Sample records for maximum actuation displacement

  1. Comb-drive actuators for large displacements

    Legtenberg, Rob; Groeneveld, A.W.; Elwenspoek, M.


    The design, fabrication and experimental results of lateral-comb-drive actuators for large displacements at low driving voltages is presented. A comparison of several suspension designs is given, and the lateral large deflection behaviour of clamped - clamped beams and a folded flexure design is mod

  2. Soft Pneumatic Bending Actuator with Integrated Carbon Nanotube Displacement Sensor

    Tim Giffney


    Full Text Available The excellent compliance and large range of motion of soft actuators controlled by fluid pressure has lead to strong interest in applying devices of this type for biomimetic and human-robot interaction applications. However, in contrast to soft actuators fabricated from stretchable silicone materials, conventional technologies for position sensing are typically rigid or bulky and are not ideal for integration into soft robotic devices. Therefore, in order to facilitate the use of soft pneumatic actuators in applications where position sensing or closed loop control is required, a soft pneumatic bending actuator with an integrated carbon nanotube position sensor has been developed. The integrated carbon nanotube position sensor presented in this work is flexible and well suited to measuring the large displacements frequently encountered in soft robotics. The sensor is produced by a simple soft lithography process during the fabrication of the soft pneumatic actuator, with a greater than 30% resistance change between the relaxed state and the maximum displacement position. It is anticipated that integrated resistive position sensors using a similar design will be useful in a wide range of soft robotic systems.

  3. Optimization of Moving Coil Actuators for Digital Displacement Machines

    Nørgård, Christian; Bech, Michael Møller; Roemer, Daniel Beck;


    This paper focuses on deriving an optimal moving coil actuator design, used as force pro-ducing element in hydraulic on/off valves for Digital Displacement machines. Different moving coil actuator geometry topologies (permanent magnet placement and magnetiza-tion direction) are optimized...... for actuating annular seat valves in a digital displacement machine. The optimization objectives are to the minimize the actuator power, the valve flow losses and the height of the actuator. Evaluation of the objective function involves static finite element simulation and simulation of an entire operation...

  4. A Miniature Large Displacement Linear Nanopositioning Piezoelectric Actuator

    Lu Qiuhong(卢秋红); Yan Guozheng


    A miniature linear piezoelectric actuator which moves based on inertia friction theory is described in this paper. The authors discuss its driving principle, dynamic model and experimental results.The piezoelectric actuator includes two piezoelectric elements.Through the sequentially deformations of the two piezo elements, the moving mass slides a miniature displacement. Many strokes will be added to be a large displacement.This type of piezoactuator has advantages in its dimension and motion type,so it can be miniaturized to do micro manipulation or micropositioning in microspace.

  5. Dynamic Characteristics of a Hydraulic Amplification Mechanism for Large Displacement Actuators Systems

    Xavier Arouette


    Full Text Available We have developed a hydraulic displacement amplification mechanism (HDAM and studied its dynamic response when combined with a piezoelectric actuator. The HDAM consists of an incompressible fluid sealed in a microcavity by two largely deformable polydimethylsiloxane (PDMS membranes. The geometry with input and output surfaces having different cross-sectional areas creates amplification. By combining the HDAM with micro-actuators, we can amplify the input displacement generated by the actuators, which is useful for applications requiring large deformation, such as tactile displays. We achieved a mechanism offering up to 18-fold displacement amplification for static actuation and 12-fold for 55 Hz dynamic actuation.

  6. A curved electrode electrostatic actuator designed for large displacement and force in an underwater environment

    Preetham, B. S.; Lake, Melinda A.; Hoelzle, David J.


    There is a need for the development of large displacement (O (10-6) m) and force (O (10-6) N) electrostatic actuators with low actuation voltages (actuator in a clamped-clamped beam configuration meant to operate in an underwater environment. Our curved electrode actuator is unique in that it operates in a stable manner past the pull-in instability. Models based on the Rayleigh-Ritz method accurately predict the onset of static instability and the displacement versus voltage function, as validated by quasistatic experiments. We demonstrate that the actuator is capable of achieving a large peak-to-peak displacement of 19.5 µm and force of 43 µN for a low actuation voltage of less than  ±8 V and is thus appropriate for underwater bio-MEMS applications.

  7. Demonstration of Vibrational Braille Code Display Using Large Displacement Micro-Electro-Mechanical Systems Actuators

    Watanabe, Junpei; Ishikawa, Hiroaki; Arouette, Xavier; Matsumoto, Yasuaki; Miki, Norihisa


    In this paper, we present a vibrational Braille code display with large-displacement micro-electro-mechanical systems (MEMS) actuator arrays. Tactile receptors are more sensitive to vibrational stimuli than to static ones. Therefore, when each cell of the Braille code vibrates at optimal frequencies, subjects can recognize the codes more efficiently. We fabricated a vibrational Braille code display that used actuators consisting of piezoelectric actuators and a hydraulic displacement amplification mechanism (HDAM) as cells. The HDAM that encapsulated incompressible liquids in microchambers with two flexible polymer membranes could amplify the displacement of the MEMS actuator. We investigated the voltage required for subjects to recognize Braille codes when each cell, i.e., the large-displacement MEMS actuator, vibrated at various frequencies. Lower voltages were required at vibration frequencies higher than 50 Hz than at vibration frequencies lower than 50 Hz, which verified that the proposed vibrational Braille code display is efficient by successfully exploiting the characteristics of human tactile receptors.

  8. Design and test of a micro-displacement actuator based on giant magnetostrictive material

    Shao, Liang; Yang, Dehua; Yang, Bintang; Chen, Kunxin


    To meet the performance requirements of co-focusing and co-phasing of segmented mirror active optics (SMAO) in modern astronomical telescope, micro-displacement actuators with nanometer resolution and millimeter stroke are necessary. The design and test of a micro-displacement actuator based on giant magnetostrictive material is present in this paper. The actuator's main components, such as giant magnetostrictive drive core, displacement pantograph mechanism and output guide mechanism, are discussed in detailed. The giant magnetostrictive drive mechanism generally may offer nanometer resolution and micron stroke. A displacement/stroke pantograph mechanism is designed with absolutely sealed flexible hydraulic structure (ASFHS) to enlarge the stroke. In addition, a secondary giant magnetostrictive drive mechanism is integrated to serve final resolution of final displacement output. In view of flexure exhibiting excellent mechanical properties free of friction, clearance and lubrication, a flexure guide mechanism with the capacity of excellent lateral load is designed to fulfill linear displacement output steadily. The sub-systems like the giant magnetostrictive drive core and displacement pantograph mechanism have been tested before integration of the whole actuator. The final test of the actuator is carried out with dual frequency laser interferometer at lab. Besides, to meet technical requirements of future extremely large telescope, further development issues mainly related to application practice of the actuator is discussed at the end.

  9. Wireless Displacement Sensing of Micromachined Spiral-Coil Actuator Using Resonant Frequency Tracking

    Mohamed Sultan Mohamed Ali


    Full Text Available This paper reports a method that enables real-time displacement monitoring and control of micromachined resonant-type actuators using wireless radiofrequency (RF. The method is applied to an out-of-plane, spiral-coil microactuator based on shape-memory-alloy (SMA. The SMA spiral coil forms an inductor-capacitor resonant circuit that is excited using external RF magnetic fields to thermally actuate the coil. The actuation causes a shift in the circuit’s resonance as the coil is displaced vertically, which is wirelessly monitored through an external antenna to track the displacements. Controlled actuation and displacement monitoring using the developed method is demonstrated with the microfabricated device. The device exhibits a frequency sensitivity to displacement of 10 kHz/µm or more for a full out-of-plane travel range of 466 µm and an average actuation velocity of up to 155 µm/s. The method described permits the actuator to have a self-sensing function that is passively operated, thereby eliminating the need for separate sensors and batteries on the device, thus realizing precise control while attaining a high level of miniaturization in the device.

  10. Novel genetically optimised high-displacement piezoelectric actuator with efficient use of active material

    Poikselkä, Katja; Leinonen, Mikko; Palosaari, Jaakko; Vallivaara, Ilari; Röning, Juha; Juuti, Jari


    This paper introduces a new type of piezoelectric actuator, Mikbal. The Mikbal was developed from a Cymbal by adding steel structures around the steel cap to increase displacement and reduce the amount of piezoelectric material used. Here the parameters of the steel cap of Mikbal and Cymbal actuators were optimised by using genetic algorithms in combination with Comsol Multiphysics FEM modelling software. The blocking force of the actuator was maximised for different values of displacement by optimising the height and the top diameter of the end cap profile so that their effect on displacement, blocking force and stresses could be analysed. The optimisation process was done for five Mikbal- and two Cymbal-type actuators with different diameters varying between 15 and 40 mm. A Mikbal with a Ø 25 mm piezoceramic disc and a Ø 40 mm steel end cap was produced and the performances of unclamped measured and modelled cases were found to correspond within 2.8% accuracy. With a piezoelectric disc of Ø 25 mm, the Mikbal created 72% greater displacement while blocking force was decreased 57% compared with a Cymbal with the same size disc. Even with a Ø 20 mm piezoelectric disc, the Mikbal was able to generate ∼10% higher displacement than a Ø 25 mm Cymbal. Thus, the introduced Mikbal structure presents a way to extend the displacement capabilities of a conventional Cymbal actuator for low-to-moderate force applications.

  11. Pre-distorted sinewave-driven parallel-plate electrostatic actuator for harmonic displacement

    de Graaf, G.; Mol, L.; Rocha, L. A.; Cretu, E.; Wolffenbuttel, R. F.


    Harmonic displacement of a parallel-plate electrostatic actuator up to 50% of the static pull-in displacement has been achieved despite the non-linear voltage-to-displacement function using a driving voltage with a pre-distorted waveform. The microstructure is fabricated in an epi-poly process and the circuit is implemented in a CMOS process and designed for operation of the MEMS in a frequency range up to 1 kHz. The pre-distorted waveform is synthesized using 16 samples per period with 16 non-uniformly spaced quantization levels, using a ladder with accurately scaled resistors. Harmonic actuation has been demonstrated with 34 dB reduction of second-order distortion compared to systems with sinusoidal actuation. The residual second harmonic content in the harmonic displacement is typically -42 dB.

  12. Development of Compact Flexible Displacement Sensors Using Ultrasonic Sensor for Wearable Actuators

    Akagi Tetsuya


    Full Text Available In position control of wearable actuator such as a rubber artificial muscle, a compact flexible displacement sensor is much attractive and required. In this paper, two types of flexible displacement sensor using the ultrasonic sensor were introduced. One is a built-in displacement sensor for rubber artificial muscle. Another is a sensor that can measure the sliding displacement on a flexible tube for flexible robot. Both sensors use ultrasonic displacement sensors. The construction, operating principle and measuring performance of two sensors were also described.

  13. Large Displacement in Relaxor Ferroelectric Terpolymer Blend Derived Actuators Using Al Electrode for Braille Displays

    Lu, S. G.; Chen, X.; Levard, T.; Diglio, P. J.; Gorny, L. J.; Rahn, C. D.; Zhang, Q. M.


    Poly(vinylidene fluoride) (PVDF) based polymers are attractive for applications for artificial muscles, high energy density storage devices etc. Recently these polymers have been found great potential for being used as actuators for refreshable full-page Braille displays for visually impaired people in terms of light weight, miniaturized size, and larger displacement, compared with currently used lead zirconate titanate ceramic actuators. The applied voltages of published polymer actuators, however, cannot be reduced to meet the requirements of using city power. Here, we report the polymer actuator generating quite large displacement and blocking force at a voltage close to the city power. Our embodiments also show good self-healing performance and disuse of lead-containing material, which makes the Braille device safer, more reliable and more environment-friendly.

  14. Large displacement bi-directional out-of-plane Lorentz actuator array for surface manipulation

    Park, Byoungyoul; Afsharipour, Elnaz; Chrusch, Dwayne; Shafai, Cyrus; Andersen, David; Burley, Greg


    This paper presents a large displacement out-of-plane Lorentz actuator array for surface manipulation. Actuators are formed from single crystal silicon flexible serpentine springs on either side of a rigid crossbar containing a narrow contact pillar. A rigid mounting rail system was employed to enable a 5  ×  5 array, which offers scalability of the array size. Analytical and finite element models were used to optimize actuator design. Individual actuators were tested to show linear deflection response of  ±150 µm motion, using a  ±14.7 mA current in the presence of a 0.48 T magnetic field. This actuator array is suitable for various 2D surface modification applications due to its large deformation with low current and temperature of operation, and narrow contact area to a target surface.

  15. Large displacement haptic stimulus actuator using piezoelectric pump for wearable devices.

    Kodama, Taisuke; Izumi, Shintaro; Masaki, Kana; Kawaguchi, Hiroshi; Maenaka, Kazusuke; Yoshimoto, Masahiko


    Recently, given Japan's aging society background, wearable healthcare devices have increasingly attracted attention. Many devices have been developed, but most devices have only a sensing function. To expand the application area of wearable healthcare devices, an interactive communication function with the human body is required using an actuator. For example, a device must be useful for medication assistance, predictive alerts of a disease such as arrhythmia, and exercise. In this work, a haptic stimulus actuator using a piezoelectric pump is proposed to realize a large displacement in wearable devices. The proposed actuator drives tactile sensation of the human body. The measurement results obtained using a sensory examination demonstrate that the proposed actuator can generate sufficient stimuli even if adhered to the chest, which has fewer tactile receptors than either the fingertip or wrist.


    QiuWei; KangYilan; SunQingchi; QinQinghua; LinYu


    Multilayer piezoelectric ceramic displacement actuators are susceptible to cracking in the region near the edge of the internal electrode, which may cause system damage or failure.In this paper, the stress distribution of a multilayer piezoelectric composite is investigated in a working environment and the optimized geometrical configuration of the piezoelectric layer is obtained. The stress distribution in the structure and the stress concentration near the edge of the internal electrode, induced by non-uniform electric field distribution, are analyzed by moirá interferometry experiment and finite element numerical simulation. Based on the above analysis,two optimized geometrical models are presented for the purpose of geometrical configuration selection, with which stress concentration can be reduced significantly while the feasibility of the machining process and the basic structural functions occurring in the conventional model are retained. The numerical results indicate that the maximum stress in the optimized models is effectively diminished compared to the conventional model. For instance, the peak value of the principal stress in the optimized model Ⅱ is 93.1% smaller than that in the conventional model.It is proved that stress concentration can be effectively relaxed in the latter of the two optimized models and thus the probability of fracture damage can be decreased.



    The dynamic property of piezoelectric micro displacement actuator (PMDA) is analyzed, especially the mechanical characteristic, lag phase property and hysteresis phenomenon. The influence factors of static and dynamic mechanical characteristics and the lag phase property are analyzed systematically. Three main influence factors of lag phase property are discovered. With comparison to mechanical Coulomb friction, a generalized model of nonlinear hysteresis of PMDA is advanced, based on the essential analysis of nonlinear phenomenon. Finally the application of PMDA in error compensation control system of boring is introduced. A good compensation result is achieved.

  18. A versatile MEMS bimorph actuator with large vertical displacement and high resolution: Design and fabrication process

    Rangra, Aarushee; Maninder, K.; Soni, Shilpi; Rangra, K. J.


    This paper presents design, simulation results and envisaged fabrication process for a versatile MEMS bimorph actuator with large out of plane displacement and high resolution. A comparative study of mechanical, thermal and electrical response of the micro-actuator is presented by using two well-known MEMS simulation tools. The bimorph structure measuring 700 × 1280 mm2 is fully integrable with CMOS fabrication process. It is indented for tunable filter applications where the precise vertical motion of the payload, the top metallic electrode anchored rigidly to bimorph `springs' spans the vertical range of 250-300 microns with submicron resolution. Each bimorph spring resembles a hair pin structure and is composed of materials with large difference in thermal expansion coefficients e.g. electroplated gold and polysilicon for optimal out-of-the plane deflection. The novel structure can also be configured for analog micro-mirror based optical and IR spectroscopy applications by controlling the actuation bias and top electrode surface parameters.

  19. Thermocapillary actuation by optimized resistor pattern: bubbles and droplets displacing, switching and trapping.

    Selva, Bertrand; Miralles, Vincent; Cantat, Isabelle; Jullien, Marie-Caroline


    We report a novel method for bubble or droplet displacement, capture and switching within a bifurcation channel for applications in digital microfluidics based on the Marangoni effect, i.e. the appearance of thermocapillary tangential interface stresses stemming from local surface tension variations. The specificity of the reported actuation is that heating is provided by an optimized resistor pattern (B. Selva, J. Marchalot and M.-C. Jullien, An optimized resistor pattern for temperature gradient control in microfluidics, J. Micromech. Microeng., 2009, 19, 065002) leading to a constant temperature gradient along a microfluidic cavity. In this context, bubbles or droplets to be actuated entail a surface force originating from the thermal Marangoni effect. This actuator has been characterized (B. Selva, I. Cantat, and M.-C. Jullien, Migration of a bubble towards a higher surface tension under the effect of thermocapillary stress, preprint, 2009) and it was found that the bubble/droplet (called further element) is driven toward a high surface tension region, i.e. toward cold region, and the element velocity increases while decreasing the cavity thickness. Taking advantage of these properties three applications are presented: (1) element displacement, (2) element switching, detailed in a given range of working, in which elements are redirected towards a specific evacuation, (3) a system able to trap, and consequently stop on demand, the elements on an alveolus structure while the continuous phase is still flowing. The strength of this method lies in its simplicity: single layer system, in situ heating leading to a high level of integration, low power consumption (P < 0.4 W), low applied voltage (about 10 V), and finally this system is able to manipulate elements within a flow velocity up to 1 cm s(-1).

  20. Calibration of piezoelectric positioning actuators using a reference voltage-to-displacement transducer based on quartz tuning forks

    Castellanos-Gomez, Andres; Agraït, Nicolás; Rubio-Bollinger, Gabino; 10.1017/S1431927611012839


    We use a piezoelectric quartz tuning fork to calibrate the displacement of ceramic piezoelectric scanners which are widely employed in scanning probe microscopy. We measure the static piezoelectric response of a quartz tuning fork and find it to be highly linear, non-hysteretic and with negligible creep. These performance characteristics, close to those of an ideal transducer, make quartz transducers superior to ceramic piezoelectric actuators. Furthermore, quartz actuators in the form of a tuning fork have the advantage of yielding static displacements comparable to those of local probe microscope scanners. We use the static displacement of a quartz tuning fork as a reference to calibrate the three axis displacement of a ceramic piezoelectric scanner. Although this calibration technique is a non-traceable method, it can be more versatile than using calibration grids because it enables to characterize the linear and non-linear response of a piezoelectric scanner in a broad range of displacements, spanning fro...

  1. Simulation and Experimental Testing of an Actuator for a Fast Switching On-Off Valve Suitable to Efficient Displacement Machines

    Roemer, Daniel Beck; Johansen, Per; Bech, Michael Møller


    for the valve design process. In this paper simulation of such fast switching valve is presented and the transient actuator performance is experimentally validated against transient Finite Element Analysis (FEA). Models predict a switching time of approximately 1ms for the valve and a pressure loss of 0.5 bar......Digital Displacement (DD) fluid power machines are upcoming technology, improving the efficiency compared to traditional variable displacement machines, especially at low displacements where currently available fluid power pumps/motors suffer from mediocre efficiency. This efficiency improvement...

  2. Topology Selection and Analysis of Actuator for Seat Valves suitable for use in Digital Displacement Pumps/Motors

    Rømer, Daniel; Johansen, Per; Pedersen, Henrik C.


    Digital Displacement (DD) Fluid Power is an upcoming technology setting new standards for the achievable efficiency of fluid power pumps and motors. To enable high efficiency operation fast switching electronically controlled seat valves are needed, preferably exhibiting very low flow pressure loss...... and switching times within a few milliseconds. These valves are mechatronic components and attention to both the electromagnetic, fluid dynamical, mechanical and control system design must be paid to ensure the needed performance. In the present work, a quick response linear electro-magnetic actuator for DD...... seat valves is developed, and the resulting dynamic response of the seat valve is presented. Requirements for the valve actuator is established based on the DD application, and three feasible actuator topologies are analyzed by means of transient electro-magnetic FEA simulation. From this analysis...

  3. Design and Development of an Optical Path Difference Scan Mechanism for Fourier Transform Spectrometers using High Displacement RAINBOW Actuators

    Wise, Stephanie A.; Hardy, Robin C.; Dausch, David E.


    A new piezoelectric drive mechanism has been developed for optical translation in space-based spectrometer systems. The mechanism utilizes a stack of RAINBOW high displacement piezoelectric actuators to move optical components weighing less than 250 grams through a one centimeter travel. The mechanism uses the direct motion of the piezoelectric devices, stacked such that the displacement of the individual RAINBOW actuators is additive. A prototype device has been built which utilizes 21 RAINBOWs to accomplish the necessary travel. The mechanism weighs approximately 0.6 kilograms and uses less than 2 Watts of power at a scanning frequency of 0.5 Hertz, significantly less power than that required by state-of-the-art motor systems.

  4. Coil Springs Layer Used to Support a Car Vertical Dynamics Simulator and to Reduce the Maximum Actuation Force

    Dan N. Dumitriu


    Full Text Available A Danaher Thomson linear actuator with ball screw drive and a realtime control system are used here to induce vertical displacements under the driver/user seat of an in-house dynamic car simulator. In order to better support the car simulator and to dynamically protect the actuator’s ball screw drive, a layer of coil springs is used to support the whole simulator chassis. More precisely, one coil spring is placed vertically under each corner of the rectangular chassis. The paper presents the choice of the appropriate coil springs, so that to minimize as much as possible the ball screw drive task of generating linear motions, corresponding to the vertical displacements and accelerations encountered by a driver during a real ride. For this application, coil springs with lower spring constant are more suited to reduce the forces in the ball screw drive and thus to increase the ball screw drive life expectancy.

  5. 40 CFR 1042.140 - Maximum engine power, displacement, power density, and maximum in-use engine speed.


    ... as specified in 40 CFR 1065.610. This is the maximum in-use engine speed used for calculating the NOX... procedures of 40 CFR part 1065, based on the manufacturer's design and production specifications for the..., power density, and maximum in-use engine speed. 1042.140 Section 1042.140 Protection of...

  6. Design and experimental study of a novel giant magnetostrictive actuator

    Xue, Guangming; Zhang, Peilin; He, Zhongbo; Li, Dongwei; Huang, Yingjie; Xie, Wenqiang


    Giant magnetostrictive actuator has been widely used in precise driving occasions for its excellent performance. However, in driving a switching valve, especially the ball-valve in an electronic controlled injector, the actuator can't exhibit its good performance for limits in output displacement and responding speed. A novel giant magnetostrictive actuator, which can reach its maximum displacement for being exerted with no bias magnetic field, is designed in this paper. Simultaneously, elongating of the giant magetostrictive material is converted to shortening of the actuator's axial dimension with the help of an output rod in "T" type. Furthermore, to save responding time, the driving voltage with high opening voltage while low holding voltage is designed. Responding time and output displacement are studied experimentally with the help of a measuring system. From measured results, designed driving voltage can improve the responding speed of actuator displacement quite effectively. And, giant magnetostrictive actuator can output various steady-state displacements to reach more driving effects.

  7. Combined design of recurve actuators and drive electronics for maximum energy efficiency

    Seresta, Omprakash; Ragon, Scott A.; Zhu, Huiyu; Gurdal, Zafer; Lindner, Douglas K.


    Smart structures typically consist of many interacting components, which result in a closed loop formed by an actuator, structure, sensors, controller, and drive circuit components. Despite the recognition of component interactions, much of the traditional design approach for such systems is highly compartmentalized and sequential. The primary objective of the present work is to develop a basic understanding of the energy flow and dynamic interaction between the electrical and mechanical subsystems of smart actuators. When operating from portable power sources, a crucial factor in determining the performance of such a smart system is the battery capacity required for the actuator to operate through a given time span along with its life time. The real and reactive power in such a system will determine the battery life and size separately. While the real power is dissipated only in the drive circuit, the reactive power of the circuit and the actuator cannot be calculated individually, where the interaction arises. Multi-objective function optimization problem, which combines the real and reactive power by different weights, will result in a better balanced solution than optimizing either one of them separately. Genetic algorithm is applied for discrete component selection to generate more realistic designs. The optimization result is illustrated in the paper, as well as their relationship with multi-objective functions.

  8. Displacement sensing based on resonant frequency monitoring of electrostatically actuated curved micro beams

    Krakover, Naftaly; Ilic, B. Robert; Krylov, Slava


    The ability to control nonlinear interactions of suspended mechanical structures offers a unique opportunity to engineer rich dynamical behavior that extends the dynamic range and ultimate device sensitivity. We demonstrate a displacement sensing technique based on resonant frequency monitoring of curved, doubly clamped, bistable micromechanical beams interacting with a movable electrode. In this configuration, the electrode displacement influences the nonlinear electrostatic interactions, effective stiffness and frequency of the curved beam. Increased sensitivity is made possible by dynamically operating the beam near the snap-through bistability onset. Various in-plane device architectures were fabricated from single crystal silicon and measured under ambient conditions using laser Doppler vibrometry. In agreement with the reduced order Galerkin-based model predictions, our experimental results show a significant resonant frequency reduction near critical snap-through, followed by a frequency increase within the post-buckling configuration. Interactions with a stationary electrode yield a voltage sensitivity up to  ≈560 Hz V‑1 and results with a movable electrode allow motion sensitivity up to  ≈1.5 Hz nm‑1. Our theoretical and experimental results collectively reveal the potential of displacement sensing using nonlinear interactions of geometrically curved beams near instabilities, with possible applications ranging from highly sensitive resonant inertial detectors to complex optomechanical platforms providing an interface between the classical and quantum domains.

  9. Dielectric elastomer actuators for facial expression

    Wang, Yuzhe; Zhu, Jian


    Dielectric elastomer actuators have the advantage of mimicking the salient feature of life: movements in response to stimuli. In this paper we explore application of dielectric elastomer actuators to artificial muscles. These artificial muscles can mimic natural masseter to control jaw movements, which are key components in facial expressions especially during talking and singing activities. This paper investigates optimal design of the dielectric elastomer actuator. It is found that the actuator with embedded plastic fibers can avert electromechanical instability and can greatly improve its actuation. Two actuators are then installed in a robotic skull to drive jaw movements, mimicking the masseters in a human jaw. Experiments show that the maximum vertical displacement of the robotic jaw, driven by artificial muscles, is comparable to that of the natural human jaw during speech activities. Theoretical simulations are conducted to analyze the performance of the actuator, which is quantitatively consistent with the experimental observations.

  10. A semi-empirical model for the estimation of maximum horizontal displacement due to liquefaction-induced lateral spreading

    Faris, Allison T.; Seed, Raymond B.; Kayen, Robert E.; Wu, Jiaer


    During the 1906 San Francisco Earthquake, liquefaction-induced lateral spreading and resultant ground displacements damaged bridges, buried utilities, and lifelines, conventional structures, and other developed works. This paper presents an improved engineering tool for the prediction of maximum displacement due to liquefaction-induced lateral spreading. A semi-empirical approach is employed, combining mechanistic understanding and data from laboratory testing with data and lessons from full-scale earthquake field case histories. The principle of strain potential index, based primary on correlation of cyclic simple shear laboratory testing results with in-situ Standard Penetration Test (SPT) results, is used as an index to characterized the deformation potential of soils after they liquefy. A Bayesian probabilistic approach is adopted for development of the final predictive model, in order to take fullest advantage of the data available and to deal with the inherent uncertainties intrinstiic to the back-analyses of field case histories. A case history from the 1906 San Francisco Earthquake is utilized to demonstrate the ability of the resultant semi-empirical model to estimate maximum horizontal displacement due to liquefaction-induced lateral spreading.

  11. Numerical and experimental study of actuator performance on piezoelectric microelectromechanical inkjet print head.

    Van So, Pham; Jun, Hyun Woo; Lee, Jaichan


    We have investigated the actuator performance of a piezoelectrically actuated inkjet print head via the numerical and experimental analysis. The actuator consisting of multi-layer membranes, such as piezoelectric, elastic and other buffer layers, and ink chamber was fabricated by MEMS processing. The maximum displacement of the actuator membrane obtained in the experiment is explained by numerical analysis. A simulation of the actuator performance with fluidic damping shows that the resonant frequency of the membrane in liquid is reduced from its resonant frequency in air by a factor of three, which was also verified in the experiment. These simulation and experimental studies demonstrate how much "dynamic force," in terms of a membrane's maximum displacement, maximum force and driving frequency, can be produced by an actuator membrane interacting with fluid.

  12. Flexible dielectric elastomer actuators for wearable human-machine interfaces

    Bolzmacher, Christian; Biggs, James; Srinivasan, Mandayam


    Wearable dielectric elastomer actuators have the potential to enable new technologies, such as tactile feedback gloves for virtual reality, and to improve existing devices, such as automatic blood pressure cuffs. They are potentially lighter, quieter, thinner, simpler, and cheaper than pneumatic and hydraulic systems now used to make compliant, actuated interfaces with the human body. Achieving good performance without using a rigid frame to prestrain the actuator is a fundamental challenge in using these actuators on body. To answer this challenge, a new type of fiber-prestrained composite actuator was developed. Equations that facilitate design of the actuator are presented, along with FE analysis, material tests, and experimental results from prototypes. Bending stiffness of the actuator material was found to be comparable to textiles used in clothing, confirming wearability. Two roll-to-roll machines are also presented that permit manufacture of this material in bulk as a modular, compact, prestressed composite that can be cut, stacked, and staggered, in order to build up actuators for a range of desired forces and displacements. The electromechanical properties of single- layered actuators manufactured by this method were measured (N=5). At non-damaging voltages, blocking force ranged from 3,7-5,0 gram per centimeter of actuator width, with linear strains of 20,0-30%. Driving the actuators to breakdown produced maximum force of 8,3-10 gram/cm, and actuation strain in excess 30%. Using this actuator, a prototype tactile display was constructed and demonstrated.

  13. Advanced Modified High Performance Synthetic Jet Actuator with Curved Chamber

    Xu, Tian-Bing (Inventor); Su, Ji (Inventor); Jiang, Xiaoning (Inventor)


    The advanced modified high performance synthetic jet actuator with optimized curvature shape chamber (ASJA-M) is a synthetic jet actuator (SJA) with a lower volume reservoir or chamber. A curved chamber is used, instead of the conventional cylinder chamber, to reduce the dead volume of the jet chamber and increase the efficiency of the synthetic jet actuator. The shape of the curvature corresponds to the maximum displacement (deformation) profile of the electroactive diaphragm. The jet velocity and mass flow rate for the ASJA-M will be several times higher than conventional piezoelectric actuators.

  14. Modeling and control for PZT micro-displacement Actuator%压电陶瓷微位移驱动器建模与控制

    刘泊; 郭建英; 孙永全


    When a white light interferometer is applied to 3D surface microcosmic topographic measurement,the measuring accuracy is effected by the hysteresis and creeping phenomenon generated by the piezoelectric actuator seriously.Therefore,this paper proposes a method to improve the displacement accuracy of the reference mirror along the optical axis direction.The piezoelectric actuator is given,and its displacement detecting circuit,PID closed loop control algorithms,and creep compensation control are studied.First,displacement detecting circuit is established by a position sensitive device and an optical lever,by which the piezoelectric ceramic micro-displacement can be fed back to control the system,then the PID closed-loop control algorithm is established.Furthermore,the creeping characteristics of piezoelectric ceramic is discussed during the measurement.In order to eliminate the creeping phenomenon and improve measurement accuracy,the “voltage creep” compensation model is proposed.Finally,an integer control system based on PID closed-loop control and creep compensation control is established.The micro-displacement of the piezoelectric actuator is measured by a high-precision XL-80 laser interferometer under the two cases of PID closed-loop control and integer control.Experimental results indicate that the displacement error for the former is 0.007 μm,and that for the latter is 0.005 μm,respectively.This method reduces the influence of hysteresis and creeping on measurement results,and meets the requirements of three-dimensioned shape measurement for high accuracy.%考虑利用白光干涉仪进行表面三维形貌测量时压电陶瓷(PZT)的蠕变效应对微位移驱动器位移精度的影响,提出了一种沿参考镜光轴方向提高该驱动器位移精度的方法.系统研究了该驱动器的位移检测回路、PID闭环控制以及蠕变补偿控制;利用光电位置传感器和光学杠杆调节位移检测回路,将压电陶瓷驱动器微位

  15. The design and analysis of a MEMS electrothermal actuator

    Suocheng, Wang; Yongping, Hao; Shuangjie, Liu


    This paper introduces a type of out-of-plane microelectrothermal actuator, which is based on the principle of bimetal film thermal expansion in the fuse. A polymer SU-8 material and nickel are used as the functional and structural materials of the actuator. Through heating the resistance wire using electricity, the actuator produces out-of-plane motion in the perpendicular axial direction of the device and the bias layer contact with the substrate, completing signal output. Using Coventorware software to establish the three-dimensional model, the geometric structure is optimized and the electrothermal capabilities are determined theoretically. From electrothermal analysis, the actuator's displacement is 18 μm and the temperature rises from 300 to 440 K under a voltage of 5 V and the response time is 5 ms. The actuator's displacement is 20 μm under a 100000 m/s2 acceleration in the accelerating field. In the coupled field, applying a 3 V voltage, the initial temperature is 300 K, while the acceleration is 50000 m/s2, the driving displacement of the actuator is 23 μm, and temperature rises to 400 K. Finally, through checking the stress in different field sources, the maximum stress of the actuator is smaller than the allowable stress of nickel. The results show that the electrothermal actuator has high reliability.

  16. Curved Piezoelectric Actuators for Stretching Optical Fibers

    Allison, Sidney G.; Shams, Qamar A.; Fox, Robert L.


    Assemblies containing curved piezoceramic fiber composite actuators have been invented as means of stretching optical fibers by amounts that depend on applied drive voltages. Piezoceramic fiber composite actuators are conventionally manufactured as sheets or ribbons that are flat and flexible, but can be made curved to obtain load-carrying ability and displacement greater than those obtainable from the flat versions. In the primary embodiment of this invention, piezoceramic fibers are oriented parallel to the direction of longitudinal displacement of the actuators so that application of drive voltage causes the actuator to flatten, producing maximum motion. Actuator motion can be transmitted to the optical fiber by use of hinges and clamp blocks. In the original application of this invention, the optical fiber contains a Bragg grating and the purpose of the controlled stretching of the fiber is to tune the grating as part of a small, lightweight, mode-hop-free, rapidly tunable laser for demodulating strain in Bragg-grating strain-measurement optical fibers attached to structures. The invention could also be used to apply controllable tensile force or displacement to an object other than an optical fiber.

  17. Development of a Paper Actuator with PEDOT:PSS Thin-Films as An Electrode

    Yusuke Hara


    Full Text Available A paper actuator was fabricated from poly(3,4-ethylenedioxythiophene doped with poly(4-styrenesulfonate (PEDOT:PSS by a wet process without organic solvents. The paper actuator had a capacitor structure, with a cationic polymer as an insulating layer sandwiched between two PEDOT:PSS films as the electrodes. The thickness of the paper actuator was approximately 36 mm. We measured its displacement as a function of applied voltage and frequency; the maximum displacement was 2.2 mm at 1.5 V and 1 Hz.

  18. Elastic Cube Actuator with Six Degrees of Freedom Output

    Pengchuan Wang


    Full Text Available Unlike conventional rigid actuators, soft robotic technologies possess inherent compliance, so they can stretch and twist along every axis without the need for articulated joints. This compliance is exploited here using dielectric elastomer membranes to develop a novel six degrees of freedom (6-DOF polymer actuator that unifies ordinarily separate components into a simple cubic structure. This cube actuator design incorporates elastic dielectric elastomer membranes on four faces which are coupled by a cross-shaped end effector. The inherent elasticity of each membrane greatly reduces kinematic constraint and enables a 6-DOF actuation output to be produced via the end effector. An electro-mechanical model of the cube actuator is presented that captures the non-linear hyperelastic behaviour of the active membranes. It is demonstrated that the model accurately predicts actuator displacement and blocking moment for a range of input voltages. Experimental testing of a prototype 60 mm device demonstrates 6-DOF operation. The prototype produces maximum linear and rotational displacements of ±2.6 mm (±4.3% and ±4.8° respectively and a maximum blocking moment of ±76 mNm. The capacity for full 6-DOF actuation from a compact, readily scalable and easily fabricated polymeric package enables implementation in a range of mechatronics and robotics applications.

  19. An Unconventional Inchworm Actuator Based on PZT/ERFs Control Technology

    Liu, Guojun; Zhang, Yanyan; Liu, Jianfang; Li, Jianqiao; Tang, Chunxiu; Wang, Tengfei; Yang, Xuhao


    An unconventional inchworm actuator for precision positioning based on piezoelectric (PZT) actuation and electrorheological fluids (ERFs) control technology is presented. The actuator consists of actuation unit (PZT stack pump), fluid control unit (ERFs valve), and execution unit (hydraulic actuator). In view of smaller deformation of PZT stack, a new structure is designed for actuation unit, which integrates the advantages of two modes (namely, diaphragm type and piston type) of the volume changing of pump chamber. In order to improve the static shear yield strength of ERFs, a composite ERFs valve is designed, which adopts the series-parallel plate compound structure. The prototype of the inchworm actuator has been designed and manufactured in the lab. Systematic test results indicate that the displacement resolution of the unconventional inchworm actuator reaches 0.038 μm, and the maximum driving force and velocity are 42 N, 14.8 mm/s, respectively. The optimal working frequency for the maximum driving velocity is 120 Hz. The complete research and development processes further confirm the feasibility of developing a new type of inchworm actuator with high performance based on PZT actuation and ERFs control technology, which provides a reference for the future development of a new type of actuator. PMID:27022234

  20. An Unconventional Inchworm Actuator Based on PZT/ERFs Control Technology.

    Liu, Guojun; Zhang, Yanyan; Liu, Jianfang; Li, Jianqiao; Tang, Chunxiu; Wang, Tengfei; Yang, Xuhao


    An unconventional inchworm actuator for precision positioning based on piezoelectric (PZT) actuation and electrorheological fluids (ERFs) control technology is presented. The actuator consists of actuation unit (PZT stack pump), fluid control unit (ERFs valve), and execution unit (hydraulic actuator). In view of smaller deformation of PZT stack, a new structure is designed for actuation unit, which integrates the advantages of two modes (namely, diaphragm type and piston type) of the volume changing of pump chamber. In order to improve the static shear yield strength of ERFs, a composite ERFs valve is designed, which adopts the series-parallel plate compound structure. The prototype of the inchworm actuator has been designed and manufactured in the lab. Systematic test results indicate that the displacement resolution of the unconventional inchworm actuator reaches 0.038 μm, and the maximum driving force and velocity are 42 N, 14.8 mm/s, respectively. The optimal working frequency for the maximum driving velocity is 120 Hz. The complete research and development processes further confirm the feasibility of developing a new type of inchworm actuator with high performance based on PZT actuation and ERFs control technology, which provides a reference for the future development of a new type of actuator.

  1. An Unconventional Inchworm Actuator Based on PZT/ERFs Control Technology

    Guojun Liu


    Full Text Available An unconventional inchworm actuator for precision positioning based on piezoelectric (PZT actuation and electrorheological fluids (ERFs control technology is presented. The actuator consists of actuation unit (PZT stack pump, fluid control unit (ERFs valve, and execution unit (hydraulic actuator. In view of smaller deformation of PZT stack, a new structure is designed for actuation unit, which integrates the advantages of two modes (namely, diaphragm type and piston type of the volume changing of pump chamber. In order to improve the static shear yield strength of ERFs, a composite ERFs valve is designed, which adopts the series-parallel plate compound structure. The prototype of the inchworm actuator has been designed and manufactured in the lab. Systematic test results indicate that the displacement resolution of the unconventional inchworm actuator reaches 0.038 μm, and the maximum driving force and velocity are 42 N, 14.8 mm/s, respectively. The optimal working frequency for the maximum driving velocity is 120 Hz. The complete research and development processes further confirm the feasibility of developing a new type of inchworm actuator with high performance based on PZT actuation and ERFs control technology, which provides a reference for the future development of a new type of actuator.

  2. MEMS fluidic actuator

    Kholwadwala, Deepesh K.; Johnston, Gabriel A.; Rohrer, Brandon R.; Galambos, Paul C.; Okandan, Murat


    The present invention comprises a novel, lightweight, massively parallel device comprising microelectromechanical (MEMS) fluidic actuators, to reconfigure the profile, of a surface. Each microfluidic actuator comprises an independent bladder that can act as both a sensor and an actuator. A MEMS sensor, and a MEMS valve within each microfluidic actuator, operate cooperatively to monitor the fluid within each bladder, and regulate the flow of the fluid entering and exiting each bladder. When adjacently spaced in a array, microfluidic actuators can create arbitrary surface profiles in response to a change in the operating environment of the surface. In an embodiment of the invention, the profile of an airfoil is controlled by independent extension and contraction of a plurality of actuators, that operate to displace a compliant cover.

  3. Actuator environmental stability

    Yoshikawa, Shoko; Farrell, Michael


    Various configurations of piezoelectric high strain actuators are available in the market. The influence of humidity at high temperature is not well documented, even though it is an important consideration for actuator performance. This paper describes the testing and results of two different families of actuators; QuickPack products and multilayer actuators, tested under two environments; room temperature low humidity and elevated temperature and humidity (80°C/80%RH). A constant DC load was applied to the QP10N andand QP10Ni products in free condition, while positive only AC field was applied to multilayer actuators, under pre-stressed condition. High field IR was used as the main tool to determine the health of QuickPack products, whereas, in-situ displacement was measured to monitor the health of multilayer actuators. As expected, in both families of actuators, it was shown that the actuator life is significantly reduced when specimens are exposed to humidity at elevated temperature. Improvement of the humidity barrier, thus less moisture penetration, even when electrodes do not contain silver, is expected to prolong life of actuators.

  4. Cylindrical Piezoelectric Fiber Composite Actuators

    Allison, Sidney G.; Shams, Qamar A.; Fox, Robert L.


    The use of piezoelectric devices has become widespread since Pierre and Jacques Curie discovered the piezoelectric effect in 1880. Examples of current applications of piezoelectric devices include ultrasonic transducers, micro-positioning devices, buzzers, strain sensors, and clocks. The invention of such lightweight, relatively inexpensive piezoceramic-fiber-composite actuators as macro fiber composite (MFC) actuators has made it possible to obtain strains and displacements greater than those that could be generated by prior actuators based on monolithic piezoceramic sheet materials. MFC actuators are flat, flexible actuators designed for bonding to structures to apply or detect strains. Bonding multiple layers of MFC actuators together could increase force capability, but not strain or displacement capability. Cylindrical piezoelectric fiber composite (CPFC) actuators have been invented as alternatives to MFC actuators for applications in which greater forces and/or strains or displacements may be required. In essence, a CPFC actuator is an MFC or other piezoceramic fiber composite actuator fabricated in a cylindrical instead of its conventional flat shape. Cylindrical is used here in the general sense, encompassing shapes that can have circular, elliptical, rectangular or other cross-sectional shapes in the planes perpendicular to their longitudinal axes.

  5. Finite element modelling and experimental characterization of an electro-thermally actuated silicon-polymer micro gripper

    Krecinic, F.; Duc, T. Chu; Lau, G. K.; Sarro, P. M.


    This paper presents simulation and experimental characterization of an electro-thermally actuated micro gripper. This micro actuator can conceptually be seen as a bi-morph structure of SU-8 and silicon, actuated by thermal expansion of the polymer. The polymer micro gripper with an embedded comb-like silicon skeleton is designed to reduce unwanted out-of-plane bending of the actuator, while offering a large gripper stroke. The temperature and displacement field of the micro gripper structure is determined using a two-dimensional finite element analysis. This analysis is compared to experimental data from steady-state and transient measurements of the integrated heater resistance, which depends on the average temperature of the actuator. The stability of the polymer actuator is evaluated by recording the transient behaviour of the actual jaw displacements. The maximum single jaw displacement of this micro gripper design is 34 µm at a driving voltage of 4 V and an average actuator temperature of 170 °C. The transient thermal response is modelled by a first-order system with a characteristic time constant of 11.1 ms. The simulated force capability of the device is 0.57 mN per µm jaw displacement.

  6. Verification of Beam Models for Ionic Polymer-Metal Composite Actuator

    Ai-hong Ji; Hoon Cheol Park; Quoc Viet Nguyen; Jang Woo Lee; Young Tai Yoo


    Ionic Polymer-Metal Composite (IPMC) can work as an actuator by applying a few voltages. A thick IPMC actuator, where Nation-117 membrane was synthesized with polypyrrole/alumina composite tiller, was analyzed to verify the equivalent beam and equivalent bimorph beam models. The blocking force and tip displacement of the IPMC actuator were measured with a DC power supply and Young's modulus of the IPMC strip was measured by bending and tensile tests respectively. The calculated maximum tip displacement and the Young's modulus by the equivalent beam model were almost identical to the corresponding measured data. Finite element analysis with thermal analogy technique was utilized in the equivalent bimorph beam model to numerically reproduce the force-displacement relationship of the IPMC actuator. The results by the equivalent bimorph beam model agreed well with the force-displacement relationship acquired by the measured data. It is confirmed that the equivalent beam and equivalent bimorph beam models are practically and effectively suitable for predicting the tip displacement, blocking force and Young's modulus of IPMC actuators with different thickness and different composite of ionic polymer membrane.

  7. Miniature osmotic actuators for controlled maxillofacial distraction osteogenesis

    Li, Yu-Hsien; Su, Yu-Chuan


    We have successfully demonstrated miniature actuators that are capable of converting chemical potential directly into steady mechanical movements for maxillofacial distraction osteogenesis. Pistons and diaphragms powered by osmosis are employed to provide the desired linear and volumetric displacements for bone distraction and potentially the release of bone morphogenetic proteins, respectively. The cylindrical-shaped miniature actuators are composed of polymeric materials and fabricated by molding and assembly processes. In the prototype demonstration, vapor-permeable thermoplastic polyurethane was employed as the semi-permeable material. 3 cm long actuators with piston and diaphragm radii of 1 mm and 500 µm, respectively, were fabricated and characterized. The maximum distraction force from the piston-type actuator is found to be 6 N while the piston travels at a constant velocity of 32 µm h-1 (or 0.77 mm/day) for about 1 week. Meanwhile, the release rate from the diaphragm-type actuator is measured to be constant, 0.15 µl h-1 (or 3.6 µl/day), throughout the experiment. Moreover, the sizes and output characteristics of the self-regulating actuators could readily be tailored to realize optimal distraction rate, rhythm and osteogenic activity. As such, the demonstrated miniature osmotic actuators could potentially serve as versatile apparatuses for maxillofacial distraction osteogenesis and fulfill the needs of a variety of implantable and biomedical applications.

  8. Low power linear actuator for direct drive electrohydraulic valves

    Yong LI; Fan DING; Jian CUI; Qi-peng LI


    This paper presents a bi-directional permanent-magnet linear actuator for directly driving electrohydraulic valves with low power consumption. Its static and dynamic performances were analyzed using the 2D finite element method, taking into account the nonlinear characterization and the eddy current loss of the magnetic material. The experiment and simulation results agree well and show that the prototype actuator can produce a force of+100 N with the maximum power being 7 W and has linear characteristics with a positive magnetic stiffness within a stroke of±1 mm. Its non-linearity is less than 1.5% and the hysteresis less than 1.5%. The actuator's frequency response (-3 dB) of the displacement reaches about 15 Hz, and the most significant factor affecting the dynamic performance is identified as the eddy current loss of the magnetic material.

  9. Analysis and Optimization of an Electro-Thermally and Laterally Driven Poly-Silicon Micro-Actuator

    Sakshi Pathneja


    Full Text Available A Large displacement at low voltage is generally provided by electro-thermal mechanisms. A 3-D MEMS electro-thermal micro-actuator has been designed and simulated using COMSOL Multiphysics 4.3 which is geometrically optimized to explore the effect of dimensional variation on its performance. Metallic electro-thermal actuators provide large displacements at low voltages but at the same time, the maximum temperature in the device rises very sharply due to their highly conductive nature. To overcome this problem, a semi-conductor material; poly-silicon which is compatible with IC technology is used. For further improvements in terms of displacement and temperature, the geometry of the actuator is optimized.

  10. Actuation of polypyrrole nanowires

    Lee, Alexander S.; Peteu, Serban F.; Ly, James V.; Requicha, Aristides A. G.; Thompson, Mark E.; Zhou, Chongwu


    Nanoscale actuators are essential components of the NEMS (nanoelectromechanical systems) and nanorobots of the future, and are expected to become a major area of development within nanotechnology. This paper demonstrates for the first time that individual polypyrrole (PPy) nanowires with diameters under 100 nm exhibit actuation behavior, and therefore can potentially be used for constructing nanoscale actuators. PPy is an electroactive polymer which can change volume on the basis of its oxidation state. PPy-based macroscale and microscale actuators have been demonstrated, but their nanoscale counterparts have not been realized until now. The research reported here answers positively the fundamental question of whether PPy wires still exhibit useful volume changes at the nanoscale. Nanowires with a 50 nm diameter and a length of approximately 6 µm, are fabricated by chemical polymerization using track-etched polycarbonate membranes as templates. Their actuation response as a function of oxidation state is investigated by electrochemical AFM (atomic force microscopy). An estimate of the minimum actuation force is made, based on the displacement of the AFM cantilever.

  11. Actuation of polypyrrole nanowires

    Lee, Alexander S; Peteu, Serban F; Ly, James V; Requicha, Aristides A G; Thompson, Mark E; Zhou Chongwu [Laboratory for Molecular Robotics, University of Southern California, Los Angeles, CA 90089 (United States)], E-mail:


    Nanoscale actuators are essential components of the NEMS (nanoelectromechanical systems) and nanorobots of the future, and are expected to become a major area of development within nanotechnology. This paper demonstrates for the first time that individual polypyrrole (PPy) nanowires with diameters under 100 nm exhibit actuation behavior, and therefore can potentially be used for constructing nanoscale actuators. PPy is an electroactive polymer which can change volume on the basis of its oxidation state. PPy-based macroscale and microscale actuators have been demonstrated, but their nanoscale counterparts have not been realized until now. The research reported here answers positively the fundamental question of whether PPy wires still exhibit useful volume changes at the nanoscale. Nanowires with a 50 nm diameter and a length of approximately 6 {mu}m, are fabricated by chemical polymerization using track-etched polycarbonate membranes as templates. Their actuation response as a function of oxidation state is investigated by electrochemical AFM (atomic force microscopy). An estimate of the minimum actuation force is made, based on the displacement of the AFM cantilever.

  12. Actuation of polypyrrole nanowires.

    Lee, Alexander S; Peteu, Serban F; Ly, James V; Requicha, Aristides A G; Thompson, Mark E; Zhou, Chongwu


    Nanoscale actuators are essential components of the NEMS (nanoelectromechanical systems) and nanorobots of the future, and are expected to become a major area of development within nanotechnology. This paper demonstrates for the first time that individual polypyrrole (PPy) nanowires with diameters under 100 nm exhibit actuation behavior, and therefore can potentially be used for constructing nanoscale actuators. PPy is an electroactive polymer which can change volume on the basis of its oxidation state. PPy-based macroscale and microscale actuators have been demonstrated, but their nanoscale counterparts have not been realized until now. The research reported here answers positively the fundamental question of whether PPy wires still exhibit useful volume changes at the nanoscale. Nanowires with a 50 nm diameter and a length of approximately 6 µm, are fabricated by chemical polymerization using track-etched polycarbonate membranes as templates. Their actuation response as a function of oxidation state is investigated by electrochemical AFM (atomic force microscopy). An estimate of the minimum actuation force is made, based on the displacement of the AFM cantilever.

  13. Electromechanical and Dynamic Characterization of In-House-Fabricated Amplified Piezo Actuator

    P. K. Panda


    Full Text Available A diamond-shaped amplified piezo actuator (APA fabricated using six multilayered piezo stacks with maximum displacement of 173 μm at 175 V and the amplification factor of 4.3. The dynamic characterization of the actuator was carried out at different frequencies (100 Hz–1 kHz and at different AC voltages (20 V–40 V. The actuator response over this frequency range was found neat, without attenuation of the signal. Numerical modeling of multilayered stack actuator was carried out using empirical equations, and the electromechanical analysis was carried out using ABAQUS software. The block force of the APA was 81 N, calculated by electromechanical analysis. This is similar to that calculated by dynamic characterization method.

  14. New approach of determinations of earthquake moment magnitude using near earthquake source duration and maximum displacement amplitude of high frequency energy radiation

    Gunawan, H.; Puspito, N. T.; Ibrahim, G.; Harjadi, P. J. P. [ITB, Faculty of Earth Sciences and Tecnology (Indonesia); BMKG (Indonesia)


    The new approach method to determine the magnitude by using amplitude displacement relationship (A), epicenter distance ({Delta}) and duration of high frequency radiation (t) has been investigated for Tasikmalaya earthquake, on September 2, 2009, and their aftershock. Moment magnitude scale commonly used seismic surface waves with the teleseismic range of the period is greater than 200 seconds or a moment magnitude of the P wave using teleseismic seismogram data and the range of 10-60 seconds. In this research techniques have been developed a new approach to determine the displacement amplitude and duration of high frequency radiation using near earthquake. Determination of the duration of high frequency using half of period of P waves on the seismograms displacement. This is due tothe very complex rupture process in the near earthquake. Seismic data of the P wave mixing with other wave (S wave) before the duration runs out, so it is difficult to separate or determined the final of P-wave. Application of the 68 earthquakes recorded by station of CISI, Garut West Java, the following relationship is obtained: Mw = 0.78 log (A) + 0.83 log {Delta}+ 0.69 log (t) + 6.46 with: A (m), d (km) and t (second). Moment magnitude of this new approach is quite reliable, time processing faster so useful for early warning.

  15. Smart Tendon Actuated Flexible Actuator

    Md. Masum Billah


    Full Text Available We investigate the kinematic feasibility of a tendon-based flexible parallel platform actuator. Much of the research on tendon-driven Stewart platforms is devoted either to the completely restrained positioning mechanism (CRPM or to one particular type of the incompletely restrained positioning mechanism (IRPM where the external force is provided by the gravitational pull on the platform such as in cable-suspended Stewart platforms. An IRPM-based platform is proposed which uses the external force provided by a compliant member. The compliant central column allows the configuration to achieve n DOFs with n tendons. In particular, this investigation focuses on the angular deflection of the upper platform with respect to the lower platform. The application here is aimed at developing a linkable module that can be connected to one another so as to form a “snake robot” of sorts. Since locomotion takes precedence over positioning in this application, a 3-DOF Stewart platform is adopted. For an arbitrary angular displace of the end-effector, the corresponding length of each tendon can be determined through inverse kinematics. Mathematical singularities are investigated using the traditional analytical method of defining the Jacobian.

  16. Design and experimental research of a novel inchworm type piezo-driven rotary actuator with the changeable clamping radius.

    Zhao, Hongwei; Fu, Lu; Ren, Luquan; Huang, Hu; Fan, Zunqiang; Li, Jianping; Qu, Han


    In this paper, a novel piezo-driven rotary actuator with the changeable clamping radius is developed based on the inchworm principle. This actuator mainly utilizes three piezoelectric actuators, a flexible gripper, a clamping block, and a rotor to achieve large stroke rotation with high resolution. The design process of the flexible gripper consisting of the driving unit and the clamping unit is described. Lever-type mechanisms were used to amplify the micro clamping displacements. The amplifying factor and parasitic displacement of the lever-type mechanism in the clamping unit was analyzed theoretically and experimentally. In order to investigate the rotation characteristics of the actuator, a series of experiments was carried out. Experimental results indicate that the actuator can rotate at a speed of 77,488 μrad/s with a driving frequency of 167 Hz. The rotation resolution and maximum load torque of the actuator are 0.25 μrad and 37 N mm, respectively. The gripper is movable along the z direction based on an elevating platform, and the clamping radius can change from 10.6 mm to 25 mm. Experimental results confirm that the actuator can achieve different rotation speeds by changing the clamping radius.



    A new type of large-displacement actuator called reduced and internally biased oxide wafer (RAINBOW) is fabricated by chemical reduction of Pb(Sn, Zr, Ti)O3(PSZT) antiferroelectric ceramics and its properties are investigated. It is found that PSZT is easily reduced and the optimal conditions for producing RAINBOW samples are determined to be 870 ℃ for 2~3 h. The antiferroelectricsferroelectrics phase transitions occur at lower field strength in RAINBOW actuators compared with normal PSZT actuators. Large axial displacements are also obtained from the RAINBOW actuator by application of electric fields exceeding the phase switching level. However, the field-induced displacement of the RAINBOW actuator is dependent on the manner of applying load on the samples.

  18. Thermally Actuated Hydraulic Pumps

    Jones, Jack; Ross, Ronald; Chao, Yi


    Thermally actuated hydraulic pumps have been proposed for diverse applications in which direct electrical or mechanical actuation is undesirable and the relative slowness of thermal actuation can be tolerated. The proposed pumps would not contain any sliding (wearing) parts in their compressors and, hence, could have long operational lifetimes. The basic principle of a pump according to the proposal is to utilize the thermal expansion and contraction of a wax or other phase-change material in contact with a hydraulic fluid in a rigid chamber. Heating the chamber and its contents from below to above the melting temperature of the phase-change material would cause the material to expand significantly, thus causing a substantial increase in hydraulic pressure and/or a substantial displacement of hydraulic fluid out of the chamber. Similarly, cooling the chamber and its contents from above to below the melting temperature of the phase-change material would cause the material to contract significantly, thus causing a substantial decrease in hydraulic pressure and/or a substantial displacement of hydraulic fluid into the chamber. The displacement of the hydraulic fluid could be used to drive a piston. The figure illustrates a simple example of a hydraulic jack driven by a thermally actuated hydraulic pump. The pump chamber would be a cylinder containing encapsulated wax pellets and containing radial fins to facilitate transfer of heat to and from the wax. The plastic encapsulation would serve as an oil/wax barrier and the remaining interior space could be filled with hydraulic oil. A filter would retain the encapsulated wax particles in the pump chamber while allowing the hydraulic oil to flow into and out of the chamber. In one important class of potential applications, thermally actuated hydraulic pumps, exploiting vertical ocean temperature gradients for heating and cooling as needed, would be used to vary hydraulic pressures to control buoyancy in undersea research

  19. Modeling and optimization of magnetostrictive actuator amplified by compliant mechanism

    Niu, Muqing; Yang, Bintang; Yang, Yikun; Meng, Guang


    Magnetostrictive actuators are commonly used in precision engineering with the advantages of high resolution and fast response. Their limited strokes are always amplified by compliant mechanisms without wear and backlash. This paper proposes a hybrid model for the actuation system considering the coupling of the actuator and the amplifier. The magnetostrictive model, based on the Jiles-Atherton model, is related to the input stiffness of the amplifier when quantifying the magneto-mechanical effects, including stress-dependent magnetization, stress-dependent magnetostriction and ΔE effect. The compliant mechanism model aims at constructing the flexibility matrix with the amplification ratio and input stiffness related to the spring factor of the load. The deformation and structural stress of the amplifier are also dependent on the output strain of magnetostrictive material. Experiments under both free load and spring load conditions have been done to verify the effectiveness of the hybrid model. The proposed model is suitable for parameter optimization and the performance indicators can be precisely quantified. Optimization based on hybrid model is more preferred than optimizing the actuator and amplifier independently for maximum output displacement. Furthermore, ‘stiffness match principle’ is no longer applicable when considering ΔE effect, and the optimal external stiffness problem can be numerically solved by the hybrid model for maximum output energy of magnetostrictive material.

  20. Piezoelectric control of the static behaviour of flextensional actuators with constricted hinges

    Przybylski, Jacek


    The objective of this paper is to present the mathematical modelling and computational testing of the static operational performance and effectiveness of flextensional actuators comprised of two rectilinear or initially deflected beams placed equidistantly from a centrally located piezoceramic stack in the form of a rod. The beams are mounted by stiff links with an offset to a piezoelectric transformer. A monolithic hinge lever mechanism is applied by cutting constricted hinges at the links to generate and magnify the in-plane displacement created by the application of a voltage to the piezorod. Structures of such a type have been commonly used as passive or active actuators since the manufacturing of the mechanism’s prototypes in the form of Moonie or cymbal actuators. An analytical model of the actuator is developed on the basis of stationary values of the total potential energy principle with the use of the von Kármán non-linear strains theory. During the numerical computations, the deflection and internal axial force generated by both the externally distributed load and the the application of an electric field are determined by changing the actuator properties such as the distance between the beams and the rod, the amplitude of the beam’s initial displacement as well as the stiffness of the constricted hinges. Additionally, the application of structure prestressing is considered to avoid an undesired stretching of the piezo stack. It has been shown that for the flextensional actuator with a very high flexibility of constricted hinges, the generated transverse displacement is limited by the maximum electric field as the characteristic property for each piezoceramic material. A vast number of numerical results exhibit the mechanical responses of the transducer of different geometrical and physical properties to piezoelectric stimulation; this has potential applications in the design process of such actuators.

  1. Accuracy assessment of an industrial actuator

    Dalla Costa, Giuseppe; Genta, Gianfranco; Barbato, Giulio


    A commercial linear actuator equipped with a 0.1 μm resolution encoder was used as a contact displacement sensor with adjustable force. The accuracy of the position reading of the actuator was evaluated from experimental data taking into account the uncertainty contributions. The tests consisted ...

  2. Piezoelectric actuator for pulsating jets

    Brissaud, Michel; Gonnard, Paul; Bera, Jean-Christophe; Sunyach, Michel


    Recent researches in aeronautics showed that fluidic actuator systems could offer possibilities for drag reduction and lift improvement. To this end many actuator types were designed. This paper deals with the design, fabrication and test of piezoelectric actuator in order to generate pulsated jets normal to a surface and control air flow separation. It is based on the flexural displacement of a rectangular metal plate clamped on one of its large edge. Piezoelectric patches cemented on the plate were used for driving into vibration the actuator. Experimental measurements show that pulsed flow velocities are adjustable from 1.5m/s to 35m/s through a 100x1mm2 slit andwithin a 100 to 400 Hz frequency range. Prototype provides the jet performances classically required for active control flow.

  3. Feasibility of transparent flexible ultrasonic haptic actuator

    Akther, Asma; Kafy, Abdullahil; Kim, Hyun Chan; Kim, Jaehwan


    Ultrasonic haptics actuator is a device that can create a haptic feedback to user's hand. The modulation of ultrasonic frequency can give different textures to the users. In this study, a feasibility of the ultrasonic haptic actuator made on a flexible piezoelectric substrate is investigated. As the piezoelectric substrate helps to propagate flexural waves, a pair of interdigital transducer (IDT) with reflectors can produce standing waves, which can increase the vibrational displacement of the actuator. A pair of IDT pattern was fabricated on a piezoelectric polymer substrate. A finite element analysis is at first performed to design the actuator. A sinusoidal excitation voltage is applied on IDT electrodes at ultrasonic frequencies and the displacement waveforms are found. The displacement waveforms clearly represent how ultrasonic waves propagate through the piezoelectric substrate.

  4. Experimental Research on Output Performances of Giant Magnetostrictive Actuator

    LI Guo-ping; CHEN Zi-chen


    The paper introduces the performances of magnetostrictive actuators and its applications, discusses the design methods for the structure and internal magnetic circuit of a giant magnetostrictive actuator, and makes tests on the output displacement and force characteristics for an actuator using homemade magnetostrictive material. The experimental result shows that the actuator has satisfactory output precisions and ranges in transient and stable states, and can be used in lowfrequency vibration control system of precise equipment.

  5. Research on an inertial piezoelectric actuator for a micro in-pipe robot

    YANG Zhi-xin; SUN Bao-yuan


    A new kind of inertial piezoelectric actuator for a micro in-pipe robot is proposed and studied. The actuator is composed of a body, corresponding to a mass rod, and four elastic legs. Each leg is a composite piezoelectric bimorph beam, made up of a middle metal element, an upper and lower piezoelectric elements. The mechanism is driven by an asymmetric waveform voltage, such as saw-toothed waveform, and utilizes the dynamic relationship between the maximum static friction force and the inertial force. To study the actuator, firstly, the constituent equation of a composite piezoelectric bimorph under both applied voltage and external force was inferred by thermodynamics. Secondly, the dynamic model of the actuator was established analyzing the relationship between the locomotive states, viz. displacement and velocity, and design parameters, such as piezoelectric strain constant, elastic modulus, length, width and thickness of the piezoelectric element, actuator mass, and driving voltage. At last, the dynamic equation was solved and the theoretical calculation of the inherent frequency was more consistent with the experimental data, which proved the rationality of the model. All these lay a theoretical foundation of the micro actuator parameter optimization and more research on a micro robot.

  6. Thermal vertical bimorph actuators and their applications

    Sehr, H J


    In this thesis, a novel concept for lateral actuators based on vertical bimorphs is presented. Vertical bimorphs consist of silicon beams side-coated with aluminium, which bend when heated due to the different thermal expansion coefficients of the two materials causing a displacement in the wafer plane. The heating of the actuator is provided by an electrical current through the silicon beam. The simplest implementation of a vertical bimorph actuator is a clamped-clamped beam. To obtain higher deflections, a meander shaped actuator has been designed. By combining four meander actuators, a two-dimensional positioning stage has been realised. The meander actuator has also been applied for normally closed and normally open micro-relays. Analytical calculations and ANSYS simulations have been carried out to predict the physical behaviour of the bimorph devices, including temperature distribution, static deflection, vertical stiffness, thermal time constant and lateral resonances. For both the clamped-clamped beam...

  7. Characterization of kink actuators as compared to traditional chevron shaped Bent-Beam electrothermal actuators

    Rawashdeh, E.


    This paper compares the design and performance of kink actuators, a modified version of the bent-beam thermal actuator, to the standard chevron-shaped designs. A variety of kink and chevron actuator designs were fabricated from polysilicon. While the actuators were electrically probed, these designs were tested using a probe station connected to a National Instruments (NI) controller that uses LabVIEW to extract the displacement results via image processing. The displacement results were then used to validate the thermal-electric-structural simulations produced by COMSOL. These results, in turn, were used to extract the stiffness for both actuator types. The data extracted show that chevron actuators can have larger stiffness values with increasing offsets, but at the cost of lower amplification factors. In contrast, kink actuators showed a constant stiffness value equivalent to the chevron actuator with the highest amplification factor. The kink actuator also had larger amplification factors than chevrons at all designs tested. Therefore, kink actuators are capable of longer throws at lower power levels than the standard chevron designs.

  8. Trans-permanent magnetic actuation

    Farmer, Daniel Jay

    The demands for an actuator to deploy, position and shape large spaced-based structures form a unique set of design criteria. In many applications it is desirable to hold displacements or forces between two points to within specified requirements (the regulation problem) and to periodically to change position (the tracking problem). Furthermore, the interest generally lies in satisfying the dynamic performance requirements while expending minimal power, while meeting tight tolerances and while experiencing little wear and fatigue. The actuator must also be able to withstand a variety of operational conditions such as impacts and thermal changes over an extended period of time. Current trends in large-scale structures have addressed the demands by using conventional actuators and motors, along with elaborate linkages or mechanisms to shape, position, protect and deploy. The developed designs use unique characteristics of permanent magnets to create simple direct-acting actuators and motors very suitable for space based structures. The developed trans-permanent magnetic (T-PM) actuators and motors are systems consisting of one or more permanent magnets, some of whose magnetic strengths can be switched on-board by surrounding pulse-coils. The T-PM actuator and motors expend no power during regulation. The T-PM can periodically change or remove the strength of its own magnets thereby enabling both fine-tune adjustments (microsteps) and large-scale adjustments (rotation). The fine (microstep) adjustments are particularly helpful in thermally varying space environments. The large-scale adjustments (rotation) are particularly helpful in deployment where the structure or antenna must experience large-angle rotations and/or large displacements. T-PM concepts are illustrated in direct acting actuators and built into stepper motor and permanent magnet motor applications. Several examples of design, analysis and testing are developed to verify the technology and supporting

  9. Compact, planar, translational piezoelectric bimorph actuator with Archimedes’ spiral actuating tethers

    Yang, Chenye; Liu, Sanwei; Xie, Xin; Livermore, Carol


    The design, analytical modelling, finite element analysis (FEA), and experimental characterization of a microelectromechanical system (MEMS) out-of-plane (vertical) translational piezoelectric lead-zirconate-titanate (PZT) bimorph actuator supported on Archimedes’ spiral tethers are presented. Three types of bimorph actuators with different electrode patterns (with spiral tethers half actuated, fully actuated with uniform polarity, or fully actuated with reversed polarity) are designed and modelled. The two actuators with the highest predicted performance (half actuated and fully actuated with uniform polarity) are implemented and characterized. Both designs are fabricated by commercial processes and are compatible with integration into more complex MEMS systems. Analytical modelling and FEA are used to analyze and predict the actuators’ displacements and blocking forces. Experimental measurements of the deflections and blocking forces of actuators with full uniform actuation and half actuation validate the design. At an applied voltage of 110 V, the out-of-plane deflections of the actuators with half actuation and full uniform actuation are measured at about 17 µm and 29 µm respectively, in good agreement with analytical predictions of 17.3 µm and 34.2 µm and FEA predictions of 17.1 µm and 25.8 µm. The blocking force for devices with half-actuated tethers is predicted to be 12 mN (analytical) and 10 mN (FEA), close to the experimental value of 9 mN. The blocking force for devices with full uniform actuation is predicted to be 23 mN (analytical) and 17 mN (FEA), as compared with 15 mN in experiments.

  10. 断裂长度与最大位移的关系及其影响因素%Relationship between fault length and maximum displacement and influenced factors

    XU Shun-shan; A. F.NIETO-SAMANIEGO; LI Dong-xu


    断裂最大位移与断裂迹长遵循幂律关系:D=cLn, 但幂指数n的大小有很大的变化范围.为探索幂指数n的大小和断裂机制,从已发表的文献中收集了18组数据,这些数据的断裂长度具有8个数量级的跨度.经相关分析,我们得到n值的大小变化于0.55和1.65 之间,平均值为1.083 9.由于走滑断裂的最大长度在其倾向方向,不宜与倾滑断裂一起统计,我们去掉一组走向滑动断裂的数据,幂指数平均值为1.106 6.用双回归方法得到的幂指数峰值(nd)是1.0~1.1.这些结果表明断裂最大位移与断裂迹长应该是非常接近线性关系.这种线性关系可以用Dugdale 模型加以解释.该模型认为弹塑性物质拉张裂缝端点的变形是非弹性变形.模型的适用范围是单一岩性,一次构造力作用.我们认为n值的大小之所以有很大的变化范围,有可能受到断裂迹线长度偏差的影响,造成长度偏差的因素包括:不同的观察平面,断裂端点的分辨率,断裂连接作用,岩石力学性质变化,断裂多期活动等.%The relationship between maximum displacement and fault trace length obeys the power-law equation: D = cLn. Data including 18 datasets and spanning more than 8 orders of fault length magnitudes is collected from the published literature for determining the exponent value (n). The range of the calculated values of nd is from 0.55 to 1.65. The average value of nd is 1.083 9. If one dataset from strike-slip faults is precluded, the average value of nd is 1.106 6. The peak value of nd (double regression) is 1.0~1.1. These results imply that the relationship between the maximum displacement and fault trace length is approximately linear. The relationship can be explained by Dugdales model. This model explains the development of faults in a single tectonics event with homogeneous host-rock. The power-law exponent (n) for maximum displacement-trace length would be affected by the deviations of

  11. Conjugated Polymer Actuators: Prospects and Limitations

    Skaarup, Steen


    Actuators constructed with a conjugated polymer as the active part have been predicted to have a number of highly desirable properties: Large mechanical strength, high power density, i.e. high actuation speeds possible, sufficient maximum strain values, high reversibility and safe, low voltages (1......-5 V), . Taking status after about 15 years of research efforts, most of these predictions have come true, the main exception being the much lower speeds actually realized in actuators....

  12. Conducting Polymer Actuators: Prospects and Limitations

    Skaarup, Steen

    Actuators constructed with a conjugated polymer as the active part have been predicted to have a number of highly desirable properties: Large mechanical strength, high power density, i.e. high actuation speeds possible, sufficient maximum strain values, high reversibility and safe, low voltages (1......-5 V), . Taking status after about 15 years of research efforts, most of these predictions have come true, the main exception being the much lower speeds actually realized in actuators....

  13. Conducting Polymer Actuators: Prospects and Limitations

    Skaarup, Steen

    Actuators constructed with a conjugated polymer as the active part have been predicted to have a number of highly desirable properties: Large mechanical strength, high power density, i.e. high actuation speeds possible, sufficient maximum strain values, high reversibility and safe, low voltages (......-5 V), . Taking status after about 15 years of research efforts, most of these predictions have come true, the main exception being the much lower speeds actually realized in actuators....

  14. Conjugated Polymer Actuators: Prospects and Limitations

    Skaarup, Steen


    Actuators constructed with a conjugated polymer as the active part have been predicted to have a number of highly desirable properties: Large mechanical strength, high power density, i.e. high actuation speeds possible, sufficient maximum strain values, high reversibility and safe, low voltages (......-5 V), . Taking status after about 15 years of research efforts, most of these predictions have come true, the main exception being the much lower speeds actually realized in actuators....

  15. On the impact of self-clearing on electroactive polymer (EAP) actuators

    Ahmed, Saad; Ounaies, Zoubeida; Lanagan, Michael T.


    Electroactive polymer (EAP)-based actuators have large potential for a wide array of applications; however, their practical implementation is still a challenge because of the requirement of high driving voltage, which most often leads to premature defect-driven electrical breakdown. Polymer-based capacitors have the ability to clear defects with partial electrical breakdown and subsequent removal of a localized electrode section near the defect. In this study, this process, which is known as self-clearing, is adopted for EAP technologies. We report a methodical approach to self-clear an EAP, more specifically P(VDF-TrFE-CTFE) terpolymer, to delay premature defect-driven electrical breakdown of the terpolymer actuators at high operating electric fields. Breakdown results show that electrical breakdown strength is improved up to 18% in comparison to a control sample after self-clearing. Furthermore, the electromechanical performance in terms of blocked force and free displacement of P(VDF-TrFE-CTFE) terpolymer-based bending actuators are examined after self-clearing and precleared samples show improved blocked force, free displacement and maximum sustainable electric field compared to control samples. The study demonstrates that controlled self-clearing of EAPs improves the breakdown limit and reliability of the EAP actuators for practical applications without impeding their electromechanical performance.

  16. Multilayer Piezoelectric Stack Actuator Characterization

    Sherrit, Stewart; Jones, Christopher M.; Aldrich, Jack B.; Blodget, Chad; Bao, Xioaqi; Badescu, Mircea; Bar-Cohen, Yoseph


    Future NASA missions are increasingly seeking to use actuators for precision positioning to accuracies of the order of fractions of a nanometer. For this purpose, multilayer piezoelectric stacks are being considered as actuators for driving these precision mechanisms. In this study, sets of commercial PZT stacks were tested in various AC and DC conditions at both nominal and extreme temperatures and voltages. AC signal testing included impedance, capacitance and dielectric loss factor of each actuator as a function of the small-signal driving sinusoidal frequency, and the ambient temperature. DC signal testing includes leakage current and displacement as a function of the applied DC voltage. The applied DC voltage was increased to over eight times the manufacturers' specifications to investigate the correlation between leakage current and breakdown voltage. Resonance characterization as a function of temperature was done over a temperature range of -180C to +200C which generally exceeded the manufacturers' specifications. In order to study the lifetime performance of these stacks, five actuators from one manufacturer were driven by a 60volt, 2 kHz sine-wave for ten billion cycles. The tests were performed using a Lab-View controlled automated data acquisition system that monitored the waveform of the stack electrical current and voltage. The measurements included the displacement, impedance, capacitance and leakage current and the analysis of the experimental results will be presented.

  17. Different condylar displacements between centric relation and maximum intercuspation before and after orthodontic intervention%正畸干预前后 MIC-CR 位髁突位移变化

    韩旭; 邵玉婷; 孙钦凤; 郭泾


    Objective To investigate the effects of orthodontic intervention on maximum intercuspation (MIC)-centric relation (CR)condylar displacement of patients with or without temporomandibular disorders (TMD).Methods A total of 31 orthodontic patients aged 16 to 45 years were selected and divided into the TMD group (n =15)and non-TMD group (n =16).Records of MIC and CR of these patients taken before and after orthodontic intervention were compared.Results The two groups had different MIC-CR displacement before and after treatment.There were more changes in the TMD group,and the changes were mostly favorable.The MIC-CR condylar displacement was correlated with the symptom checklist (SCL)score.Conclusion Orthodontic intervention has effect on condylar position of pa-tients,especially for those with TMD.Orthodontists,therefore,need to understand and pay attention to the effect of malocclusion on TMD and limitations of measurement of condylar displacement (MCD)in the diagnosis.%目的:旨在探讨正畸干预对最大牙尖交错位(MIC)-正中关系位(CR)髁突位移量的影响。方法选取16~45岁门诊正畸患者31例,其中非颞下颌关节紊乱病(TMD)组16例(NTMD 组),TMD 组15例,在正畸干预前后分别取 MIC 与 CR 位记录。分析两组患者正畸干预前后正中牙合位与正中关系位的髁突位置差异。结果正畸干预前 TMD 组与 NTMD 组 MIC-CR 之间髁突位移(MCD)量存在差异,正畸干预后两组 MIC-CR 位移量减小,TMD组较为显著,且多为有利变化,TMD 组正畸干预前后 MIC-CR 髁突位移量与 TMD 症状自评量表得分呈相关性。结论正畸干预在一定程度上对错牙合畸形患者的髁突位置产生影响,对于 TMD 患者尤甚。因此,正畸医生要认识并注意到错牙合畸形对 TMD 产生和发展的作用,并正确认识 MCD 在诊断中的局限性。

  18. A TWO-DOF Controlled Lens Drive Actuator for Off-Axis Laser Beam Cutting

    Morimoto, Yoshihiro; Shinshi, Tadahiko; Nakai, Takahiro

    This paper describes a two-degree-of-freedom (two-DOF) controlled electromagnetic actuator guided by an elastic hinge mechanism to realize off-axis laser beam cutting. In the laser beam cutting process, a focused laser beam melts and vaporizes part of the workpiece, and the molten material is blown away by an assist gas jet. The cutting speed and quality are related to the flow of the assist gas jet. In order to improve the removal capability of the molten material and to reduce gas consumption in off-axis laser beam cutting, the lens is driven radially by the proposed two-DOF actuator to generate relative motion between the assist gas nozzle and the laser. Experimental results show the prototype actuator possesses a positioning stroke of ±500µm within 3µm of tracking error and bandwidths more than 150Hz in the two-DOF directions. In the acceleration test supposed at a maximum acceleration of 2G, the prototype actuator maintains the relative displacement between the lens holder and the laser head within 10µm. Off-axis laser beam cutting by using the prototype actuator achieves high speed and less dross processing.

  19. Elastomeric actuator devices for magnetic resonance imaging

    Dubowsky, Steven (Inventor); Hafez, Moustapha (Inventor); Jolesz, Ferenc A. (Inventor); Kacher, Daniel F. (Inventor); Lichter, Matthew (Inventor); Weiss, Peter (Inventor); Wingert, Andreas (Inventor)


    The present invention is directed to devices and systems used in magnetic imaging environments that include an actuator device having an elastomeric dielectric film with at least two electrodes, and a frame attached to the actuator device. The frame can have a plurality of configurations including, such as, for example, at least two members that can be, but not limited to, curved beams, rods, plates, or parallel beams. These rigid members can be coupled to flexible members such as, for example, links wherein the frame provides an elastic restoring force. The frame preferably provides a linear actuation force characteristic over a displacement range. The linear actuation force characteristic is defined as .+-.20% and preferably 10% over a displacement range. The actuator further includes a passive element disposed between the flexible members to tune a stiffness characteristic of the actuator. The passive element can be a bi-stable element. The preferred embodiment actuator includes one or more layers of the elastomeric film integrated into the frame. The elastomeric film can be made of many elastomeric materials such as, for example, but not limited to, acrylic, silicone and latex.

  20. Research on Composite PZT for Largedisplacement Actuators


    A new kind of composite piezoelectric ceramics for large-displacement actuators, which were composed of reduced and unreduced layers, was prepared from normal PZT by chemical reduction. The stress distribution inside the composite PZT was researched and the chemical reduction conditions were explored.The actuating properties of reduced PZT were also studied. It is found that the optimal ratio of reduced layer thickness for the composite structure is 0.3; Reduced composite PZT has lower resonance frequency and 3 times larger displacement than that of the traditional PZT; Re-oxide phases are found in reduced layer of composite PZT showing the reduction procedure needs to be improved.

  1. A smooth impact rotation motor using a multi-layered torsional piezoelectric actuator.

    Morita, T; Yoshida, R; Okamoto, Y; Kurosawa, M K; Higuchi, T


    A smooth impact rotation motor was fabricated and successfully operated using a torsional piezo actuator. Yoshida et al. reported a linear type smooth impact motor in 1997. This linear motor demonstrated a high output force and a long stroke. A superior feature of the smooth impact drive is a high positioning resolution compared with an impact drive. The positioning resolution of SIDM (smooth impact drive mechanism) is equal to the piezo displacement. The reported positioning resolution of the linear type was 5 nm. Our rotation motor utilized a torsional actuator containing multi-layered piezoelectric material. The torsional actuator was cylindrical in shape with an outer diameter of 15 mm, an inner diameter of 10 mm, and a length of 11 mm. Torsional vibration performance was measured with a laser Doppler vibrometer. The obtained torsional displacement agreed with the calculated values and was sufficient to drive a rotor. The rotor was operated with a saw-shaped input voltage (180 V; 8 kHz). The revolution direction was reversible. The maximum revolution speed was 27 rpm, and the maximum output torque was 56 gfcm. In general, smooth-impact drives do not show high efficiency; however, the level of efficiency of our results (max., 0.045%) could be increased by improving the contact surface material. In addition, we are studying quantitative consideration, for example, about the optimum pre-load or frictional force.

  2. Experimental Validation of the Piezoelectric Triple Hybrid Actuation System (TriHYBAS)

    Xu, Tian-Bing; Jiang, Xiaoning; Su, Ji


    A piezoelectric triple hybrid actuation system (TriHYBAS) has been developed. In this brief presentation of the validation process the displacement profile of TriHYBAS and findings regarding displacement versus applied voltage are highlighted.

  3. Electromechanical Properties of Microcantilever Actuated by Enhanced Piezoelectric PZT Thick Film

    LIU Hong-Mei; ZHAO Quan-Liang; CAO Mao-Sheng; YUAN Jie; DUAN Zhong-Xia; QIU Cheng-Jun


    Pb(Zro.53,Tio.47)O3 (PZT) films with thicknesses of 0.8μm, 2μm and 4μm are prepared by a sol-gel method and their longitudinal piezoelectric coefficients are analysed. The results show that the PZT thick films, whose density is closer to bulk PZT, has the better crystallization, with d33 and density much larger than those of PZT thin films. A piezoelectric microcantilever actuated by a 4-μm-thick PZT film is fabricated and its displacement is measured in different frequencies and voltages. The displacement increases linearly with the increasing bias,and the maximum displacement of 0.544 μm is observed at 30kHz for 5V bias. The resonant frequency obtained in the experiment matches quite well with the theoretical result, and it is shown that the resonant frequency of PZT microcantilever could be controlled and predicated.

  4. Analysis of the giant magnetostrictive actuator with strong bias magnetic field

    Xue, Guangming, E-mail:; He, Zhongbo; Li, Dongwei; Yang, Zhaoshu; Zhao, Zhenglong


    Giant magnetostrictive actuator with strong bias magnetic field is designed to control the injector bullet valve opening and closing. The relationship between actuator displacement amplitude and input signal direction is analyzed. And based on the approximate linearity of strain-magnetic field, second-order system model of the actuator displacement is established. Experimental system suitable for the actuator is designed. The experimental results show that, the square voltage amplitude being 12 V, the actuator displacement amplitude is about 17 μm with backward direction signal input while being 1.5 μm under forward direction signal. From the results, the suitable input direction is confirmed to be backward. With exciting frequncy lower than 200 Hz, the error between the model and experimental result is less than 1.7 μm. So the model is validated under the low-frequency signal input. The testing displacement-voltage curves are approximately straight lines. But due to the biased position, the line slope and the displacement-voltage linearity change as the input voltage changes. - Highlights: • Giant magnetostrictive actuator with strong bias magnetic field is designed. • The relationship between actuator displacement amplitude and input current direction is analyzed. • The model of the actuator displacement is established and its accuracy is verified by the test. • The actuator displacement-voltage curves are achieved by the test, and the curves’ characteristics are analyzed theoretically.

  5. Displacement Ventilation

    Nielsen, Peter Vilhelm

    Displacement ventilation is an interesting new type of air distribution principle which should be considered in connection with design of comfort ventilation in both smal1 and large spaces. Research activities on displacement ventilation are large all over the world and new knowledge of design...... methods appears continuously. This book gives an easy introduction to the basis of displacement ventilation and the chapters are written in the order which is used in a design procedure. The main text is extended by five appendices which show some of the new research activities taking place at Aalborg...

  6. Large-amplitude rotary induced-strain (LARIS) actuator proof-of-concept demonstrator

    Giurgiutiu, Victor; Rogers, Craig A.; McNeil, Shane


    Induced-strain materials can produce very large forces and, hence, large energy density, but small actual displacements. A new concept for obtaining large-amplitude rotary displacements from small linear displacements generated by induced-strain material stacks is proposed. The concept utilizes the theory of twist-warping coupling in thin-wall open tubes. The theory of the proposed solid-state axial-to- rotary converter-amplifier, together with the appropriate bibliographical references, is given. A simple formula is generated for estimating the axial-to-rotary conversion- amplification coefficient from the geometrical length, L, and enclosed area, A, of the open tube. A large-displacement induced-strain rotary (LARIS) actuator proof-of-concept demonstrator was built and tested to verify and validate the theoretical developments. The LARIS actuator consisted of a 28 mm diameter, 1.2 m length open tube and a 120 micrometer, -1000 V PZT translator. The experimental set-up and the excitation and measuring equipment are fully described in the paper. A maximum rotary displacement of 8 degrees was measured, and the linear relationship between the rotation coefficient, the tube length, L, and the inverse of the enclosed area, A, was verified. An improved theoretical model, that accounts for the experimentally observed zero off-set, is also given. The theoretical developments and experimental tests presented in this paper show that the proposed LARIS actuator, based on a novel solid-state axial-to-rotary converter-amplifier utilizing the warping-torsion coupling of an open tube, is a viable design option, of great constructive simplicity and very low parts count. This concept can be successfully used in a series of aerospace and mechanical engineering applications, as for example in the actuation of adaptive control surfaces for aircraft wings and helicopter blades. The 8 degree rotary displacement capabilities measured on the proof-of-concept demonstrator can be easily

  7. Thermal expansion as a precision actuator

    Miller, Chris; Montgomery, David; Black, Martin; Schnetler, Hermine


    The UK ATC has developed a novel thermal actuator design as part of an OPTICON project focusing on the development of a Freeform Active Mirror Element (FAME). The actuator uses the well understood concept of thermal expansion to generate the required force and displacement. As heat is applied to the actuator material it expands linearly. A resistance temperature device (RTD) is embedded in the centre of the actuator and is used both as a heater and a sensor. The RTD temperature is controlled electronically by injecting a varying amount of current into the device whilst measuring the voltage across it. Temperature control of the RTD has been achieved to within 0.01°C. A 3D printed version of the actuator is currently being used at the ATC to deform a mirror but it has several advantages that may make it suitable to other applications. The actuator is cheap to produce whilst obtaining a high accuracy and repeatability. The actuator design would be suitable for applications requiring large numbers of actuators with high precision.

  8. Toward standardization of EAP actuators test procedures

    Fernandez, Diego; Moreno, Luis; Baselga, Juan


    Since the field of Electroactive Polymers (EAP) actuators is fairly new there are no standard testing processes for such intelligent materials. This drawback can seriously limit the scope of application of EAP actuators, since the targeted industrial sectors (aerospace, biomedical...) demand high reliability and product assurance. As a first iteration two elements are required to define a test standard for an EAP actuator: a Unit Tester, and a Component Specification. In this paper a EAP Unit Tester architecture is presented along with the required classification of measurements to be included in the EAP actuator Component Specification. The proposed EAP Unit Tester allows on-line monitoring and recording of the following properties of the specimen under test: large deformation, small tip displacement, temperature at the electrodes, weight of the specimen, voltage and current driven into the EAP, load being applied to the actuator, output voltage of the EAP in sensing operation and mode of operation (structure/sensor/actuator/smart). The measurements are taken simultaneously, in real-time. The EAP Unit Tester includes a friendly Graphical User Interface. It uses embedded Excel tools to visualize data. In addition, real-time connectivity with MATLAB allows an easy testing of control algorithms. A novel methodology to measure the properties of EAP specimens versus a variable load is also presented. To this purpose a force signals generator in the range of mN was developed. The device is based on a DC mini-motor. It generates an opposing force to the movement of the EAP actuator. Since the device constantly opposes the EAP actuator movement it has been named Digital Force Generator (DFG). The DFG design allows simultaneous length and velocity measuring versus different load signals. By including such a device in the EAP Unit Tester the most suitable application for the specimen under test can be easily identified (vibration damper, large deformation actuator, large

  9. Large adaptive deformable membrane mirror with high actuator density: design and first prototypes

    Hamelinck, R.; Rosielle, N.; Steinbuch, M.; Doelman, N.J.


    A large adaptive deformable mirror with high actuator density is presented. The DM consists of a thin continuous membrane which acts as the correcting element. A grid of low voltage electro-magnetical push-pull actuators, - located in an actuator plate -, impose out-of-plane displacements in the mir

  10. Large adaptive deformable membrane mirror with high actuator density: design and first prototypes

    Hamelinck, R.; Rosielle, N.; Steinbuch, M.; Doelman, N.J.


    A large adaptive deformable mirror with high actuator density is presented. The DM consists of a thin continuous membrane which acts as the correcting element. A grid of low voltage electro-magnetical push-pull actuators, - located in an actuator plate -, impose out-of-plane displacements in the

  11. Experimental performance and feasibility of a miniature single-degree-of-freedom rotary joint with integrated IPMC actuator

    Manley, Sean; McDaid, Andrew; Aw, Kean; Xie, Shane; Haemmerle, Enrico


    Ionic Polymer Metal Composite (IPMC) materials are bending actuators that can achieve large tip displacements at voltages less than 10V, but with low force output. Their advantages over traditional actuators include very low mass and size; flexibility; direct conversion of electricity to mechanical energy; biocompatibility; and the potential to build integrated sensing/actuation devices, using their inherent sensing properties. It therefore makes sense to pursue them as a replacement to traditional actuators where the lack of force is less significant, such as micro-robotics; bio-mimetics; medical robotics; and non-contact applications such as positioning of sensors. However, little research has been carried out on using them to drive mechanisms such as the rotary joints. This research explores the potential for applying IPMC to driving a single degree-of-freedom rotary mechanism, for a small-force robotic manipulator or positioning system. Practical issues such as adequate force output and friction are identified and tackled in the development of the mechanical apparatus, to study the feasibility of the actuator once attached to the mechanism. Rigid extensions are then applied to the tip of the IPMC, as well as doubling- and tripling the actuators in a stack to increase force output. Finally, feasibility of the entire concept is considered by comparing the maximum achievable forces and combining the actuator with the mechanism. It is concluded that while the actuator is capable of moving the mechanism, it is non-repeatable and does not achieve a level that allows feedback control to be applied.

  12. Point-actuated aperture antenna development

    Angelino, Marc; Washington, Gregory N.


    Consistent changes in both commercial and military satellite needs have created the need for antennas with additional flexibility. Military surveillance may require the ability to focus the radiation pattern to increase the bandwidth or resolution in a certain area. Commercial satellites may need to change coverage area to meet evolving consumer needs or to compensate for adverse weather or atmospheric conditions. Recent studies on active antennas have shown that the far field radiation pattern can be changed by altering the shape of the sub reflector. In this research, we control the antenna far field radiation pattern by controlling the shape of the sub reflector using numerous point actuators placed perpendicular to the reflector surface. The PZT stack coupled with a stick-slip mechanism give the point actuators used in this design an advantage over similar studies using PZT bimorph or PVDF actuators to generate the actuation force in that the displacement can be maintained without the continuous application of voltage. An electromechanical model is used to describe the motion of the stack, and the stick slip mechanism is modeled similar to power screw-type actuators. A combined finite element/electromagnetic analysis code is used to determine the desired shape of the reflector, and the corresponding actuator displacements. The final shape of the reflector is verified using stereo photogrammetry.

  13. Actuatable capacitive transducer for quantitative nanoindentation combined with transmission electron microscopy

    Warren, Oden L; Asif, Syed Amanula Syed; Cyrankowski, Edward; Kounev, Kalin


    An actuatable capacitive transducer including a transducer body, a first capacitor including a displaceable electrode and electrically configured as an electrostatic actuator, and a second capacitor including a displaceable electrode and electrically configured as a capacitive displacement sensor, wherein the second capacitor comprises a multi-plate capacitor. The actuatable capacitive transducer further includes a coupling shaft configured to mechanically couple the displaceable electrode of the first capacitor to the displaceable electrode of the second capacitor to form a displaceable electrode unit which is displaceable relative to the transducer body, and an electrically-conductive indenter mechanically coupled to the coupling shaft so as to be displaceable in unison with the displaceable electrode unit.

  14. Actuatable capacitive transducer for quantitative nanoindentation combined with transmission electron microscopy

    Warren, Oden L.; Asif, S. A. Syed; Cyrankowski, Edward; Kounev, Kalin


    An actuatable capacitive transducer including a transducer body, a first capacitor including a displaceable electrode and electrically configured as an electrostatic actuator, and a second capacitor including a displaceable electrode and electrically configured as a capacitive displacement sensor, wherein the second capacitor comprises a multi-plate capacitor. The actuatable capacitive transducer further includes a coupling shaft configured to mechanically couple the displaceable electrode of the first capacitor to the displaceable electrode of the second capacitor to form a displaceable electrode unit which is displaceable relative to the transducer body, and an electrically-conductive indenter mechanically coupled to the coupling shaft so as to be displaceable in unison with the displaceable electrode unit.-

  15. Experimental investigation of thermal characteristics of synthetic jet generator's diaphragm with piezoelectric actuator

    Rimasauskiene, Ruta; Rimasauskas, Marius; Mieloszyk, Magdalena; Wandowski, Tomasz; Malinowski, Pawel; Ostachowicz, Wieslaw


    An experimental analysis of the thermal characteristics of two different diaphragms of the synthetic jet generator was presented in this paper. It is extremely important to study temperature characteristics of the components with piezoelectric actuators working in various modes. Often piezoelectric actuators are used aiming to obtain maximum displacements that are possible when a piezoelectric actuator operates under maximum excitation voltage and often at the first resonance frequency. The theory suggests that working in such modes extremely increases temperature of the piezoelectric elements and it can reach maximum point. High temperatures might cause deformation or other changes of mechanical properties of the other components. This might influence the life time and operational characteristics of the synthetic jet generator. The main task of this work was to find the best working conditions for the synthetic jet generator. Dynamic characteristics of the diaphragm with piezoelectric material were measured using non-contact measuring equipment laser vibrometer Polytec® PSV 400. Temperatures of the piezoelectric diaphragms working at different resonance frequencies were measured with Fiber Bragg Grating (FBG) sensor. Experimental results of two different piezoelectric diaphragms were presented in this article. The best working conditions for synthetic jet generator were chosen.

  16. Trajectory Tracking Control for a GMM Actuator Based on a Heuristic ILC Method

    SONG Zhao-qing; ZHOU Shao-lei; SHI Xian-jun


    A heuristic iterative learning control (ILC) method is presented and applied to the trajectory tracking control of a giant magnetostrictive material (GMM) actuator. A GMM actuator is used as experimental equipment for micro-displacement trajectory tracking control. The advantage of the presented approach lies in quitting the model of the GMM actuator. The experimental results attest to the high efficiency of the presented method for the micro-displacement trajectory tracking control.

  17. Final report : compliant thermo-mechanical MEMS actuators, LDRD #52553.

    Walraven, Jeremy Allen; Baker, Michael Sean; Headley, Thomas Jeffrey; Plass, Richard Anton


    Thermal actuators have proven to be a robust actuation method in surface-micromachined MEMS processes. Their higher output force and lower input voltage make them an attractive alternative to more traditional electrostatic actuation methods. A predictive model of thermal actuator behavior has been developed and validated that can be used as a design tool to customize the performance of an actuator to a specific application. This tool has also been used to better understand thermal actuator reliability by comparing the maximum actuator temperature to the measured lifetime. Modeling thermal actuator behavior requires the use of two sequentially coupled models, the first to predict the temperature increase of the actuator due to the applied current and the second to model the mechanical response of the structure due to the increase in temperature. These two models have been developed using Matlab for the thermal response and ANSYS for the structural response. Both models have been shown to agree well with experimental data. In a parallel effort, the reliability and failure mechanisms of thermal actuators have been studied. Their response to electrical overstress and electrostatic discharge has been measured and a study has been performed to determine actuator lifetime at various temperatures and operating conditions. The results from this study have been used to determine a maximum reliable operating temperature that, when used in conjunction with the predictive model, enables us to design in reliability and customize the performance of an actuator at the design stage.

  18. Displacement Ventilation

    Bjørn, Erik; Mattsson, Magnus; Sandberg, Mats

    Full-scale experiments were made in a displacement ventilated room with two breathing thermal manikins to study the effect of movements and breathing on the vertical contaminant distribution, and on the personal exposure of occupants. Concentrations were measured with tracer gas equipment...

  19. Characterization of piezoelectric macrofiber composite actuated winglets

    Guha, T. K.; Oates, W. S.; Kumar, R.


    The present study primarily focuses on the design, development, and structural characterization of an oscillating winglet actuated using a piezoelectric macrofiber composite (MFC). The primary objective is to study the effect of controlled wingtip oscillations on the evolution of wingtip vortices, with a goal of weakening these potentially harmful tip vortices by introducing controlled instabilities through both spatial and temporal perturbations producible through winglet oscillations. MFC-actuated winglets have been characterized under different input excitation and pressure-loading conditions. The winglet oscillations show bimodal behavior for both structural and actuation modes of resonance. The oscillatory amplitude at these actuation modes increases linearly with the magnitude of excitation. During wind-tunnel tests, fluid-structure interactions led to structural vibrations of the wing. The effect of these vibrations on the overall winglet oscillations decreased when the strength of actuation increased. At high input excitation, the actuated winglet was capable of generating controlled oscillations. As a proof of concept, the current study has demonstrated that microfiber composite-actuated winglets produce sufficient displacements to alter the development of the wingtip vortex.

  20. Polymer-based actuators for virtual reality devices

    Bolzmacher, Christian; Hafez, Moustapha; Benali Khoudja, Mohamed; Bernardoni, Paul; Dubowsky, Steven


    Virtual Reality (VR) is gaining more importance in our society. For many years, VR has been limited to the entertainment applications. Today, practical applications such as training and prototyping find a promising future in VR. Therefore there is an increasing demand for low-cost, lightweight haptic devices in virtual reality (VR) environment. Electroactive polymers seem to be a potential actuation technology that could satisfy these requirements. Dielectric polymers developed the past few years have shown large displacements (more than 300%). This feature makes them quite interesting for integration in haptic devices due to their muscle-like behaviour. Polymer actuators are flexible and lightweight as compared to traditional actuators. Using stacks with several layers of elatomeric film increase the force without limiting the output displacement. The paper discusses some design methods for a linear dielectric polymer actuator for VR devices. Experimental results of the actuator performance is presented.

  1. Characteristics Analysis and Testing of SMA Spring Actuator

    Jianzuo Ma


    Full Text Available The biasing form two-way shape memory alloy (SMA actuator composed of SMA spring and steel spring is analyzed. Based on the force equilibrium equation, the relationship between load capacity of SMA spring and geometric parameters is established. In order to obtain the characteristics of SMA spring actuator, the output force and output displacement of SMA spring under different temperatures are analyzed by the theoretical model and the experimental method. Based on the shape memory effect of SMA, the relationship of the SMA spring actuator's output displacement with the temperature, the stress and strain, the material parameters, and the size parameters is established. The results indicate that the trend of theoretical results is basically consistent with the experimental data. The output displacement of SMA spring actuator is increased with the increasing temperature.

  2. A nanoelectromechanical systems actuator driven and controlled by Q-factor attenuation of ring resonator

    Dong, B.; Cai, H.; Ng, G. I.; Kropelnicki, P.; Tsai, J. M.; Randles, A. B.; Tang, M.; Gu, Y. D.; Suo, Z. G.; Liu, A. Q.


    In this Letter, an optical gradient force driven Nanoelectromechanical Systems (NEMS) actuator, which is controlled by the Q-factor attenuation of micro-ring resonator, is demonstrated. The actuator consists of a tunable actuation ring resonator, a sensing ring resonator, and a mechanical actuation arc. The actuation displacement can reach up to 14 nm with a measured resolution of 0.8 nm, when the Q-factor of the ring resonator is tuned from 15 × 103 to 6 × 103. The potential applications of the NEMS actuator include single molecule manipulation, nano-manipulation, and high sensitivity sensors.

  3. Metal muscles and nerves—a self-sensing SMA-actuated hand concept

    Simone, F.; Rizzello, G.; Seelecke, S.


    Bio-inspired hand-like grippers actuated by Shape Memory Alloy (SMA) wires represent an emerging new technology with potential applications in many different fields, ranging from industrial assembly processes to biomedical systems. The inherently high energy density makes SMAs a natural choice for compact, lightweight, and silent actuator systems capable of producing a high amount of work, such as hand prostheses or robotic systems in industrial human/machine environments. In this work, a concept for a compact and versatile gripping system is developed, in which SMA wires are implemented as antagonistic muscles actuating an artificial hand with three fingers. In order to combine high gripping force with sufficient actuation speed, the muscle implementation pursues a multi-wire concept with several 0.1 mm diameter NiTi wires connected in parallel, in order to increase the surface-to-volume ratio for accelerated cooling. The paper starts with an illustration of the design concept of an individual 3-phalanx-finger, along with kinematic considerations for optimal placement of SMA wires. Three identical fingers are subsequently fabricated via 3D printing and assembled into a hand-like gripper. The maximum displacement of each finger phalanx is measured, and an average phalanxes dynamic responsiveness is evaluated. SMA self-sensing is documented by experiments relating the wires change in resistance to the finger motion. Several finger force measurements are also performed. The versatility of the gripper is finally documented by displaying a variety of achievable grasping configurations.

  4. Analysis and application of a rolled dielectric elastomer actuator with two degrees of freedom

    Wang, Huaming; Li, Luyang; Zhu, Yinlong; Yang, Weidong


    A rolled dielectric elastomer (DE) actuator with two degrees of freedom, which can bend and elongate, was implemented by membrane pre-stretching, interdigital shape electrode patterning, and wrapping on a compression spring. Then modeling of the actuator was conducted by constructing and solving differential equations, which include constitutive, geometrical, equilibrium equations and boundary conditions. Experiments show the actuator can bend up to 75.3o and elongate with a displacement of 8.4 mm at the voltage of 5.0 kV, which agree well with analytical results. The principal stress and stretch ratio distribution of each layer of elastomer were given, on which the effects of electrostatic pressure and interlayer pressure were also discussed. Two crawling robots with a single and a double-actuator were proposed, and their locomotion performance was investigated. Locomotion experiments show two robots can move forward with both bending and elongation strategies, and the maximum velocity reaches 20 mm s-1. This research is favorable to the application of soft DE in biomimetic robots.

  5. Note: A SMA wire actuated extremely long-lifetime release actuator using two ball-lock mechanisms

    Huang, Dawei; Yan, Xiaojun; Zhang, Xiaoyong; Bai, Haibo; Wang, Xian; Liu, Ying


    A shape memory alloy (SMA)-wire actuated release actuator with an extremely long lifetime was designed and validated. To ensure the ability of repeated actuation, two stages of ball-lock mechanisms were adopted to reduce the load in the SMA wire. In addition, a length-increasing design of the SMA wire was employed. Validation tests, including function tests, vibration tests, shock tests, and thermal vacuum tests were conducted on prototypes. According to the test results, the actuator can release a maximum preload of 15 kN and has a lifetime of more than 693 cycles. Furthermore, the actuator can function well, even under severe thermal and vibration environments.

  6. Note: A SMA wire actuated extremely long-lifetime release actuator using two ball-lock mechanisms.

    Huang, Dawei; Yan, Xiaojun; Zhang, Xiaoyong; Bai, Haibo; Wang, Xian; Liu, Ying


    A shape memory alloy (SMA)-wire actuated release actuator with an extremely long lifetime was designed and validated. To ensure the ability of repeated actuation, two stages of ball-lock mechanisms were adopted to reduce the load in the SMA wire. In addition, a length-increasing design of the SMA wire was employed. Validation tests, including function tests, vibration tests, shock tests, and thermal vacuum tests were conducted on prototypes. According to the test results, the actuator can release a maximum preload of 15 kN and has a lifetime of more than 693 cycles. Furthermore, the actuator can function well, even under severe thermal and vibration environments.

  7. Investigations of electronic amplifiers supplying a piezobimorph actuator

    Milecki, Andrzej; Regulski, Roman


    Piezoelectric bending actuators, also known as bimorphs, are characterized by very good dynamic properties and by displacements in a range of a few millimeters. Therefore these actuators are used in a wide range of applications. However their usage is limited because they require supplying amplifiers with output voltage of about 200 V, which are rather expensive. This paper presents investigation results of such amplifiers with high voltage output. The model of a piezobending actuator is proposed and implemented in Matlab-Simulink software in order to simulate the behavior of the actuator supplied by the amplifiers. The simulation results are presented and compared with investigation results of high voltage amplifier used for supplying a piezoactuator. The influence of current limitation of operational amplifier on the actuator current is tested. Finally, a low cost audio power amplifier is proposed to control the piezobender actuator (as a cheaper alternative to the high-voltage amplifier) and its investigations results are presented in the paper.

  8. Investigation of electrochemical actuation by polyaniline nanofibers

    Mehraeen, Shayan; Alkan Gürsel, Selmiye; Papila, Melih; Çakmak Cebeci, Fevzi


    Polyaniline nanofibers have shown promising electrical and electrochemical properties which make them prominent candidates in the development of smart systems employing sensors and actuators. Their electrochemical actuation potential is demonstrated in this study. A trilayer composite actuator based on polyaniline nanofibers was designed and fabricated. Cross-linked polyvinyl alcohol was sandwiched between two polyaniline nanofibrous electrodes as ion-containing electrolyte gel. First, electrochemical behavior of a single electrode was studied, showing reversible redox peak pairs in 1 M HCl using a cyclic voltammetry technique. High aspect ratio polyaniline nanofibers create a porous network which facilitates ion diffusion and thus accelerates redox reactions. Bending displacement of the prepared trilayer actuator was then tested and reported under an AC potential stimulation as low as 0.5 V in a variety of frequencies from 50 to 1000 mHz, both inside 1 M HCl solution and in air. Decay of performance of the composite actuator in air is investigated and it is reported that tip displacement in a solution was stable and repeatable for 1000 s in all selected frequencies.

  9. Piezoelectric multilayer actuator life test.

    Sherrit, Stewart; Bao, Xiaoqi; Jones, Christopher M; Aldrich, Jack B; Blodget, Chad J; Moore, James D; Carson, John W; Goullioud, Renaud


    displacement from a capacitance gap sensor and impedance spectra were measured at specific intervals. The average degradation in the stroke over the life test was found to be small (<3%) for the primary stacks and <4% for the redundant stacks. It was noted that about half of the stroke reduction occurred within the first 10 billion cycles. At the end of the life test, it was found that the actuator could recover about half of the lost stroke by applying a dc voltage of 100 V at room temperature. The data up to 100 billion cycles for these tests and the analysis of the experimental results are presented in this paper.

  10. Displacing use

    Kelly, Janet; Matthews, Ben


    -centred design process. We identified alternative design-relevant relationships between people and devices that are not specifically tied to the functions/uses of the devices, e.g. relationships between the healthcare professional and the device, between doctors and patients, and between patients and their own......This paper critically discusses the concept of use in design, suggesting that relevant relationships other than use are sometimes obscured by the usercentredness of design processes. We present a design case from the medical device domain that displaced the concept of use from the centre of a human...

  11. Electrostatic repulsive out-of-plane actuator using conductive substrate.

    Wang, Weimin; Wang, Qiang; Ren, Hao; Ma, Wenying; Qiu, Chuankai; Chen, Zexiang; Fan, Bin


    A pseudo-three-layer electrostatic repulsive out-of-plane actuator is proposed. It combines the advantages of two-layer and three-layer repulsive actuators, i.e., fabrication requirements and fill factor. A theoretical model for the proposed actuator is developed and solved through the numerical calculation of Schwarz-Christoffel mapping. Theoretical and simulated results show that the pseudo-three-layer actuator offers higher performance than the two-layer and three-layer actuators with regard to the two most important characteristics of actuators, namely, driving force and theoretical stroke. Given that the pseudo-three-layer actuator structure is compatible with both the parallel-plate actuators and these two types of repulsive actuators, a 19-element two-layer repulsive actuated deformable mirror is operated in pseudo-three-layer electrical connection mode. Theoretical and experimental results demonstrate that the pseudo-three-layer mode produces a larger displacement of 0-4.5 μm for a dc driving voltage of 0-100 V, when compared with that in two-layer mode.

  12. Electromagnetic rotational actuation.

    Hogan, Alexander Lee


    There are many applications that need a meso-scale rotational actuator. These applications have been left by the wayside because of the lack of actuation at this scale. Sandia National Laboratories has many unique fabrication technologies that could be used to create an electromagnetic actuator at this scale. There are also many designs to be explored. In this internship exploration of the designs and fabrications technologies to find an inexpensive design that can be used for prototyping the electromagnetic rotational actuator.

  13. Model of magnetostrictive actuator

    LI Lin; ZHANG Yuan-yuan


    The hysteresis of the magnetostrictive actuator was studied. A mathematical model of the hysteresis loop was obtained on the basis of experiment. This model depends on the frequency and the amplitude of the alternating current inputted to the magnetostrictive actuator. Based on the model, the effect of hysteresis on dynamic output of the magnetostrictive actuator was investigated. Then how to consider hysteresis and establish a dynamic model of a magnetostrictive actuator system is discussed when a practical system was designed and applied.

  14. Numerical Simulation of High-Power Synthetic Jet Actuator Flowfield and its Influence on Mixing Control


    Detailed two-dimensional unsteady numerical simulation is carried out to investigate a high-power synthetic jet actuator flow field and its design characteristic. Simultaneously, mixing control mechanism of coaxial jets with actuators is also studied. Firstly, excitation frequency (rotating speed), piston displacement and its exit slot width have effect on the controlling ability and controlling efficiency of actuator. With the invariable model and concerned parameters, the actuator becomes more desirable as the rotating speed increases. Average velocity and maximal velocity at the actuator exit section increase as the piston displacement enlarges or the exit slot width decreases. But the actuator does not always exhibit good performance with the narrower exit. Secondly, the synthetic jets also have the "push" effect on the coaxial jets, which results in the fluctuation of vorticity and temperature distribution of mixing fiowfield. Finally, the employment of synthetic jet actuator can achieve mixing enhancement significantly.

  15. Extended DNA Tile Actuators

    Kristiansen, Martin; Kryger, Mille; Zhang, Zhao


    A dynamic linear DNA tile actuator is expanded to three new structures of higher complexity. The original DNA actuator was constructed from a central roller strand which hybridizes with two piston strands by forming two half-crossover junctions. A linear expansion of the actuator is obtained...

  16. Test Rig Design For Compact Variable Displacement Vane Pump

    Chawla, Pratik; Jenkins, Ryan; Ivantysynova, Monika


    Variable displacement vane pumps (VDVP) are one type of positive displacement pumps used in automatic transmission vehicles for lubricating the gears, cooling the transmission and actuating the clutches. Though fixed displacement pumps are widely used, they output a constant effective flow at a given speed. Depending on pump sizing considerations, the pump can be oversized at high speeds because flow demand of the transmission is independent of engine speed. The excess flow returns to the tan...

  17. Effective Actuation: High Bandwidth Actuators and Actuator Scaling Laws


    piezo elements mounted on structural members and devices that exhibited aeroacoustic resonance. The former type of actuator ( piezo ) was considered...Raman and Kibens (Raman et al. 2000). These experiments involved high-frequency forcing applied to low-speed flows using wedge piezo actuators and... Subharmonic Interaction and Wall Influence," AIAA- 86-1047, May, 1986. Davis, S. A., 2000, "The manipulation of large and small flow structures in single and

  18. Pedot and PPy Conducting Polymer Bilayer and Trilayer Actuators

    Zainudeen, Umer Lebbe; Careem, Mohamed Abdul; Skaarup, Steen


    Actuators based on conducting polymers are attracting increasing interest due to their desirable features such as large mechanical stress generated, sufficient maximum strain values, high reversibility, good safety properties and the possibility of precise control using small voltages. Many...... attempts have been made to improve the actuator performance. We report electromechanical measurements on actuators of bilayer and trilayer free standing films prepared with polypyrrole (PPy) and poly(3,4-ethylenedioxythiophene) (PEDOT) conducting polymers. Both types of conducting polymer are pre...

  19. A smart soft actuator using a single shape memory alloy for twisting actuation

    Shim, Jae-Eul; Quan, Ying-Jun; Wang, Wei; Rodrigue, Hugo; Song, Sung-Hyuk; Ahn, Sung-Hoon


    Recently, robots have become a topic of interest with regard to their functionality as they need to complete a large number of diverse tasks in a variety of environments. When using traditional mechanical components, many parts are needed to realize complex deformations, such as motors, hinges, and cranks. To produce complex deformations, this work introduces a smart soft composite torsional actuator using a single shape memory alloy (SMA) wire without any additional elements. The proposed twisting actuator is composed of a torsionally prestrained SMA wire embedded at the center of a polydimethylsiloxane matrix that twists by applying an electric current upon joule heating of the SMA wire. This report shows the actuator design, fabrication method, and results for the twisting angle and actuation moment. Results show that a higher electric current helps reach the maximum twisting angle faster, but that if the current is too low or too high, it will not be able to reach its maximum deformation. Also, both the twisting angle and the twisting moment increase with a large applied twisting prestrain, but this increase has an asymptotic behavior. However, results for both the width and the thickness of the actuator show that a larger width and thickness reduce the maximum actuation angle of the actuator. This paper also presents a new mechanism for an SMA-actuated active catheter using only two SMA wires with a total length of 170 mm to bend the tip of the catheter in multiple directions. The fabricated active catheter’s maximum twisting angle is 270°, and the maximum bending curvature is 0.02 mm-1.

  20. Another lesson from plants: the forward osmosis-based actuator.

    Edoardo Sinibaldi

    Full Text Available Osmotic actuation is a ubiquitous plant-inspired actuation strategy that has a very low power consumption but is capable of generating effective movements in a wide variety of environmental conditions. In light of these features, we aimed to develop a novel, low-power-consumption actuator that is capable of generating suitable forces during a characteristic actuation time on the order of a few minutes. Based on the analysis of plant movements and on osmotic actuation modeling, we designed and fabricated a forward osmosis-based actuator with a typical size of 10 mm and a characteristic time of 2-5 minutes. To the best of our knowledge, this is the fastest osmotic actuator developed so far. Moreover, the achieved timescale can be compared to that of a typical plant cell, thanks to the integrated strategy that we pursued by concurrently addressing and solving design and material issues, as paradigmatically explained by the bioinspired approach. Our osmotic actuator produces forces above 20 N, while containing the power consumption (on the order of 1 mW. Furthermore, based on the agreement between model predictions and experimental observations, we also discuss the actuator performance (including power consumption, maximum force, energy density and thermodynamic efficiency in relation to existing actuation technologies. In light of the achievements of the present study, the proposed osmotic actuator holds potential for effective exploitation in bioinspired robotics systems.

  1. Another lesson from plants: the forward osmosis-based actuator.

    Sinibaldi, Edoardo; Argiolas, Alfredo; Puleo, Gian Luigi; Mazzolai, Barbara


    Osmotic actuation is a ubiquitous plant-inspired actuation strategy that has a very low power consumption but is capable of generating effective movements in a wide variety of environmental conditions. In light of these features, we aimed to develop a novel, low-power-consumption actuator that is capable of generating suitable forces during a characteristic actuation time on the order of a few minutes. Based on the analysis of plant movements and on osmotic actuation modeling, we designed and fabricated a forward osmosis-based actuator with a typical size of 10 mm and a characteristic time of 2-5 minutes. To the best of our knowledge, this is the fastest osmotic actuator developed so far. Moreover, the achieved timescale can be compared to that of a typical plant cell, thanks to the integrated strategy that we pursued by concurrently addressing and solving design and material issues, as paradigmatically explained by the bioinspired approach. Our osmotic actuator produces forces above 20 N, while containing the power consumption (on the order of 1 mW). Furthermore, based on the agreement between model predictions and experimental observations, we also discuss the actuator performance (including power consumption, maximum force, energy density and thermodynamic efficiency) in relation to existing actuation technologies. In light of the achievements of the present study, the proposed osmotic actuator holds potential for effective exploitation in bioinspired robotics systems.

  2. Non-Linear Piezoelectric Actuator with a Preloaded Cantilever Beam

    Yue Wu; Jingshi Dong; Xinbo Li; Zhigang Yang; Qingping Liu


    Piezoelectric actuation is widely used for the active vibration control of smart structural systems, and corresponding research has largely focused on linear electromechanical devices. This paper investigates the design and analysis of a novel piezoelectric actuator that uses a piezoelectric cantilever beam with a loading spring to produce displacement outputs. This device has a special nonlinear property relating to converting between kinetic energy and potential energy, and it can be used t...

  3. Design of a hydraulic actuator for active control of rotating machinery

    Rashidi, Majid; Dirusso, Eliseo


    A hydraulic actuator is described which consists of a pump, a hydraulic servo-valve, and a thin elastic plate which transduces the generated pressure variations into forces acting on a mass which simulates the bearing of a rotor system. An actuator characteristic number is defined to provide a base for an optimum design of force actuators with combined weight, frequency, and force considerations. This characteristic number may also be used to compare hydraulic and electromagnetic force actuators. In tests, this actuator generated 182.3 Newton force at a frequency of 100 Hz and a displacement amplitude of 5.8 x 10 exp -5 meter.

  4. Design, analysis and experimental performance of a stepping type piezoelectric linear actuator based on compliant foot driving

    Wang, Shupeng; Rong, Weibin; Wang, Lefeng; Sun, Lining


    A stepping type piezoelectric linear actuator based on compliant foot driving is proposed in this paper. With the help of four piezo-stacks and four compliant feet, the designed actuator can produce large range linear motions in both positive and negative directions with high accuracy. The mechanical structure and the operating principle are discussed. Mohr integration method is used to analyze the deformation of the key component compliant foot. To investigate the working performance, a prototype is fabricated and a series of experiments are carried out. The experimental results indicate that the displacement outputs under various driving voltages and various driving frequencies show good linear relationships with the time. The driving resolution and the maximum output force are 10.98 nm and 43 N, respectively. The displacements deviation between the forward and backward motions within 30 steps is 6.82 μm and the amplitude of the parasitic motions is about 0.638 μm. The experimental results also confirm that the designed actuator can achieve various speeds by changing the driving voltage and driving frequency.

  5. New ankle actuation mechanism for a humanoid robot

    Oort, van Gijs; Reinink, Roelof; Stramigioli, Stefano


    In this article we discuss the design of a new ankle actuation mechanism for the humanoid robot TUlip. The new mechanism consists of two coupled series-elastic systems. We discuss the choice of actuators according to calculations for maximum achievable walking speed. Some control issues, MIMO and no

  6. Actuators, transducers and motors based on giant magnetostrictive materials

    Claeyssen, F.; Lhermet, N.; Le Letty, R. [Cedrat Recherche, Meylan (France); Bouchilloux, P. [Magsoft Corporation, 1223 People`s Avenue, New York 12180 (United States)


    Rare earth-iron magnetostrictive alloys, especially Terfenol-D, feature ``giant`` magnetostrains: static strains of 1000-2000 ppm and dynamic strains of 3500 ppm are reported. These strains permit building various actuating devices (actuators, transducers, motors) both at macro and micro scale. The object of the paper is to recall adapted design methods, especially finite element methods such as ATILA, and to review these different kinds of devices studied at Cedrat Recherche, providing both up-dated experimental and numerical results. The presented devices will include several large displacement longitudinal and shear actuators biased using permanent magnets and used either as characterisation devices or as electromechanical actuators (for active damping, for sonar transducers..), a 1 kHz 4 kW Tonpilz-type sonar transducer called the tripode, a 2 N m torque rotating multi-mode motor, a torsion based drift free micro actuator and a wireless linear micromotor. (orig.)

  7. Design and analysis of repulsive electrostatic driven MEMS actuators

    Yao, Jun; Hu, Fangrong; Cai, Dongmei; Jiang, Wenhan


    For many astronomical systems, Adaptive Optics (AO) plays an important role. Here, we report some preliminary studies on MEMS (Micro-Electro-Mechanical-System) Project for micro actuators in AO applications at the Institute of Optics and Electronics, Chinese Academy of Science. This paper presents a few MEMS actuators based on repulsive electrostatic driven mechanism, which can achieve large out-of-plane strokes through eliminating the electrostatic pull-in effect. Design principles, including the layout and the physical dimension of electrodes, and FEA models are illustrated; it provides helpful guidance for designing electrostatic repulsive actuators for being implemented in Deformable Mirrors (DMs). Some repulsive electrostatic driven micro actuators are given, the analysis focus on the displacement versus applied voltage and resonant frequency. Repulsive electrostatic driven actuators can achieve large strokes and high resonant frequencies, they meet the important requirements for DMs.

  8. Quasi-Static Analysis of LaRC THUNDER Actuators

    Campbell, Joel F.


    An analytic approach is developed to predict the shape and displacement with voltage in the quasi-static limit of LaRC Thunder Actuators. The problem is treated with classical lamination theory and Von Karman non-linear analysis. In the case of classical lamination theory exact analytic solutions are found. It is shown that classical lamination theory is insufficient to describe the physical situation for large actuators but is sufficient for very small actuators. Numerical results are presented for the non-linear analysis and compared with experimental measurements. Snap-through behavior, bifurcation, and stability are presented and discussed.

  9. Magnetic resonance elastography using an air ball-actuator.

    Numano, Tomokazu; Kawabata, Yoshihiko; Mizuhara, Kazuyuki; Washio, Toshikatsu; Nitta, Naotaka; Homma, Kazuhiro


    The purpose of this study was to develop a new technique for a powerful compact MR elastography (MRE) actuator based on a pneumatic ball-vibrator. This is a compact actuator that generates powerful centrifugal force vibrations via high speed revolutions of an internal ball using compressed air. This equipment is easy to handle due to its simple principles and structure. Vibration frequency and centrifugal force are freely adjustable via air pressure changes (air flow volume), and replacement of the internal ball. In order to achieve MRI compatibility, all parts were constructed from non-ferromagnetic materials. Vibration amplitudes (displacements) were measured optically by a laser displacement sensor. From a bench test of displacement, even though the vibration frequency increased, the amount of displacement did not decrease. An essential step in MRE is the generation of mechanical waves within tissue via an actuator, and MRE sequences are synchronized to several phase offsets of vibration. In this system, the phase offset was detected by a four-channel optical-fiber sensor, and it was used as an MRI trigger signal. In an agarose gel phantom experiment, this actuator was used to make an MR elastogram. This study shows that the use of a ball actuator for MRE is feasible. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Characterisation of static actuation behaviour of encapsulated PZT

    Doran, Conrad J.; Butler, Raymond J.


    Within the field of 'smart' structures considerable interest has been shown in the use of piezoelectric materials both as sensors and actuators. One of the best characterized of these materials is the family of Lead Zirconate Titanate (PZT) based ceramics. The use of PZT in intelligent systems has been fairly widespread, the high modulus of the material give high authority actuation, coupled with a wide operational bandwidth and relative ease of control by the application of an applied voltage. The linearity of the actuation response over a limited range has made PZT a popular choice for high precision, relatively low displacement applications. A number of attempts have been made to utilize such actuators for aerospace, using both surface mounting [1] and embedding techniques [2,3]. The effects of actuators on aeroelastic performance has also been investigated for aerospace applications [4,5]. The current practical solution to this problem appears to be the use of spatially distributed actuators [6]. One of the practical limitations of this problem are the large number of actuators required to produce the required degree of static control. In order to ensure accurate shape control, measurements must be taken to ensure there are no significant difference in the actuator element properties due to factors such as batch processing variation. In the past this has proved difficult due to the extremely brittle nature of the actuator material. More specifically the requirement for thinner elements for use in embedded applications has increased this problem. A method by which the static performance of electroceramic actuators could be quickly established would therefore be desirable. This paper presents the results of recent work to develop a test method to define the static electromechanical properties of encapsulated actuator materials in order to assess their suitability as static actuators for aerospace applications. Preliminary results using a standard PZT material are

  11. Tough Nanocomposite Ionogel-based Actuator Exhibits Robust Performance

    Liu, Xinhua; He, Bin; Wang, Zhipeng; Tang, Haifeng; Su, Teng; Wang, Qigang


    Ionogel electrolytes can be fabricated for electrochemical actuators with many desirable advantages, including direct low-voltage control in air, high electrochemical and thermal stability, and complete silence during actuation. However, the demands for active actuators with above features and load-driving ability remain a challenge; much work is necessary to enhance the mechanical strength of electrolyte materials. Herein, we describe a cross-linked supramolecular approach to prepare tough nanocomposite gel electrolytes from HEMA, BMIMBF4, and TiO2 via self-initiated UV polymerization. The tough and stable ionogels are emerging to fabricate electric double-layer capacitor-like soft actuators, which can be driven by electrically induced ion migration. The ionogel-based actuator shows a displacement response of 5.6 mm to the driving voltage of 3.5 V. After adding the additional mass weight of the same as the actuator, it still shows a large displacement response of 3.9 mm. Furthermore, the actuator can not only work in harsh temperature environments (100°C and −10°C) but also realize the goal of grabbing an object by adjusting the applied voltage. PMID:25327414

  12. Series elastic actuators

    Williamson, Matthew M.


    This thesis presents the design, construction, control and evaluation of a novel for controlled actuator. Traditional force controlled actuators are designed from the premise that 'Stiffer is better'. This approach gives a high bandwidth system, prone to problems of contact instability, noise, and low power density. The actuator presented in this thesis is designed from the premise that 'Stiffness isn't everything'. The actuator, which incorporates a series elastic element, trades off achievable bandwidth for gains in stable, low noise force control, and protection against shock loads. This thesis reviews related work in robot force control, presents theoretical descriptions of the control and expected performance from a series elastic actuator, and describes the design of a test actuator constructed to gather performance data. Finally the performance of the system is evaluated by comparing the performance data to theoretical predictions.

  13. Magnetic actuators and sensors

    Brauer, John R


    An accessible, comprehensive guide on magnetic actuators and sensors, this fully updated second edition of Magnetic Actuators and Sensors includes the latest advances, numerous worked calculations, illustrations, and real-life applications. Covering magnetics, actuators, sensors, and systems, with updates of new technologies and techniques, this exemplary learning tool emphasizes computer-aided design techniques, especially magnetic finite element analysis, commonly used by today's engineers. Detailed calculations, numerous illustrations, and discussions of discrepancies make this text an inva

  14. Remote switch actuator

    Haas, Edwin Gerard; Beauman, Ronald; Palo, Jr., Stefan


    The invention provides a device and method for actuating electrical switches remotely. The device is removably attached to the switch and is actuated through the transfer of a user's force. The user is able to remain physically removed from the switch site obviating need for protective equipment. The device and method allow rapid, safe actuation of high-voltage or high-current carrying electrical switches or circuit breakers.

  15. Electrostatically Driven Nanoballoon Actuator.

    Barzegar, Hamid Reza; Yan, Aiming; Coh, Sinisa; Gracia-Espino, Eduardo; Dunn, Gabriel; Wågberg, Thomas; Louie, Steven G; Cohen, Marvin L; Zettl, Alex


    We demonstrate an inflatable nanoballoon actuator based on geometrical transitions between the inflated (cylindrical) and collapsed (flattened) forms of a carbon nanotube. In situ transmission electron microscopy experiments employing a nanoelectromechanical manipulator show that a collapsed carbon nanotube can be reinflated by electrically charging the nanotube, thus realizing an electrostatically driven nanoballoon actuator. We find that the tube actuator can be reliably cycled with only modest control voltages (few volts) with no apparent wear or fatigue. A complementary theoretical analysis identifies critical parameters for nanotube nanoballoon actuation.

  16. Job Displacement and Crime

    Bennett, Patrick; Ouazad, Amine

    that displaced workers' propensity to commit crime is higher than non-displaced workers before the displacement event; but it is significantly higher afterwards. Displacement impacts crime over and above what is explained by earnings losses and weeks of unemployment following displacement....

  17. Compact piezoelectric stacked actuators for high power applications.

    Yao, K; Uchino, K; Xu, Y; Dong, S; Lim, L C


    Small, hollow, multilayer actuators with a diameter of 3 mm were fabricated by the stacking method from piezoelectric hard lead zirconate titanate (PZT) ceramics. Langevin vibrators were also constructed with the hollow multilayer actuators. The performance capabilities of the actuator and Langevin vibrator samples were examined under high-power conditions. The high-power vibration level at a given sinusoidal drive voltage was significantly enhanced by using a multilayer structure under either a nonresonance or resonance condition. A maximum vibration velocity of 0.17 m/sec was obtained for the 9-layer actuator sample under nonresonance conditions. The vibration velocity was further improved with the Langevin vibrator driven at the resonance frequency. The temperature rise due to heat generation under high-power conditions was the immediate limitation on the maximum accessible vibration velocity for the stacked actuators.

  18. Highly durable, biomimetic electro-active paper actuator based on cellulose polypyrrole-ionic liquid (CPIL) nanocomposite.

    Mahadeva, Suresha K; Yun, Kiju; Kim, Jaehwan; Kim, Joo-Hyung


    Cellulose has received much attention as a emerging smart material, named as electro-active paper (EAPap), which can produce a large bending displacement with applied external electrical field. In spite of many advantages over other reported electro active polymers, there are some issues to be addressed: its actuator performance: (i) sensitive to environmental humidity, (ii) humidity dependent displacement output of the actuator and (iii) degradation of performance with time. In present paper, we have successfully developed the highly durable EAPap actuator working at ambient condition with large displacement output. To improve the performance and durability of EAPap, nanoscaled PPy layer into cellulose EAPap was formed by in-situ polymerization technique. Cellulose-PPy-IL nanocomposite based EAPap actuator showed nearly 100% improvement of the actuator performance compared that of pure cellulose based EAPap actuator systems.

  19. High-Force Dielectric Electroactive Polymer (DEAP) membrane actuator

    Hau, Steffen; York, Alexander; Seelecke, Stefan


    Energy efficiency, lightweight and scalability are key features for actuators in applications such as valves, pumps or any portable system. Dielectric electroactive Polymer (DEAP) technology is able to fulfill these requirements1 better than commonly used technology e.g. solenoids, but has limitations concerning force and stroke. However, the circular DEAP membrane actuator shows a potential increase in stroke in the mm range, when combined with an appropriate biasing mechanism2. Although, thus far, their force range is limited to the single-digit Newton range, or less3,4. This work describes how this force limit of DEAP membrane actuators can be pushed to the high double-digit Newton range and beyond. The concept for such an actuator consists of a stack of double-layered DEAPs membrane actuator combined with a biasing mechanism. These two components are combined in a novel way, which allows a compact design by integrating the biasing mechanism into the DEAP membrane actuator stack. Subsequently, the single components are manufactured, tested, and their force-displacement characteristic is documented. Utilizing this data allows assembling them into actuator systems for different applications. Two different actuators are assembled and tested (dimensions: 85x85x30mm3 (LxWxH)). The first one is able to lift 7.5kg. The second one can generate a force of 66N while acting against a spring load.

  20. Stretchable Materials for Robust Soft Actuators towards Assistive Wearable Devices

    Agarwal, Gunjan; Besuchet, Nicolas; Audergon, Basile; Paik, Jamie


    Soft actuators made from elastomeric active materials can find widespread potential implementation in a variety of applications ranging from assistive wearable technologies targeted at biomedical rehabilitation or assistance with activities of daily living, bioinspired and biomimetic systems, to gripping and manipulating fragile objects, and adaptable locomotion. In this manuscript, we propose a novel two-component soft actuator design and design tool that produces actuators targeted towards these applications with enhanced mechanical performance and manufacturability. Our numerical models developed using the finite element method can predict the actuator behavior at large mechanical strains to allow efficient design iterations for system optimization. Based on two distinctive actuator prototypes’ (linear and bending actuators) experimental results that include free displacement and blocked-forces, we have validated the efficacy of the numerical models. The presented extensive investigation of mechanical performance for soft actuators with varying geometric parameters demonstrates the practical application of the design tool, and the robustness of the actuator hardware design, towards diverse soft robotic systems for a wide set of assistive wearable technologies, including replicating the motion of several parts of the human body.

  1. Coalescence-induced droplet actuation

    Sellier, Mathieu; Verdier, Claude; Nock, Volker


    This work investigates a little explored driving mechanism to actuate droplets: the surface tension gradient which arises during the coalescence of two droplets of liquid having different compositions and therefore surface tensions. The resulting surface tension gradient gives rise to a Marangoni flow which, if sufficiently large, can displace the droplet. In order to understand, the flow dynamics arising during the coalescence of droplets of different fluids, a model has been developed in the lubrication framework. The numerical results confirm the existence of a self-propulsion window which depends on two dimensionless groups representing competing effects during the coalescence: the surface tension contrast between the droplets which promotes actuation and species diffusion which tends to make the mixture uniform thereby anihilating Marangoni flow and droplet motion. In parallel, experiments have been conducted to confirm this self-propulsion behaviour. The experiment consists in depositing a droplet of distilled water on a ``hydrophilic highway.'' This stripe was obtained by plasma-treating a piece of PDMS shielded in some parts by glass coverslips. This surface functionalization was found to be the most convenient way to control the coalescence. When a droplet of ethanol is deposited near the ``water slug,'' coalescence occurs and a rapid motion of the resulting mixture is observed. The support of the Dumont d'Urville NZ-France Science & Technology program is gratefully acknowledged.

  2. Enhanced actuation performance of piezoelectric fiber composites induced by incorporated BaTiO{sub 3} nanoparticles in epoxy resin

    Wu, Mingliang; Yuan, Xi [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Luo, Hang, E-mail: [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083 (China); Chen, Haiyan; Chen, Chao; Zhou, Kechao [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Zhang, Dou, E-mail: [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China)


    Piezoelectric fiber composites (PFCs) have attracted much interest owing to their flexibility and toughness compared with conventional monolithic piezoceramic wafers. The free strain values and actuation property of PFCs strongly depend on the active electric field applied in Pb(Zr{sub 1−x}Ti{sub x})O{sub 3} (PZT) fibers. Reducing the dielectric constant mismatch between PZT fiber and the assembling epoxy resin would greatly increase the active electric field in PZT fiber. Therefore, BaTiO{sub 3} (BT) nanoparticles were introduced into the epoxy resin to enhance the dielectric constant. Homogeneous dispersion of BT nanoparticles and tight adhesion with the epoxy resin were achieved through a surface modification by dopamine. The maximum dielectric constant of dopamine modified BT/epoxy (BT@Dop/epoxy) nanocomposites was 10.38 with 12 wt% BT@Dop content at 1 kHz. The maximum free strain of PFCs reached 1820 ppm with 6 wt% BT@Dop content, while PFCs assembled by pure epoxy showed 790 ppm at the same processing condition. The tip displacement of cantilever beam actuated by PFCs reached the peak of 19 mm at the resonance frequency with 6 wt% BT@Dop, which was improved by 90% comparing to PFCs with pure epoxy. - Highlights: • The effect of dielectric mismatch on effective electric field in piezoceramic fibers was explained by a model. • The dispersibility and adhesion of BaTiO{sub 3} nanoparticles in epoxy was improved by the dopamine modification. • The actuation performance increased firstly and then decreased with adding BaTiO{sub 3} nanoparticles. • The maximum free strain and displacement of cantilever beam were up to 1820 ppm and 19 mm, respectively.

  3. Pneumatically actuated hand tool

    Cool, J.C.; Rijnsaardt, K.A.


    Abstract of NL 9401195 (A) Pneumatically actuated hand tool for carrying out a mechanical operation, provided with an exchangeable gas cartridge in which the gas which is required for pneumatic actuation is stored. More particularly, the hand tool is provided with at least one pneumatic motor, at

  4. Sensors and actuators, Twente

    Bergveld, P.


    This paper describes the organization and the research programme of the Sensor and Actuator (S&A) Research Unit of the University of Twente, Enschede, the Netherlands. It includes short descriptions of all present projects concerning: micromachined mechanical sensors and actuators, optical sensors,

  5. Dynamic properties of a metal photo-thermal micro-actuator.

    Shi, B; Zhang, H J; Wang, B; Yi, F T; Jiang, J Z; Zhang, D X


    This work presents the design, modeling, simulation, and characterization of a metal bent-beam photo-thermal micro-actuator. The mechanism of actuation is based on the thermal expansion of the micro-actuator which is irradiated by a laser, achieving noncontact control of the power supply. Models for micro-actuators were established and finite-element simulations were carried out to investigate the effects of various parameters on actuation properties. It is found that the thermal expansion coefficient, thermal conductivity, and the geometry size largely affected actuation behavior whereas heat capacity, density, and Young's modulus did not. Experiments demonstrated the dynamic properties of a Ni micro-actuator fabricated via LIGA technology with 1100/30/100 μm (long/wide/thick) arms. The tip displacement of the micro-actuator could achieve up to 42 μm driven by a laser beam (1064 nm wavelength, 1.2 W power, and a driving frequency of 1 HZ). It is found that the tip displacement decreases with increasing laser driving frequency. For 8 Hz driving frequency, 17 μm (peak-valley value) can be still reached, which is large enough for the application as micro-electro-mechanical systems. Metal photo-thermal micro actuators have advantages such as large displacement, simple structure, and large temperature tolerance, and therefore they will be promising in the fields of micro/nanotechnology.

  6. Nanoporous Carbide-Derived Carbon Material-Based Linear Actuators

    Janno Torop


    Full Text Available Devices using electroactive polymer-supported carbon material can be exploited as alternatives to conventional electromechanical actuators in applications where electromechanical actuators have some serious deficiencies. One of the numerous examples is precise microactuators. In this paper, we show for first time the dilatometric effect in nanocomposite material actuators containing carbide-derived carbon (CDC and polytetrafluoroetylene polymer (PTFE. Transducers based on high surface area carbide-derived carbon electrode materials are suitable for short range displacement applications, because of the proportional actuation response to the charge inserted, and high Coulombic efficiency due to the EDL capacitance. The material is capable of developing stresses in the range of tens of N cm-2. The area of an actuator can be dozens of cm2, which means that forces above 100 N are achievable. The actuation mechanism is based on the interactions between the high-surface carbon and the ions of the electrolyte. Electrochemical evaluations of the four different actuators with linear (longitudinal action response are described. The actuator electrodes were made from two types of nanoporous TiC-derived carbons with surface area (SA of 1150 m2 g-1 and 1470 m2 g-1, respectively. Two kinds of electrolytes were used in actuators: 1.0 M tetraethylammonium tetrafluoroborate (TEABF4 solution in propylene carbonate and pure ionic liquid 1-ethyl-3-methylimidazolium trifluoromethanesulfonate (EMITf. It was found that CDC based actuators exhibit a linear movement of about 1% in the voltage range of 0.8 V to 3.0 V at DC. The actuators with EMITf electrolyte had about 70% larger movement compared to the specimen with TEABF4 electrolyte.

  7. Conjugated Polymers as Actuators: Modes of Actuation

    Skaarup, Steen

    The physical and chemical properties of conjugated polymers often depend very strongly on the degree of doping with anions or cations. The movement of ions in and out of the polymer matrix as it is redox cycled is also accompanied by mechanical changes. Both the volume and the stiffness can exhibit...... significant differences between the oxidized and reduced states. These effects form the basis of the use of conjugated polymers as actuators (or “artificial muscles”) controllable by a small (1-10 V) voltage. Three basic modes of actuation (bending, linear extension and stiffness change) have been proposed...

  8. Conjugated polymers as actuators: modes of actuation

    Skaarup, Steen


    The physical and chemical properties of conjugated polymers often depend very strongly on the degree of doping with anions or cations. The movement of ions in and out of the polymer matrix as it is redox cycled is also accompanied by mechanical changes. Both the volume and the stiffness can exhibit...... significant differences between the oxidized and reduced states. These effects form the basis of the use of conjugated polymers as actuators (or “artificial muscles”) controllable by a small (1-10 V) voltage. Three basic modes of actuation (bending, linear extension and stiffness change) have been proposed...

  9. Environmental Effects on the Polypyrrole Tri-layer Actuator

    Nirul Masurkar


    Full Text Available Electroactive polymer actuators such as polypyrrole (PPy are exciting candidates to drive autonomous devices that require low weight and low power. A simple PPy tri-layer bending type cantilever which operates in the air has been demonstrated previously, but the environmental effect on this actuator is still unknown. The major obstacle in the development of the PPy tri-layer actuator is to create proper packaging that reduces oxidation of the electrolyte and maintains constant displacement. Here, we report the variation in the displacement as well as the charge transfer at the different environmental condition. PPy trilayer actuators were fabricated by depositing polypyrrole on gold-coated porous poly(vinylidene fluoride (PVDF using the electro-synthesis method. It has been demonstrated that the charge transfer of tri-layer actuators is more in an inert environment than in open air. In addition, tri-layer actuators show constant deflection and enhancement of life due to the negligible oxidation rate of the electrolyte in an inert environment.

  10. Maximum Fidelity

    Kinkhabwala, Ali


    The most fundamental problem in statistics is the inference of an unknown probability distribution from a finite number of samples. For a specific observed data set, answers to the following questions would be desirable: (1) Estimation: Which candidate distribution provides the best fit to the observed data?, (2) Goodness-of-fit: How concordant is this distribution with the observed data?, and (3) Uncertainty: How concordant are other candidate distributions with the observed data? A simple unified approach for univariate data that addresses these traditionally distinct statistical notions is presented called "maximum fidelity". Maximum fidelity is a strict frequentist approach that is fundamentally based on model concordance with the observed data. The fidelity statistic is a general information measure based on the coordinate-independent cumulative distribution and critical yet previously neglected symmetry considerations. An approximation for the null distribution of the fidelity allows its direct conversi...

  11. Cryogenic Piezoelectric Actuator

    Jiang, Xiaoning; Cook, William B.; Hackenberger, Wesley S.


    In this paper, PMN-PT single crystal piezoelectric stack actuators and flextensional actuators were designed, prototyped and characterized for space optics applications. Single crystal stack actuators with footprint of 10 mm x10 mm and the height of 50 mm were assembled using 10 mm x10mm x0.15mm PMN-PT plates. These actuators showed stroke > 65 - 85 microns at 150 V at room temperature, and > 30 microns stroke at 77 K. Flextensional actuators with dimension of 10mm x 5 mm x 7.6 mm showed stroke of >50 microns at room temperature at driving voltage of 150 V. A flextensional stack actuator with dimension of 10 mm x 5 mm x 47 mm showed stroke of approx. 285 microns at 150 V at room temperature and > 100 microns at 77K under driving of 150 V should be expected. The large cryogenic stroke and high precision of these actuators are promising for cryogenic optics applications.

  12. Droplet actuation induced by coalescence: experimental evidences and phenomenological modeling

    Sellier, Mathieu; Gaubert, Cécile; Verdier, Claude


    This paper considers the interaction between two droplets placed on a substrate in immediate vicinity. We show here that when the two droplets are of different fluids and especially when one of the droplet is highly volatile, a wealth of fascinating phenomena can be observed. In particular, the interaction may result in the actuation of the droplet system, i.e. its displacement over a finite length. In order to control this displacement, we consider droplets confined on a hydrophilic stripe created by plasma-treating a PDMS substrate. This controlled actuation opens up unexplored opportunities in the field of microfluidics. In order to explain the observed actuation phenomenon, we propose a simple phenomenological model based on Newton's second law and a simple balance between the driving force arising from surface energy gradients and the viscous resistive force. This simple model is able to reproduce qualitatively and quantitatively the observed droplet dynamics.

  13. Analytical design model for a piezo-composite unimorph actuator and its verification using lightweight piezo-composite curved actuators

    Yoon, K. J.; Park, K. H.; Lee, S. K.; Goo, N. S.; Park, H. C.


    This paper describes an analytical design model for a layered piezo-composite unimorph actuator and its numerical and experimental verification using a LIPCA (lightweight piezo-composite curved actuator) that is lighter than other conventional piezo-composite type actuators. The LIPCA is composed of top fiber composite layers with high modulus and low CTE (coefficient of thermal expansion), a middle PZT ceramic wafer, and base layers with low modulus and high CTE. The advantages of the LIPCA design are to replace the heavy metal layer of THUNDER by lightweight fiber-reinforced plastic layers without compromising the generation of high force and large displacement and to have design flexibility by selecting the fiber direction and the number of prepreg layers. In addition to the lightweight advantage and design flexibility, the proposed device can be manufactured without adhesive layers when we use a resin prepreg system. A piezo-actuation model for a laminate with piezo-electric material layers and fiber composite layers is proposed to predict the curvature and residual stress of the LIPCA. To predict the actuation displacement of the LIPCA with curvature, a finite element analysis method using the proposed piezo-actuation model is introduced. The predicted deformations are in good agreement with the experimental ones.

  14. Large Stroke High Fidelity PZN-PT Single Crystal "Stake" Actuator.

    Huang, Yu; Xia, Yue Xue; Lin, Dian Hua; Yao, Kui; Lim, Leong Chew


    A new piezoelectric actuator design, called "Stake" actuator, is proposed and demonstrated in this work. As an example, the stake actuator is made of four d32-mode PZN-5.5%PT single crystals, each of 25mmL × 8mmW × 0.4mmT in dimensions, bonded with the aid of polycarbonate (PC) edge guide-cum-stiffeners into a square-pipe configuration for improved bending and twisting strengths and capped with top and bottom pedestals made of 1.5 mm thick anodized aluminium. The resultant stake actuator measured 9 mm × 9 mm × 28 mm. The hollow structure is a key design feature, which optimizes single crystal usage efficiency and lowers the overall cost of the actuator. The displacement-voltage responses, blocking forces, resonance characteristics of the fabricated stake actuator, as well as the load and temperature effects, are measured and discussed. Since d32 is negative for [011]-poled single crystal, the "Stake" actuator contracts in the axial direction when a positive polarity field is applied to the crystals. Biased drive is thus recommended when extensional displacement is desired. The single crystal stake actuator has negligible ( 0.13% when driven up to +300V (i.e., 0.75 kV/mm), which is close to the rhombohedral-to-orthorhombic transformation field (E RO) of 0.85 kV/mm of the single crystal used. The stake actuator displays a stroke of -36.5 μm (at +300V) despite its small overall dimensions, and has a blocking force of 114 N. The single crystal d 32 stake actuator fabricated displays more than 30% larger axial strain than the state-of-the-art PZT stack actuators of comparable length as well as moderate blocking forces. Said actuators are thus ideal for applications when large displacements with simple open loop control are preferred.

  15. Modeling of a three degrees of freedom piezo-actuated mechanism

    Zhu, Wei; Rui, Xiao Ting


    This paper presents the modeling and experimentation of a three degrees of freedom (3-DOF) piezo-actuated mechanism. The displacements of the piezoelectric stack actuators are amplified with lever mechanisms to achieve large displacement output. In order to accurately model the mechanism, a comprehensive model, which uses the transfer matrix method to describe the dynamics characteristics and the modified Bouc-Wen hysteresis operator to represent the hysteresis, is presented. Ultimately, the proposed comprehensive model of the mechanism is experimentally investigated for its performance. Experimental results show that the proposed comprehensive model can accurately portray the hysteresis and dynamics characteristics of the 3-DOF piezo-actuated mechanism.

  16. Fabrication and characterization of solid state conducting polymer actuators

    Xie, Jian; Sansinena, Jose-Maria; Gao, Junbo; Wang, Hsing-Lin


    We report here the fabrication and characterization of solid-state conducting polymer actuators. The electrochemical activity of polyaniline (PANI) thin film coated with solid-state polyelectrolyte is very similar to the polyaniline thin film in an aqueous solution. The solid-state actuator is adhered to a lever arm of a force transducer and the force generation is measured in real time. The force generated by the actuator is found to be length dependent. However, the overall torque generated by the actuators with different lengths remains essentially the same. The effect of stimulation signals such as voltage, and current, on the bending angle and displacement is also studied using square wave potential.

  17. Design Optimization for an Electro-Thermally Actuated Polymeric Microgripper

    Voicu, R; Eftime, L


    Thermal micro-actuators are a promising solution to the need for large-displacement, gentle handling force, low-power MEMS actuators. Potential applications of these devices are micro-relays, assembling and miniature medical instrumentation. In this paper the development of thermal microactuators based on SU-8 polymer is described. The paper presents the development of a new microgripper which can realize a movement of the gripping arms with possibility for positioning and manipulating of the gripped object. Two models of polymeric microgripper electrothermo- mechanical actuated, using low actuation voltages, designed for SU-8 polymer fabrication were presented. The electro-thermal microgrippers were designed and optimized using finite element simulations. Electro-thermo-mechanical simulations based on finite element method were performed for each of the model in order to compare the results. Preliminary experimental tests were carried out.

  18. Magnetically Actuated Seal

    Pinera, Alex


    This invention is a magnetically actuated seal in which either a single electromagnet, or multiple electromagnets, are used to control the seal's position. This system can either be an open/ close type of system or an actively controlled system.

  19. Magnetically Actuated Seal Project

    National Aeronautics and Space Administration — FTT proposes development of a magnetically actuated dynamic seal. Dynamic seals are used throughout the turbopump in high-performance, pump-fed, liquid rocket...

  20. Muscle Motion Solenoid Actuator

    Obata, Shuji

    It is one of our dreams to mechanically recover the lost body for damaged humans. Realistic humanoid robots composed of such machines require muscle motion actuators controlled by all pulling actions. Particularly, antagonistic pairs of bi-articular muscles are very important in animal's motions. A system of actuators is proposed using the electromagnetic force of the solenoids with the abilities of the stroke length over 10 cm and the strength about 20 N, which are needed to move the real human arm. The devised actuators are based on developments of recent modern electro-magnetic materials, where old time materials can not give such possibility. Composite actuators are controlled by a high ability computer and software making genuine motions.

  1. Tendon Driven Finger Actuation System

    Ihrke, Chris A. (Inventor); Reich, David M. (Inventor); Bridgwater, Lyndon (Inventor); Linn, Douglas Martin (Inventor); Askew, Scott R. (Inventor); Diftler, Myron A. (Inventor); Platt, Robert (Inventor); Hargrave, Brian (Inventor); Valvo, Michael C. (Inventor); Abdallah, Muhammad E. (Inventor); hide


    A humanoid robot includes a robotic hand having at least one finger. An actuation system for the robotic finger includes an actuator assembly which is supported by the robot and is spaced apart from the finger. A tendon extends from the actuator assembly to the at least one finger and ends in a tendon terminator. The actuator assembly is operable to actuate the tendon to move the tendon terminator and, thus, the finger.

  2. High-Contrast Coronagraph Performance in the Presence of DM Actuator Defects

    Sidick, Erkin; Shaklan, Stuart; Cady, Eric


    Deformable Mirrors (DMs) are critical elements in high contrast coronagraphs, requiring precision and stability measured in picometers to enable detection of Earth-like exoplanets. Occasionally DM actuators or their associated cables or electronics fail, requiring a wavefront control algorithm to compensate for actuators that may be displaced from their neighbors by hundreds of nanometers. We have carried out experiments on our High-Contrast Imaging Testbed (HCIT) to study the impact of failed actuators in partial fulfillment of the Terrestrial Planet Finder Coronagraph optical model validation milestone. We show that the wavefront control algorithm adapts to several broken actuators and maintains dark-hole contrast in broadband light.

  3. Design and investigation of a linear smart actuator

    Krishna Chaitanya, S.; Dhanalakshmi, K.


    Motors are nearly the sole constituents for actuation and driving applications, but there exist cases where their use proves to be impractical. Shape memory alloy (SMA), then revolutionized the actuator technology, thereby opening the door for new ideas and designs and with it what seemed unfeasible in the past have now become challenging. Many conventional actuators and sensors could be substituted with SMA, obtaining advantages in terms of reduction of weight, dimensions and its cost. SMAs are a group of metallic materials that revert to a predefined shape via phase transformation induced by a thermal procedure. Unlike metals that exhibit thermal expansion, SMA exhibits contraction when heated, which is larger by a hundredfold and exerts tremendous force for its small size. The focus of this work is to realize SMA wire as actuator which finds suitable applications (space, aerospace, biomechanics, etc.) where minimizing space, weight and cost are prime objectives. The accomplishments reported in this paper represent a significant development in the design of SMA actuator configurations for linear actuation. Report on design, fabrication and characterisation of the proposed system is presented. The design took advantage of converting the small linear displacement of the SMA wire into a large linear elastic motion under the influence of biasing element. From the results with control it is aspired that with further improvements on the design, the actuator can be utilized in enabling practical SMA technologies for potential robotic and commercial applications.

  4. Electro-mechanical behavior of a shape memory alloy actuator

    Pausley, Matthew E.; Furst, Stephen J.; Talla, Vamsi; Seelecke, Stefan


    This paper presents experimental study and numerical simulation of the electro-thermo-mechanical behavior of a commercially available Flexinol shape memory alloy (SMA) wire [1]. Recently, a novel driver device has been presented [2], which simultaneously controls electric power and measures resistance of an SMA wire actuator. This application of a single wire as both actuator and sensor will fully exploit the multifunctional nature of SMA materials and minimize system complexity by avoiding extra sensors. Though the subject is not new [3-6], comprehensive resistance data under controlled conditions for time-resolved and hysteresis-based experiments is not readily available from the literature. A simple experimental setup consisting of a Flexinol wire mounted in series with the tip of a compliant cantilever beam is used to systematically study the SMA behavior. A Labview-based data acquisition system measures actuator displacement and SMA wire stress and resistance and controls the power passed through the SMA actuator wire. The experimental setup is carefully insulated from ambient conditions, as the thermal response of a 50-micron diameter Flexinol wire is extremely sensitive to temperature fluctuation due to convective heat transfer. Actuator performance is reported for a range of actuation frequencies and input power levels. The effect of varying actuator pre-stress is reported as well. All of the experimental data is compared with simulated behavior that is derived from a numerical model for SMA material [7-10].

  5. Positioning magnetorheological actuator

    Mikhailov, Valery; Bazinenkov, Alexey; Akimov, Igor [Bauman Moscow State Technical University, 2-nd Baumanskaia st. 5, MT-11, 105005, Moscow (Russian Federation); Borin, Dmitry [Technische Universitaet Dresden, Chair of Magnetofluiddynamics, 01062, Dresden (Germany)], E-mail:


    In this work we consider a construction of a positioning magnetorheological actuator based on bellow units, as well as dynamical model, which include such elements as a magnetically hysteresis, pressure loses in hydraulic system, nonlinearity of rheological behaviour of working fluid. Two operating modes of positioning actuator are taken into account and transients are presented. Dynamical modelling shows possibility for the improvement of a real control system and ensure of submicron precision of positioning with millisecond time of response.

  6. Modeling of a corrugated dielectric elastomer actuator for artificial muscle applications

    Kadooka, Kevin; Taya, Minoru; Naito, Keishi; Saito, Makoto


    Dielectric elastomer actuators have many advantages, including light weight, simplicity, high energy density, and silent operation. These features make them suitable to replace conventional actuators and transducers, especially in artificial muscle applications where large contractile strains are necessary for lifelike motions. This paper will introduce the concept of a corrugated dielectric elastomer actuator (DEA), which consists of dielectric elastomer (DE) laminated to a thin elastic layer to induce bending motion at each of the corrugations, resulting in large axial deformation. The location of the DE and elastic layers can be configured to provide tensile or compressive axial strain. Such corrugated DE actuators are also highly scalable: linking multiple actuators in series results in greater deformation, whereas multiple actuators in parallel results in larger force output. Analytical closed-form solutions based on linear elasticity were derived for the displacement and force output of curved unimorph and corrugated DEA, both consisting of an arbitrary number of lamina. A total strain energy analysis and Castigiliano's theorem were used to predict the nonlinear force-displacement behavior of the corrugated actuator. Curved unimorph and corrugated DEA were fabricated using VHB F9469PC as the DE material. Displacement of the actuators observed during testing agreed well with the modeling results. Large contractile strain (25.5%) was achieved by the corrugated DEA. Future work includes investigating higher performance DE materials such as plasticized PVDF terpolymers, processed by thin film deposition methods.

  7. Modeling and design of a high-performance hybrid actuator

    Aloufi, Badr; Behdinan, Kamran; Zu, Jean


    This paper presents the model and design of a novel hybrid piezoelectric actuator which provides high active and passive performances for smart structural systems. The actuator is composed of a pair of curved pre-stressed piezoelectric actuators, so-called commercially THUNDER actuators, installed opposite each other using two clamping mechanisms constructed of in-plane fixable hinges, grippers and solid links. A fully mathematical model is developed to describe the active and passive dynamics of the actuator and investigate the effects of its geometrical parameters on the dynamic stiffness, free displacement and blocked force properties. Among the literature that deals with piezoelectric actuators in which THUNDER elements are used as a source of electromechanical power, the proposed study is unique in that it presents a mathematical model that has the ability to predict the actuator characteristics and achieve other phenomena, such as resonances, mode shapes, phase shifts, dips, etc. For model validation, the measurements of the free dynamic response per unit voltage and passive acceleration transmissibility of a particular actuator design are used to check the accuracy of the results predicted by the model. The results reveal that there is a good agreement between the model and experiment. Another experiment is performed to teste the linearity of the actuator system by examining the variation of the output dynamic responses with varying forces and voltages at different frequencies. From the results, it can be concluded that the actuator acts approximately as a linear system at frequencies up to 1000 Hz. A parametric study is achieved here by applying the developed model to analyze the influence of the geometrical parameters of the fixable hinges on the active and passive actuator properties. The model predictions in the frequency range of 0-1000 Hz show that the hinge thickness, radius, and opening angle parameters have great effects on the frequency dynamic

  8. Low-Actuation Voltage MEMS Digital-to-Analog Converter with Parylene Spring Structures

    Cheng-Wen Ma


    Full Text Available We propose an electrostatically-actuated microelectromechanical digital-to-analog converter (M-DAC device with low actuation voltage. The spring structures of the silicon-based M-DAC device were monolithically fabricated using parylene-C. Because the Young’s modulus of parylene-C is considerably lower than that of silicon, the electrostatic microactuators in the proposed device require much lower actuation voltages. The actuation voltage of the proposed M-DAC device is approximately 6 V, which is less than one half of the actuation voltages of a previously reported M-DAC equipped with electrostatic microactuators. The measured total displacement of the proposed three-bit M-DAC is nearly 504 nm, and the motion step is approximately 72 nm. Furthermore, we demonstrated that the M-DAC can be employed as a mirror platform with discrete displacement output for a noncontact surface profiling system.

  9. Self-sensing of dielectric elastomer actuator enhanced by artificial neural network

    Ye, Zhihang; Chen, Zheng


    Dielectric elastomer (DE) is a type of soft actuating material, the shape of which can be changed under electrical voltage stimuli. DE materials have promising usage in future’s soft actuators and sensors, such as soft robotics, energy harvesters, and wearable sensors. In this paper, a stripe DE actuator with integrated sensing capability is designed, fabricated, and characterized. Since the strip actuator can be approximated as a compliant capacitor, it is possible to detect the actuator’s displacement by analyzing the actuator’s impedance change. An integrated sensing scheme that adds a high frequency probing signal into actuation signal is developed. Electrical impedance changes in the probing signal are extracted by fast Fourier transform algorithm, and nonlinear data fitting methods involving artificial neural network are implemented to detect the actuator’s displacement. A series of experiments show that by improving data processing and analyzing methods, the integrated sensing method can achieve error level of lower than 1%.

  10. Compact electrostatic comb actuator

    Rodgers, M. Steven; Burg, Michael S.; Jensen, Brian D.; Miller, Samuel L.; Barnes, Stephen M.


    A compact electrostatic comb actuator is disclosed for microelectromechanical (MEM) applications. The actuator is based upon a plurality of meshed electrostatic combs, some of which are stationary and others of which are moveable. One or more restoring springs are fabricated within an outline of the electrostatic combs (i.e. superposed with the moveable electrostatic combs) to considerably reduce the space required for the actuator. Additionally, a truss structure is provided to support the moveable electrostatic combs and prevent bending or distortion of these combs due to unbalanced electrostatic forces or external loading. The truss structure formed about the moveable electrostatic combs allows the spacing between the interdigitated fingers of the combs to be reduced to about one micron or less, thereby substantially increasing the number of active fingers which can be provided in a given area. Finally, electrostatic shields can be used in the actuator to substantially reduce unwanted electrostatic fields to further improve performance of the device. As a result, the compact electrostatic comb actuator of the present invention occupies only a fraction of the space required for conventional electrostatic comb actuators, while providing a substantial increase in the available drive force (up to one-hundred times).

  11. A single-mask thermal displacement sensor in MEMS

    Krijnen, B.; Krijnen, B.; Hogervorst, R.P.; van Dijk, J.W.; Engelen, Johannes Bernardus Charles; Woldering, L.A.; Brouwer, Dannis Michel; Abelmann, Leon; Soemers, Herman


    This work presents a MEMS displacement sensor based on the conductive heat transfer of a resistively heated silicon structure towards an actuated stage parallel to the structure. This differential sensor can be easily incorporated into a silicon-on-insulator-based process, and fabricated within the

  12. A micropower miniature piezoelectric actuator for implantable middle ear hearing device.

    Wang, Zhigang; Mills, Robert; Luo, Hongyan; Zheng, Xiaolin; Hou, Wensheng; Wang, Lijun; Brown, Stuart I; Cuschieri, Alfred


    This paper describes the design and development of a small actuator using a miniature piezoelectric stack and a flextensional mechanical amplification structure for an implantable middle ear hearing device (IMEHD). A finite-element method was used in the actuator design. Actuator vibration displacement was measured using a laser vibrometer. Preliminary evaluation of the actuator for an IMEHD was conducted using a temporal bone model. Initial results from one temporal bone study indicated that the actuator was small enough to be implanted within the middle ear cavity, and sufficient stapes displacement can be generated for patients with mild to moderate hearing losses, especially at higher frequency range, by the actuator suspended onto the stapes. There was an insignificant mass-loading effect on normal sound transmission (actuator was attached to the stapes and switched off. Improved vibration performance is predicted by more firm attachment. The actuator power consumption and its generated equivalent sound pressure level are also discussed. In conclusion, the actuator has advantages of small size, lightweight, and micropower consumption for potential use as IMHEDs.

  13. Job Displacement and Crime

    Bennett, Patrick; Ouazad, Amine

    individuals, i.e. high-tenure workers with strong attachment to their firm, who lose employment during a mass-layoff event. Pre-displacement data suggests no evidence of endogenous selection of workers for displacement during mass-layoffs: displaced workers’ propensity to commit crime exhibits...... theory of crime. Marital dissolution is more likely post-displacement, and we find small intra-family externalities of adult displacement on younger family members’ crime. The impact of displacement on crime is stronger in municipalities with higher capital and labor income inequalities....

  14. Bimaterial lattices as thermal adapters and actuators

    Toropova, Marina M.; Steeves, Craig A.


    The goal of this paper is to demonstrate how anisotropic biomaterial lattices can be used in thermal actuation. Compared to other lattices with tailored thermal expansion, the anisotropy of these bimaterial lattices makes them uniquely suitable for use as thermal actuators. Each individual cell, and hence lattices consisting of such cells, can be designed with widely different predetermined coefficients of thermal expansion (CTE) in different directions, enabling complex shape changes appropriate for actuation with either passive or active control. The lattices are composed of planar non-identical cells that each consist of a skewed hexagon surrounding an irregular triangle. The cells and all members of any cell are connected to each other by pins so that they have no rotational constraints and are able to expand or contract freely. In this case, the skew angles of the hexagon and the ratio of the CTEs of the two component materials determine the overall performance of the lattice. At its boundaries, the lattice is connected to substrates by pins and configured such that the CTE between two neighboring lattice vertices coincides with the CTE of the adjacent substrate. Provided the boundary behavior of the lattice is matched to the thermal properties of the substrates, temperature changes in the structure produce thermal strains without producing any corresponding stresses. Such lattices can be used in three different ways: as adaptive elements for stress-free connection of components with different CTEs; for fine tuning of structures; and as thermally driven actuators. In this paper, we demonstrate some concepts for lattice configurations that produce thermally-driven displacements that enable several actuators: a switch, a valve and tweezers.

  15. Design and experiment performances of an inchworm type rotary actuator.

    Li, Jianping; Zhao, Hongwei; Shao, Mingkun; Zhou, Xiaoqin; Huang, Hu; Fan, Zunqiang


    A piezo-driven rotary actuator by means of inchworm principle is proposed in this paper. Six piezo-stacks and flexure hinges are used to realize large rotation ranges with high accuracy both in the forward and backward motions. Four right-angle flexure hinges and two right-circular flexure hinges are applied in the stator. The motion principle and theoretical analysis of the designed actuator are discussed. In order to investigate the working characteristics, a prototype actuator was manufactured and a series of experiment tests were carried out. The test results indicate that the maximum rotation velocity is 71,300 μrad/s; the maximum output torque is 19.6 N mm. The experiment results confirm that the designed actuator can obtain large rotation motion ranges with relatively high output torques and different rotation speeds on the condition of different driving voltages and frequencies.

  16. A Michelson interferometer system for testing the stability of a piezo-electric actuator intended for use in space

    Aplin, K L; Middleton, K F [Space Science and Technology Department, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxon, OX11 0QX (United Kingdom)


    The Laser Interferometer Space Antenna (LISA) experiment will search for gravitational waves generated by cataclysmic events far back in astronomical history. LISA is an interferometer formed by three spacecraft positioned five million km apart, and to observe gravitational waves, it must monitor test mass positions with picometre level resolution. One of the numerous technological challenges is to identify an actuator with appropriate accuracy, precision and stability for positioning of the optical fibres used to deliver LISA's laser sources. We have developed a Michelson interferometer system to determine the temporal and thermal stability of candidate actuators, with an emphasis on characterisation in the milliHertz frequency range required for gravitational wave detection in space. This paper describes the interferometer data logging and calibration and presents preliminary results in the form of a 'noise spectrum' generated from the small perturbation of a nominally static mirror. The maximum displacement of the mirror was {approx}50 nm with sub-Hz noise levels of 0.1-1 nm{radical}Hz. This is within the LISA noise specification, and confirms that the apparatus is stable enough for the characterisation of the actuator.

  17. Statelessness and environmental displacement

    Jessie Connell


    Full Text Available Stateless people and migrants are at greater risk of displacement and are less likely to receive assistance; in turn, environmental displacement (especially multiple migrations heightens the risk of becoming stateless.



    The piezothermoelectric actuator/sensor collocation for advanced intelligent structure is studied. The quasi-static equations of piezothermoelasticity are used to analyze the coupling effects between the displacement, temperature and electric fields of piezothermoelasticity continua and the governing equations for piezothermoelectric continua are derived to discuss the effects of coupling factors on the control/sensing performance in intelligent structure. Based on those analyses,a finite element analysis model of distributed piezothermoelectric continua is developed later. The thermal stress and deformation of a beam are calculated by FEA method so as to determine the optimal actuator/sensor placement. Based on the results of the optimal analysis procedure of actuator/sensor placement, some conclusions of actuator/sensor placement are obtained. Thus, the optimal actuator/sensor placement for piezothermoelectric intelligent structure can be found from the actuator/sensor placements available so that intelligent system will have the best controllability and observability.

  19. Investigation on actuation and thermo-mechanical behaviour of Shape Memory Alloy spring using hot water

    Chouhan, Priya; Nath, Tameshwer; Lad, B. K.; Palani, I. A.


    In this paper, hot water is used as an actuation media for Shape memory alloy and its impact on the morphology of structure of Nitinol Shape Memory Alloy (SMA), is presented. With hot water actuation as the temperature reaches 70-80°C, spring gets fully compressed for the first few cycles followed by a displacement loss in actuation. This actuation loss is then studied with different characterization methods such as Thermo Gravimetric Analysis (TGA) and Scanning Electron Microscopy (SEM). With SEM results, it can be inferred that the energy source is not deteriorating the structure. Results observed from TGA shows high oxygen content at lower temperature limits with hot water actuation which suggest the need of conducting experiments in inert atmosphere. As a possible mechanism, a new actuation medium is introduced and various results can be seen in the paper discussed below.

  20. Compositional Effects on Electromechanical Degradation of RAINBOW Actuators

    Dausch, David E.; Wise, Stephanie A.


    The effect of ceramic composition on the electromechanical displacement degradation of RAINBOW (Reduced and Internally Biased Oxide Wafer) actuators was investigated. RAINBOWs were fabricated from commercially available PZT-5H and PZT-5A piezoelectric disks as well as from tape cast PLZT piezoelectric 7/65/35 and electrostrictive 9/65/35 compositions. Displacement properties were measured at low electric fields (10 to 13 kV/cm) under loads of 0 to 500 g, and displacement degradation as a function of time was observed over 107 cycles. The PZT-5A and PLZT 9/65/35 compositions exhibited minimal decrease in displacement when load was applied. Furthermore, these compositions retained approximately 65 percent of their initial displacement after 10(exp 7) cycles under a load of 300 g. PZT-5H and PLZT 7/65/35 degraded completely under these conditions.

  1. Digital Actuator Technology

    Ken Thomas; Ted Quinn; Jerry Mauck; Richard Bockhorst


    There are significant developments underway in new types of actuators for power plant active components. Many of these make use of digital technology to provide a wide array of benefits in performance of the actuators and in reduced burden to maintain them. These new product offerings have gained considerable acceptance in use in process plants. In addition, they have been used in conventional power generation very successfully. This technology has been proven to deliver the benefits promised and substantiate the claims of improved performance. The nuclear industry has been reluctant to incorporate digital actuator technology into nuclear plant designs due to concerns due to a number of concerns. These could be summarized as cost, regulatory uncertainty, and a certain comfort factor with legacy analog technology. The replacement opportunity for these types of components represents a decision point for whether to invest in more modern technology that would provide superior operational and maintenance benefits. Yet, the application of digital technology has been problematic for the nuclear industry, due to qualification and regulatory issues. With some notable exceptions, the result has been a continuing reluctance to undertake the risks and uncertainties of implementing digital actuator technology when replacement opportunities present themselves. Rather, utilities would typically prefer to accept the performance limitations of the legacy analog actuator technologies to avoid impacts to project costs and schedules. The purpose of this report is to demonstrate that the benefits of digital actuator technology can be significant in terms of plant performance and that it is worthwhile to address the barriers currently holding back the widespread development and use of this technology. It addresses two important objectives in pursuit of the beneficial use of digital actuator technology for nuclear power plants: 1. To demonstrate the benefits of digital actuator

  2. Investigation on driving characteristics of a piezoelectric stick–slip actuator based on resonant/off-resonant hybrid excitation

    Cheng, Tinghai; Li, Hengyu; He, Meng; Zhao, Hongwei; Lu, Xiaohui; Gao, Haibo


    A resonant/off-resonant hybrid excitation of a piezoelectric stick–slip actuator is proposed in this paper. It is accomplished by a resonant sinusoidal friction regulation wave (RSFR-wave) and an off-resonant saw-tooth wave (ORST-wave). The RSFR-wave is applied to the rapid deformation stage of the ORST-wave. In this stage, the first-order longitudinal vibration mode of the stator can be obtained. By this longitudinal vibration mode, the kinetic friction between the slider and frictional rod is obviously decreased utilizing ultrasonic friction reduction. The backward displacement is remarkably restrained. The high velocity, large mass of load and smooth displacement are achieved. The operation principle of hybrid excitation was discussed in detail, and a prototype was simulated, designed, and fabricated. A series of experiments were carried out and the results indicate that the step efficiency under the saw-tooth excitation and resonant/off-resonant hybrid excitation can realize 36.9% and 91.2%, respectively. The output velocity is increased by 147.23% relative to saw-tooth excitation. The minimum input power and the minimum driving voltage are decreased by 89.56% and 58.33%, respectively. Besides, the maximum mass of load capacity is 2.88 times that of saw-tooth excitation. The driving capacity of the actuator is increased by 466.13%.

  3. Production and characterization of rainbow piezoelectric actuators. Advantages from other traditional devices

    Durán-Martín, P.


    Full Text Available A new actuator called RAINBOW is presently intensively studied because of the extremely large displacement that it is able to generate. The aim of the present work is to fully characterize the performances of this kind of actuator in terms of voltage, frequency and temperature dependence of both maximum displacement and force generated. These results will be compared with the performances shown in the literature for some other traditional piezoelectric actuators. The present work explores two types of compositions for RAINBOWS fabrication: electrostrictive based on PLZT and ferroelectric PZT-based. Results show that this actuator can be engineered upon their thickness to optimize the performances. Maximum displacement and generated force increase in a rate of 7446 10-12 m/V and 2.9 N/kV, respectively, per mm of increase of disk diameter. The change with frequency of these properties along 0.01Hz to 500Hz range keeps within 20% for maximum displacement and 10% for blocking force. Thermal stability of the performaces shows an unexpected 50% of variation through the studied range from -40ºC up to 50ºC.

    Un nuevo actuador piezoeléctrico denominado RAINBOW está siendo intensamente estudiado a causa de los extremadamente altos desplazamientos que es capaz de realizar. La motivación del presente trabajo se centra en la caracterización exhaustiva de este tipo de actuadores, en términos de la dependencia del máximo desplazamiento y de la fuerza generados en función de la amplitud y la frecuencia del voltaje aplicado, así como de la temperatura. Dicha caracterización será objeto en algunos casos de comparación con los resultados presentes en la literatura respecto de otros actuadores piezoeléctricos tradicionales. El trabajo explora dos tipos de composiciones utilizadas en la fabricación de RAINBOWS: una electrostrictiva basada en PLZT y otra ferroeléctrica basada en PZT. Los resultados obtenidos demuestran que este tipo de

  4. A novel microgripper hybrid driven by a piezoelectric stack actuator and piezoelectric cantilever actuators

    Chen, Weilin; Zhang, Xianmin; Fatikow, Sergej


    For the piezo-driven microgripper, one issue is to enlarge the grasping stroke and realize parallel grasping movement in the compact design. Piezoelectric stack actuator (PSA) and piezoelectric cantilever actuator (PCA) are two kinds of typical piezoelectric actuators. In this study, a novel microgripper hybrid driven by a PSA and two PCAs is proposed, which can be a better solution for the issue, compared with the previous microgripper using PSA-driven multi-stages displacement amplification mechanism (DAM) or using longer and narrower PCAs. A compact one-stage orthogonal DAM is proposed for the PSA in the microgripper, which can enlarge the grasping stroke and realize parallel grasping movement. The proposed orthogonal DAM is a triangulation amplification-based mechanism with undetermined structural parameters. Bidirectional symmetric input forces/displacements are not required in the proposed design. The number of the undetermined parameters and the solution principle are analyzed. Finite element analysis is used to verify the proposed DAM. The gripper arms are designed as two PCAs, for which the grasping and parasitic movements of the free end are modeled. Piezoelectric-static coupling finite element analysis is used to verify the models. The PCAs-driven grasping with considerable parasitic movement can be used in the coarse positioning. The integration of the hybrid-driven microgripper is presented, and its performances are presented and verified by experiments.

  5. Design and Evaluation of a Direct Drive Valve Actuated by Piezostack Actuator

    Juncheol Jeon


    Full Text Available This paper presents performance characteristics of a new type of direct drive valve (DDV system driven by a piezostack actuator. The flexible beam mechanism is employed to amplify the output displacement from the piezostack actuator. After describing the operational principle of the proposed piezo DDV system, the governing equation of the whole piezo DDV system is then obtained by integrating the equations of the valve components. Based on the proposed model, significant structural components of the piezo DDV system are designed in order to achieve operational requirements (operating frequency: over 100 Hz; flow rate: 20 liter/Min.. An optimal design method is proposed for obtaining the geometry of the flexible beam mechanism by considering spool displacement, required operating frequency, and available space of the valve. After deciding the specific geometric dimensions of the piezo DDV system, a PID control algorithm is designed to enforce the spool position to the desired position trajectories by activating the piezostack actuator. Characteristics and control performances of the proposed piezo DDV system are evaluated using the MATLAB Simulink.

  6. Sensors and Actuators for the Advanced LIGO Mirror Suspensions

    Carbone, L; Cutler, R M; Freise, A; Greenhalgh, J; Heefner, J; Hoyland, D; Lockerbie, N A; Lodhia, D; Robertson, N A; Speake, C C; Strain, K A; Vecchio, A; 10.1088/0264-9381/29/11/115005


    We have developed, produced and characterised integrated sensors, actuators and the related read-out and drive electronics that will be used for the control of the Advanced LIGO suspensions. The overall system consists of the BOSEMs (displacement sensor with integrated electro-magnetic actuator), the satellite boxes (BOSEM readout and interface electronics) and six different types of coil-driver units. In this paper we present the design of this read-out and control system, we discuss the related performance relevant for the Advanced LIGO suspensions, and we report on the experimental activity finalised at the production of the instruments for the Advanced LIGO detectors.

  7. Magnetic Actuators and Sensors

    Brauer, John R.


    Magnetic actuators and sensors are needed to enable computer and manual control of motion. Magnetic actuators allow a small electrical signal to move small or large objects. To sense the amount of motion, magnetic sensors are frequently used. This book provides the most up-to-date coverage of topics important to modern engineers, both electrical and mechanical. The author includes the latest findings and design techniques from computer models. The latest software tools are used.

  8. Hydraulic involute cam actuator

    Love, Lonnie J.; Lind, Randall F.


    Mechanical joints are provided in which the angle between a first coupled member and a second coupled member may be varied by mechanical actuators. In some embodiments the angle may be varied around a pivot axis in one plane and in some embodiments the angle may be varied around two pivot axes in two orthogonal planes. The joints typically utilize a cam assembly having two lobes with an involute surface. Actuators are configured to push against the lobes to vary the rotation angle between the first and second coupled member.

  9. Actuator concepts and mechatronics

    Gilbert, Michael G.; Horner, Garnett C.


    Mechatronic design implies the consideration of integrated mechanical, electrical, and local control characteristics in electromechanical device design. In this paper, mechatronic development of actuation device concepts for active aircraft aerodynamic flow control are presented and discussed. The devices are intended to be embedded in aircraft aerodynamic surfaces to provide zero-net-momentum jets or additional flow-vorticity to control boundary layers and flow- separation. Two synthetic jet device prototypes and one vorticity-on-demand prototype currently in development are described in the paper. The aspects of actuation materials, design approaches to generating jets and vorticity, and the integration of miniaturized electronics are stressed.

  10. Fault tolerant linear actuator

    Tesar, Delbert


    In varying embodiments, the fault tolerant linear actuator of the present invention is a new and improved linear actuator with fault tolerance and positional control that may incorporate velocity summing, force summing, or a combination of the two. In one embodiment, the invention offers a velocity summing arrangement with a differential gear between two prime movers driving a cage, which then drives a linear spindle screw transmission. Other embodiments feature two prime movers driving separate linear spindle screw transmissions, one internal and one external, in a totally concentric and compact integrated module.

  11. Design and property analysis of a hybrid linear actuator based on shape memory alloy

    Zhang, Xiaoguang; Hu, Jinhong; Mao, Shixin; Dong, Erbao; Yang, Jie


    This paper introduces two methods for solving two bottlelike problems regarding the shape memory alloy (SMA) application as actuators. These methods are ‘rotating output,’ which aims to solve the problem of the low working frequency caused by the demand for cool time, and ‘accumulated shifting,’ which solves the problem of difficult-to-obtain output displacements in a large scale. We also introduce a hybrid linear actuator that applies the two methods and achieves both a strong force and an accurate large output displacement while working at a high frequency based on the SMA wires and DC motors. A prototype of this actuator was fabricated and tested to verify the two methods. This hybrid actuator system dynamic model, which was composed of the constitutive model of the SMA, the electrical and heat transfer behavior of the SMA wires and the dynamics of the linear actuation system, was established and discussed. Our study aims to illuminate the application of an SMA in actuators with the proposed methods with regard to its two main problems. An actuator with a high power-weight ratio and the capability to work at a high frequency, as well as accurate linear step displacements in a large scale, is also presented.

  12. Development of in-series piezoelectric bimorph bending beam actuators for active flow control applications

    Chan, Wilfred K.; Clingman, Dan J.; Amitay, Michael


    Piezoelectric materials have long been used for active flow control purposes in aerospace applications to increase the effectiveness of aerodynamic surfaces on aircraft, wind turbines, and more. Piezoelectric actuators are an appropriate choice due to their low mass, small dimensions, simplistic design, and frequency response. This investigation involves the development of piezoceramic-based actuators with two bimorphs placed in series. Here, the main desired characteristic was the achievable displacement amplitude at specific driving voltages and frequencies. A parametric study was performed, in which actuators with varying dimensions were fabricated and tested. These devices were actuated with a sinusoidal waveform, resulting in an oscillating platform on which to mount active flow control devices, such as dynamic vortex generators. The main quantification method consisted of driving these devices with different voltages and frequencies to determine their free displacement, blocking force, and frequency response. It was found that resonance frequency increased with shorter and thicker actuators, while free displacement increased with longer and thinner actuators. Integration of the devices into active flow control test modules is noted. In addition to physical testing, a quasi-static analytical model was developed and compared with experimental data, which showed close correlation for both free displacement and blocking force.

  13. Climbing robot actuated by meso-hydraulic artificial muscles

    Bryant, Matthew; Fitzgerald, Jason; Miller, Samuel; Saltzman, Jonah; Kim, Sangkyu; Lin, Yong; Garcia, Ephrahim


    This paper presents the design, construction, experimental characterization, and system testing of a legged, wall-climbing robot actuated by meso-scale hydraulic artificial muscles. While small wall-climbing robots have seen increased research attention in recent years, most authors have primarily focused on designs for the gripping and adhesion of the robot to the wall, while using only standard DC servo-motors for actuation. This project seeks to explore and demonstrate a different actuation mechanism that utilizes hydraulic artificial muscles. A four-limb climbing robot platform that includes a full closed-loop hydraulic power and control system, custom hydraulic artificial muscles for actuation, an on-board microcontroller and RF receiver for control, and compliant claws with integrated sensing for gripping a variety of wall surfaces has been constructed and is currently being tested to investigate this actuation method. On-board power consumption data-logging during climbing operation, analysis of the robot kinematics and climbing behavior, and artificial muscle force-displacement characterization are presented to investigate and this actuation method.

  14. Programmable energy landscapes for kinetic control of DNA strand displacement.

    Machinek, Robert R F; Ouldridge, Thomas E; Haley, Natalie E C; Bath, Jonathan; Turberfield, Andrew J


    DNA is used to construct synthetic systems that sense, actuate, move and compute. The operation of many dynamic DNA devices depends on toehold-mediated strand displacement, by which one DNA strand displaces another from a duplex. Kinetic control of strand displacement is particularly important in autonomous molecular machinery and molecular computation, in which non-equilibrium systems are controlled through rates of competing processes. Here, we introduce a new method based on the creation of mismatched base pairs as kinetic barriers to strand displacement. Reaction rate constants can be tuned across three orders of magnitude by altering the position of such a defect without significantly changing the stabilities of reactants or products. By modelling reaction free-energy landscapes, we explore the mechanistic basis of this control mechanism. We also demonstrate that oxDNA, a coarse-grained model of DNA, is capable of accurately predicting and explaining the impact of mismatches on displacement kinetics.

  15. A small-gap electrostatic micro-actuator for large deflections.

    Conrad, Holger; Schenk, Harald; Kaiser, Bert; Langa, Sergiu; Gaudet, Matthieu; Schimmanz, Klaus; Stolz, Michael; Lenz, Miriam


    Common quasi-static electrostatic micro actuators have significant limitations in deflection due to electrode separation and unstable drive regions. State-of-the-art electrostatic actuators achieve maximum deflections of approximately one third of the electrode separation. Large electrode separation and high driving voltages are normally required to achieve large actuator movements. Here we report on an electrostatic actuator class, fabricated in a CMOS-compatible process, which allows high deflections with small electrode separation. The concept presented makes the huge electrostatic forces within nanometre small electrode separation accessible for large deflections. Electrostatic actuations that are larger than the electrode separation were measured. An analytical theory is compared with measurement and simulation results and enables closer understanding of these actuators. The scaling behaviour discussed indicates significant future improvement on actuator deflection. The presented driving concept enables the investigation and development of novel micro systems with a high potential for improved device and system performance.

  16. IKO: A Five Actuated DoF Upper Limb Exoskeleton Oriented to Workplace Assistance

    Felix Martinez


    Full Text Available IKerlan’s Orthosis (IKO is an upper limb exoskeleton oriented to increasing human force during routine activity at the workplace. Therefore, it can be considered as a force-amplification device conceived to work in collaboration with the human arm and implementing biomimetic principles. The aim of the proposed design is to find the best compromise between maximum reachable workspace and minimum moving mass, which are the key factors for obtaining an ergonomic, wearable exoskeleton. It consists of five actuated degree of freedom (DoF to move the human arm and three non-actuated DoF between the back and shoulder to allow relative displacement of the sterno-clavicular joint. Conventional electrical motors are used for most of the DoF and pneumatic muscles for one of them (forearm rotation. Power transmission is based on Bowden cables. This paper presents the IKO design, the mechanical structure of a first prototype and the redesign process from an aesthetic point of view. Controller set-up and control strategies are also shown, together with dynamic performance from experimental results.

  17. Nonmagnetic driver for piezoelectric actuators

    Ekhtiari, Marzieh


    Piezoelectric actuator drive aims to enable reliable motor performance in strong magnetic fields for magnetic res- onance imaging and computed tomography treatment tables. There are technical limitations in operation of these motors and drive systems related to magnetic interference. Piezoelectric...... actuators. Therefore, piezoelectric transformer-based power converters are used for driving piezoelectric actuator drive motor in the presence of high electromagnetic field....

  18. Overview on permanent magnetic actuator


    Permanent magnetic actuator (PMA), as a new electronic actuator of vacuum circuit breakers, certainly will be used to replace the traditional mechanical actuator. It has such advantages as simple structure, high reliability, free maintenance, and so on. This paper summarizes the development, structure, magnetic analysis, character analysis, and control strategy of PMA, and also predicts the future trend of PMA development

  19. Rotary actuators for plastic valves

    Rudin, M. [Georg Fischer Piping Systems Ltd, Schaffhausen (Switzerland)


    Flexibility and modularity plus a high level of quality are the defining characteristics of this new generation of actuators from Georg Fischer. In conjunction with the new 546 ball valve, the PA 11/PA 21 pneumatic actuators and the EA 11/EA 21 electric actuators form an optimally co-ordinated system. (orig.)

  20. Modeling and analysis of the electromechanical behavior of surface-bonded piezoelectric actuators using finite element method

    Yu, Huangchao


    Piezoelectric actuators have been widely used to form a self-monitoring smart system to do Structural health monitoring (SHM). One of the most fundamental issues in using actuators is to determine the actuation effects being transferred from the actuators to the host structure. This report summaries the state of the art of modeling techniques for piezoelectric actuators and provides a numerical analysis of the static and dynamic electromechanical behavior of piezoelectric actuators surface-bonded to an elastic medium under in-plane mechanical and electric loads using finite element method. Also case study is conducted to study the effect of material properties, bonding layer and loading frequency using static and harmonic analysis of ANSYS. Finally, stresses and displacements are determined, and singularity behavior at the tips of the actuator is proved. The results indicate that material properties, bonding layers and frequency have a significant influence on the stresses transferred to the host structure.

  1. Effective cross-section distribution of anisotropic piezocomposite actuators for wing twist

    Cesnik, Carlos E. S.; Park, Ryan S.; Palacios, Rafael


    The twist actuation of piezocomposite actuators embedded in a composite wing is numerically investigated. Parametric analysis of the actuation authority is conducted for wing cross sections with double and triple cells, considering different distributions of anisotropic piezocomposite actuators. The variational asymptotic beam cross-sectional (VABS) analysis is used to compute the airfoil stiffness, actuation force and mass properties. As a result, the regions with the highest specific actuation are determined and a cost-effective way of adding active material to the cross section is proposed. Results indicate that 50% of the maximum mass penalty associated with the addition of active plies is responsible for generating approximately 80% of the maximum available induced twist.

  2. Microporous and mesoporous carbide-derived carbons for strain modification of electromechanical actuators.

    Torop, Janno; Arulepp, Mati; Sugino, Takushi; Asaka, Kinji; Jänes, Alar; Lust, Enn; Aabloo, Alvo


    Low-voltage stimuli-responsive actuators based on carbide-derived carbon (CDC) porous structures were demonstrated. Bending actuators showed a differential electromechanical response defined by the porosity of the CDC used in the electrode layer. Highly porous CDCs prepared from TiC (mainly microporous), B4C (micromesoporous), and Mo2C (mainly mesoporous) precursors were selected to demonstrate the influence of porosity parameters on the electromechanical performance of actuators. CDC-based bending-type actuators showed a porosity-driven displacement response over a frequency range of 200 to 0.005 Hz at an applied excitation voltage of ±2 V. The displacement response of the CDC actuators increased with an increasing number of mesopores in the electrode layer, and the generated strain of the bending actuators was proportional to the total porosity (micropores and mesopores) of the CDC. The modifiable electromechanical response that arises from the precise porosity control attained through tailoring the CDC architecture demonstrates that these actuators hold great promise for smart, low-voltage-driven actuation devices.

  3. Active Vibration Isolation Using an Induced Strain Actuator with Application to Automotive Seat Suspensions

    Mark Malowicki


    Full Text Available Active vibration isolation of automotive seats requires actuators that achieve millimeter-range displacements and forces on the order of 300 N. Recent developments in piezoceramic actuator technology provide a means for achieving these force and displacement levels in a compact device. This work demonstrates that prestressed, curved piezoceramic actuators achieve the force and displacement levels required for active isolation of automotive seats. An estimate of the force and displacement requirements are obtained from numerical simulations on a four-degree-of-freedom car and seat model that utilize representive road accelerations as inputs. An actuator that meets these specifications is designed using piezoceramic materials. Free displacement of 4.4 mm and blocked force greater than 300 N are measured. The actuator is integrated within a dead mass setup that simulates the isolation characteristics of an automotive seat. Control experiments demonstrate that active vibration is achievable with realistic road disturbances. Feedback control is able to eliminate any amplification due to mechanical resonance and reduce the isolation frequency from 9.5 Hz to 2 Hz.

  4. Electromechanical flight control actuator


    The feasibility of using an electromechanical actuator (EMA) as the primary flight control equipment in aerospace flight is examined. The EMA motor design is presented utilizing improved permanent magnet materials. The necessary equipment to complete a single channel EMA using the single channel power electronics breadboard is reported. The design and development of an improved rotor position sensor/tachometer is investigated.

  5. Airplane Actuation Trade Study


    the electrical subsystem it is anticipated that 270 HVDC will not always be the most efficient power source. Lighting, instrumentation, avionics...sizing considerations all motor loads such as surface control actuators, fuel pumps, ECS fans and pumps, etc., are regarded as powered by 270 HVDC . All

  6. Shape Memory Alloy Actuator

    Baumbick, Robert J. (Inventor)


    The present invention discloses and teaches a unique, remote optically controlled micro actuator particularly suitable for aerospace vehicle applications wherein hot gas, or in the alternative optical energy, is employed as the medium by which shape memory alloy elements are activated. In gas turbine powered aircraft the source of the hot gas may be the turbine engine compressor or turbine sections.

  7. A Magnetic Bead Actuator

    Derks, R.; Prins, M.W.J.; Wimberger-Friedl, R.


    Actuation principles of superparamagnetic beads applicable on biosensing (at single beads and chain orderning) are studied in this report. This research can be used to develop new techniques that are able to accelerate bio-assays. An experimental setup containing a sub-microliter fluid volume

  8. Piezoelectric actuator renaissance

    Uchino, Kenji


    This paper resumes the content of the invited talk of the author, read at the occasion of the International Workshop on Relaxor Ferroelectrics, IWRF 14, held on October 12-16, 2014 in Stirin, Czech Republic. It reviews the recent advances in materials, designing concepts, and new applications of piezoelectric actuators, as well as the future perspectives of this area.

  9. A theoretical performance study of an external cavity fiber Fabry-Perot interferometer for displacement measurement

    Arumugam, Kumar

    The objective of this research is to explore a mathematical model developed by Wilkinson and Pratt for the external cavity fiber-based Fabry-Perot interferometer (EFPI) and to create a Michelson interferometer setup to validate a frequency modulation component of this model. A laser diode with nominal wavelength 635 nm is modulated by oscillating the diode current of maximum amplitude 22.62 mA to create correspondingly varying wavelength. Experiments are included to evaluate a rotating vector representation of the modulation harmonics in the signal received at the photodetector as of a cube corner translated by a piezo-electric actuator is displaced. Wavelength modulation as a function of diode current, the coherence length of the laser, and characteristics of the modulation harmonics are evaluated. A real time DAQ system and two lock-in amplifiers are utilized for detecting three side-band harmonics of the signal. For short range displacements this interferometer setup is monitored using a capacitance displacement sensor. The capacitance displacement measurement differed from the Michelson interferometer by 160 nm. The piezoelectric stage actuated with a 15 V Ramp signal produced 2.54 mum displacement of the cube corner. The setup is tested with Ramp signals of 75 V to 1.5 V and with the Ramp periods of 1 to 20 seconds to find the resolution of the interferometer, modulation of the wavelength sensitivity and the coherence length of the laser as 10.53 nm, 1.786 nm·A-1 and >1 m respectively. The best quadrature signal achieved corresponded to modulating the laser at amplitude of 18.86 mA at 1 kHz frequency with a path length difference of 6.35 mm. The amplitude comparison of side-band harmonics with Bessel function curves is consistent with a modulation amplitude of 1.28 rad corresponding to amplitude ratios of 0.5 (second and first) , 0.15 (third and second) and 0.06 (third and first) in the first through third Bessel function values.

  10. Dielectric elastomer actuators for octopus inspired suction cups.

    Follador, M; Tramacere, F; Mazzolai, B


    Suction cups are often found in nature as attachment strategy in water. Nevertheless, the application of the artificial counterpart is limited by the dimension of the actuators and their usability in wet conditions. A novel design for the development of a suction cup inspired by octopus suckers is presented. The main focus of this research was on the modelling and characterization of the actuation unit, and a first prototype of the suction cup was realized as a proof of concept. The actuation of the suction cup is based on dielectric elastomer actuators. The presented device works in a wet environment, has an integrated actuation system, and is soft. The dimensions of the artificial suction cups are comparable to proximal octopus suckers, and the attachment mechanism is similar to the biological counterpart. The design approach proposed for the actuator allows the definition of the parameters for its development and for obtaining a desired pressure in water. The fabricated actuator is able to produce up to 6 kPa of pressure in water, reaching the maximum pressure in less than 300 ms.

  11. Adaptive and controllable compliant systems with embedded actuators and sensors

    Trease, Brian; Kota, Sridhar


    We present a framework for the design of a compliant system; i.e. the concurrent design of a compliant mechanism with embedded actuators and embedded sensors. Our methods simultaneously synthesize optimal structural topology and placement of actuators and sensors for maximum energy efficiency and adaptive performance, while satisfying various weight and performance constraints. The goal of this research is to lay an algorithmic framework for distributed actuation and sensing within a compliant active structure. Key features of the methodology include (1) the simultaneous optimization of the location, orientation, and size of actuators concurrent with the compliant transmission topology and (2) the concepts of controllability and observability that arise from the consideration of control, and their implementation in compliant systems design. The methods used include genetic algorithms, graph searches for connectivity, and multiple load cases implemented with linear finite element analysis. Actuators, modeled as both force generators and structural compliant elements, are included as topology variables in the optimization. Results are provided for several studies, including: (1) concurrent actuator placement and topology design for a compliant amplifier and (2) a shape-morphing aircraft wing demonstration with three controlled output nodes. Central to this method is the concept of structural orthogonality, which refers to the unique system response for each actuator it contains. Finally, the results from the controllability problem are used to motivate and describe the analogous extension to observability for sensing.

  12. Seismic displacement of gravity retaining walls

    Kamal Mohamed Hafez Ismail Ibrahim


    Full Text Available Seismic displacement of gravity walls had been studied using conventional static methods for controlled displacement design. In this study plain strain numerical analysis is performed using Plaxis dynamic program where prescribed displacement is applied at the bottom boundary of the soil to simulate the applied seismic load. Constrained absorbent side boundaries are introduced to prevent any wave reflection. The studied soil is chosen dense granular sand and modeled as elasto-plastic material according to Mohr–Column criteria while the gravity wall is assumed elastic. By comparing the resulted seismic wall displacements calculated by numerical analysis for six historical ground motions with that calculated by the pseudo-static method, it is found that numerical seismic displacements are either equal to or greater than corresponding pseudo-static values. Permissible seismic wall displacement calculated by AASHTO can be used for empirical estimation of seismic displacement. It is also found that seismic wall displacement is directly proportional with the positive angle of inclination of the back surface of the wall, soil flexibility and with the earthquake maximum ground acceleration. Seismic wall sliding is dominant and rotation is negligible for rigid walls when the ratio between the wall height and the foundation width is less than 1.4, while for greater ratios the wall becomes more flexible and rotation (rocking increases till the ratio reaches 1.8 where overturning is susceptible to take place. Cumulative seismic wall rotation increases with dynamic time and tends to be constant at the end of earthquake.

  13. Enhanced actuation performance of piezoelectric fiber composites induced by incorporated BaTiO3 nanoparticles in epoxy resin

    Wu, Mingliang; Yuan, Xi; Luo, Hang; Chen, Haiyan; Chen, Chao; Zhou, Kechao; Zhang, Dou


    Piezoelectric fiber composites (PFCs) have attracted much interest owing to their flexibility and toughness compared with conventional monolithic piezoceramic wafers. The free strain values and actuation property of PFCs strongly depend on the active electric field applied in Pb(Zr1 - xTix)O3 (PZT) fibers. Reducing the dielectric constant mismatch between PZT fiber and the assembling epoxy resin would greatly increase the active electric field in PZT fiber. Therefore, BaTiO3 (BT) nanoparticles were introduced into the epoxy resin to enhance the dielectric constant. Homogeneous dispersion of BT nanoparticles and tight adhesion with the epoxy resin were achieved through a surface modification by dopamine. The maximum dielectric constant of dopamine modified BT/epoxy (BT@Dop/epoxy) nanocomposites was 10.38 with 12 wt% BT@Dop content at 1 kHz. The maximum free strain of PFCs reached 1820 ppm with 6 wt% BT@Dop content, while PFCs assembled by pure epoxy showed 790 ppm at the same processing condition. The tip displacement of cantilever beam actuated by PFCs reached the peak of 19 mm at the resonance frequency with 6 wt% BT@Dop, which was improved by 90% comparing to PFCs with pure epoxy.

  14. Advancements in Actuated Musical Instruments

    Overholt, Daniel; Berdahl, Edgar; Hamilton, Robert


    This article presents recent developments in actuated musical instruments created by the authors, who also describe an ecosystemic model of actuated performance activities that blur traditional boundaries between the physical and virtual elements of musical interfaces. Actuated musical instrument...... that these instruments enable. We look at some of the conceptual and perceptual issues introduced by actuated musical instruments, and finally we propose some directions in which such research may be headed in the future.......This article presents recent developments in actuated musical instruments created by the authors, who also describe an ecosystemic model of actuated performance activities that blur traditional boundaries between the physical and virtual elements of musical interfaces. Actuated musical instruments...... are physical instruments that have been endowed with virtual qualities controlled by a computer in real-time but which are nevertheless tangible. These instruments provide intuitive and engaging new forms of interaction. They are different from traditional (acoustic) and fully automated (robotic) instruments...

  15. Optimization of Actuators in Smart Truss Based on Genetic Algorithms

    Ruizhen Gao


    Full Text Available Actuators formed from piezoelectric ceramics were embedded in truss rods to make up active rods. The paper used mechanical knowledge, static stiffness method and the finite element method to analyze the active rod and the smart truss structure and then model them. In order to solve the difficult problem of number optimization, the paper put forward the actuator existence variable and optimized number and locations of actuators at the same time, made the structure have the best output effect, so it can reduce the displacement at the designated location of the truss structure and the structure vibration. It also can improve the truss structure accuracy. Then find the optimal solution by genetic algorithms(GA) and MATLAB programming. The results of the example show that the model this paper builds is correct and genetic algorithms are effective in solving the optimization question.  

  16. An investigation of a thermally steerable electroactive polymer/shape memory polymer hybrid actuator

    Ren, Kailiang; Bortolin, Robert S.; Zhang, Q. M.


    This paper investigates the thermal response of a hybrid actuator composed of an electroactive polymer (EAP) and a shape memory polymer (SMP). This study introduces the concept of using the large strain from a phase transition (ferroelectric to paraelectric phase) induced by temperature change in a poly(vinylidene fluoride-trifluoroethylene) film to tune the shape of an SMP film above its glass transition temperature (Tg). Based on the material characterization data, it is revealed that the thickness ratio of the EAP/SMP films plays a critical role in the displacement of the actuator. Further, it is also demonstrated that the displacement of the hybrid actuator can be tailored by varying the temperature, and finite element method simulation results fit well with the measurement data. This specially designed hybrid actuator shows great promise for future morphing aircraft applications.

  17. Improvement of Flexible Linear Stepping Actuator Driven by Pneumatic Balloons and Brakes

    Eguchi Yuya


    Full Text Available The development of soft actuator for the rehabilitation device and power assisting devices has been required based on aging society. However, a flexible actuator that can generate both larger force and longer displacement has not been developed. It is also difficult to realize a flexible displacement sensor with long stroke while deforming its form according to the actuator’s shape. In the previous study, the flexible actuator with larger force and longer stroke that can adjust its stroke by giving stepping motion using pneumatic balloons and brakes was proposed and tested. However, the slipping of the pneumatic brake prevents the larger generated force. In this paper, the improved pneumatic brake using a pneumatic balloon and a mechanical chuck is described. The fundamental performance of the actuator using the improved brake is also described.

  18. Paralisia unilateral de prega vocal: associação e correlação entre tempos máximos de fonação, posição e ângulo de afastamento Unilateral vocal fold paralysis: association and correlation between maximum phonation time, position and displacement angle

    Luciane M. Steffen


    clinical classification of the VFP as median, paramedian, intermedian, abduction or cadaveric is controversial. AIM: To check association and correlation between Maximum Phonation Time (MPT with position and with the displacement angle of the paralyzed vocal fold (PVF, to measure the distal angle of the PVF in different positions from median line, correlating it with the clinical classification. STUDY DESIGN: Chart review. MATERIAL AND METHOD: Records of 86 PVF individuals were reviewed, videoendoscopic exams were analyzed and a computer program measured the distal angle of the PVF. RESULTS: The MPTs for each position of paralyzed vocal fold have statistical significance only for /z/ in the median position. There is a relationship between the MPT of /i/, /u/ with PVF distal angle. Correlation and association of the displacement angle with clinical position demonstrate statistical significance when the PVF is in abduction. CONCLUSION: By the present study it was impossible to classify positions of the paralyzed vocal fold using either MPT or the displacement angle measurement.

  19. Miniature Inchworm Actuators Fabricated by Use of LIGA

    Yang, Eui-Hyeok


    Miniature inchworm actuators that would have relatively simple designs have been proposed for applications in which there are requirements for displacements of the order of microns or tens of microns and for the ability to hold their positions when electric power is not applied. The proposed actuators would be members of the class of microelectromechanical systems (MEMS), but would be designed and fabricated following an approach that is somewhat unusual for MEMS. Like other MEMS actuators, the proposed inchworm actuators could utilize thermoplastic, bimetallic, shape-memory-alloy, or piezoelectric actuation principles. The figure depicts a piezoelectric inchworm actuator according to the proposal. As in other inchworm actuators, linear motion of an extensible member would be achieved by lengthening and shortening the extensible member in synchronism with alternately clamping and releasing one and then the other end of the member. In this case, the moving member would be the middle one; the member would be piezoelectric and would be shortened by applying a voltage to it. The two outer members would also be piezoelectric; the release of the clamps on the upper or lower end would be achieved by applying a voltage to the electrodes on the upper or lower ends, respectively, of these members. Usually, MEMS actuators cannot be fabricated directly on the side walls of silicon wafers, yet the geometry of this actuator necessitates such fabrication. The solution, according to the proposal, would be to use the microfabrication technique known by the German acronym LIGA - "lithographie, galvanoformung, abformung," which means lithography, electroforming, molding. LIGA involves x-ray lithography of a polymer film followed by selective removal of material to form a three-dimensional pattern from which a mold is made. Among the advantages of LIGA for this purpose are that it is applicable to a broad range of materials, can be used to implement a variety of designs, including

  20. Mode Selective Actuator-Sensor System for Lamb Wave-Based Structural Health Monitoring

    Schmidt, Daniel; Wierach, Peter; Sinapius, Michael


    International audience; Structural Health Monitoring (SHM) based on Lamb waves, a type of ultrasonic guided waves, is a promising method for in-service inspection of composite structures. In this study mode selective actuators and sensors are investigated to excite a particular Lamb wave mode in composite plates. The actuator and sensor exhibit an interdigital transducer design. In order to describe the complex displacement fields of

  1. Scissor thrust valve actuator

    DeWall, Kevin G.; Watkins, John C; Nitzel, Michael E.


    Apparatus for actuating a valve includes a support frame and at least one valve driving linkage arm, one end of which is rotatably connected to a valve stem of the valve and the other end of which is rotatably connected to a screw block. A motor connected to the frame is operatively connected to a motor driven shaft which is in threaded screw driving relationship with the screw block. The motor rotates the motor driven shaft which drives translational movement of the screw block which drives rotatable movement of the valve driving linkage arm which drives translational movement of the valve stem. The valve actuator may further include a sensory control element disposed in operative relationship with the valve stem, the sensory control element being adapted to provide control over the position of the valve stem by at least sensing the travel and/or position of the valve stem.

  2. Active Polymer Gel Actuators

    Shuji Hashimoto


    Full Text Available Many kinds of stimuli-responsive polymer and gels have been developed and applied to biomimetic actuators or artificial muscles. Electroactive polymers that change shape when stimulated electrically seem to be particularly promising. In all cases, however, the mechanical motion is driven by external stimuli, for example, reversing the direction of electric field. On the other hand, many living organisms can generate an autonomous motion without external driving stimuli like self-beating of heart muscles. Here we show a novel biomimetic gel actuator that can walk spontaneously with a wormlike motion without switching of external stimuli. The self-oscillating motion is produced by dissipating chemical energy of oscillating reaction. Although the gel is completely composed of synthetic polymer, it shows autonomous motion as if it were alive.

  3. Design of a New MR Compatible Haptic Interface with Six Actuated Degrees of Freedom

    Ergin, Mehmet Alper; Kühne, Markus; Thielscher, Axel


    . Existing MR-compatible haptic interfaces are restricted to maximum three actuated degrees of freedom. We propose an MR-compatible haptic interface with six actuated degrees of freedom to be able to study human brain mechanisms of natural pick-and-place movements including arm transport. In this work, we...

  4. Retractable Prosthesis for Transfemoral Amputees Using Series Elastic Actuators and Force Control

    Galbally, Elena; Small, Frank; Zanco, Ivan


    We present a highly functional and cost-effective prosthesis for transfemoral amputees that uses series elastic actuators. These actuators allow for accurate force control, low impedance and large dynamic range. The design involves one active joint at the knee and a passive joint at the ankle. Additionally, the socket was designed using mirroring of compliances to ensure maximum comfort.

  5. Energy efficient fluid powered linear actuator with variable area

    Lind, Randall F.; Love, Lonnie J.


    Hydraulic actuation systems having variable displacements and energy recovery capabilities include cylinders with pistons disposed inside of barrels. When operating in energy consuming modes, high speed valves pressurize extension chambers or retraction chambers to provide enough force to meet or counteract an opposite load force. When operating in energy recovery modes, high speed valves return a working fluid from extension chambers or retraction chambers, which are pressurized by a load, to an accumulator for later use.

  6. Dynamic Heat Generation Modeling and Thermal Management of Electromechanical Actuators


    calculated by counting the teeth on each gear and measuring the linear displacement of the actuator rod for one full revolution of the rotor. b...Maxwell 2D. Values of rotor angle, torque angle, and current amplitude are varied as multiple simulation runs are performed. Many of the motor modeling...behavior during highly transient moments. The torque angle should be varied from 0 to π radians to capture the full character of the inductances

  7. Job Displacement and Crime

    Bennett, Patrick; Ouazad, Amine

    This paper matches a comprehensive Danish employer-employee data set with individual crime information (timing of offenses, charges, convictions, and prison terms by crime type) to estimate the impact of job displacement on an individual’s propensity to commit crime. We focus on displaced individ...

  8. XY displacement device

    Heerens, W.C.; Laham, C.D.; Holman, A.E.


    An XY-displacement device (1) with a four-fold symmetry comprises a reference frame (10); an object mount (20) for holding an object (22) to be displaced; an X-manipulator (100) coupled between the reference frame (10) and the object mount (20), which provides a rigid coupling between the object mou

  9. Displacement data assimilation

    Rosenthal, W. Steven; Venkataramani, Shankar; Mariano, Arthur J.; Restrepo, Juan M.


    We show that modifying a Bayesian data assimilation scheme by incorporating kinematically-consistent displacement corrections produces a scheme that is demonstrably better at estimating partially observed state vectors in a setting where feature information is important. While the displacement transformation is generic, here we implement it within an ensemble Kalman Filter framework and demonstrate its effectiveness in tracking stochastically perturbed vortices.

  10. Dissolution actuated sample container

    Nance, Thomas A.; McCoy, Frank T.


    A sample collection vial and process of using a vial is provided. The sample collection vial has an opening secured by a dissolvable plug. When dissolved, liquids may enter into the interior of the collection vial passing along one or more edges of a dissolvable blocking member. As the blocking member is dissolved, a spring actuated closure is directed towards the opening of the vial which, when engaged, secures the vial contents against loss or contamination.

  11. Active Polymer Gel Actuators

    Shuji Hashimoto; Ryo Yoshida; Yusuke Hara; Shingo Maeda


    Many kinds of stimuli-responsive polymer and gels have been developed and applied to biomimetic actuators or artificial muscles. Electroactive polymers that change shape when stimulated electrically seem to be particularly promising. In all cases, however, the mechanical motion is driven by external stimuli, for example, reversing the direction of electric field. On the other hand, many living organisms can generate an autonomous motion without external driving stimuli like self-beating of he...

  12. Shape memory alloy actuator

    Varma, Venugopal K.


    An actuator for cycling between first and second positions includes a first shaped memory alloy (SMA) leg, a second SMA leg. At least one heating/cooling device is thermally connected to at least one of the legs, each heating/cooling device capable of simultaneously heating one leg while cooling the other leg. The heating/cooling devices can include thermoelectric and/or thermoionic elements.

  13. Electrostatic Actuators Operating in Liquid Environment : Suppression of Pull-in Instability and Dynamic Response

    Rollier, A -S; Legrand, B; Collard, D; Buchaillot, L


    This paper presents results about fabrication and operation of electrostatic actuators in liquids with various permittivities. In the static mode, we provide experimental and theoretical demonstration that the pull-in effect can be shifted beyond one third of the initial gap and even be eliminated when electrostatic actuators are operated in liquids. This should benefit to applications in microfluidics requiring either binary state actuation (e.g. pumps, valves) or continuous displacements over the whole gap (e.g. microtweezers). In dynamic mode, actuators like micro-cantilevers present a great interest for Atomic Force Microscopy (AFM) in liquids. As this application requires a good understanding of the cantilever resonance frequency and Q-factor, an analytical modeling in liquid environment has been established. The theoretically derived curves are validated by experimental results using a nitride encapsulated cantilever with integrated electrostatic actuation. Electrode potential screening and undesirable ...

  14. Design of a Solenoid Actuator with a Magnetic Plunger for Miniaturized Segment Robots

    Chang-Woo Song


    Full Text Available We develop a solenoid actuator with a ferromagnetic plunger to generate both rectilinear and turning motions of a multi-segmented robot. Each segment of the miniaturized robot is actuated by a pair of solenoids, and in-phase and out-of-phase actuations of the solenoid pair cause the linear and turning motions. The theoretical analysis on the actuation force by the solenoid with the magnetic plunger is implemented based on the Biot-Savart law. The optimal design parameters of the solenoid are determined to actuate a segmented body. We manufacture the miniaturized robot consisting of two segments and a pair of solenoids. Experiments are performed to measure the linear and angular displacements of the two-segmented robot for various frictional conditions.

  15. Fabrication and characterization of dry conducting polymer actuator by vapor phase polymerization of polypyrrole.

    Ramasamy, Madeshwaran Sekkarapatti; Mahapatra, Sibdas Singha; Cho, Jae Whan


    A trilayered dry conducting polymer actuator was fabricated via application of a polypyrrole (PPy) coating on both sides of a solid polymer electrolyte film using vapor phase polymerization (VPP). The solid polymer electrolyte film was prepared by incorporation of different weight ratios of dodecylbenzene sulfonic acid sodium salt in poly(vinyl alcohol) (PVA) by solvent casting. The successful polymerization of PPy was confirmed by Fourier transform infrared spectroscopy; a uniform PPy coating on the solid polymer electrolyte film surface was also observed by scanning electron microscopy. The dry PVA/PPy actuator demonstrated good actuation behavior at a low applied voltage of 1-3 V. The actuator bending displacement was found to increase with an increase in the applied voltage. The VPP approach in this study provides a very effective method for achieving a uniform polymer coating in the fabrication of a dry conducting polymer actuator.

  16. Full Polymer Dielectric Elastomeric Actuators (DEA Functionalised with Carbon Nanotubes and High-K Ceramics

    Tilo Köckritz


    Full Text Available Dielectric elastomer actuators (DEA are special devices which have a simple working and construction principle and outstanding actuation properties. The DEAs consist of a combination of different materials for the dielectric and electrode layers. The combination of these layers causes incompatibilities in their interconnections. Dramatic differences in the mechanical properties and bad adhesion of the layers are the principal causes for the reduction of the actuation displacement and strong reduction of lifetime. Common DEAs achieve actuation displacements of 2% and a durability of some million cycles. The following investigations represent a new approach to solving the problems of common systems. The investigated DEA consists of only one basic raw polymer, which was modified according to the required demands of each layer. The basic raw polymer was modified with single-walled carbon nanotubes or high-k ceramics, for example, lead magnesium niobate-lead titanate. The development of the full polymer DEA comprised the development of materials and technologies to realise a reproducible layer composition. It was proven that the full polymer actuator worked according to the theoretical rules. The investigated system achieved actuation displacements above 20% regarding thickness, outstanding interconnections at each layer without any failures, and durability above 3 million cycles without any indication of an impending malfunction.

  17. Miniature High-Force, Long-Stroke SMA Linear Actuators

    Cummin, Mark A.; Donakowski, William; Cohen, Howard


    Improved long-stroke shape-memory-alloy (SMA) linear actuators are being developed to exert significantly higher forces and operate at higher activation temperatures than do prior SMA actuators. In these actuators, long linear strokes are achieved through the principle of displacement multiplication, according to which there are multiple stages, each intermediate stage being connected by straight SMA wire segments to the next stage so that relative motions of stages are additive toward the final stage, which is the output stage. Prior SMA actuators typically include polymer housings or shells, steel or aluminum stages, and polymer pads between successive stages of displacement-multiplication assemblies. Typical output forces of prior SMA actuators range from 10 to 20 N, and typical strokes range from 0.5 to 1.5 cm. An important disadvantage of prior SMA wire actuators is relatively low cycle speed, which is related to actuation temperature as follows: The SMA wires in prior SMA actuators are typically made of a durable nickel/titanium alloy that has a shape-memory activation temperature of 80 C. An SMA wire can be heated quickly from below to above its activation temperature to obtain a stroke in one direction, but must then be allowed to cool to somewhat below its activation temperature (typically, less than or equal to 60 C in the case of an activation temperature of 80 C) to obtain a stroke in the opposite direction (return stroke). At typical ambient temperatures, cooling times are of the order of several seconds. Cooling times thus limit cycle speeds. Wires made of SMA alloys having significantly higher activation temperatures [denoted ultra-high-temperature (UHT) SMA alloys] cool to the required lower return-stroke temperatures more rapidly, making it possible to increase cycle speeds. The present development is motivated by a need, in some applications (especially aeronautical and space-flight applications) for SMA actuators that exert higher forces, operate

  18. A novel monolithic piezoelectric actuated flexure-mechanism based wire clamp for microelectronic device packaging

    Liang, Cunman; Wang, Fujun; Tian, Yanling; Zhao, Xingyu; Zhang, Hongjie; Cui, Liangyu; Zhang, Dawei; Ferreira, Placid


    A novel monolithic piezoelectric actuated wire clamp is presented in this paper to achieve fast, accurate, and robust microelectronic device packaging. The wire clamp has compact, flexure-based mechanical structure and light weight. To obtain large and robust jaw displacements and ensure parallel jaw grasping, a two-stage amplification composed of a homothetic bridge type mechanism and a parallelogram leverage mechanism was designed. Pseudo-rigid-body model and Lagrange approaches were employed to conduct the kinematic, static, and dynamic modeling of the wire clamp and optimization design was carried out. The displacement amplification ratio, maximum allowable stress, and natural frequency were calculated. Finite element analysis (FEA) was conducted to evaluate the characteristics of the wire clamp and wire electro discharge machining technique was utilized to fabricate the monolithic structure. Experimental tests were carried out to investigate the performance and the experimental results match well with the theoretical calculation and FEA. The amplification ratio of the clamp is 20.96 and the working mode frequency is 895 Hz. Step response test shows that the wire clamp has fast response and high accuracy and the motion resolution is 0.2 μm. High speed precision grasping operations of gold and copper wires were realized using the wire clamper.

  19. Quasi-Static Analysis of Round LaRC THUNDER Actuators

    Campbell, Joel F.


    An analytic approach is developed to predict the shape and displacement with voltage in the quasi-static limit of round LaRC Thunder Actuators. The problem is treated with classical lamination theory and Von Karman non-linear analysis. In the case of classical lamination theory exact analytic solutions are found. It is shown that classical lamination theory is insufficient to describe the physical situation for large actuators but is sufficient for very small actuators. Numerical results are presented for the non-linear analysis and compared with experimental measurements. Snap-through behavior, bifurcation, and stability are presented and discussed.

  20. Force measurements of a superconducting-film actuator for a cryogenic interferometric gravitational-wave detector

    Sato, N; Kanda, N; Kuroda, K; Miyoki, S; Ohashi, M; Saitô, Y; Shintomi, T; Suzuki, T; Tatsumi, D; Taylor, C; Tomaru, T; Uchiyama, T; Yamamoto, A


    We measured forces applied by an actuator with a YBCO film at near 77 K for the Large-scale Cryogenic Gravitational-wave Telescope (LCGT) project. An actuator consisting of both a YBCO film of 1.6 micrometers thickness and 0.81 square centimeters area and a solenoid coil exerted a force of up to 0.2 mN on a test mass. The presented actuator system can be used to displace the mirror of LCGT for fringe lock of the interferometer.

  1. Telescoping cylindrical piezoelectric fiber composite actuator assemblies

    Allison, Sidney G. (Inventor); Shams, Qamar A. (Inventor); Fox, Robert L. (Inventor); Fox, legal representative, Christopher L. (Inventor); Fox Chattin, legal representative, Melanie L. (Inventor)


    A telescoping actuator assembly includes a plurality of cylindrical actuators in a concentric arrangement. Each cylindrical actuator is at least one piezoelectric fiber composite actuator having a plurality of piezoelectric fibers extending parallel to one another and to the concentric arrangement's longitudinal axis. Each cylindrical actuator is coupled to concentrically-adjacent ones of the cylindrical actuators such that the plurality of cylindrical actuators can experience telescopic movement. An electrical energy source coupled to the cylindrical actuators applies actuation energy thereto to generate the telescopic movement.

  2. Biodegradable and edible gelatine actuators for use as artificial muscles

    Chambers, L. D.; Winfield, J.; Ieropoulos, I.; Rossiter, J.


    The expense and use of non-recyclable materials often requires the retrieval and recovery of exploratory robots. Therefore, conventional materials such as plastics and metals in robotics can be limiting. For applications such as environmental monitoring, a fully biodegradable or edible robot may provide the optimum solution. Materials that provide power and actuation as well as biodegradability provide a compelling dimension to future robotic systems. To highlight the potential of novel biodegradable and edible materials as artificial muscles, the actuation of a biodegradable hydrogel was investigated. The fabricated gelatine based polymer gel was inexpensive, easy to handle, biodegradable and edible. The electro-mechanical performance was assessed using two contactless, parallel stainless steel electrodes immersed in 0.1M NaOH solution and fixed 40 mm apart with the strip actuator pinned directly between the electrodes. The actuation displacement in response to a bias voltage was measured over hydration/de-hydration cycles. Long term (11 days) and short term (1 hour) investigations demonstrated the bending behaviour of the swollen material in response to an electric field. Actuation voltage was low (biodegradable and edible artificial muscles could help to drive the development of environmentally friendly robotics.

  3. Self-Latching Piezocomposite Actuator

    Wilkie, William K. (Inventor); Bryant, Robert G. (Inventor); Lynch, Christopher S. (Inventor)


    A self-latching piezocomposite actuator includes a plurality of shape memory ceramic fibers. The actuator can be latched by applying an electrical field to the shape memory ceramic fibers. The actuator remains in a latched state/shape after the electrical field is no longer present. A reverse polarity electric field may be applied to reset the actuator to its unlatched state/shape. Applied electric fields may be utilized to provide a plurality of latch states between the latched and unlatched states of the actuator. The self-latching piezocomposite actuator can be used for active/adaptive airfoils having variable camber, trim tabs, active/deformable engine inlets, adaptive or adjustable vortex generators, active optical components such as mirrors that change shapes, and other morphing structures.

  4. Fault-tolerant rotary actuator

    Tesar, Delbert


    A fault-tolerant actuator module, in a single containment shell, containing two actuator subsystems that are either asymmetrically or symmetrically laid out is provided. Fault tolerance in the actuators of the present invention is achieved by the employment of dual sets of equal resources. Dual resources are integrated into single modules, with each having the external appearance and functionality of a single set of resources.


    Jia Zhenyuan; Yang Xing; Shi Chun; Guo Dongming


    According to the principle of the magnetostriction generating mechanism, the control model of giant magnetostriction material based on magnetic field and the control method with magnetic flux density are developed. Furthermore, this control method is used to develop a giant magnetostrictive micro-displacement actuator (GMA) and its driving system. Two control methods whose control variables are current intensity and magnetic flux density are compared with each other by experimental studies. Finally, effective methods on improving the linearity and control precision of micro-displacement actuator and reducing the hysteresis based on the controlling magnetic flux density are obtained.

  6. Fabrication of wrist-like SMA-based actuator by double smart soft composite casting

    Rodrigue, Hugo; Wei, Wang; Bhandari, Binayak; Ahn, Sung-Hoon


    A new manufacturing method for smart soft composite (SSC) actuators that consists of double casting a SSC actuator to produce an actuator with non-linear shape memory alloy (SMA) wire positioning is proposed. This method is used to manufacture a tube-shaped SSC actuator in which the SMA wires follow the curvature of the tube and is capable of pure-twisting deformations while sustaining a cantilever load. The concept is tested by measuring the maximum twisting angle and a simple control method is proposed to control the twisting angle of the actuator. Then, a soft robotic wrist with a length of 18 cm is built, its load-carrying capability is tested by measuring the cantilever force required for deforming the actuator, and its load-carrying capability during actuation is tested by loading one end with different objects and actuating the actuator. This wrist actuator shows good repeatability, is capable of twisting deformations up to 25° while holding objects weighing 100 g, and can sustain loads above 2 N without undergoing buckling.

  7. Development of pneumatic actuator with low-wave reflection characteristics

    Chang, H.; Tsung, T. T.; Jwo, C. S.; Chiang, J. C.


    This study aims at the development of a less reflective electromagnetic pneumatic actuator often used in the anechoic chamber. Because a pneumatic actuator on the market is not appropriate for use in such a chamber and a metallic one has high dielectric constant which generates reflective electromagnetic waves to influence test parameters in the chamber. The newly developed pneumatic actuator is made from low dielectric constant plastics with less reflective of electromagnetic. A turbine-type air motor is used to develop the pneumatic actuator and a employ Prony tester is used to run the brake horsepower test for the performance test of pneumatic actuator. Test results indicate that the pneumatic actuator in the minimal starting flow is 17 l/min, and it generates a brake horsepower of 48 mW; in the maximum flow is 26 l/min, it generates a brake horsepower of 108 mW. Therefore, it works with a torque between 0.24 N-m and 0.55 N-m, and such a torque will be sufficient to drive the target button.

  8. A wearable robotic orthosis with a spring-assist actuator.

    Seungmin Jung; Chankyu Kim; Jisu Park; Dongyoub Yu; Jaehwan Park; Junho Choi


    This paper introduces a wearable robotic orthosis with spring-assist actuators, which is designed to assist people who have difficulty in walking. The spring-assist actuator consists of an electrical motor and a spring, which are attached to a rotational axis in parallel to each other. The spring-assist actuator is developed based on the analysis on the stiffness of the knee and hip joints during walking. "COWALK-Mobile," which is a wearable robotic orthosis, is developed using the spring-assist actuators to reduce the required motor torque during walking. The COWALK-Mobile has active hip and knee joints and passive ankle joints to provide assistive torque to the wearer. The required joint torque is generated by the spring as well as the electrical motor, which results in a decrease of maximum required torque for the motor. In order to evaluate the performance of the spring-assist actuator, experiments are carried out. The experiments show that the spring-assist actuators reduced the required motor torque during walking.

  9. Electrowetting Actuation of Polydisperse Nanofluid Droplets

    Crismar Patacsil


    Full Text Available We present results of electrowetting experiments employing droplets formed from aqueous suspensions of Au nanoparticles. A planar electrowetting system, consisting of a Pt wire electrode and a bottom Cu electrode with an insulating silicone layer, is used to observe changes in droplet contact angle when an external electric field is applied. The equilibrium contact angle at 0 V decreases with increasing nanoparticle concentration, dropping from 100.4° for pure deionized water to 94.7° for a 0.5 μM nanofluid. Increasing the nanoparticle content also lowers the required voltage for effective actuation. With actuation at 15 V, contact angle decreases by 9% and 35% for droplets formed from pure water and a 0.5 μM nanoparticle suspension, respectively. Contact angle saturation is observed with nanofluid droplets, with the threshold voltage decreasing as nanoparticle concentration rises. Maximum droplet actuation before contact angle saturation is achieved at only 10 V for a concentration of 0.5 μM. A proposed mechanism for the enhanced electrowetting response of a nanofluid droplet involves a reduction in surface tension of the droplet as nanoparticles accumulate at the liquid-vapor interface.

  10. Robotic Arm Actuated by Electroactie Polymers

    Bar-Cohen, Y.; Xue, T.; Shaninpoor, M.; Simpson, J. O.; Smith, J.


    Actuators are used for many planetary and space applications. To meet the NASA goal to reduce the actuators size, mass, cost and power consumption, electroactie polymers (EAP) are being developed to induce large bending and longitudinal actuation strains.

  11. Advanced Triangulation Displacement Sensors

    Poteet, Wade M.; Cauthen, Harold K.


    Advanced optoelectronic triangulation displacement sensors undergoing development. Highly miniaturized, more stable, more accurate, and relatively easy to use. Incorporate wideband electronic circuits suitable for real-time monitoring and control of displacements. Measurements expected to be accurate to within nanometers. In principle, sensors mass-produced at relatively low unit cost. Potential applications numerous. Possible industrial application in measuring runout of rotating shaft or other moving part during fabrication in "zero-defect" manufacturing system, in which measured runout automatically corrected.

  12. Displacement Data Assimilation

    Rosenthal, W Steven; Mariano, Arthur J; Restrepo, Juan M


    We show that modifying a Bayesian data assimilation scheme by incorporating kinematically-consistent displacement corrections produces a scheme that is demonstrably better at estimating partially observed state vectors in a setting where feature information important. While the displacement transformation is not tied to any particular assimilation scheme, here we implement it within an ensemble Kalman Filter and demonstrate its effectiveness in tracking stochastically perturbed vortices.

  13. Iraqi Population Displacement Analysis


    CENTER FOR ARMY ANALYSIS 6001 GOETHALS ROAD FORT BELVOIR, VA 22060-5230 CAA-2015098 IRAQI POPULATION DISPLACEMENT ANALYSIS NOVEMBER 2016...designated by other official documentation. Comments or suggestions should be addressed to: Director Center for Army Analysis ATTN: CSCA-OA...CONTRACT NUMBER Iraqi Population Displacement Analysis PDMC 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Ms

  14. Advanced Triangulation Displacement Sensors

    Poteet, Wade M.; Cauthen, Harold K.


    Advanced optoelectronic triangulation displacement sensors undergoing development. Highly miniaturized, more stable, more accurate, and relatively easy to use. Incorporate wideband electronic circuits suitable for real-time monitoring and control of displacements. Measurements expected to be accurate to within nanometers. In principle, sensors mass-produced at relatively low unit cost. Potential applications numerous. Possible industrial application in measuring runout of rotating shaft or other moving part during fabrication in "zero-defect" manufacturing system, in which measured runout automatically corrected.

  15. Piezoelectric actuated gimbal

    Tschaggeny, Charles W.; Jones, Warren F.; Bamberg, Eberhard


    A gimbal is described and which includes a fixed base member defining an axis of rotation; a second member concentrically oriented relative to the axis of rotation; a linear actuator oriented in immediate, adjoining force transmitting relation relative to the base member or to the second member, and which applies force along a linear axis which is tangential to the axis of rotation so as to cause the second member to rotate coaxially relative to the fixed base member; and an object of interest mounted to the second member such that the object of interest is selectively moved relative to the base member about the axis of rotation.

  16. Pneumatically actuated micropipetting device

    Szita, Nicolas; Buser, Rudolf A.


    We have realized a valveless micropipetting device with an integrated sensor which can aspirate and dispense liquid volumes without any valves, hence without any reflow or dead volume. With an external pneumatic actuation, we have demonstrated aspirating and dispensing from 190nl of 6 (mu) l of water. Measurements showed a standard deviation of down to 1 percent. An integrated capacitive sensor will allow monitoring of the pressure throughout the pipetting process and detect malfunctions, e.g. clotting of the pipetting tip. It is our intention to use this demonstrated precise aspiration mechanism in combination with a micromachined reaction chamber and a miniaturized optical analysis system.

  17. Internal displacement in Burma.

    Lanjouw, S; Mortimer, G; Bamforth, V


    The internal displacement of populations in Burma is not a new phenomenon. Displacement is caused by numerous factors. Not all of it is due to outright violence, but much is a consequence of misguided social and economic development initiatives. Efforts to consolidate the state by assimilating populations in government-controlled areas by military authorities on the one hand, while brokering cease-fires with non-state actors on the other, has uprooted civilian populations throughout the country. Very few areas in which internally displaced persons (IDPs) are found are not facing social turmoil within a climate of impunity. Humanitarian access to IDP populations remains extremely problematic. While relatively little information has been collected, assistance has been focused on targeting accessible groups. International concern within Burma has couched the problems of displacement within general development modalities, while international attention along its borders has sought to contain displacement. With the exception of several recent initiatives, few approaches have gone beyond assistance and engaged in the prevention or protection of the displaced.

  18. The Linear and Nonlinear Electro-MechanicalFin Actuator

    Zeina A. Abdul Redha


    Full Text Available Electromechanical actuators are used in a wide variety of aerospace applications such as missiles, aircrafts and spy-fly etc. In this work a linear and nonlinear fin actuator mathematical model has been developed and its response is investigated by developing an algorithm for the system using MATLAB. The algorithm used to the linear model is the state space algorithm while the algorithm used to the nonlinear model is the discrete algorithm. The huge moment constant is varied from (-3000 to 3000 and the damping ratio is varied from (0.4 to 0.8. The comparison between linear and nonlinear fin actuator response results shows that for linear model, the maximum overshoot is about 10%, rising time is 0.23 sec. and steady state occur at 0.51 sec., while For nonlinear model the maximum overshoot is about 5%, rising time is 0.26 sec. and steady state occurs at 2 sec.; i.e., the nonlinear fin actuator system gives faster and more accurate response than does the linear fin actuator system.

  19. Serpentine Geometry Plasma Actuators for Flow Control


    electrical power is supplied to them. As a method of introducing perturbations for low speed flow control, dielectric barrier discharge ( DBD ) actuators...SERPENTINE GEOMETRY DBD ACTUATORS DBD actuators are devices consisting of two asymmetri- cally placed actuators separated by a dielectric material and exposed...parameters can be found in Table I. The effects of plasma actuation are FIG. 1. (a) Schematic of DBD plasma actuator and the generated body force. (b

  20. Mechanical Vibrations of Thermally Actuated Silicon Membranes

    Lynn Fuller


    Full Text Available A thermally-actuated micro-electro-mechanical (MEMS device based on a vibrating silicon membrane has been proposed as a viscosity sensor by the authors. In this paper we analyze the vibration mode of the sensor as it vibrates freely at its natural frequency. Analytical examination is compared to finite element analysis, electrical measurements and the results obtained through real-time dynamic optical surface profilometry. The vertical movement of the membrane due to the applied heat is characterized statically and dynamically. The natural vibration mode is determined to be the (1,1 mode and good correlation is found between the analytical predictions, the simulation analysis, the observed mechanical displacement and the electrical measurements.

  1. Non-Linear Piezoelectric Actuator with a Preloaded Cantilever Beam

    Yue Wu


    Full Text Available Piezoelectric actuation is widely used for the active vibration control of smart structural systems, and corresponding research has largely focused on linear electromechanical devices. This paper investigates the design and analysis of a novel piezoelectric actuator that uses a piezoelectric cantilever beam with a loading spring to produce displacement outputs. This device has a special nonlinear property relating to converting between kinetic energy and potential energy, and it can be used to increase the output displacement at a lower voltage. The system is analytically modeled with Lagrangian functional and Euler–Lagrange equations, numerically simulated with MATLAB, and experimentally realized to demonstrate its enhanced capabilities. The model is validated using an experimental device with several pretensions of the loading spring, therein representing three interesting cases: a linear system, a low natural frequency system with a pre-buckled beam, and a system with a buckled beam. The motivating hypothesis for the current work is that nonlinear phenomena could be exploited to improve the effectiveness of the piezoelectric actuator’s displacement output. The most practical configuration seems to be the pre-buckled case, in which the proposed system has a low natural frequency, a high tip displacement, and a stable balanced position.

  2. Electrostatic comb drive for vertical actuation

    Lee, A. P., LLNL


    The electrostatic comb finger drive has become an integral design for microsensor and microactuator applications. This paper reports on utilizing the levitation effect of comb fingers to design vertical-to-the-substrate actuation for interferometric applications. For typical polysilicon comb drives with 2 {micro}m gaps between the stationary and moving fingers, as well as between the microstructures and the substrate, the equilibrium position is nominally 1-2 {micro}m above the stationary comb fingers. This distance is ideal for many phase shifting interferometric applications. Theoretical calculations of the vertical actuation characteristics are compared with the experimental results, and a general design guideline is derived from these results. The suspension flexure stiffnesses, gravity forces, squeeze film damping, and comb finger thicknesses are parameters investigated which affect the displacement curve of the vertical microactuator. By designing a parallel plate capacitor between the suspended mass and the substrate, in situ position sensing can be used to control the vertical movement, providing a total feedback-controlled system. Fundamentals of various capacitive position sensing techniques are discussed. Experimental verification is carried out by a Zygo distance measurement interferometer.

  3. Electromagnetic actuation in MEMS switches

    Oliveira Hansen, Roana Melina de; Mátéfi-Tempfli, Mária; Chemnitz, Steffen

    . Electromagnetic actuation is a very promising approach to operate such MEMS and Power MEMS devices, due to the long range, reproducible and strong forces generated by this method, among other advantages. However, the use of electromagnetic actuation in such devices requires the use of thick magnetic films, which...

  4. Polypyrrole Actuators for Tremor Suppression

    Skaarup, Steen; Mogensen, Naja; Bay, Lasse


    exemplify 'soft actuator' technology that may be especially suitable for use in conjunction with human limbs. The electrochemical and mechanical properties of polypyrrole dodecyl benzene sulphonate actuator films have been studied with this application in mind. The results show that the time constants...

  5. Rotary actuator for space applications

    Andión, J. A.; Burgui, C.; Migliorero, G.


    SENER is developing a rotary actuator for space applications. The activity, partially funded under ESA GSTP contract, aims at the design, development and performance testing of an innovative rotary actuator concept for space applications. An engineering model has been manufactured and has been tested to demonstrate the compliance with the requirements specification.

  6. Bi-stable optical actuator

    Holdener, Fred R.; Boyd, Robert D.


    The present invention is a bi-stable optical actuator device that is depowered in both stable positions. A bearing is used to transfer motion and smoothly transition from one state to another. The optical actuator device may be maintained in a stable position either by gravity or a restraining device.

  7. Tractor controls actuating force limits for Indian operators.

    Mehta, C R; Pandey, M M; Tiwari, P S; Gite, L P; Khadatkar, Abhijit


    In four-wheel tractors, proper design of controls is important for comfortable and safe operation of the tractor. The design involves location and dimensions of controls as well as strength limits for operating these controls. The present study was aimed to quantify human strength for operation of tractor controls and to recommend the maximum control actuating forces for normal operation of tractors based on strength capability of 3,423 Indian male agricultural workers. The 5th percentile values of strength parameters i.e. leg strength sitting (left and right), foot strength sitting (right), torque strength (both hands) sitting, push strength (left hand and right hand) sitting and pull strength (left hand and right hand) sitting of agricultural workers collected using a strength measurement set-up were taken into consideration for the study. It was recommended that the maximum actuating forces for normal operation of frequently operated brake and clutch pedals of tractors should not exceed 260 N and 125 N based on 5th percentile values of right and left leg strength of male agricultural workers, respectively. The maximum actuating force required in steering wheel operation should not exceed 51 N based on 5th percentile value of torque strength (both hands) sitting of workers. The maximum actuating forces required for operating frequently operated levers viz. gear selection, speed selection, hydraulic control and hand throttle of Indian tractors should not exceed 46 N, 46 N, 25 N and 25 N, respectively. It may be concluded that the maximum actuating force limits as given in Bureau of Indian Standards IS 10703 are very high as compared to the findings of the study based on strength data of Indian male operators, which highlight the need to revise the standard.

  8. Forced and free displacement characterization of ionic polymer transducers

    Akle, Barbar J.; Duncan, Andrew; Akle, Etienne; Wallmersperger, Thomas; Leo, Donald J.


    Ionic polymer transducers (IPT), sometimes referred to as artificial muscles, are known to generate a large bending strain and a moderate stress at low applied voltages (transducers. In this study, extensional IPTs are characterized under forced and free displacement boundary condition as a function of transducer architecture. The electrode thickness is varied from 10 μm up to 40 μm while three extensional actuators with Lithium, Cesium, and tetraethylammonium (TEA) mobile cations are characterized. Three fixtures are built in order to characterize the extensional actuation response. The first fixture measures the free displacement of an IPT sample sandwiched between two aluminum plates glued using the electrically conductive silver paste. In the second fixture a spring is compressed against the test sample with variable amounts to generate different levels of pre-stress and prevents the bending of the IPT. In the third fixture dead weights are placed on top of the sample in order to prevent bending. In the spring loaded fixture a thermocouple is placed in the proximity of the actuator and temperature is measured. The different transducers are characterized using a step voltage input and an alternating current (AC) sine wave input. The step input resulted in a logarithmic rise like displacement curve, while the low frequency (wave displacement response with a strong first harmonic. The high frequency AC excitation generated a response similar to that of the step input. Comparing the measured temperature for step and AC response demonstrated that the sample is heating up when exited with a high frequency signal; which is leading to the expansion of the sample. Initial experimental results demonstrate a strong correlation between electrode architecture and the peak strain response. Strains on the order of 2% are observed with air stable ionic liquid based transducers. A correlation between the strain and charge buildup in the polymer is also characterized. Cesium

  9. Optimal design of a smart post-buckled beam actuator using bat algorithm: simulations and experiments

    Mallick, Rajnish; Ganguli, Ranjan; Kumar, Ravi


    The optimized design of a smart post-buckled beam actuator (PBA) is performed in this study. A smart material based piezoceramic stack actuator is used as a prime-mover to drive the buckled beam actuator. Piezoceramic actuators are high force, small displacement devices; they possess high energy density and have high bandwidth. In this study, bench top experiments are conducted to investigate the angular tip deflections due to the PBA. A new design of a linear-to-linear motion amplification device (LX-4) is developed to circumvent the small displacement handicap of piezoceramic stack actuators. LX-4 enhances the piezoceramic actuator mechanical leverage by a factor of four. The PBA model is based on dynamic elastic stability and is analyzed using the Mathieu-Hill equation. A formal optimization is carried out using a newly developed meta-heuristic nature inspired algorithm, named as the bat algorithm (BA). The BA utilizes the echolocation capability of bats. An optimized PBA in conjunction with LX-4 generates end rotations of the order of 15° at the output end. The optimized PBA design incurs less weight and induces large end rotations, which will be useful in development of various mechanical and aerospace devices, such as helicopter trailing edge flaps, micro and nano aerial vehicles and other robotic systems.

  10. Design and modeling of a hydraulically amplified magnetostrictive actuator for automotive engine mounts

    Chakrabarti, Suryarghya; Dapino, Marcelo J.


    A model is developed which describes the dynamic response of a Terfenol-D actuator with a hydraulic displacement amplification mechanism for use in active engine mounts. The model includes three main components: magnetic diffusion, Terfenol-D constitutive model, and mechanical actuator model. Eddy current losses are modeled as a one-dimensional magnetic field diffusion problem in cylindrical coordinates. The Jiles-Atherton model is used to describe the magnetization state of the Terfenol-D driver as a function of applied magnetic fields. A quadratic, single-valued model for the magnetostriction dependence on magnetization is utilized which provides an input to the mechanical model describing the system vibrations. Friction at the elastomeric seals is modeled using the LuGre friction model for lubricated contacts. The actuator's dynamic response is quantified in terms of the output displacement in the unloaded condition and force output in the loaded condition. The model is shown to accurately quantify the dynamic behavior of the actuator over the frequency range considered, from near dc to 500 Hz. An order analysis shows that the model also describes the higher harmonic content present in the measured responses. A study on the variation of energy delivered by the actuator with the load stiffness reveals that the actuator delivers the highest energy output near the stiffness match region.

  11. Supersymmetric Displaced Number States

    Fredy R. Zypman


    Full Text Available We introduce, generate and study a family of supersymmetric displaced number states (SDNS that can be considered generalized coherent states of the supersymmetric harmonic oscillator. The family is created from the seminal supersymmetric boson-fermion entangling annihilation operator introduced by Aragone and Zypman and later expanded by Kornbluth and Zypman. Using the momentum representation, the states are obtained analytically in compact form as displaced supersymmetric number states. We study their position-momentum uncertainties, and their bunchiness by classifying them according to their Mandel Q-parameter in phase space. We were also able to find closed form analytical representations in the space and number basis.

  12. Flexible electrode and its characteristics for micro actuator

    Jung, Youngdae; Jeong, Haedo; Jeong, Eunsoo; Park, Hansu; Jo, Namju


    Flexible electrode is essential for longitudinal or traverse type of micro-actuator using electrostrictive(ES) polymer. In this paper, two types of flexible electrode using conductive polymer(CP), carbon black composite and polypyrrole(PPy), was developed for a membrane type and unimorph type ES actuator using PU. At first, electrode using carbon black powder mixed with water-dispersed polyurethane was made and its displacement and dynamic characteristics were measured and compared with commercial conductive grease. Water-dispersed PU was produced by modified acetone process, using methylethylketone and acetone as solvent via NCO-terminated prepolymer. PU actuator was manufactured by stacking carbon black electrode(CBE) at both sides of half cured PU film with spin coater. Compared with conductive grease, displacement using carbon black electrode is approximately 60%. It can be thought that CBE has considerably more viscosity and less conductivity than conductive grease. Although PPy can be made from tens of nanometer to tens of micrometer thickness, phase shift occurs between PU film and PPy because of high temperature CVD process. It is estimated that high surface energy and low surface quality disturbs contacts with PU film.

  13. A self-priming, roller-free, miniature, peristaltic pump operable with a single, reciprocating actuator

    Shkolnikov, Viktor; Ramunas, John; Santiago, Juan G.


    We present a design for a miniature self-priming peristaltic pump actuated with a single linear actuator, and which can be manufactured using conventional materials and methods. The pump is tolerant of bubbles and particles and can pump liquids, foams, and gases. We explore designs actuated by a motor (in depth) and a shape memory alloy (briefly); and briefly present a manually actuated version. The pump consists of a Delrin acetal plastic body with two integrated valves, a flexible silicone tube, and an actuator. Pumping is achieved as the forward motion of the actuator first closes the upstream valve, and then compresses a section of the tube. The increased internal pressure opens a downstream burst valve to expel the fluid. Reduced pressure in the pump tube allows the downstream valve to close, and removal of actuator force allows the upstream valve and pump tube to open, refilling the pump. The motor actuated design offers a linear dependence of flow rate on voltage in the range of 1.75–3 V. Flow rate decreases from 780 μl/min with increasing back pressure up to the maximum back pressure of 48 kPa. At 3 V and minimum back pressure, the pump consumes 90 mW. The shape memory alloy actuated design offers a 5-fold size and 4-fold weight reduction over the motor design, higher maximum back pressure, and substantial insensitivity of flow rate to back pressure at the cost of lower power efficiency and flow rate. The manually actuated version is simpler and appropriate for applications unconstrained by actuation distance. PMID:24672145



    A piezoelectric actuator has the benefits of flexibility of its position, without time lag and wide bandpass characteristics. The early results of the wind tunnel flutter suppression test using the piezoeletric actuator were presented in Ref.[1]. A rigid rectangular wing model is constrained by a plunge spring and a pitch spring, and a pair of piezoelectric actuators is bonded on both sides of the plunge spring so as to carry out the active control. Refs.[2,3] reported two flutter suppression wind tunnel tests where the distributed piezoelectric actuators were used. In Ref.[2] low speed wind tunnel tests were conducted with aluminum and composite plate-like rectangular models fully covered by piezoelectric actuators. Flutter speed is increased by 11%. In Ref.[3] a composite plate-like swept back model with piezoceramic actuators bonded on the inboard surface was tested in a transonic wind tunnel and a 12% increment of flutter dynamic pressure was achieved.  In the present investigation, an aluminum plate-like rectangular model with inboard bonded piezoceramic actuators is adopted. Active flutter suppression control law has been designed. A series of analyses and ground tests and, finally, low-speed wind tunnel tests with the active control system opened and closed are conducted. Reasonable results have been obtained.

  15. Electrically controllable twisted-coiled artificial muscle actuators using surface-modified polyester fibers

    Park, Jungwoo; Yoo, Ji Wang; Seo, Hee Won; Lee, Youngkwan; Suhr, Jonghwan; Moon, Hyungpil; Koo, Ja Choon; Ryeol Choi, Hyouk; Hunt, Robert; Kim, Kwang Jin; Kim, Soo Hyun; Nam, Jae-Do


    As a new class of thermally activated actuators based on polymeric fibers, we investigated polyethylene terephthalate (PET) yarns for the development of a twisted-coiled polymer fiber actuator (TCA). The PET yarn TCA exhibited the maximum linear actuation up to 8.9% by external heating at above the glass transition temperature, 160 °C-180 °C. The payload of the actuator was successfully correlated with the preload and training-load conditions by an empirical equation. Furthermore, the PET-based TCA was electrically driven by Joule heating after the PET surface was metallization with silver. For the fast and precise control of PET yarn TCA, electroless silver plating was conducted to form electrical conductive layers on the PET fiber surface. The silver plated PET-based TCA was tested by Joule heating and the tensile actuation was increased up to 12.1% (6 V) due to the enhanced surface hardness and slippage of PET fibers. Overall, silver plating of the polymeric yarn provided a fast actuation speed and enhanced actuation performance of the TCA actuator by Joule heating, providing a great potential for being used in artificial muscle for biomimetic machines including robots, industrial actuators and powered exoskeletons.

  16. Speed and Strain of Polypyrrole Actuators: Dependence on Cation Hydration Number

    Jafeen, Mohamed J.M.; Careem, Mohamed A.; Skaarup, Steen


    Polypyrrole films have been characterized by simultaneous cyclic voltammetry driven force-displacement measurements. The aim was to clarify the role of cations in the electrolyte on the speed of response and on the strain of the film. The strain as a function of actuation frequency was studied...

  17. Speed and Strain of Polypyrrole Actuators: Dependence on Cation Hydration Number

    Jafeen, Mohamed J.M.; Careem, Mohamed A.; Skaarup, Steen


    Polypyrrole films have been characterized by simultaneous cyclic voltammetry driven force-displacement measurements. The aim was to clarify the role of cations in the electrolyte on the speed of response and on the strain of the film. The strain as a function of actuation frequency was studied...

  18. Enhanced actuation in functionalized carbon nanotube–Nafion composites

    Lian, Huiqin


    The fabrication and electromechanical performance of functionalized carbon nanotube (FCNT)-Nafion composite actuators were studied. The CNTs were modified successfully with polyethylene glycol (PEG), as verified by thermogravimetric analysis (TGA) and Fourier transform infrared (FT-IR) spectroscopy. Scanning electron microscopy (SEM) images show that the FCNTs are homogeneously dispersed in the Nafion matrix. The properties of FCNT-Nafion composites in terms of water uptake, ion exchange capacity, proton conductivity, dynamic mechanical properties, and actuation behavior were evaluated. The results show that the sample with 0.5 wt% FCNT exhibits the best overall behavior. Its storage modulus is 2.4 times higher than that of Nafion. In addition, the maximum generated strain and the blocking force for the same sample are 2 and 2.4 times higher compared to the neat Nafion actuator, respectively. © 2011 Elsevier B.V.

  19. A planar nano-positioner driven by shear piezoelectric actuators

    W. Dong


    Full Text Available A planar nano-positioner driven by the shear piezoelectric actuators is proposed in this paper based on inertial sliding theory. The performance of the nano-positioner actuated by different driving signals is analyzed and discussed, e.g. the resolution and the average velocity which depend on the frequency, the amplitude and the wave form of the driving curves. Based on the proposed design, a prototype system of the nano-positioner is developed by using a capacitive sensor as the measurement device. The experiment results show that the proposed nano-positioner is capable of outputting two-dimensional motions within an area of 10 mm × 10 mm at a maximum speed of 0.25 mm/s. The corresponding resolution can be as small as 21 nm. The methodology outlined in this paper can be employed and extended to shear piezoelectric actuators involved in high precision positioning systems.

  20. Design and development of magnetorheological fluid-based passive actuator.

    Shokrollahi, Elnaz; Price, Karl; Drake, James M; Goldenberg, Andrew A


    We present the design and experimental validation of a magnetorheological (MR) fluid-based passive actuator for tele-robotic bone biopsy procedures. With Finite Element Method Magnet (FEMM) software, the required uniform magnetic field circuit design was simulated. An 1100 turn 24 AWG copper wire coil wrapped around a magnetic core was used to create a magnetic field. The field strength was measured with a Hall effect sensor, and compared to the simulation. The maximum magnetic field flux produced by a constant current of 1.4 A was 0.2 T, similar to the simulation results. A series of quasi-static experiments were conducted to characterize the forces generated by the MR fluid-based actuator under various currents up to 12 N. An analytical model was developed to validate the measurements from the passive actuator.

  1. Inkjet printing of electroactive polymer actuators on polymer substrates

    Pabst, O.; Perelaer, J.; Beckert, E.; Schubert, U. S.; Eberhardt, R.; Tünnermann, A.


    Electroactive polymers (EAP) are promising materials for actuators in different application areas. This paper reports inkjet printing as a versatile tool for manufacturing EAP actuators. Drop-on-demand inkjet printing can be used for additive deposition of functional materials onto substrates. Cantilever bending actuators with lateral dimensions in the mm range are described here. A commercially available solution of electroactive polymers is dispensed onto metalized polycarbonate substrates using inkjet printing. These polymers exhibit piezoelectric behavior. Multiple layers are printed resulting in a film thickness of 5 to 10 μm. After printing, the polymer layers are annealed thermally at 130 °C. Top electrodes are deposited onto the EAP layer by inkjet printing a silver nanoparticle ink. The as-printed silver layers are sintered using an argon plasma - a recently developed sintering technique that is compatible with low TG polymer foils. After printing the EAP layers are poled. When applying an electric field across the polymer layer, piezoelectric strain in the EAP leads to a bending deflection of the structures. With driving voltages of 200 V the actuators generate displacements of 20 μm and blocking forces of approximately 3 mN. The first resonance frequency occurs at 230 Hz.

  2. Gear-Driven Turnbuckle Actuator

    Rivera, Ricky N.


    This actuator design allows the extension and contraction of turnbuckle assemblies. It can be operated manually or remotely, and is extremely compact. It is ideal for turnbuckles that are hard to reach by conventional tools. The tool assembly design solves the problem of making accurate adjustments to the variable geometry guide vanes without having to remove and reinstall the actuator system back on the engine. The actuator does this easily by adjusting the length of the turnbuckles while they are still attached to the engine.

  3. Energy-Efficient Variable Stiffness Actuators

    Visser, Ludo C.; Carloni, Raffaella; Stramigioli, Stefano


    Variable stiffness actuators are a particular class of actuators that is characterized by the property that the apparent output stiffness can be changed independent of the output position. To achieve this, variable stiffness actuators consist of a number of elastic elements and a number of actuated

  4. Job Displacement and Crime

    Bennett, Patrick; Ouazad, Amine

    We use a detailed employer-employee data set matched with detailed crime information (timing of crime, fines, convictions, crime type) to estimate the impact of job loss on an individual's probability to commit crime. We focus on job losses due to displacement, i.e. job losses in firms losing...

  5. Displacement compressors - acceptance tests

    International Organization for Standardization. Geneva


    ISO 1217:2009 specifies methods for acceptance tests regarding volume rate of flow and power requirements of displacement compressors. It also specifies methods for testing liquid-ring type compressors and the operating and testing conditions which apply when a full performance test is specified.

  6. Experimental study on strain distribution of ionic polymer-metal composite actuator using digital image correlation

    Liu, Hongguang; Xiong, Ke; Wang, Man; Bian, Kan; Zhu, Kongjun


    Ionic polymer-metal composite (IPMC) cantilever actuators demonstrate significant bending deformation upon application of excitation voltage across the electrodes. In this paper a cantilever beam shaped IPMC actuator with platinum (Pt) electrodes is fabricated to investigate the micro-scale lateral deformation behavior under DC voltages using a digital microscope to measure the deformation. The digital image correlation (DIC) method is utilized to analyze the displacement and strain fields of the sample. The experimental results indicate that the longitudinal normal strain is linearly distributed along the thickness direction and the strain gradient is approximately exponential with excitation voltage. The amplitude of the transverse strain is bigger than the longitudinal strain, and the strains are also found to decrease along the length direction of the IPMC cantilever actuator. The longitudinal and transverse normal strains of the IPMC actuator under DC voltages are compressive strains due to water loss effect in the air.

  7. Fluid electrodes for submersible robotics based on dielectric elastomer actuators

    Christianson, Caleb; Goldberg, Nathaniel; Cai, Shengqiang; Tolley, Michael T.


    Recently, dielectric elastomer actuators (DEAs) have gathered interest for soft robotics due to their low cost, light weight, large strain, low power consumption, and high energy density. However, developing reliable, compliant electrodes for DEAs remains an ongoing challenge due to issues with fabrication, uniformity of the conductive layer, and mechanical stiffening of the actuators caused by conductive materials with large Young's moduli. In this work, we present a method for preparing, patterning, and utilizing conductive fluid electrodes. Further, when we submerse the DEAs in a bath containing a conductive fluid connected to ground, the bath serves as a second electrode, obviating the need for depositing a conductive layer to serve as either of the electrodes required of most DEAs. When we apply a positive electrical potential to the conductive fluid in the actuator with respect to ground, the electric field across the dielectric membrane causes charge carriers in the solution to apply an electrostatic force on the membrane, which compresses the membrane and causes the actuator to deform. We have used this process to develop a tethered submersible robot that can swim in a tank of saltwater at a maximum measured speed of 9.2 mm/s. Since saltwater serves as the electrode, we overcome buoyancy issues that may be a challenge for pneumatically actuated soft robots and traditional, rigid robotics. This research opens the door to low-power underwater robots for search and rescue and environmental monitoring applications.


    LIU Jianfang; YANG Zhigang; FAN Zunqiang; CHENG Guangming


    A new precision piezoelectric actuator is proposed to improve its drive capabilities. The actuator is based on the piezoelectric technology. It adopts the principle of bionics and works with a new method of stator initiative anchoring/loosen and a distortion structure of double-side thin flexible hinge. It solves the problem of anchoring/loosen, frequency, journey, resolution and velocity. The experiment shows that the new linear piezoelectric actuator works with high frequency (100 Hz), high speed (502 μm/s), large travel (>10 mm), high resolution (0.05 μm) and high load (100 N). This kind of new piezoelectric actuator will be applied for large travel and high resolution driving device, optics engineering, precision positioning and some micromanipulation field.

  9. Novel Cryogenic Actuator Development Project

    National Aeronautics and Space Administration —  New thin film low friction coating technologies have recently been developed and matured to the point for use in this IRAD actuator work.The new novel...

  10. Modeling and control of precision actuators

    Kiong, Tan Kok


    IntroductionGrowing Interest in Precise ActuatorsTypes of Precise ActuatorsApplications of Precise ActuatorsNonlinear Dynamics and ModelingHysteresisCreepFrictionForce RipplesIdentification and Compensation of Preisach Hysteresis in Piezoelectric ActuatorsSVD-Based Identification and Compensation of Preisach HysteresisHigh-Bandwidth Identification and Compensation of Hysteretic Dynamics in Piezoelectric ActuatorsConcluding RemarksIdentification and Compensation of Frict

  11. Piezoelectric Multilayer-Stacked Hybrid Actuation/Transduction System

    Xu, Tian-Bing (Inventor); Jiang, Xiaoning (Inventor); Su, Ji (Inventor)


    A novel full piezoelectric multilayer stacked hybrid actuation/transduction system. The system demonstrates significantly-enhanced electromechanical performance by utilizing the cooperative contributions of the electromechanical responses of multilayer stacked negative and positive strain components. Both experimental and theoretical studies indicate that for this system, the displacement is over three times that of a same-sized conventional flextensional actuator/transducer. The system consists of at least 2 layers which include electromechanically active components. The layers are arranged such that when electric power is applied, one layer contracts in a transverse direction while the second layer expands in a transverse direction which is perpendicular to the transverse direction of the first layer. An alternate embodiment includes a third layer. In this embodiment, the outer two layers contract in parallel transverse directions while the middle layer expands in a transverse direction which is perpendicular to the transverse direction of the outer layers.

  12. Three Dimensional Modeling of an MRI Actuated Steerable Catheter System.

    Liu, Taoming; Cavuşoğlu, M Cenk


    This paper presents the three dimensional kinematic modeling of a novel steerable robotic ablation catheter system. The catheter, embedded with a set of current-carrying micro-coils, is actuated by the magnetic forces generated by the magnetic field of the MRI scanner. This paper develops a 3D model of the MRI actuated steerable catheter system by using finite differences approach. For each finite segment, a quasi-static torque-deflection equilibrium equation is calculated using beam theory. By using the deflection displacements and torsion angles, the kinematic modeling of the catheter system is derived. The proposed models are evaluated by comparing the simulation results of the proposed model with the experimental results of a proof-of-concept prototype.

  13. Flexure-based nanomagnetic actuators

    Vasquez, Daniel James

    Nanometer-scale actuators powered through applied-magnetic fields have been designed, fabricated, and tested. These actuators consist of one or more ferromagnetic elements attached to a mechanical flexure. Two types of flexures were studied including a cantilever beam that is fixed on one end, and free on the other. The free end of the cantilever is attached to a, ferromagnetic element allowing a bending torque to be applied by a magnetic field. The second type of actuator design uses a set of torsion beams that are each anchored on one end, and attached to the magnetic element on the other end. The torsion beams are designed such that the application of a magnetic field will result in a twist along the long axis of the beam with little to no bending. The smallest fabricated and tested device is a cantilever-based ferromagnetic actuator that consists of a single 1.5-mum-long, 338-nm-wide, and 50-nm-thick nickel element, and a 2.2-mum-long, 110-nm-wide, and 30-nm-thick gold cantilever beam. A deflection of over 17° was measured for this actuator, while a similar one with a 10.1-mum long cantilever beam experienced measured deflections up to 57°. Torsion-based ferromagnetic actuators have been fabricated and tested with 110-nm-wide, and 50-rim-thick magnetic elements. Such magnetic elements contain only a single saturated magnetic domain. The ultimate scalability of ferromagnetic actuation is limited by the ability of thermal noise to affect the temporal stability of a nanometer-scale magnet. Theory to describe thermal noise and ultimate scalability of the ferromagnetic actuators has been developed. The size of the ferromagnetic actuators studied in this manuscript are smaller than most plant and animal cells. This enables the possibility of such actuators to manipulate a, living cell on an intracellular level. Other potential applications of such small actuators include MHz, to GHz frequency resonators, and tunable optical filters.

  14. A dynamic model for a displacement amplified magnetostrictive driver for active mounts

    Chakrabarti, Suryarghya; Dapino, Marcelo J.


    A magnetostrictive actuator with a hydraulic displacement amplification mechanism is designed to be used as a driver in active engine mounts. The dynamic response of the actuator is quantified in terms of the output displacement and the magnetostriction. Eddy current losses are modeled as a one-dimensional magnetic diffusion problem in cylindrical coordinates. The Jiles-Atherton model is used to describe the magnetization state of the material as a function of applied magnetic fields. Magnetostriction, which is modeled as a single-valued function of magnetization, provides an input to the mechanical model describing the system vibrations. Friction at the elastomeric seals is modeled using the LuGre (Lund-Grenoble) friction model for lubricated contacts. Results show that the model accurately describes the dynamic behavior of the actuator up to 500 Hz. An order analysis of the data and calculated responses shows that the model describes the fundamental and higher-order spectral components generated by the device.

  15. A new class of high force, low-voltage, compliant actuation system



    Although many actuators employing electrostatic comb drives have been demonstrated in a laboratory environment, widespread acceptance in mass produced microelectromechanical systems (MEMS) may be limited due to issues associated with low drive force, large real estate demands, high operating voltages, and reliability concerns due to stiction. On the other hand, comb drives require very low drive currents, offer predictable response, and are highly compatible with the fabrication technology. The expand the application space and facilitate the widespread deployment of self-actuated MEMS, a new class of advanced actuation systems has been developed that maintains the highly desirable aspects of existing components, while significantly diminishing the issues that could impede large scale acceptance. In this paper, the authors will present low-voltage electrostatic actuators that offer a dramatic increase in force over conventional comb drive designs. In addition, these actuators consume only a small fraction of the chip area previously used, yielding significant gains in power density. To increase the stroke length of these novel electrostatic actuators, the authors have developed highly efficient compliant stroke amplifiers. The coupling of compact, high-force actuators with fully compliant displacement multipliers sets a new paradigm for highly integrated microelectromechanical systems.

  16. Design and modeling of a self-sufficient shape-memory-actuator

    Bucht, André; Junker, Tom; Pagel, Kenny; Drossel, Welf-Guntram; Neugebauer, Reimund


    In machine tools several time and position varying heat sources causes complex temperature distributions. The resulting problems are varying thermal deformations which cause a loss of accuracy as well as non optimal drive conditions. An option to deal with that issue is to use structure integrated SM-actuators which use the thermal energy accumulated by machining processes to yield an actuator displacement. That creates a structure inherent control loop. There the shape-memory- elements work as sensing element as well as actuation element. The plant is defined by the thermal and mechanical behaviour of the surrounding structure. Because of the closed loop operation mode, the mechanical design has to deal with questions of stability and parameter adjustment in a control sense. In contrast to common control arrangements this issues can only be influenced by designing the actuator and the structure. To investigate this approach a test bench has been designed. The heat is yielded by a clutch and directed through the structure to the shape memory element. The force and displacement of the actuator are therefore driven directly by process heat. This paper presents a broad mechanical design approach of the test bench as well as the design of the SM-actuator. To investigate the thermo-mechanical behaviour of the structure-integrated actuator, a model of the test bench has been developed. The model covers the thermal behaviour of the test bench as well as the thermo-mechanical couplings of the shape memory actuator. The model has been validated by comprehensive measurements.

  17. High torque miniature rotary actuator

    Nalbandian, Ruben


    This paper summarizes the design and the development of a miniature rotary actuator (36 mm diameter by 100 mm length) used in spacecraft mechanisms requiring high torques and/or ultra-fine step resolution. This actuator lends itself to applications requiring high torque but with strict volume limitations which challenge the use of conventional rotary actuators. The design challenge was to develop a lightweight (less than 500 grams), very compact, high bandwidth, low power, thermally stable rotary actuator capable of producing torques in excess of 50 N.m and step resolutions as fine as 0.003 degrees. To achieve a relatively high torsional stiffness in excess of 1000 Nm/radian, the design utilizes a combination of harmonic drive and multistage planetary gearing. The unique design feature of this actuator that contributes to its light weight and extremely precise motion capability is a redundant stepper motor driving the output through a multistage reducing gearbox. The rotary actuator is powered by a high reliability space-rated stepper motor designed and constructed by Moog, Inc. The motor is a three-phase stepper motor of 15 degree step angle, producing twenty-four full steps per revolution. Since micro-stepping is not used in the design, and un-powered holding torque is exhibited at every commanded step, the rotary actuator is capable of reacting to torques as high as 35 Nm by holding position with the power off. The output is driven through a gear transmission having a total train ratio of 5120:1, resulting in a resolution of 0.003 degrees output rotation per motor step. The modular design of the multi-stage output transmission makes possible the addition of designs having different output parameters, such as lower torque and higher output speed capability. Some examples of an actuator family based on this growth capability will be presented in the paper.

  18. Soft Pneumatic Actuators for Rehabilitation

    Guido Belforte; Gabriella Eula; Alexandre Ivanov; Silvia Sirolli


    Pneumatic artificial muscles are pneumatic devices with practical and various applications as common actuators. They, as human muscles, work in agonistic-antagonistic way, giving a traction force only when supplied by compressed air. The state of the art of soft pneumatic actuators is here analyzed: different models of pneumatic muscles are considered and evolution lines are presented. Then, the use of Pneumatic Muscles (PAM) in rehabilitation apparatus is described and the general characteri...

  19. Soft Pneumatic Actuators for Rehabilitation

    Guido Belforte


    Full Text Available Pneumatic artificial muscles are pneumatic devices with practical and various applications as common actuators. They, as human muscles, work in agonistic-antagonistic way, giving a traction force only when supplied by compressed air. The state of the art of soft pneumatic actuators is here analyzed: different models of pneumatic muscles are considered and evolution lines are presented. Then, the use of Pneumatic Muscles (PAM in rehabilitation apparatus is described and the general characteristics required in different applications are considered, analyzing the use of proper soft actuators with various technical properties. Therefore, research activity carried out in the Department of Mechanical and Aerospace Engineering in the field of soft and textile actuators is presented here. In particular, pneumatic textile muscles useful for active suits design are described. These components are made of a tubular structure, with an inner layer of latex coated with a deformable outer fabric sewn along the edge. In order to increase pneumatic muscles forces and contractions Braided Pneumatic Muscles are studied. In this paper, new prototypes are presented, based on a fabric construction and various kinds of geometry. Pressure-force-deformation tests results are carried out and analyzed. These actuators are useful for rehabilitation applications. In order to reproduce the whole upper limb movements, new kind of soft actuators are studied, based on the same principle of planar membranes deformation. As an example, the bellows muscle model and worm muscle model are developed and described. In both cases, wide deformations are expected. Another issue for soft actuators is the pressure therapy. Some textile sleeve prototypes developed for massage therapy on patients suffering of lymph edema are analyzed. Different types of fabric and assembly techniques have been tested. In general, these Pressure Soft Actuators are useful for upper/lower limbs treatments

  20. Quantification of the vocal folds’ dynamic displacements

    del Socorro Hernández-Montes, María; Muñoz, Silvino; De La Torre, Manuel; Flores, Mauricio; Pérez, Carlos; Mendoza-Santoyo, Fernando


    Fast dynamic data acquisition techniques are required to investigate the motional behavior of the vocal folds (VFs) when they are subjected to a steady air-flow through the trachea. High-speed digital holographic interferometry (DHI) is a non-invasive full-field-of-view technique that has proved its usefulness to study rapid and non-repetitive object movements. Hence it is an ideal technique used here to measure VF displacements and vibration patterns at 2000 fps. Analyses from a set of 200 displacement images showed that VFs’ vibration cycles are established along their width (y) and length (x). Furthermore, the maximum deformation for the right and left VFs’ area may be quantified from these images, which in itself represents an important result in the characterization of this structure. At a controlled air pressure, VF displacements fall within the range ~100-1740 nm, with a calculated precision and accuracy that yields a variation coefficient of 1.91%. High-speed acquisition of full-field images of VFs and their displacement quantification are on their own significant data in the study of their functional and physiological behavior since voice quality and production depend on how they vibrate, i.e. their displacement amplitude and frequency. Additionally, the use of high speed DHI avoids prolonged examinations and represents a significant scientific and technological alternative contribution in advancing the knowledge and working mechanisms of these tissues.

  1. Actuation Using Piezoelectric Materials: Application in Augmenters, Energy Harvesters, and Motors

    Hasenoehrl, Jennifer


    Piezoelectric actuators are used in many manipulation, movement, and mobility applications as well as transducers and sensors. When used at the resonance frequencies of the piezoelectric stack, the actuator performs at its maximum actuation capability. In this Space Grant internship, three applications of piezoelectric actuators were investigated including hammering augmenters of rotary drills, energy harvesters, and piezo-motors. The augmenter shows improved drill performance over rotation only. The energy harvesters rely on moving fluid to convert mechanical energy into electrical power. Specific designs allow the harvesters more freedom to move, which creates more power. The motor uses the linear movement of the actuator with a horn applied to the side of a rotor to create rotational motion. Friction inhibits this motion and is to be minimized for best performance. Tests and measurements were made during this internship to determine the requirements for optimal performance of the studied mechanisms and devices.

  2. Large Scale Magnetostrictive Valve Actuator

    Richard, James A.; Holleman, Elizabeth; Eddleman, David


    Marshall Space Flight Center's Valves, Actuators and Ducts Design and Development Branch developed a large scale magnetostrictive valve actuator. The potential advantages of this technology are faster, more efficient valve actuators that consume less power and provide precise position control and deliver higher flow rates than conventional solenoid valves. Magnetostrictive materials change dimensions when a magnetic field is applied; this property is referred to as magnetostriction. Magnetostriction is caused by the alignment of the magnetic domains in the material s crystalline structure and the applied magnetic field lines. Typically, the material changes shape by elongating in the axial direction and constricting in the radial direction, resulting in no net change in volume. All hardware and testing is complete. This paper will discuss: the potential applications of the technology; overview of the as built actuator design; discuss problems that were uncovered during the development testing; review test data and evaluate weaknesses of the design; and discuss areas for improvement for future work. This actuator holds promises of a low power, high load, proportionally controlled actuator for valves requiring 440 to 1500 newtons load.

  3. Control of Adjustable Compliant Actuators

    Berno J.E. Misgeld


    Full Text Available Adjustable compliance or variable stiffness actuators comprise an additional element to elastically decouple the actuator from the load and are increasingly applied to human-centered robotic systems. The advantages of such actuators are of paramount importance in rehabilitation robotics, where requirements demand safe interaction between the therapy system and the patient. Compliant actuator systems enable the minimization of large contact forces arising, for example, from muscular spasticity and have the ability to periodically store and release energy in cyclic movements. In order to overcome the loss of bandwidth introduced by the elastic element and to guarantee a higher range in force/torque generation, new actuator designs consider variable or nonlinear stiffness elements, respectively. These components cannot only be adapted to the walking speed or the patient condition, but also entail additional challenges for feedback control. This paper introduces a novel design method for an impedance-based controller that fulfills the control objectives and compares the performance and robustness to a classical cascaded control approach. The new procedure is developed using a non-standard positive-real Η2 controller design and is applied to a loop-shaping approach. Robust norm optimal controllers are designed with regard to the passivity of the actuator load-impedance transfer function and the servo control problem. Classical cascaded and positive-real Η2 controller designs are validated and compared in simulations and in a test bench using a passive elastic element of varying stiffness.

  4. Systematic review of mini-implant displacement under orthodontic loading

    Manuel Nienkemper; Jörg Handschel; Dieter Drescher


    A growing number of studies have reported that mini-implants do not remain in exactly the same position during treatment, although they remain stable. The aim of this review was to collect data regarding primary displacement immediately straight after loading and secondary displacement over time. A systematic review was performed to investigate primary and secondary displacement. The amount and type of displacement were recorded. A total of 27 studies were included. Sixteen in vitro studies or studies using finite element analysis addressed primary displacement, and nine clinical studies and two animal studies addressed secondary displacement. Significant primary displacement was detected (6.4-24.4 mm) for relevant orthodontic forces (0.5-2.5 N). The mean secondary displacement ranged from 0 to 2.7 mm for entire mini-implants. The maximum values for each clinical study ranged from 1.0 to 4.1 mm for the head, 1.0 to 1.5 for the body and 1.0 to 1.92 mm for the tail part. The most frequent type of movement was controlled tipping or bodily movement. Primary displacement did not reach a clinically significant level. However, clinicians can expect relevant secondary displacement in the direction of force. Consequently, decentralized insertion within the inter-radicular space, away from force direction, might be favourable. More evidence is needed to provide quantitative recommendations.

  5. The photoelectric displacement converter

    Dragoner, Valeriu V.


    In the article are examined questions of constructing photoelectric displacement converter satisfying demands that are stated above. Converter has channels of approximate and precise readings. The approximate reading may be accomplished either by the method of reading from a code mask or by the method of the consecutive calculation of optical scale gaps number. Phase interpolator of mouar strips" gaps is determined as a precise measuring. It is shown mathematical model of converter that allow evaluating errors and operating speed of conversion.


    Xu Longxiang; Zhang Jinyu; Schweitzer Gerhard


    A high temperature displacement sensor based on the principle of eddy-current is investigated. A new temperature compensation technique by using eddy-current effect is presented to satisfy the special requirement at high temperature up to 550℃. The experiment shows that the temperature compensation technique leads to good temperature stability for the sensors. The variation of the sensitivity as well as the temperature drift of the sensor with temperature compensation technique is only about 7.4% and 90~350 mV at 550℃ compared with that at room temperature, and that of the sensor without temperature compensation technique is about 31.2% and 2~3 V at 550℃ compared with that at room temperature. A new dynamic calibration method for the eddy-current displacement sensor is presented, which is very easy to be realized especially in high frequency and at high temperatures. The high temperature displacement sensors developed are successfully used at temperature up to 550℃ in a magnetic bearing system for more than 100 h.

  7. Ultra-compliant liquid metal electrodes with in-plane self-healing capability for dielectric elastomer actuators

    Liu, Yang; Gao, Meng; Mei, Shengfu; Han, Yanting; Liu, Jing


    The method of directly printing liquid metal films as highly conductive and super compliant electrodes for dielectric elastomer actuator (DEA) was proposed and experimentally demonstrated with working mechanisms interpreted. Such soft electrodes enable DE film to approach its maximum strain and stress at relatively low voltages. Further, its unique capability of achieving two-dimensional in-plane self-healing by merely actuating the DEA was disclosed, which would allow actuators more tolerant to fault and resilient to abusive environments. This high performance actuator has important value in a wide spectrum of situations ranging from artificial muscle, flexible electronics to smart clothing etc.

  8. Improved manufacturing technology for producing porous Nafion for high-performance ionic polymer-metal composite actuators

    Zhao, Dongxu; Li, Dichen; Wang, Yanjie; Chen, Hualing


    The current actuation performance of ionic polymer-metal composites (IPMCs) limits their further application in the aerospace, energy, and optics fields, among others. To overcome this issue, we developed a freeze-drying process to generate Nafion membranes with a porous structure, the characteristics of which were investigated using thermogravimetric analysis, Fourier transform infrared spectrometry, field-emission scanning electron microscopy, and water uptake tests. The pores fabricated using the developed freeze-drying process had a diameter of approximately 270 nm, and a porosity of nearly 40.45%. The displacement and the central angle were introduced as variables to evaluate the bending deformation of an IPMC actuator based on the porous Nafion membrane. Compared with conventional actuators, this IPMC actuator showed an increase in displacement of 4963.6% at 2 V, and an increase in central angle of 73.35% at 3 V. Although the blocking forces of this IPMC actuator decreased to some extent, it was confirmed that the integrated actuation performance, which was evaluated using the strain energy density increment, was improved. The performance of the IPMC actuator was enhanced as a result of the porous Nafion structure manufactured using the developed freeze-drying process.

  9. PMN-PT piezoelectric-electrostrictive bi-layer composite actuators

    Ngernchuklin, Piyalak

    In the past few decades, significant advances have been achieved to replace the conventional actuators, including hydraulic, shape memory alloy, electromagnetic and linear induction, with piezoelectric actuators since they are light weight and small in size, have precision positioning capabilities, offer a wide range of generative force, consume less power, and provide higher durability and reliability. The strain produced by bulk polycrystalline piezoelectric ceramics and single crystals are typically in the range of 0.1 to 1%, respectively, which is still low for many applications. Therefore, various strain amplification designs including multilayer, bimorph, unimorph, flextensional actuators (Moonie and cymbal), co-fired and functionally graded ceramics have been proposed to enhance the displacement. In this investigation, Piezoelectric/Electrostrictive Bi-Layer Monolithic Composites (PE-MBLC) were fabricated by co-pressing and co-sintering of the piezoelectric (PMN-PT 65/35: P) and electrostrictive (PMN/PT 90/10: E) powders. Flat and dome shaped of PE-MBLCs were obtained by optimizing processing conditions such as pressing pressure and sintering temperature. In addition, poling conditions of bilayer composite actuators were thoroughly studied to maximize their electromechanical properties. It was found that composites had lower d33eff and Keff values than the calculated values. This was attributed to a significant difference between relative permittivities of P and E materials as well as the presence of induced stresses in both P and E layers after sintering that hindered domain switching within piezoelectric layer during poling. The shape change (planar to dome), electromechanical properties, and actuation performance of PE-MBLC actuators were examined as a function of volume percent of piezoelectric phase. The highest displacement ˜15 mum was obtained from PE-MBLC actuator with 50 volume % piezoelectric phase due to the transverse strain response of

  10. Characterization of magnetically actuated resonant cantilevers in viscous fluids

    Vančura, Cyril; Lichtenberg, Jan; Hierlemann, Andreas; Josse, Fabien


    The vibration behavior of magnetically actuated resonant microcantilevers immersed in viscous fluids has been studied. A dependence of the resonance frequency and the quality factor (Q factor) on the fluid properties, such as density and viscosity and on the cantilever geometry is described. Various cantilever geometries are analyzed in pure water and glycerol solutions, and the results are explained in terms of the added displaced fluid mass and the fluid damping force for both the resonance frequency and the quality factor. An in-depth knowledge and understanding of such systems is necessary when analyzing resonant cantilevers as biochemical sensors in liquid environments.

  11. Flow separation control on swept wing with nanosecond pulse driven DBD plasma actuators

    Zhao Guangyin


    Full Text Available A 15° swept wing with dielectric barrier discharge plasma actuator is designed. Experimental study of flow separation control with nanosecond pulsed plasma actuation is performed at flow velocity up to 40 m/s. The effects of the actuation frequency and voltage on the aerodynamic performance of the swept wing are evaluated by the balanced force and pressure measurements in the wind tunnel. At last, the performances on separation flow control of the three types of actuators with plane and saw-toothed exposed electrodes are compared. The optimal actuation frequency for the flow separation control on the swept wing is detected, namely the reduced frequency is 0.775, which is different from 2-D airfoil separation control. There exists a threshold voltage for the low swept wing flow control. Before the threshold voltage, as the actuation voltage increases, the control effects become better. The maximum lift is increased by 23.1% with the drag decreased by 22.4% at 14°, compared with the base line. However, the best effects are obtained on actuator with plane exposed electrode in the low-speed experiment and the abilities of saw-toothed actuators are expected to be verified under high-speed conditions.

  12. Modeling and Simulation of Control Actuation System with Fuzzy-PID Logic Controlled Brushless Motor Drives for Missiles Glider Applications.

    Muniraj, Murali; Arulmozhiyal, Ramaswamy


    A control actuation system has been used extensively in automotive, aerospace, and defense applications. The major challenges in modeling control actuation system are rise time, maximum peak to peak overshoot, and response to nonlinear system with percentage error. This paper addresses the challenges in modeling and real time implementation of control actuation system for missiles glider applications. As an alternative fuzzy-PID controller is proposed in BLDC motor drive followed by linkage mechanism to actuate fins in missiles and gliders. The proposed system will realize better rise time and less overshoot while operating in extreme nonlinear dynamic system conditions. A mathematical model of BLDC motor is derived in state space form. The complete control actuation system is modeled in MATLAB/Simulink environment and verified by performing simulation studies. A real time prototype of the control actuation is developed with dSPACE-1104 hardware controller and a detailed analysis is carried out to confirm the viability of the proposed system.

  13. Construction of a Fish‐like Robot Based on High Performance Graphene/PVDF Bimorph Actuation Materials

    Xiao, Peishuang; Yi, Ningbo; Zhang, Tengfei; Chang, Huicong; Yang, Yang; Zhou, Ying


    Smart actuators have many potential applications in various areas, so the development of novel actuation materials, with facile fabricating methods and excellent performances, are still urgent needs. In this work, a novel electromechanical bimorph actuator constituted by a graphene layer and a PVDF layer, is fabricated through a simple yet versatile solution approach. The bimorph actuator can deflect toward the graphene side under electrical stimulus, due to the differences in coefficient of thermal expansion between the two layers and the converse piezoelectric effect and electrostrictive property of the PVDF layer. Under low voltage stimulus, the actuator (length: 20 mm, width: 3 mm) can generate large actuation motion with a maximum deflection of about 14.0 mm within 0.262 s and produce high actuation stress (more than 312.7 MPa/g). The bimorph actuator also can display reversible swing behavior with long cycle life under high frequencies. on this basis, a fish‐like robot that can swim at the speed of 5.02 mm/s is designed and demonstrated. The designed graphene‐PVDF bimorph actuator exhibits the overall novel performance compared with many other electromechanical avtuators, and may contribute to the practical actuation applications of graphene‐based materials at a macro scale.

  14. Construction of a Fish-like Robot Based on High Performance Graphene/PVDF Bimorph Actuation Materials.

    Xiao, Peishuang; Yi, Ningbo; Zhang, Tengfei; Huang, Yi; Chang, Huicong; Yang, Yang; Zhou, Ying; Chen, Yongsheng


    Smart actuators have many potential applications in various areas, so the development of novel actuation materials, with facile fabricating methods and excellent performances, are still urgent needs. In this work, a novel electromechanical bimorph actuator constituted by a graphene layer and a PVDF layer, is fabricated through a simple yet versatile solution approach. The bimorph actuator can deflect toward the graphene side under electrical stimulus, due to the differences in coefficient of thermal expansion between the two layers and the converse piezoelectric effect and electrostrictive property of the PVDF layer. Under low voltage stimulus, the actuator (length: 20 mm, width: 3 mm) can generate large actuation motion with a maximum deflection of about 14.0 mm within 0.262 s and produce high actuation stress (more than 312.7 MPa/g). The bimorph actuator also can display reversible swing behavior with long cycle life under high frequencies. on this basis, a fish-like robot that can swim at the speed of 5.02 mm/s is designed and demonstrated. The designed graphene-PVDF bimorph actuator exhibits the overall novel performance compared with many other electromechanical avtuators, and may contribute to the practical actuation applications of graphene-based materials at a macro scale.

  15. Experimentally verified model of viscoelastic behavior of multilayer unimorph dielectric elastomer actuators

    Kadooka, Kevin; Imamura, Hiroya; Taya, Minoru


    This work presents a linear viscoelastic model to describe the time-dependent actuation behavior of multilayer unimorph dielectric elastomer actuators (MUDEA), with experimental validation by actuators produced by a robotic dispenser system. MUDEA are a type of soft actuator which can produce large bending deformation without prestretch typically required by dielectric elastomer actuators. Current analytical and finite element models of MUDEA do not consider material viscoelasticity and cannot predict the change over time of performance metrics such as tip displacement and blocking force. The linear viscoelastic model presented in this work is based on a linear elastic model for the MUDEA extended to account for viscous effects by the elastic-viscoelastic correspondence principle. The model is easily implemented because it is based on explicit expressions which can be evaluated numerically by any computer algebra system. The model was used to predict the tip displacement and blocking force of MUDEAs consisting of two, four, six, eight, and ten layers of dielectric elastomer material. The model predictions agreed well with experimental data obtained from MUDEA produced by a robotic dispenser system, which was capable of producing multilayered structures of thin layers of dielectric elastomer and carbon nanotube based electrode material.

  16. Integrating a piezoelectric actuator with mechanical and hydraulic devices to control camless engines

    Mercorelli, Paolo; Werner, Nils


    The paper deals with some interdisciplinary aspects and problems concerning the actuation control which occur in the integration of a piezoelectric structure in an aggregate actuator consisting of a piezoelectric, a stroke ratio displacement, a mechanical and a hydraulic part. Problems like compensation of the piezo hysteresis effect, scaling force-position to obtain an adequate displacement of the actuator and finally the control of such a complex aggregate system are considered and solved. Even though this work considers a particular application, the solutions proposed in the paper are quite general. In fact, the considered technical aspects occurring in systems which utilize piezoelectric technologies can be used in a variegated gamma of actuators integrating piezoelectric technologies. A cascade controller is proposed to combine a Feedforward action with an internal and an external PI-Controller. The Feedforward Controller is based on the model of the whole actuator, so particular attention is paid to the model structure. The resulting Feedforward action is an adaptive one to compensate hydraulic pressure faults. Real measurements are shown.

  17. Pneumatic Variable Series Elastic Actuator.

    Zheng, Hao; Wu, Molei; Shen, Xiangrong


    Inspired by human motor control theory, stiffness control is highly effective in manipulation and human-interactive tasks. The implementation of stiffness control in robotic systems, however, has largely been limited to closed-loop control, and suffers from multiple issues such as limited frequency range, potential instability, and lack of contribution to energy efficiency. Variable-stiffness actuator represents a better solution, but the current designs are complex, heavy, and bulky. The approach in this paper seeks to address these issues by using pneumatic actuator as a variable series elastic actuator (VSEA), leveraging the compressibility of the working fluid. In this work, a pneumatic actuator is modeled as an elastic element with controllable stiffness and equilibrium point, both of which are functions of air masses in the two chambers. As such, for the implementation of stiffness control in a robotic system, the desired stiffness/equilibrium point can be converted to the desired chamber air masses, and a predictive pressure control approach is developed to control the timing of valve switching to obtain the desired air mass while minimizing control action. Experimental results showed that the new approach in this paper requires less expensive hardware (on-off valve instead of proportional valve), causes less control action in implementation, and provides good control performance by leveraging the inherent dynamics of the actuator.

  18. Mechanics of Actuated Disc Cutting

    Dehkhoda, Sevda; Detournay, Emmanuel


    This paper investigates the mechanics of an actuated disc cutter with the objective of determining the average forces acting on the disc as a function of the parameters characterizing its motion. The specific problem considered is that of a disc cutter revolving off-centrically at constant angular velocity around a secondary axis rigidly attached to a cartridge, which is moving at constant velocity and undercutting rock at a constant depth. This model represents an idealization of a technology that has been implemented in a number of hard rock mechanical excavators with the goal of reducing the average thrust force to be provided by the excavation equipment. By assuming perfect conformance of the rock with the actuated disc as well as a prescribed motion of the disc (perfectly rigid machine), the evolution of the contact surface between the disc and the rock during one actuation of the disc can be computed. Coupled with simple cutter/rock interaction models that embody either a ductile or a brittle mode of fragmentation, these kinematical considerations lead to an estimate of the average force on the cartridge and of the partitioning of the energy imparted by the disc to the rock between the actuation mechanism of the disc and the translation of the cartridge on which the actuated disc is attached.

  19. Modelling and control of double-cone dielectric elastomer actuator

    Branz, F.; Francesconi, A.


    Among various dielectric elastomer devices, cone actuators are of large interest for their multi-degree-of-freedom design. These objects combine the common advantages of dielectric elastomers (i.e. solid-state actuation, self-sensing capability, high conversion efficiency, light weight and low cost) with the possibility to actuate more than one degree of freedom in a single device. The potential applications of this feature in robotics are huge, making cone actuators very attractive. This work focuses on rotational degrees of freedom to complete existing literature and improve the understanding of such aspect. Simple tools are presented for the performance prediction of the device: finite element method simulations and interpolating relations have been used to assess the actuator steady-state behaviour in terms of torque and rotation as a function of geometric parameters. Results are interpolated by fit relations accounting for all the relevant parameters. The obtained data are validated through comparison with experimental results: steady-state torque and rotation are determined at a given high voltage actuation. In addition, the transient response to step input has been measured and, as a result, the voltage-to-torque and the voltage-to-rotation transfer functions are obtained. Experimental data are collected and used to validate the prediction capability of the transfer function in terms of time response to step input and frequency response. The developed static and dynamic models have been employed to implement a feedback compensator that controls the device motion; the simulated behaviour is compared to experimental data, resulting in a maximum prediction error of 7.5%.

  20. Second Order Darboux Displacements

    Samsonov, B F; Negro, J; Nieto, L M


    The potentials for a one dimensional Schroedinger equation that are displaced along the x axis under second order Darboux transformations, called 2-SUSY invariant, are characterized in terms of a differential-difference equation. The solutions of the Schroedinger equation with such potentials are given analytically for any value of the energy. The method is illustrated by a two-soliton potential. It is proven that a particular case of the periodic Lame-Ince potential is 2-SUSY invariant. Both Bloch solutions of the corresponding Schroedinger equation equation are found for any value of the energy. A simple analytic expression for a family of two-gap potentials is derived.

  1. Displacing the patient

    Pors, Anja Svejgaard


    This analysis is based on an empirical study of a Danish hospital‟s communication programme entitled: 'The Perspective of the Patient'. The paper explores how strategic documents of the programme organize the communication work through situated displacements of the patient. Based on methodological...... elements from situational analysis (Clarke 2005) the analysis examines how the hospital‟s patient communication is not only about disease treatment, but rather about information treatment of the patient in order to attain a high level of patient satisfaction. The goal of patient satisfaction addresses both...

  2. Displacing the Patient

    Pors, Anja Svejgaard

    The analysis is based on an empirical study of a hospital’s communication strategy entitled: 'The Perspective of the Patient'. The paper asks how the strategy organizes communication work as situated displacements of the patient. Based on methodological elements from situational analysis (Clarke...... 2005) the analysis examines how the hospital’s patient communication is not just about disease treatment, but rather about information treatment of the patient in order to attain a high level of patient satisfaction. The goal of patient satisfaction addresses care-oriented understandings of the patient...

  3. Maximum Autocorrelation Factorial Kriging

    Nielsen, Allan Aasbjerg; Conradsen, Knut; Pedersen, John L.


    This paper describes maximum autocorrelation factor (MAF) analysis, maximum autocorrelation factorial kriging, and its application to irregularly sampled stream sediment geochemical data from South Greenland. Kriged MAF images are compared with kriged images of varimax rotated factors from...

  4. Elastic actuation for legged locomotion

    Cao, Chongjing; Conn, Andrew


    The inherent elasticity of dielectric elastomer actuators (DEAs) gives this technology great potential in energy efficient locomotion applications. In this work, a modular double cone DEA is developed with reduced manufacturing and maintenance time costs. This actuator can lift 45 g of mass (5 times its own weight) while producing a stroke of 10.4 mm (23.6% its height). The contribution of the elastic energy stored in antagonistic DEA membranes to the mechanical work output is experimentally investigated by adding delay into the DEA driving voltage. Increasing the delay time in actuation voltage and hence reducing the duty cycle is found to increase the amount of elastic energy being recovered but an upper limit is also noticed. The DEA is then applied to a three-segment leg that is able to move up and down by 17.9 mm (9% its initial height), which demonstrates the feasibility of utilizing this DEA design in legged locomotion.

  5. Displaced patella fractures.

    Della Rocca, Gregory J


    Displaced patella fractures often result in disruption of the extensor mechanism of the knee. An intact extensor mechanism is a requirement for unassisted gait. Therefore, operative treatment of the displaced patella fracture is generally recommended. The evaluation of the patella fracture patient includes examination of extensor mechanism integrity. Operative management of patella fractures normally includes open reduction with internal fixation, although partial patellectomy is occasionally performed, with advancement of quadriceps tendon or patellar ligament to the fracture bed. Open reduction with internal fixation has historically been performed utilizing anterior tension band wiring, although comminution of the fracture occasionally makes this fixation construct inadequate. Supplementation or replacement of the tension band wire construct with interfragmentary screws, cerclage wire or suture, and/or plate-and-screw constructs may add to the stability of the fixation construct. Arthrosis of the patellofemoral joint is very common after healing of patella fractures, and substantial functional deficits may persist long after fracture healing has occurred. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  6. Dynamic characteristics of the SMH actuator using hydrogen-absorbing alloys

    Kim, Kyong; Pang, D. Y.; Choi, K. H.; Lee, S. C.; Kim, Y. Y.; Kwon, T. K.; Hong, C. U.; Kim, N. G.


    The dynamic characteristics of the special metal hydride(SMH) actuator using hydrogen absorbing alloys has been studied through the experiments on the characteristics of the temperature-pressure relation using a Peltier module. The SMH actuator uses the reversible reactions between thermal energy and mechanical energy inside hydrogen-absorbing alloys. It is well known that hydrogen-absorbing alloys can reversely absorb and desorb a large volume of hydrogen gas, more than about 1000 times of their own volume. By using Peltier element, we can actively control the energy conversion through hydrogen-absorbing alloys through hydriding and dehydriding reactions. Heating hydrogen-absorbing alloys using Peltier element will increase the equilibrium pressure of hydrogen gas resulting in the desorption of hydrogen gas by the alloys. Whereas, by cooling the alloys, the equilibrium pressure of hydrogen gas will decrease and hydrogen gas will be absorbed. In the present study, a simple special metal hydride (SMH) actuator, consisting of plated hydrogen-absorbing alloys as a power source, Peltier elements as a heat source, and a cylinder with metal bellows as a mechanical functioning part, has been developed. An electro-less copper plating has been used to improve the thermal conductivity of the hydrogen-absorbing alloys. To study the effects of the electro-less copper plating and the dynamic characteristics of the newly developed SMH actuator, a series of experiments has been performed and analyzed. The experiment demonstrated that the SMH actuator, which contains only 14.5 g of hydrogen-absorbing alloys, was able to easily lift 40 kg of weight with the displacement of 35 mm. The displacement of the cylinder was controlled in the periodic movement. The developed SMH actuator has merits in its small size, light weight, noiseless operation, and compliances similar to those of human bodies. Therefore, the SMH actuator is suitable for uses in medical and rehabilitation applications.

  7. Tb-Dy-Fe Single Crystal and Magnetostrictive Actuator Using These Materials


    Magnetostrictive actuators normally use twin-crystal magnetostrictive materials as driving unit. Because the crystal and twin-crystal plane hinder the movement of the domain wall, its displacement output of low magnetic strength is rather small. Using Tb-Dy-Fe single crystal technique can effectively solve the problems brought by pollution and twin crystals, and produce high-quality Tb-Dy-Fe single crystal materials. The paper will introduce the technique of using these materials to produce magnetostrictive actuators that possess high sensitivity and resolution and use pulse feeding.

  8. The shape memory alloy actuator controlled by the Sun’s radiation

    Riad, Amine; Alhamany, Abdelilah; Benzohra, Mouna


    Shape memory alloys (SMAs) have many thermo-mechanical characteristics which can return to their original value once exposed to a specific temperature. These materials are able to change their mechanical features such as shape, displacement or frequency in response to stress or heating; this may be useful for actuators in many fields such as aircraft, robotics and microsystems. In order to know the effect of the Sun’s radiation on SMAs we have conducted a numerical study that simulates a SMA actuator.

  9. Modular Actuators for Space Applications Project

    National Aeronautics and Space Administration — Rocketstar Robotics is proposing the development of a modern dual drive actuator. Rocketstar has put together numerous modern concepts for modular actuators that...

  10. Transputer Control of Hydraulic Actuators and Robots

    Conrad, Finn


    Results from a Danish mechatronics research program entitled IMCIA - Intelligent Control and Intelligent Actuators. The objective is development of intelligent actuators for intelligent motion control. A mechatronics test facility with a transputer controlled hydraulic robot suiteable for real...

  11. Electrodynamic actuators for rocket engine valves

    Fiet, O.; Doshi, D.


    Actuators, employed in acoustic loudspeakers, operate liquid rocket engine valves by replacing light paper cones with flexible metal diaphragms. Comparative analysis indicates better response time than solenoid actuators, and improved service life and reliability.

  12. Transputer Control of Hydraulic Actuators and Robots

    Conrad, Finn


    Results from a Danish mechatronics research program entitled IMCIA - Intelligent Control and Intelligent Actuators. The objective is development of intelligent actuators for intelligent motion control. A mechatronics test facility with a transputer controlled hydraulic robot suiteable for real...

  13. Deformable mirror with thermal actuators.

    Vdovin, Gleb; Loktev, Mikhail


    Low-cost adaptive optics is applied in lasers, scientific instrumentation, ultrafast sciences, and ophthalmology. These applications demand that the deformable mirrors used be simple, inexpensive, reliable, and efficient. We report a novel type of ultralow-cost deformable mirror with thermal actuators. The device has a response time of ~5 s , an actuator stroke of ~6mum , and temporal stability of ~lambda/10 rms in the visible range and can be used for correction of rather large aberrations with slow-changing amplitude.

  14. Fast-acting valve actuator

    Cho, Nakwon


    A fast-acting valve actuator utilizes a spring driven pneumatically loaded piston to drive a valve gate. Rapid exhaust of pressurized gas from the pneumatically loaded side of the piston facilitates an extremely rapid piston stroke. A flexible selector diaphragm opens and closes an exhaust port in response to pressure differentials created by energizing and de-energizing a solenoid which controls the pneumatic input to the actuator as well as selectively providing a venting action to one side of the selector diaphragm.

  15. Progress on Shape Memory Alloy Actuator Development for Active Clearance Control

    DeCastro, Jonathan; Melcher, Kevin; Noebe, Ronald


    Results of a numerical analysis evaluating the feasibility of high-temperature shape memory alloys (HTSMA) for active clearance control actuation in the high-pressure turbine section of a modern turbofan engine has been conducted. The prototype actuator concept considered here consists of parallel HTSMA wires attached to the shroud that is located on the exterior of the turbine case. A transient model of an HTSMA actuator was used to evaluate active clearance control at various operating points in a test bed aircraft engine simulation. For the engine under consideration, each actuator must be designed to counteract loads from 380 to 2000 lbf and displace at least 0.033 in. Design results show that an actuator comprised of 10 wires 2 in. in length is adequate for control at critical engine operating points and still exhibit acceptable failsafe operability and cycle life. A proportional-integral-derivative (PID) controller with integrator windup protection was implemented to control clearance amidst engine transients during a normal mission. Simulation results show that the control system exhibits minimal variability in clearance control performance across the operating envelope. The final actuator design is sufficiently small to fit within the limited space outside the high-pressure turbine case and is shown to consume only small amounts of bleed air to adequately regulate temperature.

  16. Reactive actuators and sensors integrated in one device: mimicking brain-muscles feedback communication

    Otero, Toribio F.; Martinez, Jose G.


    Artificial muscles based on carbon derivative molecular structures are chemical (electro-chemo-mechanical) actuators. The electrochemical reaction drives the film volume variation and the actuation. The applied current controls the movement rate and the charge controls the amplitude of the displacement (Faraday' motors). Any working or surrounding variable influencing the reaction rate will be sensed by the muscle potential, or by the consumed electrical energy, evolution during actuation. Experimental results and full theoretical description of the basic reactive material and of any dual electrochemical sensing-actuator will be presented. During current flow the muscle potential and the consumed electrical energy evolution are influenced by the working variables: temperature, electrolyte concentration, driving current, film volume variation (external pressure, applied strain, hanged masses, obstacles in its way). The working muscle becomes an electrochemical sensor. Only two connecting wires contain actuating (current) and sensing (potential) signals read and controlled, at any time from the computer-generator. One device integrates several sensing and actuating tools working simultaneously mimicking muscles/brain feedback communication.

  17. Analysis and Evaluation of the Dynamic Performance of SMA Actuators for Prosthetic Hand Design

    O'Toole, Kevin T.; McGrath, Mark M.; Coyle, Eugene


    It is widely acknowledged within the biomedical engineering community that shape memory alloys (SMAs) exhibit great potential for application in the actuation of upper limb prosthesis designs. These lightweight actuators are particularly suitable for prosthetic hand solutions. A four-fingered, 12 degree-of-freedom prosthetic hand has been developed featuring SMA bundle actuators embedded within the palmar structure. Joule heating of the SMA bundle actuators generates sufficient torque at the fingers to allow a wide range of everyday tasks to be carried out. Transient characterization of SMA bundles has shown that performance/response during heating and cooling differs substantially. Natural convection is insufficient to provide for adequate cooling during elongation of the actuators. An experimental test-bed has been developed to facilitate analysis of the heat transfer characteristics of the appropriately sized SMA bundle actuators for use within the prosthetic hand design. Various modes of heat sinking are evaluated so that the most effective wire-cooling solution can be ascertained. SMA bundles of varying size will be used so that a generalized model of the SMA displacement performance under natural and forced cooling conditions can be obtained. The optimum cooling solution will be implemented onto the mechanical hand framework in future work. These results, coupled with phenomenological models of SMA behavior, will be used in the development of an effective control strategy for this application in future work.

  18. A light writable microfluidic "flash memory": optically addressed actuator array with latched operation for microfluidic applications.

    Hua, Zhishan; Pal, Rohit; Srivannavit, Onnop; Burns, Mark A; Gulari, Erdogan


    This paper presents a novel optically addressed microactuator array (microfluidic "flash memory") with latched operation. Analogous to the address-data bus mediated memory address protocol in electronics, the microactuator array consists of individual phase-change based actuators addressed by localized heating through focused light patterns (address bus), which can be provided by a modified projector or high power laser pointer. A common pressure manifold (data bus) for the entire array is used to generate large deflections of the phase change actuators in the molten phase. The use of phase change material as the working media enables latched operation of the actuator array. After the initial light "writing" during which the phase is temporarily changed to molten, the actuated status is self-maintained by the solid phase of the actuator without power and pressure inputs. The microfluidic flash memory can be re-configured by a new light illumination pattern and common pressure signal. The proposed approach can achieve actuation of arbitrary units in a large-scale array without the need for complex external equipment such as solenoid valves and electrical modules, which leads to significantly simplified system implementation and compact system size. The proposed work therefore provides a flexible, energy-efficient, and low cost multiplexing solution for microfluidic applications based on physical displacements. As an example, the use of the latched microactuator array as "normally closed" or "normally open" microvalves is demonstrated. The phase-change wax is fully encapsulated and thus immune from contamination issues in fluidic environments.

  19. A Bi-Directional Out-of-Plane Actuator by Electrostatic Force

    Hao Ren


    Full Text Available Presented in this paper is a bi-directional out-of-plane actuator which combines the merits of the electrostatic repulsive principle and the electrostatic attractive principle. By taking advantage of the electrostatic repulsive mode, the common “pull-in” instability can be lessened to enlarge the displacement, and by applying the electrostatic attractive mode, the out-of-plane displacement is further enlarged. The implications of changing the actuator’s physical dimensions are discussed, along with the two-layer polysilicon surface microfabrication process used to fabricate such an actuator. The static characteristics of the out-of-plane displacement versus the voltage of both modes are tested, and displacements of 1.4 μm and 0.63 μm are obtained at 130 V and 15 V, respectively. Therefore, a total stroke of 2.03 μm is achieved, more than 3 fold that of the electrostatic attractive mode, making this actuator useful in optical Micro-Electro-Mechanical Systems (MEMS and Radio Frequency (RF MEMS applications.

  20. Note: A novel rotary actuator driven by only one piezoelectric actuator.

    Huang, Hu; Fu, Lu; Zhao, Hongwei; Shi, Chengli; Ren, Luquan; Li, Jianping; Qu, Han


    This paper presents a novel piezo-driven rotary actuator based on the parasitic motion principle. Output performances of the rotary actuator were tested and discussed. Experiment results indicate that using only one piezoelectric actuator and simple sawtooth wave control, the rotary actuator reaches the rotation velocity of about 20,097 μrad/s when the driving voltage is 100 V and the driving frequency is 90 Hz. The actuator can rotate stably with the minimum resolution of 0.7 μrad. This paper verifies feasibility of the parasitic motion principle for applications of rotary actuators, providing new design ideas for precision piezoelectric rotary actuators.

  1. Simulation and control of an electro-hydraulic actuated clutch

    Balau, Andreea-Elena; Caruntu, Constantin-Florin; Lazar, Corneliu


    The basic function of any type of automotive transmission is to transfer the engine torque to the vehicle with the desired ratio smoothly and efficiently and the most common control devices inside the transmission are clutches and hydraulic pistons. The automatic control of the clutch engagement plays a crucial role in Automatic Manual Transmission (AMT) vehicles, being seen as an increasingly important enabling technology for the automotive industry. It has a major role in automatic gear shifting and traction control for improved safety, drivability and comfort and, at the same time, for fuel economy. In this paper, a model for a wet clutch actuated by an electro-hydraulic valve used by Volkswagen for automatic transmissions is presented. Starting from the developed model, a simulator was implemented in Matlab/Simulink and the model was validated against data obtained from a test-bench provided by Continental Automotive Romania, which includes the Volkswagen wet clutch actuated by the electro-hydraulic valve. Then, a predictive control strategy is applied to the model of the electro-hydraulic actuated clutch with the aims of controlling the clutch piston displacement and decreasing the influence of the network-induced delays on the control performances. The simulation results obtained with the proposed method are compared with the ones obtained with different networked controllers and it is shown that the strategy proposed in this paper can indeed improve the performances of the control system.

  2. Modeling and test of a kinaesthetic actuator based on MR fluid for haptic applications.

    Yang, Tae-Heon; Koo, Jeong-Hoi; Kim, Sang-Youn; Kwon, Dong-Soo


    Haptic display units have been widely used for conveying button sensations to users, primarily employing vibrotactile actuators. However, the human feeling for pressing buttons mainly relies on kinaesthetic sensations (rather than vibrotactile sensations), and little studies exist on small-scale kinaesthetic haptic units. Thus, the primary goals of this paper are to design a miniature kinaesthetic actuator based on Magneto-Rheological (MR) fluid that can convey various button-clicking sensations and to experimentally evaluate its haptic performance. The design focuses of the proposed actuator were to produce sufficiently large actuation forces (resistive forces) for human users in a given size constraint and to offer a wide range of actuation forces for conveying vivid haptic sensations to users. To this end, this study first performed a series of parametric studies using mathematical force models for multiple operating modes of MR fluid in conjunction with finite element electromagnetism analysis. After selecting design parameters based on parametric studies, a prototype actuator was constructed, and its performance was evaluated using a dynamic mechanical analyzer. It measured the actuator's resistive force with a varying stroke (pressed depth) up to 1 mm and a varying input current from 0 A to 200 mA. The results show that the proposed actuator creates a wide range of resistive forces from around 2 N (off-state) to over 9.5 N at 200 mA. In order to assess the prototype's performance in the terms of the haptic application prospective, a maximum force rate was calculated to determine just noticeable difference in force changes for the 1 mm stoke of the actuator. The results show that the force rate is sufficient to mimic various levels of button sensations, indicating that the proposed kinaesthetic actuator can offer a wide range of resistive force changes that can be conveyed to human operators.

  3. Reversible Self-Actuated Thermo-Responsive Pore Membrane

    Park, Younggeun; Gutierrez, Maria Paz; Lee, Luke P.


    Smart membranes, which can selectively control the transfer of light, air, humidity and temperature, are important to achieve indoor climate regulation. Even though reversible self-actuation of smart membranes is desirable in large-scale, reversible self-regulation remains challenging. Specifically, reversible 100% opening/closing of pore actuation showing accurate responsiveness, reproducibility and structural flexibility, including uniform structure assembly, is currently very difficult. Here, we report a reversible, thermo-responsive self-activated pore membrane that achieves opening and closing of pores. The reversible, self-actuated thermo-responsive pore membrane was fabricated with hybrid materials of poly (N-isopropylacrylamide), (PNIPAM) within polytetrafluoroethylene (PTFE) to form a multi-dimensional pore array. Using Multiphysics simulation of heat transfer and structural mechanics based on finite element analysis, we demonstrated that pore opening and closing dynamics can be self-activated at environmentally relevant temperatures. Temperature cycle characterizations of the pore structure revealed 100% opening ratio at T = 40 °C and 0% opening ratio at T = 20 °C. The flexibility of the membrane showed an accurate temperature-responsive function at a maximum bending angle of 45°. Addressing the importance of self-regulation, this reversible self-actuated thermo-responsive pore membrane will advance the development of future large-scale smart membranes needed for sustainable indoor climate control.

  4. Reversible Self-Actuated Thermo-Responsive Pore Membrane.

    Park, Younggeun; Gutierrez, Maria Paz; Lee, Luke P


    Smart membranes, which can selectively control the transfer of light, air, humidity and temperature, are important to achieve indoor climate regulation. Even though reversible self-actuation of smart membranes is desirable in large-scale, reversible self-regulation remains challenging. Specifically, reversible 100% opening/closing of pore actuation showing accurate responsiveness, reproducibility and structural flexibility, including uniform structure assembly, is currently very difficult. Here, we report a reversible, thermo-responsive self-activated pore membrane that achieves opening and closing of pores. The reversible, self-actuated thermo-responsive pore membrane was fabricated with hybrid materials of poly (N-isopropylacrylamide), (PNIPAM) within polytetrafluoroethylene (PTFE) to form a multi-dimensional pore array. Using Multiphysics simulation of heat transfer and structural mechanics based on finite element analysis, we demonstrated that pore opening and closing dynamics can be self-activated at environmentally relevant temperatures. Temperature cycle characterizations of the pore structure revealed 100% opening ratio at T = 40 °C and 0% opening ratio at T = 20 °C. The flexibility of the membrane showed an accurate temperature-responsive function at a maximum bending angle of 45°. Addressing the importance of self-regulation, this reversible self-actuated thermo-responsive pore membrane will advance the development of future large-scale smart membranes needed for sustainable indoor climate control.

  5. A swimming robot actuated by living muscle tissue

    Herr Hugh


    Full Text Available Abstract Biomechatronics is the integration of biological components with artificial devices, in which the biological component confers a significant functional capability to the system, and the artificial component provides specific cellular and tissue interfaces that promote the maintenance and functional adaptation of the biological component. Based upon functional performance, muscle is potentially an excellent mechanical actuator, but the larger challenge of developing muscle-actuated, biomechatronic devices poses many scientific and engineering challenges. As a demonstratory proof of concept, we designed, built, and characterized a swimming robot actuated by two explanted frog semitendinosus muscles and controlled by an embedded microcontroller. Using open loop stimulation protocols, the robot performed basic swimming maneuvers such as starting, stopping, turning (turning radius ~400 mm and straight-line swimming (max speed >1/3 body lengths/second. A broad spectrum antibiotic/antimycotic ringer solution surrounded the muscle actuators for long term maintenance, ex vivo. The robot swam for a total of 4 hours over a 42 hour lifespan (10% duty cycle before its velocity degraded below 75% of its maximum. The development of functional biomechatronic prototypes with integrated musculoskeletal tissues is the first critical step toward the long term objective of controllable, adaptive and robust biomechatronic robots and prostheses.

  6. A swimming robot actuated by living muscle tissue

    Herr, Hugh; Dennis, Robert G


    Biomechatronics is the integration of biological components with artificial devices, in which the biological component confers a significant functional capability to the system, and the artificial component provides specific cellular and tissue interfaces that promote the maintenance and functional adaptation of the biological component. Based upon functional performance, muscle is potentially an excellent mechanical actuator, but the larger challenge of developing muscle-actuated, biomechatronic devices poses many scientific and engineering challenges. As a demonstratory proof of concept, we designed, built, and characterized a swimming robot actuated by two explanted frog semitendinosus muscles and controlled by an embedded microcontroller. Using open loop stimulation protocols, the robot performed basic swimming maneuvers such as starting, stopping, turning (turning radius ~400 mm) and straight-line swimming (max speed >1/3 body lengths/second). A broad spectrum antibiotic/antimycotic ringer solution surrounded the muscle actuators for long term maintenance, ex vivo. The robot swam for a total of 4 hours over a 42 hour lifespan (10% duty cycle) before its velocity degraded below 75% of its maximum. The development of functional biomechatronic prototypes with integrated musculoskeletal tissues is the first critical step toward the long term objective of controllable, adaptive and robust biomechatronic robots and prostheses. PMID:15679914

  7. Turbulent Mixing Layer Control using Ns-DBD Plasma Actuators

    Singh, Ashish; Little, Jesse


    A low speed turbulent mixing layer (Reθo =1282, U1 /U2 = 0 . 28 and U2 = 11 . 8 m / s) is subject to nanosecond pulse driven dielectric barrier discharge (ns-DBD) plasma actuation. The forcing frequency corresponds to a Strouhal number (St) of 0.032 which is the most amplified frequency based on stability theory. Flow response is studied as a function of the pulse energy, the energy input time scale (carrier frequency) and the duration of actuation (duty cycle). It is found that successful actuation requires a combination of forcing parameters. An evaluation of the forcing efficacy is achieved by examining different flow quantities such as momentum thickness, vorticity and velocity fluctuations. In accordance with past work, a dependence is found between the initial shear layer thickness and the energy coupled to the flow. More complex relationships are also revealed such as a limitation on the maximum pulse energy which yields control. Also, the pulse energy and the carrier frequency (inverse of period between successive pulses) are interdependent whereby an optimum exists between them and extreme values of either parameter is inconsonant with the control desired. These observations establish a rich and complex process behind ns-DBD plasma actuation. Air Force Office of Scientific Research (FA9550-12-1-0044).

  8. Analysis of the sweeped actuator line method

    Nathan Jörn


    Full Text Available The actuator line method made it possible to describe the near wake of a wind turbine more accurately than with the actuator disk method. Whereas the actuator line generates the helicoidal vortex system shed from the tip blades, the actuator disk method sheds a vortex sheet from the edge of the rotor plane. But with the actuator line come also temporal and spatial constraints, such as the need for a much smaller time step than with actuator disk. While the latter one only has to obey the Courant-Friedrichs-Lewy condition, the former one is also restricted by the grid resolution and the rotor tip-speed. Additionally the spatial resolution has to be finer for the actuator line than with the actuator disk, for well resolving the tip vortices. Therefore this work is dedicated to examining a method in between of actuator line and actuator disk, which is able to model the transient behaviour, such as the rotating blades, but which also relaxes the temporal constraint. Therefore a larger time-step is used and the blade forces are swept over a certain area. The main focus of this article is on the aspect of the blade tip vortex generation in comparison with the standard actuator line and actuator disk.

  9. Design of a piezoelectric rotation actuator

    Holterman, J.; de Vries, Theodorus J.A.; Babakhani, B.; Brouwer, Dannis Michel


    In order to facilitate active damping within a linear motion system, a self-sensing piezoelectric rotation actuator has been designed. The rotation actuator consists of two piezoelectric stacks that function as linear actuators, embedded in a mechanical interface with several elastic elements, thus

  10. Carbon nanotube-polymer composite actuators

    Gennett, Thomas; Raffaelle, Ryne P.; Landi, Brian J.; Heben, Michael J.


    The present invention discloses a carbon nanotube (SWNT)-polymer composite actuator and method to make such actuator. A series of uniform composites was prepared by dispersing purified single wall nanotubes with varying weight percents into a polymer matrix, followed by solution casting. The resulting nanotube-polymer composite was then successfully used to form a nanotube polymer actuator.

  11. Experimental identification of piezo actuator characteristic

    Ľ. Miková


    Full Text Available This paper deals with piezoelectric material, which can be used as actuator for conversion of electrical energy to mechanical work. Test equipment has been developed for experimental testing of the piezoactuators. Piezoactivity of this actuator has non-linear characteristic. This type of actuator is used for in-pipe mechanism design.

  12. Design and processing of multi-layered flextensional piezoelectric actuators

    Vartuli, James Scott

    Piezoelectric actuators are unique to other actuator systems due to their fast response time (˜10-4 s) and displacement accuracy on the order of a nanometer. Piezoelectric strain is obtained with the application of an electric field. Useful applications include adaptive optical systems and active vibration dampening. One type of piezoelectric actuator is the flextensional device, which requires a gradient in electromechanical properties to create a bending moment through non-uniform lateral stresses. The simplest flextensional device, called the unimorph, is a piezoelectric bonded to a metal plate. The bond between piezoelectric and metal is subjected to stresses that can lead to lifetime limitations. Fabrication requires cutting, polishing, and bonding, which does not facilitate miniaturization and curved shell structures. The monomorph and RAINBOW are modifications of the unimorph that seek to improve upon these drawbacks. The monomorph is comprised of one plate of normally insulating piezoelectric that is made semiconductive with a dopant. With an applied field, a non-uniform electric-field distribution arises due to the semiconductor-electrode interface. Removal of the difficult tasks of surface preparation and bonding are processing advantages that better enable component miniaturization. RAINBOW removes potential interface problems of bonding dissimilar materials together by creating a metal-ceramic layer within the piezoelectric ceramic by chemically reducing the oxygen content. The processing methods of the monomorph and RAINBOW are limited since they can only create one functional gradient. Our work sought to create a modification of the unimorph with the capability for miniaturization while maintaining the positive attributes of the previously mentioned technologies. Called PrinDrex, named for the collaborative effort between Princeton and Drexel Universities, we construct functional gradients by layering different ceramic-polymer tapes in an appropriate

  13. Variable displacement blower

    Bookout, Charles C.; Stotts, Robert E.; Waring, Douglass R.; Folsom, Lawrence R.


    A blower having a stationary casing for rotatably supporting a rotor assembly having a series of open ended chambers arranged to close against the surrounding walls of the casing. Pistons are slidably mounted within each chamber with the center of rotation of the pistons being offset in regard to the center of rotation of the rotor assembly whereby the pistons reciprocate in the chambers as the rotor assembly turns. As inlet port communicates with the rotor assembly to deliver a working substance into the chamber as the pistons approach a top dead center position in the chamber while an outlet port also communicates with the rotor to exhaust the working substance as the pistons approach a bottom dead center position. The displacement of the blower is varied by adjusting the amount of eccentricity between the center of rotation of the pistons and the center of rotation of the rotor assembly.

  14. Multiplexed displacement fiber sensor using thin core fiber exciter.

    Chen, Zhen; Hefferman, Gerald; Wei, Tao


    This letter reports a multiplexed optical displacement sensor using a thin core fiber (TCF) exciter. The TCF exciter is followed by a stripped single mode optical fiber. A small section of buffer is used as the movable component along the single mode fiber. Ultra-weak cladding mode reflection (coating boundary. The position change of the movable buffer segment results in a delay change of the cladding mode reflection. Thus, it is a measure of the displacement of the buffer segment with respect to the glass fiber. The insertion loss of one sensor was measured to be less than 3 dB. A linear relationship was evaluated between the measurement position and absolute position of the moving actuator. Multiplexed capability was demonstrated and no cross talk was found between the sensors.

  15. Actuators of 3-element unimorph deformable mirror

    Fu, Tianyang; Ning, Yu; Du, Shaojun


    Kinds of wavefront aberrations exist among optical systems because of atmosphere disturbance, device displacement and a variety of thermal effects, which disturb the information of transmitting beam and restrain its energy. Deformable mirror(DM) is designed to adjust these wavefront aberrations. Bimorph DM becomes more popular and more applicable among adaptive optical(AO) systems with advantages in simple structure, low cost and flexible design compared to traditional discrete driving DM. The defocus aberration accounted for a large proportion of all wavefront aberrations, with a simpler surface and larger amplitude than others, so it is very useful to correct the defocus aberration effectively for beam controlling and aberration adjusting of AO system. In this study, we desired on correcting the 3rd and 10th Zernike modes, analyze the characteristic of the 3rd and 10th defocus aberration surface distribution, design 3-element actuators unimorph DM model study on its structure and deformation principle theoretically, design finite element models of different electrode configuration with different ring diameters, analyze and compare effects of different electrode configuration and different fixing mode to DM deformation capacity through COMSOL finite element software, compare fitting efficiency of DM models to the 3rd and 10th Zernike modes. We choose the inhomogeneous electrode distribution model with better result, get the influence function of every electrode and the voltage-PV relationship of the model. This unimorph DM is suitable for the AO system with a mainly defocus aberration.

  16. Displacement Parameter Inversion for a Novel Electromagnetic Underground Displacement Sensor

    Nanying Shentu


    Full Text Available Underground displacement monitoring is an effective method to explore deep into rock and soil masses for execution of subsurface displacement measurements. It is not only an important means of geological hazards prediction and forecasting, but also a forefront, hot and sophisticated subject in current geological disaster monitoring. In previous research, the authors had designed a novel electromagnetic underground horizontal displacement sensor (called the H-type sensor by combining basic electromagnetic induction principles with modern sensing techniques and established a mutual voltage measurement theoretical model called the Equation-based Equivalent Loop Approach (EELA. Based on that work, this paper presents an underground displacement inversion approach named “EELA forward modeling-approximate inversion method”. Combining the EELA forward simulation approach with the approximate optimization inversion theory, it can deduce the underground horizontal displacement through parameter inversion of the H-type sensor. Comprehensive and comparative studies have been conducted between the experimentally measured and theoretically inversed values of horizontal displacement under counterpart conditions. The results show when the measured horizontal displacements are in the 0–100 mm range, the horizontal displacement inversion discrepancy is generally tested to be less than 3 mm under varied tilt angles and initial axial distances conditions, which indicates that our proposed parameter inversion method can predict underground horizontal displacement measurements effectively and robustly for the H-type sensor and the technique is applicable for practical geo-engineering applications.

  17. SMA actuators for morphing wings

    Brailovski, V.; Terriault, P.; Georges, T.; Coutu, D.

    An experimental morphing laminar wing was developed to prove the feasibility of aircraft fuel consumption reduction through enhancement of the laminar flow regime over the wing extrados. The morphing wing prototype designed for subsonic cruise flight conditions (Mach 0.2 … 0.3; angle of attack - 1 … +2∘), combines three principal subsystems: (1) flexible extrados, (2) rigid intrados and (3) an actuator group located inside the wing box. The morphing capability of the wing relies on controlled deformation of the wing extrados under the action of shape memory alloys (SMA) actuators. A coupled fluid-structure model of the morphing wing was used to evaluate its mechanical and aerodynamic performances in different flight conditions. A 0.5 m chord and 1 m span prototype of the morphing wing was tested in a subsonic wind tunnel. In this work, SMA actuators for morphing wings were modeled using a coupled thermo-mechanical finite element model and they were windtunnel validated. If the thermo-mechanical model of SMA actuators presented in this work is coupled with the previously developed structureaerodynamic model of the morphing wing, it could serve for the optimization of the entire morphing wing system.

  18. Explosive micro-bubble actuator

    Broek, van den Dennis Micha


    Microactuators are key components in numerous microsystems, and in many applications strong and fast microactuators are required. The principles used to generate forces in the current actuators are not capable of fulfilling both requirements at the same time, so new principles have to be investigate

  19. Compliant actuation of rehabilitation robots

    Vallery, Heike; Veneman, Jan; Asseldonk, van Edwin; Ekkelenkamp, Ralf; Buss, Martin; Kooij, van der Herman


    This article discusses the pros and cons of compliant actuation for rehabilitation robots on the example of LOPES, focusing on the cons. After illustrating the bandwidth limitations, a new result has been derived: if stability in terms of passivity of the haptic device is desired, the renderable sti

  20. Measuring vulnerability to disaster displacement

    Brink, Susan A.; Khazai, Bijan; Power, Christopher; Wenzel, Friedemann


    Large scale disasters can cause devastating impacts in terms of population displacement. Between 2008 and 2013, on average 27 million people were displaced annually by disasters (Yonetani 2014). After large events such as hurricane Katrina or the Port-au-Prince earthquake, images of inadequate public shelter and concerns about large scale and often inequitable migration have been broadcast around the world. Population displacement can often be one of the most devastating and visible impacts of a natural disaster. Despite the importance of population displacement in disaster events, measures to understand the socio-economic vulnerability of a community often use broad metrics to estimate the total socio-economic risk of an event rather than focusing on the specific impacts that a community faces in a disaster. Population displacement is complex and multi-causal with the physical impact of a disaster interacting with vulnerability arising from the response, environmental issues (e.g., weather), cultural concerns (e.g., expectations of adequate shelter), and many individual factors (e.g., mobility, risk perception). In addition to the complexity of the causes, population displacement is difficult to measure because of the wide variety of different terms and definitions and its multi-dimensional nature. When we speak of severe population displacement, we may refer to a large number of displaced people, an extended length of displacement or associated difficulties such as poor shelter quality, risk of violence and crime in shelter communities, discrimination in aid, a lack of access to employment or other difficulties that can be associated with large scale population displacement. We have completed a thorough review of the literature on disaster population displacement. Research has been conducted on historic events to understand the types of negative impacts associated with population displacement and also the vulnerability of different groups to these impacts. We

  1. How minimum detectable displacement in a GNSS Monitoring Network change?

    Hilmi Erkoç, Muharrem; Doǧan, Uǧur; Aydın, Cüneyt


    The minimum detectable displacement in a geodetic monitoring network shows the displacement magnitude which may be just discriminated with known error probabilities. This displacement, which is originally deduced from sensitivity analysis, depends on network design, observation accuracy, datum of the network, direction of the displacement and power of the statistical test used for detecting the displacements. One may investigate how different scenarios on network design and observation accuracies influence the minimum detectable displacements for the specified datum, a-priorly forecasted directions and assumed power of the test and decide which scenario is the best or most optimum. It is sometimes difficult to forecast directions of the displacements. In that case, the minimum detectable displacements in a geodetic monitoring network are derived on the eigen-directions associated with the maximum eigen-values of the network stations. This study investigates how minimum detectable displacements in a GNSS monitoring network change depending on the accuracies of the network stations. For this, CORS-TR network in Turkey with 15 stations (a station fixed) is used. The data with 4h, 6h, 12 h and 24 h observing session duration in three sequential days of 2011, 2012 and 2013 were analyzed with Bernese 5.2 GNSS software. The repeatabilities of the daily solutions belonging to each year were analyzed carefully to scale the Bernese cofactor matrices properly. The root mean square (RMS) values for daily repeatability with respect to the combined 3-day solution are computed (the RMS values are generally less than 2 mm in the horizontal directions (north and east) and < 5 mm in the vertical direction for 24 h observing session duration). With the obtained cofactor matrices for these observing sessions, the minimum detectable displacements along the (maximum) eigen directions are compared each other. According to these comparisons, more session duration less minimum detectable

  2. A Study on Precision Stage with Displacement Magnification Mechanism Using Flexure-Based Levers

    Gyu-Hyun Bae


    Full Text Available This study presents a precision stage driven by a piezoelectric actuator and equipped with a displacement magnification mechanism for the purpose of easy displacement measurement. The displacement magnification mechanism consists of flexible hinges and lever mechanisms. The developed stage is able to provide accurate measurement by virtue of the displacement magnification mechanism, but it is exposed to severe residual vibration. In order to overcome the drawback, this study develops a method for reducing residual vibration by using a simulation model for the stage system that takes into account the dynamics of the system and the hysteretic characteristics of the piezoelectric actuator. The Bouc-Wen model is employed to represent the hysteretic characteristics of the actuator. A comparison between simulation and experiment is made to find the best simulation model for the developed system. Input shaping is applied to eliminate the residual vibration from the stage. An improved input shaper is designed to overcome the ineffectiveness of input shaping due to the hysteresis by using the proposed simulation model. Simulations and experiments prove that the proposed simulation model is very useful to investigate the system and that the proposed stage can provide accurate positioning with small residual vibration.

  3. Displacement based multilevel structural optimization

    Striz, Alfred G.


    Multidisciplinary design optimization (MDO) is expected to play a major role in the competitive transportation industries of tomorrow, i.e., in the design of aircraft and spacecraft, of high speed trains, boats, and automobiles. All of these vehicles require maximum performance at minimum weight to keep fuel consumption low and conserve resources. Here, MDO can deliver mathematically based design tools to create systems with optimum performance subject to the constraints of disciplines such as structures, aerodynamics, controls, etc. Although some applications of MDO are beginning to surface, the key to a widespread use of this technology lies in the improvement of its efficiency. This aspect is investigated here for the MDO subset of structural optimization, i.e., for the weight minimization of a given structure under size, strength, and displacement constraints. Specifically, finite element based multilevel optimization of structures (here, statically indeterminate trusses and beams for proof of concept) is performed. In the system level optimization, the design variables are the coefficients of assumed displacement functions, and the load unbalance resulting from the solution of the stiffness equations is minimized. Constraints are placed on the deflection amplitudes and the weight of the structure. In the subsystems level optimizations, the weight of each element is minimized under the action of stress constraints, with the cross sectional dimensions as design variables. This approach is expected to prove very efficient, especially for complex structures, since the design task is broken down into a large number of small and efficiently handled subtasks, each with only a small number of variables. This partitioning will also allow for the use of parallel computing, first, by sending the system and subsystems level computations to two different processors, ultimately, by performing all subsystems level optimizations in a massively parallel manner on separate

  4. A Resistivity Gradient Piezoelectric FGM Actuator


    A resistivity gradient actuator based on lead zirconate titanate ceramics was successfully developed and the bending deflections up to 140 μm were obtained. The actuator material was a matrix of PZT ceramic into which smooth gradient of piezoelectric activity was introduced. The application of an electric field then causes the actuator to bend due to differential strains induced by the piezoelectric effect. The resistivity gradient of the actuator was achieved by doping PZT with suitable donor and acceptor dopants. PZT powder was modified and synthesized by using two stage powder fabrication method. The actuator was fabricated by uniaxial pressing followed by isostatic pressing with two layers of different resistivities.

  5. Microprocessor controlled proof-mass actuator

    Horner, Garnett C.


    The objective of the microprocessor controlled proof-mass actuator is to develop the capability to mount a small programmable device on laboratory models. This capability will allow research in the active control of flexible structures. The approach in developing the actuator will be to mount all components as a single unit. All sensors, electronic and control devices will be mounted with the actuator. The goal for the force output capability of the actuator will be one pound force. The programmable force actuator developed has approximately a one pound force capability over the usable frequency range, which is above 2 Hz.

  6. Development of a non-explosive release actuator using shape memory alloy wire.

    Yoo, Young Ik; Jeong, Ju Won; Lim, Jae Hyuk; Kim, Kyung-Won; Hwang, Do-Soon; Lee, Jung Ju


    We have developed a newly designed non-explosive release actuator that can replace currently used release devices. The release mechanism is based on a separation mechanism, which relies on segmented nuts and a shape memory alloy (SMA) wire trigger. A quite fast and simple trigger operation is made possible through the use of SMA wire. This actuator is designed to allow a high preload with low levels of shock for the solar arrays of medium-size satellites. After actuation, the proposed device can be easily and instantly reset. Neither replacement, nor refurbishment of any components is necessary. According to the results of a performance test, the release time, preload capacity, and maximum shock level are 50 ms, 15 kN, and 350 G, respectively. In order to increase the reliability of the actuator, more than ten sets of performance tests are conducted. In addition, the proposed release actuator is tested under thermal vacuum and extreme vibration environments. No degradation or damage was observed during the two environment tests, and the release actuator was able to operate successfully. Considering the test results as a whole, we conclude that the proposed non-explosive release actuator can be applied reliably to intermediate-size satellites to replace existing release systems.

  7. The effect of plasma actuator on the depreciation of the aerodynamic drag on box model

    Harinaldi, Budiarso, Julian, James; Rabbani M., N.


    Recent active control research advances have provided many benefits some of which in the field of transportation by land, sea as well as by air. Flow engineering by using active control has proven advantages in energy saving significantly. One of the active control equipment that is being developed, especially in the 21st century, is a plasma actuator, with the ability to modify the flow of fluid by the approach of ion particles makes these actuators a very powerful and promising tool. This actuator can be said to be better to the previously active control such as suction, blowing and synthetic jets because it is easier to control, more flexible because it has no moving parts, easy to be manufactured and installed, and consumes a small amount of energy with maximum capability. Plasma actuator itself is the composition of a material composed of copper and a dielectric sheet, where the copper sheets act as an electricity conductor and the dielectric sheet as electricity insulator. Products from the plasma actuators are ion wind which is the result of the suction of free air around the actuator to the plasma zone. This study investigates the ability of plasma actuators in lowering aerodynamic drag which is commonly formed in the models of vehicles by varying the shape of geometry models and the flow speed.

  8. Point Coupled Displacement Sensor Project

    National Aeronautics and Space Administration — Real-time displacement measurement techniques are needed to acquire aerodynamic and structural system characteristics in flight. This proposal describes the...

  9. Turbulent boundary layer separation control using plasma actuator at Reynolds number 2000000

    Zhang Xin; Huang Yong; Wang Xunnian; Wang Wanbo; Tang Kun; Li Huaxing


    An experimental investigation was conducted to evaluate the effect of symmetrical plasma actuators on turbulent boundary layer separation control at high Reynolds number. Com-pared with the traditional control method of plasma actuator, the whole test model was made of aluminum and acted as a covered electrode of the symmetrical plasma actuator. The experimental study of plasma actuators’ effect on surrounding air, a canonical zero-pressure gradient turbulent boundary, was carried out using particle image velocimetry (PIV) and laser Doppler velocimetry (LDV) in the 0.75 m ? 0.75 m low speed wind tunnel to reveal the symmetrical plasma actuator characterization in an external flow. A half model of wing-body configuration was experimentally investigated in the £ 3.2 m low speed wind tunnel with a six-component strain gauge balance and PIV. The results show that the turbulent boundary layer separation of wing can be obviously sup-pressed and the maximum lift coefficient is improved at high Reynolds number with the symmetri-cal plasma actuator. It turns out that the maximum lift coefficient increased by approximately 8.98% and the stall angle of attack was delayed by approximately 2? at Reynolds number 2 ? 106. The effective mechanism for the turbulent separation control by the symmetrical plasma actuators is to induce the vortex near the wing surface which could create the relatively large-scale disturbance and promote momentum mixing between low speed flow and main flow regions.

  10. Nanoporous-Gold-Based Hybrid Cantilevered Actuator Dealloyed and Driven by A Modified Rotary Triboelectric Nanogenerator

    Li, Xuequan; Liu, Mengmeng; Huang, Baisheng; Liu, Hong; Hu, Weiguo; Shao, Li-Hua; Wang, Zhong Lin


    We firstly designed an electrochemical system for dealloying to synthesize nanoporous gold (NPG) and also driving the novel NPG based actuator by utilizing a modified rotary triboelectric nanogenerator (TENG). Compared to the previous reported TENG whose outputs decline due to temperature rising resulting from electrodes friction, the modified TENG with a cooling system has stable output current and voltage increased by 14% and 20%, respectively. The novel cantilevered hybrid actuator characterised by light-weight (ca. 3 mg) and small volume (ca. 30 mm × 2 mm × 10 μm) is driven by a microcontroller modulated TENG with the displacement of 2.2 mm, which is about 106 times larger than that of traditional cantilever using planar surfaces. The energy conversion efficiencies defined as the energy consumed during dealloying and actuation compared with the output of TENG are 47% and 56.7%, respectively.

  11. Structure design and driving voltage optimization of a novel giant magnetostrictive actuator

    Xue, Guangming; Zhang, Peilin; He, Zhongbo; Li, Dongwei; Cai, Canwei


    Typical giant magnetostrictive actuator (GMA) cannot meet the requirement of driving a high-speed on-off valve for limitation in bias magnetic field exerted on giant magnetostrictive material. To solve this problem, a novel GMA is designed with zero bias magnetic field. Furthermore, to satisfy the requirement of the displacement direction, a “T” type transfer rod is joined to convert material’s elongating into actuator’s shortening. Simultaneously, long responding time of the actuator, especially the rising time of coil current, is also considered in this paper. The transient-state current is modeled based on the equivalent circuit considering parallel resistance of the coil, and from computed result, high opening voltage can be taken to promote responding speed of the actuator, and then an optimized driving voltage wave is presented. At last, with the help of an experimental system, the current model is verified and the driving effect of optimized voltage wave is tested and analyzed.

  12. Eversion of bistable shells under magnetic actuation: a model of nonlinear shapes

    Seffen, Keith A.; Vidoli, Stefano


    We model in closed form a proven bistable shell made from a magnetic rubber composite material. In particular, we incorporate a non-axisymmetrical displacement field, and we capture the nonlinear coupling between the actuated shape and the magnetic flux distribution around the shell. We are able to verify the bistable nature of the shell and we explore its eversion during magnetic actuation. We show that axisymmetrical eversion is natural for a perfect shell but that non-axisymmetrical eversion rapidly emerges under very small initial imperfections, as observed in experiments and in a computational analysis. We confirm the non-uniform shapes of shell and we study the stability of eversion by considering how the landscape of total potential and magnetic energies of the system changes during actuation.

  13. New Exoskeleton Arm Concept Design And Actuation For Haptic Interaction With Virtual Objects

    Chakarov, D.; Veneva, I.; Tsveov, M.; Tiankov, T.


    In the work presented in this paper the conceptual design and actuation of one new exoskeleton of the upper limb is presented. The device is designed for application where both motion tracking and force feedback are required, such as human interaction with virtual environment or rehabilitation tasks. The choice is presented of mechanical structure kinematical equivalent to the structure of the human arm. An actuation system is selected based on braided pneumatic muscle actuators. Antagonistic drive system for each joint is shown, using pulley and cable transmissions. Force/displacement diagrams are presented of two antagonistic acting muscles. Kinematics and dynamic estimations are performed of the system exoskeleton and upper limb. Selected parameters ensure in the antagonistic scheme joint torque regulation and human arm range of motion.

  14. Out-of-plane platforms with bi-directional thermal bimorph actuation for transducer applications

    Conchouso Gonzalez, David


    This paper reports on the Buckled Cantilever Platform (BCP) that allows the manipulation of the out of plane structures through the adjustment of the pitch angle using thermal bimorph micro-Actuators. Due to the micro-fabrication process used, the bimorph actuators can be designed to move in both: Counter Clockwise (CCW) and Clockwise (CW) directions with a resolution of up to 110 μm/V, with smallest step in the range of nanometers. Thermal and electrical characterization of the thermal bimorph actuators showed low influence in the platforms temperature and low power consumption (< 35μW) mainly due to the natural isolation of the structure. Tip displacements larger than 500μm were achieved. The precise angle adjustment achieved through these mechanisms makes them optimal for a range of different MEMS applications, like optical benches and low frequency sweeping sensors and antennas. © 2015 IEEE.


    Du Liqun; Arai Fumihito; Fukuda Toshio; Kwon Guiryong


    Lead zirconate titanium solid-solution (PZT) thin films with various thickness are synthesized on titanium substrates by repeated hydrothermal treatments.Young modulus,electric-field- induced displacement and the density of the PZT film are measured respectively.Bimorph- type bending actuators are fabricated using these films.The model,which is used to analyze the driving ability of bimorph-type bending actuators by hydrothermal method,is set up.It can be seen that the driving ability of bimorph-type bending actuators can be greatly improved by optimizing the thickness of PZT thin film and substrate from the theoretical analysis results.The measured values are expected to agree with the theoretical values calculated by the above model.



    Stack actuator is a solid-state driving component of Active Tailing Edge Flap in smart rotor systems. It is a multi-layer serial structure of basic units composed of electrostrictive and adhesive layers. In this paper, a dynamic model of the actuator is derived based on the constitutive equation of electrostrictive material and the equation of motion. Theoretical analysis is made on the factors involved in the design of the actuator, which reveals that the electrostrictive layer and the adhesive layer should be optimized to compromise between displacement and frequency requirements. In the final part of the paper, the experiment of an ATEF system is introduced. The results show that the model is reasonable. It also suggests that the bending stiffness of elastic mechanism is an important factor in design, which should be carefully studied to provide satisfactory dynamic response of the ATEF system.

  17. Blocking force of a piezoelectric stack actuator made of single crystal layers (PMN-29PT)

    Tran, K. S.; Phan, H. V.; Lee, H. Y.; Kim, Yongdae; Park, H. C.


    In this study, we fabricated and characterized a stack actuator made of forty layers of 1 mm thick PMN-29PT with a cross-sectional area of 10 × 10 mm2. From the measurement of actuation displacement, we confirmed that the piezoelectric strain constant in the direction of thickness of the material is 2000 pm V-1, as suggested by the manufacturer. The blocking forces of the actuator are measured to be 230 N, 369 N, and 478 N for 100 V, 200 V, and 300 V, respectively. The measured blocking forces showed large discrepancies from the estimated blocking forces calculated using linear models, especially for a high voltage application. An empirical equation acquired by fitting the measured blocking forces indicates that the blocking force has a nonlinear relationship with the applied voltage. The measured hysteresis showed a slight nonlinear voltage-stroke relationship and small energy loss.

  18. Displacement damage effects in silicon MEMS at high proton doses

    Gomes, João; Shea, Herbert R.


    We report on a study of the sensitivity of silicon MEMS to proton radiation and mitigation strategies. MEMS can degrade due to ionizing radiation (electron-hole pair creation) and non-ionizing radiation (displacement damage), such as electrons, trapped and solar protons, or cosmic rays, typically found in a space environment. Over the past few years there has been several reports on the effects of ionizing radiation in silicon MEMS, with failure generally linked to trapped charge in dielectrics. However there is near complete lack of studies on displacement damage effects in silicon- MEMS: how does silicon change mechanically due to proton irradiation? We report on an investigation on the susceptibility of 50 μm thick SOI-based MEMS resonators to displacement damages due to proton beams, with energies from 1 to 60 MeV, and annealing of this damage. We measure ppm changes on the Young's modulus and Poisson ratio by means of accurately monitoring the resonant frequency of devices in vacuum using a Laser Doppler Vibrometer. We observed for the first time an increase (up to 0.05%) of the Young's modulus of single-crystal silicon electromagnetically-actuated micromirrors after exposure to low energy protons (1-4 MeV) at high absorbed doses ~ 100 Mrad (Si). This investigation will contribute to a better understanding of the susceptibility of silicon-based MEMS to displacement damages frequently encountered in a space radiation environment, and allow appropriated design margin and shielding to be implemented.

  19. Holocene vertical displacement on the central segments of the Wasatch fault zone, Utah

    DuRoss, C.B.


    Compiled per-event vertical-displacement observations from 17 paleoseismic sites along the six central segments of the Wasatch fault zone (WFZ) highlight possible biases and trends in displacement along the fault. The displacement data are consistent with a model of characteristic-type slip, but anomalous and variable displacements indicate that significant natural variability in displacement occurs. When combined into a composite distribution of displacement, 79% of the data fit within a displacement envelope that shows displacement decreasing in a half-ellipse shape from 1.4-3.5 m near the segment centers to 0.6-2.5 m near the ends. Additionally, displacements normalized by the distance from the segment centers to ends decrease from means of 2.0-3.0 m near the segment centers to 1.3-1.9 m near the ends, consistent with characteristic-type slip termination. Although several paleoseismic sites exhibit repeated, similar displacements, the data are sparse and both low-valued (0.5-0.8 m) and high-valued (4.2-4.7 m) outliers suggest complex strain release, possibly resulting from segment interaction and/or noncharacteristic events. Although a global, normal-fault-type surface-rupture-length (SRL) average-displacement regression underpredicts observed WFZ displacements, the largest displacements per segment correspond well with a SRL maximum-displacement regression. This correlation, as well as moderate variability in SRL- and displacement-based moment magnitude, suggests that the anomalous displacements represent the intrinsic variability in characteristic displacement per segment. Thus, minor variations to the characteristic slip model to account for exceptional upper- and lower-bound displacements, e.g., a hybrid characteristic-variable slip model, may be appropriate for the WFZ. Additional paleoseismic data are necessary to address data gaps and biases, to facilitate more robust tests of earthquake-slip models, and to reduce uncertainty in SRL, displacement, and

  20. A Crawler Climbing Robot Integrating Electroadhesion and Electrostatic Actuation

    Hongqiang Wang


    Full Text Available Previous electroadhesive climbing robots generally employed typical electromagnetic motors, which spoiled some of the advantages of electroadhesion such as it being light, thin and flexible. To improve these, an integration of electrostatic actuation and adhesion was utilized in this work. By using FEM analyses, the present paper analysed the effect of design parameters on adhesive and driving forces respectively, and examined the possible interference between electrostatic actuation and adhesion inside the integration. Then this article discussed the driving force, payload capacity and torque balance of the robot with the integration. Based on these analyses, we designed and fabricated a lightweight (94 g and low-height (15 mm prototype with electrode films made by screen printing. Experiments on the prototype demonstrated that it can adhere to a vertical wall stably and move at a maximum speed of 35.3 mm/s.

  1. Dispossession and displacement in Libya

    Rhodri C Williams


    Full Text Available Inability to access pre-displacement housing, land and property poses a significant obstacle to the achievement of durable solutions for most IDPs in Libya. Displacement and dispossession cannot be separated from the legacy of the Gaddafi era.

  2. Displacement, Substitution, Sublimation: A Bibliography.

    Pedrini, D. T.; Pedrini, Bonnie C.

    Sigmund Freund worked with the mechanisms of displacement, substitution, and sublimation. These mechanisms have many similarities and have been studied diagnostically and therapeutically. Displacement and substitution seem to fit in well with phobias, hysterias, somatiyations, prejudices, and scapegoating. Phobias, prejudices, and scapegoating…

  3. Design and Characterization of a High-Precision Digital Electromagnetic Actuator with Four Discrete Positions

    Laurent Petit


    Full Text Available A high-precision planar digital electromagnetic actuator with two displacement directions and four discrete positions is presented in this paper. The four discrete positions are located at each corner of a square cavity where a mobile permanent magnet moves thanks to Lorentz forces generated when a driving current passes through two orthogonal wires placed below the cavity. Four fixed permanent magnets are placed around the cavity in order to ensure high-precision magnetic holding of the mobile magnet at each discrete position. An analytical model of the actuator is presented and used to characterize its properties (switching time, energy consumption, and displaceable mass. Based on this model, an experimental prototype has been developed and then characterized. Comparisons between experimental and simulated results are carried out and show good agreement. The positioning repeatability errors have also been characterized according to the input signal in order to qualify the digital behavior of this high-precision actuator. Finally, an application of this digital actuator as a linear conveyor is presented and experimentally tested.

  4. Full Characterization at Low Temperature of Piezoelectric Actuators Used for SRF Cavities Active Tuning

    Fouaidy, Mohammed; Chatelet, Frederic; Hammoudi, Nourredine; Martinet, Guillaume; Olivier, Aurelia; Saugnac, Herve


    In the frame of the CARE project activities, supported by EU, IPN Orsay participate to the development of a fast cold tuning system for SRF cavities operating at a temperature T=2 K. The study is aimed at full characterization of piezoelectric actuators at low temperature. A new experimental facility was developed for testing various prototypes piezoelectric actuators and successfully operated for T in the range 1.8 K-300 K. Different parameters were investigated as function of T: piezoelectric actuator displacement vs. applied voltage V, capacitance vs. T, dielectric and thermal properties vs. T and finally heating DT due to dielectric losses vs. modulating voltage Vmod and frequency. We observed a decrease of the Full Range Displacement (FRD or DX) of the actuator from ~40μm @ 300K down to 1.8μm-3μm @ 1.8K, depending on both material and fabrication process of the piezostacks. Besides, both material and fabrication process have a strong influence on the shape of the characteris...

  5. Recession in a linear stepper motor based on piezoelectric actuator and electrorheological clampers

    Li, Cuihong; Meng, Yonggang; Tian, Yu


    A linear inchworm-type stepper motor based on piezoelectric actuator and comb shape electrorheological (ER) clampers was developed and tested. A recession phenomenon in the movement of the motor was found and was significantly affected by the driving voltage of the piezoelectric actuator and ER fluids. A dynamic model to analyze the mechanism of the recession was established. The force ratio of the viscoelastic clamping force (applied high electric field) to the viscous damping force (zero field) of ER fluids is the critical factor which determines the recession. The ratio is also affected by the extension or contraction rate of the actuator during movement, which is affected by the charging and discharging processes. With a relatively large distance between the clamper electrodes and a small displacement activated by the extension of the piezoelectric actuator, the instantaneous shear rate might not be sufficiently high, preventing ER fluids from attaining a shear-thickened and high-strength state. The ratio of yield strength to the viscous strength of ER fluids during movement should be as large as possible to reduce the recession displacement.

  6. Fabrication and characterization of a micromachined swirl-shaped ionic polymer metal composite actuator with electrodes exhibiting asymmetric resistance.

    Feng, Guo-Hua; Liu, Kim-Min


    This paper presents a swirl-shaped microfeatured ionic polymer-metal composite (IPMC) actuator. A novel micromachining process was developed to fabricate an array of IPMC actuators on a glass substrate and to ensure that no shortcircuits occur between the electrodes of the actuator. We demonstrated a microfluidic scheme in which surface tension was used to construct swirl-shaped planar IPMC devices of microfeature size and investigated the flow velocity of Nafion solutions, which formed the backbone polymer of the actuator, within the microchannel. The unique fabrication process yielded top and bottom electrodes that exhibited asymmetric surface resistance. A tool for measuring surface resistance was developed and used to characterize the resistances of the electrodes for the fabricated IPMC device. The actuator, which featured asymmetric electrode resistance, caused a nonzero-bias current when the device was driven using a zero-bias square wave, and we propose a circuit model to describe this phenomenon. Moreover, we discovered and characterized a bending and rotating motion when the IPMC actuator was driven using a square wave. We observed a strain rate of 14.6% and a displacement of 700 μm in the direction perpendicular to the electrode surfaces during 4.5-V actuation.

  7. Piezoelectric step-motion actuator

    Mentesana; Charles P.


    A step-motion actuator using piezoelectric material to launch a flight mass which, in turn, actuates a drive pawl to progressively engage and drive a toothed wheel or rod to accomplish stepped motion. Thus, the piezoelectric material converts electrical energy into kinetic energy of the mass, and the drive pawl and toothed wheel or rod convert the kinetic energy of the mass into the desired rotary or linear stepped motion. A compression frame may be secured about the piezoelectric element and adapted to pre-compress the piezoelectric material so as to reduce tensile loads thereon. A return spring may be used to return the mass to its resting position against the compression frame or piezoelectric material following launch. Alternative embodiment are possible, including an alternative first embodiment wherein two masses are launched in substantially different directions, and an alternative second embodiment wherein the mass is eliminated in favor of the piezoelectric material launching itself.

  8. Characterization of electromechanical actuator implemented to phase-shift system applied to a Michelson interferometer

    Barcelata-Pinzon, A.; Meneses Fabian, C.; Juarez-Salazar, R.; Durán-Sánchez, M.; Alvarez-Tamayo, R. I.; Robledo-Sánchez, C. I.; Muñoz-Mata, J. L.; Casco-Vázquez, J. F.


    Numerical results are presented to show the characterization of an electromechanical actuator capable to achieve equally spaced phase shifts and fraction linear wavelength displacements aided by an interface and a computational system. Measurements were performed by extracting the phase with consecutive interference patterns obtained in a Michelson arrangement setup. This paper is based in the use of inexpensive resources on stability adverse conditions to achieve similar results to those obtained with high-grade systems.

  9. Coupled Analytical-Finite Element Methods for Linear Electromagnetic Actuator Analysis

    K. Srairi


    Full Text Available In this paper, a linear electromagnetic actuator with moving parts is analyzed. The movement is considered through the modification of boundary conditions only using coupled analytical and finite element analysis. In order to evaluate the dynamic performance of the device, the coupling between electric, magnetic and mechanical phenomena is established. The displacement of the moving parts and the inductor current are determined when the device is supplied by capacitor discharge voltage.

  10. Topological in-plane polarized piezo actuation for compact adaptive lenses with aspherical correction

    Lemke, Florian; Wallrabe, Ulrike; Wapler, Matthias C


    In this contribution, we investigate the effects of using in-plane polarized piezo actuators with topological buckling displacement to drive glass-piezo composite membranes for adaptive lenses with aspherical control. We find that the effects on the focal power and aspherical tuning range are relatively small, whereas the tuning speed is improved significantly with a first resonance of 1 kHz for a 13 mm aperture lens.

  11. Feedback Control of Vibrations in a Micromachined Cantilever Beam with Electrostatic Actuators

    Wang, P. K. C.


    The problem of feedback control of vibrations in a micromachined cantilever beam with nonlinear electrostatic actuators is considered. Various forms of nonlinear feedback controls depending on localized spatial averages of the beam velocity and displacement near the beam tip are derived by considering the time rate-of-change of the total energy of the beam. The physical implementation of the derived feedback controls is discussed briefly. The dynamic behaviour of the beam with the derived feedback controls is determined by computer simulation.

  12. Energy efficient fluid powered linear actuator with variable area and concentric chambers

    Lind, Randall F.; Love, Lonnie J.


    Hydraulic actuation systems having concentric chambers, variable displacements and energy recovery capabilities include cylinders with pistons disposed inside of barrels. When operating in energy consuming modes, high speed valves pressurize extension chambers or retraction chambers to provide enough force to meet or counteract an opposite load force. When operating in energy recovery modes, high speed valves return a working fluid from extension chambers or retraction chambers, which are pressurized by a load, to an accumulator for later use.

  13. Electrical actuators applications and performance

    De Fornel, Bernard


    This helpful resource covers a large range of information regarding electrical actuators. In particular, robustness, a very problematic issue, is fully explored in a dedicated chapter. The text also deals with he estimate of non-measurable mechanical variables by examining the estimate of load moment, then observation of the positioning of a command without mechanical sensor. Finally, it examines the conditions needed to measure variables and real implementation of numerical algorithms. This is a key working resource for electrical engineers.

  14. Photocontrollable liquid-crystalline actuators

    Yu, Haifeng [Top Runner Incubation Center for Academia-Industry Fusion and Department of Materials and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka 940-2188 (Japan); Ikeda, Tomiki [Chemical Resources Laboratory, Tokyo Institute of Technology, R1-11, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan)


    Coupling photochromic molecules with liquid crystalline (LC) materials enables one to reversibly photocontrol unique LC features such as phase transition, photoalignment, and molecular cooperative motion. LC elastomers show photomechanical and photomobile properties, directly converting light energy into mechanical energy. In well-defined LC block copolymers, regular patternings of nanostructures in macroscopic scales are fabricated by photo-manipulation of LC actuators. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. An Innovative Shape Memory Actuator

    Cappellini Valter


    Full Text Available The work describes a NiTi linear actuator. This material is able to realize a contraction with heating produced through Joule effect. Then a cooling of the active device is realized with forced air. Finally the lengthening is realized with another active element. The particular structure of the geometry allows for an increment of reliability, because the electrical connections are mechanically stabilized and the active elements are compelled to avoid undesired electrical contacts through an insulated cylindrical core.

  16. Simulating Magneto-Aerodynamic Actuator


    2005. 19. Boeuf, J.P., Lagmich, Y., Callegari, Th., and Pitchford , L.C., Electro- hydrodynamic Force and Acceleration in Surface Discharge, AIAA 2006...Plasmadynamics and Laser Award, 2004 AFRL Point of Contact Dr. Donald B. Paul , AFRL/VA WPAFB, OH 937-255-7329, met weekly. Dr. Alan Garscadden, AFRL/PR...validating database for numerical simulation of magneto-aerodynamic actuator for hypersonic flow control. Points of contact at the AFRL/VA are Dr. D. Paul

  17. Surface actuation of smart nanoshutters.

    Morsch, S; Schofield, W C E; Badyal, J P S


    Patterned polymer brush surfaces have been fabricated using the molecular scratchcard lithography technique, where a functional top nanolayer (acting also as a resist) is selectively removed using a scanning probe tip to expose underlying atom-transfer radical polymerization (ATRP) initiator sites. The lateral spreading of grafted polymer brush patterns across the adjacent functional resist surface can be reversibly actuated via solvent exposure. Effectively, this methodology provides a means for hiding/unveiling functional surfaces on the nanoscale.

  18. Design of Autonomous Gel Actuators

    Shuji Hashimoto


    Full Text Available In this paper, we introduce autonomous gel actuators driven by chemical energy. The polymer gels prepared here have cyclic chemical reaction networks. With a cyclic reaction, the polymer gels generate periodical motion. The periodic motion of the gel is produced by the chemical energy of the oscillatory Belouzov-Zhabotinsky (BZ reaction. We have succeeded in making synthetic polymer gel move autonomously like a living organism. This experimental fact represents the great possibility of the chemical robot.

  19. Adaptive actuator failure compensation control based on MMST grouping for a class of MIMO nonlinear systems with guaranteed transient performance

    Zhang, Shao-Jie; Qiu, Xiang-Wei; Jiang, Bin; Liu, Chun-Sheng


    This paper presents a new adaptive compensation control approach for a class of multi-input multi-output (MIMO) nonlinear systems with actuator failures. In order to enlarge the set of compensable actuator failures, an actuators grouping scheme based on multiple model switching and tuning (MMST) is proposed for the nonlinear MIMO minimum-phase systems with multiple actuator failures. Then, an adaptive compensation scheme based on prescribed performance bound (PPB) which characterises the convergence rate and maximum overshoot of the tracking error is designed for the systems to ensure closed-loop signal boundedness and asymptotic output tracking despite unknown actuator failures. Simulation results are given to show the effectiveness of the control design.

  20. Maximum Autocorrelation Factorial Kriging

    Nielsen, Allan Aasbjerg; Conradsen, Knut; Pedersen, John L.; Steenfelt, Agnete


    This paper describes maximum autocorrelation factor (MAF) analysis, maximum autocorrelation factorial kriging, and its application to irregularly sampled stream sediment geochemical data from South Greenland. Kriged MAF images are compared with kriged images of varimax rotated factors from an ordinary non-spatial factor analysis, and they are interpreted in a geological context. It is demonstrated that MAF analysis contrary to ordinary non-spatial factor analysis gives an objective discrimina...

  1. Scanning slit for HIE-ISOLDE: vibrational test (linear motion actuator from UHV design, speed = 2.5 mm/s)

    Bravin, E; Sosa, A


    This report summarizes the results of a series of tests performed on the prototype HIE-ISOLDE diagnostic box (HIE-DB) regarding the vibrations and drifts in the transverse position of the scanning blade while moving inside or outside the box. To monitor the transverse position of the blade, a series of 0.1 mm diameter holes were drilled on it and their positions were tracked with an optical system. The linear motion actuator was acquired from UHV design (model LSM38-150-SS), is driven by a stepper motor and has all the guiding mechanisms outside vacuum. The maximum speed of the scanning blade during the tests was 2.5 mm/s. The transverse movement of the slit in the direction perpendicular to the movement was lower than 50 m, and is dominated by the displacement of the contact point of the applied force on the lead-screw. An offset on the slit position was observed while changing the direction of movement of the blade, its amplitude being of the order of 30 m. The amplitudes of the displacements of the transve...

  2. Application of Piezoelectric Actuator and Compliant Structures to Achieve Flapping Wing Motion for a MAV

    Kranti.K.Lal Kummari; S.J.Croucher; N.J.Lawson; E.E.Liani; G.Allegri; S.Guo; Hsien-Chun Chung; Z.Huang


    Micro Aerial Vehicles(MAVs)are the smallest artificial aircraft.Most of the flapping wings MAVs are powered by electric motors of various capacities.We report in this paper the application of piezoelectric actuators as power system for a flapping wing MAV using a compliant displacement amplification mechanism.The actuator used for this application is a pre-stressed cut piece of TH-7R type Thunder actuator.A two-bar compliant mechanism with two flexures has been developed to convert the linear displacement into angular movement and amplification.The specimens were made from carbon fiber links and nylon flexures.We also proposed to use the product of frequency(F)and tip displacement(D),F*D as a criteria for the characterization of an amplifying mechanism.The best specimen according tO this criterion is obtained for a 5mm length flexure specimen made of three layers of nylon.The F*D value obtained for this specimen was 0.58 Hz.m.ANSYS finite element analysis results for different flexural thickness and Iengths were obtained and have been compared to the experimental results.The effect of both the thickness and length of the flexure on a particular arrangement has been discussed.

  3. Simulating Displacement and Velocity Signals by Piezoelectric Sensor in Vibration Control Applications

    G. J. Sheu


    Full Text Available Intelligent structures with built-in piezoelectric sensor and actuator that can actively change their physical geometry and/or properties have been known preferable in vibration control. However, it is often arguable to determine if measurement of piezoelectric sensor is strain rate, displacement, or velocity signal. This paper presents a neural sensor design to simulate the sensor dynamics. An artificial neural network with error backpropagation algorithm is developed such that the embedded and attached piezoelectric sensor can faithfully measure the displacement and velocity without any signal conditioning circuitry. Experimental verification shows that the neural sensor is effective to vibration suppression of a smart structure by embedded sensor/actuator and a building structure by surface-attached piezoelectric sensor and active mass damper.

  4. Vertical Crustal Displacements Due to Surface Fluid Changes

    ZHANG Shiyu; ZHONG Min


    Using the model data for surface mass changes of the atmosphere, ocean, soil moisture and snow depth, the vertical crustal displacements of 25 ficual stations in China were calculated according to the loading theory. From the spectral analysis of the results, we can see that the periods of displacements are 12 months and the semi-periods are 6 months. The results also show that the maximum seasonal displacements can reach 20 mm and even larger. The covariance analyses and significance tests show that the coefficients of 96 percent of the stations are significant at the 0.1 significance level. The results show that one of the reasons of the vertical crustal displacements is the changing surface fluid loads.

  5. Passive resistance increases differentially in various jaw displacement directions.

    Hansma, H J; Langenbach, G E J; Koolstra, J H; Van Eijden, T M G J


    In the present study, the passive resistance of the human jaw system was quantified in relation to the three-dimensional jaw displacement and the Posselt-envelope, using both in vivo measurements and computer simulation. In eight subjects, the jaw was passively displaced with a step-wise increasing force in three orthogonal directions. Muscle relaxation was monitored using electromyography (EMG) with visual feedback. A biomechanical model of an average human system was used to examine the contributions of the jaw muscles. The largest excursion was found for the vertical direction. Protrusive and lateral directions were more restricted. In protrusive and lateral directions, the jaw could generally move beyond the Posselt-envelope. The stiffness of the jaw increased with proceeding jaw displacement in all directions. The stiffness was larger in the protrusive direction than in the vertical and lateral directions. The model's predictions of stiffness were comparable to the in vivo measurements. However, in protrusive direction, the maximum jaw displacement was larger than in vivo. The estimated passive muscle forces showed that vertical displacement was mainly restricted by the complete group of closing muscles, while protrusive and lateral jaw displacement was restricted by selective individual muscles. The human jaw system has larger motion range in the protrusive and lateral directions than can be exploited by active muscle use. Stiffness of jaw displacement is higher in the protrusive direction compared to the vertical and lateral directions.

  6. Investigation of actuator debonding effects on active control in smart composite laminates

    Bin Huang


    Full Text Available This article presents a numerical study of active vibration control of smart composite laminates in the presence of actuator debonding failures. A comparison between the smart composite laminates with healthy actuator and various partially debonded actuator cases is performed to investigate the debonding effects on the vibration suppression. The improved layerwise theory with Heaviside’s unit step function is adopted to model the displacement field with actuator debonding failure. The higher order electric potential field is adopted to describe the potential variation through the thickness. The finite element method–based formulations are derived using the plate element, taking into consideration the electro-mechanical coupling effect. The reduced-order model is represented by the state-space form and further for the vibration suppression using a simple constant gain velocity feedback control strategy. For the purpose of demonstration, a 16-layer cross-ply substrate laminate ([0/90]4s is employed for the numerical study. The results show that the actuator debonding affects the closed-loop frequencies, active damping ratios, and efficiency of vibration suppression.

  7. Fuzzy Constrained Predictive Optimal Control of High Speed Train with Actuator Dynamics

    Xi Wang


    Full Text Available We investigate the problem of fuzzy constrained predictive optimal control of high speed train considering the effect of actuator dynamics. The dynamics feature of the high speed train is modeled as a cascade of cars connected by flexible couplers, and the formulation is mathematically transformed into a Takagi-Sugeno (T-S fuzzy model. The goal of this study is to design a state feedback control law at each decision step to enhance safety, comfort, and energy efficiency of high speed train subject to safety constraints on the control input. Based on Lyapunov stability theory, the problem of optimizing an upper bound on the cruise control cost function subject to input constraints is reduced to a convex optimization problem involving linear matrix inequalities (LMIs. Furthermore, we analyze the influences of second-order actuator dynamics on the fuzzy constrained predictive controller, which shows risk of potentially deteriorating the overall system. Employing backstepping method, an actuator compensator is proposed to accommodate for the influence of the actuator dynamics. The experimental results show that with the proposed approach high speed train can track the desired speed, the relative coupler displacement between the neighbouring cars is stable at the equilibrium state, and the influence of actuator dynamics is reduced, which demonstrate the validity and effectiveness of the proposed approaches.

  8. The smart Peano fluidic muscle: a low profile flexible orthosis actuator that feels pain

    Veale, Allan J.; Anderson, Iain A.; Xie, Shane Q.


    Robotic orthoses have the potential to provide effective rehabilitation while overcoming the availability and cost constraints of therapists. These orthoses must be characterized by the naturally safe, reliable, and controlled motion of a human therapist's muscles. Such characteristics are only possible in the natural kingdom through the pain sensing realized by the interaction of an intelligent nervous system and muscles' embedded sensing organs. McKibben fluidic muscles or pneumatic muscle actuators (PMAs) are a popular orthosis actuator because of their inherent compliance, high force, and muscle-like load-displacement characteristics. However, the circular cross-section of PMA increases their profile. PMA are also notoriously unreliable and difficult to control, lacking the intelligent pain sensing systems of their biological muscle counterparts. Here the Peano fluidic muscle, a new low profile yet high-force soft actuator is introduced. This muscle is smart, featuring bioinspired embedded pressure and soft capacitive strain sensors. Given this pressure and strain feedback, experimental validation shows that a lumped parameter model based on the muscle geometry and material parameters can be used to predict its force for quasistatic motion with an average error of 10 - 15N. Combining this with a force threshold pain sensing algorithm sets a precedent for flexible orthosis actuation that uses embedded sensors to prevent damage to the actuator and its environment.

  9. A new hybrid piezo-actuated compliant mechanism with self-tuned flexure arm

    Ling, Mingxiang; Cao, Junyi


    Recent interests and demands for developing video-rate atomic force microscopes, high-throughput probe-based nanofabrication and high-frequency vibration generator for assisted-machining are increasingly posing new challenges for designing high-bandwidth and large-range piezo-actuated compliant mechanisms. The previous studies mainly focused on making the trade-off between natural frequency and motion range by designing a proper topology. Differing from the previous works, this paper attempts to break the deadlock by employing both piezo-stacks and piezoelectric patches to actuate compliant mechanisms. In this method, piezo-stacks provide an actuating force similar to the traditional way, while piezoelectric patches are bonded on the surface of the flexure arms in compliant mechanisms. These `active' laminaes are used to further actuate the hosting flexural beam by inducing strains on the interface and then give additional bending moments to the flexural arms, which enlarge the output displacement of the compliant mechanism while without the sacrifice of natural frequency. An analytical formulation is established to illustrate the new driving principle and the compound static behaviour of a specific hybrid piezo-actuated multistage compliant mechanism. Initial prototype is also manufactured and experimentally testing is conducted to verify the feasibility of the method.

  10. Flexible Low-Mass Devices and Mechanisms Actuated by Electroactive Polymers

    Bar-Cohen, Y; Leary, S.; Shahinpoor, M.; Harrison, J. O.; Smith, J.


    Miniature, lightweight, miser actuators that operate similar to biological muscles can be used to develop robotic devices with unmatched capabilities to impact many technology areas. Electroactive polymers (EAP) offer the potential to producing such actuators and their main attractive feature is their ability to induce relatively large bending or longitudinal strain. Generally, these materials produce a relatively low force and the applications that can be considered at the current state of the art are relatively limited. This reported study is concentrating on the development of effective EAPs and the resultant enabling mechanisms employing their unique characteristics. Several EAP driven mechanisms, which emulate human hand, were developed including a gripper, manipulator arm and surface wiper. The manipulator arm was made of a composite rod with an EAP actuator consisting of a scrolled rope that is activated longitudinally by an electrostatic field. A gripper was made to serve as an end effector and it consisted of multiple bending EAP fingers for grabbing and holding such objects as rocks. An EAP surface wiper was developed to operate like a human finger and to demonstrate the potential to remove dust from optical and IR windows as well as solar cells. These EAP driven devices are taking advantage of the large actuation displacement of these materials but there is need for a significantly greater actuation force capability.

  11. Tunable Fiber Bragg Grating Ring Lasers using Macro Fiber Composite Actuators

    Geddis, Demetris L.; Allison, Sidney G.; Shams, Qamar A.


    The research reported herein includes the fabrication of a tunable optical fiber Bragg grating (FBG) fiber ring laser (FRL)1 from commercially available components as a high-speed alternative tunable laser source for NASA Langley s optical frequency domain reflectometer (OFDR) interrogator, which reads low reflectivity FBG sensors. A Macro-Fiber Composite (MFC) actuator invented at NASA Langley Research Center (LaRC) was selected to tune the laser. MFC actuators use a piezoelectric sheet cut into uniaxially aligned rectangular piezo-fibers surrounded by a polymer matrix and incorporate interdigitated electrodes to deliver electric fields along the length of the piezo-fibers. This configuration enables MFC actuators to produce displacements larger than the original uncut piezoelectric sheet. The FBG filter was sandwiched between two MFC actuators, and when strained, produced approximately 3.62 nm of wavelength shift in the FRL when biasing the MFC actuators from 500 V to 2000 V. This tunability range is comparable to that of other tunable lasers and is adequate for interrogating FBG sensors using OFDR technology. Three different FRL configurations were studied. Configuration A examined the importance of erbium-doped fiber length and output coupling. Configuration B demonstrated the importance of the FBG filter. Configuration C added an output coupler to increase the output power and to isolate the filter. Only configuration C was tuned because it offered the best optical power output of the three configurations. Use of Plastic Optical Fiber (POF) FBG s holds promise for enhanced tunability in future research.

  12. Electrothermal modeling, fabrication and analysis of low-power consumption thermal actuator with buckling arm

    So, Hongyun


    © 2013, Springer-Verlag Berlin Heidelberg. This paper reports on a novel thermal actuator with sub-micron metallic structures and a buckling arm to operate with low voltages and to generate very large deflections, respectively. A lumped electrothermal model and analysis were also developed to validate the mechanical design and easily predict the temperature distribution along arms of the sub-micron actuator. The actuator was fabricated via the combination of electron beam lithography to form actuator arms with a minimum feature size of 200 nm and lift-off process to deposit a high aspect ratio nickel structure. Reproducible displacements of up to 1.9 μm at the tip were observed up to 250 mV under confocal microscope. The experimentally measured deflection values and theoretically calculated temperature distribution by the developed model were compared with finite element analysis results and they were in good agreement. This study shows a promising approach to develop more sophisticated nano actuators required larger deflections for manipulation of sub-micron scale objects with low-power consumption.

  13. A disk-pivot structure micro piezoelectric actuator using vibration mode B11.

    Chu, Xiangcheng; Ma, Long; Li, Longtu


    Micro piezoelectric actuator using vibration mode B(11) (B(mn), where m is the number of nodal circles, n is the nodal diameters) is designed. Different from conventional wobble-type ultrasonic motor using piezoelectric rod or cylinder, piezoelectric disc is used to excite wobble modes and metal cylinder stator is used to amplify the transverse displacement, metal rod rotor is actuated to rotate. The outer diameter of the actuator is 14mm. There are features such as low drive voltage, micromation, and convenient control of wobble state by modifying the structure of stator, etc. Finite element analysis (FEA) of the stator has been made. It is found that the resonant frequency of vibration mode B(11) is 49.03kHz, which is measured at 45.7kHz by the laser vibrometer and impedance analyzer. The rotation speed has been measured, which could be as high as 10,071rpm under an alternating current 100V. Such piezoelectric actuator can be optimized and adjusted to fit practical conditions. It can be applied in the fields of precise instrument, bioengineering and other micro actuator system.

  14. Modeling of the effects of the electrical dynamics on the electromechanical response of a DEAP circular actuator with a mass-spring load

    Rizzello, G.; Hodgins, M.; Naso, D.; York, A.; Seelecke, S.


    This paper presents a modeling approach of an actuator system based on a dielectric electro-active polymer (DEAP) circular membrane mechanically loaded with a mass and a linear spring. The motion is generated by the deformation of the membrane caused by the electrostatic compressive force between two compliant electrodes applied on the surface of the polymer. A mass and a linear spring are used to pre-load the membrane, allowing stroke in the out-of-plane direction. The development of mathematical models which accurately describe the nonlinear coupling between electrical and mechanical dynamics is a fundamental step in order to design model-based, high-precision position control algorithms operating in high-frequency regimes (up to 150 Hz). The knowledge of the nonlinear electrical dynamics of the actuator driving circuit can be exploited during the control system design in order to achieve desirable features, such as higher modeling accuracy for high-frequency actuation, self-sensing or control energy minimization. This work proposes a physical model of the DEAP actuator system which couples both electrical and mechanical dynamics occurring during the actuation process. By means of numerous experiments, it is shown that the model can be used to predict both actuator current and displacement, and therefore to increase the overall displacement prediction accuracy with respect to actuator models which neglect electrical behavior.

  15. A self-strain feedback tuning-fork-shaped ionic polymer metal composite clamping actuator with soft matter elasticity-detecting capability for biomedical applications.

    Feng, Guo-Hua; Huang, Wei-Lun


    This paper presents a smart tuning-fork-shaped ionic polymer metal composite (IPMC) clamping actuator for biomedical applications. The two fingers of the actuator, which perform the clamping motion, can be electrically controlled through a unique electrode design on the IPMC material. The generated displacement or strain of the fingers can be sensed using an integrated soft strain-gage sensor. The IPMC actuator and associated soft strain gage were fabricated using a micromachining technique. A 13.5×4×2 mm(3) actuator was shaped from Nafion solution and a selectively grown metal electrode formed the active region. The strain gage consisted of patterned copper foil and polyethylene as a substrate. The relationship between the strain gage voltage output and the displacement at the front end of the actuator's fingers was characterized. The equivalent Young's modulus, 13.65 MPa, of the soft-strain-gage-integrated IPMC finger was analyzed. The produced clamping force exhibited a linear increasing rate of 1.07 mN/s, based on a dc driving voltage of 7 V. Using the developed actuator to clamp soft matter and simultaneously acquire its Young's modulus was achieved. This demonstrated the feasibility of the palpation function and the potential use of the actuator in minimally invasive surgery.

  16. Silkworm protein: its possibility as an actuator

    Jin, Hyoung-Joon; Myung, Seung Jun; Kim, Heung Soo; Jung, Woochul; Kim, Jaehwan


    The possibility of silkworm (Bombyx mori) protein as a base material of biomimetic actuator was investigated in this paper. Silkworm films were prepared from high concentrations of regenerated fibroin in aqueous solution. Films with thickness of about 100 μm were prepared for coating electrodes. The cast silk films were coated by very thin gold electrode on both sides of the film. Tensile test of cast film showed bi-modal trend, which is typical stress-strain relation of polymeric film. As the test of a possible biomimetic actuator, silkworm film actuator provides bending deformations according to the magnitude and frequency of the applied electric filed. Although the present bending deformation of silkworm film actuator is smaller than that of Electro-Active Paper actuator, it provides the possibility of biomimetic actuator.

  17. Series Elastic Actuators for legged robots

    Pratt, Jerry E.; Krupp, Benjamin T.


    Series Elastic Actuators provide many benefits in force control of robots in unconstrained environments. These benefits include high force fidelity, extremely low impedance, low friction, and good force control bandwidth. Series Elastic Actuators employ a novel mechanical design architecture which goes against the common machine design principal of "stiffer is better." A compliant element is placed between the gear train and driven load to intentionally reduce the stiffness of the actuator. A position sensor measures the deflection, and the force output is accurately calculated using Hooke"s Law (F=Kx). A control loop then servos the actuator to the desired output force. The resulting actuator has inherent shock tolerance, high force fidelity and extremely low impedance. These characteristics are desirable in many applications including legged robots, exoskeletons for human performance amplification, robotic arms, haptic interfaces, and adaptive suspensions. We describe several variations of Series Elastic Actuators that have been developed using both electric and hydraulic components.


    Ivanka Juttner


    Full Text Available After primary oil recovery in reservoirs remains about 70% of unexploited oil. To improve the recovery of the remaining reserves, injection of a fluid provide the extra energy in a mchunical form. Oil displacement can he achieved by gas injection of lean natural gas, mainly methane, carbon dioxide etc. Oil displacement can be in immiscible or miscible conditions. This paper deals with mechanism of miscible gas drive. On the basis of simulation of the oil displacement process by gas injection into oil field Žutica the character of process, i. c. a degree of miscibility or immiscibility between the injected fluid and reservoir oil was determined.


    林启荣; 刘正兴; 王宗利


    Based on the two-dimensional constitutive relationships of the piezoelectric material, an analytical solution for an intelligent beam excited by a pair of piezoelectric actuators is derived. With the solution the force and moment generated by two piezoelectric actuators and a pair of piezoelectric actuator/sensor are obtained. Examples of a cantilever piezoelectric laminated beam or a simply supported piezoelectric laminated beam, applied with voltages, are given.

  20. Introduction to Piezoelectric Actuators and Transducers


    1 Introduction to Piezoelectric Actuators and Transducers Kenji Uchino, International Center for Actuators and Transducers, Penn State University...REPORT DATE 00 JUN 2003 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Introduction to Piezoelectric Actuators and used in various fields. The sound source is made from piezoelectric ceramics as well as magnetostrictive materials. Piezoceramics are generally

  1. Continuously-Variable Series-Elastic Actuator

    Mooney, Luke M.; Herr, Hugh M.


    Actuator efficiency is an important factor in the design of powered leg prostheses, orthoses, exoskeletons, and legged robots. A continuously-variable series-elastic actuator (CV-SEA) is presented as an efficient actuator for legged locomotion. The CV-SEA implements a continuously-variable transmission (CVT) between a motor and series elastic element. The CVT reduces the torque seen at the motor and allows the motor to operate in speed regimes of higher efficiency, while the series-elastic el...

  2. Integrated sensing and actuation of muscle-like actuators

    Gisby, T. A.; Xie, S.; Calius, E. P.; Anderson, I. A.


    The excellent overall performance and compliant nature of Dielectric Elastomer Actuators (DEAs) make them ideal candidates for artificial muscles. Natural muscle however is much more than just an actuator, it provides position feedback to the brain that is essential for the body to maintain balance and correct posture. If DEAs are to truly earn the moniker of "artificial muscles" they need to be able to reproduce, if not improve on, this functionality. Self-sensing DEAs are the ideal solution to this problem. This paper presents a system by which the capacitance of a DEA can be sensed while it is being actuated and used for feedback control. This system has been strongly influenced by the desire for portability i.e. designed for use in a battery operated microcontroller based system. It is capable of controlling multiple independent DEAs using a single high voltage power supply. These features are important developments for artificial muscle devices where accuracy and low mass are important e.g. a prosthetic hand or force-feedback surgical tools. A numerical model of the electrical behaviour of the DEA that incorporates arbitrary leakage currents and the impact of arbitrary variable capacitance has been created to model a DEA system. A robust capacitive self-sensing method that uses a slew-rate controlled Pulse Width Modulation (PWM) signal and compensates for the effects of leakage current and variable capacitance is presented. The numerical model is then used to compare the performance of this new method with an earlier method previously published by the authors.

  3. High Reliability Cryogenic Piezoelectric Valve Actuator Project

    National Aeronautics and Space Administration — Cryogenic fluid valves are subject to harsh exposure and actuators to drive these valves require robust performance and high reliability. DSM's piezoelectric...

  4. Magnetically actuated peel test for thin films

    Ostrowicki, G.T.; Sitaraman, S.K., E-mail:


    Delamination along thin film interfaces is a prevalent failure mechanism in microelectronic, photonic, microelectromechanical systems, and other engineering applications. Current interfacial fracture test techniques specific to thin films are limited by either sophisticated mechanical fixturing, physical contact near the crack tip, or complicated stress fields. Moreover, these techniques are generally not suitable for investigating fatigue crack propagation under cyclical loading. Thus, a fixtureless and noncontact experimental test technique with potential for fatigue loading is proposed and implemented to study interfacial fracture toughness for thin film systems. The proposed test incorporates permanent magnets surface mounted onto micro-fabricated released thin film structures. An applied external magnetic field induces noncontact loading to initiate delamination along the interface between the thin film and underlying substrate. Characterization of the critical peel force and peel angle is accomplished through in situ deflection measurements, from which the fracture toughness can be inferred. The test method was used to obtain interfacial fracture strength of 0.8-1.9 J/m{sup 2} for 1.5-1.7 {mu}m electroplated copper on natively oxidized silicon substrates. - Highlights: Black-Right-Pointing-Pointer Non-contact magnetic actuation test for interfacial fracture characterization. Black-Right-Pointing-Pointer Applied load is determined through voltage applied to the driving electromagnet. Black-Right-Pointing-Pointer Displacement and delamination propagation is measured using an optical profiler. Black-Right-Pointing-Pointer Critical peel force and peel angle is measured for electroplated Cu thin-film on Si. Black-Right-Pointing-Pointer The measured interfacial fracture energy of Cu/Si interface is 0.8-1.9 J/m{sup 2}.

  5. Thermal Actuation Based 3-DoF Non-Resonant Microgyroscope Using MetalMUMPs.

    Shakoor, Rana Iqtidar; Bazaz, Shafaat Ahmed; Kraft, Michael; Lai, Yongjun; Masood Ul Hassan, Muhammad


    High force, large displacement and low voltage consumption are a primary concern for microgyroscopes. The chevron-shaped thermal actuators are unique in terms of high force generation combined with the large displacements at a low operating voltage in comparison with traditional electrostatic actuators. A Nickel based 3-DoF micromachined gyroscope comprising 2-DoF drive mode and 1-DoF sense mode oscillator utilizing the chevron-shaped thermal actuators is presented here. Analytical derivations and finite element simulations are carried out to predict the performance of the proposed device using the thermo-physical properties of electroplated nickel. The device sensitivity is improved by utilizing the dynamical amplification of the oscillation in 2-DoF drive mode using an active-passive mass configuration. A comprehensive theoretical description, dynamics and mechanical design considerations of the proposed gyroscopes model are discussed in detail. Parametric optimization of gyroscope, its prototype modeling and fabrication using MetalMUMPs has also been investigated. Dynamic transient simulation results predicted that the sense mass of the proposed device achieved a drive displacement of 4.1μm when a sinusoidal voltage of 0.5V is applied at 1.77 kHz exhibiting a mechanical sensitivity of 1.7μm /°/s in vacuum. The wide bandwidth frequency response of the 2-DoF drive mode oscillator consists of two resonant peaks and a flat region of 2.11 kHz between the peaks defining the operational frequency region. The sense mode resonant frequency can lie anywhere within this region and therefore the amplitude of the response is insensitive to structural parameter variations, enhancing device robustness against such variations. The proposed device has a size of 2.2 × 2.6 mm(2), almost one third in comparison with existing M-DoF vibratory gyroscope with an estimated power consumption of 0.26 Watts. These predicted results illustrate that the chevron-shaped thermal actuator

  6. Thermal Actuation Based 3-DoF Non-Resonant Microgyroscope Using MetalMUMPs

    Muhammad Masood ul Hassan


    Full Text Available High force, large displacement and low voltage consumption are a primary concern for microgyroscopes. The chevron-shaped thermal actuators are unique in terms of high force generation combined with the large displacements at a low operating voltage in comparison with traditional electrostatic actuators. A Nickel based 3-DoF micromachined gyroscope comprising 2-DoF drive mode and 1-DoF sense mode oscillator utilizing the chevron-shaped thermal actuators is presented here. Analytical derivations and finite element simulations are carried out to predict the performance of the proposed device using the thermo-physical properties of electroplated nickel. The device sensitivity is improved by utilizing the dynamical amplification of the oscillation in 2-DoF drive mode using an active-passive mass configuration. A comprehensive theoretical description, dynamics and mechanical design considerations of the proposed gyroscopes model are discussed in detail. Parametric optimization of gyroscope, its prototype modeling and fabrication using MetalMUMPs has also been investigated. Dynamic transient simulation results predicted that the sense mass of the proposed device achieved a drive displacement of 4.1µm when a sinusoidal voltage of 0.5V is applied at 1.77 kHz exhibiting a mechanical sensitivity of 1.7μm /o/s in vacuum. The wide bandwidth frequency response of the 2-DoF drive mode oscillator consists of two resonant peaks and a flat region of 2.11 kHz between the peaks defining the operational frequency region. The sense mode resonant frequency can lie anywhere within this region and therefore the amplitude of the response is insensitive to structural parameter variations, enhancing device robustness against such variations. The proposed device has a size of 2.2 x 2.6 mm2, almost one third in comparison with existing M-DoF vibratory gyroscope with an estimated power consumption of 0.26 Watts. These predicted results illustrate that the chevron

  7. Separation control in low pressure turbines using plasma actuators with passing wakes

    Burman, Debashish

    A Dielectric Barrier Discharge (DBD) plasma actuator is operated in flow over the suction surface of a Pack-B Low Pressure Turbine (LPT) airfoil at a Reynolds number of 50,000 (based on exit velocity and suction surface length) and inlet free-stream turbulence intensity of 2.5%. Preliminary characterization studies were made of the effect of varying actuator pulsing frequency and duty cycle, actuator edge effects, and orientation of the actuator with the flow. Flow control was demonstrated with the actuator imparting momentum opposite to the stream-wise flow direction, showing that it is possible to use disturbances alone to destabilize the flow and effect transition. No frequencies of strong influence were found over the range tested, indicating that a broad band of effective frequencies exists. Edge effects were found to considerably enhance separation control. Total pressure measurements of the flow without passing wakes were taken using a glass total-pressure tube. Corrections for streamline displacement due to shear and wall effects were made, and comparisons with previous hot-wire measurements were used to validate data. Performance features of conventional two-electrode and a novel three-electrode actuator configuration were compared. Hot-wire anemometry was used to take time-varying ensemble-averaged near-wall velocity measurements of the flow with periodic passing wakes. Corrections were made for near-wall effects, temperature effects, and interference of the electric field. The wakes were generated by a wake generator mechanism located upstream of the airfoil passage. The near-suction-surface total pressure field (flow without wakes) and velocity field (flow with wakes) in the trailing part of the airfoil passage, and the wall-normal gradient of these quantities, were used to demonstrate effective prevention of flow separation using the plasma actuator. Both flows (with and without passing wakes) showed fully attached flow (or very thin separation zones

  8. A porous actuator for an Isfet-based coulometric sensor-actuator system

    Luo, J.; Olthuis, W.; Bergveld, P.; Linden, van der W.E.; Bos, M.


    The previously developed prototype ISFET (ion-sensitive field effect transistor)-based coulometric sensor-actuator system suffers from delay in response due to the nonzero distance between the sensor and actuator. The authors describe a novel configuration of a sensor-actuator device which employs a

  9. A porous actuator for an Isfet-based coulometric sensor-actuator system

    Luo, J.; Luo, J.; Olthuis, Wouter; Bergveld, Piet; van der Linden, W.E.; Bos, M.


    The previously developed prototype ISFET (ion-sensitive field effect transistor)-based coulometric sensor-actuator system suffers from delay in response due to the nonzero distance between the sensor and actuator. The authors describe a novel configuration of a sensor-actuator device which employs a

  10. Internal displacement in eastern Burma

    Heather Rae


    The history of post-independent Burma is characterisedby numerous conflicts in this extraordinarily heterogeneous country. Since military rule began in 196 2 Burmahas witnessed gross human rights abuses andmassive displacement.

  11. Internal displacement in eastern Burma

    Heather Rae


    Full Text Available The history of post-independent Burma is characterisedby numerous conflicts in this extraordinarily heterogeneous country. Since military rule began in 196 2 Burmahas witnessed gross human rights abuses andmassive displacement.

  12. To prevent or pursue displacement?


    The repertoire of survival actions of at-risk civilians includes bothavoiding and attempting displacement. But there are also overlaps,combinations and tacking back and forth between the two, whiletrying to mitigate the risks that any choice entails.

  13. CP actuator based on chemically-deposited polypyrrole and PU based solid polymer electrolyte working in air

    Choi, Hwa Jeong; Lim, Hyun-Ok; Chung, Ildoo; Ryu, Kwang-Sun; Jo, Nam-Ju


    Conducting polymers (CPs), such as polypyrrole, polythiophene and polyaniline, are unique in that they have switchable properties due to their two or more mechanically stable oxidation state. Thus, their films or coatings can be easily switched by the application of small voltage and current to change volume during their electrochemical redox process. In particular, polypyrrole (PPy) has been studied most extensively because of its high electrical conductivity and good environmental stability under ambient condition. In this work, we have studied a new CP actuator, fully polymeric, assembled with two PPy film electrodes and a solid polymer electrolyte (SPE), polyurethane/Mg(ClO 4) II. Polyurethanes (PUs) were synthesized from 4,4'-diphenylmethane diisocyanate (MDI), 1,4-butanediol (1,4-BD) and three types of polyols, poly(ethylene glycol) (PEG), poly(propylene glycol) (PPG), and PPG-block-PEG-block-PPG (PPG-co-PEG). The chemical polymerization of PPy by immersion in Py monomer aqueous solution and oxidant aqueous solution is an adequate method to prepare PU/PPy composite film as actuator. To find the proper thickness of PPy coating layer for actuation, we measured the displacement of actuators according to the thickness of PPy coating layer. And, the displacement of all actuators was discussed in connection with the properties of SPE and PPy. All the results obtained in this work show the feasibility of electrochemomechanical devices based on PPy and SPE film able to work in air.

  14. Conducting polymer actuator based on chemically deposited polypyrrole and polyurethane-based solid polymer electrolyte working in air

    Choi, Hwa-Jeong; Song, Young-Min; Chung, Ildoo; Ryu, Kwang-Sun; Jo, Nam-Ju


    Conducting polymers (CPs), such as polypyrrole, polythiophene, and polyaniline, are unique in that they have switchable properties due to their two or more mechanically stable oxidation states. Thus, their films or coatings can be easily switched by the application of a small voltage and current to change their volume during electrochemical redox processes. In particular, polypyrrole (PPy) has been studied most extensively because of its high electrical conductivity and good environmental stability under ambient conditions. In this work, we have studied a new CP actuator, fully polymeric, assembled with two PPy film electrodes and a solid polymer electrolyte (SPE), polyurethane/Mg(ClO4)2. Polyurethanes (PUs) were synthesized from 4,4'-diphenylmethane diisocyanate (MDI), 1,4-butanediol (1,4-BD) and three types of polyol: poly(ethylene glycol) (PEG), poly(propylene glycol) (PPG), and PPG-block-PEG-block-PPG (PPG-co-PEG). The chemical polymerization of PPy by immersion in Py monomer aqueous solution and oxidant aqueous solution is an adequate method to prepare PU/PPy composite film as an actuator. To find the proper thickness of the PPy coating layer for actuation, we measured the displacements of the actuators according to the thickness of the PPy coating layer. The displacement of all actuators is discussed in connection with the properties of the SPE and PPy. All the results obtained in this work show the feasibility of electrochemomechanical devices based on PPy and SPE film being able to work in air.

  15. Anion Effects on the Ion Exchange Process and the Deformation Property of Ionic Polymer Metal Composite Actuators

    Wataru Aoyagi


    Full Text Available An ionic polymer-metal composite (IPMC actuator composed of a thin perfluorinated ionomer membrane with electrodes plated on both surfaces undergoes a large bending motion when a low electric field is applied across its thickness. Such actuators are soft, lightweight, and able to operate in solutions and thus show promise with regard to a wide range of applications, including MEMS sensors, artificial muscles, biomimetic systems, and medical devices. However, the variations induced by changing the type of anion on the device deformation properties are not well understood; therefore, the present study investigated the effects of different anions on the ion exchange process and the deformation behavior of IPMC actuators with palladium electrodes. Ion exchange was carried out in solutions incorporating various anions and the actuator tip displacement in deionized water was subsequently measured while applying a step voltage. In the step voltage response measurements, larger anions such as nitrate or sulfate led to a more pronounced tip displacement compared to that obtained with smaller anions such as hydroxide or chloride. In AC impedance measurements, larger anions generated greater ion conductivity and a larger double-layer capacitance at the cathode. Based on these mechanical and electrochemical measurements, it is concluded that the presence of larger anions in the ion exchange solution induces a greater degree of double-layer capacitance at the cathode and results in enhanced tip deformation of the IPMC actuators.

  16. Design Methodology of a Dual-Halbach Array Linear Actuator with Thermal-Electromagnetic Coupling.

    Eckert, Paulo Roberto; Flores Filho, Aly Ferreira; Perondi, Eduardo; Ferri, Jeferson; Goltz, Evandro


    This paper proposes a design methodology for linear actuators, considering thermal and electromagnetic coupling with geometrical and temperature constraints, that maximizes force density and minimizes force ripple. The method allows defining an actuator for given specifications in a step-by-step way so that requirements are met and the temperature within the device is maintained under or equal to its maximum allowed for continuous operation. According to the proposed method, the electromagnetic and thermal models are built with quasi-static parametric finite element models. The methodology was successfully applied to the design of a linear cylindrical actuator with a dual quasi-Halbach array of permanent magnets and a moving-coil. The actuator can produce an axial force of 120 N and a stroke of 80 mm. The paper also presents a comparative analysis between results obtained considering only an electromagnetic model and the thermal-electromagnetic coupled model. This comparison shows that the final designs for both cases differ significantly, especially regarding its active volume and its electrical and magnetic loading. Although in this paper the methodology was employed to design a specific actuator, its structure can be used to design a wide range of linear devices if the parametric models are adjusted for each particular actuator.

  17. A novel plate type linear piezoelectric actuator using dual-frequency drive

    Liu, Zhen; Yao, Zhiyuan; Jian, Yue; Li, Xiang


    In this paper, a novel rectangular structure linear piezoelectric actuator that utilizes two lower order decoupled vibration modes is developed and investigated. A noticeable trait of the linear piezoelectric actuator is that it can realize bi-directional motion by changing the vibration mode of the stator with different exciting frequencies. Modal and harmonic analysis of the stator are performed by the finite element method to determine the actuator structure and dimensions and stablished that the driving tip trajectories are diagonal lines. The direction of the actuator is controlled by the orientation of the diagonal motion generated at the driving tip. When the diagonal motion is inclined right as the driving tip approaches the linear guide, it will move the linear guide right. Correspondingly, the linear guide will move to the left, if the diagonal motion inclines left. In addition, a prototype linear piezoelectric actuator is fabricated and experimented. The results of the experiments indicate that the actuator has good mechanical output characteristics. Typical output of the prototype is no-load speed of 504 mm s-1 and maximum mechanical load of 6.5 kg.

  18. SU-8 Electrothermal Actuators: Optimization of Fabrication and Excitation for Long-Term Use

    Thomas Winterstein


    Full Text Available In this paper we examine the suitability of SU-8 2000 as a construction material for electrothermal actuators and the actuator stability for long-term operation. The fabrication of SU-8 was optimized for mechanical and thermal stability. Samples with different softbake duration, exposure dose and postbake temperature were evaluated using Fourier-Transform IR-spectroscopy and dynamic-mechanical analysis. The exposure dose and postbake temperature proved to have a strong influence on the cross-linking and the glass transition temperature. A final hardbake levels the effects of the process history. A high degree of crosslinking, a low drop of the dynamic modulus over temperature (30% up to the glass transition temperature 100–140 °C were achieved for SU-8 with an exposure dose of 1500 mJ/cm², a postbake temperature of 95 °C and hardbake of 240 °C. Electrothermal actuators proved to be stable until the end of the experiment after 2400 duty cycles. Actuator deflections up to 55 μm were measured (actuator length: 4 mm for input powers up to 160 mW and a maximum operating temperature of 120 °C. Higher temperatures led to permanent deformations and failure. An offset drift of up to 20% occurs during actuation, but converges after a burn-in phase of about two hours.

  19. Bio-inspired Actuating System for Swimming Using Shape Memory Alloy Composites

    Tao Tao; Yuan-Chang Liang; Minoru Taya


    The paper addresses the designs of a caudal peduncle actuator, which is able to furnish a thrust for swimming of a robotic fish. The caudal peduncle actuator is based on concepts of ferromagnetic shape memory alloy (FSMA) composite and hybrid mechanism that can provide a fast response and a strong thrust. The caudal peduncle actuator was inspired by Scomber Scombrus which utilises thunniform mode swimming, which is the most efficient locomotion mode evolved in the aquatic environment, where the thrust is generated by the lift-based method, allowing high cruising speeds to be maintained for a long period of time. The morphology of an average size Scomber Scombrus (length in 310 mm) was investigated, and a 1:1 scale caudal peduncle actuator prototype was modelled and fabricated. The propulsive wave characteristics of the fish at steady speeds were employed as initial design objectives. Some key design parameters are investigated, i.e. aspect ratio (AR) (AR = 3.49), Reynolds number (Re = 429 649), reduced frequency (σ = 1.03), Strouhal number (St = 0.306) and the maximum strain of the bent tail was estimated at ε = 1.11% which is in the range of superelasticity. The experimental test of the actuator was carried out in a water tank. By applying 7 V and 2.5 A, the actuator can reach the tip-to-tip rotational angle of 85° at 4 Hz.

  20. Graphene-polydimethylsiloxane/chromium bilayer-based flexible, reversible, and large bendable photomechanical actuators

    Leeladhar; Raturi, Parul; Kumar, Ajeet; Singh, J. P.


    We demonstrate the fabrication of highly versatile photomechanical actuators based on graphene-polymer/metal bilayers that offers fast, low-cost fabrication, large deflection, reversible actuation under zero applied pre-strain, and wavelength-selective response. The photomechanical actuator consists of a graphene nanoplatelet (GNP)-polydimethylsiloxane (PDMS) nanocomposite with a thin chromium metal coating of 35 nm thickness on the backside of the structure. The photomechanical response of the GNP-PDMS/Cr photomechanical actuator was measured by recording the variation of the bending angle upon infrared (IR) light illumination. The bending in the bilayer actuator is caused by the generation of thermal stress due to the large mismatch (the ratio being 1/20) of the thermal expansion coefficient between the two layers as a result of IR absorption by GNPs and a subsequent increase in the local temperature. The maximum bending angle was found to be about 40 degrees with a corresponding large deflection value of about 6-7 mm within 6 s for IR illumination with an intensity of 550 mW cm-2. The corresponding actuation response and relaxation times were about 1 and 3 s, respectively. The GNP-PDMS/Cr bilayer combination when integrated with the standard surface micromachining technique of micro-electromechanical system fabrication can find useful applications in the realization of micro soft-robotics, controlled drug delivery, and light-driven micro switches i.e. micro-optomechanical systems.

  1. Maximum likely scale estimation

    Loog, Marco; Pedersen, Kim Steenstrup; Markussen, Bo


    A maximum likelihood local scale estimation principle is presented. An actual implementation of the estimation principle uses second order moments of multiple measurements at a fixed location in the image. These measurements consist of Gaussian derivatives possibly taken at several scales and/or ...

  2. An engine with means for changing the phase angle between displacer and working pistons: Its thermo dynamic cycle compared to the ideal Stirling cycle

    Ayala V., E.


    This paper describes a heat engine comprising a displacer piston actuated by the pressure changes accomplished by the working piston combined with the force exerted by the pressure of a spring against the piston which can be changed to modify the phase angle between the displacer and working pistons. A gas cooler is arranged in an independent closed loop circuit that is put into operation between the end of the expansion stroke and the beginning of the compression stroke. The working cylinder is connected to the cold end of the displacer cylinder through an auxiliary cooler and to the end of the displacer cylinder through the heat regenerator and the heater.

  3. Effect of pressure on the performance of plasma synthetic jet actuator

    Wang, Lin; Xia, ZhiXun; Luo, ZhenBing; Zhang, Yu


    The effects of the ambient air pressure level on the performance of plasma synthetic jet actuator have been investigated through electrical and optical diagnostics. Pressures from 1 atm down to 0.1 atm were tested with a 10 Hz excitation. The discharge measurement demonstrates that there is a voltage range to make the actuator work reliably. Higher pressure level needs a higher breakdown voltage, and a higher discharge current and energy deposition are produced. But when the actuator works with the maximum breakdown voltage, the fraction of the initial capacitor energy delivered to the arc is almost invariable. This preliminary study also confirms the effectiveness of the plasma synthetic jet at low pressure. Indeed, the maximum velocities of the precursor shock and the plasma jet induced by the actuator with maximum breakdown voltage are independent of the ambient pressure level; reach about 530 and 460 m/s respectively. The mass flux of the plasma jet increases with ambient pressure increasing, but the strength of the precursor shock presents a local maximum at 0.6 atm.

  4. Experimental Characterization of the Plasma Synthetic Jet Actuator

    Jin, Di; Li, Yinghong; Jia, Min; Song, Huimin; Cui, Wei; Sun, Quan; Li, Fanyu


    The plasma synthetic jet is a novel active flow control method because of advantages such as fast response, high frequency and non-moving parts, and it has received more attention recently, especially regarding its application to high-speed flow control. In this paper, the experimental characterization of the plasma synthetic jet actuator is investigated. The actuator consists of a copper anode, a tungsten cathode and a ceramic shell, and with these three parts a cavity can be formed inside the actuator. A pulsed-DC power supply was adopted to generate the arc plasma between the electrodes, through which the gas inside was heated and expanded from the orifice. Discharge parameters such as voltage and current were recorded, respectively, by voltage and current probes. The schlieren system was used for flow visualization, and jet velocities with different discharge parameters were measured. The schlieren images showed that the strength of plasma jets in a series of pulses varies from each other. Through velocity measurement, it is found that at a fixed frequency, the jet velocity hardly increases when the discharge voltage ranges from 16 kV to 20 kV. However, with the discharge voltage fixed, the jet velocity suddenly decreases when the pulse frequency rises above 500 Hz, whereas at other testing frequencies no such decrease was observed. The maximum jet velocity measured in the experiment was up to 110 m/s, which is believed to be effective for high-speed flow control.

  5. Development and Application of One-Sided Piezoelectric Actuating Micropump

    H. K. Ma


    Full Text Available Three types of one-sided actuating piezoelectric micropumps are studied in this paper. In the first type, one-sided actuating micropump with two check valves can enhance the flow rate and prevent the back flow in suction mode to keep the flow in one direction. Furthermore, the frequency modulator is applied in the micropump to adjust and promote the maximum flow rate higher than 5.0 mL/s. In the second type, valveless micropump with secondary chamber shows that the secondary chamber plays a key role in the application of the valveless micropump. It not only keeps the flow in one direction but also makes the flow rate of the pump reach 0.989 mL/s. In addition, when a nozzle/diffuser element is used in valveless micropump, the flow rate can be further improved to 1.183 mL/s at a frequency of 150 Hz. In the third type, piezoelectric actuating pump is regarded as an air pump in the application of a microfuel cell system, which can increase more air inlet to improve the fuel/air reaction and further increase the performance of fuel cell.

  6. Magneto-mechanical actuation model for fin-based locomotion

    Carbajal, Juan Pablo; 10.2495/DN100331


    In this paper, we report the results from the analysis of a numerical model used for the design of a magnetic linear actuator with applications to fin-based locomotion. Most of the current robotic fish generate bending motion using rotary motors which implies at least one mechanical conversion of the motion. We seek a solution that directly bends the fin and, at the same time, is able to exploit the magneto-mechanical properties of the fin material. This strong fin-actuator coupling blends the actuator and the body of the robot, allowing cross optimization of the system's elements. We study a simplified model of an elastic element, a spring-mass system representing a flexible fin, subjected to nonlinear forcing, emulating magnetic interaction. The dynamics of the system is studied under unforced and periodic forcing conditions. The analysis is focused on the limit cycles present in the system, which allows the periodic bending of the fin and the generation of thrust. The frequency, maximum amplitude and cente...

  7. Optimal actuation in vibration control

    Guzzardo, C. A.; Pang, S. S.; Ram, Y. M.


    The paper addresses the problem of finding the optimal location of actuators and their relative gain so that the control effort in an actively controlled vibrating system is minimized. In technical terms the problem is finding the optimal input vector of unit norm that minimizes the norm of the control gain vector. This problem is addressed in the context of the active natural frequency modification problem associated with resonance avoidance in undamped systems, and in the context of the single-input-multi-output pole assignment problem for second order systems.

  8. Corrugated paraffin nanocomposite films as large stroke thermal actuators and self-activating thermal interfaces.

    Copic, Davor; Hart, A John


    High performance active materials are of rapidly growing interest for applications including soft robotics, microfluidic systems, and morphing composites. In particular, paraffin wax has been used to actuate miniature pumps, solenoid valves, and composite fibers, yet its deployment is typically limited by the need for external volume constraint. We demonstrate that compact, high-performance paraffin actuators can be made by confining paraffin within vertically aligned carbon nanotube (CNT) films. This large-stroke vertical actuation is enabled by strong capillary interaction between paraffin and CNTs and by engineering the CNT morphology by mechanical compression before capillary-driven infiltration of the molten paraffin. The maximum actuation strain of the corrugated CNT-paraffin films (∼0.02-0.2) is comparable to natural muscle, yet the maximum stress is limited to ∼10 kPa by collapse of the CNT network. We also show how a CNT-paraffin film can serve as a self-activating thermal interface that closes a gap when it is heated. These new CNT-paraffin film actuators could be produced by large-area CNT growth, infiltration, and lamination methods, and are attractive for use in miniature systems due to their self-contained design.

  9. Voice Coil Actuator for Active Vibration Isolation in Microgravity

    Brusa, E.; Carabelli, S.; Genta, G.; Maddaleno, F.; Silvagni, M.; Tonoli, A.


    data fitting has been found in order to model the magnetic force path within the airgap. Voice coil electric parameters have been also designed by checking the correspondence between the expected and actual values on a small preliminary prototype. The experimental validation of the FEM models included the characterisation of the magnets, the construction of the first magnetic actuator and the design of the power amplifier prototype. The comparison between numerical and experimental results showed a good agreement for both two-dimensional and three-dimensional FEM models, at least for what the static behaviour of the actuator is concerned. The power amplifier design was particularly difficult because of the specifications of low power dissipation, low noise, output current and voltage, related to the maximum actuation force and its resolution, added to the requirements imposed by the control systems. Some results of the final tests on a ground test rig simulating the space equipment to be isolated are reported. The system performed as required in open and closed loop in dynamic operating conditions.

  10. Flexible and stretchable electrodes for dielectric elastomer actuators

    Rosset, Samuel; Shea, Herbert R.


    Dielectric elastomer actuators (DEAs) are flexible lightweight actuators that can generate strains of over 100 %. They are used in applications ranging from haptic feedback (mm-sized devices), to cm-scale soft robots, to meter-long blimps. DEAs consist of an electrode-elastomer-electrode stack, placed on a frame. Applying a voltage between the electrodes electrostatically compresses the elastomer, which deforms in-plane or out-of plane depending on design. Since the electrodes are bonded to the elastomer, they must reliably sustain repeated very large deformations while remaining conductive, and without significantly adding to the stiffness of the soft elastomer. The electrodes are required for electrostatic actuation, but also enable resistive and capacitive sensing of the strain, leading to self-sensing actuators. This review compares the different technologies used to make compliant electrodes for DEAs in terms of: impact on DEA device performance (speed, efficiency, maximum strain), manufacturability, miniaturization, the integration of self-sensing and self-switching, and compatibility with low-voltage operation. While graphite and carbon black have been the most widely used technique in research environments, alternative methods are emerging which combine compliance, conduction at over 100 % strain with better conductivity and/or ease of patternability, including microfabrication-based approaches for compliant metal thin-films, metal-polymer nano-composites, nanoparticle implantation, and reel-to-reel production of μm-scale patterned thin films on elastomers. Such electrodes are key to miniaturization, low-voltage operation, and widespread commercialization of DEAs.

  11. Stress tracking in thin bars by eigenstrain actuation

    Schoeftner, J.; Irschik, H.


    This contribution focuses on stress tracking in slender structures. The axial stress distribution of a linear elastic bar is investigated, in particular, we seek for an answer to the following question: in which manner do we have to distribute eigenstrains, such that the axial stress in a bar is equal to a certain desired stress distribution, despite external forces or support excitations are present? In order to track a certain time- and space-dependent stress function, smart actuators, such as piezoelectric actuators, are needed to realize eigenstrains. Based on the equation of motion and the constitutive relation, which relate stress, strain, displacement and eigenstrains, an analytical solution for the stress tracking problem is derived. The starting point for the derivation of a solution for the stress tracking problem is a semi-positive definite integral depending on the error stress which is the difference between the actual stress and the desired stress. Our derived stress tracking theory is verified by two examples: first, a clamped-free bar which is harmonically excited is investigated. It is shown under which circumstances the axial stress vanishes at every location and at every time instant. The second example is a support-excited bar with end mass, where a desired stress profile is prescribed.

  12. Relative-Motion Sensors and Actuators for Two Optical Tables

    Gursel, Yekta; McKenney, Elizabeth


    Optoelectronic sensors and magnetic actuators have been developed as parts of a system for controlling the relative position and attitude of two massive optical tables that float on separate standard air suspensions that attenuate ground vibrations. In the specific application for which these sensors and actuators were developed, one of the optical tables holds an optical system that mimics distant stars, while the other optical table holds a test article that simulates a spaceborne stellar interferometer that would be used to observe the stars. The control system is designed to suppress relative motion of the tables or, on demand, to impose controlled relative motion between the tables. The control system includes a sensor system that detects relative motion of the tables in six independent degrees of freedom and a drive system that can apply force to the star-simulator table in the six degrees of freedom. The sensor system includes (1) a set of laser heterodyne gauges and (2) a set of four diode lasers on the star-simulator table, each aimed at one of four quadrant photodiodes at nominal corresponding positions on the test-article table. The heterodyne gauges are used to measure relative displacements along the x axis.

  13. Electromagnetic variable degrees of freedom actuator systems and methods

    Montesanti, Richard C [Pleasanton, CA; Trumper, David L [Plaistow, NH; Kirtley, Jr., James L.


    The present invention provides a variable reluctance actuator system and method that can be adapted for simultaneous rotation and translation of a moving element by applying a normal-direction magnetic flux on the moving element. In a beneficial example arrangement, the moving element includes a swing arm that carries a cutting tool at a set radius from an axis of rotation so as to produce a rotary fast tool servo that provides a tool motion in a direction substantially parallel to the surface-normal of a workpiece at the point of contact between the cutting tool and workpiece. An actuator rotates a swing arm such that a cutting tool moves toward and away from a mounted rotating workpiece in a controlled manner in order to machine the workpiece. Position sensors provide rotation and displacement information for a swing arm to a control system. A control system commands and coordinates motion of the fast tool servo with the motion of a spindle, rotating table, cross-feed slide, and in feed slide of a precision lathe.

  14. Maximum information photoelectron metrology

    Hockett, P; Wollenhaupt, M; Baumert, T


    Photoelectron interferograms, manifested in photoelectron angular distributions (PADs), are a high-information, coherent observable. In order to obtain the maximum information from angle-resolved photoionization experiments it is desirable to record the full, 3D, photoelectron momentum distribution. Here we apply tomographic reconstruction techniques to obtain such 3D distributions from multiphoton ionization of potassium atoms, and fully analyse the energy and angular content of the 3D data. The PADs obtained as a function of energy indicate good agreement with previous 2D data and detailed analysis [Hockett et. al., Phys. Rev. Lett. 112, 223001 (2014)] over the main spectral features, but also indicate unexpected symmetry-breaking in certain regions of momentum space, thus revealing additional continuum interferences which cannot otherwise be observed. These observations reflect the presence of additional ionization pathways and, most generally, illustrate the power of maximum information measurements of th...

  15. Large scale simulation of NiTi helical spring actuators under repeated thermomechanical cycles

    Saleeb, A. F.; Dhakal, B.; Hosseini, M. S.; Padula, S. A., II


    As typically utilized in applications, a shape memory alloy (SMA) actuator operates under a large number of thermomechanical cycles, hence the importance of accounting for the cyclic behavior characteristics in modeling and numerical simulation of these actuators. To this end, the present work is focused on the characterization of the cyclic, evolutionary behavior of binary 55NiTi using a newly developed, multi-axial, material-modeling framework and its finite element analysis (FEA) implementation for use in the simulations of SMA actuators. In particular, two different geometric configurations of four- and two-coil helical springs subjected to axial end-forces are investigated under the effect of a large number of thermal cycles leading to the saturated deformation state of the coils. In addition, two different boundary conditions were examined, corresponding to: (a) the loading end cross section assumed to be free-to-twist, and (b) the loading end cross section assumed to be restrained against twist rotation. The study has led to the following five important conclusions: (i) the states of stresses and strains in the coils exhibited marked spatial non-homogeneities, both along the length as well as the cross section of the wires; (ii) the cyclic deformation response of the coils exhibits a similar evolutionary character to that of the 55NiTi material when tested under simple isobaric tensile stress conditions; (iii) the end boundary conditions affect the evolution of the deformation response; (iv) the magnitudes of the evolving nonlinear deformation states (i.e., axial displacements on the martensite and austenite sides, as well as the actuation displacement) were found to be proportional to the number of coils in an essentially linear manner, and (v) the change in coil diameter, while maintaining the pitch height, wire diameter and the number of coils fixed, has a significant effect on the response of the helical spring, both with regard to the resulting stress

  16. Numerical investigation of aerodynamic flow actuation produced by surface plasma actuator on 2D oscillating airfoil

    Minh Khang Phan; Jichul Shin


    Numerical simulation of unsteady flow control over an oscillating NACA0012 airfoil is investigated. Flow actuation of a turbulent flow over the airfoil is provided by low current DC sur-face glow discharge plasma actuator which is analytically modeled as an ion pressure force pro-duced in the cathode sheath region. The modeled plasma actuator has an induced pressure force of about 2 kPa under a typical experiment condition and is placed on the airfoil surface at 0%chord length and/or at 10%chord length. The plasma actuator at deep-stall angles (from 5° to 25°) is able to slightly delay a dynamic stall and to weaken a pressure fluctuation in down-stroke motion. As a result, the wake region is reduced. The actuation effect varies with different plasma pulse frequen-cies, actuator locations and reduced frequencies. A lift coefficient can increase up to 70%by a selec-tive operation of the plasma actuator with various plasma frequencies and locations as the angle of attack changes. Active flow control which is a key advantageous feature of the plasma actuator reveals that a dynamic stall phenomenon can be controlled by the surface plasma actuator with less power consumption if a careful control scheme of the plasma actuator is employed with the opti-mized plasma pulse frequency and actuator location corresponding to a dynamic change in reduced frequency.

  17. Parameter estimation and actuator characteristics of hybrid magnetic bearings for axial flow blood pump applications.

    Lim, Tau Meng; Cheng, Shanbao; Chua, Leok Poh


    Axial flow blood pumps are generally smaller as compared to centrifugal pumps. This is very beneficial because they can provide better anatomical fit in the chest cavity, as well as lower the risk of infection. This article discusses the design, levitated responses, and parameter estimation of the dynamic characteristics of a compact hybrid magnetic bearing (HMB) system for axial flow blood pump applications. The rotor/impeller of the pump is driven by a three-phase permanent magnet brushless and sensorless motor. It is levitated by two HMBs at both ends in five degree of freedom with proportional-integral-derivative controllers, among which four radial directions are actively controlled and one axial direction is passively controlled. The frequency domain parameter estimation technique with statistical analysis is adopted to validate the stiffness and damping coefficients of the HMB system. A specially designed test rig facilitated the estimation of the bearing's coefficients in air-in both the radial and axial directions. Experimental estimation showed that the dynamic characteristics of the HMB system are dominated by the frequency-dependent stiffness coefficients. By injecting a multifrequency excitation force signal onto the rotor through the HMBs, it is noticed in the experimental results the maximum displacement linear operating range is 20% of the static eccentricity with respect to the rotor and stator gap clearance. The actuator gain was also successfully calibrated and may potentially extend the parameter estimation technique developed in the study of identification and monitoring of the pump's dynamic properties under normal operating conditions with fluid.

  18. Spatially Nonuniform Heating and the Nonlinear Transient Response of Elastomeric Photomechanical Actuators

    Robert W. Cohn


    Full Text Available Recently various nanomaterials, such as carbon nanotubes and graphene, have been added to rubbery elastomers, such as poly dimethyl siloxane (PDMS, to enable generation of stress and displacement in response to remote illumination. While the response is primarily due to heat-induced generation of stress; i.e., the thermoelastic effect in rubbers, illuminated samples have shown unexpected deviations between the transient waveforms of sample temperature and induced stress. In this report we have created a new and simple lumped element model to explain the stress behavior of these photomechanical nanocomposites. The model consists of two parameters that describe the spatially averaged steady state temperature rise due to optical absorption of the structure (typically a long strip of pre-strained elastomer and the spatially averaged convective cooling rate of the strip, together with a time-varying function that effectively represents the temperature distribution and thermal convection along the length of the strip. The model is used to compare two actuators that each have a thin embedded layer of carbon nanotubes, in which the one film consists of randomly aligned nanotubes and the other has a much more ordered alignment. The model not only fits both transient responses, but the differences between the parameters suggests that the ordered film conducts heat across the strip more rapidly than the disordered film, leading to it more rapidly reaching the steady state level of maximum stress. This model should be helpful in future experimental studies that work to observe, delineate and identify possible nanoscale and molecular contributions to photomechanical stress.

  19. Advanced Actuator Concepts for High Precision Deformable Mirrors Project

    National Aeronautics and Space Administration — TRS Technologies proposes to develop a variety of single crystal actuators for adaptive optics deformable mirrors. Single crystal piezoelectric actuators are...

  20. Actuator Fault Detection and Diagnosis for Quadrotors

    Lu, P.; Van Kampen, E.-J.; Yu, B.


    This paper presents a method for fault detection and diagnosis of actuator loss of effectiveness for a quadrotor helicopter. This paper not only considers the detection of the actuator loss of effectiveness faults, but also addresses the diagnosis of the faults. The detection and estimation of the f

  1. Active vibration control using DEAP actuators

    Sarban, Rahimullah; Jones, Richard W.


    Dielectric electro-active polymer (DEAP) is a new type of smart material, which has the potential to be used to provide effective actuation for a wide range of applications. The properties of DEAP material place it somewhere between those of piezoceramics and shape memory alloys. Of the range of DEAP-based actuators that have been developed those having a cylindrical configuration are among the most promising. This contribution introduces the use of a tubular type DEAP actuator for active vibration control purposes. Initially the DEAP-based tubular actuator to be used in this study, produced by Danfoss PolyPower A/S, is introduced along with the static and dynamic characteristics. Secondly an electromechanical model of the tubular actuator is briefly reviewed and its ability to model the actuator's hysteresis characteristics for a range of periodic input signals at different frequencies demonstrated. The model will be used to provide hysteresis compensation in future vibration isolation studies. Experimental active vibration control using the actuator is then examined, specifically active vibration isolation of a 250 g mass subject to shaker generated 'ground vibration'. An adaptive feedforward control strategy is used to achieve this. The ability of the tubular actuator to reject both tonal and broadband random vibratory disturbances is then demonstrated.

  2. Fault Detection for Diesel Engine Actuator

    Blanke, M.; Bøgh, S.A.; Jørgensen, R.B.


    Feedback control systems are vulnerable to faults in control loop sensors and actuators, because feedback actions may cause abrupt responses and process damage when faults occur.......Feedback control systems are vulnerable to faults in control loop sensors and actuators, because feedback actions may cause abrupt responses and process damage when faults occur....

  3. Performance evaluation of lightweight piezocomposite curved actuator

    Goo, Nam Seo; Kim, Cheol; Park, Hoon C.; Yoon, Kwang J.


    A numerical method for the performance evaluation of LIPCA actuators is proposed using a finite element method. Fully-coupled formulations for piezo-electric materials are introduced and eight-node incompatible elements used. After verifying the developed code, the behavior of LIPCA actuators is investigated.

  4. Integrated piezoelectric actuators in deep drawing tools

    Neugebauer, R.; Mainda, P.; Drossel, W.-G.; Kerschner, M.; Wolf, K.


    The production of car body panels are defective in succession of process fluctuations. Thus the produced car body panel can be precise or damaged. To reduce the error rate, an intelligent deep drawing tool was developed at the Fraunhofer Institute for Machine Tools and Forming Technology IWU in cooperation with Audi and Volkswagen. Mechatronic components in a closed-loop control is the main differentiating factor between an intelligent and a conventional deep drawing tool. In correlation with sensors for process monitoring, the intelligent tool consists of piezoelectric actuators to actuate the deep drawing process. By enabling the usage of sensors and actuators at the die, the forming tool transform to a smart structure. The interface between sensors and actuators will be realized with a closed-loop control. The content of this research will present the experimental results with the piezoelectric actuator. For the analysis a production-oriented forming tool with all automotive requirements were used. The disposed actuators are monolithic multilayer actuators of the piezo injector system. In order to achieve required force, the actuators are combined in a cluster. The cluster is redundant and economical. In addition to the detailed assembly structures, this research will highlight intensive analysis with the intelligent deep drawing tool.

  5. Hydraulic Actuator for Ganged Control Rods

    Thompson, D. C.; Robey, R. M.


    Hydraulic actuator moves several nuclear-reactor control rods in unison. Electromagnetic pump pushes liquid lithium against ends of control rods, forcing them out of or into nuclear reactor. Color arrows show lithium flow for reactor startup and operation. Flow reversed for shutdown. Conceived for use aboard spacecraft, actuator principle applied to terrestrial hydraulic machinery involving motion of ganged rods.

  6. Artificial Cilia : Mimicking Nature Through Magnetic Actuation

    Khaderi, S. N.; Baltussen, M. G. H. M.; Anderson, P. D.; Ioan, D.; den Toonder, J.M.J.; Onck, P. R.; Murthy, SK; Khan, SA; Ugaz, VM; Zeringue, HC


    Manipulation of bio-fluids in microchannels faces many challenges in the development of lab-on-a-chip devices. We propose magnetically actuated artificial cilia which can propel fluids in microchannels. These cilia are magnetic films which can be actuated by an external magnetic field, leading to an

  7. Optimization of Actuating Origami Networks

    Buskohl, Philip; Fuchi, Kazuko; Bazzan, Giorgio; Joo, James; Gregory, Reich; Vaia, Richard


    Origami structures morph between 2D and 3D conformations along predetermined fold lines that efficiently program the form, function and mobility of the structure. By leveraging design concepts from action origami, a subset of origami art focused on kinematic mechanisms, reversible folding patterns for applications such as solar array packaging, tunable antennae, and deployable sensing platforms may be designed. However, the enormity of the design space and the need to identify the requisite actuation forces within the structure places a severe limitation on design strategies based on intuition and geometry alone. The present work proposes a topology optimization method, using truss and frame element analysis, to distribute foldline mechanical properties within a reference crease pattern. Known actuating patterns are placed within a reference grid and the optimizer adjusts the fold stiffness of the network to optimally connect them. Design objectives may include a target motion, stress level, or mechanical energy distribution. Results include the validation of known action origami structures and their optimal connectivity within a larger network. This design suite offers an important step toward systematic incorporation of origami design concepts into new, novel and reconfigurable engineering devices. This research is supported under the Air Force Office of Scientific Research (AFOSR) funding, LRIR 13RQ02COR.

  8. Microfabricated electroactive carbon nanotube actuators

    Ahluwalia, Arti; Baughman, Ray H.; De Rossi, Danilo; Mazzoldi, Alberto; Tesconi, Mario; Tognetti, Alessandro; Vozzi, Giovanni


    A variety of microfabrication techniques have been developed at the University of Pisa. They are based either on pressure or piston actuated microsyringes or modified ink-jet printers. This work present the results of a study aimed at fabricating carbon nanotube (NT) actuators using micro-syringes. In order to prevent the nanotubes from aggregating into clumps, they were enclosed in a partially cross-linked polyvinylalcohol - polyallylamine matrix. After sonication the solution remained homogenously dispersed for about 40 minutes, which was sufficient time for deposition. Small strips of NT, about 5 mm across and 15 mm long were deposited. Following deposition, the films were baked at 80 degree(s)C and their thickness, impedance and mechanical resistance measured. The results indicate that 50 minutes of baking time is sufficient to give a constant resistivity of 1.12 x 10-2 (Omega) m per layer similar to a typical semiconductor, and each layer has a thickness of about 6 micrometers .

  9. Actuator lifetime predictions for Ni60Ti40 shape memory alloy plate actuators

    Wheeler, Robert; Ottmers, Cade; Hewling, Brett; Lagoudas, Dimitris


    Shape memory alloys (SMAs), due to their ability to repeatedly recover substantial deformations under applied mechanical loading, have the potential to impact the aerospace, automotive, biomedical, and energy industries as weight and volume saving replacements for conventional actuators. While numerous applications of SMA actuators have been flight tested and can be found in industrial applications, these actuators are generally limited to non-critical components, are not widely implemented and frequently one-off designs, and are generally overdesigned due to a lack of understanding of the effect of the loading path on the fatigue life and the lack of an accurate method of predicting actuator lifetimes. Previous efforts have been effective at predicting actuator lifetimes for isobaric dogbone test specimens. This study builds on previous work and investigates the actuation fatigue response of plate actuators with various stress concentrations through the use of digital image correlation and finite element simulations.

  10. Light Actuation of Liquid in Optofluidics

    WAN Jing; LIANG Zhong-cheng


    Optofluidics is the integration of optics and microfluidics(so-called lab on the chip). Wherein the actuation of liquid is a key technic. In a variety of methods for controlling microscale liquid, the light actuation is particularly interesting. The light actuation offers a novel way to control the flow of fluids for biomedical and biotechnological applications, etc.. The complexity and cost of devices sometimes may be greatly reduced by using complete optical control and may be more flexible in operation than other methods. However the light actuation of liquid is a burgeoning field as well as optofluidics. There is lots of work to do. Here we systematically describe four mechanisms for the light actuation of liquid based on the following points: optoelectrowetting, photothermal effect, radiation pressure, photosensitive substance.

  11. Pneumatic Rotary Actuator Angle Control System

    王鹏; 彭光正; 伍清河


    Based on the adaptive control method, a kind of parameter adjustor was used to control pneumatic rotary actuator to track the expected output. The system uses electropneumatic proportional valve as control device, which adjusts the gas flow of actuator 's two cavities, then changes the pressure of cavity and pushes the piston of actuator to move, so the rotary actuator 's axis can be made to revolve to the required angle at last. According to the characteristic of pneumatic system, the control system was described with a fourth-order mathematic model. The control rule is deduced by model reference adaptive control method. By the result of experiment, it was proved that by using the adaptive control method, the output of rotary actuator could track the expected value timely and accurately.

  12. Genetic Algorithm Approaches for Actuator Placement

    Crossley, William A.


    This research investigated genetic algorithm approaches for smart actuator placement to provide aircraft maneuverability without requiring hinged flaps or other control surfaces. The effort supported goals of the Multidisciplinary Design Optimization focus efforts in NASA's Aircraft au program. This work helped to properly identify various aspects of the genetic algorithm operators and parameters that allow for placement of discrete control actuators/effectors. An improved problem definition, including better definition of the objective function and constraints, resulted from this research effort. The work conducted for this research used a geometrically simple wing model; however, an increasing number of potential actuator placement locations were incorporated to illustrate the ability of the GA to determine promising actuator placement arrangements. This effort's major result is a useful genetic algorithm-based approach to assist in the discrete actuator/effector placement problem.

  13. System-Level Design of a Shape Memory Alloy Actuator for Active Clearance Control in the High-Pressure Turbine

    DeCastro, Jonathan A.; Melcher, Kevin J.; Noebe, Ronald D.


    This paper describes results of a numerical analysis evaluating the feasibility of high-temperature shape memory alloys (HTSMA) for active clearance control actuation in the high-pressure turbine section of a modern turbofan engine. The prototype actuator concept considered here consists of parallel HTSMA wires attached to the shroud that is located on the exterior of the turbine case. A transient model of an HTSMA actuator was used to evaluate active clearance control at various operating points in a test bed aircraft engine simulation. For the engine under consideration, each actuator must be designed to counteract loads from 380 to 2000 lbf and displace at least 0.033 inches. Design results show that an actuator comprised of 10 wires 2 inches in length is adequate for control at critical engine operating points and still exhibits acceptable failsafe operability and cycle life. A proportional-integral-derivative (PID) controller with integrator windup protection was implemented to control clearance amidst engine transients during a normal mission. Simulation results show that the control system exhibits minimal variability in clearance control performance across the operating envelope. The final actuator design is sufficiently small to fit within the limited space outside the high-pressure turbine case and is shown to consume only small amounts of bleed air to adequately regulate temperature.

  14. A novel high amplitude piezoceramic actuator for applications in magnetic resonance elastography: a compliant mechanical amplifier approach

    Arani, Arvin; Eskandari, Amiraslan; Ouyang, Puren; Chopra, Rajiv


    Piezoceramic actuators are capable of precise positioning with high force, but suffer from limited displacement range, which has hindered their application in the field of magnetic resonance elastography (MRE). The objective of this study was to investigate the feasibility of using a mechanical amplifier in combination with a piezoceramic actuator for the application of endorectal prostate MRE. A five-bar symmetric structure was designed in ANSYS® and manufactured out of brass. Laser vibrometer measurements were used to characterize the amplitude of the CMA actuator while attached to masses in the 0-325 g range and over operating frequencies of 90-500 Hz. The response of the CMA was investigated while mechanically coupled to a balloon type endorectal coil. The resonant frequency of the prototype CMA actuator was predicted within 10% error using ANSYS simulations. The amplification ratio of the CMA actuator was measured to be 10 with the laser vibrometer and 7.6 ± 1.7 (max: 9.2, min: 6.5) using MRE, at a vibration frequency of 200 Hz. Laser vibrometer data also showed that the CMA actuator’s performance did not change whether it was connected to an empty or inflated endorectal. The feasibility of performing endorectal prostate MRE with a CMA actuator was successfully demonstrated in a human volunteer.

  15. Displacement currents in geoelectromagnetic problems

    Mogilatov, Vladimir; Goldman, Mark; Persova, Marina; Soloveichik, Yury


    The influence of displacement currents in conventional geoelectromagnetic (GEM) methods using unimodal transversal electric (TE) or multimodal TE and TM (transversal magnetic) fields is only significant at very high frequencies in the frequency domain or at extremely early times in the time domain. The transient process in the latter includes three stages: the propagation through air, the propagation through earth and the diffusion within the earth. The influence of displacement currents is significant mainly during the former two stages, normally up to several tens to a few hundreds of nanoseconds. The behavior is essentially different in novel GEM methods using a vertical electric dipole (VED) or circular electric dipole (CED) sources of unimodal TM-fields. Under certain geoelectric conditions, the influence of displacement currents in these methods might be crucial at late times as well. This happens, if the model consists of insulating layers. In the absence of displacement currents, such layers would totally mask underlying structures. However, TM-fields including displacement currents depend on geoelectric parameters below insulating layers at late times.

  16. Formation around planetary displaced orbit

    GONG Sheng-ping; LI Jun-feng; BAOYIN He-xi


    The paper investigates the relative motion around the planetary displaced orbit. Several kinds of displaced orbits for geocentric and martian cases were discussed. First, the relative motion was linearized around the displaced orbits. Then, two seminatural control laws were investigated for each kind of orbit and the stable regions were obtained for each case. One of the two control laws is the passive control law that is very attractive for engineering practice. However, the two control laws are not very suitable for the Martian mission. Another special semi-natural control law is designed based on the requirement of the Martian mission. The results show that large stable regions exist for the control law.

  17. Maximum Likelihood Associative Memories

    Gripon, Vincent; Rabbat, Michael


    Associative memories are structures that store data in such a way that it can later be retrieved given only a part of its content -- a sort-of error/erasure-resilience property. They are used in applications ranging from caches and memory management in CPUs to database engines. In this work we study associative memories built on the maximum likelihood principle. We derive minimum residual error rates when the data stored comes from a uniform binary source. Second, we determine the minimum amo...

  18. Maximum likely scale estimation

    Loog, Marco; Pedersen, Kim Steenstrup; Markussen, Bo


    A maximum likelihood local scale estimation principle is presented. An actual implementation of the estimation principle uses second order moments of multiple measurements at a fixed location in the image. These measurements consist of Gaussian derivatives possibly taken at several scales and....../or having different derivative orders. Although the principle is applicable to a wide variety of image models, the main focus here is on the Brownian model and its use for scale selection in natural images. Furthermore, in the examples provided, the simplifying assumption is made that the behavior...... of the measurements is completely characterized by all moments up to second order....

  19. Perceived Displacement explains Wolfpack Effect

    Matúš eŠimkovic


    Full Text Available We investigate the influence of perceived displacement of moving agent-like stimuli on the performance in dynamic interactive tasks. In order to reliably measure perceived displacement we utilize multiple tasks with different task demands. The perceived center of an agent’s body is displaced in the direction in which the agent is facing and this perceived displacement is larger than the theoretical position of the center of mass would predict. Furthermore, the displacement in the explicit judgment is dissociated from the displacement obtained by the implicit measures. By manipulating the location of the pivot point, we show that it is not necessary to postulate orientation as an additional cue utilized by perception, as has been suggested by earlier studies. These studies showed that the agent’s orientation influences the detection of chasing motion and the detection-related performance in interactive tasks. This influence has been labeled wolfpack effect. In one of the demonstrations of the wolfpack effect participants control a green circle on a display with a computer mouse. It has been shown that participants avoid display areas withagents pointing towards the green circle. Participants do so in favor of areas where the agents point in the direction perpendicular to the circle. We show that this avoidance behavior arises because the agent’s pivot point selected by the earlier studies is different from where people locate the center of agent’s body. As a consequence, the nominal rotation confounds rotation and translation. We show that the avoidance behavior disappears once the pivot point is set to the center of agent’s body.

  20. Large displacement of a static bending nanowire with surface effects

    Liu, J. L.; Mei, Y.; Xia, R.; Zhu, W. L.


    Nanowires are widely used as building blocks of micro/nano devices, such as micro-sensors, probes, transistors and actuators in micro/nano-electro-mechanical systems (M/NEMS) and biotechnology. In this study, we investigated the large deformation behavior of a nanowire in consideration of its surface effects (surface elasticity and residual surface stress). For nanowires of large displacements with different boundary conditions, we established the governing equation set in combination with the residual surface stress and surface elasticity. Then a computer program of shooting method by using the commercial software MathCAD was developed to solve the boundary value problem numerically. Furthermore, the influences of surface effects on the large and infinitesimal deformation of the nanowires were quantitatively compared. These findings are beneficial to understanding the mechanism of the surface effects, and can also provide some inspirations to characterize the mechanical properties of nano-materials, and engineer new micro/nano-scaled devices.

  1. Spooled packaging of shape memory alloy actuators

    Redmond, John A.

    A vast cross-section of transportation, manufacturing, consumer product, and medical technologies rely heavily on actuation. Accordingly, progress in these industries is often strongly coupled to the advancement of actuation technologies. As the field of actuation continues to evolve, smart materials show significant promise for satisfying the growing needs of industry. In particular, shape memory alloy (SMA) wire actuators present an opportunity for low-cost, high performance actuation, but until now, they have been limited or restricted from use in many otherwise suitable applications by the difficulty in packaging the SMA wires within tight or unusually shaped form constraints. To address this packaging problem, SMA wires can be spool-packaged by wrapping around mandrels to make the actuator more compact or by redirecting around multiple mandrels to customize SMA wire pathways to unusual form factors. The goal of this dissertation is to develop the scientific knowledge base for spooled packaging of low-cost SMA wire actuators that enables high, predictable performance within compact, customizable form factors. In developing the scientific knowledge base, this dissertation defines a systematic general representation of single and multiple mandrel spool-packaged SMA actuators and provides tools for their analysis, understanding, and synthesis. A quasi-static analytical model distills the underlying mechanics down to the three effects of friction, bending, and binding, which enables prediction of the behavior of generic spool-packaged SMA actuators with specifiable geometric, loading, frictional, and SMA material parameters. An extensive experimental and simulation-based parameter study establishes the necessary understanding of how primary design tradeoffs between performance, packaging, and cost are governed by the underlying mechanics of spooled actuators. A design methodology outlines a systematic approach to synthesizing high performance SMA wire actuators

  2. Grating Loaded Cantilevers for Displacement Measurements

    Karademir, Ertugrul; Olcum, Selim; Atalar, Abdullah; Aydinli, Atilla


    A cantilever with a grating coupler engraved on its tip is used for measuring displacement. The coupled light in the cantilever is guided to a single mode optical waveguide defined at the base of the cantilever. The grating period is 550 nm and is fabricated on a SOI wafer using nanoimprint lithography. The waveguide and the cantilever are defined by an RIE and cantilevers released by KOH and HF solutions. Light with 1550 nm wavelength, is directed onto the grating coupler and detected at the cleaved end of the SOI waveguide. The angle of incidence is controlled by a motorized rotary stage. Light couples into the waveguide at a characteristic angle with a full width at half maximum of approximately 6.9 mrads translating into a Q factor of 87.5. The displacement sensitivity is measured by driving the cantilever with a frequency controlled piezoelectric element. The modulation of the light at the waveguide output is lock-in detected by a biased infrared detector. The resulting 43%mrad-1 sensitivity can be increased with further optimization.

  3. Displacement ventilation in lecture halls

    Egorov, Artem


    This thesis considers several important goals. The main purpose is to see how displacement ventilation sys-tem works in the lecture hall of M-building and compare obtained results with D2 and Indoor Climate Classi-fication. The second one is to analyze the function of the ventilation system. The last one is to realize when displacement ventilation is preferable to mixing ventilation. Analysis of the system was carried out with instruments from MUAS HVAC laboratory. In lecture hall were me...

  4. Displaced plaque in retroperitoneal adenopathy.

    Al-Okaili, Riyadh N; Schable, Stephen I; Marlow, Troy J


    This study was designed to determine when to consider incidental retroperitoneal masses on the basis of a displaced calcified atheromatous abdominal aorta on lateral radiographs. We did a retrospective review of 143 normal abdominal helical computed tomography scans of individuals aged 50 years and older to measure the distance between the posterior aortic wall and anterior cortex of vertebral bodies from T12 through L3. The normal abdominal aorta maintains a close relationship to the vertebral column. The distance should not be more than 10 mm in men and 7.3 mm in women. Displacement of aortic calcified atheroma greater than these distances should prompt a search for a retroperitoneal mass.

  5. Fabrication of lead zirconate titanate actuator via suspension polymerization casting

    Miao, Weiguo


    , non-reactive decalin was used as a solvent to lower the stress inside the green body. The addition of decalin has no large impact on the polymerization process. With 15 wt% decalin in the monomer solution, the burnout process was successfully solved. The burnout process was monitored by TGA/DTA and TMA. A 51 vol% PZT filled acrylate slurry was cast into a mold made by Stereolithography (SLA), and after curing, the telescopic actuator was removed from the mold. This indirect SLA method provides an efficient way to build ceramic parts. PZT samples were sintered at 1275°C for 4 hours, with density over 98%. SEM analysis showed the sample made by SPC has a uniform microstructure, which may be beneficial to the electric properties. The sample made by polymerization has a d33 value about 680 pm/V, which is better than the literature value (580 pm/V). The electric tests showed this telescopic actuator produced a maximum deflection of 24.7 mum at 250 kV/m, in line with theoretical calculations. Compared with actuators made by other methods, the actuator made by SPC provides a comparable structural factor (187.5). The distortion in actuators is caused by fabrication and sintering.

  6. Actuator System with Dual Chambers


    The present invention relates to an actuator system with a magnetic lead screw (50), comprises a magnetic rotor (5) and a translator cylinder (2), the translator cylinder (2) comprises a magnetic stator (16), the translator cylinder (2) has a closed first end (14) and a second end confined by a lid...... (8), the lid having a shaft opening (17) for a shaft (6) coupled to the magnetic rotor (5), wherein the magnetic rotor (5), when inserted in the translator cylinder (2), is arranged to translate a linear movement of the translator cylinder (2) into a rotational movement of the magnetic rotor by using...... movement in the shaft opening (17), the lid (8) being arranged for confining the second end (15) of the translator cylinder (2), the translator cylinder confined by the lid (8) forms,when divided by the magnetic rotor (5), a first chamber (TC) with a first volume and a second chamber(BC) with a second...

  7. Dynamic Characteristics of Electrostatically Actuated Shape Optimized Variable Geometry Microbeam

    Sha Zhang


    Full Text Available We mainly analyze the dynamic characteristics of electrostatically actuated shape optimized variable geometry microbeam. A nonlinear dynamic model considering midplane stretching, electrostatic force, and electrical field fringing effects is developed. Firstly, we study the static responses of the optimized microbeams under DC polarization voltage. The generalized differential quadrature method (GDQM is used. Secondly, the dynamic responses of the shape optimized microbeams driven by DC and AC voltages are investigated using GDQM in conjunction with Levenberg-Marquardt optimization method. The results show that the more gradual change in width, the larger the resonant frequency and the maximum amplitude at resonance. Then we further discuss in detail how do the maximum width, midsection width, and curvature of the width function affect the frequency response of the microbeams. We find that the amplitude and resonant frequency of the dynamic response are not monotonically increasing as the curvature of the width function increases and there exists a critical curvature. This analysis will be helpful in the optimal design of MEMS actuators. Finally, for more consideration, different residual stress, squeeze-film damping, and fringing effect models are introduced into the governing equation of motion and we compare the corresponding dynamic response.

  8. Full Piezoelectric Multilayer-Stacked Hybrid Actuation/Transduction Systems

    Su, Ji; Jiang, Xiaoning; Zu, Tian-Bing


    The Stacked HYBATS (Hybrid Actuation/Transduction system) demonstrates significantly enhanced electromechanical performance by using the cooperative contributions of the electromechanical responses of multilayer, stacked negative strain components and positive strain components. Both experimental and theoretical studies indicate that, for Stacked HYBATS, the displacement is over three times that of a same-sized conventional flextensional actuator/transducer. The coupled resonance mode between positive strain and negative strain components of Stacked HYBATS is much stronger than the resonance of a single element actuation only when the effective lengths of the two kinds of elements match each other. Compared with the previously invented hybrid actuation system (HYBAS), the multilayer Stacked HYBATS can be designed to provide high mechanical load capability, low voltage driving, and a highly effective piezoelectric constant. The negative strain component will contract, and the positive strain component will expand in the length directions when an electric field is applied on the device. The interaction between the two elements makes an enhanced motion along the Z direction for Stacked-HYBATS. In order to dominate the dynamic length of Stacked-HYBATS by the negative strain component, the area of the cross-section for the negative strain component will be much larger than the total cross-section areas of the two positive strain components. The transverse strain is negative and longitudinal strain positive in inorganic materials, such as ceramics/single crystals. Different piezoelectric multilayer stack configurations can make a piezoelectric ceramic/single-crystal multilayer stack exhibit negative strain or positive strain at a certain direction without increasing the applied voltage. The difference of this innovation from the HYBAS is that all the elements can be made from one-of-a-kind materials. Stacked HYBATS can provide an extremely effective piezoelectric

  9. Investigation of Ionic Polymer Metal Composite Actuators Loaded with Various Tetraethyl Orthosilicate Contents

    Qingsong He; Min Yu; Yuxiu Li; Yan Ding; Dongjie Guo; Zhendong Dai


    Ionic Polymer Metal Composite (IPMC) can be used as an electrically activated actuator,which has been widely used in artificial muscles,bionic robotic actuators,and dynamic sensors since it has the advantages of large deformation,light weight,flexibility,and low driving voltage,etc.To further improve the mechanical properties of IPMC,this paper reports a new method for preparing organic-inorganic hybrid Nafion/SiO2 membranes.Beginning from cast Nation membranes,IPMCs with various tetraethyl orthosilicate (TEOS) contents were fabricated by electroless plating.The elastic moduli of cast Nation membranes were measured with nano indenters,the water contents were calculated,and the cross sections of Nafion membranes were observed by scanning electron microscopy.The blocking force,the displacement,and the electric current of IPMCs were then measured on a test apparatus.The results show that the blocking force increases as the TEOS content gradually increases,and that both the displacement and the electric current initially decrease,then increase.When the TEOS content is 1.5%,the IPMC shows the best improved mechanical properties.Finally,the IPMC with the best improved performance was used to successfully actuate the artificial eye and tested.

  10. Active Damping Using Distributed Anisotropic Actuators

    Schiller, Noah H.; Cabell, Randolph H.; Quinones, Juan D.; Wier, Nathan C.


    A helicopter structure experiences substantial high-frequency mechanical excitation from powertrain components such as gearboxes and drive shafts. The resulting structure-borne vibration excites the windows which then radiate sound into the passenger cabin. In many cases the radiated sound power can be reduced by adding damping. This can be accomplished using passive or active approaches. Passive treatments such as constrained layer damping tend to reduce window transparency. Therefore this paper focuses on an active approach utilizing compact decentralized control units distributed around the perimeter of the window. Each control unit consists of a triangularly shaped piezoelectric actuator, a miniature accelerometer, and analog electronics. Earlier work has shown that this type of system can increase damping up to approximately 1 kHz. However at higher frequencies the mismatch between the distributed actuator and the point sensor caused control spillover. This paper describes new anisotropic actuators that can be used to improve the bandwidth of the control system. The anisotropic actuators are composed of piezoelectric material sandwiched between interdigitated electrodes, which enables the application of the electric field in a preferred in-plane direction. When shaped correctly the anisotropic actuators outperform traditional isotropic actuators by reducing the mismatch between the distributed actuator and point sensor at high frequencies. Testing performed on a Plexiglas panel, representative of a helicopter window, shows that the control units can increase damping at low frequencies. However high frequency performance was still limited due to the flexible boundary conditions present on the test structure.

  11. High-Performance Multiresponsive Paper Actuators.

    Amjadi, Morteza; Sitti, Metin


    There is an increasing demand for soft actuators because of their importance in soft robotics, artificial muscles, biomimetic devices, and beyond. However, the development of soft actuators capable of low-voltage operation, powerful actuation, and programmable shape-changing is still challenging. In this work, we propose programmable bilayer actuators that operate based on the large hygroscopic contraction of the copy paper and simultaneously large thermal expansion of the polypropylene film upon increasing the temperature. The electrothermally activated bending actuators can function with low voltages (≤ 8 V), low input electric power per area (P ≤ 0.14 W cm(-2)), and low temperature changes (≤ 35 °C). They exhibit reversible shape-changing behavior with curvature radii up to 1.07 cm(-1) and bending angle of 360°, accompanied by powerful actuation. Besides the electrical activation, they can be powered by humidity or light irradiation. We finally demonstrate the use of our paper actuators as a soft gripper robot and a lightweight paper wing for aerial robotics.

  12. V2O5 nanofibre sheet actuators

    Gu, Gang; Schmid, Michael; Chiu, Po-Wen; Minett, Andrew; Fraysse, Jerôme; Kim, Gyu-Tae; Roth, Siegmar; Kozlov, Mikhail; Muñoz, Edgar; Baughman, Ray H.


    Vanadium oxides, such as V2O5, are promising for lithium-ion batteries, catalysis, electrochromic devices and sensors. Vanadium oxides were proposed more than a decade ago for another redox-dependent application: the direct conversion of electrical energy to mechanical energy in actuators (artificial muscles). Although related conducting polymer and carbon nanotube actuators have been demonstrated, electromechanical actuators based on vanadium oxides have not be realized. V2O5 nanofibres and nanotubes provide the potential advantages of low-cost synthesis by sol-gel routes and high charging capacity and long cycle life. Here, we demonstrate electromechanical actuation for obtained high modulus V2O5 sheets comprising entangled V2O5 nanofibres. The high surface area of these V2O5 sheets facilitates electrochemical charge injection and intercalation that causes the electromechanical actuation. We show that the V2O5 sheets provide high Young's modulus, high actuator-generated stress, and high actuator stroke at low applied voltage.

  13. Longitudinal-bending mode micromotor using multilayer piezoelectric actuator.

    Yao, K; Koc, B; Uchino, K


    Longitudinal-bending mode ultrasonic motors with a diameter of 3 mm were fabricated using stacked multilayer piezoelectric actuators, which were self-developed from hard lead zirconate titanate (PZT) ceramic. A bending vibration was converted from a longitudinal vibration with a longitudinal-bending coupler. The motors could be bidirectionally operated by changing driving frequency. Their starting and braking torque were analyzed based on the transient velocity response. With a load of moment of inertia 2.5 x 10(-7) kgm2, the motor showed a maximum starting torque of 127.5 microNm. The braking torque proved to be a constant independent on the motor's driving conditions and was roughly equivalent to the maximum starting torque achievable with our micromotors.

  14. Maximum Entropy Fundamentals

    F. Topsøe


    Full Text Available Abstract: In its modern formulation, the Maximum Entropy Principle was promoted by E.T. Jaynes, starting in the mid-fifties. The principle dictates that one should look for a distribution, consistent with available information, which maximizes the entropy. However, this principle focuses only on distributions and it appears advantageous to bring information theoretical thinking more prominently into play by also focusing on the "observer" and on coding. This view was brought forward by the second named author in the late seventies and is the view we will follow-up on here. It leads to the consideration of a certain game, the Code Length Game and, via standard game theoretical thinking, to a principle of Game Theoretical Equilibrium. This principle is more basic than the Maximum Entropy Principle in the sense that the search for one type of optimal strategies in the Code Length Game translates directly into the search for distributions with maximum entropy. In the present paper we offer a self-contained and comprehensive treatment of fundamentals of both principles mentioned, based on a study of the Code Length Game. Though new concepts and results are presented, the reading should be instructional and accessible to a rather wide audience, at least if certain mathematical details are left aside at a rst reading. The most frequently studied instance of entropy maximization pertains to the Mean Energy Model which involves a moment constraint related to a given function, here taken to represent "energy". This type of application is very well known from the literature with hundreds of applications pertaining to several different elds and will also here serve as important illustration of the theory. But our approach reaches further, especially regarding the study of continuity properties of the entropy function, and this leads to new results which allow a discussion of models with so-called entropy loss. These results have tempted us to speculate over

  15. Design Method for Fast Switching Seat Valves for Digital Displacement Machines

    Roemer, Daniel Beck; Johansen, Per; Pedersen, Henrik C.;


    Digital Displacement (DD) machines are upcoming technology where the displacement of each pressure chamber is controlled electronically by use of two fast switching seat valves. The effective displacement and operation type (pumping/motoring) may be controlled by manipulating the seat valves...... operation, where switching times must be performed within a few milliseconds. These valve requirements make a simulation based design approach essential, where mechanical strength, thermal dissipation, fluid dynamics and electro-magnetic dynamics must be taken into account. In this paper a complete design...... of the valves. A coupled optimization is finally conducted to optimize the electro-magnetic actuator, leading to a valve design based on the chosen valve topology. The design method is applied to an example DD machine and the resulting valve design fulfilling the requirements is presented....

  16. Design Method for Fast Switching Seat Valves for Digital Displacement Machines

    Roemer, Daniel Beck; Johansen, Per; Pedersen, Henrik C.


    Digital Displacement (DD) machines are upcoming technology where the displacement of each pressure chamber is controlled electronically by use of two fast switching seat valves. The effective displacement and operation type (pumping/motoring) may be controlled by manipulating the seat valves...... operation, where switching times must be performed within a few milliseconds. These valve requirements make a simulation based design approach essential, where mechanical strength, thermal dissipation, fluid dynamics and electro-magnetic dynamics must be taken into account. In this paper a complete design...... of the valves. A coupled optimization is finally conducted to optimize the electro-magnetic actuator, leading to a valve design based on the chosen valve topology. The design method is applied to an example DD machine and the resulting valve design fulfilling the requirements is presented....

  17. Biomimetic photo-actuation: progress and challenges

    Dicker, Michael P. M.; Weaver, Paul M.; Rossiter, Jonathan M.; Bond, Ian P.; Faul, Charl F. J.


    Photo-actuation, such as that observed in the reversible sun-tracking movements of heliotropic plants, is produced by a complex, yet elegant series of processes. In the heliotropic leaf movements of the Cornish Mallow, photo-actuation involves the generation, transport and manipulation of chemical signals from a distributed network of sensors in the leaf veins to a specialized osmosis driven actuation region in the leaf stem. It is theorized that such an arrangement is both efficient in terms of materials use and operational energy conversion, as well as being highly robust. We concern ourselves with understanding and mimicking these light driven, chemically controlled actuating systems with the aim of generating intelligent structures which share the properties of efficiency and robustness that are so important to survival in Nature. In this work we present recent progress in mimicking these photo-actuating systems through remote light exposure of a metastable state photoacid and the resulting signal and energy transfer through solution to a pH-responsive hydrogel actuator. Reversible actuation strains of 20% were achieved from this arrangement, with modelling then employed to reveal the critical influence hydrogel pKa has on this result. Although the strong actuation achieved highlights the progress that has been made in replicating the principles of biomimetic photo-actuation, challenges such as photoacid degradation were also revealed. It is anticipated that current work can directly lead to the development of high-performance and low-cost solartrackers for increased photovoltaic energy capture and to the creation of new types of intelligent structures employing chemical control systems.

  18. Wide Range Fiber Displacement Sensor Based on Bending Loss

    Jinlei Zhao


    Full Text Available A wide range fiber optic sensor system for displacement and crack monitoring is developed. In the proposed fiber optic sensor system, a number of fiber loops are formed from a single fiber and each fiber loop is used as a crack or displacement sensor. The feasibility and the dynamic range of the fiber sensor developed in this manner are investigated experimentally. Both glass fibers and plastic fibers are used in the experiments. Experimental results show that the new fiber optic sensor has a wide range (maximum range is 88 mm and this sensor also has a high sensitivity for displacement and crack monitoring when an appropriate diameter of the fiber loop is selected as the sensor. Moreover, the proposed method is very simple and has low cost, so in situ application potential of the proposed sensor is high.

  19. Regularized maximum correntropy machine

    Wang, Jim Jing-Yan


    In this paper we investigate the usage of regularized correntropy framework for learning of classifiers from noisy labels. The class label predictors learned by minimizing transitional loss functions are sensitive to the noisy and outlying labels of training samples, because the transitional loss functions are equally applied to all the samples. To solve this problem, we propose to learn the class label predictors by maximizing the correntropy between the predicted labels and the true labels of the training samples, under the regularized Maximum Correntropy Criteria (MCC) framework. Moreover, we regularize the predictor parameter to control the complexity of the predictor. The learning problem is formulated by an objective function considering the parameter regularization and MCC simultaneously. By optimizing the objective function alternately, we develop a novel predictor learning algorithm. The experiments on two challenging pattern classification tasks show that it significantly outperforms the machines with transitional loss functions.

  20. Displacement and difference in Lubumbashi

    Aurelia Wa Kabwe-Segatti


    Full Text Available Signs on the outskirts of the second largest city in the Democratic Republic of Congo (DRC welcome visitors to ‘the city of peace’. Lubumbashi has a reputation as a haven of tolerance in a violent nation but how are displaced people treated?