, L.M.

    1980-01-01

    Published yield and ultimate biaxial stress and strain data for two grades of beryllium are correlated with a more complete method of characterizing macroscopic strain at fracture initiation in ductile materials. Results are compared with those obtained from an exponential, mean stress dependent, model. Simple statistical methods are employed to illustrate the degree of correlation for each method with the experimental data

  5. Stress analysis of glass-ceramic insulator and molybdenum cylinders in vacuum tube subassembly

    International Nuclear Information System (INIS)

    Spears, R.K.

    1980-01-01

    This study determined the state of stress between molybdenum cylinders and a glass-ceramic insulator of a vacuum tube during cooling when the glass-ceramic coefficient of expansion differed from molybdenum by +-2 x 10 -7 / 0 C. A thermoelastic stress analysis was performed on the vacuum tube subassembly using the finite element method. Two cases, which examined the effect of cooling over a 700 0 C range, were considered. In Case One, the expansion coefficient of the glass-ceramic was 2 x 10 -7 / 0 C less than that of molybdenum while for Case Two, it was 2 x 10 -7 / 0 C greater. For Case One, it was found that the tangential stresses in the insulator were entirely compressive but the maximum principal stresses in the r-z plane were mainly tensile. For Case Two, the tangential stresses were tensile in the insulator as were most of the maximum principal stresses in the r-z plane except for stress in the upper regions of the insulator. The magnitude of the stress at the maximum principal stress location appears to be substantially lower than what has been observed in practice (i.e., cracking of this design had never been a major problem, but it has been observed that if the coefficient of expansion of the glass-ceramic was 2 x 10 -7 / 0 C lower than molybdenum, cracking usually resulted). This analysis showed that the expansion coefficient of the glass-ceramic could be varied quite liberally from molybdenum before the ultimate strength (13,000 lb/in. 2 ) of the glass-ceramic was exceeded

  6. Effect of residual stresses induced by prestressing on rolling element fatigue life

    Science.gov (United States)

    Parker, R. J.; Zaretsky, E. V.

    1972-01-01

    A mechanical prestress cycle suitable to induce compressive stress beneath the surface of the inner race of radially loaded 207-size bearings was determined. Compressive residual stress in excess 0.69 x 10 to the 9th power N/sq m (100,000 psi), as measured by X-ray diffraction, were induced at the depth of maximum shearing stress. The prestress cycle consisted of running the bearings for 25 hours at 2750 rpm at a radial load which produced a maximum Hertz stress of 3.3 x 10 to the 9th power N/sq m (480,000 psi) at the contact of the inner race and the heaviest loaded ball. Bearings subjected to this prestress cycle and subsequently fatigue tested gave a 10 percent fatigue life greater than twice that of a group of baseline bearings.

  7. Biological and psychological markers of stress in humans: focus on the Trier Social Stress Test.

    Science.gov (United States)

    Allen, Andrew P; Kennedy, Paul J; Cryan, John F; Dinan, Timothy G; Clarke, Gerard

    2014-01-01

    Validated biological and psychological markers of acute stress in humans are an important tool in translational research. The Trier Social Stress Test (TSST), involving public interview and mental arithmetic performance, is among the most popular methods of inducing acute stress in experimental settings, and reliably increases hypothalamic-pituitary-adrenal axis activation. However, although much research has focused on HPA axis activity, the TSST also affects the sympathetic-adrenal-medullary system, the immune system, cardiovascular outputs, gastric function and cognition. We critically assess the utility of different biological and psychological markers, with guidance for future research, and discuss factors which can moderate TSST effects. We outline the effects of the TSST in stress-related disorders, and if these responses can be abrogated by pharmacological and psychological treatments. Modified TSST protocols are discussed, and the TSST is compared to alternative methods of inducing acute stress. Our analysis suggests that multiple readouts are necessary to derive maximum information; this strategy will enhance our understanding of the psychobiology of stress and provide the means to assess novel therapeutic agents. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Application of the predicted heat strain model in development of localized, threshold-based heat stress management guidelines for the construction industry.

    Science.gov (United States)

    Rowlinson, Steve; Jia, Yunyan Andrea

    2014-04-01

    Existing heat stress risk management guidelines recommended by international standards are not practical for the construction industry which needs site supervision staff to make instant managerial decisions to mitigate heat risks. The ability of the predicted heat strain (PHS) model [ISO 7933 (2004). Ergonomics of the thermal environment analytical determination and interpretation of heat stress using calculation of the predicted heat strain. Geneva: International Standard Organisation] to predict maximum allowable exposure time (D lim) has now enabled development of localized, action-triggering and threshold-based guidelines for implementation by lay frontline staff on construction sites. This article presents a protocol for development of two heat stress management tools by applying the PHS model to its full potential. One of the tools is developed to facilitate managerial decisions on an optimized work-rest regimen for paced work. The other tool is developed to enable workers' self-regulation during self-paced work.

  9. On the mechanical stress of Zr, Zry, and other materials due to the formation of oxide layers

    International Nuclear Information System (INIS)

    Hofmann, P.

    1977-06-01

    Several mechanisms are indicated which during oxidation of sheets, tubes, and cylinders of pure metals and alloys might lead to plastic deformation of the remaining uncorroded cross section. Some experimental methods are described which allow evaluation of stresses occurring in oxide layers. The main reason for the creep deformation of flat and tubular specimens made of Zr and Zr alloys lies in the stresses that arise from volume increase due to the growth of oxide layers. Plastic deformations of the sheet metal specimens can be up to 100% and are anisotropic. In tubular specimens the changes in geometry (axial, radial) are much smaller in the course of oxidation and attain 2% at the maximum for Zr- or Zry-tubes and go up to 10% for Ta-tubes when no differential pressure is applied simultaneously. (orig.) [de

  10. The stress characteristics of plate-fin structures at the different operation parameters of LNG heat exchanger

    Directory of Open Access Journals (Sweden)

    Ma Hongqiang

    2018-01-01

    Full Text Available In this paper, the stresses of plate-fin structures at the different operation parameters were analyzed in actual operation process of LNG plate-fin heat exchanger based on finite element method and thermal elastic theory. Stress characteristics of plate-fin structures were investigated at the different operation parameters of that. The results show that the structural failure of plate-fin structures is mainly induced by the maximum shear stress at the brazing filler metal layer between plate and fin while by the maximum normal stress in the region of brazed joint near the fin side. And a crack would initiate in brazed joint near the fin side. The maximum normal stress is also main factor to result in the structural failure of plate-fin structures at the different temperature difference (between Natural Gas (NG and Mixture Refrigerant (MR, MR temperature and NG pressure of LNG heat exchanger. At the same time, the peak stresses obviously increase as the temperature difference, MR temperature and NG pressure increase. These results will provide some constructive instructions in the safe operation of LNG plate-fin heat exchanger in a large-scale LNG cold-box.

  11. Study of the effect of the stress on CdTe nuclear detectors

    International Nuclear Information System (INIS)

    Ayoub, M.; Radley, I.; Mullins, J. T.; Hage-Ali, M.

    2013-01-01

    CdTe detectors are commonly used for X and γ ray applications. The performance of these detectors is strongly affected by different types of mechanical stress; such as that caused by differential expansion between the semiconductor and its intimate metallic contacts and that caused by applied pressure during the bonding process. The aim of this work was to study the effects of stress on the performance of CdTe detectors. A difference in expansion coefficients induces transverse stress under the metallic contact, while contact pressure induces longitudinal stress. These stresses have been simulated by applying known static pressures. For the longitudinal case, the pressure was applied directly to the metallic contact; while in the transverse case, it was applied to the side. We have studied the effect of longitudinal and transverse stresses on the electrical characteristics including leakage current measurements and γ-ray detection performance. We have also investigated induced defects, their nature, activation energies, cross sections, and concentrations under the applied stress by using photo-induced current transient spectroscopy and thermoelectric effect spectroscopy techniques. The operational stress limit is also given

  12. Study of the effect of the stress on CdTe nuclear detectors

    Energy Technology Data Exchange (ETDEWEB)

    Ayoub, M.; Radley, I.; Mullins, J. T. [Kromek, Thomas Wright way, TS21 3FD, Sedgefield, County Durham (United Kingdom); Hage-Ali, M. [CLEA, Airport road, Beirut (Lebanon)

    2013-09-14

    CdTe detectors are commonly used for X and γ ray applications. The performance of these detectors is strongly affected by different types of mechanical stress; such as that caused by differential expansion between the semiconductor and its intimate metallic contacts and that caused by applied pressure during the bonding process. The aim of this work was to study the effects of stress on the performance of CdTe detectors. A difference in expansion coefficients induces transverse stress under the metallic contact, while contact pressure induces longitudinal stress. These stresses have been simulated by applying known static pressures. For the longitudinal case, the pressure was applied directly to the metallic contact; while in the transverse case, it was applied to the side. We have studied the effect of longitudinal and transverse stresses on the electrical characteristics including leakage current measurements and γ-ray detection performance. We have also investigated induced defects, their nature, activation energies, cross sections, and concentrations under the applied stress by using photo-induced current transient spectroscopy and thermoelectric effect spectroscopy techniques. The operational stress limit is also given.

  13. Subjective heat stress of urban citizens: influencing factors and coping strategies

    Science.gov (United States)

    Kunz-Plapp, Tina; Hackenbruch, Julia; Schipper, Hans

    2014-05-01

    Given urbanization trend and a higher probability of heat waves in Europe, heat discomfort or heat stress for the population in cities is a growing concern that is addressed from various perspectives, such as urban micro climate, urban and spatial planning, human health, work performance and economic impacts. This presentation focuses on subjective heat stress experienced by urban citizens. In order to better understand individual subjective heat stress of urban citizens and how different measures to cope with heat stress in everyday life are applied, a questionnaire survey was conducted in Karlsruhe, Germany. Karlsruhe is located in one of the warmest regions in Germany and holds the German temperature record of 40.2°C in August 2003. In 2013, two hot weather periods with continuous heat warnings by the German Weather Service for 7 and 8 days occurred during the last 10 days of July and first 10 days of August 2013 with an inofficial maximum temperature of again 40.2°C on July 27th in Karlsruhe (not taken by the official network of the German Weather Service). The survey data was collected in the six weeks after the heat using an online-questionnaire on the website of the South German Climate Office that was announced via newspapers and social media channels to reach a wide audience in Karlsruhe. The questionnaire was additionally sent as paper version to groups of senior citizens to ensure having enough respondents from this heat sensitive social group in the sample. The 428 respondents aged 17-94 show differences in subjective heat stress experienced at home, at work and during various typical activities in daily routine. They differ also in the measures they used to adjust to and cope with the heat such as drinking more, evading the heat, seeking cooler places, changing daily routines, or use of air condition. Differences in heat stress can be explained by housing type, age, subjective health status, employment, and different coping measures and strategies

  14. Effect of the weld joint configuration on stressed components, residual stresses and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Cevik, Bekir; Oezer, Alpay; Oezcatalbas, Yusuf [Gazi Univ., Ankara (Turkey)

    2014-03-01

    The effect of the weld joint configuration on components has been studied, which are under service loads, under repair or construction and the residual stresses as well as the mechanical properties of the joint have been determined. For this purpose, a horizontal positioned tensile testing device and a semi-automatic MIG welding machine have been used and then the weld joints of the plates were subjected to different elastic stresses. When the temperature of the joined elements decreased to room temperature, applied elastic stresses were released. By this means, the effects of the existing tensile stresses in the joined parts and the tensile stresses created by the welding processes were investigated. The tensile stresses occurring in the joined elements were determined by using the photo-elasticity analysis method and the hole-drilling method. Also, tensile-shear tests were applied in order to determine the effect of permanent tensile loads on the mechanical properties of the joint. Experimental results showed that the application of corner welded lap joints for components under tensile loading significantly decrease the shear strength and yielding capacities of the joint. (orig.)

  15. Superfast maximum-likelihood reconstruction for quantum tomography

    Science.gov (United States)

    Shang, Jiangwei; Zhang, Zhengyun; Ng, Hui Khoon

    2017-06-01

    Conventional methods for computing maximum-likelihood estimators (MLE) often converge slowly in practical situations, leading to a search for simplifying methods that rely on additional assumptions for their validity. In this work, we provide a fast and reliable algorithm for maximum-likelihood reconstruction that avoids this slow convergence. Our method utilizes the state-of-the-art convex optimization scheme, an accelerated projected-gradient method, that allows one to accommodate the quantum nature of the problem in a different way than in the standard methods. We demonstrate the power of our approach by comparing its performance with other algorithms for n -qubit state tomography. In particular, an eight-qubit situation that purportedly took weeks of computation time in 2005 can now be completed in under a minute for a single set of data, with far higher accuracy than previously possible. This refutes the common claim that MLE reconstruction is slow and reduces the need for alternative methods that often come with difficult-to-verify assumptions. In fact, recent methods assuming Gaussian statistics or relying on compressed sensing ideas are demonstrably inapplicable for the situation under consideration here. Our algorithm can be applied to general optimization problems over the quantum state space; the philosophy of projected gradients can further be utilized for optimization contexts with general constraints.

  16. Stress Concentration Factor of Expanded Aluminum Tubes Using Finite Element Modeling

    Directory of Open Access Journals (Sweden)

    L Mhamdi

    2013-06-01

    Full Text Available This paper discusses the development of semi-empirical relations for the maximum stress concentration factor (SCF around circular holes embedded in aluminum tubes under various expansion ratios and mandrel angles. Finite element models were developed to study the expansion of a typical aluminum tube with embedded holes of various sizes. An elastic perfectly-plastic material behaviour was used to describe the structural response of the tubes under expansion. Various hole-diameter-to-tubewall- thickness ratios, tube expansion ratios, and mandrel angles were considered to determine the stress state around the hole at zero and 90 degree locations from which the maximum SCF was determined. Semi-empirical relations for the maximum SCF using the Lagrange interpolation formulation were developed. The developed relations were found to predict the SCFs accurately.

  17. Physical Limits on Hmax, the Maximum Height of Glaciers and Ice Sheets

    Science.gov (United States)

    Lipovsky, B. P.

    2017-12-01

    The longest glaciers and ice sheets on Earth never achieve a topographic relief, or height, greater than about Hmax = 4 km. What laws govern this apparent maximum height to which a glacier or ice sheet may rise? Two types of answer appear possible: one relating to geological process and the other to ice dynamics. In the first type of answer, one might suppose that if Earth had 100 km tall mountains then there would be many 20 km tall glaciers. The counterpoint to this argument is that recent evidence suggests that glaciers themselves limit the maximum height of mountain ranges. We turn, then, to ice dynamical explanations for Hmax. The classical ice dynamical theory of Nye (1951), however, does not predict any break in scaling to give rise to a maximum height, Hmax. I present a simple model for the height of glaciers and ice sheets. The expression is derived from a simplified representation of a thermomechanically coupled ice sheet that experiences a basal shear stress governed by Coulomb friction (i.e., a stress proportional to the overburden pressure minus the water pressure). I compare this model to satellite-derived digital elevation map measurements of glacier surface height profiles for the 200,000 glaciers in the Randolph Glacier Inventory (Pfeffer et al., 2014) as well as flowlines from the Greenland and Antarctic Ice Sheets. The simplified model provides a surprisingly good fit to these global observations. Small glaciers less than 1 km in length are characterized by having negligible influence of basal melt water, cold ( -15C) beds, and high surface slopes ( 30 deg). Glaciers longer than a critical distance 30km are characterized by having an ice-bed interface that is weakened by the presence of meltwater and is therefore not capable of supporting steep surface slopes. The simplified model makes predictions of ice volume change as a function of surface temperature, accumulation rate, and geothermal heat flux. For this reason, it provides insights into

  18. Design and analysis of a toroidal tester for the measurement of core losses under axial compressive stress

    Science.gov (United States)

    Alatawneh, Natheer; Rahman, Tanvir; Lowther, David A.; Chromik, Richard

    2017-06-01

    Electric machine cores are subjected to mechanical stresses due to manufacturing processes. These stresses include radial, circumferential and axial components that may have significant influences on the magnetic properties of the electrical steel and hence, on the output and efficiencies of electrical machines. Previously, most studies of iron losses due to mechanical stress have considered only radial and circumferential components. In this work, an improved toroidal tester has been designed and developed to measure the core losses and the magnetic properties of electrical steel under a compressive axial stress. The shape of the toroidal ring has been verified using 3D stress analysis. Also, 3D electromagnetic simulations show a uniform flux density distribution in the specimen with a variation of 0.03 T and a maximum average induction level of 1.5 T. The developed design has been prototyped, and measurements were carried out using a steel sample of grade 35WW300. Measurements show that applying small mechanical stresses normal to the sample thickness rises the delivered core losses, then the losses decrease continuously as the stress increases. However, the drop in core losses at high stresses does not go lower than the free-stress condition. Physical explanations for the observed trend of core losses as a function of stress are provided based on core loss separation to the hysteresis and eddy current loss components. The experimental results show that the effect of axial compressive stress on magnetic properties of electrical steel at high level of inductions becomes less pronounced.

  19. Applied methods for mitigation of damage by stress corrosion in BWR type reactors; Metodos aplicados para la mitigacion del dano por corrosion bajo esfuerzo en reactores BWR

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez C, R.; Diaz S, A.; Gachuz M, M.; Arganis J, C. [Instituto Nacional de Investigaciones Nucleares, Gerencia de Ciencia de Materiales, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1998-07-01

    The Boiling Water nuclear Reactors (BWR) have presented stress corrosion problems, mainly in components and pipes of the primary system, provoking negative impacts in the performance of energy generator plants, as well as the increasing in the radiation exposure to personnel involucred. This problem has caused development of research programs, which are guided to find solution alternatives for the phenomena control. Among results of greater relevance the control for the reactor water chemistry stands out particularly in the impurities concentration and oxidation of radiolysis products; as well as the supervision in the materials selection and the stresses levels reduction. The present work presents the methods which can be applied to diminish the problems of stress corrosion in BWR reactors. (Author)

  20. Comparative study of oxidative stress caused by anthracene and alkyl-anthracenes in

    Directory of Open Access Journals (Sweden)

    Ji-Yeon Roh

    2018-02-01

    Full Text Available Oxidative stress was evaluated for anthracene (Ant and alkyl-Ants (9-methylanthracene [9-MA] and 9,10-dimethylanthracene [9,10-DMA] in Caenorhabditis elegans to compare changes in toxicity due to the degree of alkylation. Worms were exposed at 1 the same external exposure concentration and 2 the maximum water-soluble concentration. Formation of reactive oxygen species, superoxide dismutase activity, total glutathione concentration, and lipid peroxidation were determined under constant exposure conditions using passive dosing. The expression of oxidative stress-related genes (daf-2, sir-2.1, daf-16, sod-1, sod-2, sod-3 and cytochrome 35A/C family genes was also investigated to identify and compare changes in the genetic responses of C. elegans exposed to Ant and alkyl-Ant. At the same external concentration, 9,10-DMA induced the greatest oxidative stress, as evidenced by all indicators, except for lipid peroxidation, followed by 9-MA and Ant. Interestingly, 9,10-DMA led to greater oxidative stress than 9-MA and Ant when worms were exposed to the maximum water-soluble concentration, although the maximum water-soluble concentration of 9,10-DMA is the lowest. Increased oxidative stress by alkyl-Ants would be attributed to higher lipid-water partition coefficient and the π electron density in aromatic rings by alkyl substitution, although this supposition requires further confirmation.

  1. PNNL: A Supervised Maximum Entropy Approach to Word Sense Disambiguation

    Energy Technology Data Exchange (ETDEWEB)

    Tratz, Stephen C.; Sanfilippo, Antonio P.; Gregory, Michelle L.; Chappell, Alan R.; Posse, Christian; Whitney, Paul D.

    2007-06-23

    In this paper, we described the PNNL Word Sense Disambiguation system as applied to the English All-Word task in Se-mEval 2007. We use a supervised learning approach, employing a large number of features and using Information Gain for dimension reduction. Our Maximum Entropy approach combined with a rich set of features produced results that are significantly better than baseline and are the highest F-score for the fined-grained English All-Words subtask.

  2. Estimation of the controlling stress in creep fracture

    International Nuclear Information System (INIS)

    Henderson, J.; Ferguson, F.R.

    1975-01-01

    The implementation of correct criterion in creep design, has been shown to be of fundamental significance in the assessment of component life. The present report considers the problem of the means whereby the criterion may be derived for a particular metal without the availability of sophisticated complex-stress testing equipment and procedures such as the combined tension and torsion tests on thin walled tubular specimens employed in the earlier fundamental researches on the subject. By investigating a wide spectrum of engineering metals it was established that for homogeneous stress conditions two criteria appeared to be sufficient to cover all the metals studied for complex-stress creep fracture, either the maximum principal stress or the octahedral shear stress criterion. Further, it was found that those metals which developed random and continuous cracking during creep were controlled with respect to fracture time by the maximum principal stress, while metals which showed virtually no cracking were governed by the octahedral shear stress or second order invariant. The physical nature of the final fracture (transcrystalline or inter-crystalline), contrary to considerable current concepts, was found to be unrelated to which criterion was operative. Having reduced the possible fracture criteria to two, it only remained to develop a simple test method exploiting this finding to achieve the precise identification for a particular metal. Seven metals including aluminium, copper, titanium, cast iron and three steels have been investigated in the present report at temperatures where creep conditions are operative. The results have shown that the method leads to sufficiently accurate prediction of the complex stress creep fracture criterion for the metals studied

  3. Maximum entropy principle and hydrodynamic models in statistical mechanics

    International Nuclear Information System (INIS)

    Trovato, M.; Reggiani, L.

    2012-01-01

    This review presents the state of the art of the maximum entropy principle (MEP) in its classical and quantum (QMEP) formulation. Within the classical MEP we overview a general theory able to provide, in a dynamical context, the macroscopic relevant variables for carrier transport in the presence of electric fields of arbitrary strength. For the macroscopic variables the linearized maximum entropy approach is developed including full-band effects within a total energy scheme. Under spatially homogeneous conditions, we construct a closed set of hydrodynamic equations for the small-signal (dynamic) response of the macroscopic variables. The coupling between the driving field and the energy dissipation is analyzed quantitatively by using an arbitrary number of moments of the distribution function. Analogously, the theoretical approach is applied to many one-dimensional n + nn + submicron Si structures by using different band structure models, different doping profiles, different applied biases and is validated by comparing numerical calculations with ensemble Monte Carlo simulations and with available experimental data. Within the quantum MEP we introduce a quantum entropy functional of the reduced density matrix, the principle of quantum maximum entropy is then asserted as fundamental principle of quantum statistical mechanics. Accordingly, we have developed a comprehensive theoretical formalism to construct rigorously a closed quantum hydrodynamic transport within a Wigner function approach. The theory is formulated both in thermodynamic equilibrium and nonequilibrium conditions, and the quantum contributions are obtained by only assuming that the Lagrange multipliers can be expanded in powers of ħ 2 , being ħ the reduced Planck constant. In particular, by using an arbitrary number of moments, we prove that: i) on a macroscopic scale all nonlocal effects, compatible with the uncertainty principle, are imputable to high-order spatial derivatives both of the

  4. Stress-based Variable-inductor for Electronic Ballasts

    DEFF Research Database (Denmark)

    Zhang, Lihui; Xia, Yongming; Lu, Kaiyuan

    2015-01-01

    Current-controlled variable inductors adjust the inductance of an alternating current (ac) coil by applying a controlled dc current to saturate the iron cores of the ac coil. The controlled dc current has to be maintained during operation, which results in increased power losses. This paper prese......-based variable inductor concept is validated using a 3-D finite-element analysis. A prototype was manufactured, and the experimental results are presented. A linear relationship between inductance and applied stress can be achieved.......Current-controlled variable inductors adjust the inductance of an alternating current (ac) coil by applying a controlled dc current to saturate the iron cores of the ac coil. The controlled dc current has to be maintained during operation, which results in increased power losses. This paper...... presents a new stress-based variable inductor to control inductance using the inverse magnetostrictive effect of a magnetostrictive material. The stress can be applied by a piezoelectrical material, and thus a voltage-controlled variable inductor can be realized with zero-power consumption. The new stress...

  5. The fatigue behavior of composite laminates under various mean stresses

    Science.gov (United States)

    Rotem, A.

    1991-01-01

    A method is developed for predicting the S-N curve of a composite laminate which is subjected to an arbitrary stress ratio, R (minimum stress/maximum stress). The method is based on the measuring of the S-N behavior of two distinct cases, tension-tension and compression-compression fatigue loadings. Using these parameters, expressions are formulated that estimate the fatigue behavior under any stress ratio loading. Experimental results from the testing of graphite/epoxy laminates, with various structures, are compared with the predictions and show good agreement.

  6. Project of integrity assessment of flawed components with structural discontinuity (IAF). Data book for residual stress analysis in weld joint. Analysis model of dissimilar metal weld joint applied post weld heat treatment (PWHT)

    International Nuclear Information System (INIS)

    2012-12-01

    The project of Integrity Assessment of Flawed Components with Structural Discontinuity (IAF) was entrusted to Japan Power Engineering and Inspection Corporation (JAPEIC) from Nuclear and Industrial Safety Agency (NISA) and started from FY 2001. And then, it was taken over to Japan Nuclear Energy Safety Organization (JNES) which was established in October 2003 and carried out until FY 2007. In the IAF project, weld joints between nickel based alloys and low alloy steels around penetrations in reactor vessel, safe-end of nozzles and shroud supports were selected from among components and pipe arrangements in nuclear power plants, where high residual stresses were generated due to welding and complex structure. Residual stresses around of the weld joints were estimated by finite element analysis method (FEM) with a general modeling method, then the reasonability and the conservativeness was evaluated. In addition, for postulated surface crack of stress corrosion cracking (SCC), a simple calculation method of stress intensity factor (K) required to estimate the crack growth was proposed and the effectiveness was confirmed. JNES compiled results of the IAF project into Data Books of Residual Stress Analysis of Weld Joint, and Data Book of Simplified Stress Intensity Factor Calculation for Penetration of Reactor as typical Structure Discontinuity, respectively. Data Books of Residual Stress Analysis in Weld Joint. 1. Butt Weld Joint of Small Diameter Cylinder (4B Sch40) (JNES-RE-2012-0005), 2. Dissimilar Metal Weld Joint in Safe End (One-Side Groove Joint (JNES-RE-2012-0006), 3. Dissimilar Metal Weld Joint in Safe End (Large Diameter Both-Side Groove Joint) (JNES-RE-2012-0007), 4. Weld Joint around Penetrations in Reactor Vessel (Insert Joint) (JNES-RE-2012-0008), 5. Weld Joint in Shroud Support (H8, H9, H10 and H11 Welds) (JNES-RE-2012-0009), 6. Analysis Model of Dissimilar Metal Weld Joint Applied Post Weld Heat Treatment (PWHT) (JNES-RE-2012-0010). Data Book of

  7. A Hybrid Maximum Power Point Tracking Method for Automobile Exhaust Thermoelectric Generator

    Science.gov (United States)

    Quan, Rui; Zhou, Wei; Yang, Guangyou; Quan, Shuhai

    2017-05-01

    To make full use of the maximum output power of automobile exhaust thermoelectric generator (AETEG) based on Bi2Te3 thermoelectric modules (TEMs), taking into account the advantages and disadvantages of existing maximum power point tracking methods, and according to the output characteristics of TEMs, a hybrid maximum power point tracking method combining perturb and observe (P&O) algorithm, quadratic interpolation and constant voltage tracking method was put forward in this paper. Firstly, it searched the maximum power point with P&O algorithms and a quadratic interpolation method, then, it forced the AETEG to work at its maximum power point with constant voltage tracking. A synchronous buck converter and controller were implemented in the electric bus of the AETEG applied in a military sports utility vehicle, and the whole system was modeled and simulated with a MATLAB/Simulink environment. Simulation results demonstrate that the maximum output power of the AETEG based on the proposed hybrid method is increased by about 3.0% and 3.7% compared with that using only the P&O algorithm and the quadratic interpolation method, respectively. The shorter tracking time is only 1.4 s, which is reduced by half compared with that of the P&O algorithm and quadratic interpolation method, respectively. The experimental results demonstrate that the tracked maximum power is approximately equal to the real value using the proposed hybrid method,and it can preferentially deal with the voltage fluctuation of the AETEG with only P&O algorithm, and resolve the issue that its working point can barely be adjusted only with constant voltage tracking when the operation conditions change.

  8. Residual stresses in U-bending deformations and expansion joints of heat exchanger tubes

    International Nuclear Information System (INIS)

    Kim, Woo Gon; Kim, Sun Jae; Jang, Jin Sung; Kuk, Ii Hiun; Bae, Kang Gug; Kim, Sung Chung

    2000-01-01

    Residual stress induced in U-bending and tube-to-tubesheet joint processes of PWR's rew-1 heat exchanger tube was measured by X-ray method and Hole-Drilling Method(HDM). Compressive residual stresses(-) at the extrados surface were induced in U-bending, and its maximum value reached -319MPa in axial direction at the position of ψ=0 deg. Tensile residual stresses (+) of 0σ zz =45 MPa and σ θθ =25MPa were introduced in the intrados surface at the position of ψ=0 deg. Maximum tensile residual stress of 170 MPa was measured at the flank side at the position of ψ=90 deg, i.e., at apex region. It was observed that higher stress gradient was generated at the irregular transition regions (ITR). The trend of residual stress induced by U-bending process of the tubes was found to be related with the change of ovality. The residual stress induced by the explosive joint method was found to be lower than that by the mechanical roll method. The gradient of residual stress along the expanded tube was highest at the transition region (TR), and the residual stress in circumferential direction was found to be higher than the residual stress in axial direction

  9. Photoelastic investigation of the stresses in a stepped cylinder under internal pressure

    International Nuclear Information System (INIS)

    Sawa, Yoshiaki; Nishida, Masataka

    1985-01-01

    The states of stress distribution of the stepped cylinder under inner-pressure are studied by means of stress freezing photoelastic method. The experimental results reveal that fiber stress concentration occurs on the circular arc and hoop stress concentration occurs at the jointing point of the straight line and the arc and that each maximum value of fiver stress and hoop stress depends very greatly on the diameter of a small cylinder and the radius of curvature. And the relationship between the stress concentration factors and these shape factors are given. Effects of wall thickness on the stress concentration factors are also determined. (author)

  10. Resiliency against stress among athletes

    Directory of Open Access Journals (Sweden)

    Kamila Litwic-Kaminska

    2015-10-01

    Full Text Available Background The aim of this paper is to describe the results of a study concerning the relationship between resiliency and appraisal of a stressful situation, anxiety reactions and undertaken methods of coping among sportsmen. Participants and procedure The research concerned 192 competitors who actively train in one of the Olympic disciplines – individual or team. We used the following instruments: Resiliency Assessment Scale (SPP-25; Stress Appraisal Questionnaire A/B; Reactions to Competition Questionnaire; Coping Inventory for Stressful Situations (CISS; Sport Stress Coping Strategies Questionnaire (SR3S, self-constructed. Results Athletes most frequently apply positive types of stress appraisal, and they cope with stress through a task-oriented style during competitions. There is a relationship between the level of resiliency and the analysed aspects of the process of stress. The higher the resiliency, the more positive is the appraisal of a stressful situation and the more task-oriented are the strategies applied. Similarly, in everyday situations resilient sportspeople positively appraise difficult situations and undertake mostly task-oriented strategies. Resiliency is connected with less frequently experiencing reactions in the form of anxiety. Conclusions The obtained results, similarly to previous research, suggest that resiliency is connected with experiencing positive emotions. It causes more frequent appraisal of stressful situations as a challenge. More resilient people also choose more effective and situation-appropriate coping strategies. Therefore they are more resistant to stress.

  11. Stress relaxation characteristics of type 304 stainless steel

    International Nuclear Information System (INIS)

    Manjoine, M.J.

    1975-01-01

    The stress relaxation of type 304 stainless steel below 900 0 F (482 0 C) is practically time independent after 100 h and has a maximum of about 18 per cent. The per cent relaxation decreases with increasing degree of cold work and with decreasing stress. Above 900 0 F the per cent relaxation increases with time, temperature, and cold work. The initial stress can also be increased for cold work materials so that the remaining stress can be maintained at a higher value even up to 1200 0 F (649 0 C). Time-temperature parameters are practical to correlate and extrapolate the data in the higher temperature range. (author)

  12. Infrared thermometry and the crop water stress index. I. History, theory, and baselines

    International Nuclear Information System (INIS)

    Gardner, B.R.; Nielsen, D.C.; Shock, C.C.

    1992-01-01

    Development of portable infrared thermometers and the definition of the Crop Water Stress Index (CWSI) have led to widespread interest in infrared thermometry to monitor water stress and schedule irrigations. But the CWSI concept is still new and poorly understood by many. The purpose of this paper is to review the definition of CWSI, and the determination and interpretation of the non-water-stressed baselines used to compute CWSI. The non-water-stressed baseline equation normalizes the canopy minus air temperature differential for variations in vapor pressure deficit. Non-water-stressed baselines can be determined empirically from measurements of canopy and air temperatures and vapor pressure deficit, made diurnally on a single day, or at a single time of day over many days, on well-watered plants. The value of the maximum canopy minus air temperature differential under maximum water stress should also be determined empirically. Causes for CWSI values falling outside of the defined 0 to 10 unit range are reviewed. Non-water-stressed baselines may shift with plant growth stage. Effective use of CWSI is dependent on understanding the definition of CWSI, and the proper determination and use of non-water-stressed baselines. (author)

  13. Deciphering Stress State of Seismogenic Faults in Oklahoma and Kansas Based on High-resolution Stress Maps

    Science.gov (United States)

    Qin, Y.; Chen, X.; Haffener, J.; Trugman, D. T.; Carpenter, B.; Reches, Z.

    2017-12-01

    Induced seismicity in Oklahoma and Kansas delineates clear fault trends. It is assumed that fluid injection reactivates faults which are optimally oriented relative to the regional tectonic stress field. We utilized recently improved earthquake locations and more complete focal mechanism catalogs to quantitatively analyze the stress state of seismogenic faults with high-resolution stress maps. The steps of analysis are: (1) Mapping the faults by clustering seismicity using a nearest-neighbor approach, manually picking the fault in each cluster and calculating the fault geometry using principal component analysis. (2) Running a stress inversion with 0.2° grid spacing to produce an in-situ stress map. (3) The fault stress state is determined from fault geometry and a 3D Mohr circle. The parameter `understress' is calculated to quantify the criticalness of these faults. If it approaches 0, the fault is critically stressed; while understress=1 means there is no shear stress on the fault. Our results indicate that most of the active faults have a planar shape (planarity>0.8), and dip steeply (dip>70°). The fault trends are distributed mainly in conjugate set ranges of [50°,70°] and [100°,120°]. More importantly, these conjugate trends are consistent with mapped basement fractures in southern Oklahoma, suggesting similar basement features from regional tectonics. The fault length data shows a loglinear relationship with the maximum earthquake magnitude with an expected maximum magnitude range from 3.2 to 4.4 for most seismogenic faults. Based on 3D local Mohr circle, we find that 61% of the faults have low understress (0.5) are located within highest-rate injection zones and therefore are likely to be influenced by high pore pressure. The faults that hosted the largest earthquakes, M5.7 Prague and M5.8 Pawnee are critically stressed (understress 0.2). These differences may help in understanding earthquake sequences, for example, the predominantly aftershock

  14. Stress concentration factors for pressurized elliptic crossbores in blocks

    International Nuclear Information System (INIS)

    Badr, Elie A.

    2006-01-01

    Intersecting bore geometries are used in a number of industrial applications including heavy-walled pressure vessels containing oil holes for lubrication, ports for valves and fluid ends of reciprocating pumps. The bore intersection location is a stress concentration point where the maximum hoop stress can be many times the fluid pressure in the bores. Intersecting circular holes in heavy-walled cylinders and rectangular blocks have been extensively investigated. Specifically, stress/pressure concentration curves for intersecting circular bores in rectangular blocks were presented by Sorem et al. [Sorem JR, Shadley JR, Tipton SM. Design curves for maximum stresses in blocks containing pressurized bore intersections. ASME J Mech Des 1990; 113: 427-31.]. However, stress/pressure concentrations due to intersecting elliptic bores have not been broadly investigated. With the availability of computer numerical control (CNC) machinery, bores with elliptic crosssection can be produced with relative ease. In this paper, hoop stress concentration ratios are developed for elliptic crossbores in rectangular blocks. Results indicate that introducing elliptic crossbores, rather than circular ones, significantly reduces the hoop stress concentration factor at the crossbore intersection. Also, the presence of intersecting crossbores has a major effect on the fatigue life of pressure vessels [Badr EA, Sorem JR, Jr Tipton SM. Evaluation of the autofrettage effect on fatigue lives of steel blocks with crossbores using a statistical and a strain-based method. ASTM J Test Eval 2000; 28: 181-8.] and the reduction of hoop stress concentration is expected to enhance the fatigue life of pressure vessels containing crossbores

  15. Flood Hazard Mapping by Applying Fuzzy TOPSIS Method

    Science.gov (United States)

    Han, K. Y.; Lee, J. Y.; Keum, H.; Kim, B. J.; Kim, T. H.

    2017-12-01

    There are lots of technical methods to integrate various factors for flood hazard mapping. The purpose of this study is to suggest the methodology of integrated flood hazard mapping using MCDM(Multi Criteria Decision Making). MCDM problems involve a set of alternatives that are evaluated on the basis of conflicting and incommensurate criteria. In this study, to apply MCDM to assessing flood risk, maximum flood depth, maximum velocity, and maximum travel time are considered as criterion, and each applied elements are considered as alternatives. The scheme to find the efficient alternative closest to a ideal value is appropriate way to assess flood risk of a lot of element units(alternatives) based on various flood indices. Therefore, TOPSIS which is most commonly used MCDM scheme is adopted to create flood hazard map. The indices for flood hazard mapping(maximum flood depth, maximum velocity, and maximum travel time) have uncertainty concerning simulation results due to various values according to flood scenario and topographical condition. These kind of ambiguity of indices can cause uncertainty of flood hazard map. To consider ambiguity and uncertainty of criterion, fuzzy logic is introduced which is able to handle ambiguous expression. In this paper, we made Flood Hazard Map according to levee breach overflow using the Fuzzy TOPSIS Technique. We confirmed the areas where the highest grade of hazard was recorded through the drawn-up integrated flood hazard map, and then produced flood hazard map can be compared them with those indicated in the existing flood risk maps. Also, we expect that if we can apply the flood hazard map methodology suggested in this paper even to manufacturing the current flood risk maps, we will be able to make a new flood hazard map to even consider the priorities for hazard areas, including more varied and important information than ever before. Keywords : Flood hazard map; levee break analysis; 2D analysis; MCDM; Fuzzy TOPSIS

  16. Minority Stress and Stress Proliferation Among Same-Sex and Other Marginalized Couples

    Science.gov (United States)

    LeBlanc, Allen J.; Frost, David M.; Wight, Richard G.

    2014-01-01

    Drawing from 2 largely isolated approaches to the study of social stress—stress proliferation and minority stress—the authors theorize about stress and mental health among same-sex couples. With this integrated stress framework, they hypothesized that couple-level minority stressors may be experienced by individual partners and jointly by couples as a result of the stigmatized status of their same-sex relationship—a novel concept. They also consider dyadic minority stress processes, which result from the relational experience of individual-level minority stressors between partners. Because this framework includes stressors emanating from both status- (e.g., sexual minority) and role-based (e.g., partner) stress domains, it facilitates the study of stress proliferation linking minority stress (e.g., discrimination), more commonly experienced relational stress (e.g., conflict), and mental health. This framework can be applied to the study of stress and health among other marginalized couples, such as interracial/ethnic, interfaith, and age-discrepant couples. PMID:25663713

  17. Stress and Fatigue Life Modeling of Cannon Breech Closures Including Effects of Material Strength and Residual Stress

    National Research Council Canada - National Science Library

    Underwood, John

    2000-01-01

    ...; overload residual stress. Modeling of applied and residual stresses at the location of the fatigue failure site is performed by elastic-plastic finite element analysis using ABAQUS and by solid...

  18. Simulation of Stress-Strain State of Shovel Rotary Support Kingpin

    Science.gov (United States)

    Khoreshok, A. A.; Buyankin, P. V.; Vorobiev, A. V.; Dronov, A. A.

    2016-04-01

    The article presents the sequence of computational simulation of stress-strain state of shovel’s rotary support. Computation results are analyzed, the kingpin is specified as the most loaded element, maximum stress zones are identified. Kingpin design modification such as enhancement of fillet curvature radius to 25 mm and displacement of eyebolt holes on the diameter of 165 mm are proposed, thus diminishing impact of stress concentrators and improving reliability of the rotary support.

  19. Runners with Patellofemoral Pain Exhibit Greater Peak Patella Cartilage Stress Compared to Pain-Free Runners.

    Science.gov (United States)

    Liao, Tzu-Chieh; Keyak, Joyce H; Powers, Christopher M

    2018-02-27

    The purpose of this study is to determine whether recreational runners with patellofemoral pain (PFP) exhibit greater peak patella cartilage stress compared to pain-free runners. A secondary purpose was to determine the kinematic and/or kinetic predictors of peak patella cartilage stress during running. Twenty-two female recreational runners participated (12 with PFP and 10 pain-free controls). Patella cartilage stress profiles were quantified using subject-specific finite element models simulating the maximum knee flexion angle during stance phase of running. Input parameters to the finite element model included subject-specific patellofemoral joint geometry, quadriceps muscle forces, and lower extremity kinematics in the frontal and transverse planes. Tibiofemoral joint kinematics and kinetics were quantified to determine the best predictor of stress using stepwise regression analysis. Compared to the pain-free runners, those with PFP exhibited greater peak hydrostatic pressure (PFP vs. control, 21.2 ± 5.6 MPa vs. 16.5 ± 4.6 MPa) and maximum shear stress (11.3 ± 4.6 MPa vs. 8.7 ± 2.3 MPa). Knee external rotation was the best predictor of peak hydrostatic pressure and peak maximum shear stress (38% and 25% of variances, respectively) followed by the knee extensor moment (21% and 25% of variances, respectively). Runners with PFP exhibit greater peak patella cartilage stress during running compared to pain-free individuals. The combination of knee external rotation and a high knee extensor moment best predicted elevated peak stress during running.

  20. Stress-affected microstructural development and creep-swelling interrelationship

    International Nuclear Information System (INIS)

    Brager, H.R.; Garner, F.A.; Gilbert, E.R.; Flinn, J.E.; Wolfer, W.G.

    1977-05-01

    Macroscopic measurement of the deformations arising from swelling and creep during neutron irradiation indicate that both processes are dependent on the magnitude and possibly the sign of the applied stress state. Current modeling efforts also indicate that a strong interaction exists between swelling and creep through the stress state. Because the macroscopic distortions arise from the integrated microscopic strains associated with specific microstructural elements, the effect of applied stress on microstructural development has been studied

  1. Hydraulic Limits on Maximum Plant Transpiration

    Science.gov (United States)

    Manzoni, S.; Vico, G.; Katul, G. G.; Palmroth, S.; Jackson, R. B.; Porporato, A. M.

    2011-12-01

    Photosynthesis occurs at the expense of water losses through transpiration. As a consequence of this basic carbon-water interaction at the leaf level, plant growth and ecosystem carbon exchanges are tightly coupled to transpiration. In this contribution, the hydraulic constraints that limit transpiration rates under well-watered conditions are examined across plant functional types and climates. The potential water flow through plants is proportional to both xylem hydraulic conductivity (which depends on plant carbon economy) and the difference in water potential between the soil and the atmosphere (the driving force that pulls water from the soil). Differently from previous works, we study how this potential flux changes with the amplitude of the driving force (i.e., we focus on xylem properties and not on stomatal regulation). Xylem hydraulic conductivity decreases as the driving force increases due to cavitation of the tissues. As a result of this negative feedback, more negative leaf (and xylem) water potentials would provide a stronger driving force for water transport, while at the same time limiting xylem hydraulic conductivity due to cavitation. Here, the leaf water potential value that allows an optimum balance between driving force and xylem conductivity is quantified, thus defining the maximum transpiration rate that can be sustained by the soil-to-leaf hydraulic system. To apply the proposed framework at the global scale, a novel database of xylem conductivity and cavitation vulnerability across plant types and biomes is developed. Conductivity and water potential at 50% cavitation are shown to be complementary (in particular between angiosperms and conifers), suggesting a tradeoff between transport efficiency and hydraulic safety. Plants from warmer and drier biomes tend to achieve larger maximum transpiration than plants growing in environments with lower atmospheric water demand. The predicted maximum transpiration and the corresponding leaf water

  2. Estimation of In Situ Stresses with Hydro-Fracturing Tests and a Statistical Method

    Science.gov (United States)

    Lee, Hikweon; Ong, See Hong

    2018-03-01

    At great depths, where borehole-based field stress measurements such as hydraulic fracturing are challenging due to difficult downhole conditions or prohibitive costs, in situ stresses can be indirectly estimated using wellbore failures such as borehole breakouts and/or drilling-induced tensile failures detected by an image log. As part of such efforts, a statistical method has been developed in which borehole breakouts detected on an image log are used for this purpose (Song et al. in Proceedings on the 7th international symposium on in situ rock stress, 2016; Song and Chang in J Geophys Res Solid Earth 122:4033-4052, 2017). The method employs a grid-searching algorithm in which the least and maximum horizontal principal stresses ( S h and S H) are varied, and the corresponding simulated depth-related breakout width distribution as a function of the breakout angle ( θ B = 90° - half of breakout width) is compared to that observed along the borehole to determine a set of S h and S H having the lowest misfit between them. An important advantage of the method is that S h and S H can be estimated simultaneously in vertical wells. To validate the statistical approach, the method is applied to a vertical hole where a set of field hydraulic fracturing tests have been carried out. The stress estimations using the proposed method were found to be in good agreement with the results interpreted from the hydraulic fracturing test measurements.

  3. Stress-dependent crystal structure of lanthanum strontium cobalt ferrite by in situ synchrotron X-ray diffraction

    Science.gov (United States)

    Geiger, Philipp T.; Khansur, Neamul H.; Riess, Kevin; Martin, Alexander; Hinterstein, Manuel; Webber, Kyle G.

    2018-02-01

    Lanthanum strontium cobalt ferrite La1-xSrxCo1-yFeyO3-δ (LSCF) is one of the most studied mixed ionic-electronic conductor materials due to electrical and transport properties, which are attractive for intermediate temperature solid oxide fuel cells (SOFCs), oxygen permeation membranes, and catalysis. The integration of such materials, however, depends on the thermal as well as mechanical behavior. LSCF exhibits nonlinear hysteresis during compressive stress-strain measurements, marked by a remanent strain and coercive stress, i.e., ferroelasticity. However, the origin of ferroelastic behavior has not been investigated under high compressive stress. This study, therefore, investigates the microscopic origin of stress-induced mechanical behavior in polycrystalline (La0.6Sr0.4)0.95Co0.2Fe0.8O3-δ using in situ synchrotron x-ray diffraction. The data presented here reveals that the strain response originates from the intrinsic lattice strain as well as the extrinsic domain switching strain without any apparent change in crystallographic symmetry. A comparison of the calculated microscopic strain contribution with that of a macroscopic measurement indicates a significant change in the relative contributions of intrinsic and extrinsic strain depending on the applied stress state, i.e., under maximum stress and after unloading. Direct evidence of the microscopic origin of stress-strain response outlined in this paper may assist in guiding materials design with the improved mechanical reliability of SOFCs.

  4. An experimental study of the influence of stress history on fault slip during injection of supercritical CO2

    Science.gov (United States)

    Cuss, Robert J.; Wiseall, Andrew C.; Tamayo-Mas, Elena; Harrington, Jon F.

    2018-04-01

    The injection of super-critical CO2 into a depleted reservoir will alter the pore pressure of the basin, which if sufficiently perturbed could result in fault slip. Therefore, knowledge of the acceptable pressure limits is required in order to maintain fault stability. A two-part laboratory study was conducted on fully saturated kaolinite fault gouge to investigate this issue. Previously, we showed that fault slip occurred once pore-pressure within the gouge was sufficient to overcome the normal stress acting on the fault. For kaolinite, this behaviour occurred at a pressure similar to the yield stress. The current study shows that following a slow-reduction in the maximum principal stress, as would be expected through changes in effective stress, the reactivation pressure shows a stress memory. Consequently, the pressure necessary to initiate fault slip is similar to that required at the maximum stress encountered. Therefore, fault slip is at least partially controlled by the previous maximum stress and not the current stress state. During the slow reduction in normal stress, the flow characteristics of the fault remain unchanged until pore-pressure exceeds shear stress and does not increase significantly until it exceeds normal stress. This results in fault slip, which slows the rate of flow increase as shear is an effective self-sealing mechanism. These observations lead to the conclusion that stress history is a vital parameter when considering fault stability.

  5. Stress transmission through Ti-Ni alloy, titanium and stainless steel in impact compression test.

    Science.gov (United States)

    Yoneyama, T; Doi, H; Kobayashi, E; Hamanaka, H; Tanabe, Y; Bonfield, W

    2000-06-01

    Impact stress transmission of Ti-Ni alloy was evaluated for biomedical stress shielding. Transformation temperatures of the alloy were investigated by means of DSC. An impact compression test was carried out with use of split-Hopkinson pressure-bar technique with cylindrical specimens of Ti-Ni alloy, titanium and stainless steel. As a result, the transmitted pulse through Ti-Ni alloy was considerably depressed as compared with those through titanium and stainless steel. The initial stress reduction was large through Ti-Ni alloy and titanium, but the stress reduction through Ti-Ni alloy was more continuous than titanium. The maximum value in the stress difference between incident and transmitted pulses through Ti-Ni alloy or titanium was higher than that through stainless steel, while the stress reduction in the maximum stress through Ti-Ni alloy was statistically larger than that through titanium or stainless steel. Ti-Ni alloy transmitted less impact stress than titanium or stainless steel, which suggested that the loading stress to adjacent tissues could be decreased with use of Ti-Ni alloy as a component material in an implant system. Copyright 2000 Kluwer Academic Publishers

  6. Predicted strains in austenitic stainless steels at stresses above yield

    International Nuclear Information System (INIS)

    Hammond, J.P.; Sikka, V.K.

    1977-01-01

    Tensile results on austenitic stainless steels were analyzed to develop means for predicting strains at stresses above yield for reactor regulatory applications. Eight heats each of types 316 and 304 were tested at 24, 93, 204, and 316 0 C as mill-annealed and at 24 0 C after reannealing. The effects of heat-to-heat variations on total strain (to 5%) at discrete stress levels were portrayed by a rational polynomial incorporating three constants that relate to the basic features of the true-stress-true-strain diagram. Because these constants usually are interrelated, a single parameter, yield strength (YS), proved adequate to predict results. For predictions analytical expressions of yield strength, an average value (YSa), and a lower bound value [YSa - 1.65SEE (standard error of estimate)] were used. Using the rational polynomial with these parameters we determined (1) limits of total maximum strain and (2) ratios of strain of material of lower bound YS to that of average YS. These are recorded at regular increments of stress [34 MPa (5 ksi)] and at ASME Code-related stresses (S/sub y), S/sub m/, 1.2S/sub m/ and 1.5S/sub m/). At intermediate stresses, strain penalties for using material of lower bound strength were large, generally larger for type 316 than type 304. For mill-annealed type 316 at 24, 93, 204, and 316 0 C, the maximum ratios of strain were 8.8, 13.0, 14.1, and 14.9, respectively, whereas for type 304 they were 3.5, 3.4, 5.6, and 4.6. At 1.5S/sub m/ and 316 0 C, a maximum strain of 2.08% was predicted for type 316 and 1.66% for type 304, as contrasted to values of 0.14 and 0.39% for average strain

  7. Survival of the insulator under the electrical stress condition at cryogenic temperature

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Seung Myeong [Dept. of Fire Protection Engineering, Changwon Moonsung University, Changwon (Korea, Republic of); Kim, Sang Hyun [Dept. of Electrical Engineering, Gyeongsang National University, Jinju (Korea, Republic of)

    2013-12-15

    We have clearly investigated with respect to the survival of the insulator at cryogenic temperature under the electrical stress. The breakdown and voltage-time characteristics of turn-to-turn models for point contact geometry and surface contact geometry using copper multi wrapped with polyimide film for an HTS transformer were investigated under AC and impulse voltage at 77 K. Polyimide film (Kapton) 0.025 mm thick is used for multi wrapping of the electrode. As expected, the breakdown voltages for the surface contact geometry are lower than that of the point contact geometry, because the contact area of the surface contact geometry is lager than that of the point contact geometry. The time to breakdown t50 decreases as the applied voltage is increased, and the lifetime indices increase slightly as the number of layers is increased. The electric field amplitude at the position where breakdown occurs is about 80% of the maximum electric field value. The relationship between survival probability and the electrical stress at cryogenic temperature was evident.

  8. Effect of a High-intensity Interval Training method on maximum oxygen consumption in Chilean schoolchildren

    Directory of Open Access Journals (Sweden)

    Sergio Galdames-Maliqueo

    2017-12-01

    Full Text Available Introduction: The low levels of maximum oxygen consumption (VO2max evaluated in Chilean schoolchildren suggest the startup of trainings that improve the aerobic capacity. Objective: To analyze the effect of a High-intensity Interval Training method on maximum oxygen consumption in Chilean schoolchildren. Materials and methods: Thirty-two high school students from the eighth grade, who were divided into two groups, were part of the study (experimental group = 16 students and control group = 16 students. The main analyzed variable was the maximum oxygen consumption through the Course Navette Test. A High-intensity Interval training method was applied based on the maximum aerobic speed obtained through the Test. A mixed ANOVA was used for statistical analysis. Results: The experimental group showed a significant increase in the Maximum Oxygen Consumption between the pretest and posttest when compared with the control group (p < 0.0001. Conclusion: The results of the study showed a positive effect of the High-intensity Interval Training on the maximum consumption of oxygen. At the end of the study, it is concluded that High-intensity Interval Training is a good stimulation methodology for Chilean schoolchildren.

  9. Estimation of in-situ stresses in concrete members using polarized ultrasonic shear waves

    Science.gov (United States)

    Chen, Andrew; Schumacher, Thomas

    2014-02-01

    Ultrasonic testing is commonly used to detect flaws, estimate geometries, and characterize properties of materials and structures. Acoustoelasticity refers to the dependency of stress wave velocity with applied stresses and is a phenomenon that has been known by geophysicists since the 1960s. A way to capitalize on this effect for concrete applications is by using ultrasonic shear waves which are particularly sensitive to applied stresses when polarized in the direction of the applied stress. The authors conducted an experiment on a 150 mm (6 in.) diameter concrete cylinder specimen with a length of 305 mm (12 in.) that was loaded in discrete load steps to failure. At each load step two ultrasonic shear waves were transmitted through the specimen, one with the polarization perpendicular and the other transverse to the applied stress. The velocity difference between the two sets of polarized shear waves was found to correlate with the applied stress in the specimen. Two potential applications for this methodology include estimation of stresses in pre-stressed concrete bridge girders and investigation of load redistribution in structural support elements after extreme events. This paper introduces the background of the methodology, presents an analysis of the collected data, and discusses the relationship between the recorded signals and the applied stress.

  10. Early growth response of six wheat varieties under artificial osmotic stress condition

    International Nuclear Information System (INIS)

    Khakwani, A.A.; Dennett, M.D.; Munir, M

    2011-01-01

    An experiment was carried out under laboratory conditions where seeds of six wheat varieties (Damani, Hashim-8, Gomal-8, DN-73, Zam-04 and Dera-98) were raised in Petri dishes and were either treated with distilled water (control) or 15% polyethylene glycol (PEG) 6000 solution. Seeds were treated with 15% PEG solution to establish an artificial osmotic stress condition (water stress) and observe its effect on germination percentage, coleoptile length, shoot and root length, fresh weight of shoot and root. A significant difference (P<0.05) was recorded between varietal and treatment means regarding all traits. Variety Hashim-8 gave maximum germination percentage (93.33%) whereas maximum coleoptile (1.78 cm) and shoot length (5.77 cm) was observed in variety DN-73 which was statistically at par with variety Hashim-8. Similarly, root length (3.63 g), fresh shoot (0.15 g) and root weight (0.12 g) was maximum in variety Dera-98 which was statistically at par with variety Hashim-8. A second experiment was carried out under glass house environment where plants were treated with non-stress (100% field capacity) and water stress (35% field capacity) treatments. Although total grain yield was significantly (P<0.05) reduced in all six wheat varieties when grown in water stress condition however Hashim-8 showed the lowest reduction (13%) while Zam-04 showed the highest (32%). The outcome of both experiments indicated that these varieties have great potential to incorporate with the existing commercial wheat varieties in order to obtain high yield in water stress regions. (author)

  11. Present-day stress magnitude at depth from leak-off tests in Italy

    Science.gov (United States)

    Mariucci, M. T.; Montone, P.; Pierdominici, S.

    2012-04-01

    We present new results from the analysis of leak-off tests, performed in deep oil wells in Italy, to characterize the present-day stress magnitude and regime in the crust. In the last years we have collected a large number of data (more than 500) from different stress indicators, mainly borehole breakouts, earthquake focal mechanisms and fault data, which provided information on the present-day stress orientations. In some areas the tectonic regime has been inferred either from fault plane solutions of M≥4 earthquakes or from stress inversions of smaller earthquakes. Where seismicity lacks, the regime is not well constrained and little or no information on the magnitude of the crustal stresses is available. In order to improve our knowledge in stress regime and its magnitude in Italy, in this work we use the leak-off test technique. Each test is performed at the bottom of an open hole by sealing off a section and then slowly pressurizing with a fluid until hydraulic tensile fractures develop. The minimum horizontal stress is inferred by leak-off pressure record, the vertical stress is computed by rock density data and the maximum horizontal stress is estimated applying a specific formula from the literature. Thanks to ENI S.p.A. (Italian oil company), that kindly provided new well data, we have been able to perform a critical review of our preliminary calculations and to enhance our previous results concerning stress magnitudes. Totally, we have analyzed 192 leak-off tests at depth between 200 and 5400m (average 1800m). In particular, wells are located along the Italian peninsula and in Sicily: most of them are in the Po Plain and along the Apenninic foredeep; few are in southern Apenninic belt and a few tens are in Sicily. After an accurate selection of the most robust results, we better characterize the Italian stress regime at depth.

  12. Psychological stress-relieving effects of chewing - Relationship between masticatory function-related factors and stress-relieving effects.

    Science.gov (United States)

    Tasaka, Akinori; Kikuchi, Manaki; Nakanishi, Kousuke; Ueda, Takayuki; Yamashita, Shuichiro; Sakurai, Kaoru

    2018-01-01

    The objective of the present study was to investigate the relationship between masticatory function-related factors (masticatory performance, occlusal contact area, maximum bite force, number of chewing strokes, and muscle activity) and the stress-relieving effects of chewing. A total of 28 healthy male subjects were instructed to rest or chew for 10min after 30min of stress loading with arithmetic calculations. Their stress state was assessed by measuring salivary cortisol levels. Saliva was collected at three time points: before stress loading, immediately after stress loading, and 10min after stress loading. Compared to resting, chewing produced a significantly greater reduction in the rate of change in salivary cortisol levels 10min after stress loading. A negative correlation was observed between the rate of decrease in salivary cortisol levels and the number of chewing strokes. No significant correlation was observed between the rate of decrease in salivary cortisol levels and other measurement items. In healthy dentulous people, the number of chewing strokes has been shown to be a masticatory function-related factor that affects stress relief from chewing, suggesting the possibility that more appropriate chewing would produce a greater effect psychological stress relief. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  13. Comparative evaluation of human heat stress indices on selected hospital admissions in Sydney, Australia.

    Science.gov (United States)

    Goldie, James; Alexander, Lisa; Lewis, Sophie C; Sherwood, Steven

    2017-08-01

    To find appropriate regression model specifications for counts of the daily hospital admissions of a Sydney cohort and determine which human heat stress indices best improve the models' fit. We built parent models of eight daily counts of admission records using weather station observations, census population estimates and public holiday data. We added heat stress indices; models with lower Akaike Information Criterion scores were judged a better fit. Five of the eight parent models demonstrated adequate fit. Daily maximum Simplified Wet Bulb Globe Temperature (sWBGT) consistently improved fit more than most other indices; temperature and heatwave indices also modelled some health outcomes well. Humidity and heat-humidity indices better fit counts of patients who died following admission. Maximum sWBGT is an ideal measure of heat stress for these types of Sydney hospital admissions. Simple temperature indices are a good fallback where a narrower range of conditions is investigated. Implications for public health: This study confirms the importance of selecting appropriate heat stress indices for modelling. Epidemiologists projecting Sydney hospital admissions should use maximum sWBGT as a common measure of heat stress. Health organisations interested in short-range forecasting may prefer simple temperature indices. © 2017 The Authors.

  14. Use of frozen stress in extracting stress intensity factor distributions in three dimensional cracked body problems

    Science.gov (United States)

    Smith, C. W.

    1992-01-01

    The adaptation of the frozen stress photoelastic method to the determination of the distribution of stress intensity factors in three dimensional problems is briefly reviewed. The method is then applied to several engineering problems of practical significance.

  15. The Local Maximum Clustering Method and Its Application in Microarray Gene Expression Data Analysis

    Directory of Open Access Journals (Sweden)

    Chen Yidong

    2004-01-01

    Full Text Available An unsupervised data clustering method, called the local maximum clustering (LMC method, is proposed for identifying clusters in experiment data sets based on research interest. A magnitude property is defined according to research purposes, and data sets are clustered around each local maximum of the magnitude property. By properly defining a magnitude property, this method can overcome many difficulties in microarray data clustering such as reduced projection in similarities, noises, and arbitrary gene distribution. To critically evaluate the performance of this clustering method in comparison with other methods, we designed three model data sets with known cluster distributions and applied the LMC method as well as the hierarchic clustering method, the -mean clustering method, and the self-organized map method to these model data sets. The results show that the LMC method produces the most accurate clustering results. As an example of application, we applied the method to cluster the leukemia samples reported in the microarray study of Golub et al. (1999.

  16. Micromagnetic modeling of the effects of stress on magnetic properties

    International Nuclear Information System (INIS)

    Zhu, B.; Lo, C. C. H.; Lee, S. J.; Jiles, D. C.

    2001-01-01

    A micromagnetic model has been developed for investigating the effect of stress on the magnetic properties of thin films. This effect has been implemented by including the magnetoelastic energy term into the Landau - Lifshitz - Gilbert equation. Magnetization curves of a nickel film were calculated under both tensile and compressive stresses of various magnitudes applied along the field direction. The modeling results show that coercivity increased with increasing compressive stress while remanence decreased with increasing tensile stress. The results are in agreement with the experimental data in the literature and can be interpreted in terms of the effects of the applied stress on the irreversible rotation of magnetic moments during magnetization reversal under an applied field. [copyright] 2001 American Institute of Physics

  17. Stress estimation around the survey wells in Hanshin-Awaji area by means of AE/DR and DSCA experiments; AE/DR ho to DSCA ho ni yoru Hanshin Awaji chiiki chosa kui shuhen no chikaku oryoku sokutei

    Energy Technology Data Exchange (ETDEWEB)

    Ito, H; Kuwahara, Y; Nishizawa, O [Geological Survey of Japan, Tsukuba (Japan); Yamamoto, K [Tohoku University, Sendai (Japan). Faculty of Science; Sano, O [Yamaguchi University, Yamaguchi (Japan). Faculty of Engineering; Yokoyama, T; Kudo, R [OYO Corp., Tokyo (Japan); Xue, Z [Kiso-Jiban Consultants Co. Ltd., Tokyo (Japan)

    1996-05-01

    A total of 5 wells were excavated in the Hanshin-Awaji area (Ikeda, Takarazuka, Tarumi, Hirabayashi and Ikunami) to collect the core samples, which were analyzed by the AE/DR and DSCA methods to determine crustal stresses. For the AE/DR analysis, the core sample was cut in the vertical direction, and in the horizontal direction at intervals of 45{degree}. The sample of unknown orientation was provided with a datum line common for both methods, to compare the results by these methods. A load was applied to the sample, provided with an AE sensor and strain gauge on the sides, in the longitudinal direction. For the DSCA analysis, the core sample was cut into a cube having a side length of 33mm, with a pair of planes directed in parallel to the datum line. A total of 18 strain gauges, 10mm in gauge length, were attached to the cube. The AE/DR analysis gave the maximum and minimum principal stresses in the horizontal plane and stresses in the vertical direction, whereas the DSCA the maximum, intermediate and minimum principal stresses. 3 refs., 7 figs.

  18. Maximum concentrations at work and maximum biologically tolerable concentration for working materials 1991

    International Nuclear Information System (INIS)

    1991-01-01

    The meaning of the term 'maximum concentration at work' in regard of various pollutants is discussed. Specifically, a number of dusts and smokes are dealt with. The valuation criteria for maximum biologically tolerable concentrations for working materials are indicated. The working materials in question are corcinogeneous substances or substances liable to cause allergies or mutate the genome. (VT) [de

  19. 40 CFR 1042.140 - Maximum engine power, displacement, power density, and maximum in-use engine speed.

    Science.gov (United States)

    2010-07-01

    ... cylinders having an internal diameter of 13.0 cm and a 15.5 cm stroke length, the rounded displacement would... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Maximum engine power, displacement... Maximum engine power, displacement, power density, and maximum in-use engine speed. This section describes...

  20. Dynamic Programming and Error Estimates for Stochastic Control Problems with Maximum Cost

    International Nuclear Information System (INIS)

    Bokanowski, Olivier; Picarelli, Athena; Zidani, Hasnaa

    2015-01-01

    This work is concerned with stochastic optimal control for a running maximum cost. A direct approach based on dynamic programming techniques is studied leading to the characterization of the value function as the unique viscosity solution of a second order Hamilton–Jacobi–Bellman (HJB) equation with an oblique derivative boundary condition. A general numerical scheme is proposed and a convergence result is provided. Error estimates are obtained for the semi-Lagrangian scheme. These results can apply to the case of lookback options in finance. Moreover, optimal control problems with maximum cost arise in the characterization of the reachable sets for a system of controlled stochastic differential equations. Some numerical simulations on examples of reachable analysis are included to illustrate our approach

  1. Dynamic Programming and Error Estimates for Stochastic Control Problems with Maximum Cost

    Energy Technology Data Exchange (ETDEWEB)

    Bokanowski, Olivier, E-mail: boka@math.jussieu.fr [Laboratoire Jacques-Louis Lions, Université Paris-Diderot (Paris 7) UFR de Mathématiques - Bât. Sophie Germain (France); Picarelli, Athena, E-mail: athena.picarelli@inria.fr [Projet Commands, INRIA Saclay & ENSTA ParisTech (France); Zidani, Hasnaa, E-mail: hasnaa.zidani@ensta.fr [Unité de Mathématiques appliquées (UMA), ENSTA ParisTech (France)

    2015-02-15

    This work is concerned with stochastic optimal control for a running maximum cost. A direct approach based on dynamic programming techniques is studied leading to the characterization of the value function as the unique viscosity solution of a second order Hamilton–Jacobi–Bellman (HJB) equation with an oblique derivative boundary condition. A general numerical scheme is proposed and a convergence result is provided. Error estimates are obtained for the semi-Lagrangian scheme. These results can apply to the case of lookback options in finance. Moreover, optimal control problems with maximum cost arise in the characterization of the reachable sets for a system of controlled stochastic differential equations. Some numerical simulations on examples of reachable analysis are included to illustrate our approach.

  2. Maximum Power Point Tracking of Photovoltaic System for Traffic Light Application

    OpenAIRE

    Muhida, Riza; Mohamad, Nor Hilmi; Legowo, Ari; Irawan, Rudi; Astuti, Winda

    2013-01-01

    Photovoltaic traffic light system is a significant application of renewable energy source. The development of the system is an alternative effort of local authority to reduce expenditure for paying fees to power supplier which the power comes from conventional energy source. Since photovoltaic (PV) modules still have relatively low conversion efficiency, an alternative control of maximum power point tracking (MPPT) method is applied to the traffic light system. MPPT is intended to catch up th...

  3. Multi-approach analysis of maximum riverbed scour depth above subway tunnel

    OpenAIRE

    Jun Chen; Hong-wu Tang; Zui-sen Li; Wen-hong Dai

    2010-01-01

    When subway tunnels are routed underneath rivers, riverbed scour may expose the structure, with potentially severe consequences. Thus, it is important to identify the maximum scour depth to ensure that the designed buried depth is adequate. There are a range of methods that may be applied to this problem, including the fluvial process analysis method, geological structure analysis method, scour formula method, scour model experiment method, and numerical simulation method. However, the applic...

  4. Evaluation of maximum radionuclide concentration from decay chains migration in aquifers

    International Nuclear Information System (INIS)

    Aquino Branco, O.E. de.

    1983-01-01

    The mathematical formulation of the mechanisms involved in the transport of contaminants in aquifers is presented. The methodology employed is described. A method of calculation the maximum concentration of radionuclides migrating in the underground water, and resulting from one decay chain, is then proposed. As an example, the methodology is applied to a waste basin, built to receive effluents from a hypothectical uranium ore mining and milling facility. (M.A.C.) [pt

  5. On minimizing the maximum broadcast decoding delay for instantly decodable network coding

    KAUST Repository

    Douik, Ahmed S.

    2014-09-01

    In this paper, we consider the problem of minimizing the maximum broadcast decoding delay experienced by all the receivers of generalized instantly decodable network coding (IDNC). Unlike the sum decoding delay, the maximum decoding delay as a definition of delay for IDNC allows a more equitable distribution of the delays between the different receivers and thus a better Quality of Service (QoS). In order to solve this problem, we first derive the expressions for the probability distributions of maximum decoding delay increments. Given these expressions, we formulate the problem as a maximum weight clique problem in the IDNC graph. Although this problem is known to be NP-hard, we design a greedy algorithm to perform effective packet selection. Through extensive simulations, we compare the sum decoding delay and the max decoding delay experienced when applying the policies to minimize the sum decoding delay and our policy to reduce the max decoding delay. Simulations results show that our policy gives a good agreement among all the delay aspects in all situations and outperforms the sum decoding delay policy to effectively minimize the sum decoding delay when the channel conditions become harsher. They also show that our definition of delay significantly improve the number of served receivers when they are subject to strict delay constraints.

  6. Underground water stress release models

    Science.gov (United States)

    Li, Yong; Dang, Shenjun; Lü, Shaochuan

    2011-08-01

    The accumulation of tectonic stress may cause earthquakes at some epochs. However, in most cases, it leads to crustal deformations. Underground water level is a sensitive indication of the crustal deformations. We incorporate the information of the underground water level into the stress release models (SRM), and obtain the underground water stress release model (USRM). We apply USRM to the earthquakes occurred at Tangshan region. The analysis shows that the underground water stress release model outperforms both Poisson model and stress release model. Monte Carlo simulation shows that the simulated seismicity by USRM is very close to the real seismicity.

  7. Maximum Quantum Entropy Method

    OpenAIRE

    Sim, Jae-Hoon; Han, Myung Joon

    2018-01-01

    Maximum entropy method for analytic continuation is extended by introducing quantum relative entropy. This new method is formulated in terms of matrix-valued functions and therefore invariant under arbitrary unitary transformation of input matrix. As a result, the continuation of off-diagonal elements becomes straightforward. Without introducing any further ambiguity, the Bayesian probabilistic interpretation is maintained just as in the conventional maximum entropy method. The applications o...

  8. Vridningsstivhed beregnet vha. statisk tilladelige spændingsfordelinger

    DEFF Research Database (Denmark)

    Christiansen, Morten Bo; Nielsen, Mogens Peter

    1996-01-01

    The present report shortly describes the theory of calculation of torsion stiffness by means of the energy equation applied to statically admissible stress fields. Moreover it describes an easy way of determining these stress fields by means of Prandtl's stress function.The calculations are carri...... values) can be achieved. The best solution for the rectangular cross-section has a maximum deviation from the exact solution of 11%. This solution also provides an acceptable approximation to the maximum shear-stress. The deviation from the exact maximum stress is 17%.......The present report shortly describes the theory of calculation of torsion stiffness by means of the energy equation applied to statically admissible stress fields. Moreover it describes an easy way of determining these stress fields by means of Prandtl's stress function.The calculations are carried...... through for two solid cross-sections, a square and a rectangular one. Different solutions are suggested, and comparison with the exact solution is made. The comparison shows that even with very simple assumptions about the stress field, fairly accurate approximations to the torsion stiffness (lower bound...

  9. Stress Analysis of Transcatheter Aortic Valve Leaflets Under Dynamic Loading: Effect of Reduced Tissue Thickness.

    Science.gov (United States)

    Abbasi, Mostafa; Azadani, Ali N

    2017-07-01

    In order to accommodate transcatheter valves to miniaturized catheters, the leaflet thickness must be reduced to a value which is typically less than that of surgical bioprostheses. The study aim was to use finite-element simulations to determine the impact of the thickness reduction on stress and strain distribution. A 23 mm transcatheter aortic valve (TAV) was modelled based on the Edwards SAPIEN XT (Edwards Lifesciences, Irvine, CA, USA). Finite-element (FE) analysis was performed using the ABAQUS/Explicit solver. An ensemble-averaged transvalvular pressure waveform measured from in-vitro tests conducted in a pulse duplicator was applied to the leaflets. Through a parametric study, uniform TAV leaflet thickness was reduced from 0.5 to 0.18 mm. By reducing leaflet thickness, significantly higher stress values were found in the leaflet's fixed edge during systole, and in the commissures during diastole. Through dynamic FE simulations, the highest stress values were found during systole in the leaflet fixed edge. In contrast, at the peak of diastole high-stress regions were mainly observed in the commissures. The peak stress was increased by 178% and 507% within the leaflets after reducing the thickness of 0.5 mm to 0.18 mm at the peak of systole and diastole, respectively. The study results indicated that, the smaller the leaflet thickness, the higher the maximum principal stress. Increased mechanical stress on TAV leaflets may lead to accelerated tissue degeneration. By using a thinner leaflet, TAV durability may not atch with that of surgical bioprostheses.

  10. Effects of mean strain on the random cyclic stress-strain relations of 0Cr18Ni10Ti pipe steel

    International Nuclear Information System (INIS)

    Zhao Yongxiang; Yang Bing

    2005-01-01

    Experimental study is performed for the effects of the mean strain on the random cyclic stress-strain relations of the new nuclear material, 0Cr18Ni10Ti pipe steel. From saving the size of specimens, an improved maximum likelihood fatigue test method is proposed to operate the present strain-controlled fatigue tests. Six straining ratios, -1, -0.52, -0.22, 0.029, 0.18, and 0.48, respectively, are applied to study the effects. Fatigue test has been carried out on totally 104 specimens. The test results reveal that the material exhibits a Masing behaviour and the saturation hysteresis loops under the six ratios hold an entirely relaxation effect of mean stress. There is no effectively method for the description of the mean straining effects under this case. Previous Zhao's random stress-strain relations are therefore applied to characterizing effectively the scattering test data under the six ratios on a basis of Ramberg-Osgood equation. Then the effects of the ratios are analyzed respectively on the average stress amplitudes, the standard deviations of the stress amplitudes, and the stress amplitudes under different survival probabilities and confidences. The results reveal that the ratios act a relatively decreasing effect to the stress amplitudes under higher survival probabilities and confidences. The strongest effect appears at the ratio of 0.029, and a weaker effect acts as the distance increase of the ratio from the zero. In addition, it is indicated that the effects from the sense of average fatigue lives might result in a wrong conclusion. The effects can be appropriately assessed from a probabilistic sense to take into account the scattering regularity of test data and the size of sampling. (author)

  11. Influence of effective stress on swelling pressure of expansive soils

    Directory of Open Access Journals (Sweden)

    Baille Wiebke

    2016-01-01

    Full Text Available The volume change and shear strength behaviour of soils are controlled by the effective stress. Recent advances in unsaturated soil mechanics have shown that the effective stress as applicable to unsaturated soils is equal to the difference between the externally applied stress and the suction stress. The latter can be established based on the soil-water characteristic curve (SWCC of the soil. In the present study, the evolution of swelling pressure in compacted bentonite-sand mixtures was investigated. Comparisons were made between magnitudes of applied suction, suction stress, and swelling pressure.

  12. Hydrodynamic equations for electrons in graphene obtained from the maximum entropy principle

    Energy Technology Data Exchange (ETDEWEB)

    Barletti, Luigi, E-mail: luigi.barletti@unifi.it [Dipartimento di Matematica e Informatica “Ulisse Dini”, Università degli Studi di Firenze, Viale Morgagni 67/A, 50134 Firenze (Italy)

    2014-08-15

    The maximum entropy principle is applied to the formal derivation of isothermal, Euler-like equations for semiclassical fermions (electrons and holes) in graphene. After proving general mathematical properties of the equations so obtained, their asymptotic form corresponding to significant physical regimes is investigated. In particular, the diffusive regime, the Maxwell-Boltzmann regime (high temperature), the collimation regime and the degenerate gas limit (vanishing temperature) are considered.

  13. Maximum-likelihood fitting of data dominated by Poisson statistical uncertainties

    International Nuclear Information System (INIS)

    Stoneking, M.R.; Den Hartog, D.J.

    1996-06-01

    The fitting of data by χ 2 -minimization is valid only when the uncertainties in the data are normally distributed. When analyzing spectroscopic or particle counting data at very low signal level (e.g., a Thomson scattering diagnostic), the uncertainties are distributed with a Poisson distribution. The authors have developed a maximum-likelihood method for fitting data that correctly treats the Poisson statistical character of the uncertainties. This method maximizes the total probability that the observed data are drawn from the assumed fit function using the Poisson probability function to determine the probability for each data point. The algorithm also returns uncertainty estimates for the fit parameters. They compare this method with a χ 2 -minimization routine applied to both simulated and real data. Differences in the returned fits are greater at low signal level (less than ∼20 counts per measurement). the maximum-likelihood method is found to be more accurate and robust, returning a narrower distribution of values for the fit parameters with fewer outliers

  14. Viscoelastic finite element analysis of residual stresses in porcelain-veneered zirconia dental crowns.

    Science.gov (United States)

    Kim, Jeongho; Dhital, Sukirti; Zhivago, Paul; Kaizer, Marina R; Zhang, Yu

    2018-06-01

    The main problem of porcelain-veneered zirconia (PVZ) dental restorations is chipping and delamination of veneering porcelain owing to the development of deleterious residual stresses during the cooling phase of veneer firing. The aim of this study is to elucidate the effects of cooling rate, thermal contraction coefficient and elastic modulus on residual stresses developed in PVZ dental crowns using viscoelastic finite element methods (VFEM). A three-dimensional VFEM model has been developed to predict residual stresses in PVZ structures using ABAQUS finite element software and user subroutines. First, the newly established model was validated with experimentally measured residual stress profiles using Vickers indentation on flat PVZ specimens. An excellent agreement between the model prediction and experimental data was found. Then, the model was used to predict residual stresses in more complex anatomically-correct crown systems. Two PVZ crown systems with different thermal contraction coefficients and porcelain moduli were studied: VM9/Y-TZP and LAVA/Y-TZP. A sequential dual-step finite element analysis was performed: heat transfer analysis and viscoelastic stress analysis. Controlled and bench convection cooling rates were simulated by applying different convective heat transfer coefficients 1.7E-5 W/mm 2 °C (controlled cooling) and 0.6E-4 W/mm 2 °C (bench cooling) on the crown surfaces exposed to the air. Rigorous viscoelastic finite element analysis revealed that controlled cooling results in lower maximum stresses in both veneer and core layers for the two PVZ systems relative to bench cooling. Better compatibility of thermal contraction coefficients between porcelain and zirconia and a lower porcelain modulus reduce residual stresses in both layers. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Determination of stress multipliers for thin perforated plates with square array of holes

    International Nuclear Information System (INIS)

    Bhattacharya, A.; Murli, B.; Kushwaha, H.S.

    1991-01-01

    The peak stress multipliers are required to determine the maximum stresses in perforated plates for the realistic evaluation of their fatigue life. The Section III of ASME Boiler and Pressure Vessels Code does not provide any information about such multipliers to be used in thin perforated plates with square penetration pattern. Although such multipliers for membrane loadings are available in literature, they were obtained either by classical analysis or by photoelastic experiments and there is no significant finite element analysis in this area. Also it has been a common practice among designers to apply the same multipliers for loads producing bending type of stress. The stress multipliers in bending are lower than those in membrane. Therefore a reduction of resultant peak stress occurs if proper stress multipliers are used for bending. The present paper is aimed at developing a finite element technique which can be used for determining the peak stress multipliers in thin plates for membrane as well as bending loads. A quarter symmetric part of a 3 x 3 square array was chosen for the analysis. The results were obtained by computer programs PAFEC and COSMOS/M using 2-D plane stress elements for the membrane and degenerated 3-D shell element for the bending part. The results for the membrane are compared with Bailey, Hicks and Hulbert and with Meijers' finite element results for the bending part. A study was made at the initial stage by analysing a 6 x 6 square array to see the effect of holes beyond one pitch, which were left out by the 3 x 3 array and the effect of additional holes was found to be negligible. Therefore it was decided to carry out further analysis with 3 x 3 square array. Photoelastic experiments were also performed to validate the results obtained by theoretical analysis. (author)

  16. The effect of saddle design on stresses in the perineum during cycling.

    Science.gov (United States)

    Spears, Iain R; Cummins, Neil K; Brenchley, Zoe; Donohue, Claire; Turnbull, Carli; Burton, Shona; Macho, Gabrielle A

    2003-09-01

    Repetitive internal stress in the perineum has been associated with soft-tissue trauma in bicyclists. Using an engineering approach, the purpose of this study was to quantify the amount of compression exerted in the perineum for a range of saddle widths and orientations. Computer tomography was used to create a three-dimensional voxel-based finite element model of the right side of the male perineum-pelvis. For the creation of the saddle model, a commercially available saddle was digitized and the surface manipulated to represent a variety of saddle widths and orientations. The two models were merged, and a static downward load of 189 N was applied to the model at the region representing the sacroiliac joint. For validation purposes, external stresses along the perineum-saddle interface were compared with the results of pressure sensitive film. Good agreement was found for these external stresses. The saddles were then stretched and rotated, and the magnitude and location of maximum stresses within the perineum were both recorded. In all cases, the model of the pelvis-perineum was held in an upright position. Stresses within the perineum were reduced when the saddle was sufficiently wide to support both ischial tuberosities. This supporting mechanism was best achieved when the saddle was at least two times wider than the bi-ischial width of the cyclist. Stresses in the anterior of the perineum were reduced when the saddle was tilted downward, whereas stresses in the posterior were reduced when the saddle was tilted upward. Recommendations that saddles should be sufficiently wide to support the ischial tuberosities appear to be well founded. Recommendations that saddles be tilted downward (i.e., nose down) are supported by the model, but with caution, given the limitations of the model.

  17. The effect of couple-stresses on the stress concentration around a moving crack

    Directory of Open Access Journals (Sweden)

    S. Itou

    1981-01-01

    Full Text Available The problem of a uniformly propagating finite crack in an infinite medium is solved within the linearized couple-stress theory. The self-equilibrated system of pressure is applied to the crack surfaces. The problem is reduced to dual integral equations and solved by a series-expansion method. The dynamic stress-intensity factor is computed numerically.

  18. Weighted Maximum-Clique Transversal Sets of Graphs

    OpenAIRE

    Chuan-Min Lee

    2011-01-01

    A maximum-clique transversal set of a graph G is a subset of vertices intersecting all maximum cliques of G. The maximum-clique transversal set problem is to find a maximum-clique transversal set of G of minimum cardinality. Motivated by the placement of transmitters for cellular telephones, Chang, Kloks, and Lee introduced the concept of maximum-clique transversal sets on graphs in 2001. In this paper, we study the weighted version of the maximum-clique transversal set problem for split grap...

  19. Maximum entropy and Bayesian methods

    International Nuclear Information System (INIS)

    Smith, C.R.; Erickson, G.J.; Neudorfer, P.O.

    1992-01-01

    Bayesian probability theory and Maximum Entropy methods are at the core of a new view of scientific inference. These 'new' ideas, along with the revolution in computational methods afforded by modern computers allow astronomers, electrical engineers, image processors of any type, NMR chemists and physicists, and anyone at all who has to deal with incomplete and noisy data, to take advantage of methods that, in the past, have been applied only in some areas of theoretical physics. The title workshops have been the focus of a group of researchers from many different fields, and this diversity is evident in this book. There are tutorial and theoretical papers, and applications in a very wide variety of fields. Almost any instance of dealing with incomplete and noisy data can be usefully treated by these methods, and many areas of theoretical research are being enhanced by the thoughtful application of Bayes' theorem. Contributions contained in this volume present a state-of-the-art overview that will be influential and useful for many years to come

  20. Design and analysis of a toroidal tester for the measurement of core losses under axial compressive stress

    Energy Technology Data Exchange (ETDEWEB)

    Alatawneh, Natheer, E-mail: natheer80@yahoo.com [Department of Mining and Materials Engineering, McGill University, QC H3A 0G4 (Canada); Rahman, Tanvir; Lowther, David A. [Department of Electrical and Computer Engineering, McGill University, QC H3A 0E9 (Canada); Chromik, Richard [Department of Mining and Materials Engineering, McGill University, QC H3A 0G4 (Canada)

    2017-06-15

    Highlights: • Develop a toroidal tester for magnetic measurements under compressive axial stress. • The shape of the toroidal ring has been verified using 3D stress analysis. • The developed design has been prototyped, and measurements were carried out. • Physical explanations for the core loss trend due to stress are provided. - Abstract: Electric machine cores are subjected to mechanical stresses due to manufacturing processes. These stresses include radial, circumferential and axial components that may have significant influences on the magnetic properties of the electrical steel and hence, on the output and efficiencies of electrical machines. Previously, most studies of iron losses due to mechanical stress have considered only radial and circumferential components. In this work, an improved toroidal tester has been designed and developed to measure the core losses and the magnetic properties of electrical steel under a compressive axial stress. The shape of the toroidal ring has been verified using 3D stress analysis. Also, 3D electromagnetic simulations show a uniform flux density distribution in the specimen with a variation of 0.03 T and a maximum average induction level of 1.5 T. The developed design has been prototyped, and measurements were carried out using a steel sample of grade 35WW300. Measurements show that applying small mechanical stresses normal to the sample thickness rises the delivered core losses, then the losses decrease continuously as the stress increases. However, the drop in core losses at high stresses does not go lower than the free-stress condition. Physical explanations for the observed trend of core losses as a function of stress are provided based on core loss separation to the hysteresis and eddy current loss components. The experimental results show that the effect of axial compressive stress on magnetic properties of electrical steel at high level of inductions becomes less pronounced.

  1. 3-D numerical modelling of stresses around a longwall panel with top coal caving

    Energy Technology Data Exchange (ETDEWEB)

    Yasitli, N.E.; Unver, B. [University of Hacettepe, Ankara (Turkey). Dept. of Mining Engineering

    2005-06-01

    There is a considerable amount of lignite reserve in the form of thick seams in Turkey. It is rather complicated to predict the characteristics of strata response to mining operation in thick seams. However, a comprehensive evaluation of ground behaviour is a prerequisite for maintaining an efficient production, especially when top coal winning by means of caving behind the face is applied. A comprehensive modelling of deformations and induced stresses is vital for the selection of optimum production strategy. In this study, numerical modelling and analysis of a longwall panel at Omerler underground coalmine have been carried out by using the software called FLAC(3D) developed based on the finite difference technique. Firstly, a 3-D numerical model of the M3 panel has been prepared. Secondly, induced stresses formed around the longwall face have been determined as a function of face advance where the face was located at the bottom of thick coal-seam. Results obtained from modelling studies have revealed that the front abutment vertical stress was maximum at 7 metres in front of the face and magnitude of front abutment stress was found to increase up to a distance of 200 metres away from the face start line. As the face was further advanced after 200 m from the face start line, there was not any significant change in the characteristics of front abutment stresses. Results of numerical analysis of the panel were in good agreement with in situ observations.

  2. Thermo-mechanical stress analysis of cryopreservation in cryobags and the potential benefit of nanowarming.

    Science.gov (United States)

    Solanki, Prem K; Bischof, John C; Rabin, Yoed

    2017-06-01

    Cryopreservation by vitrification is the only promising solution for long-term organ preservation which can save tens of thousands of lives across the world every year. One of the challenges in cryopreservation of large-size tissues and organs is to prevent fracture formation due to the tendency of the material to contract with temperature. The current study focuses on a pillow-like shape of a cryobag, while exploring various strategies to reduce thermo-mechanical stress during the rewarming phase of the cryopreservation protocol, where maximum stresses are typically found. It is demonstrated in this study that while the level of stress may generally increase with the increasing amount of CPA filled in the cryobag, the ratio between width and length of the cryobag play a significant role. Counterintuitively, the overall maximum stress is not found when the bag is filled to its maximum capacity (when the filled cryobag resembles a sphere). Parametric investigation suggests that reducing the initial rewarming rate between the storage temperature and the glass transition temperature may dramatically decrease the thermo-mechanical stress. Adding a temperature hold during rewarming at the glass transition temperature may reduce the thermo-mechanical stress in some cases, but may have an adverse effect in other cases. Finally, it is demonstrated that careful incorporation of volumetric heating by means on nanoparticles in an alternating magnetic field, or nanowarming, can dramatically reduce the resulting thermo-mechanical stress. These observations display the potential benefit of a thermo-mechanical design of the cryopreservation protocols in order to prevent structural damage. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Study of Mechanical Features for Low Cycle Fatigue Samples of Metastable Austenitic Steel AISI 321 by Neutron Stress Analysis under Applied Load

    CERN Document Server

    Taran, Yu V; Eifler, D; Nebel, Th; Schreiber, J

    2002-01-01

    The elastoplastic properties of the austenitic matrix and martensitic volume areas induced during cyclic tensile-compressive loading of low carbon metastable austenitic stainless steel were studied in an in situ neutron diffraction stress rig experiment on the ENGIN instrument at the ISIS pulsed neutron facility. Samples prepared from the steel AISI 321 annealed at 1050 ^{\\circ}C and quenched in water were subjected to low-cycle fatigue under total-strain control with an amplitude of 1 % at a frequency of 0.5 Hz. Subsequent applied stress?elastic strain responses of the austenitic and martensitic phases were obtained by Rietveld and Le Bail refinements of the neutron diffraction spectra, and were used to determine the elastic constants of the phases as a function of fatigue level. The results of modified refinements accounting for the elastic anisotropy in polycrystalline materials under load are also presented. The residual strains in the austenitic matrix were determined as a function of fatigue cycling, us...

  4. Maximum entropy method approach to the θ term

    International Nuclear Information System (INIS)

    Imachi, Masahiro; Shinno, Yasuhiko; Yoneyama, Hiroshi

    2004-01-01

    In Monte Carlo simulations of lattice field theory with a θ term, one confronts the complex weight problem, or the sign problem. This is circumvented by performing the Fourier transform of the topological charge distribution P(Q). This procedure, however, causes flattening phenomenon of the free energy f(θ), which makes study of the phase structure unfeasible. In order to treat this problem, we apply the maximum entropy method (MEM) to a Gaussian form of P(Q), which serves as a good example to test whether the MEM can be applied effectively to the θ term. We study the case with flattering as well as that without flattening. In the latter case, the results of the MEM agree with those obtained from the direct application of the Fourier transform. For the former, the MEM gives a smoother f(θ) than that of the Fourier transform. Among various default models investigated, the images which yield the least error do not show flattening, although some others cannot be excluded given the uncertainly related to statistical error. (author)

  5. Maximum power demand cost

    International Nuclear Information System (INIS)

    Biondi, L.

    1998-01-01

    The charging for a service is a supplier's remuneration for the expenses incurred in providing it. There are currently two charges for electricity: consumption and maximum demand. While no problem arises about the former, the issue is more complicated for the latter and the analysis in this article tends to show that the annual charge for maximum demand arbitrarily discriminates among consumer groups, to the disadvantage of some [it

  6. Correlation between passive film-induced stress and stress corrosion cracking of α-Ti in a methanol solution at various potentials

    International Nuclear Information System (INIS)

    Guo, X.Z.; Gao, K.W.; Chu, W.Y.; Qiao, L.J.

    2003-01-01

    The flow stress of a specimen of α-Ti before unloading is different with the yield stress of the same specimen after unloading and forming a passive film through immersing in a methanol solution at various constant potentials. The difference is the passive film-induced stress. The film-induced stress and susceptibility to stress corrosion cracking (SCC) in the methanol solution at various potentials were measured. At the stable open-circuit potential and under anodic polarization, both film-induced tensile stress σ p and susceptibility to SCC had a maximum value. The film-induced stress and SCC susceptibility, however, decreased steeply with a decrease in potential under cathodic polarization. When the potential V≤-280 mV SCE , the film-induced stress became compressive; correspondingly, susceptibility to SCC was zero. Therefore, the variation of film-induced stress with potential was consistent with that of susceptibility to SCC. A large film-induced tensile stress is the necessary condition for SCC of α-Ti in the methanol solution. The symbol and amount of the film-induced stress were related to the compositions of the passive film, which have been analyzed using the X-ray photoelectron spectrum (XPS)

  7. Fatigue life estimation considering welding residual stress and hot-spot stress of welded components

    International Nuclear Information System (INIS)

    Han, S. H.; Lee, T. K.; Shin, B. C.

    2002-01-01

    The fatigue life of welded joints is sensitive to welding residual stress and complexity of their geometric shapes. To predict the fatigue life more reasonably, the effects of welding residual stress and its relaxation have to be considered quantitatively which are equivalent to mean stress by external loads. The hot-spot stress concept should be also adopted which can be reduce the dependence of fatigue strengths for various welding details. Considering the factors mentioned above, a fatigue life prediction model using the modified Goodman's diagram was proposed. In this model, an equivalent stress was introduced which are composed of the mean stress based on the hot-spot stress concept and the relaxed welding residual stress. From the verification of the proposed model to real welding details, it is confirmed that this model can be applied to predict reasonably their fatigue lives

  8. Recent tectonic stress field, active faults and geothermal fields (hot-water type) in China

    Science.gov (United States)

    Wan, Tianfeng

    1984-10-01

    It is quite probable that geothermal fields of the hot-water type in China do not develop in the absence of recently active faults. Such active faults are all controlled by tectonic stress fields. Using the data of earthquake fault-plane solutions, active faults, and surface thermal manifestations, a map showing the recent tectonic stress field, and the location of active faults and geothermal fields in China is presented. Data collected from 89 investigated prospects with geothermal manifestations indicate that the locations of geothermal fields are controlled by active faults and the recent tectonic stress field. About 68% of the prospects are controlled by tensional or tensional-shear faults. The angle between these faults and the direction of maximum compressive stress is less than 45°, and both tend to be parallel. About 15% of the prospects are controlled by conjugate faults. Another 14% are controlled by compressive-shear faults where the angle between these faults and the direction maximum compressive stress is greater than 45°.

  9. Maximum likelihood estimation of phase-type distributions

    DEFF Research Database (Denmark)

    Esparza, Luz Judith R

    for both univariate and multivariate cases. Methods like the EM algorithm and Markov chain Monte Carlo are applied for this purpose. Furthermore, this thesis provides explicit formulae for computing the Fisher information matrix for discrete and continuous phase-type distributions, which is needed to find......This work is concerned with the statistical inference of phase-type distributions and the analysis of distributions with rational Laplace transform, known as matrix-exponential distributions. The thesis is focused on the estimation of the maximum likelihood parameters of phase-type distributions...... confidence regions for their estimated parameters. Finally, a new general class of distributions, called bilateral matrix-exponential distributions, is defined. These distributions have the entire real line as domain and can be used, for instance, for modelling. In addition, this class of distributions...

  10. Lattice strain evolution in IMI 834 under applied stress

    International Nuclear Information System (INIS)

    Daymond, Mark R.; Bonner, Neil W.

    2003-01-01

    The effect of elastic and plastic anisotropy on the evolution of lattice strains in the titanium alloy IMI834 has been examined during a uniaxial tensile test, by in situ monitoring on the Engin instrument at the ISIS pulsed neutron source. Measurements were made at load during an incremental loading test. The data is analysed in the light of the requirements for engineering residual stress scanning measurements performed at polychromatic neutron and synchrotron diffraction sources. Comparisons between the measured strains from different lattice families and the predictions from an elasto-plastic self-consistent model are made. Agreement is good in the elastic regime and for most diffraction planes in the plastic regime

  11. Venus atmosphere profile from a maximum entropy principle

    Directory of Open Access Journals (Sweden)

    L. N. Epele

    2007-10-01

    Full Text Available The variational method with constraints recently developed by Verkley and Gerkema to describe maximum-entropy atmospheric profiles is generalized to ideal gases but with temperature-dependent specific heats. In so doing, an extended and non standard potential temperature is introduced that is well suited for tackling the problem under consideration. This new formalism is successfully applied to the atmosphere of Venus. Three well defined regions emerge in this atmosphere up to a height of 100 km from the surface: the lowest one up to about 35 km is adiabatic, a transition layer located at the height of the cloud deck and finally a third region which is practically isothermal.

  12. Performance of penalized maximum likelihood in estimation of genetic covariances matrices

    Directory of Open Access Journals (Sweden)

    Meyer Karin

    2011-11-01

    Full Text Available Abstract Background Estimation of genetic covariance matrices for multivariate problems comprising more than a few traits is inherently problematic, since sampling variation increases dramatically with the number of traits. This paper investigates the efficacy of regularized estimation of covariance components in a maximum likelihood framework, imposing a penalty on the likelihood designed to reduce sampling variation. In particular, penalties that "borrow strength" from the phenotypic covariance matrix are considered. Methods An extensive simulation study was carried out to investigate the reduction in average 'loss', i.e. the deviation in estimated matrices from the population values, and the accompanying bias for a range of parameter values and sample sizes. A number of penalties are examined, penalizing either the canonical eigenvalues or the genetic covariance or correlation matrices. In addition, several strategies to determine the amount of penalization to be applied, i.e. to estimate the appropriate tuning factor, are explored. Results It is shown that substantial reductions in loss for estimates of genetic covariance can be achieved for small to moderate sample sizes. While no penalty performed best overall, penalizing the variance among the estimated canonical eigenvalues on the logarithmic scale or shrinking the genetic towards the phenotypic correlation matrix appeared most advantageous. Estimating the tuning factor using cross-validation resulted in a loss reduction 10 to 15% less than that obtained if population values were known. Applying a mild penalty, chosen so that the deviation in likelihood from the maximum was non-significant, performed as well if not better than cross-validation and can be recommended as a pragmatic strategy. Conclusions Penalized maximum likelihood estimation provides the means to 'make the most' of limited and precious data and facilitates more stable estimation for multi-dimensional analyses. It should

  13. Competitive ability, stress tolerance and plant interactions along stress gradients.

    Science.gov (United States)

    Qi, Man; Sun, Tao; Xue, SuFeng; Yang, Wei; Shao, DongDong; Martínez-López, Javier

    2018-04-01

    Exceptions to the generality of the stress-gradient hypothesis (SGH) may be reconciled by considering species-specific traits and stress tolerance strategies. Studies have tested stress tolerance and competitive ability in mediating interaction outcomes, but few have incorporated this to predict how species interactions shift between competition and facilitation along stress gradients. We used field surveys, salt tolerance and competition experiments to develop a predictive model interspecific interaction shifts across salinity stress gradients. Field survey and greenhouse tolerance tests revealed tradeoffs between stress tolerance and competitive ability. Modeling showed that along salinity gradients, (1) plant interactions shifted from competition to facilitation at high salinities within the physiological limits of salt-intolerant plants, (2) facilitation collapsed when salinity stress exceeded the physiological tolerance of salt-intolerant plants, and (3) neighbor removal experiments overestimate interspecific facilitation by including intraspecific effects. A community-level field experiment, suggested that (1) species interactions are competitive in benign and, facilitative in harsh condition, but fuzzy under medium environmental stress due to niche differences of species and weak stress amelioration, and (2) the SGH works on strong but not weak stress gradients, so SGH confusion arises when it is applied across questionable stress gradients. Our study clarifies how species interactions vary along stress gradients. Moving forward, focusing on SGH applications rather than exceptions on weak or nonexistent gradients would be most productive. © 2018 by the Ecological Society of America.

  14. Numerical Study on the Thermal Stress and its Formation Mechanism of a Thermoelectric Device

    Science.gov (United States)

    Pan, Tao; Gong, Tingrui; Yang, Wei; Wu, Yongjia

    2018-06-01

    The strong thermo-mechanical stress is one of the most critical failure mechanisms that affect the durability of thermoelectric devices. In this study, numerical simulations on the formation mechanism of the maximum thermal stress inside the thermoelectric device have been performed by using finite element method. The influences of the material properties and the thermal radiation on the thermal stress have been examined. The results indicate that the maximum thermal stress was located at the contact position between the two materials and occurred due to differential thermal expansions and displacement constraints of the materials. The difference in the calculated thermal stress value between the constant and the variable material properties was between 3% and 4%. At a heat flux of 1 W·cm-2 and an emissivity of 0.5, the influence of the radiation heat transfer on the thermal stress was only about 5%; however, when the heat flux was 20 W·cm-2 and the emissivity was 0.7, the influence of the radiation heat transfer was more than 30%.

  15. Application of the method of maximum likelihood to the determination of cepheid radii

    International Nuclear Information System (INIS)

    Balona, L.A.

    1977-01-01

    A method is described whereby the radius of any pulsating star can be obtained by applying the Principle of Maximum Likelihood. The relative merits of this method and of the usual Baade-Wesselink method are discussed in an Appendix. The new method is applied to 54 well-observed cepheids which include a number of spectroscopic binaries and two W Vir stars. An empirical period-radius relation is constructed and discussed in terms of two recent period-luminosity-colour calibrations. It is shown that the new method gives radii with an error of no more than 10 per cent. (author)

  16. Welding stresses

    International Nuclear Information System (INIS)

    Poirier, J.; Barbe, B.; Jolly, N.

    1976-01-01

    The aim is to show how internal stresses are generated and to fix the orders of magnitude. A realistic case, the vertical welding of thick plates free to move one against the other, is described and the deformations and stresses are analyzed. The mathematical model UEDA, which accounts for the elastic modulus, the yield strength and the expansion coefficient of the metal with temperature, is presented. The hypotheses and results given apply only to the instantaneous welding of a welded plate and to a plate welded by a moving electrode [fr

  17. In situ subsoil stress-strain behaviour in relation to soil precompression stress

    DEFF Research Database (Denmark)

    Keller, T; Arvidsson, J; Schjønning, Per

    2012-01-01

    is assumed to be elastic and reversible as long as [sigma] work examined soil stress-strain behavior as measured in situ during wheeling experiments and related it to the stress-strain behavior and [sigma]pc measured on soil cores in uniaxial compression tests in the laboratory. The data......Soil compaction negatively influences many important soil functions, including crop growth. Compaction occurs when the applied stress, [sigma], overcomes the soil strength. Soil strength in relation to compaction is typically expressed by the soil precompression stress, [sigma]pc. Deformation...... analyzed were from a large number of wheeling experiments carried out in Sweden and Denmark on soils with a wide range of texture. Contradicting the concept of precompression stress, we observed residual strain, [Latin Small Letter Open E]res, at [sigma

  18. Quantifying in situ stress magnitudes and orientations for Forsmark. Forsmark stage 2.2

    International Nuclear Information System (INIS)

    Martin, C. Derek

    2007-11-01

    Stephansson et al. concluded that in the Fennoscandia shield: (1) there is a large horizontal stress component in the uppermost 1,000 m of bedrock, and (2) the maximum and minimum horizontal stresses exceed the vertical stress assuming the vertical stress is estimated from the weight of the overburden. Several stress campaigns involving both overcoring and hydraulic fracturing, including the hydraulic testing of pre-existing fractures (HTPF), have been carried out at Forsmark to establish the in situ stress state. The results from the initial campaigns were summarised by Sjoeberg et al. which formed the bases for the stresses provided in the Site Descriptive Model version 1.2. Since then additional stress measurement campaigns have been completed. The results from these stress measurement campaigns support the conclusions from Stephansson et al. In addition to these in situ stress measurements the following additional studies were undertaken to aid in assessing the stress state at Forsmark. 1. A detailed televiewer survey of approximately 6,900 m of borehole walls to depths of 1,000 m was carried out to assess borehole wall damage, i.e. borehole breakouts. 2. Evaluation of nonlinear strains in laboratory samples to depths of approximately 800 m to assess if stress magnitudes were sufficient to create stress-induced microcracking. 3. Assessment of the magnitudes required to cause core disking and survey of core disking observed at Forsmark. The magnitudes and orientations from the stress measurement campaigns were analysed to establish the most likely stress magnitudes and orientations for Design Step D2 within the Target Area of the Complete Site Investigations. The maximum and minimum horizontal stress components are essentially the same as the maximum and intermediate principal stresses, σ1 and σ2, respectively. The minimum principal stress (σ3) is synonymous with the vertical stress. The most likely range in values to be used in the design is also shown. The

  19. Quantifying in situ stress magnitudes and orientations for Forsmark. Forsmark stage 2.2

    Energy Technology Data Exchange (ETDEWEB)

    Martin, C. Derek (Univ. of Alberta (Canada))

    2007-11-15

    Stephansson et al. concluded that in the Fennoscandia shield: (1) there is a large horizontal stress component in the uppermost 1,000 m of bedrock, and (2) the maximum and minimum horizontal stresses exceed the vertical stress assuming the vertical stress is estimated from the weight of the overburden. Several stress campaigns involving both overcoring and hydraulic fracturing, including the hydraulic testing of pre-existing fractures (HTPF), have been carried out at Forsmark to establish the in situ stress state. The results from the initial campaigns were summarised by Sjoeberg et al. which formed the bases for the stresses provided in the Site Descriptive Model version 1.2. Since then additional stress measurement campaigns have been completed. The results from these stress measurement campaigns support the conclusions from Stephansson et al. In addition to these in situ stress measurements the following additional studies were undertaken to aid in assessing the stress state at Forsmark. 1. A detailed televiewer survey of approximately 6,900 m of borehole walls to depths of 1,000 m was carried out to assess borehole wall damage, i.e. borehole breakouts. 2. Evaluation of nonlinear strains in laboratory samples to depths of approximately 800 m to assess if stress magnitudes were sufficient to create stress-induced microcracking. 3. Assessment of the magnitudes required to cause core disking and survey of core disking observed at Forsmark. The magnitudes and orientations from the stress measurement campaigns were analysed to establish the most likely stress magnitudes and orientations for Design Step D2 within the Target Area of the Complete Site Investigations. The maximum and minimum horizontal stress components are essentially the same as the maximum and intermediate principal stresses, sigma1 and sigma2, respectively. The minimum principal stress (sigma3) is synonymous with the vertical stress. The most likely range in values to be used in the design is also

  20. Report on televiewer log and stress measurements in core hole USW G-2, Nevada Test Site, October-November, 1982

    International Nuclear Information System (INIS)

    Stock, J.M.; Healy, J.H.; Hickman, S.H.

    1984-01-01

    Hydraulic fracturing stress measurements and a borehole televiewer log were obtained in hole USW G-2 at Yucca Mountain, Nevada, to depths of 1200 m. Results indicate that at the depths tested, the minimum ad maximum horizontal stresses are less than the vertical stress, corresponding to a normal faulting stress regime. Drilling-induced hydrofractures seen in the televiewer log imply a least horizontal principal stress direction of N 60 0 W to N 65 0 W. For reasonable values of the coefficient of friction, the magnitude of the least horizontal stress is close to the value at which slip would occur on preexisting faults of optimal orientation (strike N 25 0 E to N 30 0 E and dipping 60 0 to 67 0 ). The prominent drilling-induced fractures seen in the televiewer log are believed to have been caused by excess downhole pressures applied during drilling the hole. Many throughgoing fractures are also seen in the televiewer log; most of these are high angle, stringing N 10 0 E to N 40 0 E. These fractures show a general decrease in angle of dip with depth. Stress-induced wellbore breakouts are seen at depths below 1050 m. The average N 60 0 W azimuth of these breakouts agrees very closely with the N 60 0 W to N 65 0 W direction of least horizontal principal stress inferred from the drilling-induced hydrofracs. 19 references, 13 figures, 3 tables

  1. Stress intensity factors and constant stress terms for interface cracks

    International Nuclear Information System (INIS)

    Fett, T.; Rizzi, G.

    2004-01-01

    In bi-material joints cracks can propagate along the interface or kink into one of the two materials. Whereas the energy release rate can be applied for interface cracks in the same way as usual for homogeneous materials, the computation of stresses in the vicinity of the crack tip is significantly more complicated. In order to assess crack kinking, it is necessary to know the mixed-mode stress intensity factor contributions K I and K II as well as the constant stress terms in the two materials. Whereas the stress intensity factors are available for a large number of infinite and semi-infinite bodies, there is experimental interest in practically used test specimens. This especially holds for the constant x-stress terms. Finite element computations are performed for the special case of a disappearing second Dundurs parameter, i.e. β=0. The fracture mechanics parameters K I , K II , σ 0 for the interface crack are reported in the form of diagrams and approximate relations. (orig.)

  2. The Relationship Between Surface Curvature and Abdominal Aortic Aneurysm Wall Stress.

    Science.gov (United States)

    de Galarreta, Sergio Ruiz; Cazón, Aitor; Antón, Raúl; Finol, Ender A

    2017-08-01

    The maximum diameter (MD) criterion is the most important factor when predicting risk of rupture of abdominal aortic aneurysms (AAAs). An elevated wall stress has also been linked to a high risk of aneurysm rupture, yet is an uncommon clinical practice to compute AAA wall stress. The purpose of this study is to assess whether other characteristics of the AAA geometry are statistically correlated with wall stress. Using in-house segmentation and meshing algorithms, 30 patient-specific AAA models were generated for finite element analysis (FEA). These models were subsequently used to estimate wall stress and maximum diameter and to evaluate the spatial distributions of wall thickness, cross-sectional diameter, mean curvature, and Gaussian curvature. Data analysis consisted of statistical correlations of the aforementioned geometry metrics with wall stress for the 30 AAA inner and outer wall surfaces. In addition, a linear regression analysis was performed with all the AAA wall surfaces to quantify the relationship of the geometric indices with wall stress. These analyses indicated that while all the geometry metrics have statistically significant correlations with wall stress, the local mean curvature (LMC) exhibits the highest average Pearson's correlation coefficient for both inner and outer wall surfaces. The linear regression analysis revealed coefficients of determination for the outer and inner wall surfaces of 0.712 and 0.516, respectively, with LMC having the largest effect on the linear regression equation with wall stress. This work underscores the importance of evaluating AAA mean wall curvature as a potential surrogate for wall stress.

  3. Bite force and occlusal stress production in hominin evolution.

    Science.gov (United States)

    Eng, Carolyn M; Lieberman, Daniel E; Zink, Katherine D; Peters, Michael A

    2013-08-01

    Maximum bite force affects craniofacial morphology and an organism's ability to break down foods with different material properties. Humans are generally believed to produce low bite forces and spend less time chewing compared with other apes because advances in mechanical and thermal food processing techniques alter food material properties in such a way as to reduce overall masticatory effort. However, when hominins began regularly consuming mechanically processed or cooked diets is not known. Here, we apply a model for estimating maximum bite forces and stresses at the second molar in modern human, nonhuman primate, and hominin skulls that incorporates skeletal data along with species-specific estimates of jaw muscle architecture. The model, which reliably estimates bite forces, shows a significant relationship between second molar bite force and second molar area across species but does not confirm our hypothesis of isometry. Specimens in the genus Homo fall below the regression line describing the relationship between bite force and molar area for nonhuman anthropoids and australopiths. These results suggest that Homo species generate maximum bite forces below those predicted based on scaling among australopiths and nonhuman primates. Because this decline occurred before evidence for cooking, we hypothesize that selection for lower bite force production was likely made possible by an increased reliance on nonthermal food processing. However, given substantial variability among in vivo bite force magnitudes measured in humans, environmental effects, especially variations in food mechanical properties, may also be a factor. The results also suggest that australopiths had ape-like bite force capabilities. Copyright © 2013 Wiley Periodicals, Inc.

  4. Residual stress analysis in carbon fiber-reinforced SiC ceramics

    International Nuclear Information System (INIS)

    Broda, M.

    1998-01-01

    Systematic residual stress analyses are reported, carried out in long-fiber reinforced SiC ceramics. The laminated C fiber /SiC matrix specimens used were prepared by polymer pyrolysis, and the structural component specimens used are industrial products. Various diffraction methods have been applied for non-destructive evaluation of residual stress fields, so as to completely detect the residual stresses and their distribution in the specimens. The residual stress fields at the surface (μm) have been measured using characteristic X-radiation and applying the sin 2 ψ method as well as the scatter vector method. For residual stress field analysis in the mass volume (cm), neutron diffraction has been applied. The stress fields in the fiber layers (approx. 250μm) have been measured as a function of their location within the laminated composite by using an energy-dispersive method and synchrotron radiation. By means of the systematic, process-accompanying residual stress and phase analyses, conclusions can be drawn as to possible approaches for optimization of fabrication parameters. (orig./CB) [de

  5. Pineal thyroid relationship in psychic stress

    International Nuclear Information System (INIS)

    Singh, P.N.; Prasad, G.C.; Udupa, K.N.

    1981-01-01

    Pineal hormone and thyroid functions, were studied simultaneously in rats after the induction of acute psychic stress as well as exogenous administration of melatonin, thyroxine and also after thyroidectomy. A gradual increase in 131 I uptake, serum PBI and melatonin levels were observed in blood, reaching maximum on 8th day of psychic stress. Melatonin administration resulted in hypothyroidism whereas thyroxine increased the activity of pineal qland. Thyroidectomy revealed a gradual decrease in melatonin content of pineal gland whereas supplementation with thyroxine resulted in a melatonin content similar to that observed in sham operated (control) group. (author)

  6. Regulation of water, salinity, and cold stress responses by salicylic acid

    Directory of Open Access Journals (Sweden)

    Kenji eMiura

    2014-01-01

    Full Text Available Salicylic acid (SA is a naturally occurring phenolic compound. SA plays an important role in the regulation of plant growth, development, ripening, and defense responses. The role of SA in the plant-pathogen relationship has been extensively investigated. In addition to defense responses, SA plays an important role in the response to abiotic stresses, including drought, low temperature, and salinity stresses. It has been suggested that SA has great agronomic potential to improve the stress tolerance of agriculturally important crops. However, the utility of SA is dependent on the concentration of the applied SA, the mode of application, and the state of the plants (e.g., developmental stage and acclimation. Generally, low concentrations of applied SA alleviate the sensitivity to abiotic stresses, and high concentrations of applied induce high levels of oxidative stress, leading to a decreased tolerance to abiotic stresses. In this chapter, the effects of SA on the water stress responses and regulation of stomatal closure are reviewed.

  7. Muscle-like high-stress dielectric elastomer actuators with oil capsules

    International Nuclear Information System (INIS)

    La, Thanh-Giang; Lau, Gih-Keong; Shiau, Li-Lynn; Wei-Yee Tan, Adrian

    2014-01-01

    Despite being capable of generating large strains, dielectric elastomer actuators (DEAs) are short of strength. Often, they cannot produce enough stress or as much work as that achievable by human elbow muscles. Their maximum actuation capacity is limited by the electrical breakdown of dielectric elastomers. Often, failures of these soft actuators are pre-mature and localized at the weakest spot under high field and high stress. Localized breakdowns, such as electrical arcing, thermal runaway and punctures, could spread to ultimately cause rupture if they were not stopped. This work shows that dielectric oil immersion and self-clearable electrodes nibbed the buds of localized breakdowns from DEAs. Dielectric oil encapsulation in soft-membrane capsules was found to help the DEA sustain an ultra-high electrical breakdown field of 835 MVm −1 , which is 46% higher than the electrical breakdown strength of the dry DEA in air at 570 MV m −1 . Because of the increased apparent dielectric strength, this oil-capsuled DEA realizes a higher maximum isotonic work density of up to 31.51Jkg −1 , which is 43.8% higher than that realized by the DEA in air. Meanwhile, it produces higher maximum isometric stress of up to 1.05 MPa, which is 75% higher than that produced by the DEA in air. Such improved actuator performances are comparable to those achieved by human flexor muscles, which can exert up to 1.2 MPa during elbow flexion. This muscle-like, high-stress dielectric elastomeric actuation is very promising to drive future human-like robots. (paper)

  8. Combined shape and topology optimization for minimization of maximal von Mises stress

    DEFF Research Database (Denmark)

    Lian, Haojie; Christiansen, Asger Nyman; Tortorelli, Daniel A.

    2017-01-01

    This work shows that a combined shape and topology optimization method can produce optimal 2D designs with minimal stress subject to a volume constraint. The method represents the surface explicitly and discretizes the domain into a simplicial complex which adapts both structural shape and topology....... By performing repeated topology and shape optimizations and adaptive mesh updates, we can minimize the maximum von Mises stress using the p-norm stress measure with p-values as high as 30, provided that the stress is calculated with sufficient accuracy....

  9. Finite Element Analysis of Bone Stress around Micro-Implants of Different Diameters and Lengths with Application of a Single or Composite Torque Force.

    Science.gov (United States)

    Lu, Ying-juan; Chang, Shao-hai; Ye, Jian-tao; Ye, Yu-shan; Yu, Yan-song

    2015-01-01

    Stress on the bone surrounding dental micro-implants affects implant success. To compare the stress on the bone surrounding a micro-implant after application of a single force (SF) of 200 g or a composite force (CF) of 200 g and 6 N.mm torque. Finite element models were developed for micro-implant diameters of 1.2, 1.6, and 2.0 mm, and lengths of 6, 8, 10, and 12 mm and either a SF or CF was applied. The maximum equivalent stress (Max EQS) of the bone surrounding the micro-implant was determined, and the relationships among type of force, diameter, and length were evaluated. The Max EQS of the CF exceeded that of the SF (Pimplant diameter, but not to implant length. The larger CF led to greater instability of the micro-implant and the effect was most pronounced at an implant diameter of 1.2 mm. The use of implant diameters of 1.6 mm and 2.0 mm produced no significant difference in implant stability when either a CF or SF was applied. When considering the use of an implant to perform three-dimensional control on the teeth, the implant diameter chosen should be > 1.2 mm.

  10. Acute Oxidative Effect and Muscle Damage after a Maximum 4 Min Test in High Performance Athletes.

    Directory of Open Access Journals (Sweden)

    Heros Ribeiro Ferreira

    Full Text Available The purpose of this investigation was to determine lipid peroxidation markers, physiological stress and muscle damage in elite kayakers in response to a maximum 4-min kayak ergometer test (KE test, and possible correlations with individual 1000m kayaking performances. The sample consisted of twenty-three adult male and nine adult female elite kayakers, with more than three years' experience in international events, who voluntarily took part in this study. The subjects performed a 10-min warm-up, followed by a 2-min passive interval, before starting the test itself, which consisted of a maximum 4-min work paddling on an ergometer; right after the end of the test, an 8 ml blood sample was collected for analysis. 72 hours after the test, all athletes took part in an official race, when then it was possible to check their performance in the on site K1 1000m test (P1000m. The results showed that all lipoproteins and hematological parameters tested presented a significant difference (p≤0.05 after exercise for both genders. In addition, parameters related to muscle damage such as lactate dehydrogenase (LDH and creatine kinase (CK presented significant differences after stress. Uric acid presented an inverse correlation with the performance (r = -0.76, while CK presented a positive correlation (r = 0.46 with it. Based on these results, it was possible to verify muscle damage and the level of oxidative stress caused by indoor training with specific ergometers for speed kayaking, highlighting the importance of analyzing and getting to know the physiological responses to this type of training, in order to provide information to coaches and optimize athletic performance.

  11. Effect of residual stress on the nanoindentation response of (100) copper single crystal

    International Nuclear Information System (INIS)

    Zhu, Li-na; Xu, Bin-shi; Wang, Hai-dou; Wang, Cheng-biao

    2012-01-01

    Experimental measurements were used to investigate the effect of residual stress on the nanoindentation of (100) copper single crystal. Equi-biaxial tensile and compressive stresses were applied to the copper single crystal using a special designed apparatus. It was found that residual stresses greatly affected peak load, curvature of the loading curve, elastically recovered depth, residual depth, indentation work, pile-up amount and contact area. The Suresh and Giannakopoulos and Lee and Kwon methods were used to calculate the residual stresses from load-depth data and morphology observation of nanoindents using atomic force microscopy. Comparison of the obtained results with stress values from strain gage showed that the residual stresses analyzed from the Suresh and Giannakopoulos model agreed well with the applied stresses. -- Highlights: ► Residual stresses greatly affected various nanoindentation parameters. ► The contact area can be accurately measured from AFM observation. ► The residual stresses analyzed from the S and G model agreed well with applied stresses.

  12. The residual stress distribution in welded pipe inner surface of stainless steel from the nuclear power plant in Ringhals

    International Nuclear Information System (INIS)

    Larsson, L.E.

    1984-06-01

    The axial residual stress distribution on the inner surface of welded pipes of stainless steel SS 2333 (AISI 304) have been measured using the X-ray diffraction technique. Four halves of two pipes with the outer diameter of 114 mm and wall thickness of 10 mm were investigated. The result on the pipe inner surface shows compressive stresses in the weld metal and tensile stresses within a region between 8-23 mm with a maximum of 180MPa at a distance of 17 mm from the weld centerline. The maximum axial and circumferential residual stresses on the pipe outer surface are of the magnitude of 100 MPa. By cutting the pipes into two halves these stresses are relaxed by about 35 MPa. (author)

  13. Design for limit stresses of orange fruits (Citrus sinensis under axial and radial compression as related to transportation and storage design

    Directory of Open Access Journals (Sweden)

    Christopher Chukwutoo Ihueze

    2017-01-01

    Full Text Available This article employed the Hertz contact stress theory and the finite element method to evaluate the maximum contact pressure and the limit stresses of orange fruit under transportation and storage. The elastic properties of orange fruits subjected to axial and axial contact were measured such that elastic limit force, elastic modulus, Poisson’s ratio and bioyield stress were obtained as 18 N, 0.691 MPa, 0.367, 0.009 MPa for axial compression and for radial loading were 15.69 N, 0.645 MPa, 0.123, 0.010 MPa. The Hertz maximum contact pressure was estimated for axial and radial contacts as 0.036 MPa. The estimated limiting yield stress estimated as von Mises stresses for the induced surface stresses of the orange topologies varied from 0.005 MPa–0.03 MPa. Based on the distortion energy theory (DET the yield strength of orange fruit is recommended as 0.03 MPa while based on the maximum shear stress theory (MSST is 0.01 MPa for the design of orange transportation and storage system.

  14. Impact of self-esteem and sex on stress reactions.

    Science.gov (United States)

    Kogler, Lydia; Seidel, Eva-Maria; Metzler, Hannah; Thaler, Hanna; Boubela, Roland N; Pruessner, Jens C; Kryspin-Exner, Ilse; Gur, Ruben C; Windischberger, Christian; Moser, Ewald; Habel, Ute; Derntl, Birgit

    2017-12-08

    Positive self-evaluation is a major psychological resource modulating stress coping behavior. Sex differences have been reported in self-esteem as well as stress reactions, but so far their interactions have not been investigated. Therefore, we investigated sex-specific associations of self-esteem and stress reaction on behavioral, hormonal and neural levels. We applied a commonly used fMRI-stress task in 80 healthy participants. Men compared to women showed higher activation during stress in hippocampus, precuneus, superior temporal gyrus (STG) and insula. Furthermore, men outperformed women in the stress task and had higher cortisol and testosterone levels than women after stress. Self-esteem had an impact on precuneus, insula and STG activation during stress across the whole group. During stress, men recruit regions associated with emotion and stress regulation, self-referential processing and cognitive control more strongly than women. Self-esteem affects stress processing, however in a sex-independent fashion: participants with lower self-esteem show higher activation of regions involved in emotion and stress regulation, self-referential processing and cognitive control. Taken together, our data suggest that men are more engaged during the applied stress task. Across women and men, lower self-esteem increases the effort in emotion and stress processing and cognitive control, possibly leading to self-related thoughts in stressful situations.

  15. Stress Analysis of Occlusal Forces in Canine Teeth and Their Role in the Development of Non-Carious Cervical Lesions: Abfraction

    Directory of Open Access Journals (Sweden)

    Shihab A. Romeed

    2012-01-01

    Full Text Available Non-carious cervical tooth lesions for many decades were attributed to the effects of abrasion and erosion mainly through toothbrush trauma, abrasive toothpaste, and erosive acids. However, though the above may be involved, more recently a biomechanical theory for the formation of these lesions has arisen, and the term abfraction was coined. The aim of this study was to investigate the biomechanics of abfraction lesions in upper canine teeth under axial and lateral loading conditions using a three-dimensional finite element analysis. An extracted human upper canine tooth was scanned by μCT machine (Skyscan, Belgium. These μCT scans were segmented, reconstructed, and meshed using ScanIP (Simpleware, Exeter, UK to create a three-dimensional finite element model. A 100 N load was applied axially at the incisal edge and laterally at 45° midpalatally to the long axis of the canine tooth. Separately, 200 N axial and non-axial loads were applied simultaneously to the tooth. It was found that stresses were concentrated at the CEJ in all scenarios. Lateral loading produced maximum stresses greater than axial loading, and pulp tissues, however, experienced minimum levels of stresses. This study has contributed towards the understanding of the aetiology of non-carious cervical lesions which is a key in their clinical management.

  16. Stress analysis of a rupture disk

    International Nuclear Information System (INIS)

    Werne, R.W.

    1975-04-01

    The results of an elastic stress analysis of the rupture disk for an internal pressure of 45.5 MPa (6600 psi) indicate that the maximum von Mises stresses occur in the membrane and are on the order of 483 to 690 MPa (70,000 psi). This far exceeds the yield of the membrane material of 207 MPa (30,000 psi). These high stresses are expected since the membrane is designed to burst at that design pressure. The von Mises stresses in the rest of the body are less than 138 MPa (20,000 psi). An elastic-plastic analysis of the membrane alone subjected to the 45.5 MPa (6600 psi) pressure indicates that it becomes plastically unstable, i.e., it continues to deform under constant load. A second load case with a constant 6.9 MPa (1000 psi) pressure throughout the entire body (i.e., after release of pressure by burst of the membrane) was analyzed. The results indicate that the elastic von Mises stresses are less than 26.7 MPa (3880 psi) throughout the body. (U.S.)

  17. Effects of stress on the oxide layer thickness and post-oxidation creep strain of zircaloy-4

    International Nuclear Information System (INIS)

    Lim, Sang Ho; Yoon, Young Ku

    1986-01-01

    Effects of compressive stress generated in the oxide layer and its subsequent relief on oxidation rate and post-oxidation creep characteristics of zircaloy-4 were investigated by oxidation studies in steam with and without applied tensile stress and by creep testing at 700 deg C in high purity argon. The thickness of oxide layer increased with the magnitude of tensile stress applied during oxidation at 650 deg C in steam whereas similar phenomenon was not observed during oxidation at 800 deg C. Zircaloy-4 specimens oxidized at 600 deg C in steam without applied stress exhibited higher creep strain than that shown by unoxidized specimens when creep-tested in argon. Zircaloy-4 specimens oxidized at 600 deg C steam under the applied stress of 8.53MPa and oxidized at 800 deg C under the applied stress of 0 and 8.53MPa exhibited lower strain than that shown by unoxidized specimen. The above experimental results were accounted for on the basis of interactions among applied stress during oxidation, compressive stress generated in the oxide layer and elasticity of zircaloy-4 matrix. (Author)

  18. Measurement and interpretation of threshold stress intensity factors for steels in high-pressure hydrogen gas.

    Energy Technology Data Exchange (ETDEWEB)

    Dadfarnia, Mohsen (University of Illinois at Urbana-Champaign, Urbana, IL); Nibur, Kevin A.; San Marchi, Christopher W.; Sofronis, Petros (University of Illinois at Urbana-Champaign, Urbana, IL); Somerday, Brian P.; Foulk, James W., III; Hayden, Gary A. (CP Industries, McKeesport, PA)

    2010-07-01

    Threshold stress intensity factors were measured in high-pressure hydrogen gas for a variety of low alloy ferritic steels using both constant crack opening displacement and rising crack opening displacement procedures. The sustained load cracking procedures are generally consistent with those in ASME Article KD-10 of Section VIII Division 3 of the Boiler and Pressure Vessel Code, which was recently published to guide design of high-pressure hydrogen vessels. Three definitions of threshold were established for the two test methods: K{sub THi}* is the maximum applied stress intensity factor for which no crack extension was observed under constant displacement; K{sub THa} is the stress intensity factor at the arrest position for a crack that extended under constant displacement; and K{sub JH} is the stress intensity factor at the onset of crack extension under rising displacement. The apparent crack initiation threshold under constant displacement, K{sub THi}*, and the crack arrest threshold, K{sub THa}, were both found to be non-conservative due to the hydrogen exposure and crack-tip deformation histories associated with typical procedures for sustained-load cracking tests under constant displacement. In contrast, K{sub JH}, which is measured under concurrent rising displacement and hydrogen gas exposure, provides a more conservative hydrogen-assisted fracture threshold that is relevant to structural components in which sub-critical crack extension is driven by internal hydrogen gas pressure.

  19. A maximum power point tracking for photovoltaic-SPE system using a maximum current controller

    Energy Technology Data Exchange (ETDEWEB)

    Muhida, Riza [Osaka Univ., Dept. of Physical Science, Toyonaka, Osaka (Japan); Osaka Univ., Dept. of Electrical Engineering, Suita, Osaka (Japan); Park, Minwon; Dakkak, Mohammed; Matsuura, Kenji [Osaka Univ., Dept. of Electrical Engineering, Suita, Osaka (Japan); Tsuyoshi, Akira; Michira, Masakazu [Kobe City College of Technology, Nishi-ku, Kobe (Japan)

    2003-02-01

    Processes to produce hydrogen from solar photovoltaic (PV)-powered water electrolysis using solid polymer electrolysis (SPE) are reported. An alternative control of maximum power point tracking (MPPT) in the PV-SPE system based on the maximum current searching methods has been designed and implemented. Based on the characteristics of voltage-current and theoretical analysis of SPE, it can be shown that the tracking of the maximum current output of DC-DC converter in SPE side will track the MPPT of photovoltaic panel simultaneously. This method uses a proportional integrator controller to control the duty factor of DC-DC converter with pulse-width modulator (PWM). The MPPT performance and hydrogen production performance of this method have been evaluated and discussed based on the results of the experiment. (Author)

  20. Theoretical Evaluation of the Maximum Work of Free-Piston Engine Generators

    Science.gov (United States)

    Kojima, Shinji

    2017-01-01

    Utilizing the adjoint equations that originate from the calculus of variations, we have calculated the maximum thermal efficiency that is theoretically attainable by free-piston engine generators considering the work loss due to friction and Joule heat. Based on the adjoint equations with seven dimensionless parameters, the trajectory of the piston, the histories of the electric current, the work done, and the two kinds of losses have been derived in analytic forms. Using these we have conducted parametric studies for the optimized Otto and Brayton cycles. The smallness of the pressure ratio of the Brayton cycle makes the net work done negative even when the duration of heat addition is optimized to give the maximum amount of heat addition. For the Otto cycle, the net work done is positive, and both types of losses relative to the gross work done become smaller with the larger compression ratio. Another remarkable feature of the optimized Brayton cycle is that the piston trajectory of the heat addition/disposal process is expressed by the same equation as that of an adiabatic process. The maximum thermal efficiency of any combination of isochoric and isobaric heat addition/disposal processes, such as the Sabathe cycle, may be deduced by applying the methods described here.