WorldWideScience

Sample records for maximum adsorption capacity

  1. Cadmium adsorption by coal combustion ashes-based sorbents-Relationship between sorbent properties and adsorption capacity

    Energy Technology Data Exchange (ETDEWEB)

    Balsamo, Marco; Di Natale, Francesco; Erto, Alessandro; Lancia, Amedeo [Dipartimento di Ingegneria Chimica, Universita degli Studi di Napoli Federico II, Piazzale Vincenzo Tecchio 80, 80125 Napoli (Italy); Montagnaro, Fabio, E-mail: fabio.montagnaro@unina.it [Dipartimento di Chimica, Universita degli Studi di Napoli Federico II, Complesso Universitario di Monte Sant' Angelo, 80126 Napoli (Italy); Santoro, Luciano [Dipartimento di Chimica, Universita degli Studi di Napoli Federico II, Complesso Universitario di Monte Sant' Angelo, 80126 Napoli (Italy)

    2011-03-15

    A very interesting possibility of coal combustion ashes reutilization is their use as adsorbent materials, that can also take advantage from proper beneficiation techniques. In this work, adsorption of cadmium from aqueous solutions was taken into consideration, with the emphasis on the intertwining among waste properties, beneficiation treatments, properties of the beneficiated materials and adsorption capacity. The characterization of three solid materials used as cadmium sorbents (as-received ash, ash sieved through a 25 {mu}m-size sieve and demineralized ash) was carried out by chemical analysis, infrared spectroscopy, laser granulometry and mercury porosimetry. Cadmium adsorption thermodynamic and kinetic tests were conducted at room temperature, and test solutions were analyzed by atomic absorption spectrophotometry. Maximum specific adsorption capacities resulted in the range 0.5-4.3 mg g{sup -1}. Different existing models were critically considered to find out an interpretation of the controlling mechanism for adsorption kinetics. In particular, it was observed that for lower surface coverage the adsorption rate is governed by a linear driving force while, once surface coverage becomes significant, mechanisms such as the intraparticle micropore diffusion may come into play. Moreover, it was shown that both external fluid-to-particle mass transfer and macropore diffusion hardly affect the adsorption process, which was instead regulated by intraparticle micropore diffusion: characteristic times for this process ranged from 4.1 to 6.1 d, and were fully consistent with the experimentally observed equilibrium times. Results were discussed in terms of the relationship among properties of beneficiated materials and cadmium adsorption capacity. Results shed light on interesting correlations among solid properties, cadmium capture rate and maximum cadmium uptake.

  2. CoFe2O4@MIL-100(Fe) hybrid magnetic nanoparticles exhibit fast and selective adsorption of arsenic with high adsorption capacity

    Science.gov (United States)

    Yang, Ji-Chun; Yin, Xue-Bo

    2017-01-01

    In this study, we report the synthesis and application of mesoporous CoFe2O4@MIL-100(Fe) hybrid magnetic nanoparticles (MNPs) for the simultaneous removal of inorganic arsenic (iAs). The hybrid adsorbent had a core-shell and mesoporous structure with an average diameter of 260 nm. The nanoscale size and mesoporous character impart a fast adsorption rate and high adsorption capacity for iAs. In total, 0.1 mg L−1 As(V) and As(III) could be adsorbed within 2 min, and the maximum adsorption capacities were 114.8 mg g−1 for As(V) and 143.6 mg g−1 for As(III), higher than most previously reported adsorbents. The anti-interference capacity for iAs adsorption was improved by the electrostatic repulsion and size exclusion effects of the MIL-100(Fe) shell, which also decreased the zero-charge point of the hybrid absorbent for a broad pH adsorption range. The adsorption mechanisms of iAs on the MNPs are proposed. An Fe-O-As structure was formed on CoFe2O4@MIL-100(Fe) through hydroxyl substitution with the deprotonated iAs species. Monolayer adsorption of As(V) was observed, while hydrogen bonding led to the multi-layer adsorption of neutral As(III) for its high adsorption capacity. The high efficiency and the excellent pH- and interference-tolerance capacities of CoFe2O4@MIL-100(Fe) allowed effective iAs removal from natural water samples, as validated with batch magnetic separation mode and a portable filtration strategy. PMID:28102334

  3. Complexes of DOTA-bisphosphonate conjugates: probes for determination of adsorption capacity and affinity constants of hydroxyapatite.

    Science.gov (United States)

    Vitha, Tomas; Kubícek, Vojtech; Hermann, Petr; Kolar, Zvonimir I; Wolterbeek, Hubert Th; Peters, Joop A; Lukes, Ivan

    2008-03-04

    The adsorption on hydroxyapatite of three conjugates of a bisphosphonate and a macrocycle having C1, C2, and C3 spacers and their terbium complexes was studied by the radiotracer method using 160Tb as the label. The radiotracer-containing complex of the conjugate with the C3 spacer was used as a probe for the determination of the adsorption parameters of other bisphosphonates that lack a DOTA unit. A physicochemical model describing the competitive adsorption was successfully applied in the fitting of the obtained data. The maximum adsorption capacity of bisphosphonates containing bulky substituents is determined mainly by their size. For bisphosphonates having no DOTA moiety, the maximum adsorption capacity is determined by the electrostatic repulsion between negatively charged bisphosphonate groups. Compounds with a hydroxy or amino group attached to the alpha-carbon atom show higher affinities. Macrocyclic compounds containing a short spacer between the different bisphosphonic acid groups and the macrocyclic unit exhibit high affinities, indicating a synergic effect of the bisphosphonic and the macrocyclic groups during adsorption. The competition method described uses a well-characterized complex and allows a simple evaluation of the adsorption behavior of bisphosphonates. The application of the macrocycle-bisphosphonate conjugates allows easy radiolabeling via complexation of a suitable metal isotope.

  4. Langmuir and Freundlich Isotherm Adsorption Equations for Chromium (VI) Waste Adsorption by Zeolite

    International Nuclear Information System (INIS)

    Murni Handayani; Eko Sulistiyono

    2009-01-01

    The research of chromium (VI) waste adsorption by zeolite has done. Wastes which are produced by Industries, both radioactive waste and heavy metal waste need done more processing so that they are not endanger environment and human health. Zeolite has very well-ordered crystal form with cavity each other to way entirely so that cause surface wide of zeolite become very big and very good as adsorbents. This research intends to know appropriate isotherm adsorption method to determine maximum capacity of zeolite to chromium (VI) waste. The equations which used in adsorption process are Langmuir and Freundlich isotherm Adsorption equations. The instrument was used in adsorption process by using Atomic Adsorption Spectroscopy (AAS). The experiment result showed that the biggest mass of chromium (VI) metal ion which was absorb by zeolite in 20 ppm concentration was 7.71 mg/gram zeolite. Adsorption process of Chromium (VI) waste by zeolite followed Langmuir and Freundlich isotherm equations with R 2 >0,9 . Appropriate equation to determine maximum adsorption capacity of zeolite for chromium (VI) waste adsorption is Langmuir equation. The maximum adsorption capacity of zeolite is 52.25 mg/gram. (author)

  5. Adsorption Capacity of a Volcanic Rock—Used in ConstructedWetlands—For Carbamazepine Removal, and Its Modification with Biofilm Growth

    Directory of Open Access Journals (Sweden)

    Allan Tejeda

    2017-09-01

    Full Text Available In this study, the aim was to evaluate the adsorption capacity of a volcanic rock commonly used in Mexico as filter medium in constructed wetlands (locally named tezontle for carbamazepine (CBZ adsorption, as well as to analyze the change in its capacity with biofilm growth. Adsorption essays were carried out under batch conditions by evaluating two particle sizes of tezontle, two values of the solution pH, and two temperatures; from these essays, optimal conditions for carbamazepine adsorption were obtained. The optimal conditions (pH 8, 25 °C and 0.85–2.0 mm particle-size were used to evaluate the adsorption capacity of tezontle with biofilm, which was promoted through tezontle exposition to wastewater in glass columns, for six months. The maximum adsorption capacity of clean tezontle was 3.48 µg/g; while for the tezontle with biofilm, the minimum value was 1.75 µg/g (after the second week and the maximum, was 3.3 µg/g (after six months with a clear tendency of increasing over time. The adsorption kinetic was fitted to a pseudo-second model for both tezontle without biofilm and with biofilm, thus indicating a chemisorption process. On clean tezontle, both acid active sites (AAS and basic active sites (BAS were found in 0.087 and 0.147 meq/g, respectively. The increase in the adsorption capacity of tezontle with biofilm, along the time was correlated with a higher concentration of BAS, presumably from a greater development of biofilm. The presence of biofilm onto tezontle surface was confirmed through FTIR and FE-SEM. These results confirm the essential role of filter media for pharmaceutical removal in constructed wetlands (CWs.

  6. The effect of food and ice cream on the adsorption capacity of paracetamol to high surface activated charcoal

    DEFF Research Database (Denmark)

    Høgberg, Lotte Christine Groth; Angelo, Helle Riis; Christophersen, Anne Bolette

    2003-01-01

    , the reductions compared to control (Hoegberg et al. 2002) varied between 11% and 26%. Even though a reduction in drug adsorption to activated charcoal was observed when food mixture or ice cream was added, the remaining adsorption capacity of both types of activated charcoal theoretically was still able......The effect of added food mixture (as if food was present in the stomach of an intoxicated patient) or 4 different types of ice cream (added as a flavouring and lubricating agent) on the adsorption of paracetamol (acetaminophen) to 2 formulations of activated charcoal was determined in vitro......, and paracetamol were mixed with either food mixture or ice cream followed by one hr incubation. The maximum adsorption capacity of paracetamol to activated charcoal was calculated using Langmuirs adsorption isotherm. Paracetamol concentration was analyzed using high pressure liquid chromatography. In the presence...

  7. Adsorption capacity of methylene blue, an organic pollutant, by montmorillonite clay

    KAUST Repository

    Feddal, I.; Ramdani, Amina; Taleb, Safia; Gaigneaux, E. M.; Batis, Narjè s Harrouch; Ghaffour, NorEddine

    2013-01-01

    The isotherms and kinetics of the adsorption of a cationic dye in aqueous solution, methylene blue, on a local Algerian montmorillonite clay mineral (raw, sodium and thermally activated at 300 and 500°C) were determined experimentally. Various parameters influencing the adsorption were optimized, mainly solid-liquid contact time, mass of adsorbent, initial concentration of dye, pH of the solution and temperature. Results showed that the adsorption kinetics were fast: 30 min for the raw clay mineral, and 20 min for sodium clay mineral (SC) and thermally activated at 300°C, whereas with the clay mineral calcined at 500°C, the equilibrium was reached after 150 min only. The maximum adsorption capacity was reached at pH 6.6. Results deducted from the adsorption isotherms also showed that the retention follows the Langmuir model. In addition, it was found that the kinetics were in the order of 2 (K = 2.457 × 106 g/mg.h) for sodium clay and were limited by an intra-particle diffusion. SC was found to be a better adsorbent to remove methylene blue from industrial wastewater. © 2013 Balaban Desalination Publications. All rights reserved.

  8. Adsorption capacity of methylene blue, an organic pollutant, by montmorillonite clay

    KAUST Repository

    Feddal, I.

    2013-11-19

    The isotherms and kinetics of the adsorption of a cationic dye in aqueous solution, methylene blue, on a local Algerian montmorillonite clay mineral (raw, sodium and thermally activated at 300 and 500°C) were determined experimentally. Various parameters influencing the adsorption were optimized, mainly solid-liquid contact time, mass of adsorbent, initial concentration of dye, pH of the solution and temperature. Results showed that the adsorption kinetics were fast: 30 min for the raw clay mineral, and 20 min for sodium clay mineral (SC) and thermally activated at 300°C, whereas with the clay mineral calcined at 500°C, the equilibrium was reached after 150 min only. The maximum adsorption capacity was reached at pH 6.6. Results deducted from the adsorption isotherms also showed that the retention follows the Langmuir model. In addition, it was found that the kinetics were in the order of 2 (K = 2.457 × 106 g/mg.h) for sodium clay and were limited by an intra-particle diffusion. SC was found to be a better adsorbent to remove methylene blue from industrial wastewater. © 2013 Balaban Desalination Publications. All rights reserved.

  9. Evaluation of the potassium adsorption capacity of a potassium adsorption filter during rapid blood transfusion.

    Science.gov (United States)

    Matsuura, H; Akatsuka, Y; Muramatsu, C; Isogai, S; Sugiura, Y; Arakawa, S; Murayama, M; Kurahashi, M; Takasuga, H; Oshige, T; Yuba, T; Mizuta, S; Emi, N

    2015-05-01

    The concentration of extracellular potassium in red blood cell concentrates (RCCs) increases during storage, leading to risk of hyperkalemia. A potassium adsorption filter (PAF) can eliminate the potassium at normal blood transfusion. This study aimed to investigate the potassium adsorption capacity of a PAF during rapid blood transfusion. We tested several different potassium concentrations under a rapid transfusion condition using a pressure bag. The adsorption rates of the 70-mEq/l model were 76·8%. The PAF showed good potassium adsorption capacity, suggesting that this filter may provide a convenient method to prevent hyperkalemia during rapid blood transfusion. © 2015 International Society of Blood Transfusion.

  10. Adsorption of multi-heavy metals Zn and Cu onto surficial sediments: modeling and adsorption capacity analysis.

    Science.gov (United States)

    Li, Shanshan; Zhang, Chen; Wang, Meng; Li, Yu

    2014-01-01

    Improved multiple regression adsorption models (IMRAMs) was developed to estimate the adsorption capacity of the components [Fe oxides (Fe), Mn oxides (Mn), organic materials (OMs), residuals] in surficial sediments for multi-heavy metal Zn and Cu. IMRAM is an improved version over MRAM, which introduces a computer program in the model developing process. As MRAM, Zn(Cu) IMRAM, and Cu(Zn) IMRAM again confirmed that there is significant interaction effects that control the adsorption of compounded Zn and Cu, which was neglected by additional adsorption model. The verification experiment shows that the relative deviation of the IMRAMs is less than 13%. It is revealed by the IMRAMs that Mn, which has the greatest adsorption capability for compounded Zn and Cu (54.889 and 161.180 mg/l, respectively), follows by interference adsorption capacity of Fe/Mn (-1.072 and -24.591 mg/l respectively). Zn and Cu influence each other through different mechanisms. When Zn is the adsorbate, compounded Cu mainly affects the adsorption capacities of Fe/Mn and Fe/Mn/OMs; while when Cu is the adsorbate, compounded Zn mainly exerts its effect on Mn, Fe/Mn, and Mn/OMs. It also shows that the compounded Zn or Cu weakened the interference adsorption of Fe/Mn, and meanwhile, strengthened the interference adsorption of Mn/OMs.

  11. Evaluation of adsorption capacity of acetaminophen on activated ...

    African Journals Online (AJOL)

    Purpose: To investigate varying dosage forms of activated charcoal obtained from community pharmacy outlets in Nigeria for their adsorption capacity when challenged with acetaminophen. Methods: Equilibruim kinetics of acetaminophen adsorption onto activated charcoal surface was determined via batch studies at ...

  12. Environmentally benign working pairs for adsorption refrigeration

    International Nuclear Information System (INIS)

    Cui Qun; Tao Gang; Chen Haijun; Guo Xinyue; Yao Huqing

    2005-01-01

    This paper begins from adsorption working pairs: water and ethanol were selected as refrigerants; 13x molecular sieve, silica gel, activated carbon, adsorbent NA and NB, proposed by authors, were selected as adsorbents, and the performance of adsorption working pairs in adsorption refrigeration cycle was studied. The adsorption isotherms of adsorbents (NA and NB) were obtained by high-vacuum gravimetric method. Desorption properties of adsorbents were analyzed and compared by thermal analysis method. The performance of adsorption refrigeration was studied on simulation device of adsorption refrigeration cycle. After presentation of adsorption isotherms, the thermodynamic performance for their use in adsorption refrigeration system was calculated. The results show: (1) the maximum adsorption capacity of water on adsorbent NA reaches 0.7 kg/kg, and the maximum adsorption capacity of ethanol on adsorbent NB is 0.68 kg/kg, which is three times that of ethanol on activated carbon, (2) the refrigeration capacity of NA-water working pair is 922 kJ/kg, the refrigeration capacity of NB-ethanol is 2.4 times that of activated carbon-methanol, (3) as environmental friendly and no public hazard adsorption working pair, NA-H 2 O and NB-ethanol can substitute activated carbon-methanol in adsorption refrigeration system using low-grade heat source

  13. Effect of the impregnation of carbon cloth with ethylenediaminetetraacetic acid on its adsorption capacity for the adsorption of several metal ions

    International Nuclear Information System (INIS)

    Afkhami, Abbas; Madrakian, Tayyebeh; Amini, Azadeh; Karimi, Ziba

    2008-01-01

    Effect of loading of C-cloth with ethylenediaminetetraacetic acid (EDTA) on the adsorption capacity for the adsorption of several metal cations was studied. The concentration of ions in the solution was monitored using atomic absorption spectrometry. The adsorption isotherm data for the cations were derived at 25 deg. C and treated according to Langmuir and Freundlich models and was found that for most of the investigated cations Langmuir model was more successful. Adsorption capacities determined from Langmuir isotherms. Loading of the adsorbent with EDTA increased the adsorption capacity for the adsorption of all of the investigation ions

  14. Adsorption of lysozyme unto silica and polystyrene surfaces in ...

    African Journals Online (AJOL)

    The adsorption capacity of lysozyme (chicken egg white) from aqueous solutions unto silica and polystyrene interfaces was studied at varying lysozyme concentrations and ionic strength. The studies revealed an increase in adsorption capacity with increase in concentration and with maximum adsorption densities of 1.34 ...

  15. Preparation and properties of chitosan-metal complex: Some factors influencing the adsorption capacity for dyes in aqueous solution.

    Science.gov (United States)

    Rashid, Sadia; Shen, Chensi; Yang, Jing; Liu, Jianshe; Li, Jing

    2018-04-01

    Chitosan-metal complexes have been widely studied in wastewater treatment, but there are still various factors in complex preparation which are collectively responsible for improving the adsorption capacity need to be further studied. Thus, this study investigates the factors affecting the adsorption ability of chitosan-metal complex adsorbents, including various kinds of metal centers, different metal salts and crosslinking degree. The results show that the chitosan-Fe(III) complex prepared by sulfate salts exhibited the best adsorption efficiency (100%) for various dyes in very short time duration (10min), and its maximum adsorption capacity achieved 349.22mg/g. The anion of the metal salt which was used in preparation played an important role to enhance the adsorption ability of chitosan-metal complex. SO 4 2- ions not only had the effect of crosslinking through electrostatic interaction with amine group of chitosan polymer, but also could facilitate the chelation of metal ions with chitosan polymer during the synthesis process. Additionally, the pH sensitivity and the sensitivity of ionic environment for chitosan-metal complex were analyzed. We hope that these factors affecting the adsorption of the chitosan-metal complex can help not only in optimizing its use but also in designing new chitosan-metal based complexes. Copyright © 2017. Published by Elsevier B.V.

  16. High capacity adsorption media and method of producing

    Science.gov (United States)

    Tranter, Troy J.; Mann, Nicholas R.; Todd, Terry A.; Herbst, Ronald S.

    2010-10-05

    A method of producing an adsorption medium to remove at least one constituent from a feed stream. The method comprises dissolving and/or suspending at least one metal compound in a solvent to form a metal solution, dissolving polyacrylonitrile into the metal solution to form a PAN-metal solution, and depositing the PAN-metal solution into a quenching bath to produce the adsorption medium. The at least one constituent, such as arsenic, selenium, or antimony, is removed from the feed stream by passing the feed stream through the adsorption medium. An adsorption medium having an increased metal loading and increased capacity for arresting the at least one constituent to be removed is also disclosed. The adsorption medium includes a polyacrylonitrile matrix and at least one metal hydroxide incorporated into the polyacrylonitrile matrix.

  17. Comparative study of carbon nanotubes and granular activated carbon: Physicochemical properties and adsorption capacities.

    Science.gov (United States)

    Gangupomu, Roja Haritha; Sattler, Melanie L; Ramirez, David

    2016-01-25

    The overall goal was to determine an optimum pre-treatment condition for carbon nanotubes (CNTs) to facilitate air pollutant adsorption. Various combinations of heat and chemical pre-treatment were explored, and toluene was tested as an example hazardous air pollutant adsorbate. Specific objectives were (1) to characterize raw and pre-treated single-wall (SW) and multi-wall (MW) CNTs and compare their physical/chemical properties to commercially available granular activated carbon (GAC), (2) to determine the adsorption capacities for toluene onto pre-treated CNTs vs. GAC. CNTs were purified via heat-treatment at 400 °C in steam, followed by nitric acid treatment (3N, 5N, 11N, 16N) for 3-12 h to create openings to facilitate adsorption onto interior CNT sites. For SWNT, Raman spectroscopy showed that acid treatment removed impurities up to a point, but amorphous carbon reformed with 10h-6N acid treatment. Surface area of SWNTs with 3 h-3N acid treatment (1347 m(2)/g) was higher than the raw sample (1136 m(2)/g), and their toluene maximum adsorption capacity was comparable to GAC. When bed effluent reached 10% of inlet concentration (breakthrough indicating time for bed cleaning), SWNTs had adsorbed 240 mg/g of toluene, compared to 150 mg/g for GAC. Physical/chemical analyses showed no substantial difference for pre-treated vs. raw MWNTs. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Influence of the inherent properties of drinking water treatment residuals on their phosphorus adsorption capacities.

    Science.gov (United States)

    Bai, Leilei; Wang, Changhui; He, Liansheng; Pei, Yuansheng

    2014-12-01

    Batch experiments were conducted to investigate the phosphorus (P) adsorption and desorption on five drinking water treatment residuals (WTRs) collected from different regions in China. The physical and chemical characteristics of the five WTRs were determined. Combined with rotated principal component analysis, multiple regression analysis was used to analyze the relationship between the inherent properties of the WTRs and their P adsorption capacities. The results showed that the maximum P adsorption capacities of the five WTRs calculated using the Langmuir isotherm ranged from 4.17 to 8.20mg/g at a pH of 7 and further increased with a decrease in pH. The statistical analysis revealed that a factor related to Al and 200 mmol/L oxalate-extractable Al (Alox) accounted for 36.5% of the variations in the P adsorption. A similar portion (28.5%) was attributed to an integrated factor related to the pH, Fe, 200 mmol/L oxalate-extractable Fe (Feox), surface area and organic matter (OM) of the WTRs. However, factors related to other properties (Ca, P and 5 mmol/L oxalate-extractable Fe and Al) were rejected. In addition, the quantity of P desorption was limited and had a significant negative correlation with the (Feox+Alox) of the WTRs (p<0.05). Overall, WTRs with high contents of Alox, Feox and OM as well as large surface areas were proposed to be the best choice for P adsorption in practical applications. Copyright © 2014. Published by Elsevier B.V.

  19. Maximum physical capacity testing in cancer patients undergoing chemotherapy

    DEFF Research Database (Denmark)

    Knutsen, L.; Quist, M; Midtgaard, J

    2006-01-01

    BACKGROUND: Over the past few years there has been a growing interest in the field of physical exercise in rehabilitation of cancer patients, leading to requirements for objective maximum physical capacity measurement (maximum oxygen uptake (VO(2max)) and one-repetition maximum (1RM)) to determin...... early in the treatment process. However, the patients were self-referred and thus highly motivated and as such are not necessarily representative of the whole population of cancer patients treated with chemotherapy....... in performing maximum physical capacity tests as these motivated them through self-perceived competitiveness and set a standard that served to encourage peak performance. CONCLUSION: The positive attitudes in this sample towards maximum physical capacity open the possibility of introducing physical testing...

  20. Highly Efficient Adsorption of Copper Ions by a PVP-Reduced Graphene Oxide Based On a New Adsorptions Mechanism

    Institute of Scientific and Technical Information of China (English)

    Yongji Zhang; HuiJuan Chi; WenHui Zhang; Youyi Sun; Qing Liang; Yu Gu; Riya Jing

    2014-01-01

    Polyvinylpyrrolidone-reduced graphene oxide was prepared by modified hummers method and was used as adsorbent for removing Cu ions from wastewater. The effects of contact time and ions concentration on adsorption capacity were examined. The maximum adsorption capacity of 1689 mg/g was observed at an initial p H value of 3.5 after agitating for 10 min. It was demonstrated that polyvinylpyrrolidone-reduced graphene oxide had a huge adsorption capacity for Cu ions, which was 10 times higher than maximal value reported in previous works. The adsorption mechanism was also discussed by density functional theory. It demonstrates that Cu ions are attracted to surface of reduced graphene oxide by C atoms in reduced graphene oxide modified by polyvinylpyrrolidone through physisorption processes, which may be responsible for the higher adsorption capacity. Our results suggest that polyvinylpyrrolidone-reduced graphene oxide is an effective adsorbent for removing Cu ions in wastewater. It also provides a new way to improve the adsorption capacity of reduced graphene oxide for dealing with the heavy metal ion in wastewater.

  1. Evaluation of Adsorption Capacity of Chitosan-Citral Schiff Base for Wastewater Pre-Treatment in Dairy Industries

    Directory of Open Access Journals (Sweden)

    Desislava K. Tsaneva

    2017-06-01

    Full Text Available In this study, we aimed to evaluate the adsorption capacity of the Schiff base chitosan-citral for its application in dairy wastewater pre-treatment. Chemical oxygen demand (COD reduction was the factor used to evaluate the adsorption efficiency. The maximum COD percentage reduction of 35.3% was obtained at 40.0 °C, pH 9.0, adsorbent dose 15 g L-1, contact time 180 min and agitation speed 100 rpm. It was found that the Langmuir isotherm fitted well the equilibrium data of COD uptake (R2 = 0.968, whereas the kinetic data were best fitted by the pseudo-second order model (R2=0.999. Enhancement of the adsorption efficiency up to 29.8% in dependence of the initial COD concentration of the dairy wastewater was observed by adsorption with the Schiff base chitosan-citral adsorbent compared to the non-modified chitosan at the same experimental conditions. The results indicated that the Schiff base chitosan-citral can be used for dairy wastewater physicochemical pretreatment by adsorption, which might be applied before the biological unit in the wastewater treatment plant to reduce the load.

  2. [Blood plasma protein adsorption capacity of perfluorocarbon emulsion stabilized by proxanol 268 (in vitro and in vivo studies)].

    Science.gov (United States)

    Sklifas, A N; Zhalimov, V K; Temnov, A A; Kukushkin, N I

    2012-01-01

    The adsorption abilities of the perfluorocarbon emulsion stabilized by Proxanol 268 were investigated in vitro and in vivo. In vitro, the saturation point for the blood plasma proteins was nearly reached after five minutes of incubation of the emulsion with human/rabbit blood plasma and was stable for all incubation periods studied. The decrease in volume ratio (emulsion/plasma) was accompanied by the increase in the adsorptive capacity of the emulsion with maximal values at 1/10 (3.2 and 1.5 mg of proteins per 1 ml of the emulsion, for human and rabbit blood plasma, respectively) that was unchanged at lower ratios. In vivo, in rabbits, intravenously injected with the emulsion, the proteins with molecular masses of 12, 25, 32, 44, 55, 70, and 200 kDa were adsorbed by the emulsion (as in vitro) if it was used 6 hours or less before testing. More delayed testing (6 h) revealed elimination of proteins with molecular masses of 25 and 44 kDa and an additional pool of adsorpted new ones of 27, 50, and 150 kDa. Specific adsorptive capacity of the emulsion enhanced gradually after emulsion injection and reached its maximum (3.5-5 mg of proteins per 1 ml of the emulsion) after 24 hours.

  3. Optimization of CO2 adsorption capacity and cyclical adsorption/desorption on tetraethylenepentamine-supported surface-modified hydrotalcite.

    Science.gov (United States)

    Thouchprasitchai, Nutthavich; Pintuyothin, Nuthapol; Pongstabodee, Sangobtip

    2018-03-01

    The objective of this research was to investigate CO 2 adsorption capacity of tetraethylenepentamine-functionalized basic-modified calcined hydrotalcite (TEPA/b-cHT) sorbents at atmospheric pressure formed under varying TEPA loading levels, temperatures, sorbent weight to total gaseous flow rate (W/F) ratios and CO 2 concentrations in the influent gas. The TEPA/b-cHT sorbents were characterized by means of X-ray diffraction (XRD), Fourier transform infrared spectrometry (FT-IR), thermal gravimetric analysis (TGA), Brunauer-Emmet-Teller (BET) analysis of nitrogen (N 2 ) adsorption/desorption and carbon-hydrogen-nitrogen (CHN) elemental analysis. Moreover, a full 2 4 factorial design with three central points at a 95% confidence interval was used to screen important factor(s) on the CO 2 adsorption capacity. It revealed that 85.0% variation in the capacity came from the influence of four main factors and the 15.0% one was from their interactions. A face-centered central composite design response surface method (FCCCD-RSM) was then employed to optimize the condition, the maximal capacity of 5.5-6.1mmol/g was achieved when operating with a TEPA loading level of 39%-49% (W/W), temperature of 76-90°C, W/F ratio of 1.7-2.60(g·sec)/cm 3 and CO 2 concentration of 27%-41% (V/V). The model fitted sufficiently the experimental data with an error range of ±1.5%. From cyclical adsorption/desorption and selectivity at the optimal condition, the 40%TEPA/b-cHT still expressed its effective performance after eight cycles. Copyright © 2017. Published by Elsevier B.V.

  4. Novel hollow microspheres of hierarchical zinc-aluminum layered double hydroxides and their enhanced adsorption capacity for phosphate in water

    International Nuclear Information System (INIS)

    Zhou, Jiabin; Yang, Siliang; Yu, Jiaguo; Shu, Zhan

    2011-01-01

    Highlights: → Hierarchical Zn-Al LDHs hollow microspheres were first synthesized by a simple hydrothermal method using urea as precipitating agent. → The morphology of Zn-Al LDHs can be tailored from irregular platelet to hollow microspheres by simply varying concentrations of urea. → The as-prepared samples exhibit high adsorption capacity (54.1-232 mg/g) for phosphate from aqueous solution. - Abstract: Hollow microspheres of hierarchical Zn-Al layered double hydroxides (LDHs) were synthesized by a simple hydrothermal method using urea as precipitating agent. The morphology and microstructure of the as-prepared samples were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), nitrogen adsorption-desorption isotherms and fourier transform infrared (FTIR) spectroscopy. It was found that the morphology of hierarchical Zn-Al LDHs can be tuned from irregular platelets to hollow microspheres by simply varying concentrations of urea. The effects of initial phosphate concentration and contact time on phosphate adsorption using various Zn-Al LDHs and their calcined products (LDOs) were investigated from batch tests. Our results indicate that the equilibrium adsorption data were best fitted by Langmuir isothermal model, with the maximum adsorption capacity of 54.1-232 mg/g; adsorption kinetics follows the pseudo-second-order kinetic equation and intra-particle diffusion model. In addition, Zn-Al LDOs are shown to be effective adsorbents for removing phosphate from aqueous solutions due to their hierarchical porous structures and high specific surface areas.

  5. Superb adsorption capacity of hierarchical calcined Ni/Mg/Al layered double hydroxides for Congo red and Cr(VI) ions

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Chunsheng [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); College of Environmental & Safety Engineering, Changzhou University, Changzhou 213164 (China); Zhu, Xiaofeng [College of Environmental & Safety Engineering, Changzhou University, Changzhou 213164 (China); Zhu, Bicheng; Jiang, Chuanjia; Le, Yao [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Yu, Jiaguo, E-mail: jiaguoyu@yahoo.com [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)

    2017-01-05

    Highlights: • Ni/Mg/Al layered double hydroxides (NMA-LDHs) synthesized. • NMA-LDHs with hierarchically hollow microsphere structure. • Calcined NMA-LDHs have large adsorption capacities for CR and Cr(VI) ions. - Abstract: The preparation of hierarchical porous materials as catalysts and sorbents has attracted much attention in the field of environmental pollution control. Herein, Ni/Mg/Al layered double hydroxides (NMA-LDHs) hierarchical flower-like hollow microspheres were synthesized by a hydrothermal method. After the NMA-LDHs was calcined at 600 °C, NMA-LDHs transformed into Ni/Mg/Al layered double oxides (NMA-LDOs), which maintained the hierarchical flower-like hollow structure. The crystal phase, morphology, and microstructure of the as-prepared samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy elemental mapping, Fourier transform infrared spectroscopy, and nitrogen adsorption−desorption methods. Both the calcined and non-calcined NMA-LDHs were examined for their performance to remove Congo red (CR) and hexavalent chromium (Cr(VI)) ions in aqueous solution. The maximum monolayer adsorption capacities of CR and Cr(VI) ions over the NMA-LDOs sample were 1250 and 103.4 mg/g at 30 °C, respectively. Thermodynamic studies indicated that the adsorption process was endothermic in nature. In addition, the addition of coexisting anions negatively influenced the adsorption capacity of Cr(VI) ions, in the following order: CO{sub 3}{sup 2−} > SO{sub 4}{sup 2−} > H{sub 2}PO{sub 4}{sup −} > Cl{sup −}. This work will provide new insight into the design and fabrication of advanced adsorption materials for water pollutant removal.

  6. Adsorption of lead and cadmium ions in aqueous solutions onto modified lignin from alkali glycerol delignication

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2004-01-01

    Adsorptions of toxic metal ions (Pb(II) and Cd(II)) onto modified lignin from beech and poplar woods by alkali glycerol delignification are presented in this paper. The material exhibits good adsorption capacity and the adsorption data follow the Langmuir model. The maximum adsorption capacities are 8.2-9.0 and 6.7-7.5 mg/g of the modified lignin for Pb(II) and Cd(II), respectively. The maximum adsorption percentage is 95.8 for Pb(II) for 4 h at 330 K and is 95.0 for Cd(II) for 10 h at 290 K. The adsorption of both the metal ions increased with increasing temperature indicating endothermic nature of the adsorption process. The maximum adsorption percentages of Pb(II) and Cd(II) ions decrease with time till 48 and 42 h and then again increase slightly with time. The adsorption of both heavy metal ions increases with pH. The adsorption of Pb(II) ions reached a maximum at a 5.0 value of pH

  7. Carbon dioxide adsorption in graphene sheets

    Directory of Open Access Journals (Sweden)

    Ashish Kumar Mishra

    2011-09-01

    Full Text Available Control over the CO2 emission via automobiles and industrial exhaust in atmosphere, is one of the major concerns to render environmental friendly milieu. Adsorption can be considered to be one of the more promising methods, offering potential energy savings compared to absorbent systems. Different carbon nanostructures (activated carbon and carbon nanotubes have attracted attention as CO2 adsorbents due to their unique surface morphology. In the present work, we have demonstrated the CO2 adsorption capacity of graphene, prepared via hydrogen induced exfoliation of graphitic oxide at moderate temperatures. The CO2 adsorption study was performed using high pressure Sieverts apparatus and capacity was calculated by gas equation using van der Waals corrections. Physical adsorption of CO2 molecules in graphene was confirmed by FTIR study. Synthesis of graphene sheets via hydrogen exfoliation is possible at large scale and lower cost and higher adsorption capacity of as prepared graphene compared to other carbon nanostructures suggests its possible use as CO2 adsorbent for industrial application. Maximum adsorption capacity of 21.6 mmole/g was observed at 11 bar pressure and room temperature (25 ºC.

  8. An insight into the removal of Cu (II) and Pb (II) by aminopropyl-modified mesoporous carbon CMK-3: Adsorption capacity and mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Hamad, Hussein, E-mail: hussein.hamad@ul.edu.lb [Platform for Research and Analysis in Environmental Sciences (PRASE), Lebanese University, Beirut (Lebanon); Ezzeddine, Zeinab; Lakis, Fatima; Rammal, Hassan [Platform for Research and Analysis in Environmental Sciences (PRASE), Lebanese University, Beirut (Lebanon); Srour, Mortada [Lebanese University, Faculty of Sciences (I), Hadath, Beirut (Lebanon); Hijazi, Akram [Platform for Research and Analysis in Environmental Sciences (PRASE), Lebanese University, Beirut (Lebanon)

    2016-08-01

    In this study, the adsorption of heavy metal ions onto ordered mesoporous carbon CMK-3 was investigated. CMK-3 has been synthesized using SBA-15 as the hard template and then directly amino-functionalized by the treatment with 3-aminopropyltrimethoxysilane (APTMS) without the need of oxidation before. The thus obtained modified mesoporous carbon has been characterized by nitrogen sorption, X-ray diffraction and infrared spectroscopy. Its adsorption efficiency for the removal of Cu{sup 2+} and Pb{sup 2+} from aqueous solutions was tested. The effects of contact time, pH and initial metal ions concentration were investigated as well. The adsorption capacities were very high (3.5 mmol g{sup −1} and 8.6 mmol g{sup −1} for Pb{sup 2+} and Cu{sup 2+} respectively). These values depend largely on the speciation of metal ions as a function of pH. The selectivity was also dependent on the nature of metal ions rather than the adsorbent used. The mechanism of adsorption is complex where several types of interaction between metal ions and the adsorbent surface are involved. - Highlights: • Mesoporous carbon CMK-3 was successfully synthesized and functionalized. • No oxidation treatment was done prior to aminopropyl functionalization. • The adsorbent adsorption capacity is high (3.5 mmol g{sup −1} for Cu{sup 2+} and 8.6 mmol g{sup −1} for Pb{sup 2+}). • The maximum Cu{sup 2+} adsorption capacity is related to its speciation as a function of pH. • The mechanism of adsorption is complex including different types of interaction.

  9. Study of algae's adsorption to uranium ion in water solution

    International Nuclear Information System (INIS)

    Du Yang; Qiu Yongmei; Dan Guiping; Zhang Dong; Lei Jiarong

    2007-01-01

    The adsorption efficiencies of the algae to uranium ion were determined at various pH, uranium ion concentrations, adsorption temperatures and the species of coexisted metal ions, and the effect of coexisted metal ion on the adsorption efficiency was researched. The experimental results at pH= 5-8 are as follows. 1) the adsorption capacity is a constant to be about 1.40 μg/g for the Yantai red alga and the sea spinach, and is changeable in the range of 1.03-2.23 μg/g with pH for the sea edible fungus; 2) for the algae the adsorption efficiency and adsorption capacity are related to uranium ion concentration, and the maximum adsorption efficiency and capacity is 95.8% and 65.4 μg/g, respectively; 3) the adsorption process for 24 h is not dependent on the temperature; 4) the effect of the species of coexisted metal ions on the adsorption capacity of uranium ion is various with the time during adsorption process. (authors)

  10. Novel sandwich structure adsorptive membranes for removal of 4-nitrotoluene from water

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yuexin [College of Chemistry, Beijing Normal University, Beijing 100875 (China); School of Pharmacy, North China University of Science and Technology, Tangshan 063000 (China); Jia, Zhiqian, E-mail: zhqjia@bnu.edu.cn [College of Chemistry, Beijing Normal University, Beijing 100875 (China)

    2016-11-05

    Highlights: • Novel sandwich PES-SPES/PS-PDVB/PTFE adsorptive membranes were prepared. • The removal efficiency for 4-nitrotoluene is greater than 95% after five recycles. • The membrane showed higher adsorption capacity than that of mixed matrix membrane. - Abstract: Novel sandwich PES-SPES/PS-PDVB/PTFE adsorptive membranes were prepared by a filtration/immersion precipitation method and employed for the removal of 4-nitrotoluene from water. The static adsorption thermodynamics, kinetics, dynamic adsorption/desorption and membrane reusability were investigated. The results showed that the Freundlich model describes the adsorption isotherm satisfactorily. With increased PS-PDVB content, the maximum static adsorption capacity, partition coefficient, apparent adsorption rate constant, and dynamic adsorption capacity all significantly increased. The sandwich membranes showed much higher removal efficiency and adsorption capacity than those of mixed matrix membranes. With respect to dynamics adsorption/desorption, the sandwich membranes exhibited excellent reusability, with a removal efficiency greater than 95% even after five recycles.

  11. Humic acid provenance influence to the adsorption capacity in uranium and thorium removal

    Science.gov (United States)

    Prasetyo, E.

    2018-01-01

    It is common knowledge that humic acid is organic compound without certain chemical composition since it is derived from different organic materials. Further this raises question whether the different humic acid sample used could lead to different adsorbent properties e.g. adsorption capacity. To address the problem, this paper is aimed to clarify the relation between the provenances of humic acid and synthesized adsorbent properties especially adsorption capacities by quantitative and qualitative functional groups determination including discussion on their effect to the metal ion adsorption mechanism using three humic acid samples. Two commercial samples were derived from recent compost while the other extracted from tertiary carbonaceous mudstone strata.

  12. Enhancement of methylbenzene adsorption capacity through cetyl trimethyl ammonium bromide-modified activated carbon derived from Astragalus residue

    Science.gov (United States)

    Feng, Ningchuan; Zhang, Yumei; Fan, Wei; Zhu, Meilin

    2018-02-01

    Activated carbon was prepared from astragalus residue by KOH and then treated with cetyl trimethyl ammonium bromide (CTAB) and used for the removal of methylbenzene from aqueous solution. The samples were characterized by FTIR, XRD, SEM and Boehm titration. The results showed that CTAB changed the physicochemical properties of activated carbon significantly. The isotherm adsorption studies of methylbenzene onto the astragalus residue activated carbon (ASC) and CTAB-modified astragalus residue activated carbon (ASCCTAB) were examined by using batch techniques and agreed well with the Langmuir model. The maximum adsorption capacity of ASC and ASC-CTAB for methylbenzene determined from the Langmuir model was183.56 mg/g and 235.18 mg/g, respectively. The results indicated that using CTAB as a modifier for ASC modification could markedly enhance the methylbenzene removal from water.

  13. Structural properties and adsorption capacity of holocellulose aerogels synthesized from an alkali hydroxide-urea solution

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Gu-Joong; Kim, Dae-Young; Hwang, Jae-Hyun; Kang, Joo-Hyon [Dongguk University, Seoul (Korea, Republic of)

    2014-05-15

    A tulip tree was used to synthesize a holocellulose aerogel from an aqueous alkali hydroxide-urea solution with the substitution of an organic solvent followed by freeze-drying. For comparison, the synthesized holocellulose aerogels were divided into two groups according to the source of the hydrogel, an upper suspended layer and a bottom concentrated layer of the centrifuged solution of cellulose and NaOH/urea solvents. We investigated the effects of the temperature of the pre-cooled NaOH/urea solution (i.e., dissolution temperature) on the pore structure and the adsorption capacity of the holocellulose aerogel. A nano-fibrillar network structure of the holocellulose aerogel was observed, with little morphological difference in pore structure for different dissolution temperatures. Both micropores and mesopores were observed in the holocellulose aerogel. The specific surface area of the holocellulose aerogel was generally greater at lower dissolution temperatures. In a series of adsorption tests using methylene blue, the holocellulose aerogel showed the greatest adsorption capacity at the lowest dissolution temperature tested ( -2 .deg. C). However, the dissolution temperature generally had little effect on the adsorption capacity. The holocellulose aerogel produced from the upper suspended layer of the centrifuged hydrogel solution showed a greater porosity and adsorption capacity than the one produced from the bottom concentrated layer. Overall, the aerogel made by utilizing a delignified tulip tree display a high surface area and a high adsorption property, indicating its possible application in eco-friendly adsorption materials.

  14. Structural properties and adsorption capacity of holocellulose aerogels synthesized from an alkali hydroxide-urea solution

    International Nuclear Information System (INIS)

    Kwon, Gu-Joong; Kim, Dae-Young; Hwang, Jae-Hyun; Kang, Joo-Hyon

    2014-01-01

    A tulip tree was used to synthesize a holocellulose aerogel from an aqueous alkali hydroxide-urea solution with the substitution of an organic solvent followed by freeze-drying. For comparison, the synthesized holocellulose aerogels were divided into two groups according to the source of the hydrogel, an upper suspended layer and a bottom concentrated layer of the centrifuged solution of cellulose and NaOH/urea solvents. We investigated the effects of the temperature of the pre-cooled NaOH/urea solution (i.e., dissolution temperature) on the pore structure and the adsorption capacity of the holocellulose aerogel. A nano-fibrillar network structure of the holocellulose aerogel was observed, with little morphological difference in pore structure for different dissolution temperatures. Both micropores and mesopores were observed in the holocellulose aerogel. The specific surface area of the holocellulose aerogel was generally greater at lower dissolution temperatures. In a series of adsorption tests using methylene blue, the holocellulose aerogel showed the greatest adsorption capacity at the lowest dissolution temperature tested ( -2 .deg. C). However, the dissolution temperature generally had little effect on the adsorption capacity. The holocellulose aerogel produced from the upper suspended layer of the centrifuged hydrogel solution showed a greater porosity and adsorption capacity than the one produced from the bottom concentrated layer. Overall, the aerogel made by utilizing a delignified tulip tree display a high surface area and a high adsorption property, indicating its possible application in eco-friendly adsorption materials.

  15. Effects of igneous intrusion on microporosity and gas adsorption capacity of coals in the Haizi Mine, China.

    Science.gov (United States)

    Jiang, Jingyu; Cheng, Yuanping

    2014-01-01

    This paper describes the effects of igneous intrusions on pore structure and adsorption capacity of the Permian coals in the Huaibei Coalfield, China. Twelve coal samples were obtained at different distances from a ~120 m extremely thick sill. Comparisons were made between unaltered and heat-affected coals using geochemical data, pore-fracture characteristics, and adsorption properties. Thermal alteration occurs down to ~1.3 × sill thickness. Approaching the sill, the vitrinite reflectance (R(o)) increased from 2.30% to 2.78%, forming devolatilization vacuoles and a fine mosaic texture. Volatile matter (VM) decreased from 17.6% to 10.0% and the moisture decreased from 3.0% to 1.6%. With decreasing distance to the sill, the micropore volumes initially increased from 0.0054 cm(3)/g to a maximum of 0.0146 cm(3)/g and then decreased to 0.0079 cm(3)/g. The results show that the thermal evolution of the sill obviously changed the coal geochemistry and increased the micropore volume and adsorption capacity of heat-affected coal (60-160 m from the sill) compared with the unaltered coals. The trap effect of the sill prevented the high-pressure gas from being released, forming gas pocket. Mining activities near the sill created a low pressure zone leading to the rapid accumulation of methane and gas outbursts in the Haizi Mine.

  16. Effects of Igneous Intrusion on Microporosity and Gas Adsorption Capacity of Coals in the Haizi Mine, China

    Science.gov (United States)

    2014-01-01

    This paper describes the effects of igneous intrusions on pore structure and adsorption capacity of the Permian coals in the Huaibei Coalfield, China. Twelve coal samples were obtained at different distances from a ~120 m extremely thick sill. Comparisons were made between unaltered and heat-affected coals using geochemical data, pore-fracture characteristics, and adsorption properties. Thermal alteration occurs down to ~1.3 × sill thickness. Approaching the sill, the vitrinite reflectance (R o) increased from 2.30% to 2.78%, forming devolatilization vacuoles and a fine mosaic texture. Volatile matter (VM) decreased from 17.6% to 10.0% and the moisture decreased from 3.0% to 1.6%. With decreasing distance to the sill, the micropore volumes initially increased from 0.0054 cm3/g to a maximum of 0.0146 cm3/g and then decreased to 0.0079 cm3/g. The results show that the thermal evolution of the sill obviously changed the coal geochemistry and increased the micropore volume and adsorption capacity of heat-affected coal (60–160 m from the sill) compared with the unaltered coals. The trap effect of the sill prevented the high-pressure gas from being released, forming gas pocket. Mining activities near the sill created a low pressure zone leading to the rapid accumulation of methane and gas outbursts in the Haizi Mine. PMID:24723841

  17. Gas-phase formaldehyde adsorption isotherm studies on activated carbon: correlations of adsorption capacity to surface functional group density.

    Science.gov (United States)

    Carter, Ellison M; Katz, Lynn E; Speitel, Gerald E; Ramirez, David

    2011-08-01

    Formaldehyde (HCHO) adsorption isotherms were developed for the first time on three activated carbons representing one activated carbon fiber (ACF) cloth, one all-purpose granular activated carbon (GAC), and one GAC commercially promoted for gas-phase HCHO removal. The three activated carbons were evaluated for HCHO removal in the low-ppm(v) range and for water vapor adsorption from relative pressures of 0.1-0.9 at 26 °C where, according to the IUPAC isotherm classification system, the adsorption isotherms observed exhibited Type V behavior. A Type V adsorption isotherm model recently proposed by Qi and LeVan (Q-L) was selected to model the observed adsorption behavior because it reduces to a finite, nonzero limit at low partial pressures and it describes the entire range of adsorption considered in this study. The Q-L model was applied to a polar organic adsorbate to fit HCHO adsorption isotherms for the three activated carbons. The physical and chemical characteristics of the activated carbon surfaces were characterized using nitrogen adsorption isotherms, X-ray photoelectron spectroscopy (XPS), and Boehm titrations. At low concentrations, HCHO adsorption capacity was most strongly related to the density of basic surface functional groups (SFGs), while water vapor adsorption was most strongly influenced by the density of acidic SFGs.

  18. Adsorption of selected pharmaceuticals and an endocrine disrupting compound by granular activated carbon. 1. Adsorption capacity and kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Z.; Peldszus, S.; Huck, P.M. [University of Waterloo, Waterloo, ON (Canada). NSERC Chair in Water Treatment

    2009-03-01

    The adsorption of two representative PhACs (naproxen and carbamazepine) and one EDC (nonylphenol) were evaluated on two granular activated carbons (GAC) namely coal-based Calgon Filtrasorb 400 and coconut shell-based PICA CTIF TE. The primary objective was to investigate preloading effects by natural organic matter (NOM) on adsorption capacity and kinetics under conditions and concentrations (i.e., ng/L) relevant for drinking water treatment. Isotherms demonstrated that all compounds were significantly negatively impacted by NOM fouling. Adsorption capacity reduction was most severe for the acidic naproxen, followed by the neutral carbamazepine and then the more hydrophobic nonylphenol. The GAC with the wider pore size distribution had considerably greater NOM loading, resulting in lower adsorption capacity. Different patterns for the change in Freundlich KF and 1/n with time revealed different competitive mechanisms for the different compounds. Mass transport coefficients determined by short fixed-bed (SFB) tests with virgin and preloaded GAC demonstrated that film diffusion primarily controls mass transfer on virgin and preloaded carbon. Naproxen suffered the greatest deteriorative effect on kinetic parameters due to preloading, followed by carbamazepine, and then nonylphenol. A type of surface NOM/biofilm, which appeared to add an additional mass transfer resistance layer and thus reduce film diffusion, was observed. In addition, electrostatic interactions between NOM/biofilm and the investigated compounds are proposed to contribute to the reduction of film diffusion. A companion paper building on this work describes treatability studies in pilot-scale GAC adsorbers and the effectiveness of a selected fixed-bed model. 32 refs., 3 figs., 2 tabs.

  19. Application of superparamagnetic microspheres for affinity adsorption and purification of glutathione

    International Nuclear Information System (INIS)

    Wang Qiang; Guan Yueping; Yang Mingzhu

    2012-01-01

    The superparamagnetic poly-(MA–DVB) microspheres with micron size were synthesized by the modified suspension polymerization method. Adsorption of glutathione by magnetic poly-(MA–DVB) microspheres with IDA-copper was investigated. The effect of solution pH value, affinity adsorption and desorption of glutathione was studied. The results showed that the optimum pH value for glutathione adsorption was found at pH=3.5, the maximum capacity for glutathione of magnetic poly-(MA–DVB) microspheres was estimated at 42.4 mg/g by fitting the experimental data to the Langmuir equation. The adsorption equilibrium of glutathione was obtained in about 10 min and the adsorbed glutathione was desorbed from the magnetic microspheres in about 30 min using NaCl buffer solution. The magnetic microspheres could be repeatedly utilized for the affinity adsorption of glutathione. - Highlights: ► The magnetic microsphere with surface IDA–Cu groups was synthesized. ► The magnetic microspheres were applied for adsorption of GSH. ► The adsorption–desorption of glutathione was investigated. ► The maximum adsorption capacity of GSH was fitted at 42.4 mg/g.

  20. Relationship between carbon microstructure, adsorption energy and hydrogen adsorption capacity at different temperatures

    International Nuclear Information System (INIS)

    Jacek Jagiello; Matthias Thommes

    2005-01-01

    Various microporous materials such as activated carbons, nano-tubes, synthetic microporous carbons as well as metal organic framework materials are being considered for hydrogen storage applications by means of physical adsorption. To develop materials of practical significance for hydrogen storage it is important to understand the relationships between pore sizes, adsorption energies and adsorption capacities. The pore size distribution (PSD) characterization is traditionally obtained from the analysis of nitrogen adsorption isotherms measured at 77 K. However, a portion of the pores accessible to H 2 may not be accessible to N 2 at this temperature. Therefore, it was recently proposed to use the DFT analysis of H 2 adsorption isotherms to characterize pore structure of materials considered for hydrogen storage applications. In present work, adsorption isotherms of H 2 and N 2 at cryogenic temperatures are used for the characterization of carbon materials. Adsorption measurements were performed with Autosorb 1 MP (Quantachrome Instruments, Boynton Beach, Florida, USA). As an example, Fig 1 compares PSDs calculated for the activated carbon sample (F400, Calgon Carbon) using combined H 2 and N 2 data, and using N 2 isotherm only. The nitrogen derived PSD does not include certain amount of micropores which are accessible to H 2 but not to N 2 molecules. Obviously, the difference in the calculated PSDs by the two methods will depend on the actual content of small micropores in a given sample. Carbon adsorption properties can also be characterized by the isosteric heat of adsorption, Qst, related to the adsorption energy and dependent on the carbon pore/surface structure. Fig 2 shows Qst data calculated using the Clausius-Clapeyron equation from H 2 isotherms measured at 77 K and 87 K for the carbon molecular sieve CMS 5A (Takeda), oxidized single wall nano-tubes (SWNT), and graphitized carbon black (Supelco). The Qst values decrease with increasing pore sizes. The

  1. Amine-functionalized PVA-co-PE nanofibrous membrane as affinity membrane with high adsorption capacity for bilirubin.

    Science.gov (United States)

    Wang, Wenwen; Zhang, Hao; Zhang, Zhifeng; Luo, Mengying; Wang, Yuedan; Liu, Qiongzhen; Chen, Yuanli; Li, Mufang; Wang, Dong

    2017-02-01

    In this study, poly(vinyl alcohol-co-ethylene) (PVA-co-PE) nanofibrous membrane was activated by sodium hydroxide and cyanuric chloride, and then the activated membranes were functionalized by 1,3-propanediamine, hexamethylenediamine and diethylenetriamine to be affinity membranes for bilirubin removal, respectively. The chemical structures and morphologies of membranes were investigated by SEM, FTIR and XPS. And the adsorption ability of different amine-functionalized nanofibrous membranes for bilirubin was characterized. Furthermore, the effects of temperature, initial concentration of bilirubin, NaCl concentration and BSA concentration on the adsorption capacity for bilirubin of diethylenetriamine-functionalized nanofibrous membrane were studied. Results indicated that the adsorption capacity for bilirubin of diethylenetriamine-functionalized nanofibrous membrane could reach 85mg/g membrane when the initial bilirubin concentration was 200mg/L while the adsorption capacity could be increased to 110mg/g membrane if the initial bilirubin concentration was more than 400mg/L. The dynamic adsorption of diethylenetriamine-functionalized nanofibrous membrane showed that the ligands of amine groups on the membrane surface could be used as far as possible by recirculating the plasma with certain flow rates. Therefore, the diethylenetriamine-functionalized PVA-co-PE nanofibrous membrane possessed high adsorption capacity for bilirubin and it can be candidate as affinity membrane for bilirubin removal. Copyright © 2016. Published by Elsevier B.V.

  2. Adsorption of aliphatic alcohols on ruthenium

    International Nuclear Information System (INIS)

    Shapovalova, L.B.; Zakumbaeva, G.D.

    1977-01-01

    The adsorption is studied of allyl-, propyl- and propargyl alcohols on a ruthenium catalyst-electrode at 20, 30 and 40 deg C in H 2 SO 4 in helium. Above adsorption has been found to grow with increased concentration of the alcohols in the solution. In solutions with the same concentration, propargyl alcohol has been noted to show highest sorptive capacity, followed by that of allyl- and propyl alcohols. With variations in the ruthenium electrode potential, alcohol adsorption occurs via maximum at potential = 0.18

  3. Contribution of Ash Content Related to Methane Adsorption Behaviors of Bituminous Coals

    Directory of Open Access Journals (Sweden)

    Yanyan Feng

    2014-01-01

    Full Text Available Methane adsorption isotherms on coals with varying ash contents were investigated. The textural properties were characterized by N2 adsorption/desorption isotherm at 77 K, and methane adsorption characteristics were measured at pressures up to 4.0 MPa at 298 K, 313 K, and 328 K, respectively. The Dubinin-Astakhov model and the Polanyi potential theory were employed to fit the experimental data. As a result, ash content correlated strongly to methane adsorption capacity. Over the ash range studied, 9.35% to 21.24%, the average increase in methane adsorption capacity was 0.021 mmol/g for each 1.0% rise in ash content. With the increasing ash content range of 21.24%~43.47%, a reduction in the maximum adsorption capacities of coals was observed. In addition, there was a positive correlation between the saturated adsorption capacity and the specific surface area and micropore volume of samples. Further, this study presented the heat of adsorption, the isosteric heat of adsorption, and the adsorbed phase specific heat capacity for methane adsorption on various coals. Employing the proposed thermodynamic approaches, the thermodynamic maps of the adsorption processes of coalbed methane were conducive to the understanding of the coal and gas simultaneous extraction.

  4. Adsorbent for p-phenylenediamine adsorption and removal based on graphene oxide functionalized with magnetic cyclodextrin

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dongxue; Liu, Liangliang; Jiang, Xinyu; Yu, Jingang [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Chen, Xiaohong [Collaborative Innovation Center of Resource-conserving & Environment-friendly Society and Ecological Civilization, Changsha, 410083 (China); Chen, Xiaoqing, E-mail: xqchen@csu.edu.cn [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Collaborative Innovation Center of Resource-conserving & Environment-friendly Society and Ecological Civilization, Changsha, 410083 (China)

    2015-02-28

    Highlights: • Magnetic β-cyclodextrin-graphene oxide (MCG) show high adsorption capacity. • The maximum adsorption capacity was 1102.58 mg/g at 45 °C and pH 8. • MCG can be easily and fast extracted from water by magnetic attraction. • Removal rate of MCG could reach 98% after three times of adsorption. • Adsorption capacity of MCG remained at 81% after five cycles. - Abstract: Recently, graphene oxide (GO) based magnetic nanocomposites have been widely used in an adsorption-based process for the removal of organic pollutants from the water system. In this study, magnetic β-cyclodextrin-graphene oxide nanocomposites (MCG) were synthesized according to covalent binding of magnetic β-cyclodextrin nanoparticles onto the GO surface and the as-made nanocomposites were successfully applied as adsorbents for the adsorption and removal of p-phenylenediamines (PPD). The composition and morphology of prepared materials were characterized by Fourier infrared spectrometry (FT-IR), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). Effects of pH, temperature, time and reusability on the adsorption of PPD were investigated, as well as the kinetics and isotherms parameters of the adsorbents were determined. The results indicated that the maximum adsorption capacity of MCG was 1102.58 mg/g at 45 °C and pH 8. The adsorption capacity remained at 81% after five cycles. Removal rate could reach 98% after three times of adsorption. The adsorption process with PPD was found that fitted pseudo-second-order kinetics equations and the Langmuir adsorption model. The results showed the MCG had a good adsorption ability to remove organic pollutants in wastewater.

  5. Adsorbent for p-phenylenediamine adsorption and removal based on graphene oxide functionalized with magnetic cyclodextrin

    International Nuclear Information System (INIS)

    Wang, Dongxue; Liu, Liangliang; Jiang, Xinyu; Yu, Jingang; Chen, Xiaohong; Chen, Xiaoqing

    2015-01-01

    Highlights: • Magnetic β-cyclodextrin-graphene oxide (MCG) show high adsorption capacity. • The maximum adsorption capacity was 1102.58 mg/g at 45 °C and pH 8. • MCG can be easily and fast extracted from water by magnetic attraction. • Removal rate of MCG could reach 98% after three times of adsorption. • Adsorption capacity of MCG remained at 81% after five cycles. - Abstract: Recently, graphene oxide (GO) based magnetic nanocomposites have been widely used in an adsorption-based process for the removal of organic pollutants from the water system. In this study, magnetic β-cyclodextrin-graphene oxide nanocomposites (MCG) were synthesized according to covalent binding of magnetic β-cyclodextrin nanoparticles onto the GO surface and the as-made nanocomposites were successfully applied as adsorbents for the adsorption and removal of p-phenylenediamines (PPD). The composition and morphology of prepared materials were characterized by Fourier infrared spectrometry (FT-IR), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). Effects of pH, temperature, time and reusability on the adsorption of PPD were investigated, as well as the kinetics and isotherms parameters of the adsorbents were determined. The results indicated that the maximum adsorption capacity of MCG was 1102.58 mg/g at 45 °C and pH 8. The adsorption capacity remained at 81% after five cycles. Removal rate could reach 98% after three times of adsorption. The adsorption process with PPD was found that fitted pseudo-second-order kinetics equations and the Langmuir adsorption model. The results showed the MCG had a good adsorption ability to remove organic pollutants in wastewater

  6. Suitability of adsorption isotherms for predicting the retention capacity of active slag filters removing phosphorus from wastewater.

    Science.gov (United States)

    Pratt, C; Shilton, A

    2009-01-01

    Active slag filters are an emerging technology for removing phosphorus (P) from wastewater. A number of researchers have suggested that adsorption isotherms are a useful tool for predicting P retention capacity. However, to date the appropriateness of using isotherms for slag filter design remains unverified due to the absence of benchmark data from a full-scale, field filter operated to exhaustion. This investigation compared the isotherm-predicted P retention capacity of a melter slag with the P adsorption capacity determined from a full-scale, melter slag filter which had reached exhaustion after five years of successfully removing P from waste stabilization pond effluent. Results from the standard laboratory batch test showed that P adsorption correlated more strongly with the Freundlich Isotherm (R(2)=0.97, Pretention capacity of 0.014 gP/kg slag; markedly lower than the 1.23 gP/kg slag adsorbed by the field filter. Clearly, the result generated by the isotherm bears no resemblance to actual field capacity. Scanning electron microscopy analysis revealed porous, reactive secondary minerals on the slag granule surfaces from the field filter which were likely created by weathering. This slow weathering effect, which generates substantial new adsorption sites, is not accounted for by adsorption isotherms rendering them ineffective in slag filter design.

  7. Preparation of porous diatomite-templated carbons with large adsorption capacity and mesoporous zeolite K-H as a byproduct.

    Science.gov (United States)

    Liu, Dong; Yuan, Weiwei; Deng, Liangliang; Yu, Wenbin; Sun, Hongjuan; Yuan, Peng

    2014-06-15

    In this study, KOH activation was performed to enhance the porosity of the diatomite-templated carbon and to increase its adsorption capacity of methylene blue (MB). In addition to serving as the activation agent, KOH was also used as the etchant to remove the diatomite templates. Zeolite K-H was synthesized as a byproduct via utilization of the resultant silicon- and potassium-containing solutions created from the KOH etching of the diatomite templates. The obtained diatomite-based carbons were composed of macroporous carbon pillars and tubes, which were derived from the replication of the diatomite templates and were well preserved after KOH activation. The abundant micropores in the walls of the carbon pillars and tubes were derived from the break and reconfiguration of carbon films during both the removal of the diatomite templates and KOH activation. Compared with the original diatomite-templated carbons and CO2-activated carbons, the KOH-activated carbons had much higher specific surface areas (988 m(2)/g) and pore volumes (0.675 cm(3)/g). Moreover, the KOH-activated carbons possessed larger MB adsorption capacity (the maximum Langmuir adsorption capacity: 645.2 mg/g) than those of the original carbons and CO2-activated carbons. These results showed that KOH activation was a high effective activation method. The zeolite K-H byproduct was obtained by utilizing the silicon- and potassium-containing solution as the silicon and potassium sources. The zeolite exhibited a stick-like morphology and possessed nanosized particles with a mesopore-predominant porous structure which was observed by TEM for the first time. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. A Novel Absorbent of Nano-Fe Loaded Biomass Char and Its Enhanced Adsorption Capacity for Phosphate in Water

    Directory of Open Access Journals (Sweden)

    Hongguang Zhou

    2013-01-01

    Full Text Available A novel composite adsorbent of Fe loaded biomass char (Fe-BC was fabricated to treat phosphorus in water. Fe-BC was prepared by a procedure including metal complex anion incorporation and precipitation with the pyrolysis char of corn straw as supporting material. The abundant porous structures of the as-prepared sample can be easily observed from its scanning electron microscopy (SEM images. Observations by X-ray diffraction (XRD and X-ray photoelectron spectroscopy (XPS analyses show that inorganic nanoiron oxides deposited in the composite could be amorphous hydrous iron oxide α-FeOOH. Adsorption of phosphate onto the Fe-BC composite and its precursor (BC from aqueous solutions were investigated and discussed. The equilibrium adsorption data of phosphate was described by Langmuir and Freundlich models, and Langmuir isotherm was found to be better fitted than Freundlich isotherm. The maximum phosphate adsorption capacity for phosphate of Fe-BC was as high as 35.43 mg/g, approximately 2.3 times of BC at 25°C. The adsorption kinetics data were better fitted by pseudo-second-order model and intraparticle diffusion model, indicating that the adsorption process was complex. The Fe-BC composite has been proved as an effective adsorbent of phosphate from aqueous solutions owing to its unique porous structures and the greater Lewis basicity of the α-FeOOH.

  9. Equilibrium, kinetic and thermodynamic studies on the adsorption of phenol onto graphene

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yanhui, E-mail: liyanhui@tsinghua.org.cn [Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, College of Electromechanical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071 (China); Du, Qiuju; Liu, Tonghao; Sun, Jiankun; Jiao, Yuqin [Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, College of Electromechanical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071 (China); Xia, Yanzhi, E-mail: xiayzh@qdu.edu.cn [Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, College of Electromechanical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071 (China); Xia, Linhua; Wang, Zonghua [Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, College of Electromechanical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071 (China); Zhang, Wei; Wang, Kunlin; Zhu, Hongwei; Wu, Dehai [Key Laboratory for Advanced Manufacturing by Material Processing Technology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China)

    2012-08-15

    Graphical abstract: The effect of temperature on phenol adsorbed by graphene shows that the equilibrium adsorption capacity of phenol increases with the increase in temperature from 285 to 333 K. Increasing adsorption capacities with temperature indicates that the adsorption of phenol is controlled by an endothermic reaction. Highlights: ► The graphene has high phenol adsorption capacity. ► The graphene has a high specific surface area of 305 m{sup 2}/g. ► The adsorption capacity is high at acidic pH range. ► The graphene has rapid phenol adsorption rate. ► Phenol adsorption is a spontaneous and endothermic process. -- Abstract: Graphene, a new member of carbon family, has been prepared, characterized and used as adsorbent to remove phenol from aqueous solution. The effect parameters including pH, dosage, contact time, and temperature on the adsorption properties of phenol onto graphene were investigated. The results showed that the maximum adsorption capacity can reach 28.26 mg/g at the conditions of initial phenol concentration of 50 mg/L, pH 6.3 and 285 K. Adsorption data were well described by both Freundlich and Langmuir models. The kinetic study illustrated that the adsorption of phenol onto graphene fit the pseudo second-order model. The thermodynamic parameters indicated that the adsorption of phenol onto graphene was endothermic and spontaneous.

  10. Equilibrium, kinetic and thermodynamic studies on the adsorption of phenol onto graphene

    International Nuclear Information System (INIS)

    Li, Yanhui; Du, Qiuju; Liu, Tonghao; Sun, Jiankun; Jiao, Yuqin; Xia, Yanzhi; Xia, Linhua; Wang, Zonghua; Zhang, Wei; Wang, Kunlin; Zhu, Hongwei; Wu, Dehai

    2012-01-01

    Graphical abstract: The effect of temperature on phenol adsorbed by graphene shows that the equilibrium adsorption capacity of phenol increases with the increase in temperature from 285 to 333 K. Increasing adsorption capacities with temperature indicates that the adsorption of phenol is controlled by an endothermic reaction. Highlights: ► The graphene has high phenol adsorption capacity. ► The graphene has a high specific surface area of 305 m 2 /g. ► The adsorption capacity is high at acidic pH range. ► The graphene has rapid phenol adsorption rate. ► Phenol adsorption is a spontaneous and endothermic process. -- Abstract: Graphene, a new member of carbon family, has been prepared, characterized and used as adsorbent to remove phenol from aqueous solution. The effect parameters including pH, dosage, contact time, and temperature on the adsorption properties of phenol onto graphene were investigated. The results showed that the maximum adsorption capacity can reach 28.26 mg/g at the conditions of initial phenol concentration of 50 mg/L, pH 6.3 and 285 K. Adsorption data were well described by both Freundlich and Langmuir models. The kinetic study illustrated that the adsorption of phenol onto graphene fit the pseudo second-order model. The thermodynamic parameters indicated that the adsorption of phenol onto graphene was endothermic and spontaneous.

  11. A Study on Astrazon Black AFDL Dye Adsorption onto Vietnamese Diatomite

    Directory of Open Access Journals (Sweden)

    Bui Hai Dang Son

    2016-01-01

    Full Text Available In the present paper, the adsorption of Astrazon Black AFDL dye onto Vietnamese diatomite has been demonstrated. The diatomite was characterized by XRD, SEM, TEM, EDS, and nitrogen adsorption/desorption isotherms. The results show that diatomite mainly constituted centric type frustules characterized by pores as discs or as cylindrical shapes. The adsorption kinetics and isotherms of dye onto Vietnam diatomite were investigated. The experimental data were fitted well to both Freundlich and Langmuir in the initial concentration range of 400–1400 mg L−1. The average value of maximum adsorption capacity, qm, calculated from Freundlich equation is statistically similar to the average value of maximum monolayer adsorption capacity calculated from Langmuir equation. The thermodynamic parameters evaluated from the temperature dependent on adsorption isotherms in the range of 303–343 K show that the adsorption process was spontaneous and endothermic. The Webber and pseudo-first/second-order kinetic models were used to analyze the mechanism of adsorption. The piecewise linear regression and Akaike’s Information Criterion were used to analyze experimental data. The results show that the dye adsorption onto diatomite was film diffusion controlled and the goodness of fit of experimental data for kinetics modes was dependent on the initial concentration.

  12. Adsorption of Hg2+ from aqueous solution onto polyacrylamide/attapulgite

    International Nuclear Information System (INIS)

    Zhao Yijiang; Chen Yan; Li Meisheng; Zhou Shouyong; Xue Ailian; Xing Weihong

    2009-01-01

    Polyacrylamide/attapulgite (PAM/ATP) was prepared by the solution polymerization of acrylamide (AM) onto γ-methacryloxypropyl trimethoxy silane (KH-570)-modified attapulgite (ATP). PAM/ATP was characterized using Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS). The effects of contact time, adsorbent dosage, and pH of the initial solution on the adsorption capacities for Hg 2+ were investigated. The adsorption process was rapid; 88% of adsorption occurred within 5 min and equilibrium was achieved at around 40 min. The equilibrium data fitted the Langmuir sorption isotherms well, and the maximum adsorption capacity of Hg 2+ onto PAM/ATP was found to be 192.5 mg g -1 . The adsorption kinetics of PAM/ATP fitted a pseudo-second-order kinetic model. Our results suggest that chemisorption processes could be the rate-limiting steps in the process of Hg 2+ adsorption. Hg 2+ adsorbed onto PAM/ATP could be effectively desorbed in hot acetic acid solution, and the adsorption capacity of the regenerated adsorbents could still be maintained at 95% by the sixth cycle.

  13. Relationship between carbon microstructure, adsorption energy and hydrogen adsorption capacity at different temperatures

    International Nuclear Information System (INIS)

    Jagiello, J.; Thommes, M.

    2005-01-01

    Various microporous materials such as activated carbons, nano-tubes, synthetic micro-porous carbons as well as metal organic framework materials are being considered for hydrogen storage applications by means of physical adsorption. To develop materials of practical significance for hydrogen storage it is important to understand the relationships between pore sizes, adsorption energies and adsorption capacities. The pore size distribution (PSD) characterization is traditionally obtained from the analysis of nitrogen adsorption isotherms measured at 77 K. However, a portion of the pores accessible to H 2 may not be accessible to N 2 at this temperature. Therefore, it was recently proposed to use the DFT analysis of H 2 adsorption isotherms to characterize pore structure of materials considered for hydrogen storage applications [1]. In present work, adsorption isotherms of H 2 and N 2 at cryogenic temperatures are used for the characterization of carbon materials. Adsorption measurements were performed with Autosorb 1 MP [Quantachrome Instruments, Boynton Beach, Florida, USA]. As an example, Fig 1 compares PSDs calculated for the activated carbon sample (F400, Calgon Carbon) using combined H 2 and N 2 data, and using N 2 isotherm only. The nitrogen derived PSD does not include certain amount of micro-pores which are accessible to H 2 but not to N 2 molecules. Obviously, the difference in the calculated PSDs by the two methods will depend on the actual content of small micro-pores in a given sample. Carbon adsorption properties can also be characterized by the isosteric heat of adsorption, Qst, related to the adsorption energy and dependent on the carbon pore/surface structure. Fig 2 shows Qst data calculated using the Clausius-Clapeyron equation from H 2 isotherms measured at 77 K and 87 K for the carbon molecular sieve CMS 5A (Takeda), oxidized single wall nano-tubes (SWNT) [2], and graphitized carbon black (Supelco). The Qst values decrease with increasing pore

  14. Adsorption of Copper Ion using Acrylic Acid-g-Polyaniline in Aqueous Solution

    Science.gov (United States)

    Kamarudin, Sabariah; Mohammad, Masita

    2018-04-01

    A conductive polymer, polyaniline (PANI) has unique electrical behaviour, stable in the environment, easy synthesis and have wide application in various fields. Modification of PANI in order to improve its adsorption capacity has been done. In this study, the polyaniline-grafted acrylic acid has been prepared and followed by adsorption of copper ion in aqueous solution. Acrylic acid, PANI and acrylic acid-g-polyaniline (Aag-PANI) were characterized by FTIR and SEM to determine its characteristic. The adsorption capacity was investigated to study the removal capacity of Cu ion from aqueous solution. Two parameters were selected which are pH (2, 4 and 6) and initial metal ion concentration (50 mg/L, 100 mg/L and 200 mg/L). The maximum adsorption capacity for PANI and Aag-PANI are 1.7 mg/g and 64.6 mg/g, respectively, at an initial concentration of 100 mg/L. The Langmuir adsorption isotherm model and Freundlich adsorption isotherm model have been used and showed that it is heterolayer adsorption by follows the Freundlich isotherm model.

  15. Combined paracetamol and amitriptyline adsorption to activated charcoal

    DEFF Research Database (Denmark)

    Hoegberg, Lotte Christine Groth; Groenlykke, Thor Buch; Abildtrup, Ulla

    2010-01-01

    Objectives. High-gram drug doses seen in multiple-drug poisonings might be close to the adsorption capacity of activated charcoal (AC). The aim was to determine the maximum adsorption capacities (Q(m)) of amitriptyline and paracetamol, separately and in combination, to AC. Methods. ACs (Carbomix......® and Norit Ready-To-Use) were tested in vitro. At pH 1.2 and pH 7.2, 0.250 g AC and paracetamol and/or amitriptyline were mixed and incubated. The AC: drug ratios were 10:1, 5:1, 3:1, 2:1, and 1:1. The mixed-drug adsorption vials contained the same AC: paracetamol ratios, but amitriptyline was added as fixed...... Ready-To-Use. The tested pH differences had minor effect on the adsorption. The mixed-drug adsorption showed about 40% Q(m) reduction of each drug with increasing amounts of drug/g AC, but the total gram of drug adsorbed to AC was increased compared to one-drug conditions. Conclusion. The adsorption...

  16. Development of TREN dendrimers over mesoporous SBA-15 for CO2 adsorption

    International Nuclear Information System (INIS)

    Bhagiyalakshmi, Margandan; Park, Sang Do; Cha, Wang Seog; Jang, Hyun Tae

    2010-01-01

    Mesoporous SBA-15 was synthesized using rice husk ash (RHA) as the silica source and their defective Si-OH groups were grafted with tris(2-aminoethyl) amine (TREN) dendrimers generation through step-wise growth technique. The X-ray diffraction (XRD) and nitrogen adsorption/desorption results of parent SBA-15 obtained from RHA, suggests its resemblance with SBA-15 synthesized using conventional silica sources. Furthermore, the nitrogen adsorption/desorption results of SBA-15/TREN dendrimer generations (G1-G3) illustrates the growth of dendrimer inside the mesopores of SBA-15 and their CO 2 adsorption capacity was determined at 25 deg. C. The maximum CO 2 adsorption capacity of 5-6 and 7-8 wt% over second and third dendrimer generation was observed which is discernibly higher than the reported melamine and PAMAM dendrimers. The experimental CO 2 adsorption capacity was found to be less than theoretically calculated CO 2 adsorption capacity due to inter and intra molecular amidation as result of steric hindrance during the dendrimer growth. These SBA-15/TREN dendrimer generations also exhibit thermal stability up to 350 deg. C and CO 2 adsorption capacity remains unaltered upon seven consecutive runs.

  17. Volatile organic compounds adsorption using different types of adsorbent

    Directory of Open Access Journals (Sweden)

    Pimanmes Chanayotha

    2014-09-01

    Full Text Available Adsorbents were synthesized from coconut shell, coal and coke by pyrolysis followed by chemical activation process. These synthesized materials were used as adsorbents in adsorption test to determine the amount of volatile organic compounds (VOCs namely, 2-Hydroxyethyl methacrylate (HEMA, Octamethylcyclotetrasiloxane and Alkanes standard solution (C8-C20. The adsorption capacities of both synthesized adsorbents and commercial grade adsorbents (Carbotrap™ B and Carbotrap™ C were also compared. It was found that adsorbent A402, which was produced from coconut shell, activated with 40% (wt. potassium hydroxide and at activating temperature of 800°C for 1 hr, could adsorb higher amount of both HEMA and Octamethylcyclotetrasiloxane than other synthesized adsorbents. The maximum adsorption capacity of adsorbent A402 in adsorbing HEMA and Octamethylcyclotetrasiloxane were 77.87% and 50.82% respectively. These adsorption capabilities were 79.73% and 70.07% of the adsorption capacity of the commercial adsorbent Carbotrap™ B respectively. All three types of the synthesized adsorbent (A402, C302, C402 showed the capability to adsorb alkanes standard solution through the range of C8-C20 . However, their adsorption capacities were high in a specific range of C10-C11. The result from the isotherm plot was indicated that surface adsorption of synthesized adsorbent was isotherm type I while the surface adsorption of commercial adsorbent was isotherm type III.

  18. Phosphorus retention capacity of sediments in Mandovi estuary (Goa)

    Digital Repository Service at National Institute of Oceanography (India)

    Rajagopal, M.D.; Reddy, C

    Experiments carried out under controlled conditions to study P retention capacity of sediments indicate that the processes of adsorption and desorption of P are pH dependent. Adsorption of P is maximum (58-99%) at pH 4. Both the exchangeable P...

  19. Hyperbranched-polyol-tethered poly (amic acid) electrospun nanofiber membrane with ultrahigh adsorption capacity for boron removal

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhe; Wu, Zhongyu; Zhang, Yufeng; Meng, Jianqiang, E-mail: jianqiang.meng@hotmail.com

    2017-04-30

    Highlights: • Electrospun nanofiber membranes were grafted with hyperbranched polyols. • The membrane had a maximum boron uptake of 5.68 mmol/g. • The membrane could adsorb 0.82 mmol/g boron from a 5 mg/L solution in 15 min. • The membrane obeyed the Langmuir and the pseudo-first-order kinetic model. • The regeneration efficiency remained over 90% after 10 cycled uses. - Abstract: The development of efficient adsorbents with high sorption capacity remains as a challenge for the removal of micropollutants occurred globally in water resources. In this work, poly (amic acid) (PAA) electrospun nanofiber membranes grafted with hyperbranched polyols were synthesized and used for boron removal. The PAA nanofiber was reacted with hyperbranched polyethylenimine (HPEI) and further with glycidol to introduce the vicinal hydroxyl groups. The chemical composition and surface characteristics of the obtained PAA-g-PG membranes were evaluated by FESEM, FTIR, XPS and water contact angles (WCA) measurements. The boron adsorption thermodynamics and kinetics were investigated systematically. The results showed that the PAA nanofiber spun from concentration of 15% had uniform morphology and narrow diameter distribution. The PAA-g-PG nanofiber membrane had a maximum boron uptake of 5.68 mmol/g and could adsorb 0.82 mmol/g boron from a 5 mg/L solution in 15 min. Both the high surface area of nanofibers and the hyperbranched structure should contribute to the high boron uptake and high adsorption rate. The nanofiber membrane obeyed the Langmuir adsorption model and the pseudo-first-order kinetic model. The regeneration efficiency of the nanofiber membrane remained 93.9% after 10 cycled uses, indicating good regenerability of the membrane.

  20. Adsorption of arsenate on soils. Part 2: Modeling the relationship between adsorption capacity and soil physiochemical properties using 16 Chinese soils

    International Nuclear Information System (INIS)

    Jiang Wei; Zhang, Shuzhen; Shan Xiaoquan; Feng Muhua; Zhu Yongguan; McLaren, Ron G.

    2005-01-01

    An attempt has been made to elucidate the effects of soil properties on arsenate adsorption by modeling the relationships between adsorption capacity and the properties of 16 Chinese soils. The model produced was validated against three Australian and three American soils. The results showed that nearly 93.8% of the variability in arsenate adsorption on the low-energy surface could be described by citrate-dithionite extractable Fe (Fe CD ), clay content, organic matter content (OM) and dissolved organic carbon (DOC); nearly 87.6% of the variability in arsenate adsorption on the high-energy surface could be described by Fe CD , DOC and total arsenic in soils. Fe CD exhibited the most important positive influence on arsenate adsorption. Oxalate extractable Al (Al OX ), citrate-dithionite extractable Al (Al CD ), extractable P and soil pH appeared relatively unimportant for adsorption of arsenate by soils. - Citrate-dithionite extractable Fe has the most important positive influence on arsenate adsorption on soils

  1. N-doping effectively enhances the adsorption capacity of biochar for heavy metal ions from aqueous solution.

    Science.gov (United States)

    Yu, Wenchao; Lian, Fei; Cui, Guannan; Liu, Zhongqi

    2018-02-01

    N-doping was successfully employed to improve the adsorption capacity of biochar (BC) for Cu 2+ and Cd 2+ by direct annealing of crop straws in NH 3 . The surface N content of BC increased more than 20 times by N-doping; meanwhile the content of oxidized-N was gradually diminished but graphitic-N was formed and increased with increasing annealing temperature and duration time. After N-doping, a high graphitic-N percentage (46.4%) and S BET (418.7 m 2 /g) can be achieved for BC. As a result, the N-doped BC exhibited an excellent adsorption capacity for Cu 2+ (1.63 mmol g -1 ) and Cd 2+ (1.76 mmol g -1 ), which was up to 4.0 times higher than that of the original BC. Furthermore, the adsorption performance of the N-doped BC remained stable even at acidic conditions. A positive correlation can be found between adsorption capacity with the graphitic N content on BC surface. The surface chemistry of N-doped BC before and after the heavy metal ions adsorption was carefully examined by XPS and FTIR techniques, which indicated that the adsorption mechanisms mainly included cation-π bonding and complexation with graphitic-N and hydroxyl groups of carbon surfaces. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Investigation of uranium (VI) adsorption by polypyrrole

    Energy Technology Data Exchange (ETDEWEB)

    Abdi, S. [Faculty of Chemical, Petroleum and Gas Engineering, Semnan University, Semnan 35195-363 (Iran, Islamic Republic of); Nasiri, M., E-mail: mnasiri@semnan.ac.ir [Faculty of Chemical, Petroleum and Gas Engineering, Semnan University, Semnan 35195-363 (Iran, Islamic Republic of); Mesbahi, A. [Faculty of Chemical, Petroleum and Gas Engineering, Semnan University, Semnan 35195-363 (Iran, Islamic Republic of); Khani, M.H. [Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, Tehran, 14395-836 (Iran, Islamic Republic of)

    2017-06-15

    Highlights: • The adsorbent (polypyrrole) was synthesized by a chemical method using PEG, DBSNa and CTAB as the surfactant. • The solution pH was one of the most important parameters affecting the adsorption of uranium. • The CTAB provided higher removal percentage compared with the other surfactants. • The maximum adsorption capacity obtained from Langmuir isotherm was 87.72 mg/g. • The pseudo second-order model fitted well with the adsorption kinetic of polypyrrole to uranium. - Abstract: The purpose of this study was to investigate the adsorption of uranium (VI) ions on the polypyrrole adsorbent. Polypyrrole was synthesized by a chemical method using polyethylene glycol, sodium dodecylbenzenesulfonate, and cetyltrimethylammonium bromide as the surfactant and iron (III) chloride as an oxidant in the aqueous solution. The effect of various surfactants on the synthesized polymers and their performance as the uranium adsorbent were investigated. Adsorbent properties were characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) techniques. The effect of different parameters such as pH, contact time, initial metal ion concentrations, adsorbent dose, and the temperature was investigated in the batch system for uranium adsorption process. It has been illustrated that the adsorption equilibrium time is 7 min. The results showed that the Freundlich model had the best agreement and the maximum adsorption capacity of polypyrrole for uranium (VI) was determined 87.72 mg/g from Langmuir isotherm. In addition, the mentioned adsorption process was fast and the kinetic data were fitted to the Pseudo first and second order models. The adsorption kinetic data followed the pseudo-second-order kinetic model. Moreover, the thermodynamic parameters ΔG{sup 0}, ΔH{sup 0} and ΔS{sup 0} showed that the uranium adsorption process by polypyrrole was endothermic and spontaneous.

  3. Supercritical CO2 Assisted Synthesis of EDTA-Fe3O4 Nanocomposite with High Adsorption Capacity for Hexavalent Chromium

    Directory of Open Access Journals (Sweden)

    Gunjan Bisht

    2016-01-01

    Full Text Available Efficiency of EDTA functionalized nanoparticles in adsorption of chromium (VI from water was investigated in this study. Magnetic iron oxide nanoparticles (IONPs were synthesized by a simple chemical coprecipitation route and EDTA coating onto IONPs was attained via supercritical carbon dioxide (Sc CO2, a technology with green sustainable properties. The obtained nanoparticles were then characterized by UV-Visible spectroscopy, Fourier transform infrared spectroscopy (FTIR, X-ray powder diffraction (XRD, transmission electron microscopy (TEM, scanning electron microscopy (SEM, and vibrating magnetometric analysis (VSM. The synthesized nanoparticle and its modified variant were evaluated as adsorbent for chromium (VI removal from water through batch adsorption technique and the effect of analytic concentration; contact time and adsorbent concentration were studied at pH 2. The results showed higher removal efficiency for modified magnetic iron oxide nanoparticles (MIONPs (i.e., 99.9% than their nonmodified variant IONPs, that is, 34.06% for the same concentration after 18 hours of incubation. Also maximum adsorption capacity (qe = 452.26 mg/g of MIONPs attained can be related to their preparation in Sc CO2 as qe calculated from IONPs, that is, 170.33 mg/g, is lower than that of MIONPs. The adsorption data fit well with Freundlich isotherm equation while kinetic adsorption studies of chromium (VI were modeled by pseudo-second-order model.

  4. Fugitive gas adsorption capacity of biomass and animal-manure derived biochars

    Science.gov (United States)

    This research characterized and investigated ammonia and hydrogen sulfide gas adsorption capacities of low- and high-temperature biochars made from wood shavings and chicken litter. The biochar samples were activated with steam or phosphoric acid. The specific surface areas and pore volumes of the a...

  5. Ultra-high adsorption capacity of zeolitic imidazole framework-67 (ZIF-67) for removal of malachite green from water.

    Science.gov (United States)

    Lin, Kun-Yi Andrew; Chang, Hsuan-Ang

    2015-11-01

    Zeolitic imidazole frameworks (ZIFs), a new class of adsorbents, are proposed to adsorb Malachite Green (MG) in water. Particularly, ZIF-67 was selected owing to its stability in water and straightforward synthesis. The as-synthesized ZIF-67 was characterized and used to adsorb MG from water. Factors affecting the adsorption capacity were investigated including mixing time, temperature, the presence of salts and pH. The kinetics, adsorption isotherm and thermodynamics of the MG adsorption to ZIF-67 were also studied. The adsorption capacity of ZIF-67 for MG could be as high as 2430mgg(-1) at 20°C, which could be improved at the higher temperatures. Such an ultra-high adsorption capacity of ZIF-67 was almost 10-times of those of conventional adsorbents, including activated carbons and biopolymers. A mechanism for the high adsorption capacity was proposed and possibly attributed to the π-π stacking interaction between MG and ZIF-67. ZIF-67 also could be conveniently regenerated by washing with ethanol and the regeneration efficiency could remain 95% up to 4 cycles of the regeneration. ZIF-67 was also able to remove MG from the aquaculture wastewater, in which MG can be typically found. These features enable ZIF-67 to be one of the most effective and promising adsorbent to remove MG from water. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. [Adsorption of heavy metals on the surface of birnessite relationship with its Mn average oxidation state and adsorption sites].

    Science.gov (United States)

    Wang, Yan; Tan, Wen-Feng; Feng, Xiong-Han; Qiu, Guo-Hong; Liu, Fan

    2011-10-01

    Adsorption characteristics of mineral surface for heavy metal ions are largely determined by the type and amount of surface adsorption sites. However, the effects of substructure variance in manganese oxide on the adsorption sites and adsorption characteristics remain unclear. Adsorption experiments and powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) were combined to examine the adsorption characteristics of Pb2+, Cu2+, Zn2+ and Cd2+ sequestration by birnessites with different Mn average oxidation state (AOS), and the Mn AOS dependent adsorption sites and adsorption characteristics. The results show that the maximum adsorption capacity of Pb2+, Cu2+, Zn2+ and Cd2+ increased with increasing birnessite Mn AOS. The adsorption capacity followed the order of Pb2+ > Cu2+ > Zn2+ > Cd2+. The observations suggest that there exist two sites on the surface of birnessite, i. e., high-binding-energy site (HBE site) and low-binding-energy site (LBE site). With the increase of Mn AOS for birnessites, the amount of HBE sites for heavy metal ions adsorption remarkably increased. On the other hand, variation in the amount of LBE sites was insignificant. The amount of LBE sites is much more than those of HBE sites on the surface of birnessite with low Mn AOS. Nevertheless, both amounts on the surface of birnessite with high Mn AOS are very close to each other. Therefore, the heavy metal ions adsorption capacity on birnessite is largely determined by the amount of HBE sites. On birnessite surface, adsorption of Cu2+, Zn2+, and Cd2+ mostly occurred at HBE sites. In comparison with Zn2+ and Cd2+, more Cu2+ adsorbed on the LBW sites. Pb2+ adsorption maybe occupy at both LBE sites and HBE sites simultaneously.

  7. Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions.

    Science.gov (United States)

    Park, Jong-Hwan; Ok, Yong Sik; Kim, Seong-Heon; Cho, Ju-Sik; Heo, Jong-Soo; Delaune, Ronald D; Seo, Dong-Cheol

    2016-01-01

    Objective of this research was to evaluate adsorption of heavy metals in mono and multimetal forms onto sesame straw biochar (SSB). Competitive sorption of metals by SSB has never been reported previously. The maximum adsorption capacities (mgg(-1)) of metals by SSB were in the order of Pb (102)≫Cd (86)≫Cr (65)>Cu (55)≫Zn (34) in the monometal adsorption isotherm and Pb (88)≫Cu (40)≫Cr (21)>Zn (7)⩾Cd (5) in the multimetal adsorption isotherm. Based on data obtained from the distribution coefficients, Freundlich and Langmuir adsorption models, and three-dimensional simulation, multimetal adsorption behaviors differed from monometal adsorption due to competition. Especially, during multimetal adsorption, Cd was easily exchanged and substituted by other metals. Further competitive adsorption studies are necessary in order to accurately estimate the heavy metal adsorption capacity of biochar in natural environments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Mesoporous g-C₃N₄ Nanosheets: Synthesis, Superior Adsorption Capacity and Photocatalytic Activity.

    Science.gov (United States)

    Li, Dong-Feng; Huang, Wei-Qing; Zou, Lan-Rong; Pan, Anlian; Huang, Gui-Fang

    2018-08-01

    Elimination of pollutants from water is one of the greatest challenges in resolving global environmental issues. Herein, we report a high-surface-area mesoporous g-C3N4 nanosheet with remarkable high adsorption capacity and photocatalytic performance, which is prepared through directly polycondensation of urea followed by a consecutive one-step thermal exfoliation strategy. This one-pot method to prepare mesoporous g-C3N4 nanosheet is facile and rapid in comparison with others. The superior adsorption capacity of the fabricated mesoporous g-C3N4 nanostructures is demonstrated by a model organic pollutant-methylene blue (MB), which is up to 72.2 mg/g, about 6 times as that of the largest value of various g-C3N4 adsorbents reported so far. Moreover, this kind of porous g-C3N4 nanosheet exhibits high photocatalytic activity to MB and phenol degradation. Particularly, the regenerated samples show excellent performance of pollutant removal after consecutive adsorption/degradation cycles. Therefore, this mesoporous g-C3N4 nanosheet may be an attractive robust metal-free material with great promise for organic pollutant elimination.

  9. Study on the Adsorption Capacities for Airborne Particulates of Landscape Plants in Different Polluted Regions in Beijing (China

    Directory of Open Access Journals (Sweden)

    Wei-Kang Zhang

    2015-08-01

    Full Text Available Urban landscape plants are an important component of the urban ecosystem, playing a significant role in the adsorption of airborne particulates and air purification. In this study, six common landscape plants in Beijing were chosen as research subjects, and the adsorption capacities for each different plant leaf and the effects of the leaf structures for the adsorption capacities for particulates were determined. Preliminary results show that needle-leaved tree species adsorbed more airborne particulates than broad-leaved tree species for the same leaf area. Pinus tabuliformis exhibits the highest adsorption capacity, at 3.89 ± 0.026 μg·cm−2, almost two times as much as that of Populus tomentosa (2.00 ± 0.118 μg·cm−2. The adsorption capacities for PM10 of the same tree species leaves, in different polluted regions had significant differences, and the adsorption capacities for PM10 of the tree species leaf beside the Fifth Ring Road were higher than those of the tree species leaves in the Botanical Garden, although the adsorption capacities for PM2.5 of the same tree species in different polluted regions had no significant differences. By determining the soluble ion concentrations of the airborne particulates in two regions, it is suggested that the soluble ion concentrations of PM10 in the atmosphere in the Botanical Garden and beside the Fifth Ring Road have significant differences, while those of PM2.5 in the atmosphere had no significant differences. In different polluted regions there are significant adaptive changes to the leaf structures, and when compared with slightly polluted region, in the seriously polluted region the epidermis cells of the plant leaves shrinked, the surface textures of the leaves became rougher, and the stomas’ frequency and the pubescence length increased. Even though the plant leaves exposed to the seriously polluted region changed significantly, these plants can still grow normally and healthily.

  10. Improved CO_2 adsorption capacity and cyclic stability of CaO sorbents incorporated with MgO

    International Nuclear Information System (INIS)

    Farah Diana Mohd Daud; Kumaravel Vignesh; Srimala Sreekantan; Abdul Rahman Mohamed

    2016-01-01

    Calcium oxide (CaO) sorbents incorporated with magnesium oxide (MgO) were synthesized using a co-precipitation route. The sorbents were prepared with different MgO concentrations (from 5 wt% to 30 wt%). The as-prepared sorbents were characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX) and BET surface area analysis techniques. The sintering effect of CaO sorbents was decreased after the incorporation of MgO. The sorbents with 5 wt% and 10 wt% of MgO retained their CO_2 adsorption capacity over multiple cycles. Most importantly, CaO with 10 wt% MgO showed constant CO_2 adsorption capacity over 30 carbonation cycles. The results revealed that CaO with 10 wt% MgO is sufficient to produce sorbents with high surface area, good structural stability and enhanced CO_2 adsorption capacity. (authors)

  11. Adsorptive Removal and Adsorption Kinetics of Fluoroquinolone by Nano-Hydroxyapatite.

    Directory of Open Access Journals (Sweden)

    Yajun Chen

    Full Text Available Various kinds of antibiotics, especially fluoroquinolone antibiotics (FQs have been widely used for the therapy of infectious diseases in human and livestock. For their poorly absorbed by living organisms, large-scale misuse or abuse of FQs will foster drug resistance among pathogenic bacteria, as well as a variety of environmental problems when they were released in the environment. In this work, the adsorption properties of two FQs, namely norfloxacin (NOR and ciprofloxacin (CIP, by nano-hydroxyapatite (n-HAP were studied by batch adsorption experiments. The adsorption curves of FQs by n-HAP were simulated by Langmuir and Freundlich isotherms. The results shown that NOR and CIP can be adsorbed effectively by the adsorbent of n-HAP, and the adsorption capacity of FQs increase with increasing dosage of n-HAP. The optimum dosage of n-HAP for FQs removal was 20 g · L(-1, in which the removal efficiencies is 51.6% and 47.3%, and an adsorption equilibrium time is 20 min. The maximum removal efficiency occurred when pH is 6 for both FQs. The adsorption isotherm of FQs fits well for both Langmuir and Freundlich equations. The adsorption of both FQs by n-HAP follows second-order kinetics.

  12. Adsorptive Removal and Adsorption Kinetics of Fluoroquinolone by Nano-Hydroxyapatite

    Science.gov (United States)

    Chen, Yajun; Lan, Tao; Duan, Lunchao; Wang, Fenghe; Zhao, Bin; Zhang, Shengtian; Wei, Wei

    2015-01-01

    Various kinds of antibiotics, especially fluoroquinolone antibiotics (FQs) have been widely used for the therapy of infectious diseases in human and livestock. For their poorly absorbed by living organisms, large-scale misuse or abuse of FQs will foster drug resistance among pathogenic bacteria, as well as a variety of environmental problems when they were released in the environment. In this work, the adsorption properties of two FQs, namely norfloxacin (NOR) and ciprofloxacin (CIP), by nano-hydroxyapatite (n-HAP) were studied by batch adsorption experiments. The adsorption curves of FQs by n-HAP were simulated by Langmuir and Freundlich isotherms. The results shown that NOR and CIP can be adsorbed effectively by the adsorbent of n-HAP, and the adsorption capacity of FQs increase with increasing dosage of n-HAP. The optimum dosage of n-HAP for FQs removal was 20 g·L-1, in which the removal efficiencies is 51.6% and 47.3%, and an adsorption equilibrium time is 20 min. The maximum removal efficiency occurred when pH is 6 for both FQs. The adsorption isotherm of FQs fits well for both Langmuir and Freundlich equations. The adsorption of both FQs by n-HAP follows second-order kinetics. PMID:26698573

  13. Adsorption of platinum(IV) and palladium(II) from aqueous solution by thiourea-modified chitosan microspheres

    International Nuclear Information System (INIS)

    Zhou Limin; Liu Jinhui; Liu Zhirong

    2009-01-01

    The chitosan microparticles were prepared using the inverse phase emulsion dispersion method and modified with thiourea (TCS). TCS was characterized by scanning electron microscope (SEM), the Fourier transform infrared (FT-IR) spectra, sulfur elemental analysis, specific surface area and pore diameter. The effects of various parameters, such as pH, contact time, initial concentration and temperature, on the adsorption of Pt(IV) and Pd(II) by TCS were investigated. The results showed that the maximum adsorption capacity was found at pH 2.0 for both Pt(IV) and Pd(II). TCS can selectively adsorb Pt(IV) and Pd(II) from binary mixtures with Cu(II), Pb(II), Cd(II), Zn(II), Ca(II), and Mg(II). The adsorption reaction followed the pseudo-second-order kinetics, indicating the main adsorption mechanism of chemical adsorption. The isotherm adsorption equilibrium was well described by Langmuir isotherms with the maximum adsorption capacity of 129.9 mg/g for Pt(IV) and 112.4 mg/g for Pd(II). The adsorption capacity of both Pt(IV) and Pd(II) decreased with temperature increasing. The negative values of enthalpy (ΔH o ) and Gibbs free energy (ΔG o ) indicate that the adsorption process is exothermic and spontaneous in nature. The adsorbent was stable without loss of the adsorption capacity up to at least 5 cycles and the desorption efficiencies were above 95% when 0.5 M EDTA-0.5 M H 2 SO 4 eluent was used. The results also showed that the preconcentration factor for Pt(IV) and Pd(II) was 196 and 172, respectively, and the recovery was found to be more than 97% for both precious metal ions.

  14. Supercritical CO2 Assisted Synthesis of EDTA-Fe3O4 Nano composite with High Adsorption Capacity for Hexavalent Chromium

    International Nuclear Information System (INIS)

    Bisht, G.; Neupane, S.; Makaju, R.

    2016-01-01

    Efficiency of EDTA functionalized nanoparticles in adsorption of chromium (Vi) from water was investigated in this study. Magnetic iron oxide nanoparticles (IONPs) were synthesized by a simple chemical coprecipitation route and EDTA coating onto IONPs was attained via supercritical carbon dioxide (Sc CO 2 ), a technology with green sustainable properties. The obtained nanoparticles were then characterized by UV-Visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and vibrating magnetometric analysis (VSM). The synthesized nanoparticle and its modified variant were evaluated as adsorbent for chromium (Vi) removal from water through batch adsorption technique and the effect of analytic concentration; contact time and adsorbent concentration were studied at ph 2. The results showed higher removal efficiency for modified magnetic iron oxide nanoparticles (MIONPs) (i.e., 99.9%) than their non modified variant IONPs, that is, 34.06% for the same concentration after 18 hours of incubation. Also maximum adsorption capacity (q e = 452.26 mg/g) of MIONPs attained can be related to their preparation in Sc CO 2 asq e calculated from IONPs, that is, 170.33 mg/g, is lower than that of MIONPs. The adsorption data fit well with Freundlich isotherm equation while kinetic adsorption studies of chromium (Vi) were modeled by pseudo-second-order model

  15. Equilibrium and kinetic adsorption study of Basic Yellow 28 and Basic Red 46 by a boron industry waste

    International Nuclear Information System (INIS)

    Olgun, Asim; Atar, Necip

    2009-01-01

    In this study, the adsorption characteristics of Basic Yellow 28 (BY 28) and Basic Red 46 (BR 46) onto boron waste (BW), a waste produced from boron processing plant were investigated. The equilibrium adsorption isotherms and kinetics were investigated. The adsorption equilibrium data were analyzed by using various adsorption isotherm models and the results have shown that adsorption behavior of two dyes could be described reasonably well by a generalized isotherm. Kinetic studies indicated that the kinetics of the adsorption of BY 28 and BR 46 onto BW follows a pseudo-second-order model. The result showed that the BW exhibited high-adsorption capacity for basic dyes and the capacity slightly decreased with increasing temperature. The maximum adsorption capacities of BY 28 and BR 46 are reported at 75.00 and 74.73 mg g -1 , respectively. The dye adsorption depended on the initial pH of the solution with maximum uptake occurring at about pH 9 and electrokinetic behavior of BW. Activation energy of 15.23 kJ/mol for BY 28 and 18.15 kJ/mol for BR 46 were determined confirming the nature of the physisorption onto BW. These results indicate that BW could be employed as low-cost material for the removal of the textile dyes from effluents

  16. Equilibrium and kinetic adsorption study of Basic Yellow 28 and Basic Red 46 by a boron industry waste

    Energy Technology Data Exchange (ETDEWEB)

    Olgun, Asim [Department of Chemistry, Faculty of Arts and science, University of Dumlupinar, Kuetahya (Turkey)], E-mail: aolgun@dumlupinar.edu.tr; Atar, Necip [Department of Chemistry, Faculty of Arts and science, University of Dumlupinar, Kuetahya (Turkey)

    2009-01-15

    In this study, the adsorption characteristics of Basic Yellow 28 (BY 28) and Basic Red 46 (BR 46) onto boron waste (BW), a waste produced from boron processing plant were investigated. The equilibrium adsorption isotherms and kinetics were investigated. The adsorption equilibrium data were analyzed by using various adsorption isotherm models and the results have shown that adsorption behavior of two dyes could be described reasonably well by a generalized isotherm. Kinetic studies indicated that the kinetics of the adsorption of BY 28 and BR 46 onto BW follows a pseudo-second-order model. The result showed that the BW exhibited high-adsorption capacity for basic dyes and the capacity slightly decreased with increasing temperature. The maximum adsorption capacities of BY 28 and BR 46 are reported at 75.00 and 74.73 mg g{sup -1}, respectively. The dye adsorption depended on the initial pH of the solution with maximum uptake occurring at about pH 9 and electrokinetic behavior of BW. Activation energy of 15.23 kJ/mol for BY 28 and 18.15 kJ/mol for BR 46 were determined confirming the nature of the physisorption onto BW. These results indicate that BW could be employed as low-cost material for the removal of the textile dyes from effluents.

  17. Evaluation of dyes adsorption properties of TiO2-alginate biohybrid material

    International Nuclear Information System (INIS)

    Barrón Zambrano, J A; Ávila Ortega, A; Muñoz Rodríguez, D; Carrera Figueiras, C; Sánchez Morales, G

    2013-01-01

    In this study a TiO 2 -alginate biohybrid material was obtained by the sol gel method and its adsorption properties were compared to those of its precursors using eosin B (anionic) as model dye. The results showed that the TiO 2 and biohybrid have a greater affinity for eosine B than alginate. The maximum adsorption capacity for the eosin B was obtained at pH = 10. Kinetic studies showed that the biohybrid has greater rate and adsorption capacity than its precursors. Kinetic data were fitted to a pseudo-second order kinetic model. The experimental isotherms were fitted to the Langmuir model.

  18. Resorcinol adsorption from aqueous solution over activated carbon

    International Nuclear Information System (INIS)

    Blanco, Diego A; Giraldo, Liliana; Moreno, Juan C

    2007-01-01

    In this paper, the adsorption behavior of Resorcinol a monohydroxylated phenol, poorly acid to 298 K, over activated carbon is analyzed by studying the solution's pH influence and the surface reduction in the adsorption process. To do this, an activated carbon of lignocellulose origin and a reduced activated carbon was used. The interaction solid solution is characterized by the analyses of adsorption in the isotherms to 298 K and pH values of 7. 00, 9.00 and 11.00 for a period of 48 hours. The capacity adsorption of activated carbons increases when the solution's pH decreases and the retained amount increases in the reduced coal to the pH of maximum adsorption.

  19. Maximum Aerobic Capacity of Underground Coal Miners in India

    Directory of Open Access Journals (Sweden)

    Ratnadeep Saha

    2011-01-01

    Full Text Available Miners fitness test was assessed in terms of determination of maximum aerobic capacity by an indirect method following a standard step test protocol before going down to mine by taking into consideration of heart rates (Telemetric recording and oxygen consumption of the subjects (Oxylog-II during exercise at different working rates. Maximal heart rate was derived as 220−age. Coal miners reported a maximum aerobic capacity within a range of 35–38.3 mL/kg/min. It also revealed that oldest miners (50–59 yrs had a lowest maximal oxygen uptake (34.2±3.38 mL/kg/min compared to (42.4±2.03 mL/kg/min compared to (42.4±2.03 mL/kg/min the youngest group (20–29 yrs. It was found to be negatively correlated with age (r=−0.55 and −0.33 for younger and older groups respectively and directly associated with the body weight of the subjects (r=0.57 – 0.68, P≤0.001. Carriers showed maximum cardio respiratory capacity compared to other miners. Indian miners VO2max was found to be lower both compared to their abroad mining counterparts and various other non-mining occupational working groups in India.

  20. Adsorption and removal of arsenic (V) using crystalline manganese (II,III) oxide: Kinetics, equilibrium, effect of pH and ionic strength.

    Science.gov (United States)

    Babaeivelni, Kamel; Khodadoust, Amid P; Bogdan, Dorin

    2014-01-01

    Manganese (II,III) oxide (Mn3O4) crystalline powder was evaluated as a potential sorbent for removal of arsenic (V) from water. Adsorption isotherm experiments were carried out to determine the adsorption capacity using de-ionized (DI) water, a synthetic solution containing bicarbonate alkalinity, and two natual groundwater samples. Adsorption isotherm data followed the Langmuir and Freundlich equations, indicating favorable adsorption of arsenic (V) onto Mn3O4, while results from the Dubinin-Radushkevich equation were suggestive of chemisorption of arsenic (V). When normalized to the sorbent surface area, the maximum adsorption capacity of Mn3O4 for arsenic (V) was 101 μg m(-2), comparable to that of activated alumina. Arsenic (V) adsorption onto Mn3O4 followed pseudo-second-order kinetics. Adsorption of arsenic (V) was greatest at pH 2, while adsorption at pH 7-9 was within 91% of maximum adsorption, whereas adsorption decreased to 32% of maximum adsorption at pH 10. Surface charge analysis confirmed the adsorption of arsenic (V) onto the acidic surface of the Mn3O4 sorbent with a pHPZC of 7.32. The presence of coexisting ions bicarbonate and phosphate resulted in a decrease in arsenic (V) uptake. Comparable adsorption capacities were obtained for the synthetic solution and both groundwater samples. Overall, crystalline Mn3O4 was an effective and viable sorbent for removal of arsenic (V) from natural water, removing greater than 95% of arsenic (V) from a 1 mg L(-1) solution within 60 min of contact time.

  1. Adsorption of cadmium (II) ions from aqueous solution by a new low-cost adsorbent-Bamboo charcoal

    Energy Technology Data Exchange (ETDEWEB)

    Wang Fayuan [State Key Joint Laboratory of Environment Simulation and Pollution Control, Department of Environmental Science and Engineering, Tsinghua University, Qinghuayuan, Haidian District, Beijing 100084 (China); Wang Hui, E-mail: wanghui@mail.tsinghua.edu.cn [State Key Joint Laboratory of Environment Simulation and Pollution Control, Department of Environmental Science and Engineering, Tsinghua University, Qinghuayuan, Haidian District, Beijing 100084 (China); Ma Jianwei [State Key Joint Laboratory of Environment Simulation and Pollution Control, Department of Environmental Science and Engineering, Tsinghua University, Qinghuayuan, Haidian District, Beijing 100084 (China)

    2010-05-15

    Batch adsorption experiments were conducted for the adsorption of Cd (II) ions from aqueous solution by bamboo charcoal. The results showed that the adsorption of Cd (II) ions was very fast initially and the equilibrium time was 6 h. High pH ({>=}8.0) was favorable for the adsorption and removal of Cd (II) ions. Higher initial Cd concentrations led to lower removal percentages but higher adsorption capacity. As the adsorbent dose increased, the removal of Cd increased, while the adsorption capacity decreased. Adsorption kinetics of Cd (II) ions onto bamboo charcoal could be best described by the pseudo-second-order model. The adsorption behavior of Cd (II) ions fitted Langmuir, Temkin and Freundlich isotherms well, but followed Langmuir isotherm most precisely, with a maximum adsorption capacity of 12.08 mg/g. EDS analysis confirmed that Cd (II) was adsorbed onto bamboo charcoal. This study demonstrated that bamboo charcoal could be used for the removal of Cd (II) ions in water treatment.

  2. Comparison of cadmium adsorption onto chitosan and epichlorohydrin crosslinked chitosan/eggshell composite

    Science.gov (United States)

    Rahmi; Marlina; Nisfayati

    2018-05-01

    The use of chitosan and epichlorohydrin crosslinked chitosan/eggshell composite for cadmium adsorption from water were investigated. The factors affecting adsorption such as pH and contact time were considered. The results showed that the optimum pH of adsorption was pH = 6.0 and the equilibrium time of adsorption was 40 min. The adsorption isotherm of Cd ions onto chitosan and composite were well fitted to Langmuir equation. The maximum adsorption capacity (fitting by Langmuir model) of chitosan and composite were 1.008 and 11.7647 mg/g, respectively. Adsorption performance of composite after regeneration was better than chitosan.

  3. Influence of diatomite microstructure on its adsorption capacity for Pb(II

    Directory of Open Access Journals (Sweden)

    Nenadović S.

    2009-01-01

    Full Text Available The effect of microstructural changes caused by mechanical modification on adsorption properties of diatomite samples were investigated. The microstructure has been characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM and atomic force microscopy (AFM while the degree of metal adsorption was evaluated by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP AES. The results show that metal sorption capacity of diatomite is considerably improved after mechanical modification and it can be attributed to amorphysation of the material. Immobilization efficiency increased from 22% for untreated to 81% for the treated sample after 5h at BPR 4.This qualifies natural diatomite as a material for wastewater remediation.

  4. Effect of agitation speed on adsorption of imidacloprid on activated carbon

    International Nuclear Information System (INIS)

    Zahoor, M.

    2011-01-01

    The adsorptive characteristics of imidacloprid on powdered activated carbon were described. The adsorption experiments were carried out as function of time, initial concentration and agitation speed. The equilibrium data fits well to Langmuir adsorption isotherm, while the kinetic data fits well to Pseudo second order kinetic model. The kinetic experiments were carried out at 200, 250, 300 and 350 rpm and it was found that the equilibrium time increases with increase in initial concentration and decreases with increase in agitation speed. This is due to the increased turbulence and as a consequence, the decrease boundary layer thickness around the adsorbent particles as a result of increasing the degree of mixing. At 300 rpm the adsorption capacity was maximum and beyond this there was no significant increase in adsorption capacity. Weber intra particle diffusion model was used to describe the adsorption mechanism. It was found that both the boundary layer and intra particle diffusion for both adsorbents played important role in the adsorption mechanisms of the adsorbate. The effects of temperature and pH on adsorption were also studied. It was found that the adsorption capacity of the adsorbent decreases with increase in temperature. There was no significant change in adsorption from pH 2 to 8, however at high pH a decrease in adsorption of imidacloprid on activated carbon was observed. (author)

  5. Comparison of the adsorption capacities of an activated-charcoal--yogurt mixture versus activated-charcoal--water slurry in vivo and in vitro

    DEFF Research Database (Denmark)

    Høgberg, Lotte Christine Groth; Christophersen, Anne-Bolette; Christensen, Hanne Rolighed

    2005-01-01

    BACKGROUND: An activated charcoal--yogurt mixture was evaluated in vivo to determine the effect on the gastrointestinal absorption of paracetamol, as compared to activated-charcoal--water slurry. The potential advantage of the activated-charcoal--yogurt mixture is a better palatability and general...... acceptance by the patients without loss of efficacy. In addition, paracetamol adsorption studies were carried out in vitro to calculate the maximum adsorption capacity of paracetamol to activated-charcoal--yogurt mixture. METHODS: In vivo: A randomized crossover study on 15 adult volunteers, using...... paracetamol 50 mg/kg as a simulated overdose. Each study day volunteers were given a standard meal 1 h before paracetamol, then 50 g activated charcoal 1 h later in either of two preparations: standard water slurry or mixed with 400 mL yogurt. Paracetamol serum concentrations were measured using HPLC...

  6. The Adsorption Mechanism of Modified Activated Carbon on Phenol

    Directory of Open Access Journals (Sweden)

    Lin J. Q.

    2016-01-01

    Full Text Available Modified activated carbon was prepared by thermal treatment at high temperature under nitrogen flow. The surface properties of the activated carbon were characterized by Boehm titration, BET and point of zero charge determination. The adsorption mechanism of phenol on modified activated carbon was explained and the adsorption capacity of modified activated carbon for phenol when compared to plain activated carbon was evaluated through the analysis of adsorption isotherms, thermodynamic and kinetic properties. Results shows that after modification the surface alkaline property and pHpzc value of the activated carbon increase and the surface oxygen-containing functional groups decrease. The adsorption processes of the plain and modified carbon fit with Langmuir isotherm equation well, and the maximum adsorption capacity increase from 123.46, 111.11, 103.09mg/g to 192.31, 178.57, 163,93mg/g under 15, 25 and 35°C after modification, respectively. Thermodynamic parameters show that the adsorption of phenol on activated carbon is a spontaneously exothermic process of entropy reduction, implying that the adsorption is a physical adsorption. The adsorption of phenol on activated carbon follows the pseudo-second-order kinetics (R2>0.99. The optimum pH of adsorption is 6~8.

  7. Adsorption

    Directory of Open Access Journals (Sweden)

    Sushmita Banerjee

    2017-05-01

    Full Text Available Application of saw dust for the removal of an anionic dye, tartrazine, from aqueous solutions has been investigated. The experiments were carried out in batch mode. Effect of the parameters such as pH, initial dye concentration and temperature on the removal of the dye was studied. Equilibrium was achieved in 70 min. Maximum adsorption of dye was achieved at pH 3. Removal percent was found to be dependent on the initial concentration of dye solution, and maximum removal was found to be 97% at 1 mg/L of tartrazine. The removal increases from 71% to 97% when the initial concentration of dye solution decreases from 15 mg/L to 1 mg/L. The equilibrium adsorption data were analyzed by Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherm models. The (Langmuir adsorption capacity of the adsorbent is found to be 4.71 mg/g at 318 K. Kinetic modeling of the process of removal was carried out and the process of removal was found to follow a pseudo second order model and the value of rate constant for adsorption process was calculated as 2.7 × 10−3 g mg−1 min−1 at 318 K. The thermodynamic parameters such as change in free energy (ΔG°, enthalpy (ΔH° and entropy (ΔS° were determined and the negative values of ΔG° indicated that the process of removal was spontaneous at all values of temperatures. Further, the values of ΔH° indicated the endothermic nature of the process of removal.

  8. Adsorption of an anionic dye on a novel low-cost mesoporous adsorbent: kinetic, thermodynamic and isotherm studies

    Science.gov (United States)

    Msaad, Asmaa; Belbahloul, Mounir; Zouhri, Abdeljalil

    2018-05-01

    Our activated carbon was prepared successfully using phosphoric acid as an activated agent. The activated carbon was characterized by Scanning Electron Micrograph (SEM), Brunauer-Emmett- Teller (BET), Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). The aim of our study is to evaluate the adsorption capacity of Methyl Orange (MO) on Ziziphus lotus activated carbon. Adsorption isotherms were studied according to Langmuir and Freundlich Model, and adsorption kinetics according to pseudo-first and second-order. Results show that the maximum adsorption was reached in the first 10min at ambient temperature with a yield of 96.31%. The Langmuir isotherm shows a correlation coefficient of 99.4 % higher than Freundlich model and the adsorption kinetic model follow a pseudo-second-order with a maximum adsorption capacity of 769.23 mg/g. FTIR and X-Ray spectroscopy indicate that our activated carbon has an amorphous structure with the presence of functional groups, where BET analysis revealed a high surface area of 553 mg/g, which facilitate the adsorption process

  9. Preparation and Adsorption Ability of Polysulfone Microcapsules Containing Modified Chitosan Gel

    Institute of Scientific and Technical Information of China (English)

    CHEN Fei; LUO Guangsheng; YANG Weiwei; WANG Yujun

    2005-01-01

    Chemically modified chitosan beads containing polyethyleneimine (PEI) were prepared to improve the metal ion adsorption capacity of the chitosan beads and their mechanical stability and to limit their biodegradability. The modified beads were encapsulated with the polymer material polysulfone by a novel surface coating method named the emulsion phase inversion method. The adsorption properties of the modified beads and the microstructures of the polysulfone coating layer were then analyzed. The experimental results showed that the PEI was successfully linked onto the chitosan beads. The density of the -NH2 groups in the modified beads was significantly increased, while the water content was reduced. The coating layer thickness was about 200 (m. The modified chitosan gel beads had excellent Cu(II) adsorption capacity, with a maximum Cu(II) adsorption capacity 1.34 times higher than that of the unmodified beads. The results show that even with the polysulfone coating the adsorption kinetics of the modified beads is still better than those of the unmodified beads. The modifications improve the mass transfer performance of the chitosan beads as well as the bead stability.

  10. Adsorptive features of poli(acrylic acid-co-hydroxyapatite) composite for UO22+

    International Nuclear Information System (INIS)

    Liu Tonghuan; Xu Zhen; Tan Yinping; Zhong Qiangqiang; Wu Wangsuo

    2016-01-01

    The copolymer of poli(acrylic acid-co-hydroxyapatite) (PAA-HAP) was prepared and characterized by means of FT-IR and SEM analysis. The adsorptive features of PAA-HAP for UO 2 2+ was studied as a function of pH, adsorbent dosage, initial metal ion concentration and temperature. The adsorption isotherm data fitted well to the Langmuir isotherm model. The adsorbed UO 2 2+ can be desorbed effectively by 0.1 M HNO 3 . The maximum adsorption capacities for UO 2 2+ of the dry PAA-HAP was 1.86 x 10 -4 mol/g. The high adsorption capacity and kinetics results indicate that PAA-HAP can be used as an alternative adsorbent to remove UO 2 2+ from aqueous solution. (author)

  11. Porous carbon with small mesoporesas an ultra-high capacity adsorption medium

    Science.gov (United States)

    Gao, Biaofeng; Zhou, Haitao; Chen, De; Yang, Jianhong

    2017-10-01

    Resins (732-type), abundant and inexpensive resources were used to prepare porous carbon with small mesopores (CSM) by carbonization and post-chemical-activation with potassium hydroxide (KOH). The N2 adsorption measurements revealed that CSM had high surface areas (1776.5 m2 g-1), large pore volumes (1.10 cm3 g-1), and nearly optimal narrow small mesopore sizes ranging from 2 to 7 nm. CSM was used as adsorbent to investigate the adsorption behavior for Rhodamine B (RhB). Due to the optimal pore size distributions (PSD), intensive-stacking interaction, S-doped, and electrostatic attraction, the CSM exhibited an ultra-high-capacity of 1590 mg g-1 for RhB in aqueous solutions.

  12. Competitive adsorption and selectivity sequence of heavy metals by chicken bone-derived biochar: Batch and column experiment.

    Science.gov (United States)

    Park, Jong-Hwan; Cho, Ju-Sik; Ok, Yong Sik; Kim, Seong-Heon; Kang, Se-Won; Choi, Ik-Won; Heo, Jong-Soo; DeLaune, Ronald D; Seo, Dong-Cheol

    2015-01-01

    The objective of this research was to evaluate adsorption of heavy metals in single- and ternary-metal forms onto chicken bone biochar (CBB). Competitive sorption of heavy metals by CBB has never been reported previously. The maximum adsorption capacities of metals by CBB were in the order of Cu (130 mg g(-1)) > Cd (109 mg g(-1)) > Zn (93 mg g(-1)) in the single-metal adsorption isotherm and Cu (108 mg g(-1)) > Cd (54 mg g(-1)) ≥ Zn (44 mg g(-1)) in the ternary-metal adsorption isotherm. Cu was the most retained cation, whereas Zn could be easily exchanged and substituted by Cu. Batch experimental data best fit the Langmuir model rather than the Freundlich isotherms. In the column experiments, the total adsorbed amounts of the metals were in the following order of Cu (210 mg g(-1)) > Cd (192 mg g(-1)) > Zn (178) in single-metal conditions, and Cu (156) > Cd (123) > Zn (92) in ternary-metal conditions. Results from both the batch and column experiments indicate that competitive adsorption among metals increases the mobility of these metals. Especially, Zn in single-metal conditions lost it adsorption capacity most significantly. Based on the 3D simulation graphs of heavy metals, adsorption patterns under single adsorption condition were different than under competitive adsorption condition. Results from both the batch and column experiments show that competitive adsorption among metals increases the mobility of these metals. The maximum metal adsorption capacity of the metals in the column experiments was higher than that in the batch experiment indicating other metal retention mechanisms rather than adsorption may be involved. Therefore, both column and batch experiments are needed for estimating retention capacities and removal efficiencies of metals in CBB.

  13. Adsorption of lead onto smectite from aqueous solution.

    Science.gov (United States)

    Mhamdi, M; Galai, H; Mnasri, N; Elaloui, E; Trabelsi-Ayadi, M

    2013-03-01

    The purpose of this research is to study the effect of a new method of adsorption using membrane filtration to determine the maximum amount of lead adsorbed by clay and investigate the behavior of the clay after adsorption of the said metal. Treatment of wastewater contaminated with heavy metals depends on the characteristics of the effluent, the amount of final discharge, the cost of treatment, and the compatibility of the treatment process. The process of adsorption of heavy metals by clays may be a simple, selective, and economically viable alternative to the conventional physical-chemical treatment. This is justified by the importance of the surface developed by this material, the presence of negative charges on the said surface, the possibility of ion exchange taking place, and its wide availability in nature. The removal of lead from wastewater was studied by using the adsorption technique and using clay as the adsorbent. A method was optimized for adsorption through a membrane approaching natural adsorption. This new method is simple, selective, and the lead adsorption time is about 3 days. The various properties of clay were determined. It was observed that the cation exchange capacity of the clay was 56 meq/100 g of hydrated clay for the raw sample and 82 meq/100 g for the purified sample. The total surface area determined by the methylene blue method was equal to 556 and 783 m(2)/g for the raw and purified samples, respectively. The adsorption kinetics depends on several parameters. The Pb(II) clay, obeys the Langmuir, Freundlich, and the Elovich adsorption isotherms with high regression coefficients. The use of this adsorbent notably decreases the cost of treatment. It was concluded that clay shows a strong adsorption capacity on Pb(II), the maximum interaction occurring with purified clay treated at high concentration of lead. It is proposed that this adsorption through a membrane be extended for the treatment of effluents containing other metals.

  14. Removal of vertigo blue dyes from Batik textile wastewater by adsorption onto activated carbon and coal bottom ash

    Science.gov (United States)

    Kusmiyati, L., Puspita Adi; Deni, V.; Robi Indra, S.; Islamica, Dlia; Fuadi, M.

    2016-04-01

    Removal of vertigo blue dye from batik textile wastewater was studied by adsorptionprocess onto activated carbon (AC) and coal bottom ash (CBA).The influence of experimental conditions (pH solution, dye concentration, and contact time) were studied on the both adsorbents. At equilibrium conditions, the data were fitted to Langmuir and Freundlich adsorption models. The maximum adsorption capacity calculated from the Langmuir model for carbon active was 6.29mg/g at pH that found to be considerably higher than that obtained for coal bottom ash 3.72mg/g pH 9. From Freundlich model, the maximum adsorption capacity is less for coal bottom ash (pH 9) than that for carbon active (pH4).

  15. Investigation of adsorption performance deterioration in silica gel–water adsorption refrigeration

    International Nuclear Information System (INIS)

    Wang Dechang; Zhang Jipeng; Xia Yanzhi; Han Yanpei; Wang Shuwei

    2012-01-01

    Highlights: ► Adsorption deterioration of silica gel in refrigeration systems is verified. ► Possible factors to cause such deterioration are analyzed. ► Specific surface area, silanol content and adsorption capacity are tested. ► The pollution is the primary factor to decline the adsorption capacity. ► Deteriorated samples are partly restored after being processed by acid solution. - Abstract: Silica gel acts as a key role in adsorption refrigeration systems. The adsorption deterioration must greatly impact the performance of the silica gel–water adsorption refrigeration system. In order to investigate the adsorption deterioration of silica gel, many different silica gel samples were prepared according to the application surroundings of silica gel in adsorption refrigeration systems after the likely factors to cause such deterioration were analyzed. The specific surface area, silanol content, adsorption capacity and pore size distribution of those samples were tested and the corresponding adsorption isotherms were achieved. In terms of the experimental data comparisons, it could be found that there are many factors to affect the adsorption performance of silica gel, but the pollution was the primary one to decline the adsorption capacity. In addition, the adsorption performance of the deteriorated samples after being processed by acid solution was explored in order to find the possible methods to restore its adsorption performance.

  16. Enhancing adsorption capacity of toxic malachite green dye through chemically modified breadnut peel: equilibrium, thermodynamics, kinetics and regeneration studies.

    Science.gov (United States)

    Chieng, Hei Ing; Lim, Linda B L; Priyantha, Namal

    2015-01-01

    Breadnut skin, in both its unmodified (KS) and base-modified (BM-KS) forms, was investigated for its potential use as a low-cost adsorbent for the removal of toxic dye, malachite green (MG). Characterization of the adsorbents was carried out using scanning electron microscope, X-ray fluorescence and Fourier transform infra-red spectroscopy. Batch adsorption experiments, carried out under optimized conditions, for the adsorption of MG were fitted using five isotherm models (Langmuir, Freundlich, Dubinin-Radushkevich, Temkin and Sips) and six error functions to determine the best-fit model. The adsorption capacity was greatly enhanced when breadnut skin was chemically modified with NaOH, leading to an adsorption capacity of 353.0 mg g(-1), that was far superior to most reported adsorbents for the removal of MG. Thermodynamics studies indicated that the adsorption of MG was spontaneous on KS and BM-KS, and the reactions were endothermic and exothermic, respectively. Kinetics studies showed that both followed the pseudo-second order. Regeneration experiments on BM-KS indicated that its adsorption capacity was still maintained at>90% even after five cycles. It can be concluded that NaOH-modified breadfruit skin has great potential to be utilized in real-life application as a low-cost adsorbent for the removal of MG in wastewater treatment.

  17. Adsorption of heavy metal ions by sawdust of deciduous trees

    International Nuclear Information System (INIS)

    Bozic, D.; Stankovic, V.; Gorgievski, M.; Bogdanovic, G.; Kovacevic, R.

    2009-01-01

    The adsorption of heavy metal ions from synthetic solutions was performed using sawdust of beech, linden and poplar trees. The adsorption depends on the process time, pH of the solution, type of ions, initial concentration of metals and the sawdust concentration in suspension. The kinetics of adsorption was relatively fast, reaching equilibrium for less than 20 min. The adsorption equilibrium follows Langmuir adsorption model. The ion exchange mechanism was confirmed assuming that the alkali-earth metals from the adsorbent are substituted by heavy metal ions and protons. On lowering the initial pH, the adsorption capacity decreased, achieving a zero value at a pH close to unity. The maximum adsorption capacity (7-8 mg g -1 of sawdust) was achieved at a pH between 3.5 and 5 for all the studied kinds of sawdust. The initial concentration of the adsorbate and the concentration of sawdust strongly affect the process. No influence of particles size was evidenced. A degree of adsorption higher than 80% can be achieved for Cu 2+ ions but it is very low for Fe 2+ ions, not exceeding 10%.

  18. Adsorption of Congo red dye onto antimicrobial terephthaloyl thiourea cross-linked chitosan hydrogels.

    Science.gov (United States)

    El-Harby, Nouf F; Ibrahim, Shaimaa M A; Mohamed, Nadia A

    2017-11-01

    Adsorption capacity of three antimicrobial terephthaloyl thiourea cross-linked chitosan hydrogels for Congo red dye removal from its aqueous solution has been investigated for the first time in this work. These hydrogels were prepared by reacting chitosan with various amounts of terephthaloyl diisothiocyanate cross-linker. The effect of the hydrogel structural variations and several dye adsorption processing parameters to achieve the best adsorption capacity were investigated. The hydrogels' structural variations were obtained by varying their terephthaloyl thiourea moieties content. The processing variables included initial concentration of the dye solution, temperature and time of exposure to the dye. The adsorption kinetics and isotherms showed that the sorption processes were better fitted by the pseudo-second-order equation and the Langmuir equation, respectively. On the basis of the Langmuir analysis Congo red dye gave the maximum sorption capacity of 44.248 mg/g. The results obtained confirmed that the sorption phenomena are most likely to be controlled by chemisorption process. The adsorption reaction was endothermic and spontaneous according to the calculated results of adsorption thermodynamics.

  19. Effect of carbonation temperature on CO_2 adsorption capacity of CaO derived from micro/nanostructured aragonite CaCO_3

    International Nuclear Information System (INIS)

    Hlaing, Nwe Ni; Sreekantan, Srimala; Hinode, Hirofumi; Kurniawan, Winarto; Thant, Aye Aye; Othman, Radzali; Mohamed, Abdul Rahman; Salime, Chris

    2016-01-01

    Recent years, CaO-based synthetic materials have been attracted attention as potential adsorbents for CO_2 capture mainly due to their high CO_2 adsorption capacity. In this study, micro/nanostructured aragonite CaCO_3 was synthesized by a simple hydrothermal method with using polyacrylamide (PAM). The structural, morphological and thermal properties of the synthesized sample were investigated by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) and thermogravimetry analysis (TG-DTA). The XRD and FESEM results showed that the obtained sample was aragonite CaCO_3 with aggregated nanorods and microspheres composed of nanorods. A TG-DTA apparatus with Thermoplus 2 software was used to investigate the effect of carbonation temperature on the CO_2 adsorption capacity of CaO derived from aragonite CaCO_3 sample. At 300 °C, the sample reached the CO_2 adsorption capacity of 0.098 g-CO_2/g-adsorbent, whereas the sample achieved the highest capacity of 0.682 g-CO_2/g-adsorbent at 700 °C. The results showed that the carbonation temperature significantly influenced on the CO_2 adsorption capacity of the CaO derived from aragonite CaCO_3.

  20. Adsorption characteristics of hexavalent chromium on HCB/TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Li; Zhang, Yonggang, E-mail: 13502182420@163.com

    2014-10-15

    Graphical abstract: - Highlights: • Sol–gel method was adopted to prepare HCB/TiO{sub 2}. • Its adsorption performance of Cr(VI) was investigated. • The maximum adsorption capacity for Cr(VI) was at 27.33 mg g{sup −1} in an acidic medium. • The value is worth comparable with other low-cost adsorbents. - Abstract: Sol–gel method was adopted to prepare HCB/TiO{sub 2} and its adsorption ability of hexavalent chromium, Cr(VI), and removal from aqueous solution were investigated. The samples were characterized by Power X-ray diffraction (XRD) and a transmission electron microscope (TEM) which showed that the TiO{sub 2} was deposited on the surface of HCB. FTIR was used to identify the changes of the surface functional groups before and after adsorption. Potentiometric titration method was used to characterize the zero charge (pH{sub pzc}) characteristics of the surface of HCB/TiO{sub 2} which showed more acidic functional groups containing. Batch experiments showed that initial pH, absorbent dosage, contact time and initial concentration of Cr(VI) were important parameters for the Cr(VI) adsorption studies. The Freundlich isotherm model better reflected the experimental data better. Cr(VI) adsorption process followed the pseudo-second order kinetic model, which illustrated chemical adsorption. The thermodynamic parameters, such as Gibbs free energy (ΔG), changes in enthalpy change (ΔH) and changes in entropy change (ΔS) were also evaluated. Negative value of free energy occurred at temperature range of 25–45 °C, so Cr(VI) adsorption by HCB/TiO{sub 2} is spontaneous. Desorption results showed that the adsorption capacity could maintain 80% after five cycles. The maximum adsorption capacity for Cr(VI) was at 27.33 mg g{sup −1} in an acidic medium, of which the value is worth comparable with other low-cost adsorbents.

  1. Characteristics and mechanisms of nickel adsorption on biochars produced from wheat straw pellets and rice husk.

    Science.gov (United States)

    Shen, Zhengtao; Zhang, Yunhui; McMillan, Oliver; Jin, Fei; Al-Tabbaa, Abir

    2017-05-01

    The adsorption characteristics and mechanisms of Ni 2+ on four-standard biochars produced from wheat straw pellets (WSP550, WSP700) and rice husk (RH550, RH700) at 550 and 700 °C, respectively, were investigated. The kinetic results show that the adsorption of Ni 2+ on the biochars reached an equilibrium within 5 min. The increase of the solid to liquid ratio resulted in an increase of Ni 2+ removal percentage but a decrease of the adsorbed amount of Ni 2+ per weight unit of biochar. The Ni 2+ removal percentage increased with the increasing of initial solution pH values at the range of 2-4, was relatively constant at the pH range of 4-8, and significantly increased to ≥98% at pH 9 and stayed constantly at the pH range of 9-10. The calculated maximum adsorption capacities of Ni 2+ for the biochars follow the order of WSP700 > WSP550 > RH700 > RH550. Both cation exchange capacity and pH of biochar can be a good indicator of the maximum adsorption capacity for Ni 2+ showing a positively linear and exponential relationship, respectively. This study also suggests that a carefully controlled standardised production procedure can make it reliable to compare the adsorption capacities between different biochars and investigate the mechanisms involved.

  2. Modification of cyanobacterial bloom-derived biomass using potassium permanganate enhanced the removal of microcystins and adsorption capacity toward cadmium (II)

    International Nuclear Information System (INIS)

    Shao, Jihai; Gu, Ji-Dong; Peng, Liang; Luo, Si; Luo, Huili; Yan, Zhiyong; Wu, Genyi

    2014-01-01

    Highlights: • Potassium permanganate removed microcystins in the cyanobacterial bloom-derived biomass (CBDB). • Potassium permanganate oxidation caused the transformation of hydroxyl to carboxyl on the CBDB. • Manganese dioxide was formed on the surface of CBDB. • Potassium permanganate oxidation process increased the adsorption capacity of CBDB toward Cd(II). - Abstract: Cyanobacterial biomass shows high adsorption capacity toward heavy metal ions. However, the cyanotoxins in the cyanobacterial biomass inhibit its application in heavy metals removal. In order to safely and effectively remove Cd(II) from water using cyanobacterial bloom-derived biomass (CBDB), KMnO 4 was used to modify CBDB. The results indicated that the microcystins in the CBDB were successfully removed by KMnO 4 . Potassium permanganate oxidation caused the transformation of hydroxyl to carboxyl on the CBDB, and formed manganese dioxide on the surface of CBDB. The oxidized CBDB showed higher adsorption capacity toward Cd(II) than that of unoxidized treatment. The optimal KMnO 4 concentration for increasing the adsorption capacity of CBDB toward Cd(II) was 0.2 g/L. The adsorption isotherm of Cd(II) by oxidized- or unoxidized-CBDB was well fitted by Langmuir model, indicating that the adsorption of Cd(II) by CBDB was monolayer adsorption. The desorption ratio of Cd(II) from oxidized CBDB was higher than that from unoxidized CBDB in the desorption process using NH 4 NO 3 and EDTA as desorbent. The results presented in this study suggest that KMnO 4 modified CBDB may be used as a safe and high efficient adsorbent in Cd(II) removal from water

  3. Adsorption behavior and mechanism of Cr(VI) using Sakura waste from aqueous solution

    International Nuclear Information System (INIS)

    Qi, Wenfang; Zhao, Yingxin; Zheng, Xinyi; Ji, Min; Zhang, Zhenya

    2016-01-01

    Graphical abstract: The main chemical components of Sakura leaves are cellulose 16.6%, hemicellulose 10.4%, lignin 18.3%, ash 11.4%, and others 43.3%. The adsorption capacity of Cr(VI) onto Sakura leaves can achieve 435.25 mg g"−"1, much higher than other similar agroforestry wastes. - Highlights: • Sakura leaves were prepared to remove Cr(VI) from aqueous solution. • The maximum adsorption capacity of Cr(VI) reached 435.25 mg g"−"1. • Cr(VI) adsorption fitted pseudo-second-order kinetic model. • Isotherm models indicated Cr(VI) adsorption occurred on a monolayer surface. • The influence order of coexisting ions followed PO_4"3"− > SO_4"2"− > Cl"−. - Abstract: A forestall waste, Sakura leave, has been studied for the adsorption of Cr(VI) from aqueous solution. The materials before and after adsorption were characterized by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). To investigate the adsorption performance of Sakura waste, batch experiments were conducted under different adsorbent dosage, contact time, initial concentration of Cr(VI), and co-existing ions. Results showed the data fitted pseudo-second-order better than pseudo-first-order kinetic model. Equilibrium data was analyzed with Langmuir, Freundlich and Redlich–Peterson isotherm models at temperature ranges from 25 °C to 45 °C. The maximum adsorption capacity from the Langmuir model was 435.25 mg g"−"1 at pH 1.0. The presence of Cl"−, SO_4"2"− and PO_4"3"− would lead to an obvious negative effect on Cr(VI) adsorption, and their influence order follows PO_4"3"− > SO_4"2"− > Cl"−. The study developed a new way to reutilize wastes and showed a great potential for resource recycling.

  4. Adsorption of a textile dye from aqueous solutions by carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Fernando M.; Bergmann, Carlos P., E-mail: fernando.machado@hotmail.com.br [Universidade Federal do Rio Grande do Sul (UFRS), Porto Alegre, RS (Brazil). Dept. de Materiais; Lima, Eder C.; Adebayo, Matthew A. [Universidade Federal do Rio Grande do Sul (UFRS), Porto Alegre, RS (Brazil). Inst. de Quimica; Fagan, Solange B. [Centro Universitario Franciscano (UNIFRA), Santa Maria, RS (Brazil). Area de Ciencias Tecnologicas

    2014-08-15

    Multi-walled and single-walled carbon nanotubes were used as adsorbents for the removal of Reactive Blue 4 textile dye from aqueous solutions. The adsorbents were characterised using Raman spectroscopy, N{sub 2} adsorption/desorption isotherms and scanning and transmission electron microscopy. The effects of pH, agitation time and temperature on adsorption capacity were studied. In the acidic pH region, the adsorption of the dye was favourable using both adsorbents. The contact time to obtain equilibrium isotherms at 298-323 K was fixed at 4 hours for both adsorbents. For Reactive Blue 4 dye, Liu isotherm model gave the best fit for the equilibrium data. The maximum sorption capacity for adsorption of the dye occurred at 323 K, attaining values of 502.5 and 567.7 mg g{sup -1} for MWCNT and SWCNT, respectively. (author)

  5. Adsorption and desorption characteristics of lindane, carbofuran and methyl parathion on various Indian soils

    Energy Technology Data Exchange (ETDEWEB)

    Rama Krishna, K. [Department of Civil Engineering, Indian Institute of Technology Madras, Chennai 600036 (India)], E-mail: ramakrishnaiitm@gmail.com; Philip, Ligy [Department of Civil Engineering, Indian Institute of Technology Madras, Chennai 600036 (India)], E-mail: ligy@iitm.ac.in

    2008-12-30

    Adsorption and desorption characteristics of three insecticides on four Indian soils were studied. Insecticides used were representative of organochlorine, organophosphate, and carbomate groups. The order of adsorption of pesticides on soils was: lindane > methyl parathion > carbofuran. Compost soil had shown the maximum adsorption capacity. The order of adsorption capacity of various soils were: compost soil > clayey soil > red soil > sandy soil. Adsorption isotherms were better fitted to Freundlich model and K{sub f} values increased with increase in organic matter content of the soils. Thermodynamic parameters indicated favorable adsorption of all the three pesticides in four different soils. Adsorption was exothermic in nature. Distilled water desorbed 30-60% of adsorbed pesticides whereas; organic solvents were able to affect 50-80% of sorbed pesticides. Clay content and organic matter played a significant role in pesticide adsorption and desorption processes. Hysteresis effect was observed in red, clayey and compost soils. Hysteresis effect increased with increase in organic matter and clay content of the soils.

  6. Adsorption and desorption characteristics of lindane, carbofuran and methyl parathion on various Indian soils

    International Nuclear Information System (INIS)

    Rama Krishna, K.; Philip, Ligy

    2008-01-01

    Adsorption and desorption characteristics of three insecticides on four Indian soils were studied. Insecticides used were representative of organochlorine, organophosphate, and carbomate groups. The order of adsorption of pesticides on soils was: lindane > methyl parathion > carbofuran. Compost soil had shown the maximum adsorption capacity. The order of adsorption capacity of various soils were: compost soil > clayey soil > red soil > sandy soil. Adsorption isotherms were better fitted to Freundlich model and K f values increased with increase in organic matter content of the soils. Thermodynamic parameters indicated favorable adsorption of all the three pesticides in four different soils. Adsorption was exothermic in nature. Distilled water desorbed 30-60% of adsorbed pesticides whereas; organic solvents were able to affect 50-80% of sorbed pesticides. Clay content and organic matter played a significant role in pesticide adsorption and desorption processes. Hysteresis effect was observed in red, clayey and compost soils. Hysteresis effect increased with increase in organic matter and clay content of the soils

  7. Chloride Ion Adsorption Capacity of Anion Exchange Resin in Cement Mortar

    Directory of Open Access Journals (Sweden)

    Yunsu Lee

    2018-04-01

    Full Text Available This paper presents the effect of anion exchange resin (AER on the adsorption of chloride ions in cement mortar. The kinetic and equilibrium behaviors of AER were investigated in distilled water and Ca(OH2 saturated solutions, and then the adsorption of chloride ions by the AER in the mortar specimen was determined. The AER was used as a partial replacement for sand in the mortar specimen. The mortar specimen was coated with epoxy, except for an exposed surface, and then immersed in a NaCl solution for 140 days. The chloride content in the mortar specimen was characterized by energy dispersive X-ray fluorescence analysis and electron probe microanalysis. The results showed that the AER could adsorb the chloride ions from the solution rapidly but had a relatively low performance when the pH of its surrounding environment increased. When the AER was mixed in the cement mortar, its chloride content was higher than that of the cement matrix around it, which confirms the chloride ion adsorption capacity of the AER.

  8. The surface characteristics of hyperbranched polyamide modified corncob and its adsorption property for Cr(VI)

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Hai, E-mail: linhai@ces.ustb.edu.cn [School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing 100083 (China); Han, Shaoke; Dong, Yingbo; He, Yinhai [School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing 100083 (China)

    2017-08-01

    Highlights: • An anion adsorbent was synthesized by hyperbranched polyamide modified corncob (HPMC). • The surface characteristics of samples (RCC, HPMC, HPMC-Cr) were studied. • Langmuir isotherm provided more fit and maximum adsorption capacity was 131.6 mg/g. • The adsorption process was chemisorption, controlled by intra-particle diffusion and film diffusion. • Adsorption is fast, stable, spontaneous and endothermic. - Abstract: A low-cost anion adsorbent for Cr(VI) effectively removing was synthesized by hyperbranched polyamide modified corncob (HPMC). Samples were characterized by Brunauer–Emmett–Teller (BET) surface area analysis, field-emission scanning electron microscopy (FE-SEM) with energy-dispersive X-ray spectroscopy, Fourier transform infrared (FTIR) and zeta potential analysis. Kinetics, isotherms and thermodynamics studies of HPMC for Cr(VI) adsorption were investigated in batch static experiments, in the temperature range of 25–45 °C, pH = 2.0. Results showed that the adsorption was rapid and stable, with the uptake capacity higher than 80% after 30 min. Adsorption behavior and rate-controlling mechanisms were analyzed using three kinetic models (pseudo-first order, pseudo-second order, intra-particle kinetic model). Kinetic studies showed that the adsorption of HPMC to Cr(VI) relied the pseudo-second-order model, and controlled both by the intra-particle diffusion and film diffusion. Equilibrium data was tested by Langmuir and Freundlich adsorption isotherm models. Langmuir model was more suitable to indicate a homogeneous distribution of active sites on HPMC and monolayer adsorption. The maximum adsorption capacity from the Langmuir model, q{sub max}, was 131.6 mg/g at pH 2.0 and 45 °C for HPMC. Thermodynamic parameters revealed spontaneous and endothermic nature of the Cr(VI) adsorption onto HPMC.

  9. Modification of cyanobacterial bloom-derived biomass using potassium permanganate enhanced the removal of microcystins and adsorption capacity toward cadmium (II)

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Jihai [College of Resources and Environment, Hunan Agricultural University, Changsha 410128 (China); Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Hunan Agricultural University, Changsha 410128 (China); Gu, Ji-Dong [Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Hunan Agricultural University, Changsha 410128 (China); Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region (Hong Kong); Peng, Liang; Luo, Si; Luo, Huili [College of Resources and Environment, Hunan Agricultural University, Changsha 410128 (China); Yan, Zhiyong, E-mail: zhyyan111@163.com [College of Resources and Environment, Hunan Agricultural University, Changsha 410128 (China); Wu, Genyi, E-mail: wugenyi99@163.com [College of Resources and Environment, Hunan Agricultural University, Changsha 410128 (China)

    2014-05-01

    Highlights: • Potassium permanganate removed microcystins in the cyanobacterial bloom-derived biomass (CBDB). • Potassium permanganate oxidation caused the transformation of hydroxyl to carboxyl on the CBDB. • Manganese dioxide was formed on the surface of CBDB. • Potassium permanganate oxidation process increased the adsorption capacity of CBDB toward Cd(II). - Abstract: Cyanobacterial biomass shows high adsorption capacity toward heavy metal ions. However, the cyanotoxins in the cyanobacterial biomass inhibit its application in heavy metals removal. In order to safely and effectively remove Cd(II) from water using cyanobacterial bloom-derived biomass (CBDB), KMnO{sub 4} was used to modify CBDB. The results indicated that the microcystins in the CBDB were successfully removed by KMnO{sub 4}. Potassium permanganate oxidation caused the transformation of hydroxyl to carboxyl on the CBDB, and formed manganese dioxide on the surface of CBDB. The oxidized CBDB showed higher adsorption capacity toward Cd(II) than that of unoxidized treatment. The optimal KMnO{sub 4} concentration for increasing the adsorption capacity of CBDB toward Cd(II) was 0.2 g/L. The adsorption isotherm of Cd(II) by oxidized- or unoxidized-CBDB was well fitted by Langmuir model, indicating that the adsorption of Cd(II) by CBDB was monolayer adsorption. The desorption ratio of Cd(II) from oxidized CBDB was higher than that from unoxidized CBDB in the desorption process using NH{sub 4}NO{sub 3} and EDTA as desorbent. The results presented in this study suggest that KMnO{sub 4} modified CBDB may be used as a safe and high efficient adsorbent in Cd(II) removal from water.

  10. Evaluation of the Marine Algae Gracilaria and its Activated Carbon for the Adsorption of Ni(II from Wastewater

    Directory of Open Access Journals (Sweden)

    A. Esmaeili

    2011-01-01

    Full Text Available The batch removal of Ni2+ from aqueous solution and wastewater using marine dried (MD red algae Gracilaria and its activated carbon (AC was studied. For these experiments, adsorption of Ni2+ was used to form two biomasses of AC and MD. Both methods used different pH values, biomass and initial concentration of Ni2+. Subsequently adsorption models and kinetic studies were carried out. The maximum efficiencies of Ni2+ removal were 83.55% and 99.04% for MD and AC respectively developed from it. The experimental adsorption data were fitted to the Langmuir adsorption model. The nickel(II uptake by the biosorbents was best described by pseudo-second order rate model. The kinetic studies showed that the heavy metal uptake was observed more rapidly by the AC with compared to MD. AC method developed from MD biomass exhibited higher biosorption capacity. Adsorption capacity is related to the pH of solution, pH 5.0 is optimal for nickel. The maximum efficiencies of Ni2+ removal were for AC method. The capacity is related to the pH of solution, pH 5.0 is optimal for nickel. The equilibrium adsorption data are correlated by Langmuir isotherm equation. The adsorption kinetic data can be described by the second order kinetic models

  11. Construction of horizontal stratum landform-like composite foams and their methyl orange adsorption capacity

    International Nuclear Information System (INIS)

    Chen, Jiajia; Shi, Xiaowen; Zhan, Yingfei; Qiu, Xiaodan; Du, Yumin; Deng, Hongbing

    2017-01-01

    Highlights: • CS/REC/CNTs composite foams were prepared by unidirectional freeze-casting. • Horizontal stratum landform-like structure was successful built up in foam. • The addition of REC and CNTs promoted the mechanical properties of foam. • The introduction of REC and CNTs enhanced the adsorption capacity of foam on dye. - Abstract: Chitosan (CS)/rectorite (REC)/carbon nanotubes (CNTs) composite foams with good mechanical properties were successfully fabricated by unidirectional freeze-casting technique. The morphology of the foam showed the well-ordered porous three-dimensional layers and horizontal stratum landform-like structure. The holes on the layers looked like the wings of butterfly. Additionally, the X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy results indicated the successful addition of CNTs and REC. The intercalated REC with CS chains was confirmed by small-angle X-ray diffraction. The surface structure of the foams was also analyzed by Raman spectroscopy. The adsorption experiments showed that when the mass ratio of CS to REC was 10:1 and CNTs content was 20%, the composite foam performed best in adsorbing low concentration methyl orange, and the largest adsorption capacity was 41.65 mg/g.

  12. Construction of horizontal stratum landform-like composite foams and their methyl orange adsorption capacity

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jiajia; Shi, Xiaowen; Zhan, Yingfei; Qiu, Xiaodan; Du, Yumin; Deng, Hongbing, E-mail: hbdeng@whu.edu.cn

    2017-03-01

    Highlights: • CS/REC/CNTs composite foams were prepared by unidirectional freeze-casting. • Horizontal stratum landform-like structure was successful built up in foam. • The addition of REC and CNTs promoted the mechanical properties of foam. • The introduction of REC and CNTs enhanced the adsorption capacity of foam on dye. - Abstract: Chitosan (CS)/rectorite (REC)/carbon nanotubes (CNTs) composite foams with good mechanical properties were successfully fabricated by unidirectional freeze-casting technique. The morphology of the foam showed the well-ordered porous three-dimensional layers and horizontal stratum landform-like structure. The holes on the layers looked like the wings of butterfly. Additionally, the X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy results indicated the successful addition of CNTs and REC. The intercalated REC with CS chains was confirmed by small-angle X-ray diffraction. The surface structure of the foams was also analyzed by Raman spectroscopy. The adsorption experiments showed that when the mass ratio of CS to REC was 10:1 and CNTs content was 20%, the composite foam performed best in adsorbing low concentration methyl orange, and the largest adsorption capacity was 41.65 mg/g.

  13. The influence of adsorption capacity on enhanced gas absorption in activated carbon slurries

    NARCIS (Netherlands)

    Holstvoogd, R.D.; van Swaaij, Willibrordus Petrus Maria

    1990-01-01

    The enhanced absorption of gases in aqueous activated carbbon slurries of fine particles is studied with a non-steady-state absorption model, taking into account the finite adsorption capacity of the carbon particles. It has been found that, for the different gas/activated carbon slurry systems

  14. Adsorption of chromium (Ⅵ) on functionalized and non-functionalized carbon nanotubes

    International Nuclear Information System (INIS)

    Mubarak, Nabisab Mujawar; Thines, Raj Kogiladas; Sajuni, Noor Rosyidah; Ganesan, Poobalan; Jayakumar, Natesan Subramanian; Abdullah, Ezzat Chan; Sahu, Jaya Narayan

    2014-01-01

    We did a comparative study on the adsorption capacity of Cr (Ⅵ) between functionalized carbon nanotubes (CNTs) and non-functionalized CNTs. The statistical analysis reveals that the optimum conditions for the highest removal of Cr (Ⅵ) are at pH 9, with dosage 0.1 gram, agitation speed and time of 120 rpm and 120 minutes, respectively. For the initial concentration of 1.0mg/l, the removal efficiency of Cr (Ⅵ) using functionalized CNTs was 87.6% and 83% of non-functionalized CNTs. The maximum adsorption capacities of functionalized and non-functionalized CNTs were 2.517 and 2.49 mg/g, respectively. Langmuir and Freundlich models were adopted to study the adsorption isotherm, which provided a K L and K F value of 1.217 L/mg and 18.14 mg 1-n L n /g functionalized CNT, while 2.365 L/mg and 2.307 mg 1-n L n /g for non-functionalized CNTs. This result proves that functionalized CNTs are a better adsorbent with a higher adsorption capacity compared with the non-functionalized CNTs

  15. Modeling of Experimental Adsorption Isotherm Data

    Directory of Open Access Journals (Sweden)

    Xunjun Chen

    2015-01-01

    Full Text Available Adsorption is considered to be one of the most effective technologies widely used in global environmental protection areas. Modeling of experimental adsorption isotherm data is an essential way for predicting the mechanisms of adsorption, which will lead to an improvement in the area of adsorption science. In this paper, we employed three isotherm models, namely: Langmuir, Freundlich, and Dubinin-Radushkevich to correlate four sets of experimental adsorption isotherm data, which were obtained by batch tests in lab. The linearized and non-linearized isotherm models were compared and discussed. In order to determine the best fit isotherm model, the correlation coefficient (r2 and standard errors (S.E. for each parameter were used to evaluate the data. The modeling results showed that non-linear Langmuir model could fit the data better than others, with relatively higher r2 values and smaller S.E. The linear Langmuir model had the highest value of r2, however, the maximum adsorption capacities estimated from linear Langmuir model were deviated from the experimental data.

  16. Effective adsorption of malachite green using magnetic barium phosphate composite from aqueous solution

    Science.gov (United States)

    Zhang, Fan; Wei, Zhong; Zhang, Wanning; Cui, Haiyan

    2017-07-01

    Magnetic Ba3(PO4)2/Fe3O4-nanoparticle (called BPFN) was prepared, characterized, and developed as a low-cost adsorbent for malachite green (MG) from aqueous solution. Factors such as adsorption temperature, pH of solution, dosage of adsorbent, adsorption kinetics and isotherms were investigated. The maximum adsorption capacity obtained in this work was 1639 mg g- 1 at 45 °C and pH 6. The adsorption process fitted the pseudo-first-order kinetic model and Langmuir isotherm model. Evidences from zeta potential, Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS) data revealed that the adsorption process was driven by electrostatic attraction, the interaction between Lewis base sbnd N(CH3)2 in MG and Lewis acid Ba sites of BPFN. In addition, the BPFN could be easily regenerated by a magnet and the adsorption capacity maintained at 70% after five cycles. The present study suggests that the BPFN had high potential of removing MG from wastewater.

  17. Batch and fixed-bed adsorption of tartrazine azo-dye onto activated carbon prepared from apricot stones

    Science.gov (United States)

    Albroomi, H. I.; Elsayed, M. A.; Baraka, A.; Abdelmaged, M. A.

    2017-07-01

    This work describes the potential of utilizing prepared activated carbon from apricot stones as an efficient adsorbent material for tartrazine (TZ) azo-dye removal in a batch and dynamic adsorption system. The results revealed that activated carbons with well-developed surface area (774 m2/g) and pore volume (1.26 cm3/g) can be manufactured from apricot stones by H3PO4 activation. In batch experiments, effects of the parameters such as initial dye concentration and temperature on the removal of the dye were studied. Equilibrium was achieved in 120 min. Adsorption capacity was found to be dependent on the initial concentration of dye solution, and maximum adsorption was found to be 76 mg/g at 100 mg/L of TZ. The adsorption capacity at equilibrium ( q e) increased from 22.6 to 76 mg/g with an increase in the initial dye concentrations from 25 to 100 mg/L. The thermodynamic parameters such as change in free energy (Δ G 0), enthalpy (Δ H 0) and entropy (Δ S 0) were determined and the positive value of (Δ H) 78.1 (K J mol-1) revealed that adsorption efficiency increased with an increase in the process temperature. In fixed-bed column experiments, the effect of selected operating parameters such as bed depth, flow rate and initial dye concentration on the adsorption capacity was evaluated. Increase in bed height of adsorption columns leads to an extension of breakthrough point as well as the exhaustion time of adsorbent. However, the maximum adsorption capacities decrease with increases of flow rate. The breakthrough data fitted well to bed depth service time and Thomas models with high coefficient of determination, R 2 ≥ 94.

  18. Thermal activation of serpentine for adsorption of cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Chun-Yan [College of Land and Environment, Shenyang Agricultural University, Shenyang (China); College of Chemistry, Chemical Engineering and Food Safety, Bohai University, Jinzhou (China); Liang, Cheng-Hua, E-mail: liang110161@163.com [College of Land and Environment, Shenyang Agricultural University, Shenyang (China); Yin, Yan [Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang (China); Du, Li-Yu [College of Land and Environment, Shenyang Agricultural University, Shenyang (China)

    2017-05-05

    Highlights: • Thermal activated serpentine was prepared by changing heated temperature. • Thermal activated serpentine exhibited excellent adsorption behavior for cadmium. • The adsorption mechanisms could be explained as formation of CdCO{sub 3} and Cd(OH){sub 2}. • The adsorption obeyed Langmuir model and pseudo second order kinetics model. - Abstract: Thermal activated serpentine with high adsorption capacity for heavy metals was prepared. The batch experiment studies were conducted to evaluate the adsorption performance of Cd{sup 2+} in aqueous solution using thermal activated serpentine as adsorbent. These samples before and after adsorption were characterized by XRD, FT-IR, SEM, XPS, and N{sub 2} adsorption-desorption at low temperature. It was found that serpentine with layered structure transformed to forsterite with amorphous structure after thermal treatment at over 700 °C, while the surface area of the samples was increased with activated temperature and the serpentine activated at 700 °C (S-700) presented the largest surface area. The pH of solution after adsorption was increased in different degrees due to hydrolysis of MgO in serpentine, resulting in enhancing adsorption of Cd{sup 2+}. The S-700 exhibited the maximum equilibrium adsorption capacity (15.21 mg/g), which was 2 times more than pristine serpentine. Langmuir isotherm was proved to describe the equilibrium adsorption data better than Freundlich isotherm and pseudo second order kinetics model could fit the adsorption kinetics processes well. Based on the results of characterization with XPS and XRD, the adsorption mechanisms could be explained as primarily formation of CdCO{sub 3} and Cd(OH){sub 2} precipitation on the surface of serpentine.

  19. Thermal activation of serpentine for adsorption of cadmium

    International Nuclear Information System (INIS)

    Cao, Chun-Yan; Liang, Cheng-Hua; Yin, Yan; Du, Li-Yu

    2017-01-01

    Highlights: • Thermal activated serpentine was prepared by changing heated temperature. • Thermal activated serpentine exhibited excellent adsorption behavior for cadmium. • The adsorption mechanisms could be explained as formation of CdCO_3 and Cd(OH)_2. • The adsorption obeyed Langmuir model and pseudo second order kinetics model. - Abstract: Thermal activated serpentine with high adsorption capacity for heavy metals was prepared. The batch experiment studies were conducted to evaluate the adsorption performance of Cd"2"+ in aqueous solution using thermal activated serpentine as adsorbent. These samples before and after adsorption were characterized by XRD, FT-IR, SEM, XPS, and N_2 adsorption-desorption at low temperature. It was found that serpentine with layered structure transformed to forsterite with amorphous structure after thermal treatment at over 700 °C, while the surface area of the samples was increased with activated temperature and the serpentine activated at 700 °C (S-700) presented the largest surface area. The pH of solution after adsorption was increased in different degrees due to hydrolysis of MgO in serpentine, resulting in enhancing adsorption of Cd"2"+. The S-700 exhibited the maximum equilibrium adsorption capacity (15.21 mg/g), which was 2 times more than pristine serpentine. Langmuir isotherm was proved to describe the equilibrium adsorption data better than Freundlich isotherm and pseudo second order kinetics model could fit the adsorption kinetics processes well. Based on the results of characterization with XPS and XRD, the adsorption mechanisms could be explained as primarily formation of CdCO_3 and Cd(OH)_2 precipitation on the surface of serpentine.

  20. Adsorptive removal of cesium using bio fuel extraction microalgal waste

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Katsutoshi, E-mail: inoue@elechem.chem.saga-u.ac.jp [Department of Applied Chemistry, Faculty of Science and Engineering, Saga University, Honjo 1, Saga 840-8502 (Japan); Gurung, Manju [Department of Applied Chemistry, Faculty of Science and Engineering, Saga University, Honjo 1, Saga 840-8502 (Japan); Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John' s, NL, Canada A1B 3X5 (Canada); Adhikari, Birendra Babu; Alam, Shafiq [Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John' s, NL, Canada A1B 3X5 (Canada); Kawakita, Hidetaka; Ohto, Keisuke [Department of Applied Chemistry, Faculty of Science and Engineering, Saga University, Honjo 1, Saga 840-8502 (Japan); Kurata, Minoru [Research Laboratories, DENSO CORPORATION, Minamiyama 500-1, Komenoki, Nisshin, Aichi 470-0111 (Japan); Atsumi, Kinya [New Business Promotion Dept., DENSO CORPORATION, Showa-cho 1-1, Kariya, Aichi 448-8661 (Japan)

    2014-04-01

    Highlights: • A novel biosorbent was prepared from the microalgal waste after biofuel extraction. • Higher selectivity and adsorption efficiency of the adsorbent for Cs{sup +} over Na{sup +} ions from aqueous solutions. • Potential candidate and eco-friendly alternative to the commercial resins such as zeolite. - Abstract: An adsorption gel was prepared from microalgal waste after extracting biodiesel oil by a simple chemical treatment of crosslinking using concentrated sulfuric acid. The adsorbent exhibited notably high selectivity and adsorption capacity towards Cs{sup +} over Na{sup +} from aqueous solutions, within the pH range of slightly acidic to neutral. The adsorption followed Langmuir isotherm and the maximum adsorption capacity of the gel for Cs{sup +} calculated from Langmuir model was found to be 1.36 mol kg{sup −1}. Trace concentration of Cs{sup +} ions present in aqueous streams was successfully separated from Na{sup +} ions using a column packed with the adsorbent at pH 6.5. The adsorption capacity of the gel towards Cs{sup +} in column operation was 0.13 mol kg{sup −1}. Although the adsorbed Cs{sup +} ions were easily eluted using 1 M hydrochloric acid solution, simple incineration is proposed as an alternative for the treatment of adsorbent loaded with radioactive Cs{sup +} ions due to the combustible characteristics of this adsorbent.

  1. Gas adsorption capacity in an all carbon nanomaterial composed of carbon nanohorns and vertically aligned carbon nanotubes.

    Science.gov (United States)

    Puthusseri, Divya; Babu, Deepu J; Okeil, Sherif; Schneider, Jörg J

    2017-10-04

    Whereas vertically aligned carbon nanotubes (VACNTs) typically show a promising adsorption behavior at high pressures, carbon nanohorns (CNHs) exhibit superior gas adsorption properties in the low pressure regime due to their inherent microporosity. These adsorption characteristics are further enhanced when both materials are opened at their tips. The so prepared composite material allows one to investigate the effect of physical entrapment of CO 2 molecules within the specific adsorption sites of VACNTs composed of opened double walled carbon nanotubes (CNTs) and in specific adsorption sites created by spherically aggregated opened single walled carbon nanohorns. Combining 50 wt% of tip opened CNTs with tip opened CNHs increases the CO 2 adsorption capacity of this material by ∼24% at 30 bar and 298 K compared to opened CNHs alone.

  2. Adsorption of procion red using layer double hydroxide Mg/Al

    Directory of Open Access Journals (Sweden)

    Muhammad Imron

    2017-07-01

    Full Text Available Layer double hydroxide Mg/Al was synthesized by inorganic synthetic method. Material was characterized using FTIR and XRD analyses and used as adsorbent of procion red dye in aqueous medium.  Factors that affect the adsorption process are adsorption time as the kinetic parameter; and the temperature and concentration of procion red as the thermodynamic parameter. FTIR spectra of layer double hydroxides showed unique vibration at wavenumber 1300 cm-1 and 1600 cm-1. Characterization using XRD shows diffraction angles at 29o, 27o, and 28o, which are typical of Mg/Al double layer hydroxides. Adsorption of procion red using layer double hydroxide Mg/Al resulted adsorption rate 7.1 minutes-1, maximum adsorption capacity 111.1 mg/g at 60 oC with increasing energy by increasing adsorption temperature.   Keywords: Layered double hydroxides, adsorption, procion red.

  3. Foam-based adsorbents having high adsorption capacities for recovering dissolved metals and methods thereof

    Science.gov (United States)

    Janke, Christopher J.; Dai, Sheng; Oyola, Yatsandra

    2015-06-02

    Foam-based adsorbents and a related method of manufacture are provided. The foam-based adsorbents include polymer foam with grafted side chains and an increased surface area per unit weight to increase the adsorption of dissolved metals, for example uranium, from aqueous solutions. A method for forming the foam-based adsorbents includes irradiating polymer foam, grafting with polymerizable reactive monomers, reacting with hydroxylamine, and conditioning with an alkaline solution. Foam-based adsorbents formed according to the present method demonstrated a significantly improved uranium adsorption capacity per unit weight over existing adsorbents.

  4. Study on adsorption of rhodamine B onto Beta zeolites by tuning SiO2/Al2O3 ratio.

    Science.gov (United States)

    Cheng, Zhi-Lin; Li, Yan-Xiang; Liu, Zan

    2018-02-01

    The exploration of the relationship between zeolite composition and adsorption performance favored to facilitate its better application in removal of the hazardous substances from water. The adsorption capacity of rhodamine B (RB) onto Beta zeolite from aqueous solution was reported. The relationship between SiO 2 /Al 2 O 3 ratio and adsorption capacity of Beta zeolite for RB was explored. The structure and physical properties of Beta zeolites with various SiO 2 /Al 2 O 3 ratios were determined by XRD, FTIR, TEM, BET, UV-vis and so on characterizations. The adsorption behavior of rhodamine B onto Beta zeolite matched to Langmuir adsorption isotherm and more suitable description for the adsorption kinetics was a pseudo-second-order reaction model. The maximum adsorption capacity of the as-prepared Beta zeolite with SiO 2 /Al 2 O 3 = 18.4 was up to 27.97mg/g. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Adsorption of diastase over natural halloysite nanotubes (HNTs)

    Science.gov (United States)

    Twaiq, F.; Chang, K. X.; Ling, J. Y. W.

    2017-06-01

    Adsorption of diastase over natural halloysite nanotubes is studied in order to evaluate the adsorption capacity of diastase. The halloysite surface characteristics were assessed using nitrogen adsorption, x-ray diffraction (XRD), thermal gravimetric analysis (TGA) and Fourier transformed infrared (FTIR). The surface area of the natural halloysite is found to be 51 m2·g-1, with total pore volume of 0.106 cm3·g-1. The natural halloysite has a basal spacing (d001) of 10 Å confirming the structure of the natural halloysite material. TGA results indicated that halloysite loses its interlayer water in the range of 30 to 105 °C and the dehydration in the structural layer above 150 °C. The dehydroxylation of halloysite has occurred at approximately 460 °C. The FTIR result of the thermally treated halloysite sample indicated that the bands observed are assigned to Si-O and Al-O bonds. The effects of solution pH and temperature were studied on the adsorption capacity and percent removal of diastase from the solution. The adsorption kinetic found to fit well with both the Pseudo first-order and Pseudo second-order models, and the values of the kinetic constant were found to be 0.173 min-1 and 0.00018 g·mg-1·min-1 respectively. The Langmuir isotherm model is found to fit well to the adsorption data and a kinetic value is found to be 0.00059 m3·g-1. The maximum adsorption capacity was found to be 370 mg·g-1, indicating the potential for applications of the natural nanostructured halloysite material as an effective adsorbent for diastase.

  6. Oil Spill Adsorption Capacity of Activated Carbon Tablets from Corncobs in Simulated Oil-Water Mixture

    Directory of Open Access Journals (Sweden)

    Rhonalyn V. Maulion

    2015-12-01

    Full Text Available Oil spill in bodies of water is one of severe environmental problems that is facing all over the country and in the world. Since oil is an integral part of the economy, increasing trend for its demand and transport of has led to a great treat in the surface water. One of the promising techniques in the removal of the oil spills in water bodies is adsorption using activated carbon form waste material such as corn cobs. The purpose of this study is to determine the adsorption capacity of activated carbon tablets derived from corncobs in the removal of oil. The properties of activated carbon produced have a pH of 7.0, bulk density of 0.26 g//cm3 , average pore size of 45nm, particle size of 18% at 60 mesh and 39% at 80 mesh, iodine number of 1370 mg/g and surface area of 1205 g/m2. The amount of bentonite clay as binder (15%,20%,30%, number of ACT (1,2,3 and time of contact(30,60,90 mins has been varied to determine the optimum condition where the activated carbon will have the best adsorption capacity in the removal of oil. Results showed that at 15% binder, 60 mins contact time and 3 tablets of activated carbon is the optimum condition which give a percentage adsorption of 22.82% of oil. Experimental data also showed that a Langmuir isotherm was the best fit isotherm for adsorption of ACT.

  7. Adsorption Properties of Doxorubicin Hydrochloride onto Graphene Oxide: Equilibrium, Kinetic and Thermodynamic Studies

    Directory of Open Access Journals (Sweden)

    Zonghua Wang

    2013-05-01

    Full Text Available Doxorubicin hydrochloride (DOX is an effective anticancer agent for leukemia chemotherapy, although its clinical use has been limited because of its side effects such as cardiotoxicity, alopecia, vomiting, and leucopenia. Attention has been focussed on developing new drug carriers with high adsorption capacity and rapid adsorption rate in order to minimize the side effects of DOX. Graphene oxide (GO, a new type of nanomaterial in the carbon family, was prepared by Hummers method and used as adsorbent for DOX from aqueous solution. The physico-chemical properties of GO were characterized by transmission electron microscope (TEM, Fourier transform infrared spectroscopy (FTIR, zeta potential, and element analysis. The adsorption properties of DOX on GO were studied as a function of contact time, adsorbent dosage, temperature and pH value. The results showed that GO had a maximum adsorption capacity of 1428.57 mg/g and the adsorption isotherm data fitted the Langmuir model. The kinetics of adsorption fits a pseudo-second-order model. The thermodynamic studies indicate that the adsorption of DOX on GO is spontaneous and endothermic in nature.

  8. Preparation of tetraethylenepentamine modified magnetic graphene oxide for adsorption of dyes from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Xiaosheng [Hubei Normal University (China); Tang, Ping; Liu, Liangliang, E-mail: liuliangliang@caas.cn [Chinese Academy of Agricultural Sciences, Changsha (China)

    2018-05-01

    In this study, tetraethylenepentamine modified magnetic graphene oxide nanomaterial (TMGO) was prepared and characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and vibration sample magnetometer (VSM). All the characterizations proved that the modification and preparation of TMGO were successful. The TMGO nanomaterial was used in the adsorption of Acid Red 18 (AR) in aqueous solution. The parameters like pH of solution, adsorption kinetics and isotherms were all investigated. The results indicated that the TMGO nanomaterial had satisfied adsorption ability and the maximum adsorption capacity was 524.2 mg g{sup -}'1 at 45 °C and pH 6. The adsorption capacity remained at 91.8% of the initial value after five cycles. The adsorption process with AR was found through fitting the pseudo-second-order kinetics equations and the Freundlich adsorption model. The experimental results demonstrated that the TMGO nanomaterial could be rapidly extracted from the medium and had a good adsorption ability to remove dyes in wastewater. (author)

  9. Modification of porous starch for the adsorption of heavy metal ions from aqueous solution.

    Science.gov (United States)

    Ma, Xiaofei; Liu, Xueyuan; Anderson, Debbie P; Chang, Peter R

    2015-08-15

    Porous starch xanthate (PSX) and porous starch citrate (PSC) were prepared in anticipation of the attached xanthate and carboxylate groups respectively forming chelation and electrostatic interactions with heavy metal ions in the subsequent adsorption process. The lead(II) ion was selected as the model metal and its adsorption by PSX and PSC was characterized. The adsorption capacity was highly dependent on the carbon disulfide/starch and citric acid/starch mole ratios used during preparation. The adsorption behaviors of lead(II) ion on PSXs and PSCs fit both the pseudo-second-order kinetic model and the Langmuir isotherm model. The maximum adsorption capacity from the Langmuir isotherm equation reached 109.1 and 57.6 mg/g for PSX and PSC when preparation conditions were optimized, and the adsorption times were just 20 and 60 min, respectively. PSX and PSC may be used as effective adsorbents for removal of heavy metals from contaminated liquid. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  10. Adsorption behavior and mechanism of Cr(VI) using Sakura waste from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Wenfang [School of Environmental Science and Engineering, Tianjin University, Tianjin 300072 (China); Zhao, Yingxin, E-mail: yingxinzhao@tju.edu.cn [School of Environmental Science and Engineering, Tianjin University, Tianjin 300072 (China); Tianjin Engineering Center of Urban River Eco-Purification Technology, Tianjin 300072 (China); Zheng, Xinyi [School of Environmental Science and Engineering, Tianjin University, Tianjin 300072 (China); Ji, Min [School of Environmental Science and Engineering, Tianjin University, Tianjin 300072 (China); Tianjin Engineering Center of Urban River Eco-Purification Technology, Tianjin 300072 (China); Zhang, Zhenya [Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 3058572 (Japan)

    2016-01-01

    Graphical abstract: The main chemical components of Sakura leaves are cellulose 16.6%, hemicellulose 10.4%, lignin 18.3%, ash 11.4%, and others 43.3%. The adsorption capacity of Cr(VI) onto Sakura leaves can achieve 435.25 mg g{sup −1}, much higher than other similar agroforestry wastes. - Highlights: • Sakura leaves were prepared to remove Cr(VI) from aqueous solution. • The maximum adsorption capacity of Cr(VI) reached 435.25 mg g{sup −1}. • Cr(VI) adsorption fitted pseudo-second-order kinetic model. • Isotherm models indicated Cr(VI) adsorption occurred on a monolayer surface. • The influence order of coexisting ions followed PO{sub 4}{sup 3−} > SO{sub 4}{sup 2−} > Cl{sup −}. - Abstract: A forestall waste, Sakura leave, has been studied for the adsorption of Cr(VI) from aqueous solution. The materials before and after adsorption were characterized by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). To investigate the adsorption performance of Sakura waste, batch experiments were conducted under different adsorbent dosage, contact time, initial concentration of Cr(VI), and co-existing ions. Results showed the data fitted pseudo-second-order better than pseudo-first-order kinetic model. Equilibrium data was analyzed with Langmuir, Freundlich and Redlich–Peterson isotherm models at temperature ranges from 25 °C to 45 °C. The maximum adsorption capacity from the Langmuir model was 435.25 mg g{sup −1} at pH 1.0. The presence of Cl{sup −}, SO{sub 4}{sup 2−} and PO{sub 4}{sup 3−} would lead to an obvious negative effect on Cr(VI) adsorption, and their influence order follows PO{sub 4}{sup 3−} > SO{sub 4}{sup 2−} > Cl{sup −}. The study developed a new way to reutilize wastes and showed a great potential for resource recycling.

  11. Adsorption Cooling System Using Metal-Impregnated Zeolite-4A

    Directory of Open Access Journals (Sweden)

    Somsuk Trisupakitti

    2016-01-01

    Full Text Available The adsorption cooling systems have been developed to replace vapor compression due to their benefits of being environmentally friendly and energy saving. We prepared zeolite-4A and experimental cooling performance test of zeolite-water adsorption system. The adsorption cooling test-rig includes adsorber, evaporator, and condenser which perform in vacuum atmosphere. The maximum and minimum water adsorption capacity of different zeolites and COP were used to assess the performance of the adsorption cooling system. We found that loading zeolite-4A with higher levels of silver and copper increased COP. The Cu6%/zeolite-4A had the highest COP at 0.56 while COP of zeolite-4A alone was 0.38. Calculating the acceleration rate of zeolite-4A when adding 6% of copper would accelerate the COP at 46%.

  12. A theoretical model to determine the capacity performance of shape-specific electrodes

    Science.gov (United States)

    Yue, Yuan; Liang, Hong

    2018-06-01

    A theory is proposed to explain and predict the electrochemical process during reaction between lithium ions and electrode materials. In the model, the process of reaction is proceeded into two steps, surface adsorption and diffusion of lithium ions. The surface adsorption is an instantaneous process for lithium ions to adsorb onto the surface sites of active materials. The diffusion of lithium ions into particles is determined by the charge-discharge condition. A formula to determine the maximum specific capacity of active materials at different charging rates (C-rates) is derived. The maximum specific capacity is correlated to characteristic parameters of materials and cycling - such as size, aspect ratio, surface area, and C-rate. Analysis indicates that larger particle size or greater aspect ratio of active materials and faster C-rates can reduce maximum specific capacity. This suggests that reducing particle size of active materials and slowing the charge-discharge speed can provide enhanced electrochemical performance of a battery cell. Furthermore, the model is validated by published experimental results. This model brings new understanding in quantification of electrochemical kinetics and capacity performance. It enables development of design strategies for novel electrodes and future generation of energy storage devices.

  13. Synthesis and properties of a high-capacity iron oxide adsorbent for fluoride removal from drinking water

    Science.gov (United States)

    Zhang, Chang; Li, Yingzhen; Wang, Ting-Jie; Jiang, Yanping; Fok, Jason

    2017-12-01

    A novel iron oxide adsorbent with a high fluoride adsorption capacity was prepared by a facile wet-chemical precipitation method and ethanol treatment. The ethanol-treated adsorbent was amorphous and had a high specific surface area. The adsorption capacity of the treated adsorbent was much higher than that of untreated adsorbent. The Langmuir maximum adsorption capacity of the adsorbent prepared at a low final precipitation pH (≤9.0) and treated with ethanol reached 60.8 mg/g. A fast adsorption rate was obtained, and 80% of the adsorption equilibrium capacity was achieved within 2 min. The adsorbent had high fluoride-removal efficiency for water in a wide initial pH range of 3.5-10.3 and had a high affinity for fluoride in the presence of common co-anions. The ethanol treatment resulted in structure transformation of the adsorbent by inhibiting the crystallization of the nano-precipitates. The adsorption was confirmed to be ion exchange between fluoride ions and the hydroxyl groups on the adsorbent surface.

  14. Adsorption of chromium (Ⅵ) on functionalized and non-functionalized carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Mubarak, Nabisab Mujawar; Thines, Raj Kogiladas; Sajuni, Noor Rosyidah [UCSI University, Kuala Lumpur (Malaysia); Ganesan, Poobalan; Jayakumar, Natesan Subramanian [University of Malaya, Kuala Lumpur (Malaysia); Abdullah, Ezzat Chan [Universiti Teknologi Malaysia, Kuala Lumpur (Malaysia); Sahu, Jaya Narayan [Institut Teknologi Brunei, Tungku Gadong (Brunei Darussalam)

    2014-09-15

    We did a comparative study on the adsorption capacity of Cr (Ⅵ) between functionalized carbon nanotubes (CNTs) and non-functionalized CNTs. The statistical analysis reveals that the optimum conditions for the highest removal of Cr (Ⅵ) are at pH 9, with dosage 0.1 gram, agitation speed and time of 120 rpm and 120 minutes, respectively. For the initial concentration of 1.0mg/l, the removal efficiency of Cr (Ⅵ) using functionalized CNTs was 87.6% and 83% of non-functionalized CNTs. The maximum adsorption capacities of functionalized and non-functionalized CNTs were 2.517 and 2.49 mg/g, respectively. Langmuir and Freundlich models were adopted to study the adsorption isotherm, which provided a K{sub L} and K{sub F} value of 1.217 L/mg and 18.14 mg{sup 1-n}L{sup n}/g functionalized CNT, while 2.365 L/mg and 2.307 mg{sup 1-n}L{sup n}/g for non-functionalized CNTs. This result proves that functionalized CNTs are a better adsorbent with a higher adsorption capacity compared with the non-functionalized CNTs.

  15. Effects of textural and surface characteristics of microporous activated carbons on the methane adsorption capacity at high pressures

    International Nuclear Information System (INIS)

    Bastos-Neto, M.; Canabrava, D.V.; Torres, A.E.B.; Rodriguez-Castellon, E.; Jimenez-Lopez, A.; Azevedo, D.C.S.; Cavalcante, C.L.

    2007-01-01

    The objective of this study is to relate textural and surface characteristics of selected microporous activated carbons to their methane storage capacity. In this work, a magnetic suspension balance (Rubotherm, Germany) was used to measure methane adsorption isotherms of several activated carbon samples. Textural characteristics were assessed by nitrogen adsorption on a regular surface area analyzer (Autosorb-MP, by Quantachrome, USA). N 2 adsorption was analysed by conventional models (BET, DR, HK) and by Monte Carlo molecular simulations. Elemental and surface analyses were performed by X-ray photoelectronic spectroscopy (XPS) for the selected samples. A comparative analysis was then carried out with the purpose of defining some correlation among the variables under study. For the system under study, pore size distribution and micropore volume seem to be a determining factor as long as the solid surface is perfectly hydrophobic. It was concluded that the textural parameters per se do not unequivocally determine natural gas storage capacities. Surface chemistry and methane adsorption equilibria must be taken into account in the decision-making process of choosing an adsorbent for gas storage

  16. Adsorption of amylase enzyme on ultrafiltration membranes

    DEFF Research Database (Denmark)

    Beier, Søren; Enevoldsen, Ann Dorrit; Kontogeorgis, Georgios

    2007-01-01

    A method to measure the static adsorption on membrane surfaces has been developed and described. The static adsorption of an amylase-F has been measured on two different ultrafiltration membranes, both with a cut-off value of 10 kDa (a PES membrane and the ETNA10PP membrane, which is a surface......-modified PVDF membrane). The adsorption follows the Langmuir adsorption theory. Thus, the static adsorption consists of monolayer coverage. The static adsorption is expressed both as a permeability drop and an adsorption resistance. From the adsorption isotherms the maximum static permeability drops...... and the maximum static adsorption resistances are determined. The maximum static permeability drop for the hydrophobic PES membrane is 75 % and the maximum static adsorption resistance is 0.014 m2hbar/L. The maximum static permeability drop for the hydrophilic surface-modified PVDF membrane (ETNA10PP) is 23...

  17. Effect of carbonation temperature on CO{sub 2} adsorption capacity of CaO derived from micro/nanostructured aragonite CaCO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Hlaing, Nwe Ni, E-mail: nwenihlaing76@gmail.com [School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia); Department of International Development Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo (Japan); Department of Physics, University of Yangon, 11041 Kamayut, Yangon (Myanmar); Sreekantan, Srimala, E-mail: srimala@usm.my [School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia); Hinode, Hirofumi, E-mail: hinode@ide.titech.ac.jp; Kurniawan, Winarto, E-mail: Kurniawan.w.ab@m.titech.ac.jp [Department of International Development Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo (Japan); Thant, Aye Aye, E-mail: a2thant@gmail.com [Department of Physics, University of Yangon, 11041 Kamayut, Yangon (Myanmar); Othman, Radzali, E-mail: radzali@utem.edu.my [Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Malacca (Malaysia); Mohamed, Abdul Rahman, E-mail: chrahman@eng.usm.my [Low Carbon Economy (LCE) Research Group, School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia); Salime, Chris, E-mail: chris.salim@surya.ac.id [Environmental Engineering, Surya University, Tangerang, 15810 Banten (Indonesia)

    2016-07-06

    Recent years, CaO-based synthetic materials have been attracted attention as potential adsorbents for CO{sub 2} capture mainly due to their high CO{sub 2} adsorption capacity. In this study, micro/nanostructured aragonite CaCO{sub 3} was synthesized by a simple hydrothermal method with using polyacrylamide (PAM). The structural, morphological and thermal properties of the synthesized sample were investigated by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) and thermogravimetry analysis (TG-DTA). The XRD and FESEM results showed that the obtained sample was aragonite CaCO{sub 3} with aggregated nanorods and microspheres composed of nanorods. A TG-DTA apparatus with Thermoplus 2 software was used to investigate the effect of carbonation temperature on the CO{sub 2} adsorption capacity of CaO derived from aragonite CaCO{sub 3} sample. At 300 °C, the sample reached the CO{sub 2} adsorption capacity of 0.098 g-CO{sub 2}/g-adsorbent, whereas the sample achieved the highest capacity of 0.682 g-CO{sub 2}/g-adsorbent at 700 °C. The results showed that the carbonation temperature significantly influenced on the CO{sub 2} adsorption capacity of the CaO derived from aragonite CaCO{sub 3}.

  18. Adsorption of Ammonia on Municipal Solid Waste Incinerator Bottom Ash Under the Landfill Circumstance

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Jun; Kong, Qingna; Zhu, Huayue; Zhang, Zhen [Taizhou University, Linhai (China); Long, Yuyang; Shen, Dongsheng [Zhejiang Gongshang University, Hangzhou (China)

    2015-08-15

    The adsorption characteristics of ammonia on MSWI bottom ash were investigated. The effect of the variation of the landfill environmental parameters including pH, anions and organic matter on the adsorption process was discussed. Results showed that the adsorption could be well described by pseudo-second-order kinetics and Langmuir model, with a maximum adsorption capacity of 156.2 mg/g. The optimum adsorption of ammonia was observed when the pH was 6.0. High level of ion and organic matter could restrict the adsorption to a low level. The above results suggested that MSWI bottom ash could affect the migration of ammonia in the landfill, which is related to the variation of the landfill circumstance.

  19. Adsorption of gold onto γ-aminopropyltriethoxysilane grafted coconut pith

    International Nuclear Information System (INIS)

    Usman, M.; Akhtar, J.

    2017-01-01

    This study was carried out to investigate adsorption kinetic and adsorption thermodynamics of Au(III) ions onto γ-aminopropyltriethoxysilane grafted coconut pith. The results from equilibrium adsorption were fitted in various adsorption isotherm models such as Langmuir, Freundlich, Temkin and Dubinin-Radushkevich and the best fit for the experimental data was Langmuir isotherm. The maximum adsorption capacity for virgin coconut pith (VCP) and the grafted coconut pith (GCP) were 256.41 and 285.59 mg/g, respectively. The kinetic data was verified using pseudo-first-order, pseudo-second-order, elovich equation and intraparticle diffusion model. The correlation results suggested that the pseudo-second-order model fits the experimental data well. A thermodynamic study revealed the endothermic nature of reaction due to positive enthalpy (?Ho) values and negative values of Gibbs free energy (?Go) describes the spontaneity of adsorption process. The regenerability of VCP and GCP adsorbents were investigated with NaOH (1.0 M).

  20. A new support material for IgG adsorption: Syntrichia papillosissima (Copp.) Loeske.

    Science.gov (United States)

    Demir, Mithat Evrim; Aktaş Uygun, Deniz; Erdağ, Adnan; Akgöl, Sinan

    2017-11-01

    In this presented work, Syntrichia papillosissima (Copp.) Loeske (S. papillosissima) was used as a natural phytosorbent for IgG purification. These moss species were collected for the natural habitat and prepared for IgG adsorption studies by cleaning, drying, and grinding to uniform size. Syntrichia papillosissima samples were characterized by using FTIR and SEM studies. Functional groups of S. papillosissima were identified by FTIR analysis, while surface characteristics were determined by SEM studies. A batch system was used for the adsorption of IgG onto S. papillosissima surface and physical conditions of the IgG adsorption medium were investigated by modifying the pH, IgG concentration and temperature. Maximum IgG adsorption onto S. papillosissima was found to be 68.01 mg/g moss by using pH 5.0 buffer system. Adsorption kinetic isotherms were also studied and it was found that, Langmuir adsorption model was appropriate for this adsorption study. Reusability profile of S. papillosissima was also investigated and IgG adsorption capacity did not decrease significantly after 5 reuse studies. Results indicated that S. papillosissima species have the capacity to be used as biosorbent for IgG purification, with its low cost, natural and biodegradable structure.

  1. Effect of degree of deacetylation of chitosan on adsorption capacity and reusability of chitosan/polyvinyl alcohol/TiO2 nano composite.

    Science.gov (United States)

    Habiba, Umma; Joo, Tan Chin; Siddique, Tawsif A; Salleh, Areisman; Ang, Bee Chin; Afifi, Amalina M

    2017-11-01

    The chitosan/polyvinyl alcohol/TiO 2 composite was synthesized. Two different degrees of deacetylation of chitosan were prepared by hydrolysis to compare the effectiveness of them. The composite was analyzed via field emission scanning electron microscopy, Fourier transform infrared, X-ray diffraction, thermal gravimetric analysis, weight loss test and adsorption study. The FTIR and XRD results proved the interaction among chitosan, PVA and TiO 2 without any chemical reaction. It was found that, chitosan with higher degree of deacetylation has better stability. Furthermore, it also showed that higher DD of chitosan required less time to reach equilibrium for methyl orange. The adsorption followed the pseudo-second-order kinetic model. The Langmuir and Freundlich isotherm models were fitted well for isotherm study. Adsorption capacity was higher for the composite containing chitosan with higher DD. The dye removal rate was independent of the dye's initial concentration. The adsorption capacity was increased with temperature and it was found from reusability test that the composite containing chitosan with higher DD is more reusable. It was notable that adsorption capacity was even after 15 runs. Therefore, chitosan/PVA/TiO 2 composite can be a very useful material for dye removal. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Polanyi Evaluation of Adsorptive Capacities of Commercial Activated Carbons

    Science.gov (United States)

    Monje, Oscar; Surma, Jan M.

    2017-01-01

    Commercial activated carbons from Calgon (207C and OVC) and Cabot Norit (RB2 and GCA 48) were evaluated for use in spacecraft trace contaminant control filters. The Polanyi potential plots of the activated carbons were compared using to those of Barnebey-Cheney Type BD, an untreated activated carbon with similar properties as the acid-treated Barnebey-Sutcliffe Type 3032 utilized in the TCCS. Their adsorptive capacities under dry conditions were measured in a closed loop system and the sorbents were ranked for their ability to remove common VOCs found in spacecraft cabin air. This comparison suggests that these sorbents can be ranked as GCA 48 207C, OVC RB2 for the compounds evaluated.

  3. Studies on adsorption capacity of clay-Sargassum sp biosorbent for Cr (VI) removal in wastewater from electroplating industry

    Science.gov (United States)

    Aprianti, Tine; Aprilyanti, Selvia; Apriani, Rachmawati; Sisnayati

    2017-11-01

    Various raw biosorbents have been studied for pollutant treatment of heavy metals contained in wastewater. In this study, clay and brown seaweed, Sargassum sp, are used for hexavalent chromium [Cr (VI)] biosorption. The adsorption capacity is adequately improved by combining clay and Sargassum sp as the adsorbent agent. Ion exchange of metal ions has shown strong coordination cross-linkage due to organic functional hydroxyl groups (OH-) contained in brown seaweed that provide sites to capture and bind the metal ions. Clay is known as an inexpensive adsorbent due to its wide availability besides its large specific surface area. Combining clay and Sargassum sp as biosorbent resulting better adsorption, the adsorption capacity reaches most favorable results of 99.39% at Sargassum: clay ratio of 40:60 on contact time 10 h. This study has proven that composit biosorbent used has succeeded in reducing hexavalent chromium pollutant in wastewater.

  4. Adsorption of Ni2+ from aqueous solution by magnetic Fe@graphite nano-composite

    Directory of Open Access Journals (Sweden)

    Konicki Wojciech

    2016-12-01

    Full Text Available The removal of Ni2+ from aqueous solution by iron nanoparticles encapsulated by graphitic layers (Fe@G was investigated. Nanoparticles Fe@G were prepared by chemical vapor deposition CVD process using methane as a carbon source and nanocrystalline iron. The properties of Fe@G were characterized by X-ray Diffraction method (XRD, High-Resolution Transmission Electron Microscopy (HRTEM, Fourier Transform-Infrared Spectroscopy (FTIR, BET surface area and zeta potential measurements. The effects of initial Ni2+ concentration (1–20 mg L−1, pH (4–11 and temperature (20–60°C on adsorption capacity were studied. The adsorption capacity at equilibrium increased from 2.96 to 8.78 mg g−1, with the increase in the initial concentration of Ni2+ from 1 to 20 mg L−1 at pH 7.0 and 20oC. The experimental results indicated that the maximum Ni2+ removal could be attained at a solution pH of 8.2 and the adsorption capacity obtained was 9.33 mg g−1. The experimental data fitted well with the Langmuir model with a monolayer adsorption capacity of 9.20 mg g−1. The adsorption kinetics was found to follow pseudo-second-order kinetic model. Thermodynamics parameters, ΔHO, ΔGO and ΔSO, were calculated, indicating that the adsorption of Ni2+ onto Fe@G was spontaneous and endothermic in nature.

  5. Adsorption and subsequent partial photodegradation of methyl violet 2B on Cu/Al layered double hydroxides

    Energy Technology Data Exchange (ETDEWEB)

    Guzmán-Vargas, Ariel, E-mail: aguzmanv@ipn.mx [Instituto Politécnico Nacional, ESIQIE-SEPI-DIQI, Laboratorio de Investigación en Materiales Porosos, Catálisis Ambiental y Química Fina (LiMpCa-QuF), UPALM Edif. 7 P.B. Zacatenco, GAM, México, D.F.07738 (Mexico); Lima, Enrique [Instituto de Investigaciones en Materiales-UNAM, Circuito exterior s/n, Cd. Universitaria, Del. Coyoacán, México, D.F. 04510 (Mexico); Uriostegui-Ortega, Gisselle A. [Instituto Politécnico Nacional, ESIQIE-SEPI-DIQI, Laboratorio de Investigación en Materiales Porosos, Catálisis Ambiental y Química Fina (LiMpCa-QuF), UPALM Edif. 7 P.B. Zacatenco, GAM, México, D.F.07738 (Mexico); Oliver-Tolentino, Miguel A. [Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Calzada Legaria 694, Col. Irrigación, México, D.F. 11500 (Mexico); Rodríguez, Esaú E. [Departamento de Química, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2580, Col. San Pedro Zacatenco, México, D.F. 07360 (Mexico)

    2016-02-15

    Graphical abstract: - Highlights: • LDH Cu/Al material showed high adsorption capacity. • Adsorption occurs by π–π interactions from the aromatic ring on the surface. • Adsorption mechanism fits to pseudo-second order model. • The photodegradation is due to the ·OH radical formation. - Abstract: Uncalcined Cu/Al LDH was studied as adsorbent and photocatalyst in the adsorption and subsequent photodegradation of methyl violet 2B dye (MV2B). Physicochemical characterization was carried out by XRD, FTIR, UV–vis, including photoactive properties, DSC/TGA and SEM. Kinetic and thermodynamic models showed great affinity and sorption capacity, the maximum adsorption capacity was 361.0 mg g{sup −1} obtained by Langmuir model, in addition, the results showed that the dye was adsorbed on the LDH surface. Photocatalytic activity was evaluated in the MV2B dye photodegradation process, and it was confirmed by the presence ·OH radicals monitored by EPR spin trapping technique, additionally, COD and TOC parameters were measured, {sup 13}C NMR showed differences for the adsorbed and photodegraded samples.

  6. Adsorption and subsequent partial photodegradation of methyl violet 2B on Cu/Al layered double hydroxides

    International Nuclear Information System (INIS)

    Guzmán-Vargas, Ariel; Lima, Enrique; Uriostegui-Ortega, Gisselle A.; Oliver-Tolentino, Miguel A.; Rodríguez, Esaú E.

    2016-01-01

    Graphical abstract: - Highlights: • LDH Cu/Al material showed high adsorption capacity. • Adsorption occurs by π–π interactions from the aromatic ring on the surface. • Adsorption mechanism fits to pseudo-second order model. • The photodegradation is due to the ·OH radical formation. - Abstract: Uncalcined Cu/Al LDH was studied as adsorbent and photocatalyst in the adsorption and subsequent photodegradation of methyl violet 2B dye (MV2B). Physicochemical characterization was carried out by XRD, FTIR, UV–vis, including photoactive properties, DSC/TGA and SEM. Kinetic and thermodynamic models showed great affinity and sorption capacity, the maximum adsorption capacity was 361.0 mg g"−"1 obtained by Langmuir model, in addition, the results showed that the dye was adsorbed on the LDH surface. Photocatalytic activity was evaluated in the MV2B dye photodegradation process, and it was confirmed by the presence ·OH radicals monitored by EPR spin trapping technique, additionally, COD and TOC parameters were measured, "1"3C NMR showed differences for the adsorbed and photodegraded samples.

  7. Effect of the both texture and electrical properties of activated carbon on the CO{sub 2} adsorption capacity

    Energy Technology Data Exchange (ETDEWEB)

    Djeridi, W. [Research Laboratory: Engineering Process and Industrial Systems, National school of Engineers of Gabes, University of Gabes, St Omar Ibn Elkhattab, 6029 Gabes (Tunisia); Chimistry laboratory of Provence, University Aix-Marseille I, II, III- CNRS, UMR 6264, Centre de Saint Jerome, 13397 Marseille (France); Ouederni, A. [Research Laboratory: Engineering Process and Industrial Systems, National school of Engineers of Gabes, University of Gabes, St Omar Ibn Elkhattab, 6029 Gabes (Tunisia); Mansour, N.Ben [National Nanotechnology Research Centre, KACST, Riyadh (Saudi Arabia); Llewellyn, P.L. [Chimistry laboratory of Provence, University Aix-Marseille I, II, III- CNRS, UMR 6264, Centre de Saint Jerome, 13397 Marseille (France); Alyamani, A. [National Nanotechnology Research Centre, KACST, Riyadh (Saudi Arabia); El Mir, L., E-mail: djeridiwahid@yahoo.fr [Laboratory of Physics of Materials and Nanomaterials Applied at Environment (LaPhyMNE), Gabes University, Faculty of Sciences in Gabes, Gabes (Tunisia); Al Imam Mohammad Ibn Saud Islamic University (IMSIU), College of Sciences, Department of Physics, 11623 Riyadh (Saudi Arabia)

    2016-01-15

    Highlights: • A series of activated carbon pellet without binder was prepared by chemical activation. • Carbon dioxide storage isotherm at 30 °C and up to 25 bars was measured for the microporous carbon. • Adsorption enthalpies have been correlated with the carbon dioxide uptake. • Pyrolysis temperature effect on the electrical conductivity of the samples. • Impact of the both texture and electrical properties on CO{sub 2} adsorption capacity have been deducted - Abstract: A series of activated carbon pellets (ACP) based on olive stones were studied for CO{sub 2} storage application. The surface area, pore volume, and pore diameter were evaluated from the analysis of N{sub 2} adsorption isotherm data. The characterization of carbon materials was performed by scanning electron microscopy (SEM), the powder X-ray diffraction (PXRD) and transmission electron microscopy (TEM). The adsorption enthalpies were obtained by microcalorimetry. The effect of pyrolysis temperature on textural, electrical conductivity and gas adsorption capacities of the ACP were investigated by adsorbing CO{sub 2} at 303 K in the pressure range of 0–2.3 MPa. In fact the electrical conductivity is strongly affected by the microporosity of the samples and the size of the micropore. It increases when the pore size decreases which affect the CO{sub 2} adsorption. Also with increases temperature the free electrons concentration on the surface increases which affect the interaction of the adsorbed gas molecules.

  8. Combined paracetamol and amitriptyline adsorption to activated charcoal

    DEFF Research Database (Denmark)

    Hoegberg, Lotte Christine Groth; Groenlykke, Thor Buch; Abildtrup, Ulla

    2010-01-01

    Objectives. High-gram drug doses seen in multiple-drug poisonings might be close to the adsorption capacity of activated charcoal (AC). The aim was to determine the maximum adsorption capacities (Q(m)) of amitriptyline and paracetamol, separately and in combination, to AC. Methods. ACs (Carbomix......® and Norit Ready-To-Use) were tested in vitro. At pH 1.2 and pH 7.2, 0.250 g AC and paracetamol and/or amitriptyline were mixed and incubated. The AC: drug ratios were 10:1, 5:1, 3:1, 2:1, and 1:1. The mixed-drug adsorption vials contained the same AC: paracetamol ratios, but amitriptyline was added as fixed...... dose (0.080 g) to all samples. Drug concentrations in the liquid phase were analyzed using high-performance liquid chromatography (HPLC)/UV-detection. Results. Q(m), amitriptyline, were 0.49 g/g Carbomix® and 0.70 g/g Norit Ready-To-Use, and Q(m), paracetamol, were 0.63 g/g Carbomix® and 0.72 g/g Norit...

  9. Efficient adsorptive removal of Congo red from aqueous solution by synthesized zeolitic imidazolate framework-8

    Directory of Open Access Journals (Sweden)

    Canlan Jiang

    2016-10-01

    Full Text Available Dyes exposure in aquatic environment creates risks to human health and biota due to their intrinsic toxic mutagenic and carcinogenic characteristics. In this work, a metal-organic frameworks materials, zeolitic imidazolate framework-8 (ZIF-8, was synthesized through hydrothermal reaction for the adsorptive removal of harmful Congo red (CR from aqueous solution. Results showed that the maximum adsorption capacity of CR onto ZIF-8 was ultrahigh as 1250 mg g−1. Adsorption behaviors can be successfully fitted by the pseudo-second order kinetic model and the Langmuir isotherm equation. Solution conditions (pH condition and the co-exist anions may influent the adsorption behaviors. The adsorption performance at various temperatures indicated the process was a spontaneous and endothermic adsorption reaction. The enhanced adsorption capacity was determined due to large surface area of ZIF-8 and the strong interactions between surface groups of ZIF-8 and CR molecules including the electrostatic interaction between external active sites Zn−OH on ZIF-8 -and −SO3 or –N=N– sites in CR molecule, and the π–π interaction.

  10. Preparation and evaluation of molecularly imprinted polymer for selective recognition and adsorption of gossypol.

    Science.gov (United States)

    Zhi, Keke; Wang, Lulu; Zhang, Yagang; Zhang, Xuemin; Zhang, Letao; Liu, Li; Yao, Jun; Xiang, Wei

    2018-03-01

    Molecularly imprinted polymers (MIPs) were designed and prepared via bulk thermal polymerization with gossypol as the template molecule and dimethylaminoethyl methacrylate as the functional monomer. The morphology and microstructures of MIPs were characterized by scanning electron microscope and Brunauer-Emmett-Teller surface areas. Static adsorption tests were performed to evaluate adsorption behavior of gossypol by the MIPs. It was found that adsorption kinetics and adsorption isotherms data of MIPs for gossypol were fit well with the pseudo-second-order model and Freundlich model, respectively. Scatchard analysis showed that heterogeneous binding sites were formed in the MIPs, including lower-affinity binding sites with the maximum adsorption of 252 mg/g and higher-affinity binding sites with the maximum adsorption of 632 mg/g. Binding studies also revealed that MIPs had favorable selectivity towards gossypol compared with non-imprinted polymers. Furthermore, adsorption capacity of MIPs maintained above 90% after 5 regeneration cycles, indicating MIPs were recyclable and could be used multiple times. These results demonstrated that prepared MIPs could be a promising functional material for selective adsorption of gossypol. Copyright © 2017 John Wiley & Sons, Ltd.

  11. In Vitro Study of Adsorption Kinetics of Dextromethorphan Syrup onto Activated Charcoal in Simulated Gastric and Intestinal Fluids

    Directory of Open Access Journals (Sweden)

    Shobha Regmi

    2017-01-01

    Full Text Available Adsorption kinetics of dextromethorphan (DXM syrup in simulated gastric and intestinal fluids onto activated charcoal (AC were investigated in an in vitro model. The adsorption studies were performed as a function of time, initial concentration, and temperature. The quantification of DXM adsorbed onto AC was obtained from the Langmuir adsorption isotherms using HPLC. The maximum adsorption capacities (at 95% confidence limits of AC for DXM were 111.615 [106.38; 126.85] mg in simulated intestinal environment (pH 6.8 and 78.314 [86.206; 70.422] mg in simulated gastric environment (pH 1.2. The adsorption capacity of AC for DXM in simulated gastric fluid (pH 1.2 was not significantly different from the adoption capacity of AC for DXM in simulated intestinal fluid (pH 6.8. Moreover, the adsorption kinetics behavior of dextromethorphan onto AC followed pseudo-second-order kinetics. Our results show that AC in therapeutically acceptable doses can be beneficial in the majority of oral overdose of DXM.

  12. Surface grafting of styrene on polypropylene fibers by argon plasma and its adsorption-regeneration of BTX

    Science.gov (United States)

    Xu, J. J.; Guo, M. L.; Chen, Q. G.; Lian, Z. Y.; Wei, W. J.; Luo, Z. W.; Xie, G.; Chen, H. N.; Dong, K.

    2017-08-01

    Active macromolecular free radicals were generated on polypropylene (PP) fibers surfaces by argon (Ar) plasma irradiation, then, PP surface modified fibers (PP-g-St fibers) were prepared by in-situ grafting reaction of styrene monomers (St). Effects of reaction parameters on grafting percentage were studied and adsorption capacities of PP-g-St fibers for benzene, toluene and xylene (BTX) were evaluated. Afterwards, regeneration adsorption efficiencies after maximum adsorption were explored. The results indicated that the optimum input power, irradiation time and grafting reaction time are 90 W, 3 min and 3 h respectively and the grafting percentage of St reached 5.7 %. The adsorption capacities of PP-g-St fibers towards toluene and xylene emulsions and solutions in water increased by 336.89 % and 344.57 % respectively, compared to pristine PP fibers. In addition, regeneration adsorption efficiencies of modified fibers remained > 90 % after six cycles of regeneration-adsorption experiments, which showed excellent regeneration ability.

  13. Adsorption isotherm, kinetic and mechanism of expanded graphite for sulfadiazine antibiotics removal from aqueous solutions.

    Science.gov (United States)

    Zhang, Ling; Wang, Yong; Jin, SuWan; Lu, QunZan; Ji, Jiang

    2017-10-01

    The adsorption of sulfadiazine from water by expanded graphite (EG), a low cost and environmental-friendly adsorbent, was investigated. Several adsorption parameters (including the initial sulfadiazine concentration, contact time, pH of solution, ionic strength and temperature) were studied. Results of equilibrium experiments indicated that adsorption of sulfadiazine onto EG were better described by the Langmuir and Tempkin models than by the Freundlich model. The maximum adsorption capacity is calculated to be 16.586 mg/g at 298 K. The kinetic data were analyzed by pseudo-first-order, pseudo-second-order and intraparticle models. The results indicated that the adsorption process followed pseudo-second-order kinetics and may be controlled by two steps. Moreover, the pH significantly influenced the adsorption process, with the relatively high adsorption capacity at pH 2-10. The electrostatic and hydrophobic interactions are manifested to be two main mechanisms for sulfadiazine adsorption of EG. Meanwhile, the ionic concentration of Cl - slightly impacted the removal of sulfadiazine. Results of thermodynamics analysis showed spontaneous and exothermic nature of sulfadiazine adsorption on EG. In addition, regeneration experiments imply that the saturated EG could be reused for sulfadiazine removal by immersing sodium hydroxide.

  14. Summary of Adsorption Capacity and Adsorption Kinetics of Uranium and Other Elements on Amidoxime-based Adsorbents from Time Series Marine Testing at the Pacific Northwest National Laboratory

    International Nuclear Information System (INIS)

    Gill, Gary A.; Das, Sadananda; Mayes, Richard; Saito, Tomonori; Brown, Suree S.; Tsouris, Constantinos; Tsouris, Costas; Wai, Chien M.; Pan, Horng-Bin

    2016-01-01

    The Pacific Northwest National Laboratory (PNNL) has been conducting marine testing of uranium adsorbent materials for the Fuel Resources Program, Department of Energy, Office of Nuclear Energy (DOE-NE) beginning in FY 2012. The marine testing program is being conducted at PNNL's Marine Sciences Laboratory (MSL), located at Sequim Bay, along the coast of Washington. One of the main efforts of the marine testing program is the determination of adsorption capacity and adsorption kinetics for uranium and selected other elements (e.g. vanadium, iron, copper, nickel, and zinc) for adsorbent materials provided primarily by Oak Ridge National Laboratory (ORNL), but also includes other Fuel Resources Program participants. This report summarizes the major marine testing results that have been obtained to date using time series sampling for 42 to 56 days using either flow-through column or recirculating flume exposures. The major results are highlighted in this report, and the full data sets are appended as a series of Excel spreadsheet files. Over the four year period (2012-2016) that marine testing of amidoxime-based polymeric adsorbents was conducted at PNNL's Marine Science Laboratory, there has been a steady progression of improvement in the 56-day adsorbent capacity from 3.30 g U/kg adsorbent for the ORNL 38H adsorbent to the current best performing adsorbent prepared by a collaboration between the University of Tennessee and ORNL to produce the adsorbent SB12-8, which has an adsorption capacity of 6.56 g U/kg adsorbent. This nearly doubling of the adsorption capacity in four years is a significant advancement in amidoxime-based adsorbent technology and a significant achievement for the Uranium from Seawater program. The achievements are evident when compared to the several decades of work conducted by the Japanese scientists beginning in the 1980's (Kim et al., 2013). The best adsorbent capacity reported by the Japanese scientists was 3.2 g U/kg adsorbent for a 180

  15. Summary of Adsorption Capacity and Adsorption Kinetics of Uranium and Other Elements on Amidoxime-based Adsorbents from Time Series Marine Testing at the Pacific Northwest National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Gill, Gary A. [Pacific Northwest National Lab. (PNNL), Sequim, WA (United States). Marine Sciences Lab.; Kuo, Li-Jung [Pacific Northwest National Lab. (PNNL), Sequim, WA (United States). Marine Sciences Lab.; Strivens, Jonathan E. [Pacific Northwest National Lab. (PNNL), Sequim, WA (United States). Marine Sciences Lab.; Wood, Jordana R. [Pacific Northwest National Lab. (PNNL), Sequim, WA (United States). Marine Sciences Lab.; Schlafer, Nicholas J. [Pacific Northwest National Lab. (PNNL), Sequim, WA (United States). Marine Sciences Lab.; Janke, Christopher J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Das, Sadananda [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mayes, Richard [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Saito, Tomonori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brown, Suree S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tsouris, Constantinos [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tsouris, Costas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wai, Chien M. [Univ. of Idaho, Moscow, ID (United States); LCW Supercritical Technologies, Seattle, WA (United States); Pan, Horng-Bin [Univ. of Idaho, Moscow, ID (United States)

    2016-09-29

    The Pacific Northwest National Laboratory (PNNL) has been conducting marine testing of uranium adsorbent materials for the Fuel Resources Program, Department of Energy, Office of Nuclear Energy (DOE-NE) beginning in FY 2012. The marine testing program is being conducted at PNNL’s Marine Sciences Laboratory (MSL), located at Sequim Bay, along the coast of Washington. One of the main efforts of the marine testing program is the determination of adsorption capacity and adsorption kinetics for uranium and selected other elements (e.g. vanadium, iron, copper, nickel, and zinc) for adsorbent materials provided primarily by Oak Ridge National Laboratory (ORNL), but also includes other Fuel Resources Program participants. This report summarizes the major marine testing results that have been obtained to date using time series sampling for 42 to 56 days using either flow-through column or recirculating flume exposures. The major results are highlighted in this report, and the full data sets are appended as a series of Excel spreadsheet files. Over the four year period (2012-2016) that marine testing of amidoxime-based polymeric adsorbents was conducted at PNNL’s Marine Science Laboratory, there has been a steady progression of improvement in the 56-day adsorbent capacity from 3.30 g U/kg adsorbent for the ORNL 38H adsorbent to the current best performing adsorbent prepared by a collaboration between the University of Tennessee and ORNL to produce the adsorbent SB12-8, which has an adsorption capacity of 6.56 g U/kg adsorbent. This nearly doubling of the adsorption capacity in four years is a significant advancement in amidoxime-based adsorbent technology and a significant achievement for the Uranium from Seawater program. The achievements are evident when compared to the several decades of work conducted by the Japanese scientists beginning in the 1980’s (Kim et al., 2013). The best adsorbent capacity reported by the Japanese scientists was 3.2 g U/kg adsorbent for a

  16. Adsorption process of fluoride from drinking water with magnetic core-shell Ce-Ti@Fe3O4 and Ce-Ti oxide nanoparticles.

    Science.gov (United States)

    Abo Markeb, Ahmad; Alonso, Amanda; Sánchez, Antoni; Font, Xavier

    2017-11-15

    Synthesized magnetic core-shell Ce-Ti@Fe 3 O 4 nanoparticles were tested, as an adsorbent, for fluoride removal and the adsorption studies were optimized. Adsorption capacity was compared with the synthesized Ce-Ti oxide nanoparticles. The adsorption equilibrium for the Ce-Ti@Fe 3 O 4 adsorbent was found to occur in cycles of adsorption-desorption. Although the nanoparticles suffer slight structure modifications after their reusability, they keep their adsorption capacity. Likewise, the efficiency of the Ce-Ti@Fe 3 O 4 was demonstrated when applied to real water to obtain a residual concentration of F - below the maximum contaminated level, 1.5mg/L (WHO, 2006). Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Adsorption equilibrium studies of uranium (VI) onto cross-linked chitosan-citric acid

    International Nuclear Information System (INIS)

    Ho Thi Yeu Ly; Nguyen Van Suc; Vo Quang Mai; Nguyen Mong Sinh

    2011-01-01

    Investigation of U(VI) adsorption by the cross- linked chitosan with citric acid was conduced by bath method. Effect of parameters such as pH, contact time, adsorbent dosage and other metal cations was determined. The maximum adsorption capacity of U(VI) at pH 4 was found to be 71.43 mg U(VI) / g cross-linked chitosan - citric acid after 300 min of contact time. The Langmuir and Freundlich isotherm models were used to describe adsorption equilibrium. The correction values, R 2 of two models were found to be 0.991 and 0.997, respectively. Therefore, it could be concluded that the adsorption equilibrium for U(VI) was followed the Langmuir and the Freundlich isotherm models. (author)

  18. Using Adsorption Isotherm Studies to Determine Crosslinked Polymeric Adsorbent Performance in Heavy Metals Removal from Water

    Directory of Open Access Journals (Sweden)

    Nasrin Sheikh

    2015-01-01

    Full Text Available Polymeric adsorbents are useful tools for removing heavy metals from aqueous solutions. Adsorption models are efficient tools for accurate prediction and evaluation of the practical adsorption process in real situation. In this study, the two isotherms of Langmuir and Dubinin-Radushkevich models were employed to investigate the absorption performance of chitosan, PVA, and chitosan/PVA blend (with a weight ratio of 1:1 in the removal of Mn (II and Ni (II from aqueous solutions. The PVA adsorbent was crosslinked by both chemical and radiation methods while the others were crosslinked only chemically due to Chitosan’s lack of resistance to radiation. The results showed that the Langmuir model fitted the experimental data better than the Dubinin-Radushkevich one for both metals. The maximum adsorption capacity (qmax of the Langmuir model showed that the PVA/Chitosan adsorbent had the best adsorption compared to other adsorbents, with 52.63 mg/g for Ni and 30.30 mg/g for Mn (evidently more Ni was absorbed than Mn. Also, maximum adsorption by the chemically crosslinked PVA was 38.46 mg/g for Ni and 19.23 mg/g for Mn, which exhibits a higher level than adsorption by the radiation crosslinked PVA The results indicate that absorption capacity depends on the type of adsorbed metal, absorbent structure, and the crosslinking method employed.

  19. Biogas pre-upgrading by adsorption of trace compounds onto granular activated carbons and an activated carbon fiber-cloth.

    Science.gov (United States)

    Boulinguiez, B; Le Cloirec, P

    2009-01-01

    The study assesses the adsorption onto activated carbon materials of selected volatile organic compounds -VOCs- (dichloromethane, 2-propanol, toluene, siloxane D4) in a biogas matrix composed of methane and carbon dioxide (55:45 v/v). Three different adsorbents are tested, two of them are granular activated carbon (GAC), and the last is an activated carbon fiber-cloth (ACFC). The adsorption isotherm data are fitted by different models by nonlinear regression. The Langmuir-Freundlich model appears to be the adequate one to describe the adsorption phenomena independently of the VOC considered or the adsorbent. The adsorbents present attractive adsorption capacity of the undesirable compounds in biogas atmosphere though the maximum adsorption capacities for a VOC are quite different from each other. The adsorption kinetics are characterized through three coefficients: the initial adsorption coefficient, the external film mass transfer coefficient and the internal diffusion coefficient of Weber. The ACFC demonstrates advanced kinetic yields compared to the granular activated carbon materials whatever VOC is considered. Therefore, pre-upgrading of biogas produced from wastewater sludge or co-digestion system by adsorption onto activated carbon appears worth investigating. Especially with ACFC material that presents correct adsorption capacities toward VOCs and concrete regeneration process opportunity to realize such process.

  20. Disposal of heavy metal cations in aqueous media by adsorption on coal to Ghazni

    Directory of Open Access Journals (Sweden)

    О.М. Заславський

    2008-03-01

    Full Text Available  Adsorption of Pb and Cu cations and their mixture on the surface of modified and non-modified anti-gas coal trough different time intervals have been studied. The maximum adsorption capacity of coal relative to each cations have been determined. Absence  of concurrence between cations of Pb and Cu during adsorption from mixture is explained by difference of  types of their interaction with coal surface. The high effectiveness and perspectivities of application of anti-gas coal for neutralization of heavy metal cations in aqueous solution was shown.

  1. Modelling equilibrium adsorption of single, binary, and ternary combinations of Cu, Pb, and Zn onto granular activated carbon.

    Science.gov (United States)

    Loganathan, Paripurnanda; Shim, Wang Geun; Sounthararajah, Danious Pratheep; Kalaruban, Mahatheva; Nur, Tanjina; Vigneswaran, Saravanamuthu

    2018-03-30

    Elevated concentrations of heavy metals in water can be toxic to humans, animals, and aquatic organisms. A study was conducted on the removal of Cu, Pb, and Zn by a commonly used water treatment adsorbent, granular activated carbon (GAC), from three single, three binary (Cu-Pb, Cu-Zn, Pb-Zn), and one ternary (Cu-Pb-Zn) combination of metals. It also investigated seven mathematical models on their suitability to predict the metals adsorption capacities. Adsorption of Cu, Pb, and Zn increased with pH with an abrupt increase in adsorption at around pH 5.5, 4.5, and 6.0, respectively. At all pHs tested (2.5-7.0), the adsorption capacity followed the order Pb > Cu > Zn. The Langmuir and Sips models fitted better than the Freundlich model to the data in the single-metal system at pH 5. The Langmuir maximum adsorption capacities of Pb, Cu, and Zn (mmol/g) obtained from the model's fits were 0.142, 0.094, and 0.058, respectively. The adsorption capacities (mmol/g) for these metals at 0.01 mmol/L equilibrium liquid concentration were 0.130, 0.085, and 0.040, respectively. Ideal Adsorbed Solution (IAS)-Langmuir and IAS-Sips models fitted well to the binary and ternary metals adsorption data, whereas the Extended Langmuir and Extended Sips models' fits to the data were poor. The selectivity of adsorption followed the same order as the metals' capacities and affinities of adsorption in the single-metal systems.

  2. Preparation of highly ordered cubic NaA zeolite from halloysite mineral for adsorption of ammonium ions

    International Nuclear Information System (INIS)

    Zhao Yafei; Zhang Bing; Zhang Xiang; Wang Jinhua; Liu Jindun; Chen Rongfeng

    2010-01-01

    Well-ordered cubic NaA zeolite was first synthesized using natural halloysite mineral with nanotubular structure as source material by hydro-thermal method. SEM and HRTEM images indicate that the synthesized NaA zeolite is cubic-shaped crystal with planar surface, well-defined edges and symmetrical and uniform pore channels. The adsorption behavior of ammonium ions (NH 4 + ) from aqueous solution onto NaA zeolite was investigated as a function of parameters such as equilibrium time, pH, initial NH 4 + concentration, temperature and competitive cations. The Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms. A maximum adsorption capacity of 44.3 mg g -1 of NH 4 + was achieved. The regeneration and reusable ability of this adsorbent was evaluated, and the results indicated that the recovered adsorbent could be used again for NH 4 + removal with nearly constant adsorption capacity. Thermodynamic parameters such as change in free energy (ΔG 0 ), enthalpy (ΔH 0 ) and entropy (ΔS 0 ) were also determined, which indicated that the adsorption was a spontaneous and exothermic process at ambient conditions. Compared with other adsorbents, the as-synthesized NaA zeolite displays a faster adsorption rate and higher adsorption capacity, which implies potential application for removing NH 4 + pollutants from wastewaters.

  3. Flexible and porous cellulose aerogels/zeolitic imidazolate framework (ZIF-8) hybrids for adsorption removal of Cr(IV) from water

    Science.gov (United States)

    Bo, Shaoguo; Ren, Wenjing; Lei, Chao; Xie, Yuanbo; Cai, Yurong; Wang, Shunli; Gao, Junkuo; Ni, Qingqing; Yao, Juming

    2018-06-01

    The low cost of adsorption treatment of heavy metal ions in water has been extensively studied. In this paper, we have demonstrated a facile method of combining two emerging materials cellulose aerogels (CA) and metal-organic frameworks (MOFs) into one highly functional aerogel to adsorption removal of heavy metal ions from water, by entrapping MOF particles into a flexible and porous CA. The resultant hybrid cellulose aerogels had a highly porous structure with zeolitic imidazolate framework-8 (ZIF-8) loadings can reach 30 wt%. The hybrid cellulose aerogels (named as ZIF-8@CA) show good adsorption capacity for Cr(Ⅵ). The adsorption process of ZIF-8@CA is better described by pseudo-second-order kinetic model and Langmuir isotherm, with maximum monolayer adsorption capacity of 41.8 mg g-1 for Cr(Ⅵ), whose adsorption capacity has greatly improved when compared with a single CA or ZIF-8. Thus, such a flexible and durable hybrid cellulose aerogel is a very prospective material for metal ions cleanup and industrial wastewater purification.

  4. Cobalt adsorption/desorption on sediments from Piraquara de Fora bay, Angra dos Reis, Brazil

    International Nuclear Information System (INIS)

    Ferreira, Ingryd M.; Carvalho, Franciane M.; Ribeiro, Fernando C.A.; Martins, Nadia S.F.; Peres, Sueli S.; Lauria, Dejanira C.

    2015-01-01

    Among the radionuclides released with the liquid effluents from PWR power plants, cobalt isotopes ( 60 Co and 58 Co) play an important role for risk and environmental impact assessments. The laboratory experiments on radionuclide adsorption-desorption, followed by the use of adsorption isotherms are useful tools for prediction of transport, distribution, accumulation, and fate of a contaminant into a specific medium. Adsorption and desorption experiments were carried out in batches, using two sediment samples collected in Piraquara de Fora Bay, near the discharge channel of the liquid effluents from CNAAA. Aiming the assessment of the radioisotope adsorption mechanisms, sediment samples were shaken with solutions containing cobalt chloride which concentrations ranged between 10 -10 and 10 -3 M. In order to estimate the efficiency of adsorption, 100 Bq of 60 Co were used as radioactive tracer. The experimental data fitted well with Freundlich and Langmuir isotherms. Results point out a favorable and high cobalt adsorption on the sediments, although smaller than the ones reported in literature studies. Such smaller trend of adsorption coefficients may be caused by the low exchange capacity of the prevailing clay, kaolinite. The maximum adsorption capacities were found to be 10 and 17 moles/g for sediments in PT-01 and PT-02, respectively. Values lower than 8% of the adsorbed cobalt underwent desorption and this amount decreased to 4%, with time, which show the high retention capacity of these sediments. (author)

  5. Adsorption behaviour of methylene blue onto Jordanian diatomite: a kinetic study.

    Science.gov (United States)

    Al-Ghouti, Mohammad A; Khraisheh, Majeda A M; Ahmad, Mohammad N M; Allen, Stephen

    2009-06-15

    The effect of initial concentration, particle size, mass of the adsorbent, pH and agitation speed on adsorption behaviour of methylene blue (MB) onto Jordanian diatomite has been investigated. The maximum adsorption capacity, q, increased from 75 to 105 mg/g when pH of the dye solution increased from 4 to 11. It is clear that the ionisable charge sites on the diatomite surface increased when pH increased from 4 to 11. When the solution pH was above the pH(ZPC), the diatomite surface had a negative charge, while at low pH (pHdiatomite did not follow the pseudo-first order model and had low correlation coefficients (R(2)diatomite when the particle size distribution is less than 250-500 microm. While at larger particle size 250-500 microm, the maximum uptake capacity was dependent on the particle size. It would imply that the MB adsorption is limited by the external surface and that intraparticle diffusion is reduced. The effect of the agitation speeds on the removal of MB from aqueous solution using the diatomite is quite low. The MB removal increased from 43 to 100% when mass of the diatomite increased from 0.3 to 1.7 g.

  6. Synthesis of alumina nano-sheets via supercritical fluid technology with high uranyl adsorptive capacity

    International Nuclear Information System (INIS)

    Jing Yu; Jun Wang; Zhanshuang Li; Qi Liu; Milin Zhang; Hongbin Bai; Caishan Jiao; Jun Wang; Lianhe Liu

    2012-01-01

    Supercritical carbon dioxide is beneficial to the synthesis of superior ultrafine and uniform materials due to its high chemical stability, low viscosity, high diffusivity, and 'zero' surface tension. γ-Alumina nano-sheets were obtained by a simple hydrothermal route in the presence of supercritical carbon dioxide. XRD, FTIR, SEM, TEM and nitrogen sorption isotherm were employed to characterize the samples. Alumina as-prepared has a high specific surface area of up to 200 ± 6 m 2 g -1 , which presents a high adsorption capacity (4.66 ± 0.02 mg g -1 ) for uranyl ions from aqueous solution. Furthermore, the adsorption process was found to be endothermic and spontaneous in nature. (authors)

  7. Adsorption-desorption reactions of selenium (VI) in tropical cultivated and uncultivated soils under Cerrado biome.

    Science.gov (United States)

    Lessa, J H L; Araujo, A M; Silva, G N T; Guilherme, L R G; Lopes, G

    2016-12-01

    Soil management may affect selenium (Se) adsorption capacity. This study investigated adsorption and desorption of Se (VI) in selected Brazilian soils from the Cerrado biome, an area of ever increasing importance for agriculture expansion in Brazil. Soil samples were collected from cultivated and uncultivated soils, comprising clayed and sandy soils. Following chemical and mineralogical characterization, soil samples were subjected to Se adsorption and desorption tests. Adsorption was evaluated after a 72-h reaction with increasing concentrations of Se (0-2000 μg L -1 ) added as Na 2 SeO 4 in a NaCl electrolyte solution (pH 5.5; ionic strength 15 mmol L -1 ). Desorption, as well as distribution coefficients (K d ) for selenate were also assessed. Soil management affected Se adsorption capacity, i.e., Se adsorbed amounts were higher for uncultivated soils, when compared to cultivated ones. Such results were also supported by data of K d and maximum adsorption capacity of Se. This fact was attributed mainly to the presence of greater amounts of competing anions, especially phosphate, in cultivated soils, due to fertilizer application. Phosphate may compete with selenate for adsorption sites, decreasing Se retention. For the same group of soils (cultivated and uncultivated), Se adsorption was greater in the clayed soils compared to sandy ones. Our results support the idea that adding Se (VI) to the soil is a good strategy to increase Se levels in food crops (agronomic biofortification), especially when crops are grown in soils that have been cultivated over the time due to their low Se adsorption capacity (high Se availability). Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Kinetics and equilibrium adsorption studies of dimethylamine (DMA) onto ion-exchange resin

    International Nuclear Information System (INIS)

    Hu Qinhai; Meng Yuanyuan; Sun Tongxi; Mahmood, Qaisar; Wu Donglei; Zhu Jianhang; Lu, George

    2011-01-01

    The fine grained resin ZGSPC106 was used to adsorb dimethylamine (DMA) from aqueous solution in the present research. Batch experiments were performed to examine the effects of initial pH of solution and agitation time on the adsorption process. The thermodynamics and kinetics of adsorption were also analyzed. The maximum adsorption was found at natural pH of DMA solution and equilibrium could be attained within 12 min. The equilibrium adsorption data were conformed satisfactorily to the Langmuir equation. The evaluation based on Langmuir isotherm gave the maximal static saturated adsorption capacity of 138.89 mg/g at 293 K. Various thermodynamic parameters such as free energy (ΔG o ), enthalpy (ΔH o ) and entropy (ΔS o ) showed that the adsorption was spontaneous, endothermic and feasible. DMA adsorption on ZGSPC106 fitted well to the pseudo-second-order kinetic model. Furthermore, the adsorption mechanism was discussed by Fourier transform infrared spectroscopy (FT-IR) analysis.

  9. Fabrication of CMC-g-PAM superporous polymer monoliths via eco-friendly Pickering-MIPEs for superior adsorption of methyl violet and methylene blue

    Science.gov (United States)

    Wang, Feng; Zhu, Yongfeng; Wang, Wenbo; Zong, Li; Lu, Taotao; Wang, Aiqin

    2017-06-01

    A series of superporous carboxymethylcellulose-graft-poly(acrylamide) (CMC-g-PAM) polymer monoliths presenting interconnected pore structure and excellent adsorption properties were prepared by one-step free-radical grafting polymerization reaction of CMC and acrylamide (AM) in the oil-in-water (O/W) Pickering-medium internal phase emulsions (Pickering-MIPEs) composed of non-toxic edible oil as a dispersion phase and natural Pal nanorods as stabilizers. The effects of Pal dosage, AM dosage, and co-surfactant Tween-20 (T-20) on the pore structures of the monoliths were studied. It was revealed that the well-defined pores were formed when the dosages of Pal and T-20 are 9-14% and 3%, respectively. The porous monolith can rapidly adsorb 1585 mg/g of methyl violet (MV) and 1625 mg/g of methylene blue (MB). After the monolith was regenerated by adsorption-desorption process for 5 times, the adsorption capacities still reached 92.1% (for MV) and 93.5% (for MB) of the initial maximum adsorption capacities. The adsorption process was fitted with Langmuir adsorption isotherm model and pseudo-second-order adsorption kinetic model very well, which indicate that mono-layer chemical adsorption mainly contribute to the high-capacity adsorption for dyes. The superporous polymer monolith prepared from eco-friendly Pickering-MIPEs shows good adsorption capacity and fast adsorption rate, which is potential adsorbent for the decontimination of dye-containing wastewater.

  10. Adsorption of Cr(VI) using silica-based adsorbent prepared by radiation-induced grafting

    International Nuclear Information System (INIS)

    Qiu Jingyi; Wang Ziyue; Li Huibo; Xu Ling; Peng Jing; Zhai Maolin; Yang Chao; Li Jiuqiang; Wei Genshuan

    2009-01-01

    Silica-based adsorbent was prepared by radiation-induced grafting of dimethylaminoethyl methacrylate (DMAEMA) onto the silanized silica followed by a protonation process. The FTIR spectra and XPS analysis proved that DMAEMA was grafted successfully onto the silica surface. The resultant adsorbent manifested a high ion exchange capacity (IEC) of ca. 1.30 mmol/g and the Cr(VI) adsorption behavior of the adsorbent was further investigated, revealing the recovery of Cr(VI) increased with the adsorbent feed and the equilibrium adsorption could be achieved within 40 min. The adsorption capacity, strongly depended on the pH of the solution, reached a maximum Cr(VI) uptake (ca. 68 mg/g) as the pH was in the range of 2.5-5.0. Furthermore, even in strong acidic (4.0 mol/L HNO 3 ) or alkaline media (pH 11.0), the adsorbent had a sound Cr(VI) uptake capacity (ca. 22 and 30 mg/g, respectively), and the adsorption followed Langmuir mode. The results indicated that this adsorbent, prepared via a convenient approach, is applicable for removing heavy-metal-ion pollutants (e.g. Cr(VI)) from waste waters.

  11. Sc-Decorated Porous Graphene for High-Capacity Hydrogen Storage: First-Principles Calculations.

    Science.gov (United States)

    Chen, Yuhong; Wang, Jing; Yuan, Lihua; Zhang, Meiling; Zhang, Cairong

    2017-08-02

    The generalized gradient approximation (GGA) function based on density functional theory is adopted to investigate the optimized geometrical structure, electron structure and hydrogen storage performance of Sc modified porous graphene (PG). It is found that the carbon ring center is the most stable adsorbed position for a single Sc atom on PG, and the maximum number of adsorbed H₂ molecules is four with the average adsorption energy of -0.429 eV/H₂. By adding a second Sc atom on the other side of the system, the hydrogen storage capacity of the system can be improved effectively. Two Sc atoms located on opposite sides of the PG carbon ring center hole is the most suitable hydrogen storage structure, and the hydrogen storage capacity reach a maximum 9.09 wt % at the average adsorption energy of -0.296 eV/H₂. The adsorption of H₂ molecules in the PG system is mainly attributed to orbital hybridization among H, Sc, and C atoms, and Coulomb attraction between negatively charged H₂ molecules and positively charged Sc atoms.

  12. Adsorption of uranium from aqueous solution by PAMAM dendron functionalized styrene divinylbenzene

    Energy Technology Data Exchange (ETDEWEB)

    Ilaiyaraja, P., E-mail: chemila07@gmail.com [Radiological Safety Division, Radiological Safety and Environmental Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamilnadu (India); Singha Deb, Ashish Kumar; Sivasubramanian, K. [Radiological Safety Division, Radiological Safety and Environmental Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamilnadu (India); Ponraju, D. [Safety Engineering Division, Reactor Design Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamilnadu (India); Venkatraman, B. [Radiological Safety Division, Radiological Safety and Environmental Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamilnadu (India)

    2013-04-15

    Highlights: ► A new chelating resin PAMAMG{sub 3} -SDB has been synthesized for uranium adsorption. ► The maximum adsorption capacity was determined to be 130.25 mg g{sup −1} at pH 5.5. ► Adsorption capacity increases linearly with increasing dendron generation. ► The adsorbed uranium shall be easily desorbed by simply adjusting the pH < 3. ► Quantitative adsorption of uranium was observed even at high ionic strength. -- Abstract: A new polymeric chelating resin was prepared by growing third generation poly(amido)amine (PAMAMG{sub 3}) dendron on the surface of styrene divinylbenzene (SDB) and characterized by FTIR, TGA and SEM. The ideal branching of dendron in the chelating resin was determined from potentiometric titration. Adsorption of uranium (VI) from aqueous solution using PAMAMG{sub 3}-SDB chelating resin was studied in a series of batch experiments. Effect of contact time, pH, ionic strength, adsorbent dose, initial U(VI) concentration, dendron generation and temperature on adsorption of U(VI) were investigated. Kinetic experiments showed that U(VI) adsorption on PAMAMG{sub 3}-SDB followed pseudo-second-order kinetics model appropriately and equilibrium data agreed well with the Langmuir isotherm model. Thermodynamic parameters (ΔH°, ΔS°, ΔG°) were evaluated from temperature dependent adsorption data and the uranium adsorption on PAMAMG{sub 3}-SDB was found to be endothermic and spontaneous in nature. The sticking probability value (5.303 × 10{sup −9}), kinetic and isotherm data reveal the chemisorption of uranium on PAMAMG{sub 3}-SDB and adsorption capacity of the chelating resin was estimated to be 130.25 mg g{sup −1} at 298 K. About 99% of adsorbed U(VI) can be desorbed from PAMAMG{sub 3}-SDB by a simple acid treatment suggesting that the chelating resin is reusable.

  13. Contributions of depth filter components to protein adsorption in bioprocessing.

    Science.gov (United States)

    Khanal, Ohnmar; Singh, Nripen; Traylor, Steven J; Xu, Xuankuo; Ghose, Sanchayita; Li, Zheng J; Lenhoff, Abraham M

    2018-04-16

    Depth filtration is widely used in downstream bioprocessing to remove particulate contaminants via depth straining and is therefore applied to harvest clarification and other processing steps. However, depth filtration also removes proteins via adsorption, which can contribute variously to impurity clearance and to reduction in product yield. The adsorption may occur on the different components of the depth filter, that is, filter aid, binder, and cellulose filter. We measured adsorption of several model proteins and therapeutic proteins onto filter aids, cellulose, and commercial depth filters at pH 5-8 and ionic strengths filter component in the adsorption of proteins with different net charges, using confocal microscopy. Our findings show that a complete depth filter's maximum adsorptive capacity for proteins can be estimated by its protein monolayer coverage values, which are of order mg/m 2 , depending on the protein size. Furthermore, the extent of adsorption of different proteins appears to depend on the nature of the resin binder and its extent of coating over the depth filter surface, particularly in masking the cation-exchanger-like capacity of the siliceous filter aids. In addition to guiding improved depth filter selection, the findings can be leveraged in inspiring a more intentional selection of components and design of depth filter construction for particular impurity removal targets. © 2018 Wiley Periodicals, Inc.

  14. Adsorption of La(III) onto GMZ bentonite. Effect of contact time, bentonite content, pH value and ionic strength

    International Nuclear Information System (INIS)

    Yonggui Chen; Changsha University of Science and Technology, Changsha; Chunming Zhu; Weimin Ye; Yanhong Sun; Huiying Duan; Dongbei Wu

    2012-01-01

    Bentonite has been studied extensively because of its strong adsorption capacity. A local Na-bentonite named GMZ bentonite, collected from Gaomiaozi County (Inner Mongolia, China), was selected as the first choice of buffer/backfill material for the high-level radioactive waste repository in China. In this research, the adsorption of La (III) onto GMZ bentonite was performed as a function of contact time, pH, solid content and metal ion concentrations by using the batch experiments. The results indicate that the adsorption of La (III) on GMZ bentonite achieves equilibration quickly and the kinetic adsorption follows the pseudo-second-order model; the adsorption of La (III) on the adsorbent is strongly dependent on pH and solid content, the adsorption process follows Langmuir isotherm. The equilibrium batch experiment data demonstrate that GMZ bentonite is effective adsorbent for the removal of La (III) from aqueous solution with the maximum adsorption capacity of 26.8 mg g -1 under the given experimental conditions. (author)

  15. Preparation of new nano magnetic material Fe3O4@g-C3N4 and good adsorption performance on uranium ion

    Science.gov (United States)

    Long, Wei; Liu, Huijun; Yan, Xueming; Fu, Li

    2018-03-01

    A new nano magnetic material Fe3O4@g-C3N4 was prepared by deposition reduction method, which performed good adsorption performance to uranium ion. Characterization results showed that the g-C3N4 particles were wrapped around the nano magnetic Fe3O4 particles, and the textural properties of this material was improved, so the adsorption performance to uranium ion was good. Adsorption experiments of this material demonstrated that the optimum pH value was 10, the optimum mass of adsorbent was 6.5 mg and the optimum adsorption time was 150 min in the initial concentration of 140 mg/L uranium ion solution system, and the maximum adsorption capacity was up to 352.1 mg/g and the maximum adsorption rate was more than 90%.

  16. Removal of Heavy Metals by Adsorption onto Activated Carbon Derived from Pine Cones of Pinus roxburghii.

    Science.gov (United States)

    Saif, Muhammad Jawwad; Zia, Khalid Mahmood; Fazal-ur-Rehman; Usman, Muhammad; Hussain, Abdullah Ijaz; Chatha, Shahzad Ali Shahid

    2015-04-01

    Activated carbon derived from cones of Pinus roxburghii (Himalayan Pine) was used as an adsorbent for the removal of copper, nickel and chromium ions from waste water. Surface analysis was carried out to determine the specific surface area and pore size distribution of the pine cone derived activated carbon. Optimal parameters, effect of adsorbent quantity, pH, equilibrium time, agitation speed and temperature were studied. Equilibrium data were evaluated by Langmuir and Freundlich isotherm models. Langmuir isotherm afforded the best fit to the equilibrium data with a maximum adsorption capacity of 14.2, 31.4 and 29.6 mg/g for Cu(II), Ni(II) and Cr(VI) respectively. Maximum adsorption of Cu(II), Ni(II) was observed in the pH range 4.0 to 4.5, whereas the best adsorption of Cr(VI) was observed at pH 2.5. It was found that 180 minutes was sufficient to gain adsorption equilibrium. The adsorption process follows a pseudo-second-order kinetic model.

  17. Adsorption of Remazol Black 5 from aqueous solution by the templated crosslinked-chitosans

    International Nuclear Information System (INIS)

    Chen, Arh-Hwang; Huang, Yao-Yi

    2010-01-01

    The templated crosslinked-chitosan microparticles prepared using the imprinting method with the Remazol Black5 (RB5) dye as a template, epichlorohydrin (ECH) as a crosslinker, and sodium hydroxide (NaOH) solution used for the microparticle formation showed the highest adsorption capacity for the RB5 dye compared with those that used other methods with or without a template, three crosslinkers, and two microparticle formations. The results showed that the adsorption of the RB5 dye on the microparticles was affected by the microparticle size, the initial dye concentration, the initial pH value, as well as the temperature. Both kinetics and thermodynamic parameters of the adsorption process were estimated. These data indicated an exothermic spontaneous adsorption process that kinetically followed the second-order adsorption process. Equilibrium experiments fitted well the Langmuir isotherm model, and the maximum monolayer adsorption capacity for the RB5 dye was 2941 mg/g. The competition study showed that the adsorption of the RB5 dye on the microparticles in the mixture solution was much less affected by the existence of the 3R dye than the other way around. Furthermore, the microparticles could be regenerated through the desorption of the dye in pH 10.0 of NaOH solution and could be reused to adsorb the dye again.

  18. Adsorption of malachite green by magnetic litchi pericarps: A response surface methodology investigation.

    Science.gov (United States)

    Zheng, Hao; Qi, Jinqiu; Jiang, Ruixue; Gao, Yan; Li, Xiaochen

    2015-10-01

    In this work, we synthesized a novel magnetic adsorbent containing litchi pericarps, denoted as MLP, for the removal of malachite green (MG) from solution. The factors influencing MG adsorption, such as contact time, adsorbent dosage, and initial dye concentration, were optimized using the Box-Behnken response surface methodology (RSM). The adsorption isotherms as well as the kinetics and thermodynamics of the adsorption of MG onto MLP are discussed. The results showed that MLP has a maximum adsorption efficiency of 99.5% when the temperature, pH, contact time, adsorbent dosage, and initial MG concentration were optimally set as 25 °C, 6.0, 66.69 min, 5.14 g/L, and 150 mg/L, respectively. The best model to describe this process is the Langmuir isotherm, with the maximum adsorption capacity being 70.42 mg/g. In addition, the kinetics of MG adsorption onto MLP followed a pseudo-second-order model; moreover, thermodynamic analysis suggested that MG adsorption onto MLP is spontaneous and endothermic. Finally, it was found that the new magnetic adsorbent can be separated easily and rapidly from mixed solutions in the presence of an external magnetic field. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Activated Carbon Preparation and Modification for Adsorption

    Science.gov (United States)

    Cao, Yuhe

    compared to charcoal-based commercial AC (143.8 mg g -1). Based on the adsorption experiments of butanol vapor, we found the chemical properties of the AC surface play an important role in adsorbing molecules. The adsorption of creatinine on active carbons was also studied, which is a toxic compound generated by human. High levels of creatinine in the blood stream is normally caused by malfunction or failure of the kidneys. Activated carbons is taken by the patients orally to reduce creatinine level. In order to figure out whether chemical modification could increase the adsorption capacity of creatinine, AC samples modified by nitric acid hydrothermal modification were assessed for their ability to adsorb creatinine. The pore structure and surface properties of the AC samples were characterized by N 2 adsorption, temperature programmed desorption (TPD), Fourier Transform Infrared spectroscopy (FTIR), and X-ray photoelectron spectrometer (XPS). It indicated that 4M HNO3 hydrothermal modification with 180 °C was an efficient method in improvement of the creatinine adsorption. The improved adsorption capacity can be attributed mainly to an increase in the acidic oxygen-containing functional groups. The adsorption of creatinine over AC may involve an interaction with the acidic oxygen-containing groups on AC. Langmuir and Freundlich adsorption models were applied to describe the experimental isotherm and isotherm constants. Equilibrium data fitted very well to the Freundlich model in the entire saturation range (3.58-59.08 mg L-1 ). The maximum adsorption capacities of AC modified with 180 °C is 62.5 mg g-1 according to the Langmuir model. Pseudo first-order and second-order kinetic models were used to describe the kinetic data and the rate constants were evaluated. The experimental data fitted well to the second-order kinetic model, which indicates that the chemical adsorption was the rate-limiting step, instead of mass transfer. (Abstract shortened by ProQuest.).

  20. Fourier Transform Infrared Spectroscopy Study on Cation adsorption on Viscose Rayon Succinate

    Directory of Open Access Journals (Sweden)

    D Khasbaatar

    2014-09-01

    Full Text Available Ion-exchange materials have been considered as suitable material for the recovery of heavy metals in water. A viscose rayon succinate, synthesized from viscose rayon and succinic anhydride in presence of DMSO, to remove trace bivalent metal ions such as Ag+, Cu2+, Ni2+, Pb2+, Zn2+ and Cr3+, was studied using FT-IR for the behavior of metal adsorption. Both esterification and carboxyl bonding of viscose rayon succinate were assigned essentially at 1729 and 1693cm-1, respectively. And the essential band of bonding between metal and the material was determined at 1625cm-1. The available adsorption capacity of this fiber was 6.2 mequiv/g. The adsorption of metal ions on the viscose rayon succinate follows the order of Cu2+>Cr3+>Ni2+>Pb2+>Zn2+>Ag+ with maximum adsorptions capacities 4.2, 1.42, 0.91, 0.83, 0.69 and 0.35 mmol/g, respectively.DOI: http://dx.doi.org/10.5564/mjc.v12i0.189 Mongolian Journal of Chemistry Vol.12 2011: 136-141

  1. Adsorption characteristics of arsenic from micro-polluted water by an innovative coal-based mesoporous activated carbon.

    Science.gov (United States)

    Li, Wei-Guang; Gong, Xu-Jin; Wang, Ke; Zhang, Xin-Ran; Fan, Wen-Biao

    2014-08-01

    An innovative coal-based mesoporous activated carbon (NCPAC) was prepared by re-agglomeration, oxidation and two-step activation using coal-blending as precursor. Adsorption capacities of As(III) and As(V) ions (<0.5mg/L) onto NCPAC as a function of pH, adsorbent dose, initial arsenic concentrations, contact time, and adsorption isotherms at 7°C was investigated. The innovative methods promoted total pore volume (1.087cm(3)/g), mesoporosity (64.31%), iodine numbers (1104mg/g), methylene blue (251.8mg/g) and ash contents (15.26%). The adsorption capacities of NCPAC for As(III) and As(V) were found to be strongly dependent on pH and contact time. The optimal pH value was 6. The equilibrium time was 60min for adsorption of As(III) and As(V) by NCPAC. The Langmuir model fitted the experimental data well for both As(III) (R(2)=0.9980) and As(V) (R(2)=0.9988). Maximum adsorption capacities of As(III) and As(V) (C0=0.50mg/L) by NCPAC were 1.491 and 1.760mg/g, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. A comprehensive adsorption study and modeling of antibiotics as a pharmaceutical waste by graphene oxide nanosheets.

    Science.gov (United States)

    Rostamian, Rahele; Behnejad, Hassan

    2018-01-01

    The adsorption behavior of tetracycline (TCN), doxycycline (DCN) as the most common antibiotics in veterinary and ciprofloxacin (CPN) onto graphene oxide nanosheets (GOS) in aqueous solution was evaluated. The four factors influencing the adsorption of antibiotics (initial concentration, pH, temperature and contact time) were studied. The results showed that initial pH ∼ 6 to 7 and contact time ∼ 100 - 200min are optimum for each drug. The monolayer adsorption capacity was reduced with the increasing temperature from 25°C to 45°C. Non-linear regressions were carried out in order to define the best fit model for every system. To do this, eight error functions were applied to predict the optimum model. Among various models, Hill and Toth isotherm models represented the equilibrium adsorption data of antibiotics while the kinetic data were well fitted by pseudo second-order (PSO) kinetic model (DCN and TCN) and Elovich (CPN) models. The maximum adsorption capacity (q max ) is found to be in the following order: CPN > DCN > TCN, obtained from sips equation at the same temperature. The GOS shows highest adsorption capacity towards CPN up to 173.4mgg -1 . The study showed that GOS can be removed more efficiently from water solution. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. A one-step thermal decomposition method to prepare anatase TiO2 nanosheets with improved adsorption capacities and enhanced photocatalytic activities

    International Nuclear Information System (INIS)

    Li, Wenting; Shang, Chunli; Li, Xue

    2015-01-01

    Highlights: • Anatase TiO 2 nanosheets (NSs) with high surface area have been prepared. • Only one type of surfactant, oleylamine (OM), is used as capping agents. • TiO 2 NSs possess high adsorption capacities MB and high photocatalytic activity. - Abstract: Anatase TiO 2 nanosheets (NSs) with high surface area have been prepared via a one-step thermal decomposition of titanium tetraisopropoxide (TTIP) in oleylamine (OM), and their adsorption capacities and photocatalytic activities are investigated by using methylene blue (MB) and methyl orange (MO) as model pollutants. During the synthesis procedure, only one type of surfactant, oleylamine (OM), is used as capping agents and no other solvents are added. Structure and properties of the TiO 2 NSs were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), N 2 adsorption analysis, UV–vis spectrum, X-ray photoelectron spectroscopy (XPS) and Photoluminescence (PL) methods. The results indicate that the TiO 2 NSs possess high surface area up to 378 m 2 g −1 . The concentration of capping agents is found to be a key factor controlling the morphology and crystalline structure of the product. Adsorption and photodegradation experiments reveal that the prepared TiO 2 NSs possess high adsorption capacities of model pollutants MB and high photocatalytic activity, showing that TiO 2 NSs can be used as efficient pollutant adsorbents and photocatalytic degradation catalysts of MB in wastewater treatment.

  4. Liquid phase adsorption behavior of inulin-type fructan onto activated charcoal.

    Science.gov (United States)

    Li, Kecheng; Liu, Song; Xing, Ronge; Yu, Huahua; Qin, Yukun; Li, Pengcheng

    2015-05-20

    This study describes liquid phase adsorption characteristics of inulin-type fructan onto activated charcoal. Batch mode experiments were conducted to study the effects of pH, contact time, temperature and initial concentration of inulin. Nearly neutral solution (pH 6-8) was favorable to the adsorption and the equilibrium was attained after 40 min with the maximum adsorption Qmax 0.182 g/g (adsorbate/adsorbent) at 298 K. The experimental data analysis indicated that the adsorption process fitted well with the pseudo-second-order kinetic model (R(2) = 1) and Langmuir isotherms model (R(2) > 0.99). Thermodynamic parameters revealed that the adsorption process was spontaneous and exothermic with a physical nature. Inulin desorption could reach 95.9% using 50% ethanol solution and activated charcoal could be reused without significant losses in adsorption capacity. These results are of practical significance for the application of activated charcoal in the production and purification of inulin-type fructan. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Adsorption of chromium (Vi) on radiation grafted N,N-dimethylaminoethylmethacrylate onto polypropylene, from aqueous solutions

    International Nuclear Information System (INIS)

    Burillo, G.; Serrano G, J.; Bonifacio M, J.

    2013-01-01

    Polypropylene (Pp) grafted with dimethylaminoethylmethacrylate (DMAEMA), was prepared by irradiation with a 60 Co γ source. The obtained Pp-g-DMAEMA was used to study the Cr(Vi) ion adsorption as a function of contact time, initial ph, initial concentration of metal ion and temperature. Chromium adsorption data on Pp-g-DMAEMA at various initial concentration fit well the Freundlich and Langmuir isotherms. The maximum adsorption capacity (a max ) was found to be 0.3103 x 0 -4 mol g -1 . The thermodynamic parameters ΔH 0 , ΔG 0 and ΔS 0 were estimated showing the adsorption process to be exothermic and spontaneous. (Author)

  6. Effect of water on methane adsorption on the kaolinite (0 0 1) surface based on molecular simulations

    Science.gov (United States)

    Zhang, Bin; Kang, Jianting; Kang, Tianhe

    2018-05-01

    CH4 adsorption isotherms of kaolinite with moisture contents ranging from 0 to 5 wt% water, the effects of water on maximum adsorption capacity, kaolinite swelling, and radial distribution function were modelled by the implementing combined Monte Carlo (MC) and molecular dynamics (MD) simulations at 293.15 K (20 °C) and a pressure range of 1-20 MPa. The simulation results showed that the absolute adsorption of CH4 on both dry and moist kaolinite followed a Langmuir isotherm within the simulated pressure range, and both the adsorption capacity and the rate of CH4 adsorption decreased with the water content increases. The adsorption isosteric heats of CH4 on kaolinite decreased linearly with increasing water content, indicating that at higher water contents, the interaction energy between the CH4 and kaolinite was weaker. The interaction between kaolinite and water dominates and was the main contributing factor to kaolinite clay swelling. Water molecules were preferentially adsorbed onto oxygen and hydrogen atoms in kaolinite, while methane showed a tendency to be adsorbed only onto oxygen. The simulation results of our study provide the quantitative analysis of effect of water on CH4 adsorption capacity, adsorption rate, and interaction energy from a microscopic perspective. We hope that our study will contribute to the development of strategies for the further exploration of coal bed methane and shale gas.

  7. Cadmium Adsorption on HDTMA Modified Montmorillionite

    Directory of Open Access Journals (Sweden)

    Mohd. Elmuntasir I. Ahmed

    2009-06-01

    Full Text Available In this paper the possibility of cadmium removal from aqueous solutions by adsorption onto modified montmorillonite clay is investigated. Batch adsorption experiments performed revealed an enhanced removal of cadmium using HDTMA modified montmorillonite to 100% of its exchange capacity. Modified montmorillonite adsorption capacity increases at higher pHs suggesting adsorption occurs as a result of surface precipitation and HDTMA complex formation due to the fact that the original negatively charged montmorillonite is now covered by a cationic layer of HDTMA. Adsorption isotherms generated followed a Langmuir isotherm equation possibly indicating a monolayer coverage. Adsorption capacities of up to 49 mg/g and removals greater than 90% were achieved. Anionic selectivity of the HDTMA modified monmorillonite is particularly advantageous in water treatment applications where high concentrations of less adsorbable species are present, and the lack of organoclay affinity for these species may allow the available capacity to be utilized selectively by the targeted species.

  8. Preparation of highly ordered cubic NaA zeolite from halloysite mineral for adsorption of ammonium ions.

    Science.gov (United States)

    Zhao, Yafei; Zhang, Bing; Zhang, Xiang; Wang, Jinhua; Liu, Jindun; Chen, Rongfeng

    2010-06-15

    Well-ordered cubic NaA zeolite was first synthesized using natural halloysite mineral with nanotubular structure as source material by hydro-thermal method. SEM and HRTEM images indicate that the synthesized NaA zeolite is cubic-shaped crystal with planar surface, well-defined edges and symmetrical and uniform pore channels. The adsorption behavior of ammonium ions (NH(4)(+)) from aqueous solution onto NaA zeolite was investigated as a function of parameters such as equilibrium time, pH, initial NH(4)(+) concentration, temperature and competitive cations. The Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms. A maximum adsorption capacity of 44.3 mg g(-1) of NH(4)(+) was achieved. The regeneration and reusable ability of this adsorbent was evaluated, and the results indicated that the recovered adsorbent could be used again for NH(4)(+) removal with nearly constant adsorption capacity. Thermodynamic parameters such as change in free energy (DeltaG(0)), enthalpy (DeltaH(0)) and entropy (DeltaS(0)) were also determined, which indicated that the adsorption was a spontaneous and exothermic process at ambient conditions. Compared with other adsorbents, the as-synthesized NaA zeolite displays a faster adsorption rate and higher adsorption capacity, which implies potential application for removing NH(4)(+) pollutants from wastewaters. Copyright 2010 Elsevier B.V. All rights reserved.

  9. Preparation of highly ordered cubic NaA zeolite from halloysite mineral for adsorption of ammonium ions

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Yafei [School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001 (China); Zhang Bing, E-mail: zhangb@zzu.edu.cn [School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001 (China); Henan Academy of Sciences, Zhengzhou 450002 (China); Zhang Xiang; Wang Jinhua; Liu Jindun [School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001 (China); Chen Rongfeng [Henan Academy of Sciences, Zhengzhou 450002 (China)

    2010-06-15

    Well-ordered cubic NaA zeolite was first synthesized using natural halloysite mineral with nanotubular structure as source material by hydro-thermal method. SEM and HRTEM images indicate that the synthesized NaA zeolite is cubic-shaped crystal with planar surface, well-defined edges and symmetrical and uniform pore channels. The adsorption behavior of ammonium ions (NH{sub 4}{sup +}) from aqueous solution onto NaA zeolite was investigated as a function of parameters such as equilibrium time, pH, initial NH{sub 4}{sup +} concentration, temperature and competitive cations. The Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms. A maximum adsorption capacity of 44.3 mg g{sup -1} of NH{sub 4}{sup +} was achieved. The regeneration and reusable ability of this adsorbent was evaluated, and the results indicated that the recovered adsorbent could be used again for NH{sub 4}{sup +} removal with nearly constant adsorption capacity. Thermodynamic parameters such as change in free energy ({Delta}G{sup 0}), enthalpy ({Delta}H{sup 0}) and entropy ({Delta}S{sup 0}) were also determined, which indicated that the adsorption was a spontaneous and exothermic process at ambient conditions. Compared with other adsorbents, the as-synthesized NaA zeolite displays a faster adsorption rate and higher adsorption capacity, which implies potential application for removing NH{sub 4}{sup +} pollutants from wastewaters.

  10. Adsorption behavior of ammonium by a bioadsorbent - Boston ivy leaf powder

    Institute of Scientific and Technical Information of China (English)

    Haiwei Liu; Yuanhua Dong; Haiyun Wang; Yun Liu

    2010-01-01

    The adsorption behaviors of ammonium ions from aqueous solution by a novel bioadsorbent,the Boston ivy (Parthenocissus tricuspidata) leaf powder (BPTL) were investigated.The SEM images and FT-IR spectra were used to characterize BPTL.The mathematical models were used to analyze the adsorption kinetics and isotherms.The optimum pH range for ammonium adsorption by BPTL was found to be 5-10.The adsorption reached equilibrium at 14 hr,and the kinetic data were well fitted by the Logistic model.The intraparticle diffusion was the main rate-controlling step of the adsorption process.The high temperature was favorableto the ammonium adsorption by BPTL,indicating that the adsorption was endothermic.The adsorption equilibrium fitted well to both the Langrnuir model and Freundlich model,and the maximum monolayer adsorption capacities calculated from Langmuir model were 3.37,5.28 and 6.59 mg N/g at 15,25 and 35℃,respectively,which were comparable to those by reported minerals.Both the separation factor (RL) from the Langmuir model and Freundlich exponent (n) suggested that the ammonium adsorption by BPTL was favorable.Therefore,the Boston ivy leaf powder could be considered a novel bioadsorbent for ammonium removal from aqueous solution.

  11. Fabrication of CMC-g-PAM Superporous Polymer Monoliths via Eco-Friendly Pickering-MIPEs for Superior Adsorption of Methyl Violet and Methylene Blue.

    Science.gov (United States)

    Wang, Feng; Zhu, Yongfeng; Wang, Wenbo; Zong, Li; Lu, Taotao; Wang, Aiqin

    2017-01-01

    A series of superporous carboxymethylcellulose- graft -poly(acrylamide)/palygorskite (CMC- g -PAM/Pal) polymer monoliths presenting interconnected pore structure and excellent adsorption properties were prepared by one-step free-radical grafting polymerization reaction of CMC and acrylamide (AM) in the oil-in-water (O/W) Pickering-medium internal phase emulsions (Pickering-MIPEs) composed of non-toxic edible oil as a dispersion phase and natural Pal nanorods as stabilizers. The effects of Pal dosage, AM dosage, and co-surfactant Tween-20 (T-20) on the pore structures of the monoliths were studied. It was revealed that the well-defined pores were formed when the dosages of Pal and T-20 are 9-14 and 3%, respectively. The porous monolith can rapidly adsorb 1,585 mg/g of methyl violet (MV) and 1,625 mg/g of methylene blue (MB). After the monolith was regenerated by adsorption-desorption process for five times, the adsorption capacities still reached 92.1% (for MV) and 93.5% (for MB) of the initial maximum adsorption capacities. The adsorption process was fitted with Langmuir adsorption isotherm model and pseudo-second-order adsorption kinetic model very well, which indicate that mono-layer chemical adsorption mainly contribute to the high-capacity adsorption for dyes. The superporous polymer monolith prepared from eco-friendly Pickering-MIPEs shows good adsorption capacity and fast adsorption rate, which is potential adsorbent for the decontamination of dye-containing wastewater.

  12. Fabrication of CMC-g-PAM Superporous Polymer Monoliths via Eco-Friendly Pickering-MIPEs for Superior Adsorption of Methyl Violet and Methylene Blue

    Directory of Open Access Journals (Sweden)

    Feng Wang

    2017-06-01

    Full Text Available A series of superporous carboxymethylcellulose-graft-poly(acrylamide/palygorskite (CMC-g-PAM/Pal polymer monoliths presenting interconnected pore structure and excellent adsorption properties were prepared by one-step free-radical grafting polymerization reaction of CMC and acrylamide (AM in the oil-in-water (O/W Pickering-medium internal phase emulsions (Pickering-MIPEs composed of non-toxic edible oil as a dispersion phase and natural Pal nanorods as stabilizers. The effects of Pal dosage, AM dosage, and co-surfactant Tween-20 (T-20 on the pore structures of the monoliths were studied. It was revealed that the well-defined pores were formed when the dosages of Pal and T-20 are 9–14 and 3%, respectively. The porous monolith can rapidly adsorb 1,585 mg/g of methyl violet (MV and 1,625 mg/g of methylene blue (MB. After the monolith was regenerated by adsorption-desorption process for five times, the adsorption capacities still reached 92.1% (for MV and 93.5% (for MB of the initial maximum adsorption capacities. The adsorption process was fitted with Langmuir adsorption isotherm model and pseudo-second-order adsorption kinetic model very well, which indicate that mono-layer chemical adsorption mainly contribute to the high-capacity adsorption for dyes. The superporous polymer monolith prepared from eco-friendly Pickering-MIPEs shows good adsorption capacity and fast adsorption rate, which is potential adsorbent for the decontamination of dye-containing wastewater.

  13. Determination of Adsorption Capacity and Kinetics of Amidoxime-Based Uranium Adsorbent Braided Material in Unfiltered Seawater Using a Flume Exposure System

    International Nuclear Information System (INIS)

    Gill, Gary A.; Kuo, Li-Jung; Strivens, Jonathan E.; Park, Jiyeon; Bonheyo, George T.; Jeters, Robert T.; Schlafer, Nicholas J.; Wood, Jordana R.

    2015-01-01

    PNNL has developed a recirculating flume system for exposing braided adsorbent material to natural seawater under realistic temperature and flow-rate exposure conditions. The flumes are constructed of transparent acrylic material; they allow external light to pass into the flumes and permit photosynthetic growth of naturally present marine organisms (biofouling). Because the system consists of two flumes, replicate experiments can be conducted in which one of the flumes can be manipulated relative to the other. For example, one flume can be darkened to eliminate light exposure by placing a black tarp over the flume such that dark/light experiments can be conducted. Alternatively, two different braided adsorbents can be exposed simultaneously with no potential cross contamination issues. This report describes the first use of the PNNL flume system to study the impact of biofouling on adsorbent capacity. Experiments were conducted with the ORNL AI8 braided adsorbent material in light-exposed and darkened flumes for a 42-day exposure experiment. The major objective of this effort is to develop a system for the exposure of braided adsorbent material to unfiltered seawater, and to demonstrate the system by evaluating the performance of adsorption material when it is exposed to natural marine biofouling as it would be when the technology is used in the marine environment. Exposures of amidoxime-based polymeric braid adsorbents prepared by Oak Ridge Natural Laboratory (ORNL) were exposed to ambient seawater at 20°C in a flume system. Adsorption kinetics and adsorption capacity were assessed using time series determinations of uranium adsorption and one-site ligand saturation modeling. Biofouling in sunlight surface seawater has the potential to significantly add substantial biogenic mass to adsorption material when it is exposed for periods greater than 21 days. The observed biomass increase in the light flume was approximately 80% of the adsorbent mass after 42 days

  14. Determination of Adsorption Capacity and Kinetics of Amidoxime-Based Uranium Adsorbent Braided Material in Unfiltered Seawater Using a Flume Exposure System

    Energy Technology Data Exchange (ETDEWEB)

    Gill, Gary A. [Pacific Northwest National Lab. (PNNL), Sequim, WA (United States). Marine Sciences Lab.; Kuo, Li-Jung [Pacific Northwest National Lab. (PNNL), Sequim, WA (United States). Marine Sciences Lab.; Strivens, Jonathan E. [Pacific Northwest National Lab. (PNNL), Sequim, WA (United States). Marine Sciences Lab.; Park, Jiyeon [Pacific Northwest National Lab. (PNNL), Sequim, WA (United States). Marine Sciences Lab.; Bonheyo, George T. [Pacific Northwest National Lab. (PNNL), Sequim, WA (United States). Marine Sciences Lab.; Jeters, Robert T. [Pacific Northwest National Lab. (PNNL), Sequim, WA (United States). Marine Sciences Lab.; Schlafer, Nicholas J. [Pacific Northwest National Lab. (PNNL), Sequim, WA (United States). Marine Sciences Lab.; Wood, Jordana R. [Pacific Northwest National Lab. (PNNL), Sequim, WA (United States). Marine Sciences Lab.

    2015-08-31

    PNNL has developed a recirculating flume system for exposing braided adsorbent material to natural seawater under realistic temperature and flow-rate exposure conditions. The flumes are constructed of transparent acrylic material; they allow external light to pass into the flumes and permit photosynthetic growth of naturally present marine organisms (biofouling). Because the system consists of two flumes, replicate experiments can be conducted in which one of the flumes can be manipulated relative to the other. For example, one flume can be darkened to eliminate light exposure by placing a black tarp over the flume such that dark/light experiments can be conducted. Alternatively, two different braided adsorbents can be exposed simultaneously with no potential cross contamination issues. This report describes the first use of the PNNL flume system to study the impact of biofouling on adsorbent capacity. Experiments were conducted with the ORNL AI8 braided adsorbent material in light-exposed and darkened flumes for a 42-day exposure experiment. The major objective of this effort is to develop a system for the exposure of braided adsorbent material to unfiltered seawater, and to demonstrate the system by evaluating the performance of adsorption material when it is exposed to natural marine biofouling as it would be when the technology is used in the marine environment. Exposures of amidoxime-based polymeric braid adsorbents prepared by Oak Ridge Natural Laboratory (ORNL) were exposed to ambient seawater at 20°C in a flume system. Adsorption kinetics and adsorption capacity were assessed using time series determinations of uranium adsorption and one-site ligand saturation modeling. Biofouling in sunlight surface seawater has the potential to significantly add substantial biogenic mass to adsorption material when it is exposed for periods greater than 21 days. The observed biomass increase in the light flume was approximately 80% of the adsorbent mass after 42 days

  15. Effects of Biochar-Derived Sewage Sludge on Heavy Metal Adsorption and Immobilization in Soils.

    Science.gov (United States)

    Zhou, Dan; Liu, Dan; Gao, Fengxiang; Li, Mengke; Luo, Xianping

    2017-06-23

    The object of this study was to evaluate the effect of sewage sludge biochar on adsorption and mobility of Cr, Mn, Cu, and Zn. Biochar (BC400) was produced via pyrolysis of municipal sewage sludge at 400 °C. Maximum adsorption capacities ( q m ) for Zn, Cr, Mn, and Cu were 5.905, 5.724, 5.681, and 5.342 mg·g -1 , respectively, in the mono-metal solution and 2.475, 8.204, 1.01, and 5.415 mg·g -1 , respectively, in the multi-metal solution. The adsorption capacities for Mn, Cu, and Zn decreased in the multi-metal solution due to competitive adsorption, whereas the capacity for Cr increased. Surface precipitation is an important mechanism in the sorption of these metals on BC400. The 360-day incubation experiment showed that BC400 application reduced metal mobility in contaminated soils, which was attributed to the substantial decreases in the acid-soluble fractions of Cr, Mn, Cu, and Zn (72.20%, 70.38%, 50.43%, and 29.78%, respectively). Furthermore, the leaching experiment using simulated acid rain indicated that the addition of BC400 enhanced the acid buffer capacity of contaminated soil, and the concentration of Cr, Mn, Cu, and Zn in the leachate was lower than in untreated soil. Overall, this study indicates that sewage sludge biochar application reduces the mobility of heavy metal in co-contaminated soil, and this adsorption experiment is suitable for the evaluation of biochar properties for remediation.

  16. Assessment of the adsorptive capacity of the Kaolin deposit targeting its use on the removal of colors in aqueous solution

    International Nuclear Information System (INIS)

    Matos, S.C.; Hildebrando, E.A.

    2016-01-01

    The Amazonic region has large and valuable kaolin deposits. The state of Para by itself comprises three large industries which process kaolin. It has been noticed that the waste resulting from the processing of kaolin is rich in silico-aluminate, presenting potential in adsorption processes. Thus, this research's objective is to assess the kaolin waste produced during the processing phase, aiming at its application as low cost adsorbent material. For that, the kaolin waste has been characterized by X-ray diffraction and chemical analysis (XRF), and then sieved and calcined at 700 ° C, being then subjected to the adsorption process and observed qualitatively its capacity of retention by methylene blue (AM). Preliminary results show that the kaolin waste has satisfactory adsorption capacity at concentrations of up to 50.0 mg / MP, demonstrating the potential that it be used in the removal of dyes in wastewater treatment. (author)

  17. Effective Microporosity for Enhanced Adsorption Capacity of Cr (VI) from Dilute Aqueous Solution: Isotherm and Kinetics

    OpenAIRE

    Lloyd Mukosha; Maurice S. Onyango; Aoyi Ochieng; John Siame

    2017-01-01

    The adsorbent pore structure significant to enhanced adsorption capacity of Cr (VI) from dilute aqueous solution is evaluated. As reference, low-cost micro-mesoporous activated carbon (AC) of high basicity, mesoporosity centred about 2.4 nm, and effective microporosity centred about 0.9 nm was tested for removal of Cr (VI) from dilute aqueous solution in batch mode. At pH 2 the low-cost AC exhibited highly improved Langmuir Cr (VI) capacity of 115 mg/g which was competitive to high performanc...

  18. Adsorption characteristics of siloxanes in landfill gas by the adsorption equilibrium test

    International Nuclear Information System (INIS)

    Nam, Sangchul; Namkoong, Wan; Kang, Jeong-Hee; Park, Jin-Kyu; Lee, Namhoon

    2013-01-01

    Highlights: • Equilibrium test was attempted to evaluate adsorption characteristics of siloxane. • L2 had higher removal efficiency in carbon compared to noncarbon adsorbents. • Total adsorption capacity of siloxane was 300 mg/g by coal activated carbon. • Adsorption characteristics rely on size of siloxane molecule and adsorbent pore. • Conversion of siloxane was caused by adsorption of noncarbon adsorbents. - Abstract: Due to the increase in energy cost by constantly high oil prices and the obligation to reduce greenhouse effect gases, landfill gas is frequently used as an alternative energy source for producing heat and electricity. Most of landfill gas utility facilities, however, are experiencing problems controlling siloxanes from landfill gas as their catalytic oxidizers are becoming fouled by silicon dioxide dust. To evaluate adsorption characteristics of siloxanes, an adsorption equilibrium test was conducted and parameters in the Freundlich and Langmuir isotherms were analyzed. Coconut activated carbon (CA1), coal activated carbon (CA2), impregnated activated carbon (CA3), silicagel (NCA1), and activated alumina (NCA2) were used for the adsorption of the mixed siloxane which contained hexamethyldisiloxane (L2), octamethylcyclotetrasiloxane (D4), and decamethylcyclopentasiloxane (D5). L2 had higher removal efficiency in noncarbon adsorbents compared to carbon adsorbents. The application of Langmuir and Freundlich adsorption isotherm demonstrated that coconut based CA1 and CA3 provided higher adsorption capacity on L2. And CA2 and NCA1 provided higher adsorption capacity on D4 and D5. Based on the experimental results, L2, D4, and D5 were converted by adsorption and desorption in noncarbon adsorbents. Adsorption affinity of siloxane is considered to be affect by the pore size distribution of the adsorbents and by the molecular size of each siloxane

  19. Adsorption characteristics of siloxanes in landfill gas by the adsorption equilibrium test

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Sangchul; Namkoong, Wan [Department of Environmental Engineering, Konkuk University, Hwayang-Dong, Gwangjin-Gu, Seoul 143-701 (Korea, Republic of); Kang, Jeong-Hee; Park, Jin-Kyu [Department of Environmental Engineering, Anyang University, Anyang 5-Dong, Manan-Gu, Anyang-Si, Gyeonggi-Do 430-714 (Korea, Republic of); Lee, Namhoon, E-mail: nhlee@anyang.ac.kr [Department of Environmental Engineering, Anyang University, Anyang 5-Dong, Manan-Gu, Anyang-Si, Gyeonggi-Do 430-714 (Korea, Republic of)

    2013-10-15

    Highlights: • Equilibrium test was attempted to evaluate adsorption characteristics of siloxane. • L2 had higher removal efficiency in carbon compared to noncarbon adsorbents. • Total adsorption capacity of siloxane was 300 mg/g by coal activated carbon. • Adsorption characteristics rely on size of siloxane molecule and adsorbent pore. • Conversion of siloxane was caused by adsorption of noncarbon adsorbents. - Abstract: Due to the increase in energy cost by constantly high oil prices and the obligation to reduce greenhouse effect gases, landfill gas is frequently used as an alternative energy source for producing heat and electricity. Most of landfill gas utility facilities, however, are experiencing problems controlling siloxanes from landfill gas as their catalytic oxidizers are becoming fouled by silicon dioxide dust. To evaluate adsorption characteristics of siloxanes, an adsorption equilibrium test was conducted and parameters in the Freundlich and Langmuir isotherms were analyzed. Coconut activated carbon (CA1), coal activated carbon (CA2), impregnated activated carbon (CA3), silicagel (NCA1), and activated alumina (NCA2) were used for the adsorption of the mixed siloxane which contained hexamethyldisiloxane (L2), octamethylcyclotetrasiloxane (D4), and decamethylcyclopentasiloxane (D5). L2 had higher removal efficiency in noncarbon adsorbents compared to carbon adsorbents. The application of Langmuir and Freundlich adsorption isotherm demonstrated that coconut based CA1 and CA3 provided higher adsorption capacity on L2. And CA2 and NCA1 provided higher adsorption capacity on D4 and D5. Based on the experimental results, L2, D4, and D5 were converted by adsorption and desorption in noncarbon adsorbents. Adsorption affinity of siloxane is considered to be affect by the pore size distribution of the adsorbents and by the molecular size of each siloxane.

  20. Adsorptive Removal of Nitrate from Aqueous Solution Using Nitrogen Doped Activated Carbon.

    Science.gov (United States)

    Machida, Motoi; Goto, Tatsuru; Amano, Yoshimasa; Iida, Tatsuya

    2016-01-01

    Activated carbon (AC) has been widely applied for adsorptive removal of organic contaminants from aqueous phase, but not for ionic pollutants. In this study, nitrogen doped AC was prepared to increase the adsorption capacity of nitrate from water. AC was oxidized with (NH 4 ) 2 S 2 O 8 solution to maximize oxygen content for the first step, and then NH 3 gas treatment was carried out at 950°C to aim at forming quaternary nitrogen (N-Q) species on AC surface (Ox-9.5AG). Influence of solution pH was examined so as to elucidate the relationship between surface charge and adsorption amounts of nitrate. The results showed that Ox-9.5AG exhibited about twice higher adsorption capacity than non-treatment AC at any initial nitrate concentration and any equilibrium solution pH (pH e ) investigated. The more decrease in pH e value, the more adsorption amount of negatively charged nitrate ion, because the surface charge of AC and Ox-9.5AG could become more positive in acidic solution. The oxidation and consecutive ammonia treatments lead to increase in nitrogen content from 0.35 to 6.4% and decrease in the pH of the point of zero charge (pH pzc ) from 7.1 to 4.0 implying that positively charged N-Q of a Lewis acid was created on the surface of Ox-9.5AG. Based on a Langmuir data analysis, maximum adsorption capacity attained 0.5-0.6 mmol/g of nitrate and adsorption affinity was 3.5-4.0 L/mmol at pH e 2.5 for Ox-9.5AG.

  1. Adsorption and Desorption of Nickel(II) Ions from Aqueous Solution by a Lignocellulose/Montmorillonite Nanocomposite

    Science.gov (United States)

    Zhang, Xiaotao; Wang, Ximing

    2015-01-01

    A new and inexpensive lignocellulose/montmorillonite (LNC/MMT) nanocomposite was prepared by a chemical intercalation of LNC into MMT and was subsequently investigated as an adsorbent in batch systems for the adsorption-desorption of Ni(II) ions in an aqueous solution. The optimum conditions for the Ni(II) ion adsorption capacity of the LNC/MMT nanocomposite were studied in detail by varying parameters such as the initial Ni(II) concentration, the solution pH value, the adsorption temperature and time. The results indicated that the maximum adsorption capacity of Ni(II) reached 94.86 mg/g at an initial Ni(II) concentration of 0.0032 mol/L, a solution pH of 6.8, an adsorption temperature of 70°C, and adsorption time of 40 min. The represented adsorption kinetics model exhibited good agreement between the experimental data and the pseudo-second-order kinetic model. The Langmuir isotherm equation best fit the experimental data. The structure of the LNC/MMT nanocomposite was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM), whereas the adsorption mechanism was discussed in combination with the results obtained from scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and Fourier-transform infrared spectroscopy analyses (FTIR). The desorption capacity of the LNC/MMT nanocomposite depended on parameters such as HNO3 concentration, desorption temperature, and desorption time. The satisfactory desorption capacity of 81.34 mg/g was obtained at a HNO3 concentration, desorption temperature, and desorption time of 0.2 mol/L, 60 ºC, and 30 min, respectively. The regeneration studies showed that the adsorption capacity of the LNC/MMT nanocomposite was consistent for five cycles without any appreciable loss in the batch process and confirmed that the LNC/MMT nanocomposite was reusable. The overall study revealed that the LNC/MMT nanocomposite functioned as an effective adsorbent in the detoxification of Ni

  2. Kinetics, isotherms, and thermodynamic studies of lead, chromium, and cadmium bio-adsorption from aqueous solution onto Picea smithiana sawdust.

    Science.gov (United States)

    Mahmood-Ul-Hassan, Muhammad; Yasin, Muhammad; Yousra, Munazza; Ahmad, Rizwan; Sarwar, Sair

    2018-05-01

    Lead (Pb), chromium (Cr), and cadmium (Cd) removal capacity of sawdust (Picea smithiana) from aqueous solution was investigated by conducting batch experiments. Thermodynamic parameters, like change in standard free energy (ΔG Θ ), enthalpy (ΔH Θ ) and entropy (ΔS Θ ) during bio-adsorption process were estimated using the Van't Hoff equation. The maximum metals adsorption was observed at pH 8, 20 g L -1 bio-adsorbent and at 60 min of contact time. The metal adsorption kinetics was examined by fitting the pseudo-first-order as well as four forms of pseudo-second-order kinetic models. Type 1 pseudo-second-order equation described adsorption kinetics better than others. Langmuir model and Freundlich equations were used for calculation of sorption parameters. The Langmuir maximum adsorption capacity of Pb, Cr, and Cd was 6.35, 3.37, and 2.87 mg g -1 at room temperature, respectively. The values of the separation factor (RL) were in between 0 and 1, indicating that bio-adsorption was favorable. Thermodynamics study revealed that the Pb, Cr, and Cd uptake reactions were endothermic and spontaneous. Results of the study asserted that the removal of heavy metal ions from aqueous solution is viable and the sawdust could be used in the treatment of effluents from industries, thereby reducing the level of water pollution.

  3. Adsorption kinetics of Rhodamine-B on used black tea leaves

    Directory of Open Access Journals (Sweden)

    Hossain Mohammad

    2012-08-01

    Full Text Available Abstract Rhodamine B (Rh-B is one of the most common pollutants in the effluents of textile industries effluents in developing countries. This study was carried out to evaluate the applicability of used black tea leaves (UBTL for the adsorptive removal of Rh-B from aqueous system by investigating the adsorption kinetics in batch process. The effects of concentration and temperature on adsorption kinetics were examined. First-, second- and pseudo-second order kinetic equations were used to investigate the adsorption mechanism. The adsorption of Rh-B on UBTL followed pseudo-second order kinetics. The equilibrium amount adsorbed and the equilibrium concentration were calculated from pseudo-second-order kinetic plots for different initial concentrations of Rh-B to construct the adsorption isotherm. The adsorption isotherm was well expressed by Langmuir equation. The maximum adsorption capacity of UBTL to Rh-B was found to be 53.2 mg/g at pH = 2.0. The equilibrium amount adsorbed, calculated from pseudo-second-order kinetic plots, increased with temperature increase. The positive value of enthalpy of adsorption, ΔHads = 31.22 kJ/mol, suggested that the adsorption of Rh-B on UBTL at pH = 2.0 is an endothermic process.

  4. On the limits of CO2 capture capacity of carbons

    OpenAIRE

    Fernández Martín, Claudia; González Plaza, Marta; Pis Martínez, José Juan; Rubiera González, Fernando; Pevida García, Covadonga; Álvarez Centeno, Teresa

    2010-01-01

    This study shows that standard techniques used for carbons characterization, such as physical adsorption of CO2 at 273 K and N2 at 77 K, can be used to assess, with a good accuracy, the maximum capacity of carbons to capture CO2 under post- and pre-combustion conditions. The analysis of the corresponding adsorption isotherms, within the general theoretical framework of Dubinin's theory, leads to the values of the micropore volume, Wo, and the characteristic energy, Eo, of the carbons, which p...

  5. Adsorption-desorption behavior of atrazine on agricultural soils in China.

    Science.gov (United States)

    Yue, Lin; Ge, ChengJun; Feng, Dan; Yu, Huamei; Deng, Hui; Fu, Bomin

    2017-07-01

    Adsorption and desorption are important processes that affect atrazine transport, transformation, and bioavailability in soils. In this study, the adsorption-desorption characteristics of atrazine in three soils (laterite, paddy soil and alluvial soil) were evaluated using the batch equilibrium method. The results showed that the kinetics of atrazine in soils was completed in two steps: a "fast" adsorption and a "slow" adsorption and could be well described by pseudo-second-order model. In addition, the adsorption equilibrium isotherms were nonlinear and were well fitted by Freundlich and Langmuir models. It was found that the adsorption data on laterite, and paddy soil were better fitted by the Freundlich model; as for alluvial soil, the Langmuir model described it better. The maximum atrazine sorption capacities ranked as follows: paddy soil>alluvial soil>laterite. Results of thermodynamic calculations indicated that atrazine adsorption on three tested soils was spontaneous and endothermic. The desorption data showed that negative hysteresis occurred. Furthermore, lower solution pH value was conducive to the adsorption of atrazine in soils. The atrazine adsorption in these three tested soils was controlled by physical adsorption, including partition and surface adsorption. At lower equilibrium concentration, the atrazine adsorption process in soils was dominated by surface adsorption; while with the increase of equilibrium concentration, partition was predominant. Copyright © 2016. Published by Elsevier B.V.

  6. Response surface modeling of boron adsorption from aqueous solution by vermiculite using different adsorption agents: Box-Behnken experimental design.

    Science.gov (United States)

    Demirçivi, Pelin; Saygılı, Gülhayat Nasün

    2017-07-01

    In this study, a different method was applied for boron removal by using vermiculite as the adsorbent. Vermiculite, which was used in the experiments, was not modified with adsorption agents before boron adsorption using a separate process. Hexadecyltrimethylammonium bromide (HDTMA) and Gallic acid (GA) were used as adsorption agents for vermiculite by maintaining the solid/liquid ratio at 12.5 g/L. HDTMA/GA concentration, contact time, pH, initial boron concentration, inert electrolyte and temperature effects on boron adsorption were analyzed. A three-factor, three-level Box-Behnken design model combined with response surface method (RSM) was employed to examine and optimize process variables for boron adsorption from aqueous solution by vermiculite using HDTMA and GA. Solution pH (2-12), temperature (25-60 °C) and initial boron concentration (50-8,000 mg/L) were chosen as independent variables and coded x 1 , x 2 and x 3 at three levels (-1, 0 and 1). Analysis of variance was used to test the significance of variables and their interactions with 95% confidence limit (α = 0.05). According to the regression coefficients, a second-order empirical equation was evaluated between the adsorption capacity (q i ) and the coded variables tested (x i ). Optimum values of the variables were also evaluated for maximum boron adsorption by vermiculite-HDTMA (HDTMA-Verm) and vermiculite-GA (GA-Verm).

  7. Efficient adsorption of Hg (II) ions in water by activated carbon modified with melamine

    Science.gov (United States)

    Qin, Hangdao; Meng, Jingling; Chen, Jing

    2018-04-01

    Removal of Hg (II) ions from industrial wastewater is important for the water treatment, and adsorption is an efficient treatment process. Activated carbon (AC) was modified with melamine, which introduced nitrogen-containing functional groups onto AC surface. Original AC and melamine modified activated carbon (ACM) were characterized by elemental analysis, N2 adsorption-desorption, determination of the pH of the point of zero charge (pHpzc) and X-ray photoelectron spectroscopy (XPS) and their performance in the adsorption of Hg(II) ions was investigated. Langmuir model fitted the experimental data of equilibrium isotherms well. ACM showed the higher Hg (II) ions adsorption capacity, increasing more than more than 1.8 times compared to the original one. Moreover, ACM showed a wider pH range for the maximum adsorption than the parent AC.

  8. A one-step thermal decomposition method to prepare anatase TiO{sub 2} nanosheets with improved adsorption capacities and enhanced photocatalytic activities

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wenting; Shang, Chunli; Li, Xue, E-mail: chm_lix@ujn.edu.cn

    2015-12-01

    Highlights: • Anatase TiO{sub 2} nanosheets (NSs) with high surface area have been prepared. • Only one type of surfactant, oleylamine (OM), is used as capping agents. • TiO{sub 2} NSs possess high adsorption capacities MB and high photocatalytic activity. - Abstract: Anatase TiO{sub 2} nanosheets (NSs) with high surface area have been prepared via a one-step thermal decomposition of titanium tetraisopropoxide (TTIP) in oleylamine (OM), and their adsorption capacities and photocatalytic activities are investigated by using methylene blue (MB) and methyl orange (MO) as model pollutants. During the synthesis procedure, only one type of surfactant, oleylamine (OM), is used as capping agents and no other solvents are added. Structure and properties of the TiO{sub 2} NSs were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), N{sub 2} adsorption analysis, UV–vis spectrum, X-ray photoelectron spectroscopy (XPS) and Photoluminescence (PL) methods. The results indicate that the TiO{sub 2} NSs possess high surface area up to 378 m{sup 2} g{sup −1}. The concentration of capping agents is found to be a key factor controlling the morphology and crystalline structure of the product. Adsorption and photodegradation experiments reveal that the prepared TiO{sub 2} NSs possess high adsorption capacities of model pollutants MB and high photocatalytic activity, showing that TiO{sub 2} NSs can be used as efficient pollutant adsorbents and photocatalytic degradation catalysts of MB in wastewater treatment.

  9. Adsorptive removal of dibenzothiophene from model fuels over one-pot synthesized PTA@MIL-101(Cr) hybrid material

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Shao-Yi; Zhang, Yan-Fei [School of Chemical Engineering and Technology, Tianjin University, Tianjin (China); Liu, Yong [School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin (China); Qin, Feng-Xiang; Ren, Hai-Tao [School of Chemical Engineering and Technology, Tianjin University, Tianjin (China); Wu, Song-Hai, E-mail: songhaiwu@gmail.com [School of Chemical Engineering and Technology, Tianjin University, Tianjin (China)

    2013-11-15

    Highlights: • One-pot synthesized PTA@MIL-101(Cr) shows high capacity of benzothiophene. • PTA/MIL-101(Cr) obtained via post-modification performs poor in the adsorption. • PTA and MIL-101(Cr) exhibit synergetic effect on adsorption of benzothiophene. • In the presence of aromatics, PTA@MIL-101(Cr) and MIL-101(Cr) remain their capacity. • PTA-dispersed MOFs adsorb dibenzothiophene through acid–base interaction. -- Abstract: Hybrid nanomaterials comprising phosphotungstic acid (PTA) and MIL-101(Cr) were prepared through one-pot synthesis and post-modification methods and then were used as adsorbents of dibenzothiophene (DBT) from simulated diesel fuels. Samples obtained by different ways (encapsulation and impregnation) were characterized by nitrogen adsorption, transmission electron microscope (TEM), X-ray diffraction (XRD), Fourier transform infrared spectrum (FT-IR) and series of adsorption experiments. The equilibrium adsorption capacities of PTA@MIL-101(Cr) illustrated that the direct introduction of PTA into MIL-101(Cr) during synthesis resulted in a 10.7% increase compared with MIL-101(Cr). However, porous hybrid adsorbent PTA/MIL-101(Cr) prepared via post-modification method exhibited lower adsorption capacity than virgin MIL-101(Cr). The theoretical maximum adsorption capacity (Q{sub 0}) of PTA@MIL-101(Cr) is 136.5 mg S/g adsorbent, 4.2 times of MIL-101(Cr). Even in competitive adsorption between aromatic compounds, which possess strong affinity with MOFs, and DBT, PTA@MIL-101(Cr) and MIL-101(Cr) remained their effectiveness in removal of DBT in the system. Based on these results, it can be presumed that MIL-101(Cr), modified properly, can be used as a promising adsorbent for eliminating aromatics and S-compounds in commercial fuels simultaneously.

  10. Sc-Decorated Porous Graphene for High-Capacity Hydrogen Storage: First-Principles Calculations

    Directory of Open Access Journals (Sweden)

    Yuhong Chen

    2017-08-01

    Full Text Available The generalized gradient approximation (GGA function based on density functional theory is adopted to investigate the optimized geometrical structure, electron structure and hydrogen storage performance of Sc modified porous graphene (PG. It is found that the carbon ring center is the most stable adsorbed position for a single Sc atom on PG, and the maximum number of adsorbed H2 molecules is four with the average adsorption energy of −0.429 eV/H2. By adding a second Sc atom on the other side of the system, the hydrogen storage capacity of the system can be improved effectively. Two Sc atoms located on opposite sides of the PG carbon ring center hole is the most suitable hydrogen storage structure, and the hydrogen storage capacity reach a maximum 9.09 wt % at the average adsorption energy of −0.296 eV/H2. The adsorption of H2 molecules in the PG system is mainly attributed to orbital hybridization among H, Sc, and C atoms, and Coulomb attraction between negatively charged H2 molecules and positively charged Sc atoms.

  11. Adsorption of chromium (Vi) on radiation grafted N,N-dimethylaminoethylmethacrylate onto polypropylene, from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Burillo, G. [UNAM, Instituto de Ciencias Nucleares, Departamento de Quimica, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Serrano G, J.; Bonifacio M, J., E-mail: juan.serrano@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2013-08-01

    Polypropylene (Pp) grafted with dimethylaminoethylmethacrylate (DMAEMA), was prepared by irradiation with a {sup 60}Co {gamma} source. The obtained Pp-g-DMAEMA was used to study the Cr(Vi) ion adsorption as a function of contact time, initial ph, initial concentration of metal ion and temperature. Chromium adsorption data on Pp-g-DMAEMA at various initial concentration fit well the Freundlich and Langmuir isotherms. The maximum adsorption capacity (a{sub max}) was found to be 0.3103 x 0{sup -4} mol g{sup -1}. The thermodynamic parameters {Delta}H{sup 0}, {Delta}G{sup 0} and {Delta}S{sup 0} were estimated showing the adsorption process to be exothermic and spontaneous. (Author)

  12. Effect of competing ions and causticization on the ammonia adsorption by a novel poly ligand exchanger (PLE) ammonia adsorption reagent.

    Science.gov (United States)

    Chen, Quanzhou; Zhou, Kanggen; Hu, Yuanjuan; Liu, Fang; Wang, Aihe

    2017-03-01

    In this paper, a poly ligand exchanger, Cu(II)-loaded chelating resin named ammonia adsorption reagent (AMAR), bearing the functional group of weak iminodiacetate acid, was prepared to efficiently remove ammonia from solutions. Batch adsorption equilibrium experiments were conducted under a range of conditions. The effects of pH on the removal of ammonia by AMAR were investigated at 25 °C. The copper loaded on the resin forms a complex with NH 3 in solution under alkaline condition. The effect of alkaline dosage (AD) on the ammonia adsorption was investigated. The maximum breakthrough bed volumes were obtained when the AD was set as 0.75 mmol OH - /mL. The higher AD did not guarantee the better ammonia removal efficiency due to the forming of Cu(OH) 2 precipitate between OH - in solutions and Cu(II) on the resin. The effect of competing ions on the adsorption breakthrough curve of virgin AMAR and causticized AMAR was also investigated. The results demonstrated that the existence of competing ions had a negative impact on the adsorption capacity for both virgin AMAR and causticized AMAR. After causticization, the AMAR was more resistant to the competing ions comparing with virgin AMAR. The bivalent Ca 2+ affects the ammonia adsorption more than does the monovalent Na + .

  13. Amine-tethered solid adsorbents coupling high adsorption capacity and regenerability for CO2 capture from ambient air.

    Science.gov (United States)

    Choi, Sunho; Gray, McMahan L; Jones, Christopher W

    2011-05-23

    Silica supported poly(ethyleneimine) (PEI) materials are prepared via impregnation and demonstrated to be promising adsorbents for CO(2) capture from ultra-dilute gas streams such as ambient air. A prototypical class 1 adsorbent, containing 45 wt% PEI (PEI/silica), and two new modified PEI-based aminosilica adsorbents, derived from PEI modified with 3-aminopropyltrimethoxysilane (A-PEI/silica) or tetraethyl orthotitanate (T-PEI/silica), are prepared and characterized by using thermogravimetric analysis and FTIR spectroscopy. The modifiers are shown to enhance the thermal stability of the polymer-oxide composites, leading to higher PEI decomposition temperatures. The modified adsorbents present extremely high CO(2) adsorption capacities under conditions simulating ambient air (400 ppm CO(2) in inert gas), exceeding 2 mol(CO (2)) kg(sorbent)(-1), as well as enhanced adsorption kinetics compared to conventional class 1 sorbents. The new adsorbents show excellent stability in cyclic adsorption-desorption operations, even under dry conditions in which aminosilica adsorbents are known to lose capacity due to urea formation. Thus, the adsorbents of this type can be considered promising materials for the direct capture of CO(2) from ultra-dilute gas streams such as ambient air. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Adsorption Behavior of High Stable Zr-Based MOFs for the Removal of Acid Organic Dye from Water

    Directory of Open Access Journals (Sweden)

    Ke-Deng Zhang

    2017-02-01

    Full Text Available Zirconium based metal organic frameworks (Zr-MOFs have become popular in engineering studies due to their high mechanical stability, thermostability and chemical stability. In our work, by using a theoretical kinetic adsorption isotherm, we can exert MOFs to an acid dye adsorption process, experimentally exploring the adsorption of MOFs, their external behavior and internal mechanism. The results indicate their spontaneous and endothermic nature, and the maximum adsorption capacity of this material for acid orange 7 (AO7 could be up to 358 mg·g−1 at 318 K, estimated by the Langmuir isotherm model. This is ascribed to the presence of an open active metal site that significantly intensified the adsorption, by majorly increasing the interaction strength with the adsorbates. Additionally, the enhanced π delocalization and suitable pore size of UiO-66 gave rise to the highest host–guest interaction, which further improves both the adsorption capacity and separation selectivity at low concentrations. Furthermore, the stability of UiO-66 was actually verified for the first time, through comparing the structure of the samples before and after adsorption mainly by Powder X-ray diffraction and thermal gravimetric analysis.

  15. Removal of zinc (II) ion from aqueous solution by adsorption onto activated palm midrib bio-sorbent

    Science.gov (United States)

    Mulana, F.; Mariana; Muslim, A.; Mohibah, M.; Halim, K. H. Ku

    2018-03-01

    In this paper, palm midrib that was activated with mixed citric acid and tartaric acid as biosorbent was used to remove Zn (II) ion from aqueous solution. The aim of this research is to activate palm midrib by using a mixed citric acid and tartaric acid and to determine adsorption capacity of activated palm midrib biosorbent on Zn (II) ion uptake from aqueous solution. The effect of several parameters such as contact time, initial Zn (II) ion concentration and activator concentration on the degree of Zn (II) ion removal was examined. Atomic Absorption Spectroscopy method was performed to determine adsorbed amount of Zn (II) ion into activated biosorbent. The result showed that the adsorption process was relatively not so fast and equilibrium was reached after contact time of 120 min. The adsorption capacity of biosorbent reached a maximum when the concentration of mixed citric acid and tartaric acid was 1.6 M. The optimum adsorption capacity was 5.72 mg/g. The result was obtained on initial Zn (II) ion concentration of 80 ppm for 120-min contact time. Langmuir isotherm was found as the best fit for the equilibrium data indicating homogeneous adsorption of metal ions onto the biosorbent surface.

  16. Adsorption of Cr(III) on ozonised activated carbon. Importance of Cpi-cation interactions.

    Science.gov (United States)

    Rivera-Utrilla, J; Sánchez-Polo, M

    2003-08-01

    The adsorption of Cr(III) in aqueous solution was investigated on a series of ozonised activated carbons, analysing the effect of oxygenated surface groups on the adsorption process. A study was carried out to determine the adsorption isotherms and the influence of the pH on the adsorption of this metal. The adsorption capacity and affinity of the adsorbent for Cr(III) increased with the increase in oxygenated acid groups on the surface of the activated carbon. These findings imply that electrostatic-type interactions predominate in the adsorption process, although the adsorption of Cr(III) on the original (basic) carbon indicates that other forces also participate in the adsorption process. Thus, the ionic exchange of protons in the -Cpi-H3O(+) interaction for Cr(III) accounts for the adsorption of cationic species in basic carbons with positive charge density. Study of the influence of pH on the adsorption of Cr(III) showed that, in each system, the maximum adsorption occurred when the charge of the carbon surface was opposite that of the species of Cr(III) present at the pH of the experiment. These results confirmed that electrostatic interactions predominate in the adsorption process.

  17. Simultaneous removal of potent cyanotoxins from water using magnetophoretic nanoparticle of polypyrrole: adsorption kinetic and isotherm study.

    Science.gov (United States)

    Hena, S; Rozi, R; Tabassum, S; Huda, A

    2016-08-01

    Cyanotoxins, microcystins and cylindrospermopsin, are potent toxins produced by cyanobacteria in potable water supplies. This study investigated the removal of cyanotoxins from aqueous media by magnetophoretic nanoparticle of polypyrrole adsorbent. The adsorption process was pH dependent with maximum adsorption occurring at pH 7 for microcystin-LA, LR, and YR and at pH 9 for microcystin-RR and cylindrospermopsin (CYN). Kinetic studies and adsorption isotherms reflected better fit for pseudo-second-order rate and Langmuir isotherm model, respectively. Thermodynamic calculations showed that the cyanotoxin adsorption process is endothermic and spontaneous in nature. The regenerated adsorbent can be successfully reused without appreciable loss of its original capacity.

  18. Synthesis of Cross-Linked Chitosan and Application to Adsorption and Speciation of Se (VI and Se (IV in Environmental Water Samples by Inductively Coupled Plasma Optical Emission Spectrometry

    Directory of Open Access Journals (Sweden)

    Yang Bai

    2011-06-01

    Full Text Available A new type of cross-linked chitosan was synthesized with Diethylene Triamine (DCCTS. The adsorption of Se (VI on DCCTS was studied. The effect factors on adsorption and the adsorption mechanism were considered. The results indicated that the DCCTS could concentrate and separate Se (IV at pH = 3.6; the maximum adsorption efficiency was 94%, the adsorption equilibrium time was 30 min; the maximum adsorption capacity was 42.7 mg/g; the adsorption fitted Langmuir equation. A novel method for speciation of Se (VI and Se (IV in environmental water samples has been developed using DCCTS as adsorbent and ICP–OES as determination means. The detection limit of this method was 12 ng/L, the relatively standard deviation was 4.5% and the recovery was 99%~104%.

  19. Functionalized Sugarcane Bagasse for U(VI) Adsorption from Acid and Alkaline Conditions.

    Science.gov (United States)

    Su, Shouzheng; Liu, Qi; Liu, Jingyuan; Zhang, Hongsen; Li, Rumin; Jing, Xiaoyan; Wang, Jun

    2018-01-15

    The highly efficient removal of uranium from mine tailings effluent, radioactive wastewater and enrichment from seawater is of great significance for the development of nuclear industry. In this work, we prepared an efficient U(VI) adsorbent by EDTA modified sugarcane bagasse (MESB) with a simple process. The prepared adsorbent preserves high adsorptive capacity for UO 2 2+ (pH 3.0) and uranyl complexes, such as UO 2 (OH) + , (UO 2 ) 2 (OH) 2 2+ and (UO 2 ) 3 (OH) 5 + (pH 4.0 and pH 5.0) and good repeatability in acidic environment. The maximum adsorption capacity for U(VI) at pH 3.0, 4.0 and 5.0 is 578.0, 925.9 and 1394.1 mg/g and the adsorption capacity loss is only 7% after five cycles. With the pH from 3.0 to 5.0, the inhibitive effects of Na + and K + decreased but increased of Mg 2+ and Ca 2+ . MESB also exhibits good adsorption for [UO 2 (CO 3 ) 3 ] 4- at pH 8.3 from 10 mg/L to 3.3 μg/L. Moreover, MESB could effectively extract U(VI) from simulated seawater in the presence of other metals ions. This work provided a general and efficient uranyl enriched material for nuclear industry.

  20. Characterization of the cation-binding capacity of a potassium-adsorption filter used in red blood cell transfusion.

    Science.gov (United States)

    Suzuki, Takao; Muto, Shigeaki; Miyata, Yukio; Maeda, Takao; Odate, Takayuki; Shimanaka, Kimio; Kusano, Eiji

    2015-06-01

    A K(+) -adsorption filter was developed to exchange K(+) in the supernatant of stored irradiated red blood cells with Na(+) . To date, however, the filter's adsorption capacity for K(+) has not been fully evaluated. Therefore, we characterized the cation-binding capacity of this filter. Artificial solutions containing various cations were continuously passed through the filter in 30 mL of sodium polystyrene sulfonate at 10 mL/min using an infusion pump at room temperature. The cation concentrations were measured before and during filtration. When a single solution containing K(+) , Li(+) , H(+) , Mg(2+) , Ca(2+) , or Al(3+) was continuously passed through the filter, the filter adsorbed K(+) and the other cations in exchange for Na(+) in direct proportion to the valence number. The order of affinity for cation adsorption to the filter was Ca(2+) >Mg(2+) >K(+) >H(+) >Li(+) . In K(+) -saturated conditions, the filter also adsorbed Na(+) . After complete adsorption of these cations on the filter, their concentration in the effluent increased in a sigmoidal manner over time. Cations that were bound to the filter were released if a second cation was passed through the filter, despite the different affinities of the two cations. The ability of the filter to bind cations, especially K(+) , should be helpful when it is used for red blood cell transfusion at the bedside. The filter may also be useful to gain a better understanding of the pharmacological properties of sodium polystyrene sulfonate. © 2015 The Authors. Therapeutic Apheresis and Dialysis © 2015 International Society for Apheresis.

  1. Comprehensive Adsorption Studies of Doxycycline and Ciprofloxacin Antibiotics by Biochars Prepared at Different Temperatures

    Science.gov (United States)

    Zeng, Zhi-wei; Tan, Xiao-fei; Liu, Yun-guo; Tian, Si-rong; Zeng, Guang-ming; Jiang, Lu-hua; Liu, Shao-bo; Li, Jiang; Liu, Ni; Yin, Zhi-hong

    2018-01-01

    This paper comparatively investigated the removal efficiency and mechanisms of rice straw biochars prepared under three pyrolytic temperatures for two kinds of tetracycline and quinolone antibiotics (doxycycline and ciprofloxacin). The influencing factors of antibiotic adsorption (including biochar dosage, pH, background electrolytes, humic acid, initial antibiotics concentration, contact time, and temperature) were comprehensively studied. The results suggest that biochars produced at high-temperature [i.e., 700°C (BC700)], have higher adsorption capacity for the two antibiotics than low-temperature (i.e., 300–500°C) biochars (BC300 and BC500). Higher surface area gives rise to greater volume of micropores and mesopores, and higher graphitic surfaces of the BC700 contributed to its higher functionality. The maximum adsorption capacity was found to be in the following order: DOX > CIP. The π-π EDA interaction and hydrogen bonding might be the predominant adsorption mechanisms. Findings in this study highlight the important roles of high-temperature biochars in controlling the contamination of tetracycline and quinolone antibiotics in the environment. PMID:29637067

  2. Comprehensive adsorption studies of doxycycline and ciprofloxacin antibiotics by biochars prepared at different temperatures

    Science.gov (United States)

    Zeng, Zhi-wei; Tan, Xiao-fei; Liu, Yun-guo; Tian, Si-rong; Zeng, Guang-ming; Jiang, Lu-hua; Liu, Shao-bo; Li, Jiang; Liu, Ni; Yin, Zhi-hong

    2018-03-01

    This paper comparatively investigated the removal efficiency and mechanisms of rice straw biochars prepared under three pyrolytic temperatures for two kinds of tetracycline and quinolone antibiotics (doxycycline and ciprofloxacin). The influencing factors of antibiotic adsorption (including biochar dosage, pH, background electrolytes, humic acid, initial antibiotics concentration, contact time, and temperature) were comprehensively studied. The results suggest that biochars produced at high-temperature (i.e., 700°C (BC700)), have higher adsorption capacity for the two antibiotics than low-temperature (i.e., 300-500°C) biochars (BC300 and BC500). Higher surface area gives rise to greater volume of micropores and mesopores, and higher graphitic surfaces of the BC700 contributed to its higher functionality. The maximum adsorption capacity was found to be in the following order: DOX > CIP. The π-π EDA interaction and hydrogen bonding might be the predominant adsorption mechanisms. Findings in this study highlight the important roles of high-temperature biochars in controlling the contamination of tetracycline and quinolone antibiotics in the environment.

  3. Comparative study of Hg(II) adsorption by thiol- and hydroxyl-containing bifunctional montmorillonite and vermiculite

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Lytuong [College of Environment and Energy, South China University of Technology, Guangzhou 510006 (China); The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006 (China); QuangBinh University, QuangBinh (Viet Nam); Wu, Pingxiao, E-mail: pppxwu@scut.edu.cn [College of Environment and Energy, South China University of Technology, Guangzhou 510006 (China); The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006 (China); The Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institutions (China); Zhu, Yajie; Liu, Shuai; Zhu, Nengwu [College of Environment and Energy, South China University of Technology, Guangzhou 510006 (China); The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006 (China)

    2015-11-30

    Graphical abstract: - Highlights: • Novel adsorbents were prepared by functionalization with BAL to remove Hg(II). • Thiol and hydroxyl groups contributed to the enhancement of Hg(II) removal. • BAL-Vm showed the most adsorption capacity of Hg(II). • The adsorption mechanism was discussed based on the adsorption behaviors. - Abstract: A novel approach to prepare adsorbents for Hg(II) uptake from aqueous media based on the grafting of dimercaprol (BAL), containing thiol and hydroxyl groups, onto the natural montmorillonite and vermiculite was investigated concerning the evaluation of the adsorption capacity. The kinetic study showed that the adsorption process abided by pseudo-second-order model. The adsorption behavior of Hg(II) onto the obtained samples fitted well with Langmuir isotherm model, exhibiting an enhanced maximum adsorption capacity of 8.57 and 3.21 mg g{sup −1} for BAL-Vm and BAL-Mt, respectively. The feasibility of Hg(II) uptake onto the the samples was studied thermodynamically and the calculated coefficients such as ΔH, ΔS and ΔG indicated a physical and spontaneous process. The pH values and coexisting cations had a great influence on Hg(II) removal, confirming the optimal pH value of 4.0–5.0 and the negative correlation between the ionic strength and the adsorption capacity of Hg(II). In general, BAL-Vm possessed a higher efficiency of Hg(II) uptake than BAL-Mt, contrary to that of the pristine clays. The pristine and functionalized materials were investigated by XRD, FTIR, BET, SEM and zeta potential analysis to gain in-depth insight into the structure and surface morphology. The results showed that BAL was successful grafted on montmorillonite and vermiculite surface, providing plentiful adsorption sites as chelating ligands. The mechanisms of Hg(II) adsorption on these samples could be further explained as ion exchange and electrostatic attraction for Vm and Mt, and formation of complexes for BAL-Vm and BAL-Mt.

  4. Comparative study of Hg(II) adsorption by thiol- and hydroxyl-containing bifunctional montmorillonite and vermiculite

    International Nuclear Information System (INIS)

    Tran, Lytuong; Wu, Pingxiao; Zhu, Yajie; Liu, Shuai; Zhu, Nengwu

    2015-01-01

    Graphical abstract: - Highlights: • Novel adsorbents were prepared by functionalization with BAL to remove Hg(II). • Thiol and hydroxyl groups contributed to the enhancement of Hg(II) removal. • BAL-Vm showed the most adsorption capacity of Hg(II). • The adsorption mechanism was discussed based on the adsorption behaviors. - Abstract: A novel approach to prepare adsorbents for Hg(II) uptake from aqueous media based on the grafting of dimercaprol (BAL), containing thiol and hydroxyl groups, onto the natural montmorillonite and vermiculite was investigated concerning the evaluation of the adsorption capacity. The kinetic study showed that the adsorption process abided by pseudo-second-order model. The adsorption behavior of Hg(II) onto the obtained samples fitted well with Langmuir isotherm model, exhibiting an enhanced maximum adsorption capacity of 8.57 and 3.21 mg g −1 for BAL-Vm and BAL-Mt, respectively. The feasibility of Hg(II) uptake onto the the samples was studied thermodynamically and the calculated coefficients such as ΔH, ΔS and ΔG indicated a physical and spontaneous process. The pH values and coexisting cations had a great influence on Hg(II) removal, confirming the optimal pH value of 4.0–5.0 and the negative correlation between the ionic strength and the adsorption capacity of Hg(II). In general, BAL-Vm possessed a higher efficiency of Hg(II) uptake than BAL-Mt, contrary to that of the pristine clays. The pristine and functionalized materials were investigated by XRD, FTIR, BET, SEM and zeta potential analysis to gain in-depth insight into the structure and surface morphology. The results showed that BAL was successful grafted on montmorillonite and vermiculite surface, providing plentiful adsorption sites as chelating ligands. The mechanisms of Hg(II) adsorption on these samples could be further explained as ion exchange and electrostatic attraction for Vm and Mt, and formation of complexes for BAL-Vm and BAL-Mt.

  5. Assessment of adsorption behavior of dibutyltin (DBT) to clay-rich sediments in comparison to the highly toxic tributyltin (TBT)

    International Nuclear Information System (INIS)

    Hoch, Marion; Alonso-Azcarate, Jacinto; Lischick, Martin

    2003-01-01

    Adsorption of dibutyltin to marine sediments is influenced by the type of predominating clay material. - The sorption behavior of dibutyltin (DBT) to four types of natural clay-rich sediments as a function of pH and salinity was studied. The strongest affinity of DBT was found to the montmorillonite-rich sediment, which is characterized by the highest specific surface area and cation exchange capacity of the four used sediments. K d values range between 12 and 40 (l/kg) on simulated marine conditions (pH 8, salinity 32%o). A maximum of DBT adsorption was found at a salinity of 0%o and pH 6. Desorption occurred over the entire studied pH range (4-8) when contaminated sediments interact with butyltin-free water. The maximum of desorption coincided with the minimum of adsorption, and vice versa. The results of DBT adsorption are compared with tributyltin (TBT), and the mechanism of the adsorption process is discussed

  6. Enhanced Adsorption and Removal of Ciprofloxacin on Regenerable Long TiO2 Nano tube/Graphene Oxide Hydrogel Adsorbents

    International Nuclear Information System (INIS)

    Zhuang, Y.; Ma, J.; Yu, F.; Yu, F.; Ma, J.

    2015-01-01

    To improve the adsorption performance and regeneration ability of adsorbent, a simple method was designed to synthesize long TiO 2 nano tube/reduced graphene oxide (rGO-TON) hydrogel, which has good adsorption and regeneration capacity toward ciprofloxacin. rGO-TON hydrogel could form 3D structure, which makes the separation and regeneration of adsorbent easy. For comparison, commercial P25 particle is used to prepare composite hydrogel with rGO; the results showed that TiO 2 nano tube supports the graphene sheets better than P25 particles, which would reduce the agglomeration of graphene sheets. rGO-TON have larger specific surface area (138.2m 2 /g) than rGO-P25 (79.4m 2 /g). In this paper, ciprofloxacin was chosen as target pollutants, the rGO-TON obtain excellent adsorption capacity, and the maximum adsorption capacities of rGO-TON for ciprofloxacin calculated from Langmuir model are 178.6 mg/g (R 2 =0.9929)181.8 mg/g (R 2 =0.9954) and 108.7 mg/g (R 2 =0.9964 ) for graphene oxide (GO), GO-TON, and GO-P25, respectively. In regeneration, the adsorption capacity of rGO-TON and rGO-P25 has little reduced after 5 cycles, while the adsorption capacity of rGO decreases to below 100 mg/g. Results of this work are of great significance for environmental applications of regenerable long TiO 2 nano tube/graphene oxide hydrogel as a promising adsorbent nano material for antibiotic pollutants from aqueous solutions.

  7. Adsorption of Phosphorus on Sediments of the Balearic Islands (Spain) Related to Their Composition

    Science.gov (United States)

    Lopez, P.; Lluch, X.; Vidal, M.; Morguí, J. A.

    1996-02-01

    The adsorption of phosphorus onto sediment particles has a major role in coastal areas, where continental inputs may increase levels of phosphate in the water mass. This paper reports a study of the adsorption capacity of phosphorus in two coastal areas located in the Balearic Islands: one in Majorca (The Albufera of Alcudia), and the other in Minorca (The Albufera of Es Grau). The range of adsorption capacity was 35-121 μ mol Pg -1in Majorca, and 30-55 μmol Pg -1in Minorca. Considering the slope of the Langmuir equation for low or moderate phosphorus concentrations as a measure of the efficiency of sediments in taking up phosphate, sediments from Minorca were more efficient than those from Majorca (21-36 ml g -1and 14-21 ml g -1, respectively. A horizontal pattern of variation was observed in both areas, with the highest values near the sea and at the points with least marine influence. In Majorca, maximum adsorption capacities ( C max) were positively correlated with concentrations of iron and aluminium, and efficiencies of sorption were related to carbon. In Minorca, C maxand efficiencies were negatively correlated with iron and aluminium, and positively correlated with carbon and calcium.

  8. Evaluation of physical properties and adsorption capacity of regenerated granular activated carbons (GACs)

    International Nuclear Information System (INIS)

    Chae, Seon-Ha; Kim, Seong-Su; Park, No-Suk; Jeong, Woochang

    2013-01-01

    The objectives of this study were to evaluate the variation in physical properties and investigate the adsorption capacity after regeneration of granular activated carbon (GAC). A correlation analysis was conducted to examine the relationship between the iodide number and loss rate. The experimental results showed that the loss rate of regenerated carbon should be related to the usage time of GAC. Physical properties including the effective size and uniformity coefficient were similar to those of virgin GAC. This result indicates that the function of GAC as an adsorption medium may be recovered completely. Although the iodine number and specific surface area of the regenerated GAC were smaller than those of virgin GAC, the cumulative pore volume of the former was larger. The removal efficiency of organic matter from the regenerated GAC column was equal to or slightly higher than that from the virgin GAC column. Consequently, regeneration may increase the number of mesopores which are responsible for the removal of organic matter

  9. Evaluation of physical properties and adsorption capacity of regenerated granular activated carbons (GACs)

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Seon-Ha; Kim, Seong-Su; Park, No-Suk [Korea Water Resources Corporation, Daejeon (Korea, Republic of); Jeong, Woochang [Kyungnam University, Changwon (Korea, Republic of)

    2013-04-15

    The objectives of this study were to evaluate the variation in physical properties and investigate the adsorption capacity after regeneration of granular activated carbon (GAC). A correlation analysis was conducted to examine the relationship between the iodide number and loss rate. The experimental results showed that the loss rate of regenerated carbon should be related to the usage time of GAC. Physical properties including the effective size and uniformity coefficient were similar to those of virgin GAC. This result indicates that the function of GAC as an adsorption medium may be recovered completely. Although the iodine number and specific surface area of the regenerated GAC were smaller than those of virgin GAC, the cumulative pore volume of the former was larger. The removal efficiency of organic matter from the regenerated GAC column was equal to or slightly higher than that from the virgin GAC column. Consequently, regeneration may increase the number of mesopores which are responsible for the removal of organic matter.

  10. Adsorption of heavy metal ions and azo dyes by crosslinked nanochelating resins based on poly(methylmethacrylate-co-maleic anhydride

    Directory of Open Access Journals (Sweden)

    M. Ghaemy

    2014-03-01

    Full Text Available Chelating resins are suitable materials for the removal of heavy metals in water treatments. A copolymer, Poly(MMA-co-MA, was synthesized by radical polymerization of maleic anhydride (MA and methyl methacrylate (MMA, characterized and transformed into multifunctional nanochelating resin beads (80–150 nm via hydrolysis, grafting and crosslink reactions. The resin beads were characterized by swelling studies, field emission scanning electron microscopy (FESEM and Fourier transform infrared spectroscopy (FTIR. The main purpose of this work was to determine the adsorption capacity of the prepared resins (swelling ratio ~55% towards metal ions such as Hg2+, Cd2+, Cu2+ from water at three different pH values (3, 6 and 9. Variations in pH and types of metal ions have not significantly affected the chelation capacity of these resins. The maximum chelation capacity of one of the prepared resin beads (Co-g-AP3 for Hg2+ was 63, 85.8 and 71.14 mg/g at pH 3, 6 and 9, respectively. Approximately 96% of the metal ions could be desorbed from the resin. Adsorption capacity of these resins towards three commercial synthetic azo dyes was also investigated. The maximum adsorption of dye AY42 was 91% for the resin Co-g-AP3 at room temperature. This insures the applicability of the synthesized resins for industrial applications.

  11. Fe{sub 3}O{sub 4} magnetic core coated by silver and functionalized with N-acetyl cysteine as novel nanoparticles in ferritin adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Akduman, Beguem [Faculty of Science and Arts, Adnan Menderes University, Department of Chemistry (Turkey); Uygun, Murat [Kocarl Latin-Small-Letter-Dotless-I Vocational and Training School, Adnan Menderes University (Turkey); Uygun, Deniz Aktas, E-mail: daktas@adu.edu.tr [Faculty of Science and Arts, Adnan Menderes University, Department of Chemistry (Turkey); Antalik, Marian [Institute of Experimental Physics, Slovak Academy of Science, Department of Biophysics (Slovakia)

    2013-04-15

    A novel metal-chelate affinity matrix utilizing N-acetyl cysteine as a metal chelating agent was synthesized. For this, magnetic Fe{sub 3}O{sub 4} core was coated with silver by chemical reduction. Then, these magnetic silver nanoparticles were covered with N-acetyl cysteine, and Fe{sup 3+} was chelated to this modified magnetic silver nanoparticle. These magnetic nanoparticles were characterized by SEM, AFM, EDX, and ESR analysis. Synthesized nanoparticles were spherical and average size is found to be 69 nm. Fe{sup 3+} chelated magnetic silver nanoparticles were used for the adsorption of ferritin from its aqueous solution. Optimum conditions for the ferritin adsorption experiments were performed at pH 6.0 phosphate buffer and 25 Degree-Sign C of medium temperature and the maximum ferritin adsorption capacity is found to be 89.57 mg/g nanoparticle. Ferritin adsorption onto magnetic silver nanoparticles was increased with increasing ferritin concentration while adsorption capacity was decreased with increasing ionic strength. Affinity of the magnetic silver nanoparticles to the ferritin molecule was shown with SPR analysis. It was also observed that the adsorption capacity of the magnetic silver nanoparticles was not significantly changed after the five adsorption/desorption cycles.

  12. Preliminary investigation of phosphorus adsorption onto two types of iron oxide-organic matter complexes.

    Science.gov (United States)

    Yan, Jinlong; Jiang, Tao; Yao, Ying; Lu, Song; Wang, Qilei; Wei, Shiqiang

    2016-04-01

    Iron oxide (FeO) coated by natural organic matter (NOM) is ubiquitous. The associations of minerals with organic matter (OM) significantly changes their surface properties and reactivity, and thus affect the environmental fate of pollutants, including nutrients (e.g., phosphorus (P)). In this study, ferrihydrite/goethite-humic acid (FH/GE-HA) complexes were prepared and their adsorption characteristics on P at various pH and ionic strength were investigated. The results indicated that the FeO-OM complexes showed a decreased P adsorption capacity in comparison with bare FeO. The maximum adsorption capacity (Qmax) decreased in the order of FH (22.17 mg/g)>FH-HA (5.43 mg/g)>GE (4.67 mg/g)>GE-HA (3.27 mg/g). After coating with HA, the amorphous FH-HA complex still showed higher P adsorption than the crystalline GE-HA complex. The decreased P adsorption observed might be attributed to changes of the FeO surface charges caused by OM association. The dependence of P adsorption on the specific surface area of adsorbents suggests that the FeO component in the complexes is still the main contributor for the adsorption surfaces. The P adsorptions on FeO-HA complexes decreased with increasing initial pH or decreasing initial ionic strength. A strong dependence of P adsorption on ionic strength and pH may demonstrate that outer-sphere complexes between the OM component on the surface and P possibly coexist with inner-sphere surface complexes between the FeO component and P. Therefore, previous over-emphasis on the contributions of original minerals to P immobilization possibly over-estimates the P loading capacity of soils, especially in humic-rich areas. Copyright © 2015. Published by Elsevier B.V.

  13. Studies on the adsorption of RuN{sub 3} dye on sheet-like nanostructured porous ZnO films

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Rong; Pan, Jie; Briggs, Evan P.; Thrash, Marvin; Kerr, Lei L. [Department of Paper and Chemical Engineering, Miami University, Oxford, OH 45056 (United States)

    2008-04-15

    The interface between the ZnO and dye directly impacts the dye-sensitized solar cell (DSSC) performance. Nanostructured porous ZnO film was developed by a simple chemical solution process. Scanning electron microscope (SEM) images demonstrated the uniform ZnO films with sheet-like nanostructure. Adsorption studies indicated that the maximum adsorption capacity of RuN{sub 3} dye on the surface of ZnO films was approximately 0.016 mmol RuN{sub 3}/g ZnO films. Adsorption studies were conducted at 25 and 40 C. The results showed that the dye adsorption was significantly influenced by temperatures. Moreover, the problem of the dye aggregation on the ZnO surface was reduced at higher adsorption temperatures. The adsorption chemistry was studied with Raman spectroscopy. (author)

  14. Effects of Biochar-Derived Sewage Sludge on Heavy Metal Adsorption and Immobilization in Soils

    Science.gov (United States)

    Zhou, Dan; Liu, Dan; Gao, Fengxiang; Li, Mengke; Luo, Xianping

    2017-01-01

    The object of this study was to evaluate the effect of sewage sludge biochar on adsorption and mobility of Cr, Mn, Cu, and Zn. Biochar (BC400) was produced via pyrolysis of municipal sewage sludge at 400 °C. Maximum adsorption capacities (qm) for Zn, Cr, Mn, and Cu were 5.905, 5.724, 5.681, and 5.342 mg·g−1, respectively, in the mono-metal solution and 2.475, 8.204, 1.01, and 5.415 mg·g−1, respectively, in the multi-metal solution. The adsorption capacities for Mn, Cu, and Zn decreased in the multi-metal solution due to competitive adsorption, whereas the capacity for Cr increased. Surface precipitation is an important mechanism in the sorption of these metals on BC400. The 360-day incubation experiment showed that BC400 application reduced metal mobility in contaminated soils, which was attributed to the substantial decreases in the acid-soluble fractions of Cr, Mn, Cu, and Zn (72.20%, 70.38%, 50.43%, and 29.78%, respectively). Furthermore, the leaching experiment using simulated acid rain indicated that the addition of BC400 enhanced the acid buffer capacity of contaminated soil, and the concentration of Cr, Mn, Cu, and Zn in the leachate was lower than in untreated soil. Overall, this study indicates that sewage sludge biochar application reduces the mobility of heavy metal in co-contaminated soil, and this adsorption experiment is suitable for the evaluation of biochar properties for remediation. PMID:28644399

  15. Reservoir capacity estimates in shale plays based on experimental adsorption data

    Science.gov (United States)

    Ngo, Tan

    from different measurement techniques using representative fluids (such as CH4 and CO2) at elevated pressures, and the adsorbed density can range anywhere between the liquid and the solid state of the adsorbate. Whether these discrepancies are associated with the inherent heterogeneity of mudrocks and/or with poor data quality requires more experiments under well-controlled conditions. Nevertheless, it has been found in this study that methane GIP estimates can vary between 10-45% and 10-30%, respectively, depending on whether the free or the total amount of gas is considered. Accordingly, CO2 storage estimates range between 30-90% and 15-50%, due to the larger adsorption capacity and gas density at similar pressure and temperature conditions. A manometric system has been designed and built that allows measuring the adsorption of supercritical fluids in microporous materials. Preliminary adsorption tests have been performed using a microporous 13X zeolite and CO 2 as an adsorbing gas at a temperature of 25oC and 35oC and at pressures up to 500 psi. Under these conditions, adsorption is quantified with a precision of +/- 3%. However, relative differences up to 15-20% have been observed with respect to data published in the literature on the same adsorbent and at similar experimental conditions. While it cannot be fully explained with uncertainty analysis, this discrepancy can be reduced by improving experiment practice, thus including the application of a higher adsorbent's regeneration temperature, of longer equilibrium times and of a careful flushing of the system between the various experimental steps. Based on the results on 13X zeolite, virtual tests have been conducted to predict the performance of the manometric system to measure adsorption on less adsorbing materials, such as mudrocks. The results show that uncertainties in the estimated adsorbed amount are much more significant in shale material and they increase with increasing pressure. In fact, relative

  16. Adsorption of heavy metals from aqueous solutions by Mg-Al-Zn mingled oxides adsorbent.

    Science.gov (United States)

    El-Sayed, Mona; Eshaq, Gh; ElMetwally, A E

    2016-10-01

    In our study, Mg-Al-Zn mingled oxides were prepared by the co-precipitation method. The structure, composition, morphology and thermal stability of the synthesized Mg-Al-Zn mingled oxides were analyzed by powder X-ray diffraction, Fourier transform infrared spectrometry, N 2 physisorption, scanning electron microscopy, differential scanning calorimetry and thermogravimetry. Batch experiments were performed to study the adsorption behavior of cobalt(II) and nickel(II) as a function of pH, contact time, initial metal ion concentration, and adsorbent dose. The maximum adsorption capacity of Mg-Al-Zn mingled oxides for cobalt and nickel metal ions was 116.7 mg g -1 , and 70.4 mg g -1 , respectively. The experimental data were analyzed using pseudo-first- and pseudo-second-order kinetic models in linear and nonlinear regression analysis. The kinetic studies showed that the adsorption process could be described by the pseudo-second-order kinetic model. Experimental equilibrium data were well represented by Langmuir and Freundlich isotherm models. Also, the maximum monolayer capacity, q max , obtained was 113.8 mg g -1 , and 79.4 mg g -1 for Co(II), and Ni(II), respectively. Our results showed that Mg-Al-Zn mingled oxides can be used as an efficient adsorbent material for removal of heavy metals from industrial wastewater samples.

  17. Kinetics of adsorption and uptake of Cu2+ by Chlorella vulgaris: influence of pH, temperature, culture age, and cations.

    Science.gov (United States)

    Mehta, S K; Singh, Alpana; Gaur, J P

    2002-03-01

    Adsorption and uptake of Cu2+ by Chlorella vulgaris were distinguished by extracting the surface-bound Cu2+ with EDTA. The uptake of Cu2+ followed Michaelis Menten kinetics. The maximum rate of Cu2+ uptake (0.362fmolcell(-1) h(-1)) was obtained at pH 6.0. The rate of Cu2+ uptake was greater for cultures in the exponential phase of growth, and increased with a rise in temperature from 6 to 25 degrees C, thus pointing towards an active mechanism. The maximum number of Cu2+ binding sites was 3.245 fmol cell(-1) at pH 4.5. Adsorption of Cu2+ was strongly pH-dependent thereby indicating that the number and nature of metal binding sites on the cell surface change with changing chemistry of the solution. Unlike uptake, the adsorption remained unaffected by small changes in temperature. Older cultures displayed a higher Cu2+ adsorption capacity than the exponentially growing ones thus suggesting generation of new and/or additional Cu2+ binding sites on older cells of C. vulgaris. By pH titration, the cation-exchange capacity of Chlorella, measured in terms of H+/ Na+ exchange, was about 17 fmol cell(-1) at pH 10.5. Negligible cation exchange capacity at and below pH 5.0 indicated that ion exchange was not the sole mechanism of Cu2+ adsorption by Chlorella. The uptake and adsorption of Cu2+ were inhibited by 100 microM of various cations including other heavy metal ions. The general concept that cations competitively inhibit accumulation of metals in living organisms does not hold for C. vulgaris. Non-competitive, uncompetitive and mixed inhibition of Cu2+ uptake and adsorption by various cations were more common than competitive inhibition.

  18. High-capacity thermo-responsive magnetic molecularly imprinted polymers for selective extraction of curcuminoids.

    Science.gov (United States)

    You, Qingping; Zhang, Yuping; Zhang, Qingwen; Guo, Junfang; Huang, Weihua; Shi, Shuyun; Chen, Xiaoqin

    2014-08-08

    Thermo-responsive magnetic molecularly imprinted polymers (TMMIPs) for selective recognition of curcuminoids with high capacity and selectivity have firstly been developed. The resulting TMMIPs were characterized by TEM, FT-IR, TGA, VSM and UV, which indicated that TMMIPs showed thermo-responsiveness [lower critical solution temperature (LCST) at 33.71°C] and rapid magnetic separation (5s). The polymerization, adsorption and release conditions were optimized in detail to obtain the highest binding capacity, selectivity and release ratio. We found that the adopted thermo-responsive monomer [N-isopropylacrylamide (NIPAm)] could be considered not only as inert polymer backbone for thermo-responsiveness but also as functional co-monomers combination with basic monomer (4-VP) for more specific binding sites when ethanol was added in binding solution. The maximum adsorption capacity with highest selectivity of curcumin was 440.3μg/g (1.93 times that on MMIPs with no thermosensitivity) at 45°C (above LCST) in 20% (v/v) ethanol solution on shrunk TMMIPs, and the maximum release proportion was about 98% at 20°C (below LCST) in methanol-acetic acid (9/1, v/v) solution on swelled TMMIPs. The adsorption process between curcumin and TMMIPs followed Langumuir adsorption isotherm and pseudo-first-order reaction kinetics. The prepared TMMIPs also showed high reproducibility (RSD<6% for batch-to-batch evaluation) and stability (only 7% decrease after five cycles). Subsequently, the TMMIPs were successfully applied for selective extraction of curcuminoids from complex natural product, Curcuma longa. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Molecular simulation of methane adsorption characteristics on coal macromolecule

    Science.gov (United States)

    Yang, Zhiyuan; He, Xiaoxiao; Meng, Zhuoyue; Xue, Wenying

    2018-02-01

    In this paper, the molecular model of anthracite named Wender2 was selected to study the adsorption behaviour of single component CH4 and the competitive adsorption of CH4/CO2, CH4/H2O and CH4/N2. The molecular model of anthracite was established by molecular simulation software (Materials Studio 8.0), and Grand Canonical Monte Carlo (GCMC) simulations were carried out to investigate the single and binary component adsorption. The effects of pressure and temperature on the adsorption position, adsorption energy and adsorption capacity were mainly discussed. The results show that for the single component adsorption, the adsorption capacity of CH4 increases rapidly with the pressure ascending, and then tends to be stable after the first step. The low temperature is favourable for the adsorption of CH4, and the high temperature promotes desorption quantity of CH4 from the coal. Adsorbent molecules are preferentially adsorbed on the edge of coal macromolecules. The order of adsorption capacity of CH4/CO2, CH4/H2O and CH4/N2 in the binary component is H2O>CO2>CH4>N2. The change of pressure has little effect on the adsorption capacity of the adsorbent in the competitive adsorption, but it has a great influence on the adsorption capacity of the adsorbent, and there is a positive correlation between them.

  20. Adsorptive removal of dibenzothiophene from model fuels over one-pot synthesized PTA@MIL-101(Cr) hybrid material.

    Science.gov (United States)

    Jia, Shao-Yi; Zhang, Yan-Fei; Liu, Yong; Qin, Feng-Xiang; Ren, Hai-Tao; Wu, Song-Hai

    2013-11-15

    Hybrid nanomaterials comprising phosphotungstic acid (PTA) and MIL-101(Cr) were prepared through one-pot synthesis and post-modification methods and then were used as adsorbents of dibenzothiophene (DBT) from simulated diesel fuels. Samples obtained by different ways (encapsulation and impregnation) were characterized by nitrogen adsorption, transmission electron microscope (TEM), X-ray diffraction (XRD), Fourier transform infrared spectrum (FT-IR) and series of adsorption experiments. The equilibrium adsorption capacities of PTA@MIL-101(Cr) illustrated that the direct introduction of PTA into MIL-101(Cr) during synthesis resulted in a 10.7% increase compared with MIL-101(Cr). However, porous hybrid adsorbent PTA/MIL-101(Cr) prepared via post-modification method exhibited lower adsorption capacity than virgin MIL-101(Cr). The theoretical maximum adsorption capacity (Q0) of PTA@MIL-101(Cr) is 136.5mg S/g adsorbent, 4.2 times of MIL-101(Cr). Even in competitive adsorption between aromatic compounds, which possess strong affinity with MOFs, and DBT, PTA@MIL-101(Cr) and MIL-101(Cr) remained their effectiveness in removal of DBT in the system. Based on these results, it can be presumed that MIL-101(Cr), modified properly, can be used as a promising adsorbent for eliminating aromatics and S-compounds in commercial fuels simultaneously. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Mercury adsorption in the Mississippi River deltaic plain freshwater marsh soil of Louisiana Gulf coastal wetlands.

    Science.gov (United States)

    Park, Jong-Hwan; Wang, Jim J; Xiao, Ran; Pensky, Scott M; Kongchum, Manoch; DeLaune, Ronald D; Seo, Dong-Cheol

    2018-03-01

    Mercury adsorption characteristics of Mississippi River deltaic plain (MRDP) freshwater marsh soil in the Louisiana Gulf coast were evaluated under various conditions. Mercury adsorption was well described by pseudo-second order and Langmuir isotherm models with maximum adsorption capacity of 39.8 mg g -1 . Additional fitting of intraparticle model showed that mercury in the MRDP freshwater marsh soil was controlled by both external surface adsorption and intraparticle diffusion. The partition of adsorbed mercury (mg g -1 ) revealed that mercury was primarily adsorbed into organic-bond fraction (12.09) and soluble/exchangeable fraction (10.85), which accounted for 63.5% of the total adsorption, followed by manganese oxide-bound (7.50), easily mobilizable carbonate-bound (4.53), amorphous iron oxide-bound (0.55), crystalline Fe oxide-bound (0.41), and residual fraction (0.16). Mercury adsorption capacity was generally elevated along with increasing solution pH even though dominant species of mercury were non-ionic HgCl 2 , HgClOH and Hg(OH) 2  at between pH 3 and 9. In addition, increasing background NaCl concentration and the presence of humic acid decreased mercury adsorption, whereas the presence of phosphate, sulfate and nitrate enhanced mercury adsorption. Mercury adsorption in the MRDP freshwater marsh soil was reduced by the presence of Pb, Cu, Cd and Zn with Pb showing the greatest competitive adsorption. Overall the adsorption capacity of mercury in the MRDP freshwater marsh soil was found to be significantly influenced by potential environmental changes, and such factors should be considered in order to manage the risks associated with mercury in this MRDP wetland for responding to future climate change scenarios. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Preparation of methacrylic acid-modified rice husk improved by an experimental design and application for paraquat adsorption

    International Nuclear Information System (INIS)

    Hsu, Shih-Tong; Chen, Lung-Chuan; Lee, Cheng-Chieh; Pan, Ting-Chung; You, Bing-Xuan; Yan, Qi-Feng

    2009-01-01

    Methacrylic acid (MAA) grafted rice husk was synthesized using graft copolymerization with Fenton's reagent as the redox initiator and applied to the adsorption of paraquat. The highest grafting percentage of 44.3% was obtained using the traditional kinetic method. However, a maximum grafting percentage of 65.3% was calculated using the central composite design. Experimental results based on the recipes predicted from the statistical analysis are consistent with theoretical calculations. A representative polymethacrylic acid-g-rice husk (PMAA-g-rice husk) copolymer was hydrolyzed to a salt type and applied to the adsorption of paraquat. The adsorption equilibrium data correlate more closely with the Langmuir isotherm than with the Freundlich equation. The maximum adsorption capacity of modified rice husk is 292.5 mg/g-adsorbent. This value exceeds those for Fuller's earth and activated carbon, which are the most common binding agents used for paraquat. The samples at various stages were characterized by solid-state 13 C NMR spectroscopy.

  3. Preparation of methacrylic acid-modified rice husk improved by an experimental design and application for paraquat adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Shih-Tong, E-mail: shihtong@mail.ksu.edu.tw [Department of Polymer Materials, Kun Shan University, No. 949 Da-Wan Rd., Yung-Kang City, Tainan Hsien, Taiwan (China); Chen, Lung-Chuan, E-mail: lcchen@mail.ksu.edu.tw [Department of Polymer Materials, Kun Shan University, No. 949 Da-Wan Rd., Yung-Kang City, Tainan Hsien, Taiwan (China); Lee, Cheng-Chieh, E-mail: etmediagoing@yahoo.com.tw [Department of Environmental Engineering, Kun Shan University, No. 949 Da-Wan Rd., Yung-Kang City 710, Tainan Hsien, Taiwan (China); Pan, Ting-Chung, E-mail: tcpan@mail.ksu.edutw [Department of Environmental Engineering, Kun Shan University, No. 949 Da-Wan Rd., Yung-Kang City 710, Tainan Hsien, Taiwan (China); You, Bing-Xuan, E-mail: kp2681@yahoo.com.tw [Department of Polymer Materials, Kun Shan University, No. 949 Da-Wan Rd., Yung-Kang City, Tainan Hsien, Taiwan (China); Yan, Qi-Feng, E-mail: rsrs0938@yahoo.com.tw [Department of Polymer Materials, Kun Shan University, No. 949 Da-Wan Rd., Yung-Kang City, Tainan Hsien, Taiwan (China)

    2009-11-15

    Methacrylic acid (MAA) grafted rice husk was synthesized using graft copolymerization with Fenton's reagent as the redox initiator and applied to the adsorption of paraquat. The highest grafting percentage of 44.3% was obtained using the traditional kinetic method. However, a maximum grafting percentage of 65.3% was calculated using the central composite design. Experimental results based on the recipes predicted from the statistical analysis are consistent with theoretical calculations. A representative polymethacrylic acid-g-rice husk (PMAA-g-rice husk) copolymer was hydrolyzed to a salt type and applied to the adsorption of paraquat. The adsorption equilibrium data correlate more closely with the Langmuir isotherm than with the Freundlich equation. The maximum adsorption capacity of modified rice husk is 292.5 mg/g-adsorbent. This value exceeds those for Fuller's earth and activated carbon, which are the most common binding agents used for paraquat. The samples at various stages were characterized by solid-state {sup 13}C NMR spectroscopy.

  4. Preparation of methacrylic acid-modified rice husk improved by an experimental design and application for paraquat adsorption.

    Science.gov (United States)

    Hsu, Shih-Tong; Chen, Lung-Chuan; Lee, Cheng-Chieh; Pan, Ting-Chung; You, Bing-Xuan; Yan, Qi-Feng

    2009-11-15

    Methacrylic acid (MAA) grafted rice husk was synthesized using graft copolymerization with Fenton's reagent as the redox initiator and applied to the adsorption of paraquat. The highest grafting percentage of 44.3% was obtained using the traditional kinetic method. However, a maximum grafting percentage of 65.3% was calculated using the central composite design. Experimental results based on the recipes predicted from the statistical analysis are consistent with theoretical calculations. A representative polymethacrylic acid-g-rice husk (PMAA-g-rice husk) copolymer was hydrolyzed to a salt type and applied to the adsorption of paraquat. The adsorption equilibrium data correlate more closely with the Langmuir isotherm than with the Freundlich equation. The maximum adsorption capacity of modified rice husk is 292.5mg/g-adsorbent. This value exceeds those for Fuller's earth and activated carbon, which are the most common binding agents used for paraquat. The samples at various stages were characterized by solid-state (13)C NMR spectroscopy.

  5. Metal and proton adsorption capacities of natural and cloned Sphagnum mosses.

    Science.gov (United States)

    Gonzalez, Aridane G; Pokrovsky, Oleg S; Beike, Anna K; Reski, Ralf; Di Palma, Anna; Adamo, Paola; Giordano, Simonetta; Angel Fernandez, J

    2016-01-01

    Terrestrial mosses are commonly used as bioindicators of atmospheric pollution. However, there is a lack of standardization of the biomonitoring preparation technique and the efficiency of metal adsorption by various moss species is poorly known. This is especially true for in vitro-cultivated moss clones, which are promising candidates for a standardized moss-bag technique. We studied the adsorption of copper and zinc on naturally grown Sphagnum peat moss in comparison with in vitro-cultivated Sphagnum palustre samples in order to provide their physico-chemical characterization and to test the possibility of using cloned peat mosses as bioindicators within the protocol of moss-bag technique. We demonstrate that in vitro-grown clones of S. palustre exhibit acid-base properties similar to those of naturally grown Sphagnum samples, whereas the zinc adsorption capacity of the clones is approx. twice higher than that of the samples from the field. At the same time, the field samples adsorbed 30-50% higher amount of Cu(2+) compared to that of the clones. This contrast may be related to fine differences in the bulk chemical composition, specific surface area, morphological features, type and abundance of binding sites at the cell surfaces and in the aqueous solution of natural and cloned Sphagnum. The clones exhibited much lower concentration of most metal pollutants in their tissues relative to the natural samples thus making the former better indicators of low metal loading. Overall, in vitro-produced clones of S. palustre can be considered as an adequate, environmentally benign substitution for protected natural Sphagnum sp. samples to be used in moss-bags for atmospheric monitoring. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Powdered activated carbon adsorption of two fishy odorants in water: Trans,trans-2,4-heptadienal and trans,trans-2,4-decadienal.

    Science.gov (United States)

    Li, Xin; Wang, Jun; Zhang, Xiaojian; Chen, Chao

    2015-06-01

    Powdered activated carbon (PAC) adsorption of two fishy odorants, trans,trans-2,4-heptadienal (HDE) and trans,trans-2,4-decadienal (DDE), was investigated. Both the pseudo first-order and the pseudo second-order kinetic models well described the kinetics curves, and DDE was more readily removed by PAC. In isotherm tests, both Freundlich and Modified Freundlich isotherms fitted the experimental data well. PAC exhibited a higher adsorption capacity for DDE than for HDE, which could be ascribed to the difference in their hydrophobicity. The calculated thermodynamic parameters (ΔG0, ΔH0, and ΔS0) indicated an exothermic and spontaneous adsorption process. PAC dosage, pH, and natural organic matter (NOM) presence were found to influence the adsorption process. With increasing PAC dosage, the pseudo first-order and pseudo second-order rate constants both increased. The value of pH had little influence on HDE or DDE molecules but altered the surface charge of PAC, and the maximum adsorption capacity occurred at pH9. The presence of NOM, especially the fraction with molecular weight less than 1k Dalton, hindered the adsorption. The study showed that preloaded NOM impaired the adsorption capacity of HDE or DDE more severely than simultaneously fed NOM did. Copyright © 2015. Published by Elsevier B.V.

  7. Equilibrium and kinetics study on hexavalent chromium adsorption onto diethylene triamine grafted glycidyl methacrylate based copolymers

    International Nuclear Information System (INIS)

    Maksin, Danijela D.; Nastasović, Aleksandra B.; Milutinović-Nikolić, Aleksandra D.; Suručić, Ljiljana T.; Sandić, Zvjezdana P.; Hercigonja, Radmila V.; Onjia, Antonije E.

    2012-01-01

    Highlights: ► Methacrylate based copolymers grafted with diethylene triamine as Cr(VI) sorbents. ► Chemisorption and pore diffusion are characteristics of this sorption system. ► Langmuir isotherm provided best fit and maximum adsorption capacity was 143 mg g −1 . ► Cr(VI) sorption onto amino-functionalized copolymer was endothermic and spontaneous. ► A simple, efficient and cost-effective hexavalent chromium removal method. - Abstract: Two porous and one non-porous crosslinked poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) [abbreviated PGME] were prepared by suspension copolymerization and functionalized with diethylene triamine [abbreviated PGME-deta]. Samples were characterized by elemental analysis, mercury porosimetry, scanning electron microscopy with energy-dispersive X-ray spectroscopy, and transmission electron microscopy. Kinetics of Cr(VI) sorption by PGME-deta were investigated in batch static experiments, in the temperature range 25–70 °C. Sorption was rapid, with the uptake capacity higher than 80% after 30 min. Sorption behavior and rate-controlling mechanisms were analyzed using five kinetic models (pseudo-first order, pseudo-second order, Elovich, intraparticle diffusion and Bangham model). Kinetic studies showed that Cr(VI) adsorption adhered to the pseudo-second-order model, with definite influence of pore diffusion. Equilibrium data was tested with Langmuir, Freundlich and Tempkin adsorption isotherm models. Langmuir model was the most suitable indicating homogeneous distribution of active sites on PGME-deta and monolayer sorption. The maximum adsorption capacity from the Langmuir model, Q max , at pH 1.8 and 25 °C was 143 mg g −1 for PGME2-deta (sample with the highest amino group concentration) while at 70 °C Q max reached the high value of 198 mg g −1 . Thermodynamic parameters revealed spontaneous and endothermic nature of Cr(VI) adsorption onto PGME-deta.

  8. Effects of carbon nanotubes on phosphorus adsorption behaviors on aquatic sediments.

    Science.gov (United States)

    Qian, Jin; Li, Kun; Wang, Peifang; Wang, Chao; Shen, Mengmeng; Liu, Jingjing; Tian, Xin; Lu, Bianhe

    2017-08-01

    Aquatic sediments are believed to be an important sink for carbon nanotubes (CNTs). With novel properties, CNTs can potentially disturb the fate and mobility of the co-existing contaminants in the sediments. Only toxic pollutants have been investigated previously, and to the best of our knowledge, no data has been published on how CNTs influence phosphorus (P) adsorption on aquatic sediments. In this study, multi-walled carbon nanotubes (MWCNTs) were selected as model CNTs. Experimental results indicated that compared to pseudo-first order and intraparticle diffusion models, the pseudo-second-order model is better for describing the adsorption kinetics of sediments and MWCNT-contaminated sediments. Adsorption isotherm studies suggested that the Langmuir model fits the isotherm data well. With the increase in the MWCNT-to-sediment ratio from 0.0% to 5.0%, the theoretical maximum monolayer adsorption capacity (Q max ) for P increased from 0.664 to 0.996mg/g. However, the Langmuir isotherm coefficient (K L ) significantly decreased from 4.231L/mg to 2.874L/mg, indicating the decrease in the adsorption free energy of P adsorbed on the sediments after MWCNT contamination. It was suggested that P was released more easily to the overlying water after the re-suspension of sediments. Moreover, the adsorption of sediments and sediment-MWCNT mixture was endothermic and physical in nature. Results obtained herein suggested that the change in the specific surface area and zeta potential of sediments is related to MWCNT contamination, and the large adsorption capacity of MWCNTs is probably the main factor responsible for the variation in the adsorption of P on aquatic sediments. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Copper adsorption on magnetite-loaded chitosan microspheres: A kinetic and equilibrium study

    Energy Technology Data Exchange (ETDEWEB)

    Podzus, P.E., E-mail: ppodzus@gmail.com [Grupo de Aplicaciones de Materiales Biocompatibles, Departamento de Quimica, Facultad de Ingenieria, Universidad de Buenos Aires, Paseo Colon 850, C1063ACV Buenos Aires (Argentina); Debandi, M.V. [Grupo de Aplicaciones de Materiales Biocompatibles, Departamento de Quimica, Facultad de Ingenieria, Universidad de Buenos Aires, Paseo Colon 850, C1063ACV Buenos Aires (Argentina); Daraio, M.E., E-mail: medit@fi.uba.ar [Grupo de Aplicaciones de Materiales Biocompatibles, Departamento de Quimica, Facultad de Ingenieria, Universidad de Buenos Aires, Paseo Colon 850, C1063ACV Buenos Aires (Argentina)

    2012-08-15

    A composite of Fe{sub 3}O{sub 4} nanoparticles and the biopolymer chitosan, chemically crosslinked, was prepared as microspheres and used to adsorb copper ions, which were chosen as a model of contaminant metal in water. The adsorption of copper on the magnetic microspheres was studied in a batch process, with different aqueous solutions of Cu (II) at concentrations ranging from 40 to 1100 ppm. Kinetic and equilibrium aspects of the adsorption process were studied. The time-dependent Cu (II) adsorption data were well described by a pseudo-second-order kinetic model. It was found that the equilibrium data follow the Langmuir isotherm, with a maximum adsorption capacity of around 500 mg Cu/g chitosan. The used microspheres were removed and after desorption the material was able to be reused as an adsorbent. The prepared microspheres proved efficient in the removal of copper ions through an adsorption process whose kinetic and equilibrium characteristics were analyzed.

  10. Copper adsorption on magnetite-loaded chitosan microspheres: A kinetic and equilibrium study

    International Nuclear Information System (INIS)

    Podzus, P.E.; Debandi, M.V.; Daraio, M.E.

    2012-01-01

    A composite of Fe 3 O 4 nanoparticles and the biopolymer chitosan, chemically crosslinked, was prepared as microspheres and used to adsorb copper ions, which were chosen as a model of contaminant metal in water. The adsorption of copper on the magnetic microspheres was studied in a batch process, with different aqueous solutions of Cu (II) at concentrations ranging from 40 to 1100 ppm. Kinetic and equilibrium aspects of the adsorption process were studied. The time-dependent Cu (II) adsorption data were well described by a pseudo-second-order kinetic model. It was found that the equilibrium data follow the Langmuir isotherm, with a maximum adsorption capacity of around 500 mg Cu/g chitosan. The used microspheres were removed and after desorption the material was able to be reused as an adsorbent. The prepared microspheres proved efficient in the removal of copper ions through an adsorption process whose kinetic and equilibrium characteristics were analyzed.

  11. FY-2016 Methyl Iodide Higher NOx Adsorption Test Report

    Energy Technology Data Exchange (ETDEWEB)

    Soelberg, Nicholas Ray [Idaho National Lab. (INL), Idaho Falls, ID (United States); Watson, Tony Leroy [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    Deep-bed methyl iodide adsorption testing has continued in Fiscal Year 2016 under the Department of Energy (DOE) Fuel Cycle Technology (FCT) Program Offgas Sigma Team to further research and advance the technical maturity of solid sorbents for capturing iodine-129 in off-gas streams during used nuclear fuel reprocessing. Adsorption testing with higher levels of NO (approximately 3,300 ppm) and NO2 (up to about 10,000 ppm) indicate that high efficiency iodine capture by silver aerogel remains possible. Maximum iodine decontamination factors (DFs, or the ratio of iodine flowrate in the sorbent bed inlet gas compared to the iodine flowrate in the outlet gas) exceeded 3,000 until bed breakthrough rapidly decreased the DF levels to as low as about 2, when the adsorption capability was near depletion. After breakthrough, nearly all of the uncaptured iodine that remains in the bed outlet gas stream is no longer in the form of the original methyl iodide. The methyl iodide molecules are cleaved in the sorbent bed, even after iodine adsorption is no longer efficient, so that uncaptured iodine is in the form of iodine species soluble in caustic scrubber solutions, and detected and reported here as diatomic I2. The mass transfer zone depths were estimated at 8 inches, somewhat deeper than the 2-5 inch range estimated for both silver aerogels and silver zeolites in prior deep-bed tests, which had lower NOx levels. The maximum iodine adsorption capacity and silver utilization for these higher NOx tests, at about 5-15% of the original sorbent mass, and about 12-35% of the total silver, respectively, were lower than for trends from prior silver aerogel and silver zeolite tests with lower NOx levels. Additional deep-bed testing and analyses are recommended to expand the database for organic iodide adsorption and increase the technical maturity if iodine adsorption processes.

  12. Comparison of 4-chloro-2-nitrophenol adsorption on single-walled and multi-walled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Mehrizad Ali

    2012-09-01

    Full Text Available Abstract The adsorption characteristics of 4-chloro-2-nitrophenol (4C2NP onto single-walled and multi-walled carbon nanotubes (SWCNTs and MWCNTs from aqueous solution were investigated with respect to the changes in the contact time, pH of solution, carbon nanotubes dosage and initial 4C2NP concentration. Experimental results showed that the adsorption efficiency of 4C2NP by carbon nanotubes (both of SWCNTs and MWCNTs increased with increasing the initial 4C2NP concentration. The maximum adsorption took place in the pH range of 2–6. The linear correlation coefficients of different isotherm models were obtained. Results revealed that the Langmuir isotherm fitted the experimental data better than the others and based on the Langmuir model equation, maximum adsorption capacity of 4C2NP onto SWCNTs and MWCNTs were 1.44 and 4.42 mg/g, respectively. The observed changes in the standard Gibbs free energy, standard enthalpy and standard entropy showed that the adsorption of 4C2NP onto SWCNTs and MWCNTs is spontaneous and exothermic in the temperature range of 298–328 K.

  13. Microwave synthesis and adsorption performance of a novel crosslinked starch microsphere

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Qintie, E-mail: qintlin@163.com [School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006 (China); National Engineering Laboratory for Rice and By-Product Deep Processing, Center South University of Forestry and Technology, Changsha 41004 (China); Pan, Jianxin [School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006 (China); Lin, Qinlu [National Engineering Laboratory for Rice and By-Product Deep Processing, Center South University of Forestry and Technology, Changsha 41004 (China); Liu, Qianjun [School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006 (China)

    2013-12-15

    Highlights: • CSM was synthesized in a microwave-assisted inversed emulsion system. • The adsorption of methyl violet on CSM was exothermic and spontaneous. • The adsorption process followed the pseudo-second-order kinetics. • The isothermal data obeyed the Langmuir model. • pH variations did not significantly affect the adsorption of methyl violet onto CSM. -- Abstract: A new crosslinked starch microsphere (CSM) was synthesized in a microwave-assisted inversed emulsion system with soluble starch (ST) as a raw material, MBAA as a crosslinker, and K{sub 2}S{sub 2}O{sub 8}–NaHSO{sub 3} as an initiator. The synthesized starch microsphere was characterized and examined by scanning electron microscope (SEM), FTIR spectroscopy and adsorption isotherms of N{sub 2} at 77 K. Adsorption performance was investigated in methyl violet solution. The results showed that the maximum adsorption capacity for MV was 99.3 mg/g at 298 K, and the adsorption fitted pseudo-second-order kinetic model well with correlation coefficients greater than 0.99. The isothermal data obeyed the Langmuir model better compared to Freundlich model and Tempkin model, and the adsorption was exothermic and spontaneous. pH variations (2.0–10.0) did not significantly affect the adsorption of MV onto CSM.

  14. FY-2015 Methyl Iodide Deep-Bed Adsorption Test Report

    International Nuclear Information System (INIS)

    Soelberg, Nicholas Ray; Watson, Tony Leroy

    2015-01-01

    Nuclear fission produces fission and activation products, including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Deep-bed methyl iodide adsorption testing has continued in Fiscal Year 2015 according to a multi-laboratory methyl iodide adsorption test plan. Updates to the deep-bed test system have also been performed to enable the inclusion of evaporated HNO 3 and increased NO 2 concentrations in future tests. This report summarizes the result of those activities. Test results showed that iodine adsorption from gaseous methyl iodide using reduced silver zeolite (AgZ) resulted in initial iodine decontamination factors (DFs, ratios of uncontrolled and controlled total iodine levels) under 1,000 for the conditions of the long-duration test performed this year (45 ppm CH3I, 1,000 ppm each NO and NO 2 , very low H 2 O levels [3 ppm] in balance air). The mass transfer zone depth exceeded the cumulative 5-inch depth of 4 bed segments, which is deeper than the 2-4 inch depth estimated for the mass transfer zone for adsorbing I 2 using AgZ in prior deep-bed tests. The maximum iodine adsorption capacity for the AgZ under the conditions of this test was 6.2% (6.2 g adsorbed I per 100 g sorbent). The maximum Ag utilization was 51%. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.

  15. [Heavy metals contents and Hg adsorption characteristics of mosses in virgin forest of Gongga Mountain].

    Science.gov (United States)

    Liang, Peng; Yang, Yong-Kui; He, Lei; Wang, Ding-Yong

    2008-06-01

    Seven main moss species in the Hailuogou virgin forest of Gongga Mountain were sampled to determine their heavy metals (Hg, Cr, Cd, Ni, Pb, Cu, Mn, Zn and Fe) content, and two widely distributed species, Pleurozium schreberi (Brid.) Mitt. and Racomitrium laetum Besch., were selected to study their Hg adsorption characteristics. The results showed that the heavy metals contents in the mosses were lower than the background values in Europe and America, except that the Cd had a comparable value, which indicated that the atmosphere in study area was not polluted by heavy metals and good in quality. The Hg adsorption by P. schreberi and R. laetum was an initiative and rapid process, with the equilibrium reached in about two hours, and could be well fitted by Freundlich and Langmuir equations. Based on Langmuir equation, the maximum Hg adsorption capacities of P. schreberi and R. laetum were 15.24 and 8.19 mg x g(-1), respectively, suggesting that the two mosses had a good capacity of Hg adsorption, and could be used as the bio-monitors of atmospheric Hg pollution.

  16. Metronidazole removal in powder-activated carbon and concrete-containing graphene adsorption systems: Estimation of kinetic, equilibrium and thermodynamic parameters and optimization of adsorption by a central composite design.

    Science.gov (United States)

    Manjunath, S V; Kumar, S Mathava; Ngo, Huu Hao; Guo, Wenshan

    2017-12-06

    Metronidazole (MNZ) removal by two adsorbents, i.e., concrete-containing graphene (CG) and powder-activated carbon (PAC), was investigated via batch-mode experiments and the outcomes were used to analyze the kinetics, equilibrium and thermodynamics of MNZ adsorption. MNZ sorption on CG and PAC has followed the pseudo-second-order kinetic model, and the thermodynamic parameters revealed that MNZ adsorption was spontaneous on PAC and non-spontaneous on CG. Subsequently, two-parameter isotherm models, i.e., Langmuir, Freundlich, Temkin, Dubinin-Radushkevich and Elovich models, were applied to evaluate the MNZ adsorption capacity. The maximum MNZ adsorption capacities ([Formula: see text]) of PAC and CG were found to be between 25.5-32.8 mg/g and 0.41-0.002 mg/g, respectively. Subsequently, the effects of pH, temperature and adsorbent dosage on MNZ adsorption were evaluated by a central composite design (CCD) approach. The CCD experiments have pointed out the complete removal of MNZ at a much lower PAC dosage by increasing the system temperature (i.e., from 20°C to 40°C). On the other hand, a desorption experiment has shown 3.5% and 1.7% MNZ removal from the surface of PAC and CG, respectively, which was insignificant compared to the sorbed MNZ on the surface by adsorption. The overall findings indicate that PAC and CG with higher graphene content could be useful in MNZ removal from aqueous systems.

  17. Maximum Throughput in a C-RAN Cluster with Limited Fronthaul Capacity

    OpenAIRE

    Duan , Jialong; Lagrange , Xavier; Guilloud , Frédéric

    2016-01-01

    International audience; Centralized/Cloud Radio Access Network (C-RAN) is a promising future mobile network architecture which can ease the cooperation between different cells to manage interference. However, the feasibility of C-RAN is limited by the large bit rate requirement in the fronthaul. This paper study the maximum throughput of different transmission strategies in a C-RAN cluster with transmission power constraints and fronthaul capacity constraints. Both transmission strategies wit...

  18. Resorcinol adsorption from aqueous solution on activated carbon: Relation adsorption isotherm and immersion enthalpy

    International Nuclear Information System (INIS)

    Blanco, Diago A; Giraldo, Liliana; Moreno, Juan C.

    2008-01-01

    The resorcinol adsorption on a modified activated carbon, obtained from an activated commercial carbon Carbochem T M - PS30, CAG, modified by means of chemical treatment with HNO 3 7M oxidized activated carbon (CAO) and heat treatment under H 2 flow, reduced activated carbon (CAR) are studied. The influence of solution pH, the reduction and oxidation of the activated surface carbons in resorcinol aqueous solutions is determined. The interaction solid solution is characterized by adsorption isotherms analysis at 298 K and at pHs of 7.9 and 11 in order to evaluate the system on and below the value of resorcinol pKa. The adsorption capacity of carbons increases with diminishing solution pH. The amount retained increases in the reduced carbon at maximum adsorption pH and diminishes in the oxidized carbon. the experimental results of the adsorption isotherms are adjusted to the Freundlich and Langmuir models, obtaining values for the Q m ax parameter Langmuir model in the CAG of 179, 156 and 44 mgg - 1 For pH values of 7,9 and 11 respectively. In this case of modified carbons values of 233, 179 and 164 mgg - 1 Are obtained for CAR, CAG and CAO to pH 7 respectively, as general tendency the resorcinol adsorption increases in the following order CAR > CAG > CAO. Similar conclusions from immersion enthalpies are obtained, their values increase with the amount of solute retained. In the case of the CAG, immersion enthalpies between 25.8 to 40.9 Jg - 1, are obtained for resorcinol aqueous solutions in a range from 20 to 1500 mgL - 1

  19. Enhanced defluoridation capacity from aqueous media via hydroxyapatite decorated with carbon nanotube

    Science.gov (United States)

    Tang, Qingzi; Duan, Tongdan; Li, Peng; Zhang, Ping; Wu, Daishe

    2018-04-01

    In this work, the potential of a novel carbon nanotube-doped hydroxyapatite composite (CNT-HAP) for fluoride removal was investigated. The synthesized CNT-HAP composite was systematically characterized by X-ray diffraction(XRD), Fourier Transform infrared spectroscopy(FTIR), scanning electron microscope (SEM) and Brunauer–Emmett–Teller(BET). Batch adsorption experiments were conducted to investigate the defluorination capacity of CNT-HAP. The CNT-HAP composite has a maximum adsorption capacity of 11.05 mg·g-1 for fluoride, and the isothermal adsorption data were fitted by the Freundlich model to calculate the thermodynamic parameters. Thermodynamic analysis implies that the adsorption of fluoride on CNT-HAP is a spontaneous process. Furthermore, the adsorption of fluoride follows pseudo-second-order model. The effects of solution pH, co-existing anions and reaction temperature on defluorination efficiency were examined to optimize the operation conditions for fluoride adsorption. It is found that the optimized pH value for fluoride removal by CNT-HAP composite is 6. In addition, among five common anions studied in this work, the presence of HCO3- and PO43- could considerably affect the fluoride removal by CNT-HPA in aqueous media. Finally, the underlying mechanism for the fluoride removal by CNT-HAP is analysed, and an anion exchange process is proposed.

  20. Synthesis and Adsorption Study of BSA Surface Imprinted Polymer on CdS Quantum Dots

    Science.gov (United States)

    Tang, Ping-ping; Cai, Ji-bao; Su, Qing-de

    2010-04-01

    A new bovine serum albumin (BSA) surface imprinting method was developed by the incorporation of quantum dots (QDs) into molecularly imprinted polymers (MIP), which can offer shape selectivity. Preparation and adsorption conditions were optimized. Physical appearance of the QDs and QDs-MIP particles was illustrated by scanning electron microscope images. Photoluminescence emission of CdS was quenched when rebinding of the template. The quenching of photoluminescence emissions is presumably due to the fluorescence resonance energy transfer between quantum dots and BSA template molecules. The adsorption is compiled with Langmuir isotherm, and chemical adsorption is the rate-controlling step. The maximum adsorption capacity could reach 226.0 mg/g, which is 142.4 mg/g larger than that of undoped BSA MIP. This study demonstrates the validity of QDs coupled with MIP technology for analyzing BSA.

  1. Removal of methylene blue from aqueous solution by adsorption onto pineapple leaf powder

    International Nuclear Information System (INIS)

    Weng, Chih-Huang; Lin, Yao-Tung; Tzeng, Tai-Wei

    2009-01-01

    The ability of an unconventional bio-adsorbent, pineapple leaf powder (PLP) for the adsorption of methylene blue (MB) from aqueous solution was studied. It was observed that intra-particle diffusion was involved in the adsorption process and that the kinetic data fitted well with a pseudo-second-order equation. Fitting parameters revealed that the rate of adsorption increased with decrease in dye concentration and decrease in ionic strength while the mixing speed did not have a significant effect on adsorption. The adsorption was favorable at higher pH and lower temperature, and the equilibrium data were well fitted by the Langmuir isotherm. The maximum adsorption capacity varied from 4.68 x 10 -4 to 9.28 x 10 -4 mol/g when pH increases from 3.5 to 9.5. Thermodynamic parameters suggest that the adsorption is a typical physical process, spontaneous, and exothermic in nature. The results revealed that this agricultural waste has potential to be used as an economical adsorbent for the removal of methylene blue from aqueous solution.

  2. Removal of methylene blue from aqueous solution by adsorption onto pineapple leaf powder

    Energy Technology Data Exchange (ETDEWEB)

    Weng, Chih-Huang, E-mail: chweng@isu.edu.tw [Department of Civil and Ecological Engineering, I-Shou University, Da-Hsu Township, Kaohsiung 84008, Taiwan (China); Lin, Yao-Tung; Tzeng, Tai-Wei [Department of Soil and Environmental Sciences, National Chung Hsing University, TaiChung 40227, Taiwan (China)

    2009-10-15

    The ability of an unconventional bio-adsorbent, pineapple leaf powder (PLP) for the adsorption of methylene blue (MB) from aqueous solution was studied. It was observed that intra-particle diffusion was involved in the adsorption process and that the kinetic data fitted well with a pseudo-second-order equation. Fitting parameters revealed that the rate of adsorption increased with decrease in dye concentration and decrease in ionic strength while the mixing speed did not have a significant effect on adsorption. The adsorption was favorable at higher pH and lower temperature, and the equilibrium data were well fitted by the Langmuir isotherm. The maximum adsorption capacity varied from 4.68 x 10{sup -4} to 9.28 x 10{sup -4} mol/g when pH increases from 3.5 to 9.5. Thermodynamic parameters suggest that the adsorption is a typical physical process, spontaneous, and exothermic in nature. The results revealed that this agricultural waste has potential to be used as an economical adsorbent for the removal of methylene blue from aqueous solution.

  3. Highly efficient fluoride adsorption from aqueous solution by nepheline prepared from kaolinite through alkali-hydrothermal process.

    Science.gov (United States)

    Wang, Hao; Feng, Qiming; Liu, Kun; Li, Zishun; Tang, Xuekun; Li, Guangze

    2017-07-01

    A direct alkali-hydrothermal induced transformation process was adopted to prepare nepheline from raw kaolinite (shortened form RK in this paper) and NaOH solution in this paper. Structure and morphology characterizations of the synthetic product showed that the nepheline possessed high degree of crystallinity and uniform surface morphology. Specific surface area of nepheline is 18 m 2 /g, with a point of zero charge at around pH 5.0-5.5. The fluoride (F - ions) adsorption by the synthetic nepheline (shortened form SN in this paper) from aqueous solution was also investigated under different experimental conditions. The adsorption process well matched the Langmuir isotherm model with an amazing maximum adsorption capacity of 183 mg/g at 323 K. The thermodynamic parameters (ΔG 0 , ΔH 0 , and ΔS 0 ) for adsorption on SN were also determined from the temperature dependence. The adsorption capacities of fluoride on SN increased with increasing of temperature and initial concentration. Initial pH value also had influence on adsorption process. Adsorption of fluoride was rapidly increased in 5-60 min and thereafter increased slowly to reach the equilibrium in about 90-180 min under all conditions. The adsorption followed a pseudo-second order rate law. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Enhanced adsorption of methylene blue by citric acid modification of biochar derived from water hyacinth (Eichornia crassipes).

    Science.gov (United States)

    Xu, Yan; Liu, Yunguo; Liu, Shaobo; Tan, Xiaofei; Zeng, Guangming; Zeng, Wei; Ding, Yang; Cao, Weicheng; Zheng, Bohong

    2016-12-01

    In this work, a novel potential adsorbent, citric acid (CA)-modified biochar, named as CAWB, was obtained from water hyacinth biomass by slow pyrolysis in a N 2 environment at 300 °C. The CA modification focused on enhancing the contaminants adsorption capacity of biochar pyrolyzed at relatively low temperature. Over 90 % of the total methylene blue (MB) could be removed at the first 60 min by CAWB, and the maximum MB adsorption capacity could reach to 395 mg g -1 . The physicochemical properties of CAWB was examined by FTIR, XPS, SEM, and BET analysis. The results indicated that the additional carboxyl groups were introduced to the surface of CAWB via the esterification reaction with CA, which played a significant role in the adsorption of MB. Batch adsorption studies showed that the initial MB concentration, solution pH, background ionic strength, and temperature could affect the removal efficiency obviously. The adsorption process could be well described by the pseudo-second-order kinetic model and Langmuir isotherm. Thermodynamic analysis revealed that the MB adsorption onto CAWB was an endothermic and spontaneous process. The regeneration study revealed that CAWB still exhibited an excellent regeneration and adsorption performance after multiple cycle adsorptions. The adsorption experiments of actual dye wastewater by CAWB suggested that it had a great potential in environmental application.

  5. Separation of toxic rhodamine B from aqueous solution using an efficient low-cost material, Azolla pinnata, by adsorption method.

    Science.gov (United States)

    Kooh, Muhammad Raziq Rahimi; Lim, Linda B L; Lim, Lee Hoon; Dahri, Muhammad Khairud

    2016-02-01

    This study investigated the potential of untreated Azolla pinnata (AP) to remove toxic rhodamine B (RB) dye. The effects of adsorbent dosage, pH, ionic strength, contact time, and concentration were studied. Experiments involving the effects of pH and ionic strength indicated that hydrophobic-hydrophobic interactions might be the dominant force of attraction for the RB-AP adsorption system. The kinetics modelling of the kinetics experiment showed that pseudo-second-order best represented the adsorption process. The Weber-Morris intraparticle diffusion model showed that intraparticle diffusion is not the rate-limiting step, while the Boyd model suggested that film diffusion might be rate-limiting. The adsorption isotherm model, Langmuir, best represented the adsorption process, and the maximum adsorption capacity was predicted to be 72.2 and 199.7 mg g(-1) at 25 and 65 °C, respectively. Thermodynamics study indicates spontaneity, endothermic and physisorption-dominant adsorption process. The adsorbents were regenerated to satisfactory level with distilled water, HNO3 and NaOH. Pre-treatment of adsorbent with oxalic acid, citric acid, NaOH, HCl and phosphoric acid was investigated but the adsorption capacity was less than the untreated AP.

  6. Preparation of chitosan/amine modified diatomite composites and adsorption properties of Hg(II) ions.

    Science.gov (United States)

    Fu, Yong; Huang, Yue; Hu, Jianshe; Zhang, Zhengjie

    2018-03-01

    A green functional adsorbent (CAD) was prepared by Schiff base reaction of chitosan and amino-modified diatomite. The morphology, structure and adsorption properties of the CAD were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy and Brunauer Emmett Teller measurements. The effect of pH value, contact time and temperature on the adsorption of Hg(II) ions for the CAD is discussed in detail. The experimental results showed that the CAD had a large specific surface area and multifunctional groups such as amino, hydroxyl and Schiff base. The optimum adsorption effect was obtained when the pH value, temperature and contact time were 4, 25 °C and 120 min, respectively, and the corresponding maximum adsorption capacity of Hg(II) ions reached 102 mg/g. Moreover, the adsorption behavior of Hg(II) ions for the CAD followed the pseudo-second-order kinetic model and Langmuir model. The negative ΔG 0 and ΔH 0 suggested that the adsorption was a spontaneous exothermic process.

  7. Strong adsorption of chlorotetracycline on magnetite nanoparticles

    International Nuclear Information System (INIS)

    Zhang, Di; Niu, Hongyun; Zhang, Xiaole; Meng, Zhaofu; Cai, Yaqi

    2011-01-01

    Highlights: → Fe 3 O 4 MNPs selectively adsorb CTC through chelation between CTC and Fe atoms. → Fe 3 O 4 MNPs remain high adsorption ability to CTC in environmental water samples. → Fe 3 O 4 MNPs sorbed with CTC are easily collected from water under a magnetic field. → The collected Fe 3 O 4 MNPs are regenerated by treatment with H 2 O 2 or calcination. - Abstract: In this work, environmentally friendly magnetite nanoparticles (Fe 3 O 4 MNPs) were used to adsorb chlorotetracycline (CTC) from aqueous media. Fe 3 O 4 MNPs exhibit ultrahigh adsorption ability to this widely used antibiotic. The adsorption behavior of CTC on Fe 3 O 4 MNPs fitted the pseudo-second-order kinetics model, and the adsorption equilibrium was achieved within 10 h. The maximum Langmuir adsorption capacity of CTC on Fe 3 O 4 (476 mg g -1 ) was obtained at pH 6.5. Thermodynamic parameters calculated from the adsorption data at different temperature showed that the adsorption reaction was endothermic and spontaneous. Low concentration of NaCl and foreign divalent cations hardly affected the adsorption. Negative effect of coexisting humic acid (HA) on CTC adsorption was also observed when the concentration of HA was lower than 20 mg L -1 . But high concentration of HA (>20 mg L -1 ) increased the CTC adsorption on Fe 3 O 4 MNPs. The matrix effect of several environmental water samples on CTC adsorption was not evident. Fe 3 O 4 MNPs were regenerated by treatment with H 2 O 2 or calcination at 400 o C in N 2 atmosphere after separation from water solution by an external magnet. This research provided a high efficient and reusable adsorbent to remove CTC selectively from aqueous media.

  8. One-Step Preparation of Graphene Oxide/Cellulose Nanofibril Hybrid Aerogel for Adsorptive Removal of Four Kinds of Antibiotics

    Directory of Open Access Journals (Sweden)

    Jin Wang

    2017-01-01

    Full Text Available Via a one-step ultrasonication method, cellulose nanofibril/graphene oxide hybrid (GO-CNF aerogel was successfully prepared. The as-prepared GO-CNF possessed interconnected 3D network microstructure based on GO nanosheets grown along CNF through hydrogen bonds. The aerogel exhibited superior adsorption capacity toward four kinds of antibiotics. The removal percentages (R% of these antibiotics were 81.5%, 79.5%, 79.1%, and 73.9% for Doxycycline (DXC, Chlortetracycline (CTC, Oxytetracycline (OTC, and tetracycline (TC, respectively. Simultaneously, the adsorption isotherms were well fitted to Langmuir model and kinetics study implied that the adsorption process was attributed to pseudo-second-order model. The maximum theoretical adsorption capacities of GO-CNF were 469.7, 396.5, 386.5, and 343.8 mg·g−1 for DXC, CTC, OTC, and TC, respectively, calculated by the Langmuir isotherm models. After five cycles, importantly, the regenerated aerogels still could be used with little degradation of adsorption property. Consequently, the as-synthesized GO-CNF was a successful application of effective removal of antibiotics.

  9. Fabrication of the tea saponin functionalized reduced graphene oxide for fast adsorptive removal of Cd(II) from water

    Science.gov (United States)

    Li, Zhigang; Liu, Zhifeng; Wu, Zhibin; Zeng, Guangming; Shao, Binbin; Liu, Yujie; Jiang, Yilin; Zhong, Hua; Liu, Yang

    2018-05-01

    A novel graphene-based material of tea saponin functionalized reduced graphene oxide (TS-RGO) was synthesized via a facil thermal method, and it was characterized as the absorbent for Cd(II) removal from aqueous solutions. The factors on adsorption process including solution pH, contact time, initial concentration of Cd(II) and background electrolyte cations were studied to optimize the conditions for maximum adsorption at room temperature. The results indicated that Cd(II) adsorption was strongly dependent on pH and could be strongly affected by background electrolytes and ionic strength. The optimal pH and required equilibrium time was 6.0 and 10 min, respectively. The Cd(II) removal decreased with the presence of background electrolyte cations (Na+ < Ca2+ < Al3+). The adsorption kinetics of Cd(II) followed well with the pseudo-second-order model. The adsorption isotherm fitted well to the Langmuir model, indicating that the adsorption was a monolayer adsorption process occurred on the homogeneous surfaces of TS-RGO. The maximum monolayer adsorption capacity was 127 mg/g at 313 K and pH 6.0. Therefore, the TS-RGO was considered to be a cost-effective and promising material for the removal of Cd(II) from wastewater.

  10. Hydrothermal synthesis of silico-manganese nanohybrid for Cu(II) adsorption from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Qiufeng, E-mail: zhuqiufeng@th.btbu.edu.cn; Wang, Liting; An, Zehuan; Ye, Hong; Feng, Xudong

    2016-05-15

    Highlights: • A novel silico-manganese nanohybrid adsorbent (SMNA) was synthesized by a hydrothermal method. • The adsorption capacities of the SMNA for Cu(II) are lower pH dependency. • As-adsorbents are very efficient at low metal concentration and substantial amounts of Cu(II) can be removed from aqueous solution. - Abstract: A novel silico-manganese nanohybrid adsorbent (SMNA) was synthesized by a facile hydrothermal method, and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), nitrogen adsorption-desorption, Fourier transform infrared spectroscopy (FT-IR) and zeta potential measurement. The adsorption of Cu(II) ions from aqueous solution on the SMNA was investigated with variations in contact time, pH and initial Cu(II) concentration. The results showed that hydrothermal method would generate nanowire/nanorod incomplete crystallite (δ-MnO{sub 2}) adsorbent. The adsorption of Cu(II) onto SMNA increased sharply within 25 min and reached equilibrium gradually. The maximum adsorption capacities of SMNA for Cu(II) were ∼40–88 mg g{sup −1}, which was lower than δ-MnO{sub 2} (92.42 mg g{sup −1}) but had a lower pH dependency. As compared with δ-MnO{sub 2}, higher adsorption capacities of SMNA (7.5–15 wt% of silica doping amount) for Cu(II) could be observed when pH of the aqueous solution was low (<4). The pseudo-second-order model was the best choice to describe the adsorption behavior of Cu(II) onto SMNA, suggesting that the removal of Cu(II) by the as-prepared adsorbents was dominated by migration of Cu(II). The possibility of Cu(II) recovery was also investigated and it revealed that SMNA was a promising recyclable adsorbent for removal of heavy metal ions in water and wastewater treatment.

  11. Efficient adsorption and antibacterial properties of electrospun CuO-ZnO composite nanofibers for water remediation

    Energy Technology Data Exchange (ETDEWEB)

    Malwal, Deepika [Nanobiotechnology Laboratory, Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 (India); Gopinath, P., E-mail: pgopifnt@iitr.ernet.in [Nanobiotechnology Laboratory, Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 (India); Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 (India)

    2017-01-05

    Highlights: • Synthesis of CuO-ZnO composite nanofibers using simple electrospinning technique. • Characterization data confirmed the proper structure. • Exploited as effective adsorbent for congo red dye. • Several adsorption kinetic and isotherm models were discussed. • Evaluation of antibacterial activity against GFP-E.coli and S. aureus. - Abstract: On the face of impending global water resources, developing low-cost and efficient water treatment technologies and materials thereof is highly important. Herein, we explore the adsorption capacity and antibacterial properties of CuO-ZnO (CZ) composite nanofibers. The ultrafine nanofibers were fabricated using simple and inexpensive electrospinning technique and were further characterized using Field Emission-Scanning Electron Microscope (FE-SEM), Transmission electron microscope (TEM) and X-Ray Diffraction (XRD), Thermogravimetric analysis (TGA), Fourier transform Infrared Spectroscopy (FTIR). When employed as nanoadsorbents, CZ nanofibers exhibited excellent adsorption capacity for congo red dye. Adsorption Isotherms and kinetics were performed to determine the maximum adsorption capacity and the rate of adsorption, respectively, depicting the better efficiency of composite nanofibers as compared to their single counterparts. The mechanism of adsorption is also proposed with the evaluation of diffusion studies. The second part of this study deals with the examination of antibacterial activity of CZ composite nanofibers against antibiotic resistant GFP-E.coli and S. aureus. The antibacterial efficacy was monitored by visual turbidity assay, SEM analysis and reactive oxygen species (ROS) determination. Hence, such nanofibers have been explored as a single platform for the removal of biological as well organic contaminants so as to make them potential in the field of water remediation.

  12. Efficient adsorption and antibacterial properties of electrospun CuO-ZnO composite nanofibers for water remediation

    International Nuclear Information System (INIS)

    Malwal, Deepika; Gopinath, P.

    2017-01-01

    Highlights: • Synthesis of CuO-ZnO composite nanofibers using simple electrospinning technique. • Characterization data confirmed the proper structure. • Exploited as effective adsorbent for congo red dye. • Several adsorption kinetic and isotherm models were discussed. • Evaluation of antibacterial activity against GFP-E.coli and S. aureus. - Abstract: On the face of impending global water resources, developing low-cost and efficient water treatment technologies and materials thereof is highly important. Herein, we explore the adsorption capacity and antibacterial properties of CuO-ZnO (CZ) composite nanofibers. The ultrafine nanofibers were fabricated using simple and inexpensive electrospinning technique and were further characterized using Field Emission-Scanning Electron Microscope (FE-SEM), Transmission electron microscope (TEM) and X-Ray Diffraction (XRD), Thermogravimetric analysis (TGA), Fourier transform Infrared Spectroscopy (FTIR). When employed as nanoadsorbents, CZ nanofibers exhibited excellent adsorption capacity for congo red dye. Adsorption Isotherms and kinetics were performed to determine the maximum adsorption capacity and the rate of adsorption, respectively, depicting the better efficiency of composite nanofibers as compared to their single counterparts. The mechanism of adsorption is also proposed with the evaluation of diffusion studies. The second part of this study deals with the examination of antibacterial activity of CZ composite nanofibers against antibiotic resistant GFP-E.coli and S. aureus. The antibacterial efficacy was monitored by visual turbidity assay, SEM analysis and reactive oxygen species (ROS) determination. Hence, such nanofibers have been explored as a single platform for the removal of biological as well organic contaminants so as to make them potential in the field of water remediation.

  13. Effect of ethanol and pH on the adsorption of acetaminophen (paracetamol) to high surface activated charcoal, in vitro studies

    DEFF Research Database (Denmark)

    Høgberg, Lotte Christine Groth; Angelo, Helle R; Christophersen, A Bolette

    2002-01-01

    BACKGROUND: Paracetamol (acetaminophen) intoxication often in combination with ethanol, is seen commonly in overdose cases. Doses of several grams might be close to the maximum adsorption capacity of the standard treatment dose (50g) of activated charcoal. The aim of this study was to determine...... the maximum adsorption capacity for paracetamol for two types of high surface-activated charcoal [Carbomix and Norit Ready-To-Use (not yet registered trademark in Denmark) both from Norit Cosmara, Amersfoort, The Netherlands] in simulated in vivo environments: At pH 1.2 (gastric environment), at pH 7.......2 (intestinal environment), and with and without 10% ethanol. METHODS: Activated charcoal, at both gastric or intestinal pHs, and paracetamol were mixed, resulting in activated charcoal-paracetamol ratios from 10:] to 1:1. In trials with ethanol, some of the gastric or intestinal fluid was replaced...

  14. Topotactic growth, selective adsorption, and adsorption-driven photocatalysis of protonated layered titanate nanosheets.

    Science.gov (United States)

    Wu, Qili; Yang, Xianfeng; Liu, Jia; Nie, Xin; Huang, Yongliang; Wen, Yuping; Khan, Javid; Khan, Wasim U; Wu, Mingmei; An, Taicheng

    2014-10-22

    Layered titanates with selective adsorption ability and adsorption-driven photocatalytic property can be quite attractive due to their potential applications in water purification. In this work, lepidocrocite-like layered protonated titanate (H2Ti2O5·H2O, denoted as HTO) nanosheets were successfully synthesized by an ion-exchange process. It turns out that this layered structure displays an abundant and selective adsorption toward the fluoroquinolone pharmaceutical compared with some large dye molecules due to a size selectivity of the interlayer spacing of HTO and the molecular horizontal size, as well as their electrostatic interaction. The uptake ability of HTO could be readily controlled through adjusting the pH values of adsorbate solution, and the maximum uptake capacity was achieved at the pH value of about 5.5 for ciprofloxacin (CIP) and 6.5 for moxifloxacin (MOX). The adsorption amount of smaller nalidixic acid (NAL) showed an increasing tendency as the pH value decreased. Moreover, the two-dimensional layered crystal structure also permits such HTO nanosheets to have a large percentage of (010) faces exposed, which is considerably provided by the interlayer surfaces of these nanosheets. The (010) surface has a similar Ti and O atomic arrangement as to the highly reactive anatase TiO2(001) one. Due to these specific characteristics, these HTO nanosheets show excellent photocatalytic activity in degrading CIP under UV light irradiation as well as possess a superior adsorption ability to remove CIP from aqueous solution selectively and efficiently. The photocatalytic reaction is believed to be mainly conducted on the active anatase (001)-like interlayer (010) surfaces of the layered structures since the as-prepared HTO performs an adsorption-driven molecular recognitive photocatalytic reaction.

  15. Uranium removal by chitosan impregnated with magnetite nanoparticles: adsorption and desorption

    International Nuclear Information System (INIS)

    Stopa, Luiz Claudio Barbosa; Yamaura, Mitiko

    2009-01-01

    A magnetic biosorbent composed of nanoparticles of magnetite covered with chitosan, denominated magnetic chitosan, was prepared. The magnetic chitosan has showed a magnetic response of intense attraction in the presence of a magnetic field without however to become magnetic, a typical behavior of superparamagnetic material. Its adsorption performance was evaluated by the adsorption isotherm models of Langmuir and Freundlich for uranium ions and the desorption behavior using carbonate and oxalate ions was investigated. The adsorption equilibrium data fitted well to the Langmuir model, being the maximum adsorption capacity equal 42 mg g -1 . In the desorption studies, 94% of recovered UO 2 2+ with carbonate ion were verified under the conditions studied. The chitosan, available as a byproduct of marine food processing, is environmentally safe and can be a low cost adsorbent for U removal from waterwaste. The magnetic chitosan as adsorbent of U to treat radioactive waterwaste is a sustainable technology. (author)

  16. Transient Convection, Diffusion, and Adsorption in Surface-Based Biosensors

    DEFF Research Database (Denmark)

    Hansen, Rasmus; Bruus, Henrik; Callisen, Thomas H.

    2012-01-01

    This paper presents a theoretical and computational investigation of convection, diffusion, and adsorption in surface-based biosensors. In particular, we study the transport dynamics in a model geometry of a surface plasmon resonance (SPR) sensor. The work, however, is equally relevant for other...... microfluidic surface-based biosensors, operating under flow conditions. A widely adopted approximate quasi-steady theory to capture convective and diffusive mass transport is reviewed, and an analytical solution is presented. An expression of the Damköhler number is derived in terms of the nondimensional...... concentration to the maximum surface capacity is critical for reliable use of the quasi-steady theory. Finally, our results provide users of surface-based biosensors with a tool for correcting experimentally obtained adsorption rate constants....

  17. Tuning the Pore Geometry of Ordered Mesoporous Carbons for Enhanced Adsorption of Bisphenol-A

    Directory of Open Access Journals (Sweden)

    Wannes Libbrecht

    2015-04-01

    Full Text Available Mesoporous carbons were synthesized via both soft and hard template methods and compared to a commercial powder activated carbon (PAC for the adsorption ability of bisphenol-A (BPA from an aqueous solution. The commercial PAC had a BET-surface of 1027 m2/g with fine pores of 3 nm and less. The hard templated carbon (CMK-3 material had an even higher BET-surface of 1420 m2/g with an average pore size of 4 nm. The soft templated carbon (SMC reached a BET-surface of 476 m2/g and a pore size of 7 nm. The maximum observed adsorption capacity (qmax of CMK-3 was the highest with 474 mg/g, compared to 290 mg/g for PAC and 154 mg/g for SMC. The difference in adsorption capacities was attributed to the specific surface area and hydrophobicity of the adsorbent. The microporous PAC showed the slowest adsorption, while the ordered mesopores of SMC and CMK-3 enhanced the BPA diffusion into the adsorbent. This difference in adsorption kinetics is caused by the increase in pore diameter. However, CMK-3 with an open geometry consisting of interlinked nanorods allows for even faster intraparticle diffusion.

  18. Tuning the Pore Geometry of Ordered Mesoporous Carbons for Enhanced Adsorption of Bisphenol-A

    Science.gov (United States)

    Libbrecht, Wannes; Vandaele, Koen; De Buysser, Klaartje; Verberckmoes, An; Thybaut, Joris W.; Poelman, Hilde; De Clercq, Jeriffa; Van Der Voort, Pascal

    2015-01-01

    Mesoporous carbons were synthesized via both soft and hard template methods and compared to a commercial powder activated carbon (PAC) for the adsorption ability of bisphenol-A (BPA) from an aqueous solution. The commercial PAC had a BET-surface of 1027 m2/g with fine pores of 3 nm and less. The hard templated carbon (CMK-3) material had an even higher BET-surface of 1420 m2/g with an average pore size of 4 nm. The soft templated carbon (SMC) reached a BET-surface of 476 m2/g and a pore size of 7 nm. The maximum observed adsorption capacity (qmax) of CMK-3 was the highest with 474 mg/g, compared to 290 mg/g for PAC and 154 mg/g for SMC. The difference in adsorption capacities was attributed to the specific surface area and hydrophobicity of the adsorbent. The microporous PAC showed the slowest adsorption, while the ordered mesopores of SMC and CMK-3 enhanced the BPA diffusion into the adsorbent. This difference in adsorption kinetics is caused by the increase in pore diameter. However, CMK-3 with an open geometry consisting of interlinked nanorods allows for even faster intraparticle diffusion. PMID:28788023

  19. Cu(II adsorption on modified bentonitic clays: different isotherm behaviors in static and dynamic systems

    Directory of Open Access Journals (Sweden)

    Ambrósio Florêncio de Almeida Neto

    2012-02-01

    Full Text Available Cu (II removal equilibrium from aqueous solutions using calcined clays "Bofe" and "Verde-lodo" has been studied by batch and fixed-bed in static and dynamic systems, respectively. Analyses were performed for physicochemical characterization of clays using the techniques: X-ray fluorescence (XRF, thermogravimetry (TG, N2 adsorption (BET and Cationic Exchange Capacity (CEC. Batch experiments were performed at a constant temperature, adjusting the pH of the solution in contact with clays. Adsorption assays in fixed bed were conducted at the flow rate determined through mass transfer zone (MTZ. Langmuir and Freundlich models were adjusted to equilibrium data. The results of characterization indicated that the temperature of 500ºC is best suited for the calcination of the clays. The maximum adsorption capacity was higher for dynamic system than fixed bed compared to static system, enhancing from 0.0748 to 0.1371 and from 0.0599 to 0.22 mmol.g-1 of clay for "Bofe" and "Verde-lodo", respectively.

  20. The adsorption of Cs+ from wastewater using lithium-modified montmorillonite caged in calcium alginate beads.

    Science.gov (United States)

    Xia, Meng; Zheng, Xianming; Du, Mingyang; Wang, Yingying; Ding, Aizhong; Dou, Junfeng

    2018-07-01

    The increasing nuclear energy consumption has posed serious environmental concerns (e.g. nuclear leakage), and the removal of radionuclides such as cesium becomes an urgent issue to be solved currently. In this research, a novel non-toxic adsorbent lithium-modified montmorillonite clay encapsulated in calcium alginate microbeads (MCA/Li) was fabricated by using ion-exchange method and then used successfully in the remediation of cesium-contaminated wastewater. Analyses of scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy were used to characterize the physicochemical properties of adsorbent MCA/Li, such as internal crystal structure, constituent elements, and functional groups. The effects of concentration ratios (sodium alginate/montmorillonite), solution pH, contacting time and initial Cs + concentration on the adsorption behavior were carefully investigated via batch adsorption experiments. The adsorbent MCA/Li exhibited higher selectivity and removal efficiency towards Cs + with the maximum adsorption capacity of 100.25 mg/g. In the kinetics study, the pseudo-first-order fitted the cesium adsorption data of MCA/Li better than the pseudo-second-order. The adsorption mechanism studies revealed the process followed the Langmuir isotherm model, which suggested that Cs + adsorption onto MCA/Li is a monolayer homogeneous adsorption process. The research findings indicated this novel adsorbent MCA/Li demonstrated great potential in radioactive wastewater treatment due to its convenience in synthesis, high adsorption capacity, and low cost. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Synthesis of N-doped microporous carbon via chemical activation of polyindole-modified graphene oxide sheets for selective carbon dioxide adsorption

    International Nuclear Information System (INIS)

    Saleh, Muhammad; Chandra, Vimlesh; Christian Kemp, K; Kim, Kwang S

    2013-01-01

    A polyindole-reduced graphene oxide (PIG) hybrid was synthesized by reducing graphene oxide sheets in the presence of polyindole. We have shown PIG as a material for capturing carbon dioxide (CO 2 ). The PIG hybrid was chemically activated at temperatures of 400–800 ° C, which resulted in nitrogen (N)-doped graphene sheets. The N-doped graphene sheets are microporous with an adsorption pore size of 0.6 nm for CO 2 and show a maximum (Brunauer, Emmet and Teller) surface area of 936 m 2 g −1 . The hybrid activated at 600 ° C (PIG6) possesses a surface area of 534 m 2 g −1 and a micropore volume of 0.29 cm 3 g −1 . PIG6 shows a maximum CO 2 adsorption capacity of 3.0 mmol g −1 at 25 ° C and 1 atm. This high CO 2 uptake is due to the highly microporous character of the material and its N content. The material retains its original adsorption capacity on recycling even after 10 cycles (within experimental error). PIG6 also shows high adsorption selectivity ratios for CO 2 over N 2 , CH 4 and H 2 of 23, 4 and 85 at 25 ° C, respectively. (paper)

  2. Direct observation of solid-phase adsorbate concentration profile in powdered activated carbon particle to elucidate mechanism of high adsorption capacity on super-powdered activated carbon.

    Science.gov (United States)

    Ando, Naoya; Matsui, Yoshihiko; Matsushita, Taku; Ohno, Koichi

    2011-01-01

    Decreasing the particle size of powdered activated carbon (PAC) by pulverization increases its adsorption capacities for natural organic matter (NOM) and polystyrene sulfonate (PSS, which is used as a model adsorbate). A shell adsorption mechanism in which NOM and PSS molecules do not completely penetrate the adsorbent particle and instead preferentially adsorb near the outer surface of the particle has been proposed as an explanation for this adsorption capacity increase. In this report, we present direct evidence to support the shell adsorption mechanism. PAC particles containing adsorbed PSS were sectioned with a focused ion beam, and the solid-phase PSS concentration profiles of the particle cross-sections were directly observed by means of field emission-scanning electron microscopy/energy-dispersive X-ray spectrometry (FE-SEM/EDXS). X-ray emission from sulfur, an index of PSS concentration, was higher in the shell region than in the inner region of the particles. The X-ray emission profile observed by EDXS did not agree completely with the solid-phase PSS concentration profile predicted by shell adsorption model analysis of the PSS isotherm data, but the observed and predicted profiles were not inconsistent when the analytical errors were considered. These EDXS results provide the first direct evidence that PSS is adsorbed mainly in the vicinity of the external surface of the PAC particles, and thus the results support the proposition that the increase in NOM and PSS adsorption capacity with decreasing particle size is due to the increase in external surface area on which the molecules can be adsorbed. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Mercury adsorption properties of sulfur-impregnated adsorbents

    Science.gov (United States)

    Hsi, N.-C.; Rood, M.J.; Rostam-Abadi, M.; Chen, S.; Chang, R.

    2002-01-01

    Carbonaceous and noncarbonaceous adsorbents were impregnated with elemental sulfur to evaluate the chemical and physical properties of the adsorbents and their equilibrium mercury adsorption capacities. Simulated coal combustion flue gas conditions were used to determine the equilibrium adsorption capacities for Hg0 and HgCl2 gases to better understand how to remove mercury from gas streams generated by coal-fired utility power plants. Sulfur was deposited onto the adsorbents by monolayer surface deposition or volume pore filling. Sulfur impregnation increased the total sulfur content and decreased the total and micropore surface areas and pore volumes for all of the adsorbents tested. Adsorbents with sufficient amounts of active adsorption sites and sufficient microporous structure had mercury adsorption capacities up to 4,509 ??g Hg/g adsorbent. Elemental sulfur, organic sulfur, and sulfate were formed on the adsorbents during sulfur impregnation. Correlations were established with R2>0.92 between the equilibrium Hg0/HgCl2 adsorption capacities and the mass concentrations of elemental and organic sulfur. This result indicates that elemental and organic sulfur are important active adsorption sites for Hg0 and HgCl2.

  4. Fator capacidade de fósforo em solos de pernambuco mineralogicamente diferentes e influência do pH na capacidade máxima de adsorção Phosphate capacity factor in mineralogically different soils in Pernambuco and the influence of pH on the maximum capacity of adsorption

    Directory of Open Access Journals (Sweden)

    Fábio Broggi

    2011-02-01

    -plant relations. Moreover, the soil pH has affected adsorption, and in other cases, it has shown small and inconsistent change in the maximum adsorption capacity of P (CMAP. Thus, this study aimed to determine the different FCP soil mineralogy in Pernambuco; to correlate physical and chemical characteristics of soils with PBC and to evaluate the effect of pH on the CMAP. Subsurface soil samples from four different soils were characterized chemically and physically determined, and the PBC was determined. These samples were corrected with CaCO3 and MgCO3 in a 4:1 ratio and incubated for 30 days, except the Vertisol. The CMAP was determined before and after correction of the soil. The experiment consisted of a 4 x 2 factorial (four soils with and without correction, distributed in randomized blocks with three replicates. Soil characteristics that best reflected the PBC were the remaining P (P-rem and MPAC. Regardless of the constituents of clay mineralogy, soil with high aluminum levels had increased CMAP after correction. The energy of adsorption (EA in the limed soils was on average significantly lower, regardless of the soil.

  5. Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review.

    Science.gov (United States)

    Burakov, Alexander E; Galunin, Evgeny V; Burakova, Irina V; Kucherova, Anastassia E; Agarwal, Shilpi; Tkachev, Alexey G; Gupta, Vinod K

    2018-02-01

    The problem of water pollution is of a great concern. Adsorption is one of the most efficient techniques for removing noxious heavy metals from the solvent phase. This paper presents a detailed information and review on the adsorption of noxious heavy metal ions from wastewater effluents using various adsorbents - i.e., conventional (activated carbons, zeolites, clays, biosorbents, and industrial by-products) and nanostructured (fullerenes, carbon nanotubes, graphenes). In addition to this, the efficiency of developed materials for adsorption of the heavy metals is discussed in detail along with the comparison of their maximum adsorption capacity in tabular form. A special focus is made on the perspectives of further wider applications of nanostructured adsorbents (especially, carbon nanotubes and graphenes) in wastewater treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Eco-friendly polyvinyl alcohol/carboxymethyl cellulose hydrogels reinforced with graphene oxide and bentonite for enhanced adsorption of methylene blue.

    Science.gov (United States)

    Dai, Hongjie; Huang, Yue; Huang, Huihua

    2018-04-01

    Eco-friendly polyvinyl alcohol/carboxymethyl cellulose (isolated from pineapple peel) hydrogels reinforced with graphene oxide and bentonite were prepared as efficient adsorbents for methylene blue (MB). The structure and morphology of the prepared hydrogels were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), X-ray diffraction (XRD), thermogravimetry (TG) and differential scanning calorimetry (DSC). Introducing graphene oxide and bentonite into the hydrogels evidently enhanced the thermal stability, swelling ability and MB adsorption capacity. The effects of initial concentration of MB, pH, contact time and temperature on MB adsorption capacity of the prepared hydrogels were investigated. Adsorption kinetics and equilibrium adsorption isotherm fitted pseudo-second-order kinetic model and Langmuir isotherm model well, respectively. After introducing graphene oxide and bentonite into the hydrogels, the maximum adsorption capacity calculated from the Langmuir isotherm model reached 172.14 mg/g at 30 °C, obviously higher than the hydrogels prepared without these additions (83.33 mg/g). Furthermore, all the prepared hydrogels also displayed good reusability for the efficient removal of MB. Consequently, the prepared hydrogels could be served as eco-friendly, stable, efficient and reusable adsorbents for anionic dyes in wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Comparative removal of emerging contaminants from aqueous solution by adsorption on an activated carbon.

    Science.gov (United States)

    Gil, A; Taoufik, N; García, A M; Korili, S A

    2018-04-19

    Batch sorption experiments were performed to study the adsorption of six emerging pollutants from aqueous solutions using a commercial granular activated carbon as adsorbent. Caffeine, clofibric acid, diclofenac, gallic acid, ibuprofen and salicylic acid were selected as representative contaminants. The activated carbon was characterized by nitrogen adsorption at 77 K, and through the determination of point of zero charge. The effects of several operational parameters, such as pH, initial concentration of organic molecules, mass of adsorbent and contact time, on the sorption behaviour were evaluated. The contact time to attain equilibrium for maximum adsorption was found to be 40 min. The kinetic data were correlated to several adsorption models, and the adsorption mechanism found to follow pseudo-second-order and intraparticle-diffusion models with external mass transfer predominating in the first 15 min of the experiment. The equilibrium adsorption data were analysed using the Freundlich, Langmuir and Toth isotherm equation models. The similar chemical structure and molecular weight of the organic pollutants studied to make the adsorption capacity of the activated carbon used very similar for all the molecules.

  8. Removal of hazardous pharmaceutical dyes by adsorption onto papaya seeds.

    Science.gov (United States)

    Weber, Caroline Trevisan; Collazzo, Gabriela Carvalho; Mazutti, Marcio Antonio; Foletto, Edson Luiz; Dotto, Guilherme Luiz

    2014-01-01

    Papaya (Carica papaya L.) seeds were used as adsorbent to remove toxic pharmaceutical dyes (tartrazine and amaranth) from aqueous solutions, in order to extend application range. The effects of pH, initial dye concentration, contact time and temperature were investigated. The kinetic data were evaluated by the pseudo first-order, pseudo second-order and Elovich models. The equilibrium was evaluated by the Langmuir, Freundlich and Temkin isotherm models. It was found that adsorption favored a pH of 2.5, temperature of 298 K and equilibrium was attained at 180-200 min. The adsorption kinetics followed the pseudo second-order model, and the equilibrium was well represented by the Langmuir model. The maximum adsorption capacities were 51.0 and 37.4 mg g(-1) for tartrazine and amaranth, respectively. These results revealed that papaya seeds can be used as an alternative adsorbent to remove pharmaceutical dyes from aqueous solutions.

  9. Effect of immobilized amine density on cadmium(II) adsorption capacities for ethanediamine-modified magnetic poly-(glycidyl methacrylate) microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Tingting [Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Yang, Liangrong, E-mail: lryang@ipe.ac.cn [Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Pan, Feng; Xing, Huifang; Wang, Li; Yu, Jiemiao [Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Qu, Hongnan [Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China); Rong, Meng [Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Liu, Huizhou, E-mail: hzliu@ipe.ac.cn [Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China)

    2017-04-01

    A series of ethanediamine (EDA) – modified magnetic poly-(glycidyl methacrylate) (m-PGMA-EDA)microspheres with different amine density were synthesized and their cadmium saturation adsorption capacities were examined. The results showed that the cadmium saturation adsorption capacity increased with the immobilized amine density. However, they did not show strong positive linear correlation in the whole range of amine density examined. The molar ratio of amine groups to the adsorbed cadmium decreased with the increase of amine density and eventually reached a minimum value about 4. It suggested that low immobilized amine density led to low coordination efficiency of the amine. It is hypothesized that the immobilized amine groups needed to be physically close enough to form stable amine-metal complex. When the amine density reached to a critical value 1.25 m mol m{sup −2}, stable amine-cadmium complex (4:1 N/Cd) was proposed to form. To illustrate the coordination mechanism (structure and number) of amine and Cd, FT-IR spectra of m-PGMA-EDA and m-PGMA-EDA-Cd , and X-ray photoelectron spectroscopy (XPS) of PGMA–EDA and PGMA-EDA-Cd were examined and analyzed. - Highlights: • A series of magnetic poly-(glycidyl methacrylate) (m-PGMA-EDA)microspheres with different amine density were synthesized and their cadmium saturation adsorption capacities were examined. • The molar ratio of amine groups to adsorbed cadmium decreased with the increase of amine density and eventually reached a minimum value about 4. • when the amine density reached high enough, 4:1 N/Cd complex was proposed to form, and the hydroxyl also participated in the chelating with Cd.

  10. Adsorption of reactive dye from an aqueous solution by chitosan: isotherm, kinetic and thermodynamic analysis

    International Nuclear Information System (INIS)

    Annadurai, Gurusamy; Ling, L.Y.; Lee, J.-F.

    2008-01-01

    The adsorption of Remazol black 13 (Reactive) dye onto chitosan in aqueous solutions was investigated. Experiments were carried out as function of contact time, initial dye concentration (100-300 mg/L), particle size (0.177, 0.384, 1.651 mm), pH (6.7-9.0), and temperature (30-60 deg. C). The equilibrium adsorption data of reactive dye on chitosan were analyzed by Langmuir and Freundlich models. The maximum adsorption capacity (q m ) has been found to be 91.47-130.0 mg/g. The amino group nature of the chitosan provided reasonable dye removal capability. The kinetics of reactive dye adsorption nicely followed the pseudo-first and second-order rate expression which demonstrates that intraparticle diffusion plays a significant role in the adsorption mechanism. Isotherms have also been used to obtain the thermodynamic parameters such as free energy, enthalpy and entropy of adsorption. The positive value of the enthalpy change (0.212 kJ/mol) indicated that the adsorption is endothermic process. The results indicate that chitosan is suitable as adsorbent material for adsorption of reactive dye form aqueous solutions

  11. Fluoride adsorption from aqueous solution by magnetic core-shell Fe_3O_4@alginate-La particles fabricated via electro-coextrusion

    International Nuclear Information System (INIS)

    Zhang, Yahui; Lin, Xiaoyan; Zhou, Quisheng; Luo, Xuegang

    2016-01-01

    Graphical abstract: The magnetic core-shell Fe_3O_4@Alg-La particles were fabricated successfully by a simple method of electro-coextrusion, and employed as an adsorbent for separation of fluoride from aqueous solution. - Highlights: • Magnetic core-shell Fe_3O_4@Alg-La particles were prepared by electro-coextrusion. • The maximum adsorption capacity for fluoride at 298.15 K was 45.230 mg/g. • The adsorbent has a good saturation magnetization value. • The adsorbent has a great potential in removing the fluoride. - Abstract: The magnetic core-shell Fe_3O_4@Alg-La particles were fabricated successfully by a simple method of electro-coextrusion, and employed as an adsorbent for separation of fluoride from aqueous solution. Main factors affecting the removal of fluoride, including pH, adsorbent dosage, initial concentration, temperature and contact time were investigated. The adsorption isotherm and adsorption kinetics were studied to understand the adsorption process in detail. The experimental data were fitted well by the non-linear Freundlich isotherm and linear pseudo-second-order model, the maximum fluoride adsorption capacity was 45.230 mg/g at pH 4, 298.15 K. Thermodynamic parameters indicated that the fluoride adsorption process was feasible and spontaneous. The presence of other anions like Cl"−, SO_4"2"−, HCO_3"− and PO_4"3"− had almost no effect on the fluoride adsorption. The adsorbent can be easily separated from the solution by a magnet. The magnetic core-shell Fe_3O_4@Alg-La particles before and after fluoride adsorption were studied by SEM, FTIR, EDX and XPS, which indicated that the adsorption mechanism may be related to electrostatic attraction and Lewis acid-base interaction.

  12. FY-2015 Methyl Iodide Deep-Bed Adsorption Test Report

    Energy Technology Data Exchange (ETDEWEB)

    Soelberg, Nicholas Ray [Idaho National Lab. (INL), Idaho Falls, ID (United States); Watson, Tony Leroy [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-30

    Nuclear fission produces fission and activation products, including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Deep-bed methyl iodide adsorption testing has continued in Fiscal Year 2015 according to a multi-laboratory methyl iodide adsorption test plan. Updates to the deep-bed test system have also been performed to enable the inclusion of evaporated HNO3 and increased NO2 concentrations in future tests. This report summarizes the result of those activities. Test results showed that iodine adsorption from gaseous methyl iodide using reduced silver zeolite (AgZ) resulted in initial iodine decontamination factors (DFs, ratios of uncontrolled and controlled total iodine levels) under 1,000 for the conditions of the long-duration test performed this year (45 ppm CH3I, 1,000 ppm each NO and NO2, very low H2O levels [3 ppm] in balance air). The mass transfer zone depth exceeded the cumulative 5-inch depth of 4 bed segments, which is deeper than the 2-4 inch depth estimated for the mass transfer zone for adsorbing I2 using AgZ in prior deep-bed tests. The maximum iodine adsorption capacity for the AgZ under the conditions of this test was 6.2% (6.2 g adsorbed I per 100 g sorbent). The maximum Ag utilization was 51%. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.

  13. Adsorption separation of carbon dioxide from flue gas by a molecularly imprinted adsorbent.

    Science.gov (United States)

    Zhao, Yi; Shen, Yanmei; Ma, Guoyi; Hao, Rongjie

    2014-01-01

    CO2 separation by molecularly imprinted adsorbent from coal-fired flue gas after desulfurization system has been studied. The adsorbent was synthesized by molecular imprinted technique, using ethanedioic acid, acrylamide, and ethylene glycol dimethacrylate as the template, functional monomer, and cross-linker, respectively. According to the conditions of coal-fired flue gas, the influencing factors, including adsorption temperature, desorption temperature, gas flow rate, and concentrations of CO2, H2O, O2, SO2, and NO, were studied by fixed bed breakthrough experiments. The experimental conditions were optimized to gain the best adsorption performance and reduce unnecessary energy consumption in future practical use. The optimized adsorption temperature, desorption temperature, concentrations of CO2, and gas flow rate are 60 °C, 80 °C, 13%, and 170 mL/min, respectively, which correspond to conditions of practical flue gases to the most extent. The CO2 adsorption performance was nearly unaffected by H2O, O2, and NO in the flue gas, and was promoted by SO2 within the emission limit stipulated in the Chinese emission standards of air pollutants for a thermal power plant. The maximum CO2 adsorption capacity, 0.57 mmol/g, was obtained under the optimized experimental conditions, and the SO2 concentration was 150 mg/m(3). The influence mechanisms of H2O, O2, SO2, and NO on CO2 adsorption capacity were investigated by infrared spectroscopic analysis.

  14. Preparation of high-capacity, weak anion-exchange membranes by surface-initiated atom transfer radical polymerization of poly(glycidyl methacrylate) and subsequent derivatization with diethylamine

    International Nuclear Information System (INIS)

    Qian, Xiaolei; Fan, Hua; Wang, Chaozhan; Wei, Yinmao

    2013-01-01

    Ion-exchange membrane is of importance for the development of membrane chromatography. In this work, a high-capacity anion-exchange membrane was prepared by grafting of glycidyl methacrylate (GMA) onto the surface of regenerated cellulose (RC) membranes via surface-initiated atom transfer radical polymerization (SI-ATRP) and subsequent derivatization with diethylamine. Attenuated total reflectance Fourier-transform infrared (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) were used to characterize changes in the chemical functionality, surface topography and pore morphology of the modified membranes. The static capacity of the prepared anion-exchange membrane was evaluated with bovine serum albumin (BSA) as a model protein. The results indicated that the anion-exchange membrane which could reach a maximum capacity of 96 mg/mL for static adsorption possesses a higher adsorption capacity, and the adsorption capacity increases with the polymerization time. The effect of pH and salt concentration confirmed that the adsorption of BSA followed ion-exchange mechanism. The established method would have potential application in the preparation of anion-exchange membrane.

  15. A first-principles study of hydrogen storage capacity based on Li-Na-decorated silicene.

    Science.gov (United States)

    Sheng, Zhe; Wu, Shujing; Dai, Xianying; Zhao, Tianlong; Hao, Yue

    2018-05-23

    Surface decoration with alkali metal adatoms has been predicted to be promising for silicene to obtain high hydrogen storage capacity. Herein, we performed a detailed study of the hydrogen storage properties of Li and Na co-decorated silicene (Li-Na-decorated silicene) based on first-principles calculations using van der Waals correction. The hydrogen adsorption behaviors, including the adsorption order, the maximum capacity, and the corresponding mechanism were analyzed in detail. Our calculations show that up to three hydrogen molecules can firmly bind to each Li atom and six for each Na atom, respectively. The hydrogen storage capacity is estimated to be as high as 6.65 wt% with a desirable average adsorption energy of 0.29 eV/H2. It is confirmed that both the charge-induced electrostatic interaction and the orbital hybridizations play a great role in hydrogen storage. Our results may enhance our fundamental understanding of the hydrogen storage mechanism, which is of great importance for the practical application of Li-Na-decorated silicene in hydrogen storage.

  16. Protein Adsorption in Three Dimensions

    Science.gov (United States)

    Vogler, Erwin A.

    2011-01-01

    initially-adsorbed protein. Interphase protein concentration CI increases as VI decreases, resulting in slow reduction in interfacial energetics. Steady-state is governed by a net partition coefficient P=(/CBCI). In the process of occupying space within the interphase, adsorbing protein molecules must displace an equivalent volume of interphase water. Interphase water is itself associated with surface-bound water through a network of transient hydrogen bonds. Displacement of interphase water thus requires an amount of energy that depends on the adsorbent surface chemistry/energy. This “adsorption-dehydration” step is the significant free-energy cost of adsorption that controls the maximum amount of protein that can be adsorbed at steady state to a unit adsorbent-surface area (the adsorbent capacity). As adsorbent hydrophilicity increases, protein adsorption monotonically decreases because the energetic cost of surface dehydration increases, ultimately leading to no protein adsorption near an adsorbent water wettability (surface energy) characterized by a water contact angle θ → 65°. Consequently, protein does not adsorb (accumulate at interphase concentrations greater than bulk solution) to more hydrophilic adsorbents exhibiting θ protein/surface interactions can be highly favorable, causing protein to adsorb in multilayers in a relatively thick interphase. A straightforward, three-component free energy relationship captures salient features of protein adsorption to all surfaces predicting that the overall free energy of protein adsorption ΔGadso is a relatively small multiple of thermal energy for any surface chemistry (except perhaps for bioengineered surfaces bearing specific ligands for adsorbing protein) because a surface chemistry that interacts chemically with proteins must also interact with water through hydrogen bonding. In this way, water moderates protein adsorption to any surface by competing with adsorbing protein molecules. This Leading Opinion ends

  17. Potassium adsorption behaviour of three Malaysian rice soils

    International Nuclear Information System (INIS)

    Choudhury, A.T.M.A.; Khanif, Y.M.

    2003-01-01

    Potassium (K) deficiency exists in different rice growing areas of Malaysia. A study on K adsorption was carried out in three Malaysian rice soils (Guar, Hutan and Kangar series) using six levels of K (0.00,28.77, 33.57, 38.37, 43.16 and 47.96 mmol kg/sup -1/). The data on K adsorption were fitted into Langmuir, Freundlich, and Temkin adsorption equations. Adsorption data were also correlated with pH, cation exchange capacity and organic matter content of the soils. Potassium adsorption increased linearly with increasing level of added K in all the three soils. The rate of increase was the highest in Guar series followed by Kangar and Hutan series, respectively. Potassium adsorption in two soils (Hutan and Kangar) fitted into Langmuir equation while he adsorption data in Guar series did not fit into this equation. Adsorption data in none of the soils fitted well in Freundlich and Temkin adsorption equations. Correlation between K adsorption and pH was significant (r = 0.881,), whereas, correlation of K adsorption with either organic matter content or cation exchange capacity was non-significant. The results of this study indicated that K adsorption is mainly dependent on soil pH. In soils with higher adsorption capacity, more K fertilizer may be needed to get immediate crop response. (author)

  18. Adsorption Isotherm of Chromium (Vi) into Zncl2 Impregnated Activated Carbon Derived by Jatropha Curcas Seed Hull

    Science.gov (United States)

    Mohammad, M.; Yakub, I.; Yaakob, Z.; Asim, N.; Sopian, K.

    2017-12-01

    Hexavalent chromium is carcinogenic and should be removed from industrial wastewater before discharged into water resources. Adsorption by using activated carbon from biomass is an economic and conventional way on removing the heavy metal ions from wastewater. In this research, activated carbon is synthesized from Jatropha curcas L. seed hull through chemical activation with ZnCl2 and carbonized at 800 °C (JAC/ZnCl2). The activated carbon has been characterized using FTIR, SEM-EDX, BET and CHNS-O analyzer. Adsorption isotherms have been analysed using Langmuir and Freundlich models to determine its removal mechanism. The maximum adsorption capacity of Cr (VI) metal ions onto JAC/ZnCl2 activated carbon is 25.189 mg/g and following Langmuir isotherm model which is monolayer adsorption.

  19. Adsorption of lead and copper ions from aqueous effluents on rice husk ash in a dynamic system

    Directory of Open Access Journals (Sweden)

    M. G. A. Vieira

    2014-06-01

    Full Text Available This study evaluated the kinetic adsorption of Pb and Cu ions using rice husk ash as adsorbent in a fixed bed. The maximum adsorption capacities obtained for lead and copper ions in the fixed bed were 0.0561 and 0.0682 mmol/g (at 20 ºC, respectively. The thermodynamic studies indicated that the lead adsorption process was exothermic and spontaneous, while the copper adsorption process was endothermic and spontaneous. Characterization results indicated the presence of several functional groups, amorphous silica and a fibrous and longitudinal structure of rice husks. Rice husk ash (RHA from northern Brazil can be used as a bioadsorbent for the individual removal of Pb(II and Cu(II ions from metal-containing effluents.

  20. Preparation and properties of a novel macro porous Ni2+-imprinted chitosan foam adsorbents for adsorption of nickel ions from aqueous solution.

    Science.gov (United States)

    Guo, Na; Su, Shi-Jun; Liao, Bing; Ding, Sang-Lan; Sun, Wei-Yi

    2017-06-01

    In this study, novel macro porous Ni 2+ -imprinted chitosan foam adsorbents (F-IIP) were prepared using sodium bicarbonate and glycerine to obtain a porogen for adsorbing nickel ions from aqueous solutions. The use of the ion-imprinting technique for adsorbents preparation improved the nickel ion selectivity and adsorption capacity. We characterised the imprinted porous foam adsorbents in terms of the effects of the initial pH value, initial metal ion concentration, and contact time on the adsorption of nickel ions. The adsorption process was described best by Langmuir monolayer adsorption models, and the maximum adsorption capacity calculated from the Langmuir equation was 69.93mgg -1 . The kinetic data could be fitted to a pseudo-second-order equation. Our analysis of selective adsorption demonstrated the excellent preference of the F-IIP foams for nickel ions compared with other coexisting metal ions. Furthermore, tests over five cycle runs suggested that the F-IIP foam adsorbents had good durability and efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Fabrication of cellulose nanocrystal from Carex meyeriana Kunth and its application in the adsorption of methylene blue.

    Science.gov (United States)

    Yang, Xue; Liu, Hui; Han, Fuyi; Jiang, Shuai; Liu, Lifang; Xia, Zhaopeng

    2017-11-01

    Cellulose nanocrystal (CNC) was extracted from Carex meyeriana Kunth (CMK) by a combination of TEMPO oxidation and mechanical homogenization method, and used to remove methylene blue (MB) from aqueous solution. After alkali-oxygen treatment, the aqueous biphasic system (polyethylene glycol/inorganic salt) was applied to further remove lignin from CMK. The characteriazation of CNC, and the effects of H 2 O 2 dosage, CNC dosage, adsorption time, and initial MB concentration on the MB removal capacity of CNC were investigated. The results showed that the removal percentage of MB by CNC was raised with the increase of H 2 O 2 and CNC dosage. The adsorption kinetics of prepared CNC followed the pseudo-second-order model, and the adsorption isotherms fitted well to the Langmuir model with a calculated maximum adsoption capacity of 217.4mg/g, which was higher than those of CNC extracted by acid hydrolysis method, indicating CNC extracted from CMK had promising potentials in the field of MB adsorption. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Adsorption of antibiotics on microplastics.

    Science.gov (United States)

    Li, Jia; Zhang, Kaina; Zhang, Hua

    2018-06-01

    Microplastics and antibiotics are two classes of emerging contaminants with proposed negative impacts to aqueous ecosystems. Adsorption of antibiotics on microplastics may result in their long-range transport and may cause compound combination effects. In this study, we investigated the adsorption of 5 antibiotics [sulfadiazine (SDZ), amoxicillin (AMX), tetracycline (TC), ciprofloxacin (CIP), and trimethoprim (TMP)] on 5 types of microplastics [polyethylene (PE), polystyrene (PS), polypropylene (PP), polyamide (PA), and polyvinyl chloride (PVC)] in the freshwater and seawater systems. Scanning Electron Microscope (SEM) and X-ray diffractometer (XRD) analysis revealed that microplastics have different surface characterizes and various degrees of crystalline. Adsorption isotherms demonstrated that PA had the strongest adsorption capacity for antibiotics with distribution coefficient (K d ) values ranged from 7.36 ± 0.257 to 756 ± 48.0 L kg -1 in the freshwater system, which can be attributed to its porous structure and hydrogen bonding. Relatively low adsorption capacity was observed on other four microplastics. The adsorption amounts of 5 antibiotics on PS, PE, PP, and PVC decreased in the order of CIP > AMX > TMP > SDZ > TC with K f correlated positively with octanol-water partition coefficients (Log K ow ). Comparing to freshwater system, adsorption capacity in seawater decreased significantly and no adsorption was observed for CIP and AMX. Our results indicated that commonly observed polyamide particles can serve as a carrier of antibiotics in the aquatic environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Sonochemical surface functionalization of exfoliated LDH: Effect on textural properties, CO2 adsorption, cyclic regeneration capacities and subsequent gas uptake for simultaneous methanol synthesis.

    Science.gov (United States)

    Ezeh, Collins I; Huang, Xiani; Yang, Xiaogang; Sun, Cheng-Gong; Wang, Jiawei

    2017-11-01

    To improve CO 2 adsorption, amine modified Layered double hydroxide (LDH) were prepared via a two stage process, SDS/APTS intercalation was supported by ultrasonic irradiation and then followed by MEA extraction. The prepared samples were characterised using Scanning electron microscope-Energy dispersive X-ray spectroscopy (SEM-EDX), X-ray Photoelectron Spectroscopy (XPS), X-ray diffraction (XRD), Temperature Programmed Desorption (TPD), Brunauer-Emmett-Teller (BET), and Thermogravimetric analysis (TGA), respectively. The characterisation results were compared with those obtained using the conventional preparation method with consideration to the effect of sonochemical functionalization on textural properties, adsorption capacity, regeneration and lifetime of the LDH adsorbent. It is found that LDHs prepared by sonochemical modification had improved pore structure and CO 2 adsorption capacity, depending on sonic intensity. This is attributed to the enhanced deprotonation of activated amino functional groups via the sonochemical process. Subsequently, this improved the amine loading and effective amine efficiency by 60% of the conventional. In addition, the sonochemical process improved the thermal stability of the adsorbent and also, reduced the irreversible CO 2 uptake, CUirrev, from 0.18mmol/g to 0.03mmol/g. Subsequently, improving the lifetime and ease of regenerating the adsorbent respectively. This is authenticated by subjecting the prepared adsorbents to series of thermal swing adsorption (TSA) cycles until its adsorption capacity goes below 60% of the original CO 2 uptake. While the conventional adsorbent underwent a 10 TSA cycles before breaking down, the sonochemically functionalized LDH went further than 30 TSA cycles. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Simulation of the adsorption capacity of polar organic compounds and dyes from water onto activated carbons: Model development and validation

    Directory of Open Access Journals (Sweden)

    Warisa Bunmahotama

    2018-03-01

    Full Text Available A model approach is developed to simulate the adsorption isotherms of low-molecular-weight polar organic compounds (LMWPOCs, halogenated LMWPOCs, and dye molecules onto activated carbons (AC. The models were based on the Dubinin–Astakhov equation, with the limiting pore volume of adsorbent estimated from the pore size distribution data, and the adsorption affinity of the adsorbate described by the molecular connectivity index. The models were used to simulate the adsorption data of 87 LMWPOCs onto six ACs, 25 halogenated LMWPOCs onto two ACs and 22 dyes onto three ACs. The developed models follow the experimental data fairly well, with errors of 49, 33 and 43% for the tested LMWPOCs, halogenated LMWPOCs, and dyes, respectively. This study shows that the developed model approach may provide a simple means for the estimation of adsorption capacity for LMWPOCs and dyes onto ACs in water.

  5. Adsorption of methyl orange from aqueous solution onto calcined Lapindo volcanic mud

    International Nuclear Information System (INIS)

    Jalil, Aishah A.; Triwahyono, Sugeng; Adam, S. Hazirah; Rahim, N. Diana; Aziz, M. Arif A.; Hairom, N. Hanis H.; Razali, N. Aini M.; Abidin, Mahani A.Z.; Mohamadiah, M. Khairul A.

    2010-01-01

    In this study, calcined Lapindo volcanic mud (LVM) was used as an adsorbent to remove an anionic dye, methyl orange (MO), from an aqueous solution by the batch adsorption technique. Various conditions were evaluated, including initial dye concentration, adsorbent dosage, contact time, solution pH, and temperature. The adsorption kinetics and equilibrium isotherms of the LVM were studied using pseudo-first-order and -second-order kinetic equations, as well as the Freundlich and Langmuir models. The experimental data obtained with LVM fits best to the Langmuir isotherm model and exhibited a maximum adsorption capacity (q max ) of 333.3 mg g -1 ; the data followed the second-order equation. The intraparticle diffusion studies revealed that the adsorption rates were not controlled only by the diffusion step. The thermodynamic parameters, such as the changes in enthalpy, entropy, and Gibbs free energy, showed that the adsorption is endothermic, random and spontaneous at high temperature. The results indicate that LVM adsorbs MO efficiently and could be utilized as a low-cost alternative adsorbent for the removal of anionic dyes in wastewater treatment.

  6. Characteristics of equilibrium, kinetics studies for adsorption of Hg(II), Cu(II), and Ni(II) ions by thiourea-modified magnetic chitosan microspheres

    International Nuclear Information System (INIS)

    Zhou Limin; Wang Yiping; Liu Zhirong; Huang Qunwu

    2009-01-01

    Magnetic chitosan microspheres were prepared and chemically modified with thiourea (TMCS) for adsorption of metal ions. TMCS obtained were investigated by means of X-ray diffraction (XRD), IR, magnetic properties and thermogravimetric analysis (TGA). The adsorption properties of TMCS toward Hg 2+ , Cu 2+ , and Ni 2+ ions were evaluated. Various factors affecting the uptake behavior such as contact time, temperature, pH and initial concentration of the metal ions were investigated. The kinetics was evaluated utilizing the pseudo-first-order, pseudo-second-order, and the intra-particle diffusion models. The equilibrium data were analyzed using the Langmuir, Freundlich, and Tempkin isotherm models. The adsorption kinetics followed the mechanism of the pseudo-second-order equation for all systems studied, evidencing chemical sorption as the rate-limiting step of adsorption mechanism and not involving a mass transfer in solution. The best interpretation for the equilibrium data was given by Langmuir isotherm, and the maximum adsorption capacities were 625.2, 66.7, and 15.3 mg/g for Hg 2+ , Cu 2+ , and Ni 2+ ions, respectively. TMCS displayed higher adsorption capacity for Hg 2+ in all pH ranges studied. The adsorption capacity of the metal ions decreased with increasing temperature. The metal ion-loaded TMCS with were regenerated with an efficiency of greater than 88% using 0.01-0.1 M ethylendiamine tetraacetic acid (EDTA)

  7. Synthesis and granulation of a titanosilicate with adsorption capacity for Cs to be used for treating de ILLW of the Ezeiza Radioisotope Production Plant

    International Nuclear Information System (INIS)

    Curi, Rodrigo; Bianchi, Hugo L; Luca, Vittorio

    2012-01-01

    The sitinakite structured titanosilicate is widely used for treating ILLW thanks to its capacity for adsorbing both Cs-137 and Sr-90. Its effectiveness lies in its incredibly high selectivity for such radioisotopes, which makes it useful in complex isotope solutions and even in strong acid and alkaline conditions. In Argentina, an off-the-shelve titanosilicate was used in Ezeiza's radioisotope production plant. Because of commercial restrictions, it is no longer available so an inhouse production is being developed. The aim of this project consists of the following: 1. Synthesis of titanosilicate and structural characterization 2. Adsorption kinetics of Cs + 3. Upscale of the synthesis process 4. Assessment of the influence of synthesis temperature and time on product crystallinity 5. Measurement of adsorption capacity of commercial titanosilicates IE910, IE911 and novel RC15H 6. Separative performance column essay and breakthrough plot 7. Chemical and radiolysis resistance of the adsorbent powder binder Polyacrylonitrile (PAN) in contact with the actual waste Throughout this work we have studied the optimum synthesis conditions capable of rendering a sitinakite structured titanosilicate, assessed its Cs + adsorption kinetics, adsorption capacity, crystal phase and purity via DRX, particle size with Laser Light Scattering technique. We have also conducted column breakthrough experiments and tried the chemical and radiolysis resistance of the final product (author)

  8. Adsorption of microcystin-LR on mesoporous carbons and its potential use in drinking water source.

    Science.gov (United States)

    Park, Jeong-Ann; Jung, Sung-Mok; Yi, In-Geol; Choi, Jae-Woo; Kim, Song-Bae; Lee, Sang-Hyup

    2017-06-01

    Microcystin-LR (MC-LR) is a common toxin derived from cyanobacterial blooms an effective, rapid and non-toxic method needs to be developed for its removal from drinking water treatment plants (DWTP). For an adsorption-based method, mesoporous carbon can be a promising supplemental adsorbent. The effect of mesoporous carbon (MC1, MC2, and MC3) properties and water quality parameters on the adsorption of MC-LR were investigated and the results were analyzed by kinetic, isotherm, thermodynamic, Derjaguin-Landau-Verwey-Overbeek (DLVO), and intraparticle diffusion models. MC1 was the most appropriate type for the removal of MC-LR with a maximum adsorption capacity of 35,670.49 μg/g. Adsorption of MC-LR is a spontaneous reaction dominated by van der Waals interactions. Pore sizes of 8.5-14 nm enhance the pore diffusion of MC-LR from the surface to the mesopores of MC1. The adsorption capacity was not sensitive to changes in the pH (3.2-8.0) and the existence of organic matter (2-5 mg/L). Furthermore, the final concentration of MC-LR was below the WHO guideline level after a 10-min reaction with 20 mg/L of MC1 in the Nak-Dong River, a drinking water source. The MC-LR adsorption mainly competed with humic substances (500-1000 g/mole); however, they did not have a great effect on adsorption. Copyright © 2017. Published by Elsevier Ltd.

  9. Selective Adsorption and Separation of Organic Dyes with Spherical Polyelectrolyte Brushes and Compressed Carbon Dioxide.

    Science.gov (United States)

    Zhang, Rui; Yu, Zhenchuan; Wang, Lei; Shen, Qizhe; Hou, Xiaoyan; Guo, Xuhong; Wang, Junwei; Zhu, Xuedong; Yao, Yuan

    2017-10-04

    Dye-containing wastewater has caused serious environmental pollution. Herein, rationally designed spherical polyelectrolyte brushes (SPBs) with cationic charges, polystyrene-poly(2-aminoethylmethacrylate hydrochloride) (PS-PAEMH) as the absorbent, and compressed carbon dioxide as the antisolvent are proposed for the separation of the anionic dye eosin Y (EY) from a solution of mixed dyes. The adsorption behavior of EY onto PS-PAEMH was highly dependent on CO 2 pressure, contact time, and initial concentration. The maximum adsorption capacity of PS-PAEMH was 335.20 mg g -1 . FTIR and UV/Vis measurements proved that the electrostatic interactions between EY and PS-PAEMH played an important role in the absorbance process. The adsorption process fitted the pseudo-second-order kinetic model and Freundlich isotherm model very well. The combined dye and polymer brush could be easily separated through ion exchange by adding an aqueous solution of NaCl. Recovered PS-PAEMH retained a high adsorption capacity even after ten cycles of regeneration. This method provides a simple and effective way to separate ionic materials for environmental engineering. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. It is time to abandon "expected bladder capacity." Systematic review and new models for children's normal maximum voided volumes.

    Science.gov (United States)

    Martínez-García, Roberto; Ubeda-Sansano, Maria Isabel; Díez-Domingo, Javier; Pérez-Hoyos, Santiago; Gil-Salom, Manuel

    2014-09-01

    There is an agreement to use simple formulae (expected bladder capacity and other age based linear formulae) as bladder capacity benchmark. But real normal child's bladder capacity is unknown. To offer a systematic review of children's normal bladder capacity, to measure children's normal maximum voided volumes (MVVs), to construct models of MVVs and to compare them with the usual formulae. Computerized, manual and grey literature were reviewed until February 2013. Epidemiological, observational, transversal, multicenter study. A consecutive sample of healthy children aged 5-14 years, attending Primary Care centres with no urologic abnormality were selected. Participants filled-in a 3-day frequency-volume chart. Variables were MVVs: maximum of 24 hr, nocturnal, and daytime maximum voided volumes. diuresis and its daytime and nighttime fractions; body-measure data; and gender. The consecutive steps method was used in a multivariate regression model. Twelve articles accomplished systematic review's criteria. Five hundred and fourteen cases were analysed. Three models, one for each of the MVVs, were built. All of them were better adjusted to exponential equations. Diuresis (not age) was the most significant factor. There was poor agreement between MVVs and usual formulae. Nocturnal and daytime maximum voided volumes depend on several factors and are different. Nocturnal and daytime maximum voided volumes should be used with different meanings in clinical setting. Diuresis is the main factor for bladder capacity. This is the first model for benchmarking normal MVVs with diuresis as its main factor. Current formulae are not suitable for clinical use. © 2013 Wiley Periodicals, Inc.

  11. Cr(VI) adsorption from electroplating plating wastewater by chemically modified coir pith.

    Science.gov (United States)

    Suksabye, Parinda; Thiravetyan, Paitip

    2012-07-15

    Coir pith samples were chemically modified by grafting with acrylic acid for the removal of Cr(VI) from electroplating wastewater. The presence of acrylic acid on the coir pith surface was verified by a scanning electron microscope with an electron dispersive x-ray spectrometer (SEM/EDX), Fourier transform infrared spectroscopy (FTIR) and thermogravimetry (TG). The carbonyl groups (C==O) from the carboxylic acids (COOH) increased on the coir pith surface after grafting with acrylic acid. In addition, the thermal stability of the acrylic acid-grafted coir pith also improved. The optimum conditions for grafting the acrylic acid on the coir pith consisted of 2 M acrylic acid and 0.00125 M ceric ammonium nitrate (CAN, as an initiator). The maximum Cr(VI) removal (99.99 ± 0.07%) was obtained with the following conditions: a 1.3% (w/v) dosage of acrylic acid-grafted coir pith, a system pH of 2, a contact time of 22 h, a temperature of 30 °C, a particle size of <150 μm and an initial Cr(VI) of 1,171 mg l(-1). At system pH of 2, Cr(VI) in the HCrO(4)(-) form can be adsorbed with acrylic acid-grafted coir pith via an electrostatic attraction. The adsorption isotherm of 2 M acrylic acid-grafted coir pith exhibited a good fit with the Langmuir isotherm. The maximum Cr(VI) adsorption capacity of the 2 M acrylic acid-grafted coir pith was 196.00 mg Cr(VI) g(-1) adsorbent, whereas for coir pith without grafting, the maximum Cr(VI) removal was 165.00 mg Cr(VI) g(-1) adsorbent. The adsorption capacity of the acrylic acid-grafted coir pith for Cr(VI) was higher compared to the original coir pith. This result was due to the enhancement of the carbonyl groups on the coir pith surface that may have involved the mechanism of chromium adsorption. The X-ray absorption near edged structure (XANES) and desorption studies suggested that most of the Cr(III) that presented on the acrylic acid-grafted coir pith was due to the Cr(VI) being reduced to Cr(III) on the adsorbent surface. FTIR

  12. Adsorption characteristics of siloxanes in landfill gas by the adsorption equilibrium test.

    Science.gov (United States)

    Nam, Sangchul; Namkoong, Wan; Kang, Jeong-Hee; Park, Jin-Kyu; Lee, Namhoon

    2013-10-01

    Due to the increase in energy cost by constantly high oil prices and the obligation to reduce greenhouse effect gases, landfill gas is frequently used as an alternative energy source for producing heat and electricity. Most of landfill gas utility facilities, however, are experiencing problems controlling siloxanes from landfill gas as their catalytic oxidizers are becoming fouled by silicon dioxide dust. To evaluate adsorption characteristics of siloxanes, an adsorption equilibrium test was conducted and parameters in the Freundlich and Langmuir isotherms were analyzed. Coconut activated carbon (CA1), coal activated carbon (CA2), impregnated activated carbon (CA3), silicagel (NCA1), and activated alumina (NCA2) were used for the adsorption of the mixed siloxane which contained hexamethyldisiloxane (L2), octamethylcyclotetrasiloxane (D4), and decamethylcyclopentasiloxane (D5). L2 had higher removal efficiency in noncarbon adsorbents compared to carbon adsorbents. The application of Langmuir and Freundlich adsorption isotherm demonstrated that coconut based CA1 and CA3 provided higher adsorption capacity on L2. And CA2 and NCA1 provided higher adsorption capacity on D4 and D5. Based on the experimental results, L2, D4, and D5 were converted by adsorption and desorption in noncarbon adsorbents. Adsorption affinity of siloxane is considered to be affect by the pore size distribution of the adsorbents and by the molecular size of each siloxane. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Synthesis of Magnesium Ferrites for the Adsorption of Congo Red from Aqueous Solution Using Batch Studies

    Science.gov (United States)

    Erdawati, E.; Darsef, D.

    2018-04-01

    A sol gel method with citric acid as an anionic surfactant was used to fabricate nano magnesium ferrites (MgFe2O4) under different calcination temperatures for 2h, respectively. The microstructure and surface morphology of magnesium ferrite powder were characterized by FTIR, XRD, SEM, and BET. The results of this study are useful for adsorption Congo red. The results showed that increasing solution pH and extending contact time are favorable for improving adsorption efficiency. with initial Congo red concentration of 50 mg/L and 100 mg/L. Adsorption data fits well with the Langmuir isotherm models with a maximum adsorption capacity (qm) and a Langmuir adsorption equilibrium constant (K) of 65.1 mg/g and 0.090 L/mg, respectively. The adsorption kinetic agrees well with pseudo second order model with the pseudo second rate constants (K2) of 0.0468 and0.00189 g/mg/min for solutions with initial congo red of 50 and 100 mg/L, respectively

  14. Adsorption of malachite green from aqueous solution by using novel chitosan ionic liquid beads.

    Science.gov (United States)

    Naseeruteen, Faizah; Hamid, Nur Shahirah Abdul; Suah, Faiz Bukhari Mohd; Ngah, Wan Saime Wan; Mehamod, Faizatul Shimal

    2018-02-01

    Chitosan ionic liquid beads were prepared from chitosan and 1-butyl-3-methylimidazolium based ionic liquids to remove Malachite Green (MG) from aqueous solutions. Batch adsorption experiments were carried out as a function of initial pH, adsorbent dosage, agitation time and initial MG concentration. The optimum conditions were obtained at pH 4.0, 0.008g of adsorbent dosage and 20min of agitation time were utilized in the kinetic and isotherm studies. Three kinetic models were applied to analyze the kinetic data and pseudo-second order was found to be the best fitted model with R 2 >0.999. In order to determine the adsorption capacity, the sorption data were analyzed using the linear form of Langmuir, Freundlich and Temkin equations. The isotherm was best fitted by Langmuir isotherm model. The maximum adsorption capacity (q max ) obtained from Langmuir isotherm for two chitosan beads 1-butyl-3-methylimidazolium acetate A and 1-butyl-3-methylimidazolium B are 8.07mgg -1 and 0.24mgg -1 respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Improving the capacity of lithium-sulfur batteries by tailoring the polysulfide adsorption efficiency of hierarchical oxygen/nitrogen-functionalized carbon host materials.

    Science.gov (United States)

    Schneider, Artur; Janek, Jürgen; Brezesinski, Torsten

    2017-03-22

    The use of monolithic carbons with structural hierarchy and varying amounts of nitrogen and oxygen functionalities as sulfur host materials in high-loading lithium-sulfur cells is reported. The primary focus is on the strength of the polysulfide/carbon interaction with the goal of assessing the effect of (surface) dopant concentration on cathode performance. The adsorption capacity - which is a measure of the interaction strength between the intermediate lithium polysulfide species and the carbon - was found to scale almost linearly with the nitrogen level. Likewise, the discharge capacity of lithium-sulfur cells increased linearly. This positive correlation can be explained by the favorable effect of nitrogen on both the chemical and electronic properties of the carbon host. The incorporation of additional oxygen-containing surface groups into highly nitrogen-functionalized carbon helped to further enhance the polysulfide adsorption efficiency, and therefore the reversible cell capacity. Overall, the areal capacity could be increased by almost 70% to around 3 mA h cm -2 . We believe that the design parameters described here provide a blueprint for future carbon-based nanocomposites for high-performance lithium-sulfur cells.

  16. Theoretical study on the gas adsorption capacity and selectivity of CPM-200-In/Mg and CPM-200-In/Mg-X (-X = -NH2, -OH, -N, -F).

    Science.gov (United States)

    Liu, Xiao-le; Chen, Guang-Hui; Wang, Xiu-Jun; Li, Peng; Song, Yi-Bing; Li, Rui-Yan

    2017-11-15

    The adsorption capacities of a heterometallic metal-organic framework (CPM-200-In/Mg) to VOCs (HCHO, C 2 H 4 , CH 4 , C 2 H 2 , C 3 H 8 , C 2 H 6 , C 2 H 3 Cl, C 2 H 2 Cl 2 , CH 2 Cl 2 and CHCl 3 ) and some inorganic gas molecules (HCN, SO 2 , NO, CO 2 , CO, H 2 S and NH 3 ), as well as its selectivity in ternary mixture systems of natural gas and post-combustion flue gas are theoretically explored at the grand canonical Monte Carlo (GCMC) and density functional theory (DFT) levels. It is shown that CPM-200-In/Mg is suitable for the adsorption of VOCs, particularly for HCHO (up to 0.39 g g -1 at 298 K and 1 bar), and the adsorption capacities of some inorganic gas molecules such as SO 2 , H 2 S and CO 2 match well with the sequence of their polarizability (SO 2 > H 2 S > CO 2 ). The large adsorption capacities of HCN and HCHO in the framework result from the strong interaction between adsorbates and metal centers, based on analyzing the radial distribution functions (RDF). Comparing C 2 H 4 and CH 4 molecules interacting with CPM-200-In/Mg by VDW interaction, we speculate that the high adsorption capacities of their chlorine derivatives in the framework could be due to the existence of halogen bonding or strong electrostatic and VDW interactions. It is found that the basic groups, including -NH 2 , -N and -OH, can effectively improve both the adsorption capacities and selectivity of CPM-200-In/Mg for harmful gases. Note that the adsorption capacity of CPM-200-In/Mg-NH 2 (site 2) (245 cm 3 g -1 ) for CO 2 exceeded that of MOF-74-Mg (228 cm 3 g -1 ) at 273 K and 1 bar and that for HCHO can reach 0.41 g g -1 , which is almost twice that of 438-MOF and nearly 45 times of that in active carbon. Moreover, for natural gas mixtures, the decarburization and desulfurization abilities of CPM-200-In/Mg-NH 2 (site 2) have exceeded those of the MOF-74 series, while for post-combustion flue gas mixtures, the desulfurization ability of CPM-200-In/Mg-NH 2 (site 2) is still

  17. Adsorption of acidic, basic, and neutral proteins from aqueous samples using Fe3O4 magnetic nanoparticles modified with an ionic liquid

    International Nuclear Information System (INIS)

    Kamran, S.; Asadi, M.; Absalan, G.

    2013-01-01

    We have prepared and characterized Fe 3 O 4 nanoparticles and their binary mixtures (IL-Fe 3 O 4 ) with 1-hexyl-3-methylimidazolium bromide as ionic liquid for use in the adsorption of lysozyme (LYS), bovine serum albumin (BSA), and myoglobin (MYO). The optimum operational conditions for the adsorption of proteins (at 0.05-2.0 mg mL -1 ) were 4.0 mg mL -1 of nanoparticles and a contact time of 10 min. The maximum adsorption capacities are 455, 182 and 143 mg for LYS, BSA, and MYO per gram of adsorbent, respectively. The Langmuir model better fits the adsorption isotherms, with adsorption constants of 0.003, 0.015 and 0.008 L mg -1 , in order, for LYS, BSA, MYO. The applicability of two kinetic models including pseudo-first order and pseudo-second order model was estimated on the basis of comparative analysis of the corresponding rate parameters, equilibrium adsorption capacity and correlation coefficients. The adsorption processes are endothermic. The proteins can be desorbed from the nanoparticles by using NaCl solution at pH 9.5, and the nanoparticles thus can be recycled. (author)

  18. Adsorption of Pb(II by Activated Pyrolytic Char from Used Tire

    Directory of Open Access Journals (Sweden)

    Lu Ping

    2016-01-01

    Full Text Available As a renewable resource, the pyrolytic char derived from used tire has promising adsorption capacities owing to its similar structure and properties with active carbon. The purification and activation of the pyrolytic char from used tire, as well as the application of this material in the adsorption of Pb(II in water is conducted. The influences on the adsorption capacity by temperature and pH value are investigated and discussed; the adsorption thermodynamics and kinetics are also studied. The results show that the pyrolytic char from used tire has remarkable adsorption capacity for Pb(II, and the adsorption is an endothermic process complying with the Langmuir isotherm. The adsorption kinetics is a pseudo second-order reaction.

  19. Hg(II) adsorption using amidoximated porous acrylonitrile/itaconic copolymers prepared by suspended emulsion polymerization.

    Science.gov (United States)

    Ji, Chunnuan; Qu, Rongjun; Chen, Hou; Liu, Xiguang; Sun, Changmei; Ma, Caixia

    2016-01-01

    Initially, porous acrylonitrile/itaconic acid copolymers (AN/IA) were prepared by suspended emulsion polymerization. Successively, the cyano groups in AN/IA copolymers were converted to amidoxime (AO) groups by the reaction with hydroxylamine hydrochloride. The structures of the AN/IA and amidoximated AN/IA (AO AN/IA) were characterized by infrared spectroscopy, scanning electron microscopy, and porous structural analysis. The adsorption properties of AO AN/IA for Hg(II) were investigated. The results show that AO AN/IA has mesopores and macropores, and surface area of 11.71 m(2) g(-1). It was found that AO AN/IA has higher affinity for Hg(II), with the maximum adsorption capacity of 84.25 mg g(-1). The AO AN/IA also can effectively remove Hg(II) from different binary metal ion mixture systems. Furthermore, the adsorption kinetics and thermodynamics were studied in detail. The adsorption equilibrium can quickly be achieved in 4 h determined by an adsorption kinetics study. The adsorption process is found to belong to the second-order model, and can be described by the Freundlich model.

  20. Adsorption of dyes onto activated carbon cloth: using QSPRs as tools to approach adsorption mechanisms.

    Science.gov (United States)

    Metivier-Pignon, Hélène; Faur, Catherine; Le Cloirec, Pierre

    2007-01-01

    The present study aimed to investigate the adsorption of dyes onto activated carbon cloths. Kinetics and isotherms were studied based on results of batch reactors to constitute databases for the adsorption rates and capacities of 22 commercial dyes. Added to a qualitative analysis of experimental results, quantitative structure property relationships (QSPRs) were used to determine the structural features that influence most adsorption processes. QSPRs consisted of multiple linear regressions correlating adsorption parameters with molecular connectivity indices (MCIs) as molecular descriptors. Results related to adsorption kinetics showed that the size of molecules was the significant feature, the high order MCIs involved in QSPRs indicating the influence of a critical size on adsorption rate. Improved statistical fits were obtained when the database was divided according to the chemical classes of dyes. As regards to adsorption isotherms, their particular form led to the use of saturation capacity as the adsorption parameter. By contrast with adsorption kinetics, molecular overcrowding seemed to be of less influence on adsorption equilibrium. In this case, MCIs included in the QSPR were more related to details of the molecular structure. The robustness of the QSPR assessed for azo dyes was studied for the other dyes. Although the small size of the database limited predictive ability, features relevant to the influence of the database composition on QSPRs have been highlighted.

  1. Batch wise removal of chromium (vi) by adsorption on novel synthesized poly aniline composites with various brans and iso thermal modeling of equilibrium data

    International Nuclear Information System (INIS)

    Kanwal, F.; Rehman, R.; Anwar, J.; Saeed, M.

    2012-01-01

    Summary: Several novel adsorbents have been investigated now-a-days for removal of poisonous substances from waste water. In this research work, poly aniline composites with rice bran, maize bran and wheat bran had been synthesized and applied for the adsorption of Cr(Vi) from waste water. Morphological changes occurring in the surface of composites were characterized by recording their FT-IR spectra. Rice bran, maize bran and wheat bran modified the surface morphology of polyaniline by preventing the aggregation of monomers resulting in improved adsorption capacity. Operational conditions were optimized and applied to Langmuir and Freundlich isotherms for investigating the adsorption mechanism and maximum sorption capacity. Thermodynamic studies positively showed the feasibleness of these adsorbents for the removal of Cr(Vi). (author)

  2. Adsorption and release of micronutrients by humin extracted from peat samples

    Energy Technology Data Exchange (ETDEWEB)

    Goveia, Danielle; Melo, Camila de A.; Oliveira, Lilian K. de; Rocha, Julio Cesar [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Araraquara, SP (Brazil). Instituto de Quimica; Fraceto, Leonardo F.; Rosa, Andre Henrique, E-mail: ahrosa@sorocaba.unesp.br [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Sorocaba, SP (Brazil). Departamento de Engenharia Ambiental; Dias Filho, Newton Luiz [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Ilha Solteira, SP (Brazil). Departamento de Fisica e Quimica

    2013-05-15

    The objective of this work was to investigate the adsorption of micronutrients in humin and to verify the ability to release these elements in water. The first step was to determine the adsorption capacity of humin for several essential plant micronutrients and check the kinetic parameters. The order of adsorption was Zn < Ni < Co < Mn < Mo < Cu < Fe, whereas Zn showed maximum values of ca. 2.5 mg g-1 and Fe values of ca. 0.5 mg g-1 for systems containing 1 g of humin. Iron presented higher percentages of release (ca. 100%) and Co the lowest percentages (0.14%). The findings suggested that the use of humin enriched with micronutrients can be a promising alternative for the fertilization of agricultural soils, with the additional benefit of incorporating organic matter present in the form of humic substances into the soil and improving the agricultural productivity. (author)

  3. Synthesis of graphene aerogel for adsorption of bisphenol A

    Science.gov (United States)

    Trinh, Truong Thi Phuong Nguyet Xuan; Long, Nguyen Huynh Bach Son; Quang, Dong Thanh; Hieu, Nguyen Huu

    2018-04-01

    In this research, graphene aerogel (GA) was synthesized by chemical reduction method using ethylene diamine as a reducing agent. The morphology and properties of GA were characterized by calculating apparent density, Fourier transform infrared spectroscopy, X-ray diffraction, Raman spectroscopy, field emission scanning electron microscopy, and Brunauer-Emmett-Teller (BET) specific surface area. High-performance liquid chromatography (HPLC) was used to quantify the amount of the residual bisphenol A (BPA) concentration. The analysis results showed that GA exhibited low density ranging from 4-8 mg/cm3, hydrophobicity, high porosity, and specific surface area of 1883 m2/g according to BET. The obtained GA was used as an adsorbent for BPA. The effects of pH, contact time, and initial BPA concentration on the adsorption were investigated. The adsorption equilibrium time could be reached within 240 minutes. The adsorption data were well-fitted to pseudo-second-order kinetic equation and Langmuir isotherm model. The maximum adsorption capacity of GA for BPA calculated by the Langmuir model was 185.185 mg/g at pH 7. Accordingly, GA could be considered as promising adsorbents for BPA in water.

  4. Adsorption of Nile Blue A from Wastewater Using Magnetic Multi-Walled Carbon Nanotubes: Kinetics and Equilibrium Studies

    Directory of Open Access Journals (Sweden)

    Mehrnaz Ghoochian

    2016-04-01

    Full Text Available Background: Synthetic dyes are serious pollutants and wide ranges of methods have been employed for their removal from aquatic systems. We studied the adsorption of "Nile blue A" (NBA, an anionic dye, from aqueous solution by oxidized multi-walled carbon nanotubes (MWCNTs. Methods: Scanning electron microscope and Fourier transform infrared spectroscopy were used to characterize function groups produced at MWCNTs surface. Kinetics and adsorption isotherms of NBA, the effect of temperature, pH, contact time and initial dosage of nanotubes on the adsorption capacity were also assessed. The experimental data were analyzed by Langmuir and Freundlich models. Results: Most of the dye was removed in the first 5 min and best adsorption percentage was at pH 7.0. The equilibrium reached at 45 min. The experimental data were analyzed by Langmuir and Freundlich models and the results fitted well with the Freundlich model. The adsorption kinetic data were analyzed using first-order and the pseudo-second order model and the adsorption kinetic data of NBA dye onto MWCNTs fitted the pseudo-second order model. The maximum adsorption capacity was obtained as 169.49 mg g-1. Conclusion: Freundlich model suggested that the adsorption process followed heterogeneous distribution onto MWCNTs and pseudo-second model of adsorption implied that chemical processes controlled the rate-controlling step. Oxidized MWCNTs could be used as an effective adsorbent for the removal of "Nile Blue A" dye. Oxidization of MWCNTs by nitric acid, improves the efficiency of NBA removal due to increases in functional groups and total number of adsorption sites.

  5. Synthesis, characterization and dye removal ability of high capacity polymeric adsorbent: Polyaminoimide homopolymer

    International Nuclear Information System (INIS)

    Mahmoodi, Niyaz Mohammad; Najafi, Farhood; Khorramfar, Shooka; Amini, Farrokhlegha; Arami, Mokhtar

    2011-01-01

    Highlights: ► Polyaminoimide homopolymer (PAIHP) was synthesized and characterized. ► Kinetics data followed pseudo-second order kinetic model. ► Isotherm data followed Langmuir isotherm. ► Q 0 for DR31, DR23, DB22 and AB25 was 6667, 5555, 9090 and 5882 mg/g, respectively. ► PAIHP was regenerated at pH 12. - Abstract: In this paper, polyaminoimide homopolymer (PAIHP) was synthesized and its dye removal ability was investigated. Physical characteristics of PAIHP were studied using Fourier transform infrared (FTIR) and scanning electron microscopy (SEM). Direct Red 31 (DR31), Direct Red 23 (DR23), Direct Black 22 (DB22) and Acid Blue 25 (AB25) were used as model compounds. The kinetic and isotherm of dye adsorption were studied. The effect of operational parameter such as adsorbent dosage, pH and salt on dye removal was evaluated. Adsorption kinetic of dyes followed pseudo-second order kinetics. The maximum dye adsorption capacity (Q 0 ) of PAIHP was 6667 mg/g, 5555 mg/g, 9090 mg/g and 5882 mg/g for DR31, DR23, DB22 and AB25, respectively. It was found that adsorption of DR31, DR23, DB22 and AB25 onto PAIHP followed with Langmuir isotherm. Dye desorption tests (adsorbent regeneration) showed that the maximum dye release of 90% for DR31, 86% for DR23, 87% for DB22 and 90% for AB25 were achieved in aqueous solution at pH 12. The results showed that the PAIHP as a polymeric adsorbent with high dye adsorption capacity might be a suitable alternative to remove dyes from colored wastewater.

  6. Magnetic biochar combining adsorption and separation recycle for removal of chromium in aqueous solution.

    Science.gov (United States)

    Xin, Ouyang; Yitong, Han; Xi, Cao; Jiawei, Chen

    2017-03-01

    Biochar has been developed in recent years for the removal of contaminants such as Cr (VI) in water. The enhancement of the adsorption capacity of biochar and its recyclable use are still challenges. In this study, magnetic biochar derived from corncobs and peanut hulls was synthesized under different pyrolysis temperatures after pretreating the biomass with a low concentration of 0.5 M FeCl 3 solution. The morphology, specific surface area, saturation magnetization and Fourier transform infrared spectroscopy (FT-IR) spectra were characterized for biochar. The magnetic biochar performed well in combining adsorption and separation recycle for the removal of Cr (VI) in water. The Cr (VI) adsorbance of the biochar was increased with the increase in pyrolysis temperature, and the magnetic biochar derived from corncobs showed better performance for both magnetization and removal of Cr (VI) than that from peanut hulls. The Langmuir model was used for the isothermal adsorption and the maximum Cr (VI) adsorption capacity of corncob magnetic biochar pyrolyzed at 650 °C reached 61.97 mg/g. An alkaline solution (0.1 M NaOH) favored the desorption of Cr (VI) from the magnetic biochar, and the removal of Cr (VI) still remained around 77.6% after four cycles of adsorption-desorption. The results showed that corncob derived magnetic biochar is a potentially efficient and recoverable adsorbent for remediation of heavy metals in water.

  7. Comparative potential of black tea leaves waste to granular activated carbon in adsorption of endocrine disrupting compounds from aqueous solution

    Directory of Open Access Journals (Sweden)

    A.O. Ifelebuegu

    2015-07-01

    Full Text Available The adsorption properties and mechanics of selected endocrine disrupting compounds; 17 β-estradiol, 17 α – ethinylestradiol and bisphenol A on locally available black tea leaves waste and granular activated carbon were investigated. The results obtained indicated that the kinetics of adsorption were pH, adsorbent dose, contact time and temperature dependent with equilibrium being reached at 20 to 40 minutes for tea leaves waste and 40 to 60 minutes for granular activated compound. Maximum adsorption capacities of 3.46, 2.44 and 18.35 mg/g were achieved for tea leaves waste compared to granular activated compound capacities of 4.01, 2.97 and 16.26 mg/g for 17 β- estradiol, 17 α-ethinylestradiol and bisphenol A respectively. Tea leaves waste adsorption followed pseudo-first order kinetics while granular activated compound fitted better to the pseudo-second order kinetic model. The experimental isotherm data for both tea leaves waste and granular activated compound showed a good fit to the Langmuir, Freundlich and Temkin isotherm models with the Langmuir model showing the best fit. The thermodynamic and kinetic data for the adsorption indicated that the adsorption process for tea leaves waste was predominantly by physical adsorption while the granular activated compound adsorption was more chemical in nature. The results have demonstrated the potential of waste tea leaves for the adsorptive removal of endocrine disrupting compounds from water.

  8. Surfactant-impregnated activated carbon for enhanced adsorptive removal of Ce(IV) radionuclides from aqueous solutions

    International Nuclear Information System (INIS)

    Mahmoud, Mamdoh R.; Sharaf El-deen, Gehan E.; Soliman, Mohamed A.

    2014-01-01

    Highlights: • Activated carbon (AC) was impregnated in this work with CTAB and NaLS surfactants. • The materials were evaluated as a sorbent for adsorption of Ce(IV) radionuclides. • Adsorption capacity of AC–NaLS for Ce(IV) is two-times the capacity of AC. • The kinetic and equilibrium data are fitted to pseudo-second-order and D–R models. • The results suggest the applicability of surface modified AC for waste treatment. - Abstract: The surfactants cetyltrimethylammonium bromide (CTAB) and sodium lauryl sulfate (NaLS) were utilized for modifying the activated carbon’s surface. The materials were characterized using BET–N 2 , scanning electron microscope, and Fourier transform infrared (FT-IR) spectroscopy. Adsorption of Ce(IV) radionuclides from aqueous solutions by activated carbon (AC) and surfactant-impregnated AC was studied. The obtained data showed that adsorption of Ce(IV) is strongly dependent on the solution pH and AC–NaLS exhibits the widest pH-range of maximum removal. The experimental adsorption capacity of AC–NaLS (0.069 mmol/g) for Ce(IV) is found to be nearly twice greater than that of AC (0.036 mmol/g). The adsorption kinetics of Ce(IV) onto AC and AC–NaLS were analyzed by linear and non-linear fittings to the pseudo-first-order, pseudo-second-order and Elovich kinetic models. Of these models, the pseudo-second-order is the best kinetic expression for describing the experimental data. The diffusion studies indicated that adsorption of Ce(IV) radionuclides on AC and AC–NaLS is controlled by film diffusion. Linear and non-linear fittings of the adsorption equilibrium data for Ce(IV) onto AC and AC–NaLS revealed that the Dubinin–Radushkevich (D–R) isotherm model fits the experimental data better than Freundlich and Langmuir models. The values of adsorption free energy, E, calculated from both linear and non-linear methods suggested that Ce(IV) radionuclides are physically adsorbed onto AC and AC–NaLS

  9. Fluoride adsorption from aqueous solution by magnetic core-shell Fe{sub 3}O{sub 4}@alginate-La particles fabricated via electro-coextrusion

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yahui [School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan (China); Engineering Research Center of Biomass Materials, Ministry of Education, Mianyang 621010, Sichuan (China); Lin, Xiaoyan, E-mail: lxy20100205@163.com [School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan (China); Engineering Research Center of Biomass Materials, Ministry of Education, Mianyang 621010, Sichuan (China); Zhou, Quisheng [A State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, Guangzhou 510640 (China); Luo, Xuegang [Engineering Research Center of Biomass Materials, Ministry of Education, Mianyang 621010, Sichuan (China)

    2016-12-15

    Graphical abstract: The magnetic core-shell Fe{sub 3}O{sub 4}@Alg-La particles were fabricated successfully by a simple method of electro-coextrusion, and employed as an adsorbent for separation of fluoride from aqueous solution. - Highlights: • Magnetic core-shell Fe{sub 3}O{sub 4}@Alg-La particles were prepared by electro-coextrusion. • The maximum adsorption capacity for fluoride at 298.15 K was 45.230 mg/g. • The adsorbent has a good saturation magnetization value. • The adsorbent has a great potential in removing the fluoride. - Abstract: The magnetic core-shell Fe{sub 3}O{sub 4}@Alg-La particles were fabricated successfully by a simple method of electro-coextrusion, and employed as an adsorbent for separation of fluoride from aqueous solution. Main factors affecting the removal of fluoride, including pH, adsorbent dosage, initial concentration, temperature and contact time were investigated. The adsorption isotherm and adsorption kinetics were studied to understand the adsorption process in detail. The experimental data were fitted well by the non-linear Freundlich isotherm and linear pseudo-second-order model, the maximum fluoride adsorption capacity was 45.230 mg/g at pH 4, 298.15 K. Thermodynamic parameters indicated that the fluoride adsorption process was feasible and spontaneous. The presence of other anions like Cl{sup −}, SO{sub 4}{sup 2−}, HCO{sub 3}{sup −} and PO{sub 4}{sup 3−} had almost no effect on the fluoride adsorption. The adsorbent can be easily separated from the solution by a magnet. The magnetic core-shell Fe{sub 3}O{sub 4}@Alg-La particles before and after fluoride adsorption were studied by SEM, FTIR, EDX and XPS, which indicated that the adsorption mechanism may be related to electrostatic attraction and Lewis acid-base interaction.

  10. Effect of temperature on equilibrium and thermodynamic parameters of Cd (II) adsorption onto turmeric powder

    International Nuclear Information System (INIS)

    Qayoom, A.

    2012-01-01

    Summary: Batch adsorption of Cd (II) onto turmeric powder was conducted as a function of temperature. Nonlinear Langmuir, Freundlich, Dubinin-Radushkevish (D-R) and Temkin equilibrium models were employed. In addition to R 2, five different error functions were used to determine best fit equilibrium isotherm model. It was found that Freundlich isotherm model provided better fit for adsorption data at 298 and 303 K and Langmuir model was suitable for the experimental data obtained at 310 and 313 K. It was found that increase in temperature decreased maximum adsorption capacities, showing that the adsorption of Cd (II) onto turmeric powder is exothermic. Enthalpy values also confirmed the same trend. Entropy values were negative which means that randomness decreased on increasing temperature. Gibbs free energies were non spontaneous at all the temperatures studied. E values were in the range of 2.73-3.23 kJ mol/sup -1/ which indicated that adsorption mechanism is essentially physical. (author)

  11. Adsorption and Desorption Characteristics of Cd2+ and Pb2+ by Micro and Nano-sized Biogenic CaCO3

    Science.gov (United States)

    Liu, Renlu; Guan, Yong; Chen, Liang; Lian, Bin

    2018-01-01

    The purpose of this study was to elucidate the characteristics and mechanisms of adsorption and desorption for heavy metals by micro and nano-sized biogenic CaCO3 induced by Bacillus subtilis, and the pH effect on adsorption was investigated. The results showed that the adsorption characteristics of Cd2+ and Pb2+ are well described by the Langmuir adsorption isothermal equation, and the maximum adsorption amounts for Cd2+ and Pb2+ were 94.340 and 416.667 mg/g, respectively. The maximum removal efficiencies were 97% for Cd2+, 100% for Pb2+, and the desorption rate was smaller than 3%. Further experiments revealed that the biogenic CaCO3 could maintain its high adsorption capability for heavy metals within wide pH ranges (3–8). The FTIR and XRD results showed that, after the biogenic CaCO3 adsorbed Cd2+ or Pb2+, it did not produce a new phase, which indicated that biogenic CaCO3 and heavy metal ions were governed by a physical adsorption process, and the high adsorptive capacity of biogenic CaCO3 for Cd2+ and Pb2+ were mainly attributed to its large total specific surface area. The findings could improve the state of knowledge about biogenic CaCO3 formation in the environment and its potential roles in the biogeochemical cycles of heavy metals. PMID:29434577

  12. Synthesis of polycationic bentonite-ionene complexes and their benzene adsorption capacity

    Directory of Open Access Journals (Sweden)

    Valquíria Campos

    2015-04-01

    Full Text Available The purpose of this work was to structurally modify clays in order to incorporate water-insoluble molecules, such as petroleum hydrocarbons. The potential for ion exchange of quaternary ammonium salts was studied, which revealed their ability to interact with anions on the cationic surface, for environmental applications of the material. Ionenes, also known as polycations, have many potential uses in environmental applications. In this work, cationic aliphatic ammonium polyionenes, specifically 3,6-ionene and 3,6-dodecylionene, were prepared for incorporation into clay to form bentonite-ionene complexes. The intercalation of bentonite with ionene polymers resulted in an increase in the basal spacing of 3,6-dodecylionene from 1.5-3.5 nm. The higher d001 spacing of 3,6-dodecylionene samples than that of 3,6-ionene samples may be attributed to their longer tail length. The behavior of the TG/DTG curves and the activation energy values suggest that 3,6-dodecylionene (E = 174.85 kJ mol–1 is thermally more stable than 3,6 ionene (E = 115.52 kJ mol–1 complexes. The adsorption of benzene by 3,6-ionene and 3,6-dodecylionene was also investigated. The increase in benzene concentrations resulted in increased benzene adsorption by the sorbents tested in this work. The sorption capacity of benzene on ionene-modified bentonite was in the order of 3,6-dodecylionene > 3,6-ionene.

  13. Preparation of surface modified zinc oxide nanoparticle with high capacity dye removal ability

    International Nuclear Information System (INIS)

    Mahmoodi, Niyaz Mohammad; Najafi, Farhood

    2012-01-01

    Highlights: ► Amine-functionalized zinc oxide nanoparticle (AFZON) was synthesized. ► Isotherm and kinetics data followed Langmuir isotherm and pseudo-second order kinetic model, respectively. ► Q 0 of ZON for AB25, DR23 and DR31 was 20, 12 and 15 mg/g, respectively. ► Q 0 of AFZON for AB25, DR23 and DR31 was 1250, 1000 and 1429 mg/g, respectively. ► AFZON was regenerated at pH 12. -- Abstract: In this paper, the surface modification of zinc oxide nanoparticle (ZON) by amine functionalization was studied to prepare high capacity adsorbent. Dye removal ability of amine-functionalized zinc oxide nanoparticle (AFZON) and zinc oxide nanoparticle (ZON) was also investigated. The physical characteristics of AFZON were studied using Fourier transform infrared (FTIR), scanning electron microscopy (SEM) and X-ray diffraction (XRD). Acid Blue 25 (AB25), Direct Red 23 (DR23) and Direct Red 31 (DR31) were used as model compounds. The effect of operational parameters such as dye concentration, adsorbent dosage, pH and salt on dye removal was evaluated. The isotherm and kinetic of dye adsorption were studied. The maximum dye adsorption capacity (Q 0 ) was 20 mg/g AB25, 12 mg/g DR23 and 15 mg/g DR31 for ZON and 1250 mg/g AB25, 1000 mg/g DR23 and 1429 mg/g DR31 for AFZON. It was found that dye adsorption followed Langmuir isotherm. Adsorption kinetic of dyes was found to conform to pseudo-second order kinetics. Dye desorption tests (adsorbent regeneration) showed that the maximum dye release of 90% AB25, 86% for DR23 and 90% for DR31 were achieved in aqueous solution at pH 12. Based on the data of the present investigation, it can be concluded that the AFZON being an adsorbent with high dye adsorption capacity might be a suitable alternative to remove dyes from colored aqueous solutions.

  14. Adsorption mechanism of microcrystalline cellulose as green adsorbent for the removal of cationic methylene blue dye

    International Nuclear Information System (INIS)

    Tan, K.B.; Salamatinia, B.

    2016-01-01

    The adsorption mechanism of pure cellulose is yet to be explored. Thus, in this study, the adsorption mechanism of Microcrystalline Cellulose (MCC), a polysaccharide which is renewable, low cost and non-toxic, was studied on the adsorption of model dye Methylene blue (MB). It was found that the main adsorption mechanism of MB on MCC was due to the electrostatic attraction between the positively charged MB dye and negatively charged MCC. Thus, physical adsorption was the dominant effect, since electrostatic attraction is categorized as physical adsorption. This was verified by Dubinin-Radushkevich isotherm, whereby mean free energy adsorption value was found to be less than 8 kJ/mol. The values of Gibbs free energy for thermodynamics studies were found to be within the range of -20 kJ/mol and 0 kJ/mol, which also indicated physical adsorption. It was due to the electrostatic attraction as adsorption mechanism of this adsorption process which resulted rapid adsorption of MB dye. It was found that equilibrium dye concentration was achieved between 1-3 minutes, depending on the adsorption temperature. The rapid adsorption, as compared to a lot of materials, showed the potential of MCC as the future of green adsorbent. The adsorption of Methylene Blue on MCC fitted well in Langmuir Isotherm, with R2 values of higher than 0.99, while fitted moderately in Freundlich Isotherm, with R2 values between 0.9224 and 0.9223. Comparatively, the adsorption of MB on MCC fitted best Langmuir Isotherm as compared to Freundlich Isotherm which monolayer adsorption occurred at the homogenous surface of MCC. This also indicated adsorbed MB molecules do not interact with each other at neighboring adsorption sites. The maximum adsorption capacity calculated from Langmuir Isotherm was found to be 4.95 mg/g. Despite the potential of MCC as green adsorbent, the challenge of low adsorption capacity has to be addressed in the future. (author)

  15. Heavy metals adsorption by novel EDTA-modified chitosan-silica hybrid materials.

    Science.gov (United States)

    Repo, Eveliina; Warchoł, Jolanta K; Bhatnagar, Amit; Sillanpää, Mika

    2011-06-01

    Novel adsorbents were synthesized by functionalizing chitosan-silica hybrid materials with (ethylenediaminetetraacetic acid) EDTA ligands. The synthesized adsorbents were found to combine the advantages of both silica gel (high surface area, porosity, rigid structure) and chitosan (surface functionality). The Adsorption potential of hybrid materials was investigated using Co(II), Ni(II), Cd(II), and Pb(II) as target metals by varying experimental conditions such as pH, contact time, and initial metal concentration. The kinetic results revealed that the pore diffusion process played a key role in adsorption kinetics, which might be attributed to the porous structure of synthesized adsorbents. The obtained maximum adsorption capacities of the hybrid materials for the metal ions ranged from 0.25 to 0.63 mmol/g under the studied experimental conditions. The adsorbent with the highest chitosan content showed the best adsorption efficiency. Bi-Langmuir and Sips isotherm model fitting to experimental data suggested the surface heterogeneity of the prepared adsorbents. In multimetal solutions, the hybrid adsorbents showed the highest affinity toward Pb(II). Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Removal of three nitrophenols from aqueous solutions by adsorption onto char ash: equilibrium and kinetic modeling

    Science.gov (United States)

    Magdy, Yehia M.; Altaher, Hossam; ElQada, E.

    2018-03-01

    In this research, the removal of 2,4 dinitrophenol, 2 nitrophenol and 4 nitrophenol from aqueous solution using char ash from animal bones was investigated using batch technique. Three 2-parameter isotherms (Freundlich, Langmuir, and Temkin) were applied to analyze the experimental data. Both linear and nonlinear regression analyses were performed for these models to estimate the isotherm parameters. Three 3-parameter isotherms (Redlich-Peterson, Sips, Toth) were also tested. Moreover, the kinetic data were tested using pseudo-first order, pseudo-second order, Elovich, Intraparticle diffusion and Boyd methods. Langmuir adsorption isotherm provided the best fit for the experimental data indicating monolayer adsorption. The maximum adsorption capacity was 8.624, 7.55, 7.384 mg/g for 2 nitrophenol, 2,4 dinitrophenol, and 4 nitrophenol, respectively. The experimental data fitted well to pseudo-second order model suggested a chemical nature of the adsorption process. The R 2 values for this model were 0.973 up to 0.999. This result with supported by the Temkin model indicating heat of adsorption to be greater than 10 kJ/mol. The rate controlling step was intraparticle diffusion for 2 nitrophenol, and a combination of intraparticle diffusion and film diffusion for the other two phenols. The pH and temperature of solution were found to have a considerable effect, and the temperature indicated the exothermic nature of the adsorption process. The highest adsorption capacity was obtained at pH 9 and 25 °C.

  17. Adsorption and magnetic removal of neutral red dye from aqueous solution using Fe3O4 hollow nanospheres

    International Nuclear Information System (INIS)

    Iram, Mahmood; Guo, Chen; Guan Yueping; Ishfaq, Ahmad; Liu Huizhou

    2010-01-01

    Fe 3 O 4 hollow nanospheres were prepared via a simple one-pot template-free hydrothermal method and were fully characterized. These magnetic spheres have been investigated for application as an adsorbant for the removal of dye contaminants from water. Because of the high specific surface area, nano-scale particle size, and hollow porous material, Fe 3 O 4 hollow spheres showed favorable adsorption behavior for Neutral red. Factors affecting adsorption, such as, initial dye concentration, pH and contact time were evaluated. Langmuir and the Freundlich adsorption isotherms were selected to explicate the interaction of the dye and magnetic adsorbant. The characteristic parameters for each isotherm have been determined. The overall trend followed an increase of the sorption capacity with increasing dye concentration with a maximum of 90% dye removal. The monolayer adsorption capacity of magnetic hollow spheres (0.05 g) for NR in the concentration range studied, as calculated from the Langmuir isotherm model at 25 deg. C and pH 6, was found to be 105 mg g -1 . Adsorption kinetic followed pseudo-second-order reaction kinetics. Thermodynamic study showed that the adsorption processes are spontaneous and endothermic. The combination of the superior adsorption and the magnetic properties of Fe 3 O 4 nanospheres can be useful as a powerful separation tool to deal with environmental pollution.

  18. Removal and recovery of molybdenum from aqueous solutions by adsorption onto Surfactant-Modified coir pith, a lignocellulosic polymer

    Energy Technology Data Exchange (ETDEWEB)

    Namasivayam, Chinnaiya [Environmental Chemistry Division, Department of Environmental Sciences, Bharathiar University, Coimbatore (India); Sureshkumar, Molagoundanpalayam Venkatachalam [Department of Chemistry, PARK College of Engineering and Technology, Coimbatore (India)

    2009-01-15

    Coconut coir pith, a lignocellulosic polymer, is an unwanted by-product of the coir fiber industry. The pith was used as a biosorbent for the removal of Molybdenum(VI) after modification with a cationic surfactant, hexadecyltrimethylammonium bromide. The optimum pH for maximum adsorption of Mo(VI) was found to be 3.0. Langmuir, Freundlich and Dubinin Radushkevich isotherms were used to model the adsorption equilibrium data and the system was seen to follow all three isotherms. The Langmuir adsorption capacity of the biosorbent was found to be 57.5 mg g{sup -1}. Kinetic studies showed that the adsorption generally obeyed a second-order kinetic model. Desorption studies showed that the recovery of Mo(VI) from the spent adsorbent was feasible. The effect of foreign anions on the adsorption of Mo(VI) was also examined. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  19. Removal of malachite green by adsorption and precipitation using aminopropyl functionalized magnesium phyllosilicate

    International Nuclear Information System (INIS)

    Lee, Young-Chul; Kim, Eui Jin; Yang, Ji-Won; Shin, Hyun-Jae

    2011-01-01

    Highlights: → Preparation of aminopropyl functionalized magnesium phyllosilicate (AMP clay). → Characterization of AMP clay and AMP clay-malachite green (MG) mixture. → Novel precipitation mechanism including MG fading plus collapsed AMP clay. → Adsorption kinetics and thermodynamics of MG using AMP clay. - Abstract: We report a method for the removal of malachite green (MG) by adsorption and precipitation using nano-sized aminopropyl functionalized magnesium phyllosilicate (AMP) clay. MG, which is used in aquaculture and fisheries, is a carcinogenic and mutagenic compound. In response to these health risks, many efforts have been focused on adsorption of MG onto various adsorbents, which is a versatile and widely used technique for removing MG from water. Herein, we describe the adsorption and precipitation of MG using AMP clay, as well as the alkaline fading phenomenon of MG. In this study, prepared AMP clay and the precipitate product after the reaction of MG-AMP clay mixture were characterized. In addition, adsorption isotherms and kinetics, as well as thermodynamic studies are presented. Based on the results, we suggest a macro- and microscopic removal mechanism for the adsorption and precipitation of MG using AMP clay. An AMP clay dosage of 0.1 mg mL -1 exhibited a maximum removal capacity of 334.80 mg g -1 and 81.72% MG removal efficiency. With further increases of the AMP clay dosage, removal capacity by AMP clay gradually decreased; at dosage above 0.2 mg mL -1 of AMP clay, the removal efficiency reached 100%.

  20. Removal of malachite green by adsorption and precipitation using aminopropyl functionalized magnesium phyllosilicate

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young-Chul [Department of Chemical and Biomolecular Engineering (BK21 Program), KAIST, 335 Gwahak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Kim, Eui Jin [Department of Chemical and Biochemical Engineering, Chosun University, Seosuk-dong, Dong-gu, Gwangju 501-759 (Korea, Republic of); Yang, Ji-Won [Department of Chemical and Biomolecular Engineering (BK21 Program), KAIST, 335 Gwahak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Shin, Hyun-Jae, E-mail: shinhj@chosun.ac.kr [Department of Chemical and Biochemical Engineering, Chosun University, Seosuk-dong, Dong-gu, Gwangju 501-759 (Korea, Republic of)

    2011-08-15

    Highlights: {yields} Preparation of aminopropyl functionalized magnesium phyllosilicate (AMP clay). {yields} Characterization of AMP clay and AMP clay-malachite green (MG) mixture. {yields} Novel precipitation mechanism including MG fading plus collapsed AMP clay. {yields} Adsorption kinetics and thermodynamics of MG using AMP clay. - Abstract: We report a method for the removal of malachite green (MG) by adsorption and precipitation using nano-sized aminopropyl functionalized magnesium phyllosilicate (AMP) clay. MG, which is used in aquaculture and fisheries, is a carcinogenic and mutagenic compound. In response to these health risks, many efforts have been focused on adsorption of MG onto various adsorbents, which is a versatile and widely used technique for removing MG from water. Herein, we describe the adsorption and precipitation of MG using AMP clay, as well as the alkaline fading phenomenon of MG. In this study, prepared AMP clay and the precipitate product after the reaction of MG-AMP clay mixture were characterized. In addition, adsorption isotherms and kinetics, as well as thermodynamic studies are presented. Based on the results, we suggest a macro- and microscopic removal mechanism for the adsorption and precipitation of MG using AMP clay. An AMP clay dosage of 0.1 mg mL{sup -1} exhibited a maximum removal capacity of 334.80 mg g{sup -1} and 81.72% MG removal efficiency. With further increases of the AMP clay dosage, removal capacity by AMP clay gradually decreased; at dosage above 0.2 mg mL{sup -1} of AMP clay, the removal efficiency reached 100%.

  1. Adsorption characteristics of N-nitrosodimethylamine from aqueous solution on surface-modified activated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Xiaodong, Dai [Chemistry and Chemical Engineering School, China University of Petroleum, Dongying 257061, Shandong (China); Institute for Sustainability and Innovation, Victoria University, Melbourne, VIC 8001 (Australia); Zou, Linda [SA Water Centre for Water Management and Reuse, University of South Australia, Adelaide, SA5095 (Australia); Zifeng, Yan [Chemistry and Chemical Engineering School, China University of Petroleum, Dongying 257061, Shandong (China); Millikan, Mary [Institute for Sustainability and Innovation, Victoria University, Melbourne, VIC 8001 (Australia)

    2009-08-30

    This study investigated the removal of N-nitrosodimethylamine (NDMA) by an adsorption mechanism using commercially available activated carbons and surface-modified activated carbons. The effects of the modification on the properties of the activated carbon were studied by N{sub 2} adsorption/desorption, Diffuse Reflectance Infrared Fourier Transmission (DRIFT) analysis and X-Ray Photoelectron Spectroscopy (XPS). Adsorption experiments revealed that the activated carbons demonstrated a greater capacity for NDMA adsorption capacity than can be achieved using zeolite. The equilibrium data was fitted to the Freundlich equation and it was found that the adsorption capacity was significantly influenced by the micropore size, relative pore volume and surface characteristics. Adsorption experiments were conducted using unmodified and modified activated carbons. The results indicated that the adsorption capacity of NDMA can be significantly improved by heat treatment and doping of TiO{sub 2} particles. This was because the surface treatments yielded more hydrophobic sites and fewer oxygen-containing surface functional groups, and consequently an increased capacity for NDMA adsorption.

  2. Adsorption characteristics of N-nitrosodimethylamine from aqueous solution on surface-modified activated carbons

    International Nuclear Information System (INIS)

    Dai Xiaodong; Zou, Linda; Yan Zifeng; Millikan, Mary

    2009-01-01

    This study investigated the removal of N-nitrosodimethylamine (NDMA) by an adsorption mechanism using commercially available activated carbons and surface-modified activated carbons. The effects of the modification on the properties of the activated carbon were studied by N 2 adsorption/desorption, Diffuse Reflectance Infrared Fourier Transmission (DRIFT) analysis and X-Ray Photoelectron Spectroscopy (XPS). Adsorption experiments revealed that the activated carbons demonstrated a greater capacity for NDMA adsorption capacity than can be achieved using zeolite. The equilibrium data was fitted to the Freundlich equation and it was found that the adsorption capacity was significantly influenced by the micropore size, relative pore volume and surface characteristics. Adsorption experiments were conducted using unmodified and modified activated carbons. The results indicated that the adsorption capacity of NDMA can be significantly improved by heat treatment and doping of TiO 2 particles. This was because the surface treatments yielded more hydrophobic sites and fewer oxygen-containing surface functional groups, and consequently an increased capacity for NDMA adsorption.

  3. Effect of the pH in the adsorption and in the immersion enthalpy of monohydroxylated phenols from aqueous solutions on activated carbons.

    Science.gov (United States)

    Blanco-Martínez, D A; Giraldo, L; Moreno-Piraján, J C

    2009-09-30

    An activated carbon Carbochem--PS230 was modified by chemical and thermal treatment in flow of H(2) in order to evaluate the influence of the activated carbon chemical surface in the adsorption of the monohydroxylated phenols. The solid-solution interaction was determined by analyzing the adsorption isotherms at 298 K at pH 7, 9 and 11 during 48 h. The adsorption capacity of activated carbons increases when the pH solution decreases. The amount adsorbed increases in the reduced carbon at the maximum adsorption pH and decreases in the oxidized carbon. In the sample of granulated activated carbon, CAG, the monohydroxylated phenols adsorption capacity diminishes in the following order catechol >hydroquinone >resorcinol, at the three pH values. The experimental data are evaluated with Freundlich's and Langmuir's models. The immersion enthalpies are determined and increase with the retained amount, ranging between 21.5 and 45.7 J g(-1). In addition, the immersion enthalpies show more interaction with the reduced activated carbon that has lower total acidity contents.

  4. Prediction of equilibrium parameters of adsorption of lead (II) ions onto diatomite

    Science.gov (United States)

    Salman, Taylan; Ardalı, Yüksel; Gamze Turan, N.

    2013-04-01

    Heavy metals from industrial wastewaters are one of the most important environmental issues to be solved today. Due to their toxicity and nonbiodegradable nature, heavy metals cause environmental and public health problems. Various techniques have been developed to remove heavy metals from aqueous solutions. These include chemical precipitation, reverse osmosis, ion Exchange and adsorption. Among them, adsorption is considered to be a particularly competitive and effective process for the removal of heavy metals from aqueous solutions. There is growing interest in using low cost, commercially available materials for the adsorption of heavy metals. Diatomite is a siliceous sedimentary rock having an amorphous form of silica (SiO2. nH2O) containing a small amount of microcrystalline material. It has unique combination of physical and chemical properties such as high porosity, high permeability, small particle size, large surface area, and low thermal conductivity. In addition, it is available in Turkey and in various locations around the world. Therefore, diatomite has been successfully used as adsorbent for the removal of heavy metals. The aim of the study is to investigate the adsorption properties of diatomite. The equilibrium adsorption data were applied to the Langmuir, Freundlich and Dubinin-Radushkevic (D-R) isotherm models. Adsorption experiments were performed under batch process, using Pb (II) initial concentration, pH of solution and contact time as variables. The results demonstrated that the adsorption of Pb (II) was strongly dependent on pH of solution. The effect of pH on adsorption of Pb(II) on diatomite was conducted by varying pH from 2 to 12 at 20 oC. In the pH range of 2.0-4.0, the adsorption percentage increases slightly as the pH increasing. At pH>4, the adsorption percentage decreases with increasing pH because hydrolysis product and the precipitation begin to play an important role in the sorption of Pb (II). At pH4, the maximum adsorption

  5. Multicomponent Adsorption Model for Polar and Associating Mixtures

    DEFF Research Database (Denmark)

    Nesterov, Igor; Shapiro, Alexander; Kontogeorgis, Georgios M.

    2015-01-01

    of these problems could be due to the fact that the original MPTA assumes that a given adsorbent has the same adsorption capacity (for example, porous volume) for all the adsorbed substances and is adjusted simultaneously to many data. This is a simplified picture, as experimental data indicate that the adsorption......-Radushkevich-Astakhov potentials and the potentials directly restored from experimental data by solving the inverse problem. Application of the latter potentials Clearly demonstrates the importance of the difference in adsorption capacities. However, the quality of prediction of binary adsorption is similar for both potentials...

  6. Adsorption affinity and selectivity of 3-ureidopropyltriethoxysilane grafted oil palm empty fruit bunches towards mercury ions.

    Science.gov (United States)

    Kunjirama, Magendran; Saman, Norasikin; Johari, Khairiraihanna; Song, Shiow-Tien; Kong, Helen; Cheu, Siew-Chin; Lye, Jimmy Wei Ping; Mat, Hanapi

    2017-06-01

    This study was conducted to investigate the potential application of oil palm empty fruit branches (OPEFB) as adsorbents to remove organic methylmercurry, MeHg(II), and inorganic Hg(II) from aqueous solution. The OPEFB was functionalized with amine containing ligand namely 3-ureidopropyltriethoxysilane (UPTES) aiming for better adsorption performance towards both mercury ions. The adsorption was found to be dependent on initial pH, initial concentraton, temperatures, and contact time. The maximum adsorption capacities (Q m.exp ) of Hg(II) adsorption onto OPEFB and UPTES-OPEFB were 0.226 and 0.773 mmol/g, respectively. The Q m.exp of MeHg(II) onto OPEFB, however, was higher than UPTES-OPEFB. The adsorption kinetic data obeyed the Elovich model and the adsorption was controlled by the film-diffusion step. The calculated thermodynamic parameters indicate an endothermic adsorption process. Adsorption data analysis indicates that the adsorption mechanism may include ion-exchange, complexation, and physisorption interactions. The potential applications of adsorbents were demonstrated using oilfield produced water and natural gas condensate. The UPTES-OPEFB offered higher selectivity towards both mercury ions than OPEFB. The regenerability studies indicated that the adsorbent could be reused for multiple cycles.

  7. Kinetics and thermodynamics studies on the BMP-2 adsorption onto hydroxyapatite surface with different multi-morphological features.

    Science.gov (United States)

    Lu, Zhiwei; Huangfu, Changxin; Wang, Yanying; Ge, Hongwei; Yao, Yao; Zou, Ping; Wang, Guangtu; He, Hua; Rao, Hanbing

    2015-01-01

    The effect of the surface topography on protein adsorption process is of great significance for designing hydroxyapatite (HA) ceramic material surfaces. In this work, three different topographies of HA materials HA-sheet, HA-rod, and HA-whisker were synthesized and testified by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Brunauer-Emmett-Teller (BET) and a field emission scanning electron microscopy (FE-SEM). We have systematically investigated the adsorption kinetics and thermodynamics of bone morphogenetic proteins (BMP-2) on the three different topography surfaces of HA, respectively. The results showed that the maximum adsorption capacities of HA-sheet, HA-rod and HA-whisker were (219.96 ± 10.18), (247.13 ± 12.35), and (354.67 ± 17.73) μg · g(-1), respectively. Kinetic parameters, rate constants, equilibrium adsorption capacities and related correlation coefficients, for each kinetic model were calculated as well as discussed. It demonstrated that the adsorption of BMP-2 onto HA could be described by the pseudo second-order equation. Adsorption of BMP-2 onto HA followed the Langmuir isotherm. It confirmed that compared with other samples HA-whisker had more adsorption sites for its high specific surface area which could provide more opportunities for protein molecules. The adsorption processes were endothermic (ΔH > 0), spontaneous (ΔG 0). A possible adsorption mechanism has been proposed. In addition, the BMP-2 could be adsorbed to the surface which existed slight conformational changes by FT-IR. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Bentonite surface modification and characterization for high selective phosphate adsorption from aqueous media and its application for wastewater treatments

    Directory of Open Access Journals (Sweden)

    S. Yaghoobi-Rahni

    2017-06-01

    Full Text Available Raw and modified bentonite has been used to develop effective sorbents to remove phosphate from aqueous solution. Acid thermoactivation, Rewoquate, Irasoft, calcium, Fe and Al were employed to treat the bentonite. Results show that samples adsorption capacity for phosphate is in the order of, unmodified bentonite = acid thermoactivation < Rewoquate < calcium ≅ Irasoft < Fe < Al ≅ Fe-Al. The phosphate adsorption with Fe-Al-bentonite (FAB modification was more than 99% and the phosphate removal reached the peak value in the initial 30 min. The phosphate adsorption of FAB was pH independent in the range of 2–10. The common coexisting ions in wastewater have no effect on the phosphate adsorption. The phosphate adsorption results were very well fitted in the Freundlich and Langmuir isotherm model and the maximum adsorption capacity was 8.33 mg P/g at pH 6.5 for 1 hour, which was better than similar modified bentonite with low time and Fe-Al consumption. FAB was characterized by scanning electron microscopy, X-ray diffraction, X-ray fluorescence and Fourier transform infrared. Therefore, the results confirm that FAB is a selective phosphate sorbent and environmentally friendly for its potential application for phosphate removal from wastewater.

  9. Surface modification of chitin using ultrasound-assisted and supercritical CO{sub 2} technologies for cobalt adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Dotto, Guilherme L., E-mail: guilherme_dotto@yahoo.com.br; Cunha, Jeanine M., E-mail: jeaninecunha@gmail.com; Calgaro, Camila O., E-mail: camila.itepjr@gmail.com; Tanabe, Eduardo H., E-mail: edutanabe@yahoo.com.br; Bertuol, Daniel A., E-mail: dbertuol@gmail.com

    2015-09-15

    Highlights: • Chitin was modified by ultrasound-assisted (UA) and supercritical (SCO{sub 2}) technologies. • Chitin, UA-chitin and SCO{sub 2}-chitin were used as adsorbents for Co(II). • UA and SCO{sub 2} treatments provided increase of 20 and 3 times in chitin surface area. • The Co(II) adsorption capacity increased until 67.8%, using UA-chitin. - Abstract: Ultrasound-assisted (UA) and supercritical CO{sub 2} technologies (SCO{sub 2}) were used to modify the chitin surface and, improve its adsorption characteristics regarding to cobalt. Chitin, before and after the treatments, was characterized by N{sub 2} adsorption isotherms (BET), infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and scanning electron microscopy (SEM). Unmodified and surface modified chitins were used as adsorbents to remove cobalt from aqueous solutions. The adsorption study was performed by equilibrium isotherms and kinetic curves. The chitin particle characteristics, such as, surface area, pore volume and porosity were improved by the UA and SCO{sub 2} treatments. The crystallinity index decreased after the UA and SCO{sub 2} treatments, and also, intense surface modifications were observed. Langmuir and Freundlich models were adequate to represent the adsorption equilibrium. The maximum adsorption capacities were 50.03, 83.94 and 63.08 mg g{sup −1} for unmodified chitin, UA surface modified chitin and SCO{sub 2} surface modified chitin. The adsorption kinetic curves were well represented by the pseudo-second order model. UA and SCO{sub 2} technologies are alternatives to modify the chitin surface and improve its adsorption characteristics.

  10. Study on optimal conditions and adsorption kinetics of copper from water by collodion membrane cross-linked poly-γ-glutamic acid

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xiangting; Wang, Aiyin; Li, Guoxing; Dong, Xinjiao; Wu, Mingjiang [Wenzhou University, Wenzhou (China); Zheng, Xiaojie [Wenzhou Vocational College of Technology and Science, Wenzhou (China)

    2013-06-15

    Poly-γ-glutamic acid (γ-PGA) is a novel polyamino acid formed through microorganism fermentation and biosynthesis. In the present test, membrane (PGA-C) formation by γ-PGA and collodion was performed by using 0.1% glutaraldehyde as a cross-linking agent. A study was conducted on the PGA-C adsorption of Cu{sup 2+}, specifically the related adsorption equilibrium and kinetics, desorption and regeneration. The results show that with an initial solution pH=5.5 and at 318 K, the static adsorption isotherm behavior of PGA-C is in compliance with the Langmuir model and is beneficial to the adsorption of the metal. Meanwhile, with the reaction lasting for 30min, adsorption equilibrium was reached with a maximum adsorption capacity up to 7.431 mg/g. The entire reaction process follows the pseudo-second-order kinetics. By using PGA-C, good regeneration results were obtained after adsorption-generation-adsorption cycling with an HCl solution (0.1 mol/L) as regeneration liquid.

  11. Preparation and characterization of high-surface-area activated carbon fibers from silkworm cocoon waste for congo red adsorption

    International Nuclear Information System (INIS)

    Li, Jia; Ng, Dickon H.L.; Song, Peng; Kong, Chao; Song, Yi; Yang, Ping

    2015-01-01

    Herein, we report the preparation of activated carbon fibers from silkworm cocoon waste via the combination of (NH 4 ) 2 HPO 4 -pretreatment and KOH activation. The morphology, phase structure and surface chemistry constitute of the obtained ACFs were characterized by X-ray diffraction, IR spectroscopy, Micro Raman spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, thermal analysis and N 2 adsorption–desorption isotherm. The effects of various factors such as the concentration of (NH 4 ) 2 HPO 4 and the activation time of KOH were also evaluated. These results demonstrated that the synthesized ACFs retained the fibrous morphology of silkworm cocoon waste, and exhibited highly defective graphite layer structure. A large amount of surface oxygen-containing functional groups were found on the ACFs surface. The obtained samples exhibited high BET surface areas ranging from 1153 to 2797 m 2  g −1 , total pore volumes of 0.64–1.74 cm 3  g −1 with micropore volume fractions between 75.2 and 93.6%. In addition, we also evaluated the congo red (CR) adsorption performance of the obtained ACFs. The CR adsorption fitted well to the pseudo-second-order kinetic model. Adsorption isotherm data indicated that the adsorption of CR onto ACFs was monolayer adsorption which followed well the Langmuir isotherm model. The maximum adsorption capacity of CR was 512 g kg −1 . The mechanism of the adsorption process was also described from the intraparticle diffusion model. - Highlights: • A new biomass fibroin precursor for activated carbon fibers (ACFs) was proposed. • High specific surface area (2797 m 2  g −1 ) and total pore volume (1.74 cm 3  g −1 ) were obtained. • The original fibrous structure of raw silkworm cocoons was retained in the ACF product. • Congo red maximum monolayer adsorption capacity of our ACF product was up to 1100 g kg −1

  12. Highly efficient ultrasonic-assisted removal of Hg(II) ions on graphene oxide modified with 2-pyridinecarboxaldehyde thiosemicarbazone: Adsorption isotherms and kinetics studies.

    Science.gov (United States)

    Tadjarodi, Azadeh; Moazen Ferdowsi, Somayeh; Zare-Dorabei, Rouholah; Barzin, Ahmad

    2016-11-01

    A novel adsorbent, based on modifying graphene oxide (GO) chemically with 2-pyridinecarboxaldehyde thiosemicarbazone (2-PTSC) as ligand, was designed by facile process for removal of Hg(II) from aqueous solution. Characterization of the adsorbent was performed using various techniques, such as FT-IR, XRD, XPS, SEM and AFM analysis. The adsorption capacity was affected by variables such as adsorbent dosage, pH solution, Hg(2+) initial concentration and sonicating time. These variables were optimized by rotatable central composite design (CCD) under response surface methodology (RSM). The predictive model for Hg(II) adsorption was constructed and applied to find the best conditions at which the responses were maximized. In this conditions, the adsorption capacity of this adsorbent for Hg(2+) ions was calculated to be 309mgg(-1) that was higher than that of GO. Appling the ultrasound power combined with adsorption method was very efficient in shortening the removal time of Hg(2+) ions by enhancing the dispersion of adsorbent and metal ions in solution and effective interactions among them. The adsorption process was well described by second-order kinetic and Langmuir isotherm model in which the maximum adsorption capacity (Qm) was found to be 555mgg(-1) for adsorption of Hg(2+) ions over the obtained adsorbent. The performance of adsorbent was examined on the real wastewaters and confirmed the applicability of adsorbent for practical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Rapid and selective adsorption of cationic dyes by a unique metal-organic framework with decorated pore surface

    Science.gov (United States)

    Zhang, Jie; Li, Fan; Sun, Qian

    2018-05-01

    Organic dye pollutants become a big headache due to their toxic nature to the environment, and it should be one of the best solutions if we can remove and separate them. Here, a metal-organic framework (MOF) (denoted as Zn-MOF) with carbonyl group based on fluorenone-2,7-dicarboxylate ligand, was directly synthesized without post-synthesis method and applied to selectively absorb cationic dyes such as MB, CV, RhB from aqueous solution, while anionic or neutral dyes were excluded. Characterization of the Zn-MOF was achieved by X-ray diffraction, scanning electron microscope, Fourier transform infrared spectrometry and elemental analysis. The Zn-MOF mainly possesses open pore channels, high surface area, big pore volume, and most important, the pore surface is furnished with carbonyl groups arising from the ligand and pointing toward the centers of the large chambers of the framework, which are benefit for the adsorption of the cationic dyes. The MB maximum adsorption capacities can attain 326 mg g-1, which is probably due to the suitable pore size, higher solvent-accessible void, and the prominent adsorption capacity of the mesoporous material. The dye adsorption process for the material is proven to be charge-selective and size-selective, and the adsorption isotherms, as well as kinetics characteristic of dye adsorption onto the Zn-MOF were also investigated.

  14. Adsorption of Cr(VI and Speciation of Cr(VI and Cr(III in Aqueous Solutions Using Chemically Modified Chitosan

    Directory of Open Access Journals (Sweden)

    ChunYuan Tao

    2012-05-01

    Full Text Available A new type of grafting chitosan (CTS was synthesized using 2-hydroxyethyl- trimethyl ammonium chloride (HGCTS. The adsorption of Cr(VI on HGCTS was studied. The effect factors on adsorption and the adsorption mechanism were considered. The results indicated that the HGCTS could concentrate and separate Cr(VI at pH 4.0; the adsorption equilibrium time was 80 min; the maximum adsorption capacity was 205 mg/g. The adsorption isotherm and kinetics were investigated, equilibrium data agreed very well with the Langmuir model and the pseudo second-order model could describe the adsorption process better than the pseudo first-order model. A novel method for speciation of Cr(VI and Cr(III in environmental water samples has been developed using HGCTS as adsorbent and FAAS as determination means. The detection limit of this method was 20 ng/L, the relatively standard deviation was 1.2% and the recovery was 99%~105%.

  15. Mesoporous-activated carbon prepared from chitosan flakes via single-step sodium hydroxide activation for the adsorption of methylene blue.

    Science.gov (United States)

    Marrakchi, F; Ahmed, M J; Khanday, W A; Asif, M; Hameed, B H

    2017-05-01

    In this work, mesoporous-activated carbon (CSAC) was prepared from chitosan flakes (CS) via single-step sodium hydroxide activation for the adsorption of methylene blue (MB). CSAC was prepared using different impregnation ratios of NaOH:CS (1:1, 2:1, 3:1, and 4:1) at 800°C for 90min. The adsorption performance of CSAC was evaluated for MB at different adsorption variables, such MB initial concentrations (25-400mg/L), solution pH (3-11), and temperature (30-50°C). The adsorption isotherm data of CSAC-MB were well fitted to Langmuir model with a maximum adsorption capacity 143.53mg/g at 50°C. Best representation of kinetic data was obtained by the pseudo-second order model. CSAC exhibited excellent adsorption uptake for MB and can potentially be used for other cationic dyes. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Peat and coconut fiber as biofilters for chromium adsorption from contaminated wastewaters.

    Science.gov (United States)

    Henryk, Kołoczek; Jarosław, Chwastowski; Witold, Żukowski

    2016-01-01

    Batch adsorption experiments were performed for the removal of chromium (III) and chromium (VI) ions from aqueous solutions using Canadian peat and coconut fiber. The Langmuir model was used to describe the adsorption isotherm. The maximum adsorption for peat reached 18.75 mg/g for Cr(III) and 8.02 mg/g for Cr(VI), whereas the value for fiber was slightly higher and reached 19.21 mg/g for Cr(III) and 9.54 mg/g for Cr(VI). Both chromium forms could be easily eluted from the materials. The adsorption of chromium forms to organic matter could be explained in terms of formation of donor-acceptor chemical covalent bound with hydroxyl groups as ligands and chromium as the central atom in the formed complex. The chromate-reducing activities were monitored with the use of electron paramagnetic resonance spectroscopy. The results showed that both adsorption and reduction occurred simultaneously and the maximum adsorption capacity of hexavalent chromium being equal to 95% for fiber and 92% for peat was obtained at pH 1.5. The reduction of Cr(VI) in wastewaters began immediately and disappeared after 20 h. Both materials contained yeast and fungi species which can be responsible for reduction of chromium compounds, due to their enzymatic activity (Chwastowski and Koloczek (Acta Biochim Pol 60: 829-834, 2013)). The reduction of Cr(VI) is a two-phase process, the first phase being rapid and based on chemical reaction and the second phase having biological features. After the recovery step, both types of organic materials can be used again for chromium adsorption without any loss in the metal uptake. Both of the materials could be used as biofilters in the wastewater treatment plants.

  17. Effect of hydrophobicity of pharmaceuticals and personal care products for adsorption on activated carbon: Adsorption isotherms, kinetics and mechanism.

    Science.gov (United States)

    Kaur, Harkirat; Bansiwal, Amit; Hippargi, Girivyankatesh; Pophali, Girish R

    2017-09-11

    Adsorption of three pharmaceuticals and personal care products (PPCPs), namely caffeine, ibuprofen and triclosan on commercial powdered activated carbon was examined in aqueous medium. The contaminants were chosen based on their diverse log K ow (octanol-water partition coefficient) viz. - 0.07 for caffeine, 3.97 for ibuprofen and 4.76 for triclosan to examine the role of hydrophobicity on adsorption process. The adsorbent characterisation was achieved using BET surface area, SEM, pore size distribution studies and FTIR. Influence of mass of PAC, contact time, solution pH and initial concentration on adsorption capacity of PAC was studied. Adsorption isotherms and kinetics were applied to establish the mechanism of adsorption. The kinetics followed pseudo-second order with physisorption occurring through particle diffusion. The Freundlich model fitted best among the isotherm models. The adsorption capacity increased in the order CFN activated carbon.

  18. Synthesis and utilization of a novel carbon nanotubes supported nanocables for the adsorption of dyes from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei; Jiang, Xinyu [School of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Chen, Xiaoqing, E-mail: xqchen@csu.edu.cn [School of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Collaborative Innovation Center of Resource-conserving & Environment-friendly Society and Ecological Civilization (China)

    2015-09-15

    Using multiwalled carbon nanotubes(MWCNTs) as mechanical support and glucose as carbon resource, a hydrothermal carbonization route was designed for the synthesis of MWCNTs@carbon nanocables with tunable diameter and length. MWCNTs are firstly used as templates for the formation of carbon-rich composite nanocables, and the diameter of the nanocables could be tailored through adjusting the hydrothermal time or the ratio of MWCNTs and glucose. Owing to abundant superficial oxygen-containing functional groups, porous surface and remarkable reactivity, the as-synthesized nanocables are capable of efficiently adsorbing cationic dye methylene blue (MB) and crystal violet (CV). Furthermore, the optimum adsorption conditions, kinetics, adsorption isotherms and adsorption thermodynamics of dyes were studied systematically. Additionally, the maximum adsorption capacities calculated from data analysis (298.5 mg/g for MB and 228.3 mg/g for CV) are significant higher than those of raw MWCNTs and some other adsorbents reported previously, which provides strong evidence for using MWCNTs@carbon nanocables as adsorbent to remove dyes from aqueous solutions. - Graphical abstract: MWCNTs@carbon nanocables has been successfully fabricated by a hydrothermal carbonization method. The as-synthesized novel samples were used as adsorbents and exhibited high adsorption capacity on MB and CV. - Highlights: • A simple, cost-effective and “green” method for the synthesis of the material. • The diameter and length of the material are relatively easy to control. • The surface has large oxygen-containing groups and preferable chemical reactivity. • Compared with raw MWCNTs and some other adsorbents, the adsorption capacity is much high.

  19. Chemical Modification of Oryza sativa Linnaeus Husk with Urea for Removal of Brilliant Vital Red and Murexide Dyes from Water by Adsorption in Environmentally Benign Way

    International Nuclear Information System (INIS)

    Rehman, R.; Mahmud, T.; Kanwal, F.; Aslam, M.N.; Nisar, H.

    2013-01-01

    Oryza sativa Linnaeus is an important food item all around the world. Due to its huge consumption, a large amount of rice husk is generated as agrowaste which can be used for water treatment by adsorption. Its adsorption capacity further can be enhanced by chemical medication. In the present study, urea modified rice husk has been used for removing Brilliant Vital Red and Murexide form water in an efficient way. After optimizing operating conditions, isothermal and thermodynamical studies were carried out, which showed that maximum adsorption capacity of urea modified rice husk for removing Brilliant Vital Red and Murexide dyes were 28.93 and 30.74 mg.g/sup -1/. Adsorbent characterization was carried out by recording its FT-IR spectra. (author)

  20. The role of particle-size soil fractions in the adsorption of heavy metals

    Science.gov (United States)

    Mandzhieva, Saglara; Minkina, Tatiana; Pinsky, David; Batukaev, Abdulmalik; Kalinitchenko, Valeriy; Sushkova, Svetlana; Chaplygin, Viktor; Dikaev, Zaurbek; Startsev, Viktor; Bakoev, Serojdin

    2014-05-01

    Ion-exchange adsorption phenomena are important in the immobilization of heavy metals (HMs) by soils. Numerous works are devoted to the study of this problem. However, the interaction features of different particle-size soil fractions and their role in the immobilization of HMs studied insufficiently. Therefore, the assessment of the effect of the particle-size distribution on the adsorption properties of soils is a vital task. The parameters of Cu2+, Pb2+ and Zn2+ adsorption by chernozems of the south of Russia and their particle-size fractions were studied. In the particle-size fractions separated from the soils, the concentrations of Cu2+, Pb2+, and Zn2 decreased with the decreasing particle size. The parameters of the adsorption values of k (the constant of the affinity)and Cmax.(the maximum adsorption of the HMs) characterizing the adsorption of HMs by the southern chernozem and its particle-size fractions formed the following sequence: silt > clay > entire soil. The adsorption capacity of chernozems for Cu2+, Pb2+, and Zn2+ depending on the particle-size distribution decreased in the following sequence: clay loamy ordinary chernozem clay loamy southern chernozem> loamy southern chernozem> loamy sandy southern chernozem. According to the parameters of the adsorption by the different particle-size fractions, the heavy metal cations form a sequence analogous to that obtained for the entire soils: Cu2+ ≥ Pb2+ > Zn2+. The parameters of the heavy metal adsorption by similar particle-size fractions separated from different soils decreased in the following order: clay loamy chernozem> loamy chernozem> loamy sandy chernozem. The analysis of the changes in the parameters of the Cu2+, Pb2+, and Zn2+ adsorption by the studied soils and their particle-size fractions showed that the extensive adsorption characteristic - the maximum adsorption (Cmax.) - is a less sensitive parameter characterizing the adsorption capacity of the soils than the intensive characteristic of

  1. Selective adsorption behavior of Cd(II) ion imprinted polymers synthesized by microwave-assisted inverse emulsion polymerization: Adsorption performance and mechanism

    International Nuclear Information System (INIS)

    Zhu, Fang; Li, Luwei; Xing, Junde

    2017-01-01

    Highlights: • Microwave assisted inverse emulsion polymerization was applied to prepare Cd(II) imprinted polymers. • The adsorption capacity was evaluated by static adsorption experiments. • Pseudo-second-order model and Langmuir adsorption isotherm model had the best agreement with the experimental data. • The adsorption was a spontaneous and endothermic process. • Cd(II) imprinted polymers have specific identification for Cd(II). - Abstract: Microwave-assisted inverse emulsion polymerization method was used to prepare Cd(II) imprinted polymer (IIP) by using β-cyclodextrin (β-CD) and acrylamide (AM) as functional monomer, epichlorohydrin (ECH) as crossing-linking agent, ammonium persulfate as initiator. The Cd(II) imprinted polymer was characterized by SEM, FTIR and TGA. The influences of initial concentration of Cd(II), pH values, temperature, time and competitive ions on adsorption capacity and recognition properties are investigated. Under the optimal conditions, the adsorption capacity could reach 107 mg/g. Furthermore, pseudo first order kinetic model, pseudo second order kinetic model and intra-particular diffusion model were used to describe the adsorption kinetic behavior. Results showed that the pseudo-second-order model (R"2 0.9928–0.9961) had the best agreement with the experimental data. Langmuir adsorption isotherm model described the experimental data well, which indicated that adsorption was mainly monolayer absorption. Moreover, the study of adsorption thermodynamics (ΔG"0 0, ΔS"0 > 0) suggested that the adsorption process was a spontaneous and endothermic process. Competitive selectivity experiment revealed that imprinted polymer could selectively recognize Cd(II). It provides a new idea for removing Cd(II) from aqueous solution.

  2. Study on sorption capacity and characterization of Sr2+ on synthetic zeolite

    International Nuclear Information System (INIS)

    Wang Jinming; Yi Facheng

    2010-01-01

    Sr 2+ adsorption capacity of synthetic zeolite(ZF) are studied with the intermittence method, and ZF adsorbed the Sr 2+ is characterized and analyzed by XRD, as a reference for the evaluation of the disposal effectiveness of low and medium radwastes. The results show that Sr 2+ adsorption capacity of ZF is good, and the equilibrium time for ZF to adsorb Sr 2+ is in range of 5-14 days. Sr 2+ concentration has the greatest effect on ZF adsorption capacity,and the medium,temperature and pH value of the solution also have effect on ZF adsorption capacity. With the augment of Sr 2+ concentration,the Sr 2+ equilibrium adsorption quantity of ZF increases,but the equilibrium adsorption rate and equilibrium adsorption ratio decreases. Sr 2+ adsorption capacity of ZF improves with the augment of pH value. Sr 2+ adsorption capacity of ZF is complicate and varies with the different ion, concentration and other components in the medium solution. Sr 2+ adsorption capacity of ZF increases with the augment of temperature. As a whole, when Sr 2+ concentration in the solution is 0.005mol/L, the pH value of the solution, and the temperature of medium and solution have less effect on the Sr 2+ adsorption capacity of ZF, and the unit cell parameter of ZF adsorbed Sr 2+ decreases. (authors)

  3. The effects of a pilates-aerobic program on maximum exercise capacity of adult women

    Directory of Open Access Journals (Sweden)

    Milena Mikalački

    Full Text Available ABSTRACT Introduction: Physical exercise such as the Pilates method offers clinical benefits on the aging process. Likewise, physiologic parameters may be improved through aerobic exercise. Methods: In order to compare the differences of a Pilates-Aerobic intervention program on physiologic parameters such as the maximum heart rate (HRmax, relative maximal oxygen consumption (relative VO2max and absolute (absolute VOmax, maximum heart rate during maximal oxygen consumption (VO2max-HRmax, maximum minute volume (VE and forced vital capacity (FVC, a total of 64 adult women (active group = 48.1 ± 6.7 years; control group = 47.2 ± 7.4 years participated in the study. The physiological parameters, the maximal speed and total duration of test were measured by maximum exercise capacity testing through Bruce protocol. The HRmax was calculated by a cardio-ergometric software. Pulmonary function tests, maximal speed and total time during the physical test were performed in a treadmill (Medisoft, model 870c. Likewise, the spirometry analyzed the impact on oxygen uptake parameters, including FVC and VE. Results: The VO2max (relative and absolute, VE (all, P<0.001, VO2max-HRmax (P<0.05 and maximal speed of treadmill test (P<0.001 showed significant difference in the active group after a physical exercise interventional program. Conclusion: The present study indicates that the Pilates exercises through a continuous training program might significantly improve the cardiovascular system. Hence, mixing strength and aerobic exercises into a training program is considered the optimal mechanism for healthy aging.

  4. Adsorption of mercury compounds by tropical soils. I. Adsorption in soil profiles in relation to their physical, chemical, and mineralogical properties

    Energy Technology Data Exchange (ETDEWEB)

    Semu, E.; Singh, B.R.; Selmer-Olsen, A.R.

    1986-01-01

    Mercury adsorption of HgCl/sub 2/ and 2-methoxyethylmercury chloride (Aretan) (100 mg Hg L/sup -1/) was measured for three soil profiles from Morogoro, Arusha, and Dar es Salaam in Tanzania. The adsorption was investigated for the physical, chemical, and mineralogical properties of soils. All soil samples showed greater capacity for adsorption of Aretan than for HgCl/sub 2/. In the Morogoro profile Hg adsorption decreased with depth but in the other two soils, the minimum adsorption occurred in the third horizon and increased both upwards and downwards. In the Morogoro profile, Aretan adsorption correlated well with pH. Adsorption of both Aretan and HgCl/sub 2/ correlated well with the distribution of organic C and with the cation exchange capacity of the soils. In the Arusha and Dar es Salaam profiles Hg adsorption was not significantly correlated with any of the soil properties tested.

  5. Adsorption of Heavy Metals on Biologically Activated Brown Coal Sludge

    Directory of Open Access Journals (Sweden)

    Mária Praščáková

    2005-11-01

    Full Text Available Adsorption of cooper (II and zinc (II ions from aqueous solutions on a biologically activated brown coal sludge was investigated. Four families of adsorbents were prepared from the brown coal sludge bya microorganism’s activity. There were used microscopic fungi such as Aspergillus niger, Aspergillus clavatus, Penicillium glabrum and Trichoderma viride. Prepared sorbents were capable of removing Cu (II and Zn (II. The sorption isotherm has been constructed and the specific metal uptake and the maximum capacity of the adsorbent have been determined.

  6. Adsorption equilibrium and kinetic studies of crystal violet and naphthol green on torreya-grandis-skin-based activated carbon

    International Nuclear Information System (INIS)

    Dai, Wei; Yu, Huijing; Ma, Na; Yan, Xiaoyang

    2015-01-01

    A new type of activated carbon, torreya-grandis-skin-based activated carbon (TAC), has been used to remove the harmful dyes (cationic dye crystal violet (CV) and anionic dye naphthol green (NG)) from contaminated water via batch adsorption. The effects of solution pH, adsorption time and temperature were studied. The Langmuir and Freundlich adsorption models were used to describe the equilibrium isotherm and isotherm constant calculation. It was found that the maximum equilibrium adsorption capacities were 292mg/g and 545mg/g for CV and NG, respectively. Adsorption kinetics was verified by pseudo-first-order, pseudo-second-order and intra-particle diffusion kinetic models. Results indicated that the rate of dye adsorption followed pseudo-second-order kinetic model for the initial dye concentration range studied. Temperature-dependent adsorption behavior of CV and NG shows that the adsorption is spontaneous and endothermic, accompanying an entropy increase. This work indicates that TAC could be employed as a low-cost alternative for the removal of the textile dyes from effluents

  7. Adsorption kinetics, isotherms and thermodynamics of atrazine removal using a banana peel based sorbent.

    Science.gov (United States)

    Chaparadza, Allen; Hossenlopp, Jeanne M

    2012-01-01

    Atrazine removal from water by treated banana peels was studied. The effect of pH, contact time, initial atrazine concentration, and temperature were investigated. Batch experiments demonstrated that 15 g L(-1) adsorbent dosage removed 90-99% of atrazine from 1-150 ppm aqueous solutions. The removal was both pH and temperature dependent with the most atrazine removed between pH 7 and 8.2 and increased with increasing temperature. Equilibrium data fitted well to the Langmuir and Redlich-Peterson models in the concentration and temperature ranges investigated, with a maximum adsorption capacity of 14 mg g(-1). Simple mass transfer models were applied to the experimental data to examine the adsorption mechanism and it was found that both external mass transfer and intraparticle diffusion played important roles in the adsorption mechanisms. The enthalpy of atrazine adsorption was evaluated to be 67.8 ± 6.3 kJ mol(-l) with a Gibbs free energy of -5.7 ± 1.2 kJ mol(-1).

  8. Kinetic studies of adsorption of thiocyanate onto ZnCl2 activated carbon from coir pith, an agricultural solid waste.

    Science.gov (United States)

    Namasivayam, C; Sangeetha, D

    2005-09-01

    The adsorption of thiocyanate onto ZnCl2 activated carbon developed from coir pith was investigated to assess the possible use of this adsorbent. The influence of various parameters such as agitation time, thiocyanate concentration, adsorbent dose, pH and temperature has been studied. Adsorption followed second-order rate kinetics. Two theoretical adsorption isotherms, namely, Langmuir and Freundlich were used to describe the experimental results. The Langmuir adsorption capacity (Q0) was found to be 16.2 mg g(-1) of the adsorbent. The per cent adsorption was maximum in the pH range 3.0-7.0. pH effect and desorption studies showed that ion exchange and chemisorption mechanism are involved in the adsorption process. Thermodynamic parameters such as DeltaG0, DeltaH0 and DeltaS0 for the adsorption were evaluated. The negative values of DeltaH0 confirm the exothermic nature of adsorption. Effects of foreign ions on the adsorption of thiocyanate have been investigated. Removal of thiocyanate from ground water was also tested.

  9. Competitive Adsorption of Metals onto Magnetic Graphene Oxide: Comparison with Other Carbonaceous Adsorbents

    Directory of Open Access Journals (Sweden)

    Jin Hur

    2015-01-01

    Full Text Available Competitive adsorption isotherms of Cu(II, Pb(II, and Cd(II were examined on a magnetic graphene oxide (GO, multiwalled carbon nanotubes (MWCNTs, and powered activated carbon (PAC. A series of analyses confirmed the successful synthesis of the magnetic GO based on a simple ultrasonification method. Irrespective of the adsorbents, the adsorption was highly dependent on pH, and the adsorption was well described by the Langmuir isotherm model. The maximum adsorption capacities of the adsorbents were generally higher in the order of Pb(II > Cu(II > Cd(II, which is the same as the degree of the electronegativity and the hydrated radius of the metals, suggesting that the metal adsorption may be governed by an ion exchange between positively charged metals and negatively charged surfaces, as well as diffusion of metals into the surface layer. The adsorption of each metal was mostly lower for multi- versus single-metal systems. The antagonistic effects were influenced by solution pH as well as the type of metals, and they were higher in the order of the magnetic GO > MWCNT > PAC. Dissolved HS played a greater role than HS adsorbed onto the adsorbents, competing with the adsorption sites for metal complexation.

  10. Adsorption of cadmium by biochar produced from pyrolysis of corn stalk in aqueous solution.

    Science.gov (United States)

    Ma, Fengfeng; Zhao, Baowei; Diao, Jingru

    2016-09-01

    The purpose of this work is to investigate adsorption characteristic of corn stalk (CS) biochar for removal of cadmium ions (Cd 2+ ) from aqueous solution. Batch adsorption experiments were carried out to evaluate the effects of pH value of solution, adsorbent particle size, adsorbent dosage, and ionic strength of solution on the adsorption of Cd 2+ onto biochar that was pyrolytically produced from CS at 300 °C. The results showed that the initial pH value of solution played an important role in adsorption. The adsorptive amount of Cd 2+ onto the biochar decreased with increasing the adsorbent dosage, adsorbent particle size, and ionic strength, while it increased with increasing the initial pH value of solution and temperature. Cd 2+ was removed efficiently and quickly from aqueous solutions by the biochar with a maximum capacity of 33.94 mg/g. The adsorption process was well described by the pseudo-second-order kinetic model with the correlation coefficients greater than 0.986. The adsorption isotherm could be well fitted by the Langmuir model. The thermodynamic studies showed that the adsorption of Cd 2+ onto the biochar was a spontaneous and exothermic process. The results indicate that CS biochar can be considered as an efficient adsorbent.

  11. Adsorption of hydrocarbons in chalk reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Madsen, L.

    1996-12-31

    The present work is a study on the wettability of hydrocarbon bearing chalk reservoirs. Wettability is a major factor that influences flow, location and distribution of oil and water in the reservoir. The wettability of the hydrocarbon reservoirs depends on how and to what extent the organic compounds are adsorbed onto the surfaces of calcite, quartz and clay. Organic compounds such as carboxylic acids are found in formation waters from various hydrocarbon reservoirs and in crude oils. In the present investigation the wetting behaviour of chalk is studied by the adsorption of the carboxylic acids onto synthetic calcite, kaolinite, quartz, {alpha}-alumina, and chalk dispersed in an aqueous phase and an organic phase. In the aqueous phase the results clearly demonstrate the differences between the adsorption behaviour of benzoic acid and hexanoic acid onto the surfaces of oxide minerals and carbonates. With NaCl concentration of 0.1 M and with pH {approx_equal} 6 the maximum adsorption of benzoic acid decreases in the order: quartz, {alpha}-alumina, kaolinite. For synthetic calcite and chalk no detectable adsorption was obtaind. In the organic phase the order is reversed. The maximum adsorption of benzoic acid onto the different surfaces decreases in the order: synthetic calcite, chalk, kaolinite and quartz. Also a marked difference in adsorption behaviour between probes with different functional groups onto synthetic calcite from organic phase is observed. The maximum adsorption decreases in the order: benzoic acid, benzyl alcohol and benzylamine. (au) 54 refs.

  12. Adsorption of sulfur dioxide on ammonia-treated activated carbon fibers

    Science.gov (United States)

    Mangun, C.L.; DeBarr, J.A.; Economy, J.

    2001-01-01

    A series of activated carbon fibers (ACFs) and ammonia-treated ACFs prepared from phenolic fiber precursors have been studied to elucidate the role of pore size, pore volume, and pore surface chemistry on adsorption of sulfur dioxide and its catalytic conversion to sulfuric acid. As expected, the incorporation of basic functional groups into the ACFs was shown as an effective method for increasing adsorption of sulfur dioxide. The adsorption capacity for dry SO2 did not follow specific trends; however the adsorption energies calculated from the DR equation were found to increase linearly with nitrogen content for each series of ACFs. Much higher adsorption capacities were achieved for SO2 in the presence of oxygen and water due to its catalytic conversion to H2SO4. The dominant factor for increasing adsorption of SO2 from simulated flue gas for each series of fibers studied was the weight percent of basic nitrogen groups present. In addition, the adsorption energies calculated for dry SO2 were shown to be linearly related to the adsorption capacity of H2SO4 from this flue gas for all fibers. It was shown that optimization of this parameter along with the pore volume results in higher adsorption capacities for removal of SO2 from flue gases. ?? 2001 Elsevier Science Ltd. All rights reserved.

  13. Nanostructured polyaniline rice husk composite as adsorption materials synthesized by different methods

    International Nuclear Information System (INIS)

    Pham, Thi Tot; Mai, Thi Thanh Thuy; Mai, Thi Xuan; Tran, Hai Yen; Phan, Thi Binh; Bui, Minh Quy

    2014-01-01

    Composites based on polyaniline (PANi) and rice husk (RH) were prepared by two methods: the first one was chemical method by combining RH contained in acid medium and aniline using ammonium persulfate as an oxidation agent and the second one was that of soaking RH into PANi solution. The presence of PANi combined with RH to form nanocomposite was clearly demonstrated by infrared (IR) spectra as well as by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images. Lead(II) and cadmium(II) ion concentrations in solution before and after adsorption process on those composites were analysed by atomic adsorption spectroscopy. Of the above preparation methods, the soaking one provided a composite onto which the maximum adsorption capacity was higher for lead(II) ion (200 mg g −1 ), but lower for cadmium(II) ion (106.383 mg g −1 ) in comparison with the chemical one. However, their adsorption process occurring on both composites also fitted well into the Langmuir isotherm model. (paper)

  14. Hydrogen adsorption in microporous alkali-doped carbons (single-wall carbon nano-tubes and activated carbons)

    International Nuclear Information System (INIS)

    Laurent Duclaux; Szymon Los; Michel Letellier; Philippe Azais; Roland Pellenq; Thomas Roussel; Xavier Fuhr

    2006-01-01

    Doping of microporous carbon by Li or K leads to an increase in the energy of adsorption of H 2 or D 2 molecules. Thus, the room temperature sorption capacities (at P≤3 MPa) can be higher than the ones of the raw materials after slight doping. However, the maximum H 2 (or D 2 ) storage uptake measured at T≤ 77 K is lower than the one of pristine materials as the sites of adsorption are occupied by alkali ions inserted in the micropores. The microporous adsorption sites of doped single-walled carbon nano-tubes, identified by neutron diffraction, are both the interstitial voids (in electric-arc or HiPCO tubes) in between the tubes and the central canals of the tubes (only in HiPCO tubes). (authors)

  15. Adsorption of Pb(II) from fish sauce using carboxylated cellulose nanocrystal: Isotherm, kinetics, and thermodynamic studies.

    Science.gov (United States)

    Wang, Nan; Jin, Ru-Na; Omer, A M; Ouyang, Xiao-Kun

    2017-09-01

    In the present study, a new adsorbent based on carboxylated cellulose nanocrystal (CCN) was developed for the adsorption of Pb(II) from fish sauce. The prepared adsorbent material was characterized by zeta potential, FT-IR, XRD, and XPS tools. The changes in the morphological structure of the developed CCN surface were evidenced by SEM and TEM. The favorable adsorption conditions were selected by studying the contact time, initial concentration, temperature, and concentration of the used glutamic acid and NaCl. The results indicated that the Langmuir isotherm model agrees very well with experimental adsorption data (R 2 =0.9962) with a maximum adsorption capacity 232.56mg/g of Pb(II) at 293.2K. Additionally, data of the adsorption kinetics follow the pseudo-second-order kinetics (R 2 >0.9990). On the other hand, the thermodynamics studies show that the adsorption process is spontaneous and endothermic. Furthermore, the developed CCN could be regenerated using acid treatment with a good reusability for Pb(II) adsorption. The results clearly indicated that the synthesized CCN could be effectively applied as a new material for Pb(II) adsorption from fish sauce solutions. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Synthesis, characterization and dye removal ability of high capacity polymeric adsorbent: Polyaminoimide homopolymer

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoodi, Niyaz Mohammad, E-mail: nm_mahmoodi@aut.ac.ir [Department of Environmental Research, Institute for Color Science and Technology, Tehran (Iran, Islamic Republic of); Najafi, Farhood [Department of Resin and Additives, Institute for Color Science and Technology, Tehran (Iran, Islamic Republic of); Khorramfar, Shooka [Department of Environmental Research, Institute for Color Science and Technology, Tehran (Iran, Islamic Republic of); Textile Engineering Department, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Amini, Farrokhlegha [Department of Environmental Research, Institute for Color Science and Technology, Tehran (Iran, Islamic Republic of); Arami, Mokhtar [Textile Engineering Department, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2011-12-30

    Highlights: Black-Right-Pointing-Pointer Polyaminoimide homopolymer (PAIHP) was synthesized and characterized. Black-Right-Pointing-Pointer Kinetics data followed pseudo-second order kinetic model. Black-Right-Pointing-Pointer Isotherm data followed Langmuir isotherm. Black-Right-Pointing-Pointer Q{sub 0} for DR31, DR23, DB22 and AB25 was 6667, 5555, 9090 and 5882 mg/g, respectively. Black-Right-Pointing-Pointer PAIHP was regenerated at pH 12. - Abstract: In this paper, polyaminoimide homopolymer (PAIHP) was synthesized and its dye removal ability was investigated. Physical characteristics of PAIHP were studied using Fourier transform infrared (FTIR) and scanning electron microscopy (SEM). Direct Red 31 (DR31), Direct Red 23 (DR23), Direct Black 22 (DB22) and Acid Blue 25 (AB25) were used as model compounds. The kinetic and isotherm of dye adsorption were studied. The effect of operational parameter such as adsorbent dosage, pH and salt on dye removal was evaluated. Adsorption kinetic of dyes followed pseudo-second order kinetics. The maximum dye adsorption capacity (Q{sub 0}) of PAIHP was 6667 mg/g, 5555 mg/g, 9090 mg/g and 5882 mg/g for DR31, DR23, DB22 and AB25, respectively. It was found that adsorption of DR31, DR23, DB22 and AB25 onto PAIHP followed with Langmuir isotherm. Dye desorption tests (adsorbent regeneration) showed that the maximum dye release of 90% for DR31, 86% for DR23, 87% for DB22 and 90% for AB25 were achieved in aqueous solution at pH 12. The results showed that the PAIHP as a polymeric adsorbent with high dye adsorption capacity might be a suitable alternative to remove dyes from colored wastewater.

  17. Teor e capacidade máxima de adsorção de arsênio em Latossolos brasileiros Content and maximum capacity of arsenic adsorption in Brazilian Oxisols

    Directory of Open Access Journals (Sweden)

    Mari Lucia Campos

    2007-12-01

    Full Text Available A alta toxicidade do As aos animais e humanos e a possibilidade de existência de grande número de áreas contaminadas tornam imprescindível o conhecimento do teor semitotal em solos ditos não-contaminados e dos processos de adsorção do As em solos de carga variável. O objetivo deste trabalho foi determinar o teor e a capacidade máxima de adsorção de As (CMADS AS em Latossolos. O teor total foi determinado pelo método USEPA 3051A, e a CMADS As, com auxílio de isotermas de Langmuir com base nos valores de adsorção obtidos em dose de As (0, 90, 190, 380, 760 e 1.150 µmol L-1 (relação solo:solução final = 1:100, a pH 5,5 e força iônica de 15 mmol L-1. Os 17 Latossolos apresentaram teor médio total de As de 5,92 mg kg-1 e CMADS As média de 2.013 mg kg-1. O teor de argila e os óxidos de Fe e Al apresentaram influência positiva na CMADS As.In view of the toxicity of As for man and animals and the possibility of existence of a great number of contaminated areas it is imperative to know the total As content in soils considered uncontaminated and about As sorption processes in soils of variable charge. The objective of this work was to determine the total content and maximum capacity of As adsorption (CMADS As in Oxisols. The total content was determined by the USEPA 3051A method. The cmADS As was determined by the Langmuir Isotherms using six solution concentrations (0, 0.09, 0.19, 0.38, 0.76, 1.15 mmol L-1 (1:100 soil: solution ratio, pH values 5.5 and ionic strength 15 mmol L-1. In the 17 Oxisols the average total As content was 5.92 mg kg-1 and mean cmADS As was 2.013 mg kg-1. Clay, and Fe and Al oxides content influenced cmADSs positively.

  18. Effects of different strength training frequencies on maximum strength, body composition and functional capacity in healthy older individuals.

    Science.gov (United States)

    Turpela, Mari; Häkkinen, Keijo; Haff, Guy Gregory; Walker, Simon

    2017-11-01

    There is controversy in the literature regarding the dose-response relationship of strength training in healthy older participants. The present study determined training frequency effects on maximum strength, muscle mass and functional capacity over 6months following an initial 3-month preparatory strength training period. One-hundred and six 64-75year old volunteers were randomly assigned to one of four groups; performing strength training one (EX1), two (EX2), or three (EX3) times per week and a non-training control (CON) group. Whole-body strength training was performed using 2-5 sets and 4-12 repetitions per exercise and 7-9 exercises per session. Before and after the intervention, maximum dynamic leg press (1-RM) and isometric knee extensor and plantarflexor strength, body composition and quadriceps cross-sectional area, as well as functional capacity (maximum 7.5m forward and backward walking speed, timed-up-and-go test, loaded 10-stair climb test) were measured. All experimental groups increased leg press 1-RM more than CON (EX1: 3±8%, EX2: 6±6%, EX3: 10±8%, CON: -3±6%, Ptraining frequency would induce greater benefit to maximum walking speed (i.e. functional capacity) despite a clear dose-response in dynamic 1-RM strength, at least when predominantly using machine weight-training. It appears that beneficial functional capacity improvements can be achieved through low frequency training (i.e. 1-2 times per week) in previously untrained healthy older participants. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Kinetics Modeling and Isotherms for Adsorption of Phosphate from Aqueous Solution by Modified Clinoptilolit

    Directory of Open Access Journals (Sweden)

    Mohammad Malakootian

    2012-01-01

    Full Text Available The Phosphorous discharge into the surface water led to excessive growth of algae and eutrophication in lakes and rivers. Therefore the phosphorus removal is important due to negative effect on water resources. The aim of this study was to investigat the modification of clinoptilolite and application of modified clinoptilolite for phosphorous adsorption from aqueous solution and isotherms and kinetics modeling. Hexadecyl Trimethyl Ammonium bromide (HDTMA-Br, Hexadecyl trimethyl Ammonium Chloride (HDTMA-Cl, Sodium Decyl Sulphate (SDS and Cetrimide-C were used for modification of clinoptilolite. Experiments were conducted using jar apparatus and batch system. The effect of pH, adsorbent doses, contact time, phosphate initial concentration and particle size were studied surveyed on phosphate adsorption by modified clinoptilolite. The most common isotherms and the kinetics adsorption equations were used for determination of adsorption rate and dynamic reaction. The results showed that maximum phosphate adsorption was obtained in the pH of 7 and contact time 90min. Also it was found with the increasing of phosphate initial concentration, phosphate removal efficiency decreased significantly. Langmuir No 2 showed a good correlation compared to other isotherms (R2=0.997. Maximum adsorption capacity was obtained in 20g/L adsorbent dose (22.73mg/g. Also Interaparticle diffusion kinetics well fits with experimental data (R2=0.999 with constant rate of 3.84mg/g min0.5. The result showed that modified clinoptilolite can be used successfully as low cost and effective absorbent for phosphate removal.

  20. In Situ Synthesis of γ-AlOOH and Synchronous Adsorption Separation of V(V) from Highly Concentrated Cr(VI) Multiplex Complex solutions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hailin [National; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District,; Li, Ping [National; Wang, Zheming [Physcial; Zhang, Xin [Physcial; Zheng, Shili [National; Zhang, Yi [National

    2017-07-13

    Boehmite (γ-AlOOH) was synthesized to selectively adsorb V(V) from K2CrO4-KVO3-H2O solutions with highly concentrated Cr(VI) and low concentration V(V). The synthesized γ-AlOOH has a BET surface area of 433.2 m2/g and an average pore size of 3.5 nm. It possesses a maximum adsorption capacity of V(V) of 1.53 mmol/g from K2CrO4-KVO3-H2O solutions. The adsorption of V(V) onto γ-AlOOH follows the Langmuir isotherm model and pseudo-second-order kinetics equation by forming innersphere complexes while the Cr(VI) adsorption forms both inner-sphere and outer-sphere chromate complexes depending on solution pH. The γ-AlOOH was further synthesized in situ by adding HNO3 into the K2CrO4-KAlO2- KVO3-H2O solutions and then used for synchronous adsorption of V(V) and Cr(VI), resulting in increased adsorption capacity of V(V) of 2.88 mmol/g and decreased adsorption capacity of Cr(VI) to 0.073 mmol/g, respectively. In the latter process, adsorption pH values were adjustable, and adsorption reached equilibrium instantaneously, supporting a novel in situ synthesis and adsorption integration strategy with adjustable surface charge of adsorbent and disappearance of diffusion effect.

  1. Functionalized SBA-15 materials for bilirubin adsorption

    Science.gov (United States)

    Tang, Tao; Zhao, Yanling; Xu, Yao; Wu, Dong; Xu, Jun; Deng, Feng

    2011-05-01

    To investigate the driving force for bilirubin adsorption on mesoporous materials, a comparative study was carried out between pure siliceous SBA-15 and three functionalized SBA-15 mesoporous materials: CH 3-SBA-15 (MS), NH 2-SBA-15 (AS), and CH 3/NH 2-SBA-15 (AMS) that were synthesized by one-pot method. The obtained materials exhibited large surface areas (553-810 m 2/g) and pore size (6.6-7.1 nm) demonstrated by XRD and N 2-ad/desorption analysis. The SEM images showed that the materials had similar fiberlike morphology. The functionalization extent was calculated according to 29Si MAS NMR spectra and it was close to the designed value (10%). The synthesized mesoporous materials were used as bilirubin adsorbents and showed higher bilirubin adsorption capacities than the commercial active carbon. The adsorption capacities of amine functionalized samples AMS and AS were larger than those of pure siliceous SBA-15 and MS, indicating that electrostatic interaction was the dominant driving force for bilirubin adsorption on mesoporous materials. Increasing the ionic strength of bilirubin solution by adding NaCl would decrease the bilirubin adsorption capacity of mesoporous material, which further demonstrated that the electrostatic interaction was the dominant driving force for bilirubin adsorption. In addition, the hydrophobic interaction provided by methyl groups could promote the bilirubin adsorption.

  2. The adsorption kinetics of metal ions onto different microalgae and siliceous earth.

    Science.gov (United States)

    Schmitt, D; Müller, A; Csögör, Z; Frimmel, F H; Posten, C

    2001-03-01

    In the present work the adsorption kinetics of the six metal ions aluminum, zinc, mercury, lead, copper, and cadmium onto living microalgae were measured. The freshwater green microalga Scenedesmus subspicatus, the brackish water diatom Cyclotella cryptica, the seawater diatom Phaeodactylum tricornutum, and the seawater red alga Porphyridium purpureum were the subject of investigation. In most cases the adsorption rate of the metals could be well described by using the equation of the Langmuir adsorption rate expression. Inverse parameter estimation allowed the determination of the rate constants of the adsorption process and the maximum metal content of the algae. The highest values for the rate constant were obtained for Porphyridium purpureum followed by Phaeodactylum tricornutum. High values for the maximum content were obtained for Cyclotella cryptica and Scenedesmus subspicatus. The maximum rate constant was 24.21 h-1 for the adsorption of Hg to Porphyridium purpureum whereas the maximum metal content (0.243 g g-1) was obtained for Zn on Cyclotella cryptica. A comparison of these values with those obtained for the mineral siliceous earth exhibiting low maximum content and high adsorption rates reveals that the mechanism of adsorption onto the algae is a mixture of adsorption and accumulation.

  3. [Bidens maximowicziana's adsorption ability and remediation potential to lead in soils].

    Science.gov (United States)

    Wang, Hong-qi; Li, Hua; Lu, Si-jin

    2005-11-01

    Bidens maximowicziana's adsorption ability and remediation potential to lead were studied. The results show: (1) The Bidens maximowicziana has a strong adsorption to lead, the concentration of lead in plants increased linearly with the increase of lead concentration in soil. Then maximum concentration was 1509.3 mg x kg(-1) in roots and 2164.7 mg x kg(-1) in shoots when lead concentration in soil was 2000 mg x L(-1); (2) The lead concentration distribution order in the Bidens maximorwicziana is: leaf>stem>root>seed, which indicate that Bidens maximowicziana has a strong ability to transfer lead; (3) Uptaking ability differes in different vegetal periods. Maximum lead uptaking rate occured in the period of blooming for 40-60 days, in which daily uptake capacity was 15.81 mg x (kg x d)(-1) in roots and 19.83 mg x (kg x d)(-1) in shoots respectively. It can be concluded that Bidens maximowicziana appeares to be a moderate Pb accumulator making it suitable for phytoremediation of Pb contaminated soil.

  4. Single and binary adsorption of heavy metal ions from aqueous solutions using sugarcane cellulose-based adsorbent.

    Science.gov (United States)

    Wang, Futao; Pan, Yuanfeng; Cai, Pingxiong; Guo, Tianxiang; Xiao, Huining

    2017-10-01

    A high efficient and eco-friendly sugarcane cellulose-based adsorbent was prepared in an attempt to remove Pb 2+ , Cu 2+ and Zn 2+ from aqueous solutions. The effects of initial concentration of heavy metal ions and temperature on the adsorption capacity of the bioadsorbent were investigated. The adsorption isotherms showed that the adsorption of Pb 2+ , Cu 2+ and Zn 2+ followed the Langmuir model and the maximum adsorptions were as high as 558.9, 446.2 and 363.3mg·g -1 , respectively, in single component system. The binary component system was better described with the competitive Langmuir isotherm model. The three dimensional sorption surface of binary component system demonstrated that the presence of Pb 2+ decreased the sorption of Cu 2+ , but the adsorption amount of other metal ions was not affected. The result from SEM-EDAX revealed that the adsorption of metal ions on bioadsorbent was mainly driven by coordination, ion exchange and electrostatic association. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Adsorptive removal of Cu(II) from aqueous solutions using collagen-tannin resin

    Energy Technology Data Exchange (ETDEWEB)

    Sun Xia; Huang Xin [Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu 610065 (China); Liao Xuepin, E-mail: xpliao@scu.edu.cn [Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu 610065 (China); National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065 (China); Shi Bi, E-mail: shibi@scu.edu.cn [National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065 (China)

    2011-02-28

    The collagen-tannin resin (CTR), as a novel adsorbent, was prepared via a reaction of collagen with black wattle tannin and aldehyde, and its adsorption properties to Cu(II) were systematically investigated, including pH effect, adsorption equilibrium, adsorption kinetics, and column adsorption. The adsorption capacity of Cu(II) on CTR was pH-dependent, and it increased with the increase of solution pH. The adsorption isotherms were well described by Langmuir isotherm model with correlating constant (R{sup 2}) higher than 0.99. The adsorption capacity determined at 303 K was high up to 0.26 mmol/g, which was close to the value (0.266 mmol/g) estimated from Langmuir equation. The adsorption capacity was increased with the increase of temperature, and thermodynamic calculations suggested that the adsorption of Cu(II) on CTR is an endothermic process. The adsorption kinetics were well fitted by the pseudo-second-order rate model. Further column studies suggested that CTR was effective for the removal of Cu(II) from solutions, and more than 99% of Cu(II) was desorbed from column using 0.1 mol/L HNO{sub 3} solution. The CTR column can be reused to adsorb Cu(II) without any loss of adsorption capacity.

  6. Adsorption removal of tannic acid from aqueous solution by polyaniline: Analysis of operating parameters and mechanism.

    Science.gov (United States)

    Sun, Chencheng; Xiong, Bowen; Pan, Yang; Cui, Hao

    2017-02-01

    Polyaniline (PANI) prepared by chemical oxidation was studied for adsorption removal of tannic acid (TA) from aqueous solution. Batch adsorption studies were carried out under different adsorbent dosages, pH, ionic strength, initial TA concentration and coexisting anions. Solution pH had an important impact on TA adsorption onto PANI with optimal removal in the pH range of 8-11. TA adsorption on PANI at three ionic strength levels (0.02, 0.2 and 2molL -1 NaCl) could be well described by Langmuir model (monolayer adsorption process) and the maximum adsorption capacity was 230, 223 and 1023mgg -1 , respectively. Kinetic data showed that TA adsorption on PANI fitted well with pseudo-second-order model (controlled by chemical process). Among the coexisting anions tested, PO 4 3- significantly inhibited TA adsorption due to the enhancement of repulsive interaction. Continuous flow adsorption studies indicated good flexibility and adaptability of the PANI adsorbent under different flow rates and influent TA concentrations. The mechanism controlling TA adsorption onto PANI under different operating conditions was analyzed with the combination of electrostatic interactions, hydrogen bonding, π-π interactions and Van der Waals interactions. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Adsorptive removal of malachite green from aqueous solutions by almond gum: Kinetic study and equilibrium isotherms.

    Science.gov (United States)

    Bouaziz, Fatma; Koubaa, Mohamed; Kallel, Fatma; Ghorbel, Rhoudha Ellouz; Chaabouni, Semia Ellouz

    2017-12-01

    This work aimed at investigating the potential of almond gum as low cost adsorbent for the removal of the cationic dye; malachite green from aqueous solutions. Almond gum was first analyzed by scanning electron microscopy (SEM) and Fourier transforms infrared spectroscopy (FTIR), and then the adsorption behavior was studied in batch system. The effects of the adsorption parameters (adsorbent dose, pH, contact time, particle size, initial dye concentration, temperature and agitation) on the dye removal have been studied. Adsorption equilibrium and isotherms were evaluated depending on temperature using the isotherms of Freundlich, Langmuir, and Tempkin. The obtained result showed that both Langmuir and Freundlich models were adapted to study the dye sorption. The maximum adsorption capacities were equal to 172.41mg/g, 181.81mg/g, and 196.07mg/g at 303.16K, 313.16K, and 323.16K, respectively. The kinetics of sorption were following the pseudo-second order model. The thermodynamic changes in enthalpy (ΔH), entropy (ΔS), and free energy (ΔG) indicated that the adsorption of malachite green at the surface of almond gum is endothermic and occurs spontaneously. Desorption experiments were conducted to regenerate almond gum, showing great desorption capacity when using HCl at pH 2. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. [Adsorption characteristics of acetone and butanone onto honeycomb ZSM-5 molecular sieve].

    Science.gov (United States)

    Du, Juan; Luan, Zhi-Qiang; Xie, Qiang; Ye, Ping-Wei; Li, Kai; Wang, Xi-Qin

    2013-12-01

    Adsorption capacity of acetone and acetone-butanone mixture onto honeycomb ZSM-5 molecular sieve was measured in this paper, and the influences of relative humidity, initial adsorbate concentration and airflow velocity on the adsorption process were investigated. Besides, adsorption performance parameters were calculated by Wheeler's equation. The results showed that relative humidity had no obvious influence on the acetone adsorption performance, which suggests that this material has good hydrophobic ability; in the low concentration range, the dynamic saturated adsorption capacity of acetone increased with the increase of initial concentration, but in the occasion of high concentration of acetone gas (more than 9 mg x L(-1)), the dynamic saturated adsorption capacity maintained at a certain level and did not vary with the increase of initial concentration; the increase of air flow velocity resulted in significant increase of acetone adsorption rate constant, at the same time the critical layer thickness of the adsorbent bed also increased significantly. In the cases of acetone-butanone mixture, the adsorption capacity of butanone onto ZSM-5 was clearly higher than that of acetone.

  9. Uranium removal from drinking water by adsorption onto granular ferric hydroxide (GEH)

    International Nuclear Information System (INIS)

    Bahr, Carsten

    2012-01-01

    Uranium contamination of groundwater is encountered in many regions worldwide. Effective and simple removal technologies are required by waterworks faced with this problem, particularly in Germany which set a specification for maximum permissible uranium content in drinking water in November 2011. The present thesis examines the suitability of Granular Ferric Hydroxide (GEH) as a water treatment adsorbent for uranium removal. Adsorption isotherms generated in the studies showed that GEH is capable of adsorbing uranium, in fact achieving highest loading levels as compared to other oxide-based absorbents. Experimental data for uranium adsorption as a function of pH for the model systems U(VI) / H 2 O and U(VI) / H 2 O / CO 2 successfully fits the Surface Complexation Model using the adjusted parameter set for ferrihydrite. Test findings showed that adsorption capacity varies substantially depending on the water matrix processed and is significantly reduced when real ground water or drinking water is processed. The main parameters influencing adsorption capacity were found to be pH and the associated carbonate concentration, as well as the concentrations of calcium and phosphate and to a lesser extent of sulfate and humic substances. The reduced capacity is caused by adsorption competition and changes in chemical speciation of uranium brought about by the water matrix at hand. Both the kinetics and the dynamics of adsorption can be successfully described by the Homogeneous Surface Diffusion Model (HSDM). The characteristic transport coefficients for film diffusion and particle diffusion were determined using empirical correlations and lab testing. The comparatively slow kinetics of adsorption are caused by the rate-determining particle diffusion and lead to a relatively flat breakthrough curve. Experiments on small adsorber columns (RSSCT method) were used to simulate uranium breakthrough in GEH fixed-bed filters on a laboratory scale, permitting accurate prediction

  10. Nitrate Adsorption on Clay Kaolin: Batch Tests

    Directory of Open Access Journals (Sweden)

    Morteza Mohsenipour

    2015-01-01

    Full Text Available Soils possessing kaolin, gibbsite, goethite, and hematite particles have been found to have a natural capacity to attenuate pollution in aqueous phase. On the other hand, the hydroxyl group in soil increases anion exchange capacity under a low pH condition. The main objective of this paper was to evaluate effects of kaolin on nitrate reduction under acidic condition. In order to analyze the kaolin adsorption behaviour under various conditions, four different concentrations of nitrate, 45, 112.5, 225, and 450 mgNO3-/L, with a constant pH equal to 2, constant temperature equal to 25°C, and exposure period varying from 0 to 150 minutes were considered. The capacity of nitrate adsorption on kaolin has also been studied involving two well-known adsorption isotherm models, namely, Freundlich and Longmuir. The results revealed that approximately 25% of the nitrate present in the solution was adsorbed on clay kaolin. The laboratory experimental data revealed that Freundlich adsorption isotherm model was more accurate than Longmuir adsorption model in predicting of nitrate adsorption. Furthermore, the retardation factor of nitrate pollution in saturated zone has been found to be approximately 4 in presence of kaolin, which indicated that kaolin can be used for natural scavenger of pollution in the environment.

  11. Selective adsorption behavior of Cd(II) ion imprinted polymers synthesized by microwave-assisted inverse emulsion polymerization: Adsorption performance and mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Fang, E-mail: zhufang@tyut.edu.cn [College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024 (China); Li, Luwei [College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024 (China); Xing, Junde [College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024 (China)

    2017-01-05

    Highlights: • Microwave assisted inverse emulsion polymerization was applied to prepare Cd(II) imprinted polymers. • The adsorption capacity was evaluated by static adsorption experiments. • Pseudo-second-order model and Langmuir adsorption isotherm model had the best agreement with the experimental data. • The adsorption was a spontaneous and endothermic process. • Cd(II) imprinted polymers have specific identification for Cd(II). - Abstract: Microwave-assisted inverse emulsion polymerization method was used to prepare Cd(II) imprinted polymer (IIP) by using β-cyclodextrin (β-CD) and acrylamide (AM) as functional monomer, epichlorohydrin (ECH) as crossing-linking agent, ammonium persulfate as initiator. The Cd(II) imprinted polymer was characterized by SEM, FTIR and TGA. The influences of initial concentration of Cd(II), pH values, temperature, time and competitive ions on adsorption capacity and recognition properties are investigated. Under the optimal conditions, the adsorption capacity could reach 107 mg/g. Furthermore, pseudo first order kinetic model, pseudo second order kinetic model and intra-particular diffusion model were used to describe the adsorption kinetic behavior. Results showed that the pseudo-second-order model (R{sup 2} 0.9928–0.9961) had the best agreement with the experimental data. Langmuir adsorption isotherm model described the experimental data well, which indicated that adsorption was mainly monolayer absorption. Moreover, the study of adsorption thermodynamics (ΔG{sup 0} < 0, ΔH{sup 0} > 0, ΔS{sup 0} > 0) suggested that the adsorption process was a spontaneous and endothermic process. Competitive selectivity experiment revealed that imprinted polymer could selectively recognize Cd(II). It provides a new idea for removing Cd(II) from aqueous solution.

  12. Synthesis of multi-walled carbon nanotubes/{beta}-FeOOH nanocomposites with high adsorption capacity

    Energy Technology Data Exchange (ETDEWEB)

    Song Haojie, E-mail: shj6922@163.com [School of Materials Science and Engineering, Jiangsu University (China); Liu Lei [Pharmaceutic College of Henan University (China); Jia Xiaohua; Min Chunying [School of Materials Science and Engineering, Jiangsu University (China)

    2012-12-15

    A hybrid nanostructure of multi-walled carbon nanotubes (CNTs) and {beta}-ferric oxyhydroxide ({beta}-FeOOH) nanoparticles is synthesized by ultrasonic-assisted in situ hydrolysis of the precursor ferric chloride and CNTs. Characterization by X-ray diffraction, scanning electron microscopy , and transmission electron microscopy establishes the nanohybrid structure of the synthesized sample. The results revealed that the surface of CNTs was uniformly assembled by numerous {beta}-FeOOH nanoparticles and had an average diameter of 3 nm. The formation route of anchoring {beta}-FeOOH nanoparticles onto CNTs was proposed as the intercalation and adsorption of iron ions onto the wall of CNTs, followed by the nucleation and growth of {beta}-FeOOH nanoparticles. The values of remanent magnetization (M{sub r}) and coercivity (H{sub c}) of the as-synthesized CNTs/{beta}-FeOOH nanocomposites were 0.1131 emu g, and 490.824 Oe, respectively. Furthermore, CNTs/{beta}-FeOOH nanocomposites showed a very high adsorption capacity of Congo red and thus these nanocomposites can be used as good adsorbents and can be used for the removal of the dye of Congo red from the waste water system.

  13. Comparative study on the adsorption of Co2+ on CaCO3 compounds used as adsorbents

    International Nuclear Information System (INIS)

    De Jesus V, S.

    2014-01-01

    The calcium carbonate (CaCO 3 ) was synthesized by methods of precipitation, calcination, sol-gel and trigonal/sol-gel. These materials were characterized by the techniques of X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, infrared spectroscopy and N 2 physisorption measurements in order to identify their textural, surface and structural properties. The results show that the material synthesized by sol-gel had the highest surface area of 39.5230 m 2 /g, and a total pore volume of 0.0484 m 3 /g and a pore diameter of 4.9050 nm. The synthesized materials were used to comparatively study their adsorption capacity of Co 2+ ions present in aqueous solutions, by experiments batch or batch type at an ambient temperature (25 grades C) and to 4 hours, balance time established previously under an adsorption kinetic study. They found as maximum adsorption capacities of Co 2+ in materials of 1.8582 mg/g for the calcium carbonate obtained by precipitation, of 0.8586 mg/g for the material obtained by calcining, of 3.1895 mg/g for the material obtained by sol-gel and finally of 2.5783 mg/g for the material obtained by the trigonal/sol-gel method, therefore it follows that the material having the highest adsorption capacity of Co 2+ ions was synthesized by the sol-gel method, because it showed better surface, textural and structural properties compared to other materials studied. (Author)

  14. Removal of nitrate from water by adsorption onto zinc chloride treated activated carbon

    DEFF Research Database (Denmark)

    Bhatnagar, A.; Ji, M.; Choi, Y.H.

    2008-01-01

    Adsorption study with untreated and zinc chloride (ZnCl2) treated coconut granular activated carbon (GAC) for nitrate removal from water has been carried out. Untreated coconut GAC was treated with ZnCl2 and carbonized. The optimal conditions were selected by studying the influence of process...... variables such as chemical ratio and activation temperature. Experimental results reveal that chemical weight ratio of 200% and temperature of 500 degrees C was found to be optimum for the maximum removal of nitrate from water. Both untreated and ZnCl2 treated coconut GACs were characterized by scanning...... capacity of untreated and ZnCl2 treated coconut GACs were found 1.7 and 10.2 mg/g, respectively. The adsorption of nitrate on ZnCl2 treated coconut GAC was studied as a function of contact time, initial concentration of nitrate anion, temperature, and pH by batch mode adsorption experiments. The kinetic...

  15. The synthesis of poly(vinylphosphonic acid-co-methacrylic acid) microbeads by suspension polymerization and the characterization of their indium adsorption properties

    International Nuclear Information System (INIS)

    Kwak, Noh-Seok; Baek, Youngmin; Hwang, Taek Sung

    2012-01-01

    Highlights: ► Microbeads were synthesized by suspension polymerization based on VPA, MAA and PEGDA. ► The best preparation condition was determined from the yield, water uptake and IEC. ► The adsorption isotherm of indium was fit to the Langmuir and Freundlich models. - Abstract: Poly(vinylphosphonic acid-co-methacrylic acid) microbeads were synthesized by suspension polymerization, and their indium adsorption properties were investigated. The obtained microbeads were characterized by Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). The microbeads were wrinkled spheres, irrespective of the components, and their sizes ranged from 100 to 200 μm. The microbeads were thermally stable up to 260 °C. As the vinylphosphonic acid (VPA) content was increased, the synthetic yields and ion-exchange capacities decreased and the water uptakes increased. The optimum synthetic yield, ion-exchange capacity and water uptake were obtained at a 0.5 mol ratio of VPA. In addition, the maximum adsorption predicted by the Langmuir adsorption isotherm model was greatest at a 0.5 mol ratio of VPA.

  16. The synthesis of poly(vinylphosphonic acid-co-methacrylic acid) microbeads by suspension polymerization and the characterization of their indium adsorption properties

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Noh-Seok; Baek, Youngmin [Department of Applied Chemistry and Biological Engineering, Chungnam National University, 79 Daehangno, Yuseong-gu, Daejeon 305-764 (Korea, Republic of); Hwang, Taek Sung, E-mail: tshwang@cnu.ac.kr [Department of Applied Chemistry and Biological Engineering, Chungnam National University, 79 Daehangno, Yuseong-gu, Daejeon 305-764 (Korea, Republic of)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Microbeads were synthesized by suspension polymerization based on VPA, MAA and PEGDA. Black-Right-Pointing-Pointer The best preparation condition was determined from the yield, water uptake and IEC. Black-Right-Pointing-Pointer The adsorption isotherm of indium was fit to the Langmuir and Freundlich models. - Abstract: Poly(vinylphosphonic acid-co-methacrylic acid) microbeads were synthesized by suspension polymerization, and their indium adsorption properties were investigated. The obtained microbeads were characterized by Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). The microbeads were wrinkled spheres, irrespective of the components, and their sizes ranged from 100 to 200 {mu}m. The microbeads were thermally stable up to 260 Degree-Sign C. As the vinylphosphonic acid (VPA) content was increased, the synthetic yields and ion-exchange capacities decreased and the water uptakes increased. The optimum synthetic yield, ion-exchange capacity and water uptake were obtained at a 0.5 mol ratio of VPA. In addition, the maximum adsorption predicted by the Langmuir adsorption isotherm model was greatest at a 0.5 mol ratio of VPA.

  17. Adsorption of malachite green and iodine on rice husk-based porous carbon

    International Nuclear Information System (INIS)

    Guo Yupeng; Zhang Hui; Tao Nannan; Liu Yanhua; Qi Juirui; Wang Zichen; Xu Hongding

    2003-01-01

    Adsorption isotherms of I 2 and malachite green (MG) by rice husk-based porous carbons (RHCs) from aqueous medium have been studied. Three samples of carbons prepared by NaOH-activation, three samples prepared by KOH-activation and two samples of commercial carbons have been studied. And the adsorption isotherms have been determined after modifying the carbon surfaces by oxidation with nitric acid and hydrogen peroxide and after degassing at 800 deg. C. The results have been found to follow the Freundlich adsorption isotherm. Three samples of N series have larger capacity for removing I 2 and MG from solution compared to that of the tested commercial carbons. The adsorption capacity of I 2 is similar for K series and commercial carbons. And the capacity of commercial carbons for MG is larger than K series. The adsorption capacity of I 2 on oxidation carbons has increased for hydrogen peroxide treatment and decreased for nitric acid, and that of MG is decreased. But the adsorption capacities of I 2 and MG increase on degassing. On the other hand, the adsorption of I 2 increases after modifying the carbon surfaces by HCl without oxidation. Suitable mechanisms have been proposed

  18. Column Adsorption Studies for the Removal of Cr(VI Ions by Ethylamine Modified Chitosan Carbonized Rice Husk Composite Beads with Modelling and Optimization

    Directory of Open Access Journals (Sweden)

    S. Sugashini

    2013-01-01

    Full Text Available The objective of this present study is the optimization of process parameters in adsorption of Cr(VI ions by ethylamine modified chitosan carbonized rice husk composite beads (EAM-CCRCBs using response surface methodology (RSM and continuous adsorption studies of Cr(VI ions by ethylamine modified chitosan carbonized rice husk composite beads (EAM-CCRCBs. The effect of process variables such as initial metal ion concentration, adsorbent dosage and pH were optimized using RSM in order to ensure high adsorption capacity at low adsorbent dosage and high initial metal ion concentration of Cr(VI in batch process. The optimum condition suggested by the model for the process variable such as adsorbent dosage, pH and initial metal ion concentration was 0.14 g, 300 mg/L and pH2 with maximum removal of 99.8% and adsorption capacity of 52.7 mg/g respectively. Continuous adsorption studies were conducted under optimized initial metal ion concentration and pH for the removal of Cr(VI ions using EAM-CCRCBs. The breakthrough curve analysis was determined using the experimental data obtained from the continuous adsorption. Continuous adsorption modelling such as bed depth service model and Thomson model were established by fitting it with experimental data.

  19. Polyethylene imine modified hydrochar adsorption for chromium (VI) and nickel (II) removal from aqueous solution.

    Science.gov (United States)

    Shi, Yuanji; Zhang, Tao; Ren, Hongqiang; Kruse, Andrea; Cui, Ruofan

    2018-01-01

    An adsorbent hydrochar was synthesized from corn cobs and modified with polyethylene imine (PEI). The hydrochars before and after modification were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis. FTIR and XPS revealed that the PEI was grafted onto the hydrochar via ether and imine bonds formed with glutaraldehyde. The maximum adsorption capacities for Cr(VI) (33.663mg/g) and Ni(II) (29.059mg/g) on the modified hydrochars were 365% and 43.7% higher, respectively, than those on the unmodified hydrochar. A pseudo-second-order model described the adsorption of Ni(II) and Cr(VI) on all the adsorbents. The adsorption of Cr(VI) was endothermic, spontaneous, increased disorder, and obeyed the Langmuir model. By contrast, the adsorption of Ni(II) was exothermic, spontaneous, decreased disorder, and obeyed the Freundlich model. XPS confirmed that the adsorption sites and mechanisms for Ni(II) and Cr(VI) on the modified hydrochars were different. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Enhanced adsorption of trivalent arsenic from water by functionalized diatom silica shells.

    Directory of Open Access Journals (Sweden)

    Jianying Zhang

    Full Text Available The potential of porous diatom silica shells as a naturally abundant low-cost sorbent for the removal of arsenic in aqueous solutions was investigated in a batch study. The objective of this work was to chemically modify the silica shells of a diatom Melosira sp. with bifunctional (thiol and amino groups to effectively remove arsenic in its toxic As(III form (arsenite predominant in the aquatic environment. Sorption experiments with this novel sorbent were conducted under varying conditions of pH, time, dosage, and As(III concentration. A maximum adsorption capacity of 10.99 mg g-1 was achieved within 26 h for a solution containing 12 mg L-1 As(III at pH 4 and sorbent dosage of 2 g L-1. The functionalized diatom silica shells had a surface morphological change which was accompanied by increased pore size at the expense of reduced specific surface area and total pore volume. As(III adsorption was best fitted with the Langmuir-Freundlich model, and the adsorption kinetic data using pore surface diffusion model showed that both the external (film and internal (intraparticle diffusion can be rate-determining for As(III adsorption. Fourier transform infrared spectroscopy (FTIR indicated that the thiol and amino groups potentially responsible for As(III adsorption were grafted on the surface of diatom silica shells. X-ray photoelectron spectroscopy (XPS further verified that this unique sorbent proceeded via a chemisorption mechanism through the exchange between oxygen-containing groups of neutral As(III and thiol groups, and through the surface complexation between As(III and protonated nitrogen and hydroxyl groups. Results indicate that this functionalized bioadsorbent with a high As(III adsorption capacity holds promise for the treatment of As(III containing wastewater.

  1. Paraquat adsorption on NaX and Al-MCM-41.

    Science.gov (United States)

    Rongchapo, Wina; Deekamwong, Krittanun; Loiha, Sirinuch; Prayoonpokarach, Sanchai; Wittayakun, Jatuporn

    2015-01-01

    The aim of this work is to determine paraquat adsorption capacity of zeolite NaX and Al-MCM-41. All adsorbents were synthesized by hydrothermal method using rice husk silica. For Al-MCM-41, aluminum (Al) was added to the synthesis gel of MCM-41 with Al content of 10, 15, 20 and 25 wt%. The faujasite framework type of NaX and mesoporous characteristic of Al-MCM-41 were confirmed by X-ray diffraction. Surface area of all adsorbents determined by N2 adsorption-desorption analysis was higher than 650 m2/g. Al content and geometry were determined by X-ray fluorescence and 27Al nuclear magnetic resonance, respectively. Morphology of Al-MCM-41 were studied by transmission electron microscopy; macropores and defects were observed. The paraquat adsorption experiments were conducted using a concentration range of 80-720 mg/L for NaX and 80-560 mg/L for Al-MCM-41. The paraquat adsorption isotherms from all adsorbents fit well with the Langmuir model. The adsorption capacity of NaX was 120 mg/g-adsorbent. Regarding Al-MCM-41, the 10% Al-MCM-41 exhibited the lowest capacity of 52 mg/g-adsorbent while the other samples had adsorption capacity of 66 mg/g-adsorbent.

  2. Cadmium, lead and silver adsorption in hydrous niobium oxide(V) prepared by precipitation in homogeneous solution method; Adsorcao de chumbo, cadmio e prata em oxido de niobio(V) hidratado preparado pelo metodo da precipitacao em solucao homogenea

    Energy Technology Data Exchange (ETDEWEB)

    Tagliaferro, Geronimo V.; Pereira, Paulo Henrique F.; Rodrigues, Liana Alvares; Silva, Maria Lucia Caetano Pinto da, E-mail: fernandes_eng@yahoo.com.b [Universidade de Sao Paulo (USP), Lorena, SP (Brazil). Escola de Engenharia. Dept. de Engenharia Quimica

    2011-07-01

    This paper describes the adsorption of heavy metals ions from aqueous solution by hydrous niobium oxide. Three heavy metals were selected for this study: cadmium, lead and silver. Adsorption isotherms were well fitted by Langmuir model. Maximum adsorption capacity (Q{sub 0}) for Pb{sup 2+}, Ag{sup +} and Cd{sup 2+} was found to be 452.5, 188.68 and 8.85 mg g{sup -1}, respectively. (author)

  3. Adsorption of Pb(II) ions present in aqueous solution on the oxy hydroxides: boehmite (γ-AIOOH), goethite (α-FeOOH) and manganite (γ-MnOOH)

    International Nuclear Information System (INIS)

    Arreola L, J. E.

    2013-01-01

    , increases its adsorption capacity and maximum values having ph between 4 and 6. Thermodynamic parameters of each system according to the temperature were determined, it was found that the three systems studied proceed by physisorption mechanisms are spontaneous and endothermic reactions. In conclusion these materials synthesized and characterized can be used efficiently in the Pb(II) ions removal in aqueous medium and are useful for treating wastewater contaminated with heavy metals. (Author)

  4. MgO-based adsorbents for CO2 adsorption: Influence of structural and textural properties on the CO2 adsorption performance.

    Science.gov (United States)

    Elvira, Gutiérrez-Bonilla; Francisco, Granados-Correa; Víctor, Sánchez-Mendieta; Alberto, Morales-Luckie Raúl

    2017-07-01

    A series of MgO-based adsorbents were prepared through solution-combustion synthesis and ball-milling process. The prepared MgO-based powders were characterized using X-ray diffraction, scanning electron microscopy, N 2 physisorption measurements, and employed as potential adsorbents for CO 2 adsorption. The influence of structural and textural properties of these adsorbents over the CO 2 adsorption behaviour was also investigated. The results showed that MgO-based products prepared by solution-combustion and ball-milling processes, were highly porous, fluffy, nanocrystalline structures in nature, which are unique physico-chemical properties that significantly contribute to enhance their CO 2 adsorption. It was found that the MgO synthesized by solution combustion process, using a molar ratio of urea to magnesium nitrate (2:1), and treated by ball-milling during 2.5hr (MgO-BM2.5h), exhibited the maximum CO 2 adsorption capacity of 1.611mmol/g at 25°C and 1atm, mainly via chemisorption. The CO 2 adsorption behaviour on the MgO-based adsorbents was correlated to their improved specific surface area, total pore volume, pore size distribution and crystallinity. The reusability of synthesized MgO-BM2.5h was confirmed by five consecutive CO 2 adsorption-desorption times, without any significant loss of performance, that supports the potential of MgO-based adsorbent. The results confirmed that the special features of MgO prepared by solution-combustion and treated by ball-milling during 2.5hr are favorable to be used as effective MgO-based adsorbent in post-combustion CO 2 capture technologies. Copyright © 2016. Published by Elsevier B.V.

  5. Simultaneous efficient adsorption of Pb2+ and MnO4− ions by MCM-41 functionalized with amine and nitrilotriacetic acid anhydride

    International Nuclear Information System (INIS)

    Chen, Feiyun; Hong, Mingzhu; You, Weijie; Li, Chong; Yu, Yan

    2015-01-01

    Highlights: • MCM-41 was successfully modified with amine and nitrilotriacetic acid anhydride. • The adsorbent can simultaneously remove Pb 2+ and MnO 4 − by adjusting pH of the system. • The maximum adsorption capacities of Pb 2+ and MnO 4 − are 147 mg/g and 156 mg/g. • The absorbent exhibits good regeneration and reusability for 5 cycles use. - Abstract: A novel adsorbent NH 2 /MCM-41/NTAA, capable of simultaneous adsorption of cations and anions from aqueous solution, was prepared by immobilization of amine and nitrilotriacetic acid anhydride (NTAA) onto MCM-41. The structures and properties before and after surface modification were systematically investigated through X-ray diffraction (XRD), transmission electron microscope (TEM) and scanning electron microscope (SEM), nitrogen adsorption–desorption, and infrared spectroscopy (FTIR), thermogravimetry (TGA) and X-ray photoelectron spectroscopy (XPS). They together confirm that the amine and NTAA group were chemically bonded to the internal surface of the mesoporous. The NH 2 /MCM-41/NTAA were used to adsorb Pb 2+ and MnO 4 − in an aqueous solution in a batch system, and the maximum adsorption efficiency was found to occur at pH 5.0 and 3.0, respectively. NH 2 /MCM-41/NTAA exhibit preferable removal of Pb 2+ through electrostatic interactions and chelation, whereas it captures MnO 4 − by means of electrostatic interactions. The experimental data are fitted the Langmuir isotherm model reasonably well, with the maximum adsorption capacity of 147 mg/g for Pb 2+ and of 156 mg/g for MnO 4 − . The adsorption rates of both Pb 2+ and MnO 4 − are found to follow the pseudo-second order kinetics. Furthermore, the NH 2 /MCM-41/NTAA adsorbent performs good recyclability and reusability for 5 cycles use. This study indicates a potential applicability of NH 2 /MCM-41/NTAA as new absorbents for effective simultaneous adsorption of hazardous metal ions and anions from wastewater.

  6. Adsorption and desorption of cationic malachite green dye on cellulose nanofibril aerogels.

    Science.gov (United States)

    Jiang, Feng; Dinh, Darren M; Hsieh, You-Lo

    2017-10-01

    Ultra-light aerogels have been assembled from cellulose nanofibrils into hierarchically macroporous (several hundred μm) honeycomb cellular structure surrounded with mesoporous (8-60nm) thin walls. The high specific surface (193m 2 /g) and surface carboxyl content (1.29mmol/g) of these aerogels were demonstrated to be highly capable of removing cationic malachite green (MG) dye from aqueous media. The rapid MG adsorption was driven by electrostatic interactions and followed a pseudo-second-order adsorption kinetic and monolayer Langmuir adsorption isotherm. At a low 1:5mg/mL aerogel/MG ratio, both initial MG adsorption rate (2.3-59.8mgg -1 min -1 ) and equilibrium adsorption capacity (53.0-203.7mgg -1 ) increased with increasing initial MG concentrations from 10 to 200mg/L, reaching a maximum adsorption of 212.7mgg -1 . The excellent dye removal efficiency was demonstrated by complete MG removal through four repetitive adsorptions at a low 1:5mg/mL aerogel/MG ratio and 10mg/L dye concentration as well as 92% MG adsorption in a single batch at one order of magnitude higher10:5mg/mL aerogel/MG ratio and 100mg/L dye concentration. The adsorbed MG in aerogels could be desorbed in aqueous media by increasing ionic strength, demonstrating facile recovery of both dye and aerogel as well as the robust capability of this aerogel for repetitive applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Removal of beta-blockers from aqueous media by adsorption onto graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Kyzas, George Z. [Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki (Greece); Koltsakidou, Anastasia [Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR–541 24 Thessaloniki (Greece); Nanaki, Stavroula G.; Bikiaris, Dimitrios N. [Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki (Greece); Lambropoulou, Dimitra A., E-mail: dlambro@chem.auth.gr [Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR–541 24 Thessaloniki (Greece)

    2015-12-15

    The aim of the present study is the evaluation of graphene oxide (GhO) as adsorbent material for the removal of beta-blockers (pharmaceutical compounds) in aqueous solutions. The composition and morphology of prepared materials were characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). Atenolol (ATL) and propranolol (PRO) were used as model drug molecules and their behavior were investigated in terms of GhO dosage, contact time, temperature and pH. Adsorption mechanisms were proposed and the pH-effect curves after adsorption were discussed. The kinetic behavior of GhO-drugs system was analyzed after fitting to pseudo-first and -second order equations. The adsorption equilibrium data were fitted to Langmuir, Freundlich and Langmuir–Freundlich model calculating the maximum adsorption capacity (67 and 116 mg/g for PRO and ATL (25 °C), respectively). The temperature effect on adsorption was tested carrying out the equilibrium adsorption experiments at three different temperatures (25, 45, 65 °C). Then, the thermodynamic parameters of enthalpy, free energy and entropy were calculated. Finally, the desorption of drugs from GhO was evaluated by using both aqueous eluants (pH 2–10) and organic solvents. - Highlights: • Removal of beta-blockers by graphene oxide (GhO) from aqueous samples • Detailed adsorbent characterization and adsorption studies • Kinetic studies are performed and adsorption isotherms are determined and modeled. • GhO was proved to be an effective adsorbent for removal of atenolol and propranolol.

  8. Removal of copper (II) from aqueous solutions by adsorption onto granular activated carbon in the presence of competitor ions

    International Nuclear Information System (INIS)

    Almohammadi, S.; Mirzaei, M.

    2016-01-01

    In this work, the removal of copper from an aqueous solution by granular activated carbon (GAC) in the presence of competitor ions was studied. A batch adsorption was carried out and different parameters such as p H, contact time, initial copper concentration and competitor ions concentration were changed to determine the optimum conditions for adsorption. The optimum p H required for maximum adsorption was found to be 4.5 for copper. Equilibrium was evaluated at 144 h at room temperature. The removal efficiency of Cu(II) was 71.12% at this time. The kinetics of copper adsorption on activated carbon followed the pseudo second-order model. The experimental equilibrium sorption data were tested using the Langmuir, Freundlich, Temkin and Dubinin–Radushkevich (D-R) equations and the Langmuir model was found to be well fitted for copper adsorption onto GAC. The maximum adsorption capacity of the adsorbent for Cu(II) was calculated from the Langmuir isotherm and found to be 7.03 mg/g. Subsequently, the removal of copper by granular activated carbon in the presence of Ag 1 + and Mn 2 + as competitor ions was investigated. The removal efficiency of Cu(II) ions without the presence of the competitor ions was 46% at 6 h, while the removal efficiency of Cu(II) ions in the presence of competitor ions, Ag 1 + and Mn 2 + , was 34.76% and 31.73%, respectevely.

  9. Adsorption decontamination of radioactive waste solvent by activated alumina and bauxites

    International Nuclear Information System (INIS)

    Hassan, N.M.; Marra, J.C.; Kyser, E.A.

    1994-01-01

    An adsorption process utilizing activated alumina and activated bauxite adsorbents was evaluated as a function of operating parameters for the removal of low level radioactive contaminants from organic waste solvent generated in the fuel reprocessing facilities and support operations at Savannah River Site. The waste solvent, 30% volume tributyl phosphate in n-paraffin diluent, was degraded due to hydrolysis and radiolysis reactions of tributyl phosphate and n-paraffin diluent, producing fission product binding degradation impurities. The process, which has the potential for removing these activity-binding degradation impurities from the solvent, was operated downflow through glass columns packed with activated alumina and activated bauxite adsorbents. Experimental breakthrough curves were obtained under various operating temperatures and flow rates. The results show that the adsorption capacity of the activated alumina was in the order 10 4 dpm/g and the capacity of the activated bauxite was 10 5 dpm/g. The performance of the adsorption process was evaluated in terms of dynamic parameters (i.e. adsorption capacity, the height and the efficiency of adsorption zone) in such a way as to maximize the adsorption capacity and to minimize the height of the mass transfer or adsorption zone

  10. Statistical optimization of adsorption processes for removal of 2,4-dichlorophenol by activated carbon derived from oil palm empty fruit bunches

    Institute of Scientific and Technical Information of China (English)

    Md. Zahangir ALAM; Suleyman A. MUYIBI; Juria TORAMAE

    2007-01-01

    The adsorption capacity of activated carbon produced from oil palm empty fruit bunches through removal of 2,4-dichlorophenol from aqueous solution was carried out in the laboratory. The activated carbon was produced by thermal activation at 800℃ with 30 min of activation time. The adsorption process conditions were determined with the statistical optimization followed by central composite design. A developed polynomial model for operating conditions of adsorption process indicated that the optimum conditions for maximum adsorption of phenolic compound were: agitation rate of 100 r/min, contact time of 8 h, initial adsorbate concentration of 250 mg/L and pH 4. Adsorption isotherms were conducted to evaluate biosorption process. Langmuir isotherm was more favorable (R2=0.93) for removal of 2,4-dichlorophenol by the activated carbon produced rather than the Freundlich isotherm (R2=0.88).

  11. Adsorption of Phosphate Ion in Water with Lithium-Intercalated Gibbsite

    Directory of Open Access Journals (Sweden)

    Riwandi Sihombing

    2015-12-01

    Full Text Available In order to enhance adsorption capacity of gibbsite (Al(OH3 as an adsorbent for the adsorption of phosphate in water, gibbsite was modified through lithium-intercalation. The purification method of Tributh and Lagaly was applied prior to intercalation. The Li-Intercalation was prepared by the dispersion of gibbsite into LiCl solution for 24 hours. This intercalation formed an cationic clay with the structure of [LiAl2(OH6]+ and exchangeable Cl- anions in the gibbsite interlayer. A phosphate adsorption test using Lithium-intercalated gibbsite (LIG resulted in optimum adsorption occurring at pH 4.5 with an adsorption capacity of 11.198 mg phosphate/g LIG which is equivalent with 1.04 wt% LIG. The adsorption capacity decreased with decreasing amounts of H2PO4-/HPO4- species in the solution. This study showed that LIG has potential as an adsorbent for phosphate in an aqueous solution with pH 4.5–9.5.

  12. Influence of organobentonite structure on toluene adsorption from water solution

    Directory of Open Access Journals (Sweden)

    Nuria Vidal

    2012-12-01

    Full Text Available Due to increase water pollution by organic compound derived from hydrocarbons such as toluene, several alternative technologies for remediation of polluted water have been originated. In this work natural bentonites were modified with cetyltrimethylammonium (CTMA+ for obtaining organophilic bentonites. The obtained CTMA-bentonites would be suitable for use as adsorbents of toluene present in water. The influence of structural characteristics of CTMA-bentonites on their adsorption capacity was studied. It was shown that adsorption of toluene depended on homogeneous interlayer space associated with arrangements of CTMA+ paraffin-monolayer and bilayer models, accompanied by a high degree ordering of the carbon chain of organic cation in both arrangements. However, packing density would not have an evident influence on the retention capacity of these materials. The solids obtained were characterized by chemical analysis, X-ray diffractions and infrared spectroscopy. Toluene adsorption was measured by UV-visible spectrophotometer. Adsorption capacity was studied by determining adsorption isotherms and adsorption coefficient calculation. The adsorption isotherms were straight-line indicating a partition phenomenon of toluene between the aqueous and organic phase present in organophilic bentonites.

  13. Kinetic and isotherm studies of bisphenol A adsorption onto orange albedo(Citrus sinensis): Sorption mechanisms based on the main albedo components vitamin C, flavones glycosides and carotenoids.

    Science.gov (United States)

    Kamgaing, Theophile; Doungmo, Giscard; Melataguia Tchieno, Francis Merlin; Gouoko Kouonang, Jimmy Julio; Mbadcam, Ketcha Joseph

    2017-07-03

    Orange albedo and its adsorption capacity towards bisphenol A (BPA) were studied. Adsorption experiments were conducted in batch mode at 25-55°C. Scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) and Fourier transform infrared (FTIR) spectroscopy were used to characterise the biosorbent. The effects of various parameters including adsorption time, equilibrium pH, adsorbent dosage and initial adsorbate concentration were investigated. The optimum contact time and pH for the removal of BPA were 60 min and 2, respectively. It was found that the adsorption isotherms best matched the Freundlich model, the adsorption of BPA being multilayer and that of the albedo surface heterogeneous. From the kinetic studies, it was found that the removal of BPA best matched the pseudo-second order kinetic model. An adsorption mechanism based on the albedo surface molecules is proposed and gives a good account of π-π interactions and hydrogen bonding. Orange albedo, with a maximum BPA loading capacity of 82.36 mg g -1 (significantly higher than that of most agricultural residues), is a good candidate for BPA adsorption in aqueous media.

  14. Competitive adsorption of Pb(II), Cu(II), and Zn(II) ions onto hydroxyapatite-biochar nanocomposite in aqueous solutions

    Science.gov (United States)

    Wang, Yu-Ying; Liu, Yu-Xue; Lu, Hao-Hao; Yang, Rui-Qin; Yang, Sheng-Mao

    2018-05-01

    A hydroxyapatite-biochar nanocomposite (HAP-BC) was successfully fabricated and its physicochemical properties characterized. The analyses showed that HAP nanoparticles were successfully loaded on the biochar surface. The adsorption of Pb(II), Cu(II), and Zn(II) by HAP-BC was systematically studied in single and ternary metal systems. The results demonstrated that pH affects the adsorption of heavy metals onto HAP-BC. Regarding the adsorption kinetics, the pseudo-second-order model showed the best fit for all three heavy metal ions on HAP-BC. In both single and ternary metal ion systems, the adsorption isotherm of Pb(II) by HAP-BC followed Langmuir model, while those of Cu(II) and Zn(II) fitted well with Freundlich model. The maximum adsorption capacity for each tested metal by HAP-BC was higher than that of pristine rice straw biochar (especially for Pb(II)) or those of other reported adsorbents. Therefore, HAP-BC could explore as a new material for future application in heavy metal removal.

  15. Optimizing the physical-chemical properties of carbon nanotubes (CNT) and graphene nanoplatelets (GNP) on Cu(II) adsorption.

    Science.gov (United States)

    Rosenzweig, Shirley; Sorial, George A; Sahle-Demessie, Endalkachew; McAvoy, Drew C

    2014-08-30

    Systematic experiments of copper adsorption on 10 different commercially available nanomaterials were studied for the influence of physical-chemical properties and their interactions. Design of experiment and response surface methodology was used to develop a polynomial model to predict maximum copper adsorption (initial concentration, Co=10mg/L) per mass of nanomaterial, qe, using multivariable regression and maximum R-square criterion. The best subsets of properties to predict qe in order of significant contribution to the model were: bulk density, ID, mesopore volume, tube length, pore size, zeta-charge, specific surface area and OD. The highest experimental qe observed was for an alcohol-functionalized MWCNT (16.7mg/g) with relative high bulk density (0.48g/cm(3)), ID (2-5nm), 10-30μm long and ODGraphene nanoplatelets (GNP) showed poor adsorptive capacity associated to stacked-nanoplatelets, but good colloidal stability due to high functionalized surface. Good adsorption results for pristine SWCNT indicated that tubes with small diameter were more associated with good adsorption than functionalized surface. XPS and ICP analysis explored surface chemistry and purity, but pHpzc and zeta-charge were ultimately applied to indicate the degree of functionalization. Optimum CNT were identified in the scatter plot, but actual manufacturing processes introduced size and shape variations which interfered with final property results. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. The adsorption/desorption of phosphorus in freshwater sediments from buffer zones: the effects of sediment concentration and pH.

    Science.gov (United States)

    Zhang, Liang; Du, Yun; Du, Chao; Xu, Meng; Loáiciga, Hugo A

    2016-01-01

    Riparian buffer zones adjacent to reservoirs and lakes protect aquatic ecosystems from polluted surface runoff. Sediments, collected from the buffer zones of Danjiangkou Reservoir (SR) and Honghu Lake (SL) in an ecologically fragile region in central China, were evaluated to reveal their phosphorus-adsorbing/desorbing properties and storage capacities. A nonlinear regression method was used to fit the pseudo-second-order kinetic and the modified crossover-type Langmuir isotherm models to the experimental data. It is shown that the adsorption of phosphorus onto the studied sediments followed the pseudo-second-order kinetic expression. The modified crossover-type Langmuir isotherm model was found to be a suitable method for describing adsorption/desorption processes in the experimental sediments. The maximum adsorption capacities (Q m), partitioning coefficients (K p), native adsorbed exchangeable phosphorus (NAP), and equilibrium phosphorus concentration (EPC0) were subsequently obtained for the experimental sediments. The effects of sediment concentration and pH were also investigated by batch experiments and Fourier transformation infrared and scanning electron microscopy analyses. The adsorption/desorption characteristics of different phosphate species on the sediments from reservoir and lake buffer zones were identified.

  17. Adsorption of organic matter contained in industrial phosphoric acid onto bentonite: Batch contact time and kinetic study

    International Nuclear Information System (INIS)

    Mellah, Abdelhamid

    1992-12-01

    The soluble organic matter present in industrial phosphoric acid can strongly affect the uranium recovery during its solvent extraction by forming stable foams and emulsions. The removal of these organics is an important step both for the production of decontaminated fertilizers and the successful recovery of uranium. The equilibrium isotherms of organic matter adsorption onto bentonite show that the data correlated well with freundlich's model and that the adsorption is physical in nature. the maximum monomolecular capacity (Qo) according to the Langmuir model is 153 mg/g for an initial organic matter concentration of 251.5 mg/1, at 30 oC. The operating parameters (agitation speed, solid/liquid ratio, temperature, particle size and initial organic matter concentration) influenced the rate of adsorption. The adsorption isotherm of uranium onto bentonite exhibits and anomalous shape similar to the Z-type isotherm reported by Giles et al

  18. Adsorption Equilibrium and Kinetics of Gardenia Blue on TiO2 Photoelectrode for Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Tae-Young Kim

    2014-01-01

    Full Text Available Nanostructured porous TiO2 paste was deposited on the FTO conductive glass using squeeze printing technique in order to obtain a TiO2 thin film with a thickness of 10 μm and an area of 4 cm2. Gardenia blue (GB extracted from Gardenia jasminode Ellis was employed as the natural dye for a dye-sensitized solar cell (DSSC. Adsorption studies indicated that the maximum adsorption capacity of GB on the surface of TiO2 thin film was approximately 417 mg GB/g TiO2 photoelectrode. The commercial and natural dyes, N-719 and GB, respectively, were employed to measure the adsorption kinetic data, which were analyzed by pseudo-first-order and pseudo-second-order models. The energy conversion efficiency of the TiO2 electrode with successive adsorptions of GB dye was about 0.2%.

  19. Adsorption and redox reactions of heavy metals on synthesized Mn oxide minerals

    International Nuclear Information System (INIS)

    Feng Xionghan; Zhai Limei; Tan Wenfeng; Liu Fan; He Jizheng

    2007-01-01

    Several Mn oxide minerals commonly occurring in soils were synthesized by modified or optimized methods. The morphologies, structures, compositions and surface properties of the synthesized Mn oxide minerals were characterized. Adsorption and redox reactions of heavy metals on these minerals in relation to the mineral structures and surface properties were also investigated. The synthesized birnessite, todorokite, cryptomelane, and hausmannite were single-phased minerals and had the typical morphologies from analyses of XRD and TEM/ED. The PZCs of the synthesized birnessite, todorokite and cryptomelane were 1.75, 3.50 and 2.10, respectively. The magnitude order of their surface variable negative charge was: birnessite ≥ cryptomelane > todorokite. The hausmannite had a much higher PZC than others with the least surface variable negative charge. Birnessite exhibited the largest adsorption capacity on heavy metals Pb 2+ , Cu 2+ , Co 2+ , Cd 2+ and Zn 2+ , while hausmannite the smallest one. Birnessite, cryptomelane and todorokite showed the greatest adsorption capacity on Pb 2+ among the tested heavy metals. Hydration tendency (pK 1 ) of the heavy metals and the surface variable charge of the Mn minerals had significant impacts on the adsorption. The ability in Cr(III) oxidation and concomitant release of Mn 2+ varied greatly depending on the structure, composition, surface properties and crystallinity of the minerals. The maximum amounts of Cr(III) oxidized by the Mn oxide minerals in order were (mmol/kg): birnessite (1330.0) > cryptomelane (422.6) > todorokite (59.7) > hausmannite (36.6). - The characteristics of heavy metal adsorption and Cr(III) oxidation on Mn oxide minerals are determined by their structure, composition, surface property and crystallinity

  20. Biosorption of the Copper and Cadmium Ions - a Study through Adsorption Isotherms Analysis

    Directory of Open Access Journals (Sweden)

    Marcia T. Veit

    2007-10-01

    Full Text Available In this work, the biosorption process of copper-cadmium ions binary mixture by using marine algae Sargassum filipendula was investigated. A set of experiments was performed to obtain equilibrium data for the given batch operational conditions - T=30°C, pH=5. The interpretation of equilibrium data was based on the binary adsorption isotherms models in the Langmuir and Freundlich forms. To evaluate the models parameters, nonlinear identification procedure was used based on the Least Square statistical method and SIMPLEX local optimizer. An analysis of the obtained results showed that the marine algae biomass has higher affinity to copper ions than to cadmium ones. The biomass maximum adsorption capacity for the binary system was about 1.16 meq/g.

  1. Thorium-particulate matter interaction. Thorium complexing capacity of oceanic particulate matter: Theory

    International Nuclear Information System (INIS)

    Hirose, Katsumi; Tanque, Eiichiro

    1994-01-01

    The interaction between thorium and oceanic particulate matter was examined experimentally by using chemical equilibrium techniques. Thorium reacts quantitatively with the organic binding site of Particulate Matter (PM) in 0.1 mol/L HCl solution by complexation, which is equilibrated within 34 h. According to mass balance analysis, thorium forms a 1:1 complex with the organic binding site in PM, whose conditional stability constant is 10 6.6 L/mol. The Th adsorption ability is present even in 6.9 mol/L HCl solution although the amount of Th adsorption decreases with increasing acidity in the solution. Interferences to Th adsorption by Fe(III) suggests that other metals cannot react with PM in more than 0.1 mol/L HCl solutions when concentrations of other metals are the same level of Th. The competitive reaction between Th and Fe(III) occurs in higher Fe concentrations, which means that the organic binding site is nonspecific for Th. A vertical profile of Th complexing capacity of PM in the western North Pacific is characterized; that is, the Th complexing capacity shows a surface maximum and decreases rapidly with depth

  2. Adsorption study of selenium ions from aqueous solutions using MgO nanosheets synthesized by ultrasonic method

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Wenwen; Li, Ping; Wang, Zheming; Zheng, Shili; Zhang, Yi

    2018-01-01

    tMgO nanosheets with thickness ranges of 3–10 molecule layers and high specific area (166.44 m2g-1)were successfully fabricated by an ultrasound-assisted exfoliation method and used as adsorbent forthe removal of both selenite (Se(IV)) and selenate (Se(VI)) from aqueous solutions. The resulting MgOnanosheets displayed high maximum adsorption capacities of 103.52 and 10.28 mg g-1for Se(IV) andSe(VI), respectively. ATR-FTIR and XPS spectroscopic results suggested that both Se(IV) and Se(VI) formedinner-sphere surface complexes on MgO nanosheets under the present experimental conditions. Fur-thermore, high adsorption capacity for Se(IV/VI) in the presence of coexistent anions (SO42-, PO43-, Cl-,and F-) and efficient regeneratability of adsorbent by NaOH solution were observed in the competitiveadsorption and regeneration steps. The simple one-step synthesis process of MgO nanosheets and highadsorption capacities offer a promising method for Se(IV/VI) removal in water treatment.

  3. The Adsorption of Cd(II) on Manganese Oxide Investigated by Batch and Modeling Techniques.

    Science.gov (United States)

    Huang, Xiaoming; Chen, Tianhu; Zou, Xuehua; Zhu, Mulan; Chen, Dong; Pan, Min

    2017-09-28

    Manganese (Mn) oxide is a ubiquitous metal oxide in sub-environments. The adsorption of Cd(II) on Mn oxide as function of adsorption time, pH, ionic strength, temperature, and initial Cd(II) concentration was investigated by batch techniques. The adsorption kinetics showed that the adsorption of Cd(II) on Mn oxide can be satisfactorily simulated by pseudo-second-order kinetic model with high correlation coefficients (R² > 0.999). The adsorption of Cd(II) on Mn oxide significantly decreased with increasing ionic strength at pH adsorption was independent of ionic strength at pH > 6.0, which indicated that outer-sphere and inner-sphere surface complexation dominated the adsorption of Cd(II) on Mn oxide at pH 6.0, respectively. The maximum adsorption capacity of Mn oxide for Cd(II) calculated from Langmuir model was 104.17 mg/g at pH 6.0 and 298 K. The thermodynamic parameters showed that the adsorption of Cd(II) on Mn oxide was an endothermic and spontaneous process. According to the results of surface complexation modeling, the adsorption of Cd(II) on Mn oxide can be satisfactorily simulated by ion exchange sites (X₂Cd) at low pH and inner-sphere surface complexation sites (SOCd⁺ and (SO)₂CdOH - species) at high pH conditions. The finding presented herein plays an important role in understanding the fate and transport of heavy metals at the water-mineral interface.

  4. The Adsorption of Cd(II) on Manganese Oxide Investigated by Batch and Modeling Techniques

    Science.gov (United States)

    Huang, Xiaoming; Chen, Tianhu; Zou, Xuehua; Zhu, Mulan; Chen, Dong

    2017-01-01

    Manganese (Mn) oxide is a ubiquitous metal oxide in sub-environments. The adsorption of Cd(II) on Mn oxide as function of adsorption time, pH, ionic strength, temperature, and initial Cd(II) concentration was investigated by batch techniques. The adsorption kinetics showed that the adsorption of Cd(II) on Mn oxide can be satisfactorily simulated by pseudo-second-order kinetic model with high correlation coefficients (R2 > 0.999). The adsorption of Cd(II) on Mn oxide significantly decreased with increasing ionic strength at pH adsorption was independent of ionic strength at pH > 6.0, which indicated that outer-sphere and inner-sphere surface complexation dominated the adsorption of Cd(II) on Mn oxide at pH 6.0, respectively. The maximum adsorption capacity of Mn oxide for Cd(II) calculated from Langmuir model was 104.17 mg/g at pH 6.0 and 298 K. The thermodynamic parameters showed that the adsorption of Cd(II) on Mn oxide was an endothermic and spontaneous process. According to the results of surface complexation modeling, the adsorption of Cd(II) on Mn oxide can be satisfactorily simulated by ion exchange sites (X2Cd) at low pH and inner-sphere surface complexation sites (SOCd+ and (SO)2CdOH− species) at high pH conditions. The finding presented herein plays an important role in understanding the fate and transport of heavy metals at the water–mineral interface. PMID:28956849

  5. On thermodynamics of methane+carbonaceous materials adsorption

    KAUST Repository

    Rahman, Kazi Afzalur; Chakraborty, Anutosh; Saha, Bidyut Baran; Ng, Kim Choon

    2012-01-01

    This study presents the theoretical frameworks for the thermodynamic quantities namely the heat of adsorption, specific heat capacity, entropy, and enthalpy for the adsorption of methane onto various carbonaceous materials. The proposed theoretical

  6. Study of Adsorption Mechanism of Congo Red on Graphene Oxide/PAMAM Nanocomposite

    Science.gov (United States)

    Rafi, Mohammad; Samiey, Babak; Cheng, Chil-Hung

    2018-01-01

    Graphene oxide/poly(amidoamine) (GO/PAMAM) nanocomposite adsorbed high quantities of congo red (CR) anionic dye in 0.1 M NaCl solution, with the maximum adsorption capacity of 198 mg·g−1. The kinetics and thermodynamics of adsorption were investigated to elucidate the effects of pH, temperature, shaking rate, ionic strength, and contact time. Kinetic data were analyzed by the KASRA model and the KASRA, ISO, and pore-diffusion equations. Adsorption adsorption isotherms were studied by the ARIAN model and the Henry, Langmuir, and Temkin equations. It was shown that adsorption sites of GO/PAMAM at experimental conditions were phenolic hydroxyl groups of GO sheets and terminal amine groups of PAMAM dendrimer. Analysis of kinetic data indicated that amine sites were located on the surface, and that hydroxyl sites were placed in the pores of adsorbent. CR molecules interacted with the adsorption sites via hydrogen bonds. The molecules were adsorbed firstly on the amine sites, and then on the internal hydroxyl sites. Adsorption kinetic parameters indicated that the interaction of CR to the –NH3+ sites was the rate-controlling step of adsorption of CR on this site and adsorption activation energies calculated for different parts of this step. On the other hand, kinetic parameters showed that the intraparticle diffusion was the rate-controlling step during the interaction of CR molecules to –OH sites and activation energy of this step was not calculable. Finally, the used GO/PAMAM was completely regenerated by using ethylenediamine. PMID:29587463

  7. Study of Adsorption Mechanism of Congo Red on Graphene Oxide/PAMAM Nanocomposite

    Directory of Open Access Journals (Sweden)

    Mohammad Rafi

    2018-03-01

    Full Text Available Graphene oxide/poly(amidoamine (GO/PAMAM nanocomposite adsorbed high quantities of congo red (CR anionic dye in 0.1 M NaCl solution, with the maximum adsorption capacity of 198 mg·g−1. The kinetics and thermodynamics of adsorption were investigated to elucidate the effects of pH, temperature, shaking rate, ionic strength, and contact time. Kinetic data were analyzed by the KASRA model and the KASRA, ISO, and pore-diffusion equations. Adsorption adsorption isotherms were studied by the ARIAN model and the Henry, Langmuir, and Temkin equations. It was shown that adsorption sites of GO/PAMAM at experimental conditions were phenolic hydroxyl groups of GO sheets and terminal amine groups of PAMAM dendrimer. Analysis of kinetic data indicated that amine sites were located on the surface, and that hydroxyl sites were placed in the pores of adsorbent. CR molecules interacted with the adsorption sites via hydrogen bonds. The molecules were adsorbed firstly on the amine sites, and then on the internal hydroxyl sites. Adsorption kinetic parameters indicated that the interaction of CR to the –NH3+ sites was the rate-controlling step of adsorption of CR on this site and adsorption activation energies calculated for different parts of this step. On the other hand, kinetic parameters showed that the intraparticle diffusion was the rate-controlling step during the interaction of CR molecules to –OH sites and activation energy of this step was not calculable. Finally, the used GO/PAMAM was completely regenerated by using ethylenediamine.

  8. Removal of pharmaceutical compounds from water by adsorption on activated carbon and degradation with ozone; Eliminacion de compuestos farmaceuticos de las aguas por adsorcion en carbon activado y degradacion con ozono

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Polo, M.; Prado Joya, G.; Rivera Utrilla, J.; Ferro Garcia, M. A.; Bautista Toledo, M. I.; Lopez Penalver, J. J.; Gomez Merlo de la fuente, C.

    2007-07-01

    The removal of pharmaceutical compounds from water, using nitroimidazoles as model compounds, by means of both adsorption on activated carbon and ozonization has been studied. The results obtained have shown that activated carbon presents a great efficiency to remove these contaminants from waters because: the adsorption kinetics is very fast, and it is not affected by diffusion problems; the maximum adsorption capacity is very high (400-96 mg/g); and the nitroimidazole adsorption capacity is enhanced in natural waters. Regarding to the ozonization process, a low reactivity of these compounds with ozone has been observed (k{sub 0}3{approx_equal}100 M{sup -}1 s{sup -}1) although, nevertheless, they present a high affinity to the hydroxyl radicals (k{sub O}H{approx_equal}10{sup 1}0 M{sup -}1s{sup -}1). (Author) 13 refs.

  9. 玉米秸秆基改性生物质活性炭对Cd的吸附特性%Adsorption capacity of modified corn straw based activated biocarbon to Cd

    Institute of Scientific and Technical Information of China (English)

    吐尔逊·吐尔洪; 帕提古丽·伊克木; 阿热祖古丽·达吾提; 阿马努拉·依明尼亚孜

    2018-01-01

    以玉米秸秆为原料,制备了生物质活性炭(以下简称生物炭),用HNO3、NaOH、沸水、四氢呋喃(THF)对其进行改性,并比较了不同生物炭对Cd的吸附特性,对沸水和 T HF滤液进行了光谱分析,结果显示:随着Cd初始浓度的增加,玉米秸秆基生物炭及改性产物对Cd的吸附量大体增强;Cd初始质量浓度超过25.0 mg/L时,吸附量表现为碱改性生物炭> 未改性生物炭> T HF改性生物炭> 沸水改性生物炭> 酸改性生物炭.NaO H通过改变玉米秸秆基生物炭表面官能团和元素构成,增强了其吸附能力.HNO3使玉米秸秆基生物炭孔隙带正电荷,从而抑制了对Cd的吸附.沸水和 T HF从玉米秸秆基生物炭孔隙中溶出了有利于吸附反应的部分表面官能团,从而降低了其对Cd的吸附能力.随着Cd初始浓度增加,玉米秸秆基生物炭对Cd的吸附量大体增加,滤液pH大体降低.用玉米秸秆基生物炭处理污水中的Cd时,建议用碱改性法来提高其吸附能力.%Corn straw based activated biocarbon was prepared and modified with HNO3,NaOH,hot water and tetrahydrofuran(T HF).Adsorption capacities of original and modified activated biocarbons to Cd,as well as spectrum of filtrate of hot water and THF modified activated biocarbons were tested.Result showed that adsorption capacities of activated biocarbons increased with the concentration of initial Cd solution.The order of adsorption capacities was NaOH modified activated biocarbons>original activated biocarbons> THF modified activated biocarbons >hot water modified activated biocarbons > HNO3modified activated biocarbons when initial Cd exceeded 25.0 mg/L.NaOH enhanced the adsorption capacity of original activated biocarbon by changing the surface functional group and elemental contents.HNO3inhibited the adsorption by charging the surface of activated biocarbon with positive charge.Hot water and THF scoured off some surface groups which were favorable for adsorption

  10. Adsorption isotherms and kinetics for dibenzothiophene on activated

    Indian Academy of Sciences (India)

    Adsorption isotherms were obtained and desulphurization kinetics were carried out on solutions of dibenzothiophene (DBT) and thiophene in a model fuel. The efficiencies of DBT and thiophene removal were reported. The adsorption isotherms fitted the Langmuir and Freundlich models. The highest adsorption capacity for ...

  11. High performance of phosphate-functionalized graphene oxide for the selective adsorption of U(VI) from acidic solution

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xia [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei, 230031 (China); University of Science and Technology of China, Hefei, 230026 (China); Li, Jiaxing, E-mail: lijx@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei, 230031 (China); Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions (China); School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, 215123, Suzhou (China); Wang, Xiangxue; Chen, Changlun [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei, 230031 (China); Wang, Xiangke [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei, 230031 (China); Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions (China); School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, 215123, Suzhou (China); Faculty of Engineering, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)

    2015-11-15

    In this study, phosphate-functionalized graphene oxide (PGO) was prepared by grafting triethyl phosphite onto the surface of GO using Arbuzov reaction. The as-prepared PGO was characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier transformed infrared spectroscopy and Zeta potential. The application of the PGO to remove U(VI) from aqueous solution was investigated with a maximum adsorption capacity of 251.7 mg/g at pH = 4.0 ± 0.1 and T = 303 K. The adsorption mechanism was also investigated by X-ray photoelectron spectroscopy analysis, indicating a chemical adsorption of U(VI) on PGO surface. Moreover, experimental results gave a better removal efficiency toward U(VI) on PGO surface than other heavy metal ions at acidic solution, indicating the selective extraction of U(VI) from environmental pollutants. - Highlights: • The successful grafting phosphonate to graphene oxide by the Arbuzov reaction. • Selective adsorption of U(VI) on PGO surface over other heavy metal ions from acidic solution. • Electrostatic interactions of U(VI) with phosphonate and oxygen-containing functional groups on PGO surface. • Higher sorption capacity on PGO surface than GO surface for the U(VI) removal.

  12. Preparation of Diethylenetriamine Modified Polyacrylonitrile Nanofibers for Cadmium Ion Adsorption

    Directory of Open Access Journals (Sweden)

    Zahra Mokhtari- shorijeh

    2016-07-01

    Full Text Available In this study, the electrospinning method was used to manufacture polyacrylonitrile (PAN nanofibers. The procedure involved spinning a solution of 10%wt PAN in dimethyl formamide (DMF in an electric field of 21 kV and with a tip to collector distance of 16 cm. The nanofibers thus obtained had an average diameter of 100 nm. Then, scanning electron microscopy (SEM images were used to investigate the morphology of the nanofibers. In the next step, the nanofiner surface was modified with diethylenetriamine and FTIR was employed to ensure the presence of amines on the nanofiber surface. The functionalized nanofibers were then used for the first time to adsorb ions of cadmium (a heavy metal with industrial applications and its adsorption capacity was evaluated. The chemical charactristics of the nanofibers and the effects of such parameters as pH, temprature, and contact time on adsorption efficiency were investigated. The results showed that maximum adsorption efficiency was achieved within the first 10 minutes of the process at a pH in the range of 5‒7 when about 80% of the cadmium ions were adsorbed.. Moreover, only slight changes were observed with longer contact times or with increasing temperature. Finally, the adsorption data fitted well with the Langmuir isotherm

  13. Kinetics and thermodynamics studies on the BMP-2 adsorption onto hydroxyapatite surface with different multi-morphological features

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Zhiwei; Huangfu, Changxin; Wang, Yanying; Ge, Hongwei; Yao, Yao; Zou, Ping; Wang, Guangtu [College of Science, Sichuan Agricultural University, Ya' an 625014 (China); He, Hua [Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Wenjiang, Sichuan 611130 (China); Rao, Hanbing, E-mail: rhbscu@gmail.com [College of Science, Sichuan Agricultural University, Ya' an 625014 (China)

    2015-07-01

    The effect of the surface topography on protein adsorption process is of great significance for designing hydroxyapatite (HA) ceramic material surfaces. In this work, three different topographies of HA materials HA-sheet, HA-rod, and HA-whisker were synthesized and testified by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Brunauer–Emmett–Teller (BET) and a field emission scanning electron microscopy (FE-SEM). We have systematically investigated the adsorption kinetics and thermodynamics of bone morphogenetic proteins (BMP-2) on the three different topography surfaces of HA, respectively. The results showed that the maximum adsorption capacities of HA-sheet, HA-rod and HA-whisker were (219.96 ± 10.18), (247.13 ± 12.35), and (354.67 ± 17.73) μg · g{sup −1}, respectively. Kinetic parameters, rate constants, equilibrium adsorption capacities and related correlation coefficients, for each kinetic model were calculated as well as discussed. It demonstrated that the adsorption of BMP-2 onto HA could be described by the pseudo second-order equation. Adsorption of BMP-2 onto HA followed the Langmuir isotherm. It confirmed that compared with other samples HA-whisker had more adsorption sites for its high specific surface area which could provide more opportunities for protein molecules. The adsorption processes were endothermic (ΔH > 0), spontaneous (ΔG < 0) and entropy increasing (ΔS > 0). A possible adsorption mechanism has been proposed. In addition, the BMP-2 could be adsorbed to the surface which existed slight conformational changes by FT-IR. - Highlights: • A novel protein adsorption studies based on sheet, rod and whisker of HA were designed. • Kinetic and thermodynamics parameters of BMP-2 and HA bonded materials were evaluated. • Surface topographies of the HA effect BMP-2 adsorption • The HA-whisker material had excellent adsorption performance for protein enrichment. • The electrostatic interaction is responsible for the

  14. Kinetics and thermodynamics studies on the BMP-2 adsorption onto hydroxyapatite surface with different multi-morphological features

    International Nuclear Information System (INIS)

    Lu, Zhiwei; Huangfu, Changxin; Wang, Yanying; Ge, Hongwei; Yao, Yao; Zou, Ping; Wang, Guangtu; He, Hua; Rao, Hanbing

    2015-01-01

    The effect of the surface topography on protein adsorption process is of great significance for designing hydroxyapatite (HA) ceramic material surfaces. In this work, three different topographies of HA materials HA-sheet, HA-rod, and HA-whisker were synthesized and testified by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Brunauer–Emmett–Teller (BET) and a field emission scanning electron microscopy (FE-SEM). We have systematically investigated the adsorption kinetics and thermodynamics of bone morphogenetic proteins (BMP-2) on the three different topography surfaces of HA, respectively. The results showed that the maximum adsorption capacities of HA-sheet, HA-rod and HA-whisker were (219.96 ± 10.18), (247.13 ± 12.35), and (354.67 ± 17.73) μg · g −1 , respectively. Kinetic parameters, rate constants, equilibrium adsorption capacities and related correlation coefficients, for each kinetic model were calculated as well as discussed. It demonstrated that the adsorption of BMP-2 onto HA could be described by the pseudo second-order equation. Adsorption of BMP-2 onto HA followed the Langmuir isotherm. It confirmed that compared with other samples HA-whisker had more adsorption sites for its high specific surface area which could provide more opportunities for protein molecules. The adsorption processes were endothermic (ΔH > 0), spontaneous (ΔG < 0) and entropy increasing (ΔS > 0). A possible adsorption mechanism has been proposed. In addition, the BMP-2 could be adsorbed to the surface which existed slight conformational changes by FT-IR. - Highlights: • A novel protein adsorption studies based on sheet, rod and whisker of HA were designed. • Kinetic and thermodynamics parameters of BMP-2 and HA bonded materials were evaluated. • Surface topographies of the HA effect BMP-2 adsorption • The HA-whisker material had excellent adsorption performance for protein enrichment. • The electrostatic interaction is responsible for the BMP-2

  15. Adsorptive removal of 1-naphthol from water with Zeolitic imidazolate framework-67

    Science.gov (United States)

    Yan, Xinlong; Hu, Xiaoyan; Chen, Tao; Zhang, Shiyu; Zhou, Min

    2017-08-01

    1-Naphthol is widely used as an intermediate in the plastics, dyes, fibers and rubbers production areas, leading to the increasing detection of 1-naphthol in the soil and water environment, which is of particular concern due to its acute toxicity and negative environmental impacts. Considering the high surface area and good stability of ZIFs (zeolitic imidazole frameworks) material, ZIF-67 (a representative cobalt-based ZIFs material) was synthesized and applied as an adsorbent for removal of 1-naphthol from aqueous solution. The obtained ZIF-67 was characterized by XRD, TEM, XPS, N2 physisorption and TG, and the adsorption isotherm, kinetics, and regeneration of the adsorbent were studied in detail. The adsorption of 1-naphthol on ZIF-67 followed a pseudo-second-order equation kinetics and fitted Langmuir adsorption model with a maximum adsorption capacity of 339 mg/g at 313 K, which is much higher than that of the common adsorbents reported such as activated carbon and carbon nanotubes et al. The solution pH was found to be an important factor influencing the adsorption process, which could be explained by the predominant mechanism controlling the process, i.e. electrostatic attraction. In addition, the ZIF-67 showed desirable reusability toward 1-naphthol removal from alkaline aqueous solution.

  16. Fluorocarbon Adsorption in Hierarchical Porous Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Motkuri, Radha K.; Annapureddy, Harsha V.; Vijayakumar, M.; Schaef, Herbert T.; Martin, P F.; McGrail, B. Peter; Dang, Liem X.; Krishna, Rajamani; Thallapally, Praveen K.

    2014-07-09

    The adsorption behavior of a series of fluorocarbon derivatives was examined on a set of microporous metal organic framework (MOF) sorbents and another set of hierarchical mesoporous MOFs. The microporous M-DOBDC (M = Ni, Co) showed a saturation uptake capacity for R12 of over 4 mmol/g at a very low relative saturation pressure (P/Po) of 0.02. In contrast, the mesoporous MOF MIL-101 showed an exceptionally high uptake capacity reaching over 14 mmol/g at P/Po of 0.4. Adsorption affinity in terms of mass loading and isosteric heats of adsorption were found to generally correlate with the polarizability of the refrigerant with R12 > R22 > R13 > R14 > methane. These results suggest the possibility of exploiting MOFs for separation of azeotropic mixtures of fluorocarbons and use in eco-friendly fluorocarbon-based adsorption cooling and refrigeration applications.

  17. Competitive Adsorption of Chloroform and Bromoform Using ...

    African Journals Online (AJOL)

    The results obtained were checked with Freundlich adsorption isotherm model. This model expresses well adsorption of one THM species in the presence of another with R2 > 0.95. Based on the model, adsorption capacity of Calgon F200 and Norit GCN1240 were found higher for bromoform than chloroform. Calgon F200 ...

  18. Adsorption of Arsenate by Nano Scaled Activated Carbon Modified by Iron and Manganese Oxides

    Directory of Open Access Journals (Sweden)

    George P. Gallios

    2017-09-01

    Full Text Available The presence of arsenic in water supplies is a major problem for public health and still concerns large parts of population in Southeast Asia, Latin America and Europe. Removal of arsenic is usually accomplished either by coagulation with iron salts or by adsorption with iron oxides or activated alumina. However, these materials, although very efficient for arsenic, normally do not remove other undesirable constituents from waters, such as chlorine and organo-chlorine compounds, which are the results of water chlorination. Activated carbon has this affinity for organic compounds, but does not remove arsenic efficiently. Therefore, in the present study, iron modified activated carbons are investigated as alternative sorbents for the removal of arsenic(V from aqueous solutions. In addition, modified activated carbons with magnetic properties can easily be separated from the solutions. In the present study, a simple and efficient method was used for the preparation of magnetic Fe3(Mn2+O4 (M:Fe and/or Mn activated carbons. Activated carbons were impregnated with magnetic precursor solutions and then calcinated at 400 °C. The obtained carbons were characterized by X-ray diffraction (XRD, nitrogen adsorption isotherms, scanning electron microscopy (SEM, vibrating sample magnetometer (VSM, Fourier Transform Infrared Spectrometry (FTIR and X-ray photoelectron spectroscopy (XPS measurements. Their adsorption performance for As(V was evaluated. The iron impregnation presented an increase in As(V maximum adsorption capacity (Qmax from about 4 mg g−1 for the raw carbon to 11.05 mg g−1, while Mn incorporation further increased the adsorption capacity at 19.35 mg g−1.

  19. Potential theory of adsorption for associating mixtures: possibilities and limitations

    DEFF Research Database (Denmark)

    Bjørner, Martin Gamel; Shapiro, Alexander; Kontogeorgis, Georgios

    2013-01-01

    The applicability of the Multicomponent Potential Theory of Adsorption (MPTA) for prediction of the adsorption equilibrium of several associating binary mixtures on different industrial adsorbents is investigated. In the MPTA the adsorbates are considered to be distributed fluids subject...... to describe the solid-fluid interactions. The potential is extended to include adsorbate-absorbent specific capacities rather than an adsorbent specific capacity. Correlations of pure component isotherms are generally excellent with individual capacities, although adsorption on silicas at different...... temperatures still poses a challenge. The quality of the correlations is usually independent on the applied EoS. Predictions for binary mixtures indicate that the MPTA+SRK is superior when adsorption occurs on non-polar or slightly polar adsorbents, while MPTA+CPA performs better for polar adsorbents, or when...

  20. Evaluation of the adsorption capacity of nano-graphene and nano-graphene oxide for xylene removal from air and their comparison with the standard adsorbent of activated carbon to introduce the optimized one

    Directory of Open Access Journals (Sweden)

    Akram Tabrizi

    2016-06-01

    Full Text Available Introduction: Volatile organic compounds from industrial activities are one of the most important pollutants released into the air and have adverse effects on human and environment. Therefore, they should be removed before releasing into atmosphere. The aim of the study was to evaluate xylene removal from air by nano-grapheme and nano-graphene oxide in comparison with activated carbon adsorbent. Material and Method:  After preparing adsorbents of activated carbon, nano-graphene, and nano-graphene oxide, experiments adsorption capacity in static mode (Batch were carried out in a glass vial. Some variables including contact time, the amount of adsorbent, the concentration of xylene, and the temperature were studied. Langmuir absorption isotherms were used in order to study the adsorption capacity of xylene on adsorbents. Moreover, sample analysis was done by gas chromatography with Flame Ionization Detector (GC-FID. Results: The adsorption capacities of activated carbon, nano-graphene oxide and nano-graphene for removal of xylene were obtained 349.8, 14.5, and 490 mg/g, respectively. The results of Scanning Electron Microscope (SEM for nano-graphene and nano-graphene oxide showed particle size of less than 100 nm. While, the results of Transmission Electron Microscope (TEM showed particle size of 45nm for nano-graphene and 65 nm for nano-graphene oxide. Also, X-Ray Diffraction (XRD showed cube structure of nano-adsorbents. Conclusion: In constant humidity, increase in exposure time and temperature caused an increase in the adsorption capacity. The results revealed greater adsorption capacity of xylene removal for nano-graphene compared to the activated carbon, and nano-graphene oxide.

  1. Equilibrium isotherms, kinetics, and thermodynamics studies for congo red adsorption using calcium alginate beads impregnated with nano-goethite.

    Science.gov (United States)

    Munagapati, Venkata Subbaiah; Kim, Dong-Su

    2017-07-01

    The present study is concerned with the batch adsorption of congo red (CR) from an aqueous solution using calcium alginate beads impregnated with nano-goethite (CABI nano-goethite) as an adsorbent. The optimum conditions for CR removal were determined by studying operational variables viz. pH, adsorbent dose, contact time, initial dye ion concentration and temperature. The CABI nano-goethite was characterized by Fourier transform infrared spectroscopy (FTIR), X- ray diffraction (XRD) and Scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS) analysis. The CR sorption data onto CABI nano-goethite were described using Langmuir, Freundlich, Dubinin-Radushkevich and Temkin isotherm models. The results show that the best fit was achieved with the Langmuir isotherm model. The maximum adsorption capacity (181.1mg/g) of CR was occurred at pH 3.0. Kinetic studies showed that the adsorption followed a pseudo-second-order model. Desorption experiments were carried out to explore the feasibility of regenerating the adsorbent and the adsorbed CR from CABI nano-goethite. The best desorbing agent was 0.1M NaOH with an efficiency of 94% recovery. The thermodynamic parameters ΔG°, ΔH°, and ΔS° for the CR adsorption were determined by using adsorption capacities at five different temperatures (293, 303, 313, 323 and 303K). Results show that the adsorption process was endothermic and favoured at high temperature. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Adsorption of cadmium from aqueous solutions on sulfurized activated carbon prepared from nut shells

    International Nuclear Information System (INIS)

    Fouladi Tajar, Amir; Kaghazchi, Tahereh; Soleimani, Mansooreh

    2009-01-01

    Low-cost activated carbon, derived from nut shells, and its modified sample have been used as replacements for the current expensive methods of removing cadmium from aqueous solutions and waste waters. Adsorption of cadmium onto four kinds of activated carbons has been studied; prepared activated carbon (PAC), commercial activated carbon (CAC), and the sulfurized ones (SPAC and SCAC). The activated carbon has been derived, characterized, treated with sulfur and then utilized for the removal of Cd 2+ . Sulfurizing agent (SO 2 gas) was successfully used in adsorbents' modification process at the ambient temperature. Samples were then characterized and tested as adsorbents of cadmium. Effect of some parameters such as contact time, initial concentration and pH were examined. With increasing pH, the adsorption of cadmium ions was increased and maximum removal, 92.4% for SPAC, was observed in pH > 8.0 (C 0 = 100 mg/L). The H-type adsorption isotherms, obtained for the adsorbents, indicated a favorable process. Adsorption data on both prepared and commercial activated carbon, before and after sulfurization, followed both the Frendlich and Langmuir models. They were better fitted by Frendlich isotherm as compared to Langmuir. The maximum adsorption capacities were 90.09, 104.17, 126.58 and 142.86 mg/g for CAC, PAC, SCAC and SPAC, respectively. Accordingly, surface modification of activated carbons using SO 2 greatly enhanced cadmium removal. The reversibility of the process has been studied in a qualitative manner and it shows that the spent SPAC can be effectively regenerated for further use easily.

  3. Adsorption methods for hydrogen isotope storage on zeolitic sieves

    International Nuclear Information System (INIS)

    Cristescu, Ioana; Cristescu, Ion; Vasut, F.; Brad, S.; Lazar, A.

    2001-01-01

    For hydrogen isotope separation, adsorption molecular sieves and active carbon were used. Adsorption process proceeds at liquid nitrogen and liquid hydrogen temperatures. Commercial zeolites have the same proprieties with natural zeolites, but they have a regular pore structure. They also have affinity for molecules of different size with defined shapes. Experimental results obtained at liquid nitrogen temperature (77.4 K) and liquid hydrogen revealed the efficient behaviour of the active carbon and zeolitic sieves for hydrogen isotopes temporary storage. We study adsorption of the synthetic zeolites in a wide range of temperatures and pressures and we used the molecular sieves 4A, 5A and active carbon. The 4A and 5A zeolites have a tridimensional structure with 11.4 A diameter. When the hydration water is eliminated, the material keeps a porous structure. The porous volume represents 45% from the zeolite mass for 4A and 5A sieves. The activation temperature of the zeolite and the carbon is very important for obtaining a high adsorption capacity. If the temperature used for activation is low, the structural water will be not eliminated and the adsorption capacity will be low. The excessive temperature will destroy the porous structure. The adsorption capacity for the hydrogen isotopes was calculated with the relation: A = V ads /m (cm 3 /g). The adsorption capacity and efficiency for the adsorbent materials, are given. Physical adsorption process of the hydrogen isotopes was carried out at liquid nitrogen temperature. The flux gas used in the adsorption system is composed of dry deuterium and protium. This mixture is cooled in liquid nitrogen and then is passed to the adsorbent getter at the same temperature (77.4 K). The gas flux in the adsorbent getter is 5 and 72 l/h (which correspond to 0.008 and 0.134 discharge velocity, respectively). (authors)

  4. Adsorption behavior of direct red 80 and congo red onto activated carbon/surfactant: Process optimization, kinetics and equilibrium

    Science.gov (United States)

    Cheng, Zhengjun; Zhang, Lei; Guo, Xiao; Jiang, Xiaohui; Li, Tian

    2015-02-01

    Adsorptions of congo red and direct red 80 onto activated carbon/surfactant from aqueous solution were optimized. The Box-Behnken design (BBD) has been employed to analyze the effects of concentration of surfactant, temperature, pH, and initial concentration of the dye in the adsorption capacity. Their corresponding experimental data could be evaluated excellently by second order polynomial regression models and the two models were also examined based on the analysis of variance and t test statistics, respectively. The optimum conditions were obtained as follows: Cs = 34.10 μM, T = 50 °C, pH = 3.5, and CCR = 160 mg/L for the congo red system, and Cs = 34.10 μM, T = 50 °C, pH = 6.1, and CDR80 = 110 mg/L for the direct red 80 system. And in these conditions, the measured experimental maximum adsorption capacities for the congo red and direct red 80 removals were 769.48 mg/g and 519.90 mg/g, which were consistent with their corresponding predicted values, with small relative errors of -2.81% and -0.67%, respectively. The adsorption equilibrium and kinetics for the two dye adsorptions onto AC/DDAC were also investigated. The experimental data were fitted by four isotherm models, and Langmuir model presented the best fit. The kinetic studies indicated that the kinetic data followed the pseudo-second-order model.

  5. Adsorption of tannic acid from aqueous solution onto surfactant-modified zeolite

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jianwei, E-mail: jwlin@shou.edu.cn [College of Marine Science, Shanghai Ocean University, No. 999 Hucheng Huan Road, Pudong District, Shanghai 201306 (China); Zhan, Yanhui; Zhu, Zhiliang [State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092 (China); Xing, Yunqing [College of Marine Science, Shanghai Ocean University, No. 999 Hucheng Huan Road, Pudong District, Shanghai 201306 (China)

    2011-10-15

    Graphical abstract: Surfactant-modified zeolites (SMZs) with various loadings of cetylpyridinium bromide (CPB) were used as adsorbents to remove tannic acid (TA) from aqueous solution. Highlights: {yields} Surfactant modified zeolites (SMZs) have a good tannic acid (TA) adsorption capacity. {yields} Adsorption capacity for SMZ with bilayer was relatively high at solution pH 3.5-7.0. {yields} Adsorption was well described by pseudo-second-order kinetic model. {yields} Adsorption fitted well with Langmuir, Redlich-Peterson and Sips isotherm models. {yields} Coexisting Cu(II) in aqueous solution resulted in markedly enhanced TA adsorption. - Abstract: Surfactant-modified zeolites (SMZs) with various loadings of cetylpyridinium bromide (CPB) were used as adsorbents to remove tannic acid (TA) from aqueous solution. The TA adsorption efficiencies for natural zeolite and various SMZs were compared. SMZ presented higher TA adsorption efficiency than natural zeolite, and SMZ with higher loading amount of CPB exhibited higher TA adsorption efficiency. The adsorption of TA onto SMZ as a function of contact time, initial adsorbate concentration, temperature, ionic strength, coexisting Cu(II) and solution pH was investigated. The adsorbents before and after adsorption were characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), thermogravimetric analysis (TGA), and Fourier transform infrared (FT-IR) spectroscopy. The adsorption kinetics of TA onto SMZ with CPB bilayer coverage (SMZ-CBC) followed a pseudo-second-order model. The equilibrium adsorption data of TA onto SMZ-CBC were well represented by Langmuir, Redlich-Peterson and Sips isotherm models. The calculated thermodynamic parameters indicated that TA adsorption onto SMZ-CBC was spontaneous and exothermic. The TA adsorption capacity for SMZ-CBC slightly decreased with increasing ionic strength but significantly increased with increasing Cu(II) concentration. The TA adsorption

  6. Data of furfural adsorption on nano zero valent iron (NZVI) synthesized from Nettle extract.

    Science.gov (United States)

    Fazlzadeh, Mehdi; Ansarizadeh, Mohammad; Leili, Mostafa

    2018-02-01

    Among various water and wastewater treatment methods, adsorption techniques are widely used to remove certain classes of pollutants due to its unique features. Thus, the aim of this data article is to synthesize zero valent iron nanoparticles (NZVI) from Nettle leaf extract by green synthesis method as an environmentally friendly technique, and to evaluate it's efficiency in the removal of furfural from aqueous solutions. The data of possible adsorption mechanism and isotherm of furfural on the synthesized adsorbent are depicted in this data article. The data acquired showed that the adsorption trend follows the pseudo-second order kinetic model and that the Langmuir isotherm was suitable for correlation of equilibrium data with the maximum adsorption capacity of 454.4 mg/g. The information of initial furfural concentration, pH, adsorbent dosage and contact time effects on the removal efficiency are presented. Considering the findings data, the developed nanoparticle from Nettle leaf extract, as a low cost adsorbent, could be considered as promising adsorbent for furfural and probably similar organic pollutants removal from aqueous solutions.

  7. Adsorption of Cu (II), Pb (II) and Cr (VI) from aqueous solutions using black wattle tannin-immobilized nanocellulose.

    Science.gov (United States)

    Xu, Qinghua; Wang, Yulu; Jin, Liqiang; Wang, Yu; Qin, Menghua

    2017-10-05

    A novel nanocomposite based on black wattle (BW) tannin and nanocellulose was prepared and applied in heavy metal ions adsorptive removal from aqueous solutions. Firstly, nanocrystalline cellulose was oxidized by sodium periodate to get dialdehyde nanocellulose (DANC). BW tannin was then covalently immobilized onto DANC, which was used as both the matrix and crosslinker, to obtain tannin-nanocellulose (TNCC) composite. The resulting nanocomposite was characterized using FTIR, AFM, and TG. The successful immobilization was confirmed by the chromogenic reaction between FeCl 3 and TNCC and FT-IR analysis. AFM images revealed that TNCC was ellipsoidal particles with lengths ranging from 100-400nm. Zeta potential measurement showed that TNCC was negative charged at a pH range from 1-12. Compared to the original tannin, the thermal stability of TNCC was slightly increased by the addition of nanocellulose. TNCC demonstrated the maximum adsorption efficiency at pH2 for Cr(VI) and pH 6 for Cu(II) and Pb(II), respectively. The adsorption for these three metal ions followed pseudo second-order kinetics, indicating the chemisorption nature. The adsorption isotherms all fitted well with the Sips model, and the calculated maximum adsorption capacities were 51.846mgg -1 , 53.371mgg -1 and 104.592mgg -1 for Cu(II), Pb(II) and Cr (VI), respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Adsorption of lysozyme unto silica and polystyrene surfaces in ...

    African Journals Online (AJOL)

    user

    2011-04-11

    Apr 11, 2011 ... surfaces were well fitted by the Langmuir adsorption isotherm model with maximum adsorption .... following reasons: (1) Lysozyme is a globular protein with ... vigorously for 1 h to attain equilibrium adsorption and allowed to.

  9. Synthesis and characterization of polyacrylic acid- grafted-carboxylic graphene/titanium nanotube composite for the effective removal of enrofloxacin from aqueous solutions: Adsorption and photocatalytic degradation studies.

    Science.gov (United States)

    Anirudhan, Thayyath S; Shainy, F; Christa, J

    2017-02-15

    Polyacrylic acid-grafted-carboxylic graphene/titanium nanotube (PAA-g-CGR/TNT) composite was synthesized. It was effectively used as adsorbent as well as photocatalyst. The composite was characterized by FTIR, XRD, SEM, TEM, Surface Area Analyzer, XPS and DRS. The photocatalytic activity of PAA-g-CGR/TNT composite was evaluated on the basis of the degradation of pollutants by using sunlight. The band gap of the prepared photocatalyst was found to be 2.6eV. The removal of the antibiotic enrofloxacin (ENR) was achieved by two step mechanism based on adsorption and photodegradation. The maximum adsorption was observed at pH 5.0. The best fitted kinetic model was found to be pseudo-second-order. The maximum adsorption was observed at 30°C. The maximum adsorption capacity was found to be 13.40mg/g. The kinetics of photodegradation of ENR onto PAA-g-CGR/TNT composite follow first-order kinetics and optimum pH was found to be 5.0. The regeneration and reuse of the adsorbent-cum-photocatalyst were also examined upto five cycles. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Fundamentals of high pressure adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Y.P.; Zhou, L. [Tianjin University, Tianjin (China). High Pressure Adsorption Laboratory

    2009-12-15

    High-pressure adsorption attracts research interests following the world's attention to alternative fuels, and it exerts essential effect on the study of hydrogen/methane storage and the development of novel materials addressing to the storage. However, theoretical puzzles in high-pressure adsorption hindered the progress of application studies. Therefore, the present paper addresses the major theoretical problems that challenged researchers: i.e., how to model the isotherms with maximum observed in high-pressure adsorption; what is the adsorption mechanism at high pressures; how do we determine the quantity of absolute adsorption based on experimental data. Ideology and methods to tackle these problems are elucidated, which lead to new insights into the nature of high-pressure adsorption and progress in application studies, for example, in modeling multicomponent adsorption, hydrogen storage, natural gas storage, and coalbed methane enrichment, was achieved.

  11. Kinetics, equilibrium, and thermodynamics investigation on the adsorption of lead(II) by coal-based activated carbon.

    Science.gov (United States)

    Yi, Zhengji; Yao, Jun; Zhu, Mijia; Chen, Huilun; Wang, Fei; Liu, Xing

    2016-01-01

    The goal of this research is to investigate the feasibility of using activated coal-based activated carbon (CBAC) to adsorb Pb(II) from aqueous solutions through batch tests. Effects of contact time, pH, temperature and initial Pb(II) concentration on the Pb(II) adsorption were examined. The Pb(II) adsorption is strongly dependent on pH, but insensitive to temperature. The best pH for Pb(II) removal is in the range of 5.0-5.5 with more than 90 % of Pb(II) removed. The equilibrium time was found to be 60 min and the adsorption data followed the pseudo-second-order kinetics. Isotherm data followed Langmuir isotherm model with a maximum adsorption capacity of 162.33 mg/g. The adsorption was exothermic and spontaneous in nature. The Fourier transform infrared spectroscopy and scanning electron microscopy analysis suggested that CBAC possessed a porous structure and was rich in carboxyl and hydroxyl groups on its surface, which might play a major role in Pb(II) adsorption. These findings indicated that CBAC has great potential as an alternative adsorbent for Pb(II) removal.

  12. Kinetic modelling and mechanism of dye adsorption on unburned carbon

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S.B.; Li, H.T. [Curtin University of Technology, Perth, WA (Australia). Dept. of Chemical Engineering

    2007-07-01

    Textile dyeing processes are among the most environmentally unfriendly industrial processes by producing coloured wastewaters. The adsorption method using unburned carbon from coal combustion residue was studied for the decolourisation of typical acidic and basic dyes. It was discovered that the unburned carbon showed high adsorption capacity at 1.97 x 10{sup -4} and 5.27 x 10{sup -4} mol/g for Basic Violet 3 and Acid Black 1, respectively. The solution pH, particle size and temperature significantly influenced the adsorption capacity. Higher solution pH favoured the adsorption of basic dye while reduced the adsorption of acid dye. The adsorption of dye increased with increasing temperature but decreased with increasing particle size. Sorption kinetic data indicated that the adsorption kinetics followed the pseudo-second-order model. The adsorption mechanism consisted of two processes, external diffusion and intraparticle diffusion, and the external diffusion was the dominating process.

  13. Influence of alumina phases on the molybdenum adsorption capacity and chemical stability for {sup 99}Mo/{sup 99m}Tc generators columns

    Energy Technology Data Exchange (ETDEWEB)

    Guedes-Silva, Cecilia C.; Ferreira, Thiago dos Santos; Paula, Carolina M. de; Otubo, Larissa, E-mail: cecilia.guedes@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Carvalho, Flavio M.S. [Universidade de Sao Paulo (IGC/USP), SP (Brazil). Instituto de Geociencias

    2016-07-15

    Technetium-{sup 99m} is the clinically most used radionuclide worldwide. Although many techniques can be applied to separate {sup 99}Mo and {sup 99m}Tc, the most commonly used method is the column chromatography with alumina as stationary phase. However, the alumina nowadays used has limited adsorption capacity of molybdate ions which implies the need to develop or improve materials to produce high specific activity generators. In this paper, alumina was obtained by a solid state method and heat treatments at different conditions. The powders had a microstructure with porous particles of γ, δ, θ and α-Al{sub 2}O{sub 3} phases as well as specific surface area between 36 and 312 m{sup 2} g{sup -1}. Most interesting results were reached by powders calcined at 900 deg C for 5 hours which had high chemical stability and a molybdenum adsorption capacity of 92.45 mg Mo per g alumina. (author)

  14. Adsorption properties of Congo Red from aqueous solution onto surfactant-modified montmorillonite

    International Nuclear Information System (INIS)

    Wang Li; Wang Aiqin

    2008-01-01

    A series of surfactant-modified montmorillonites (MMT) were prepared using octyltrimethylammonium bromide (OTAB), dodecyltrimethylammonium bromide (DTAB), cetyltrimethylammonium bromide (CTAB) and stearyltrimethylammonium bromide (STAB), and the organification of MMT was proved by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron micrographic (SEM) and transmission electron microscope (TEM). The adsorption of Congo Red (CR) anionic dye from aqueous solution onto surfactant-modified MMT was carried out. Compared with MMT, the adsorption capacity of surfactant-modified MMT for CR was greatly enhanced and MMT modified with CTAB (2.0 CEC) exhibited the higher adsorption capacity. The effects of pH value of the dye solution, adsorption temperature, adsorption time and the initial dye concentration on the adsorption capacity of CR on CTAB-MMT have been investigated. The results showed that the adsorption kinetic of CR on CTAB-MMT could be best described by the pseudo-second-order model and that the adsorption isotherm of CR was in good agreement with the Langmuir equation. The IR spectra and SEM analysis also revealed that the adsorption of CTAB-MMT was a chemical adsorption process between CTAB and the NH 2 , -N=N- and SO 3 groups of CR

  15. Enhancing Nitrogen Availability, Ammonium Adsorption-Desorption, and Soil pH Buffering Capacity using Composted Paddy Husk

    Science.gov (United States)

    Latifah, O.; Ahmed, O. H.; Abdul Majid, N. M.

    2017-12-01

    Form of nitrogen present in soils is one of the factors that affect nitrogen loss. Nitrate is mobile in soils because it does not absorb on soil colloids, thus, causing it to be leached by rainfall to deeper soil layers or into the ground water. On the other hand, temporary retention and timely release of ammonium in soils regulate nitrogen availability for crops. In this study, composted paddy husk was used in studies of soil leaching, buffering capacity, and ammonium adsorption and desorption to determine the: (i) availability of exchangeable ammonium, available nitrate, and total nitrogen in an acid soil after leaching the soil for 30 days, (ii) soil buffering capacity, and (iii) ability of the composted paddy husk to adsorb and desorb ammonium from urea. Leaching of ammonium and nitrate were lower in all treatments with urea and composted paddy husk compared with urea alone. Higher retention of soil exchangeable ammonium, available nitrate, and total nitrogen of the soils with composted paddy husk were due to the high buffering capacity and cation exchange capacity of the amendment to adsorb ammonium thus, improving nitrogen availability through temporary retention on the exchange sites of the humic acids of the composted paddy husk. Nitrogen availability can be enhanced if urea is amended with composted paddy husk.

  16. Kinetic and equilibrium study of adsorption of di-azo dyes on commercial activated carbon

    International Nuclear Information System (INIS)

    Hyali, E.A.S.A.; Abady, T.G.A.

    2013-01-01

    This research work is concerned with studying the adsorption of a number of di-azo dyes on commercial activated carbon (CAC). The synthesized dyes vary in their structures by the central parts. which are either ortho, meta or para phenvlene diamine. This variation affects the linearity of molecules, their spatial arrangement and electron movement throughout the molecule by resonance. Factors a fleeting adsorption process, such as the efiect of contact time, initial concentration, p1-I of the adsorption medium, adsorbent dose, effect of solvent and temperature were studied. The results indicated that, the adsorption process is fast in the first 10 mm, then gradually decreased with time and approaches maximum within 70-80 min for all the studied dyes. The increase of initial concentration and temperature decreased the adsorption efficiency. The results also shows that, the adsorption is found to be more efficient at low Ph value. The increase of the adsorbent dose increases the adsorption efficiency and decreases its capacity. The variation of solvent (ethanol-water ratio) indicates that the decrease of dielectric constant lowers the adsorption efficiency. The study included application of three adsorption isotherms, Freundlich, Langmuir and Tempkin on the experimental data of the studied systems. The results indicated that, Freundlich isotherm fits better the adsorption data. Kinetic analysis of the adsorption data was also conducted by employing 4 kinetic models; pseudo first order and pseudo second order, Elovich and intra particle diffusion equations. The results obtained conclude that, the studied systems follow the Pseudo second order model. (author)

  17. [Adsorption and desorption of dyes by waste-polymer-derived activated carbons].

    Science.gov (United States)

    Lian, Fei; Liu, Chang; Li, Guo-Guang; Liu, Yi-Fu; Li, Yong; Zhu, Ling-Yan

    2012-01-01

    Mesoporous activated carbons with high surface area were prepared from three waste polymers, i. e., tire rubber, polyvinyl chloride (PVC) and polyethyleneterephtalate (PET), by KOH activation. The adsorption/desorption characteristics of dyes (methylene blue and methyl orange) on the carbons were studied. The effects of pH, ionic strength and surface surfactants in the solution on the dye adsorption were also investigated. The results indicated that the carbons derived from PVC and PET exhibited high surface area of 2 666 and 2 831 m2 x g(-1). Their mesopore volume were as high as 1.06 and 1.30 cm3 g(-1), respectively. 98.5% and 97.0% of methylene blue and methyl orange were removed in 15 min by PVC carbon, and that of 99.5% and 95.0% for PET carbon. The Langmuir maximum adsorption capacity to these dyes was more than 2 mmol x g(-1), much higher than that of commercial activated carbon F400. Compared with Freundlich model, the adsorption data was fitted better by Langmiur model, indicating monolayer coverage on the carbons. The adsorption was highly dependent on solution pH, ionic strength and concentration of surface surfactants. The activated carbons exhibited higher adsorption to methylene blue than that of methyl orange, and it was very hard for both of the dyes to be desorbed. The observation in this study demonstrated that activated carbons derived from polymer waste could be effective adsorbents for the treatment of wastewater with dyes.

  18. Adsorption of marine phycotoxin okadaic acid on a covalent organic framework.

    Science.gov (United States)

    Salonen, Laura M; Pinela, Sara R; Fernandes, Soraia P S; Louçano, João; Carbó-Argibay, Enrique; Sarriá, Marisa P; Rodríguez-Abreu, Carlos; Peixoto, João; Espiña, Begoña

    2017-11-24

    Phycotoxins, compounds produced by some marine microalgal species, can reach high concentrations in the sea when a massive proliferation occurs, the so-called harmful algal bloom. These compounds are especially dangerous to human health when concentrated in the digestive glands of seafood. In order to generate an early warning system to alert for approaching toxic outbreaks, it is very important to improve monitoring methods of phycotoxins in aquatic ecosystems. Solid-phase adsorption toxin tracking devices reported thus far based on polymeric resins have not been able to provide an efficient harmful algal bloom prediction system due to their low adsorption capabilities. In this work, a water-stable covalent organic framework (COF) was evaluated as adsorbent for the hydrophobic toxin okadaic acid, one of the most relevant marine toxins and the parental compound of the most common group of toxins responsible for the diarrhetic shellfish poisoning. Adsorption kinetics of okadaic acid onto the COF in seawater showed that equilibrium concentration was reached in only 60min, with a maximum experimental adsorption of 61mgg -1 . Desorption of okadaic acid from the COF was successful with both 70% ethanol and acetonitrile as solvent, and the COF material could be reused with minor losses in adsorption capacity for three cycles. The results demonstrate that COF materials are promising candidates for solid-phase adsorption in water monitoring devices. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. The Efficiency of Bio-adsorption of Heavy Metals from Pharmaceutical Effluent by Rumex crispus L. Seed

    Directory of Open Access Journals (Sweden)

    Parisa Ziarati

    2017-12-01

    Full Text Available The programs of managing waste materials in developing countries are often unsatisfactory and the unreasonable disposal of waste is a major issue in the worldwide. The main aim of the current study is to: Assess the applicability of Rumex crispus L. in removing heavy metals from the contaminated wastewater effluent form Pharmaceutical laboratories by bio-adsorption method. The dried R. crispus L. seeds were purchased from recognized herbal plant markets randomly in Tehran in May 2016 in order to investigate the influence of R. crispus seeds as an amendment to remove or decrease chemical forms of Co, Pb, Cu, Zn and Ni. Experimental parameter were as follows: pH, temperature, dose of bio-adsorbent R. crispus L. seeds, contact time, particle size mesh were studied. Results revealed that bio-adsorption capacity of Lead, Zinc, Copper, Cobalt and Nickel increases with increasing initial adsorbent concentration and reaches at maximum after a 2% initial concentration of S. incisa seeds concentration value. Heavy metals adsorption ranged from 83.5 -91 % after agitation for 1 week (equilibration time, and there was no significant further increase in % sorption of them after the equilibration time (P ≥ 0.05. This research area of using models for resolving nature of heavy metals complexation and sequestrations mechanism at heavy metals-bio-adsorption interface have been less explored . The results represents a critically important mechanism in the scientific ability which should be investigated in future research to unravel complex surface heavy metal sorption mechanism on the bio-sorbent’s surface by using various chemical modeling approaches. Current research is suggested for the characterization of novel bio-adsorbents from other waste of herbal plants, agriculture/food-industry with maximum heavy metals sorption capacities to promote large-scale use of bio-adsorbents.

  20. Facile and green preparation of novel adsorption materials by combining sol-gel with ion imprinting technology for selective removal of Cu(II) ions from aqueous solution

    Science.gov (United States)

    Ren, Zhongqi; Zhu, Xinyan; Du, Jian; Kong, Delong; Wang, Nian; Wang, Zhuo; Wang, Qi; Liu, Wei; Li, Qunsheng; Zhou, Zhiyong

    2018-03-01

    A novel green adsorption polymer was prepared by ion imprinted technology in conjunction with sol-gel process under mild conditions for the selective removal of Cu(II) ions from aqueous solution. Effects of preparation conditions on adsorption performance of prepared polymers were studied. The ion-imprinted polymer was prepared using Cu(II) ion as template, N-[3-(2-aminoethylamino) propyl] trimethoxysilane (AAPTMS) as functional monomer and tetraethyl orthosilicate (TEOS) as cross-linker. Water was used as solvent in the whole preparation process. The imprinted and non-imprinted polymers were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), atomic force microscope (AFM), Brunauer, Emmett and Teller (BET) and zeta potential. Three-dimensional network structure was formed and functional monomer was successfully cross-linked into the network structure of polymers. Effects of adsorption conditions on adsorption performance of prepared polymers were studied too. The pH value is of great influence on adsorption behavior. Adsorption by ion-imprinted polymer was fast (adsorption equilibrium was reached within 60 min). The adsorption capacity of Cu(II) ion-imprinted polymer was always larger than that of non-imprinted polymer. Pseudo-second-order kinetics model and Freundlich isotherm model fitted well with adsorption data. The maximum adsorption capacity of Cu(II) ion-imprinted polymer was 39.82 mg·g-1. However, the preparation conditions used in this work are much milder than those reported in literatures. The Cu(II) ion-imprinted polymer showed high selectivity and relative selectivity coefficients for Pb(II), Ni(II), Cd(II) and Co(II). In addition, the prepared ion-imprinted polymer could be reused several times without significant loss of adsorption capacity.

  1. Adsorption of emerging contaminant metformin using graphene oxide.

    Science.gov (United States)

    Zhu, Shuai; Liu, Yun-Guo; Liu, Shao-Bo; Zeng, Guang-Ming; Jiang, Lu-Hua; Tan, Xiao-Fei; Zhou, Lu; Zeng, Wei; Li, Ting-Ting; Yang, Chun-Ping

    2017-07-01

    The occurrence of emerging contaminants in our water resources poses potential threats to the livings. Due to the poor treatment in wastewater management, treatment technologies are needed to effectively remove these products for living organism safety. In this study, Graphene oxide (GO) was tested for the first time for its capacity to remove a kind of emerging wastewater contaminants, metformin. The research was conducted by using a series of systematic adsorption and kinetic experiments. The results indicated that GO could rapidly and efficiently reduce the concentration of metformin, which could provide a solution in handling this problem. The uptake of metformin on the graphene oxide was strongly dependent on temperature, pH, ionic strength, and background electrolyte. The adsorption kinetic experiments revealed that almost 80% removal of metformin was achieved within 20 min for all the doses studied, corresponding to the relatively high k 1 (0.232 min -1 ) and k 2 (0.007 g mg -1  min -1 ) values in the kinetic models. It indicated that the highest adsorption capacity in the investigated range (q m ) of GO for metformin was at pH 6.0 and 288 K. Thermodynamic study indicated that the adsorption was a spontaneous (ΔG 0  adsorption of metformin increased when the pH values changed from 4.0 to 6.0, and decreased adsorption were observed at pH 6.0-11.0. GO still exhibited excellent adsorption capacity after several desorption/adsorption cycles. Besides, both so-called π-π interactions and hydrogen bonds might be mainly responsible for the adsorption of metformin onto GO. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Effect of heat treatment on CO2 adsorption of KOH-activated graphite nanofibers.

    Science.gov (United States)

    Meng, Long-Yue; Park, Soo-Jin

    2010-12-15

    In this work, graphite nanofibers (GNFs) were successfully expanded intercalating KOH followed by heat treatment in the temperature range of 700-1000 °C. The aim was to improve the CO(2) adsorption capacity of the GNFs by increasing the porosity of GNFs. The effects of heat treatment on the pore structures of GNFs were investigated by N(2) full isotherms, XRD, SEM, and TEM. The CO(2) adsorption capacity was measured by CO(2) isothermal adsorption at 25 °C and 1 atm. From the results, it was found that the activation temperature had a major influence on CO(2) adsorption capacity and textural properties of GNFs. The specific surface area, total pore volume, and mesopore volume of the GNFs increased after heat treatment. The CO(2) adsorption isotherms showed that G-900 exhibited the best CO(2) adsorption capacity with 59.2 mg/g. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. Effect of some pre-treatments on the adsorption of methylene blue by Balkaya lignite

    International Nuclear Information System (INIS)

    Karaca, S.; Guerses, A.; Bayrak, R.

    2004-01-01

    In this study, the effects of some pre-treatments, such as HCl treatment, demineralization and pyrolysis, under a CO 2 atmosphere at different temperatures on the adsorption of methylene blue by Balkaya lignite were investigated. The adsorption capacities of the samples were determined before and after these pre-treatments. In addition, the removals of pyritic and organic sulfur and ash contents for the same coal samples were also defined. It was found that the adsorption capacities of the samples decreased after these pre-treatments. The decrease in adsorption capacity with pyrolysis can be attributed to the changes in surface morphology and/or pore size distribution of the coal samples. On the other hand, the observed decrease in adsorption capacity with removal of carbonates and silicates shows that these minerals have an important effect on methylene blue adsorption, and the adsorption considerably occurs through electrostatic interactions. In addition, the obtained results showed that the organic sulfur presence in the coal matrix have a positive effect on the methylene blue adsorption

  4. Experimental study on removals of SO2 and NOX using adsorption of activated carbon/microwave desorption.

    Science.gov (United States)

    Ma, Shuang-Chen; Yao, Juan-Juan; Gao, Li; Ma, Xiao-Ying; Zhao, Yi

    2012-09-01

    Experimental studies on desulfurization and denitrification were carried out using activated carbon irradiated by microwave. The influences of the concentrations of nitric oxide (NO) and sulfur dioxide (SO 2 ), the flue gas coexisting compositions, on adsorption properties of activated carbon and efficiencies of desulfurization and denitrification were investigated. The results show that adsorption capacity and removal efficiency of NO decrease with the increasing of SO 2 concentrations in flue gas; adsorption capacity of NO increases slightly first and drops to 12.79 mg/g, and desulfurization efficiency descends with the increasing SO 2 concentrations. Adsorption capacity of SO 2 declines with the increasing of O 2 content in flue gas, but adsorption capacity of NO increases, and removal efficiencies of NO and SO 2 could be larger than 99%. Adsorption capacity of NO declines with the increase of moisture in the flue gas, but adsorption capacity of SO 2 increases and removal efficiencies of NO and SO 2 would be relatively stable. Adsorption capacities of both NO and SO 2 decrease with the increasing of CO 2 content; efficiencies of desulfurization and denitrification augment at the beginning stage, then start to fall when CO 2 content exceeds 12.4%. The mechanisms of this process are also discussed. [Box: see text].

  5. Adsorption of Volatile Organic Compounds from Aqueous Solution by Granular Activated Carbon in Batch System

    International Nuclear Information System (INIS)

    Zeinali, F.; Ghoreyshi, A. A.; Najafpour, G.

    2011-01-01

    Chlorinated hydrocarbons and aromatics are the major volatile organic compounds that contaminate the ground water and industrial waste waters. The best way to overcome this problem is to recover the dissolved compounds in water. In order to evaluate the potential ability of granular activated carbon for recovery of volatile organic compounds from water, the equilibrium adsorption was investigated. This study deals with the adsorption of dichloromethane as a typical chlorinated volatile organic compound and toluene as the representative of aromatic volatile organic compounds on a commercial granular activated carbon. The adsorption isotherms of these two volatile organic compounds on granular activated carbon were measured at three different temperatures, toluene at 293, 303 and 313 K and dichloromethane at 298, 303 and 313 K within their solubility concentration range in water. The maximum adsorption capacity of dichloromethane and toluene adsorption by granular activated carbon was 4 and 0.2 mol/Kg-1, respectively. The experimental data obtained were correlated with different adsorption isotherm models. The Langmuir model was well adapted to the description of dichloromethane adsorption on granular activated carbon at all three temperatures, while the adsorption of toluene on granular activated carbon was found to be well described by the Langmuir-BET hybrid model at all three temperatures. The heat of adsorption was also calculated based on the thermodynamic equation of Clausius Clapeyron, which indicates the adsorption process is endothermic for both compounds.

  6. Adsorption of Procion Blue MX-R dye from aqueous solutions by lignin chemically modified with aluminium and manganese

    International Nuclear Information System (INIS)

    Adebayo, Matthew A.; Prola, Lizie D.T.; Lima, Eder C.; Puchana-Rosero, M.J.; Cataluña, Renato; Saucier, Caroline; Umpierres, Cibele S.; Vaghetti, Julio C.P.; Silva, Leandro G. da; Ruggiero, Reinaldo

    2014-01-01

    Graphical abstract: - Highlights: • Complexes of carboxy-methylated lignin with Al and Mn were used as adsorbents. • The optimum adsorption conditions were achieved at pH 2 and 298 K. • Maximum adsorption capacities are 73.52 mg g −1 (CML-Al) and 55.16 mg g −1 (CML-Mn). • CML-Al could remove ca. 95.83% of dye-contaminated industrial effluents. • CML-Al and CML-Mn are effective for treatment of simulated dye-house effluents. - Abstract: A macromolecule, CML, was obtained by purifying and carboxy-methylating the lignin generated from acid hydrolysis of sugarcane bagasse during bioethanol production from biomass. The CMLs complexed with Al 3+ (CML-Al) and Mn 2+ (CML-Mn) were utilised for the removal of a textile dye, Procion Blue MX-R (PB), from aqueous solutions. CML-Al and CML-Mn were characterised using Fourier transform infrared spectroscopy (FTIR), scanning differential calorimetry (SDC), scanning electron microscopy (SEM) and pH PZC . The established optimum pH and contact time were 2.0 and 5 h, respectively. The kinetic and equilibrium data fit into the general order kinetic model and Liu isotherm model, respectively. The CML-Al and CML-Mn have respective values of maximum adsorption capacities of 73.52 and 55.16 mg g −1 at 298 K. Four cycles of adsorption/desorption experiments were performed attaining regenerations of up to 98.33% (CML-Al) and 98.08% (CML-Mn) from dye-loaded adsorbents, using 50% acetone + 50% of 0.05 mol L −1 NaOH. The CML-Al removed ca. 93.97% while CML-Mn removed ca. 75.91% of simulated dye house effluents

  7. Functional elastic hydrogel as recyclable membrane for the adsorption and degradation of methylene blue.

    Directory of Open Access Journals (Sweden)

    Song Bao

    Full Text Available Developing the application of high-strength hydrogels has gained much attention in the fields of medical, pharmacy, and pollutant removal due to their versatility and stimulus-responsive properties. In this presentation, a high-strength freestanding elastic hydrogel membrane was constructed by clay nanosheets, N, N-dimethylacrylamide and 2-acrylamide-2-methylpropanesulfonic acid for adsorption of methylene blue and heavy metal ions. The maximum values of elongation and Young's modulus for 0.5% AMPSNa hydrogel were 1901% and 949.4 kPa, respectively, much higher than those of traditional hydrogels. The adsorptions were confirmed to follow pseudo-second kinetic equation and Langmuir isotherm model fits the data well. The maximum adsorption capacity of hydrogel towards methylene blue was 434.8 mg g(-1. The hydrogel also exhibited higher separation selectivity to Pb(2+ than Cu(2+. The methylene blue adsorbed onto the hydrogel membrane can be photocatalytically degraded by Fenton agent and the hydrogel membrane could be recycled at least five times without obvious loss in mechanical properties. In conclusion, this presentation demonstrates a convenient strategy to prepare tough and elastic clay nanocomposite hydrogel, which can not only be applied as recyclable membrane for the photocatalytic degradation of organic dye, but also for the recovery of valuables.

  8. Impact of salinity and dispersed oil on adsorption of dissolved aromatic hydrocarbons by activated carbon and organoclay

    Energy Technology Data Exchange (ETDEWEB)

    Younker, Jessica M.; Walsh, Margaret E., E-mail: mwalsh2@dal.ca

    2015-12-15

    Highlights: • Powdered activated carbon (PAC) outperformed organoclay for dissolved aromatics removal • Dispersed oil reduced the adsorption capacity of PAC but not organoclay • Salinity did not affect phenol or naphthalene removal by PAC or BTMA-organoclay • Commercial organoclay had reduced adsorption capacity in saline water due to aggregation • PAC performed better in single solute systems than multi-solute systems - Abstract: Adsorption capacity of phenol and naphthalene by powdered activated carbon (PAC), a commercial organoclay (OC) and a lab synthesized organoclay (BTMA) was studied using batch adsorption experiments under variable feed water quality conditions including single- and multi- solute conditions, fresh water, saline water and oily-and-saline water. Increasing salinity levels was found to reduce adsorption capacity of OC, likely due to destabilization, aggregation and subsequent removal of organoclay from the water column, but did not negatively impact adsorption capacity of PAC or BTMA. Increased dispersed oil concentrations were found to reduce the surface area of all adsorbents. This decreased the adsorption capacity of PAC for both phenol and naphthalene, and reduced BTMA adsorption of phenol, but did not negatively affect naphthalene removals by either organoclay. The presence of naphthalene as a co-solute significantly reduced phenol adsorption by PAC, but had no impact on organoclay adsorption. These results indicated that adsorption by PAC occurred via a surface adsorption mechanism, while organoclay adsorption occurred by hydrophobic or pi electron interactions. In general, PAC was more sensitive to changes in water quality than either of the organoclays evaluated in this study. However, PAC exhibited a higher adsorption capacity for phenol and naphthalene compared to both organoclays even in adverse water quality conditions.

  9. Impact of salinity and dispersed oil on adsorption of dissolved aromatic hydrocarbons by activated carbon and organoclay

    International Nuclear Information System (INIS)

    Younker, Jessica M.; Walsh, Margaret E.

    2015-01-01

    Highlights: • Powdered activated carbon (PAC) outperformed organoclay for dissolved aromatics removal • Dispersed oil reduced the adsorption capacity of PAC but not organoclay • Salinity did not affect phenol or naphthalene removal by PAC or BTMA-organoclay • Commercial organoclay had reduced adsorption capacity in saline water due to aggregation • PAC performed better in single solute systems than multi-solute systems - Abstract: Adsorption capacity of phenol and naphthalene by powdered activated carbon (PAC), a commercial organoclay (OC) and a lab synthesized organoclay (BTMA) was studied using batch adsorption experiments under variable feed water quality conditions including single- and multi- solute conditions, fresh water, saline water and oily-and-saline water. Increasing salinity levels was found to reduce adsorption capacity of OC, likely due to destabilization, aggregation and subsequent removal of organoclay from the water column, but did not negatively impact adsorption capacity of PAC or BTMA. Increased dispersed oil concentrations were found to reduce the surface area of all adsorbents. This decreased the adsorption capacity of PAC for both phenol and naphthalene, and reduced BTMA adsorption of phenol, but did not negatively affect naphthalene removals by either organoclay. The presence of naphthalene as a co-solute significantly reduced phenol adsorption by PAC, but had no impact on organoclay adsorption. These results indicated that adsorption by PAC occurred via a surface adsorption mechanism, while organoclay adsorption occurred by hydrophobic or pi electron interactions. In general, PAC was more sensitive to changes in water quality than either of the organoclays evaluated in this study. However, PAC exhibited a higher adsorption capacity for phenol and naphthalene compared to both organoclays even in adverse water quality conditions.

  10. Weakly and strongly polynomial algorithms for computing the maximum decrease in uniform arc capacities

    Directory of Open Access Journals (Sweden)

    Ghiyasvand Mehdi

    2016-01-01

    Full Text Available In this paper, a new problem on a directed network is presented. Let D be a feasible network such that all arc capacities are equal to U. Given a t > 0, the network D with arc capacities U - t is called the t-network. The goal of the problem is to compute the largest t such that the t-network is feasible. First, we present a weakly polynomial time algorithm to solve this problem, which runs in O(log(nU maximum flow computations, where n is the number of nodes. Then, an O(m2n time approach is presented, where m is the number of arcs. Both the weakly and strongly polynomial algorithms are inspired by McCormick and Ervolina (1994.

  11. Effect of the surface oxygen groups on methane adsorption on coals

    Energy Technology Data Exchange (ETDEWEB)

    Hao Shixiong [Department of Chemical Engineering, Sichuan University, Chengdu 610065 (China); Department of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000 (China); Wen Jie [Department of Chemical Engineering, Sichuan University, Chengdu 610065 (China); Yu Xiaopeng [Department of Chemical Engineering, Sichuan University, Chengdu 610065 (China); Department of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000 (China); Chu Wei, E-mail: chuwei1965_scu@yahoo.com [Department of Chemical Engineering, Sichuan University, Chengdu 610065 (China)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer We modified one coal with H{sub 2}O{sub 2}, (NH{sub 4}){sub 2}S{sub 2}O{sub 8} and HNO{sub 3} respectively, to prepare coal samples with different surface properties. Black-Right-Pointing-Pointer The oxygen groups on coal surface were characterized by XPS. Black-Right-Pointing-Pointer The textures of the coal samples were investigated by N{sub 2} adsorption at 77 K. Black-Right-Pointing-Pointer The adsorption behaviors were measured by volumetric method. Black-Right-Pointing-Pointer There was a negative correlation between methane saturated adsorption capacity and the O{sub total}/C{sub total}. - Abstract: To investigate the influence of surface oxygen groups on methane adsorption on coals, one bituminous coal was modified with H{sub 2}O{sub 2}, (NH{sub 4}){sub 2}S{sub 2}O{sub 8} and HNO{sub 3} respectively, to prepare coal samples with different surface properties. The oxygen groups on coal surface were characterized by X-ray photoelectron spectroscopy (XPS). The textures of the coal samples were investigated by N{sub 2} adsorption at 77 K. Their surface morphologies were analyzed by scanning electron microscopy (SEM). The methane adsorption behaviors of these coal samples were measured at 303 K in pressure range of 0-5.3 MPa by volumetric method. The adsorption data of methane were fitted to the Langmuir model and Dubinin-Astakhov (D-A) model. The fitting results showed that the D-A model fitted the isotherm data better than the Langmuir model. It was observed that there was, in general, a positive correlation between the methane saturated adsorption capacity and the micropore volume of coals while a negative correlation between methane saturated adsorption capacity and the O{sub total}/C{sub total}. The methane adsorption capacity was determined by the coal surface chemistry when the microporosity parameters of two samples were similar. Coal with a higher amount of oxygen surface groups, and consequently with a less

  12. Characterization of trichloroethylene adsorption onto waste biocover soil in the presence of landfill gas.

    Science.gov (United States)

    He, Ruo; Su, Yao; Kong, Jiaoyan

    2015-09-15

    Waste biocover soils (WBS) have been demonstrated to have great potential in mitigating trichloroethylene (TCE) emission from landfills, due to the relatively high TCE-degrading capacity. In this study, the characteristics of TCE adsorption on WBS in the presence of the major landfill gas components (i.e., CH4 and CO2) were investigated in soil microcosms. The adsorption isotherm of TCE onto WBS was fitted well with linear model within the TCE concentrations of 7000 ppmv. The adsorption capacity of TCE onto WBS was affected by temperature, soil moisture content and particle size, of which, temperature was the dominant factor. The adsorption capacity of TCE onto the experimental materials increased with the increasing organic matter content. A significantly positive correlation was observed between the adsorption capacity of TCE and the organic matter content of experimental materials that had relatively higher organic content (r = 0.988, P = 0.044). To better understand WBS application in practice, response surface methodology was developed to predict TCE adsorption capacity and emissions through WBS in different landfills in China. These results indicated that WBS had high adsorption capacity of TCE in LFG and temperature should be paid more attention to manipulate WBS to reduce TCE emissions from landfills. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Fluorocarbon adsorption in hierarchical porous frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Motkuri, RK; Annapureddy, HVR; Vijaykumar, M; Schaef, HT; Martin, PF; McGrail, BP; Dang, LX; Krishna, R; Thallapally, PK

    2014-07-09

    Metal-organic frameworks comprise an important class of solid-state materials and have potential for many emerging applications such as energy storage, separation, catalysis and bio-medical. Here we report the adsorption behaviour of a series of fluorocarbon derivatives on a set of microporous and hierarchical mesoporous frameworks. The microporous frameworks show a saturation uptake capacity for dichlorodifluoromethane of >4 mmol g(-1) at a very low relative saturation pressure (P/P-o) of 0.02. In contrast, the mesoporous framework shows an exceptionally high uptake capacity reaching >14 mmol g(-1) at P/P-o of 0.4. Adsorption affinity in terms of mass loading and isosteric heats of adsorption is found to generally correlate with the polarizability and boiling point of the refrigerant, with dichlorodifluoromethane >chlorodifluoromethane >chlorotrifluoromethane >tetrafluoromethane >methane. These results suggest the possibility of exploiting these sorbents for separation of azeotropic mixtures of fluorocarbons and use in eco-friendly fluorocarbon-based adsorption cooling.

  14. Mechanism of amitriptyline adsorption on Ca-montmorillonite (SAz-2)

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Po-Hsiang [Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Jiang, Wei-Teh, E-mail: atwtj@mail.ncku.edu.tw [Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Li, Zhaohui, E-mail: li@uwp.edu [Department of Geosciences, University of Wisconsin – Parkside, 900 Wood Road, Kenosha, WI 53144 (United States); Kuo, Chung-Yih [Department of Public Health, College of Health Care and Management, Chung Shan Medical University, No. 110, Sec. 1, Chien-kuo N Road, Taichung 40242, Taiwan (China); Jean, Jiin-Shuh [Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Chen, Wan-Ru [Department of Environmental Engineering, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Lv, Guocheng [School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China)

    2014-07-30

    Graphical abstract: XRD patterns to show AMI intercalation into SAz-2 vs. direct mixing of the same amount of AMI with SAz-2. - Highlights: • Ca-montmorillonite is proven to be an efficient adsorbent or sink for amitriptyline. • The high adsorption capacity is accompanied with intercalation into interlayers. • The adsorption is mainly governed by a cation exchange mechanism. • Horizontal mono- and bi-layer conformations occur at low and high adsorption levels. • The process is an endothermic physisorption at high adsorption levels. - Abstract: The uptake of amitriptyline (AMI) from aqueous environment by Ca-montmorillonite (SAz-2) was studied in a batch system under different physicochemical conditions. The adsorbent was characterized by X-ray diffraction and Fourier transform infrared (FTIR) analyses. The AMI adsorption on SAz-2 obeyed the Langmuir isotherm with a capacity of 330 mg/g (1.05 mmol/g) at pH 6–7. The adsorption kinetics was fast, almost reaching equilibrium in 2 h, and followed a pseudo-second-order kinetic model. Desorption of exchangeable cations correlated with the AMI adsorption well, indicating that cation exchange was the major mechanism. X-ray diffraction patterns showing significant expansions of the d{sub 0} {sub 0} {sub 1} spacing and characteristic FTIR band shifts toward higher frequencies after AMI adsorption onto SAz-2 indicated that the adsorbed AMI molecules were intercalated into the interlayers of the mineral. Thermodynamic parameters based on partitioning coefficients suggested that the AMI adsorption was an endothermic physisorption at high adsorption levels. At low and higher AMI adsorption levels, the intercalated AMI molecules take a horizontal monolayer and bilayer conformation, respectively. The higher adsorption capacity suggested that SAz-2 could be a good candidate to remove AMI from wastewater and would be an important environmental sink for the fate and transport of AMI in soils and groundwater.

  15. Mechanism of amitriptyline adsorption on Ca-montmorillonite (SAz-2)

    International Nuclear Information System (INIS)

    Chang, Po-Hsiang; Jiang, Wei-Teh; Li, Zhaohui; Kuo, Chung-Yih; Jean, Jiin-Shuh; Chen, Wan-Ru; Lv, Guocheng

    2014-01-01

    Graphical abstract: XRD patterns to show AMI intercalation into SAz-2 vs. direct mixing of the same amount of AMI with SAz-2. - Highlights: • Ca-montmorillonite is proven to be an efficient adsorbent or sink for amitriptyline. • The high adsorption capacity is accompanied with intercalation into interlayers. • The adsorption is mainly governed by a cation exchange mechanism. • Horizontal mono- and bi-layer conformations occur at low and high adsorption levels. • The process is an endothermic physisorption at high adsorption levels. - Abstract: The uptake of amitriptyline (AMI) from aqueous environment by Ca-montmorillonite (SAz-2) was studied in a batch system under different physicochemical conditions. The adsorbent was characterized by X-ray diffraction and Fourier transform infrared (FTIR) analyses. The AMI adsorption on SAz-2 obeyed the Langmuir isotherm with a capacity of 330 mg/g (1.05 mmol/g) at pH 6–7. The adsorption kinetics was fast, almost reaching equilibrium in 2 h, and followed a pseudo-second-order kinetic model. Desorption of exchangeable cations correlated with the AMI adsorption well, indicating that cation exchange was the major mechanism. X-ray diffraction patterns showing significant expansions of the d 0 0 1 spacing and characteristic FTIR band shifts toward higher frequencies after AMI adsorption onto SAz-2 indicated that the adsorbed AMI molecules were intercalated into the interlayers of the mineral. Thermodynamic parameters based on partitioning coefficients suggested that the AMI adsorption was an endothermic physisorption at high adsorption levels. At low and higher AMI adsorption levels, the intercalated AMI molecules take a horizontal monolayer and bilayer conformation, respectively. The higher adsorption capacity suggested that SAz-2 could be a good candidate to remove AMI from wastewater and would be an important environmental sink for the fate and transport of AMI in soils and groundwater

  16. Synthesis, Characterization and Adsorption Capability of CdO Microstructure for Congo Red from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    A. Tadjarodi

    2012-03-01

    Full Text Available Cadmium oxide rhombus-shaped nanostructure was synthesized using hydrothermal process followed by heating treatment. Clearly, X-ray diffraction pattern demonstrated the formation of CdO crystalline phase. Scanning electron microscopy (SEM showed that the obtained rhombus-like structure is composed of nanoparticles with the average size of 29 nm. In addition, we evaluated adsorption of organic dye i.e. Congo red from water using the prepared CdO rhombus like microstructure. UV-visible absorption spectroscopy was used to record the adsorption behavior. It was found that the removal process is performed via electrostatic absorption mechanism. The maximum adsorption capacity of CdO rhombus structures (0.01 g for Congo Red (CR in the concentration range (5-50 mg L-1 studied, as calculated from the Langmuir isotherm model at 25 ˚C and neutral pH, was found to be 41.20 mg g−1 .

  17. Synergistic dye adsorption by biochar from co-pyrolysis of spent mushroom substrate and Saccharina japonica.

    Science.gov (United States)

    Sewu, Divine Damertey; Boakye, Patrick; Jung, Hwansoo; Woo, Seung Han

    2017-11-01

    The potential of activating terrestrial biomass (spent mushroom substrate, SMS) with ash-laden marine biomass [kelp seaweed, KE] via co-pyrolysis in the field of adsorption was first investigated. KE biochar (KBC), SMS biochar (SMSBC), biochar (SK10BC) from 10%-KE added SMS, and biochar (ESBC) from KE-extract added SMS were used for the adsorption of cationic dye crystal violet (CV). ESBC had highest fixed carbon content (70.60%) and biochar yield (31.6%). SK10BC exhibited high ash content, abundant functional groups, coarser surface morphology and Langmuir maximum adsorptive capacity (610.1mg/g), which is 2.2 times higher than that of SMSBC (282.9mg/g). Biochar activated by a small amount of high ash-containing biomass such as seaweed via co-pyrolysis can serve as viable alternative adsorbent for cationic dye removal. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Enrichment of tropical peat with micronutrients for agricultural applications: evaluation of adsorption and desorption processes

    Energy Technology Data Exchange (ETDEWEB)

    Melo, Camila de A.; Oliveira, Lilian K. de; Fraceto, Leonardo F.; Rosa, Andre H., E-mail: ahrosa@sorocaba.unesp.br [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Sorocaba, SP (Brazil). Dept. de Engenharia Ambiental; Goveia, Danielle [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Araraquara, SP (Brazil). Inst. de Quimica

    2014-01-15

    The objective of this work was to evaluate the adsorption and desorption of micronutrients in tropical peats, from the perspective of potential agricultural applications. Adsorption experiments were performed at different pH values, using solutions containing individual and multiple metal ions. Maximum adsorption capacity occurred at pH 6.0, and the order of affinity was Cu > Fe > Co > Ni > Zn = Mn. Release of the micronutrients was evaluated at different pH values, using an aqueous medium as well as soil and plants. Release of the micronutrients was most efficient at pH 6.0, and followed the order: Fe > Zn > Mn > Co = Ni > Cu. Micronutrient release to the soil was accompanied by uptake by the plant. The use of tropical peat enriched with micronutrients could contribute to improved agricultural productivity, since the release profile of the micronutrients can effectively stimulate plant growth. (author)

  19. Adsorption characteristics of As(III) from aqueous solution on iron oxide coated cement (IOCC)

    International Nuclear Information System (INIS)

    Kundu, Sanghamitra; Gupta, A.K.

    2007-01-01

    Contamination of potable groundwater with arsenic is a serious health hazard, which calls for proper treatment before its use as drinking water. The objective of the present study is to assess the effectiveness of iron oxide coated cement (IOCC) for As(III) adsorption from aqueous solution. Batch studies were conducted to study As(III) adsorption onto IOCC at ambient temperature as a function of adsorbent dose, pH, contact time, initial arsenic concentration and temperature. Kinetics reveal that the uptake of As(III) ion is very rapid and most of fixation occurs within the first 20 min of contact. The pseudo-second order rate equation successfully described the adsorption kinetics. Langmuir, Freundlich, Redlich-Peterson (R-P), and Dubinin-Radushkevich (D-R) models were used to describe the adsorption isotherms at different initial As(III) concentrations and at 30 g l -1 fixed adsorbent dose. The maximum adsorption capacity of IOCC for As(III) determined from the Langmuir isotherm was 0.69 mg g -1 . The mean free energy of adsorption (E) calculated from the D-R isotherm was found to be 2.86 kJ mol -1 which suggests physisorption. Thermodynamic parameters indicate an exothermic nature of adsorption and a spontaneous and favourable process. The results suggest that IOCC can be suitably used for As(III) removal from aqueous solutions

  20. Kinetics and thermodynamics of aqueous Cu(II adsorption on heat regenerated spent bleaching earth

    Directory of Open Access Journals (Sweden)

    Enos W. Wambu

    2011-08-01

    Full Text Available This study investigated the kinetics and thermodynamics of copper(II removal from aqueous solutions using spent bleaching earth (SBE. The spent bleaching earth, a waste material from edible oil processing industries, was reactivated by heat treatment at 370 oC after residual oil extraction in excess methyl-ethyl ketone. Copper adsorption tests were carried out at room temperature (22±3 oC using 5.4 x 10-3C M metal concentrations. More than 70% metal removal was recorded in the first four hours although adsorption continued to rise to within 90% at 42 hours. The pH, adsorbent dosage and initial concentrations were master variables affecting RSBE adsorption of Cu(II ions. The adsorption equilibrium was adequately described by the Dubinin-Radushkevich (D-R and the Temkin isotherms and the maximum sorption capacity derived from the D-R isotherm was compared with those of some other low cost adsorbents. The adsorption process was found to follow Lagergren Pseudo-second order kinetics complimented by intra-particle diffusion kinetics at prolonged periods of equilibration. Based on the D-R isotherm adsorption energy and the thermodynamic adsorption free energy ∆G, it was suggested that the process is spontaneous and based on electrostatic interactions between the metal ions and exposed active sites in the adsorbent surface.

  1. Performance, kinetics, and equilibrium of methylene blue adsorption on biochar derived from eucalyptus saw dust modified with citric, tartaric, and acetic acids.

    Science.gov (United States)

    Sun, Lei; Chen, Dongmei; Wan, Shungang; Yu, Zebin

    2015-12-01

    Biochar derived from eucalyptus saw dust modified with citric, tartaric, and acetic acids at low temperatures was utilized as adsorbent to remove methylene blue (MB) from aqueous solutions. Fourier transform infrared spectroscopy analysis showed that the carboxyl group was introduced on the biochar surface. Adsorption experiment data indicated that eucalyptus saw dust modified with citric acid showed higher MB adsorption efficiency than that modified with tartaric and acetic acids. Pseudo-second-order kinetics was the most suitable model for describing MB adsorption on biochar compared with pseudo-first-order, Elovich, and intraparticle diffusion models. The calculated values of ΔG(0) and ΔH(0) indicated the spontaneous and endothermic nature of the adsorption process. MB adsorption on biochar followed the Langmuir isotherm. The maximum adsorption capacities for eucalyptus saw dust modified with citric, tartaric, and acetic acids were 178.57, 99.01, and 29.94 mg g(-1), respectively, at 35°C. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. ADSORPTION OF PITCH AND STICKIES ON MAGNESIUM ALUMINUM HYDROXIDES TREATED AT DIFFERENT TEMPERAURES

    Directory of Open Access Journals (Sweden)

    Guodong Li

    2011-04-01

    Full Text Available Magnesium aluminum hydroxides (MAH of nitrate and carbonate forms were prepared by co-precipitation, dried at different temperatures, and employed as an adsorbent for pitch and stickies in papermaking. Results indicated that MAH that had been heat-treated had higher adsorption capacity to model pitch and stickies at neutral pH. Low-temperature-dried magnesium aluminum hydroxides of nitrate form (MAH-NO3 had higher adsorption capacity to model pitch and model stickies than those of the carbonate form (MAH-CO3. Increasing the drying temperature of MAH reduced the difference of adsorption capacity between MAH-NO3 and MAH-CO3. Higher-temperature-dried magnesium aluminum hydroxides also showed higher adsorption capacity to model pitch and stickies when the drying temperature was lower than 550 oC. MAH displayed higher adsorption capacity while a lower initial adsorption rate of model stickies than of model pitch. The model pitch and stickies were adsorbed on MAH significantly by charge neutralization and distributed mainly on the surface of the platelets of magnesium aluminum hydroxides. The experimental isothermal adsorption data of model pitch and stickies on MAH dried at 500 oC fit well to the Freundlich and Dubinin–Radushkevich isotherm equations.

  3. Adsorption of uranium(VI) from sulphate solutions using Amberlite IRA-402 resin: Equilibrium, kinetics and thermodynamics study

    International Nuclear Information System (INIS)

    Solgy, Mostafa; Taghizadeh, Majid; Ghoddocynejad, Davood

    2015-01-01

    Highlights: • Adsorption of uranium from sulphate solutions by an anion exchange resin. • The effects of pH, contact time and adsorbent dosage were investigated. • The adsorption equilibrium is well described by the Freundlich isotherm model. • The adsorption kinetics can be predicted by the pseudo second-order model. • The adsorption is a physical, spontaneous and endothermic process. - Abstract: In the present study, adsorption of uranium from sulphate solutions was evaluated using Amberlite IRA-402 resin. The variation of adsorption process was investigated in batch sorption mode. The parameters studied were pH, contact time and adsorbent dosage. Langmuir and Freundlich isotherm models were used in order to present a mathematical description of the equilibrium data at three different temperatures (25 °C, 35 °C and 45 °C). The final results confirmed that the equilibrium data tend to follow Freundlich isotherm model. The maximum adsorption capacity of Amberlite IRA-402 for uranium(VI) was evaluated to be 213 mg/g for the Langmuir model at 25 °C. The adsorption of uranium on the mentioned anion exchange resin was found to follow the pseudo-second order kinetic model, indicating that chemical adsorption was the rate limiting-step. The values of thermodynamic parameters proved that adsorption process of uranium onto Amberlite IRA-402 resin could be considered endothermic (ΔH > 0) and spontaneous (ΔG < 0)

  4. Preparation of new diatomite-chitosan composite materials and their adsorption properties and mechanism of Hg(II).

    Science.gov (United States)

    Fu, Yong; Xu, Xiaoxu; Huang, Yue; Hu, Jianshe; Chen, Qifan; Wu, Yaoqing

    2017-12-01

    A new composite absorbent with multifunctional and environmental-friendly structures was prepared using chitosan, diatomite and polyvinyl alcohol as the raw materials, and glutaraldehyde as a cross-linking agent. The structure and morphology of the composite absorbent, and its adsorption properties of Hg(II) in water were characterized with Fourier transform infrared (FT-IR) spectra, scanning electron microscope (SEM), X-ray diffraction (XRD), Brunauer Emmett Teller (BET) measurements and ultraviolet-visible (UV-Vis) spectra. The effect of the pH value and contact time on the removal rate and absorbance of Hg(II) was discussed. The adsorption kinetic model and static adsorption isotherm and regeneration of the obtained composite absorbent were investigated. The results indicated that the removal of Hg(II) on the composite absorbent followed a rapid adsorption for 50 min, and was close to the adsorption saturation after 1 h, which is in accord with the Langmuir adsorption isotherm model and the pseudo-second-order kinetic model. When the pH value, contact time and the mass of the composite absorbent was 3, 1 h and 100 mg, respectively, the removal rate of Hg(II) on the composite absorbent reached 77%, and the maximum adsorption capacity of Hg(II) reached 195.7 mg g -1 .

  5. Preparation of new diatomite–chitosan composite materials and their adsorption properties and mechanism of Hg(II)

    Science.gov (United States)

    Fu, Yong; Xu, Xiaoxu; Huang, Yue; Hu, Jianshe; Chen, Qifan; Wu, Yaoqing

    2017-01-01

    A new composite absorbent with multifunctional and environmental-friendly structures was prepared using chitosan, diatomite and polyvinyl alcohol as the raw materials, and glutaraldehyde as a cross-linking agent. The structure and morphology of the composite absorbent, and its adsorption properties of Hg(II) in water were characterized with Fourier transform infrared (FT-IR) spectra, scanning electron microscope (SEM), X-ray diffraction (XRD), Brunauer Emmett Teller (BET) measurements and ultraviolet–visible (UV–Vis) spectra. The effect of the pH value and contact time on the removal rate and absorbance of Hg(II) was discussed. The adsorption kinetic model and static adsorption isotherm and regeneration of the obtained composite absorbent were investigated. The results indicated that the removal of Hg(II) on the composite absorbent followed a rapid adsorption for 50 min, and was close to the adsorption saturation after 1 h, which is in accord with the Langmuir adsorption isotherm model and the pseudo-second-order kinetic model. When the pH value, contact time and the mass of the composite absorbent was 3, 1 h and 100 mg, respectively, the removal rate of Hg(II) on the composite absorbent reached 77%, and the maximum adsorption capacity of Hg(II) reached 195.7 mg g−1. PMID:29308226

  6. Adsorption of palladium ions by modified carbons from rice husks

    International Nuclear Information System (INIS)

    Mostafa, M.R.

    1994-01-01

    Steam activated carbon of high surface area does not show palladium ions adsorption. Treatment of this carbon with HF acid increases to a great extent the gas adsorption capacity expressed as nitrogen surface area as well as the adsorption capacity of palladium ions from aqueous solution. HHB was loaded in different amounts on to these carbons. The acid sites represent the active fraction of the surface on which the adsorption palladium ions proceed. The uptake of palladium ions by HHB treated carbons is related to the total number of HHB molecules loaded on the carbon surface. (author)

  7. Adsorption of phenol on metal treated by granular activated carbon

    International Nuclear Information System (INIS)

    Kang, Kwang Cheol; Kwon, Soo Han; Kim, Seung Soo; Baik, Min Hoon; Choi, Jong Won; Kim, Jin Won

    2007-01-01

    In this study, the effect of metal treatment on Granular Activated Carbon (GAC) was investigated in the context of phenol adsorption. Cobalt(II) nitrate, and zinc(II) nitrate solution were used for metal treated. The specific surface area and the pore structure were evaluated from nitrogen adsorption data at 77 K. The phenol adsorption rates onto GAC were measured by UV-Vis spectrophotometer. Iodine adsorption capacity of Co-GAC is much better then that of the GAC. The Co-GAC with mesopore is more efficient than other adsorbents for the adsorption of polymer such as methyleneblue. The adsorption capacity of reference-GAC and metal-GAC were increased in order of Co-GAC>Zn-GAC>Reference-GAC, in spite of a decrease in specific surface area which was resulted from pore blocking by metal

  8. Cr(OH)3-NPs-CNC hybrid nanocomposite: a sorbent for adsorptive removal of methylene blue and malachite green from solutions.

    Science.gov (United States)

    Nekouei, Farzin; Nekouei, Shahram; Keshtpour, Farzaneh; Noorizadeh, Hossein; Wang, Shaobin

    2017-11-01

    In this article, Cr(OH) 3 nanoparticle-modified cellulose nanocrystal (CNC) as a novel hybrid nanocomposite (Cr(OH) 3 -NPs-CNC) was prepared by a simple procedure and used as a sorbent for adsorptive removal of methylene blue (MB) and malachite green (MG) from aqueous solution. Different kinetic models were tested, and the pseudo-second-order kinetic model was found more suitable for the MB and MG adsorption processes. The BET and Langmuir models were more suitable for the adsorption processes of MB and MG. Thermodynamic studies suggested that the adsorption of MB and MG onto Cr(OH) 3 -NPs-CNC nanocomposite was a spontaneous and endothermic process. The maximum adsorption capacities for MB and MG were reached 106 and 104 mg/g, respectively, which were almost two times higher than unmodified CNC. The chemical stability and leaching tests of the Cr(OH) 3 -NPs-CNC hybrid nanocomposite showed that only small amounts of chromium were leached into the solution.

  9. Zirconium oxide-coated sand based batch and column adsorptive removal of arsenic from water: Isotherm, kinetic and thermodynamic studies

    Directory of Open Access Journals (Sweden)

    Saif Ali Chaudhry

    2017-06-01

    Full Text Available This paper reports zirconium oxide-coated sand preparation, characterization by SEM, EDX, XRD, FT-IR and thermoanalytical techniques, and use as an adsorbent for the removal of most toxic form of arsenic, As(III, from aqueous solution in both batch and column methods. Batch experimental parameters such as contact time, concentration, dose of adsorbent, pH of As(III solution and temperature were optimized. The adsorption data was fitted to Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms at 303, 308 and 313 K. The maximum Langmuir monolayer adsorption capacity was found to be 136.98 μg/g at 313 K. Values of ΔH°, ΔG° and ΔS° were found to be −12.90, −8.74 to –8.28 and 0.014 kJ/mol, suggesting exothermic and spontaneous adsorption process with slight increase in entropy. The adsorption process followed pseudo-second order kinetics and was controlled by film diffusion step. The column studies showed that when flow rate was increased from 3.0 to 5.0 mL/min, the arsenic adsorption capacity of ZrOCS increased from 33.104 to 42.231 μg/g and breakthrough, and exhaustion times got reduced reduced. The results indicated that zirconium oxide-coated sand (ZrOCS is an excellent adsorbent for the removal of As(III from water.

  10. Removal of copper (II from aqueous solutions by adsorption onto granular activated carbon in the presence of competitor ions

    Directory of Open Access Journals (Sweden)

    Saeed Almohammadi

    2016-04-01

    Full Text Available In this work, the removal of copper from an aqueous solution by granular activated carbon (GAC in the presence of competitor ions was studied. A batch adsorption was carried out and different parameters such as pH, contact time, initial copper concentration and competitor ions concentration were changed to determine the optimum conditions for adsorption. The optimum pH required for maximum adsorption was found to be 4.5 for copper. Equilibrium was evaluated at 144 h at room temperature. The removal efficiency of Cu(II was 71.12% at this time. The kinetics of copper adsorption on activated carbon followed the pseudo second-order model. The experimental equilibrium sorption data were tested using the Langmuir, Freundlich, Temkin and Dubinin–Radushkevich (D-R equations and the Langmuir model was found to be well fitted for copper adsorption onto GAC. The maximum adsorption capacity of the adsorbent for Cu(II was calculated from the Langmuir isotherm and found to be 7.03 mg/g. Subsequently, the removal of copper by granular activated carbon in the presence of Ag1+ and Mn2+ as competitor ions was investigated. The removal efficiency of Cu(II ions without the presence of the competitor ions was 46% at 6 h, while the removal efficiency of Cu(II ions in the presence of competitor ions, Ag1+ and Mn2+ , was 34.76% and 31.73%, respectively.

  11. Investigation of iron adsorption on composite transition metal carbides in steel by first-principles calculation

    Science.gov (United States)

    Xiong, Hui-Hui; Gan, Lei; Tong, Zhi-Fang; Zhang, Heng-Hua; Zhou, Yang

    2018-05-01

    The nucleation potential of transition metal (TM) carbides formed in steel can be predicted by the behavior of iron adsorption on their surface. Therefore, Fe adsorption on the (001) surface of (A1-xmx)C (A = Nb, Ti, m = Mo, V) was investigated by the first-principles method to reveal the initialization of Fe nucleation. The Mulliken population and partial density of state (PDOS) were also calculated and analyzed in this work. The results show that Fe adsorption depends on the composition and configuration of the composite carbides. The adsorption energy (Wads) of Fe on most of (A1-xmx)C is larger than that of Fe on pure TiC or NbC. The maximum Wads is found for Fe on (Nb0.5Mo0.5)C complex carbide, indicating that this carbide has the high nucleation capacity at early stage. The Fe adsorption could be improved by the segregation of Cr and Mn atoms on the surfaces of (Nb0.5Mo0.5)C and (Ti0.5Mo0.5)C. The PDOS analysis of (Cr, Mn)-doped systems further explains the strong interactions between Fe and Cr or Mn atoms.

  12. Adsorption of phosphate from aqueous solutions and sewage using zirconium loaded okara (ZLO): Fixed-bed column study

    International Nuclear Information System (INIS)

    Nguyen, T.A.H.; Ngo, H.H.; Guo, W.S.; Pham, T.Q.; Li, F.M.; Nguyen, T.V.; Bui, X.T.

    2015-01-01

    This study explores the potential of removing phosphorus from aqueous solutions and sewage by Zr(IV)-loaded okara (ZLO) in the fixed-bed column. Soybean residue (okara) was impregnated with 0.25 M Zr(IV) solution to prepare active binding sites for phosphate. The effect of several factors, including flow rate, bed height, initial phosphorus concentration, pH and adsorbent particle size on the performance of ZLO was examined. The maximum dynamic adsorption capacity of ZLO for phosphorus was estimated to be 16.43 mg/g. Breakthrough curve modeling indicated that Adams–Bohart model and Thomas model fitted the experimental data better than Yoon–Nelson model. After treatment with ZLO packed bed column, the effluent could meet the discharge standard for phosphorus in Australia. Successful desorption and regeneration were achieved with 0.2 NaOH and 0.1 HCl, respectively. The results prove that ZLO can be used as a promising phosphorus adsorbent in the dynamic adsorption system. - Highlights: • Dynamic adsorption of P from water and wastewater by Zr(IV)-loaded okara was tested. • Effects of column design parameters on the adsorption performance were investigated. • The dynamic adsorption capacity of Zr(IV)-loaded okara for P was reasonably high. • The spent column was effectively regenerated with 0.2 M NaOH followed by 0.1 M HCl. • Zr(IV)-loaded okara column was efficient in eliminating P from municipal sewage

  13. Adsorption of phosphate from aqueous solutions and sewage using zirconium loaded okara (ZLO): Fixed-bed column study

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, T.A.H. [Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology, Sydney (UTS), 15 Broadway, Ultimo, NSW 2007 (Australia); Ngo, H.H., E-mail: ngohuuhao121@gmail.com [Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology, Sydney (UTS), 15 Broadway, Ultimo, NSW 2007 (Australia); Guo, W.S. [Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology, Sydney (UTS), 15 Broadway, Ultimo, NSW 2007 (Australia); Pham, T.Q. [Faculty of Geography, University of Science, Vietnam National University, Hanoi (Viet Nam); Li, F.M. [College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100 (China); Nguyen, T.V. [Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology, Sydney (UTS), 15 Broadway, Ultimo, NSW 2007 (Australia); Bui, X.T. [Environmental Engineering and Management Research Group, Ton Duc Thang University, Ho Chi Minh City (Viet Nam); Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology-Vietnam National University, Ho Chi Minh City (Viet Nam)

    2015-08-01

    This study explores the potential of removing phosphorus from aqueous solutions and sewage by Zr(IV)-loaded okara (ZLO) in the fixed-bed column. Soybean residue (okara) was impregnated with 0.25 M Zr(IV) solution to prepare active binding sites for phosphate. The effect of several factors, including flow rate, bed height, initial phosphorus concentration, pH and adsorbent particle size on the performance of ZLO was examined. The maximum dynamic adsorption capacity of ZLO for phosphorus was estimated to be 16.43 mg/g. Breakthrough curve modeling indicated that Adams–Bohart model and Thomas model fitted the experimental data better than Yoon–Nelson model. After treatment with ZLO packed bed column, the effluent could meet the discharge standard for phosphorus in Australia. Successful desorption and regeneration were achieved with 0.2 NaOH and 0.1 HCl, respectively. The results prove that ZLO can be used as a promising phosphorus adsorbent in the dynamic adsorption system. - Highlights: • Dynamic adsorption of P from water and wastewater by Zr(IV)-loaded okara was tested. • Effects of column design parameters on the adsorption performance were investigated. • The dynamic adsorption capacity of Zr(IV)-loaded okara for P was reasonably high. • The spent column was effectively regenerated with 0.2 M NaOH followed by 0.1 M HCl. • Zr(IV)-loaded okara column was efficient in eliminating P from municipal sewage.

  14. Thermodynamics of hydrogen adsorption in MOF-177 at low temperatures: measurements and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, Eric [College of Engineering, Purdue University, West Lafayette, IN 47907 (United States); Dailly, Anne [Chemical and Environmental Sciences Laboratory, General Motors Corporation, Warren, MI 48090 (United States)], E-mail: poirierem@gmail.com, E-mail: anne.dailly@gm.com

    2009-05-20

    Hydrogen adsorption measurements and modelling for the Zn-based microporous metal-organic framework (MOF) Zn{sub 4}O(1,3,5-benzenetribenzoate){sub 2}, MOF-177, were performed over the 50-77 K and 0-40 bar ranges. The maximum excess adsorption measured under these conditions varies over about 105-70 mg g{sup -1}. An analysis of the isotherms near saturation shows that hydrogen is ultimately adsorbed in an incompressible phase whose density is comparable to that of the bulk liquid. These liquid state properties observed under supercritical conditions reveal a remarkable effect of nanoscale confinement. The entire set of adsorption isotherms can be well described using a micropore filling model. The latter is used, in particular, to determine the absolute amounts adsorbed and the adsorption enthalpy. When expressed in terms of absolute adsorption, the isotherms show considerable hydrogen storage capacities, reaching up to 125 mg g{sup -1} at 50 K and 25 bar. The adsorption enthalpies are calculated as a function of fractional filling and range from 3 to 5 kJ mol{sup -1} in magnitude, in accordance with physisorption. These results are discussed with respect to a similar analysis performed on another Zn-based MOF, Zn{sub 4}O(1,4-benzenedicarboxylate){sub 3}, IRMOF-1, presented recently. It is found that both materials adsorb hydrogen by similar mechanisms.

  15. Thermodynamics of hydrogen adsorption in MOF-177 at low temperatures: measurements and modelling

    International Nuclear Information System (INIS)

    Poirier, Eric; Dailly, Anne

    2009-01-01

    Hydrogen adsorption measurements and modelling for the Zn-based microporous metal-organic framework (MOF) Zn 4 O(1,3,5-benzenetribenzoate) 2 , MOF-177, were performed over the 50-77 K and 0-40 bar ranges. The maximum excess adsorption measured under these conditions varies over about 105-70 mg g -1 . An analysis of the isotherms near saturation shows that hydrogen is ultimately adsorbed in an incompressible phase whose density is comparable to that of the bulk liquid. These liquid state properties observed under supercritical conditions reveal a remarkable effect of nanoscale confinement. The entire set of adsorption isotherms can be well described using a micropore filling model. The latter is used, in particular, to determine the absolute amounts adsorbed and the adsorption enthalpy. When expressed in terms of absolute adsorption, the isotherms show considerable hydrogen storage capacities, reaching up to 125 mg g -1 at 50 K and 25 bar. The adsorption enthalpies are calculated as a function of fractional filling and range from 3 to 5 kJ mol -1 in magnitude, in accordance with physisorption. These results are discussed with respect to a similar analysis performed on another Zn-based MOF, Zn 4 O(1,4-benzenedicarboxylate) 3 , IRMOF-1, presented recently. It is found that both materials adsorb hydrogen by similar mechanisms.

  16. Zeolite Y Adsorbents with High Vapor Uptake Capacity and Robust Cycling Stability for Potential Applications in Advanced Adsorption Heat Pumps.

    Science.gov (United States)

    Li, Xiansen; Narayanan, Shankar; Michaelis, Vladimir K; Ong, Ta-Chung; Keeler, Eric G; Kim, Hyunho; McKay, Ian S; Griffin, Robert G; Wang, Evelyn N

    2015-01-01

    Modular and compact adsorption heat pumps (AHPs) promise an energy-efficient alternative to conventional vapor compression based heating, ventilation and air conditioning systems. A key element in the advancement of AHPs is the development of adsorbents with high uptake capacity, fast intracrystalline diffusivity and durable hydrothermal stability. Herein, the ion exchange of NaY zeolites with ingoing Mg 2+ ions is systematically studied to maximize the ion exchange degree (IED) for improved sorption performance. It is found that beyond an ion exchange threshold of 64.1%, deeper ion exchange does not benefit water uptake capacity or characteristic adsorption energy, but does enhance the vapor diffusivity. In addition to using water as an adsorbate, the uptake properties of Mg,Na-Y zeolites were investigated using 20 wt.% MeOH aqueous solution as a novel anti-freeze adsorbate, revealing that the MeOH additive has an insignificant influence on the overall sorption performance. We also demonstrated that the labscale synthetic scalability is robust, and that the tailored zeolites scarcely suffer from hydrothermal stability even after successive 108-fold adsorption/desorption cycles. The samples were analyzed using N 2 sorption, 27 Al/ 29 Si MAS NMR spectroscopy, ICP-AES, dynamic vapor sorption, SEM, Fick's 2 nd law and D-R equation regressions. Among these, close examination of sorption isotherms for H 2 O and N 2 adsorbates allows us to decouple and extract some insightful information underlying the complex water uptake phenomena. This work shows the promising performance of our modified zeolites that can be integrated into various AHP designs for buildings, electronics, and transportation applications.

  17. The Adsorption of Cd(II on Manganese Oxide Investigated by Batch and Modeling Techniques

    Directory of Open Access Journals (Sweden)

    Xiaoming Huang

    2017-09-01

    Full Text Available Manganese (Mn oxide is a ubiquitous metal oxide in sub-environments. The adsorption of Cd(II on Mn oxide as function of adsorption time, pH, ionic strength, temperature, and initial Cd(II concentration was investigated by batch techniques. The adsorption kinetics showed that the adsorption of Cd(II on Mn oxide can be satisfactorily simulated by pseudo-second-order kinetic model with high correlation coefficients (R2 > 0.999. The adsorption of Cd(II on Mn oxide significantly decreased with increasing ionic strength at pH < 5.0, whereas Cd(II adsorption was independent of ionic strength at pH > 6.0, which indicated that outer-sphere and inner-sphere surface complexation dominated the adsorption of Cd(II on Mn oxide at pH < 5.0 and pH > 6.0, respectively. The maximum adsorption capacity of Mn oxide for Cd(II calculated from Langmuir model was 104.17 mg/g at pH 6.0 and 298 K. The thermodynamic parameters showed that the adsorption of Cd(II on Mn oxide was an endothermic and spontaneous process. According to the results of surface complexation modeling, the adsorption of Cd(II on Mn oxide can be satisfactorily simulated by ion exchange sites (X2Cd at low pH and inner-sphere surface complexation sites (SOCd+ and (SO2CdOH− species at high pH conditions. The finding presented herein plays an important role in understanding the fate and transport of heavy metals at the water–mineral interface.

  18. Kinetic studies of uranyl ion adsorption on acrylonitrile (AN) / polyethylene glycol (PEG) interpenetrating networks (IPN)

    International Nuclear Information System (INIS)

    Aycik, G.A.; Gurellier, R.

    2004-01-01

    The kinetics of the adsorption of uranyl ions on amidoximated acrylonitrile (AN)/ polyethylene glycol (PEG) interpenetrating network (IPNs) from aqueous solutions was studied as a function of time and temperature. Adsorption analyses were performed for definite uranyl ion concentrations of 1x10 -2 M and at four different temperatures as 290K, 298K, 308K and 318K. Adsorption time was increased from zero to 48 hours. Adsorption capacities of uranyl ions by PEG/AN IPNS were determined by gamma spectrometer. The results indicate that adsorption capacity increases linearly with increasing temperature. The max adsorption capacity was found as 602 mgu/g IPN at 308K. Adsorption rate was evaluated from the curve plotted of adsorption capacity versus time, for each temperature. Rate constants for uranyl ions adsorption on amidoximated ipns were calculated for 290K, 298K, 308K and 318K at the solution concentration of 1x10 -2 M . The results showed that as the temperature increases the rate constant increases exponentially too. The mean activation energy of uranyl ions adsorption was found as 34.6 kJ/mole by using arrhenius equation. (author)

  19. Comparative adsorption of Pb2+ and Cd2+ by cow manure and its vermicompost.

    Science.gov (United States)

    Zhu, Weiqin; Du, Wenhui; Shen, Xuyang; Zhang, Hangjun; Ding, Ying

    2017-08-01

    Organic waste has great potential for use as an amendment to immobilize heavy metals in the environment. Therefore, this study investigates various properties of cow manure (CM) and its derived vermicompost (CV), including the pH, cationic exchangeable capacity (CEC), elemental composition and surface structure, to determine the potential of these waste products to remove Pb 2+ and Cd 2+ from solution. The results demonstrate that CV has a much higher pH, CEC and more irregular pores than CM and is enriched with minerals and ash content but has a lower C, H, O and N content. Adsorption isotherms studies shows that the adsorption of Pb 2+ and Cd 2+ onto either CM or CV follows a Langmuir model and presents maximum Pb 2+ and Cd 2+ adsorption capacities of 102.77 mg g -1 and 38.11 mg g -1 onto CM and 170.65 and 43.01 mg g -1 onto CV, respectively. Kinetic studies show that the adsorption of Pb 2+ onto CM and CV fits an Elovich model, whereas the adsorption of Cd 2+ onto CM and CV fits a pseudo-second-order model. Desorption studies indicate that CV is more effective than CM in removing Pb 2+ and Cd 2+ . FTIR analysis demonstrates that the adsorption of Pb 2+ and Cd 2+ onto CM mainly depends on existed aliphatic alcohol, aromatic acid as well as new produced carbonates, whereas that onto CV may be contributed by the existed aliphatic alcohol, aromatic acids as well as some carbonates and phosphates. Thus, vermicomposting disposal of cow manure with destination mineral addition may broaden the way of its recycle and environmental usage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Simultaneous adsorption of SO2 and NO from flue gas over mesoporous alumina.

    Science.gov (United States)

    Sun, Xin; Tang, Xiaolong; Yi, Honghong; Li, Kai; Ning, Ping; Huang, Bin; Wang, Fang; Yuan, Qin

    2015-01-01

    Mesoporous alumina (MA) with a higher ability to simultaneously remove SO2 and NO was prepared by the evaporation-induced self-assembly process. The adsorption capacities of MA are 1.79 and 0.702 mmol/g for SO2 and NO, respectively. The Brunauer-Emmett-Teller method was used to characterize the adsorbent. Simultaneous adsorption of SO2 and NO from flue gas over MA in different operating conditions had been studied in a fixed bed reactor. The effects of temperature, oxygen concentration and water vapour were investigated. The experimental results showed that the optimum temperature for MA to simultaneously remove SO2 and NO was 90°C. The simultaneous adsorption capacities of SO2 and NO could be enhanced by increasing O2 when its concentration was below 5%. The changes of simultaneous adsorption capacities were not obvious when O2 concentration was above 5%. The increase in relative humidity results in an increase after dropping of SO2 adsorption capacity, whereas the adsorption capacity of NO showed an opposite trend. The results suggest that MA is a great adsorbent for simultaneous removal of SO2 and NO from flue gas.