International Nuclear Information System (INIS)
Enslin, J.H.R.
1990-01-01
A well engineered renewable remote energy system, utilizing the principal of Maximum Power Point Tracking can be m ore cost effective, has a higher reliability and can improve the quality of life in remote areas. This paper reports that a high-efficient power electronic converter, for converting the output voltage of a solar panel, or wind generator, to the required DC battery bus voltage has been realized. The converter is controlled to track the maximum power point of the input source under varying input and output parameters. Maximum power point tracking for relative small systems is achieved by maximization of the output current in a battery charging regulator, using an optimized hill-climbing, inexpensive microprocessor based algorithm. Through practical field measurements it is shown that a minimum input source saving of 15% on 3-5 kWh/day systems can easily be achieved. A total cost saving of at least 10-15% on the capital cost of these systems are achievable for relative small rating Remote Area Power Supply systems. The advantages at larger temperature variations and larger power rated systems are much higher. Other advantages include optimal sizing and system monitor and control
International Nuclear Information System (INIS)
Biondi, L.
1998-01-01
The charging for a service is a supplier's remuneration for the expenses incurred in providing it. There are currently two charges for electricity: consumption and maximum demand. While no problem arises about the former, the issue is more complicated for the latter and the analysis in this article tends to show that the annual charge for maximum demand arbitrarily discriminates among consumer groups, to the disadvantage of some [it
LCLS Maximum Credible Beam Power
International Nuclear Information System (INIS)
Clendenin, J.
2005-01-01
The maximum credible beam power is defined as the highest credible average beam power that the accelerator can deliver to the point in question, given the laws of physics, the beam line design, and assuming all protection devices have failed. For a new accelerator project, the official maximum credible beam power is determined by project staff in consultation with the Radiation Physics Department, after examining the arguments and evidence presented by the appropriate accelerator physicist(s) and beam line engineers. The definitive parameter becomes part of the project's safety envelope. This technical note will first review the studies that were done for the Gun Test Facility (GTF) at SSRL, where a photoinjector similar to the one proposed for the LCLS is being tested. In Section 3 the maximum charge out of the gun for a single rf pulse is calculated. In Section 4, PARMELA simulations are used to track the beam from the gun to the end of the photoinjector. Finally in Section 5 the beam through the matching section and injected into Linac-1 is discussed
Maximum Power from a Solar Panel
Directory of Open Access Journals (Sweden)
Michael Miller
2010-01-01
Full Text Available Solar energy has become a promising alternative to conventional fossil fuel sources. Solar panels are used to collect solar radiation and convert it into electricity. One of the techniques used to maximize the effectiveness of this energy alternative is to maximize the power output of the solar collector. In this project the maximum power is calculated by determining the voltage and the current of maximum power. These quantities are determined by finding the maximum value for the equation for power using differentiation. After the maximum values are found for each time of day, each individual quantity, voltage of maximum power, current of maximum power, and maximum power is plotted as a function of the time of day.
Distribution of Acoustic Power Spectra for an Isolated Helicopter Fuselage
Directory of Open Access Journals (Sweden)
Kusyumov A.N.
2016-01-01
Full Text Available The broadband aerodynamic noise can be studied, assuming isotropic flow, turbulence and decay. Proudman’s approach allows practical calculations of noise based on CFD solutions of RANS or URANS equations at the stage of post processing and analysis of the solution. Another aspect is the broadband acoustic spectrum and the distribution of acoustic power over a range of frequencies. The acoustic energy spectrum distribution in isotropic turbulence is non monotonic and has a maximum at a certain value of Strouhal number. In the present work the value of acoustic power peak frequency is determined using a prescribed form of acoustic energy spectrum distribution presented in papers by S. Sarkar and M. Y. Hussaini and by G. M. Lilley. CFD modelling of the flow around isolated helicopter fuselage model was considered using the HMB CFD code and the RANS equations.
Zipf's law, power laws and maximum entropy
International Nuclear Information System (INIS)
Visser, Matt
2013-01-01
Zipf's law, and power laws in general, have attracted and continue to attract considerable attention in a wide variety of disciplines—from astronomy to demographics to software structure to economics to linguistics to zoology, and even warfare. A recent model of random group formation (RGF) attempts a general explanation of such phenomena based on Jaynes' notion of maximum entropy applied to a particular choice of cost function. In the present paper I argue that the specific cost function used in the RGF model is in fact unnecessarily complicated, and that power laws can be obtained in a much simpler way by applying maximum entropy ideas directly to the Shannon entropy subject only to a single constraint: that the average of the logarithm of the observable quantity is specified. (paper)
Maximum power operation of interacting molecular motors
DEFF Research Database (Denmark)
Golubeva, Natalia; Imparato, Alberto
2013-01-01
, as compared to the non-interacting system, in a wide range of biologically compatible scenarios. We furthermore consider the case where the motor-motor interaction directly affects the internal chemical cycle and investigate the effect on the system dynamics and thermodynamics.......We study the mechanical and thermodynamic properties of different traffic models for kinesin which are relevant in biological and experimental contexts. We find that motor-motor interactions play a fundamental role by enhancing the thermodynamic efficiency at maximum power of the motors...
Maximum Safety Regenerative Power Tracking for DC Traction Power Systems
Directory of Open Access Journals (Sweden)
Guifu Du
2017-02-01
Full Text Available Direct current (DC traction power systems are widely used in metro transport systems, with running rails usually being used as return conductors. When traction current flows through the running rails, a potential voltage known as “rail potential” is generated between the rails and ground. Currently, abnormal rises of rail potential exist in many railway lines during the operation of railway systems. Excessively high rail potentials pose a threat to human life and to devices connected to the rails. In this paper, the effect of regenerative power distribution on rail potential is analyzed. Maximum safety regenerative power tracking is proposed for the control of maximum absolute rail potential and energy consumption during the operation of DC traction power systems. The dwell time of multiple trains at each station and the trigger voltage of the regenerative energy absorbing device (READ are optimized based on an improved particle swarm optimization (PSO algorithm to manage the distribution of regenerative power. In this way, the maximum absolute rail potential and energy consumption of DC traction power systems can be reduced. The operation data of Guangzhou Metro Line 2 are used in the simulations, and the results show that the scheme can reduce the maximum absolute rail potential and energy consumption effectively and guarantee the safety in energy saving of DC traction power systems.
Maximum power flux of auroral kilometric radiation
International Nuclear Information System (INIS)
Benson, R.F.; Fainberg, J.
1991-01-01
The maximum auroral kilometric radiation (AKR) power flux observed by distant satellites has been increased by more than a factor of 10 from previously reported values. This increase has been achieved by a new data selection criterion and a new analysis of antenna spin modulated signals received by the radio astronomy instrument on ISEE 3. The method relies on selecting AKR events containing signals in the highest-frequency channel (1980, kHz), followed by a careful analysis that effectively increased the instrumental dynamic range by more than 20 dB by making use of the spacecraft antenna gain diagram during a spacecraft rotation. This analysis has allowed the separation of real signals from those created in the receiver by overloading. Many signals having the appearance of AKR harmonic signals were shown to be of spurious origin. During one event, however, real second harmonic AKR signals were detected even though the spacecraft was at a great distance (17 R E ) from Earth. During another event, when the spacecraft was at the orbital distance of the Moon and on the morning side of Earth, the power flux of fundamental AKR was greater than 3 x 10 -13 W m -2 Hz -1 at 360 kHz normalized to a radial distance r of 25 R E assuming the power falls off as r -2 . A comparison of these intense signal levels with the most intense source region values (obtained by ISIS 1 and Viking) suggests that multiple sources were observed by ISEE 3
Geodesic acoustic eigenmode for tokamak equilibrium with maximum of local GAM frequency
Energy Technology Data Exchange (ETDEWEB)
Lakhin, V.P. [NRC “Kurchatov Institute”, Moscow (Russian Federation); Sorokina, E.A., E-mail: sorokina.ekaterina@gmail.com [NRC “Kurchatov Institute”, Moscow (Russian Federation); Peoples' Friendship University of Russia, Moscow (Russian Federation)
2014-01-24
The geodesic acoustic eigenmode for tokamak equilibrium with the maximum of local GAM frequency is found analytically in the frame of MHD model. The analysis is based on the asymptotic matching technique.
Acoustic Power Transmission Through a Ducted Fan
Envia, Ed
2016-01-01
For high-speed ducted fans, when the rotor flowfield is shock-free, the main contribution to the inlet radiated acoustic power comes from the portion of the rotor stator interaction sound field that is transmitted upstream through the rotor. As such, inclusion of the acoustic transmission is an essential ingredient in the prediction of the fan inlet noise when the fan tip relative speed is subsonic. This paper describes a linearized Euler based approach to computing the acoustic transmission of fan tones through the rotor. The approach is embodied in a code called LINFLUX was applied to a candidate subsonic fan called the Advanced Ducted Propulsor (ADP). The results from this study suggest that it is possible to make such prediction with sufficient fidelity to provide an indication of the acoustic transmission trends with the fan tip speed.
Acoustic leak detection in nuclear power plants
International Nuclear Information System (INIS)
McElroy, J.W.
1986-01-01
For several years now, utilities have been utilizing acoustic leak detection methods as an operating tool in their nuclear power stations. The purpose for using the leak detection system at the various stations vary from safety, ALARA, improved operations, preventive maintenance, or increased plant availability. This paper describes the various acoustic techniques and their application. The techniques are divided into three categories: specific component leakage, intersystem leakage, and pipe through-wall crack leakage. The paper addresses each category in terms of motivation to monitor, method of application and operation, and benefits to be gained. Current requirements are reviewed and analyzed with respect to the acoustic techniques. The paper shows how acoustic leak detection is one of the most effective leak detection tools available. 9 figures, 1 table
Accurate modeling and maximum power point detection of ...
African Journals Online (AJOL)
Accurate modeling and maximum power point detection of photovoltaic ... Determination of MPP enables the PV system to deliver maximum available power. ..... adaptive artificial neural network: Proposition for a new sizing procedure.
Maximum power point tracker for photovoltaic power plants
Arcidiacono, V.; Corsi, S.; Lambri, L.
The paper describes two different closed-loop control criteria for the maximum power point tracking of the voltage-current characteristic of a photovoltaic generator. The two criteria are discussed and compared, inter alia, with regard to the setting-up problems that they pose. Although a detailed analysis is not embarked upon, the paper also provides some quantitative information on the energy advantages obtained by using electronic maximum power point tracking systems, as compared with the situation in which the point of operation of the photovoltaic generator is not controlled at all. Lastly, the paper presents two high-efficiency MPPT converters for experimental photovoltaic plants of the stand-alone and the grid-interconnected type.
Maximum Power Training and Plyometrics for Cross-Country Running.
Ebben, William P.
2001-01-01
Provides a rationale for maximum power training and plyometrics as conditioning strategies for cross-country runners, examining: an evaluation of training methods (strength training and maximum power training and plyometrics); biomechanic and velocity specificity (role in preventing injury); and practical application of maximum power training and…
2010-07-01
... cylinders having an internal diameter of 13.0 cm and a 15.5 cm stroke length, the rounded displacement would... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Maximum engine power, displacement... Maximum engine power, displacement, power density, and maximum in-use engine speed. This section describes...
Acoustic power balance in lined ducts
Eversman, W.
1979-01-01
It is shown that the two common definitions of acoustic energy density and intensity in uniform unlined ducts carrying uniform flow are compatible to the extent that both energy densities can be used in an appropriate variational principle to derive the convected wave equation. When the duct walls are lined both energy densities must be modified to account for the wall energy density. This results in a new energy conservation equation which utilizes a modified definition of axial power and accounts for wall dissipation. Computations in specific cases demonstrate the validity of the modified acoustic energy relation.
Microprocessor Controlled Maximum Power Point Tracker for Photovoltaic Application
International Nuclear Information System (INIS)
Jiya, J. D.; Tahirou, G.
2002-01-01
This paper presents a microprocessor controlled maximum power point tracker for photovoltaic module. Input current and voltage are measured and multiplied within the microprocessor, which contains an algorithm to seek the maximum power point. The duly cycle of the DC-DC converter, at which the maximum power occurs is obtained, noted and adjusted. The microprocessor constantly seeks for improvement of obtained power by varying the duty cycle
Maximum power per VA control of vector controlled interior ...
Indian Academy of Sciences (India)
Thakur Sumeet Singh
2018-04-11
Apr 11, 2018 ... Department of Electrical Engineering, Indian Institute of Technology Delhi, New ... The MPVA operation allows maximum-utilization of the drive-system. ... Permanent magnet motor; unity power factor; maximum VA utilization; ...
Maximum power point tracker based on fuzzy logic
International Nuclear Information System (INIS)
Daoud, A.; Midoun, A.
2006-01-01
The solar energy is used as power source in photovoltaic power systems and the need for an intelligent power management system is important to obtain the maximum power from the limited solar panels. With the changing of the sun illumination due to variation of angle of incidence of sun radiation and of the temperature of the panels, Maximum Power Point Tracker (MPPT) enables optimization of solar power generation. The MPPT is a sub-system designed to extract the maximum power from a power source. In the case of solar panels power source. the maximum power point varies as a result of changes in its electrical characteristics which in turn are functions of radiation dose, temperature, ageing and other effects. The MPPT maximum the power output from panels for a given set of conditions by detecting the best working point of the power characteristic and then controls the current through the panels or the voltage across them. Many MPPT methods have been reported in literature. These techniques of MPPT can be classified into three main categories that include: lookup table methods, hill climbing methods and computational methods. The techniques vary according to the degree of sophistication, processing time and memory requirements. The perturbation and observation algorithm (hill climbing technique) is commonly used due to its ease of implementation, and relative tracking efficiency. However, it has been shown that when the insolation changes rapidly, the perturbation and observation method is slow to track the maximum power point. In recent years, the fuzzy controllers are used for maximum power point tracking. This method only requires the linguistic control rules for maximum power point, the mathematical model is not required and therefore the implementation of this control method is easy to real control system. In this paper, we we present a simple robust MPPT using fuzzy set theory where the hardware consists of the microchip's microcontroller unit control card and
Investigation of acoustic resonances in high-power lamps
International Nuclear Information System (INIS)
Kettlitz, M; Zalach, J; Rarbach, J
2011-01-01
High-power, medium-pressure, mercury-containing lamps are used as UV sources for many industrial applications. Lamps investigated in this paper are driven with an electronic ballast with a non-sinusoidal current waveform at a fixed frequency of 20 kHz and a maximum power output of 35 kW. Instabilities can occur if the input power is reduced below 50%. The reason is identified as acoustic resonances in the lamp. Comparison of calculated and measured resonance frequencies shows a good agreement and explains the observed lamp behaviour. This has led to the development of a new ballast prototype which is able to avoid instabilities by changing the driving frequency dependent on the applied power.
Li, Xinya; Deng, Z. Daniel; Sun, Yannan; Martinez, Jayson J.; Fu, Tao; McMichael, Geoffrey A.; Carlson, Thomas J.
2014-11-01
Better understanding of fish behavior is vital for recovery of many endangered species including salmon. The Juvenile Salmon Acoustic Telemetry System (JSATS) was developed to observe the out-migratory behavior of juvenile salmonids tagged by surgical implantation of acoustic micro-transmitters and to estimate the survival when passing through dams on the Snake and Columbia Rivers. A robust three-dimensional solver was needed to accurately and efficiently estimate the time sequence of locations of fish tagged with JSATS acoustic transmitters, to describe in sufficient detail the information needed to assess the function of dam-passage design alternatives. An approximate maximum likelihood solver was developed using measurements of time difference of arrival from all hydrophones in receiving arrays on which a transmission was detected. Field experiments demonstrated that the developed solver performed significantly better in tracking efficiency and accuracy than other solvers described in the literature.
The power and robustness of maximum LOD score statistics.
Yoo, Y J; Mendell, N R
2008-07-01
The maximum LOD score statistic is extremely powerful for gene mapping when calculated using the correct genetic parameter value. When the mode of genetic transmission is unknown, the maximum of the LOD scores obtained using several genetic parameter values is reported. This latter statistic requires higher critical value than the maximum LOD score statistic calculated from a single genetic parameter value. In this paper, we compare the power of maximum LOD scores based on three fixed sets of genetic parameter values with the power of the LOD score obtained after maximizing over the entire range of genetic parameter values. We simulate family data under nine generating models. For generating models with non-zero phenocopy rates, LOD scores maximized over the entire range of genetic parameters yielded greater power than maximum LOD scores for fixed sets of parameter values with zero phenocopy rates. No maximum LOD score was consistently more powerful than the others for generating models with a zero phenocopy rate. The power loss of the LOD score maximized over the entire range of genetic parameters, relative to the maximum LOD score calculated using the correct genetic parameter value, appeared to be robust to the generating models.
Low power acoustic harvesting of aerosols
Energy Technology Data Exchange (ETDEWEB)
Kaduchak, G. (Gregory); Sinha, D. N. (Dipen N)
2001-01-01
A new acoustic device for levitation and/or concentration of aerosols and sniall liquid/solid samples (up to several millimeters in diameter) in air has been developed. The device is inexpensive, low-power, and, in its simplest embodiment, does not require accurate alignmen1 of a resonant cavity. It is constructed from a cylindrical PZT tube of outside diameter D = 19.0 mm and thickness-to-radius ratio h/a - 0.03. The lowest-order breathing mode of the tube is tuned to match a resonant mode of the interior air-filled cylindrical cavity. A high Q cavity results that can be driven efficiently. An acoustic standing wave is created in the inteirior cavity of the cylindrical shell where particle concrmtration takes place at the nodal planes of the field. It is shown that drops of water in excess of 1 mm in diameter may be levitated against the force of gravity for approxirnately 100 mW of input electrical power. The main objective of the research is to implement this lowpower device to concentrate and harvest aerosols in a flowing system. Several different cavity geonietries iwe presented for efficient collection of 1 he conaartratetl aerosols. Concentraiion factors greater than 40 iue demonstrated for particles of size 0.7 1.1 in a flow volume of 50 L/minute.
A maximum power point tracking for photovoltaic-SPE system using a maximum current controller
Energy Technology Data Exchange (ETDEWEB)
Muhida, Riza [Osaka Univ., Dept. of Physical Science, Toyonaka, Osaka (Japan); Osaka Univ., Dept. of Electrical Engineering, Suita, Osaka (Japan); Park, Minwon; Dakkak, Mohammed; Matsuura, Kenji [Osaka Univ., Dept. of Electrical Engineering, Suita, Osaka (Japan); Tsuyoshi, Akira; Michira, Masakazu [Kobe City College of Technology, Nishi-ku, Kobe (Japan)
2003-02-01
Processes to produce hydrogen from solar photovoltaic (PV)-powered water electrolysis using solid polymer electrolysis (SPE) are reported. An alternative control of maximum power point tracking (MPPT) in the PV-SPE system based on the maximum current searching methods has been designed and implemented. Based on the characteristics of voltage-current and theoretical analysis of SPE, it can be shown that the tracking of the maximum current output of DC-DC converter in SPE side will track the MPPT of photovoltaic panel simultaneously. This method uses a proportional integrator controller to control the duty factor of DC-DC converter with pulse-width modulator (PWM). The MPPT performance and hydrogen production performance of this method have been evaluated and discussed based on the results of the experiment. (Author)
Monitoring power breakers using vibro acoustic techniques
Directory of Open Access Journals (Sweden)
Horia Balan
2017-09-01
Full Text Available Speaking about the commutation’s equipment, it can be said that the best solution in increasing reliability and lowering the maintenance costs is a continuous monitoring of the equipment. However, if the price/quality ratio is considered, it is obvious that, for the moment, the diagnosis can be also an acceptable solution. Nowadays the predictive maintenance for equipment’s diagnosis is currently replacing the preventive diagnosis. An efficient modality of lowering the maintenance costs is to online monitoring the power breakers, during their operation in the power systems. Consequently any connecting/disconnecting operations may be used in diagnosing a power breaker. Thus any supplementary and superfluous tests and/or maintenance maneuvers are avoided. The paper presents the operational maintenance in a power station with three high voltage active breakers, Areva type. The method of establishing the state of a breaker consists in the comparison between the signature of the acoustic signal provided by the manufacturer and the signal issued from the testing operation of the breaker’s state. The software processing procedure and the methodology of determining the faults of the monitored equipment are also developed. All the tests on the circuit breaker are made according the prescriptions of normative.
Enhanced sources of acoustic power surrounding AR 11429
International Nuclear Information System (INIS)
Donea, Alina; Hanson, Christopher
2013-01-01
Multi-frequency power maps of the local acoustic oscillations show acoustic enhancements (''acoustic-power halos'') at high frequencies surrounding large active region. Computational seismic holography reveals a high-frequency ''acoustic-emission halo'', or ''seismic glory'' surrounding large active regions. In this study, we have applied computational seismic holography to map the seismic seismic source density surrounding AR 11429. Studies of HMI/SDO Doppler data, shows that the ''acoustic halos'' and the ''seismic glories'' are prominent at high frequencies 5–8 mHz. We investigate morphological properties of acoustic-power and acoustic emission halos around an active region to see if they are spatially correlated. Details about the local magnetic field from vectormagnetograms of AR 11429 are included. We identify a 15'' region of seismic deficit power (dark moat) shielding the white-light boundary of the active region. The size of the seismic moat is related to region of intermediate magnetic field strength. The acoustic moat is circled by the halo of enhanced seismic amplitude as well as enhanced seismic emission. Overall, the results suggest that features are related. However, if we narrow the frequency band to 5.5 – 6.5 mHz, we find that the seismic source density dominates over the local acoustic power, suggesting the existence of sources that emit more energy downward into the solar interior than upward toward the solar surface.
Size dependence of efficiency at maximum power of heat engine
Izumida, Y.; Ito, N.
2013-01-01
We perform a molecular dynamics computer simulation of a heat engine model to study how the engine size difference affects its performance. Upon tactically increasing the size of the model anisotropically, we determine that there exists an optimum size at which the model attains the maximum power for the shortest working period. This optimum size locates between the ballistic heat transport region and the diffusive heat transport one. We also study the size dependence of the efficiency at the maximum power. Interestingly, we find that the efficiency at the maximum power around the optimum size attains a value that has been proposed as a universal upper bound, and it even begins to exceed the bound as the size further increases. We explain this behavior of the efficiency at maximum power by using a linear response theory for the heat engine operating under a finite working period, which naturally extends the low-dissipation Carnot cycle model [M. Esposito, R. Kawai, K. Lindenberg, C. Van den Broeck, Phys. Rev. Lett. 105, 150603 (2010)]. The theory also shows that the efficiency at the maximum power under an extreme condition may reach the Carnot efficiency in principle.© EDP Sciences Società Italiana di Fisica Springer-Verlag 2013.
Size dependence of efficiency at maximum power of heat engine
Izumida, Y.
2013-10-01
We perform a molecular dynamics computer simulation of a heat engine model to study how the engine size difference affects its performance. Upon tactically increasing the size of the model anisotropically, we determine that there exists an optimum size at which the model attains the maximum power for the shortest working period. This optimum size locates between the ballistic heat transport region and the diffusive heat transport one. We also study the size dependence of the efficiency at the maximum power. Interestingly, we find that the efficiency at the maximum power around the optimum size attains a value that has been proposed as a universal upper bound, and it even begins to exceed the bound as the size further increases. We explain this behavior of the efficiency at maximum power by using a linear response theory for the heat engine operating under a finite working period, which naturally extends the low-dissipation Carnot cycle model [M. Esposito, R. Kawai, K. Lindenberg, C. Van den Broeck, Phys. Rev. Lett. 105, 150603 (2010)]. The theory also shows that the efficiency at the maximum power under an extreme condition may reach the Carnot efficiency in principle.© EDP Sciences Società Italiana di Fisica Springer-Verlag 2013.
A simple maximum power point tracker for thermoelectric generators
International Nuclear Information System (INIS)
Paraskevas, Alexandros; Koutroulis, Eftichios
2016-01-01
Highlights: • A Maximum Power Point Tracking (MPPT) method for thermoelectric generators is proposed. • A power converter is controlled to operate on a pre-programmed locus. • The proposed MPPT technique has the advantage of operational and design simplicity. • The experimental average deviation from the MPP power of the TEG source is 1.87%. - Abstract: ThermoElectric Generators (TEGs) are capable to harvest the ambient thermal energy for power-supplying sensors, actuators, biomedical devices etc. in the μW up to several hundreds of Watts range. In this paper, a Maximum Power Point Tracking (MPPT) method for TEG elements is proposed, which is based on controlling a power converter such that it operates on a pre-programmed locus of operating points close to the MPPs of the power–voltage curves of the TEG power source. Compared to the past-proposed MPPT methods for TEGs, the technique presented in this paper has the advantage of operational and design simplicity. Thus, its implementation using off-the-shelf microelectronic components with low-power consumption characteristics is enabled, without being required to employ specialized integrated circuits or signal processing units of high development cost. Experimental results are presented, which demonstrate that for MPP power levels of the TEG source in the range of 1–17 mW, the average deviation of the power produced by the proposed system from the MPP power of the TEG source is 1.87%.
Parametric optimization of thermoelectric elements footprint for maximum power generation
DEFF Research Database (Denmark)
Rezania, A.; Rosendahl, Lasse; Yin, Hao
2014-01-01
The development studies in thermoelectric generator (TEG) systems are mostly disconnected to parametric optimization of the module components. In this study, optimum footprint ratio of n- and p-type thermoelectric (TE) elements is explored to achieve maximum power generation, maximum cost......-performance, and variation of efficiency in the uni-couple over a wide range of the heat transfer coefficient on the cold junction. The three-dimensional (3D) governing equations of the thermoelectricity and the heat transfer are solved using the finite element method (FEM) for temperature dependent properties of TE...... materials. The results, which are in good agreement with the previous computational studies, show that the maximum power generation and the maximum cost-performance in the module occur at An/Ap
Wireless power transfer: control algorithm to transfer the maximum power
Rojas Urbano, Javier Arturo
2016-01-01
This job is developed as part of “Health aware enhanced range wireless power transfer systems", known as ETHER. It is a cooperation project where Universidad Politécnica de Madrid (UPM) and Universidad Politécnica de Cataluña (UPC) research groups are mainly involved. ETHER objective is to develop a wireless power transfer system for medical applications, specifically a pacemaker charger to improve patient’s lifestyle decreasing the number of required operations to replace pacemaker batter...
Beat the Deviations in Estimating Maximum Power of Thermoelectric Modules
DEFF Research Database (Denmark)
Gao, Junling; Chen, Min
2013-01-01
Under a certain temperature difference, the maximum power of a thermoelectric module can be estimated by the open-circuit voltage and the short-circuit current. In practical measurement, there exist two switch modes, either from open to short or from short to open, but the two modes can give...... different estimations on the maximum power. Using TEG-127-2.8-3.5-250 and TEG-127-1.4-1.6-250 as two examples, the difference is about 10%, leading to some deviations with the temperature change. This paper analyzes such differences by means of a nonlinear numerical model of thermoelectricity, and finds out...... that the main cause is the influence of various currents on the produced electromotive potential. A simple and effective calibration method is proposed to minimize the deviations in specifying the maximum power. Experimental results validate the method with improved estimation accuracy....
Efficiency of autonomous soft nanomachines at maximum power.
Seifert, Udo
2011-01-14
We consider nanosized artificial or biological machines working in steady state enforced by imposing nonequilibrium concentrations of solutes or by applying external forces, torques, or electric fields. For unicyclic and strongly coupled multicyclic machines, efficiency at maximum power is not bounded by the linear response value 1/2. For strong driving, it can even approach the thermodynamic limit 1. Quite generally, such machines fall into three different classes characterized, respectively, as "strong and efficient," "strong and inefficient," and "balanced." For weakly coupled multicyclic machines, efficiency at maximum power has lost any universality even in the linear response regime.
Maximum entropy approach to statistical inference for an ocean acoustic waveguide.
Knobles, D P; Sagers, J D; Koch, R A
2012-02-01
A conditional probability distribution suitable for estimating the statistical properties of ocean seabed parameter values inferred from acoustic measurements is derived from a maximum entropy principle. The specification of the expectation value for an error function constrains the maximization of an entropy functional. This constraint determines the sensitivity factor (β) to the error function of the resulting probability distribution, which is a canonical form that provides a conservative estimate of the uncertainty of the parameter values. From the conditional distribution, marginal distributions for individual parameters can be determined from integration over the other parameters. The approach is an alternative to obtaining the posterior probability distribution without an intermediary determination of the likelihood function followed by an application of Bayes' rule. In this paper the expectation value that specifies the constraint is determined from the values of the error function for the model solutions obtained from a sparse number of data samples. The method is applied to ocean acoustic measurements taken on the New Jersey continental shelf. The marginal probability distribution for the values of the sound speed ratio at the surface of the seabed and the source levels of a towed source are examined for different geoacoustic model representations. © 2012 Acoustical Society of America
Maximum Power Point Tracking Based on Sliding Mode Control
Directory of Open Access Journals (Sweden)
Nimrod Vázquez
2015-01-01
Full Text Available Solar panels, which have become a good choice, are used to generate and supply electricity in commercial and residential applications. This generated power starts with the solar cells, which have a complex relationship between solar irradiation, temperature, and output power. For this reason a tracking of the maximum power point is required. Traditionally, this has been made by considering just current and voltage conditions at the photovoltaic panel; however, temperature also influences the process. In this paper the voltage, current, and temperature in the PV system are considered to be a part of a sliding surface for the proposed maximum power point tracking; this means a sliding mode controller is applied. Obtained results gave a good dynamic response, as a difference from traditional schemes, which are only based on computational algorithms. A traditional algorithm based on MPPT was added in order to assure a low steady state error.
Design and Implementation of Photovoltaic Maximum Power Point Tracking Controller
Directory of Open Access Journals (Sweden)
Fawaz S. Abdullah
2018-03-01
Full Text Available The power supplied by any solar array depends upon the environmental conditions as weather conditions (temperature and radiation intensity and the incident angle of the radiant source. The work aims to study the maximum power tracking schemes that used to compare the system performance without and with different types of controllers. The maximum power points of the solar panel under test studied and compared with two controller's types. The first controller is the proportional- integral - derivative controller type and the second is the perturbation and observation algorithm controller. The associated converter system is a microcontroller based type, whereas the results studied and compared of greatest power point of the Photovoltaic panels under the different two controllers. The experimental tests results compared with simulation results to verify accurate performance.
Determing and monitoring of maximum permissible power for HWRR-3
International Nuclear Information System (INIS)
Jia Zhanli; Xiao Shigang; Jin Huajin; Lu Changshen
1987-01-01
The operating power of a reactor is an important parameter to be monitored. This report briefly describes the determining and monitoring of maximum permissiable power for HWRR-3. The calculating method is described, and the result of calculation and analysis of error are also given. On-line calculation and real time monitoring have been realized at the heavy water reactor. It provides the reactor with a real time and reliable supervision. This makes operation convenient and increases reliability
Study of forecasting maximum demand of electric power
Energy Technology Data Exchange (ETDEWEB)
Yoo, B.C.; Hwang, Y.J. [Korea Energy Economics Institute, Euiwang (Korea, Republic of)
1997-08-01
As far as the past performances of power supply and demand in Korea is concerned, one of the striking phenomena is that there have been repeated periodic surpluses and shortages of power generation facilities. Precise assumption and prediction of power demands is the basic work in establishing a supply plan and carrying out the right policy since facilities investment of the power generation industry requires a tremendous amount of capital and a long construction period. The purpose of this study is to study a model for the inference and prediction of a more precise maximum demand under these backgrounds. The non-parametric model considered in this study, paying attention to meteorological factors such as temperature and humidity, does not have a simple proportionate relationship with the maximum power demand, but affects it through mutual complicated nonlinear interaction. I used the non-parametric inference technique by introducing meteorological effects without importing any literal assumption on the interaction of temperature and humidity preliminarily. According to the analysis result, it is found that the non-parametric model that introduces the number of tropical nights which shows the continuity of the meteorological effect has better prediction power than the linear model. The non- parametric model that considers both the number of tropical nights and the number of cooling days at the same time is a model for predicting maximum demand. 7 refs., 6 figs., 9 tabs.
SIMULATION OF NEW SIMPLE FUZZY LOGIC MAXIMUM POWER ...
African Journals Online (AJOL)
2010-06-30
Jun 30, 2010 ... Basic structure photovoltaic system Solar array mathematic ... The equivalent circuit model of a solar cell consists of a current generator and a diode .... control of boost converter (tracker) such that maximum power is achieved at the output of the solar panel. Fig.11. The membership function of input. Fig.12.
Distributed maximum power point tracking in wind micro-grids
Directory of Open Access Journals (Sweden)
Carlos Andrés Ramos-Paja
2012-06-01
Full Text Available With the aim of reducing the hardware requirements in micro-grids based on wind generators, a distributed maximum power point tracking algorithm is proposed. Such a solution reduces the amount of current sensors and processing devices to maximize the power extracted from the micro-grid, reducing the application cost. The analysis of the optimal operating points of the wind generator was performed experimentally, which in addition provides realistic model parameters. Finally, the proposed solution was validated by means of detailed simulations performed in the power electronics software PSIM, contrasting the achieved performance with traditional solutions.
A performance analysis for MHD power cycles operating at maximum power density
International Nuclear Information System (INIS)
Sahin, Bahri; Kodal, Ali; Yavuz, Hasbi
1996-01-01
An analysis of the thermal efficiency of a magnetohydrodynamic (MHD) power cycle at maximum power density for a constant velocity type MHD generator has been carried out. The irreversibilities at the compressor and the MHD generator are taken into account. The results obtained from power density analysis were compared with those of maximum power analysis. It is shown that by using the power density criteria the MHD cycle efficiency can be increased effectively. (author)
Noncircular Chainrings Do Not Influence Maximum Cycling Power.
Leong, Chee-Hoi; Elmer, Steven J; Martin, James C
2017-12-01
Noncircular chainrings could increase cycling power by prolonging the powerful leg extension/flexion phases, and curtailing the low-power transition phases. We compared maximal cycling power-pedaling rate relationships, and joint-specific kinematics and powers across 3 chainring eccentricities (CON = 1.0; LOW ecc = 1.13; HIGH ecc = 1.24). Part I: Thirteen cyclists performed maximal inertial-load cycling under 3 chainring conditions. Maximum cycling power and optimal pedaling rate were determined. Part II: Ten cyclists performed maximal isokinetic cycling (120 rpm) under the same 3 chainring conditions. Pedal and joint-specific powers were determined using pedal forces and limb kinematics. Neither maximal cycling power nor optimal pedaling rate differed across chainring conditions (all p > .05). Peak ankle angular velocity for HIGH ecc was less than CON (p pedal system allowed cyclists to manipulate ankle angular velocity to maintain their preferred knee and hip actions, suggesting maximizing extension/flexion and minimizing transition phases may be counterproductive for maximal power.
Novel TPPO Based Maximum Power Point Method for Photovoltaic System
Directory of Open Access Journals (Sweden)
ABBASI, M. A.
2017-08-01
Full Text Available Photovoltaic (PV system has a great potential and it is installed more when compared with other renewable energy sources nowadays. However, the PV system cannot perform optimally due to its solid reliance on climate conditions. Due to this dependency, PV system does not operate at its maximum power point (MPP. Many MPP tracking methods have been proposed for this purpose. One of these is the Perturb and Observe Method (P&O which is the most famous due to its simplicity, less cost and fast track. But it deviates from MPP in continuously changing weather conditions, especially in rapidly changing irradiance conditions. A new Maximum Power Point Tracking (MPPT method, Tetra Point Perturb and Observe (TPPO, has been proposed to improve PV system performance in changing irradiance conditions and the effects on characteristic curves of PV array module due to varying irradiance are delineated. The Proposed MPPT method has shown better results in increasing the efficiency of a PV system.
Maximum wind energy extraction strategies using power electronic converters
Wang, Quincy Qing
2003-10-01
This thesis focuses on maximum wind energy extraction strategies for achieving the highest energy output of variable speed wind turbine power generation systems. Power electronic converters and controls provide the basic platform to accomplish the research of this thesis in both hardware and software aspects. In order to send wind energy to a utility grid, a variable speed wind turbine requires a power electronic converter to convert a variable voltage variable frequency source into a fixed voltage fixed frequency supply. Generic single-phase and three-phase converter topologies, converter control methods for wind power generation, as well as the developed direct drive generator, are introduced in the thesis for establishing variable-speed wind energy conversion systems. Variable speed wind power generation system modeling and simulation are essential methods both for understanding the system behavior and for developing advanced system control strategies. Wind generation system components, including wind turbine, 1-phase IGBT inverter, 3-phase IGBT inverter, synchronous generator, and rectifier, are modeled in this thesis using MATLAB/SIMULINK. The simulation results have been verified by a commercial simulation software package, PSIM, and confirmed by field test results. Since the dynamic time constants for these individual models are much different, a creative approach has also been developed in this thesis to combine these models for entire wind power generation system simulation. An advanced maximum wind energy extraction strategy relies not only on proper system hardware design, but also on sophisticated software control algorithms. Based on literature review and computer simulation on wind turbine control algorithms, an intelligent maximum wind energy extraction control algorithm is proposed in this thesis. This algorithm has a unique on-line adaptation and optimization capability, which is able to achieve maximum wind energy conversion efficiency through
Maximum power point tracking of partially shaded solar photovoltaic arrays
Energy Technology Data Exchange (ETDEWEB)
Roy Chowdhury, Shubhajit; Saha, Hiranmay [IC Design and Fabrication Centre, Department of Electronics and Telecommunication Engineering, Jadavpur University (India)
2010-09-15
The paper presents the simulation and hardware implementation of maximum power point (MPP) tracking of a partially shaded solar photovoltaic (PV) array using a variant of Particle Swarm Optimization known as Adaptive Perceptive Particle Swarm Optimization (APPSO). Under partially shaded conditions, the photovoltaic (PV) array characteristics get more complex with multiple maxima in the power-voltage characteristic. The paper presents an algorithmic technique to accurately track the maximum power point (MPP) of a PV array using an APPSO. The APPSO algorithm has also been validated in the current work. The proposed technique uses only one pair of sensors to control multiple PV arrays. This result in lower cost and higher accuracy of 97.7% compared to earlier obtained accuracy of 96.41% using Particle Swarm Optimization. The proposed tracking technique has been mapped onto a MSP430FG4618 microcontroller for tracking and control purposes. The whole system based on the proposed has been realized on a standard two stage power electronic system configuration. (author)
Small scale wind energy harvesting with maximum power tracking
Directory of Open Access Journals (Sweden)
Joaquim Azevedo
2015-07-01
Full Text Available It is well-known that energy harvesting from wind can be used to power remote monitoring systems. There are several studies that use wind energy in small-scale systems, mainly with wind turbine vertical axis. However, there are very few studies with actual implementations of small wind turbines. This paper compares the performance of horizontal and vertical axis wind turbines for energy harvesting on wireless sensor network applications. The problem with the use of wind energy is that most of the time the wind speed is very low, especially at urban areas. Therefore, this work includes a study on the wind speed distribution in an urban environment and proposes a controller to maximize the energy transfer to the storage systems. The generated power is evaluated by simulation and experimentally for different load and wind conditions. The results demonstrate the increase in efficiency of wind generators that use maximum power transfer tracking, even at low wind speeds.
Statistic method of research reactors maximum permissible power calculation
International Nuclear Information System (INIS)
Grosheva, N.A.; Kirsanov, G.A.; Konoplev, K.A.; Chmshkyan, D.V.
1998-01-01
The technique for calculating maximum permissible power of a research reactor at which the probability of the thermal-process accident does not exceed the specified value, is presented. The statistical method is used for the calculations. It is regarded that the determining function related to the reactor safety is the known function of the reactor power and many statistically independent values which list includes the reactor process parameters, geometrical characteristics of the reactor core and fuel elements, as well as random factors connected with the reactor specific features. Heat flux density or temperature is taken as a limiting factor. The program realization of the method discussed is briefly described. The results of calculating the PIK reactor margin coefficients for different probabilities of the thermal-process accident are considered as an example. It is shown that the probability of an accident with fuel element melting in hot zone is lower than 10 -8 1 per year for the reactor rated power [ru
A maximum power point tracking algorithm for photovoltaic applications
Nelatury, Sudarshan R.; Gray, Robert
2013-05-01
The voltage and current characteristic of a photovoltaic (PV) cell is highly nonlinear and operating a PV cell for maximum power transfer has been a challenge for a long time. Several techniques have been proposed to estimate and track the maximum power point (MPP) in order to improve the overall efficiency of a PV panel. A strategic use of the mean value theorem permits obtaining an analytical expression for a point that lies in a close neighborhood of the true MPP. But hitherto, an exact solution in closed form for the MPP is not published. This problem can be formulated analytically as a constrained optimization, which can be solved using the Lagrange method. This method results in a system of simultaneous nonlinear equations. Solving them directly is quite difficult. However, we can employ a recursive algorithm to yield a reasonably good solution. In graphical terms, suppose the voltage current characteristic and the constant power contours are plotted on the same voltage current plane, the point of tangency between the device characteristic and the constant power contours is the sought for MPP. It is subject to change with the incident irradiation and temperature and hence the algorithm that attempts to maintain the MPP should be adaptive in nature and is supposed to have fast convergence and the least misadjustment. There are two parts in its implementation. First, one needs to estimate the MPP. The second task is to have a DC-DC converter to match the given load to the MPP thus obtained. Availability of power electronics circuits made it possible to design efficient converters. In this paper although we do not show the results from a real circuit, we use MATLAB to obtain the MPP and a buck-boost converter to match the load. Under varying conditions of load resistance and irradiance we demonstrate MPP tracking in case of a commercially available solar panel MSX-60. The power electronics circuit is simulated by PSIM software.
Modeling of Maximum Power Point Tracking Controller for Solar Power System
Directory of Open Access Journals (Sweden)
Aryuanto Soetedjo
2012-09-01
Full Text Available In this paper, a Maximum Power Point Tracking (MPPT controller for solar power system is modeled using MATLAB Simulink. The model consists of PV module, buck converter, and MPPT controller. The contribution of the work is in the modeling of buck converter that allowing the input voltage of the converter, i.e. output voltage of PV is changed by varying the duty cycle, so that the maximum power point could be tracked when the environmental changes. The simulation results show that the developed model performs well in tracking the maximum power point (MPP of the PV module using Perturb and Observe (P&O Algorithm.
Kumar, Jagadish; Ananthakrishna, G
2018-01-01
Scale-invariant power-law distributions for acoustic emission signals are ubiquitous in several plastically deforming materials. However, power-law distributions for acoustic emission energies are reported in distinctly different plastically deforming situations such as hcp and fcc single and polycrystalline samples exhibiting smooth stress-strain curves and in dilute metallic alloys exhibiting discontinuous flow. This is surprising since the underlying dislocation mechanisms in these two types of deformations are very different. So far, there have been no models that predict the power-law statistics for discontinuous flow. Furthermore, the statistics of the acoustic emission signals in jerky flow is even more complex, requiring multifractal measures for a proper characterization. There has been no model that explains the complex statistics either. Here we address the problem of statistical characterization of the acoustic emission signals associated with the three types of the Portevin-Le Chatelier bands. Following our recently proposed general framework for calculating acoustic emission, we set up a wave equation for the elastic degrees of freedom with a plastic strain rate as a source term. The energy dissipated during acoustic emission is represented by the Rayleigh-dissipation function. Using the plastic strain rate obtained from the Ananthakrishna model for the Portevin-Le Chatelier effect, we compute the acoustic emission signals associated with the three Portevin-Le Chatelier bands and the Lüders-like band. The so-calculated acoustic emission signals are used for further statistical characterization. Our results show that the model predicts power-law statistics for all the acoustic emission signals associated with the three types of Portevin-Le Chatelier bands with the exponent values increasing with increasing strain rate. The calculated multifractal spectra corresponding to the acoustic emission signals associated with the three band types have a maximum
Design Report for Low Power Acoustic Detector
2013-08-01
high speed integrated circuit (VHSIC) hardware description language ( VHDL ) implementation of both the HED and DCD detectors. Figures 4 and 5 show the...the hardware design, target detection algorithm design in both MATLAB and VHDL , and typical performance results. 15. SUBJECT TERMS Acoustic low...5 2.4 Algorithm Implementation ..............................................................................................6 3. Testing
Maximum-power-point tracking control of solar heating system
Huang, Bin-Juine
2012-11-01
The present study developed a maximum-power point tracking control (MPPT) technology for solar heating system to minimize the pumping power consumption at an optimal heat collection. The net solar energy gain Q net (=Q s-W p/η e) was experimentally found to be the cost function for MPPT with maximum point. The feedback tracking control system was developed to track the optimal Q net (denoted Q max). A tracking filter which was derived from the thermal analytical model of the solar heating system was used to determine the instantaneous tracking target Q max(t). The system transfer-function model of solar heating system was also derived experimentally using a step response test and used in the design of tracking feedback control system. The PI controller was designed for a tracking target Q max(t) with a quadratic time function. The MPPT control system was implemented using a microprocessor-based controller and the test results show good tracking performance with small tracking errors. It is seen that the average mass flow rate for the specific test periods in five different days is between 18.1 and 22.9kg/min with average pumping power between 77 and 140W, which is greatly reduced as compared to the standard flow rate at 31kg/min and pumping power 450W which is based on the flow rate 0.02kg/sm 2 defined in the ANSI/ASHRAE 93-1986 Standard and the total collector area 25.9m 2. The average net solar heat collected Q net is between 8.62 and 14.1kW depending on weather condition. The MPPT control of solar heating system has been verified to be able to minimize the pumping energy consumption with optimal solar heat collection. © 2012 Elsevier Ltd.
Emf, maximum power and efficiency of fuel cells
International Nuclear Information System (INIS)
Gaggioli, R.A.; Dunbar, W.R.
1990-01-01
This paper discusses the ideal voltage of steady-flow fuel cells usually expressed by Emf = -ΔG/nF where ΔG is the Gibbs free energy of reaction for the oxidation of the fuel at the supposed temperature of operation of the cell. Furthermore, the ideal power of the cell is expressed as the product of the fuel flow rate with this emf, and the efficiency of a real fuel cell, sometimes called the Gibbs efficiency, is defined as the ratio of the actual power output to this ideal power. Such viewpoints are flawed in several respects. While it is true that if a cell operates isothermally the maximum conceivable work output is equal to the difference between the Gibbs free energy of the incoming reactants and that of the leaving products, nevertheless, even if the cell operates isothermally, the use of the conventional ΔG of reaction assumes that the products of reaction leave separately from one another (and from any unused fuel), and when ΔS of reaction is positive it assumes that a free heat source exists at the operating temperature, whereas if ΔS is negative it neglects the potential power which theoretically could be obtained form the heat released during oxidation. Moreover, the usual cell does not operate isothermally but (virtually) adiabatically
Maximum power analysis of photovoltaic module in Ramadi city
Energy Technology Data Exchange (ETDEWEB)
Shahatha Salim, Majid; Mohammed Najim, Jassim [College of Science, University of Anbar (Iraq); Mohammed Salih, Salih [Renewable Energy Research Center, University of Anbar (Iraq)
2013-07-01
Performance of photovoltaic (PV) module is greatly dependent on the solar irradiance, operating temperature, and shading. Solar irradiance can have a significant impact on power output of PV module and energy yield. In this paper, a maximum PV power which can be obtain in Ramadi city (100km west of Baghdad) is practically analyzed. The analysis is based on real irradiance values obtained as the first time by using Soly2 sun tracker device. Proper and adequate information on solar radiation and its components at a given location is very essential in the design of solar energy systems. The solar irradiance data in Ramadi city were analyzed based on the first three months of 2013. The solar irradiance data are measured on earth's surface in the campus area of Anbar University. Actual average data readings were taken from the data logger of sun tracker system, which sets to save the average readings for each two minutes and based on reading in each one second. The data are analyzed from January to the end of March-2013. Maximum daily readings and monthly average readings of solar irradiance have been analyzed to optimize the output of photovoltaic solar modules. The results show that the system sizing of PV can be reduced by 12.5% if a tracking system is used instead of fixed orientation of PV modules.
40 CFR 1045.140 - What is my engine's maximum engine power?
2010-07-01
...) Maximum engine power for an engine family is generally the weighted average value of maximum engine power... engine family's maximum engine power apply in the following circumstances: (1) For outboard or personal... value for maximum engine power from all the different configurations within the engine family to...
Flow Control in Wells Turbines for Harnessing Maximum Wave Power
Garrido, Aitor J.; Garrido, Izaskun; Otaola, Erlantz; Maseda, Javier
2018-01-01
Oceans, and particularly waves, offer a huge potential for energy harnessing all over the world. Nevertheless, the performance of current energy converters does not yet allow us to use the wave energy efficiently. However, new control techniques can improve the efficiency of energy converters. In this sense, the plant sensors play a key role within the control scheme, as necessary tools for parameter measuring and monitoring that are then used as control input variables to the feedback loop. Therefore, the aim of this work is to manage the rotational speed control loop in order to optimize the output power. With the help of outward looking sensors, a Maximum Power Point Tracking (MPPT) technique is employed to maximize the system efficiency. Then, the control decisions are based on the pressure drop measured by pressure sensors located along the turbine. A complete wave-to-wire model is developed so as to validate the performance of the proposed control method. For this purpose, a novel sensor-based flow controller is implemented based on the different measured signals. Thus, the performance of the proposed controller has been analyzed and compared with a case of uncontrolled plant. The simulations demonstrate that the flow control-based MPPT strategy is able to increase the output power, and they confirm both the viability and goodness. PMID:29439408
Flow Control in Wells Turbines for Harnessing Maximum Wave Power.
Lekube, Jon; Garrido, Aitor J; Garrido, Izaskun; Otaola, Erlantz; Maseda, Javier
2018-02-10
Oceans, and particularly waves, offer a huge potential for energy harnessing all over the world. Nevertheless, the performance of current energy converters does not yet allow us to use the wave energy efficiently. However, new control techniques can improve the efficiency of energy converters. In this sense, the plant sensors play a key role within the control scheme, as necessary tools for parameter measuring and monitoring that are then used as control input variables to the feedback loop. Therefore, the aim of this work is to manage the rotational speed control loop in order to optimize the output power. With the help of outward looking sensors, a Maximum Power Point Tracking (MPPT) technique is employed to maximize the system efficiency. Then, the control decisions are based on the pressure drop measured by pressure sensors located along the turbine. A complete wave-to-wire model is developed so as to validate the performance of the proposed control method. For this purpose, a novel sensor-based flow controller is implemented based on the different measured signals. Thus, the performance of the proposed controller has been analyzed and compared with a case of uncontrolled plant. The simulations demonstrate that the flow control-based MPPT strategy is able to increase the output power, and they confirm both the viability and goodness.
International Nuclear Information System (INIS)
Wang, P.-Y.; Hou, S.-S.
2005-01-01
In this paper, performance analysis and comparison based on the maximum power and maximum power density conditions have been conducted for an Atkinson cycle coupled to variable temperature heat reservoirs. The Atkinson cycle is internally reversible but externally irreversible, since there is external irreversibility of heat transfer during the processes of constant volume heat addition and constant pressure heat rejection. This study is based purely on classical thermodynamic analysis methodology. It should be especially emphasized that all the results and conclusions are based on classical thermodynamics. The power density, defined as the ratio of power output to maximum specific volume in the cycle, is taken as the optimization objective because it considers the effects of engine size as related to investment cost. The results show that an engine design based on maximum power density with constant effectiveness of the hot and cold side heat exchangers or constant inlet temperature ratio of the heat reservoirs will have smaller size but higher efficiency, compression ratio, expansion ratio and maximum temperature than one based on maximum power. From the view points of engine size and thermal efficiency, an engine design based on maximum power density is better than one based on maximum power conditions. However, due to the higher compression ratio and maximum temperature in the cycle, an engine design based on maximum power density conditions requires tougher materials for engine construction than one based on maximum power conditions
Erbay, Celal; Carreon-Bautista, Salvador; Sanchez-Sinencio, Edgar; Han, Arum
2014-12-02
Microbial fuel cell (MFC) that can directly generate electricity from organic waste or biomass is a promising renewable and clean technology. However, low power and low voltage output of MFCs typically do not allow directly operating most electrical applications, whether it is supplementing electricity to wastewater treatment plants or for powering autonomous wireless sensor networks. Power management systems (PMSs) can overcome this limitation by boosting the MFC output voltage and managing the power for maximum efficiency. We present a monolithic low-power-consuming PMS integrated circuit (IC) chip capable of dynamic maximum power point tracking (MPPT) to maximize the extracted power from MFCs, regardless of the power and voltage fluctuations from MFCs over time. The proposed PMS continuously detects the maximum power point (MPP) of the MFC and matches the load impedance of the PMS for maximum efficiency. The system also operates autonomously by directly drawing power from the MFC itself without any external power. The overall system efficiency, defined as the ratio between input energy from the MFC and output energy stored into the supercapacitor of the PMS, was 30%. As a demonstration, the PMS connected to a 240 mL two-chamber MFC (generating 0.4 V and 512 μW at MPP) successfully powered a wireless temperature sensor that requires a voltage of 2.5 V and consumes power of 85 mW each time it transmit the sensor data, and successfully transmitted a sensor reading every 7.5 min. The PMS also efficiently managed the power output of a lower-power producing MFC, demonstrating that the PMS works efficiently at various MFC power output level.
Measurement of incident sound power using near field acoustic holography
DEFF Research Database (Denmark)
Jacobsen, Finn; Tiana Roig, Elisabet
2009-01-01
; and it has always been regarded as impossible to measure the sound power that is incident on a wall directly. This paper examines a new method of determining this quantity from sound pressure measurements at positions on the wall using ‘statistically optimised near field acoustic holography’ (SONAH...
Power converter with maximum power point tracking MPPT for small wind-electric pumping systems
International Nuclear Information System (INIS)
Lara, David; Merino, Gabriel; Salazar, Lautaro
2015-01-01
Highlights: • We implement a wind electric pumping system of small power. • The power converter allowed to change the operating point of the electro pump. • Two control techniques were implemented in the power converter. • The control V/f variable allowed to increase the power generated by the permanent magnet generator. - Abstract: In this work, an AC–DC–AC direct-drive power converter was implemented for a wind electric pumping system consisting of a permanent magnet generator (PMG) of 1.3 kW and a peripheral single phase pump of 0.74 kW. In addition, the inverter linear V/f control scheme and the maximum power point tracking (MPPT) algorithm with variable V/f were developed. MPPT algorithm seeks to extract water in a wide range of power input using the maximum amount of wind power available. Experimental trials at different pump pressures were conducted. With a MPPT tracking system with variable V/f, a power value of 1.3 kW was obtained at a speed of 350 rpm and a maximum operating hydraulic head of 50 m. At lower operating heads pressures (between 10 and 40 m), variable V/f control increases the power generated by the PMG compared to the linear V/f control. This increase ranged between 4% and 23% depending on the operating pressure, with an average of 13%, getting close to the maximum electrical power curve of the PMG. The pump was driven at variable frequency reaching a minimum speed of 0.5 times the rated speed. Efficiency of the power converter ranges between 70% and 95% with a power factor between 0.4 and 0.85, depending on the operating pressure
Automatic acoustic and vibration monitoring system for nuclear power plants
International Nuclear Information System (INIS)
Tothmatyas, Istvan; Illenyi, Andras; Kiss, Jozsef; Komaromi, Tibor; Nagy, Istvan; Olchvary, Geza
1990-01-01
A diagnostic system for nuclear power plant monitoring is described. Acoustic and vibration diagnostics can be applied to monitor various reactor components and auxiliary equipment including primary circuit machinery, leak detection, integrity of reactor vessel, loose parts monitoring. A noise diagnostic system has been developed for the Paks Nuclear Power Plant, to supervise the vibration state of primary circuit machinery. An automatic data acquisition and processing system is described for digitalizing and analysing diagnostic signals. (R.P.) 3 figs
Directory of Open Access Journals (Sweden)
Jaw-Kuen Shiau
2014-08-01
Full Text Available The power converter is one of the essential elements for effective use of renewable power sources. This paper focuses on the development of a circuit simulation model for maximum power point tracking (MPPT evaluation of solar power that involves using different buck-boost power converter topologies; including SEPIC, Zeta, and four-switch type buck-boost DC/DC converters. The circuit simulation model mainly includes three subsystems: a PV model; a buck-boost converter-based MPPT system; and a fuzzy logic MPPT controller. Dynamic analyses of the current-fed buck-boost converter systems are conducted and results are presented in the paper. The maximum power point tracking function is achieved through appropriate control of the power switches of the power converter. A fuzzy logic controller is developed to perform the MPPT function for obtaining maximum power from the PV panel. The MATLAB-based Simulink piecewise linear electric circuit simulation tool is used to verify the complete circuit simulation model.
Geometrical prediction of maximum power point for photovoltaics
International Nuclear Information System (INIS)
Kumar, Gaurav; Panchal, Ashish K.
2014-01-01
Highlights: • Direct MPP finding by parallelogram constructed from geometry of I–V curve of cell. • Exact values of V and P at MPP obtained by Lagrangian interpolation exploration. • Extensive use of Lagrangian interpolation for implementation of proposed method. • Method programming on C platform with minimum computational burden. - Abstract: It is important to drive solar photovoltaic (PV) system to its utmost capacity using maximum power point (MPP) tracking algorithms. This paper presents a direct MPP prediction method for a PV system considering the geometry of the I–V characteristic of a solar cell and a module. In the first step, known as parallelogram exploration (PGE), the MPP is determined from a parallelogram constructed using the open circuit (OC) and the short circuit (SC) points of the I–V characteristic and Lagrangian interpolation. In the second step, accurate values of voltage and power at the MPP, defined as V mp and P mp respectively, are decided by the Lagrangian interpolation formula, known as the Lagrangian interpolation exploration (LIE). Specifically, this method works with a few (V, I) data points instead most of the MPP algorithms work with (P, V) data points. The performance of the method is examined by several PV technologies including silicon, copper indium gallium selenide (CIGS), copper zinc tin sulphide selenide (CZTSSe), organic, dye sensitized solar cell (DSSC) and organic tandem cells’ data previously reported in literatures. The effectiveness of the method is tested experimentally for a few silicon cells’ I–V characteristics considering variation in the light intensity and the temperature. At last, the method is also employed for a 10 W silicon module tested in the field. To testify the preciseness of the method, an absolute value of the derivative of power (P) with respect to voltage (V) defined as (dP/dV) is evaluated and plotted against V. The method estimates the MPP parameters with high accuracy for any
Fuzzy Controller Design Using FPGA for Photovoltaic Maximum Power Point Tracking
Basil M Hamed; Mohammed S. El-Moghany
2012-01-01
The cell has optimum operating point to be able to get maximum power. To obtain Maximum Power from photovoltaic array, photovoltaic power system usually requires Maximum Power Point Tracking (MPPT) controller. This paper provides a small power photovoltaic control system based on fuzzy control with FPGA technology design and implementation for MPPT. The system composed of photovoltaic module, buck converter and the fuzzy logic controller implemented on FPGA for controlling on/off time of MOSF...
A Compound Algorithm for Maximum Power Point Tracking Used in Laser Power Beaming
Chen, Cheng; Liu, Qiang; Gao, Shan; Teng, Yun; Cheng, Lin; Yu, Chengtao; Peng, Kai
2018-03-01
With the high voltage intelligent substation developing in a pretty high speed, more and more artificial intelligent techniques have been incorporated into the power devices to meet the automation needs. For the sake of the line maintenance staff’s safety, the high voltage isolating switch draws great attention among the most important power devices because of its capability of connecting and disconnecting the high voltage circuit. However, due to the very high level voltage of the high voltage isolating switch’s working environment, the power supply system of the surveillance devices could suffer from great electromagnetic interference. Laser power beaming exhibits its merits in such situation because it can provide steady power from a distance despite the day or the night. Then the energy conversion efficiency arises as a new concern. To make as much use of the laser power as possible, our work mainly focuses on extracting maximum power from the photovoltaic (PV) panel. In this paper, we proposed a neural network based algorithm which relates both the intrinsic and the extrinsic features of the PV panel to the proportion of the voltage at the maximum power point (MPP) to the open circuit voltage of the PV panel. Simulations and experiments were carried out to verify the validness of our algorithm.
Moisture estimation in power transformer oil using acoustic signals and spectral kurtosis
International Nuclear Information System (INIS)
Leite, Valéria C M N; Veloso, Giscard F C; Borges da Silva, Luiz Eduardo; Lambert-Torres, Germano; Borges da Silva, Jonas G; Pinto, João Onofre Pereira
2016-01-01
The aim of this paper is to present a new technique for estimating the contamination by moisture in power transformer insulating oil based on the spectral kurtosis analysis of the acoustic signals of partial discharges (PDs). Basically, in this approach, the spectral kurtosis of the PD acoustic signal is calculated and the correlation between its maximum value and the moisture percentage is explored to find a function that calculates the moisture percentage. The function can be easily implemented in DSP, FPGA, or any other type of embedded system for online moisture monitoring. To evaluate the proposed approach, an experiment is assembled with a piezoelectric sensor attached to a tank, which is filled with insulating oil samples contaminated by different levels of moisture. A device generating electrical discharges is submerged into the oil to simulate the occurrence of PDs. Detected acoustic signals are processed using fast kurtogram algorithm to extract spectral kurtosis values. The obtained data are used to find the fitting function that relates the water contamination to the maximum value of the spectral kurtosis. Experimental results show that the proposed method is suitable for online monitoring system of power transformers. (paper)
Behrens, Jan; Langelier, Sean; Rezk, Amgad R; Lindner, Gerhard; Yeo, Leslie Y; Friend, James R
2015-01-07
We present a versatile and very low-power traveling SAW microfluidic sorting device able to displace and separate particles of different diameter in aqueous suspension; the travelling wave propagates through the fluid bulk and diffuses via a Schröder diffuser, adapted from its typical use in concert hall acoustics to be the smallest such diffuser to be suitable for microfluidics. The effective operating power range is two to three orders of magnitude less than current SAW devices, uniquely eliminating the need for amplifiers, and by using traveling waves to impart forces directly upon suspended microparticles, they can be separated by size.
Chew, Z. J.; Zhu, M.
2015-12-01
A maximum power point tracking (MPPT) scheme by tracking the open-circuit voltage from a piezoelectric energy harvester using a differentiator is presented in this paper. The MPPT controller is implemented by using a low-power analogue differentiator and comparators without the need of a sensing circuitry and a power hungry controller. This proposed MPPT circuit is used to control a buck converter which serves as a power management module in conjunction with a full-wave bridge diode rectifier. Performance of this MPPT control scheme is verified by using the prototyped circuit to track the maximum power point of a macro-fiber composite (MFC) as the piezoelectric energy harvester. The MFC was bonded on a composite material and the whole specimen was subjected to various strain levels at frequency from 10 to 100 Hz. Experimental results showed that the implemented full analogue MPPT controller has a tracking efficiency between 81% and 98.66% independent of the load, and consumes an average power of 3.187 μW at 3 V during operation.
Design of wind turbine airfoils based on maximum power coefficient
DEFF Research Database (Denmark)
Cheng, Jiangtao; Chen, Jin; Cheng, Jiangtao
2010-01-01
Based on the blade element momentum (BEM) theory, the power coefficient of a wind turbine can be expressed in function of local tip speed ratio and lift-drag ratio. By taking the power coefficient in a predefined range of angle of attack as the final design objective and combining with an airfoil...
Dependence of the maximum power and wind speed
Directory of Open Access Journals (Sweden)
Florentiu Deliu
2013-09-01
Full Text Available The issue paper is to present renewable energy sources insisting mainly on wind energy. This source is analyzed in the context of Romania in particular and the EU in general. A turbine with horizontal axis is usually coupled with vessel power systems. Wind energy knows an increased growth rate. At the end of the paper are presented possible structure of coupled a wind to power systems.
Nonimaging optical designs for maximum-power-density remote irradiation.
Feuermann, D; Gordon, J M; Ries, H
1998-04-01
Designs for flexible, high-power-density, remote irradiation systems are presented. Applications include industrial infrared heating such as in semiconductor processing, alternatives to laser light for certain medical procedures, and general remote high-brightness lighting. The high power densities in herent to the small active radiating regions of conventional metal-halide, halogen, xenon, microwave-sulfur, and related lamps can be restored with nonimaging concentrators with little loss of power. These high fluxlevels can then be transported at high transmissivity with light channels such as optical fibers or lightpipes, and reshaped into luminaires that can deliver prescribed angular and spatial flux distributions onto desired targets. Details for nominally two- and three-dimensional systems are developed, along with estimates ofoptical performance.
Directory of Open Access Journals (Sweden)
Mroczka Janusz
2014-12-01
Full Text Available Photovoltaic panels have a non-linear current-voltage characteristics to produce the maximum power at only one point called the maximum power point. In the case of the uniform illumination a single solar panel shows only one maximum power, which is also the global maximum power point. In the case an irregularly illuminated photovoltaic panel many local maxima on the power-voltage curve can be observed and only one of them is the global maximum. The proposed algorithm detects whether a solar panel is in the uniform insolation conditions. Then an appropriate strategy of tracking the maximum power point is taken using a decision algorithm. The proposed method is simulated in the environment created by the authors, which allows to stimulate photovoltaic panels in real conditions of lighting, temperature and shading.
Microprocessor-controlled step-down maximum-power-point tracker for photovoltaic systems
Mazmuder, R. K.; Haidar, S.
1992-12-01
An efficient maximum power point tracker (MPPT) has been developed and can be used with a photovoltaic (PV) array and a load which requires lower voltage than the PV array voltage to be operated. The MPPT makes the PV array to operate at maximum power point (MPP) under all insolation and temperature, which ensures the maximum amount of available PV power to be delivered to the load. The performance of the MPPT has been studied under different insolation levels.
Maximum Power Tracking by VSAS approach for Wind Turbine, Renewable Energy Sources
Directory of Open Access Journals (Sweden)
Nacer Kouider Msirdi
2015-08-01
Full Text Available This paper gives a review of the most efficient algorithms designed to track the maximum power point (MPP for catching the maximum wind power by a variable speed wind turbine (VSWT. We then design a new maximum power point tracking (MPPT algorithm using the Variable Structure Automatic Systems approach (VSAS. The proposed approachleads efficient algorithms as shown in this paper by the analysis and simulations.
A radioisotope-powered surface acoustic wave transponder
International Nuclear Information System (INIS)
Tin, S; Lal, A
2009-01-01
We demonstrate a 63 Ni radioisotope-powered pulse transponder that has a SAW (surface acoustic wave) device as the frequency transmission frequency selector. Because the frequency is determined by a SAW device, narrowband detection with an identical SAW device enables the possibility for a long-distance RF-link. The SAW transponders can be buried deep into structural constructs such as steel and concrete, where changing batteries or harvesting vibration or EM energy is not a reliable option. RF-released power to radioisotope- released power amplification is 10 8 , even when regulatory safe amounts of 63 Ni are used. Here we have achieved an 800 µW pulse (315 MHz, 10 µs pause) across a 50 Ω load every 3 min, using a 1.5 milli-Ci 63 Ni source
Near-maximum-power-point-operation (nMPPO) design of photovoltaic power generation system
Energy Technology Data Exchange (ETDEWEB)
Huang, B.J.; Sun, F.S.; Ho, R.W. [Department of Mechanical Engineering, National Taiwan University, Taipei 106, Taiwan (China)
2006-08-15
The present study proposes a PV system design, called 'near-maximum power-point-operation' (nMPPO) that can maintain the performance very close to PV system with MPPT (maximum-power-point tracking) but eliminate hardware of the MPPT. The concept of nMPPO is to match the design of battery bank voltage V{sub set} with the MPP (maximum-power point) of the PV module based on an analysis using meteorological data. Three design methods are used in the present study to determine the optimal V{sub set}. The analytical results show that nMPPO is feasible and the optimal V{sub set} falls in the range 13.2-15.0V for MSX60 PV module. The long-term performance simulation shows that the overall nMPPO efficiency {eta}{sub nMPPO} is higher than 94%. Two outdoor field tests were carried out in the present study to verify the design of nMPPO. The test results for a single PV module (60Wp) indicate that the nMPPO efficiency {eta}{sub nMPPO} is mostly higher than 93% at various PV temperature T{sub pv}. Another long-term field test of 1kWp PV array using nMPPO shows that the power generation using nMPPO is almost identical with MPPT at various weather conditions and T{sub pv} variation from 24{sup o}C to 70{sup o}C. (author)
Configuration of LWR fuel enrichment or burnup yielding maximum power
International Nuclear Information System (INIS)
Bartosek, V.; Zalesky, K.
1976-01-01
An analysis is given of the spatial distribution of fuel burnup and enrichment in a light-water lattice of given dimensions with slightly enriched uranium, at which the maximum output is achieved. It is based on the spatial solution of neutron flux using a one-group diffusion model in which linear dependence may be expected of the fission cross section and the material buckling parameter on the fuel burnup and enrichment. Two problem constraints are considered, i.e., the neutron flux value and the specific output value. For the former the optimum core configuration remains qualitatively unchanged for any reflector thickness, for the latter the cases of a reactor with and without reflector must be distinguished. (Z.M.)
Maximum Power Output of Quantum Heat Engine with Energy Bath
Directory of Open Access Journals (Sweden)
Shengnan Liu
2016-05-01
Full Text Available The difference between quantum isoenergetic process and quantum isothermal process comes from the violation of the law of equipartition of energy in the quantum regime. To reveal an important physical meaning of this fact, here we study a special type of quantum heat engine consisting of three processes: isoenergetic, isothermal and adiabatic processes. Therefore, this engine works between the energy and heat baths. Combining two engines of this kind, it is possible to realize the quantum Carnot engine. Furthermore, considering finite velocity of change of the potential shape, here an infinite square well with moving walls, the power output of the engine is discussed. It is found that the efficiency and power output are both closely dependent on the initial and final states of the quantum isothermal process. The performance of the engine cycle is shown to be optimized by control of the occupation probability of the ground state, which is determined by the temperature and the potential width. The relation between the efficiency and power output is also discussed.
Maximum wind power plant generation by reducing the wake effect
International Nuclear Information System (INIS)
De-Prada-Gil, Mikel; Alías, César Guillén; Gomis-Bellmunt, Oriol; Sumper, Andreas
2015-01-01
Highlights: • To analyze the benefit of applying a new control strategy to maximise energy yield. • To operate some wind turbines at non-optimum points for reducing wake effects. • Single, partial and multiple wakes for any wind direction are taken into account. • Thrust coefficient is computed according to Blade Element Momentum (BEM) theory. - Abstract: This paper analyses, from a steady state point of view, the potential benefit of a Wind Power Plant (WPP) control strategy whose main objective is to maximise its total energy yield over its lifetime by taking into consideration that the wake effect within the WPP varies depending on the operation of each wind turbine. Unlike the conventional approach in which each wind turbine operation is optimised individually to maximise its own energy capture, the proposed control strategy aims to optimise the whole system by operating some wind turbines at sub-optimum points, so that the wake effect within the WPP is reduced and therefore the total power generation is maximised. The methodology used to assess the performance of both control approaches is presented and applied to two particular study cases. It contains a comprehensive wake model considering single, partial and multiple wake effects among turbines. The study also takes into account the Blade Element Momentum (BEM) theory to accurately compute both power and thrust coefficient of each wind turbine. The results suggest a good potential of the proposed concept, since an increase in the annual energy captured by the WPP from 1.86% up to 6.24% may be achieved (depending on the wind rose at the WPP location) by operating some specific wind turbines slightly away from their optimum point and reducing thus the wake effect
A novel maximum power point tracking method for PV systems using fuzzy cognitive networks (FCN)
Energy Technology Data Exchange (ETDEWEB)
Karlis, A.D. [Electrical Machines Laboratory, Department of Electrical & amp; Computer Engineering, Democritus University of Thrace, V. Sofias 12, 67100 Xanthi (Greece); Kottas, T.L.; Boutalis, Y.S. [Automatic Control Systems Laboratory, Department of Electrical & amp; Computer Engineering, Democritus University of Thrace, V. Sofias 12, 67100 Xanthi (Greece)
2007-03-15
Maximum power point trackers (MPPTs) play an important role in photovoltaic (PV) power systems because they maximize the power output from a PV system for a given set of conditions, and therefore maximize the array efficiency. This paper presents a novel MPPT method based on fuzzy cognitive networks (FCN). The new method gives a good maximum power operation of any PV array under different conditions such as changing insolation and temperature. The numerical results show the effectiveness of the proposed algorithm. (author)
International Nuclear Information System (INIS)
Gonca, Guven; Sahin, Bahri; Ust, Yasin; Parlak, Adnan
2015-01-01
This paper presents comprehensive performance analyses and comparisons for air-standard irreversible thermodynamic cycle engines (TCE) based on the power output, power density, thermal efficiency, maximum dimensionless power output (MP), maximum dimensionless power density (MPD) and maximum thermal efficiency (MEF) criteria. Internal irreversibility of the cycles occurred during the irreversible-adiabatic processes is considered by using isentropic efficiencies of compression and expansion processes. The performances of the cycles are obtained by using engine design parameters such as isentropic temperature ratio of the compression process, pressure ratio, stroke ratio, cut-off ratio, Miller cycle ratio, exhaust temperature ratio, cycle temperature ratio and cycle pressure ratio. The effects of engine design parameters on the maximum and optimal performances are investigated. - Highlights: • Performance analyses are conducted for irreversible thermodynamic cycle engines. • Comprehensive computations are performed. • Maximum and optimum performances of the engines are shown. • The effects of design parameters on performance and power density are examined. • The results obtained may be guidelines to the engine designers
Artificial Neural Network In Maximum Power Point Tracking Algorithm Of Photovoltaic Systems
Directory of Open Access Journals (Sweden)
Modestas Pikutis
2014-05-01
Full Text Available Scientists are looking for ways to improve the efficiency of solar cells all the time. The efficiency of solar cells which are available to the general public is up to 20%. Part of the solar energy is unused and a capacity of solar power plant is significantly reduced – if slow controller or controller which cannot stay at maximum power point of solar modules is used. Various algorithms of maximum power point tracking were created, but mostly algorithms are slow or make mistakes. In the literature more and more oftenartificial neural networks (ANN in maximum power point tracking process are mentioned, in order to improve performance of the controller. Self-learner artificial neural network and IncCond algorithm were used for maximum power point tracking in created solar power plant model. The algorithm for control was created. Solar power plant model is implemented in Matlab/Simulink environment.
Phased Array Focusing for Acoustic Wireless Power Transfer.
Tseng, Victor Farm-Guoo; Bedair, Sarah S; Lazarus, Nathan
2018-01-01
Wireless power transfer (WPT) through acoustic waves can achieve higher efficiencies than inductive coupling when the distance is above several times the transducer size. This paper demonstrates the use of ultrasonic phased arrays to focus power to receivers at arbitrary locations to increase the power transfer efficiency. Using a phased array consisting of 37 elements at a distance nearly 5 times the receiver transducer diameter, a factor of 2.6 increase in efficiency was achieved when compared to a case equivalent to a single large transducer with the same peak efficiency distance. The array has a total diameter of 7 cm, and transmits through air at 40 kHz to a 1.1-cm diameter receiver, achieving a peak overall efficiency of 4% at a distance of 5 cm. By adjusting the focal distance, the efficiency can also be maintained relatively constant at distances up to 9 cm. Numerical models were developed and shown to closely match the experimental energy transfer behavior; modeling results indicate that the efficiency can be further doubled by increasing the number of elements. For comparison, an inductive WPT system was also built with the diameters of the transmitting and receiving coils equivalent to the dimensions of the transmitting ultrasonic phased array and receiver transducer, and the acoustic WPT system achieved higher efficiencies than the inductive WPT system when the transmit-to-receive distance is above 5 cm. In addition, beam angle steering was demonstrated by using a simplified seven-element 1-D array, achieving power transfer less dependent on receiver placement.
Experimental evaluation of wind turbines maximum power point tracking controllers
International Nuclear Information System (INIS)
Camblong, H.; Martinez de Alegria, I.; Rodriguez, M.; Abad, G.
2006-01-01
Wind energy technology has experienced important improvements this last decade. The transition from fixed speed to variable speed wind turbines has been a significant element of these improvements. It has allowed adapting the turbine rotational speed to the wind speed variations with the aim of optimizing the aerodynamic efficiency. A classic controller that has slow dynamics relative to the mechanical dynamics of the drive train is implemented in commercial wind turbines. The objective of the work related in this paper has been to evaluate the implementation, on a test bench, of a controller whose dynamics can be adjusted to be faster and to compare in particular its aerodynamic efficiency with the conventional controller. In theory, the higher dynamics of the non-classic controller has to lead to a better efficiency. A 180 kW wind turbine whose simulation model has been validated with field data is emulated on an 18 kW test bench. The emulator has also been validated. Test bench trials are a very useful step between numerical simulation and trials on the real system because they allow analyzing some phenomena that may not appear in simulations without endangering the real system. The trials on the test bench show that the non-conventional controller leads to a higher aerodynamic efficiency and that this is offset by higher mechanical torque and electric power fluctuations. Nevertheless, the amplitudes of these fluctuations are relatively low compared to their rated values
Measurement of the Barkas effect around the stopping-power maximum for light and heavy targets
International Nuclear Information System (INIS)
Moeller, S.P.; Knudsen, H.; Mikkelsen, U.; Paludan, K.; Morenzoni, E.
1997-01-01
The first direct measurements of antiproton stopping powers around the stopping power maximum are presented. The LEAR antiproton-beam of 5.9 MeV is degraded to 50-700 keV, and the energy-loss is found by measuring the antiproton velocity before and after the target. The antiproton stopping powers of Si and Au are found to be reduced by 30 and 40% near the electronic stopping power maximum as compared to the equivalent proton stopping power. The Barkas effect, that is the stopping power difference between protons and antiprotons, is extracted and compared to theoretical estimates. (orig.)
A maximum power point tracking algorithm for buoy-rope-drum wave energy converters
Wang, J. Q.; Zhang, X. C.; Zhou, Y.; Cui, Z. C.; Zhu, L. S.
2016-08-01
The maximum power point tracking control is the key link to improve the energy conversion efficiency of wave energy converters (WEC). This paper presents a novel variable step size Perturb and Observe maximum power point tracking algorithm with a power classification standard for control of a buoy-rope-drum WEC. The algorithm and simulation model of the buoy-rope-drum WEC are presented in details, as well as simulation experiment results. The results show that the algorithm tracks the maximum power point of the WEC fast and accurately.
Comparison of fuzzy logic and neural network in maximum power point tracker for PV systems
Energy Technology Data Exchange (ETDEWEB)
Ben Salah, Chokri; Ouali, Mohamed [Research Unit on Intelligent Control, Optimization, Design and Optimization of Complex Systems (ICOS), Department of Electrical Engineering, National School of Engineers of Sfax, BP. W, 3038, Sfax (Tunisia)
2011-01-15
This paper proposes two methods of maximum power point tracking using a fuzzy logic and a neural network controllers for photovoltaic systems. The two maximum power point tracking controllers receive solar radiation and photovoltaic cell temperature as inputs, and estimated the optimum duty cycle corresponding to maximum power as output. The approach is validated on a 100 Wp PVP (two parallels SM50-H panel) connected to a 24 V dc load. The new method gives a good maximum power operation of any photovoltaic array under different conditions such as changing solar radiation and PV cell temperature. From the simulation and experimental results, the fuzzy logic controller can deliver more power than the neural network controller and can give more power than other different methods in literature. (author)
Directory of Open Access Journals (Sweden)
Y. Labbi
2015-08-01
Full Text Available Photovoltaic electricity is seen as an important source of renewable energy. The photovoltaic array is an unstable source of power since the peak power point depends on the temperature and the irradiation level. A maximum peak power point tracking is then necessary for maximum efficiency.In this work, a Particle Swarm Optimization (PSO is proposed for maximum power point tracker for photovoltaic panel, are used to generate the optimal MPP, such that solar panel maximum power is generated under different operating conditions. A photovoltaic system including a solar panel and PSO MPP tracker is modelled and simulated, it has been has been carried out which has shown the effectiveness of PSO to draw much energy and fast response against change in working conditions.
40 CFR 1054.140 - What is my engine's maximum engine power and displacement?
2010-07-01
... internal diameter of 6.00 cm and a 6.25 cm stroke length, the rounded displacement would be: (1) × (6.00/2... power and displacement? 1054.140 Section 1054.140 Protection of Environment ENVIRONMENTAL PROTECTION... engine power and displacement? This section describes how to quantify your engine's maximum engine power...
A maximum power point tracking scheme for a 1kw stand-alone ...
African Journals Online (AJOL)
A maximum power point tracking scheme for a 1kw stand-alone solar energy based power supply. ... Nigerian Journal of Technology ... A method for efficiently maximizing the output power of a solar panel supplying a load or battery bus under ...
McNelis, Mark E.; Staab, Lucas D.; Akers, James C.; Hughes, WIlliam O.; Chang, Li, C.; Hozman, Aron D.; Henry, Michael W.
2012-01-01
The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) has led the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC's Plum Brook Station in Sandusky, Ohio, USA from 2007-2011. SAIC-Benham has completed construction of a new reverberant acoustic test facility to support the future testing needs of NASA's space exploration program and commercial customers. The large Reverberant Acoustic Test Facility (RATF) is approximately 101,000 cu ft in volume and was designed to operate at a maximum empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world's known active reverberant acoustic test facilities. Initial checkout acoustic testing was performed on March 2011 by SAIC-Benham at test levels up to 161 dB OASPL. During testing, several branches of the gaseous nitrogen (GN2) piping system, which supply the fluid to the noise generating acoustic modulators, failed at their "t-junctions" connecting the 12 inch supply line to their respective 4 inch branch lines. The problem was initially detected when the oxygen sensors in the horn room indicated a lower than expected oxygen level from which was inferred GN2 leaks in the piping system. In subsequent follow up inspections, cracks were identified in the failed "t-junction" connections through non-destructive evaluation testing . Through structural dynamic modeling of the piping system, the root cause of the "t-junction" connection failures was determined. The structural dynamic assessment identified several possible corrective design improvements to the horn room piping system. The effectiveness of the chosen design repairs were subsequently evaluated in September 2011 during acoustic verification testing to 161 dB OASPL.
DEFF Research Database (Denmark)
Rakhshan, Mohsen; Vafamand, Navid; Khooban, Mohammad Hassan
2018-01-01
This paper introduces a polynomial fuzzy model (PFM)-based maximum power point tracking (MPPT) control approach to increase the performance and efficiency of the solar photovoltaic (PV) electricity generation. The proposed method relies on a polynomial fuzzy modeling, a polynomial parallel......, a direct maximum power (DMP)-based control structure is considered for MPPT. Using the PFM representation, the DMP-based control structure is formulated in terms of SOS conditions. Unlike the conventional approaches, the proposed approach does not require exploring the maximum power operational point...
Accurate Maximum Power Tracking in Photovoltaic Systems Affected by Partial Shading
Directory of Open Access Journals (Sweden)
Pierluigi Guerriero
2015-01-01
Full Text Available A maximum power tracking algorithm exploiting operating point information gained on individual solar panels is presented. The proposed algorithm recognizes the presence of multiple local maxima in the power voltage curve of a shaded solar field and evaluates the coordinated of the absolute maximum. The effectiveness of the proposed approach is evidenced by means of circuit level simulation and experimental results. Experiments evidenced that, in comparison with a standard perturb and observe algorithm, we achieve faster convergence in normal operating conditions (when the solar field is uniformly illuminated and we accurately locate the absolute maximum power point in partial shading conditions, thus avoiding the convergence on local maxima.
A wireless acoustic emission sensor remotely powered by light
International Nuclear Information System (INIS)
Zahedi, F; Huang, H
2014-01-01
In this paper, wireless sensing of acoustic emission (AE) signals using a battery-free sensor node remotely powered by light is presented. The wireless sensor consists of a piezoelectric wafer active sensor (PWAS) for AE signal acquisition and a wireless transponder that performs signal conditioning, frequency conversion, and wireless transmission. For signal conditioning, a voltage follower that consumes less than 2 mW was introduced to buffer the high impedance of the PWAS from the low impedance of the wireless transponder. A photocell-based energy harvester with a stable voltage output was developed to power the voltage follower so that the wireless AE sensor can operate without an external power source. The principle of operation of the battery-free wireless AE sensor node and the sensor interrogation system is described, followed by a detailed description of the hardware implementation. The voltage follower and the wireless channel were characterized by ultrasound pitch–catch and pencil lead break experiments. (paper)
International Nuclear Information System (INIS)
Hong, Chih-Ming; Ou, Ting-Chia; Lu, Kai-Hung
2013-01-01
A hybrid power control system is proposed in the paper, consisting of solar power, wind power, and a diesel-engine. To achieve a fast and stable response for the real power control, an intelligent controller was proposed, which consists of the Wilcoxon (radial basis function network) RBFN and the improved (Elman neural network) ENN for (maximum power point tracking) MPPT. The pitch angle control of wind power uses improved ENN controller, and the output is fed to the wind turbine to achieve the MPPT. The solar array is integrated with an RBFN control algorithm to track the maximum power. MATLAB (MATrix LABoratory)/Simulink was used to build the dynamic model and simulate the solar and diesel-wind hybrid power system. - Highlights: ► To achieve a fast and stable response for the real power control. ► The pitch control of wind power uses improved ENN (Elman neural network) controller to achieve the MPPT (maximum power point tracking). ► The RBFN (radial basis function network) can quickly and accurately track the maximum power output for PV (photovoltaic) array. ► MATLAB was used to build the dynamic model and simulate the hybrid power system. ► This method can reach the desired performance even under different load conditions
A MAXIMUM POWER POINT TRACKING SCHEME FOR A 1kW ...
African Journals Online (AJOL)
user
knee point of PV system under variable atmospheric conditions have been ..... of the PV generator module increases, and the maximum power output increases as well. ..... Water Pumping System” A Thesis resented to the. Faculty of California ...
Maximum Power Point Tracking of Photovoltaic System for Traffic Light Application
Directory of Open Access Journals (Sweden)
Riza Muhida
2013-07-01
Full Text Available Photovoltaic traffic light system is a significant application of renewable energy source. The development of the system is an alternative effort of local authority to reduce expenditure for paying fees to power supplier which the power comes from conventional energy source. Since photovoltaic (PV modules still have relatively low conversion efficiency, an alternative control of maximum power point tracking (MPPT method is applied to the traffic light system. MPPT is intended to catch up the maximum power at daytime in order to charge the battery at the maximum rate in which the power from the battery is intended to be used at night time or cloudy day. MPPT is actually a DC-DC converter that can step up or down voltage in order to achieve the maximum power using Pulse Width Modulation (PWM control. From experiment, we obtained the voltage of operation using MPPT is at 16.454 V, this value has error of 2.6%, if we compared with maximum power point voltage of PV module that is 16.9 V. Based on this result it can be said that this MPPT control works successfully to deliver the power from PV module to battery maximally.
Directory of Open Access Journals (Sweden)
Mohsen Taherbaneh
2010-01-01
Full Text Available In applications with low-energy conversion efficiency, maximizing the output power improves the efficiency. The maximum output power of a solar panel depends on the environmental conditions and load profile. In this paper, a method based on simultaneous use of two fuzzy controllers is developed in order to maximize the generated output power of a solar panel in a photovoltaic system: fuzzy-based sun tracking and maximum power point tracking. The sun tracking is performed by changing the solar panel orientation in horizontal and vertical directions by two DC motors properly designed. A DC-DC converter is employed to track the solar panel maximum power point. In addition, the proposed system has the capability of the extraction of solar panel I-V curves. Experimental results present that the proposed fuzzy techniques result in increasing of power delivery from the solar panel, causing a reduction in size, weight, and cost of solar panels in photovoltaic systems.
Directory of Open Access Journals (Sweden)
Muhamad Otong
2017-05-01
Full Text Available In this paper, the implementation of the Maximum Power Point Tracking (MPPT technique is developed using buck-boost converter. Perturb and observe (P&O MPPT algorithm is used to searching maximum power from the wind power plant for charging of the battery. The model used in this study is the Variable Speed Wind Turbine (VSWT with a Permanent Magnet Synchronous Generator (PMSG. Analysis, design, and modeling of wind energy conversion system has done using MATLAB/simulink. The simulation results show that the proposed MPPT produce a higher output power than the system without MPPT. The average efficiency that can be achieved by the proposed system to transfer the maximum power into battery is 90.56%.
Evaluation of maximum power point tracking in hydrokinetic energy conversion systems
Directory of Open Access Journals (Sweden)
Jahangir Khan
2015-11-01
Full Text Available Maximum power point tracking is a mature control issue for wind, solar and other systems. On the other hand, being a relatively new technology, detailed discussion on power tracking of hydrokinetic energy conversion systems are generally not available. Prior to developing sophisticated control schemes for use in hydrokinetic systems, existing know-how in wind or solar technologies can be explored. In this study, a comparative evaluation of three generic classes of maximum power point scheme is carried out. These schemes are (a tip speed ratio control, (b power signal feedback control, and (c hill climbing search control. In addition, a novel concept for maximum power point tracking: namely, extremum seeking control is introduced. Detailed and validated system models are used in a simulation environment. Potential advantages and drawbacks of each of these schemes are summarised.
Development of an Intelligent Maximum Power Point Tracker Using an Advanced PV System Test Platform
DEFF Research Database (Denmark)
Spataru, Sergiu; Amoiridis, Anastasios; Beres, Remus Narcis
2013-01-01
The performance of photovoltaic systems is often reduced by the presence of partial shadows. The system efficiency and availability can be improved by a maximum power point tracking algorithm that is able to detect partial shadow conditions and to optimize the power output. This work proposes...... an intelligent maximum power point tracking method that monitors the maximum power point voltage and triggers a current-voltage sweep only when a partial shadow is detected, therefore minimizing power loss due to repeated current-voltage sweeps. The proposed system is validated on an advanced, flexible...... photovoltaic inverter system test platform that is able to reproduce realistic partial shadow conditions, both in simulation and on hardware test system....
A thermoelectric generator using loop heat pipe and design match for maximum-power generation
Huang, Bin-Juine
2015-09-05
The present study focuses on the thermoelectric generator (TEG) using loop heat pipe (LHP) and design match for maximum-power generation. The TEG uses loop heat pipe, a passive cooling device, to dissipate heat without consuming power and free of noise. The experiments for a TEG with 4W rated power show that the LHP performs very well with overall thermal resistance 0.35 K W-1, from the cold side of TEG module to the ambient. The LHP is able to dissipate heat up to 110W and is maintenance free. The TEG design match for maximum-power generation, called “near maximum-power point operation (nMPPO)”, is studied to eliminate the MPPT (maximum-power point tracking controller). nMPPO is simply a system design which properly matches the output voltage of TEG with the battery. It is experimentally shown that TEG using design match for maximum-power generation (nMPPO) performs better than TEG with MPPT.
MODEL PREDICTIVE CONTROL FOR PHOTOVOLTAIC STATION MAXIMUM POWER POINT TRACKING SYSTEM
Directory of Open Access Journals (Sweden)
I. Elzein
2015-01-01
Full Text Available The purpose of this paper is to present an alternative maximum power point tracking, MPPT, algorithm for a photovoltaic module, PVM, to produce the maximum power, Pmax, using the optimal duty ratio, D, for different types of converters and load matching.We present a state-based approach to the design of the maximum power point tracker for a stand-alone photovoltaic power generation system. The system under consideration consists of a solar array with nonlinear time-varying characteristics, a step-up converter with appropriate filter.The proposed algorithm has the advantages of maximizing the efficiency of the power utilization, can be integrated to other MPPT algorithms without affecting the PVM performance, is excellent for Real-Time applications and is a robust analytical method, different from the traditional MPPT algorithms which are more based on trial and error, or comparisons between present and past states. The procedure to calculate the optimal duty ratio for a buck, boost and buck-boost converters, to transfer the maximum power from a PVM to a load, is presented in the paper. Additionally, the existence and uniqueness of optimal internal impedance, to transfer the maximum power from a photovoltaic module using load matching, is proved.
Maximum power point tracking for PV systems under partial shading conditions using current sweeping
International Nuclear Information System (INIS)
Tsang, K.M.; Chan, W.L.
2015-01-01
Highlights: • A novel approach for tracking the maximum power point of photovoltaic systems. • Able to handle both the uniform insolation and partial shading conditions. • Maximum power point tracking based on current sweeping. - Abstract: Partial shading on photovoltaic (PV) arrays causes multiple peaks on the output power–voltage characteristic curve and local searching technique such as perturb and observe (P&O) method could easily fail in searching for the global maximum. Moreover, existing global searching techniques are still not very satisfactory in terms of speed and implementation complexity. In this paper, a fast global maximum power point (MPPT) tracking method which is using current sweeping for photovoltaic arrays under partial shading conditions is proposed. Unlike conventional approach, the proposed method is current based rather than voltage based. The initial maximum power point will be derived based on a current sweeping test and the maximum power point can be enhanced by a finer local search. The speed of the global search is mainly governed by the apparent time constant of the PV array and the generation of a fast current sweeping test. The fast current sweeping test can easily be realized by a DC/DC boost converter with a very fast current control loop. Experimental results are included to demonstrate the effectiveness of the proposed global searching scheme
Inspection of nuclear power plant piping welds by in-process acoustic emission monitoring
International Nuclear Information System (INIS)
Prine, D.W.
1976-01-01
The results of using in-process acoustic emission monitoring on nuclear power plant piping welds are discussed. The technique was applied to good and intentionally flawed test welds as well as production welds, and the acoustic emission results are compared to standard NDT methods and selected metallographic cross-sections
Directory of Open Access Journals (Sweden)
Murat Karabacak
2017-08-01
Full Text Available The most primitive control method of wind turbines used to generate electric energy from wind is the fixed speed control method. With this method, it is not possible that turbine input power is transferred to grid at maximum rate. For this reason, Maximum Power Tracking (MPT schemes are proposed. In order to implement MPT, the propeller has to rotate at a different speed for every different wind speed. This situation has led MPT based systems to be called Variable Speed Wind Turbine (VSWT systems. In VSWT systems, turbine input power can be transferred to grid at rates close to maximum power. When MPT based control of VSWT systems is the case, two important processes come into prominence. These are instantaneously determination and tracking of MPT point. In this study, using a Maximum Power Point Tracking (MPPT method based on tip speed ratio, power available in wind is transferred into grid over a back to back converter at maximum rate via a VSWT system with permanent magnet synchronous generator (PMSG. Besides a physical wind turbine simulator is modelled and simulated. Results show that a time varying MPPT point is tracked with a high performance.
Individual Module Maximum Power Point Tracking for a Thermoelectric Generator Systems
DEFF Research Database (Denmark)
Vadstrup, Casper; Chen, Min; Schaltz, Erik
Thermo Electric Generator (TEG) modules are often connected in a series and/or parallel system in order to match the TEG system voltage with the load voltage. However, in order to be able to control the power production of the TEG system a DC/DC converter is inserted between the TEG system...... and the load. The DC/DC converter is under the control of a Maximum Power Point Tracker (MPPT) which insures that the TEG system produces the maximum possible power to the load. However, if the conditions, e.g. temperature, health, etc., of the TEG modules are different each TEG module will not produce its...
A Hybrid Maximum Power Point Tracking Method for Automobile Exhaust Thermoelectric Generator
Quan, Rui; Zhou, Wei; Yang, Guangyou; Quan, Shuhai
2017-05-01
To make full use of the maximum output power of automobile exhaust thermoelectric generator (AETEG) based on Bi2Te3 thermoelectric modules (TEMs), taking into account the advantages and disadvantages of existing maximum power point tracking methods, and according to the output characteristics of TEMs, a hybrid maximum power point tracking method combining perturb and observe (P&O) algorithm, quadratic interpolation and constant voltage tracking method was put forward in this paper. Firstly, it searched the maximum power point with P&O algorithms and a quadratic interpolation method, then, it forced the AETEG to work at its maximum power point with constant voltage tracking. A synchronous buck converter and controller were implemented in the electric bus of the AETEG applied in a military sports utility vehicle, and the whole system was modeled and simulated with a MATLAB/Simulink environment. Simulation results demonstrate that the maximum output power of the AETEG based on the proposed hybrid method is increased by about 3.0% and 3.7% compared with that using only the P&O algorithm and the quadratic interpolation method, respectively. The shorter tracking time is only 1.4 s, which is reduced by half compared with that of the P&O algorithm and quadratic interpolation method, respectively. The experimental results demonstrate that the tracked maximum power is approximately equal to the real value using the proposed hybrid method,and it can preferentially deal with the voltage fluctuation of the AETEG with only P&O algorithm, and resolve the issue that its working point can barely be adjusted only with constant voltage tracking when the operation conditions change.
Energy Technology Data Exchange (ETDEWEB)
Lee, C. S.; Seo, C. K.; Lee, B. C.; Kim, H. N.; Kang, B. W. [KAERI, Taejon (Korea, Republic of)
2000-10-01
The HANARO fuel, U{sub 3}Si-Al, has been developed by AECL and tested in NRU reactor. Due to the lack of the data performed under the high power, the repetitive conduct of the irradiation test was required under the power greater than 108kW/m, which is the estimated maximum linear power in the design stage. Accordingly, the instrumented test bundle with SPND(Self Powered Neutron Detector) was fabricated and its irradiation test was performed in IR2 of HANARO. The measured thermal neutron flux with SPND is compared with calculation results by HANAFMS(HANARO Fuel Management System). The difference in the measured and calculated thermal flux values are below {+-}11% and the accuracy of the linear power predicted by HANAFMS is consequently accompanied. Therefore, it is believed that the maximum linear power above 120kW/m is achieved during the irradiation test of the test bundle.
Maximum Power Point Tracking of Photovoltaic System for Traffic Light Application
Muhida, Riza; Mohamad, Nor Hilmi; Legowo, Ari; Irawan, Rudi; Astuti, Winda
2013-01-01
Photovoltaic traffic light system is a significant application of renewable energy source. The development of the system is an alternative effort of local authority to reduce expenditure for paying fees to power supplier which the power comes from conventional energy source. Since photovoltaic (PV) modules still have relatively low conversion efficiency, an alternative control of maximum power point tracking (MPPT) method is applied to the traffic light system. MPPT is intended to catch up th...
Research Based on the Acoustic Emission of Wind Power Tower Drum Dynamic Monitoring Technology
Zhang, Penglin; Sang, Yuan; Xu, Yaxing; Zhao, Zhiqiang
Wind power tower drum is one of the key components of the wind power equipment. Whether the wind tower drum performs safety directly affects the efficiency, life, and performance of wind power equipment. Wind power tower drum in the process of manufacture, installation, and operation may lead to injury, and the wind load and gravity load and long-term factors such as poor working environment under the action of crack initiation or distortion, which eventually result in the instability or crack of the wind power tower drum and cause huge economic losses. Thus detecting the wind power tower drum crack damage and instability is especially important. In this chapter, acoustic emission is used to monitor the whole process of wind power tower drum material Q345E steel tensile test at first, and processing and analysis tensile failure signal of the material. And then based on the acoustic emission testing technology to the dynamic monitoring of wind power tower drum, the overall detection and evaluation of the existence of active defects in the whole structure, and the acoustic emission signals collected for processing and analysis, we could preliminarily master the wind tower drum mechanism of acoustic emission source. The acoustic emission is a kind of online, efficient, and economic method, which has very broad prospects for work. The editorial committee of nondestructive testing qualification and certification of personnel teaching material of science and technology industry of national defense, "Acoustic emission testing" (China Machine Press, 2005.1).
Estimation of the Maximum Output Power of Double-Clad Photonic Crystal Fiber Laser
International Nuclear Information System (INIS)
Chen Yue-E; Wang Yong; Qu Xi-Long
2012-01-01
Compared with traditional optical fiber lasers, double-clad photonic crystal fiber (PCF) lasers have larger surface-area-to-volume ratios. With an increase of output power, thermal effects may severely restrict output power and deteriorate beam quality of fiber lasers. We utilize the heat-conduction equations to estimate the maximum output power of a double-clad PCF laser under natural-convection, air-cooling, and water-cooling conditions in terms of a certain surface-volume heat ratio of the PCF. The thermal effects hence define an upper power limit of double-clad PCF lasers when scaling output power. (fundamental areas of phenomenology(including applications))
Tracking the global maximum power point of PV arrays under partial shading conditions
Fennich, Meryem
This thesis presents the theoretical and simulation studies of the global maximum power point tracking (MPPT) for photovoltaic systems under partial shading. The main goal is to track the maximum power point of the photovoltaic module so that the maximum possible power can be extracted from the photovoltaic panels. When several panels are connected in series with some of them shaded partially either due to clouds or shadows from neighboring buildings, several local maxima appear in the power vs. voltage curve. A power increment based MPPT algorithm is effective in identifying the global maximum from the several local maxima. Several existing MPPT algorithms are explored and the state-of-the-art power increment method is simulated and tested for various partial shading conditions. The current-voltage and power-voltage characteristics of the PV model are studied under different partial shading conditions, along with five different cases demonstrating how the MPPT algorithm performs when shading switches from one state to another. Each case is supplemented with simulation results. The method of tracking the Global MPP is based on controlling the DC-DC converter connected to the output of the PV array. A complete system simulation including the PV array, the direct current to direct current (DC-DC) converter and the MPPT is presented and tested using MATLAB software. The simulation results show that the MPPT algorithm works very well with the buck converter, while the boost converter needs further changes and implementation.
A novel algorithm for single-axis maximum power generation sun trackers
International Nuclear Information System (INIS)
Lee, Kung-Yen; Chung, Chi-Yao; Huang, Bin-Juine; Kuo, Ting-Jung; Yang, Huang-Wei; Cheng, Hung-Yen; Hsu, Po-Chien; Li, Kang
2017-01-01
Highlights: • A novel algorithm for a single-axis sun tracker is developed to increase the efficiency. • Photovoltaic module is rotated to find the optimal angle for generating the maximum power. • Electric energy increases up to 8.3%, compared with that of the tracker with three fixed angles. • The rotation range is optimized to reduce energy consumption from the rotation operations. - Abstract: The purpose of this study is to develop a novel algorithm for a single-axis maximum power generation sun tracker in order to identify the optimal stopping angle for generating the maximum amount of daily electric energy. First, the photovoltaic modules of the single-axis maximum power generation sun tracker are automatically rotated from 50° east to 50° west. During the rotation, the instantaneous power generated at different angles is recorded and compared, meaning that the optimal angle for generating the maximum power can be determined. Once the rotation (detection) is completed, the photovoltaic modules are then rotated to the resulting angle for generating the maximum power. The photovoltaic module is rotated once per hour in an attempt to detect the maximum irradiation and overcome the impact of environmental effects such as shading from cloud cover, other photovoltaic modules and surrounding buildings. Furthermore, the detection range is halved so as to reduce the energy consumption from the rotation operations and to improve the reliability of the sun tracker. The results indicate that electric energy production is increased by 3.4% in spring and autumn, 5.4% in summer, and 8.3% in winter, compared with that of the same sun tracker with three fixed angles of 50° east in the morning, 0° at noon and 50° west in the afternoon.
International Nuclear Information System (INIS)
Park, Jae-Do; Lee, Hohyun; Bond, Matthew
2014-01-01
Highlights: • Feedforward MPPT scheme for uninterrupted TEG energy harvesting is suggested. • Temperature sensors are used to avoid current measurement or source disconnection. • MPP voltage reference is generated based on OCV vs. temperature differential model. • Optimal operating condition is maintained using hysteresis controller. • Any type of power converter can be used in the proposed scheme. - Abstract: In this paper, a thermoelectric generator (TEG) energy harvesting system with a temperature-sensor-based maximum power point tracking (MPPT) method is presented. Conventional MPPT algorithms for photovoltaic cells may not be suitable for thermoelectric power generation because a significant amount of time is required for TEG systems to reach a steady state. Moreover, complexity and additional power consumption in conventional circuits and periodic disconnection of power source are not desirable for low-power energy harvesting applications. The proposed system can track the varying maximum power point (MPP) with a simple and inexpensive temperature-sensor-based circuit without instantaneous power measurement or TEG disconnection. This system uses TEG’s open circuit voltage (OCV) characteristic with respect to temperature gradient to generate a proper reference voltage signal, i.e., half of the TEG’s OCV. The power converter controller maintains the TEG output voltage at the reference level so that the maximum power can be extracted for the given temperature condition. This feedforward MPPT scheme is inherently stable and can be implemented without any complex microcontroller circuit. The proposed system has been validated analytically and experimentally, and shows a maximum power tracking error of 1.15%
Determination Of Maximum Power Of The RSG-Gas At Power Operation Mode Using One Line Cooling System
International Nuclear Information System (INIS)
Hastuti, Endiah Puji; Kuntoro, Iman; Darwis Isnaini, M.
2000-01-01
In the frame of minimizing the operation-cost, operation mode using one line cooling system is being evaluated. Maximum reactor power shall be determined to assure that the existing safety criteria are not violated. The analysis was done by means of a core thermal hydraulic code, COOLOD-N. The code solves core thermal hydraulic equation at steady state conditions. By varying the reactor power as the input, thermal hydraulic parameters such as fuel cladding and fuel meat temperatures as well as safety margin against flow instability were calculated. Imposing the safety criteria to the results, maximum permissible power for this operation was obtained as much as 17.1 MW. Nevertheless, for operation the maximum power is limited to 15MW
Acoustic Levitator Power Device: Study of Ethylene-Glycol Water Mixtures
Caccamo, M. T.; Cannuli, A.; Calabrò, E.; Magazù, S.
2017-05-01
Acoustic levitator power device is formed by two vertically and opposed high output acoustic transducers working at 22 kHz frequency and produces sound pressure levels of 160 dB. The acoustic waves are monitored from an oscilloscope using a signal amplifier. The ability to perform contactless measurements, avoidance of undesired contamination from the container, are some of advantages of this apparatus. Acoustic levitation can be also used for sample preparation of high concentrated mixtures starting from solutions. In the present paper, an acoustic levitator power device is employed to collect data on levitated water mixtures of Ethylene Glycol (EG) which are then analysed by Infra-Red spectroscopy. The study allows to follow the drying process versus time and to obtain a gel-like compound characterized by an extended chemical crosslinking.
Comparison of candidate solar array maximum power utilization approaches. [for spacecraft propulsion
Costogue, E. N.; Lindena, S.
1976-01-01
A study was made of five potential approaches that can be utilized to detect the maximum power point of a solar array while sustaining operations at or near maximum power and without endangering stability or causing array voltage collapse. The approaches studied included: (1) dynamic impedance comparator, (2) reference array measurement, (3) onset of solar array voltage collapse detection, (4) parallel tracker, and (5) direct measurement. The study analyzed the feasibility and adaptability of these approaches to a future solar electric propulsion (SEP) mission, and, specifically, to a comet rendezvous mission. Such missions presented the most challenging requirements to a spacecraft power subsystem in terms of power management over large solar intensity ranges of 1.0 to 3.5 AU. The dynamic impedance approach was found to have the highest figure of merit, and the reference array approach followed closely behind. The results are applicable to terrestrial solar power systems as well as to other than SEP space missions.
Improved Reliability of Single-Phase PV Inverters by Limiting the Maximum Feed-in Power
DEFF Research Database (Denmark)
Yang, Yongheng; Wang, Huai; Blaabjerg, Frede
2014-01-01
Grid operation experiences have revealed the necessity to limit the maximum feed-in power from PV inverter systems under a high penetration scenario in order to avoid voltage and frequency instability issues. A Constant Power Generation (CPG) control method has been proposed at the inverter level...... devices, allowing a quantitative prediction of the power device lifetime. A study case on a 3 kW single-phase PV inverter has demonstrated the advantages of the CPG control in terms of improved reliability.......Grid operation experiences have revealed the necessity to limit the maximum feed-in power from PV inverter systems under a high penetration scenario in order to avoid voltage and frequency instability issues. A Constant Power Generation (CPG) control method has been proposed at the inverter level....... The CPG control strategy is activated only when the DC input power from PV panels exceeds a specific power limit. It enables to limit the maximum feed-in power to the electric grids and also to improve the utilization of PV inverters. As a further study, this paper investigates the reliability performance...
Three-level grid-connected photovoltaic inverter with maximum power point tracking
International Nuclear Information System (INIS)
Tsang, K.M.; Chan, W.L.
2013-01-01
Highlight: ► This paper reports a novel 3-level grid connected photovoltaic inverter. ► The inverter features maximum power point tracking and grid current shaping. ► The inverter can be acted as an active filter and a renewable power source. - Abstract: This paper presents a systematic way of designing control scheme for a grid-connected photovoltaic (PV) inverter featuring maximum power point tracking (MPPT) and grid current shaping. Unlike conventional design, only four power switches are required to achieve three output levels and it is not necessary to use any phase-locked-loop circuitry. For the proposed scheme, a simple integral controller has been designed for the tracking of the maximum power point of a PV array based on an improved extremum seeking control method. For the grid-connected inverter, a current loop controller and a voltage loop controller have been designed. The current loop controller is designed to shape the inverter output current while the voltage loop controller can maintain the capacitor voltage at a certain level and provide a reference inverter output current for the PV inverter without affecting the maximum power point of the PV array. Experimental results are included to demonstrate the effectiveness of the tracking and control scheme.
Smriti Dwivedi; Prof. Sunil Kumar Bhatt
2016-01-01
Maximum power point tracking (MPPT) is a technique that charge controllers use for wind turbines and PV solar systems to maximize power output. PV solar systems exist in several different configurations. The most basic version sends power from collector panels directly to the DC-AC inverter and from there directly to the electrical grid. A second version, called a hybrid inverter, might split the power at the inverter, where a percentage of the power goes to the grid and the remainder goes to...
Directory of Open Access Journals (Sweden)
Azam Zaka
2014-10-01
Full Text Available This paper is concerned with the modifications of maximum likelihood, moments and percentile estimators of the two parameter Power function distribution. Sampling behavior of the estimators is indicated by Monte Carlo simulation. For some combinations of parameter values, some of the modified estimators appear better than the traditional maximum likelihood, moments and percentile estimators with respect to bias, mean square error and total deviation.
International Nuclear Information System (INIS)
Fathabadi, Hassan
2016-01-01
Highlights: • Novel sensorless MPPT technique without drawbacks of other sensor/sensorless methods. • Tracking the actual MPP of WECSs, no tracking the MPP of their wind turbines. • Actually extracting the highest output power from WECSs. • Novel MPPT technique having the MPPT efficiency more than 98.5% for WECSs. • Novel MPPT technique having short convergence time for WECSs. - Abstract: In this study, a novel high accurate sensorless maximum power point tracking (MPPT) method is proposed. The technique tracks the actual maximum power point of a wind energy conversion system (WECS) at which maximum output power is extracted from the system, not the maximum power point of its wind turbine at which maximum mechanical power is obtained from the turbine, so it actually extracts the highest output power from the system. The technique only uses input voltage and current of the converter used in the system, and neither needs any speed sensors (anemometer and tachometer) nor has the drawbacks of other sensor/sensorless based MPPT methods. The technique has been implemented as a MPPT controller by constructing a WECS. Theoretical results, the technique performance, and its advantages are validated by presenting real experimental results. The real static-dynamic response of the MPPT controller is experimentally obtained that verifies the proposed MPPT technique high accurately extracts the highest instant power from wind energy conversion systems with the MPPT efficiency of more than 98.5% and a short convergence time that is only 25 s for the constructed system having a total inertia and friction coefficient of 3.93 kg m 2 and 0.014 N m s, respectively.
Overview of Maximum Power Point Tracking Techniques for Photovoltaic Energy Production Systems
DEFF Research Database (Denmark)
Koutroulis, Eftichios; Blaabjerg, Frede
2015-01-01
A substantial growth of the installed photovoltaic systems capacity has occurred around the world during the last decade, thus enhancing the availability of electric energy in an environmentally friendly way. The maximum power point tracking technique enables maximization of the energy production...... of photovoltaic sources during stochastically varying solar irradiation and ambient temperature conditions. Thus, the overall efficiency of the photovoltaic energy production system is increased. Numerous techniques have been presented during the last decade for implementing the maximum power point tracking...... process in a photovoltaic system. This article provides an overview of the operating principles of these techniques, which are suited for either uniform or non-uniform solar irradiation conditions. The operational characteristics and implementation requirements of these maximum power point tracking...
Maximum power point tracking for photovoltaic solar pump based on ANFIS tuning system
Directory of Open Access Journals (Sweden)
S. Shabaan
2018-05-01
Full Text Available Solar photovoltaic (PV systems are a clean and naturally replenished energy source. PV panels have a unique point which represents the maximum available power and this point depend on the environmental conditions such as temperature and irradiance. A maximum power point tracking (MPPT is therefore necessary for maximum efficiency. In this paper, a study of MPPT for PV water pumping system based on adaptive neuro-fuzzy inference system (ANFIS is discussed. A comparison between the performance of the system with and without MPPT is carried out under varying irradiation and temperature conditions. ANFIS based controller shows fast response with high efficiency at all irradiance and temperature levels making it a powerful technique for non-linear systems as PV modules. Keywords: MPPT, ANFIS, Boost converter, PMDC pump
Enhancing Plasma Surface Modification using high Intensity and high Power Ultrasonic Acoustic Waves
DEFF Research Database (Denmark)
2010-01-01
high intensity and high power acoustic waves (102) by at least one ultrasonic high intensity and high power acoustic wave generator (101 ), wherein the ultrasonic acoustic waves are directed to propagate towards said surface (314) of the object (100) so that a laminar boundary layer (313) of a gas...... or a mixture of gases (500) flow in contact with said solid object (100) is thinned or destructed for at least a part of said surface (314). In this way, the plasma can more efficiently access and influence the surface of the solid object to be treated by the plasma, which speeds the process time up...
Longitudinal and transverse space charge limitations on transport of maximum power beams
International Nuclear Information System (INIS)
Khoe, T.K.; Martin, R.L.
1977-01-01
The maximum transportable beam power is a critical issue in selecting the most favorable approach to generating ignition pulses for inertial fusion with high energy accelerators. Maschke and Courant have put forward expressions for the limits on transport power for quadrupole and solenoidal channels. Included in a more general way is the self consistent effect of space charge defocusing on the power limit. The results show that no limits on transmitted power exist in principal. In general, quadrupole transport magnets appear superior to solenoids except for transport of very low energy and highly charged particles. Longitudinal space charge effects are very significant for transport of intense beams
Power electronics and control techniques for maximum energy harvesting in photovoltaic systems
Femia, Nicola
2012-01-01
Incentives provided by European governments have resulted in the rapid growth of the photovoltaic (PV) market. Many PV modules are now commercially available, and there are a number of power electronic systems for processing the electrical power produced by PV systems, especially for grid-connected applications. Filling a gap in the literature, Power Electronics and Control Techniques for Maximum Energy Harvesting in Photovoltaic Systems brings together research on control circuits, systems, and techniques dedicated to the maximization of the electrical power produced by a photovoltaic (PV) so
Estimation of Maximum Allowable PV Connection to LV Residential Power Networks
DEFF Research Database (Denmark)
Demirok, Erhan; Sera, Dezso; Teodorescu, Remus
2011-01-01
Maximum photovoltaic (PV) hosting capacity of low voltage (LV) power networks is mainly restricted by either thermal limits of network components or grid voltage quality resulted from high penetration of distributed PV systems. This maximum hosting capacity may be lower than the available solar...... potential of geographic area due to power network limitations even though all rooftops are fully occupied with PV modules. Therefore, it becomes more of an issue to know what exactly limits higher PV penetration level and which solutions should be engaged efficiently such as over sizing distribution...
New algorithm using only one variable measurement applied to a maximum power point tracker
Energy Technology Data Exchange (ETDEWEB)
Salas, V.; Olias, E.; Lazaro, A.; Barrado, A. [University Carlos III de Madrid (Spain). Dept. of Electronic Technology
2005-05-01
A novel algorithm for seeking the maximum power point of a photovoltaic (PV) array for any temperature and solar irradiation level, needing only the PV current value, is proposed. Satisfactory theoretical and experimental results are presented and were obtained when the algorithm was included on a 100 W 24 V PV buck converter prototype, using an inexpensive microcontroller. The load of the system used was a battery and a resistance. The main advantage of this new maximum power point tracking (MPPT), when is compared with others, is that it only uses the measurement of the photovoltaic current, I{sub PV}. (author)
Maximum Power Point Tracking Using Sliding Mode Control for Photovoltaic Array
Directory of Open Access Journals (Sweden)
J. Ghazanfari
2013-09-01
Full Text Available In this paper, a robust Maximum Power Point Tracking (MPPT for PV array has been proposed using sliding mode control by defining a new formulation for sliding surface which is based on increment conductance (INC method. The stability and robustness of the proposed controller are investigated to load variations and environment changes. Three different types of DC-DC converter are used in Maximum Power Point (MPP system and the results obtained are given. The simulation results confirm the effectiveness of the proposed method in the presence of load variations and environment changes for different types of DC-DC converter topologies.
Energy Technology Data Exchange (ETDEWEB)
Garrigos, Ausias; Blanes, Jose M.; Carrasco, Jose A. [Area de Tecnologia Electronica, Universidad Miguel Hernandez de Elche, Avda. de la Universidad s/n, 03202 Elche, Alicante (Spain); Ejea, Juan B. [Departamento de Ingenieria Electronica, Universidad de Valencia, Avda. Dr Moliner 50, 46100 Valencia, Valencia (Spain)
2007-05-15
In this paper, an approximate curve fitting method for photovoltaic modules is presented. The operation is based on solving a simple solar cell electrical model by a microcontroller in real time. Only four voltage and current coordinates are needed to obtain the solar module parameters and set its operation at maximum power in any conditions of illumination and temperature. Despite its simplicity, this method is suitable for low cost real time applications, as control loop reference generator in photovoltaic maximum power point circuits. The theory that supports the estimator together with simulations and experimental results are presented. (author)
Development of a multilayer structure for power unit acoustic shielding
African Journals Online (AJOL)
absorbing properties of various polyurethane materials were carried out. The prospect of polymeric composite materials use as the acoustic protection of trucks has been revealed. One of the main problems of modern ecology is the noise ...
Directory of Open Access Journals (Sweden)
Chen-Han Wu
2011-12-01
Full Text Available Due to Japan’s recent nuclear crisis and petroleum price hikes, the search for renewable energy sources has become an issue of immediate concern. A promising candidate attracting much global attention is solar energy, as it is green and also inexhaustible. A maximum power point tracking (MPPT controller is employed in such a way that the output power provided by a photovoltaic (PV system is boosted to its maximum level. However, in the context of abrupt changes in irradiance, conventional MPPT controller approaches suffer from insufficient robustness against ambient variation, inferior transient response and a loss of output power as a consequence of the long duration required of tracking procedures. Accordingly, in this work the maximum power point tracking is carried out successfully using a sliding mode extremum-seeking control (SMESC method, and the tracking performances of three controllers are compared by simulations, that is, an extremum-seeking controller, a sinusoidal extremum-seeking controller and a sliding mode extremum-seeking controller. Being able to track the maximum power point promptly in the case of an abrupt change in irradiance, the SMESC approach is proven by simulations to be superior in terms of system dynamic and steady state responses, and an excellent robustness along with system stability is demonstrated as well.
Two-Stage Chaos Optimization Search Application in Maximum Power Point Tracking of PV Array
Directory of Open Access Journals (Sweden)
Lihua Wang
2014-01-01
Full Text Available In order to deliver the maximum available power to the load under the condition of varying solar irradiation and environment temperature, maximum power point tracking (MPPT technologies have been used widely in PV systems. Among all the MPPT schemes, the chaos method is one of the hot topics in recent years. In this paper, a novel two-stage chaos optimization method is presented which can make search faster and more effective. In the process of proposed chaos search, the improved logistic mapping with the better ergodic is used as the first carrier process. After finding the current optimal solution in a certain guarantee, the power function carrier as the secondary carrier process is used to reduce the search space of optimized variables and eventually find the maximum power point. Comparing with the traditional chaos search method, the proposed method can track the change quickly and accurately and also has better optimization results. The proposed method provides a new efficient way to track the maximum power point of PV array.
Realworld maximum power point tracking simulation of PV system based on Fuzzy Logic control
Othman, Ahmed M.; El-arini, Mahdi M. M.; Ghitas, Ahmed; Fathy, Ahmed
2012-12-01
In the recent years, the solar energy becomes one of the most important alternative sources of electric energy, so it is important to improve the efficiency and reliability of the photovoltaic (PV) systems. Maximum power point tracking (MPPT) plays an important role in photovoltaic power systems because it maximize the power output from a PV system for a given set of conditions, and therefore maximize their array efficiency. This paper presents a maximum power point tracker (MPPT) using Fuzzy Logic theory for a PV system. The work is focused on the well known Perturb and Observe (P&O) algorithm and is compared to a designed fuzzy logic controller (FLC). The simulation work dealing with MPPT controller; a DC/DC Ćuk converter feeding a load is achieved. The results showed that the proposed Fuzzy Logic MPPT in the PV system is valid.
Realworld maximum power point tracking simulation of PV system based on Fuzzy Logic control
Directory of Open Access Journals (Sweden)
Ahmed M. Othman
2012-12-01
Full Text Available In the recent years, the solar energy becomes one of the most important alternative sources of electric energy, so it is important to improve the efficiency and reliability of the photovoltaic (PV systems. Maximum power point tracking (MPPT plays an important role in photovoltaic power systems because it maximize the power output from a PV system for a given set of conditions, and therefore maximize their array efficiency. This paper presents a maximum power point tracker (MPPT using Fuzzy Logic theory for a PV system. The work is focused on the well known Perturb and Observe (P&O algorithm and is compared to a designed fuzzy logic controller (FLC. The simulation work dealing with MPPT controller; a DC/DC Ćuk converter feeding a load is achieved. The results showed that the proposed Fuzzy Logic MPPT in the PV system is valid.
International Nuclear Information System (INIS)
Wenzel, H; Crump, P; Pietrzak, A; Wang, X; Erbert, G; Traenkle, G
2010-01-01
The factors that limit both the continuous wave (CW) and the pulsed output power of broad-area laser diodes driven at very high currents are investigated theoretically and experimentally. The decrease in the gain due to self-heating under CW operation and spectral holeburning under pulsed operation, as well as heterobarrier carrier leakage and longitudinal spatial holeburning, are the dominant mechanisms limiting the maximum achievable output power.
Maximum attainable power density and wall load in tokamaks underlying reactor relevant constraints
International Nuclear Information System (INIS)
Borrass, K.; Buende, R.
1979-09-01
The characteristic data of tokamaks optimized with respect to their power density or wall load are determined. Reactor relevant constraints are imposed, such as a fixed plant net power output, a fixed blanket thickness and the dependence of the maximum toroidal field on the geometry and conductor material. The impact of finite burn times is considered. Various scaling laws of the toroidal beta with the aspect ratio are discussed. (orig.) 891 GG/orig. 892 RDG [de
Maximum power point tracking: a cost saving necessity in solar energy systems
Energy Technology Data Exchange (ETDEWEB)
Enslin, J H.R. [Stellenbosch Univ. (South Africa). Dept. of Electrical and Electronic Engineering
1992-12-01
A well engineered renewable remote energy system, utilizing the principal of Maximum Power Point Tracking (MPPT) can improve cost effectiveness, has a higher reliability and can improve the quality of life in remote areas. A high-efficient power electronic converter, for converting the output voltage of a solar panel, or wind generator, to the required DC battery bus voltage has been realized. The converter is controlled to track the maximum power point of the input source under varying input and output parameters. Maximum power point tracking for relative small systems is achieved by maximization of the output current in a battery charging regulator, using an optimized hill-climbing, inexpensive microprocessor based algorithm. Through practical field measurements it is shown that a minimum input source saving of between 15 and 25% on 3-5 kWh/day systems can easily be achieved. A total cost saving of at least 10-15% on the capital cost of these systems are achievable for relative small rating Remote Area Power Supply (RAPS) systems. The advantages at large temperature variations and high power rated systems are much higher. Other advantages include optimal sizing and system monitor and control. (author).
International Nuclear Information System (INIS)
Awan, M.M.A.; Awan, F.G.
2017-01-01
Extraction of maximum power from PV (Photovoltaic) cell is necessary to make the PV system efficient. Maximum power can be achieved by operating the system at MPP (Maximum Power Point) (taking the operating point of PV panel to MPP) and for this purpose MPPT (Maximum Power Point Trackers) are used. There are many tracking algorithms/methods used by these trackers which includes incremental conductance, constant voltage method, constant current method, short circuit current method, PAO (Perturb and Observe) method, and open circuit voltage method but PAO is the mostly used algorithm because it is simple and easy to implement. PAO algorithm has some drawbacks, one is low tracking speed under rapid changing weather conditions and second is oscillations of PV systems operating point around MPP. Little improvement is achieved in past papers regarding these issues. In this paper, a new method named 'Decrease and Fix' method is successfully introduced as improvement in PAO algorithm to overcome these issues of tracking speed and oscillations. Decrease and fix method is the first successful attempt with PAO algorithm for stability achievement and speeding up of tracking process in photovoltaic system. Complete standalone photovoltaic system's model with improved perturb and observe algorithm is simulated in MATLAB Simulink. (author)
Bilateral differences in peak force, power, and maximum plie depth during multiple grande jetes
Wyon, M.; Harris, J.; Brown, D.D.; Clark, F.
2013-01-01
A lateral bias has been previously reported in dance training. The aim of this study was to investigate whether there are any bilateral differences in peak forces, power, and maximum knee flexion during a sequence of three grand jetes and how they relate to leg dominance. A randomised observational
Energy Technology Data Exchange (ETDEWEB)
Enrique, J.M.; Duran, E.; Andujar, J.M. [Departamento de Ingenieria Electronica, de Sistemas Informaticos y Automatica, Universidad de Huelva (Spain); Sidrach-de-Cardona, M. [Departamento de Fisica Aplicada, II, Universidad de Malaga (Spain)
2007-01-15
The operating point of a photovoltaic generator that is connected to a load is determined by the intersection point of its characteristic curves. In general, this point is not the same as the generator's maximum power point. This difference means losses in the system performance. DC/DC converters together with maximum power point tracking systems (MPPT) are used to avoid these losses. Different algorithms have been proposed for maximum power point tracking. Nevertheless, the choice of the configuration of the right converter has not been studied so widely, although this choice, as demonstrated in this work, has an important influence in the optimum performance of the photovoltaic system. In this article, we conduct a study of the three basic topologies of DC/DC converters with resistive load connected to photovoltaic modules. This article demonstrates that there is a limitation in the system's performance according to the type of converter used. Two fundamental conclusions are derived from this study: (1) the buck-boost DC/DC converter topology is the only one which allows the follow-up of the PV module maximum power point regardless of temperature, irradiance and connected load and (2) the connection of a buck-boost DC/DC converter in a photovoltaic facility to the panel output could be a good practice to improve performance. (author)
An automotive thermoelectric-photovoltaic hybrid energy system using maximum power point tracking
International Nuclear Information System (INIS)
Zhang Xiaodong; Chau, K.T.
2011-01-01
In recent years, there has been active research on exhaust gas waste heat energy recovery for automobiles. Meanwhile, the use of solar energy is also proposed to promote on-board renewable energy and hence to improve their fuel economy. In this paper, a new thermoelectric-photovoltaic (TE-PV) hybrid energy system is proposed and implemented for automobiles. The key is to newly develop the power conditioning circuit using maximum power point tracking so that the output power of the proposed TE-PV hybrid energy system can be maximized. An experimental system is prototyped and tested to verify the validity of the proposed system.
Maximum power point tracker for portable photovoltaic systems with resistive-like load
Energy Technology Data Exchange (ETDEWEB)
De Cesare, G.; Caputo, D.; Nascetti, A. [Department of Electronic Engineering, University of Rome La Sapienza via Eudossiana, 18 00184 Rome (Italy)
2006-08-15
In this work we report on the design and realization of a maximum power point tracking (MPPT) circuit suitable for low power, portable applications with resistive load. The design rules included cost, size and power efficiency considerations. A novel scheme for the implementation of the control loop of the MPPT circuit is proposed, combining good performance with compact design. The operation and performances were simulated at circuit schematic level with simulation program with integrated circuit emphasis (SPICE). The improved operation of a PV system using our MPPT circuit was demonstrated using a purely resistive load. (author)
Institute of Scientific and Technical Information of China (English)
Esmaeil Ghaderi; Hossein Tohidi; Behnam Khosrozadeh
2017-01-01
The present study was carried out in order to track the maximum power point in a variable speed turbine by minimizing electromechanical torque changes using a sliding mode control strategy.In this strategy,fhst,the rotor speed is set at an optimal point for different wind speeds.As a result of which,the tip speed ratio reaches an optimal point,mechanical power coefficient is maximized,and wind turbine produces its maximum power and mechanical torque.Then,the maximum mechanical torque is tracked using electromechanical torque.In this technique,tracking error integral of maximum mechanical torque,the error,and the derivative of error are used as state variables.During changes in wind speed,sliding mode control is designed to absorb the maximum energy from the wind and minimize the response time of maximum power point tracking (MPPT).In this method,the actual control input signal is formed from a second order integral operation of the original sliding mode control input signal.The result of the second order integral in this model includes control signal integrity,full chattering attenuation,and prevention from large fluctuations in the power generator output.The simulation results,calculated by using MATLAB/m-file software,have shown the effectiveness of the proposed control strategy for wind energy systems based on the permanent magnet synchronous generator (PMSG).
Energy Technology Data Exchange (ETDEWEB)
Kuo, J.-L.; Hong, P.-J. [National Kaohsiung First Univ. of Science and Technology, Nantze, Kaohsiung, Taiwan (China). Dept. of Mechanical and Automation Engineering; Chao, K.-L. [National Kaohsiung Univ. of Applied Sciences, Nantze, Kaohsiung, Taiwan (China). Dept. of Electrical Engineering; Wang, T.-Y. [Chang-Gung Univ., Kwei-Shan, Tao-Yuan, Taiwan (China). Dept. of Electrical Engineering
2007-07-01
Solar energy is a popular renewable energy source for the future because it does not produce any pollution. In addition, it is unlimited and a clean source of energy. This paper discussed a photovoltaic solar fan system that could be used inside the house with the potential of cooling the indoor temperature. The solar cell module is located at the eaves of the house and could block the sunlight directly into the house, and convert solar power into electric power through the battery. The paper described software implementation and hardware circuit design in detail. The paper also illustrated a different algorithm to calculate the maximum power point regulation. The conventional algorithm calculates the solar cell module output power by multiplying the input voltage and input current for the solar cell module directly. By changing the input voltage variable into duty variable, the voltage sensor is not required under the proposed scheme. Only the duty and current variables are needed to calculate the maximum power. The microchip dsPIC microcontroller was used to implement the algorithm. Different DC link levels were verified and implemented for comparison. It was concluded that the characteristics of the solar cell module could be measured automatically, and the maximum power point could be guaranteed by the proposed algorithm. 9 refs., 6 tabs., 14 figs.
Determination of the wind power systems load to achieve operation in the maximum energy area
Chioncel, C. P.; Tirian, G. O.; Spunei, E.; Gillich, N.
2018-01-01
This paper analyses the operation of the wind turbine, WT, in the maximum power point, MPP, by linking the load of the Permanent Magnet Synchronous Generator, PMSG, with the wind speed value. The load control methods at wind power systems aiming an optimum performance in terms of energy are based on the fact that the energy captured by the wind turbine significantly depends on the mechanical angular speed of the wind turbine. The presented control method consists in determining the optimal mechanical angular speed, ωOPTIM, using an auxiliary low power wind turbine, WTAUX, operating without load, at maximum angular velocity, ωMAX. The method relies on the fact that the ratio ωOPTIM/ωMAX has a constant value for a given wind turbine and does not depend on the time variation of the wind speed values.
An improved maximum power point tracking method for a photovoltaic system
Ouoba, David; Fakkar, Abderrahim; El Kouari, Youssef; Dkhichi, Fayrouz; Oukarfi, Benyounes
2016-06-01
In this paper, an improved auto-scaling variable step-size Maximum Power Point Tracking (MPPT) method for photovoltaic (PV) system was proposed. To achieve simultaneously a fast dynamic response and stable steady-state power, a first improvement was made on the step-size scaling function of the duty cycle that controls the converter. An algorithm was secondly proposed to address wrong decision that may be made at an abrupt change of the irradiation. The proposed auto-scaling variable step-size approach was compared to some various other approaches from the literature such as: classical fixed step-size, variable step-size and a recent auto-scaling variable step-size maximum power point tracking approaches. The simulation results obtained by MATLAB/SIMULINK were given and discussed for validation.
A New MPPT Control for Photovoltaic Panels by Instantaneous Maximum Power Point Tracking
Tokushima, Daiki; Uchida, Masato; Kanbei, Satoshi; Ishikawa, Hiroki; Naitoh, Haruo
This paper presents a new maximum power point tracking control for photovoltaic (PV) panels. The control can be categorized into the Perturb and Observe (P & O) method. It utilizes instantaneous voltage ripples at PV panel output terminals caused by the switching of a chopper connected to the panel in order to identify the direction for the maximum power point (MPP). The tracking for the MPP is achieved by a feedback control of the average terminal voltage of the panel. Appropriate use of the instantaneous and the average values of the PV voltage for the separate purposes enables both the quick transient response and the good convergence with almost no ripples simultaneously. The tracking capability is verified experimentally with a 2.8 W PV panel under a controlled experimental setup. A numerical comparison with a conventional P & O confirms that the proposed control extracts much more power from the PV panel.
Directory of Open Access Journals (Sweden)
Woonki Na
2017-03-01
Full Text Available This paper presents an improved maximum power point tracking (MPPT algorithm using a fuzzy logic controller (FLC in order to extract potential maximum power from photovoltaic cells. The objectives of the proposed algorithm are to improve the tracking speed, and to simultaneously solve the inherent drawbacks such as slow tracking in the conventional perturb and observe (P and O algorithm. The performances of the conventional P and O algorithm and the proposed algorithm are compared by using MATLAB/Simulink in terms of the tracking speed and steady-state oscillations. Additionally, both algorithms were experimentally validated through a digital signal processor (DSP-based controlled-boost DC-DC converter. The experimental results show that the proposed algorithm performs with a shorter tracking time, smaller output power oscillation, and higher efficiency, compared with the conventional P and O algorithm.
Fuzzy sliding mode control for maximum power point tracking of a photovoltaic pumping system
Directory of Open Access Journals (Sweden)
Sabah Miqoi
2017-03-01
Full Text Available In this paper a new maximum power point tracking method based on fuzzy sliding mode control is proposed, and employed in a PV water pumping system based on a DC-DC boost converter, to produce maximum power from the solar panel hence more speed in the DC motor and more water quantity. This method combines two different tracking techniques sliding mode control and fuzzy logic; our controller is based on sliding mode control, then to give better stability and enhance the power production a fuzzy logic technique was added. System modeling, sliding method definition and the new control method presentation are represented in this paper. The results of the simulation that are compared to both sliding mode controller and perturbation and observation method demonstrate effectiveness and robustness of the proposed controller.
Directory of Open Access Journals (Sweden)
DURUSU, A.
2014-08-01
Full Text Available Maximum power point trackers (MPPTs play an essential role in extracting power from photovoltaic (PV panels as they make the solar panels to operate at the maximum power point (MPP whatever the changes of environmental conditions are. For this reason, they take an important place in the increase of PV system efficiency. MPPTs are driven by MPPT algorithms and a number of MPPT algorithms are proposed in the literature. The comparison of the MPPT algorithms in literature are made by a sun simulator based test system under laboratory conditions for short durations. However, in this study, the performances of four most commonly used MPPT algorithms are compared under real environmental conditions for longer periods. A dual identical experimental setup is designed to make a comparison between two the considered MPPT algorithms as synchronized. As a result of this study, the ranking among these algorithms are presented and the results show that Incremental Conductance (IC algorithm gives the best performance.
Recent Developments in Maximum Power Point Tracking Technologies for Photovoltaic Systems
Directory of Open Access Journals (Sweden)
Nevzat Onat
2010-01-01
Full Text Available In photovoltaic (PV system applications, it is very important to design a system for operating of the solar cells (SCs under best conditions and highest efficiency. Maximum power point (MPP varies depending on the angle of sunlight on the surface of the panel and cell temperature. Hence, the operating point of the load is not always MPP of PV system. Therefore, in order to supply reliable energy to the load, PV systems are designed to include more than the required number of modules. The solution to this problem is that switching power converters are used, that is called maximum power point tracker (MPPT. In this study, the various aspects of these algorithms have been analyzed in detail. Classifications, definitions, and basic equations of the most widely used MPPT technologies are given. Moreover, a comparison was made in the conclusion.
Design of Asymmetrical Relay Resonators for Maximum Efficiency of Wireless Power Transfer
Directory of Open Access Journals (Sweden)
Bo-Hee Choi
2016-01-01
Full Text Available This paper presents a new design method of asymmetrical relay resonators for maximum wireless power transfer. A new design method for relay resonators is demanded because maximum power transfer efficiency (PTE is not obtained at the resonant frequency of unit resonator. The maximum PTE for relay resonators is obtained at the different resonances of unit resonator. The optimum design of asymmetrical relay is conducted by both the optimum placement and the optimum capacitance of resonators. The optimum placement is found by scanning the positions of the relays and optimum capacitance can be found by using genetic algorithm (GA. The PTEs are enhanced when capacitance is optimally designed by GA according to the position of relays, respectively, and then maximum efficiency is obtained at the optimum placement of relays. The capacitance of the second resonator to nth resonator and the load resistance should be determined for maximum efficiency while the capacitance of the first resonator and the source resistance are obtained for the impedance matching. The simulated and measured results are in good agreement.
Stabilized Acoustic Levitation of Dense Materials Using a High-Powered Siren
Gammell, P. M.; Croonquist, A.; Wang, T. G.
1982-01-01
Stabilized acoustic levitation and manipulation of dense (e.g., steel) objects of 1 cm diameter, using a high powered siren, was demonstrated in trials that investigated the harmonic content and spatial distribution of the acoustic field, as well as the effect of sample position and reflector geometries on the acoustic field. Although further optimization is possible, the most stable operation achieved is expected to be adequate for most containerless processing applications. Best stability was obtained with an open reflector system, using a flat lower reflector and a slightly concave upper one. Operation slightly below resonance enhances stability as this minimizes the second harmonic, which is suspected of being a particularly destabilizing influence.
Optimal Velocity to Achieve Maximum Power Output – Bench Press for Trained Footballers
Richard Billich; Jakub Štvrtňa; Karel Jelen
2015-01-01
Optimal Velocity to Achieve Maximum Power Output – Bench Press for Trained Footballers In today’s world of strength training there are many myths surrounding effective exercising with the least possible negative effect on one’s health. In this experiment we focus on the finding of a relationship between maximum output, used load and the velocity with which the exercise is performed. The main objective is to find the optimal speed of the exercise motion which would allow us to reach the ma...
Conservation of power of the supersonic acoustic intensity
DEFF Research Database (Denmark)
Fernandez Grande, Efren; Jacobsen, Finn
2014-01-01
The supersonic intensity is a quantity that represents the net acoustic output that a source couples into the medium; it can be regarded as a spatially low-pass filtered version of the active intensity. This spatial filtering can lead to significant error due to spatial truncation. In this paper,...
An acoustic pyrometer system for tomographic thermal imaging in power plant boilers
Bramanti, Mauro; Gray, Antoinia; Pasini, Sauro; Salerno, Emanuele; Tonazzini, Anna
1994-01-01
The paper presents an acoustic pyrometry method for the reconstruction of temperature maps inside power plant boilers. It is based on measuring times-of-flight of acoustic waves along a number of straight paths in a cross-section of the boiler; via an integral relationship, these times depend on the temperature of the gaseous medium along the paths. On this basis, 2D temperature maps can be reconstructed using" suitable inversion techniques. The structure of a particular 'system for the measu...
Smart Global Maximum Power Point Tracking Controller of Photovoltaic Module Arrays
Directory of Open Access Journals (Sweden)
Long-Yi Chang
2018-03-01
Full Text Available This study first explored the effect of shading on the output characteristics of modules in a photovoltaic module array. Next, a modified particle swarm optimization (PSO method was employed to track the maximum power point of the multiple-peak characteristic curve of the array. Through the optimization method, the weighting value and cognition learning factor decreased with an increasing number of iterations, whereas the social learning factor increased, thereby enhancing the tracking capability of a maximum power point tracker. In addition, the weighting value was slightly modified on the basis of the changes in the slope and power of the characteristic curve to increase the tracking speed and stability of the tracker. Finally, a PIC18F8720 microcontroller was coordinated with peripheral hardware circuits to realize the proposed PSO method, which was then adopted to track the maximum power point of the power–voltage (P–V output characteristic curve of the photovoltaic module array under shading. Subsequently, tests were conducted to verify that the modified PSO method exhibited favorable tracking speed and accuracy.
A new maximum power point method based on a sliding mode approach for solar energy harvesting
International Nuclear Information System (INIS)
Farhat, Maissa; Barambones, Oscar; Sbita, Lassaad
2017-01-01
Highlights: • Create a simple, easy of implement and accurate V_M_P_P estimator. • Stability analysis of the proposed system based on the Lyapunov’s theory. • A comparative study versus P&O, highlight SMC good performances. • Construct a new PS-SMC algorithm to include the partial shadow case. • Experimental validation of the SMC MPP tracker. - Abstract: This paper presents a photovoltaic (PV) system with a maximum power point tracking (MPPT) facility. The goal of this work is to maximize power extraction from the photovoltaic generator (PVG). This goal is achieved using a sliding mode controller (SMC) that drives a boost converter connected between the PVG and the load. The system is modeled and tested under MATLAB/SIMULINK environment. In simulation, the sliding mode controller offers fast and accurate convergence to the maximum power operating point that outperforms the well-known perturbation and observation method (P&O). The sliding mode controller performance is evaluated during steady-state, against load varying and panel partial shadow (PS) disturbances. To confirm the above conclusion, a practical implementation of the maximum power point tracker based sliding mode controller on a hardware setup is performed on a dSPACE real time digital control platform. The data acquisition and the control system are conducted all around dSPACE 1104 controller board and its RTI environment. The experimental results demonstrate the validity of the proposed control scheme over a stand-alone real photovoltaic system.
An extension theory-based maximum power tracker using a particle swarm optimization algorithm
International Nuclear Information System (INIS)
Chao, Kuei-Hsiang
2014-01-01
Highlights: • We propose an adaptive maximum power point tracking (MPPT) approach for PV systems. • Transient and steady state performances in tracking process are improved. • The proposed MPPT can automatically tune tracking step size along a P–V curve. • A PSO algorithm is used to determine the weighting values of extension theory. - Abstract: The aim of this work is to present an adaptive maximum power point tracking (MPPT) approach for photovoltaic (PV) power generation system. Integrating the extension theory as well as the conventional perturb and observe method, an maximum power point (MPP) tracker is made able to automatically tune tracking step size by way of the category recognition along a P–V characteristic curve. Accordingly, the transient and steady state performances in tracking process are improved. Furthermore, an optimization approach is proposed on the basis of a particle swarm optimization (PSO) algorithm for the complexity reduction in the determination of weighting values. At the end of this work, a simulated improvement in the tracking performance is experimentally validated by an MPP tracker with a programmable system-on-chip (PSoC) based controller
International Nuclear Information System (INIS)
Lin, Chia-Hung; Huang, Cong-Hui; Du, Yi-Chun; Chen, Jian-Liung
2011-01-01
Highlights: → The FOICM can shorten the tracking time less than traditional methods. → The proposed method can work under lower solar radiation including thin and heavy clouds. → The FOICM algorithm can achieve MPPT for radiation and temperature changes. → It is easy to implement in a single-chip microcontroller or embedded system. -- Abstract: This paper proposes maximum photovoltaic power tracking (MPPT) for the photovoltaic (PV) array using the fractional-order incremental conductance method (FOICM). Since the PV array has low conversion efficiency, and the output power of PV array depends on the operation environments, such as various solar radiation, environment temperature, and weather conditions. Maximum charging power can be increased to a battery using a MPPT algorithm. The energy conversion of the absorbed solar light and cell temperature is directly transferred to the semiconductor, but electricity conduction has anomalous diffusion phenomena in inhomogeneous material. FOICM can provide a dynamic mathematical model to describe non-linear characteristics. The fractional-order incremental change as dynamic variable is used to adjust the PV array voltage toward the maximum power point. For a small-scale PV conversion system, the proposed method is validated by simulation with different operation environments. Compared with traditional methods, experimental results demonstrate the short tracking time and the practicality in MPPT of PV array.
Performances improvement of maximum power point tracking perturb and observe method
Energy Technology Data Exchange (ETDEWEB)
Egiziano, L.; Femia, N.; Granozio, D.; Petrone, G.; Spagnuolo, G. [Salermo Univ., Salermo (Italy); Vitelli, M. [Seconda Univ. di Napoli, Napoli (Italy)
2006-07-01
Perturb and observe best operation conditions were investigated in order to identify edge efficiency performance capabilities of a maximum power point (MPP) tracking technique for photovoltaic (PV) applications. The strategy was developed to ensure a 3-points behavior across the MPP under a fixed irradiation level with a central point blocked on the MPP and 2 operating points operating at voltage values that guaranteed the same power levels. The system was also devised to quickly detect the MPP movement in the presence of varying atmospheric conditions by increasing the perturbation so that the MPP was guaranteed within a few sampling periods. A perturbation equation was selected where amplitude was represented as a function of the actual power drawn from the PV field together with the adoption of a parabolic interpolation of the sequence of the final 3 acquired voltage power couples corresponding to as many operating points. The technique was developed to ensure that the power difference between 2 consecutive operating points was higher than the power quantization error. Simulations were conducted to demonstrate that the proposed technique arranged operating points symmetrically around the MPP. The average power of the 3-points set was achieved by means of the parabolic prediction. Experiments conducted to validate the simulation showed a reduced power oscillation below the MPP and a real power gain. 2 refs., 8 figs.
Leyva, R.; Artillan, P.; Cabal, C.; Estibals, B.; Alonso, C.
2011-04-01
The article studies the dynamic performance of a family of maximum power point tracking circuits used for photovoltaic generation. It revisits the sinusoidal extremum seeking control (ESC) technique which can be considered as a particular subgroup of the Perturb and Observe algorithms. The sinusoidal ESC technique consists of adding a small sinusoidal disturbance to the input and processing the perturbed output to drive the operating point at its maximum. The output processing involves a synchronous multiplication and a filtering stage. The filter instance determines the dynamic performance of the MPPT based on sinusoidal ESC principle. The approach uses the well-known root-locus method to give insight about damping degree and settlement time of maximum-seeking waveforms. This article shows the transient waveforms in three different filter instances to illustrate the approach. Finally, an experimental prototype corroborates the dynamic analysis.
Comparison of P&O and INC Methods in Maximum Power Point Tracker for PV Systems
Chen, Hesheng; Cui, Yuanhui; Zhao, Yue; Wang, Zhisen
2018-03-01
In the context of renewable energy, the maximum power point tracker (MPPT) is often used to increase the solar power efficiency, taking into account the randomness and volatility of solar energy due to changes in temperature and photovoltaic. In all MPPT techniques, perturb & observe and incremental conductance are widely used in MPPT controllers, because of their simplicity and ease of operation. According to the internal structure of the photovoltaic cell and the output volt-ampere characteristic, this paper established the circuit model and establishes the dynamic simulation model in Matlab/Simulink with the preparation of the s function. The perturb & observe MPPT method and the incremental conductance MPPT method were analyzed and compared by the theoretical analysis and digital simulation. The simulation results have shown that the system with INC MPPT method has better dynamic performance and improves the output power of photovoltaic power generation.
Performance Analysis of a Maximum Power Point Tracking Technique using Silver Mean Method
Directory of Open Access Journals (Sweden)
Shobha Rani Depuru
2018-01-01
Full Text Available The proposed paper presents a simple and particularly efficacious Maximum Power Point Tracking (MPPT algorithm based on Silver Mean Method (SMM. This method operates by choosing a search interval from the P-V characteristics of the given solar array and converges to MPP of the Solar Photo-Voltaic (SPV system by shrinking its interval. After achieving the maximum power, the algorithm stops shrinking and maintains constant voltage until the next interval is decided. The tracking capability efficiency and performance analysis of the proposed algorithm are validated by the simulation and experimental results with a 100W solar panel for variable temperature and irradiance conditions. The results obtained confirm that even without any perturbation and observation process, the proposed method still outperforms the traditional perturb and observe (P&O method by demonstrating far better steady state output, more accuracy and higher efficiency.
International Nuclear Information System (INIS)
Kareim, Ameer A; Mansor, Muhamad Bin
2013-01-01
The aim of this paper is to improve efficiency of maximum power point tracking (MPPT) for PV systems. The Support Vector Machine (SVM) was proposed to achieve the MPPT controller. The theoretical, the perturbation and observation (P and O), and incremental conductance (IC) algorithms were used to compare with proposed SVM algorithm. MATLAB models for PV module, theoretical, SVM, P and O, and IC algorithms are implemented. The improved MPPT uses the SVM method to predict the optimum voltage of the PV system in order to extract the maximum power point (MPP). The SVM technique used two inputs which are solar radiation and ambient temperature of the modeled PV module. The results show that the proposed SVM technique has less Root Mean Square Error (RMSE) and higher efficiency than P and O and IC methods.
Robust Controller to Extract the Maximum Power of a Photovoltaic System
Directory of Open Access Journals (Sweden)
OULD CHERCHALI Noureddine
2014-05-01
Full Text Available This paper proposes a technique of intelligent control to track the maximum power point (MPPT of a photovoltaic system . The PV system is non-linear and it is exposed to external perturbations like temperature and solar irradiation. Fuzzy logic control is known for its stability and robustness. FLC is adopted in this work for the improvement and optimization of control performance of a photovoltaic system. Another technique called perturb and observe (P & O is studied and compared with the FLC technique. The PV system is constituted of a photovoltaic panel (PV, a DC-DC converter (Boost and a battery like a load. The simulation results are developed in MATLAB / Simulink software. The results show that the controller based on fuzzy logic is better and faster than the conventional controller perturb and observe (P & O and gives a good maximum power of a photovoltaic generator under different changes of weather conditions.
Energy Technology Data Exchange (ETDEWEB)
Barboza, Luciano Vitoria [Sul-riograndense Federal Institute for Education, Science and Technology (IFSul), Pelotas, RS (Brazil)], E-mail: luciano@pelotas.ifsul.edu.br
2009-07-01
This paper presents an overview about the maximum load ability problem and aims to study the main factors that limit this load ability. Specifically this study focuses its attention on determining which electric system buses influence directly on the power demand supply. The proposed approach uses the conventional maximum load ability method modelled by an optimization problem. The solution of this model is performed using the Interior Point methodology. As consequence of this solution method, the Lagrange multipliers are used as parameters that identify the probable 'bottlenecks' in the electric power system. The study also shows the relationship between the Lagrange multipliers and the cost function in the Interior Point optimization interpreted like sensitivity parameters. In order to illustrate the proposed methodology, the approach was applied to an IEEE test system and to assess its performance, a real equivalent electric system from the South- Southeast region of Brazil was simulated. (author)
Implementation of Maximum Power Point Tracking (MPPT) Solar Charge Controller using Arduino
Abdelilah, B.; Mouna, A.; KouiderM’Sirdi, N.; El Hossain, A.
2018-05-01
the platform Arduino with a number of sensors standard can be used as components of an electronic system for acquiring measures and controls. This paper presents the design of a low-cost and effective solar charge controller. This system includes several elements such as the solar panel converter DC/DC, battery, circuit MPPT using Microcontroller, sensors, and the MPPT algorithm. The MPPT (Maximum Power Point Tracker) algorithm has been implemented using an Arduino Nano with the preferred program. The voltage and current of the Panel are taken where the program implemented will work and using this algorithm that MPP will be reached. This paper provides details on the solar charge control device at the maximum power point. The results include the change of the duty cycle with the change in load and thus mean the variation of the buck converter output voltage and current controlled by the MPPT algorithm.
Razali, Akhtar; Rahman, Fadhlur; Leong, Yap Wee; Razali Hanipah, Mohd; Azri Hizami, Mohd
2018-04-01
The magnetism attraction between permanent magnets and soft ironcore lamination in a conventional electric ironcore generator is often known as cogging. Cogging requires an additional input power to overcome, hence became one of the power loss sources. With the increasing of power output, the cogging is also proportionally increased. This leads to the increasing of the supplied power of the driver motor to overcome the cog. Therefore, this research is embarked to study fundamentally about the possibility of removing ironcore lamination in an electric generator to see its performance characteristic. In the maximum power point tracking test, the fabricated ironless coreless electricity generator was tested by applying the load on the ironless coreless electricity generator optimization to maximize the power generated, voltage and the current produced by the ironless coreless electricity generator when the rotational speed of the rotor increased throughout the test. The rotational torque and power output are measured, and efficiency is then analyzed. Results indicated that the generator produced RMS voltage of 200VAC at rotational speed of 318 RPM. Torque required to rotate the generator was at 10.8Nm. The generator had working efficiency of 77.73% and the power generated was at 280W.
The Possibility of Functioning at Maximum Power for Solar Photovoltaic - Electric Battery Systems
Directory of Open Access Journals (Sweden)
Chioncel Cristian Paul
2013-01-01
Full Text Available The paper presents the functioning of a solar photovoltaic module(PVM that debits direct to on electric battery (EB. By a good adaptingof PVM to EB, so that the no load voltage of the two components (PVMand EB are well suited, during a day the energy value can be reachednear to the maximum possible value, when the PVM functions in themaximum power point (MPP. The proposed solution is much moreeconomic than the classical: PVM + DC – DC + EB because the directcurrent - direct current power converter, is not necessary (DC - DC.
Appelbaum, J.; Singer, S.
1989-01-01
A calculation of the starting torque ratio of permanent magnet, series, and shunt-excited dc motors powered by solar cell arrays is presented for two cases, i.e., with and without a maximum-power-point tracker (MPPT). Defining motor torque magnification by the ratio of the motor torque with an MPPT to the motor torque without an MPPT, a magnification of 3 for the permanent magnet motor and a magnification of 7 for both the series and shunt motors are obtained. The study also shows that all motor types are less sensitive to solar insolation variation in systems including MPPTs as compared to systems without MPPTs.
Thermoelectric automotive waste heat energy recovery using maximum power point tracking
International Nuclear Information System (INIS)
Yu Chuang; Chau, K.T.
2009-01-01
This paper proposes and implements a thermoelectric waste heat energy recovery system for internal combustion engine automobiles, including gasoline vehicles and hybrid electric vehicles. The key is to directly convert the heat energy from automotive waste heat to electrical energy using a thermoelectric generator, which is then regulated by a DC-DC Cuk converter to charge a battery using maximum power point tracking. Hence, the electrical power stored in the battery can be maximized. Both analysis and experimental results demonstrate that the proposed system can work well under different working conditions, and is promising for automotive industry.
Efficiency of Photovoltaic Maximum Power Point Tracking Controller Based on a Fuzzy Logic
Directory of Open Access Journals (Sweden)
Ammar Al-Gizi
2017-07-01
Full Text Available This paper examines the efficiency of a fuzzy logic control (FLC based maximum power point tracking (MPPT of a photovoltaic (PV system under variable climate conditions and connected load requirements. The PV system including a PV module BP SX150S, buck-boost DC-DC converter, MPPT, and a resistive load is modeled and simulated using Matlab/Simulink package. In order to compare the performance of FLC-based MPPT controller with the conventional perturb and observe (P&O method at different irradiation (G, temperature (T and connected load (RL variations – rising time (tr, recovering time, total average power and MPPT efficiency topics are calculated. The simulation results show that the FLC-based MPPT method can quickly track the maximum power point (MPP of the PV module at the transient state and effectively eliminates the power oscillation around the MPP of the PV module at steady state, hence more average power can be extracted, in comparison with the conventional P&O method.
Maximum power point tracking controller for PV systems using neural networks
Energy Technology Data Exchange (ETDEWEB)
Bahgat, A.B.G. [Cairo Univ. (Egypt). Faculty of Engineering; Helwa, N.H.; Ahmad, G.E.; El Shenawy, E.T. [National Research Center, Dokki, Cairo (Egypt). Solar Energy Dept.
2005-07-01
This paper presents a development and implementation of a PC-based maximum power point tracker (MPPT) for PV system using neural networks (NN). The system consists of a PV module via a MPPT supplying a dc motor that drives an air fan. The control algorithm is developed to use the artificial NN for detecting the optimal operating point under different operating conditions, then the control action gives the driving signals to the MPPT. A PC is used for data acquisition, running the control algorithm, data storage, as well as data display and analysis. The system has been implemented and tested under various operating conditions. The experimental results showed that the PV system with MPPT always tracks the peak power point of the PV module under various operating conditions. The MPPT transmits about 97% of the actual maximum power generated by the PV module. The MPPT not only increases the power from the PV module to the load, but also maintains longer operating periods for the PV system. The air velocity and the air mass flow rate of the mechanical load are increased considerably, due to the increase of the PV system power. It is also found that the increase in the output energy due to using the MPPT is about 45.2% for a clear sunny day. (Author)
Directory of Open Access Journals (Sweden)
Luigi Piegari
2015-04-01
Full Text Available The power extracted from PV arrays is usually maximized using maximum power point tracking algorithms. One of the most widely used techniques is the perturb & observe algorithm, which periodically perturbs the operating point of the PV array, sometime with an adaptive perturbation step, and compares the PV power before and after the perturbation. This paper analyses the most suitable perturbation step to optimize maximum power point tracking performance and suggests a design criterion to select the parameters of the controller. Using this proposed adaptive step, the MPPT perturb & observe algorithm achieves an excellent dynamic response by adapting the perturbation step to the actual operating conditions of the PV array. The proposed algorithm has been validated and tested in a laboratory using a dual input inductor push-pull converter. This particular converter topology is an efficient interface to boost the low voltage of PV arrays and effectively control the power flow when input or output voltages are variable. The experimental results have proved the superiority of the proposed algorithm in comparison of traditional perturb & observe and incremental conductance techniques.
Examination of Maximum Power Point Tracking on the EV for Installing on Windmill
雪田, 和人; 細江, 忠司; 小田切, 雄也; 後藤, 泰之; 一柳, 勝宏
2006-01-01
This paper proposes that wind generator system is operated by using wind collection equipment and Maximum Power Point Tracking more and more high-efficient. As an example of the utility, it was proposed that it was used for the regeneration of electric vehicle. The efficiency upgrading of electric vehicle can be expect by introducing in addition, proposing system with the conventional regeneration. The field experiment was carried out in order to measure the effect. Regeneration energy by pro...
Rahnamaei, Z.; Nematollahi, N.; Farnoosh, R.
2012-01-01
We introduce an alternative skew-slash distribution by using the scale mixture of the exponential power distribution. We derive the properties of this distribution and estimate its parameter by Maximum Likelihood and Bayesian methods. By a simulation study we compute the mentioned estimators and their mean square errors, and we provide an example on real data to demonstrate the modeling strength of the new distribution.
Directory of Open Access Journals (Sweden)
Z. Rahnamaei
2012-01-01
Full Text Available We introduce an alternative skew-slash distribution by using the scale mixture of the exponential power distribution. We derive the properties of this distribution and estimate its parameter by Maximum Likelihood and Bayesian methods. By a simulation study we compute the mentioned estimators and their mean square errors, and we provide an example on real data to demonstrate the modeling strength of the new distribution.
Photovoltaic High-Frequency Pulse Charger for Lead-Acid Battery under Maximum Power Point Tracking
Directory of Open Access Journals (Sweden)
Hung-I. Hsieh
2013-01-01
Full Text Available A photovoltaic pulse charger (PV-PC using high-frequency pulse train for charging lead-acid battery (LAB is proposed not only to explore the charging behavior with maximum power point tracking (MPPT but also to delay sulfating crystallization on the electrode pores of the LAB to prolong the battery life, which is achieved due to a brief pulse break between adjacent pulses that refreshes the discharging of LAB. Maximum energy transfer between the PV module and a boost current converter (BCC is modeled to maximize the charging energy for LAB under different solar insolation. A duty control, guided by a power-increment-aided incremental-conductance MPPT (PI-INC MPPT, is implemented to the BCC that operates at maximum power point (MPP against the random insolation. A 250 W PV-PC system for charging a four-in-series LAB (48 Vdc is examined. The charging behavior of the PV-PC system in comparison with that of CC-CV charger is studied. Four scenarios of charging statuses of PV-BC system under different solar insolation changes are investigated and compared with that using INC MPPT.
International Nuclear Information System (INIS)
Elnaggar, M.; Abdel Fattah, H.A.; Elshafei, A.L.
2014-01-01
This paper presents a complete design of a two-level control system to capture maximum power in wind energy conversion systems. The upper level of the proposed control system adopts a modified line search optimization algorithm to determine a setpoint for the wind turbine speed. The calculated speed setpoint corresponds to the maximum power point at given operating conditions. The speed setpoint is fed to a generalized predictive controller at the lower level of the control system. A different formulation, that treats the aerodynamic torque as a disturbance, is postulated to derive the control law. The objective is to accurately track the setpoint while keeping the control action free from unacceptably fast or frequent variations. Simulation results based on a realistic model of a 1.5 MW wind turbine confirm the superiority of the proposed control scheme to the conventional ones. - Highlights: • The structure of a MPPT (maximum power point tracking) scheme is presented. • The scheme is divided into the optimization algorithm and the tracking controller. • The optimization algorithm is based on an online line search numerical algorithm. • The tracking controller is treating the aerodynamics torque as a loop disturbance. • The control technique is simulated with stochastic wind speed by Simulink and FAST
Simulation model of ANN based maximum power point tracking controller for solar PV system
Energy Technology Data Exchange (ETDEWEB)
Rai, Anil K.; Singh, Bhupal [Department of Electrical and Electronics Engineering, Ajay Kumar Garg Engineering College, Ghaziabad 201009 (India); Kaushika, N.D.; Agarwal, Niti [School of Research and Development, Bharati Vidyapeeth College of Engineering, A-4 Paschim Vihar, New Delhi 110063 (India)
2011-02-15
In this paper the simulation model of an artificial neural network (ANN) based maximum power point tracking controller has been developed. The controller consists of an ANN tracker and the optimal control unit. The ANN tracker estimates the voltages and currents corresponding to a maximum power delivered by solar PV (photovoltaic) array for variable cell temperature and solar radiation. The cell temperature is considered as a function of ambient air temperature, wind speed and solar radiation. The tracker is trained employing a set of 124 patterns using the back propagation algorithm. The mean square error of tracker output and target values is set to be of the order of 10{sup -5} and the successful convergent of learning process takes 1281 epochs. The accuracy of the ANN tracker has been validated by employing different test data sets. The control unit uses the estimates of the ANN tracker to adjust the duty cycle of the chopper to optimum value needed for maximum power transfer to the specified load. (author)
Directory of Open Access Journals (Sweden)
Mohsen Aminaei
2017-08-01
Full Text Available The purpose of this study was to investigate the effects of plyometric and cluster resistance training on explosive power and maximum strength in karate players. Eighteen women, karate players (age mean ± SD 18.22 ± 3.02 years, mean height 163 ± 0.63cm, and mean body mass 53.25 ± 7.34 kg were selected as volunteer samples. They were divided into two groups with respect to their recorded one repetition maximum squat exercise: [1] plyometric training (PT=9 and [2] Cluster training (CT=9 groups and performed a 9-week resistance training protocol that included three stages; [1] General fitness (2 weeks, [2] Strength (4 weeks and [3] Power (3 weeks. Each group performed strength and power trainings for 7 weeks in stage two and three with owned protocol. The subjects were evaluated three times before stage one and after two and three stages for maximum strength and power. Data was analyzed using two way Repeated Measures (ANOVA at a significance level of (P≤0.05. The statistical analysis showed that training stages on all research variables had a significant impact. The maximum strength of the pre-test, post-test strength and post-test power were in cluster group: 29.05 ± 1.54; 32.89 ± 2.80 and 48.74 ± 4.33w and in plyometric group were 26.98 ± 1.54; 38.48 ± 2.80 and 49.82 ± 4.33w respectively. The explosive power of the pre-test, post-test strength and post-test power in cluster group were 359.32±36.20; 427.91±34.56 and 460.55±36.80w and in plyometric group were 333.90±36.20; 400.33±34.56 and 465.20±36.80w respectively. However, there were not statistically significant differences in research variables between resistance cluster and plyometric training groups after 7 weeks. The results indicated both cluster and plyometric training program seems to improve physical fitness elements at the same levels.
Sliding-Mode Controller for Maximum Power Point Tracking in Grid-Connected Photovoltaic Systems
Directory of Open Access Journals (Sweden)
Paula Andrea Ortiz Valencia
2015-11-01
Full Text Available The maximum power point tracking (MPPT of photovoltaic systems must be as fast and accurate as possible to increase the power production, which eventually increases the PV system profitability. This paper proposes and mathematically analyses a sliding-mode controller to provide a fast and accurate maximum power point tracking in grid-connected photovoltaic systems using a single control stage. This approach avoids the circular dependency in the design of classical cascade controllers used to optimize the photovoltaic system operation, and at the same time, it reduces the number of controllers and avoids the use of linearized models to provide global stability in all the operation range. Such a compact solution also reduces the system cost and implementation complexity. To ensure the stability of the proposed solution, detailed mathematical analyses are performed to demonstrate the fulfillment of the transversality, reachability and equivalent control conditions. Finally, the performance of the proposed solution is validated using detailed simulations, executed in the power electronics simulator PSIM, accounting for both environmental and load perturbations.
Directory of Open Access Journals (Sweden)
Ssennoga Twaha
2017-12-01
Full Text Available This study proposes and implements maximum power Point Tracking (MPPT control on thermoelectric generation system using an extremum seeking control (ESC algorithm. The MPPT is applied to guarantee maximum power extraction from the TEG system. The work has been carried out through modelling of thermoelectric generator/dc-dc converter system using Matlab/Simulink. The effectiveness of ESC technique has been assessed by comparing the results with those of the Perturb and Observe (P&O MPPT method under the same operating conditions. Results indicate that ESC MPPT method extracts more power than the P&O technique, where the output power of ESC technique is higher than that of P&O by 0.47 W or 6.1% at a hot side temperature of 200 °C. It is also noted that the ESC MPPT based model is almost fourfold faster than the P&O method. This is attributed to smaller MPPT circuit of ESC compared to that of P&O, hence we conclude that the ESC MPPT method outperforms the P&O technique.
Solar Panel System for Street Light Using Maximum Power Point Tracking (MPPT Technique
Directory of Open Access Journals (Sweden)
Wiedjaja A.
2014-03-01
Full Text Available Solar energy is one form of the renewable energy which is very abundant in regions close to the equator. One application of solar energy is for street light. This research focuses on using the maximum power point tracking technique (MPPT, particularly the perturb and observe (P&O algorithm, to charge battery for street light system. The proposed charger circuit can achieve 20.73% higher power efficiency compared to that of non-MPPT charger. We also develop the LED driver circuit for the system which can achieve power efficiency up to 91.9% at a current of 1.06 A. The proposed street lightning system can be implemented with a relatively low cost for public areas.
Directory of Open Access Journals (Sweden)
R. Ramaprabha
2015-06-01
Full Text Available Mismatching effects due to partial shaded conditions are the major drawbacks existing in today’s photovoltaic (PV systems. These mismatch effects are greatly reduced in distributed PV system architecture where each panel is effectively decoupled from its neighboring panel. To obtain the optimal operation of the PV panels, maximum power point tracking (MPPT techniques are used. In partial shaded conditions, detecting the maximum operating point is difficult as the characteristic curves are complex with multiple peaks. In this paper, a neural network control technique is employed for MPPT. Detailed analyses were carried out on MPPT controllers in centralized and distributed architecture under partial shaded environments. The efficiency of the MPPT controllers and the effectiveness of the proposed control technique under partial shaded environments was examined using MATLAB software. The results were validated through experimentation.
A comparative study of the maximum power point tracking methods for PV systems
International Nuclear Information System (INIS)
Liu, Yali; Li, Ming; Ji, Xu; Luo, Xi; Wang, Meidi; Zhang, Ying
2014-01-01
Highlights: • An improved maximum power point tracking method for PV system was proposed. • Theoretical derivation procedure of the proposed method was provided. • Simulation models of MPPT trackers were established based on MATLAB/Simulink. • Experiments were conducted to verify the effectiveness of the proposed MPPT method. - Abstract: Maximum power point tracking (MPPT) algorithms play an important role in the optimization of the power and efficiency of a photovoltaic (PV) generation system. According to the contradiction of the classical Perturb and Observe (P and Oa) method between the corresponding speed and the tracking accuracy on steady-state, an improved P and O (P and Ob) method has been put forward in this paper by using the Atken interpolation algorithm. To validate the correctness and performance of the proposed method, simulation and experimental study have been implemented. Simulation models of classical P and Oa method and improved P and Ob method have been established by MATLAB/Simulink to analyze each technique under varying solar irradiation and temperature. The experimental results show that the tracking efficiency of P and Ob method is an average of 93% compared to 72% for P and Oa method, this conclusion basically agree with the simulation study. Finally, we proposed the applicable conditions and scope of these MPPT methods in the practical application
RELIABILITY OF THE ONE REPETITION-MAXIMUM POWER CLEAN TEST IN ADOLESCENT ATHLETES
Faigenbaum, Avery D.; McFarland, James E.; Herman, Robert; Naclerio, Fernando; Ratamess, Nicholas A.; Kang, Jie; Myer, Gregory D.
2013-01-01
Although the power clean test is routinely used to assess strength and power performance in adult athletes, the reliability of this measure in younger populations has not been examined. Therefore, the purpose of this study was to determine the reliability of the one repetition maximum (1 RM) power clean in adolescent athletes. Thirty-six male athletes (age 15.9 ± 1.1 yrs, body mass 79.1 ± 20.3 kg, height 175.1 ±7.4 cm) who had more than 1 year of training experience with weightlifting exercises performed a 1 RM power clean on two nonconsecutive days in the afternoon following standardized procedures. All test procedures were supervised by a senior level weightlifting coach and consisted of a systematic progression in test load until the maximum resistance that could be lifted for one repetition using proper exercise technique was determined. Data were analyzed using an intraclass correlation coefficient (ICC [2,k]), Pearson correlation coefficient (r), repeated measures ANOVA, Bland-Altman plot, and typical error analyses. Analysis of the data revealed that the test measures were highly reliable demonstrating a test-retest ICC of 0.98 (95% CI = 0.96–0.99). Testing also demonstrated a strong relationship between 1 RM measures on trial 1 and trial 2 (r=0.98, pinjuries occurred during the study period and the testing protocol was well-tolerated by all subjects. These findings indicate that 1 RM power clean testing has a high degree of reproducibility in trained male adolescent athletes when standardized testing procedures are followed and qualified instruction is present. PMID:22233786
Acoustic energy harvesting based on a planar acoustic metamaterial
Qi, Shuibao; Oudich, Mourad; Li, Yong; Assouar, Badreddine
2016-06-01
We theoretically report on an innovative and practical acoustic energy harvester based on a defected acoustic metamaterial (AMM) with piezoelectric material. The idea is to create suitable resonant defects in an AMM to confine the strain energy originating from an acoustic incidence. This scavenged energy is converted into electrical energy by attaching a structured piezoelectric material into the defect area of the AMM. We show an acoustic energy harvester based on a meta-structure capable of producing electrical power from an acoustic pressure. Numerical simulations are provided to analyze and elucidate the principles and the performances of the proposed system. A maximum output voltage of 1.3 V and a power density of 0.54 μW/cm3 are obtained at a frequency of 2257.5 Hz. The proposed concept should have broad applications on energy harvesting as well as on low-frequency sound isolation, since this system acts as both acoustic insulator and energy harvester.
Maximizing the transferred power to electric arc furnace for having maximum production
International Nuclear Information System (INIS)
Samet, Haidar; Ghanbari, Teymoor; Ghaisari, Jafar
2014-01-01
In order to increase production of an EAF (electric arc furnace) by reduction of melting time, one can increase transferred power to the EAF. In other words a certain value of energy can be transferred to the EAF in less time. The transferred power to the EAF reduces when series reactors are utilized in order to have stable arc with desired characteristics. To compensate the reduced transferred power, the secondary voltage of the EAF transformer should be increased by tap changing of the transformer. On the other hand, after any tap changing of the EAF transformer, improved arc stability is degraded. Therefore, the series reactor and EAF transformer tap changing should be simultaneously determined to achieve arc with desired characteristics. In this research, three approaches are proposed to calculate the EAF system parameters, by which the optimal set-points of the different series reactor and EAF transformer taps are determined. The electric characteristics relevant to the EAF for the all transformer and series reactor taps with and without SVC (static VAr compensator) are plotted and based on these graphs the optimal set-points are tabulated. Finally, an economic evaluation is also presented for the methods. - Highlights: • The main goal is to transfer the maximum power to electric arc furnace. • Optimal transformer and series reactor taps are determined. • Arc stability and transferred power to EAF determine the optimal performance. • An economic assessment is done and the number of increased meltings is calculated
Energy Technology Data Exchange (ETDEWEB)
Larbes, C.; Ait Cheikh, S.M.; Obeidi, T.; Zerguerras, A. [Laboratoire des Dispositifs de Communication et de Conversion Photovoltaique, Departement d' Electronique, Ecole Nationale Polytechnique, 10, Avenue Hassen Badi, El Harrach, Alger 16200 (Algeria)
2009-10-15
This paper presents an intelligent control method for the maximum power point tracking (MPPT) of a photovoltaic system under variable temperature and irradiance conditions. First, for the purpose of comparison and because of its proven and good performances, the perturbation and observation (P and O) technique is briefly introduced. A fuzzy logic controller based MPPT (FLC) is then proposed which has shown better performances compared to the P and O MPPT based approach. The proposed FLC has been also improved using genetic algorithms (GA) for optimisation. Different development stages are presented and the optimized fuzzy logic MPPT controller (OFLC) is then simulated and evaluated, which has shown better performances. (author)
SIMULATION OF NEW SIMPLE FUZZY LOGIC MAXIMUM POWER POINT TRACKER FOR PHOTOVOLTAIC ARRAY
Directory of Open Access Journals (Sweden)
H. Serhoud
2015-08-01
Full Text Available A new simple fuzzy method used for tracking the maximum power point tracker (MPPT for photovoltaic systems is proposed. The input parameters and duty cycle D are used to generate the optimal MPPT under different operating conditions, The photovoltaic system simulated and constructed by photovoltaic arrays, a DC/DC boost converter, a fuzzy MPPT control and a resistive load, The Fuzzy control law designed and the results in a simulation platform will be presented and compare to Perturbation and observation (P&O controller.
Maximum power point tracking techniques for wind energy systems using three levels boost converter
Tran, Cuong Hung; Nollet, Frédéric; Essounbouli, Najib; Hamzaoui, Abdelaziz
2018-05-01
This paper presents modeling and simulation of three level Boost DC-DC converter in Wind Energy Conversion System (WECS). Three-level Boost converter has significant advantage compared to conventional Boost. A maximum power point tracking (MPPT) method for a variable speed wind turbine using permanent magnet synchronous generator (PMSG) is also presented. Simulation of three-level Boost converter topology with Perturb and Observe algorithm and Fuzzy Logic Control is implemented in MATLAB/SIMULINK. Results of this simulation show that the system with MPPT using fuzzy logic controller has better performance to the Perturb and Observe algorithm: fast response under changing conditions and small oscillation.
Ion energy loss at maximum stopping power in a laser-generated plasma
International Nuclear Information System (INIS)
Cayzac, W.
2013-01-01
In the frame of this thesis, a new experimental setup for the measurement of the energy loss of carbon ions at maximum stopping power in a hot laser-generated plasma has been developed and successfully tested. In this parameter range where the projectile velocity is of the same order of magnitude as the thermal velocity of the plasma free electrons, large uncertainties of up to 50% are present in the stopping-power description. To date, no experimental data are available to perform a theory benchmarking. Testing the different stopping theories is yet essential for inertial confinement fusion and in particular for the understanding of the alpha-particle heating of the thermonuclear fuel. Here, for the first time, precise measurements were carried out in a reproducible and entirely characterized beam-plasma configuration. It involved a nearly fully-stripped ion beam probing a homogeneous fully-ionized plasma. This plasma was generated by irradiating a thin carbon foil with two high-energy laser beams and features a maximum electron temperature of 200 eV. The plasma conditions were simulated with a two-dimensional radiative hydrodynamic code, while the ion-beam charge-state distribution was predicted by means of a Monte-Carlo code describing the charge-exchange processes of projectile ions in plasma. To probe at maximum stopping power, high-frequency pulsed ion bunches were decelerated to an energy of 0.5 MeV per nucleon. The ion energy loss was determined by a time-of-flight measurement using a specifically developed chemical-vapor-deposition diamond detector that was screened against any plasma radiation. A first experimental campaign was carried out using this newly developed platform, in which a precision better than 200 keV on the energy loss was reached. This allowed, via the knowledge of the plasma and of the beam parameters, to reliably test several stopping theories, either based on perturbation theory or on a nonlinear T-Matrix formalism. A preliminary
A reliable, fast and low cost maximum power point tracker for photovoltaic applications
Energy Technology Data Exchange (ETDEWEB)
Enrique, J.M.; Andujar, J.M.; Bohorquez, M.A. [Departamento de Ingenieria Electronica, de Sistemas Informaticos y Automatica, Universidad de Huelva (Spain)
2010-01-15
This work presents a new maximum power point tracker system for photovoltaic applications. The developed system is an analog version of the ''P and O-oriented'' algorithm. It maintains its main advantages: simplicity, reliability and easy practical implementation, and avoids its main disadvantages: inaccurateness and relatively slow response. Additionally, the developed system can be implemented in a practical way at a low cost, which means an added value. The system also shows an excellent behavior for very fast variables in incident radiation levels. (author)
Kaiplavil, Sreekumar; Rivens, Ian; ter Haar, Gail
2013-07-01
Ultrasound imparted air-recoil resonance (UIAR), a new method for acoustic power estimation, is introduced with emphasis on therapeutic high-intensity focused ultrasound (HIFU) monitoring applications. Advantages of this approach over existing practices include fast response; electrical and magnetic inertness, and hence MRI compatibility; portability; high damage threshold and immunity to vibration and interference; low cost; etc. The angle of incidence should be fixed for accurate measurement. However, the transducer-detector pair can be aligned in any direction with respect to the force of gravity. In this sense, the operation of the device is orientation independent. The acoustic response of a pneumatically coupled pair of Helmholtz resonators, with one of them acting as the sensor head, is used for the estimation of acoustic power. The principle is valid in the case of pulsed/ burst as well as continuous ultrasound exposure, the former being more sensitive and accurate. An electro-acoustic theory has been developed for describing the dynamics of pressure flow and resonance in the system considering various thermo- viscous loss mechanisms. Experimental observations are found to be in agreement with theoretical results. Assuming the window damage threshold (~10 J·mm(-2)) and accuracy of RF power estimation are the upper and lower scale-limiting factors, the performance of the device was examined for an RF power range of 5 mW to 100 W with a HIFU transducer operating at 1.70 MHz, and an average nonlinearity of ~1.5% was observed. The device is also sensitive to sub-milliwatt powers. The frequency response was analyzed at 0.85, 1.70, 2.55, and 3.40 MHz and the results are presented with respective theoretical estimates. Typical response time is in the millisecond regime. Output drift is about 3% for resonant and 5% for nonresonant modes. The principle has been optimized to demonstrate a general-purpose acoustic power meter.
The sound power emitted by a source of low acoustic impedance
DEFF Research Database (Denmark)
Jacobsen, Finn; Verholt, Lars M.
1998-01-01
Several authors have maintained that a source of low acoustic impedance (which includes standardised reference sources of the aerodynamic type) would radiate less than the free field power in a reverberation room. However, neither computer simulations nor experiments have confirmed this assertion....
Directory of Open Access Journals (Sweden)
Wei Wang
2012-05-01
Full Text Available This paper proposes a novel optimal current given (OCG maximum power point tracking (MPPT control strategy based on the theory of power feedback and hill climb searching (HCS for a permanent magnet direct drive wind energy conversion system (WECS. The presented strategy not only has the advantages of not needing the wind speed and wind turbine characteristics of the traditional HCS method, but it also improves the stability and accuracy of MPPT by estimating the exact loss torque. The OCG MPPT control strategy is first carried out by simulation, then an experimental platform based on the dSPACE1103 controller is built and a 5.5 kW permanent magnet synchronous generator (PMSG is tested. Furthermore, the proposed method is compared experimentally with the traditional optimum tip speed ratio (TSR MPPT control. The experiments verify the effectiveness of the proposed OCG MPPT strategy and demonstrate its better performance than the traditional TSR MPPT control.
DEFF Research Database (Denmark)
Lashab, Abderezak; Sera, Dezso; Guerrero, Josep M.
2018-01-01
The main objective of this work is to provide an overview and evaluation of discrete model predictive controlbased maximum power point tracking (MPPT) for PV systems. A large number of MPC based MPPT methods have been recently introduced in the literature with very promising performance, however......, an in-depth investigation and comparison of these methods have not been carried out yet. Therefore, this paper has set out to provide an in-depth analysis and evaluation of MPC based MPPT methods applied to various common power converter topologies. The performance of MPC based MPPT is directly linked...... with the converter topology, and it is also affected by the accurate determination of the converter parameters, sensitivity to converter parameter variations is also investigated. The static and dynamic performance of the trackers are assessed according to the EN 50530 standard, using detailed simulation models...
Atik, L.; Petit, P.; Sawicki, J. P.; Ternifi, Z. T.; Bachir, G.; Della, M.; Aillerie, M.
2017-02-01
Solar panels have a nonlinear voltage-current characteristic, with a distinct maximum power point (MPP), which depends on the environmental factors, such as temperature and irradiation. In order to continuously harvest maximum power from the solar panels, they have to operate at their MPP despite the inevitable changes in the environment. Various methods for maximum power point tracking (MPPT) were developed and finally implemented in solar power electronic controllers to increase the efficiency in the electricity production originate from renewables. In this paper we compare using Matlab tools Simulink, two different MPP tracking methods, which are, fuzzy logic control (FL) and sliding mode control (SMC), considering their efficiency in solar energy production.
International Nuclear Information System (INIS)
Mamur, Hayati; Ahiska, Rasit
2015-01-01
Highlights: • Charges with direct and MPPT conditions have been compared. • Perturb and observation method has been practically tested on a new TEG. • Matched load condition has been experimentally investigated. • To increase the efficiency of a TEG, the charge with MPPT should be used. • The charge with MPPT provides twice-fold increase in efficiency. - Abstract: Thermoelectric generators (TEGs) directly generate electrical power from the geothermal/waste heat as well as contribute to efficient usage of the energy. TEGs cannot be operated at full capacity without additional electronic equipments, since the internal resistances of TEGs are not equal to the device resistances connected across TEGs. For this reason, in this paper, the application of a DC–DC boost converter with maximum power point tracking (MPPT) based on microcontroller embedded in perturb and observe (P&O) algorithm has been proposed to obtain maximum power from a newly designed portable TEG (pTEG) in a real TEG system. The matched condition load for the pTEG has been experimentally investigated. Firstly, the pTEG has been directly charged to the battery pack, secondly it has been charged through the improved convertor with MPPT. In the first one, the pTEG operated with less efficiency than half of its full capacity, whereas, in the second, the pTEG operated efficiency near its full capacity
Acoustic power delivery to pipeline monitoring wireless sensors.
Kiziroglou, M E; Boyle, D E; Wright, S W; Yeatman, E M
2017-05-01
The use of energy harvesting for powering wireless sensors is made more challenging in most applications by the requirement for customization to each specific application environment because of specificities of the available energy form, such as precise location, direction and motion frequency, as well as the temporal variation and unpredictability of the energy source. Wireless power transfer from dedicated sources can overcome these difficulties, and in this work, the use of targeted ultrasonic power transfer as a possible method for remote powering of sensor nodes is investigated. A powering system for pipeline monitoring sensors is described and studied experimentally, with a pair of identical, non-inertial piezoelectric transducers used at the transmitter and receiver. Power transmission of 18mW (Root-Mean-Square) through 1m of a118mm diameter cast iron pipe, with 8mm wall thickness is demonstrated. By analysis of the delay between transmission and reception, including reflections from the pipeline edges, a transmission speed of 1000m/s is observed, corresponding to the phase velocity of the L(0,1) axial and F(1,1) radial modes of the pipe structure. A reduction of power delivery with water-filling is observed, yet over 4mW of delivered power through a fully-filled pipe is demonstrated. The transmitted power and voltage levels exceed the requirements for efficient power management, including rectification at cold-starting conditions, and for the operation of low-power sensor nodes. The proposed powering technique may allow the implementation of energy autonomous wireless sensor systems for monitoring industrial and network pipeline infrastructure. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Improving maximum power point tracking of partially shaded photovoltaic system by using IPSO-BELBIC
International Nuclear Information System (INIS)
El-Garhy, M. Abd Al-Alim; Mubarak, R.I.; El-Bably, M.
2017-01-01
Solar photovoltaic (PV) arrays in remote applications are often related to the rapid changes in the partial shading pattern. Rapid changes of the partial shading pattern make the tracking of maximum power point (MPP) of the global peak through the local ones too difficult. An essential need to make a fast and efficient algorithm to detect the peaks values which always vary as the sun irradiance changes. This paper presents two algorithms based on the improved particle swarm optimization technique one of them with PID controller (IPSO-PID), and the other one with Brain Emotional Learning Based Intelligent Controller (IPSO-BELBIC). These techniques improve the maximum power point (MPP) tracking capabilities for photovoltaic (PV) system under partial shading circumstances. The main aim of these improved algorithms is to accelerate the velocity of IPSO to reach to (MPP) and increase its efficiency. These algorithms also improve the tracking time under complex irradiance conditions. Based on these conditions, the tracking time of these presented techniques improves to 2 msec, with an efficiency of 100%.
Adaptive double-integral-sliding-mode-maximum-power-point tracker for a photovoltaic system
Directory of Open Access Journals (Sweden)
Bidyadhar Subudhi
2015-10-01
Full Text Available This study proposed an adaptive double-integral-sliding-mode-controller-maximum-power-point tracker (DISMC-MPPT for maximum-power-point (MPP tracking of a photovoltaic (PV system. The objective of this study is to design a DISMC-MPPT with a new adaptive double-integral-sliding surface in order that MPP tracking is achieved with reduced chattering and steady-state error in the output voltage or current. The proposed adaptive DISMC-MPPT possesses a very simple and efficient PWM-based control structure that keeps switching frequency constant. The controller is designed considering the reaching and stability conditions to provide robustness and stability. The performance of the proposed adaptive DISMC-MPPT is verified through both MATLAB/Simulink simulation and experiment using a 0.2 kW prototype PV system. From the obtained results, it is found out that this DISMC-MPPT is found to be more efficient compared with that of Tan's and Jiao's DISMC-MPPTs.
Improving maximum power point tracking of partially shaded photovoltaic system by using IPSO-BELBIC
Al-Alim El-Garhy, M. Abd; Mubarak, R. I.; El-Bably, M.
2017-08-01
Solar photovoltaic (PV) arrays in remote applications are often related to the rapid changes in the partial shading pattern. Rapid changes of the partial shading pattern make the tracking of maximum power point (MPP) of the global peak through the local ones too difficult. An essential need to make a fast and efficient algorithm to detect the peaks values which always vary as the sun irradiance changes. This paper presents two algorithms based on the improved particle swarm optimization technique one of them with PID controller (IPSO-PID), and the other one with Brain Emotional Learning Based Intelligent Controller (IPSO-BELBIC). These techniques improve the maximum power point (MPP) tracking capabilities for photovoltaic (PV) system under partial shading circumstances. The main aim of these improved algorithms is to accelerate the velocity of IPSO to reach to (MPP) and increase its efficiency. These algorithms also improve the tracking time under complex irradiance conditions. Based on these conditions, the tracking time of these presented techniques improves to 2 msec, with an efficiency of 100%.
Optimized Large-scale CMB Likelihood and Quadratic Maximum Likelihood Power Spectrum Estimation
Gjerløw, E.; Colombo, L. P. L.; Eriksen, H. K.; Górski, K. M.; Gruppuso, A.; Jewell, J. B.; Plaszczynski, S.; Wehus, I. K.
2015-11-01
We revisit the problem of exact cosmic microwave background (CMB) likelihood and power spectrum estimation with the goal of minimizing computational costs through linear compression. This idea was originally proposed for CMB purposes by Tegmark et al., and here we develop it into a fully functioning computational framework for large-scale polarization analysis, adopting WMAP as a working example. We compare five different linear bases (pixel space, harmonic space, noise covariance eigenvectors, signal-to-noise covariance eigenvectors, and signal-plus-noise covariance eigenvectors) in terms of compression efficiency, and find that the computationally most efficient basis is the signal-to-noise eigenvector basis, which is closely related to the Karhunen-Loeve and Principal Component transforms, in agreement with previous suggestions. For this basis, the information in 6836 unmasked WMAP sky map pixels can be compressed into a smaller set of 3102 modes, with a maximum error increase of any single multipole of 3.8% at ℓ ≤ 32 and a maximum shift in the mean values of a joint distribution of an amplitude-tilt model of 0.006σ. This compression reduces the computational cost of a single likelihood evaluation by a factor of 5, from 38 to 7.5 CPU seconds, and it also results in a more robust likelihood by implicitly regularizing nearly degenerate modes. Finally, we use the same compression framework to formulate a numerically stable and computationally efficient variation of the Quadratic Maximum Likelihood implementation, which requires less than 3 GB of memory and 2 CPU minutes per iteration for ℓ ≤ 32, rendering low-ℓ QML CMB power spectrum analysis fully tractable on a standard laptop.
P. Selvam; S. Senthil Kumar
2016-01-01
Maximum Power Point Tracking (MPPT) has played a vital role to enhance the efficiency of solar photovoltaic (PV) power generation under varying atmospheric temperature and solar irradiation. However, it is hard to track the maximum power point using conventional linear controllers due to the natural inheritance of nonlinear I-V and P-V characteristics of solar PV systems. Fuzzy Logic Controller (FLC) is suitable for nonlinear system control applications and eliminating oscillations, circuit c...
Watanabe, Takashi; Yoshida, Toshiya; Ohniwa, Katsumi
This paper discusses a new control strategy for photovoltaic power generation systems with consideration of dynamic characteristics of the photovoltaic cells. The controller estimates internal currents of an equivalent circuit for the cells. This estimated, or the virtual current and the actual voltage of the cells are fed to a conventional Maximum-Power-Point-Tracking (MPPT) controller. Consequently, this MPPT controller still tracks the optimum point even though it is so designed that the seeking speed of the operating point is extremely high. This system may suit for applications, which are installed in rapidly changeable insolation and temperature-conditions e.g. automobiles, trains, and airplanes. The proposed method is verified by experiment with a combination of this estimating function and the modified Boehringer's MPPT algorithm.
Comparison of Comet Enflow and VA One Acoustic-to-Structure Power Flow Predictions
Grosveld, Ferdinand W.; Schiller, Noah H.; Cabell, Randolph H.
2010-01-01
Comet Enflow is a commercially available, high frequency vibroacoustic analysis software based on the Energy Finite Element Analysis (EFEA). In this method the same finite element mesh used for structural and acoustic analysis can be employed for the high frequency solutions. Comet Enflow is being validated for a floor-equipped composite cylinder by comparing the EFEA vibroacoustic response predictions with Statistical Energy Analysis (SEA) results from the commercial software program VA One from ESI Group. Early in this program a number of discrepancies became apparent in the Enflow predicted response for the power flow from an acoustic space to a structural subsystem. The power flow anomalies were studied for a simple cubic, a rectangular and a cylindrical structural model connected to an acoustic cavity. The current investigation focuses on three specific discrepancies between the Comet Enflow and the VA One predictions: the Enflow power transmission coefficient relative to the VA One coupling loss factor; the importance of the accuracy of the acoustic modal density formulation used within Enflow; and the recommended use of fast solvers in Comet Enflow. The frequency region of interest for this study covers the one-third octave bands with center frequencies from 16 Hz to 4000 Hz.
Particle-filtering-based estimation of maximum available power state in Lithium-Ion batteries
International Nuclear Information System (INIS)
Burgos-Mellado, Claudio; Orchard, Marcos E.; Kazerani, Mehrdad; Cárdenas, Roberto; Sáez, Doris
2016-01-01
Highlights: • Approach to estimate the state of maximum power available in Lithium-Ion battery. • Optimisation problem is formulated on the basis of a non-linear dynamic model. • Solutions of the optimisation problem are functions of state of charge estimates. • State of charge estimates computed using particle filter algorithms. - Abstract: Battery Energy Storage Systems (BESS) are important for applications related to both microgrids and electric vehicles. If BESS are used as the main energy source, then it is required to include adequate procedures for the estimation of critical variables such as the State of Charge (SoC) and the State of Health (SoH) in the design of Battery Management Systems (BMS). Furthermore, in applications where batteries are exposed to high charge and discharge rates it is also desirable to estimate the State of Maximum Power Available (SoMPA). In this regard, this paper presents a novel approach to the estimation of SoMPA in Lithium-Ion batteries. This method formulates an optimisation problem for the battery power based on a non-linear dynamic model, where the resulting solutions are functions of the SoC. In the battery model, the polarisation resistance is modelled using fuzzy rules that are function of both SoC and the discharge (charge) current. Particle filtering algorithms are used as an online estimation technique, mainly because these algorithms allow approximating the probability density functions of the SoC and SoMPA even in the case of non-Gaussian sources of uncertainty. The proposed method for SoMPA estimation is validated using the experimental data obtained from an experimental setup designed for charging and discharging the Lithium-Ion batteries.
Iyyappan, I.; Ponmurugan, M.
2018-03-01
A trade of figure of merit (\\dotΩ ) criterion accounts the best compromise between the useful input energy and the lost input energy of the heat devices. When the heat engine is working at maximum \\dotΩ criterion its efficiency increases significantly from the efficiency at maximum power. We derive the general relations between the power, efficiency at maximum \\dotΩ criterion and minimum dissipation for the linear irreversible heat engine. The efficiency at maximum \\dotΩ criterion has the lower bound \
Ouerdane, H.; Apertet, Y.; Goupil, C.; Lecoeur, Ph.
2015-07-01
Classical equilibrium thermodynamics is a theory of principles, which was built from empirical knowledge and debates on the nature and the use of heat as a means to produce motive power. By the beginning of the 20th century, the principles of thermodynamics were summarized into the so-called four laws, which were, as it turns out, definitive negative answers to the doomed quests for perpetual motion machines. As a matter of fact, one result of Sadi Carnot's work was precisely that the heat-to-work conversion process is fundamentally limited; as such, it is considered as a first version of the second law of thermodynamics. Although it was derived from Carnot's unrealistic model, the upper bound on the thermodynamic conversion efficiency, known as the Carnot efficiency, became a paradigm as the next target after the failure of the perpetual motion ideal. In the 1950's, Jacques Yvon published a conference paper containing the necessary ingredients for a new class of models, and even a formula, not so different from that of Carnot's efficiency, which later would become the new efficiency reference. Yvon's first analysis of a model of engine producing power, connected to heat source and sink through heat exchangers, went fairly unnoticed for twenty years, until Frank Curzon and Boye Ahlborn published their pedagogical paper about the effect of finite heat transfer on output power limitation and their derivation of the efficiency at maximum power, now mostly known as the Curzon-Ahlborn (CA) efficiency. The notion of finite rate explicitly introduced time in thermodynamics, and its significance cannot be overlooked as shown by the wealth of works devoted to what is now known as finite-time thermodynamics since the end of the 1970's. The favorable comparison of the CA efficiency to actual values led many to consider it as a universal upper bound for real heat engines, but things are not so straightforward that a simple formula may account for a variety of situations. The
Energy Technology Data Exchange (ETDEWEB)
Syafaruddin; Hiyama, Takashi [Department of Computer Science and Electrical Engineering of Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan); Karatepe, Engin [Department of Electrical and Electronics Engineering of Ege University, 35100 Bornova-Izmir (Turkey)
2009-12-15
It is crucial to improve the photovoltaic (PV) system efficiency and to develop the reliability of PV generation control systems. There are two ways to increase the efficiency of PV power generation system. The first is to develop materials offering high conversion efficiency at low cost. The second is to operate PV systems optimally. However, the PV system can be optimally operated only at a specific output voltage and its output power fluctuates under intermittent weather conditions. Moreover, it is very difficult to test the performance of a maximum-power point tracking (MPPT) controller under the same weather condition during the development process and also the field testing is costly and time consuming. This paper presents a novel real-time simulation technique of PV generation system by using dSPACE real-time interface system. The proposed system includes Artificial Neural Network (ANN) and fuzzy logic controller scheme using polar information. This type of fuzzy logic rules is implemented for the first time to operate the PV module at optimum operating point. ANN is utilized to determine the optimum operating voltage for monocrystalline silicon, thin-film cadmium telluride and triple junction amorphous silicon solar cells. The verification of availability and stability of the proposed system through the real-time simulator shows that the proposed system can respond accurately for different scenarios and different solar cell technologies. (author)
Efficient Photovoltaic System Maximum Power Point Tracking Using a New Technique
Directory of Open Access Journals (Sweden)
Mehdi Seyedmahmoudian
2016-03-01
Full Text Available Partial shading is an unavoidable condition which significantly reduces the efficiency and stability of a photovoltaic (PV system. When partial shading occurs the system has multiple-peak output power characteristics. In order to track the global maximum power point (GMPP within an appropriate period a reliable technique is required. Conventional techniques such as hill climbing and perturbation and observation (P&O are inadequate in tracking the GMPP subject to this condition resulting in a dramatic reduction in the efficiency of the PV system. Recent artificial intelligence methods have been proposed, however they have a higher computational cost, slower processing time and increased oscillations which results in further instability at the output of the PV system. This paper proposes a fast and efficient technique based on Radial Movement Optimization (RMO for detecting the GMPP under partial shading conditions. The paper begins with a brief description of the behavior of PV systems under partial shading conditions followed by the introduction of the new RMO-based technique for GMPP tracking. Finally, results are presented to demonstration the performance of the proposed technique under different partial shading conditions. The results are compared with those of the PSO method, one of the most widely used methods in the literature. Four factors, namely convergence speed, efficiency (power loss reduction, stability (oscillation reduction and computational cost, are considered in the comparison with the PSO technique.
Photovoltaic System Modeling with Fuzzy Logic Based Maximum Power Point Tracking Algorithm
Directory of Open Access Journals (Sweden)
Hasan Mahamudul
2013-01-01
Full Text Available This paper represents a novel modeling technique of PV module with a fuzzy logic based MPPT algorithm and boost converter in Simulink environment. The prime contributions of this work are simplification of PV modeling technique and implementation of fuzzy based MPPT system to track maximum power efficiently. The main highlighted points of this paper are to demonstrate the precise control of the duty cycle with respect to various atmospheric conditions, illustration of PV characteristic curves, and operation analysis of the converter. The proposed system has been applied for three different PV modules SOLKAR 36 W, BP MSX 60 W, and KC85T 87 W. Finally the resultant data has been compared with the theoretical prediction and company specified value to ensure the validity of the system.
Determination of maximum power transfer conditions of bimorph piezoelectric energy harvesters
Ahmad, Mahmoud Al
2012-07-23
In this paper, a method to find the maximum power transfer conditions in bimorph piezoelectric-based harvesters is proposed. Explicitly, we derive a closed form expression that relates the load resistance to the mechanical parameters describing the bimorph based on the electromechanical, single degree of freedom, analogy. Further, by taking into account the intrinsic capacitance of the piezoelectric harvester, a more descriptive expression of the resonant frequency in piezoelectric bimorphs was derived. In interest of impartiality, we apply the proposed philosophy on previously published experimental results and compare it with other reported hypotheses. It was found that the proposed method was able to predict the actual optimum load resistance more accurately than other methods reported in the literature. © 2012 American Institute of Physics.
Different types of maximum power point tracking techniques for renewable energy systems: A survey
Khan, Mohammad Junaid; Shukla, Praveen; Mustafa, Rashid; Chatterji, S.; Mathew, Lini
2016-03-01
Global demand for electricity is increasing while production of energy from fossil fuels is declining and therefore the obvious choice of the clean energy source that is abundant and could provide security for development future is energy from the sun. In this paper, the characteristic of the supply voltage of the photovoltaic generator is nonlinear and exhibits multiple peaks, including many local peaks and a global peak in non-uniform irradiance. To keep global peak, MPPT is the important component of photovoltaic systems. Although many review articles discussed conventional techniques such as P & O, incremental conductance, the correlation ripple control and very few attempts have been made with intelligent MPPT techniques. This document also discusses different algorithms based on fuzzy logic, Ant Colony Optimization, Genetic Algorithm, artificial neural networks, Particle Swarm Optimization Algorithm Firefly, Extremum seeking control method and hybrid methods applied to the monitoring of maximum value of power at point in systems of photovoltaic under changing conditions of irradiance.
Maximum Power Point Tracking menggunakan Buck Converter dengan Algoritma P & O untuk Turbin Angin
Directory of Open Access Journals (Sweden)
Erik Tridianto
2016-12-01
Full Text Available Energi terbarukan adalah salah satu energi alternatif sebagai pengganti bahan bakar untuk pembangkit listrik. Dari berbagai energi terbarukan,yang ada energi angin adalah yang paling mudah dicari. Indonesia merupakan negara kepulauan dengan ratusan pantai dan dengan kecepatan angin yang besar dan berfluktuasi 3-5 m / s. Dan solusi dari masalah angin yang berfluktuasi ini adalah dengan menggunakan kontrol MPPT (Maximum Power Point Tracking dengan lm2596 dc-dc buck converter. Ketika daya yang dihasilkan kurang dari yang diharapkan, maka kontrol MPPT akan menurunkan tegangan untuk mendapatkan daya maksimum. Penelitian ini dilakukan dengan menggunakan lm2596 buck dc-dc converter menggunakan kontrol MPPT dengan tujuan mendapatkan daya maksimum pada kondisi kecepatan angin yang bervariasi, dan jenis MPPT yang digunakan adalah Perturb and Observation (P & O. Untuk membaca daya yang dihasilkan menggunakan Voltage dan Current sensor. Hasil tes menunjukkan bahwa, dengan penambahan kontrol MPPT dapat meningkatkan output daya dari generator sebesar 23%-49%.
Improved incremental conductance method for maximum power point tracking using cuk converter
Directory of Open Access Journals (Sweden)
M. Saad Saoud
2014-03-01
Full Text Available The Algerian government relies on a strategy focused on the development of inexhaustible resources such as solar and uses to diversify energy sources and prepare the Algeria of tomorrow: about 40% of the production of electricity for domestic consumption will be from renewable sources by 2030, Therefore it is necessary to concentrate our forces in order to reduce the application costs and to increment their performances, Their performance is evaluated and compared through theoretical analysis and digital simulation. This paper presents simulation of improved incremental conductance method for maximum power point tracking (MPPT using DC-DC cuk converter. This improved algorithm is used to track MPPs because it performs precise control under rapidly changing Atmospheric conditions, Matlab/ Simulink were employed for simulation studies.
Overview of Maximum Power Point Tracking Techniques for Photovoltaic Energy Production Systems
DEFF Research Database (Denmark)
Koutroulis, Eftichios; Blaabjerg, Frede
2017-01-01
production of PV sources, despite the stochastically varying solar irradiation and ambient temperature conditions. Thereby, the overall efficiency of the PV energy production system is increased. Numerous techniques have been presented during the last decades for implementing the MPPT process in a PV system......A substantial growth of the installed photovoltaic (PV) systems capacity has occurred around the world during the last decade, thus enhancing the availability of electric energy in an environmentally friendly way. The maximum power point tracking (MPPT) technique enables to maximize the energy....... This chapter provides an overview of the operating principles of these techniques, which are suited for either uniform or nonuniform solar irradiation conditions. The operational characteristics and implementation requirements of these MPPT methods are also analyzed in order to demonstrate their performance...
International Nuclear Information System (INIS)
Hong, Chih-Ming; Chen, Chiung-Hsing; Tu, Chia-Sheng
2013-01-01
Highlights: ► This paper presents MPPT based control for optimal wind energy capture using RBFN. ► MPSO is adopted to adjust the learning rates to improve the learning capability. ► This technique can maintain the system stability and reach the desired performance. ► The EMF in the rotating reference frame is utilized in order to estimate speed. - Abstract: This paper presents maximum-power-point-tracking (MPPT) based control algorithms for optimal wind energy capture using radial basis function network (RBFN) and a proposed torque observer MPPT algorithm. The design of a high-performance on-line training RBFN using back-propagation learning algorithm with modified particle swarm optimization (MPSO) regulating controller for the sensorless control of a permanent magnet synchronous generator (PMSG). The MPSO is adopted in this study to adapt the learning rates in the back-propagation process of the RBFN to improve the learning capability. The PMSG is controlled by the loss-minimization control with MPPT below the base speed, which corresponds to low and high wind speed, and the maximum energy can be captured from the wind. Then the observed disturbance torque is feed-forward to increase the robustness of the PMSG system
Maximum power gains of radio-frequency-driven two-energy-component tokamak reactors
International Nuclear Information System (INIS)
Jassby, D.L.
1974-11-01
Two-energy-component fusion reactors in which the suprathermal component (D) is produced by harmonic cyclotron ''runaway'' of resonant ions are considered. In one ideal case, the fast hydromagnetic wave at ω = 2ω/sub cD/ produces an energy distribution f(W) approximately constant (up to W/sub max/) that includes all deuterons, which then thermalize and react with the cold tritons. In another ideal case, f(W) approximately constant is maintained by the fast wave at ω = ω/sub cD/. If one neglects (1) direct rf input to the bulk-plasma electrons and tritons, and (2) the fact that many deuterons are not resonantly accelerated, then the maximum ideal power gain is about 0.85 Q/sub m/ in the first case and 1.05 Q/sub m/ in the second case, where Q/sub m/ is the maximum fusion gain in the beam-injection scheme (e.g., Q/sub m/ = 1.9 at T/sub e/ = 10 keV). Because of nonideal effects, the cyclotron runaway phenomenon may find its most practical use in the heating of 50:50 D--T plasmas to ignition. (auth)
Neural Modeling of Fuzzy Controllers for Maximum Power Point Tracking in Photovoltaic Energy Systems
Lopez-Guede, Jose Manuel; Ramos-Hernanz, Josean; Altın, Necmi; Ozdemir, Saban; Kurt, Erol; Azkune, Gorka
2018-06-01
One field in which electronic materials have an important role is energy generation, especially within the scope of photovoltaic energy. This paper deals with one of the most relevant enabling technologies within that scope, i.e, the algorithms for maximum power point tracking implemented in the direct current to direct current converters and its modeling through artificial neural networks (ANNs). More specifically, as a proof of concept, we have addressed the problem of modeling a fuzzy logic controller that has shown its performance in previous works, and more specifically the dimensionless duty cycle signal that controls a quadratic boost converter. We achieved a very accurate model since the obtained medium squared error is 3.47 × 10-6, the maximum error is 16.32 × 10-3 and the regression coefficient R is 0.99992, all for the test dataset. This neural implementation has obvious advantages such as a higher fault tolerance and a simpler implementation, dispensing with all the complex elements needed to run a fuzzy controller (fuzzifier, defuzzifier, inference engine and knowledge base) because, ultimately, ANNs are sums and products.
Man, E. A.; Sera, D.; Mathe, L.; Schaltz, E.; Rosendahl, L.
2016-03-01
Characterization of thermoelectric generators (TEG) is widely discussed and equipment has been built that can perform such analysis. One method is often used to perform such characterization: constant temperature with variable thermal power input. Maximum power point tracking (MPPT) methods for TEG systems are mostly tested under steady-state conditions for different constant input temperatures. However, for most TEG applications, the input temperature gradient changes, exposing the MPPT to variable tracking conditions. An example is the exhaust pipe on hybrid vehicles, for which, because of the intermittent operation of the internal combustion engine, the TEG and its MPPT controller are exposed to a cyclic temperature profile. Furthermore, there are no guidelines on how fast the MPPT must be under such dynamic conditions. In the work discussed in this paper, temperature gradients for TEG integrated in several applications were evaluated; the results showed temperature variation up to 5°C/s for TEG systems. Electrical characterization of a calcium-manganese oxide TEG was performed at steady-state for different input temperatures and a maximum temperature of 401°C. By using electrical data from characterization of the oxide module, a solar array simulator was emulated to perform as a TEG. A trapezoidal temperature profile with different gradients was used on the TEG simulator to evaluate the dynamic MPPT efficiency. It is known that the perturb and observe (P&O) algorithm may have difficulty accurately tracking under rapidly changing conditions. To solve this problem, a compromise must be found between the magnitude of the increment and the sampling frequency of the control algorithm. The standard P&O performance was evaluated experimentally by using different temperature gradients for different MPPT sampling frequencies, and efficiency values are provided for all cases. The results showed that a tracking speed of 2.5 Hz can be successfully implemented on a TEG
Energy Technology Data Exchange (ETDEWEB)
Maki, A.
2013-11-01
Photovoltaic (PV) power generators can be used for converting the energy of solar radiation directly into electrical energy without any moving parts. The operation of the generators is highly affected by operating conditions, most importantly irradiances and temperatures of PV cells. PV power generators are prone to electrical losses if the operating conditions are non-uniform such as in a case where part of the modules of a generator are shaded while the rest are receiving the global solar radiation. These conditions are called partial shading conditions and they have been recognized as a major cause of energy losses in PV power generators. In this thesis, the operation of silicon-based PV power generators under partial shading conditions is studied using Matlab Simulink simulation model. The operation of the model has been verified by measurements of electrical characteristics of a PV module under several different operating conditions and also under partial shading conditions. A systematic approach to study the effects of partial shading conditions has been developed and used. In addition to the systematic approach, a vast amount of data measured from the Tampere University of Technology (TUT) Solar Photovoltaic Power Station Research Plant are analyzed and used as input for the simulation model to study operation of PV power generators under actual operating conditions. Partial shading conditions have severe effects on the electrical characteristics of PV power generators and can cause multiple maximum power points (MPPs) to the power-voltage curve of the generators. In most cases, partial shading conditions lead to the occurrence of multiple MPPs, but also only one MPP can be present despite of partial shading. Reasons for this phenomenon are presented and analyzed in this thesis. Because of multiple MPPs, a considerable amount of available electrical energy may be lost when the generator is operating at a local MPP with low power instead of the global MPP. In
DEFF Research Database (Denmark)
2010-01-01
is absorbed into said plasma (104), and where a sound pressure level of said generated ultrasonic high intensity and high power acoustic waves (102) is at least substantially 140 dB and where an acoustic power of said generated ultrasonic high intensity and high power acoustic waves (102); is at least...... substantially 100 W. In this way, a high sound intensity and power are obtained that efficiently enhances a gas-phase reaction in the plasma, which enhances the plasma process, e.g. enabling more efficient ozone or hydrogen generation using plasma in relation to reaction speed and/or obtained concentration......This invention relates to enhancing a gas-phase reaction in a plasma comprising: creating plasma (104) by at least one plasma source (106), and wherein that the method further comprises: generating ultrasonic high intensity and high power acoustic waves (102) having a predetermined amount...
A Low-Cost Maximum Power Point Tracking System Based on Neural Network Inverse Model Controller
Directory of Open Access Journals (Sweden)
Carlos Robles Algarín
2018-01-01
Full Text Available This work presents the design, modeling, and implementation of a neural network inverse model controller for tracking the maximum power point of a photovoltaic (PV module. A nonlinear autoregressive network with exogenous inputs (NARX was implemented in a serial-parallel architecture. The PV module mathematical modeling was developed, a buck converter was designed to operate in the continuous conduction mode with a switching frequency of 20 KHz, and the dynamic neural controller was designed using the Neural Network Toolbox from Matlab/Simulink (MathWorks, Natick, MA, USA, and it was implemented on an open-hardware Arduino Mega board. To obtain the reference signals for the NARX and determine the 65 W PV module behavior, a system made of a 0.8 W PV cell, a temperature sensor, a voltage sensor and a static neural network, was used. To evaluate performance a comparison with the P&O traditional algorithm was done in terms of response time and oscillations around the operating point. Simulation results demonstrated the superiority of neural controller over the P&O. Implementation results showed that approximately the same power is obtained with both controllers, but the P&O controller presents oscillations between 7 W and 10 W, in contrast to the inverse controller, which had oscillations between 1 W and 2 W.
Artificial Neural Network Maximum Power Point Tracker for Solar Electric Vehicle
Institute of Scientific and Technical Information of China (English)
Theodore Amissah OCRAN; CAO Junyi; CAO Binggang; SUN Xinghua
2005-01-01
This paper proposes an artificial neural network maximum power point tracker (MPPT) for solar electric vehicles. The MPPT is based on a highly efficient boost converter with insulated gate bipolar transistor (IGBT) power switch. The reference voltage for MPPT is obtained by artificial neural network (ANN) with gradient descent momentum algorithm. The tracking algorithm changes the duty-cycle of the converter so that the PV-module voltage equals the voltage corresponding to the MPPT at any given insolation, temperature, and load conditions. For fast response, the system is implemented using digital signal processor (DSP). The overall system stability is improved by including a proportional-integral-derivative (PID) controller, which is also used to match the reference and battery voltage levels. The controller, based on the information supplied by the ANN, generates the boost converter duty-cycle. The energy obtained is used to charge the lithium ion battery stack for the solar vehicle. The experimental and simulation results show that the proposed scheme is highly efficient.
A New Study of Maximum Power Point Tracker Techniques and Comparison for PV Systems
Directory of Open Access Journals (Sweden)
Ahmed M. Atallah
2016-07-01
Full Text Available The maximum power point tracker techniques vary in many aspects as simplicity, digital or analogical implementation, sensor required, convergence speed, range of effectiveness, implementation hardware,popularity, cost and in other aspects. This paper presents in details comparative study between two most popular algorithm technique which is incremental conductance algorithm and perturb and observe algorithm. Two different converters buck and cuk converter use for comparative in this study. Few comparisons such as efficiency, voltage, current and power output for each different combination have been recorded. Multi changes in irradiance, temperature by keeping voltage and current as main sensed parameter been done in the simulation. Matlab simulink tools have been used for performance evaluation on energy point. Simulation will consider different solar irradiance and temperature variations.
Comparative Study of Maximum Power Point Tracking Techniques for Photovoltaic Systems
Directory of Open Access Journals (Sweden)
Fernando Lessa Tofoli
2015-01-01
Full Text Available The generation of electricity from photovoltaic (PV arrays has been increasingly considered as a prominent alternative to fossil fuels. However, the conversion efficiency is typically low and the initial cost is still appreciable. A required feature of a PV system is the ability to track the maximum power point (MPP of the PV array. Besides, MPP tracking (MPPT is desirable in both grid-connected and stand-alone photovoltaic systems because the solar irradiance and temperature change throughout the day, as well as along seasons and geographical conditions, also leading to the modification of the I×V (current versus voltage and P×V (power versus voltage curves of the PV module. MPPT is also justified by the relatively high cost of the energy generated by PV systems if compared with other sources. Since there are various MPPT approaches available in the literature, this work presents a comparative study among four popular techniques, which are the fixed duty cycle method, constant voltage (CV, perturb and observe (P&O, and incremental conductance (IC. It considers different operational climatic conditions (i.e., irradiance and temperature, since the MPP is nonlinear with the environment status. PSIM software is used to validate the assumptions, while relevant results are discussed in detail.
Deconvolving the wedge: maximum-likelihood power spectra via spherical-wave visibility modelling
Ghosh, A.; Mertens, F. G.; Koopmans, L. V. E.
2018-03-01
Direct detection of the Epoch of Reionization (EoR) via the red-shifted 21-cm line will have unprecedented implications on the study of structure formation in the infant Universe. To fulfil this promise, current and future 21-cm experiments need to detect this weak EoR signal in the presence of foregrounds that are several orders of magnitude larger. This requires extreme noise control and improved wide-field high dynamic-range imaging techniques. We propose a new imaging method based on a maximum likelihood framework which solves for the interferometric equation directly on the sphere, or equivalently in the uvw-domain. The method uses the one-to-one relation between spherical waves and spherical harmonics (SpH). It consistently handles signals from the entire sky, and does not require a w-term correction. The SpH coefficients represent the sky-brightness distribution and the visibilities in the uvw-domain, and provide a direct estimate of the spatial power spectrum. Using these spectrally smooth SpH coefficients, bright foregrounds can be removed from the signal, including their side-lobe noise, which is one of the limiting factors in high dynamics-range wide-field imaging. Chromatic effects causing the so-called `wedge' are effectively eliminated (i.e. deconvolved) in the cylindrical (k⊥, k∥) power spectrum, compared to a power spectrum computed directly from the images of the foreground visibilities where the wedge is clearly present. We illustrate our method using simulated Low-Frequency Array observations, finding an excellent reconstruction of the input EoR signal with minimal bias.
International Nuclear Information System (INIS)
Lee, Sang Guk; Lee, Sun Ki; Lee, Jun Shin; Sohn, Seok Man
2004-01-01
The purpose of this study is to estimate the availability of acoustic emission method to the internal leak of the valves at nuclear power plants. The acoustic emission method was applied to the valves at the site, and the background noise was measured for the abnormal plant condition. From the comparison of the background noise data with the experimental results as to relation between leak flow and acoustic signal, the minimum leak flow rates that can be detected by acoustic signal was suggested. When the background levels are higher than the acoustic signal, the method described below was considered that the analysis the remainder among the background noise frequency spectrum and the acoustic signal spectrum become a very useful leak detection method. A few experimental examples of the spectrum analysis that varied the background noise characteristic were given
Hydrogen and acoustic detection in steam generators of Super Phenix power plant
International Nuclear Information System (INIS)
Kong, N.; Le Bris, A.; Berthier, P.
1986-05-01
During the isothermal tests of Super-Phenix, two types of measurements were made on the steam generators with regard to the detection of water leaks into the sodium: - the first measurements enabled us to determine the characteristics (sensitivity, response time) of the hydrogen detectors that are already operational for the filling with water and the power operation of the steam generators. They also provided the basis for developing a prototype system for detecting very small water leaks (microleak phase). The other measurements concern the qualification tests of acoustic detectors which have been fitted for the first time to a major industrial installation. The results obtained are very satisfactory but final validation of the acoustic method will only occur after the full-power tests [fr
James Dunia; Bakari M. M. Mwinyiwiwa
2013-01-01
Photovoltaic (PV) energy is one of the most important energy resources since it is clean, pollution free, and endless. Maximum Power Point Tracking (MPPT) is used in photovoltaic (PV) systems to maximize the photovoltaic output power, irrespective the variations of temperature and radiation conditions. This paper presents a comparison between Ćuk and SEPIC converter in maximum power point tracking (MPPT) of photovoltaic (PV) system. In the paper, advantages and disadvantages of both converter...
Thermometric- and Acoustic-Based Beam Power Monitor for Ultra-Bright X-Rays
International Nuclear Information System (INIS)
2010-01-01
A design for an average beam power monitor for ultra-bright X-ray sources is proposed that makes simultaneous use of calorimetry and radiation acoustics. Radiation incident on a solid target will induce heating and ultrasonic vibrations, both of which may be measured to give a fairly precise value of the beam power. The monitor is intended for measuring ultra-bright Free-Electron Laser (FEL) X-ray beams, for which traditional monitoring technologies such as photo-diodes or scintillators are unsuitable. The monitor consists of a Boron Carbide (B 4 C) target designed to absorb most of the incident beam's energy. Resistance temperature detectors (RTD) and piezoelectric actuators are mounted on the outward faces of the target to measure the temperature changes and ultrasonic vibrations induced by the incident beam. The design was tested using an optical pulsed beam (780 nm, 120 and 360 Hz) from a Ti:sapphire oscillator at several energies between 0.8 and 2.6 mJ. The RTDs measured an increase in temperature of about 10 K over a period of several minutes. The piezoelectric sensors recorded ringing acoustic oscillations at 580 ± 40 kHz. Most importantly, the amplitude of the acoustic signals was observed to scale linearly with beam power up to 2 mJ of pulse energy. Above this pulse energy, the vibrational signals became nonlinear. Several causes for this nonlinearity are discussed, including amplifier saturation and piezoelectric saturation. Despite this nonlinearity, these measurements demonstrate the feasibility of such a beam power measurement device. The advantage of two distinct measurements (acoustic and thermometric) provides a useful method of calibration that is unavailable to current LCLS diagnostics tools.
DEFF Research Database (Denmark)
Koutroulis, Eftichios; Blaabjerg, Frede
2012-01-01
The power-voltage characteristic of photovoltaic (PV) arrays operating under partial-shading conditions exhibits multiple local maximum power points (MPPs). In this paper, a new method to track the global MPP is presented, which is based on controlling a dc/dc converter connected at the PV array...
Directory of Open Access Journals (Sweden)
Subiyanto
2013-01-01
Full Text Available Photovoltaic (PV system is one of the promising renewable energy technologies. Although the energy conversion efficiency of the system is still low, but it has the advantage that the operating cost is free, very low maintenance and pollution-free. Maximum power point tracking (MPPT is a significant part of PV systems. This paper presents a novel intelligent MPPT controller for PV systems. For the MPPT algorithm, an optimized fuzzy logic controller (FLC using the Hopfield neural network is proposed. It utilizes an automatically tuned FLC membership function instead of the trial-and-error approach. The MPPT algorithm is implemented in a new variant of coupled inductor soft switching boost converter with high voltage gain to increase the converter output from the PV panel. The applied switching technique, which includes passive and active regenerative snubber circuits, reduces the insulated gate bipolar transistor switching losses. The proposed MPPT algorithm is implemented using the dSPACE DS1104 platform software on a DS1104 board controller. The prototype MPPT controller is tested using an agilent solar array simulator together with a 3 kW real PV panel. Experimental test results show that the proposed boost converter produces higher output voltages and gives better efficiency (90% than the conventional boost converter with an RCD snubber, which gives 81% efficiency. The prototype MPPT controller is also found to be capable of tracking power from the 3 kW PV array about 2.4 times more than that without using the MPPT controller.
Appelbaum, Joseph; Singer, S.
1989-01-01
Direct current (dc) motors are used in terrestrial photovoltaic (PV) systems such as in water-pumping systems for irrigation and water supply. Direct current motors may also be used for space applications. Simple and low weight systems including dc motors may be of special interest in space where the motors are directly coupled to the solar cell array (with no storage). The system will operate only during times when sufficient insolation is available. An important performance characteristic of electric motors is the starting to rated torque ratio. Different types of dc motors have different starting torque ratios. These ratios are dictated by the size of solar cell array, and the developed motor torque may not be sufficient to overcome the load starting torque. By including a maximum power point tracker (MPPT) in the PV system, the starting to rated torque ratio will increase, the amount of which depends on the motor type. The starting torque ratio is calculated for the permanent magnet, series and shunt excited dc motors when powered by solar cell arrays for two cases: with and without MPPT's. Defining a motor torque magnification by the ratio of the motor torque with an MPPT to the motor torque without an MPPT, a magnification of 3 was obtained for the permanent magnet motor and a magnification of 7 for both the series and shunt motors. The effect of the variation of solar insolation on the motor starting torque was covered. All motor types are less sensitive to insolation variation in systems including MPPT's as compared to systems with MPPT's. The analysis of this paper will assist the PV system designed to determine whether or not to include an MPPT in the system for a specific motor type.
Directory of Open Access Journals (Sweden)
Bayu Prima Juliansyah Putra
2013-09-01
Full Text Available Salah satu aplikasi yang sering digunakan dalam bidang energi terbarukan adalah panel photovoltaic. Panel ini memiliki prinsip kerja berdasarkan efek photovoltaic dimana lempengan logam akan menghasilkan energi listrik apabila diberi intensitas cahaya. Untuk menghasilkan daya keluaran panel yang maksimal, maka diperlukan suatu algoritma yang biasa disebut Maximum Power Point Tracking (MPPT.MPPT yang diterapkan pada sistem photovoltaic berfungsi untuk mengatur nilai tegangan keluaran panel sehingga titik ker-janya beroperasi pada kondisi maksimal. Algoritma MPPT pada panel ini telah dilakukan dengan menggunakan logika fuzzy melalui mikrokontroler Arduino Uno sebagai pem-bangkit sinyal Pulse Width Modulation (PWM yang akan dikirimkan menuju DC-DC Buck Boost Converter. Keluaran dari buck boost converterakan dihubungkan secara langsung dengan buoy weather station untuk menyuplai energi listrik tiap komponen yang berada di dalamnya. Untuk menguji performansi dari algoritma MPPT yang telah dirancang, maka sistem akan diuji menggunakan variasi beban antara metode direct-coupled dengan MPPT menggunakan logika fuzzy. Hasil pengujian menunjukkan bahwa MPPT dengan logika fuzzy dapat menghasilkan daya maksimum daripada direct-coupled. Pada sistem panel photovoltaic ini memiliki range efisiensi 33.07589 % hingga 74.25743 %. Daya mak-simal dapat dicapai oleh sistem untuk tiap variasi beban dan efisiensi maksimal dapat dicapai pada beban 20 Ohm dari hasil pengujian sistem MPPT.
Directory of Open Access Journals (Sweden)
A. Kleidon
2013-01-01
Full Text Available The organization of drainage basins shows some reproducible phenomena, as exemplified by self-similar fractal river network structures and typical scaling laws, and these have been related to energetic optimization principles, such as minimization of stream power, minimum energy expenditure or maximum "access". Here we describe the organization and dynamics of drainage systems using thermodynamics, focusing on the generation, dissipation and transfer of free energy associated with river flow and sediment transport. We argue that the organization of drainage basins reflects the fundamental tendency of natural systems to deplete driving gradients as fast as possible through the maximization of free energy generation, thereby accelerating the dynamics of the system. This effectively results in the maximization of sediment export to deplete topographic gradients as fast as possible and potentially involves large-scale feedbacks to continental uplift. We illustrate this thermodynamic description with a set of three highly simplified models related to water and sediment flow and describe the mechanisms and feedbacks involved in the evolution and dynamics of the associated structures. We close by discussing how this thermodynamic perspective is consistent with previous approaches and the implications that such a thermodynamic description has for the understanding and prediction of sub-grid scale organization of drainage systems and preferential flow structures in general.
A novel minimum cost maximum power algorithm for future smart home energy management
Directory of Open Access Journals (Sweden)
A. Singaravelan
2017-11-01
Full Text Available With the latest development of smart grid technology, the energy management system can be efficiently implemented at consumer premises. In this paper, an energy management system with wireless communication and smart meter are designed for scheduling the electric home appliances efficiently with an aim of reducing the cost and peak demand. For an efficient scheduling scheme, the appliances are classified into two types: uninterruptible and interruptible appliances. The problem formulation was constructed based on the practical constraints that make the proposed algorithm cope up with the real-time situation. The formulated problem was identified as Mixed Integer Linear Programming (MILP problem, so this problem was solved by a step-wise approach. This paper proposes a novel Minimum Cost Maximum Power (MCMP algorithm to solve the formulated problem. The proposed algorithm was simulated with input data available in the existing method. For validating the proposed MCMP algorithm, results were compared with the existing method. The compared results prove that the proposed algorithm efficiently reduces the consumer electricity consumption cost and peak demand to optimum level with 100% task completion without sacrificing the consumer comfort.
A novel minimum cost maximum power algorithm for future smart home energy management.
Singaravelan, A; Kowsalya, M
2017-11-01
With the latest development of smart grid technology, the energy management system can be efficiently implemented at consumer premises. In this paper, an energy management system with wireless communication and smart meter are designed for scheduling the electric home appliances efficiently with an aim of reducing the cost and peak demand. For an efficient scheduling scheme, the appliances are classified into two types: uninterruptible and interruptible appliances. The problem formulation was constructed based on the practical constraints that make the proposed algorithm cope up with the real-time situation. The formulated problem was identified as Mixed Integer Linear Programming (MILP) problem, so this problem was solved by a step-wise approach. This paper proposes a novel Minimum Cost Maximum Power (MCMP) algorithm to solve the formulated problem. The proposed algorithm was simulated with input data available in the existing method. For validating the proposed MCMP algorithm, results were compared with the existing method. The compared results prove that the proposed algorithm efficiently reduces the consumer electricity consumption cost and peak demand to optimum level with 100% task completion without sacrificing the consumer comfort.
Institute of Scientific and Technical Information of China (English)
Zaiyu; Chen; Minghui; Yin; Lianjun; Zhou; Yaping; Xia; Jiankun; Liu; Yun; Zou
2017-01-01
Since mechanical loads exert a significant influence on the life span of wind turbines, the reduction of transient load on drive-train shaft has received more attention when implementing a maximum power point tracking(MPPT) controller.Moreover, a trade-off between the efficiency of wind energy extraction and the load level of drive-train shaft becomes a key issue. However, for the existing control strategies based on nonlinear model of wind turbines, the MPPT efficiencies are improved at the cost of the intensive fluctuation of generator torque and significant increase of transient load on drive train shaft. Hence, in this paper, a nonlinear controller with variable parameter is proposed for improving MPPT efficiency and mitigating transient load on drive-train simultaneously. Then,simulations on FAST(Fatigue, Aerodynamics, Structures, and Turbulence) code and experiments on the wind turbine simulator(WTS) based test bench are presented to verify the efficiency improvement of the proposed control strategy with less cost of drive-train load.
Institute of Scientific and Technical Information of China (English)
Zaiyu Chen; Minghui Yin; Lianjun Zhou; Yaping Xia; Jiankun Liu; Yun Zou
2017-01-01
Since mechanical loads exert a significant influence on the life span of wind turbines,the reduction of transient load on drive-train shaft has received more attention when implementing a maximum power point tracking (MPPT) controller.Moreover,a trade-off between the efficiency of wind energy extraction and the load level of drive-train shaft becomes a key issue.However,for the existing control strategies based on nonlinear model of wind turbines,the MPPT efficiencies are improved at the cost of the intensive fluctuation of generator torque and significant increase of transient load on drive train shaft.Hence,in this paper,a nonlinear controller with variable parameter is proposed for improving MPPT efficiency and mitigating transient load on drive-train simultaneously.Then,simulations on FAST (Fatigue,Aerodynamics,Structures,and Turbulence) code and experiments on the wind turbine simulator (WTS) based test bench are presented to verify the efficiency improvement of the proposed control strategy with less cost of drive-train load.
Directory of Open Access Journals (Sweden)
Xin Dai
2017-10-01
Full Text Available Maximum power transfer tracking (MPTT is meant to track the maximum power point during the system operation of wireless power transfer (WPT systems. Traditionally, MPTT is achieved by impedance matching at the secondary side when the load resistance is varied. However, due to a loosely coupling characteristic, the variation of coupling coefficient will certainly affect the performance of impedance matching, therefore MPTT will fail accordingly. This paper presents an identification method of coupling coefficient for MPTT in WPT systems. Especially, the two-value issue during the identification is considered. The identification approach is easy to implement because it does not require additional circuit. Furthermore, MPTT is easy to realize because only two easily measured DC parameters are needed. The detailed identification procedure corresponding to the two-value issue and the maximum power transfer tracking process are presented, and both the simulation analysis and experimental results verified the identification method and MPTT.
Energy Technology Data Exchange (ETDEWEB)
Chao, R.M.; Ko, S.H.; Lin, I.H. [Department of Systems and Naval Mechatronics Engineering, National Cheng Kung University, Tainan, Taiwan 701 (China); Pai, F.S. [Department of Electronic Engineering, National University of Tainan (China); Chang, C.C. [Department of Environment and Energy, National University of Tainan (China)
2009-12-15
The historically high cost of crude oil price is stimulating research into solar (green) energy as an alternative energy source. In general, applications with large solar energy output require a maximum power point tracking (MPPT) algorithm to optimize the power generated by the photovoltaic effect. This work aims to provide a stand-alone solution for solar energy applications by integrating a DC/DC buck converter to a newly developed quadratic MPPT algorithm along with its appropriate software and hardware. The quadratic MPPT method utilizes three previously used duty cycles with their corresponding power outputs. It approaches the maximum value by using a second order polynomial formula, which converges faster than the existing MPPT algorithm. The hardware implementation takes advantage of the real-time controller system from National Instruments, USA. Experimental results have shown that the proposed solar mechatronics system can correctly and effectively track the maximum power point without any difficulties. (author)
Wireless microwave acoustic sensor system for condition monitoring in power plant environments
Energy Technology Data Exchange (ETDEWEB)
Pereira da Cunha, Mauricio [Univ. of Maine, Orno, ME (United States)
2017-03-30
This project successfully demonstrated novel wireless microwave acoustic temperature and pressure sensors that can be embedded into equipment and structures located in fossil fuel power plant environments to monitor the condition of components such as steam headers, re-heat lines, water walls, burner tubes, and power turbines. The wireless microwave acoustic sensor technology researched and developed through a collaborative partnership between the University of Maine and Environetix Technologies Corporation can provide a revolutionary impact in the power industry since it is anticipated that the wireless sensors will deliver reliable real-time sensing information in harsh power plant conditions that involve temperatures up to 1100oC and pressures up to 750 psi. The work involved the research and development of novel high temperature harsh environment thin film electrodes, piezoelectric smart microwave acoustic sensing elements, sensor encapsulation materials that were engineered to function over long times up to 1100oC, and a radio-frequency (RF) wireless interrogation electronics unit that are located both inside and outside the high temperature harsh environment. The UMaine / Environetix team have interacted with diverse power plant facilities, and identified as a testbed a local power generation facility, which burns municipal solid waste (MSW), the Penobscot Energy Recovery Company (PERC), Orrington, Maine. In this facility Environetix / UMaine successfully implemented and tested multiple wireless temperature sensor systems within the harsh-environment of the economizer chamber and at the boiler tubes, transferring the developed technology to the power plant environment to perform real-time sensor monitoring experiments under typical operating conditions, as initially targeted in the project. The wireless microwave acoustic sensor technology developed under this project for power plant applications offers several significant advantages including wireless
Evidence-based cross validation for acoustic power transmission for a novel treatment system.
Mihcin, Senay; Strehlow, Jan; Demedts, Daniel; Schwenke, Michael; Levy, Yoav; Melzer, Andreas
2017-06-01
The novel Trans-Fusimo Treatment System (TTS) is designed to control Magnetic Resonance guided Focused Ultrasound (MRgFUS) therapy to ablate liver tumours under respiratory motion. It is crucial to deliver the acoustic power within tolerance limits for effective liver tumour treatment via MRgFUS. Before application in a clinical setting, evidence of reproducibility and reliability is a must for safe practice. The TTS software delivers the acoustic power via ExAblate-2100 Conformal Bone System (CBS) transducer. A built-in quality assurance application was developed to measure the force values, using a novel protocol to measure the efficiency for the electrical power values of 100 and 150W for 6s of sonication. This procedure was repeated 30 times by two independent users against the clinically approved ExAblate-2100 CBS for cross-validation. Both systems proved to deliver the power within the accepted efficiency levels (70-90%). Two sample t-tests were used to assess the differences in force values between the ExAblate-2100 CBS and the TTS (p > 0.05). Bland-Altman plots were used to demonstrate the limits of agreement between the two systems falling within the 10% limits of agreement. Two sample t-tests indicated that TTS does not have user dependency (p > 0.05). The TTS software proved to deliver the acoustic power without exceeding the safety levels. Results provide evidence as a part of ISO13485 regulations for CE marking purposes. The developed methodology could be utilised as a part of quality assurance system in clinical settings; when the TTS is used in clinical practice.
1KW Power Transmission Using Wireless Acoustic-Electric Feed-Through (WAEF)
Sherrit, S.; Bao, X.; Badescu, M.; Aldrich, J.; Bar-Cohen, Y.; Biederman, W.
2008-01-01
A variety of space applications require the delivery of power into sealed structures. Since the structural integrity can be degraded by holes for cabling we present an alternative method of delivering power and information using stress waves to the internal space of a sealed structure. One particular application of this technology is in sample return missions where it is critical to preserve the sample integrity and to prevent earth contamination. Therefore, the container has to be hermetically sealed and the integrity of the seal must be monitored in order to insure to a high degree of reliability the integrity of the sample return vessel. In this study we investigated the use of piezoelectric acoustic-electric power feed-through devices to transfer electric power wirelessly through a solid wall by using elastic or acoustic waves. The technology is applicable to a range of space and terrestrial applications where power is required by electronic equipment inside sealed containers, vacuum or pressure vessels, etc., where holes in the wall are prohibitive or may result in significant structural performance degradation or unnecessarily complex designs. To meet requirements of higher power applications, the feasibility to transfer kilowatts level power was investigated. Pre-stressed longitudinal piezoelectric feed-through devices were analyzed by finite element models and an equivalent circuit model was developed to predict the power transfer characteristics to different electric loads. Based on the results of the analysis a prototype device was designed, fabricated and a demonstration of the transmission of electric power up to 1.068-kW was successfully conducted. Efficiencies in the 80-90% range were also demonstrated and methods to increase the efficiency further are currently being considered.
Optimal Velocity to Achieve Maximum Power Output – Bench Press for Trained Footballers
Directory of Open Access Journals (Sweden)
Richard Billich
2015-03-01
Full Text Available Optimal Velocity to Achieve Maximum Power Output – Bench Press for Trained Footballers In today’s world of strength training there are many myths surrounding effective exercising with the least possible negative effect on one’s health. In this experiment we focus on the finding of a relationship between maximum output, used load and the velocity with which the exercise is performed. The main objective is to find the optimal speed of the exercise motion which would allow us to reach the maximum mechanic muscle output during a bench press exercise. This information could be beneficial to sporting coaches and recreational sportsmen alike in helping them improve the effectiveness of fast strength training. Fifteen football players of the FK Třinec football club participated in the experiment. The measurements were made with the use of 3D cinematic and dynamic analysis, both experimental methods. The research subjects participated in a strength test, in which the mechanic muscle output of 0, 10, 30, 50, 70, 90% and one repetition maximum (1RM was measured. The acquired result values and other required data were modified using Qualisys Track Manager and Visual 3D software (C-motion, Rockville, MD, USA. During the bench press exercise the maximum mechanic muscle output of the set of research subjects was reached at 75% of maximum exercise motion velocity. Optimální rychlost pohybu pro dosažení maxima výstupního výkonu – bench press u trénovaných fotbalistů Dnešní svět silového tréninku přináší řadu mýtů o tom, jak cvičit efektivně a zároveň s co nejmenším negativním vlivem na zdraví člověka. V tomto experimentu se zabýváme nalezením vztahu mezi maximálním výkonem, použitou zátěží a rychlostí. Hlavním úkolem je nalezení optimální rychlosti pohybu pro dosažení maximálního mechanického svalového výkonu při cvičení bench press, což pomůže nejenom trenérům, ale i rekreačním sportovc
Development of an acoustic emission equipment for valves of the Nuclear Power Station Atucha 1
International Nuclear Information System (INIS)
Giaccheta, R.; Lopez Pumarega, I.; Straus, A.; Ruzzante, J.; Herzovich, P.
1994-01-01
A four channel Acoustic Emission was developed by the Acoustic Emission Group, INEND Department, of the Atomic Energy Commission of Argentina, for the detection of leaks in valves of the pressurized air system: ''Sistema de desconexion de emergencias por acido deuteroborico''. Basically, the system consists of four piezoelectric transducers with their corresponding preamplifiers coupled to the piping close to the valves. The following stages: amplifiers, threshold levels, channel identifications and visual alarm system are gathered in a box. The system was installed in the controlled zone of the Nuclear Power Stations Atucha I. It was calibrated and works on line. The values shown on the display are registered daily in order to separate the normal values from the leak ones. (author). 4 refs, 9 figs
Testing of an acoustic smolt deflection system, Blantyre hydroelectric power scheme
International Nuclear Information System (INIS)
1996-01-01
The aim of this study was to test the effectiveness of an underwater acoustic barrier as a means of preventing the entry of salmon (Salmo salar) and sea trout (Salmo trutta) smolts and other fish into the water intake of a hydro-electric power (HEP) station. A secondary objective was to measure the injury rate of fish passed through the turbine, so that the risk to any fish that penetrated the acoustic barrier could also be determined. The test site, which was a 575kW Kaplan plant located at Blantyre on the R. Clyde, Lanarkshire, was selected as being representative of run-of-river sites currently being developed under the Government's NFFO (Non-Fossil Fuel Obligation) and SRO (Scottish Renewables Order) schemes. A further objective was to disseminate information arising from the project to the scientific and HEP community. (author)
A New Fuzzy-Based Maximum Power Point Tracker for a Solar Panel Based on Datasheet Values
Directory of Open Access Journals (Sweden)
Ali Kargarnejad
2013-01-01
Full Text Available Tracking maximum power point of a solar panel is of interest in most of photovoltaic applications. Solar panel modeling is also very interesting exclusively based on manufacturers data. Knowing that the manufacturers generally give the electrical specifications of their products at one operating condition, there are so many cases in which the specifications in other conditions are of interest. In this research, a comprehensive one-diode model for a solar panel with maximum obtainable accuracy is fully developed only based on datasheet values. The model parameters dependencies on environmental conditions are taken into consideration as much as possible. Comparison between real data and simulations results shows that the proposed model has maximum obtainable accuracy. Then a new fuzzy-based controller to track the maximum power point of the solar panel is also proposed which has better response from speed, accuracy and stability point of view respect to the previous common developed one.
DEFF Research Database (Denmark)
Beltran, H.; Perez, E.; Chen, Zhe
2009-01-01
This paper describes a Fixed Maximum Power Point analog control used in a step-down Pulse Width Modulated power converter. The DC/DC converter drives a DC motor used in small water pumping installations, without any electric storage device. The power supply is provided by PV panels working around....... The proposed Optimal Power Point fix voltage control system is analyzed in comparison to other complex controls....... their maximum power point, with a fixed operating voltage value. The control circuit implementation is not only simple and cheap, but also robust and reliable. System protections and adjustments are also proposed. Simulations and hardware are reported in the paper for a 150W water pumping application system...
Energy Technology Data Exchange (ETDEWEB)
Qazalbash, A.A.; Iqbal, T.; Shafiq, M.Z. [National Univ. of Sciences and Technology, Rawalpindi (Pakistan). Dept. of Electrical Engineering
2007-07-01
Photovoltaic (PV) solar arrays are particularly useful for electrical power generation in remote, off-grid areas in developing countries. However, PV arrays offer a small power to area ratio, resulting in the need for more PV arrays which increases the cost of the system. In order to improve the profitability of PV arrays, the power extraction from available PV array systems must be maximized. This paper presented an analysis, modeling and implementation of an efficient solar charge controller. It was shown that the maximum power of a photovoltaic system depends largely on temperature and insolation. A perturb and observe algorithm was used for maximum power point tracking (MPPT). MPPT maximizes the efficiency of a solar PV system. A solar charge controller determines the optimal values of output current and voltage of converters to maximize power output for battery charging. In order to improve performance and implement the perturb and observe algorithm, the authors designed a fuzzy rule-based system in which a solar charge controller worked with a PWM controlled DC-DC converter for battery charging. The system was implemented on a low-cost PIC microcontroller. Results were better than conventional techniques in power efficiency. Swift maximum power point tracking was obtained. 13 refs., 1 tab., 11 figs.
The Betz-Joukowsky limit for the maximum power coefficient of wind turbines
DEFF Research Database (Denmark)
Okulov, Valery; van Kuik, G.A.M.
2009-01-01
The article addresses to a history of an important scientific result in wind energy. The maximum efficiency of an ideal wind turbine rotor is well known as the ‘Betz limit’, named after the German scientist that formulated this maximum in 1920. Also Lanchester, a British scientist, is associated...
International Nuclear Information System (INIS)
Sanchez-Lara, R; Alvarez-Chavez, J A; Mendez-Martinez, F; De la Cruz-May, L; Perez-Sanchez, G G
2015-01-01
The behavior of stimulated Brillouin scattering (SBS) and Rayleigh backscattering phenomena, which limit the forward transmission power in modern, ultra-long haul optical communication systems such as dense wavelength division multiplexing systems is analyzed via simulation and experimental investigation of threshold and maximum power. Evolution of SBS, Rayleigh scattering and forward powers are experimentally investigated with a 25 km segment of single mode fiber. Also, a simple algorithm to predict the generation of SBS is proposed where two criteria of power thresholds was used for comparison with experimental data. (paper)
Energy Technology Data Exchange (ETDEWEB)
Nafeh, A.E.-S.A.; Fahmy, F.H. [Electronics Research Institute, Cairo (Egypt); El-Zahab, E.M.A. [Cairo University, Giza (Egypt). Faculty of Engineering
2003-02-01
In this paper the implementation of a suggested stand-alone PV system, for maximum-power point tracking (MPPT), is carried out. Also, this paper presents a comparative study, through experimental work, between the conventional PI controller and the fuzzy logic controller (FLC) under different atmospheric conditions. The implemented system with both the PI controller and the FLC gives a good maximum-power operation of the PV array, but the tracking capability for different optimum operating points is better and faster for the case of using the FLC compared to the case of using the PI controller. (author)
DEFF Research Database (Denmark)
Smit, Jeroen; Bernhammer, Lars O.; Navalkar, Sachin T.
2016-01-01
to fatigue damage have been identified. In these regions, the turbine energy output can be increased by deflecting the trailing edge (TE) flap in order to track the maximum power coefficient as a function of local, instantaneous speed ratios. For this purpose, the TE flap configuration for maximum power...... generation has been using blade element momentum theory. As a first step, the operation in non-uniform wind field conditions was analysed. Firstly, the deterministic fluctuation in local tip speed ratio due to wind shear was evaluated. The second effect is associated with time delays in adapting the rotor...
International Nuclear Information System (INIS)
Daili, Yacine; Gaubert, Jean-Paul; Rahmani, Lazhar
2015-01-01
Highlights: • A new maximum power point tracking algorithm for small wind turbines is proposed. • This algorithm resolves the problems of the classical perturb and observe method. • The proposed method has been tested under several wind speed profiles. • The validity of the new algorithm has been confirmed by the experimental results. - Abstract: This paper proposes a modified perturbation and observation maximum power point tracking algorithm for small wind energy conversion systems to overcome the problems of the conventional perturbation and observation technique, namely rapidity/efficiency trade-off and the divergence from peak power under a fast variation of the wind speed. Two modes of operation are used by this algorithm, the normal perturbation and observation mode and the predictive mode. The normal perturbation and observation mode with small step-size is switched under a slow wind speed variation to track the true maximum power point with fewer fluctuations in steady state. When a rapid change of wind speed is detected, the algorithm tracks the new maximum power point in two phases: in the first stage, the algorithm switches to the predictive mode in which the step-size is auto-adjusted according to the distance between the operating point and the estimated optimum point to move the operating point near to the maximum power point rapidly, and then the normal perturbation and observation mode is used to track the true peak power in the second stage. The dc-link voltage variation is used to detect rapid wind changes. The proposed algorithm does not require either knowledge of system parameters or of mechanical sensors. The experimental results confirm that the proposed algorithm has a better performance in terms of dynamic response and efficiency compared with the conventional perturbation and observation algorithm
Kobayashi, Kenji; Takano, Ichiro; Sawada, Yoshio
A photovoltaic array shows relatively low output power density, and has a greatly drooping Current-Voltage (I-V) characteristic. Therefore, Maximum Power Point Tracking (MPPT) control is used to maximize the output power of the array. Many papers have been reported in relation to MPPT. However, the Current-Power (I-P) curve sometimes shows multi-local maximum points mode under non-uniform insolation conditions. The operating point of the PV system tends to converge to a local maximum output point which is not the real maximal output point on the I-P curve. Some papers have been also reported, trying to avoid this difficulty. However most of those control systems become rather complicated. Then, the two stage MPPT control method is proposed in this paper to realize a relatively simple control system which can track the real maximum power point even under non-uniform insolation conditions. The feasibility of this control concept is confirmed for steady insolation as well as for rapidly changing insolation by simulation study using software PSIM and LabVIEW. In addition, simulated experiment confirms fundament al operation of the two stage MPPT control.
Energy Technology Data Exchange (ETDEWEB)
Kobayashi, Kenji; Takano, Ichiro; Sawada, Yoshio [Kogakuin University, Tokyo 163-8677 (Japan)
2006-11-23
A photovoltaic (PV) array shows relatively low output power density, and has a greatly drooping current-voltage (I-V) characteristic. Therefore, maximum power point tracking (MPPT) control is used to maximize the output power of the PV array. Many papers have been reported in relation to MPPT. However, the current-power (I-P) curve sometimes shows multi-local maximum point mode under non-uniform insolation conditions. The operating point of the PV system tends to converge to a local maximum output point which is not the real maximal output point on the I-P curve. Some papers have been also reported, trying to avoid this difficulty. However, most of those control systems become rather complicated. Then, the two stage MPPT control method is proposed in this paper to realize a relatively simple control system which can track the real maximum power point even under non-uniform insolation conditions. The feasibility of this control concept is confirmed for steady insolation as well as for rapidly changing insolation by simulation study using software PSIM and LabVIEW. (author)
Proskuryakov, K. N.
2017-11-01
Created new scientific direction: “Diagnosis, prognosis and prevention of vibration - acoustic resonances in the nuclear power plant (NPP) equipment. The possibility of using methods for calculating and analyzing electric oscillation systems in the study of the properties of acoustic systems with a two-phase medium is proved, based on the similarity of the differential equations describing the state of these systems. Is shown that the developed methods can be used to predict and prevent the occurrence of vibration - acoustic resonances in the NPP equipment. Is shown that the volume of pressurizer at NPPs with VVER and PWR as well as boiling water reactor that exploded at Japan’s NPP Fukushima Daiichi is a Helmholtz resonator, which contain water and steam volumes and able many times increases the impact on them of outside periodic oscillations. Paper presents most important results published long before the severe accidents at NPPs Three Mile Island (TMI), Chernobyl and Fukushima Daiichi that could be used for the prediction of a severe accident scenario, identification of measuring data and process control in order to minimize the damage. Worked out results also could be useful in another industrial technologies based on applications of single and two-phase flows.
The power flow angle of acoustic waves in thin piezoelectric plates.
Kuznetsova, Iren E; Zaitsev, Boris D; Teplykh, Andrei A; Joshi, Shrinivas G; Kuznetsova, Anastasia S
2008-09-01
The curves of slowness and power flow angle (PFA) of quasi-antisymmetric (A(0)) and quasi-symmetric (S(0)) Lamb waves as well as quasi-shear-horizontal (SH(0)) acoustic waves in thin plates of lithium niobate and potassium niobate of X-,Y-, and Z-cuts for various propagation directions and the influence of electrical shorting of one plate surface on these curves and PFA have been theoretically investigated. It has been found that the group velocity of such waves does not coincide with the phase velocity for the most directions of propagation. It has been also shown that S(0) and SH(0) wave are characterized by record high values of PFA and its change due to electrical shorting of the plate surface in comparison with surface and bulk acoustic waves in the same material. The most interesting results have been verified by experiment. As a whole, the results obtained may be useful for development of various devices for signal processing, for example, electrically controlled acoustic switchers.
Wang, Ting; Sheng, Meiping; Ding, Xiaodong; Yan, Xiaowei
2018-03-01
This paper presents analysis on wave propagation and power flow in an acoustic metamaterial plate with lateral local resonance. The metamaterial is designed to have lateral local resonance systems attached to a homogeneous plate. Relevant theoretical analysis, numerical modelling and application prospect are presented. Results show that the metamaterial has two complete band gaps for flexural wave absorption and vibration attenuation. Damping can smooth and lower the metamaterial’s frequency responses in high frequency ranges at the expense of the band gap effect, and as an important factor to calculate the power flow is thoroughly investigated. Moreover, the effective mass density becomes negative and unbounded at specific frequencies. Simultaneously, power flow within band gaps are dramatically blocked from the power flow contour and power flow maps. Results from finite element modelling and power flow analysis reveal the working mechanism of the flexural wave attenuation and power flow blocked within the band gaps, where part of the flexural vibration is absorbed by the vertical resonator and the rest is transformed through four-link-mechanisms to the lateral resonators that oscillate and generate inertial forces indirectly to counterbalance the shear forces induced by the vibrational plate. The power flow is stored in the vertical and lateral local resonance, as well as in the connected plate.
Dust-acoustic waves and stability in the permeating dusty plasma. II. Power-law distributions
International Nuclear Information System (INIS)
Gong Jingyu; Du Jiulin; Liu Zhipeng
2012-01-01
The dust-acoustic waves and the stability theory for the permeating dusty plasma with power-law distributions are studied by using nonextensive q-statistics. In two limiting physical cases, when the thermal velocity of the flowing dusty plasma is much larger than, and much smaller than the phase velocity of the waves, we derived the dust-acoustic wave frequency, the instability growth rate, and the instability critical flowing velocity. As compared with the formulae obtained in part I [Gong et al., Phys. Plasmas 19, 043704 (2012)], all formulae of the present cases and the resulting plasma characteristics are q-dependent, and the power-law distribution of each plasma component of the permeating dusty plasma has a different q-parameter and thus has a different nonextensive effect. Further, we make numerical analyses of an example that a cometary plasma tail is passing through the interplanetary space dusty plasma and we show that these power-law distributions have significant effects on the plasma characteristics of this kind of plasma environment.
Gajewski, Jan; Michalski, Radosław; Buśko, Krzysztof; Mazur-Różycka, Joanna; Staniak, Zbigniew
2018-01-01
The aim of this study was to identify the determinants of peak power achieved during vertical jumps in order to clarify relationship between the height of jump and the ability to exert maximum power. One hundred young (16.8±1.8 years) sportsmen participated in the study (body height 1.861 ± 0.109 m, body weight 80.3 ± 9.2 kg). Each participant performed three jump tests: countermovement jump (CMJ), akimbo countermovement jump (ACMJ), and spike jump (SPJ). A force plate was used to measure ground reaction force and to determine peak power output. The following explanatory variables were included in the model: jump height, body mass, and the lowering of the centre of mass before launch (countermovement depth). A model was created using multiple regression analysis and allometric scaling. The model was used to calculate the expected power value for each participant, which correlated strongly with real values. The value of the coefficient of determination R2 equalled 0.89, 0.90 and 0.98, respectively, for the CMJ, ACMJ, and SPJ jumps. The countermovement depth proved to be a variable strongly affecting the maximum power of jump. If the countermovement depth remains constant, the relative peak power is a simple function of jump height. The results suggest that the jump height of an individual is an exact indicator of their ability to produce maximum power. The presented model has a potential to be utilized under field condition for estimating the maximum power output of vertical jumps.
Dual-Axis Solar Tracking System for Maximum Power Production in ...
African Journals Online (AJOL)
Akorede
ABSTRACT: The power developed in a solar energy system depends fundamentally upon the ... for power generation. ... determined because they are functions of the solar angles that ..... able to withstand the weight and the blowing wind.
Power spectrum of the geomagnetic field by the maximum entropy method
International Nuclear Information System (INIS)
Kantor, I.J.; Trivedi, N.B.
1980-01-01
Monthly mean values of Vassouras (state of Rio de Janeiro) geomagnetic field are analyzed us the maximum entropy method. The method is described and compared with other methods of spectral analysis, and its advantages and disadvantages are presented. (Author) [pt
Wang, Kezhi
2014-10-01
Bit error rate (BER) and outage probability for amplify-and-forward (AF) relaying systems with two different channel estimation methods, disintegrated channel estimation and cascaded channel estimation, using pilot-aided maximum likelihood method in slowly fading Rayleigh channels are derived. Based on the BERs, the optimal values of pilot power under the total transmitting power constraints at the source and the optimal values of pilot power under the total transmitting power constraints at the relay are obtained, separately. Moreover, the optimal power allocation between the pilot power at the source, the pilot power at the relay, the data power at the source and the data power at the relay are obtained when their total transmitting power is fixed. Numerical results show that the derived BER expressions match with the simulation results. They also show that the proposed systems with optimal power allocation outperform the conventional systems without power allocation under the same other conditions. In some cases, the gain could be as large as several dB\\'s in effective signal-to-noise ratio.
Wang, Kezhi; Chen, Yunfei; Alouini, Mohamed-Slim; Xu, Feng
2014-01-01
Bit error rate (BER) and outage probability for amplify-and-forward (AF) relaying systems with two different channel estimation methods, disintegrated channel estimation and cascaded channel estimation, using pilot-aided maximum likelihood method in slowly fading Rayleigh channels are derived. Based on the BERs, the optimal values of pilot power under the total transmitting power constraints at the source and the optimal values of pilot power under the total transmitting power constraints at the relay are obtained, separately. Moreover, the optimal power allocation between the pilot power at the source, the pilot power at the relay, the data power at the source and the data power at the relay are obtained when their total transmitting power is fixed. Numerical results show that the derived BER expressions match with the simulation results. They also show that the proposed systems with optimal power allocation outperform the conventional systems without power allocation under the same other conditions. In some cases, the gain could be as large as several dB's in effective signal-to-noise ratio.
International Nuclear Information System (INIS)
Ye Zhuo-Lin; Li Wei-Sheng; Lai Yi-Ming; He Ji-Zhou; Wang Jian-Hui
2015-01-01
We propose a quantum-mechanical Brayton engine model that works between two superposed states, employing a single particle confined in an arbitrary power-law trap as the working substance. Applying the superposition principle, we obtain the explicit expressions of the power and efficiency, and find that the efficiency at maximum power is bounded from above by the function: η_+ = θ/(θ + 1), with θ being a potential-dependent exponent. (paper)
Energy Technology Data Exchange (ETDEWEB)
Shahab, S.; Gray, M.; Erturk, A., E-mail: alper.erturk@me.gatech.edu [G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)
2015-03-14
Contactless powering of small electronic components has lately received growing attention for wireless applications in which battery replacement or tethered charging is undesired or simply impossible, and ambient energy harvesting is not a viable solution. As an alternative to well-studied methods of contactless energy transfer, such as the inductive coupling method, the use of ultrasonic waves transmitted and received by piezoelectric devices enables larger power transmission distances, which is critical especially for deep-implanted electronic devices. Moreover, energy transfer by means of acoustic waves is well suited in situations where no electromagnetic fields are allowed. The limited literature of ultrasonic acoustic energy transfer is mainly centered on proof-of-concept experiments demonstrating the feasibility of this method, lacking experimentally validated modeling efforts for the resulting multiphysics problem that couples the source and receiver dynamics with domain acoustics. In this work, we present fully coupled analytical, numerical, and experimental multiphysics investigations for ultrasonic acoustic energy transfer from a spherical wave source to a piezoelectric receiver bar that operates in the 33-mode of piezoelectricity. The fluid-loaded piezoelectric receiver under free-free mechanical boundary conditions is shunted to an electrical load for quantifying the electrical power output for a given acoustic source strength of the transmitter. The analytical acoustic-piezoelectric structure interaction modeling framework is validated experimentally, and the effects of system parameters are reported along with optimal electrical loading and frequency conditions of the receiver.
International Nuclear Information System (INIS)
Shahab, S.; Gray, M.; Erturk, A.
2015-01-01
Contactless powering of small electronic components has lately received growing attention for wireless applications in which battery replacement or tethered charging is undesired or simply impossible, and ambient energy harvesting is not a viable solution. As an alternative to well-studied methods of contactless energy transfer, such as the inductive coupling method, the use of ultrasonic waves transmitted and received by piezoelectric devices enables larger power transmission distances, which is critical especially for deep-implanted electronic devices. Moreover, energy transfer by means of acoustic waves is well suited in situations where no electromagnetic fields are allowed. The limited literature of ultrasonic acoustic energy transfer is mainly centered on proof-of-concept experiments demonstrating the feasibility of this method, lacking experimentally validated modeling efforts for the resulting multiphysics problem that couples the source and receiver dynamics with domain acoustics. In this work, we present fully coupled analytical, numerical, and experimental multiphysics investigations for ultrasonic acoustic energy transfer from a spherical wave source to a piezoelectric receiver bar that operates in the 33-mode of piezoelectricity. The fluid-loaded piezoelectric receiver under free-free mechanical boundary conditions is shunted to an electrical load for quantifying the electrical power output for a given acoustic source strength of the transmitter. The analytical acoustic-piezoelectric structure interaction modeling framework is validated experimentally, and the effects of system parameters are reported along with optimal electrical loading and frequency conditions of the receiver
Balsalobre-Fernández, Carlos; Tejero-González, Carlos Mª; del Campo-Vecino, Juan; Alonso-Curiel, Dionisio
2013-01-01
The aim of this study was to determine the effects of a power training cycle on maximum strength, maximum power, vertical jump height and acceleration in seven high-level 400-meter hurdlers subjected to a specific training program twice a week for 10 weeks. Each training session consisted of five sets of eight jump-squats with the load at which each athlete produced his maximum power. The repetition maximum in the half squat position (RM), maximum power in the jump-squat (W), a squat jump (SJ), countermovement jump (CSJ), and a 30-meter sprint from a standing position were measured before and after the training program using an accelerometer, an infra-red platform and photo-cells. The results indicated the following statistically significant improvements: a 7.9% increase in RM (Z=−2.03, p=0.021, δc=0.39), a 2.3% improvement in SJ (Z=−1.69, p=0.045, δc=0.29), a 1.43% decrease in the 30-meter sprint (Z=−1.70, p=0.044, δc=0.12), and, where maximum power was produced, a change in the RM percentage from 56 to 62% (Z=−1.75, p=0.039, δc=0.54). As such, it can be concluded that strength training with a maximum power load is an effective means of increasing strength and acceleration in high-level hurdlers. PMID:23717361
Kimble, Michael C.; White, Ralph E.
1991-01-01
A mathematical model of a hydrogen/oxygen alkaline fuel cell is presented that can be used to predict the polarization behavior under various power loads. The major limitations to achieving high power densities are indicated and methods to increase the maximum attainable power density are suggested. The alkaline fuel cell model describes the phenomena occurring in the solid, liquid, and gaseous phases of the anode, separator, and cathode regions based on porous electrode theory applied to three phases. Fundamental equations of chemical engineering that describe conservation of mass and charge, species transport, and kinetic phenomena are used to develop the model by treating all phases as a homogeneous continuum.
Energy Technology Data Exchange (ETDEWEB)
Lin, Whei-Min; Hong, Chih-Ming [Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung 80424 (China)
2010-06-15
To achieve maximum power point tracking (MPPT) for wind power generation systems, the rotational speed of wind turbines should be adjusted in real time according to wind speed. In this paper, a Wilcoxon radial basis function network (WRBFN) with hill-climb searching (HCS) MPPT strategy is proposed for a permanent magnet synchronous generator (PMSG) with a variable-speed wind turbine. A high-performance online training WRBFN using a back-propagation learning algorithm with modified particle swarm optimization (MPSO) regulating controller is designed for a PMSG. The MPSO is adopted in this study to adapt to the learning rates in the back-propagation process of the WRBFN to improve the learning capability. The MPPT strategy locates the system operation points along the maximum power curves based on the dc-link voltage of the inverter, thus avoiding the generator speed detection. (author)
Simulations of the energy loss of ions at the stopping-power maximum in a laser-induced plasma
International Nuclear Information System (INIS)
Cayzac, W.; Malka, G.; Frank, A.; Bagnoud, V.; Blažević, A.; Schlegel, T.; Ortner, A.; Bedacht, S.; Deppert, O.; Knetsch, A.; Schaumann, G.; Wagner, F.; Basko, M.M.; Gericke, D.O.; Hallo, L.; Pépitone, K.; Kraus, D.; Schumacher, D.; Tauschwitz, An.; Vorberger, J.
2016-01-01
Simulations have been performed to study the energy loss of carbon ions in a hot, laser-generated plasma in the velocity region of the stopping-power maximum. In this parameter range, discrepancies of up to 30% exist between the various stopping theories and hardly any experimental data are available. The considered plasma, created by irradiating a thin carbon foil with two high-energy laser beams, is fully-ionized with a temperature of nearly 200 eV. To study the interaction at the maximum stopping power, Monte-Carlo calculations of the ion charge state in the plasma are carried out at a projectile energy of 0.5 MeV per nucleon. The predictions of various stopping-power theories are compared and experimental campaigns are planned for a first-time theory benchmarking in this low-velocity range. (paper)
Fluid dynamics of acoustic and hydrodynamic cavitation in hydraulic power systems
Ferrari, A.
2017-03-01
Cavitation is the transition from a liquid to a vapour phase, due to a drop in pressure to the level of the vapour tension of the fluid. Two kinds of cavitation have been reviewed here: acoustic cavitation and hydrodynamic cavitation. As acoustic cavitation in engineering systems is related to the propagation of waves through a region subjected to liquid vaporization, the available expressions of the sound speed are discussed. One of the main effects of hydrodynamic cavitation in the nozzles and orifices of hydraulic power systems is a reduction in flow permeability. Different discharge coefficient formulae are analysed in this paper: the Reynolds number and the cavitation number result to be the key fluid dynamical parameters for liquid and cavitating flows, respectively. The latest advances in the characterization of different cavitation regimes in a nozzle, as the cavitation number reduces, are presented. The physical cause of choked flows is explained, and an analogy between cavitation and supersonic aerodynamic flows is proposed. The main approaches to cavitation modelling in hydraulic power systems are also reviewed: these are divided into homogeneous-mixture and two-phase models. The homogeneous-mixture models are further subdivided into barotropic and baroclinic models. The advantages and disadvantages of an implementation of the complete Rayleigh-Plesset equation are examined.
Energy Technology Data Exchange (ETDEWEB)
Gomis-Bellmunt, Oriol; Sumper, Andreas [Centre d' Innovacio Tecnologica en Convertidors Estatics i Accionaments (CITCEA-UPC), Universitat Politecnica de Catalunya UPC, Av. Diagonal, 647, Pl. 2, 08028 Barcelona (Spain); IREC Catalonia Institute for Energy Research, Barcelona (Spain); Junyent-Ferre, Adria; Galceran-Arellano, Samuel [Centre d' Innovacio Tecnologica en Convertidors Estatics i Accionaments (CITCEA-UPC), Universitat Politecnica de Catalunya UPC, Av. Diagonal, 647, Pl. 2, 08028 Barcelona (Spain)
2010-10-15
The paper deals with the evaluation of power generated by variable and constant frequency offshore wind farms connected to a single large power converter. A methodology to analyze different wind speed scenarios and system electrical frequencies is presented and applied to a case study, where it is shown that the variable frequency wind farm concept (VF) with a single power converter obtains 92% of the total available power, obtained with individual power converters in each wind turbine (PC). The PC scheme needs multiple power converters implying drawbacks in terms of cost, maintenance and reliability. The VF scheme is also compared to a constant frequency scheme CF, and it is shown that a significant power increase of more than 20% can be obtained with VF. The case study considers a wind farm composed of four wind turbines based on synchronous generators. (author)
Quamruzzaman, M.; Mohammad, Nur; Matin, M. A.; Alam, M. R.
2016-10-01
Solar photovoltaics (PVs) have nonlinear voltage-current characteristics, with a distinct maximum power point (MPP) depending on factors such as solar irradiance and operating temperature. To extract maximum power from the PV array at any environmental condition, DC-DC converters are usually used as MPP trackers. This paper presents the performance analysis of a coupled inductor single-ended primary inductance converter for maximum power point tracking (MPPT) in a PV system. A detailed model of the system has been designed and developed in MATLAB/Simulink. The performance evaluation has been conducted on the basis of stability, current ripple reduction and efficiency at different operating conditions. Simulation results show considerable ripple reduction in the input and output currents of the converter. Both the MPPT and converter efficiencies are significantly improved. The obtained simulation results validate the effectiveness and suitability of the converter model in MPPT and show reasonable agreement with the theoretical analysis.
Maximum a posteriori covariance estimation using a power inverse wishart prior
DEFF Research Database (Denmark)
Nielsen, Søren Feodor; Sporring, Jon
2012-01-01
The estimation of the covariance matrix is an initial step in many multivariate statistical methods such as principal components analysis and factor analysis, but in many practical applications the dimensionality of the sample space is large compared to the number of samples, and the usual maximum...
Pilot power optimization for AF relaying using maximum likelihood channel estimation
Wang, Kezhi
2014-09-01
Bit error rates (BERs) for amplify-and-forward (AF) relaying systems with two different pilot-symbol-aided channel estimation methods, disintegrated channel estimation (DCE) and cascaded channel estimation (CCE), are derived in Rayleigh fading channels. Based on these BERs, the pilot powers at the source and at the relay are optimized when their total transmitting powers are fixed. Numerical results show that the optimized system has a better performance than other conventional nonoptimized allocation systems. They also show that the optimal pilot power in variable gain is nearly the same as that in fixed gain for similar system settings. andcopy; 2014 IEEE.
Directory of Open Access Journals (Sweden)
Tofael Ahmed
2014-06-01
Full Text Available In this paper, a single phase doubly grounded semi-Z-source inverter with maximum power point tracking (MPPT is proposed for photovoltaic (PV systems. This proposed system utilizes a single-ended primary inductor (SEPIC converter as DC-DC converter to implement the MPPT algorithm for tracking the maximum power from a PV array and a single phase semi-Z-source inverter for integrating the PV with AC power utilities. The MPPT controller utilizes a fast-converging algorithm to track the maximum power point (MPP and the semi-Z-source inverter utilizes a nonlinear SPWM to produce sinusoidal voltage at the output. The proposed system is able to track the MPP of PV arrays and produce an AC voltage at its output by utilizing only three switches. Experimental results show that the fast-converging MPPT algorithm has fast tracking response with appreciable MPP efficiency. In addition, the inverter shows the minimization of common mode leakage current with its ground sharing feature and reduction of the THD as well as DC current components at the output during DC-AC conversion.
Mao, Mingxuan; Duan, Qichang; Zhang, Li; Chen, Hao; Hu, Bei; Duan, Pan
2017-08-24
The paper presents a novel two-stage particle swarm optimization (PSO) for the maximum power point tracking (MPPT) control of a PV system consisting of cascaded PV-converter modules, under partial shading conditions (PSCs). In this scheme, the grouping method of the shuffled frog leaping algorithm (SFLA) is incorporated with the basic PSO algorithm, ensuring fast and accurate searching of the global extremum. An adaptive speed factor is also introduced to improve its convergence speed. A PWM algorithm enabling permuted switching of the PV sources is applied. The method enables this PV system to achieve the maximum power generation for any number of PV and converter modules. Simulation studies of the proposed MPPT scheme are performed on a system having two chained PV buck-converter modules and a dc-ac H-bridge connected at its terminals for supplying an AC load. The results show that this type of PV system allows each module to achieve the maximum power generation according its illumination level without affecting the others, and the proposed new control method gives significantly higher power output compared with the conventional P&O and PSO methods.
Maximum likelihood unit rooting test in the presence GARCH: A new test with increased power
Cook , Steve
2008-01-01
Abstract The literature on testing the unit root hypothesis in the presence of GARCH errors is extended. A new test based upon the combination of local-to-unity detrending and joint maximum likelihood estimation of the autoregressive parameter and GARCH process is presented. The finite sample distribution of the test is derived under alternative decisions regarding the deterministic terms employed. Using Monte Carlo simulation, the newly proposed ML t-test is shown to exhibit incre...
International Nuclear Information System (INIS)
Jiang, Joe-Air; Su, Yu-Li; Shieh, Jyh-Cherng; Kuo, Kun-Chang; Lin, Tzu-Shiang; Lin, Ta-Te; Fang, Wei; Chou, Jui-Jen; Wang, Jen-Cheng
2014-01-01
Highlights: • Hybrid MPPT method was developed and utilized in a PV system of closed plant factory. • The tracking of the maximum power output of PV system can be achieved in real time. • Hybrid MPPT method not only decreases energy loss but increases power utilization. • The feasibility of applying PV system to the closed plant factory has been examined. • The PV system significantly reduced CO 2 emissions and curtailed the fossil fuels. - Abstract: Photovoltaic (PV) generation systems have been shown to have a promising role for use in high electric-load buildings, such as the closed plant factory which is dependent upon artificial lighting. The power generated by the PV systems can be either directly supplied to the buildings or fed back into the electrical grid to reduce the high economic costs and environmental impact associated with the traditional energy sources such as nuclear power and fossil fuels. However, PV systems usually suffer from low energy-conversion efficiency, and it is therefore necessary to improve their performance by tackling the energy loss issues. The maximum power point tracking (MPPT) control technique is essential to the PV-assisted generation systems in order to achieve the maximum power output in real time. In this study, we integrate the previously proposed direct-prediction MPP method with a perturbation and observation (P and O) method to develop a new hybrid MPPT method. The proposed MPPT method is further utilized in the PV inverters in a PV system installed on the roof of a closed plant factory at National Taiwan University. The tested PV system is constructed as a two-stage grid-connected photovoltaic power conditioning (PVPC) system with a boost-buck full bridge design configuration. A control scheme based on the hybrid MPPT method is also developed and implemented in the PV inverters of the PVPC system to achieve tracking of the maximum power output of the PV system in real time. Based on experimental results
ACOUSTIC SCALE FROM THE ANGULAR POWER SPECTRA OF SDSS-III DR8 PHOTOMETRIC LUMINOUS GALAXIES
Energy Technology Data Exchange (ETDEWEB)
Seo, Hee-Jong [Berkeley Center for Cosmological Physics, LBL and Department of Physics, University of California, Berkeley, CA 94720 (United States); Ho, Shirley; White, Martin; Reid, Beth; Schlegel, David J. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Cuesta, Antonio J.; Padmanabhan, Nikhil [Yale Center for Astronomy and Astrophysics, Yale University, New Haven, CT 06511 (United States); Ross, Ashley J.; Percival, Will J.; Nichol, Robert C. [Institute of Cosmology and Gravitation, Dennis Sciama Building, University of Portsmouth, Portsmouth PO1 3FX (United Kingdom); Saito, Shun [Department of Astronomy, 601 Campbell Hall, University of California at Berkeley, Berkeley, CA 94720 (United States); De Putter, Roland [Instituto de Fisica Corpuscular, Valencia (Spain); Eisenstein, Daniel J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS 20, Cambridge, MA 02138 (United States); Xu Xiaoying; Skibba, Ramin [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Schneider, Donald P. [Institute for Gravitation and the Cosmos, The Pennsylvania State University, University Park, PA 16802 (United States); Verde, Licia [Institucio Catalana de Recerca i Estudis Avancats, Barcelona (Spain); Bizyaev, Dmitry; Brewington, Howard; Brinkmann, J. [Apache Point Observatory, 2001 Apache Point Road, Sunspot, NM 88349 (United States); and others
2012-12-10
We measure the acoustic scale from the angular power spectra of the Sloan Digital Sky Survey III (SDSS-III) Data Release 8 imaging catalog that includes 872, 921 galaxies over {approx}10,000 deg{sup 2} between 0.45 < z < 0.65. The extensive spectroscopic training set of the Baryon Oscillation Spectroscopic Survey luminous galaxies allows precise estimates of the true redshift distributions of galaxies in our imaging catalog. Utilizing the redshift distribution information, we build templates and fit to the power spectra of the data, which are measured in our companion paper, to derive the location of Baryon acoustic oscillations (BAOs) while marginalizing over many free parameters to exclude nearly all of the non-BAO signal. We derive the ratio of the angular diameter distance to the sound horizon scale D{sub A} (z)/r{sub s} = 9.212{sup +0.416}{sub -{sub 0.404}} at z = 0.54, and therefore D{sub A} (z) = 1411 {+-} 65 Mpc at z = 0.54; the result is fairly independent of assumptions on the underlying cosmology. Our measurement of angular diameter distance D{sub A} (z) is 1.4{sigma} higher than what is expected for the concordance {Lambda}CDM, in accordance to the trend of other spectroscopic BAO measurements for z {approx}> 0.35. We report constraints on cosmological parameters from our measurement in combination with the WMAP7 data and the previous spectroscopic BAO measurements of SDSS and WiggleZ. We refer to our companion papers (Ho et al.; de Putter et al.) for investigations on information of the full power spectrum.
Timing A Pulsed Thin Film Pyroelectric Generator For Maximum Power Density
International Nuclear Information System (INIS)
Smith, A.N.; Hanrahan, B.M.; Neville, C.J.; Jankowski, N.R
2016-01-01
Pyroelectric thermal-to-electric energy conversion is accomplished by a cyclic process of thermally-inducing polarization changes in the material under an applied electric field. The pyroelectric MEMS device investigated consisted of a thin film PZT capacitor with platinum bottom and iridium oxide top electrodes. Electric fields between 1-20 kV/cm with a 30% duty cycle and frequencies from 0.1 - 100 Hz were tested with a modulated continuous wave IR laser with a duty cycle of 20% creating temperature swings from 0.15 - 26 °C on the pyroelectric receiver. The net output power of the device was highly sensitive to the phase delay between the laser power and the applied electric field. A thermal model was developed to predict and explain the power loss associated with finite charge and discharge times. Excellent agreement was achieved between the theoretical model and the experiment results for the measured power density versus phase delay. Limitations on the charging and discharging rates result in reduced power and lower efficiency due to a reduced net work per cycle. (paper)
Directory of Open Access Journals (Sweden)
Ramji Tiwari
2018-02-01
Full Text Available This paper proposes an artificial neural network (ANN based maximum power point tracking (MPPT control strategy for wind energy conversion system (WECS implemented with a DC/DC converter. The proposed topology utilizes a radial basis function network (RBFN based neural network control strategy to extract the maximum available power from the wind velocity. The results are compared with a classical Perturb and Observe (P&O method and Back propagation network (BPN method. In order to achieve a high voltage rating, the system is implemented with a quadratic boost converter and the performance of the converter is validated with a boost and single ended primary inductance converter (SEPIC. The performance of the MPPT technique along with a DC/DC converter is demonstrated using MATLAB/Simulink.
L1 Adaptive Speed Control of a Small Wind Energy Conversion System for Maximum Power Point Tracking
DEFF Research Database (Denmark)
Zhao, Haoran; Wu, Qiuwei; Rasmussen, Claus Nygaard
2014-01-01
This paper presents the design of an L1 adaptive controller for maximum power point tracking (MPPT) of a small variable speed Wind Energy Conversion System (WECS). The proposed controller generates the optimal torque command for the vector controlled generator side converter (GSC) based on the wi......) is used to carry out case studies using Matlab/Simulink. The case study results show that the designed L1 adaptive controller has good tracking performance even with unmodeled dynamics and in the presence of parameter uncertainties and unknown disturbances.......This paper presents the design of an L1 adaptive controller for maximum power point tracking (MPPT) of a small variable speed Wind Energy Conversion System (WECS). The proposed controller generates the optimal torque command for the vector controlled generator side converter (GSC) based on the wind...
Optimization of a Turboprop UAV for Maximum Loiter and Specific Power Using Genetic Algorithm
Dinc, Ali
2016-09-01
In this study, a genuine code was developed for optimization of selected parameters of a turboprop engine for an unmanned aerial vehicle (UAV) by employing elitist genetic algorithm. First, preliminary sizing of a UAV and its turboprop engine was done, by the code in a given mission profile. Secondly, single and multi-objective optimization were done for selected engine parameters to maximize loiter duration of UAV or specific power of engine or both. In single objective optimization, as first case, UAV loiter time was improved with an increase of 17.5% from baseline in given boundaries or constraints of compressor pressure ratio and burner exit temperature. In second case, specific power was enhanced by 12.3% from baseline. In multi-objective optimization case, where previous two objectives are considered together, loiter time and specific power were increased by 14.2% and 9.7% from baseline respectively, for the same constraints.
International Nuclear Information System (INIS)
Fathabadi, Hassan
2016-01-01
Highlights: • Novel high accurate sensorless dual-axis solar tracker. • It has the advantages of both sensor based and sensorless solar trackers. • It does not have the disadvantages of sensor based and sensorless solar trackers. • Tracking error of only 0.11° that is less than the tracking errors of others. • An increase of 28.8–43.6% depending on the seasons in the energy efficiency. - Abstract: In this study, a novel high accurate sensorless dual-axis solar tracker controlled by the maximum power point tracking unit available in almost all photovoltaic systems is proposed. The maximum power point tracking controller continuously calculates the maximum output power of the photovoltaic module/panel/array, and uses the altitude and azimuth angles deviations to track the sun direction where the greatest value of the maximum output power is extracted. Unlike all other sensorless solar trackers, the proposed solar tracking system is a closed loop system which means it uses the actual direction of the sun at any time to track the sun direction, and this is the contribution of this work. The proposed solar tracker has the advantages of both sensor based and sensorless dual-axis solar trackers, but it does not have their disadvantages. Other sensorless solar trackers all are open loop, i.e., they use offline estimated data about the sun path in the sky obtained from solar map equations, so low exactness, cloudy sky, and requiring new data for new location are their problems. A photovoltaic system has been built, and it is experimentally verified that the proposed solar tracking system tracks the sun direction with the tracking error of 0.11° which is less than the tracking errors of other both sensor based and sensorless solar trackers. An increase of 28.8–43.6% depending on the seasons in the energy efficiency is the main advantage of utilizing the proposed solar tracking system.
The maximum power condition of the brayton cycle with heat exchange processes
International Nuclear Information System (INIS)
Jung, Pyung Suk; Cha, Jin Girl; Ro, Sung Tack
1985-01-01
The ideal brayton cycle has been analyzed with the heat exchange processes between the working fluid and the heat source and the sink while their heat capacity rates are constant. The power of the cycle can be expressed in terms of a temperature of the cycle and the heat capacity rate of the working fluid. There exists an optimum power condition where the heat capacity rate of the working fluid has a value between those of the heat source and the heat sink, and the cycle efficiency is determined by the inlet temperatures of the heat source and the sink. (Author)
Directory of Open Access Journals (Sweden)
Ru-Min Chao
2016-01-01
Full Text Available This paper identifies the partial shading problem of a PV module using the one-diode model and simulating the characteristics exhibiting multiple-peak power output condition that is similar to a PV array. A modified particle swarm optimization (PSO algorithm based on the suggested search-agent deployment, retracking condition, and multicore operation is proposed in order to continuously locate the global maximum power point for the PV system. Partial shading simulation results for up to 16 modules in series/parallel formats are presented. A distributed PV system consisting of up to 8 a-silicon thin film PV panels and also having a dedicated DC/DC buck converter on each of the modules is tested. The converter reaches its steady state voltage output in 10 ms. However for MPPT operation, voltage, and current measurement interval is set to 20 ms to avoid unnecessary noise from the entire electric circuit. Based on the simulation and experiment results, each core of the proposed PSO operation should control no more than 4 PV modules in order to have the maximum tracking accuracy and minimum overall tracking time. Tracking for the global maximum power point of a distributed PV system under various partial shading conditions can be done within 1.3 seconds.
Directory of Open Access Journals (Sweden)
Rozana Alik
2016-03-01
Full Text Available This paper presents a simple checking algorithm for maximum power point tracking (MPPT technique for Photovoltaic (PV system using Perturb and Observe (P&O algorithm. The main benefit of this checking algorithm is the simplicity and efficiency of the system whose duty cycle produced by the MPPT is smoother and changes faster according to maximum power point (MPP. This checking algorithm can determine the maximum power first before the P&O algorithm takes place to identify the voltage at MPP (VMPP, which is needed to calculate the duty cycle for the boost converter. To test the effectiveness of the algorithm, a simulation model of PV system has been carried out using MATLAB/Simulink under different level of irradiation; or in other words partially shaded condition of PV array. The results from the system using the proposed approach prove to have faster response and low ripple. Besides, the results are close to the desired outputs and exhibit an approximately 98.25% of the system efficiency. On the other hand, the system with conventional P&O MPPT seems to be unstable and has higher percentage of error. In summary, the proposed method is useful under varying level of irradiation with higher efficiency of the system.
Directory of Open Access Journals (Sweden)
Suliang Ma
2016-11-01
Full Text Available Photovoltaic (PV systems have non-linear characteristics that generate maximum power at one particular operating point. Environmental factors such as irradiance and temperature variations greatly affect the maximum power point (MPP. Diverse offline and online techniques have been introduced for tracking the MPP. Here, to track the MPP, an augmented-state feedback linearized (AFL non-linear controller combined with an artificial neural network (ANN is proposed. This approach linearizes the non-linear characteristics in PV systems and DC/DC converters, for tracking and optimizing the PV system operation. It also reduces the dependency of the designed controller on linearized models, to provide global stability. A complete model of the PV system is simulated. The existing maximum power-point tracking (MPPT and DC/DC boost-converter controller techniques are compared with the proposed ANN method. Two case studies, which simulate realistic circumstances, are presented to demonstrate the effectiveness and superiority of the proposed method. The AFL with ANN controller can provide good dynamic operation, faster convergence speed, and fewer operating-point oscillations around the MPP. It also tracks the global maxima under different conditions, especially irradiance-mutating situations, more effectively than the conventional methods. Detailed mathematical models and a control approach for a three-phase grid-connected intelligent hybrid system are proposed using MATLAB/Simulink.
2012-12-01
completing the academic workload at NPS. Taking care of two toddlers all day, every day, is not an easy task. You make xxviii it seem effortless and...for the development of numerous thin-cell applications that meet the military’s requirements for ruggedness and power output. For example, the...2012, September 5). PV microinverters and power optimizers set for significant growth [PV Magazine Online]. Available: http://www.pv- magazine.com
A thermoelectric generator using loop heat pipe and design match for maximum-power generation
Huang, Bin-Juine; Hsu, Po-Chien; Tsai, Rung-Je; Hussain, Muhammad Mustafa
2015-01-01
of noise. The experiments for a TEG with 4W rated power show that the LHP performs very well with overall thermal resistance 0.35 K W-1, from the cold side of TEG module to the ambient. The LHP is able to dissipate heat up to 110W and is maintenance free
A Direct Maximum Power Point Tracking Method for Single-Phase Grid Connected PV Inverters
DEFF Research Database (Denmark)
EL Aamri, Faicel; Maker, Hattab; Sera, Dezso
2018-01-01
in dynamic conditions, especially in low irradiance when the measurement of signals becomes more sensitive to noise. The proposed MPPT is designed for single-phase single-stage grid-connected PV inverters, and is based on estimating the instantaneous PV power and voltage ripples, using second...
Neba, Yasuhiko
This paper deals with a maximum power point tracking (MPPT) control of the photovoltaic generation with the single-phase utility interactive inverter. The photovoltaic arrays are connected by employing the PWM current source inverter to the utility. The use of the pulsating dc current and voltage allows the maximum power point to be searched. The inverter can regulate the array voltage and keep the arrays to the maximum power. This paper gives the control method and the experimental results.
Ramachandran, Hema; Pillai, K. P. P.; Bindu, G. R.
2017-08-01
A two-port network model for a wireless power transfer system taking into account the distributed capacitances using PP network topology with top coupling is developed in this work. The operating and maximum power transfer efficiencies are determined analytically in terms of S-parameters. The system performance predicted by the model is verified with an experiment consisting of a high power home light load of 230 V, 100 W and is tested for two forced resonant frequencies namely, 600 kHz and 1.2 MHz. The experimental results are in close agreement with the proposed model.
International Nuclear Information System (INIS)
Lee, Joon Hyun; Lee, Min Rae; Kim, Jung Teak
2005-01-01
In this study, an advanced condition monitoring technique based on acoustic emission (AE) detection and artificial neural networks was applied to a check valve, one of the components being used extensively in a safety system of a nuclear power plant (Npp). AE testing for a check valve under controlled flow loop conditions was performed to detect and evaluate disk movement for valve degradation such as wear and leakage due to foreign object interference in a check valve. It is clearly demonstrated that the evaluation of different types of failure modes such as disk wear and check valve leakage were successful by systematically analyzing the characteristics of various AE parameters. It is also shown that the leak size can be determined with an artificial neural network
Ultra Low-Power Acoustic Detector Applicable in Ambient Assistance Living Systems
Directory of Open Access Journals (Sweden)
Iliev I.
2009-12-01
Full Text Available Ambient Assisted Living (AAL includes methods, concepts, systems, devices as well as services, which provide unobtrusive support for daily life based on the context and situation of the assisted person. The technologies applied for AAL are user-centric, i.e. oriented towards the needs and capabilities of the particular user. They are also integrated into the immediate personal environment of the user. As a consequence, the technology is adapting to the user rather than the other way around. The in-house monitoring of elderly or disabled people (hard of hearing, deaf, with limited movement ability, using intelligent sensors is a very desirable service that may potentially increase the user's autonomy and independence while minimizing the risks of living alone. The described ultra low-power acoustic detector allows upgrade of the presented warning systems. It features long-term autonomy and possibility to use it as an element of the wireless personal area network (WPAN.
International Nuclear Information System (INIS)
Lee, M. R.; Lee, J. H.; Kim, J. T.; Kim, J. S.; Luk, V. K.
2003-01-01
This work performed in support of the International Nuclear Energy Research Institute (INERI) program, which was to develop and demonstrate advanced sensor and computational technology for on-line monitoring of the condition of components, structures, and systems in advanced and next-generation nuclear power plants (NPPs). This primary object of this work is to investigate advanced condition monitoring systems based on acoustic emission detection that can provide timely detection of check valve degeneration and service aging so that maintenance/replacement could be preformed prior to loss safety function. The research is focused on the capability of AE technique to provide diagnostic information useful in determining check valve aging and degradation check valve failure and undesirable operating modes. This work also includes the investigation and adaptation of several advanced sensor technologies such as accelerometer and advanced ultrasonic technique. In addition, this work will develop advanced sophisticated signal processing, noise reduction, and pattern recognition techniques and algorithms from check valve degradation.
Quantum Coherent Three-Terminal Thermoelectrics: Maximum Efficiency at Given Power Output
Directory of Open Access Journals (Sweden)
Robert S. Whitney
2016-05-01
Full Text Available This work considers the nonlinear scattering theory for three-terminal thermoelectric devices used for power generation or refrigeration. Such systems are quantum phase-coherent versions of a thermocouple, and the theory applies to systems in which interactions can be treated at a mean-field level. It considers an arbitrary three-terminal system in any external magnetic field, including systems with broken time-reversal symmetry, such as chiral thermoelectrics, as well as systems in which the magnetic field plays no role. It is shown that the upper bound on efficiency at given power output is of quantum origin and is stricter than Carnot’s bound. The bound is exactly the same as previously found for two-terminal devices and can be achieved by three-terminal systems with or without broken time-reversal symmetry, i.e., chiral and non-chiral thermoelectrics.
Maximum Efficiency of Thermoelectric Heat Conversion in High-Temperature Power Devices
Directory of Open Access Journals (Sweden)
V. I. Khvesyuk
2016-01-01
Full Text Available Modern trends in development of aircraft engineering go with development of vehicles of the fifth generation. The features of aircrafts of the fifth generation are motivation to use new high-performance systems of onboard power supply. The operating temperature of the outer walls of engines is of 800–1000 K. This corresponds to radiation heat flux of 10 kW/m2 . The thermal energy including radiation of the engine wall may potentially be converted into electricity. The main objective of this paper is to analyze if it is possible to use a high efficiency thermoelectric conversion of heat into electricity. The paper considers issues such as working processes, choice of materials, and optimization of thermoelectric conversion. It presents the analysis results of operating conditions of thermoelectric generator (TEG used in advanced hightemperature power devices. A high-temperature heat source is a favorable factor for the thermoelectric conversion of heat. It is shown that for existing thermoelectric materials a theoretical conversion efficiency can reach the level of 15–20% at temperatures up to 1500 K and available values of Ioffe parameter being ZT = 2–3 (Z is figure of merit, T is temperature. To ensure temperature regime and high efficiency thermoelectric conversion simultaneously it is necessary to have a certain match between TEG power, temperature of hot and cold surfaces, and heat transfer coefficient of the cooling system. The paper discusses a concept of radiation absorber on the TEG hot surface. The analysis has demonstrated a number of potentialities for highly efficient conversion through using the TEG in high-temperature power devices. This work has been implemented under support of the Ministry of Education and Science of the Russian Federation; project No. 1145 (the programme “Organization of Research Engineering Activities”.
DEFF Research Database (Denmark)
Jacobsen, Finn; Tiana Roig, Elisabet
2010-01-01
area; and it has always been regarded as impossible to measure the sound power that is incident on a wall directly. This paper examines a new method of determining this quantity from sound pressure measurements at positions on the wall using 'statistically optimised near field acoustic holography...
Kordi, Mehdi; Goodall, Stuart; Barratt, Paul; Rowley, Nicola; Leeder, Jonathan; Howatson, Glyn
2017-08-01
From a cycling paradigm, little has been done to understand the relationships between maximal isometric strength of different single joint lower body muscle groups and their relation with, and ability to predict PPO and how they compare to an isometric cycling specific task. The aim of this study was to establish relationships between maximal voluntary torque production from isometric single-joint and cycling specific tasks and assess their ability to predict PPO. Twenty male trained cyclists participated in this study. Peak torque was measured by performing maximum voluntary contractions (MVC) of knee extensors, knee flexors, dorsi flexors and hip extensors whilst instrumented cranks measured isometric peak torque from MVC when participants were in their cycling specific position (ISOCYC). A stepwise regression showed that peak torque of the knee extensors was the only significant predictor of PPO when using SJD and accounted for 47% of the variance. However, when compared to ISOCYC, the only significant predictor of PPO was ISOCYC, which accounted for 77% of the variance. This suggests that peak torque of the knee extensors was the best single-joint predictor of PPO in sprint cycling. Furthermore, a stronger prediction can be made from a task specific isometric task. Copyright © 2017 Elsevier Ltd. All rights reserved.
Best voltage bias-flipping strategy towards maximum piezoelectric power generation
International Nuclear Information System (INIS)
Liang, Junrui; Chung, Henry Shu-Hung
2013-01-01
In piezoelectric energy harvesting (PEH) systems, energy extracted from piezoelectric structure can be increased by making piezoelectric voltage in phase with vibration velocity and raising the voltage amplitude. Such voltage manipulations can be realized by synchronously flipping the piezoelectric voltage with respect to a bias dc source at every displacement extremum. Given that net harvested energy is obtained by deducting dissipated energy from total extracted energy, a sophisticated voltage bias-flipping scheme, which can maximize extracted energy at low dissipative cost, is required towards harvested energy optimization. This paper extends the state of the art by proposing the best bias-flip strategy, which is delivered on conceptual synchronized multiple bias-flip (SMBF) interface circuits. The proposed strategy coordinates both requirements on larger voltage change in synchronized instant for more extracted energy and smaller voltage change in each bias-flip action for less dissipated energy. It not only leads to further enhancement of harvesting capability beyond existing solutions, but also provides an unprecedented physical insight on maximum achievable harvesting capability of PEH interface circuit
Directory of Open Access Journals (Sweden)
Emad Talib Hashim
2018-02-01
Full Text Available Maximum power point tracking (MPPT is used in photovoltaic (PV systems to enhance efficiency and maximize the output power of PV module, regardless the variation of temperature, irradiation, and the electrical characteristics of the load. A new MPPT system has been presented in this research, consisting of a synchronous DC-DC step-down Buck converter controlled by an Arduino microcontroller based unit. The MPPT process with Perturb and Observe method is performed with a DC-DC converter circuit to overcome the problem of voltage mismatch between the PV modules and the loads. The proposing system has high efficiency, lower cost and can be easily modified to handle more energy sources. The test results indicate that the use of the proposed MPPT control with the designed synchronous Buck converter increases the PV output power; hence increases the overall solar system efficiency. The synchronous Buck converter test results used in this design showed high converter efficiency up to 95% of the power produced from the solar module, leading to reduce power loss caused by the power transfer process from PV module to the loads.
International Nuclear Information System (INIS)
Lee, K.Y.; Park, Y.M.
1991-01-01
Historically, the electric utility demand in most countries has increased rapidly, with a doubling of approximately 10 years in the case of developing countries. In order to meet this growth in demand, the planners of expansion policies were concerned with obtaining expansion pans which dictate what new generation facilities to add and when to add them. This paper reports that, however, the practical planning problem is extremely difficult and complex, and required many hours of the planner's time even though the alternatives examined were extremely limited. In this connection, increased motivation for more sophisticated techniques of valuating utility expansion policies has been developed during the past decade. Among them, the long-range generation expansion planning is to select the most economical and reliable generation expansion plans in order to meet future power demand over a long period of time subject to a multitude of technical, economical, and social constraints
Scalable pumping approach for extracting the maximum TEM(00) solar laser power.
Liang, Dawei; Almeida, Joana; Vistas, Cláudia R
2014-10-20
A scalable TEM(00) solar laser pumping approach is composed of four pairs of first-stage Fresnel lens-folding mirror collectors, four fused-silica secondary concentrators with light guides of rectangular cross-section for radiation homogenization, four hollow two-dimensional compound parabolic concentrators for further concentration of uniform radiations from the light guides to a 3 mm diameter, 76 mm length Nd:YAG rod within four V-shaped pumping cavities. An asymmetric resonator ensures an efficient large-mode matching between pump light and oscillating laser light. Laser power of 59.1 W TEM(00) is calculated by ZEMAX and LASCAD numerical analysis, revealing 20 times improvement in brightness figure of merit.
Spherical gradient-index lenses as perfect imaging and maximum power transfer devices.
Gordon, J M
2000-08-01
Gradient-index lenses can be viewed from the perspectives of both imaging and nonimaging optics, that is, in terms of both image fidelity and achievable flux concentration. The simple class of gradient-index lenses with spherical symmetry, often referred to as modified Luneburg lenses, is revisited. An alternative derivation for established solutions is offered; the method of Fermat's strings and the principle of skewness conservation are invoked. Then these nominally perfect imaging devices are examined from the additional vantage point of power transfer, and the degree to which they realize the thermodynamic limit to flux concentration is determined. Finally, the spherical gradient-index lens of the fish eye is considered as a modified Luneburg lens optimized subject to material constraints.
Panel acoustic contribution analysis.
Wu, Sean F; Natarajan, Logesh Kumar
2013-02-01
Formulations are derived to analyze the relative panel acoustic contributions of a vibrating structure. The essence of this analysis is to correlate the acoustic power flow from each panel to the radiated acoustic pressure at any field point. The acoustic power is obtained by integrating the normal component of the surface acoustic intensity, which is the product of the surface acoustic pressure and normal surface velocity reconstructed by using the Helmholtz equation least squares based nearfield acoustical holography, over each panel. The significance of this methodology is that it enables one to analyze and rank relative acoustic contributions of individual panels of a complex vibrating structure to acoustic radiation anywhere in the field based on a single set of the acoustic pressures measured in the near field. Moreover, this approach is valid for both interior and exterior regions. Examples of using this method to analyze and rank the relative acoustic contributions of a scaled vehicle cabin are demonstrated.
Maximum power point tracking for photovoltaic applications by using two-level DC/DC boost converter
Moamaei, Parvin
Recently, photovoltaic (PV) generation is becoming increasingly popular in industrial applications. As a renewable and alternative source of energy they feature superior characteristics such as being clean and silent along with less maintenance problems compared to other sources of the energy. In PV generation, employing a Maximum Power Point Tracking (MPPT) method is essential to obtain the maximum available solar energy. Among several proposed MPPT techniques, the Perturbation and Observation (P&O;) and Model Predictive Control (MPC) methods are adopted in this work. The components of the MPPT control system which are P&O; and MPC algorithms, PV module and high gain DC-DC boost converter are simulated in MATLAB Simulink. They are evaluated theoretically under rapidly and slowly changing of solar irradiation and temperature and their performance is shown by the simulation results, finally a comprehensive comparison is presented.
Directory of Open Access Journals (Sweden)
Kuei-Hsiang Chao
2016-11-01
Full Text Available The present study proposes a maximum power point tracking (MPPT method in which improved teaching-learning-based optimization (I-TLBO is applied to perform global MPPT of photovoltaic (PV module arrays under dissimilar shading situations to ensure the maximum power output of the module arrays. The proposed I-TLBO enables the automatic adjustment of teaching factors according to the self-learning ability of students. Incorporating smart-tracking and self-study strategies can effectively improve the tracking response speed and steady-state tracking performance. To evaluate the feasibility of the proposed I-TLBO, a HIP-2717 PV module array from Sanyo Electric was employed to compose various arrays with different serial and parallel configurations. The arrays were operated under different shading conditions to test the MPPT with double, triple, or quadruple peaks of power-voltage characteristic curves. Boost converters were employed with TMS320F2808 digital signal processors to test the proposed MPPT method. Empirical results confirm that the proposed method exhibits more favorable dynamic and static-state response tracking performance compared with that of conventional TLBO.
Chen, Xiaohang; Wang, Yuan; Cai, Ling; Zhou, Yinghui
2015-10-01
Based on the current models of phosphoric acid fuel cells (PAFCs) and thermoelectric generators (TGs), a new hybrid system is proposed, in which the effects of multi-irreversibilities resulting from the activation, concentration, and ohmic overpotentials in the PAFC, Joule heat and heat leak in the TG, finite-rate heat transfer between the TG and the heat reservoirs, and heat leak from the PAFC to the environment are taken into account. Expressions for the power output and efficiency of the PAFC, TG, and hybrid system are analytically derived and directly used to discuss the performance characteristics of the hybrid system. The optimal relationship between the electric currents in the PAFC and TG is obtained. The maximum power output is numerically calculated. It is found that the maximum power output density of the hybrid system will increase about 150 Wm-2, compared with that of a single PAFC. The problem how to optimally match the load resistances of two subsystems is discussed. Some significant results for practical hybrid systems are obtained.
International Nuclear Information System (INIS)
Docimo, D.J.; Ghanaatpishe, M.; Mamun, A.
2017-01-01
This paper develops an algorithm for estimating photovoltaic (PV) module temperature and effective irradiation level. The power output of a PV system depends directly on both of these states. Estimating the temperature and irradiation allows for improved state-based control methods while eliminating the need of additional sensors. Thermal models and irradiation estimators have been developed in the literature, but none incorporate feedback for estimation. This paper outlines an Extended Kalman Filter for temperature and irradiation estimation. These estimates are, in turn, used within a novel state-based controller that tracks the maximum power point of the PV system. Simulation results indicate this state-based controller provides up to an 8.5% increase in energy produced per day as compared to an impedance matching controller. A sensitivity analysis is provided to examine the impact state estimate errors have on the ability to find the optimal operating point of the PV system. - Highlights: • Developed a temperature and irradiation estimator for photovoltaic systems. • Designed an Extended Kalman Filter to handle model and measurement uncertainty. • Developed a state-based controller for maximum power point tracking (MPPT). • Validated combined estimator/controller algorithm for different weather conditions. • Algorithm increases energy captured up to 8.5% over traditional MPPT algorithms.
Dual-Axis Solar Tracking System for Maximum Power Production in PV Systems
Directory of Open Access Journals (Sweden)
Muhd.Ikram Mohd. Rashid
2015-12-01
Full Text Available The power developed in a solar energy system depends fundamentally upon the amount of sunlight captured by the photovoltaic modules/arrays. This paper describes a simple electro-mechanical dual axis solar tracking system designed and developed in a study. The control of the two axes was achieved by the pulses generated from the data acquisition (DAQ card fed into four relays. This approach was so chosen to effectively avoid the error that usually arises in sensor-based methods. The programming of the mathematical models of the solar elevation and azimuth angles was done using Borland C++ Builder. The performance and accuracy of the developed system was evaluated with a PV panel at latitude 3.53o N and longitude 103.5o W in Malaysia. The results obtained reflect the effectiveness of the developed tracking system in terms of the energy yield when compared with that generated from a fixed panel. Overall, 20%, 23% and 21% additional energy were produced for the months of March, April and May respectively using the tracker developed in this study.
A state-of-the-art compact SiC photovoltaic inverter with maximum power point tracking function
Ando, Yuji; Oku, Takeo; Yasuda, Masashi; Ushijima, Kazufumi; Matsuo, Hiroshi; Murozono, Mikio
2018-01-01
We have developed a 150-W SiC-based photovoltaic (PV)-inverter with the maximum power point tracking (MPPT) function. The newly developed inverter achieved a state-of-the-art combination of the weight (0.79 kg) and the volume (790 mm3) as a 150-250 W class PV-inverter. As compared to the original version that we have previously reported, the weight and volume were decreased by 37% and 38%, respectively. This compactness originated from the optimized circuit structure and the increased density of a wiring circuit. Conversion efficiencies of the MPPT charge controller and the direct current (DC)-alternating current (AC) converter reached 96.4% and 87.6%, respectively. These efficiency values are comparable to those for the original version. We have developed a PV power generation system consisting of this inverter, a spherical Si solar cell module, and a 15-V Li-ion laminated battery. The total weight of the system was below 6 kg. The developed system exhibited stable output power characteristics, even when the weather conditions were fluctuated. These compactness, high efficiencies, and excellent stability clearly indicated the feasibility of SiC power devices even for sub-kW class PV power generation systems.
Transmission characteristics of acoustic amplifier in thermoacoustic engine
International Nuclear Information System (INIS)
Sun Daming; Qiu Limin; Wang Bo; Xiao Yong
2008-01-01
Thermoacoustic engines are promising in practical applications for the merits of simple configuration, reliable operation and environmentally friendly working gas. An acoustic amplifier can increase the output pressure amplitude of a thermoacoustic engine (TE) and improve the matching between the engine and its load. In order to make full use of an acoustic amplifier, the transmission characteristics are studied based on linear thermoacoustic theory. Computational and experimental results show that the amplifying ability of an acoustic amplifier is mainly determined by its geometry parameters and output resistance impedance. The amplifying ability of an acoustic amplifier with appropriate length and diameter reaches its maximum when the output resistance impedance is infinite. It is also shown that the acoustic amplifier consumes an amount of acoustic power when amplifying pressure amplitude and the acoustic power consumption increases with amplifying ratio. Furthermore, a novel cascade acoustic amplifier is proposed, which has a much stronger amplifying ability with reduced acoustic power consumption. In experiments, a two-stage cascade acoustic amplifier amplifies the pressure ratio from 1.177 to 1.62 and produces a pressure amplitude of 0.547 MPa with nitrogen of 2.20 MPa as working gas. Good agreements are obtained between the theoretical analysis and experimental results. This research is instructive for comprehensively understanding the mechanism and making full use of the acoustic amplifier
ACOUSTIC SCALE FROM THE ANGULAR POWER SPECTRA OF SDSS-III DR8 PHOTOMETRIC LUMINOUS GALAXIES
International Nuclear Information System (INIS)
Seo, Hee-Jong; Ho, Shirley; White, Martin; Reid, Beth; Schlegel, David J.; Cuesta, Antonio J.; Padmanabhan, Nikhil; Ross, Ashley J.; Percival, Will J.; Nichol, Robert C.; Saito, Shun; De Putter, Roland; Eisenstein, Daniel J.; Xu Xiaoying; Skibba, Ramin; Schneider, Donald P.; Verde, Licia; Bizyaev, Dmitry; Brewington, Howard; Brinkmann, J.
2012-01-01
We measure the acoustic scale from the angular power spectra of the Sloan Digital Sky Survey III (SDSS-III) Data Release 8 imaging catalog that includes 872, 921 galaxies over ∼10,000 deg 2 between 0.45 A (z)/r s = 9.212 +0.416 – 0 .404 at z = 0.54, and therefore D A (z) = 1411 ± 65 Mpc at z = 0.54; the result is fairly independent of assumptions on the underlying cosmology. Our measurement of angular diameter distance D A (z) is 1.4σ higher than what is expected for the concordance ΛCDM, in accordance to the trend of other spectroscopic BAO measurements for z ∼> 0.35. We report constraints on cosmological parameters from our measurement in combination with the WMAP7 data and the previous spectroscopic BAO measurements of SDSS and WiggleZ. We refer to our companion papers (Ho et al.; de Putter et al.) for investigations on information of the full power spectrum.
Leak detection evaluation of boiler tube for power plant using acoustic emission
International Nuclear Information System (INIS)
Lee, Sang Guk; Chung, Min Hwa; Nam, Ki Woo
2001-01-01
Main equipment of thermal power plant, such as boiler and turbine, are designed and manufactured by domestic techniques. And also the automatic control facilities controlling the main equipment are at the applying step of the localization. and many parts of BOP(Balance Of Plant) equipment are utilizing, localized. But because the special equipment monitoring the operation status of the main facilities such as boiler and turbine are still dependent upon foreign technology and especially boiler tube leak detection system is under the initial step of first application to newly-constructed plants and the manufacturing and application are done by foreign techniques mostly, fast localization development is required. Therefore, so as to study and develop boiler tube leak detection system, we performed studying on manufacturing, installation in site, acoustic emission(AE) signal analysis and discrimination etc. As a result of studying on boiler tube leak detection using AE, we conformed that diagnosis for boiler tube and computerized their trend management is possible, and also it is expected to contribute to safe operation of power generation facilities.
Piezoelectric and Sensitivity Evaluation of Acoustic Emission Sensors for Nuclear Power Plant Valve
International Nuclear Information System (INIS)
Lee, Sang-Guk; Lee, Sun-Ki; Park, Sung-Keun; Kim, Myung-Ki
2008-01-01
A lot of valves are used in the power plant. The operation safety test and the valve inside leak detection are implemented on the valve which has a great impact on the safe operation of the plant. While input and output pressure measurement using a pressure gauge, temperature change and the humidity measurement, and pressure-resistant test are used for the valve leak detection, there are many problems such as the difficulty of the real time measurement at the minute leak situation, complexity of the pressure gauge correction and the process of the pressure measurement, and the reliability of the measured value. Therefore, it is necessary to develop the valve leak detection system using the acoustic emission (AE) method which is fast and accurate, and allows the real time measurement and evaluation of the minute leak situation. The valve leak detection method using the AE method is a convenient way to detect the sound of the leak outside the valve in case of existing leak inside of the valve, and the research is in progress recently to apply the method to the power plant valve
International Nuclear Information System (INIS)
Volkov, N.B.
2001-01-01
Results of the experiments, wherein the absorption of the laser intensive radiation with duration of 400 fs in aluminium target was studied, are explained. It is shown that electro-conductivity of the nonisothermal solid-state aluminium plasma was determined in these experiments by the ion-acoustic oscillations (ion-acoustic turbulence). Possible ways of theoretical description of the ion-acoustic turbulence and interaction of the nonisothermal solid-state plasma with powerful ultrashort laser radiation are discussed [ru
Directory of Open Access Journals (Sweden)
Her-Terng Yau
2013-01-01
Full Text Available An extremum seeking control (ESC scheme is proposed for maximum power point tracking (MPPT in photovoltaic power generation systems. The robustness of the proposed scheme toward irradiance changes is enhanced by implementing the ESC scheme using a sliding mode control (SMC law. In the proposed approach, the chattering phenomenon caused by high frequency switching is suppressed by means of a sliding layer concept. Moreover, in implementing the proposed controller, the optimal value of the gain constant is determined using a particle swarm optimization (PSO algorithm. The experimental and simulation results show that the proposed PSO-based sliding mode ESC (SMESC control scheme yields a better transient response, steady-state stability, and robustness than traditional MPPT schemes based on gradient detection methods.
Energy Technology Data Exchange (ETDEWEB)
Kim, Il-Song [LG Chem. Ltd./Research park, Mobile Energy R and D, 104-1 Moonji-Dong, Yuseong-Gu, Daejeon 305-380 (Korea)
2007-03-15
A robust maximum power point tracker (MPPT) using sliding mode controller for the three-phase grid-connected photovoltaic system has been proposed in this paper. Contrary to the previous controller, the proposed system consists of MPPT controller and current controller for tight regulation of the current. The proposed MPPT controller generates current reference directly from the solar array power information and the current controller uses the integral sliding mode for the tight control of current. The proposed system can prevent the current overshoot and provide optimal design for the system components. The structure of the proposed system is simple, and it shows robust tracking property against modeling uncertainties and parameter variations. Mathematical modeling is developed and the experimental results verify the validity of the proposed controller. (author)
Energy Technology Data Exchange (ETDEWEB)
Djukanovic, M [Inst. ' Nikola Tesla' , Belgrade (Yugoslavia); Sobajic, D J; Pao, Yohhan [Case Western Reserve Univ., Cleveland, OH (United States). Dept. of Electrical Engineering and Applied Physics Case Western Reserve Univ., Cleveland, OH (United States). Dept. of Computer Engineering and Science AI WARE inc., Cleveland, OH (United States)
1992-10-01
In heavily stressed power systems, post-fault transient voltage dips can lead to undesired tripping of industrial drives and large induction motors. The lowest transient voltage dips occur when fault clearing times are less than critical ones. In this paper, we propose a new iterative analytical methodology to obtain more accurate estimates of voltage dips at maximum angular swing in direct transient stability analysis. We also propose and demonstrate the possibility of storing the results of these computations in the associative memory (AM) system, which exhibits remarkable generalization capabilities. Feature-based models stored in the AM can be utilized for fast and accurate prediction of the location, duration and the amount of the worst voltage dips, thereby avoiding the need and cost for lengthy time-domain simulations. Numerical results obtained using the example of the New England power system are presented to illustrate our approach. (Author)
Energy Technology Data Exchange (ETDEWEB)
Werner, F.L., E-mail: fernanda.werner@poli.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Departamento de Engenharia Nuclear; Alves, A.S.M., E-mail: asergi@eletronuclear.gov.br [Eletrobras Termonuclear (Eletronuclear), Rio de Janeiro, RJ (Brazil); Frutuoso e Melo, P.F., E-mail: frutuoso@nuclear.ufrj.br [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil)
2017-07-01
In this paper, a mathematical model for the determination of the maximum water temperature within the spent fuel pool of Angra Nuclear Power Plant – Unit 3 was developed. The model was obtained from the boundary layer analysis and the application of Navier-Stokes equation to a vertical flat plate immersed in a water flow under free convection regime. Both types of pressure loss coefficients through the flow channel were considers in the modeling, the form coefficient for fuel assemblies (FAs) and the loss due to rod friction. The resulting equations enabled the determination of a mixed water temperature below the storage racks (High Density Storage Racks) as well as the estimation of a temperature gradient through the racks. The model was applied to the authorized operation of the plant (power operation, plant outage and upset condition) and faulted conditions (loss of coolant accidents and external events). The results obtained are in agreement with Brazilian and international standards. (author)
International Nuclear Information System (INIS)
Werner, F.L.; Frutuoso e Melo, P.F.
2017-01-01
In this paper, a mathematical model for the determination of the maximum water temperature within the spent fuel pool of Angra Nuclear Power Plant – Unit 3 was developed. The model was obtained from the boundary layer analysis and the application of Navier-Stokes equation to a vertical flat plate immersed in a water flow under free convection regime. Both types of pressure loss coefficients through the flow channel were considers in the modeling, the form coefficient for fuel assemblies (FAs) and the loss due to rod friction. The resulting equations enabled the determination of a mixed water temperature below the storage racks (High Density Storage Racks) as well as the estimation of a temperature gradient through the racks. The model was applied to the authorized operation of the plant (power operation, plant outage and upset condition) and faulted conditions (loss of coolant accidents and external events). The results obtained are in agreement with Brazilian and international standards. (author)
Directory of Open Access Journals (Sweden)
Hongmin Meng
2017-07-01
Full Text Available In wind turbine control, maximum power point tracking (MPPT control is the main control mode for partial-load regimes. Efficiency potentiation of energy conversion and power smoothing are both two important control objectives in partial-load regime. However, on the one hand, low power fluctuation signifies inefficiency of energy conversion. On the other hand, enhancing efficiency may increase output power fluctuation as well. Thus the two objectives are contradictory and difficult to balance. This paper proposes a flexible MPPT control framework to improve the performance of both conversion efficiency and power smoothing, by adaptively compensating the torque reference value. The compensation was determined by a proposed model predictive control (MPC method with dynamic weights in the cost function, which improved control performance. The computational burden of the MPC solver was reduced by transforming the cost function representation. Theoretical analysis proved the good stability and robustness. Simulation results showed that the proposed method not only kept efficiency at a high level, but also reduced power fluctuations as much as possible. Therefore, the proposed method could improve wind farm profits and power grid reliability.
Directory of Open Access Journals (Sweden)
Hussain Shareef
2017-01-01
Full Text Available Many maximum power point tracking (MPPT algorithms have been developed in recent years to maximize the produced PV energy. These algorithms are not sufficiently robust because of fast-changing environmental conditions, efficiency, accuracy at steady-state value, and dynamics of the tracking algorithm. Thus, this paper proposes a new random forest (RF model to improve MPPT performance. The RF model has the ability to capture the nonlinear association of patterns between predictors, such as irradiance and temperature, to determine accurate maximum power point. A RF-based tracker is designed for 25 SolarTIFSTF-120P6 PV modules, with the capacity of 3 kW peak using two high-speed sensors. For this purpose, a complete PV system is modeled using 300,000 data samples and simulated using the MATLAB/SIMULINK package. The proposed RF-based MPPT is then tested under actual environmental conditions for 24 days to validate the accuracy and dynamic response. The response of the RF-based MPPT model is also compared with that of the artificial neural network and adaptive neurofuzzy inference system algorithms for further validation. The results show that the proposed MPPT technique gives significant improvement compared with that of other techniques. In addition, the RF model passes the Bland–Altman test, with more than 95 percent acceptability.
Energy Technology Data Exchange (ETDEWEB)
Zagrouba, M.; Sellami, A.; Bouaicha, M. [Laboratoire de Photovoltaique, des Semi-conducteurs et des Nanostructures, Centre de Recherches et des Technologies de l' Energie, Technopole de Borj-Cedria, Tunis, B.P. 95, 2050 Hammam-Lif (Tunisia); Ksouri, M. [Unite de Recherche RME-Groupe AIA, Institut National des Sciences Appliquees et de Technologie (Tunisia)
2010-05-15
In this paper, we propose to perform a numerical technique based on genetic algorithms (GAs) to identify the electrical parameters (I{sub s}, I{sub ph}, R{sub s}, R{sub sh}, and n) of photovoltaic (PV) solar cells and modules. These parameters were used to determine the corresponding maximum power point (MPP) from the illuminated current-voltage (I-V) characteristic. The one diode type approach is used to model the AM1.5 I-V characteristic of the solar cell. To extract electrical parameters, the approach is formulated as a non convex optimization problem. The GAs approach was used as a numerical technique in order to overcome problems involved in the local minima in the case of non convex optimization criteria. Compared to other methods, we find that the GAs is a very efficient technique to estimate the electrical parameters of PV solar cells and modules. Indeed, the race of the algorithm stopped after five generations in the case of PV solar cells and seven generations in the case of PV modules. The identified parameters are then used to extract the maximum power working points for both cell and module. (author)
Shareef, Hussain; Mutlag, Ammar Hussein; Mohamed, Azah
2017-01-01
Many maximum power point tracking (MPPT) algorithms have been developed in recent years to maximize the produced PV energy. These algorithms are not sufficiently robust because of fast-changing environmental conditions, efficiency, accuracy at steady-state value, and dynamics of the tracking algorithm. Thus, this paper proposes a new random forest (RF) model to improve MPPT performance. The RF model has the ability to capture the nonlinear association of patterns between predictors, such as irradiance and temperature, to determine accurate maximum power point. A RF-based tracker is designed for 25 SolarTIFSTF-120P6 PV modules, with the capacity of 3 kW peak using two high-speed sensors. For this purpose, a complete PV system is modeled using 300,000 data samples and simulated using the MATLAB/SIMULINK package. The proposed RF-based MPPT is then tested under actual environmental conditions for 24 days to validate the accuracy and dynamic response. The response of the RF-based MPPT model is also compared with that of the artificial neural network and adaptive neurofuzzy inference system algorithms for further validation. The results show that the proposed MPPT technique gives significant improvement compared with that of other techniques. In addition, the RF model passes the Bland-Altman test, with more than 95 percent acceptability.
International Nuclear Information System (INIS)
Chen, Xi Lin; De Santis, Valerio; Umenei, Aghuinyue Esai
2014-01-01
In this study, the maximum received power obtainable through wireless power transfer (WPT) by a small receiver (Rx) coil from a relatively large transmitter (Tx) coil is numerically estimated in the frequency range from 100 kHz to 10 MHz based on human body exposure limits. Analytical calculations were first conducted to determine the worst-case coupling between a homogeneous cylindrical phantom with a radius of 0.65 m and a Tx coil positioned 0.1 m away with the radius ranging from 0.25 to 2.5 m. Subsequently, three high-resolution anatomical models were employed to compute the peak induced field intensities with respect to various Tx coil locations and dimensions. Based on the computational results, scaling factors which correlate the cylindrical phantom and anatomical model results were derived. Next, the optimal operating frequency, at which the highest transmitter source power can be utilized without exceeding the exposure limits, is found to be around 2 MHz. Finally, a formulation is proposed to estimate the maximum obtainable power of WPT in a typical room scenario while adhering to the human body exposure compliance mandates. (paper)
Chen, Xi Lin; De Santis, Valerio; Umenei, Aghuinyue Esai
2014-07-07
In this study, the maximum received power obtainable through wireless power transfer (WPT) by a small receiver (Rx) coil from a relatively large transmitter (Tx) coil is numerically estimated in the frequency range from 100 kHz to 10 MHz based on human body exposure limits. Analytical calculations were first conducted to determine the worst-case coupling between a homogeneous cylindrical phantom with a radius of 0.65 m and a Tx coil positioned 0.1 m away with the radius ranging from 0.25 to 2.5 m. Subsequently, three high-resolution anatomical models were employed to compute the peak induced field intensities with respect to various Tx coil locations and dimensions. Based on the computational results, scaling factors which correlate the cylindrical phantom and anatomical model results were derived. Next, the optimal operating frequency, at which the highest transmitter source power can be utilized without exceeding the exposure limits, is found to be around 2 MHz. Finally, a formulation is proposed to estimate the maximum obtainable power of WPT in a typical room scenario while adhering to the human body exposure compliance mandates.
International Nuclear Information System (INIS)
Yu Zhibin; Jaworski, Artur J.
2010-01-01
This paper considers the role of acoustic impedance, flow resistance, configuration and geometrical dimensions of regenerators on the power produced in travelling-wave thermoacoustic engines. The effects are modelled assuming a pure travelling-wave and ideal gas, which allows defining a pair of dimensionless factors based on the 'net' acoustic power production. Based on the analysis provided, the acoustic power flow in the regenerators is investigated numerically. It is shown that impedance essentially reflects the proportion between the acoustic power produced from heat energy through the thermoacoustic processes and the acoustic power dissipated by viscous and thermal-relaxation effects in the regenerators. Viscous resistance of the regenerator mainly determines the magnitude of the volumetric velocity and then affects the magnitude of acoustic impedance. High impedance and high volumetric velocity are both required in the regenerators for high power engines. The results also show that the optimum transverse dimension of the gas passage exists, but depends on the local acoustic impedance. In principle, it is possible to obtain an optimum combination between these two parameters.
International Nuclear Information System (INIS)
Bernard, F.; Shinbin, N.
2010-04-01
This acoustic assessment report was conducted to determine the potential noise impacts of a biogas cogeneration plant that will be located on a street in a primarily industrial area of Toronto, Ontario. The facility will be comprised of seven 1.416 MW biogas-fired reciprocating engine generators and a single flare. The report presented results obtained from noise level calculations and noise modelling studies of the on-site equipment at the planned facility. The cogeneration plant will utilize biogas produced in existing digesters to generate electricity and hot water. The biogas will be produced by anaerobic digestion from municipal sewage waste at an adjacent facility. It is expected that the facility will generate 9.912 MW of electricity from the generators. Heat resulting from the biogas combustion process is recovered from engine and exhaust flue gases by heat exchangers. The facility will operate continuously. Significant noise sources at the facility include generator exhaust gas stacks; air intake points; building ventilation fans; and roof-top heat dump radiators. Sound power levels determined for each of the noise sources were based upon worst-case operating scenarios. Results of the assessment indicated that the facility is in compliance with all Ministry of the Environment (MOE) requirements. 5 refs., 10 tabs., 4 figs.
International Nuclear Information System (INIS)
Lee, Min Rae; Leee, Jun Hyun; Kim, Jung Tack; Kim, Jung Soo; Luk, V. K.
2003-01-01
This work performed in support of the International Nuclear Energy Research Initiative(INERI) program, which was to develop and demonstrate advanced sensor and computational technology for on-line monitoring of the condition of components, structures, and systems in advanced and next-generation nuclear power plants (NPPs). The primary object of this work is to investigate advanced condition monitoring systems based on acoustic emission detection that can provide timely detection of check valve degradation and service aging so that maintenance/replacement could be preformed prior to loss of safety function. The research is focused on the capability of AE technique to provide diagnostic information useful in determining check valve aging and degradation, check valve failures and undesirable operating modes. This work also includes the investigation and adaptation of several advanced sensor technologies such as accelerometer and advanced ultrasonic technique. In addition, this work will develop advanced sophisticated signal processing, noise reduction, and pattern recognition techniques and algorithms from check valve degradation.
Fernández, Eduardo F.; Almonacid, Florencia; Sarmah, Nabin; Mallick, Tapas; Sanchez, Iñigo; Cuadra, Juan M.; Soria-Moya, Alberto; Pérez-Higueras, Pedro
2014-09-01
A model based on easily obtained atmospheric parameters and on a simple lineal mathematical expression has been developed at the Centre of Advanced Studies in Energy and Environment in southern Spain. The model predicts the maximum power of a HCPV module as a function of direct normal irradiance, air temperature and air mass. Presently, the proposed model has only been validated in southern Spain and its performance in locations with different atmospheric conditions still remains unknown. In order to address this issue, several HCPV modules have been measured in two different locations with different climate conditions than the south of Spain: the Environment and Sustainability Institute in southern UK and the National Renewable Energy Center in northern Spain. Results show that the model has an adequate match between actual and estimated data with a RMSE lower than 3.9% at locations with different climate conditions.
International Nuclear Information System (INIS)
Galdi, V.; Piccolo, A.; Siano, P.
2009-01-01
Nowadays, incentives and financing options for developing renewable energy facilities and the new development in variable speed wind technology make wind energy a competitive source if compared with conventional generation ones. In order to improve the effectiveness of variable speed wind systems, adaptive control systems able to cope with time variances of the system under control are necessary. On these basis, a data driven designing methodology for TSK fuzzy models design is presented in this paper. The methodology, on the basis of given input-output numerical data, generates the 'best' TSK fuzzy model able to estimate with high accuracy the maximum extractable power from a variable speed wind turbine. The design methodology is based on fuzzy clustering methods for partitioning the input-output space combined with genetic algorithms (GA), and recursive least-squares (LS) optimization methods for model parameter adaptation
Directory of Open Access Journals (Sweden)
N Clark
2003-03-01
Full Text Available The aim of this study was to investigate maximum aerobic power (VO2 max and anaerobic threshold (AT as determinants of training status among professional soccer players. Twelve professional 1st team British male soccer players (age: 26.2 ± 3.3 years, height: 1.77 ± 0.05 m, body mass: 79.3 ± 9.4 kg agreed to participate in the study and provided informed consent. All subjects completed a combined test of anaerobic threshold (AT and maximum aerobic power on two occasions: Test 1 following 5 weeks of low level activity at the end of the off-season and Test 2 immediately following conclusion of the competitive season. AT was assessed as both lactate threshold (LT and ventilatory threshold (VT. There was no change in VO2 max between Test 1 and Test 2 (63.3 ± 5.8 ml·kg-1·min-1 vs. 62.1 ± 4.9 ml·kg-1·min-1 respectively, however, the duration of exercise tolerance (ET at VO2 max was significantly extended from Test 1 to Test 2 (204 ± 54 vs. 228 ± 68 s respectively (P<0.01. LT oxygen consumption was significantly improved in Test 2 versus Test 1 (P<0.01 VT was also improved (P<0.05. There was no significant difference in VO2 (ml·kg-1·min-1 corresponding to LT and VT. The results of this study show that VO2 max is a less sensitive indicator to changes in training status in professional soccer players than either LT or VT.
National Research Council Canada - National Science Library
Weinstein, Susan
2003-01-01
.... Our goal with our current project was to utilize breast sonography coupled with the technique of acoustic resonance to image and evaluate the breast micorcalcifications in patients prior to biopsy...
Fluid dynamics of acoustic and hydrodynamic cavitation in hydraulic power systems
Ferrari, A.
2017-01-01
Cavitation is the transition from a liquid to a vapour phase, due to a drop in pressure to the level of the vapour tension of the fluid. Two kinds of cavitation have been reviewed here: acoustic cavitation and hydrodynamic cavitation. As acoustic cavitation in engineering systems is related to the propagation of waves through a region subjected to liquid vaporization, the available expressions of the sound speed are discussed. One of the main effects of hydrodynamic cavitation in the nozzles ...
Wireless acoustic-electric feed-through for power and signal transmission
Doty, Benjamin (Inventor); Badescu, Mircea (Inventor); Sherrit, Stewart (Inventor); Bao, Xiaoqi (Inventor); Bar-Cohen, Yoseph (Inventor); Chang, Zensheu (Inventor)
2011-01-01
An embodiment provides electrical energy from a source on one side of a medium to a load on the other side of the medium, the embodiment including a first piezoelectric to generate acoustic energy in response to electrical energy from the source, and a second piezoelectric to convert the received acoustic energy to electrical energy used by the load. Other embodiments are described and claimed.
Favarel, C.; Champier, D.; Bédécarrats, J. P.; Kousksou, T.; Strub, F.
2012-06-01
According to the International Energy Agency, 1.4 billion people are without electricity in the poorest countries and 2.5 billion people rely on biomass to meet their energy needs for cooking in developing countries. The use of cooking stoves equipped with small thermoelectric generator to provide electricity for basic needs (LED, cell phone and radio charging device) is probably a solution for houses far from the power grid. The cost of connecting every house with a landline is a lot higher than dropping thermoelectric generator in each house. Thermoelectric generators have very low efficiency but for isolated houses, they might become really competitive. Our laboratory works in collaboration with plane`te-bois (a non governmental organization) which has developed energy-efficient multifunction (cooking and hot water) stoves based on traditional stoves designs. A prototype of a thermoelectric generator (Bismuth Telluride) has been designed to convert a small part of the energy heating the sanitary water into electricity. This generator can produce up to 10 watts on an adapted load. Storing this energy in a battery is necessary as the cooking stove only works a few hours each day. As the working point of the stove varies a lot during the use it is also necessary to regulate the electrical power. An electric DC DC converter has been developed with a maximum power point tracker (MPPT) in order to have a good efficiency of the electronic part of the thermoelectric generator. The theoretical efficiency of the MMPT converter is discussed. First results obtained with a hot gas generator simulating the exhaust of the combustion chamber of a cooking stove are presented in the paper.
International Nuclear Information System (INIS)
Svoboda, V.
1992-01-01
Full text: The Modrany Engineering Works (Modranske strojirny) is a producer and a final supplier of the main connecting piping circuit systems and valves for the nuclear power plants (type VVER 440 and VVER 1000) built in Czechoslovakia. Besides the delivery and assembly of valves and components methods there were developed for a monitoring of the stated equipment ability of a service in the Material and Diagnostic Laboratory, which is a part of the company. An important object of this work is to obtain a sufficient set of data and to work out suitable methods, on the basis of which it would be possible to perform a serious estimation of residual service life of the main piping components after certain service operation of the nuclear power plant. During the operation of a nuclear power station a failure of the main piping circuit could happen in either of two possible modes: 1.) A sudden break - by an unstable defect propagation leading to a. final fracture of the piping; 2) A fatigue failure - which is characterised by a gradual subcritical growth of defect in relation to the loading parameters. This process is frequently accelerated by further processes, e.g. corrosion. It is therefore suitable to use such physical and mechanical quantities, which characterize the material damage. Acoustic emission signals belongs to these quantities. A knowledge of the response of these signals in relation to the damage of the material gives us the possibility to evaluate the residual life of the piping containing defects. The importance of this is increasing mainly after a long period of service. She paper deals in details with experience gained in application of acoustic emission, during pressure tests of primary circuit components (elbow, welds, T- junction etc) in laboratory conditions which imitate those in service. There are shown some results of cyclic fatigue tests by internal pressure on prototypes models and specimen. Acoustic emission method represents the
Directory of Open Access Journals (Sweden)
Calebe A. Matias
2017-07-01
Full Text Available The purpose of the present study is to simulate and analyze an isolated full-bridge DC/DC boost converter, for photovoltaic panels, running a modified perturb and observe maximum power point tracking method. The zero voltage switching technique was used in order to minimize the losses of the converter for a wide range of solar operation. The efficiency of the power transfer is higher than 90% for large solar operating points. The panel enhancement due to the maximum power point tracking algorithm is 5.06%.
Johnson, Earl E
2013-06-01
Hearing aid prescriptive recommendations for hearing losses having a conductive component have received less clinical and research interest than for losses of a sensorineural nature; as a result, much variation remains among current prescriptive methods in their recommendations for conductive and mixed hearing losses (Johnson and Dillon, 2011). The primary intent of this brief clinical note is to demonstrate differences between two algebraically equivalent expressions of hearing loss, which have been approaches used historically to generate a prescription for hearing losses with a conductive component. When air and bone conduction thresholds are entered into hearing aid prescriptions designed for nonlinear hearing aids, it was hypothesized that that two expressions would not yield equivalent amounts of prescribed insertion gain and output. These differences are examined for their impact on the maximum power output (MPO) requirements of the hearing aid. Subsequently, the MPO capabilities of two common behind-the-ear (BTE) receiver placement alternatives, receiver-in-aid (RIA) and receiver-in-canal (RIC), are examined. The two expressions of hearing losses examined were the 25% ABG + AC approach and the 75% ABG + BC approach, where ABG refers to air-bone gap, AC refers to air-conduction threshold, and BC refers to bone-conduction threshold. Example hearing loss cases with a conductive component are sampled for calculations. The MPO capabilities of the BTE receiver placements in commercially-available products were obtained from hearing aids on the U.S. federal purchasing contract. Prescribed gain and the required MPO differs markedly between the two approaches. The 75% ABG + BC approach prescribes a compression ratio that is reflective of the amount of sensorineural hearing loss. Not all hearing aids will have the MPO capabilities to support the output requirements for fitting hearing losses with a large conductive component particularly when combined with
Bhatara, Sevty Satria; Iskandar, Reza Fauzi; Kirom, M. Ramdlan
2016-02-01
Solar energy is one of renewable energy resource where needs a photovoltaic module to convert it into electrical energy. One of the problems on solar energy conversion is the process of battery charging. To improve efficiency of energy conversion, PV system needs another control method on battery charging called maximum power point tracking (MPPT). This paper report the study on charging optimation using constant voltage (CV) method. This method has a function of determining output voltage of the PV system on maximal condition, so PV system will always produce a maximal energy. A model represented a PV system with and without MPPT was developed using Simulink. PV system simulation showed a different outcome energy when different solar radiation and numbers of solar module were applied in the model. On the simulation of solar radiation 1000 W/m2, PV system with MPPT produces 252.66 Watt energy and PV system without MPPT produces 252.66 Watt energy. The larger the solar radiation, the greater the energy of PV modules was produced.
Huang, Yu
Solar energy becomes one of the major alternative renewable energy options for its huge abundance and accessibility. Due to the intermittent nature, the high demand of Maximum Power Point Tracking (MPPT) techniques exists when a Photovoltaic (PV) system is used to extract energy from the sunlight. This thesis proposed an advanced Perturbation and Observation (P&O) algorithm aiming for relatively practical circumstances. Firstly, a practical PV system model is studied with determining the series and shunt resistances which are neglected in some research. Moreover, in this proposed algorithm, the duty ratio of a boost DC-DC converter is the object of the perturbation deploying input impedance conversion to achieve working voltage adjustment. Based on the control strategy, the adaptive duty ratio step size P&O algorithm is proposed with major modifications made for sharp insolation change as well as low insolation scenarios. Matlab/Simulink simulation for PV model, boost converter control strategy and various MPPT process is conducted step by step. The proposed adaptive P&O algorithm is validated by the simulation results and detail analysis of sharp insolation changes, low insolation condition and continuous insolation variation.
A high-powered siren for stable acoustic levitation of dense materials in the earth's gravity
Gammel, Paul M.; Croonquist, Arvid P.; Wang, Taylor G.
1988-01-01
Levitation of large dense samples (e.g., 1-cm diameter steel balls) has been performed in a 1-g environment. A siren was used to study the effects of reflector geometry and variable-frequency operation in order to attain stable acoustic positioning. The harmonic content and spatial distribution of the acoustic field have been investigated. The best stability was obtained with an open reflector system, using a flat lower reflector and a slightly concave upper reflector while operating at a frequency slightly below resonance.
Directory of Open Access Journals (Sweden)
Polužanski Vladimir
2014-01-01
Full Text Available This paper discusses the development and verification of software tool for determining the location of partial discharge in a power transformer with the acoustic method. Classification and systematization of physical principles and detection methods and tests of partial discharge in power transformers are shown at the beginning of this paper. The most important mathematical models, features, algorithms, and real problems that affect measurement accuracy are highlighted. This paper describes the development and implementation of a software tool for determining the location of partial discharge in a power transformer based on a no iterative mathematical algorithm. Verification and accuracy of measurement are proved both by computer simulation and experimental results available in the literature.
El-Zoghby, Helmy M.; Bendary, Ahmed F.
2016-10-01
Maximum Power Point Tracking (MPPT) is now widely used method in increasing the photovoltaic (PV) efficiency. The conventional MPPT methods have many problems concerning the accuracy, flexibility and efficiency. The MPP depends on the PV temperature and solar irradiation that randomly varied. In this paper an artificial intelligence based controller is presented through implementing of an Adaptive Neuro-Fuzzy Inference System (ANFIS) to obtain maximum power from PV. The ANFIS inputs are the temperature and cell current, and the output is optimal voltage at maximum power. During operation the trained ANFIS senses the PV current using suitable sensor and also senses the temperature to determine the optimal operating voltage that corresponds to the current at MPP. This voltage is used to control the boost converter duty cycle. The MATLAB simulation results shows the effectiveness of the ANFIS with sensing the PV current in obtaining the MPPT from the PV.
Finite Element Study on Acoustic Energy Harvesting Using Lead-Free Piezoelectric Ceramics
Kumar, Anuruddh; Sharma, Anshul; Kumar, Rajeev; Vaish, Rahul
2018-02-01
In this article, a numerical investigation is performed for ambient acoustic energy harvesting at a low-frequency acoustic signal. A model of a quarter-wavelength resonator with a rectangular cross section is constructed, and piezoelectric-laminated bimorph plates are placed inside the system. Finite element modeling is implemented to numerically formulate the piezoelectric energy harvester. With the application of acoustic pressure at the open end of the resonator, amplified acoustic pressure inside the tube vibrates the piezolaminated bimorphs inside the tube, thus generating electric potential on the piezoelectric layers. To generate higher voltage and power in the acoustic harvester, multiple piezolaminated plates are positioned inside the resonator. The lead-free piezoelectric material K0.475Na0.475Li0.05 (Nb0.92Ta0.05Sb0.03)O3 (KNLNTS) is laminated on the host structure as a layer of piezoelectric material for the acoustic energy harvester. With the application of an acoustic sound pressure of 1 dB at the opening of the tube, a maximum output voltage of 16.3 V is measured at the first natural frequency, while the maximum power calculated is 0.033 mW. Maximum voltage is obtained when five piezoelectric bimorphs are place inside the resonator. At the second natural frequency, the maximum voltage measured is 8.40 V, obtained when eight piezoelectric bimorphs are placed inside the resonator, and the maximum power calculated is 0.020 mW.
A mean flow acoustic engine capable of wind energy harvesting
International Nuclear Information System (INIS)
Sun Daming; Xu Ya; Chen Haijun; Wu, Ke; Liu Kaikai; Yu Yan
2012-01-01
Highlights: ► A mean flow acoustic engine for wind energy harvesting is designed and manufactured. ► Stable standing wave acoustic field is established at specific flow velocity. ► Experimental and computational results reveal the acoustic field characteristics. ► Acoustic field has monofrequency characteristic and remarkable energy density. - Abstract: Based on the mean flow induced acoustic oscillation effect, a mean flow acoustic engine (MFAE) converts wind energy and fluid energy in pipeline into acoustic energy which can be used to drive thermoacoustic refrigerators and generators without any mechanical moving parts. With natural wind simulated by a centrifugal air fan, a MFAE with a cross-junction configuration was designed and manufactured for experimental study. Stable standing wave acoustic fields were established in specific ranges of air flow velocity. Experimental and computational results reveal the acoustic field distribution in the engine and show the effect of the mean flow velocity and the Strouhal number on the acoustic field characteristics. With a mean flow velocity of 50.52 m/s and a mean pressure of 106.19 kPa, the maximum pressure amplitude of 6.20 kPa was achieved, which was about 5.8% of the mean pressure. It has laid a good foundation for driving power generation devices and thermoacoustic refrigerators by a MFAE.
Measurements of the power spectrum and dispersion relation of self-excited dust acoustic waves
Nosenko, V.; Zhdanov, S. K.; Kim, S.-H.; Heinrich, J.; Merlino, R. L.; Morfill, G. E.
2009-12-01
The spectrum of spontaneously excited dust acoustic waves was measured. The waves were observed with high temporal resolution using a fast video camera operating at 1000 frames per second. The experimental system was a suspension of micron-size kaolin particles in the anode region of a dc discharge in argon. Wave activity was found at frequencies as high as 450 Hz. At high wave numbers, the wave dispersion relation was acoustic-like (frequency proportional to wave number). At low wave numbers, the wave frequency did not tend to zero, but reached a cutoff frequency instead. The cutoff value declined with distance from the anode. We ascribe the observed cutoff to the particle confinement in this region.
Miyaguchi, Kazuyoshi; Demura, Shinichi
2006-05-01
The purpose of this study was to examine the output properties of muscle power by the dominant upper limb using SSC, and the relationships between the power output by SSC and a one-repetition maximum bench press (1 RM BP) used as a strength indicator of the upper body. Sixteen male athletes (21.4+/-0.9 yr) participated in this study. They pulled a load of 40% of maximum voluntary contraction (MVC) at a stretch by elbow flexion of the dominant upper limb in the following three preliminary conditions: static relaxed muscle state (SR condition), isometric muscle contraction state (ISO condition), and using SSC (SSC condition). The velocity with a wire load via a pulley during elbow flexion was measured accurately using a power instrument with a rotary encoder, and the muscle power curve was drawn from the product of the velocity and load. Significant differences were found among all evaluation parameters of muscle power exerted from the above three conditions and the parameters regarding early power output during concentric contraction were larger in the SSC condition than the SR and ISO conditions. The parameters on initial muscle contraction velocity when only using SSC significantly correlated with 1 RM BP (r=0.60-0.62). The use of SSC before powerful elbow flexion may contribute largely to early explosive power output during concentric contraction. Bench press capacity relates to a development of the above early power output when using SSC.
Frolov, Vladimir; Chernogor, Leonid; Rozumenko, Victor
The Radiophysical Research Institute (Nizhny Novgorod, Russia) and Kharkiv V. N. Karazin National University (Kharkiv, Ukraine) have studied opportunities for the effective generation of acoustic gravity waves (AGWs) in 3 - 180-min period range. The excitation of such waves was conducted for the last several years using the SURA heating facility (Nizhny Novgorod). The detection of the HF-induced AGWs was carried out in the Radiophysical Observatory located near Kharkiv City at a distance of about 960 km from the SURA. A coherent radar for vertical sounding, an ionosonde, and magnetometer chains were used in our measurements. The main results are the following (see [1-5]): 1. Infrasound oscillation trains with a period of 6 min are detected during periodic SURA heater turn-on and -off. Similar oscillation trains are detected after long time pumping, during periodic transmissions with a period of 20 s, as well as after pumping turn-off. The train recordings begin 28 - 54 min after the heater turn-on or -off, and the train propagation speeds are about 300 - 570 m/s, the value of which is close to the sound speed at upper atmospheric altitudes. The amplitude of the Doppler shift frequency is of 10 - 40 mHz, which fits to the 0.1 - 0.3% electron density disturbances at ionospheric altitudes. The amplitude of the infrasound oscillations depends on the SURA mode of operation and the state of the upper atmosphere and ionosphere. 2. High-power radio transmissions stimulate the generation (or enhancement) of waves at ionospheric altitudes in the range of internal gravity wave periods. The HF-induced waves propagate with speeds of 360 - 460 m/s and produce changes in electron density with amplitudes of 2 - 3%. The generation of such periodic perturbations is more preferable with periods of 10 - 60 minutes. Their features depend significantly on the heater mode of operation. It should be stressed that perturbation intensity increases when a pumping wave frequency approaches
DEFF Research Database (Denmark)
Kouchaki, Alireza; Iman-Eini, H.; Asaei, B.
2012-01-01
This paper presents a new algorithm based on characteristic equation of solar cells to determine the Maximum Power Point (MPP) of PV modules under partially shaded conditions (PSC). To achieve this goal, an analytic condition is introduced to determine uniform or non-uniform atmospheric condition...
International Nuclear Information System (INIS)
2013-01-01
The project on the requirements for the retrofitting an extension of the maximum voltage power grid from the point of view of environmental protection and cultivated landscape work includes contributions on the following topics: the development of the European transmission grid, the grid extension law, restrictions for the power grid and their infrastructure, requirements for the regulations concerning the realization of the transnational grid extension, inclusion of the public - public acceptance - communication, requirements concerning the environmental compensation law, overhead line - underground cable - health hazards, ecological effects of overhead lines and underground cables, infrastructural projects, power supply in the future, structural relief by photovoltaics.
Directory of Open Access Journals (Sweden)
Mihajlo Firak
2010-01-01
Full Text Available In order to combine a photovoltaic module and an electrolyzer to produce hydrogen from water, an intermediate DC/DC converter can be used to adapt output power features of the module to input power features of the electrolyzer. This can also be done without using electronics, which results in saving as much as 700 USD/kW, as previous investigation has shown. A more sophisticated investigation should be carried out with the aim of improving high system efficiency, resulting in matching the photovoltaic module maximum power point trajectory (the maximum power point path in the U-I plane as a result of solar irradiance change to the operating characteristic of the electrolyzer. This paper presents an analysis of the influences of photovoltaic module electric properties, such as series and parallel resistance and non-ideality factor, on the maximum power point trajectory at different levels of solar irradiance. The possibility of various inclinations (right - vertical - left in relation to an arbitrary chosen operating characteristic of the electrolyzer is also demonstrated. Simulated results are obtained by using Matlab/Simulink simulations of the well known one-diode model. Simulations have been confirmed with experiments on a real photovoltaic module where solar irradiance, solar cell temperature, electric current, and voltage in the circuit with variable ohmic resistance have been measured.
Energy Technology Data Exchange (ETDEWEB)
Setyawan, Daddy, E-mail: d.setyawan@bapeten.go.id [Center for Assessment of Regulatory System and Technology for Nuclear Installations and Materials, Indonesian Nuclear Energy Regulatory Agency (BAPETEN), Jl. Gajah Mada No. 8 Jakarta 10120 (Indonesia); Rohman, Budi [Licensing Directorate for Nuclear Installations and Materials, Indonesian Nuclear Energy Regulatory Agency (BAPETEN), Jl. Gajah Mada No. 8 Jakarta 10120 (Indonesia)
2014-09-30
Verification of Maximum Radial Power Peaking Factor due to insertion of FPM-LEU target in the core of RSG-GAS Reactor. Radial Power Peaking Factor in RSG-GAS Reactor is a very important parameter for the safety of RSG-GAS reactor during operation. Data of radial power peaking factor due to the insertion of Fission Product Molybdenum with Low Enriched Uranium (FPM-LEU) was reported by PRSG to BAPETEN through the Safety Analysis Report RSG-GAS for FPM-LEU target irradiation. In order to support the evaluation of the Safety Analysis Report incorporated in the submission, the assessment unit of BAPETEN is carrying out independent assessment in order to verify safety related parameters in the SAR including neutronic aspect. The work includes verification to the maximum radial power peaking factor change due to the insertion of FPM-LEU target in RSG-GAS Reactor by computational method using MCNP5and ORIGEN2. From the results of calculations, the new maximum value of the radial power peaking factor due to the insertion of FPM-LEU target is 1.27. The results of calculations in this study showed a smaller value than 1.4 the limit allowed in the SAR.
Sree, Dave
2015-01-01
Near-field acoustic power level analysis of F31A31 open rotor model has been performed to determine its noise characteristics at simulated cruise flight conditions. The non-proprietary parts of the test data obtained from experiments in the 8x6 supersonic wind tunnel were provided by NASA-Glenn Research Center. The tone and broadband components of total noise have been separated from raw test data by using a new data analysis tool. Results in terms of sound pressure levels, acoustic power levels, and their variations with rotor speed, freestream Mach number, and input shaft power, with different blade-pitch setting angles at simulated cruise flight conditions, are presented and discussed. Empirical equations relating models acoustic power level and input shaft power have been developed. The near-field acoustic efficiency of the model at simulated cruise conditions is also determined. It is hoped that the results presented in this work will serve as a database for comparison and improvement of other open rotor blade designs and also for validating open rotor noise prediction codes.
2012-01-01
MPPT control method is similar to hill-climbing used as MPPT control in photovoltaic ...climbing method used as MPPT control in photovoltaic systems. In addition, the proposed MPPT control strategy is generic to all the hydrokinetic...convert AC power from the generator into DC power and a boost converter is used to implement energy flow control . On the load side, an electronic
Ronquillo, Cecinio C; Zaugg, Brian; Stagg, Brian; Kirk, Kevin R; Gupta, Isha; Barlow, William R; Pettey, Jeff H; Olson, Randall J
2014-12-01
To determine the optimal longitudinal power settings for Infiniti OZil Intelligent Phaco (IP) at varying torsional amplitude settings; and to test the hypothesis that increasing longitudinal power is more important at lower torsional amplitudes to achieve efficient phacoemulsification. Laboratory investigation. setting: John A. Moran Eye Center, University of Utah, Salt Lake City, Utah. procedure: Individual porcine nuclei were fixed in formalin, then cut into 2.0 mm cubes. Lens cube phacoemulsification was done using OZil IP at 60%, 80%, and 100% torsional amplitude with 0%, 10%, 20%, 30%, 50%, 75%, or 100% longitudinal power. All experiments were done using a 20 gauge 0.9 mm bent reverse bevel phaco tip at constant vacuum (550 mm Hg), aspiration rate (40 mL/min), and bottle height (50 cm). main outcome measure: Complete lens particle phacoemulsification (efficiency). Linear regression analysis showed a significant increase in efficiency with increasing longitudinal power at 60% torsional amplitude (R(2) = 0.7269, P = .01) and 80% torsional amplitude (R(2) = 0.6995, P = .02) but not at 100% amplitude (R(2) = 0.3053, P = .2). Baseline comparison of 60% or 80% vs 100% torsional amplitude without longitudinal power showed increased efficiency at 100% (P = .0004). Increasing longitudinal power to 20% abolished the efficiency difference between 80% vs 100% amplitudes. In contrast, 75% longitudinal power abolished the efficiency difference between 60% vs 100% torsional amplitudes. Results suggest that longitudinal power becomes more critical at increasing phacoemulsification efficiencies at torsional amplitudes less than 100%. Increasing longitudinal power does not further increase efficiency at maximal torsional amplitudes. Copyright © 2014 Elsevier Inc. All rights reserved.
DEFF Research Database (Denmark)
Babu, Thanikanti Sudhakar; Ram, J. Prasanth; Dragicevic, Tomislav
2018-01-01
For large photovoltaic power generation plants, number of panels are interconnected in series and parallel to form a photovoltaic (PV) array. In this configuration, partial shade will result in decrease in power output and introduce multiple peaks in the P–V curve. As a consequence, the modules...... in the array will deliver different row currents. Therefore, to maximize the power extraction from PV array, the panels need to be reconfigured for row current difference minimization. Row current minimization via Su Do Ku game theory do physical relocation of panels may cause laborious work and lengthy...
Altin, Necmi
2018-05-01
An interval type-2 fuzzy logic controller-based maximum power point tracking algorithm and direct current-direct current (DC-DC) converter topology are proposed for photovoltaic (PV) systems. The proposed maximum power point tracking algorithm is designed based on an interval type-2 fuzzy logic controller that has an ability to handle uncertainties. The change in PV power and the change in PV voltage are determined as inputs of the proposed controller, while the change in duty cycle is determined as the output of the controller. Seven interval type-2 fuzzy sets are determined and used as membership functions for input and output variables. The quadratic boost converter provides high voltage step-up ability without any reduction in performance and stability of the system. The performance of the proposed system is validated through MATLAB/Simulink simulations. It is seen that the proposed system provides high maximum power point tracking speed and accuracy even for fast changing atmospheric conditions and high voltage step-up requirements.
Institute of Scientific and Technical Information of China (English)
LIN; Kuang-Jang; LIN; Chii-Ruey
2010-01-01
The Photovoltaic Array has a best optimal operating point where the array operating can obtain the maximum power.However, the optimal operating point can be compromised by the strength of solar radiation,angle,and by the change of environment and load.Due to the constant changes in these conditions,it has become very difficult to locate the optimal operating point by following a mathematical model.Therefore,this study will focus mostly on the application of Fuzzy Logic Control theory and Three-point Weight Comparison Method in effort to locate the optimal operating point of solar panel and achieve maximum efficiency in power generation. The Three-point Weight Comparison Method is the comparison between the characteristic curves of the voltage of photovoltaic array and output power;it is a rather simple way to track the maximum power.The Fuzzy Logic Control,on the other hand,can be used to solve problems that cannot be effectively dealt with by calculation rules,such as concepts,contemplation, deductive reasoning,and identification.Therefore,this paper uses these two kinds of methods to make simulation successively. The simulation results show that,the Three-point Comparison Method is more effective under the environment with more frequent change of solar radiation;however,the Fuzzy Logic Control has better tacking efficiency under the environment with violent change of solar radiation.
Energy Technology Data Exchange (ETDEWEB)
Wolff, J. [Karlsruhe Univ. (Germany). Elektrotechnisches Inst.
2007-07-01
A new electric drive for hand-held tools and other portable power tools is described in this article. The novel drive concept is designed for the advantageous connection to common 230 V sockets. Based on its special power supply unit and a high drive efficiency a maximum power output about 2700 W can be achieved in continuous operation. Motor speed and gear ratio are adjustable. The drive concept is already used successfully in serial production of core drill machines. (orig.)
Zao, Yongming; Ouyang, Qi; Chen, Jiawei; Zhang, Xinglan; Hou, Shuaicheng
2017-08-01
This paper investigates the design and implementation of an improved series-parallel inductor-capacitor-inductor (LsCpLp) resonant circuit power supply for excitation of electromagnetic acoustic transducers (EMATs). The main advantage of the proposed resonant circuit is the absence of a high-permeability dynamic transformer. A high-frequency pulsating voltage gain can be achieved through a double resonance phenomenon. Both resonant tailing behavior and higher harmonics are suppressed by the improved resonant circuit, which also contributes to the generation of ultrasonic waves. Additionally, the proposed circuit can realize impedance matching and can also optimize the transduction efficiency. The complete design and implementation procedure for the power supply is described and has been validated by implementation of the proposed power supply to drive a portable EMAT. The circuit simulation results show close agreement with the experimental results and thus confirm the validity of the proposed topology. The proposed circuit is suitable for use as a portable EMAT excitation power supply that is fed by a low-voltage source.
Zao, Yongming; Ouyang, Qi; Chen, Jiawei; Zhang, Xinglan; Hou, Shuaicheng
2017-08-01
This paper investigates the design and implementation of an improved series-parallel inductor-capacitor-inductor (L s C p L p ) resonant circuit power supply for excitation of electromagnetic acoustic transducers (EMATs). The main advantage of the proposed resonant circuit is the absence of a high-permeability dynamic transformer. A high-frequency pulsating voltage gain can be achieved through a double resonance phenomenon. Both resonant tailing behavior and higher harmonics are suppressed by the improved resonant circuit, which also contributes to the generation of ultrasonic waves. Additionally, the proposed circuit can realize impedance matching and can also optimize the transduction efficiency. The complete design and implementation procedure for the power supply is described and has been validated by implementation of the proposed power supply to drive a portable EMAT. The circuit simulation results show close agreement with the experimental results and thus confirm the validity of the proposed topology. The proposed circuit is suitable for use as a portable EMAT excitation power supply that is fed by a low-voltage source.
International Nuclear Information System (INIS)
Brettschuh, W.
2001-01-01
The SWR 1000 is a design concept for a light water reactor nuclear power plant that meets all requirements regarding plant safety, economic efficiency and environ-mental friendliness. As a result of the plant's safety concept, the occurrence of core damage can, for all practical intents and purposes, be ruled out. If a core melt accident should nevertheless occur, the molten core can be retained inside the RPV, thus ensuring that all consequences of such an accident remain restricted to the plant itself. The power generating costs of the SWR 1000 are lower than with those of coal-fired and combined-cycle power plants. Power generation using nuclear energy does not release carbon dioxide to the environment, thus meeting the need for sustainable protection of our global climate. (author)
Energy Technology Data Exchange (ETDEWEB)
Seiter, C.
1998-07-01
The use of coal power generation applications is currently enjoying a renaissance. New highly efficient and cost-effective plant concepts together with environmental protection technologies are the main factors in this development. In addition, coal is available on the world market at attractive prices and in many places it is more readily available than gas. At the economical leading edge, standard power plant concepts have been developed to meet the requirements of emerging power markets. These concepts incorporate the high technological state-of-the-art and are designed to achieve lowest life-cycle costs. Low capital cost, fuel costs and operating costs in combination with shortest lead times are the main assets that make these plants attractive especially for IPPs and Developers. Other aspects of these comprehensive concepts include turnkey construction and the willingness to participate in BOO/BOT projects. One of the various examples of such a concept, the 2 x 610-MW Paiton Private Power Project Phase II in Indonesia, is described in this paper. At the technological leading edge, Siemens has always made a major contribution and was pacemaker for new developments in steam power plant technology. Modern coal-fired steam power plants use computer-optimized process and plant design as well as advanced materials, and achieve efficiencies exceeding 45%. One excellent example of this high technology is the world's largest lignite-fired steam power plant Schwarze Pumpe in Germany, which is equipped with two 800 MW Siemens steam turbine generators with supercritical steam parameters. The world's largest 50-Hz single-shaft turbine generator with supercritical steam parameters rated at 1025 MW for the Niederaussem lignite-fired steam power plant in Germany is a further example of the sophisticated Siemens steam turbine technology and sets a new benchmark in this field.
Energy Technology Data Exchange (ETDEWEB)
Lee, Sang Bum [RECTUSON, Co., LTD, Masan (Korea, Republic of); Roh, Seon Man [Samcheonpo Division, Korea South-East Power Co., Samcheonpo (Korea, Republic of)
2016-06-15
A thermal power plant has a heat exchanger tube to collect and convert the heat generated from the high temperature and pressure steam to energy, but the tubes are arranged in a complex manner. In the event that a leakage occurs in any of these tubes, the high-pressure steam leaks out and may cause the neighboring tubes to rupture. This leakage can finally stop power generation, and hence there is a dire need to establish a suitable technology capable of detecting tube leaks at an early stage even before it occurs. As shown in this paper, by applying acoustic emission (AE) technology in existing boiler tube leak detection equipment (BTLD), we developed a system that detects these leakages early enough and generates an alarm at an early stage to necessitate action; the developed system works better that the existing system used to detect fine leakages. We verified the usability of the system in a 560 MW-class thermal power plant boiler by conducting leak tests by simulating leakages from a variety of hole sizes (⌀2, ⌀5, ⌀10 mm). Results show that while the existing fine leakage detection system does not detect fine leakages of ⌀2 mm and ⌀5 mm, the newly developed system could detect leakages early enough and generate an alarm at an early stage, and it is possible to increase the signal to more than 18 dB.
International Nuclear Information System (INIS)
Lee, Sang Bum; Roh, Seon Man
2016-01-01
A thermal power plant has a heat exchanger tube to collect and convert the heat generated from the high temperature and pressure steam to energy, but the tubes are arranged in a complex manner. In the event that a leakage occurs in any of these tubes, the high-pressure steam leaks out and may cause the neighboring tubes to rupture. This leakage can finally stop power generation, and hence there is a dire need to establish a suitable technology capable of detecting tube leaks at an early stage even before it occurs. As shown in this paper, by applying acoustic emission (AE) technology in existing boiler tube leak detection equipment (BTLD), we developed a system that detects these leakages early enough and generates an alarm at an early stage to necessitate action; the developed system works better that the existing system used to detect fine leakages. We verified the usability of the system in a 560 MW-class thermal power plant boiler by conducting leak tests by simulating leakages from a variety of hole sizes (⌀2, ⌀5, ⌀10 mm). Results show that while the existing fine leakage detection system does not detect fine leakages of ⌀2 mm and ⌀5 mm, the newly developed system could detect leakages early enough and generate an alarm at an early stage, and it is possible to increase the signal to more than 18 dB
Jiménez, Noé; Camarena, Francisco; Redondo, Javier; Sánchez-Morcillo, Víctor; Konofagou, Elisa E.
2015-10-01
We report a numerical method for solving the constitutive relations of nonlinear acoustics, where multiple relaxation processes are included in a generalized formulation that allows the time-domain numerical solution by an explicit finite differences scheme. Thus, the proposed physical model overcomes the limitations of the one-way Khokhlov-Zabolotskaya-Kuznetsov (KZK) type models and, due to the Lagrangian density is implicitly included in the calculation, the proposed method also overcomes the limitations of Westervelt equation in complex configurations for medical ultrasound. In order to model frequency power law attenuation and dispersion, such as observed in biological media, the relaxation parameters are fitted to both exact frequency power law attenuation/dispersion media and also empirically measured attenuation of a variety of tissues that does not fit an exact power law. Finally, a computational technique based on artificial relaxation is included to correct the non-negligible numerical dispersion of the finite difference scheme, and, on the other hand, improve stability trough artificial attenuation when shock waves are present. This technique avoids the use of high-order finite-differences schemes leading to fast calculations. The present algorithm is especially suited for practical configuration where spatial discontinuities are present in the domain (e.g. axisymmetric domains or zero normal velocity boundary conditions in general). The accuracy of the method is discussed by comparing the proposed simulation solutions to one dimensional analytical and k-space numerical solutions.
Mousa, Mohamed G; Allam, S M; Rashad, Essam M
2018-01-01
This paper proposes an advanced strategy to synchronize the wind-driven Brushless Doubly-Fed Reluctance Generator (BDFRG) to the grid-side terminals. The proposed strategy depends mainly upon determining the electrical angle of the grid voltage, θ v and using the same transformation matrix of both the power winding and grid sides to ensure that the generated power-winding voltage has the same phase-sequence of the grid-side voltage. On the other hand, the paper proposes a vector-control (power-winding flux orientation) technique for maximum wind-power extraction under two schemes summarized as; unity power-factor operation and minimum converter-current. Moreover, a soft-starting method is suggested to avoid the employed converter over-current. The first control scheme is achieved by adjusting the command power-winding reactive power at zero for a unity power-factor operation. However, the second scheme depends on setting the command d-axis control-winding current at zero to maximize the ratio of the generator electromagnetic-torque per the converter current. This enables the system to get a certain command torque under minimum converter current. A sample of the obtained simulation and experimental results is presented to check the effectiveness of the proposed control strategies. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Institute of Scientific and Technical Information of China (English)
Xiangjie Liu; Chengcheng Wang; Yaozhen Han
2017-01-01
This paper proposes a super-twisting second order sliding mode control scheme to maximize the wind energy capture of a doubly fed induction generator based variable speed wind turbine (VSWT) system, and minimize the reactive power simultaneously. Two second order sliding mode controllers are designed to achieve the control objectives, reduce mechanical stress and improve control accuracy. By regulating the generator rotor voltage, one controller makes the wind turbine rotor speed track the optimal speed, which can maximize power generation. The other maintains the rotor current at rated value to minimize the reactive power. A quadratic form Lyapunov function is adopted to determine the range of controller parameters and guarantee the finite time stability. Simulation results on a 1.5 MW doubly fed induction generator (DFIG)-based variable speed wind turbine demonstrate the validity of the proposed control strategy.
A numerical study on acoustic behavior in gas turbine combustor with acoustic resonator
International Nuclear Information System (INIS)
Park, I Sun; Sohn, Chae Hoon
2005-01-01
Acoustic behavior in gas turbine combustor with acoustic resonator is investigated numerically by adopting linear acoustic analysis. Helmholtz-type resonator is employed as acoustic resonator to suppress acoustic instability passively. The tuning frequency of acoustic resonator is adjusted by varying its length. Through harmonic analysis, acoustic-pressure responses of chamber to acoustic excitation are obtained and the resonant acoustic modes are identified. Acoustic damping effect of acoustic resonator is quantified by damping factor. As the tuning frequency of acoustic resonator approaches the target frequency of the resonant mode to be suppressed, mode split from the original resonant mode to lower and upper modes appears and thereby complex patterns of acoustic responses show up. Considering mode split and damping effect as a function of tuning frequency, it is desirable to make acoustic resonator tuned to broad-band frequencies near the maximum frequency of those of the possible upper modes
Energy Technology Data Exchange (ETDEWEB)
Moreira, Andre Pimentel; Ramalho, Geraldo Luis Bezerra; Dias, Samuel Vieira [Centro Federal de Educacao Tecnologica do Ceara (CEFETCE), Fortaleza, CE (Brazil)], emails: apmoreira@cefetce.br, gramalho@cefetce.br, samueldias@cefetce.br; Carvalho, Paulo Cesar Marques de [Universidade Federal do Ceara (PPGEE/UFC), Fortaleza, CE (Brazil). Programa de Pos Graduacao em Engenharia Eletrica], e-mail: carvalho@dee.ufc.br; Borges Neto, Manuel Rangel [Centro Federal de Educacao Tecnologica de Petrolina (CEFETPet), Petrolina, PE (Brazil)], email: rangel@cefetpet.br
2008-07-01
This article is presented the study and compared the behaviour of real and simulated a photovoltaic system, through the design and simulation software, Electronic Workbench (MultiSIM 9), AIM-Spice and identifying the point of maximum power (MPP), with the help of modeling software from Matlab. The results of the simulated model were very close to data collected from a real.photovoltaic system. (author)
DEFF Research Database (Denmark)
Smit, Jeroen; Berghammer, Lars O.; Navalkar, Sachin
2014-01-01
In this paper an extension of the spectrum of applicability of rotors with active aerody-namic devices is presented. Besides the classical purpose of load alleviation, a secondary objective is established: power capture optimization. As a _rst step, wind speed regions that contribute little to fa...
International Nuclear Information System (INIS)
Shimanskiy, Sergey; Iijima, Takashi; Naoi, Yosuke
2004-01-01
The development work carried out on Fugen NPP is focused on detection of a small leakage on the reactor's inlet feeder pipes at an early stage by an acoustic leak detection method with usage of high-temperature resistant microphones. Specifically, the leak rate of 0.046m 3 /h has been chosen as a target detection capability for this system. A cross-correlation technique has been studied for leak detection under low signal-noise ratios. The study shows that the sound diffusion on piping causes distortion of leak signals that results in their low correlation. A leak-location estimator and multi-channel correlation value, associated with estimated leak position, have been employed to detect such low-correlated leak signals. A method based on cross-correlation of signal spectral components has been proposed to deal with non-stationary leak signals. Joint-Time-Frequency-Analysis has been applied to analyze such signals, whilst a Wavelet decomposition technique has been used to extract their short-term spectral fluctuations. Since the spectral components are less affected by signal distortion, they provide higher correlation value and can be applied for leak detection under lower signal-noise ratios. The possibility of detecting and locating a small leakage by the methods proposed has been demonstrated by a number of simulation tests conducted on the Fugen NPP site. (author)
Directory of Open Access Journals (Sweden)
Hongchang Sun
2018-01-01
Full Text Available This paper proposes an adaptive gain second-order sliding mode control strategy to track optimal electromagnetic torque and regulate reactive power of doubly fed wind turbine system. Firstly, wind turbine aerodynamic characteristics and doubly fed induction generator (DFIG modeling are presented. Then, electromagnetic torque error and reactive power error are chosen as sliding variables, and fixed gain super-twisting sliding mode control scheme is designed. Considering that uncertainty upper bound is unknown and is hard to be estimated in actual doubly fed wind turbine system, a gain scheduled law is proposed to compel control parameters variation according to uncertainty upper bound real-time. Adaptive gain second-order sliding mode rotor voltage control method is constructed in detail and finite time stability of doubly fed wind turbine control system is strictly proved. The superiority and robustness of the proposed control scheme are finally evaluated on a 1.5 MW DFIG wind turbine system.
Maximum Acceleration Recording Circuit
Bozeman, Richard J., Jr.
1995-01-01
Coarsely digitized maximum levels recorded in blown fuses. Circuit feeds power to accelerometer and makes nonvolatile record of maximum level to which output of accelerometer rises during measurement interval. In comparison with inertia-type single-preset-trip-point mechanical maximum-acceleration-recording devices, circuit weighs less, occupies less space, and records accelerations within narrower bands of uncertainty. In comparison with prior electronic data-acquisition systems designed for same purpose, circuit simpler, less bulky, consumes less power, costs and analysis of data recorded in magnetic or electronic memory devices. Circuit used, for example, to record accelerations to which commodities subjected during transportation on trucks.
Sajjadi, Baharak; Raman, Abdul Aziz Abdul; Ibrahim, Shaliza
2015-05-01
This paper aims at investigating the influence of ultrasound power amplitude on liquid behaviour in a low-frequency (24 kHz) sono-reactor. Three types of analysis were employed: (i) mechanical analysis of micro-bubbles formation and their activities/characteristics using mathematical modelling. (ii) Numerical analysis of acoustic streaming, fluid flow pattern, volume fraction of micro-bubbles and turbulence using 3D CFD simulation. (iii) Practical analysis of fluid flow pattern and acoustic streaming under ultrasound irradiation using Particle Image Velocimetry (PIV). In mathematical modelling, a lone micro bubble generated under power ultrasound irradiation was mechanistically analysed. Its characteristics were illustrated as a function of bubble radius, internal temperature and pressure (hot spot conditions) and oscillation (pulsation) velocity. The results showed that ultrasound power significantly affected the conditions of hotspots and bubbles oscillation velocity. From the CFD results, it was observed that the total volume of the micro-bubbles increased by about 4.95% with each 100 W-increase in power amplitude. Furthermore, velocity of acoustic streaming increased from 29 to 119 cm/s as power increased, which was in good agreement with the PIV analysis. Copyright © 2014 Elsevier B.V. All rights reserved.
Directory of Open Access Journals (Sweden)
Neeraj Priyadarshi
2018-04-01
Full Text Available In this research paper, a hybrid Artificial Neural Network (ANN-Fuzzy Logic Control (FLC tuned Flower Pollination Algorithm (FPA as a Maximum Power Point Tracker (MPPT is employed to amend root mean square error (RMSE of photovoltaic (PV modeling. Moreover, Gaussian membership functions have been considered for fuzzy controller design. This paper interprets the Luo converter occupied brushless DC motor (BLDC-directed PV water pump application. Experimental responses certify the effectiveness of the suggested motor-pump system supporting diverse operating states. The Luo converter, a newly developed DC-DC converter, has high power density, better voltage gain transfer and superior output waveform and can track optimal power from PV modules. For BLDC speed control there is no extra circuitry, and phase current sensors are enforced for this scheme. The most recent attempt using adaptive neuro-fuzzy inference system (ANFIS-FPA-operated BLDC directed PV pump with advanced Luo converter, has not been formerly conferred.
Particle separation by phase modulated surface acoustic waves.
Simon, Gergely; Andrade, Marco A B; Reboud, Julien; Marques-Hueso, Jose; Desmulliez, Marc P Y; Cooper, Jonathan M; Riehle, Mathis O; Bernassau, Anne L
2017-09-01
High efficiency isolation of cells or particles from a heterogeneous mixture is a critical processing step in lab-on-a-chip devices. Acoustic techniques offer contactless and label-free manipulation, preserve viability of biological cells, and provide versatility as the applied electrical signal can be adapted to various scenarios. Conventional acoustic separation methods use time-of-flight and achieve separation up to distances of quarter wavelength with limited separation power due to slow gradients in the force. The method proposed here allows separation by half of the wavelength and can be extended by repeating the modulation pattern and can ensure maximum force acting on the particles. In this work, we propose an optimised phase modulation scheme for particle separation in a surface acoustic wave microfluidic device. An expression for the acoustic radiation force arising from the interaction between acoustic waves in the fluid was derived. We demonstrated, for the first time, that the expression of the acoustic radiation force differs in surface acoustic wave and bulk devices, due to the presence of a geometric scaling factor. Two phase modulation schemes are investigated theoretically and experimentally. Theoretical findings were experimentally validated for different mixtures of polystyrene particles confirming that the method offers high selectivity. A Monte-Carlo simulation enabled us to assess performance in real situations, including the effects of particle size variation and non-uniform acoustic field on sorting efficiency and purity, validating the ability to separate particles with high purity and high resolution.
Maximum Exergetic Efficiency Operation of a Solar Powered H2O-LiBr Absorption Cooling System
Directory of Open Access Journals (Sweden)
Camelia Stanciu
2017-12-01
Full Text Available A solar driven cooling system consisting of a single effect H2O-LiBr absorbtion cooling module (ACS, a parabolic trough collector (PTC, and a storage tank (ST module is analyzed during one full day operation. The pressurized water is used to transfer heat from PTC to ST and to feed the ACS desorber. The system is constrained to operate at the maximum ACS exergetic efficiency, under a time dependent cooling load computed on 15 July for a one storey house located near Bucharest, Romania. To set up the solar assembly, two commercial PTCs were selected, namely PT1-IST and PTC 1800 Solitem, and a single unit ST was initially considered. The mathematical model, relying on the energy balance equations, was coded under Engineering Equation Solver (EES environment. The solar data were obtained from the Meteonorm database. The numerical simulations proved that the system cannot cover the imposed cooling load all day long, due to the large variation of water temperature inside the ST. By splitting the ST into two units, the results revealed that the PT1-IST collector only drives the ACS between 9 am and 4:30 pm, while the PTC 1800 one covers the entire cooling period (9 am–6 pm for optimum ST capacities of 90 kg/90 kg and 90 kg/140 kg, respectively.
Trujillo, Francisco Javier; Knoerzer, Kai
2011-11-01
High power ultrasound reactors have gained a lot of interest in the food industry given the effects that can arise from ultrasonic-induced cavitation in liquid foods. However, most of the new food processing developments have been based on empirical approaches. Thus, there is a need for mathematical models which help to understand, optimize, and scale up ultrasonic reactors. In this work, a computational fluid dynamics (CFD) model was developed to predict the acoustic streaming and induced heat generated by an ultrasonic horn reactor. In the model it is assumed that the horn tip is a fluid inlet, where a turbulent jet flow is injected into the vessel. The hydrodynamic momentum rate of the incoming jet is assumed to be equal to the total acoustic momentum rate emitted by the acoustic power source. CFD velocity predictions show excellent agreement with the experimental data for power densities higher than W(0)/V ≥ 25kWm(-3). This model successfully describes hydrodynamic fields (streaming) generated by low-frequency-high-power ultrasound. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.
Directory of Open Access Journals (Sweden)
F. Guneş
2014-04-01
Full Text Available Honey Bee Mating Optimization (HBMO is a recent swarm-based optimization algorithm to solve highly nonlinear problems, whose based approach combines the powers of simulated annealing, genetic algorithms, and an effective local search heuristic to search for the best possible solution to the problem under investigation within a reasonable computing time. In this work, the HBMO- based design is carried out for a front-end amplifier subject to be a subunit of a radar system in conjunction with a cost effective 3-D SONNET-based Support Vector Regression Machine (SVRM microstrip model. All the matching microstrip widths, lengths are obtained on a chosen substrate to satisfy the maximum power delivery and the required noise over the required bandwidth of a selected transistor. The proposed HBMO- based design is applied to the design of a typical ultra-wide-band low noise amplifier with NE3512S02 on a substrate of Rogers 4350 for the maximum output power and the noise figure F(f=1dB within the 5-12 GHz using the T- type of microstrip matching circuits. Furthermore, the effectiveness and efficiency of the proposed HBMO based design are manifested by comparing it with the Genetic Algorithm (GA, Particle Swarm Optimization (PSO and the simple HBMO based designs.
Towards Predicting Room Acoustical Effects on Sound-Field ASSR from Stimulus Modulation Power
DEFF Research Database (Denmark)
Zapata Rodriguez, Valentina; Laugesen, Søren; Jeong, Cheol-Ho
) is considered. Instead of using insert earphones to deliver the stimuli, as is customary, the auditory signals are reproduced from a loudspeaker placed in front of the subject, so as to include the hearing aid in the transmission path. Loudspeaker presentation of the stimulus can lower its effective modulation...... properties of the measurement room has not been considered. The present work explores the relation between the stimulus modulation power and the ASSR amplitude in a simulated sound-field ASSR data set with varying reverberation time. Three rooms were simulated using the Green's function approach...
Seol, Sang-Hoon; Davidson, Brian P; Belcik, J Todd; Mott, Brian H; Goodman, Reid M; Ammi, Azzdine; Lindner, Jonathan R
2015-06-01
There is growing interest in limb contrast-enhanced ultrasound (CEU) perfusion imaging for the evaluation of peripheral artery disease. Because of low resting microvascular blood flow in skeletal muscle, signal enhancement during limb CEU is prohibitively low for real-time imaging. The aim of this study was to test the hypothesis that this obstacle can be overcome by intermediate- rather than low-power CEU when performed with an acoustically resilient microbubble agent. Viscoelastic properties of Definity and Sonazoid were assessed by measuring bulk modulus during incremental increases in ambient pressure to 200 mm Hg. Comparison of in vivo microbubble destruction and signal enhancement at a mechanical index (MI) of 0.1 to 0.4 was performed by sequential reduction in pulsing interval from 10 to 0.05 sec during limb CEU at 7 MHz in mice and 1.8 MHz in dogs. Destruction was also assessed by broadband signal generation during passive cavitation detection. Real-time CEU perfusion imaging with destruction-replenishment was then performed at 1.8 MHz in dogs using an MI of 0.1, 0.2, or 0.3. Sonazoid had a higher bulk modulus than Definity (66 ± 12 vs 29 ± 2 kPa, P = .02) and exhibited less inertial cavitation (destruction) at MIs ≥ 0.2. On in vivo CEU, maximal signal intensity increased incrementally with MI for both agents and was equivalent between agents except at an MI of 0.1 (60% and 85% lower for Sonazoid at 7 and 1.8 MHz, respectively, P power imaging coupled with a durable microbubble contrast agent. Copyright © 2015 American Society of Echocardiography. All rights reserved.
National Research Council Canada - National Science Library
Long, Marshall
2014-01-01
.... Beginning with a brief history, it reviews the fundamentals of acoustics, human perception and reaction to sound, acoustic noise measurements, noise metrics, and environmental noise characterization...
International Nuclear Information System (INIS)
Nichols, R.W.
1976-01-01
The volume contains six papers which together provide an overall review of the inspection technique known as acoustic emission or stress wave emission. The titles are: a welder's introduction to acoustic emission technology; use of acoustic emission for detection of defects as they arise during fabrication; examples of laboratory application and assessment of acoustic emission in the United Kingdom; (Part I: acoustic emission behaviour of low alloy steels; Part II: fatigue crack assessment from proof testing and continuous monitoring); inspection of selected areas of engineering structures by acoustic emission; Japanese experience in laboratory and practical applications of acoustic emission to welded structures; and ASME acoustic emission code status. (U.K.)
International Nuclear Information System (INIS)
Ganjefar, Soheil; Ghassemi, Ali Akbar; Ahmadi, Mohamad Mehdi
2014-01-01
In this paper, a quantum neural network (QNN) is used as controller in the adaptive control structures to improve efficiency of the maximum power point tracking (MPPT) methods in the wind turbine system. For this purpose, direct and indirect adaptive control structures equipped with QNN are used in tip-speed ratio (TSR) and optimum torque (OT) MPPT methods. The proposed control schemes are evaluated through a battery-charging windmill system equipped with PMSG (permanent magnet synchronous generator) at a random wind speed to demonstrate transcendence of their effectiveness as compared to PID controller and conventional neural network controller (CNNC). - Highlights: • Using a new control method to harvest the maximum power from wind energy system. • Using an adaptive control scheme based on quantum neural network (QNN). • Improving of MPPT-TSR method by direct adaptive control scheme based on QNN. • Improving of MPPT-OT method by indirect adaptive control scheme based on QNN. • Using a windmill system based on PMSG to evaluate proposed control schemes
Liu, Hua-Long; Liu, Hua-Dong
2014-10-01
Partial discharge (PD) in power transformers is one of the prime reasons resulting in insulation degradation and power faults. Hence, it is of great importance to study the techniques of the detection and localization of PD in theory and practice. The detection and localization of PD employing acoustic emission (AE) techniques, as a kind of non-destructive testing, plus due to the advantages of powerful capability of locating and high precision, have been paid more and more attention. The localization algorithm is the key factor to decide the localization accuracy in AE localization of PD. Many kinds of localization algorithms exist for the PD source localization adopting AE techniques including intelligent and non-intelligent algorithms. However, the existed algorithms possess some defects such as the premature convergence phenomenon, poor local optimization ability and unsuitability for the field applications. To overcome the poor local optimization ability and easily caused premature convergence phenomenon of the fundamental genetic algorithm (GA), a new kind of improved GA is proposed, namely the sequence quadratic programming-genetic algorithm (SQP-GA). For the hybrid optimization algorithm, SQP-GA, the sequence quadratic programming (SQP) algorithm which is used as a basic operator is integrated into the fundamental GA, so the local searching ability of the fundamental GA is improved effectively and the premature convergence phenomenon is overcome. Experimental results of the numerical simulations of benchmark functions show that the hybrid optimization algorithm, SQP-GA, is better than the fundamental GA in the convergence speed and optimization precision, and the proposed algorithm in this paper has outstanding optimization effect. At the same time, the presented SQP-GA in the paper is applied to solve the ultrasonic localization problem of PD in transformers, then the ultrasonic localization method of PD in transformers based on the SQP-GA is proposed. And
Acoustic field modulation in regenerators
Hu, J. Y.; Wang, W.; Luo, E. C.; Chen, Y. Y.
2016-12-01
The regenerator is a key component that transfers energy between heat and work. The conversion efficiency is significantly influenced by the acoustic field in the regenerator. Much effort has been spent to quantitatively determine this influence, but few comprehensive experimental verifications have been performed because of difficulties in modulating and measuring the acoustic field. In this paper, a method requiring two compressors is introduced and theoretically investigated that achieves acoustic field modulation in the regenerator. One compressor outputs the acoustic power for the regenerator; the other acts as a phase shifter. A RC load dissipates the acoustic power out of both the regenerator and the latter compressor. The acoustic field can be modulated by adjusting the current in the two compressors and opening the RC load. The acoustic field is measured with pressure sensors instead of flow-field imaging equipment, thereby greatly simplifying the experiment.
International Nuclear Information System (INIS)
Hardik, P. Desai; Ranjan Maheshwari
2011-01-01
This paper investigates the interest focused on employing parallel connected dc-dc converter with high tracking effectiveness under wide variation in environmental conditions (Insolation) and wide load variation. dc-dc converter is an essential part of the stand alone PV system. Paper also presents an approach on how duty cycle for maximum power position (MPP) is adjusted by taking care of varying load conditions and without iterative steps. Synchronized PWM pulses are employed for the converter. High tracking efficiency is achieved with continuous input and inductor current. In this approach, the converter can he utilized in buck as well in boost mode. The PV system simulation was verified and experimental results were in agreement to the presented scheme. (authors)
International Nuclear Information System (INIS)
Cappelletti, M A; Cédola, A P; Peltzer y Blancá, E L
2014-01-01
The radiation resistance in InGaP/GaAs/Ge triple-junction solar cells is limited by that of the middle GaAs sub-cell. In this work, the electrical performance degradation of different GaAs sub-cells under 1 MeV electron irradiation at fluences below 4 × 10 15 cm −2 has been analyzed by means of a computer simulation. The numerical simulations have been carried out using the one-dimensional device modeling program PC1D. The effects of the base and emitter carrier concentrations of the p- and n-type GaAs structures on the maximum power point have been researched using a radiative recombination lifetime, a damage constant for the minority carrier lifetime and carrier removal rate models. An analytical model has been proposed, which is useful to either determine the maximum exposure time or select the appropriate device in order to ensure that the electrical parameters of different GaAs sub-cells will have a satisfactory response to radiation since they will be kept above 80% with respect to the non-irradiated values. (paper)
Energy Technology Data Exchange (ETDEWEB)
Guzman, Eusebio; Mendoza, Victor X; Carrillo, Jose J . A; Galarza, Cristian [Universidad Autonoma Metropolitana, Mexico, D.F. (Mexico)
2000-07-01
A maximum power point tracker MPPT for photovoltaic systems is presented. The equipment can output up to 600 W and its control signals are generated by a PIC microcontroller. The principle of control is based on current and voltage sampling at the output terminals of the photovoltaic generator. From power comparison of two consecutive samples, it is possible to know how far from the optimal point the system is working. Output voltage control is used to force the system to work within the optimal area of operation. The microcontroller program sequence, the DC/DC converter structure and the most relevant results are shown. [Spanish] En este trabajo se presenta el desarrollo de un controlador de potencia maxima para su aplicacion en sistemas fotovoltaicos (SFVs). El diseno alcanza una potencia de 600 W y sus senales de control son generadas con un controlador PIC. El principio de control se basa en el muestreo de la corriente y la tension en las terminadas del generador fotovoltaico GFV. De dos muestreos consecutivos, y por comparacion de las potencias, se determina que tan alejado del punto optimo opera el sistema. La operacion del sistema dentro de la zona de funcionamiento optimo se asegura mediante un control por tension. Se muestra la secuencia de programacion del microcontrolador, la estructura del convertidor CD/CD empleado y algunos resultados relevantes.
DEFF Research Database (Denmark)
Blauert, Jens
Communication Acoustics deals with the fundamentals of those areas of acoustics which are related to modern communication technologies. Due to the advent of digital signal processing and recording in acoustics, these areas have enjoyed an enormous upswing during the last 4 decades. The book...... the book a source of valuable information for those who want to improve or refresh their knowledge in the field of communication acoustics - and to work their way deeper into it. Due to its interdisciplinary character Communication Acoustics is bound to attract readers from many different areas, such as......: acoustics, cognitive science, speech science, and communication technology....
Acoustic remote sensing of ocean flows
Digital Repository Service at National Institute of Oceanography (India)
Joseph, A.; Desa, E.
Acoustic techniques have become powerful tools for measurement of ocean circulation mainly because of the ability of acoustic signals to travel long distances in water, and the inherently non-invasive nature of measurement. The satellite remote...
U-rans model for the prediction of the acoustic sound power generated in a whistling corrugated pipe
Golliard, J.; González Díez, N.; Belfroid, S.P.C.; Nakiboǧlu, G.; Hirschberg, A.
2013-01-01
Corrugated pipes, as used in flexible risers for gas production or in domestic appliances, can whistle when a flow is imposed through the pipe. Nakiboglu et al [1, 2] have developed a method to compute the acoustic source term for axi-symmetric cavities. The method is based on the resolution of
Kleeberg, Florian P.; Gutzmann, Holger L.; Weyer, Cornelia; Weiß, Jürgen; Dörfler, Joachim; Hahlweg, Cornelius F.
2014-09-01
The present paper is a follow up of a paper presented in 2013 at the Novel Optical Systems conference in the session on Optics and Music. It is derived from an ongoing study on the human perception of combined optical and acoustical periodical stimuli. Originating from problems concerning artificial illumination and certain machinery with coherent optical and acoustical emissions there are effects to be observed which are interesting in the context of occupational medicine. It seems, that acoustic stimuli in the frequency range of the flicker fusion and below might lead to unexpected perceptible effects beyond those of the single stimuli. The effect of infrasound stimuli as a whole body perception seems to be boosted. Because of the difficulties in evaluation of physical and psychological effects of such coherent stimuli in a first step we question if such coherence is perceivable at all. Further, the problem of modulation of optical signals by acoustical signal is concerned. A catalogue of scenarios and 'effects to look for' including measurement concepts is presented and discussed.
An acoustic neuroma is a benign tumor that develops on the nerve that connects the ear to the brain. ... can press against the brain, becoming life-threatening. Acoustic neuroma can be difficult to diagnose, because the ...
Rosado-Mendez, Ivan M; Nam, Kibo; Hall, Timothy J; Zagzebski, James A
2013-07-01
Reported here is a phantom-based comparison of methods for determining the power spectral density (PSD) of ultrasound backscattered signals. Those power spectral density values are then used to estimate parameters describing α(f), the frequency dependence of the acoustic attenuation coefficient. Phantoms were scanned with a clinical system equipped with a research interface to obtain radiofrequency echo data. Attenuation, modeled as a power law α(f)= α0 f (β), was estimated using a reference phantom method. The power spectral density was estimated using the short-time Fourier transform (STFT), Welch's periodogram, and Thomson's multitaper technique, and performance was analyzed when limiting the size of the parameter-estimation region. Errors were quantified by the bias and standard deviation of the α0 and β estimates, and by the overall power-law fit error (FE). For parameter estimation regions larger than ~34 pulse lengths (~1 cm for this experiment), an overall power-law FE of 4% was achieved with all spectral estimation methods. With smaller parameter estimation regions as in parametric image formation, the bias and standard deviation of the α0 and β estimates depended on the size of the parameter estimation region. Here, the multitaper method reduced the standard deviation of the α0 and β estimates compared with those using the other techniques. The results provide guidance for choosing methods for estimating the power spectral density in quantitative ultrasound methods.
Directory of Open Access Journals (Sweden)
Yu-Pei Huang
2018-01-01
Full Text Available This paper proposes a modified maximum power point tracking (MPPT algorithm for photovoltaic systems under rapidly changing partial shading conditions (PSCs. The proposed algorithm integrates a genetic algorithm (GA and the firefly algorithm (FA and further improves its calculation process via a differential evolution (DE algorithm. The conventional GA is not advisable for MPPT because of its complicated calculations and low accuracy under PSCs. In this study, we simplified the GA calculations with the integration of the DE mutation process and FA attractive process. Results from both the simulation and evaluation verify that the proposed algorithm provides rapid response time and high accuracy due to the simplified processing. For instance, evaluation results demonstrate that when compared to the conventional GA, the execution time and tracking accuracy of the proposed algorithm can be, respectively, improved around 69.4% and 4.16%. In addition, in comparison to FA, the tracking speed and tracking accuracy of the proposed algorithm can be improved around 42.9% and 1.85%, respectively. Consequently, the major improvement of the proposed method when evaluated against the conventional GA and FA is tracking speed. Moreover, this research provides a framework to integrate multiple nature-inspired algorithms for MPPT. Furthermore, the proposed method is adaptable to different types of solar panels and different system formats with specifically designed equations, the advantages of which are rapid tracking speed with high accuracy under PSCs.
Directory of Open Access Journals (Sweden)
Zhiqiang Yang
2016-05-01
Full Text Available Due to the dynamic process of maximum power point tracking (MPPT caused by turbulence and large rotor inertia, variable-speed wind turbines (VSWTs cannot maintain the optimal tip speed ratio (TSR from cut-in wind speed up to the rated speed. Therefore, in order to increase the total captured wind energy, the existing aerodynamic design for VSWT blades, which only focuses on performance improvement at a single TSR, needs to be improved to a multi-point design. In this paper, based on a closed-loop system of VSWTs, including turbulent wind, rotor, drive train and MPPT controller, the distribution of operational TSR and its description based on inflow wind energy are investigated. Moreover, a multi-point method considering the MPPT dynamic process for the aerodynamic optimization of VSWT blades is proposed. In the proposed method, the distribution of operational TSR is obtained through a dynamic simulation of the closed-loop system under a specific turbulent wind, and accordingly the multiple design TSRs and the corresponding weighting coefficients in the objective function are determined. Finally, using the blade of a National Renewable Energy Laboratory (NREL 1.5 MW wind turbine as the baseline, the proposed method is compared with the conventional single-point optimization method using the commercial software Bladed. Simulation results verify the effectiveness of the proposed method.
Etzel, C J; Shete, S; Beasley, T M; Fernandez, J R; Allison, D B; Amos, C I
2003-01-01
Non-normality of the phenotypic distribution can affect power to detect quantitative trait loci in sib pair studies. Previously, we observed that Winsorizing the sib pair phenotypes increased the power of quantitative trait locus (QTL) detection for both Haseman-Elston (HE) least-squares tests [Hum Hered 2002;53:59-67] and maximum likelihood-based variance components (MLVC) analysis [Behav Genet (in press)]. Winsorizing the phenotypes led to a slight increase in type 1 error in H-E tests and a slight decrease in type I error for MLVC analysis. Herein, we considered transforming the sib pair phenotypes using the Box-Cox family of transformations. Data were simulated for normal and non-normal (skewed and kurtic) distributions. Phenotypic values were replaced by Box-Cox transformed values. Twenty thousand replications were performed for three H-E tests of linkage and the likelihood ratio test (LRT), the Wald test and other robust versions based on the MLVC method. We calculated the relative nominal inflation rate as the ratio of observed empirical type 1 error divided by the set alpha level (5, 1 and 0.1% alpha levels). MLVC tests applied to non-normal data had inflated type I errors (rate ratio greater than 1.0), which were controlled best by Box-Cox transformation and to a lesser degree by Winsorizing. For example, for non-transformed, skewed phenotypes (derived from a chi2 distribution with 2 degrees of freedom), the rates of empirical type 1 error with respect to set alpha level=0.01 were 0.80, 4.35 and 7.33 for the original H-E test, LRT and Wald test, respectively. For the same alpha level=0.01, these rates were 1.12, 3.095 and 4.088 after Winsorizing and 0.723, 1.195 and 1.905 after Box-Cox transformation. Winsorizing reduced inflated error rates for the leptokurtic distribution (derived from a Laplace distribution with mean 0 and variance 8). Further, power (adjusted for empirical type 1 error) at the 0.01 alpha level ranged from 4.7 to 17.3% across all tests
Principles of musical acoustics
Hartmann, William M
2013-01-01
Principles of Musical Acoustics focuses on the basic principles in the science and technology of music. Musical examples and specific musical instruments demonstrate the principles. The book begins with a study of vibrations and waves, in that order. These topics constitute the basic physical properties of sound, one of two pillars supporting the science of musical acoustics. The second pillar is the human element, the physiological and psychological aspects of acoustical science. The perceptual topics include loudness, pitch, tone color, and localization of sound. With these two pillars in place, it is possible to go in a variety of directions. The book treats in turn, the topics of room acoustics, audio both analog and digital, broadcasting, and speech. It ends with chapters on the traditional musical instruments, organized by family. The mathematical level of this book assumes that the reader is familiar with elementary algebra. Trigonometric functions, logarithms and powers also appear in the book, but co...
Acoustic cloaking and transformation acoustics
International Nuclear Information System (INIS)
Chen Huanyang; Chan, C T
2010-01-01
In this review, we give a brief introduction to the application of the new technique of transformation acoustics, which draws on a correspondence between coordinate transformation and material properties. The technique is formulated for both acoustic waves and linear liquid surface waves. Some interesting conceptual devices can be designed for manipulating acoustic waves. For example, we can design acoustic cloaks that make an object invisible to acoustic waves, and the cloak can either encompass or lie outside the object to be concealed. Transformation acoustics, as an analog of transformation optics, can go beyond invisibility cloaking. As an illustration for manipulating linear liquid surface waves, we show that a liquid wave rotator can be designed and fabricated to rotate the wave front. The acoustic transformation media require acoustic materials which are anisotropic and inhomogeneous. Such materials are difficult to find in nature. However, composite materials with embedded sub-wavelength resonators can in principle be made and such 'acoustic metamaterials' can exhibit nearly arbitrary values of effective density and modulus tensors to satisfy the demanding material requirements in transformation acoustics. We introduce resonant sonic materials and Helmholtz resonators as examples of acoustic metamaterials that exhibit resonant behaviour in effective density and effective modulus. (topical review)
Digital Controller For Acoustic Levitation
Tarver, D. Kent
1989-01-01
Acoustic driver digitally controls sound fields along three axes. Allows computerized acoustic levitation and manipulation of small objects for such purposes as containerless processing and nuclear-fusion power experiments. Also used for controlling motion of vibration-testing tables in three dimensions.
Khan, Farid Ullah; Khattak, Muhammad Umair
2016-02-01
Rapid developments in micro electronics, micro fabrication, ultra-large scale of integration, ultra-low power sensors, and wireless technology have greatly reduced the power consumption requirements of wireless sensor nodes (WSNs) and make it possible to operate these devices with energy harvesters. Likewise, other energy harvesters, acoustic energy harvesters (AEHs), have been developed and are gaining swift interest in last few years. This paper presents a review of AEHs reported in the literature for the applications of WSNs. Based on transduction mechanism, there are two types of AEHs: piezoelectric acoustic energy harvesters (PEAEHs) and electromagnetic acoustic energy harvesters (EMAEHs). The reported AEHs are mostly characterized under the sound pressure level (SPL) that ranges from 45 to 161 dB. The range for resonant frequency of the produced AEHs is from 146 Hz to 24 kHz and these produced 0.68 × 10-6 μW to 30 mW power. The maximum power (30 mW) is produced by a PEAEH, when the harvester is subjected to a SPL of 161 dB and 2.64 kHz frequency. However, for EMAEHs, the maximum power reported is about 1.96 mW (at 125 dB and 143 Hz). Under the comparable SPLs, the power production by the reported EMAEHs is relatively better than that of PEAEHs, moreover, due to lower resonant frequency, the EMAEHs are more feasible for the low frequency band acoustical environment.
Yang, Zhaoju; Gao, Fei; Shi, Xihang; Lin, Xiao; Gao, Zhen; Chong, Yidong; Zhang, Baile
2015-03-01
The manipulation of acoustic wave propagation in fluids has numerous applications, including some in everyday life. Acoustic technologies frequently develop in tandem with optics, using shared concepts such as waveguiding and metamedia. It is thus noteworthy that an entirely novel class of electromagnetic waves, known as "topological edge states," has recently been demonstrated. These are inspired by the electronic edge states occurring in topological insulators, and possess a striking and technologically promising property: the ability to travel in a single direction along a surface without backscattering, regardless of the existence of defects or disorder. Here, we develop an analogous theory of topological fluid acoustics, and propose a scheme for realizing topological edge states in an acoustic structure containing circulating fluids. The phenomenon of disorder-free one-way sound propagation, which does not occur in ordinary acoustic devices, may have novel applications for acoustic isolators, modulators, and transducers.
Litniewski, Jerzy; Kujawska, Tamara; 31st International Symposium on Acoustical Imaging
2012-01-01
The International Symposium on Acoustical Imaging is a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. This interdisciplinary Symposium has been taking place continuously since 1968. In the course of the years the proceedings volumes in the Acoustical Imaging Series have become a reference for cutting-edge research in the field. In 2011 the 31st International Symposium on Acoustical Imaging was held in Warsaw, Poland, April 10-13. Offering both a broad perspective on the state-of-the-art as well as in-depth research contributions by the specialists in the field, this Volume 31 in the Series contains an excellent collection of papers in six major categories: Biological and Medical Imaging Physics and Mathematics of Acoustical Imaging Acoustic Microscopy Transducers and Arrays Nondestructive Evaluation and Industrial Applications Underwater Imaging
DEFF Research Database (Denmark)
Chen, Yuxiang; Luo, Haoze; Li, Wuhua
2017-01-01
collector current during turn-off process is developed in terms of the behavior characteristics of the inside storage carriers. Then, the inherent linear relationship between the maximum collector current falling rate dI{C}/dt and junction temperature T {j} is demonstrated and investigated. Fortunately......, benefitting from the presence of the intrinsic parasitic inductance L{rm eE} between the Kelvin and power emitters of IGBT modules, the maximum dI{C}/dt can be easily measured to validate the theoretical analysis. Consequently, the maximum dI{C}/dt during turn-off process is a promising DTSEP for IGBT module...
Nayak, Rajkishore
2016-01-01
This book highlights the manufacturing and applications of acoustic textiles in various industries. It also includes examples from different industries in which acoustic textiles can be used to absorb noise and help reduce the impact of noise at the workplace. Given the importance of noise reduction in the working environment in several industries, the book offers a valuable guide for companies, educators and researchers involved with acoustic materials.
Energy Technology Data Exchange (ETDEWEB)
Kim, Young Hoon; Kim, Jin Hyun; Song, Bong Min; Lee, Joon Hyun; Cho, Youn Ho [Pusan National University, Busan (Korea, Republic of)
2009-10-15
An acoustic leak monitoring system(ALMS) using acoustic emission(AE) technique was applied for leakage detection of nuclear power plant's pipeline which is operated in high temperature and pressure condition. Since this system only monitors the existence of leak using the root mean square(RMS) value of raw signal from AE sensor, the difficulty occurs when the characteristics of leak size and shape need to be evaluated. In this study, dual monitoring system using AE sensor and accelerometer was introduced in order to solve this problem. In addition, artificial neural network(ANN) with Levenberg Marquardt(LM) training algorithm was also applied due to rapid training rate and gave the reliable classification performance. The input parameters of this ANN were extracted from varying signal received from experimental conditions such as the fluid pressure inside pipe, the shape and size of the leak area. Additional experiments were also carried out and with different objective which is to study the generation and characteristic of lamb and surface wave according to the pipe thickness
International Nuclear Information System (INIS)
Kim, Young Hoon; Kim, Jin Hyun; Song, Bong Min; Lee, Joon Hyun; Cho, Youn Ho
2009-01-01
An acoustic leak monitoring system(ALMS) using acoustic emission(AE) technique was applied for leakage detection of nuclear power plant's pipeline which is operated in high temperature and pressure condition. Since this system only monitors the existence of leak using the root mean square(RMS) value of raw signal from AE sensor, the difficulty occurs when the characteristics of leak size and shape need to be evaluated. In this study, dual monitoring system using AE sensor and accelerometer was introduced in order to solve this problem. In addition, artificial neural network(ANN) with Levenberg Marquardt(LM) training algorithm was also applied due to rapid training rate and gave the reliable classification performance. The input parameters of this ANN were extracted from varying signal received from experimental conditions such as the fluid pressure inside pipe, the shape and size of the leak area. Additional experiments were also carried out and with different objective which is to study the generation and characteristic of lamb and surface wave according to the pipe thickness
Sree, Dave
2015-01-01
Far-field acoustic power level and performance analyses of open rotor model F31/A31 have been performed to determine its noise characteristics at simulated scaled takeoff, nominal takeoff, and approach flight conditions. The nonproprietary parts of the data obtained from experiments in 9- by 15-Foot Low-Speed Wind Tunnel (9?15 LSWT) tests were provided by NASA Glenn Research Center to perform the analyses. The tone and broadband noise components have been separated from raw test data by using a new data analysis tool. Results in terms of sound pressure levels, acoustic power levels, and their variations with rotor speed, angle of attack, thrust, and input shaft power have been presented and discussed. The effect of an upstream pylon on the noise levels of the model has been addressed. Empirical equations relating model's acoustic power level, thrust, and input shaft power have been developed. The far-field acoustic efficiency of the model is also determined for various simulated flight conditions. It is intended that the results presented in this work will serve as a database for comparison and improvement of other open rotor blade designs and also for validating open rotor noise prediction codes.
Electron/electron acoustic instability
International Nuclear Information System (INIS)
Gary, S.P.
1987-01-01
The electron acoustic wave becomes a normal mode of an unmagnetized collisionless plasma in the presence of two electron components with similar densities, but strongly disparate temperatures. The characteristic frequency of this mode is the plasma frequency of the cooler electron component. If these two electron components have a relative drift speed several times the thermal speed of the cooler component, the electron/electron acoustic instability may arise. This paper describes the parametric dependences of the threshold drift speed and maximum growth rate of this instability, and compares these with the same properties of the electron/ion acoustic instability. Under the condition of zero current, the electron/ion acoustic instability typically has the lower threshold drift speed, so that observation of the electron/electron acoustic instability is a strong indication of the presence of an electrical current in the plasma
DEFF Research Database (Denmark)
Elberling, C; Parbo, J; Johnsen, N J
1985-01-01
Stimulated acoustic emissions were recorded in response to tonal stimuli at 60 dB p.e. SPL in a small group of normal-hearing adults. Power spectral analysis reveals that the evoked activity from each ear contains energy in preferential frequency bands and the change of stimulus frequency has only...
Acoustic radiation from weakly wrinkled premixed flames
Energy Technology Data Exchange (ETDEWEB)
Lieuwen, Tim; Mohan, Sripathi; Rajaram, Rajesh; Preetham, [School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0150 (United States)
2006-01-01
This paper describes a theoretical analysis of acoustic radiation from weakly wrinkled (i.e., u'/S{sub L}<1) premixed flames. Specifically, it determines the transfer function relating the spectrum of the acoustic pressure oscillations, P'({omega}), to that of the turbulent velocity fluctuations in the approach flow, U'({omega}). In the weakly wrinkled limit, this transfer function is local in frequency space; i.e., velocity fluctuations at a frequency {omega} distort the flame and generate sound at the same frequency. This transfer function primarily depends upon the flame Strouhal number St (based on mean flow velocity and flame length) and the correlation length, {lambda}, of the flow fluctuations. For cases where the ratio of the correlation length and duct radius {lambda}/a>>1, the acoustic pressure and turbulent velocity power spectra are related by P'({omega})-{omega}{sup 2}U'({omega}) and P'({omega})-U'({omega}) for St<<1 and St>>1, respectively. For cases where {lambda}/a<<1, the transfer functions take the form P'({omega})-{omega}{sup 2}({lambda}/a){sup 2}U'({omega}) and P'({omega})-{omega}{sup 2}({lambda}/a){sup 2}({psi}-{delta}ln({lambda}/a))U'({omega}) for St<<1 and St>>1, respectively, where (PS) and {delta} are constants. The latter result demonstrates that this transfer function does not exhibit a simple power law relationship in the high frequency region of the spectra. The simultaneous dependence of this pressure-velocity transfer function upon the Strouhal number and correlation length suggests a mechanism for the experimentally observed maximum in acoustic spectra and provides some insight into the controversy in the literature over how this peak should scale with the flame Strouhal number.
Acoustic emission intrusion detector
International Nuclear Information System (INIS)
Carver, D.W.
1978-01-01
In order to improve the security of handling special nuclear materials at the Oak Ridge Y-12 Plant, a sensitive acoustic emission detector has been developed that will detect forcible entry through block or tile walls, concrete floors, or concrete/steel vault walls. A small, low-powered processor was designed to convert the output from a sensitive, crystal-type acoustic transducer to an alarm relay signal for use with a supervised alarm loop. The unit may be used to detect forcible entry through concrete, steel, block, tile, and/or glass
Energy Technology Data Exchange (ETDEWEB)
NONE
2013-06-15
The project on the requirements for the retrofitting an extension of the maximum voltage power grid from the point of view of environmental protection and cultivated landscape work includes contributions on the following topics: the development of the European transmission grid, the grid extension law, restrictions for the power grid and their infrastructure, requirements for the regulations concerning the realization of the transnational grid extension, inclusion of the public - public acceptance - communication, requirements concerning the environmental compensation law, overhead line - underground cable - health hazards, ecological effects of overhead lines and underground cables, infrastructural projects, power supply in the future, structural relief by photovoltaics.
Directory of Open Access Journals (Sweden)
Andrea Bonfiglio
2017-01-01
Full Text Available This paper focuses on the modeling of wind turbines equipped with direct drive permanent magnet synchronous generators for fundamental frequency power system simulations. Specifically, a procedure accounting for the system active power losses to initialize the simulation starting from the load flow results is proposed. Moreover, some analytical assessments are detailed on typical control schemes for fully rated wind turbine generators, thereby highlighting how active power losses play a fundamental role in the effectiveness of the wind generator control algorithm. Finally, the paper proposes analytical criteria to design the structure and the parameters of the regulators of the wind generator control scheme. Simulations performed with Digsilent Power Factory validated the proposed procedure, highlighting the impact of active power losses on the characterization of the initial steady state and that the simplifying assumptions done in order to synthesize the controllers are consistent with the complete modeling performed by the aforementioned power system simulator.
Damarla, Thyagaraju
2015-01-01
This book presents all aspects of situational awareness in a battlefield using acoustic signals. It starts by presenting the science behind understanding and interpretation of sound signals. The book then goes on to provide various signal processing techniques used in acoustics to find the direction of sound source, localize gunfire, track vehicles, and detect people. The necessary mathematical background and various classification and fusion techniques are presented. The book contains majority of the things one would need to process acoustic signals for all aspects of situational awareness in one location. The book also presents array theory, which is pivotal in finding the direction of arrival of acoustic signals. In addition, the book presents techniques to fuse the information from multiple homogeneous/heterogeneous sensors for better detection. MATLAB code is provided for majority of the real application, which is a valuable resource in not only understanding the theory but readers, can also use the code...
National Oceanic and Atmospheric Administration, Department of Commerce — Fisheries acoustics data are collected from more than 200 sea-days each year aboard the FRV DELAWARE II and FRV ALBATROSS IV (decommissioned) and the FSV Henry B....
Akiyama, Iwaki
2009-01-01
The 29th International Symposium on Acoustical Imaging was held in Shonan Village, Kanagawa, Japan, April 15-18, 2007. This interdisciplinary Symposium has been taking place every two years since 1968 and forms a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. In the course of the years the volumes in the Acoustical Imaging Series have developed and become well-known and appreciated reference works. Offering both a broad perspective on the state-of-the-art in the field as well as an in-depth look at its leading edge research, this Volume 29 in the Series contains again an excellent collection of seventy papers presented in nine major categories: Strain Imaging Biological and Medical Applications Acoustic Microscopy Non-Destructive Evaluation and Industrial Applications Components and Systems Geophysics and Underwater Imaging Physics and Mathematics Medical Image Analysis FDTD method and Other Numerical Simulations Audience Researcher...
Kuttruff, Heinrich; Mommertz, Eckard
The traditional task of room acoustics is to create or formulate conditions which ensure the best possible propagation of sound in a room from a sound source to a listener. Thus, objects of room acoustics are in particular assembly halls of all kinds, such as auditoria and lecture halls, conference rooms, theaters, concert halls or churches. Already at this point, it has to be pointed out that these conditions essentially depend on the question if speech or music should be transmitted; in the first case, the criterion for transmission quality is good speech intelligibility, in the other case, however, the success of room-acoustical efforts depends on other factors that cannot be quantified that easily, not least it also depends on the hearing habits of the listeners. In any case, absolutely "good acoustics" of a room do not exist.
Energy Technology Data Exchange (ETDEWEB)
Werner, Stefanie [Umweltbundesamt, Dessau-Rosslau (Germany). Fachgebiet II 2.3
2011-05-15
When offshore wind farms are constructed, every single pile is hammered into the sediment by a hydraulic hammer. Noise levels at Horns Reef wind farm were in the range of 235 dB. The noise may cause damage to the auditory system of marine mammals. The Federal Environmental Office therefore recommends the definition of maximum permissible noise levels. Further, care should be taken that no marine mammals are found in the immediate vicinity of the construction site. (AKB)
Acoustic Emission Technology and Application
International Nuclear Information System (INIS)
Joo, Y. S.; Lim, S. H.; Eom, H. S.; Kim, J. H.; Jung, H. K.
2003-10-01
Acoustic emission is the elastic wave that is generated by the rapid release of energy from the localized sources within a material. After the observation of acoustic emission phenomenon in 1950, the research and further investigation had been performed. Acoustic emission examination becomes a rapidly matured nondestructive testing method with demonstrated capabilities for characterizing material behavior and for detecting the defect. It is of interest as a possible passive monitoring technique for detecting, locating and characterizing the defects in component and structure. Acoustic emission technology has recently strengthened the on-line monitoring application for the detection of incipient failures and the assurance of structural integrity. The field of acoustic emission testing is still growing vigorously and presents many challenges. Especially, acoustic emission has been successfully applied in the leak detection of primary pressure boundary of nuclear power plants. In this state-of-art report, the principle, measurement and field applications of acoustic emission technique is reviewed and summarized. Acoustic emission technology will contribute to the assurance of nuclear safety as the on-line monitoring technique of structural integrity of NSSS components and structures
Energy Technology Data Exchange (ETDEWEB)
Chen, Xiaomin; Agarwal, Ramesh [Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, Jolley Hall, Campus Box 1185, One Brookings Drive, St. Louis, Missouri, 63130 (United States)
2012-07-01
In this paper, we consider the Wind Farm layout optimization problem using a genetic algorithm. Both the Horizontal –Axis Wind Turbines (HAWT) and Vertical-Axis Wind Turbines (VAWT) are considered. The goal of the optimization problem is to optimally position the turbines within the wind farm such that the wake effects are minimized and the power production is maximized. The reasonably accurate modeling of the turbine wake is critical in determination of the optimal layout of the turbines and the power generated. For HAWT, two wake models are considered; both are found to give similar answers. For VAWT, a very simple wake model is employed.
Energy Technology Data Exchange (ETDEWEB)
Machado Neto, Lauro de Vilhena Brandao [Pontificia Universidade Catolica de Minas Gerais (PUC-Minas), Belo Horizonte, MG (Brazil); Cabral, Claudia Valeria Tavora; Oliveira Filho, Delly [Universidade Federal de Vicosa (UFV), MG (Brazil); Diniz, Antonia Sonia Alves Cardoso [Companhia Energetica de Minas Gerais (CEMIG), Belo Horizonte, MG (Brazil); Cortizo, Porfirio Cabaleiro [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)
2004-07-01
The maximization of the efficiency in the electric energy conversion is essential to the developing of technical and economic viability of photovoltaic solar energy systems. This paper presents the development of an electronic converter with maximum power point tracking for photovoltaic systems applied to rural electrification. The standalone photovoltaic system used is similar to the systems installed by Companhia Energetica de Minas Gerais - CEMIG in the schools of isolated communities, inside the Solar Light Program. Initially were developed test procedures of the equipment used in the system like photovoltaic generators, electronic ballasts, inverters, charge controllers and batteries, covering minimum performance requirements and in compliance with national and international standards, as possible, due to the instrumentation availability. A data acquisition system was assembled to monitoring the photovoltaic system. A simulation of the system was implemented and the aims were to optimize the project and carry out a comparative study with the monitoring results. The converter with maximum power point tracking consists of a direct current converter in the buck configuration and the control algorithm was implemented in a micro controller, being the first results presented here. After finished the prototype, it will be incorporated in the photovoltaic system and will be accomplished a study of the technical and economic viability. The first results of the tests, of the monitoring and of the converter with maximum power point tracking are helping the sustainability of the systems installed by CEMIG, funding the government initiatives in the quality control of equipment and promoting the development of national technology. (author)
Fogel, Ronen; Limson, Janice; Seshia, Ashwin A
2016-06-30
Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
Acoustic Purcell Effect for Enhanced Emission
Landi, Maryam; Zhao, Jiajun; Prather, Wayne E.; Wu, Ying; Zhang, Likun
2018-01-01
We observe that our experimentally measured emission power enhancement of a speaker inside a previously proposed metacavity agrees with our numerically calculated enhancement of the density of states (DOS) of the source-cavity system. We interpret the agreement by formulating a relation between the emitted sound power and the acoustic DOS. The formulation is an analog to Fermi’s golden rule in quantum emission. The formulation complements the radiation impedance theory in traditional acoustics for describing sound emission. Our study bridges the gap between acoustic DOS and the acoustic Purcell effect for sound emission enhancement.
Acoustic Purcell Effect for Enhanced Emission
Landi, Maryam
2018-03-13
We observe that our experimentally measured emission power enhancement of a speaker inside a previously proposed metacavity agrees with our numerically calculated enhancement of the density of states (DOS) of the source-cavity system. We interpret the agreement by formulating a relation between the emitted sound power and the acoustic DOS. The formulation is an analog to Fermi’s golden rule in quantum emission. The formulation complements the radiation impedance theory in traditional acoustics for describing sound emission. Our study bridges the gap between acoustic DOS and the acoustic Purcell effect for sound emission enhancement.
Melde, Kai; Mark, Andrew G; Qiu, Tian; Fischer, Peer
2016-09-22
Holographic techniques are fundamental to applications such as volumetric displays, high-density data storage and optical tweezers that require spatial control of intricate optical or acoustic fields within a three-dimensional volume. The basis of holography is spatial storage of the phase and/or amplitude profile of the desired wavefront in a manner that allows that wavefront to be reconstructed by interference when the hologram is illuminated with a suitable coherent source. Modern computer-generated holography skips the process of recording a hologram from a physical scene, and instead calculates the required phase profile before rendering it for reconstruction. In ultrasound applications, the phase profile is typically generated by discrete and independently driven ultrasound sources; however, these can only be used in small numbers, which limits the complexity or degrees of freedom that can be attained in the wavefront. Here we introduce monolithic acoustic holograms, which can reconstruct diffraction-limited acoustic pressure fields and thus arbitrary ultrasound beams. We use rapid fabrication to craft the holograms and achieve reconstruction degrees of freedom two orders of magnitude higher than commercial phased array sources. The technique is inexpensive, appropriate for both transmission and reflection elements, and scales well to higher information content, larger aperture size and higher power. The complex three-dimensional pressure and phase distributions produced by these acoustic holograms allow us to demonstrate new approaches to controlled ultrasonic manipulation of solids in water, and of liquids and solids in air. We expect that acoustic holograms will enable new capabilities in beam-steering and the contactless transfer of power, improve medical imaging, and drive new applications of ultrasound.
International Nuclear Information System (INIS)
Straus, A.; Lopez Pumarega, M.I.; Di Gaetano, J.O.; D'Atellis, C.E.; Ruzzante, J.E.
1990-01-01
This paper is related to our activities on acoustic emission (A.E.). The work is made with different materials: metals and fibre reinforced plastics. At present, acoustic emission transducers are being developed for low and high temperature. A test to detect electrical discharges in electrical transformers was performed. Our experience in industrial tests to detect cracks or failures in tanks or tubes is also described. The use of A.E. for leak detection is considered. Works on pattern recognition of A.E. signals are also being performed. (Author)
Cowan, James
This chapter summarizes and explains key concepts of building acoustics. These issues include the behavior of sound waves in rooms, the most commonly used rating systems for sound and sound control in buildings, the most common noise sources found in buildings, practical noise control methods for these sources, and the specific topic of office acoustics. Common noise issues for multi-dwelling units can be derived from most of the sections of this chapter. Books can be and have been written on each of these topics, so the purpose of this chapter is to summarize this information and provide appropriate resources for further exploration of each topic.
Pajek, Daniel; Burgess, Alison; Huang, Yuexi; Hynynen, Kullervo
2014-09-01
The purpose of this study was to evaluate use of intravascular perfluorocarbon droplets to reduce the sonication power required to achieve clot lysis with high-intensity focused ultrasound. High-intensity focused ultrasound with droplets was initially applied to blood clots in an in vitro flow apparatus, and inertial cavitation thresholds were determined. An embolic model for ischemic stroke was used to illustrate the feasibility of this technique in vivo. Recanalization with intravascular droplets was achieved in vivo at 24 ± 5% of the sonication power without droplets. Recanalization occurred in 71% of rabbits that received 1-ms pulsed sonications during continuous intravascular droplet infusion (p = 0.041 vs controls). Preliminary experiments indicated that damage was confined to the ultrasonic focus, suggesting that tolerable treatments would be possible with a more tightly focused hemispheric array that allows the whole focus to be placed inside of the main arteries in the human brain. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Approximate maximum parsimony and ancestral maximum likelihood.
Alon, Noga; Chor, Benny; Pardi, Fabio; Rapoport, Anat
2010-01-01
We explore the maximum parsimony (MP) and ancestral maximum likelihood (AML) criteria in phylogenetic tree reconstruction. Both problems are NP-hard, so we seek approximate solutions. We formulate the two problems as Steiner tree problems under appropriate distances. The gist of our approach is the succinct characterization of Steiner trees for a small number of leaves for the two distances. This enables the use of known Steiner tree approximation algorithms. The approach leads to a 16/9 approximation ratio for AML and asymptotically to a 1.55 approximation ratio for MP.
International Nuclear Information System (INIS)
Anon.
1979-01-01
This chapter presents a historic overview of the establishment of radiation guidelines by various national and international agencies. The use of maximum permissible dose and maximum permissible body burden limits to derive working standards is discussed
Acoustic emission leak monitoring system LMS-96
International Nuclear Information System (INIS)
Liska, J.; Cvrcek, M.; Mueller, L.
1997-01-01
On-line acoustic emission leak monitoring under industrial conditions of nuclear power plants is a problem with specific features setting specific demands on the leak monitoring system. The paper briefly reviews those problems (attenuation pattern of a real structure, acoustic background, alarm system, etc.) and the solution of some of them is discussed. Information is presented on the Acoustic Emission Leak Monitoring System LMS-96 by SKODA NUCLEAR MACHINERY and the system's function is briefly described. (author)
Acoustic parametric pumping of spin waves
Keshtgar, Hedyeh; Zareyan, Malek; Bauer, Gerrit E. W.
2014-11-01
Recent experiments demonstrated generation of spin currents by ultrasound. We can understand this acoustically induced spin pumping in terms of the coupling between magnetization and lattice waves. Here we study the parametric excitation of magnetization by longitudinal acoustic waves and calculate the acoustic threshold power. The induced magnetization dynamics can be detected by the spin pumping into an adjacent normal metal that displays the inverse spin Hall effect.
Acoustic parametric pumping of spin waves
Keshtgar, Hedyeh; Zareyan, Malek; Bauer, Gerrit E. W.
2013-01-01
Recent experiments demonstrated generation of spin currents by ultrasound. We can understand this acoustically induced spin pumping in terms of the coupling between magnetization and lattice waves. Here we study the parametric excitation of magnetization by longitudinal acoustic waves and calculate the acoustic threshold power. The induced magnetization dynamics can be detected by the spin pumping into an adjacent normal metal that displays the inverse spin Hall effect.
Acoustic 3D imaging of dental structures
Energy Technology Data Exchange (ETDEWEB)
Lewis, D.K. [Lawrence Livermore National Lab., CA (United States); Hume, W.R. [California Univ., Los Angeles, CA (United States); Douglass, G.D. [California Univ., San Francisco, CA (United States)
1997-02-01
Our goals for the first year of this three dimensional electodynamic imaging project was to determine how to combine flexible, individual addressable; preprocessing of array source signals; spectral extrapolation or received signals; acoustic tomography codes; and acoustic propagation modeling code. We investigated flexible, individually addressable acoustic array material to find the best match in power, sensitivity and cost and settled on PVDF sheet arrays and 3-1 composite material.
Directory of Open Access Journals (Sweden)
Tiago Carregari Polachini
Full Text Available Abstract The benefits of high-intensity ultrasound in diverse processes have stimulated many studies based on biomass pretreatment. In order to improve processes involving ultrasound, a calorimetric method has been widely used to measure the real power absorbed by the material as well as the cavitation effects. Peanut shells, a byproduct of peanut processing, were immersed in acidified aqueous solutions and submitted to an ultrasonic field. Acoustic power absorbed, acoustic intensity and power yield were obtained through specific heat determination and experimental data were modeled in different conditions. Specific heat values ranged from 3537.0 to 4190.6 J·kg-1·K-1, with lower values encountered for more concentrated biomass suspensions. The acoustic power transmitted and acoustic intensity varied linearly with the applied power and quadratically with solids concentration, reaching maximum values at higher applied nominal power and for less concentrated suspensions. A power yield of 82.7% was reached for dilute suspensions at 320 W, while 6.4% efficiency was observed for a concentrated suspension at low input energy (80 W.
International Nuclear Information System (INIS)
1996-01-01
There were 32 notifiable events in nuclear power plants in Germany in the second quarter of 1996. The report lists and characterises all the 32 events notified in the reporting period. The events did not involve any radioactivity release exceeding the maximum permissible limits during this period, so that there were no radiation hazards to the population or the environment. One event was classified at level 1 of the INES event scale (Anomaly). Research reactor operators in Germany reported 5 notifiable events in the reporting period. The report lists and characterises these events. These events did not involve any radioactivity release exceeding the maximum permissible limits during this period, so that there were no radiation hazards to the population or the environment. All events notified were classified into the lowest categories of safety significance of the official event scales (N, or below scale). (orig./DG) [de
Spacecraft Internal Acoustic Environment Modeling
Chu, SShao-sheng R.; Allen, Christopher S.
2009-01-01
Acoustic modeling can be used to identify key noise sources, determine/analyze sub-allocated requirements, keep track of the accumulation of minor noise sources, and to predict vehicle noise levels at various stages in vehicle development, first with estimates of noise sources, later with experimental data. In FY09, the physical mockup developed in FY08, with interior geometric shape similar to Orion CM (Crew Module) IML (Interior Mode Line), was used to validate SEA (Statistical Energy Analysis) acoustic model development with realistic ventilation fan sources. The sound power levels of these sources were unknown a priori, as opposed to previous studies that RSS (Reference Sound Source) with known sound power level was used. The modeling results were evaluated based on comparisons to measurements of sound pressure levels over a wide frequency range, including the frequency range where SEA gives good results. Sound intensity measurement was performed over a rectangular-shaped grid system enclosing the ventilation fan source. Sound intensities were measured at the top, front, back, right, and left surfaces of the and system. Sound intensity at the bottom surface was not measured, but sound blocking material was placed tinder the bottom surface to reflect most of the incident sound energy back to the remaining measured surfaces. Integrating measured sound intensities over measured surfaces renders estimated sound power of the source. The reverberation time T6o of the mockup interior had been modified to match reverberation levels of ISS US Lab interior for speech frequency bands, i.e., 0.5k, 1k, 2k, 4 kHz, by attaching appropriately sized Thinsulate sound absorption material to the interior wall of the mockup. Sound absorption of Thinsulate was modeled in three methods: Sabine equation with measured mockup interior reverberation time T60, layup model based on past impedance tube testing, and layup model plus air absorption correction. The evaluation/validation was
An Experimental Introduction to Acoustics
Black, Andy Nicholas; Magruder, Robert H.
2017-11-01
Learning and understanding physics requires more than studying physics texts. It requires doing physics. Doing research is a key opportunity for students to connect physical principles with their everyday experience. A powerful way to introduce students to research and technique is through subjects in which they might find interest. Presented is an experiment that serves to introduce an advanced undergraduate or high school student to conducting research in acoustics via an experiment involving a standard dreadnought acoustic guitar, recording industry-related equipment, and relevant industrial analysis software. This experimental process is applicable to a wide range of acoustical topics including both acoustic and electric instruments. Also, the student has a hands-on experience with relevant audio engineering technology to study physical principles.
Acoustic holograms of active regions
International Nuclear Information System (INIS)
Chou, Dean-Yi
2008-01-01
We propose a method to study solar magnetic regions in the solar interior with the principle of optical holography. A magnetic region in the solar interior scatters the solar background acoustic waves. The scattered waves and background waves could form an interference pattern on the solar surface. We investigate the feasibility of detecting this interference pattern on the solar surface, and using it to construct the three-dimensional scattered wave from the magnetic region with the principle of optical holography. In solar acoustic holography, the background acoustic waves play the role of reference wave; the magnetic region plays the role of the target object; the interference pattern, acoustic power map, on the solar surface plays the role of the hologram.
Acoustic holograms of active regions
Energy Technology Data Exchange (ETDEWEB)
Chou, Dean-Yi [Physics Department, National Tsing Hua University, Hsinchu, 30013, Taiwan (China)], E-mail: chou@phys.nthu.edu.tw
2008-10-15
We propose a method to study solar magnetic regions in the solar interior with the principle of optical holography. A magnetic region in the solar interior scatters the solar background acoustic waves. The scattered waves and background waves could form an interference pattern on the solar surface. We investigate the feasibility of detecting this interference pattern on the solar surface, and using it to construct the three-dimensional scattered wave from the magnetic region with the principle of optical holography. In solar acoustic holography, the background acoustic waves play the role of reference wave; the magnetic region plays the role of the target object; the interference pattern, acoustic power map, on the solar surface plays the role of the hologram.
Acoustic Virtual Reality – Methods and challenges
DEFF Research Database (Denmark)
Pind Jörgensson, Finnur Kári; Jeong, Cheol-Ho; Llopis, Hermes Sampedro
2018-01-01
and acoustics into the virtual reality sphere adds another dimension to the experience. It both makes the immersion more believable, and in the context of building design, makes it easy and intuitive to try out different acoustic designs and soundscapes. In traditional auralization, although a very powerful...
DEFF Research Database (Denmark)
Kreutzfeldt, Jacob
2011-01-01
Under the heading of "Gang i København" a number of initiatives was presented by the Lord Mayer and the Technical and Environmental Mayer of Copenhagen in May 2006. The aim of the initiative, which roughly translates to Lively Copenhagen, was both to make Copenhagen a livelier city in terms of city...... this article outline a few approaches to a theory of acoustic territoriality....
Institute of Scientific and Technical Information of China (English)
李超; 苏禹; 张恩; 林显富
2017-01-01
基于风力机的发电效率因环境风速变化而改变,本文选用LabVIEW为仿真平台建立风力机最大功率点的追踪系统.首先根据风力机的风能捕获输出功率公式,在LabVIEW平台上搭建了风力机系统模块、风力机控制模块、风轮转速调节模块、风速变化判断模块等.为了弥补传统扰动法存在的追踪精度等问题,利用变步长的扰动观测法对输出功率进行最大功率点追踪,使风力机的输出功率保持在最大输出功率.实验结果表明该系统在不同的仿真风速环境下,能有效的追踪风力机最大输出功率点.%Based on the wind turbine power efficiency changes due to wind speed of environment,the wind turbine maximum power point tracking system is established in this paper using LabVIEW as simulation platform.Firstly,according to the wind energy capture and output power formula,the wind turbine system module,the wind turbine control module,the wind turbine speed regulation module,the wind speed change judgment module are designed on the LabVIEW platform.In order to remedy tracking accuracy of the traditional perturbation method,the perturbation observation method with variable step size is adopted for maintaining at the maximum output power of the wind turbine.The experimental results show that the system can track the maximum output power of the wind turbine effectively at different simulated speed.
International Nuclear Information System (INIS)
Kittmer, C.A.
1983-03-01
Acoustic lenses focus ultrasound to produce pencil-like beams with reduced near fields. When fitted to conventional (flat-faced) transducers, such lenses greatly improve the ability to detect and size defects. This paper describes a program developed to design acoustic lenses for use in immersion or contact inspection, using normal or angle beam mode with flat or curved targets. Lens surfaces are circular in geometry to facilitate machining. For normal beam inspection of flat plate, spherical or cylindrical lenses are used. For angle beam or curved surface inspections, a compound lens is required to correct for the extra induced aberration. Such a lens is aspherical with one radius of curvature in the plane of incidence, and a different radius of curvature in the plane perpendicular to the incident plane. The resultant beam profile (i.e., location of the acoustic focus, beam diameter, 6 dB working range) depends on the degree of focusing and the transducer used. The operating frequency and bandwidth can be affected by the instrumentation used. Theoretical and measured beam profiles are in good agreement. Various applications, from zone focusing used for defect sizing in thick plate, to line focusing for pipe weld inspection, are discussed
International Nuclear Information System (INIS)
Rognon, F.
2005-06-01
This comprehensive report for the Swiss Federal Office of Energy (SFOE) takes a look at how the efficiency potential of heat pumps together with combined heat and power systems can help provide a maximum reduction of CO 2 emissions and provide electricity generation from fossil fuel in Switzerland together with reductions in CO 2 emissions. In Switzerland, approximately 80% of the low-temperature heat required for space-heating and for the heating-up of hot water is produced by burning combustibles. Around a million gas and oil boilers were in use in Switzerland in 2000, and these accounted for approximately half the country's 41.1 million tonnes of CO 2 emissions. The authors state that there is a more efficient solution with lower CO 2 emissions: the heat pump. With the enormous potential of our environment it would be possible to replace half the total number of boilers in use today with heat pumps. This would be equivalent to 90 PJ p.a. of useful heat, or 500,000 systems. The power source for heat pumps should come from the substitution of electric heating systems (electric resistor-based systems) and from the replacement of boilers. This should be done by using combined heat and power systems with full heat utilisation. This means, according to the authors, that the entire required power source can be provided without the need to construct new electricity production plants. The paper examines and discusses the theoretical, technical, market and realisable potentials
... EVENTS DONATE NEWS Home Learn Back Learn about acoustic neuroma AN Facts What is acoustic neuroma? Diagnosing ... Brain Freeze ? READ MORE Read More What is acoustic neuroma? Identifying an AN Learn More Get Info ...
Proposed frustrated-total-reflection acoustic sensing method
International Nuclear Information System (INIS)
Hull, J.R.
1981-01-01
Modulation of electromagnetic energy transmission through a frustrated-total-reflection device by pressure-induced changes in the index of refraction is proposed for use as an acoustic detector. Maximum sensitivity occurs for angles of incidence near the critical angle. The minimum detectable pressure in air is limited by Brownian noise. Acoustic propagation losses and diffraction of the optical beam by the acoustic signal limit the minimum acoustic wavelength to lengths of the order of the spatial extent of the optical beam. The response time of the method is fast enough to follow individual acoustic waves
Detection method of internal leakage from valve using acoustic method
International Nuclear Information System (INIS)
Kumagai, Hiromichi; Kitajima, Akira; Suzuki, Akio.
1990-01-01
The objective of this study is to estimate the feasibility of the acoustic method for the internal leakage from the valves in power plants. From the experimental results, it was suggested that the acoustic method for the monitoring of leakage was feasible. When the background levels are higher than the acoustic signals from leakage, we can detect the leakage analyzing the spectrum of the remainders which take the background noise from the acoustic signals. (author)
Acoustic Mechanical Feedthroughs
Sherrit, Stewart; Walkemeyer, Phillip; Bao, Xiaoqi; Bar-Cohen, Yoseph; Badescu, Mircea
2013-01-01
Electromagnetic motors can have problems when operating in extreme environments. In addition, if one needs to do mechanical work outside a structure, electrical feedthroughs are required to transport the electric power to drive the motor. In this paper, we present designs for driving rotary and linear motors by pumping stress waves across a structure or barrier. We accomplish this by designing a piezoelectric actuator on one side of the structure and a resonance structure that is matched to the piezoelectric resonance of the actuator on the other side. Typically, piezoelectric motors can be designed with high torques and lower speeds without the need for gears. One can also use other actuation materials such as electrostrictive, or magnetostrictive materials in a benign environment and transmit the power in acoustic form as a stress wave and actuate mechanisms that are external to the benign environment. This technology removes the need to perforate a structure and allows work to be done directly on the other side of a structure without the use of electrical feedthroughs, which can weaken the structure, pipe, or vessel. Acoustic energy is pumped as a stress wave at a set frequency or range of frequencies to produce rotary or linear motion in a structure. This method of transferring useful mechanical work across solid barriers by pumping acoustic energy through a resonant structure features the ability to transfer work (rotary or linear motion) across pressure or thermal barriers, or in a sterile environment, without generating contaminants. Reflectors in the wall of barriers can be designed to enhance the efficiency of the energy/power transmission. The method features the ability to produce a bi-directional driving mechanism using higher-mode resonances. There are a variety of applications where the presence of a motor is complicated by thermal or chemical environments that would be hostile to the motor components and reduce life and, in some instances, not be
Acoustic emission from polycrystalline graphites
International Nuclear Information System (INIS)
Ioka, I.; Yoda, S.; Oku, T.; Miyamoto, Y.
1987-01-01
Acoustic emission was monitored from polycrystalline graphites with different microstructure (pore size and pore volume) subjected to compressive loading. The graphites used in this study comprised five brands, that is, PGX, ISEM-1, IG-11, IG-15, and ISO-88. A root mean square (RMS) voltage and event counts of acoustic emission for graphites were measured during compressive loading. The acoustic emission was measured using a computed-based data acquisition and analysis system. The graphites were first deformed up to 80 % of the average fracture stress, then unloaded and reloaded again until the fracture occured. During the first loading, the change in RMS voltage for acoustic emission was detected from the initial stage. During the unloading, the RMS voltage became zero level as soon as the applied stress was released and then gradually rose to a peak and declined. The behavior indicated that the reversed plastic deformation occured in graphites. During the second loading, the RMS voltage gently increased until the applied stress exceeded the maximum stress of the first loading; there is no Kaiser effect in the graphites. A bicrystal model could give a reasonable explanation of this results. The empirical equation between the ratio of σ AE to σ f and σ f was obtained. It is considered that the detection of microfracture by the acoustic emission technique is effective in macrofracture prediction of polycrystalline graphites. (author)
Maximum Quantum Entropy Method
Sim, Jae-Hoon; Han, Myung Joon
2018-01-01
Maximum entropy method for analytic continuation is extended by introducing quantum relative entropy. This new method is formulated in terms of matrix-valued functions and therefore invariant under arbitrary unitary transformation of input matrix. As a result, the continuation of off-diagonal elements becomes straightforward. Without introducing any further ambiguity, the Bayesian probabilistic interpretation is maintained just as in the conventional maximum entropy method. The applications o...
Surface acoustic wave micromotor with arbitrary axis rotational capability
Tjeung, Ricky T.; Hughes, Mark S.; Yeo, Leslie Y.; Friend, James R.
2011-11-01
A surface acoustic wave (SAW) actuated rotary motor is reported here, consisting of a millimeter-sized spherical metal rotor placed on the surface of a lead zirconate titanate piezoelectric substrate upon which the SAW is made to propagate. At the design frequency of 3.2 MHz and with a fixed preload of 41.1 μN, the maximum rotational speed and torque achieved were approximately 1900 rpm and 5.37 μN-mm, respectively, producing a maximum output power of 1.19 μW. The surface vibrations were visualized using laser Doppler vibrometry and indicate that the rotational motion arises due to retrograde elliptical motions of the piezoelectric surface elements. Rotation about orthogonal axes in the plane of the substrate has been obtained by using orthogonally placed interdigital electrodes on the substrate to generate SAW impinging on the rotor, offering a means to generate rotation about an arbitrary axis in the plane of the substrate.
DEFF Research Database (Denmark)
Guo, Meng; Bo Elmedyb, Thomas; Jensen, Søren Holdt
2011-01-01
In this work, we analyze a general multiple-microphone and single-loudspeaker audio processing system, where a multichannel adaptive system is used to cancel the effect of acoustic feedback/echo, and a beamformer processes the feedback/echo canceled signals. We introduce and derive an accurate...
Energy Technology Data Exchange (ETDEWEB)
Campos, Pedro T.; Teixeira, Marcos A.; Kissel, Johannes [Gesellschaft Fuer Technische Zusammenarbeit (GTZ) (Germany)
2010-07-01
In the current context to encourage sustainable development, wind energy plays an important role in the spread of renewable energy sources. In this paper, the possibilities and difficulties of wind power integration in large-scale are evaluated, specifically in the northeastern region of Brazil. From the seasonal complementarity with the water source, scenarios are set out where the maximum participation of only these two sources in the energy supply of the region is sought. Aiming to evaluate the possibilities of a completely sustainable regional energy supply, the northeast subsystem is isolated, excluding, in principle, imports and exports. Therefore, the energy storage capacity of reservoirs in the region is used as a key factor, combined with the seasonal availability of data sources and the annual energy consumption of the region. (author)
Pattern recognition methods for acoustic emission analysis
International Nuclear Information System (INIS)
Doctor, P.G.; Harrington, T.P.; Hutton, P.H.
1979-07-01
Models have been developed that relate the rate of acoustic emissions to structural integrity. The implementation of these techniques in the field has been hindered by the noisy environment in which the data must be taken. Acoustic emissions from noncritical sources are recorded in addition to those produced by critical sources, such as flaws. A technique is discussed for prescreening acoustic events and filtering out those that are produced by noncritical sources. The methodology that was investigated is pattern recognition. Three different pattern recognition techniques were applied to a data set that consisted of acoustic emissions caused by crack growth and acoustic signals caused by extraneous noise sources. Examination of the acoustic emission data presented has uncovered several features of the data that can provide a reasonable filter. Two of the most valuable features are the frequency of maximum response and the autocorrelation coefficient at Lag 13. When these two features and several others were combined with a least squares decision algorithm, 90% of the acoustic emissions in the data set were correctly classified. It appears possible to design filters that eliminate extraneous noise sources from flaw-growth acoustic emissions using pattern recognition techniques
On Maximum Entropy and Inference
Directory of Open Access Journals (Sweden)
Luigi Gresele
2017-11-01
Full Text Available Maximum entropy is a powerful concept that entails a sharp separation between relevant and irrelevant variables. It is typically invoked in inference, once an assumption is made on what the relevant variables are, in order to estimate a model from data, that affords predictions on all other (dependent variables. Conversely, maximum entropy can be invoked to retrieve the relevant variables (sufficient statistics directly from the data, once a model is identified by Bayesian model selection. We explore this approach in the case of spin models with interactions of arbitrary order, and we discuss how relevant interactions can be inferred. In this perspective, the dimensionality of the inference problem is not set by the number of parameters in the model, but by the frequency distribution of the data. We illustrate the method showing its ability to recover the correct model in a few prototype cases and discuss its application on a real dataset.
Drumheller, Douglas S.
2000-01-01
An active acoustic transducer tool for use down-hole applications. The tool includes a single cylindrical mandrel including a shoulder defining the boundary of a narrowed portion over which is placed a sandwich-style piezoelectric tranducer assembly. The piezoelectric transducer assembly is prestressed by being placed in a thermal interference fit between the shoulder of the mandrel and the base of an anvil which is likewise positioned over the narrower portion of the mandrel. In the preferred embodiment, assembly of the tool is accomplished using a hydraulic jack to stretch the mandrel prior to emplacement of the cylindrical sandwich-style piezoelectric transducer assembly and anvil. After those elements are positioned and secured, the stretched mandrel is allowed to return substantially to its original (pre-stretch) dimensions with the result that the piezoelectric transducer elements are compressed between the anvil and the shoulder of the mandrel.
International Nuclear Information System (INIS)
Swift, G.W.; Martin, R.A.; Radebaugh, R.
1990-01-01
This patent describes an acoustic cryocooler with no moving parts is formed from a thermoacoustic driver (TAD) driving a pulse tube refrigerator (PTR) through a standing wave tube. Thermoacoustic elements in the TAD are spaced apart a distance effect to accommodate the increased thermal penetration length arising from the relatively low TAD operating frequency in the range of 15--60 Hz. At these low operating frequencies, a long tube is required to support the standing wave. The tube may be coiled to reduce the overall length of the cryocooler. One or two PTR's are located on the standing wave tube adjacent antinodes in the standing wave to be driven by the standing wave pressure oscillations. It is predicted that a heat input of 1000 W at 1000 K will maintain a cooling load of 5 W at 80 K
Use of acoustic vortices in acoustic levitation
DEFF Research Database (Denmark)
Cutanda Henriquez, Vicente; Santillan, Arturo Orozco; Juhl, Peter Møller
2009-01-01
Acoustic fields are known to exert forces on the surfaces of objects. These forces are noticeable if the sound pressure is sufficiently high. Two phenomena where acoustic forces are relevant are: i) acoustic levitation, where strong standing waves can hold small objects at certain positions......, counterbalancing their weight, and ii) acoustic vortices, spinning sound fields that can impinge angular momentum and cause rotation of objects. In this contribution, both force-creating sound fields are studied by means of numerical simulations. The Boundary Element Method is employed to this end. The simulation...... of acoustical vortices uses an efficient numerical implementation based on the superposition of two orthogonal sound fields with a delay of 90° between them. It is shown that acoustic levitation and the use of acoustic vortices can be combined to manipulate objects in an efficient and controlled manner without...
Detection method of internal leakage from valve using acoustic method
International Nuclear Information System (INIS)
Kumagai, Horomichi
1990-01-01
The purpose of this study is to estimate the availability of acoustic method for detecting the internal leakage of valves at power plants. Experiments have been carried out on the characteristics of acoustic noise caused by the leak simulated flow. From the experimental results, the mechanism of the acoustic noisegenerated from flow, the relation between acoustic intensity and leak flow velocity, and the characteristics of the acoustic frequency spectrum were clarified. The acoustic method was applied to valves at site, and the background noises were measured in abnormal plant conditions. When the background level is higher than the acoustic signal, the difference between the background noise frequency spectrum and the acoustic signal spectrum provide a very useful leak detection method. (author)
Acoustic multivariate condition monitoring - AMCM
Energy Technology Data Exchange (ETDEWEB)
Rosenhave, P E [Vestfold College, Maritime Dept., Toensberg (Norway)
1998-12-31
In Norway, Vestfold College, Maritime Department presents new opportunities for non-invasive, on- or off-line acoustic monitoring of rotating machinery such as off-shore pumps and diesel engines. New developments within acoustic sensor technology coupled with chemometric data analysis of complex signals now allow condition monitoring of hitherto unavailable flexibility and diagnostic specificity. Chemometrics paired with existing knowledge yields a new and powerful tool for condition monitoring. By the use of multivariate techniques and acoustics it is possible to quantify wear and tear as well as predict the performance of working components in complex machinery. This presentation describes the AMCM method and one result of a feasibility study conducted onboard the LPG/C `Norgas Mariner` owned by Norwegian Gas Carriers as (NGC), Oslo. (orig.) 6 refs.
Acoustic multivariate condition monitoring - AMCM
Energy Technology Data Exchange (ETDEWEB)
Rosenhave, P.E. [Vestfold College, Maritime Dept., Toensberg (Norway)
1997-12-31
In Norway, Vestfold College, Maritime Department presents new opportunities for non-invasive, on- or off-line acoustic monitoring of rotating machinery such as off-shore pumps and diesel engines. New developments within acoustic sensor technology coupled with chemometric data analysis of complex signals now allow condition monitoring of hitherto unavailable flexibility and diagnostic specificity. Chemometrics paired with existing knowledge yields a new and powerful tool for condition monitoring. By the use of multivariate techniques and acoustics it is possible to quantify wear and tear as well as predict the performance of working components in complex machinery. This presentation describes the AMCM method and one result of a feasibility study conducted onboard the LPG/C `Norgas Mariner` owned by Norwegian Gas Carriers as (NGC), Oslo. (orig.) 6 refs.
Acoustic radiation force control: Pulsating spherical carriers.
Rajabi, Majid; Mojahed, Alireza
2018-02-01
The interaction between harmonic plane progressive acoustic beams and a pulsating spherical radiator is studied. The acoustic radiation force function exerted on the spherical body is derived as a function of the incident wave pressure and the monopole vibration characteristics (i.e., amplitude and phase) of the body. Two distinct strategies are presented in order to alter the radiation force effects (i.e., pushing and pulling states) by changing its magnitude and direction. In the first strategy, an incident wave field with known amplitude and phase is considered. It is analytically shown that the zero- radiation force state (i.e., radiation force function cancellation) is achievable for specific pulsation characteristics belong to a frequency-dependent straight line equation in the plane of real-imaginary components (i.e., Nyquist Plane) of prescribed surface displacement. It is illustrated that these characteristic lines divide the mentioned displacement plane into two regions of positive (i.e., pushing) and negative (i.e., pulling) radiation forces. In the second strategy, the zero, negative and positive states of radiation force are obtained through adjusting the incident wave field characteristics (i.e., amplitude and phase) which insonifies the radiator with prescribed pulsation characteristics. It is proved that zero radiation force state occurs for incident wave pressure characteristics belong to specific frequency-dependent circles in Nyquist plane of incident wave pressure. These characteristic circles divide the Nyquist plane into two distinct regions corresponding to positive (out of circles) and negative (in the circles) values of radiation force function. It is analytically shown that the maximum amplitude of negative radiation force is exactly equal to the amplitude of the (positive) radiation force exerted upon the sphere in the passive state, by the same incident field. The developed concepts are much more deepened by considering the required
Energy Technology Data Exchange (ETDEWEB)
Miyashita, J. [Nihon University, Tokyo (Japan). College of Science and Technology
1998-04-05
Tethering cable was investigated as a part of a research of jet stream power generation using balloon and kite. Recently, there appeared new materials with light and high strength properties, such as carbon and polyamide resin. When these are used as tethering cables, flying ability of tethered bodies is remarkably improved. Tethered balloon at the altitude of 6500 feet and large-scale kite at the altitude of 5000 m are proposed for the idea of jet stream power generation. A computer program was developed for determining the flying ability of a kite, to calculate it. Similarity rule was also determined by the dimensional analysis. For a kite with a tethering cable having uniform diameter and specific gravity, the similarity can be obtained when two kinds of similarity rules are satisfied. One is (length of tethering cable/width of kite wing)times(dynamic pressure of air/tensile strength of cable){sup 1/2}=(constant). Another is (length of tethering cable)times(density of cable/tensile strength of cable)=(constant). Since the maximum height is in proportion to (strength/specific gravity) of the cable, it increases drastically using high performance materials. It is affected by the aerodynamic performance of the kite and the safety factor of strength of the cable. 4 refs., 45 figs., 2 tabs.
Wael Akl; A. Baz
2014-01-01
Acoustic cloaks have traditionally been intended to externally surround critical objects to render these objects acoustically invisible. However, in this paper, the emphasis is placed on investigating the application of the acoustic cloaks to the interior walls of acoustic cavities in an attempt to minimize the noise levels inside these cavities. In this manner, the acoustic cloaks can serve as a viable and efficient alternative to the conventional passive noise attenuation treatments which a...
International Nuclear Information System (INIS)
Suzuki, Masayuki; Takashima, Tsutomu; Kadoya, Masumi; Takahashi, Shiroh; Miyayama, Shiroh; Taira, Sakae; Kashihara, Kengo; Yamashima, Tetsumori; Itoh, Haruhide
1989-01-01
In this report, the relationship of acoustic neuromas to the adjacent cranial nerves is discussed. On T 1 -weighted images, the trigeminal nerve was detected in all 13 cases. Mild to marked compression of these nerves by the tumors was observed in eight cases. The extent of compression did not always correspond to the clinical symptoms. In four cases with a maximum tumor diameter of 2 cm or less, the 7th and 8th cranial nerves were identified. There was no facial palsy in these patients. Two patients with a tumor diameter of more than 2 cm also had no facial palsy. All patients, including those with small tumors, complained of hearing loss and/or tinnitus. While MR imaging has some limitations, it is an effective imaging modality for showing the relationship between tumors and nerves. (author)
Maximum likely scale estimation
DEFF Research Database (Denmark)
Loog, Marco; Pedersen, Kim Steenstrup; Markussen, Bo
2005-01-01
A maximum likelihood local scale estimation principle is presented. An actual implementation of the estimation principle uses second order moments of multiple measurements at a fixed location in the image. These measurements consist of Gaussian derivatives possibly taken at several scales and/or ...
Robust Maximum Association Estimators
A. Alfons (Andreas); C. Croux (Christophe); P. Filzmoser (Peter)
2017-01-01
textabstractThe maximum association between two multivariate variables X and Y is defined as the maximal value that a bivariate association measure between one-dimensional projections αX and αY can attain. Taking the Pearson correlation as projection index results in the first canonical correlation
Nonsymmetric entropy and maximum nonsymmetric entropy principle
International Nuclear Information System (INIS)
Liu Chengshi
2009-01-01
Under the frame of a statistical model, the concept of nonsymmetric entropy which generalizes the concepts of Boltzmann's entropy and Shannon's entropy, is defined. Maximum nonsymmetric entropy principle is proved. Some important distribution laws such as power law, can be derived from this principle naturally. Especially, nonsymmetric entropy is more convenient than other entropy such as Tsallis's entropy in deriving power laws.
Springer Handbook of Acoustics
Rossing, Thomas D
2007-01-01
Acoustics, the science of sound, has developed into a broad interdisciplinary field encompassing the academic disciplines of physics, engineering, psychology, speech, audiology, music, architecture, physiology, neuroscience, and others. The Springer Handbook of Acoustics is an unparalleled modern handbook reflecting this richly interdisciplinary nature edited by one of the acknowledged masters in the field, Thomas Rossing. Researchers and students benefit from the comprehensive contents spanning: animal acoustics including infrasound and ultrasound, environmental noise control, music and human speech and singing, physiological and psychological acoustics, architectural acoustics, physical and engineering acoustics, signal processing, medical acoustics, and ocean acoustics. This handbook reviews the most important areas of acoustics, with emphasis on current research. The authors of the various chapters are all experts in their fields. Each chapter is richly illustrated with figures and tables. The latest rese...
DEFF Research Database (Denmark)
Peters, Brady; Tamke, Martin; Nielsen, Stig Anton
2011-01-01
Acoustic performance is defined by the parameter of reverberation time; however, this does not capture the acoustic experience in some types of open plan spaces. As many working and learning activities now take place in open plan spaces, it is important to be able to understand and design...... for the acoustic conditions of these spaces. This paper describes an experimental research project that studied the design processes necessary to design for sound. A responsive acoustic surface was designed, fabricated and tested. This acoustic surface was designed to create specific sonic effects. The design...... was simulated using custom integrated acoustic software and also using Odeon acoustic analysis software. The research demonstrates a method for designing space- and sound-defining surfaces, defines the concept of acoustic subspace, and suggests some new parameters for defining acoustic subspaces....
Characterization of HIFU transducers designed for sonochemistry application: Acoustic streaming.
Hallez, L; Touyeras, F; Hihn, J-Y; Bailly, Y
2016-03-01
Cavitation distribution in a High Intensity Focused Ultrasound sonoreactors (HIFU) has been extensively described in the recent literature, including quantification by an optical method (Sonochemiluminescence SCL). The present paper provides complementary measurements through the study of acoustic streaming generated by the same kind of HIFU transducers. To this end, results of mass transfer measurements (electrodiffusional method) were compared to optical method ones (Particle Image Velocimetry). This last one was used in various configurations: with or without an electrode in the acoustic field in order to have the same perturbation of the wave propagation. Results show that the maximum velocity is not located at the focal but shifted near the transducer, and that this shift is greater for high powers. The two cavitation modes (stationary and moving bubbles) are greatly affect the hydrodynamic behavior of our sonoreactors: acoustic streaming and the fluid generated by bubble motion. The results obtained by electrochemical measurements show the same low hydrodynamic activity in the transducer vicinity, the same shift of the active focal toward the transducer, and the same absence of activity in the post-focal axial zone. The comparison with theoretical Eckart's velocities (acoustic streaming in non-cavitating media) confirms a very high activity at the "sonochemical focal", accounted for by wave distortion, which induced greater absorption coefficients. Moreover, the equivalent liquid velocities are one order of magnitude larger than the ones measured by PIV, confirming the enhancement of mass transfer by bubbles oscillation and collapse close to the surface, rather than from a pure streaming effect. Copyright © 2015 Elsevier B.V. All rights reserved.
Kuttruff, Heinrich
2006-01-01
This definitive textbook provides students with a comprehensive introduction to acoustics. Beginning with the basic physical ideas, Acoustics balances the fundamentals with engineering aspects, applications and electroacoustics, also covering music, speech and the properties of human hearing. The concepts of acoustics are exposed and applied in:room acousticssound insulation in buildingsnoise controlunderwater sound and ultrasoundScientifically thorough, but with mathematics kept to a minimum, Acoustics is the perfect introduction to acoustics for students at any level of mechanical, electrical or civil engineering courses and an accessible resource for architects, musicians or sound engineers requiring a technical understanding of acoustics and their applications.
Acoustic source for generating an acoustic beam
Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian
2016-05-31
An acoustic source for generating an acoustic beam includes a housing; a plurality of spaced apart piezo-electric layers disposed within the housing; and a non-linear medium filling between the plurality of layers. Each of the plurality of piezoelectric layers is configured to generate an acoustic wave. The non-linear medium and the plurality of piezo-electric material layers have a matching impedance so as to enhance a transmission of the acoustic wave generated by each of plurality of layers through the remaining plurality of layers.
Writing magnetic patterns with surface acoustic waves
Energy Technology Data Exchange (ETDEWEB)
Li, Weiyang; Buford, Benjamin; Jander, Albrecht; Dhagat, Pallavi, E-mail: dhagat@eecs.oregonstate.edu [School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, Oregon 97331 (United States)
2014-05-07
A novel patterning technique that creates magnetization patterns in a continuous magnetostrictive film with surface acoustic waves is demonstrated. Patterns of 10 μm wide stripes of alternating magnetization and a 3 μm dot of reversed magnetization are written using standing and focusing acoustic waves, respectively. The magnetization pattern is size-tunable, erasable, and rewritable by changing the magnetic field and acoustic power. This versatility, along with its solid-state implementation (no moving parts) and electronic control, renders it as a promising technique for application in magnetic recording, magnonic signal processing, magnetic particle manipulation, and spatial magneto-optical modulation.
Limitations of the acoustic approximation for seismic crosshole tomography
Marelli, Stefano; Maurer, Hansruedi
2010-05-01
Modelling and inversion of seismic crosshole data is a challenging task in terms of computational resources. Even with the significant increase in power of modern supercomputers, full three-dimensional elastic modelling of high-frequency waveforms generated from hundreds of source positions in several boreholes is still an intractable task. However, it has been recognised that full waveform inversion offers substantially more information compared with traditional travel time tomography. A common strategy to reduce the computational burden for tomographic inversion is to approximate the true elastic wave propagation by acoustic modelling. This approximation assumes that the solid rock units can be treated like fluids (with no shear wave propagation) and is generally considered to be satisfactory so long as only the earliest portions of the recorded seismograms are considered. The main assumption is that most of the energy in the early parts of the recorded seismograms is carried by the faster compressional (P-) waves. Although a limited number of studies exist on the effects of this approximation for surface/marine synthetic reflection seismic data, and show it to be generally acceptable for models with low to moderate impedance contrasts, to our knowledge no comparable studies have been published on the effects for cross-borehole transmission data. An obvious question is whether transmission tomography should be less affected by elastic effects than surface reflection data when only short time windows are applied to primarily capture the first arriving wavetrains. To answer this question we have performed 2D and 3D investigations on the validity of the acoustic approximation for an elastic medium and using crosshole source-receiver configurations. In order to generate consistent acoustic and elastic data sets, we ran the synthetic tests using the same finite-differences time-domain elastic modelling code for both types of simulations. The acoustic approximation was
Acoustic and photon emissions during mechanical deformation of coloured alkali halide crystals
International Nuclear Information System (INIS)
Chandra, B.P.
1984-01-01
Acoustic and photon emissions take place in the elastic and plastic as well as the fracture region of x-irradiated KBr, KCl and NaCl crystals. The rate of photon emission is linear with the strain rate: however, the RMS value of the acoustic emission is proportional to the square root of the strain rate. The acoustic emission is maximum for x-irradiated NaCl crystals; however, the photon emission is maximum for x-irradiated KBr crystals. From the similarity between the acoustic emission and the photon emission, it seems that mobile dislocations are responsible for the acoustic emission in coloured alkali halide crystals. (author)
International Nuclear Information System (INIS)
Ponman, T.J.
1984-01-01
For some years now two different expressions have been in use for maximum entropy image restoration and there has been some controversy over which one is appropriate for a given problem. Here two further entropies are presented and it is argued that there is no single correct algorithm. The properties of the four different methods are compared using simple 1D simulations with a view to showing how they can be used together to gain as much information as possible about the original object. (orig.)
Diamond: a material for acoustic devices
MORTET, Vincent; WILLIAMS, Oliver; HAENEN, Ken
2008-01-01
Diamond has been foreseen to replace silicon for high power, high frequency electronic applications or for devices that operates in harsh environments. However, diamond electronic devices are still in the laboratory stage due to the lack of large substrates and the complexity of diamond doping. On another hand, surface acoustic wave filters based on diamond are commercially available. Diamond is especially suited for acoustic applications because of its exceptional mechanical properties. The ...
Processing of acoustic signal in rock desintegration
Directory of Open Access Journals (Sweden)
Futó Jozef
2002-12-01
Full Text Available For the determination of an effective rock disintegration for a given tool and rock type it is needed to define an optimal disintegration regime. Optimisation of the disintegration process by drilling denotes the finding out an appropriate couple of input parameters of disintegration, i.e. the thrust and revolutions for a quasi-equal rock environment. The disintegration process can be optimised to reach the maximum immediate drilling rate, to reach the minimum specific disintegration energy or to reach the maximum ratio of immediate drilling rate and specific disintegration energy. For the determination of the optimal thrust and revolutions it is needed to monitor the disintegration process. Monitoring of the disintegration process in real conditions is complicated by unfavourable factors, such as the presence of water, dust, vibrations etc. Following our present experience in the monitoring of drilling or full-profile driving, we try to replace the monitoring of input values by monitoring of the scanned acoustic signal. This method of monitoring can extend the optimisation of disintegration process in the technical practice. Its advantage consists in the registration of one acoustic signal by an appropriate microphone. Monitoring of acoustic signal is used also in monitoring of metal machining by milling and turning jobs. The research results of scanning of the acoustic signal in machining of metals are encouraging. Acoustic signal can be processed by different statistical parameters. The paper decribes some results of monitoring of the acoustic signal in rock disintegration on the drilling stand of the Institute of Geotechnics SAS in Koice. The acoustic signal has been registered and processed in no-load run of electric motor, in no-load run of electric motor with a drilling fluid, and in the Ruskov andesite drilling. Registration and processing of the acoustic signal is solved as a part of the research grant task within the basic research