WorldWideScience

Sample records for maximum 12-bit signal

  1. A 12-bit 40 MS/s pipelined ADC with over 80 dB SFDR

    Energy Technology Data Exchange (ETDEWEB)

    Wei Qi; Yin Xiumei; Han Dandan; Yang Huazhong, E-mail: q-wei05@mails.tsinghua.edu.c [Department of Electronic Engineering, Tsinghua University, Beijing 100084 (China)

    2010-02-15

    This paper describes a 12-bit 40 MS/s calibration-free pipelined analog-to-digital converter (ADC), which is optimized for high spurious free dynamic range (SFDR) performance and low power dissipation. With a 4.9 MHz sine wave input, the prototype ADC implemented in a 0.18-{mu}m 1P6M CMOS process shows measured differential nonlinearity and integral nonlinearity within 0.78 and 1.32 least significant bits at the 12-bit level without any trimming or calibration. The ADC, with a total die area of 3.1 x 2.1 mm{sup 2}, demonstrates a maximum signal-to-noise distortion ratio (SNDR) and SFDR of 66.32 and 83.38 dB, respectively, at a 4.9 MHz analog input and a power consumption of 102 mW from a 1.8 V supply. (semiconductor integrated circuits)

  2. A Modified Differential Coherent Bit Synchronization Algorithm for BeiDou Weak Signals with Large Frequency Deviation.

    Science.gov (United States)

    Han, Zhifeng; Liu, Jianye; Li, Rongbing; Zeng, Qinghua; Wang, Yi

    2017-07-04

    BeiDou system navigation messages are modulated with a secondary NH (Neumann-Hoffman) code of 1 kbps, where frequent bit transitions limit the coherent integration time to 1 millisecond. Therefore, a bit synchronization algorithm is necessary to obtain bit edges and NH code phases. In order to realize bit synchronization for BeiDou weak signals with large frequency deviation, a bit synchronization algorithm based on differential coherent and maximum likelihood is proposed. Firstly, a differential coherent approach is used to remove the effect of frequency deviation, and the differential delay time is set to be a multiple of bit cycle to remove the influence of NH code. Secondly, the maximum likelihood function detection is used to improve the detection probability of weak signals. Finally, Monte Carlo simulations are conducted to analyze the detection performance of the proposed algorithm compared with a traditional algorithm under the CN0s of 20~40 dB-Hz and different frequency deviations. The results show that the proposed algorithm outperforms the traditional method with a frequency deviation of 50 Hz. This algorithm can remove the effect of BeiDou NH code effectively and weaken the influence of frequency deviation. To confirm the feasibility of the proposed algorithm, real data tests are conducted. The proposed algorithm is suitable for BeiDou weak signal bit synchronization with large frequency deviation.

  3. Novel ultra-wideband photonic signal generation and transmission featuring digital signal processing bit error rate measurements

    DEFF Research Database (Denmark)

    Gibbon, Timothy Braidwood; Yu, Xianbin; Tafur Monroy, Idelfonso

    2009-01-01

    We propose the novel generation of photonic ultra-wideband signals using an uncooled DFB laser. For the first time we experimentally demonstrate bit-for-bit DSP BER measurements for transmission of a 781.25 Mbit/s photonic UWB signal.......We propose the novel generation of photonic ultra-wideband signals using an uncooled DFB laser. For the first time we experimentally demonstrate bit-for-bit DSP BER measurements for transmission of a 781.25 Mbit/s photonic UWB signal....

  4. Bayesian signal reconstruction for 1-bit compressed sensing

    International Nuclear Information System (INIS)

    Xu, Yingying; Kabashima, Yoshiyuki; Zdeborová, Lenka

    2014-01-01

    The 1-bit compressed sensing framework enables the recovery of a sparse vector x from the sign information of each entry of its linear transformation. Discarding the amplitude information can significantly reduce the amount of data, which is highly beneficial in practical applications. In this paper, we present a Bayesian approach to signal reconstruction for 1-bit compressed sensing and analyze its typical performance using statistical mechanics. As a basic setup, we consider the case that the measuring matrix Φ has i.i.d entries and the measurements y are noiseless. Utilizing the replica method, we show that the Bayesian approach enables better reconstruction than the l 1 -norm minimization approach, asymptotically saturating the performance obtained when the non-zero entry positions of the signal are known, for signals whose non-zero entries follow zero mean Gaussian distributions. We also test a message passing algorithm for signal reconstruction on the basis of belief propagation. The results of numerical experiments are consistent with those of the theoretical analysis. (paper)

  5. Comparison of 12-bit and 8-bit gray scale resolution in MR imaging of the CNS

    International Nuclear Information System (INIS)

    Smith, H.J.; Bakke, S.J.; Smevik, B.; Hald, J.K.; Moen, G.; Rudenhed, B.; Abildgaard, A.

    1992-01-01

    A reduction in gray scale resolution of digital images from 12 to 8 bits per pixel usually means halving the storage space needed for the images. Theoretically, important diagnostic information may be lost in the process. We compared the sensitivity and specificity achieved by 4 radiologists in reading laser-printed films of original 12-bit MR images and cathode ray tube displays of the same images which had been compressed to 8 bits per pixel using a specially developed computer program. Receiver operating characteristics (ROC) curves showed no significant differences between film reading and screen reading. A paired 2-tailed t-test, applied on the data for actually positive cases, showed that the combined, average performance of the reviewers was significantly better at screen reading than at film reading. No such differences were found for actually negative cases. Some individual differences were found, but it is concluded that gray scale resolution of MR images may be reduced from 12 to 8 bits per pixel without any significant reduction in diagnostic information. (orig.)

  6. Shuttle bit rate synchronizer. [signal to noise ratios and error analysis

    Science.gov (United States)

    Huey, D. C.; Fultz, G. L.

    1974-01-01

    A shuttle bit rate synchronizer brassboard unit was designed, fabricated, and tested, which meets or exceeds the contractual specifications. The bit rate synchronizer operates at signal-to-noise ratios (in a bit rate bandwidth) down to -5 dB while exhibiting less than 0.6 dB bit error rate degradation. The mean acquisition time was measured to be less than 2 seconds. The synchronizer is designed around a digital data transition tracking loop whose phase and data detectors are integrate-and-dump filters matched to the Manchester encoded bits specified. It meets the reliability (no adjustments or tweaking) and versatility (multiple bit rates) of the shuttle S-band communication system through an implementation which is all digital after the initial stage of analog AGC and A/D conversion.

  7. Two-Stage Maximum Likelihood Estimation (TSMLE for MT-CDMA Signals in the Indoor Environment

    Directory of Open Access Journals (Sweden)

    Sesay Abu B

    2004-01-01

    Full Text Available This paper proposes a two-stage maximum likelihood estimation (TSMLE technique suited for multitone code division multiple access (MT-CDMA system. Here, an analytical framework is presented in the indoor environment for determining the average bit error rate (BER of the system, over Rayleigh and Ricean fading channels. The analytical model is derived for quadrature phase shift keying (QPSK modulation technique by taking into account the number of tones, signal bandwidth (BW, bit rate, and transmission power. Numerical results are presented to validate the analysis, and to justify the approximations made therein. Moreover, these results are shown to agree completely with those obtained by simulation.

  8. Pulse shaping for all-optical signal processing of ultra-high bit rate serial data signals

    DEFF Research Database (Denmark)

    Palushani, Evarist

    The following thesis concerns pulse shaping and optical waveform manipulation for all-optical signal processing of ultra-high bit rate serial data signals, including generation of optical pulses in the femtosecond regime, serial-to-parallel conversion and terabaud coherent optical time division...

  9. 10-bit segmented current steering DAC in 90nm CMOS technology

    International Nuclear Information System (INIS)

    Bringas, R Jr; Dy, F; Gerasta, O J

    2015-01-01

    This special project presents a 10-Bit 1Gs/s 1.2V/3.3V Digital-to-Analog Converter using1 Poly 9 Metal SAED 90-nm CMOS Technology intended for mixed-signal and power IC applications. To achieve maximum performance with minimum area, the DAC has been implemented in 6+4 Segmentation. The simulation results show a static performance of ±0.56 LSB INL and ±0.79 LSB DNL with a total layout chip area of 0.683 mm 2 .The segmented architecture is implemented using two sub DAC's, which are the LSB and MSB section with certain number bits. The DAC is designed using 4-BitBinary Weighted DAC for the LSB section and 6-BitThermometer-coded DAC for the MSB section. The thermometer-coded architecture provides the most optimized results in terms of linearity through reducing the clock feed-through effect especially in hot switching between multiple transistors. The binary- weighted architecture gives better linearity output in higher frequencies with better saturation in current sources. (paper)

  10. Design and development of CAMAC 12 bit ADC/DAC dual purpose module

    International Nuclear Information System (INIS)

    Kulkarni, S.G.; Gore, J.A.; Ramlal, V.; Matkar, U.V.; Lokare, R.N.; Yadav, M.L.; Ekambaram, M.; Gupta, A.K.; Datar, V.M.

    2013-01-01

    A dual function CAMAC module is designed for Pelletron Accelerator which can function as 12 bit 8 channels DAC or 12 bit 16 channels ADC. Spartan 2 series of FPGA is used for implementing the CAMAC interface logic as well as logic for ADC/DAC interface. The PCB has both the ADC and DAC mounted but the module can have only one function selected due to wiring constraint. Two different VHDL programs (one for the ADC and other for the DAC) reside on the EEPROM permitting selection of any one as per the functionality required. The module is working as a 12 bit DAC at BARC-TIFR Pelletron Linac Facility, successfully. (author)

  11. Re-use of Low Bandwidth Equipment for High Bit Rate Transmission Using Signal Slicing Technique

    DEFF Research Database (Denmark)

    Wagner, Christoph; Spolitis, S.; Vegas Olmos, Juan José

    : Massive fiber-to-the-home network deployment requires never ending equipment upgrades operating at higher bandwidth. We show effective signal slicing method, which can reuse low bandwidth opto-electronical components for optical communications at higher bit rates.......: Massive fiber-to-the-home network deployment requires never ending equipment upgrades operating at higher bandwidth. We show effective signal slicing method, which can reuse low bandwidth opto-electronical components for optical communications at higher bit rates....

  12. 55-mW, 1.2-V, 12-bit, 100-MSPS Pipeline ADCs for Wireless Receivers

    Science.gov (United States)

    Ito, Tomohiko; Kurose, Daisuke; Ueno, Takeshi; Yamaji, Takafumi; Itakura, Tetsuro

    For wireless receivers, low-power 1.2-V 12-bit 100-MSPS pipeline ADCs are fabricated in 90-nm CMOS technology. To achieve low-power dissipation at 1.2V without the degradation of SNR, the configuration of 2.5bit/stage is employed with an I/Q amplifier sharing technique. Furthermore, single-stage pseudo-differential amplifiers are used in a Sample-and-Hold (S/H) circuit and a 1st Multiplying Digital-to-Analog Converter (MDAC). The pseudo-differential amplifier with two-gain-stage transimpedance gain-boosting amplifiers realizes high DC gain of more than 90dB with low power. The measured SNR of the 100-MSPS ADC is 66.7dB at 1.2-V supply. Under that condition, each ADC dissipates only 55mW.

  13. The Random Telegraph Signal Behavior of Intermittently Stuck Bits in SDRAMs

    Science.gov (United States)

    Chugg, Andrew Michael; Burnell, Andrew J.; Duncan, Peter H.; Parker, Sarah; Ward, Jonathan J.

    2009-12-01

    This paper reports behavior analogous to the Random Telegraph Signal (RTS) seen in the leakage currents from radiation induced hot pixels in Charge Coupled Devices (CCDs), but in the context of stuck bits in Synchronous Dynamic Random Access Memories (SDRAMs). Our analysis suggests that pseudo-random sticking and unsticking of the SDRAM bits is due to thermally induced fluctuations in leakage current through displacement damage complexes in depletion regions that were created by high-energy neutron and proton interactions. It is shown that the number of observed stuck bits increases exponentially with temperature, due to the general increase in the leakage currents through the damage centers with temperature. Nevertheless, some stuck bits are seen to pseudo-randomly stick and unstick in the context of a continuously rising trend of temperature, thus demonstrating that their damage centers can exist in multiple widely spaced, discrete levels of leakage current, which is highly consistent with RTS. This implies that these intermittently stuck bits (ISBs) are a displacement damage phenomenon and are unrelated to microdose issues, which is confirmed by the observation that they also occur in unbiased irradiation. Finally, we note that observed variations in the periodicity of the sticking and unsticking behavior on several timescales is most readily explained by multiple leakage current pathways through displacement damage complexes spontaneously and independently opening and closing under the influence of thermal vibrations.

  14. A 0.9-V 12-bit 40-MSPS Pipeline ADC for Wireless Receivers

    Science.gov (United States)

    Ito, Tomohiko; Itakura, Tetsuro

    A 0.9-V 12-bit 40-MSPS pipeline ADC with I/Q amplifier sharing technique is presented for wireless receivers. To achieve high linearity even at 0.9-V supply, the clock signals to sampling switches are boosted over 0.9V in conversion stages. The clock-boosting circuit for lifting these clocks is shared between I-ch ADC and Q-ch ADC, reducing the area penalty. Low supply voltage narrows the available output range of the operational amplifier. A pseudo-differential (PD) amplifier with two-gain-stage common-mode feedback (CMFB) is proposed in views of its wide output range and power efficiency. This ADC is fabricated in 90-nm CMOS technology. At 40MS/s, the measured SNDR is 59.3dB and the corresponding effective number of bits (ENOB) is 9.6. Until Nyquist frequency, the ENOB is kept over 9.3. The ADC dissipates 17.3mW/ch, whose performances are suitable for ADCs for mobile wireless systems such as WLAN/WiMAX.

  15. A high speed digital signal averager for pulsed NMR

    International Nuclear Information System (INIS)

    Srinivasan, R.; Ramakrishna, J.; Ra agopalan, S.R.

    1978-01-01

    A 256-channel digital signal averager suitable for pulsed nuclear magnetic resonance spectroscopy is described. It implements 'stable averaging' algorithm and hence provides a calibrated display of the average signal at all times during the averaging process on a CRT. It has a maximum sampling rate of 2.5 μ sec and a memory capacity of 256 x 12 bit words. Number of sweeps is selectable through a front panel control in binary steps from 2 3 to 2 12 . The enhanced signal can be displayed either on a CRT or by a 3.5-digit LED display. The maximum S/N improvement that can be achieved with this instrument is 36 dB. (auth.)

  16. Interpretation of chest radiographs with a high-resolution (2,000 x 2,000 x 12 bit) display

    International Nuclear Information System (INIS)

    Cox, G.G.

    1989-01-01

    This paper presents an evaluation of high-resolution (2K x 2Kx 12 bit) display for interpretation of chest radiographs. Three radiologists chose a total of 165 chest radiographs to ensure representation of nine signs: apical pleural scarring, chronic obstructive pulmonary disease, interstitial processes, atelectasis, pneumothorax, hilar mass, pleural effusion, pneumonia, and nodules. Each chest film was digitized to 4Kx 4Kx 12 bit and averaged to 2Kx 2Kx 12 bit and printed on a laser film printer. The 2K x 2K x 12-bit images were displayed and interactively windowed on a 2K x 2K x 12-bit high-resolution gray-scale cathode ray tube display. Six radiologists, none of whom participated in the case selection process, then interpreted a mixture of the screen film chest radiographs, the laser printed 2K chest radiographs, and the high resolution displayed 2K images

  17. Design of a 12-bit 80MS/s pipeline analog-to-digital converter for PLC-VDSL applications

    Science.gov (United States)

    Ruiz-Amaya, Jesus; Delgado-Restituto, Manuel; Fernandez-Bootello, Juan F.; de la Rosa, Jose M.

    2005-06-01

    This paper describes the design of a 12-bit 80MS/s pipeline Analog-to-Digital converter implemented in 0.13mm CMOS logic technology. The design has been computer-aided by a developed toolbox for the simulation, synthesis and verification of Nyquist-Rate Analog-to-Digital and Digital-to-Analog Converters in MATLAB. The embedded simulator uses SIMULINK C-coded S-functions to model all required subcircuits including their main error mechanisms. This approach allows to drastically speed up the simulation CPU-time and makes the proposed tool an advantageous alternative for fast exploration of requirements and as a design validation tool. The converter is based on a 10-stage pipeline preceded by a sample/hold with bootstrapping technique. Each stage gives 1.5 effective bits, except for the first one which provides 2.5 effective bits to improve linearity. The Analog-to-Digital architecture uses redundant bits for digital correction, it is planned to be implemented without using calibration and employs a subranging pipeline look-ahead technique to increase speed. Substrate biased MOSFETs in the depletion region are used as capacitors, linearized by a series compensation. Simulation results show that the Multi-Tone Power Ratio is higher than 56dB for several DMT test signals and the estimated Signal-to-Noise Ratio yield is supposed to be better than 62 dB from DC to Nyquist frequency. The converter dissipates less than 150mW from a 3.3V supply and occupies less than 4 mm2 die area. The results have been checked with all process corners from -40° to 85° and power supply from 3V to 3.6V.

  18. Semifragile Speech Watermarking Based on Least Significant Bit Replacement of Line Spectral Frequencies

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Nematollahi

    2017-01-01

    Full Text Available There are various techniques for speech watermarking based on modifying the linear prediction coefficients (LPCs; however, the estimated and modified LPCs vary from each other even without attacks. Because line spectral frequency (LSF has less sensitivity to watermarking than LPC, watermark bits are embedded into the maximum number of LSFs by applying the least significant bit replacement (LSBR method. To reduce the differences between estimated and modified LPCs, a checking loop is added to minimize the watermark extraction error. Experimental results show that the proposed semifragile speech watermarking method can provide high imperceptibility and that any manipulation of the watermark signal destroys the watermark bits since manipulation changes it to a random stream of bits.

  19. A High Resolution Switched Capacitor 1bit Sigma-Delta Modulator for Low-Voltage/Low-Power Applications

    DEFF Research Database (Denmark)

    Furst, Claus Efdmann

    1996-01-01

    A high resolution 1bit Sigma-Delta modulator for low power/low voltage applications is presented. The modulator operates at a supply of 1-1.5V, the current drain is 0.1mA. The maximum resolution is 87dB equivalent to 14 bits of resolution. This is achieved with a signal-band of 5kHz, over-samplin...

  20. An 11-bit 200 MS/s subrange SAR ADC with low-cost integrated reference buffer

    Science.gov (United States)

    He, Xiuju; Gu, Xian; Li, Weitao; Jiang, Hanjun; Li, Fule; Wang, Zhihua

    2017-10-01

    This paper presents an 11-bit 200 MS/s subrange SAR ADC with an integrated reference buffer in 65 nm CMOS. The proposed ADC employs a 3.5-bit flash ADC for coarse conversion, and a compact timing scheme at the flash/SAR boundary to speed up the conversion. The flash decision is used to control charge compensating for the reference voltage to reduce its input-dependent fluctuation. Measurement results show that the fabricated ADC has achieved significant improvement by applying the reference charge compensation. In addition, the ADC achieves a maximum signal-to-noise-and-distortion ratio of 59.3 dB at 200 MS/s. It consumes 3.91 mW from a 1.2 V supply, including the reference buffer. Project supported by the Zhongxing Telecommunication Equipment Corporation and Beijing Microelectronics Technology Institute.

  1. A Temperature-Hardened Sensor Interface with a 12-Bit Digital Output Using a Novel Pulse Width Modulation Technique

    Directory of Open Access Journals (Sweden)

    Emna Chabchoub

    2018-04-01

    Full Text Available A fully integrated sensor interface for a wide operational temperature range is presented. It translates the sensor signal into a pulse width modulated (PWM signal that is then converted into a 12-bit digital output. The sensor interface is based on a pair of injection locked oscillators used to implement a differential time-domain architecture with low sensitivity to temperature variations. A prototype has been fabricated using a 180 nm partially depleted silicon-on-insulator (SOI technology. Experimental results demonstrate a thermal stability as low as 65 ppm/°C over a large temperature range from −20 °C up to 220 °C.

  2. Digital Signal Processing For Low Bit Rate TV Image Codecs

    Science.gov (United States)

    Rao, K. R.

    1987-06-01

    In view of the 56 KBPS digital switched network services and the ISDN, low bit rate codecs for providing real time full motion color video are under various stages of development. Some companies have already brought the codecs into the market. They are being used by industry and some Federal Agencies for video teleconferencing. In general, these codecs have various features such as multiplexing audio and data, high resolution graphics, encryption, error detection and correction, self diagnostics, freezeframe, split video, text overlay etc. To transmit the original color video on a 56 KBPS network requires bit rate reduction of the order of 1400:1. Such a large scale bandwidth compression can be realized only by implementing a number of sophisticated,digital signal processing techniques. This paper provides an overview of such techniques and outlines the newer concepts that are being investigated. Before resorting to the data compression techniques, various preprocessing operations such as noise filtering, composite-component transformation and horizontal and vertical blanking interval removal are to be implemented. Invariably spatio-temporal subsampling is achieved by appropriate filtering. Transform and/or prediction coupled with motion estimation and strengthened by adaptive features are some of the tools in the arsenal of the data reduction methods. Other essential blocks in the system are quantizer, bit allocation, buffer, multiplexer, channel coding etc.

  3. Bits and q-bits as versatility measures

    Directory of Open Access Journals (Sweden)

    José R.C. Piqueira

    2004-06-01

    Full Text Available Using Shannon information theory is a common strategy to measure any kind of variability in a signal or phenomenon. Some methods were developed to adapt information entropy measures to bird song data trying to emphasize its versatility aspect. This classical approach, using the concept of bit, produces interesting results. Now, the original idea developed in this paper is to use the quantum information theory and the quantum bit (q-bit concept in order to provide a more complete vision of the experimental results.Usar a teoria da informação de Shannon é uma estratégia comum para medir todo tipo de variabilidade em um sinal ou fenômeno. Alguns métodos foram desenvolvidos para adaptar a medida de entropia informacional a dados de cantos de pássaro, tentando enfatizar seus aspectos de versatilidade. Essa abordagem clássica, usando o conceito de bit, produz resultados interessantes. Agora, a idéia original desenvolvida neste artigo é usar a teoria quântica da informação e o conceito de q-bit, com a finalidade de proporcionar uma visão mais completa dos resultados experimentais.

  4. A Fast Multiple Sampling Method for Low-Noise CMOS Image Sensors With Column-Parallel 12-bit SAR ADCs

    Directory of Open Access Journals (Sweden)

    Min-Kyu Kim

    2015-12-01

    Full Text Available This paper presents a fast multiple sampling method for low-noise CMOS image sensor (CIS applications with column-parallel successive approximation register analog-to-digital converters (SAR ADCs. The 12-bit SAR ADC using the proposed multiple sampling method decreases the A/D conversion time by repeatedly converting a pixel output to 4-bit after the first 12-bit A/D conversion, reducing noise of the CIS by one over the square root of the number of samplings. The area of the 12-bit SAR ADC is reduced by using a 10-bit capacitor digital-to-analog converter (DAC with four scaled reference voltages. In addition, a simple up/down counter-based digital processing logic is proposed to perform complex calculations for multiple sampling and digital correlated double sampling. To verify the proposed multiple sampling method, a 256 × 128 pixel array CIS with 12-bit SAR ADCs was fabricated using 0.18 μm CMOS process. The measurement results shows that the proposed multiple sampling method reduces each A/D conversion time from 1.2 μs to 0.45 μs and random noise from 848.3 μV to 270.4 μV, achieving a dynamic range of 68.1 dB and an SNR of 39.2 dB.

  5. High bit depth infrared image compression via low bit depth codecs

    Science.gov (United States)

    Belyaev, Evgeny; Mantel, Claire; Forchhammer, Søren

    2017-08-01

    Future infrared remote sensing systems, such as monitoring of the Earth's environment by satellites, infrastructure inspection by unmanned airborne vehicles etc., will require 16 bit depth infrared images to be compressed and stored or transmitted for further analysis. Such systems are equipped with low power embedded platforms where image or video data is compressed by a hardware block called the video processing unit (VPU). However, in many cases using two 8-bit VPUs can provide advantages compared with using higher bit depth image compression directly. We propose to compress 16 bit depth images via 8 bit depth codecs in the following way. First, an input 16 bit depth image is mapped into 8 bit depth images, e.g., the first image contains only the most significant bytes (MSB image) and the second one contains only the least significant bytes (LSB image). Then each image is compressed by an image or video codec with 8 bits per pixel input format. We analyze how the compression parameters for both MSB and LSB images should be chosen to provide the maximum objective quality for a given compression ratio. Finally, we apply the proposed infrared image compression method utilizing JPEG and H.264/AVC codecs, which are usually available in efficient implementations, and compare their rate-distortion performance with JPEG2000, JPEG-XT and H.265/HEVC codecs supporting direct compression of infrared images in 16 bit depth format. A preliminary result shows that two 8 bit H.264/AVC codecs can achieve similar result as 16 bit HEVC codec.

  6. Adaptive signal processor

    Energy Technology Data Exchange (ETDEWEB)

    Walz, H.V.

    1980-07-01

    An experimental, general purpose adaptive signal processor system has been developed, utilizing a quantized (clipped) version of the Widrow-Hoff least-mean-square adaptive algorithm developed by Moschner. The system accommodates 64 adaptive weight channels with 8-bit resolution for each weight. Internal weight update arithmetic is performed with 16-bit resolution, and the system error signal is measured with 12-bit resolution. An adapt cycle of adjusting all 64 weight channels is accomplished in 8 ..mu..sec. Hardware of the signal processor utilizes primarily Schottky-TTL type integrated circuits. A prototype system with 24 weight channels has been constructed and tested. This report presents details of the system design and describes basic experiments performed with the prototype signal processor. Finally some system configurations and applications for this adaptive signal processor are discussed.

  7. Adaptive signal processor

    International Nuclear Information System (INIS)

    Walz, H.V.

    1980-07-01

    An experimental, general purpose adaptive signal processor system has been developed, utilizing a quantized (clipped) version of the Widrow-Hoff least-mean-square adaptive algorithm developed by Moschner. The system accommodates 64 adaptive weight channels with 8-bit resolution for each weight. Internal weight update arithmetic is performed with 16-bit resolution, and the system error signal is measured with 12-bit resolution. An adapt cycle of adjusting all 64 weight channels is accomplished in 8 μsec. Hardware of the signal processor utilizes primarily Schottky-TTL type integrated circuits. A prototype system with 24 weight channels has been constructed and tested. This report presents details of the system design and describes basic experiments performed with the prototype signal processor. Finally some system configurations and applications for this adaptive signal processor are discussed

  8. Sleep stage classification with low complexity and low bit rate.

    Science.gov (United States)

    Virkkala, Jussi; Värri, Alpo; Hasan, Joel; Himanen, Sari-Leena; Müller, Kiti

    2009-01-01

    Standard sleep stage classification is based on visual analysis of central (usually also frontal and occipital) EEG, two-channel EOG, and submental EMG signals. The process is complex, using multiple electrodes, and is usually based on relatively high (200-500 Hz) sampling rates. Also at least 12 bit analog to digital conversion is recommended (with 16 bit storage) resulting in total bit rate of at least 12.8 kbit/s. This is not a problem for in-house laboratory sleep studies, but in the case of online wireless self-applicable ambulatory sleep studies, lower complexity and lower bit rates are preferred. In this study we further developed earlier single channel facial EMG/EOG/EEG-based automatic sleep stage classification. An algorithm with a simple decision tree separated 30 s epochs into wakefulness, SREM, S1/S2 and SWS using 18-45 Hz beta power and 0.5-6 Hz amplitude. Improvements included low complexity recursive digital filtering. We also evaluated the effects of a reduced sampling rate, reduced number of quantization steps and reduced dynamic range on the sleep data of 132 training and 131 testing subjects. With the studied algorithm, it was possible to reduce the sampling rate to 50 Hz (having a low pass filter at 90 Hz), and the dynamic range to 244 microV, with an 8 bit resolution resulting in a bit rate of 0.4 kbit/s. Facial electrodes and a low bit rate enables the use of smaller devices for sleep stage classification in home environments.

  9. Insecurity of imperfect quantum bit seal

    International Nuclear Information System (INIS)

    Chau, H.F.

    2006-01-01

    Quantum bit seal is a way to encode a classical bit quantum mechanically so that everyone can obtain non-zero information on the value of the bit. Moreover, such an attempt should have a high chance of being detected by an authorized verifier. Surely, a reader looks for a way to get the maximum amount of information on the sealed bit and at the same time to minimize her chance of being caught. And a verifier picks a sealing scheme that maximizes his chance of detecting any measurement of the sealed bit. Here, I report a strategy that passes all measurement detection procedures at least half of the time for all quantum bit sealing schemes. This strategy also minimizes a reader's chance of being caught under a certain scheme. In this way, I extend the result of Bechmann-Pasquinucci et al. by proving that quantum seal is insecure in the case of imperfect sealed bit recovery

  10. Design and characterization of a 12-bit 10MS/s 10mW pipelined SAR ADC for CZT-based hard X-ray imager

    Science.gov (United States)

    Xue, F.; Gao, W.; Duan, Y.; Zheng, R.; Hu, Y.

    2018-02-01

    This paper presents a 12-bit pipelined successive approximation register (SAR) ADC for CZT-based hard X-ray Imager. The proposed ADC is comprised of a first-stage 6-bit SAR-based Multiplying Digital Analog Converter (MDAC) and a second-stage 8-bit SAR ADC. A novel MDAC architecture using Vcm-based Switching method is employed to maximize the energy efficiency and improve the linearity of the ADC. Moreover, the unit-capacitor array instead of the binary-weighted capacitor array is adopted to improve the conversion speed and linearity of the ADC in the first-stage MDAC. In addition, a new layout design method for the binary-weighted capacitor array is proposed to reduce the capacitor mismatches and make the routing become easier and less-time-consuming. Finally, several radiation-hardened-by-design technologies are adopted in the layout design against space radiation effects. The prototype chip was fabricated in 0.18 μm mixed-signal 1.8V/3.3V process and operated at 1.8 V supply. The chip occupies a core area of only 0.58 mm2. The proposed pipelined SAR ADC achieves a peak signal-to-noise-and-distortion ratio (SNDR) of 66.7 dB and a peak spurious-free dynamic range (SFDR) of 78.6 dB at 10 MS/s sampling rate and consumes 10 mW. The figure of merit (FOM) of the proposed ADC is 0.56 pJ/conversion-step.

  11. Design and Implementation of Decimation Filter for 13-bit Sigma-Delta ADC Based on FPGA

    Directory of Open Access Journals (Sweden)

    Khalid Khaleel Mohammed

    2016-10-01

    Full Text Available A 13 bit Sigma-Delta ADC for a signal band of 40K Hz is designed in MATLAB Simulink and then implemented using Xilinx system generator tool.  The first order Sigma-Delta modulator is designed to work at a signal band of 40 KHz at an oversampling ratio (OSR of 256 with a sampling frequency of 20.48 MHz. The proposed decimation filter design is consists of a second order Cascaded Integrator Comb filter (CIC followed by two finite impulse response (FIR filters. This architecture reduces the need for multiplication which is need very large area. This architecture implements a decimation ratio of 256 and allows a maximum resolution of 13  bits in the output of the filter. The decimation filter was designed  and  tested  in  Xilinx  system  generator  tool  which  reduces  the  design  cycle  by  directly generating efficient VHDL code. The results obtained show that the overall Sigma-Delta ADC is able to achieve an ENOB (Effective Number Of Bit of 13.71 bits and SNR of 84.3 dB

  12. The Design of a Single-Bit CMOS Image Sensor for Iris Recognition Applications

    Directory of Open Access Journals (Sweden)

    Keunyeol Park

    2018-02-01

    Full Text Available This paper presents a single-bit CMOS image sensor (CIS that uses a data processing technique with an edge detection block for simple iris segmentation. In order to recognize the iris image, the image sensor conventionally captures high-resolution image data in digital code, extracts the iris data, and then compares it with a reference image through a recognition algorithm. However, in this case, the frame rate decreases by the time required for digital signal conversion of multi-bit digital data through the analog-to-digital converter (ADC in the CIS. In order to reduce the overall processing time as well as the power consumption, we propose a data processing technique with an exclusive OR (XOR logic gate to obtain single-bit and edge detection image data instead of multi-bit image data through the ADC. In addition, we propose a logarithmic counter to efficiently measure single-bit image data that can be applied to the iris recognition algorithm. The effective area of the proposed single-bit image sensor (174 × 144 pixel is 2.84 mm2 with a 0.18 μm 1-poly 4-metal CMOS image sensor process. The power consumption of the proposed single-bit CIS is 2.8 mW with a 3.3 V of supply voltage and 520 frame/s of the maximum frame rates. The error rate of the ADC is 0.24 least significant bit (LSB on an 8-bit ADC basis at a 50 MHz sampling frequency.

  13. The Design of a Single-Bit CMOS Image Sensor for Iris Recognition Applications.

    Science.gov (United States)

    Park, Keunyeol; Song, Minkyu; Kim, Soo Youn

    2018-02-24

    This paper presents a single-bit CMOS image sensor (CIS) that uses a data processing technique with an edge detection block for simple iris segmentation. In order to recognize the iris image, the image sensor conventionally captures high-resolution image data in digital code, extracts the iris data, and then compares it with a reference image through a recognition algorithm. However, in this case, the frame rate decreases by the time required for digital signal conversion of multi-bit digital data through the analog-to-digital converter (ADC) in the CIS. In order to reduce the overall processing time as well as the power consumption, we propose a data processing technique with an exclusive OR (XOR) logic gate to obtain single-bit and edge detection image data instead of multi-bit image data through the ADC. In addition, we propose a logarithmic counter to efficiently measure single-bit image data that can be applied to the iris recognition algorithm. The effective area of the proposed single-bit image sensor (174 × 144 pixel) is 2.84 mm² with a 0.18 μm 1-poly 4-metal CMOS image sensor process. The power consumption of the proposed single-bit CIS is 2.8 mW with a 3.3 V of supply voltage and 520 frame/s of the maximum frame rates. The error rate of the ADC is 0.24 least significant bit (LSB) on an 8-bit ADC basis at a 50 MHz sampling frequency.

  14. Bounds on Minimum Energy per Bit for Optical Wireless Relay Channels

    Directory of Open Access Journals (Sweden)

    A. D. Raza

    2014-09-01

    Full Text Available An optical wireless relay channel (OWRC is the classical three node network consisting of source, re- lay and destination nodes with optical wireless connectivity. The channel law is assumed Gaussian. This paper studies the bounds on minimum energy per bit required for reliable communication over an OWRC. It is shown that capacity of an OWRC is concave and energy per bit is monotonically increasing in square of the peak optical signal power, and consequently the minimum energy per bit is inversely pro- portional to the square root of asymptotic capacity at low signal to noise ratio. This has been used to develop upper and lower bound on energy per bit as a function of peak signal power, mean to peak power ratio, and variance of channel noise. The upper and lower bounds on minimum energy per bit derived in this paper correspond respectively to the decode and forward lower bound and the min-max cut upper bound on OWRC capacity

  15. Video Synchronization With Bit-Rate Signals and Correntropy Function

    Directory of Open Access Journals (Sweden)

    Igor Pereira

    2017-09-01

    Full Text Available We propose an approach for the synchronization of video streams using correntropy. Essentially, the time offset is calculated on the basis of the instantaneous transfer rates of the video streams that are extracted in the form of a univariate signal known as variable bit-rate (VBR. The state-of-the-art approach uses a window segmentation strategy that is based on consensual zero-mean normalized cross-correlation (ZNCC. This strategy has an elevated computational complexity, making its application to synchronizing online data streaming difficult. Hence, our proposal uses a different window strategy that, together with the correntropy function, allows the synchronization to be performed for online applications. This provides equivalent synchronization scores with a rapid offset determination as the streams come into the system. The efficiency of our approach has been verified through experiments that demonstrate its viability with values that are as precise as those obtained by ZNCC. The proposed approach scored 81 % in time reference classification against the equivalent 81 % of the state-of-the-art approach, requiring much less computational power.

  16. A 12-bit SAR ADC integrated on a multichannel silicon drift detector readout IC

    Energy Technology Data Exchange (ETDEWEB)

    Schembari, F., E-mail: filippo.schembari@polimi.it [Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, via Golgi 40, 20133 Milano (Italy); INFN, Sezione di Milano, via Celoria 16, 20133 Milano (Italy); Bellotti, G.; Fiorini, C. [Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, via Golgi 40, 20133 Milano (Italy); INFN, Sezione di Milano, via Celoria 16, 20133 Milano (Italy)

    2016-07-11

    A 12-bit analog-to-digital converter (ADC) addressed to Silicon-Drift Detectors (SDDs) multichannel readout ASICs for X- and gamma-ray applications is presented. Aiming at digitizing output multiplexed data from the upstream analog filters banks, the converter must ensure 11-bit accuracy and a sampling frequency of about 5 MS/s. The ADC architecture is the charge-redistribution (CR) successive-approximation register (SAR). A fully differential topology has also been chosen for better rejection of common-mode noise and disturbances. The internal DAC is made of binary-scaled capacitors, whose bottom plates are switched by the SAR logic to perform the binary search of the analog input value by means of the monotonic switching scheme. The A/D converter is integrated on SFERA, a multichannel ASIC fabricated in a standard CMOS 0.35 μm 3.3 V technology and it occupies an area of 0.42 mm{sup 2}. Simulated static performance shows monotonicity over the whole input–output characteristic. The description of the circuit topology and of inner blocks architectures together with the experimental characterization is here presented. - Highlights: • X- and γ-ray spectroscopy front-ends need to readout a high number of detectors. • Design efforts are increasingly oriented to compact and low-power ASICs. • A possible solution is the on-chip integration of the analog-to-digital converter. • A 12-bit CR successive-approximation-register ADC has been developed. • It is a suitable candidate as the digitizer to be integrated in multichannel ASICs.

  17. Signal conditioning circuitry design for instrumentation systems.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Cory A.

    2012-01-01

    This report details the current progress in the design, implementation, and validation of the signal conditioning circuitry used in a measurement instrumentation system. The purpose of this text is to document the current progress of a particular design in signal conditioning circuitry in an instrumentation system. The input of the signal conditioning circuitry comes from a piezoresistive transducer and the output will be fed to a 250 ksps, 12-bit analog-to-digital converter (ADC) with an input range of 0-5 V. It is assumed that the maximum differential voltage amplitude input from the sensor is 20 mV with an unknown, but presumably high, sensor bandwidth. This text focuses on a specific design; however, the theory is presented in such a way that this text can be used as a basis for future designs.

  18. Circuit and interconnect design for high bit-rate applications

    NARCIS (Netherlands)

    Veenstra, H.

    2006-01-01

    This thesis presents circuit and interconnect design techniques and design flows that address the most difficult and ill-defined aspects of the design of ICs for high bit-rate applications. Bottlenecks in interconnect design, circuit design and on-chip signal distribution for high bit-rate

  19. Changes realized from extended bit-depth and metal artifact reduction in CT

    Energy Technology Data Exchange (ETDEWEB)

    Glide-Hurst, C.; Chen, D.; Zhong, H.; Chetty, I. J. [Department of Radiation Oncology, Henry Ford Health Systems, Detroit, Michigan 48202 (United States)

    2013-06-15

    Purpose: High-Z material in computed tomography (CT) yields metal artifacts that degrade image quality and may cause substantial errors in dose calculation. This study couples a metal artifact reduction (MAR) algorithm with enhanced 16-bit depth (vs standard 12-bit) to quantify potential gains in image quality and dosimetry. Methods: Extended CT to electron density (CT-ED) curves were derived from a tissue characterization phantom with titanium and stainless steel inserts scanned at 90-140 kVp for 12- and 16-bit reconstructions. MAR was applied to sinogram data (Brilliance BigBore CT scanner, Philips Healthcare, v.3.5). Monte Carlo simulation (MC-SIM) was performed on a simulated double hip prostheses case (Cerrobend rods embedded in a pelvic phantom) using BEAMnrc/Dosxyz (400 000 0000 histories, 6X, 10 Multiplication-Sign 10 cm{sup 2} beam traversing Cerrobend rod). A phantom study was also conducted using a stainless steel rod embedded in solid water, and dosimetric verification was performed with Gafchromic film analysis (absolute difference and gamma analysis, 2% dose and 2 mm distance to agreement) for plans calculated with Anisotropic Analytic Algorithm (AAA, Eclipse v11.0) to elucidate changes between 12- and 16-bit data. Three patients (bony metastases to the femur and humerus, and a prostate cancer case) with metal implants were reconstructed using both bit depths, with dose calculated using AAA and derived CT-ED curves. Planar dose distributions were assessed via matrix analyses and using gamma criteria of 2%/2 mm. Results: For 12-bit images, CT numbers for titanium and stainless steel saturated at 3071 Hounsfield units (HU), whereas for 16-bit depth, mean CT numbers were much larger (e.g., titanium and stainless steel yielded HU of 8066.5 {+-} 56.6 and 13 588.5 {+-} 198.8 for 16-bit uncorrected scans at 120 kVp, respectively). MC-SIM was well-matched between 12- and 16-bit images except downstream of the Cerrobend rod, where 16-bit dose was {approx}6

  20. A 12bits 40MSPS SAR ADC with a redundancy algorithm and digital calibration for the ATLAS LAr calorimeter readout

    CERN Document Server

    Zeloufi, Mohamed; The ATLAS collaboration; Rarbi, Fatah-ellah

    2015-01-01

    We present a SAR ADC with a generalized redundant search algorithm offering the flexibility to relax the requirements on the DAC settling time. The redundancy allows also a digital background calibration, based on a code density analysis, to compensate the capacitors mismatching effects. The total of capacitors used in this architecture is limited to a half of the one in a classical SAR design. Only 2^11 unit capacitors were necessary to reach 12bits resolution, and the switching algorithm is intrinsically monotonic. The design is fully differential featuring 12-bit 40MS/s in a CMOS 130nm 1P8M process.

  1. Image processing on the image with pixel noise bits removed

    Science.gov (United States)

    Chuang, Keh-Shih; Wu, Christine

    1992-06-01

    Our previous studies used statistical methods to assess the noise level in digital images of various radiological modalities. We separated the pixel data into signal bits and noise bits and demonstrated visually that the removal of the noise bits does not affect the image quality. In this paper we apply image enhancement techniques on noise-bits-removed images and demonstrate that the removal of noise bits has no effect on the image property. The image processing techniques used are gray-level look up table transformation, Sobel edge detector, and 3-D surface display. Preliminary results show no noticeable difference between original image and noise bits removed image using look up table operation and Sobel edge enhancement. There is a slight enhancement of the slicing artifact in the 3-D surface display of the noise bits removed image.

  2. Image Watermarking Scheme for Specifying False Positive Probability and Bit-pattern Embedding

    Science.gov (United States)

    Sayama, Kohei; Nakamoto, Masayoshi; Muneyasu, Mitsuji; Ohno, Shuichi

    This paper treats a discrete wavelet transform(DWT)-based image watermarking with considering the false positive probability and bit-pattern embedding. We propose an iterative embedding algorithm of watermarking signals which are K sets pseudo-random numbers generated by a secret key. In the detection, K correlations between the watermarked DWT coefficients and watermark signals are computed by using the secret key. L correlations are made available for the judgment of the watermark presence with specified false positive probability, and the other K-L correlations are corresponding to the bit-pattern signal. In the experiment, we show the detection results with specified false positive probability and the bit-pattern recovery, and the comparison of the proposed method against JPEG compression, scaling down and cropping.

  3. Bit-Grooming: Shave Your Bits with Razor-sharp Precision

    Science.gov (United States)

    Zender, C. S.; Silver, J.

    2017-12-01

    Lossless compression can reduce climate data storage by 30-40%. Further reduction requires lossy compression that also reduces precision. Fortunately, geoscientific models and measurements generate false precision (scientifically meaningless data bits) that can be eliminated without sacrificing scientifically meaningful data. We introduce Bit Grooming, a lossy compression algorithm that removes the bloat due to false-precision, those bits and bytes beyond the meaningful precision of the data.Bit Grooming is statistically unbiased, applies to all floating point numbers, and is easy to use. Bit-Grooming reduces geoscience data storage requirements by 40-80%. We compared Bit Grooming to competitors Linear Packing, Layer Packing, and GRIB2/JPEG2000. The other compression methods have the edge in terms of compression, but Bit Grooming is the most accurate and certainly the most usable and portable.Bit Grooming provides flexible and well-balanced solutions to the trade-offs among compression, accuracy, and usability required by lossy compression. Geoscientists could reduce their long term storage costs, and show leadership in the elimination of false precision, by adopting Bit Grooming.

  4. A single-channel 10-bit 160 MS/s SAR ADC in 65 nm CMOS

    International Nuclear Information System (INIS)

    Lu Yuxiao; Sun Lu; Li Zhe; Zhou Jianjun

    2014-01-01

    This paper demonstrates a single-channel 10-bit 160 MS/s successive-approximation-register (SAR) analog-to-digital converter (ADC) in 65 nm CMOS process with a 1.2 V supply voltage. To achieve high speed, a new window-opening logic based on the asynchronous SAR algorithm is proposed to minimize the logic delay, and a partial set-and-down DAC with binary redundancy bits is presented to reduce the dynamic comparator offset and accelerate the DAC settling. Besides, a new bootstrapped switch with a pre-charge phase is adopted in the track and hold circuits to increase speed and reduce area. The presented ADC achieves 52.9 dB signal-to-noise distortion ratio and 65 dB spurious-free dynamic range measured with a 30 MHz input signal at 160 MHz clock. The power consumption is 9.5 mW and a core die area of 250 × 200 μm 2 is occupied. (semiconductor integrated circuits)

  5. Corrected RMS Error and Effective Number of Bits for Sinewave ADC Tests

    International Nuclear Information System (INIS)

    Jerome J. Blair

    2002-01-01

    A new definition is proposed for the effective number of bits of an ADC. This definition removes the variation in the calculated effective bits when the amplitude and offset of the sinewave test signal is slightly varied. This variation is most pronounced when test signals with amplitudes of a small number of code bin widths are applied to very low noise ADC's. The effectiveness of the proposed definition is compared with that of other proposed definitions over a range of signal amplitudes and noise levels

  6. New roller cone bits with unique nozzle designs reduce drilling costs

    International Nuclear Information System (INIS)

    Moffitt, S.R.; Pearce, D.E.; Ivie, C.R.

    1992-01-01

    This paper reports that selection of the optimum rock bit design to achieve the lowest drilling cost in a given application is often difficult due to a large number of rock bit performance considerations. However, in a majority of applications increased penetration rate is the key consideration in reducing drilling costs. Discovery of a new bit design concept has led to the development of roller cone bits that achieve significant penetration rate increases using superior hydraulic nozzle designs. Prototype designs have achieved 20 to 40% increases in penetration rate with comparable footage drilled when tested in 6 1/2, 8 1/2, 8-3/4, 9-7/8 and 12 1/4 IADC 437, 517 and 537 type bits in the U.S., North Sea, Italy, and Oman. Second-generation designs tested in a full-scale drilling laboratory have delivered 70% increases in penetration rates

  7. Design of the 12-bit Delta-Sigma Modulator using SC Technique for Vibration Sensor Output Processing

    Directory of Open Access Journals (Sweden)

    M. Pavlik

    2012-04-01

    Full Text Available The work deals with the design of the 12-bit Delta-Sigma modulator using switched capacitors (SC technique. The modulator serves to vibration sensor output processing. The first part describes the Delta-Sigma modulator parameters definition. Results of the proposed topology ideal model were presented as well. Next, the Delta-Sigma modulator circuitry on the transistor level was done. The ONSemiconductor I2T100 0.7 um CMOS technology was used for design. Then, the Delta-Sigma modulator nonidealities were simulated and implemented into the MATLAB ideal model of the modulator. The model of real Delta-Sigma modulator was derived. Consequently, modulator coefficients were optimized. Finally, the corner analysis of the Delta-Sigma modulator with the optimized coefficients was simulated. The value of SNDR = 82.2 dB (ENOB = 13.4 bits was achieved.

  8. An optical modulation format generation scheme based on spectral filtering and frequency-to-time mapping

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ai-ling; ZHANG Yue; SONG Hong-yun; YAO Yuan; PAN Hong-gang

    2018-01-01

    An optical modulation format generation scheme based on spectral filtering and frequency-to-time mapping is experimentally demonstrated.Many modulation formats with continuously adjustable duty radio and bit rate can be formed by changing the dispersion of dispersion element and the bandwidth of shaped spectrum in this scheme.In the experiment,non-return-to-zero (NRZ) signal with bit rate of 29.41 Gbit/s and 1/2 duty ratio return-to-zero (RZ) signal with bit rate of 13.51 Gbit/s are obtained.The maximum bit rate of modulation format signal is also analyzed.

  9. Maximum-Entropy Inference with a Programmable Annealer

    Science.gov (United States)

    Chancellor, Nicholas; Szoke, Szilard; Vinci, Walter; Aeppli, Gabriel; Warburton, Paul A.

    2016-03-01

    Optimisation problems typically involve finding the ground state (i.e. the minimum energy configuration) of a cost function with respect to many variables. If the variables are corrupted by noise then this maximises the likelihood that the solution is correct. The maximum entropy solution on the other hand takes the form of a Boltzmann distribution over the ground and excited states of the cost function to correct for noise. Here we use a programmable annealer for the information decoding problem which we simulate as a random Ising model in a field. We show experimentally that finite temperature maximum entropy decoding can give slightly better bit-error-rates than the maximum likelihood approach, confirming that useful information can be extracted from the excited states of the annealer. Furthermore we introduce a bit-by-bit analytical method which is agnostic to the specific application and use it to show that the annealer samples from a highly Boltzmann-like distribution. Machines of this kind are therefore candidates for use in a variety of machine learning applications which exploit maximum entropy inference, including language processing and image recognition.

  10. Real-time Nyquist signaling with dynamic precision and flexible non-integer oversampling.

    Science.gov (United States)

    Schmogrow, R; Meyer, M; Schindler, P C; Nebendahl, B; Dreschmann, M; Meyer, J; Josten, A; Hillerkuss, D; Ben-Ezra, S; Becker, J; Koos, C; Freude, W; Leuthold, J

    2014-01-13

    We demonstrate two efficient processing techniques for Nyquist signals, namely computation of signals using dynamic precision as well as arbitrary rational oversampling factors. With these techniques along with massively parallel processing it becomes possible to generate and receive high data rate Nyquist signals with flexible symbol rates and bandwidths, a feature which is highly desirable for novel flexgrid networks. We achieved maximum bit rates of 252 Gbit/s in real-time.

  11. Novel MGF-based expressions for the average bit error probability of binary signalling over generalized fading channels

    KAUST Repository

    Yilmaz, Ferkan

    2014-04-01

    The main idea in the moment generating function (MGF) approach is to alternatively express the conditional bit error probability (BEP) in a desired exponential form so that possibly multi-fold performance averaging is readily converted into a computationally efficient single-fold averaging - sometimes into a closed-form - by means of using the MGF of the signal-to-noise ratio. However, as presented in [1] and specifically indicated in [2] and also to the best of our knowledge, there does not exist an MGF-based approach in the literature to represent Wojnar\\'s generic BEP expression in a desired exponential form. This paper presents novel MGF-based expressions for calculating the average BEP of binary signalling over generalized fading channels, specifically by expressing Wojnar\\'s generic BEP expression in a desirable exponential form. We also propose MGF-based expressions to explore the amount of dispersion in the BEP for binary signalling over generalized fading channels.

  12. High speed, wide dynamic range analog signal processing for avalanche photodiode

    CERN Document Server

    Walder, J P; Pangaud, P

    2000-01-01

    A wide dynamic range multi-gain analog transimpedance amplifier integrated circuit has been developed for avalanche photodiode signal processing. The 96 dB input dynamic range is divided into four ranges of 12-bits each in order to provide 40 MHz analog sampled data to a 12-bits ADC. This concept which has been integrated in both BiCMOS and full complementary bipolar technology along with fitted design techniques will be presented.

  13. High speed, wide dynamic range analog signal processing for avalanche photodiode

    International Nuclear Information System (INIS)

    Walder, J.P.; El Mamouni, Houmani; Pangaud, Patrick

    2000-01-01

    A wide dynamic range multi-gain analog transimpedance amplifier integrated circuit has been developed for avalanche photodiode signal processing. The 96 dB input dynamic range is divided into four ranges of 12-bits each in order to provide 40 MHz analog sampled data to a 12-bits ADC. This concept which has been integrated in both BiCMOS and full complementary bipolar technology along with fitted design techniques will be presented

  14. High speed, wide dynamic range analog signal processing for avalanche photodiode

    Energy Technology Data Exchange (ETDEWEB)

    Walder, J.P. E-mail: walder@in2p3.fr; El Mamouni, Houmani; Pangaud, Patrick

    2000-03-11

    A wide dynamic range multi-gain analog transimpedance amplifier integrated circuit has been developed for avalanche photodiode signal processing. The 96 dB input dynamic range is divided into four ranges of 12-bits each in order to provide 40 MHz analog sampled data to a 12-bits ADC. This concept which has been integrated in both BiCMOS and full complementary bipolar technology along with fitted design techniques will be presented.

  15. Photonic Ultra-Wideband 781.25-Mb/s Signal Generation and Transmission Incorporating Digital Signal Processing Detection

    DEFF Research Database (Denmark)

    Gibbon, Timothy Braidwood; Yu, Xianbin; Tafur Monroy, Idelfonso

    2009-01-01

    The generation of photonic ultra-wideband (UWB) impulse signals using an uncooled distributed-feedback laser is proposed. For the first time, we experimentally demonstrate bit-for-bit digital signal processing (DSP) bit-error-rate measurements for transmission of a 781.25-Mb/s photonic UWB signal...

  16. Comodulation masking release in bit-rate reduction systems

    DEFF Research Database (Denmark)

    Vestergaard, Martin David; Rasmussen, Karsten Bo; Poulsen, Torben

    1999-01-01

    It has been suggested that the level dependence of the upper masking slope be utilized in perceptual models in bit-rate reduction systems. However, comodulation masking release (CMR) phenomena lead to a reduction of the masking effect when a masker and a probe signal are amplitude modulated...... with the same frequency. In bit-rate reduction systems the masker would be the audio signal and the probe signal would represent the quantization noise. Masking curves have been determined for sinusoids and 1-Bark-wide noise maskers in order to investigate the risk of CMR, when quantizing depths are fixed...... in accordance with psycho-acoustical principles. Masker frequencies of 500 Hz, 1 kHz, and 2 kHz have been investigated, and the masking of pure tone probes has been determined in the first four 1/3 octaves above the masker. Modulation frequencies between 6 and 20 Hz were used with a modulation depth of 0...

  17. BetaBit: A fast generator of autocorrelated binary processes for geophysical research

    Science.gov (United States)

    Serinaldi, Francesco; Lombardo, Federico

    2017-05-01

    We introduce a fast and efficient non-iterative algorithm, called BetaBit, to simulate autocorrelated binary processes describing the occurrence of natural hazards, system failures, and other physical and geophysical phenomena characterized by persistence, temporal clustering, and low rate of occurrence. BetaBit overcomes the simulation constraints posed by the discrete nature of the marginal distributions of binary processes by using the link existing between the correlation coefficients of this process and those of the standard Gaussian processes. The performance of BetaBit is tested on binary signals with power-law and exponentially decaying autocorrelation functions (ACFs) corresponding to Hurst-Kolmogorov and Markov processes, respectively. An application to real-world sequences describing rainfall intermittency and the occurrence of strong positive phases of the North Atlantic Oscillation (NAO) index shows that BetaBit can also simulate surrogate data preserving the empirical ACF as well as signals with autoregressive moving average (ARMA) dependence structures. Extensions to cyclo-stationary processes accounting for seasonal fluctuations are also discussed.

  18. A novel frame-level constant-distortion bit allocation for smooth H.264/AVC video quality

    Science.gov (United States)

    Liu, Li; Zhuang, Xinhua

    2009-01-01

    It is known that quality fluctuation has a major negative effect on visual perception. In previous work, we introduced a constant-distortion bit allocation method [1] for H.263+ encoder. However, the method in [1] can not be adapted to the newest H.264/AVC encoder directly as the well-known chicken-egg dilemma resulted from the rate-distortion optimization (RDO) decision process. To solve this problem, we propose a new two stage constant-distortion bit allocation (CDBA) algorithm with enhanced rate control for H.264/AVC encoder. In stage-1, the algorithm performs RD optimization process with a constant quantization QP. Based on prediction residual signals from stage-1 and target distortion for smooth video quality purpose, the frame-level bit target is allocated by using a close-form approximations of ratedistortion relationship similar to [1], and a fast stage-2 encoding process is performed with enhanced basic unit rate control. Experimental results show that, compared with original rate control algorithm provided by H.264/AVC reference software JM12.1, the proposed constant-distortion frame-level bit allocation scheme reduces quality fluctuation and delivers much smoother PSNR on all testing sequences.

  19. BitPAl: a bit-parallel, general integer-scoring sequence alignment algorithm.

    Science.gov (United States)

    Loving, Joshua; Hernandez, Yozen; Benson, Gary

    2014-11-15

    Mapping of high-throughput sequencing data and other bulk sequence comparison applications have motivated a search for high-efficiency sequence alignment algorithms. The bit-parallel approach represents individual cells in an alignment scoring matrix as bits in computer words and emulates the calculation of scores by a series of logic operations composed of AND, OR, XOR, complement, shift and addition. Bit-parallelism has been successfully applied to the longest common subsequence (LCS) and edit-distance problems, producing fast algorithms in practice. We have developed BitPAl, a bit-parallel algorithm for general, integer-scoring global alignment. Integer-scoring schemes assign integer weights for match, mismatch and insertion/deletion. The BitPAl method uses structural properties in the relationship between adjacent scores in the scoring matrix to construct classes of efficient algorithms, each designed for a particular set of weights. In timed tests, we show that BitPAl runs 7-25 times faster than a standard iterative algorithm. Source code is freely available for download at http://lobstah.bu.edu/BitPAl/BitPAl.html. BitPAl is implemented in C and runs on all major operating systems. jloving@bu.edu or yhernand@bu.edu or gbenson@bu.edu Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press.

  20. Bit-rate-transparent optical RZ-to-NRZ format conversion based on linear spectral phase filtering

    DEFF Research Database (Denmark)

    Maram, Reza; Da Ros, Francesco; Guan, Pengyu

    2017-01-01

    We propose a novel and strikingly simple design for all-optical bit-rate-transparent RZ-to-NRZ conversion based on optical phase filtering. The proposed concept is experimentally validated through format conversion of a 640 Gbit/s coherent RZ signal to NRZ signal.......We propose a novel and strikingly simple design for all-optical bit-rate-transparent RZ-to-NRZ conversion based on optical phase filtering. The proposed concept is experimentally validated through format conversion of a 640 Gbit/s coherent RZ signal to NRZ signal....

  1. A new 12-bit spectroscopy analog-to-digital converter type SAA intended for CAMAC acquisition systems

    International Nuclear Information System (INIS)

    Borsuk, S.; Kulka, Z.

    1989-12-01

    A new 12-bit spectroscopy analog-to-digital converter (ADC) type SAA (Successive Approximation type with channel width Averaging) intended for CAMAC acquisition systems is decsribed. ADC type SAA initiates new series of spectroscopy ADC's based on a binary-approximation method in which differential nonlinearity is corrected by a statistical channel width averaging method. The structure and principle of operation, as well as some circuit realizations and specifications of the new converter are described. 41 refs., 5 figs. (author)

  2. Bit-depth scalable video coding with new inter-layer prediction

    Directory of Open Access Journals (Sweden)

    Chiang Jui-Chiu

    2011-01-01

    Full Text Available Abstract The rapid advances in the capture and display of high-dynamic range (HDR image/video content make it imperative to develop efficient compression techniques to deal with the huge amounts of HDR data. Since HDR device is not yet popular for the moment, the compatibility problems should be considered when rendering HDR content on conventional display devices. To this end, in this study, we propose three H.264/AVC-based bit-depth scalable video-coding schemes, called the LH scheme (low bit-depth to high bit-depth, the HL scheme (high bit-depth to low bit-depth, and the combined LH-HL scheme, respectively. The schemes efficiently exploit the high correlation between the high and the low bit-depth layers on the macroblock (MB level. Experimental results demonstrate that the HL scheme outperforms the other two schemes in some scenarios. Moreover, it achieves up to 7 dB improvement over the simulcast approach when the high and low bit-depth representations are 12 bits and 8 bits, respectively.

  3. Signal shape registration in the JINR synchrophasotron slowly extracted beam parameter control system

    International Nuclear Information System (INIS)

    Volkov, V.I.; Kulikov, I.I.; Romanov, S.V.

    1982-01-01

    Signal shape registration in the JINR synchrophasotron slowly estracted beam parameter control system on-line with the ES-1010 computer is described. 32 input signals can be connected to the registrator. The maximum measurement rate of signal shape registration is about 38 kHz. The registrator consists of 32-channel analog multiplexer, 10-bit analog-to-digital converter, 1024-word buffer memory and control circuits. For information representation the colour TV monitor is used

  4. A channel multiplexing for the analog input channel of the advantech PCL-718 ADC-12 bit by using PCLD-889 programmable ampliplexer / multiplexer board have been done

    International Nuclear Information System (INIS)

    Sudiyanto; Aminus, S; Sujono, Djoko; Ngatinu; Sudaryanto; Wiyana, Badi

    1996-01-01

    A channel multiplexing for the analog input channels of the Advantech PCL-718 ADC-12 bit by using PCLD-889 programmable Amplifier / multiplexer board have been done. The experiments have been prepared by using Turbo-C software where every PCLD-889 board multiplexes 16 differential input channels into one analog output channel, up to 10 PCLD-889 can be cascaded to expand the analog input of PCL-718 ADC-12 bit to 8 x 16 channels

  5. Quantum bit commitment with cheat sensitive binding and approximate sealing

    Science.gov (United States)

    Li, Yan-Bing; Xu, Sheng-Wei; Huang, Wei; Wan, Zong-Jie

    2015-04-01

    This paper proposes a cheat-sensitive quantum bit commitment scheme based on single photons, in which Alice commits a bit to Bob. Here, Bob’s probability of success at cheating as obtains the committed bit before the opening phase becomes close to \\frac{1}{2} (just like performing a guess) as the number of single photons used is increased. And if Alice alters her committed bit after the commitment phase, her cheating will be detected with a probability that becomes close to 1 as the number of single photons used is increased. The scheme is easy to realize with present day technology.

  6. A 9-Bit 50 MSPS Quadrature Parallel Pipeline ADC for Communication Receiver Application

    Science.gov (United States)

    Roy, Sounak; Banerjee, Swapna

    2018-03-01

    This paper presents the design and implementation of a pipeline Analog-to-Digital Converter (ADC) for superheterodyne receiver application. Several enhancement techniques have been applied in implementing the ADC, in order to relax the target specifications of its building blocks. The concepts of time interleaving and double sampling have been used simultaneously to enhance the sampling speed and to reduce the number of amplifiers used in the ADC. Removal of a front end sample-and-hold amplifier is possible by employing dynamic comparators with switched capacitor based comparison of input signal and reference voltage. Each module of the ADC comprises two 2.5-bit stages followed by two 1.5-bit stages and a 3-bit flash stage. Four such pipeline ADC modules are time interleaved using two pairs of non-overlapping clock signals. These two pairs of clock signals are in phase quadrature with each other. Hence the term quadrature parallel pipeline ADC has been used. These configurations ensure that the entire ADC contains only eight operational-trans-conductance amplifiers. The ADC is implemented in a 0.18-μm CMOS process and supply voltage of 1.8 V. The proto-type is tested at sampling frequencies of 50 and 75 MSPS producing an Effective Number of Bits (ENOB) of 6.86- and 6.11-bits respectively. At peak sampling speed, the core ADC consumes only 65 mW of power.

  7. Compact FPGA-based beamformer using oversampled 1-bit A/D converters

    DEFF Research Database (Denmark)

    Tomov, Borislav Gueorguiev; Jensen, Jørgen Arendt

    2005-01-01

    A compact medical ultrasound beamformer architecture that uses oversampled 1-bit analog-to-digital (A/D) converters is presented. Sparse sample processing is used, as the echo signal for the image lines is reconstructed in 512 equidistant focal points along the line through its in-phase and quadr......% of the available logic resources in a commercially available midrange FPGA, and to be able to operate at 129 MHz. Simulation of the architecture at 140 MHz provides images with a dynamic range approaching 60 dB for an excitation frequency of 3 MHz.......A compact medical ultrasound beamformer architecture that uses oversampled 1-bit analog-to-digital (A/D) converters is presented. Sparse sample processing is used, as the echo signal for the image lines is reconstructed in 512 equidistant focal points along the line through its in......-phase and quadrature components. That information is sufficient for presenting a B-mode image and creating a color flow map. The high sampling rate provides the necessary delay resolution for the focusing. The low channel data width (1-bit) makes it possible to construct a compact beamformer logic. The signal...

  8. High bit depth infrared image compression via low bit depth codecs

    DEFF Research Database (Denmark)

    Belyaev, Evgeny; Mantel, Claire; Forchhammer, Søren

    2017-01-01

    images via 8 bit depth codecs in the following way. First, an input 16 bit depth image is mapped into 8 bit depth images, e.g., the first image contains only the most significant bytes (MSB image) and the second one contains only the least significant bytes (LSB image). Then each image is compressed.......264/AVC codecs, which are usually available in efficient implementations, and compare their rate-distortion performance with JPEG2000, JPEG-XT and H.265/HEVC codecs supporting direct compression of infrared images in 16 bit depth format. A preliminary result shows that two 8 bit H.264/AVC codecs can...

  9. A radiation-hard dual-channel 12-bit 40 MS/s ADC prototype for the ATLAS liquid argon calorimeter readout electronics upgrade at the CERN LHC

    Energy Technology Data Exchange (ETDEWEB)

    Kuppambatti, J. [Columbia University, Dept. of Electrical Engineering, New York, NY (United States); Ban, J. [Columbia University, Nevis Laboratories, Irvington, NY (United States); Andeen, T., E-mail: tandeen@utexas.edu [Columbia University, Nevis Laboratories, Irvington, NY (United States); Brown, R.; Carbone, R. [Columbia University, Nevis Laboratories, Irvington, NY (United States); Kinget, P. [Columbia University, Dept. of Electrical Engineering, New York, NY (United States); Brooijmans, G.; Sippach, W. [Columbia University, Nevis Laboratories, Irvington, NY (United States)

    2017-05-21

    The readout electronics upgrade for the ATLAS Liquid Argon Calorimeters at the CERN Large Hadron Collider requires a radiation-hard ADC. The design of a radiation-hard dual-channel 12-bit 40 MS/s pipeline ADC for this use is presented. The design consists of two pipeline A/D channels each with four Multiplying Digital-to-Analog Converters followed by 8-bit Successive-Approximation-Register analog-to-digital converters. The custom design, fabricated in a commercial 130 nm CMOS process, shows a performance of 67.9 dB SNDR at 10 MHz for a single channel at 40 MS/s, with a latency of 87.5 ns (to first bit read out), while its total power consumption is 50 mW/channel. The chip uses two power supply voltages: 1.2 and 2.5 V. The sensitivity to single event effects during irradiation is measured and determined to meet the system requirements.

  10. Average bit error probability of binary coherent signaling over generalized fading channels subject to additive generalized gaussian noise

    KAUST Repository

    Soury, Hamza

    2012-06-01

    This letter considers the average bit error probability of binary coherent signaling over flat fading channels subject to additive generalized Gaussian noise. More specifically, a generic closed form expression in terms of the Fox\\'s H function is offered for the extended generalized-K fading case. Simplifications for some special fading distributions such as generalized-K fading and Nakagami-m fading and special additive noise distributions such as Gaussian and Laplacian noise are then presented. Finally, the mathematical formalism is illustrated by some numerical examples verified by computer based simulations for a variety of fading and additive noise parameters. © 2012 IEEE.

  11. A 16-bit sigma-delta modulator applied in micro-machined inertial sensors

    Science.gov (United States)

    Honglin, Xu; Qiang, Fu; Hongna, Liu; Liang, Yin; Pengfei, Wang; Xiaowei, Liu

    2014-04-01

    A fourth-order low-distortion low-pass sigma-delta (ΣΔ) modulator is presented for micro-machined inertial sensors. The proposed single-loop single-bit feedback modulator is optimized with a feed-forward path to decrease the nonlinearities and power consumption. The IC is implemented in a standard 0.6 μm CMOS technology and operates at a sampling frequency of 3.846 MHz. The chip area is 2.12 mm2 with 23 pads. The experimental results indicate a signal-to-noise ratio (SNR) of 100 dB and dynamic range (DR) of 103 dB at an oversampling rate (OSR) of 128 with the input signal amplitude of -3.88 dBFS at 9.8 kHz; the power consumption is 15 mW at a 5 V supply.

  12. A 16-bit sigma–delta modulator applied in micro-machined inertial sensors

    International Nuclear Information System (INIS)

    Xu Honglin; Fu Qiang; Liu Hongna; Yin Liang; Wang Pengfei; Liu Xiaowei

    2014-01-01

    A fourth-order low-distortion low-pass sigma–delta (ΣΔ) modulator is presented for micro-machined inertial sensors. The proposed single-loop single-bit feedback modulator is optimized with a feed-forward path to decrease the nonlinearities and power consumption. The IC is implemented in a standard 0.6 μm CMOS technology and operates at a sampling frequency of 3.846 MHz. The chip area is 2.12 mm 2 with 23 pads. The experimental results indicate a signal-to-noise ratio (SNR) of 100 dB and dynamic range (DR) of 103 dB at an oversampling rate (OSR) of 128 with the input signal amplitude of −3.88 dBFS at 9.8 kHz; the power consumption is 15 mW at a 5 V supply. (semiconductor integrated circuits)

  13. A Novel Digital Background Calibration Technique for 16 bit SHA-less Multibit Pipelined ADC

    Directory of Open Access Journals (Sweden)

    Swina Narula

    2016-01-01

    Full Text Available In this paper, a high resolution of 16 bit and high speed of 125MS/s, multibit Pipelined ADC with digital background calibration is presented. In order to achieve low power, SHA-less front end is used with multibit stages. The first and second stages are used here as a 3.5 bit and the stages from third to seventh are of 2.5 bit and last stage is of 3-bit flash ADC. After bit alignment and truncation of total 19 bits, 16 bits are used as final digital output. To precise the remove linear gain error of the residue amplifier and capacitor mismatching error, a digital background calibration technique is used, which is a combination of signal dependent dithering (SDD and butterfly shuffler. To improve settling time of residue amplifier, a special circuit of voltage separation is used. With the proposed digital background calibration technique, the spurious-free dynamic range (SFDR has been improved to 97.74 dB @30 MHz and 88.9 dB @150 MHz, and the signal-to-noise and distortion ratio (SNDR has been improved to 79.77 dB @ 30 MHz, and 73.5 dB @ 150 MHz. The implementation of the Pipelined ADC has been completed with technology parameters of 0.18μm CMOS process with 1.8 V supply. Total power consumption is 300 mW by the proposed ADC.

  14. Robust 9-QAM digital recovery for spectrum shaped coherent QPSK signal

    DEFF Research Database (Denmark)

    Huang, Bo; Zhang, Junwen; Yu, Jianjun

    2013-01-01

    division multiplexing (NWDM). The final equalized signal is detected by maximum likelihood sequence decision (MLSD) for data bit-error-ratio (BER) measurement. Optical signal-to-noise ratio (OSNR) tolerance is improved by 0.5 dB at a BER of 1x10-3 compared to constant modulus algorithm (CMA) plus post......We propose 9-ary quadrature amplitude modulation (9-QAM) data recovery for polarization multiplexing-quadrature phase shift keying (PM-QPSK) signal in presence of strong filtering to approach Nyquist bandwidth. The decision-directed least radius distance (DD-LRD) algorithm for blind equalization...

  15. A 100 MS/s 9 bit 0.43 mW SAR ADC with custom capacitor array

    Science.gov (United States)

    Jingjing, Wang; Zemin, Feng; Rongjin, Xu; Chixiao, Chen; Fan, Ye; Jun, Xu; Junyan, Ren

    2016-05-01

    A low power 9 bit 100 MS/s successive approximation register analog-to-digital converter (SAR ADC) with custom capacitor array is presented. A brand-new 3-D MOM unit capacitor is used as the basic capacitor cell of this capacitor array. The unit capacitor has a capacitance of 1 fF. Besides, the advanced capacitor array structure and switch mode decrease the power consumption a lot. To verify the effectiveness of this low power design, the 9 bit 100 MS/s SAR ADC is implemented in TSMC IP9M 65 nm LP CMOS technology. The measurement results demonstrate that this design achieves an effective number of bits (ENOB) of 7.4 bit, a signal-to-noise plus distortion ratio (SNDR) of 46.40 dB and a spurious-free dynamic range (SFDR) of 62.31 dB at 100 MS/s with 1 MHz input. The SAR ADC core occupies an area of 0.030 mm2 and consumes 0.43 mW under a supply voltage of 1.2 V. The figure of merit (FOM) of the SAR ADC achieves 23.75 fJ/conv. Project supported by the National High-Tech Research and Development Program of China (No. 2013AA014101).

  16. Extracting volatility signal using maximum a posteriori estimation

    Science.gov (United States)

    Neto, David

    2016-11-01

    This paper outlines a methodology to estimate a denoised volatility signal for foreign exchange rates using a hidden Markov model (HMM). For this purpose a maximum a posteriori (MAP) estimation is performed. A double exponential prior is used for the state variable (the log-volatility) in order to allow sharp jumps in realizations and then log-returns marginal distributions with heavy tails. We consider two routes to choose the regularization and we compare our MAP estimate to realized volatility measure for three exchange rates.

  17. NRL 12-Bit, 213 Msps ADC HSAD9 MCM Evaluation Board

    National Research Council Canada - National Science Library

    Thai, Khanh

    1999-01-01

    The MCM Evaluation Board is a 6" by 6" test fixture designed for evaluating the HSAD9 MCM, a completely self contained ADC multichip module that digitizes incoming differential analog signals to 12...

  18. 12-bit 32 channel 500 MS/s low-latency ADC for particle accelerators real-time control

    Science.gov (United States)

    Karnitski, Anton; Baranauskas, Dalius; Zelenin, Denis; Baranauskas, Gytis; Zhankevich, Alexander; Gill, Chris

    2017-09-01

    Particle beam control systems require real-time low latency digital feedback with high linearity and dynamic range. Densely packed electronic systems employ high performance multichannel digitizers causing excessive heat dissipation. Therefore, low power dissipation is another critical requirement for these digitizers. A described 12-bit 500 MS/s ADC employs a sub-ranging architecture based on a merged sample & hold circuit, a residue C-DAC and a shared 6-bit flash core ADC. The core ADC provides a sequential coarse and fine digitization featuring a latency of two clock cycles. The ADC is implemented in a 28 nm CMOS process and consumes 4 mW of power per channel from a 0.9 V supply (interfacing and peripheral circuits are excluded). Reduced power consumption and small on-chip area permits the implementation of 32 ADC channels on a 10.7 mm2 chip. The ADC includes a JESD204B standard compliant output data interface operated at the 7.5 Gbps/ch rate. To minimize the data interface related time latency, a special feature permitting to bypass the JESD204B interface is built in. DoE Phase I Award Number: DE-SC0017213.

  19. High performance 14-bit pipelined redundant signed digit ADC

    International Nuclear Information System (INIS)

    Narula, Swina; Pandey, Sujata

    2016-01-01

    A novel architecture of a pipelined redundant-signed-digit analog to digital converter (RSD-ADC) is presented featuring a high signal to noise ratio (SNR), spurious free dynamic range (SFDR) and signal to noise plus distortion (SNDR) with efficient background correction logic. The proposed ADC architecture shows high accuracy with a high speed circuit and efficient utilization of the hardware. This paper demonstrates the functionality of the digital correction logic of 14-bit pipelined ADC at each 1.5 bit/stage. This prototype of ADC architecture accounts for capacitor mismatch, comparator offset and finite Op-Amp gain error in the MDAC (residue amplification circuit) stages. With the proposed architecture of ADC, SNDR obtained is 85.89 dB, SNR is 85.9 dB and SFDR obtained is 102.8 dB at the sample rate of 100 MHz. This novel architecture of digital correction logic is transparent to the overall system, which is demonstrated by using 14-bit pipelined ADC. After a latency of 14 clocks, digital output will be available at every clock pulse. To describe the circuit behavior of the ADC, VHDL and MATLAB programs are used. The proposed architecture is also capable of reducing the digital hardware. Silicon area is also the complexity of the design. (paper)

  20. A Holistic Approach to Bit Preservation

    DEFF Research Database (Denmark)

    Zierau, Eld Maj-Britt Olmütz

    2011-01-01

    This thesis presents three main results for a holistic approach to bit preservation, where the ultimate goal is to find the optimal bit preservation strategy for specific digital material that must be digitally preserved. Digital material consists of sequences of bits, where a bit is a binary digit...... which can have the value 0 or 1. Bit preservation must ensure that the bits remain intact and readable in the future, but bit preservation is not concerned with how bits can be interpreted as e.g. an image. A holistic approach to bit preservation includes aspects that influence the final choice of a bit...... a holistic approach and include aspects of digital representation, confidentiality, availability, bit safety and costs when defining requirements for the bit preservation. Analysis of such requirements and choice of the final bit preservation solution can be supported by the three main results presented...

  1. Rate Control for MPEG-4 Bit Stream

    Institute of Scientific and Technical Information of China (English)

    王振洲; 李桂苓

    2003-01-01

    For a very long time video processing dealt exclusively with fixed-rate sequences of rectangular shaped images. However, interest has been recently moving toward a more flexible concept in which the subject of the processing and encoding operations is a set of visual elements organized in both time and space in a flexible and arbitrarily complex way. The moving picture experts group (MPEG-4) standard supports this concept and its verification model (VM) encoder has adopted scalable rate control (SRC) as the rate control scheme, which is based on the spatial domain and compatible with constant bit rate (CBR) and variable bit rate (VBR). In this paper,a new rate control algorithm based on the DCT domain instead of the pixel domain is presented. More-over, macroblock level rate control scheme to compute the quantization step for each macroblock has been adopted. The experimental results show that the new algorithm can achieve a much better result than the original one in both peak signal-to-noise ratio (PSNR) and the coding bits, and that the new algorithm is more flexible than test model 5 (TM5) rate control algorithm.

  2. Design of a 12-bit 80-MS/s CMOS digital-to-analog converter for PLC-VDSL applications

    Science.gov (United States)

    Ruiz-Amaya, Jesus; Delgado-Restituto, Manuel; Fernandez-Bootello, J. Francisco; de la Rosa, Jose M.

    2005-06-01

    This paper describes the design of a 12-bit 80MS/s Digital-to-Analog converter implemented in 0.13mm CMOS logic technology. The design has been computer-aided by a developed toolbox for the simulation and verification of Nyquist-Rate Analog-to-Digital and Digital-to-Analog converters in MATLAB. The embedded simulator uses SIMULINK C-coded S-functions to model all required subcircuits including their main error mechanisms. This approach allows to drastically speed up the simulation CPU-time and makes the proposed tool an advantageous alternative for fast exploration of requirements and as a design validation tool. The converter is segmented in a unary current-cell matrix for 8 MSB's and a binary-weighted array for 4 LSB's. Current sources of the converter are laid out separately from current-cell switching matrix core block and distribute in double centroid to reduce random errors and transient noise coupling. The linearity errors caused by remaining gradient errors are reduced by a modified Q2 Random-Walk switching sequence. Simulation results show that the Spurious-Free Dynamic-Range is better than 58.5dB up to 80MS/s. The estimated Signal-to-Noise Distortion Ratio yield is 99.7% and it is supposed to be better than 58dB from DC to Nyquist frequency. Multi-Tone Power Ratio is higher 59dB for several DMT test signals. The converter dissipates less than 129mW from a 3.3V supply and occupies less than 1.7mm2 die area. The results have been checked with all process corners from -40° to 85° and power supply from 3V to 3.6V.

  3. Practical Relativistic Bit Commitment

    NARCIS (Netherlands)

    Lunghi, T.; Kaniewski, J.; Bussières, F.; Houlmann, R.; Tomamichel, M.; Wehner, S.D.C.; Zbinden, H

    2015-01-01

    Bit commitment is a fundamental cryptographic primitive in which Alice wishes to commit a secret bit to Bob. Perfectly secure bit commitment between two mistrustful parties is impossible through an asynchronous exchange of quantum information. Perfect security is, however, possible when Alice and

  4. Twelve-bit 20-GHz reduced size pipeline accumulator in 0.25 µm SiGe:C technology for direct digital synthesiser applications

    DEFF Research Database (Denmark)

    Jensen, Brian Sveistrup; Khafaji, M. Mahdi; Johansen, Tom Keinicke

    2012-01-01

    /Fmax of 180/220 GHz respectively. The accumulator architecture omits the pre-skewing registers of the pipeline, thereby lowering both power consumption and circuit complexity. Some limitations to this design are discussed and the necessary equations for determining the phase jump encountered each time......This article presents a 20 GHz, 12-bit pipeline accumulator with a reduced number of registers, suitable for direct digital synthesizer (DDS) applications. The accumulator is implemented in the IHP SG25H1 (0.25um) SiGe:C technology featuring heterojunction bipolar transistors (HBT) with Ft...... the control word (synthesized frequency) is changed are presented. For many applications employing signal processing after detection, this phase shift can then be corrected for. Compared to a full pipeline architecture, the implemented 12-bit accumulator reduces the number of registers by 55% and the power...

  5. Bit Grooming: statistically accurate precision-preserving quantization with compression, evaluated in the netCDF Operators (NCO, v4.4.8+)

    Science.gov (United States)

    Zender, Charles S.

    2016-09-01

    Geoscientific models and measurements generate false precision (scientifically meaningless data bits) that wastes storage space. False precision can mislead (by implying noise is signal) and be scientifically pointless, especially for measurements. By contrast, lossy compression can be both economical (save space) and heuristic (clarify data limitations) without compromising the scientific integrity of data. Data quantization can thus be appropriate regardless of whether space limitations are a concern. We introduce, implement, and characterize a new lossy compression scheme suitable for IEEE floating-point data. Our new Bit Grooming algorithm alternately shaves (to zero) and sets (to one) the least significant bits of consecutive values to preserve a desired precision. This is a symmetric, two-sided variant of an algorithm sometimes called Bit Shaving that quantizes values solely by zeroing bits. Our variation eliminates the artificial low bias produced by always zeroing bits, and makes Bit Grooming more suitable for arrays and multi-dimensional fields whose mean statistics are important. Bit Grooming relies on standard lossless compression to achieve the actual reduction in storage space, so we tested Bit Grooming by applying the DEFLATE compression algorithm to bit-groomed and full-precision climate data stored in netCDF3, netCDF4, HDF4, and HDF5 formats. Bit Grooming reduces the storage space required by initially uncompressed and compressed climate data by 25-80 and 5-65 %, respectively, for single-precision values (the most common case for climate data) quantized to retain 1-5 decimal digits of precision. The potential reduction is greater for double-precision datasets. When used aggressively (i.e., preserving only 1-2 digits), Bit Grooming produces storage reductions comparable to other quantization techniques such as Linear Packing. Unlike Linear Packing, whose guaranteed precision rapidly degrades within the relatively narrow dynamic range of values that

  6. Configurable Electronics with Low Noise and 14-bit Dynamic Range for Photodiode-based Photon Detectors

    CERN Document Server

    Müller, H; Yin, Z; Zhou, D; Cao, X; Li, Q; Liu, Y; Zou, F; Skaali, B; Awes, T C

    2006-01-01

    We describe the principles and measured performance characteristics of custom configurable 32-channel shaper/digitizer Front End Electronics (FEE) cards with 14-bit dynamic range for use with gain-adjustable photon detectors. The electronics has been designed for the PHOS calorimeter of ALICE with avalanche photodiode (APD) readout operated at -25 C ambient temperature and a signal shaping time of $1 {\\mu}s$. The electronics has also been adopted by the EMCal detector of ALICE with the same APD readout, but operated at an ambient temperature of +20 C and with a shaping time of 100ns. The CR-RC2 signal shapers on the FEE cards are implemented in discrete logic on a 10-layer board with two shaper sections for each input channel. The two shaper sections with gain ratio of 16:1 are digitized by 10-bit ADCs and provide an effective dynamic range of 14 bits. Gain adjustment for each individual APD is available through 32 bias voltage control registers of 10-bit range. The fixed gains and shaping times of the pole-z...

  7. 12-channel flash-ADC FASTBUS module

    International Nuclear Information System (INIS)

    Kuznetsov, A.A.; Rychenkov, V.I.; Sen'ko, V.A.; Sidorov, A.V.

    1992-01-01

    The slave module intended for digitizing the shape of single signals in 12-channels at once, is described. The module is designed on the base of FADC integrated circuits KR1107PV5A and memory chips K1500RU073. Resolution is 6 bit with up to 90 MHz sampling frequency. 5 refs.; 3 figs

  8. Digital Signal Processing for Optical Coherent Communication Systems

    DEFF Research Database (Denmark)

    Zhang, Xu

    spectrum narrowing tolerance 112-Gb/s DP-QPSK optical coherent systems using digital adaptive equalizer. The demonstrated results show that off-line DSP algorithms are able to reduce the bit error rate (BER) penalty induced by signal spectrum narrowing. Third, we also investigate bi...... wavelength division multiplex (U-DWDM) optical coherent systems based on 10-Gbaud QPSK. We report U-DWDM 1.2-Tb/s QPSK coherent system achieving spectral efficiency of 4.0-bit/s/Hz. In the experimental demonstration, digital decision feed back equalizer (DFE) algorithms and a finite impulse response (FIR......In this thesis, digital signal processing (DSP) algorithms are studied to compensate for physical layer impairments in optical fiber coherent communication systems. The physical layer impairments investigated in this thesis include optical fiber chromatic dispersion, polarization demultiplexing...

  9. Quantum dynamics of quantum bits

    International Nuclear Information System (INIS)

    Nguyen, Bich Ha

    2011-01-01

    The theory of coherent oscillations of the matrix elements of the density matrix of the two-state system as a quantum bit is presented. Different calculation methods are elaborated in the case of a free quantum bit. Then the most appropriate methods are applied to the study of the density matrices of the quantum bits interacting with a classical pumping radiation field as well as with the quantum electromagnetic field in a single-mode microcavity. The theory of decoherence of a quantum bit in Markovian approximation is presented. The decoherence of a quantum bit interacting with monoenergetic photons in a microcavity is also discussed. The content of the present work can be considered as an introduction to the study of the quantum dynamics of quantum bits. (review)

  10. A Model of Computation for Bit-Level Concurrent Computing and Programming: APEC

    Science.gov (United States)

    Ajiro, Takashi; Tsuchida, Kensei

    A concurrent model of computation and a language based on the model for bit-level operation are useful for developing asynchronous and concurrent programs compositionally, which frequently use bit-level operations. Some examples are programs for video games, hardware emulation (including virtual machines), and signal processing. However, few models and languages are optimized and oriented to bit-level concurrent computation. We previously developed a visual programming language called A-BITS for bit-level concurrent programming. The language is based on a dataflow-like model that computes using processes that provide serial bit-level operations and FIFO buffers connected to them. It can express bit-level computation naturally and develop compositionally. We then devised a concurrent computation model called APEC (Asynchronous Program Elements Connection) for bit-level concurrent computation. This model enables precise and formal expression of the process of computation, and a notion of primitive program elements for controlling and operating can be expressed synthetically. Specifically, the model is based on a notion of uniform primitive processes, called primitives, that have three terminals and four ordered rules at most, as well as on bidirectional communication using vehicles called carriers. A new notion is that a carrier moving between two terminals can briefly express some kinds of computation such as synchronization and bidirectional communication. The model's properties make it most applicable to bit-level computation compositionally, since the uniform computation elements are enough to develop components that have practical functionality. Through future application of the model, our research may enable further research on a base model of fine-grain parallel computer architecture, since the model is suitable for expressing massive concurrency by a network of primitives.

  11. Modeling of Bit Error Rate in Cascaded 2R Regenerators

    DEFF Research Database (Denmark)

    Öhman, Filip; Mørk, Jesper

    2006-01-01

    and the regenerating nonlinearity is investigated. It is shown that an increase in nonlinearity can compensate for an increase in noise figure or decrease in signal power. Furthermore, the influence of the improvement in signal extinction ratio along the cascade and the importance of choosing the proper threshold......This paper presents a simple and efficient model for estimating the bit error rate in a cascade of optical 2R-regenerators. The model includes the influences of of amplifier noise, finite extinction ratio and nonlinear reshaping. The interplay between the different signal impairments...

  12. Very Low-Cost 80-Bit Chipless-RFID Tags Inkjet Printed on Ordinary Paper

    Directory of Open Access Journals (Sweden)

    Cristian Herrojo

    2018-05-01

    Full Text Available This paper presents a time-domain, chipless-RFID system with 80-bit tags inkjet-printed on ordinary DIN A4 paper. The tags, consisting of a linear chain of resonant elements (with as many resonators as the number of identification bits plus header bits, are read sequentially and by proximity (through near-field coupling. To this end, a transmission line, fed by a harmonic (interrogation signal tuned to the resonance frequency of the tag resonators (or close to it, is used as a reader. Thus, during reader operation, the tag chain is mechanically shifted over the transmission line so that the coupling between the line and the functional resonant elements of the tag chain is favored. Logic states that ‘1’ and ‘0’ are determined by the functionality and non-functionality (resonator detuning, respectively, of the resonant elements of the chain. Through near-field coupling, the transmission coefficient of the line is modulated and, as a result, the output signal is modulated in amplitude (AM, which is the identification code contained in the envelope function. As long as the tags are inkjet-printed on ordinary DIN A4 paper, the cost is minimal. Moreover, such tags can be easily programmed and erased, so that identical tags can be fabricated on a large scale (and programmed at a later stage, further reducing the cost of manufacture. The reported prototype tags, with 80 bits of information plus four header bits, demonstrate the potential of this approach, which is of particular interest to secure paper applications.

  13. A low power 12-bit ADC for nuclear instrumentation

    International Nuclear Information System (INIS)

    Adachi, R.; Landis, D.; Madden, N.; Silver, E.; LeGros, M.

    1992-10-01

    A low power, successive approximation, analog-to-digital converter (ADC) for low rate, low cost, battery powered applications is described. The ADC is based on a commercial 50 mW successive approximation CMOS device (CS5102). An on-chip self-calibration circuit reduces the inherent differential nonlinearity to 7%. A further reduction of the differential nonlinearity to 0.5% is attained with a four bit Gatti function. The Gatti function is distributed to minimize battery power consumption. All analog functions reside with the ADC while the noisy digital functions reside in the personal computer based histogramming memory. Fiber optic cables carry afl digital information between the ADC and the personal computer based histogramming memory

  14. Miniaturized module for the wireless transmission of measurements with Bluetooth.

    Science.gov (United States)

    Roth, H; Schwaibold, M; Moor, C; Schöchlin, J; Bolz, A

    2002-01-01

    The wiring of patients for obtaining medical measurements has many disadvantages. In order to limit these, a miniaturized module was developed which digitalizes analog signals and sends the signal wirelessly to the receiver using Bluetooth. Bluetooth is especially suitable for this application because distances of up to 10 m are possible with low power consumption and robust transmission with encryption. The module consists of a Bluetooth chip, which is initialized in such a way by a microcontroller that connections from other bluetooth receivers can be accepted. The signals are then transmitted to the distant end. The maximum bit rate of the 23 mm x 30 mm module is 73.5 kBit/s. At 4.7 kBit/s, the current consumption is 12 mA.

  15. Stinger Enhanced Drill Bits For EGS

    Energy Technology Data Exchange (ETDEWEB)

    Durrand, Christopher J. [Novatek International, Inc., Provo, UT (United States); Skeem, Marcus R. [Novatek International, Inc., Provo, UT (United States); Crockett, Ron B. [Novatek International, Inc., Provo, UT (United States); Hall, David R. [Novatek International, Inc., Provo, UT (United States)

    2013-04-29

    The project objectives were to design, engineer, test, and commercialize a drill bit suitable for drilling in hard rock and high temperature environments (10,000 meters) likely to be encountered in drilling enhanced geothermal wells. The goal is provide a drill bit that can aid in the increased penetration rate of three times over conventional drilling. Novatek has sought to leverage its polycrystalline diamond technology and a new conical cutter shape, known as the Stinger®, for this purpose. Novatek has developed a fixed bladed bit, known as the JackBit®, populated with both shear cutter and Stingers that is currently being tested by major drilling companies for geothermal and oil and gas applications. The JackBit concept comprises a fixed bladed bit with a center indenter, referred to as the Jack. The JackBit has been extensively tested in the lab and in the field. The JackBit has been transferred to a major bit manufacturer and oil service company. Except for the attached published reports all other information is confidential.

  16. Smart BIT/TSMD Integration

    Science.gov (United States)

    1991-12-01

    integracion . Smart BIT/TSMD provides Rome Laboratory with a laboratory testbed to evaluate and assess the individual characteristics as well as the integration...that assessment. These windows are color-keyed to tie together multiple windows for the same Smart BIT techniques. The display of the neural net- work... Multiple accelerometer icons of any type may therefore be placed (non-overlapping) in the accelerometer Time Line region. The BIT Time Line Editor allows

  17. A 10-bit 50-MS/s subsampling pipelined ADC based on SMDAC and opamp sharing

    Energy Technology Data Exchange (ETDEWEB)

    Chen Lijie; Zhou Yumei; Wei Baoyue, E-mail: frankdhz@yahoo.com.cn [Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029 (China)

    2010-11-15

    This paper describes a 10-bit, 50-MS/s pipelined A/D converter (ADC) with proposed area- and power-efficient architecture. The conventional dedicated sample-hold-amplifier (SHA) is eliminated and the matching requirement between the first multiplying digital-to-analog converter (MDAC) and sub-ADC is also avoided by using the SHA merged with the first MDAC (SMDAC) architecture, which features low power and stabilization. Further reduction of power and area is achieved by sharing an opamp between two successive pipelined stages, in which the effect of opamp offset and crosstalk between stages is decreased. So the 10-bit pipelined ADC is realized using just four opamps. The ADC demonstrates a maximum signal-to-noise distortion ratio and spurious free dynamic range of 52.67 dB and 59.44 dB, respectively, with a Nyquist input at full sampling rate. Constant dynamic performance for input frequencies up to 49.7 MHz, which is the twofold Nyquist rate, is achieved at 50 MS/s. The ADC prototype only occupies an active area of 1.81 mm{sup 2} in a 0.35 {mu}m CMOS process, and consumes 133 mW when sampling at 50 MHz from a 3.3-V power supply.

  18. High bit depth infrared image compression via low bit depth codecs

    DEFF Research Database (Denmark)

    Belyaev, Evgeny; Mantel, Claire; Forchhammer, Søren

    .264/AVC codecs, which are usually available in efficient implementations, and compare their rate-distortion performance with JPEG2000, JPEG-XT and H.265/HEVC codecs supporting direct compression of infrared images in 16 bit depth format. A preliminary result shows that two 8 bit H.264/AVC codecs can...

  19. NbN A/D Conversion of IR Focal Plane Sensor Signal at 10 K

    Science.gov (United States)

    Eaton, L.; Durand, D.; Sandell, R.; Spargo, J.; Krabach, T.

    1994-01-01

    We are implementing a 12 bit SFQ counting ADC with parallel-to-serial readout using our established 10 K NbN capability. This circuit provides a key element of the analog signal processor (ASP) used in large infrared focal plane arrays. The circuit processes the signal data stream from a Si:As BIB detector array. A 10 mega samples per second (MSPS) pixel data stream flows from the chip at a 120 megabit bit rate in a format that is compatible with other superconductive time dependent processor (TDP) circuits being developed. We will discuss our planned ASP demonstration, the circuit design, and test results.

  20. Improved method of generating bit reversed numbers for calculating fast fourier transform

    Digital Repository Service at National Institute of Oceanography (India)

    Suresh, T.

    Fast Fourier Transform (FFT) is an important tool required for signal processing in defence applications. This paper reports an improved method for generating bit reversed numbers needed in calculating FFT using radix-2. The refined algorithm takes...

  1. Bit-coded regular expression parsing

    DEFF Research Database (Denmark)

    Nielsen, Lasse; Henglein, Fritz

    2011-01-01

    the DFA-based parsing algorithm due to Dub ´e and Feeley to emit the bits of the bit representation without explicitly materializing the parse tree itself. We furthermore show that Frisch and Cardelli’s greedy regular expression parsing algorithm can be straightforwardly modified to produce bit codings...

  2. 1.2V, 24mW/ch, 10bit, 80MSample/s Pipelined A/D Converters

    Science.gov (United States)

    Ueno, Takeshi; Ito, Tomohiko; Kurose, Daisuke; Yamaji, Takafumi; Itakura, Tetsuro

    This paper describes 10-bit, 80-MSample/s pipelined A/D converters for wireless-communication terminals. To reduce power consumption, we employed the I/Q amplifier sharing technique [1] in which an amplifier is used for both I and Q channels. In addition, common-source, pseudo-differential (PD) amplifiers are used in all the conversion stages for further power reduction. Common-mode disturbances are removed by the proposed common-mode feedforward (CMFF) technique without using fully differential (FD) amplifiers. The converter was implemented in a 90-nm CMOS technology, and it consumes only 24mW/ch from a 1.2V power supply. The measured SNR and SNDR are 58.6dB and 52.2dB, respectively.

  3. 12 CFR 221.7 - Supplement: Maximum loan value of margin stock and other collateral.

    Science.gov (United States)

    2010-01-01

    ... value of margin stock and other collateral. (a) Maximum loan value of margin stock. The maximum loan... nonmargin stock and all other collateral. The maximum loan value of nonmargin stock and all other collateral... 12 Banks and Banking 3 2010-01-01 2010-01-01 false Supplement: Maximum loan value of margin stock...

  4. Joint Maximum Likelihood Time Delay Estimation of Unknown Event-Related Potential Signals for EEG Sensor Signal Quality Enhancement

    Science.gov (United States)

    Kim, Kyungsoo; Lim, Sung-Ho; Lee, Jaeseok; Kang, Won-Seok; Moon, Cheil; Choi, Ji-Woong

    2016-01-01

    Electroencephalograms (EEGs) measure a brain signal that contains abundant information about the human brain function and health. For this reason, recent clinical brain research and brain computer interface (BCI) studies use EEG signals in many applications. Due to the significant noise in EEG traces, signal processing to enhance the signal to noise power ratio (SNR) is necessary for EEG analysis, especially for non-invasive EEG. A typical method to improve the SNR is averaging many trials of event related potential (ERP) signal that represents a brain’s response to a particular stimulus or a task. The averaging, however, is very sensitive to variable delays. In this study, we propose two time delay estimation (TDE) schemes based on a joint maximum likelihood (ML) criterion to compensate the uncertain delays which may be different in each trial. We evaluate the performance for different types of signals such as random, deterministic, and real EEG signals. The results show that the proposed schemes provide better performance than other conventional schemes employing averaged signal as a reference, e.g., up to 4 dB gain at the expected delay error of 10°. PMID:27322267

  5. Joint Maximum Likelihood Time Delay Estimation of Unknown Event-Related Potential Signals for EEG Sensor Signal Quality Enhancement

    Directory of Open Access Journals (Sweden)

    Kyungsoo Kim

    2016-06-01

    Full Text Available Electroencephalograms (EEGs measure a brain signal that contains abundant information about the human brain function and health. For this reason, recent clinical brain research and brain computer interface (BCI studies use EEG signals in many applications. Due to the significant noise in EEG traces, signal processing to enhance the signal to noise power ratio (SNR is necessary for EEG analysis, especially for non-invasive EEG. A typical method to improve the SNR is averaging many trials of event related potential (ERP signal that represents a brain’s response to a particular stimulus or a task. The averaging, however, is very sensitive to variable delays. In this study, we propose two time delay estimation (TDE schemes based on a joint maximum likelihood (ML criterion to compensate the uncertain delays which may be different in each trial. We evaluate the performance for different types of signals such as random, deterministic, and real EEG signals. The results show that the proposed schemes provide better performance than other conventional schemes employing averaged signal as a reference, e.g., up to 4 dB gain at the expected delay error of 10°.

  6. SpecBit, DecayBit and PrecisionBit. GAMBIT modules for computing mass spectra, particle decay rates and precision observables

    Energy Technology Data Exchange (ETDEWEB)

    Athron, Peter; Balazs, Csaba [Monash University, School of Physics and Astronomy, Melbourne, VIC (Australia); Australian Research Council Centre of Excellence for Particle Physics at the Tera-scale (Australia); Dal, Lars A.; Gonzalo, Tomas E. [University of Oslo, Department of Physics, Oslo (Norway); Edsjoe, Joakim; Farmer, Ben [AlbaNova University Centre, Oskar Klein Centre for Cosmoparticle Physics, Stockholm (Sweden); Stockholm University, Department of Physics, Stockholm (Sweden); Kvellestad, Anders [NORDITA, Stockholm (Sweden); McKay, James; Scott, Pat [Imperial College London, Department of Physics, Blackett Laboratory, London (United Kingdom); Putze, Antje [Universite de Savoie, CNRS, LAPTh, Annecy-le-Vieux (France); Rogan, Chris [Harvard University, Department of Physics, Cambridge, MA (United States); Weniger, Christoph [University of Amsterdam, GRAPPA, Institute of Physics, Amsterdam (Netherlands); White, Martin [Australian Research Council Centre of Excellence for Particle Physics at the Tera-scale (Australia); University of Adelaide, Department of Physics, Adelaide, SA (Australia); Collaboration: The GAMBIT Models Workgroup

    2018-01-15

    We present the GAMBIT modules SpecBit, DecayBit and PrecisionBit. Together they provide a new framework for linking publicly available spectrum generators, decay codes and other precision observable calculations in a physically and statistically consistent manner. This allows users to automatically run various combinations of existing codes as if they are a single package. The modular design allows software packages fulfilling the same role to be exchanged freely at runtime, with the results presented in a common format that can easily be passed to downstream dark matter, collider and flavour codes. These modules constitute an essential part of the broader GAMBIT framework, a major new software package for performing global fits. In this paper we present the observable calculations, data, and likelihood functions implemented in the three modules, as well as the conventions and assumptions used in interfacing them with external codes. We also present 3-BIT-HIT, a command-line utility for computing mass spectra, couplings, decays and precision observables in the MSSM, which shows how the three modules can easily be used independently of GAMBIT. (orig.)

  7. SpecBit, DecayBit and PrecisionBit: GAMBIT modules for computing mass spectra, particle decay rates and precision observables

    Science.gov (United States)

    Athron, Peter; Balázs, Csaba; Dal, Lars A.; Edsjö, Joakim; Farmer, Ben; Gonzalo, Tomás E.; Kvellestad, Anders; McKay, James; Putze, Antje; Rogan, Chris; Scott, Pat; Weniger, Christoph; White, Martin

    2018-01-01

    We present the GAMBIT modules SpecBit, DecayBit and PrecisionBit. Together they provide a new framework for linking publicly available spectrum generators, decay codes and other precision observable calculations in a physically and statistically consistent manner. This allows users to automatically run various combinations of existing codes as if they are a single package. The modular design allows software packages fulfilling the same role to be exchanged freely at runtime, with the results presented in a common format that can easily be passed to downstream dark matter, collider and flavour codes. These modules constitute an essential part of the broader GAMBIT framework, a major new software package for performing global fits. In this paper we present the observable calculations, data, and likelihood functions implemented in the three modules, as well as the conventions and assumptions used in interfacing them with external codes. We also present 3-BIT-HIT, a command-line utility for computing mass spectra, couplings, decays and precision observables in the MSSM, which shows how the three modules can easily be used independently of GAMBIT.

  8. Investigation of PDC bit failure base on stick-slip vibration analysis of drilling string system plus drill bit

    Science.gov (United States)

    Huang, Zhiqiang; Xie, Dou; Xie, Bing; Zhang, Wenlin; Zhang, Fuxiao; He, Lei

    2018-03-01

    The undesired stick-slip vibration is the main source of PDC bit failure, such as tooth fracture and tooth loss. So, the study of PDC bit failure base on stick-slip vibration analysis is crucial to prolonging the service life of PDC bit and improving ROP (rate of penetration). For this purpose, a piecewise-smooth torsional model with 4-DOF (degree of freedom) of drilling string system plus PDC bit is proposed to simulate non-impact drilling. In this model, both the friction and cutting behaviors of PDC bit are innovatively introduced. The results reveal that PDC bit is easier to fail than other drilling tools due to the severer stick-slip vibration. Moreover, reducing WOB (weight on bit) and improving driving torque can effectively mitigate the stick-slip vibration of PDC bit. Therefore, PDC bit failure can be alleviated by optimizing drilling parameters. In addition, a new 4-DOF torsional model is established to simulate torsional impact drilling and the effect of torsional impact on PDC bit's stick-slip vibration is analyzed by use of an engineering example. It can be concluded that torsional impact can mitigate stick-slip vibration, prolonging the service life of PDC bit and improving drilling efficiency, which is consistent with the field experiment results.

  9. Flexible Bit Preservation on a National Basis

    DEFF Research Database (Denmark)

    Jurik, Bolette; Nielsen, Anders Bo; Zierau, Eld

    2012-01-01

    In this paper we present the results from The Danish National Bit Repository project. The project aim was establishment of a system that can offer flexible and sustainable bit preservation solutions to Danish cultural heritage institutions. Here the bit preservation solutions must include support...... of bit safety as well as other requirements like e.g. confidentiality and availability. The Danish National Bit Repository is motivated by the need to investigate and handle bit preservation for digital cultural heritage. Digital preservation relies on the integrity of the bits which digital material...

  10. The bit's the thing : PDC bits are the sparkly new best friend of drillers everywhere

    Energy Technology Data Exchange (ETDEWEB)

    Cook, D.

    2008-09-15

    Polycrystalline diamond compact (PDC) cutters were introduced to the oil and gas industry in 1972. The drill bit technology has made significant advances since its introduction, and the PDC bits are now more widely used than conventional roller cone bits. This article discussed new PDC drill bits designed to have rates of penetration (ROP) of over 1000 feet an hour, run distances of up to 22,000 feet, and have cumulative depths of 180,000 feet. A diamond volume management (DVM) system is used to place the diamond where it is needed for specific applications. Designed by Precise Drilling Component Ltd, the bits are accompanied by thermo stable cutters developed to increase the stability of the PDC bits. Precise Drilling Component is now supplying the drilling equipment to major international oil companies. The company has also developed new abrasion-resistant cutters and improved hydraulics that have increased durability and stability, as well as lower drilling costs. The PDC cutters are able to remove rock more efficiently than the grinding and gouging actions of roller bits, which translates into faster penetration rates and longer bit lives. PDC bits are increasingly being used in steam assisted gravity drainage (SAGD) operations as the tungsten carbide matrix used for the PDC bits is able to withstand the abrasive sands encountered in oil sands wellbores. It was concluded that the PDC drill bits will continue to be optimized for use in harsh oil sands conditions. New optimization features and analytical models for improving drilling efficiency were also outlined. 4 figs.

  11. String bit models for superstring

    International Nuclear Information System (INIS)

    Bergman, O.; Thorn, C.B.

    1995-01-01

    The authors extend the model of string as a polymer of string bits to the case of superstring. They mainly concentrate on type II-B superstring, with some discussion of the obstacles presented by not II-B superstring, together with possible strategies for surmounting them. As with previous work on bosonic string work within the light-cone gauge. The bit model possesses a good deal less symmetry than the continuous string theory. For one thing, the bit model is formulated as a Galilei invariant theory in (D - 2) + 1 dimensional space-time. This means that Poincare invariance is reduced to the Galilei subgroup in D - 2 space dimensions. Naturally the supersymmetry present in the bit model is likewise dramatically reduced. Continuous string can arise in the bit models with the formation of infinitely long polymers of string bits. Under the right circumstances (at the critical dimension) these polymers can behave as string moving in D dimensional space-time enjoying the full N = 2 Poincare supersymmetric dynamics of type II-B superstring

  12. String bit models for superstring

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, O.; Thorn, C.B.

    1995-12-31

    The authors extend the model of string as a polymer of string bits to the case of superstring. They mainly concentrate on type II-B superstring, with some discussion of the obstacles presented by not II-B superstring, together with possible strategies for surmounting them. As with previous work on bosonic string work within the light-cone gauge. The bit model possesses a good deal less symmetry than the continuous string theory. For one thing, the bit model is formulated as a Galilei invariant theory in (D {minus} 2) + 1 dimensional space-time. This means that Poincare invariance is reduced to the Galilei subgroup in D {minus} 2 space dimensions. Naturally the supersymmetry present in the bit model is likewise dramatically reduced. Continuous string can arise in the bit models with the formation of infinitely long polymers of string bits. Under the right circumstances (at the critical dimension) these polymers can behave as string moving in D dimensional space-time enjoying the full N = 2 Poincare supersymmetric dynamics of type II-B superstring.

  13. Supersymmetric quantum mechanics for string-bits

    International Nuclear Information System (INIS)

    Thorn, C.B.

    1997-01-01

    The authors develop possible versions of supersymmetric single particle quantum mechanics, with application to superstring-bit models in view. The authors focus principally on space dimensions d = 1,2,4,8, the transverse dimensionalities of superstring in 3, 4, 7, 10 space-time dimensions. These are the cases for which classical superstring makes sense, and also the values of d for which Hooke's force law is compatible with the simplest superparticle dynamics. The basic question they address is: when is it possible to replace such harmonic force laws with more general ones, including forces which vanish at large distances? This is an important question because forces between string-bits that do not fall off with distance will almost certainly destroy cluster decomposition. They show that the answer is affirmative for d = 1,2, negative for d = 8, and so far inconclusive for d = 4

  14. A radiation-hardened 1K-bit dielectrically isolated random access memory

    International Nuclear Information System (INIS)

    Sandors, T.J.; Boarman, J.W.; Kasten, A.J.; Wood, G.M.

    1982-01-01

    Dielectric Isolation has been used for many years as the bipolar technology for latch-up free, radiation hardened integrated circuits in strategic systems. The state-of-the-art up to this point has been the manufacture of MSI functions containing a maximum of several hundred isolated components. This paper discusses a 1024 Bit Random Access Memory chip containing over 4000 dielectrically isolated components which has been designed for strategic radiation environments. The process utilized and the circuit design of the 1024 Bit RAM have been previously discussed. The techniques used are similar to those employed for the MX digital integrated circuits except for specific items required to make this a true LSI technology. These techniques, along with electrical and radiation data for the RAM, are presented

  15. On Multiple AER Handshaking Channels Over High-Speed Bit-Serial Bidirectional LVDS Links With Flow-Control and Clock-Correction on Commercial FPGAs for Scalable Neuromorphic Systems.

    Science.gov (United States)

    Yousefzadeh, Amirreza; Jablonski, Miroslaw; Iakymchuk, Taras; Linares-Barranco, Alejandro; Rosado, Alfredo; Plana, Luis A; Temple, Steve; Serrano-Gotarredona, Teresa; Furber, Steve B; Linares-Barranco, Bernabe

    2017-10-01

    Address event representation (AER) is a widely employed asynchronous technique for interchanging "neural spikes" between different hardware elements in neuromorphic systems. Each neuron or cell in a chip or a system is assigned an address (or ID), which is typically communicated through a high-speed digital bus, thus time-multiplexing a high number of neural connections. Conventional AER links use parallel physical wires together with a pair of handshaking signals (request and acknowledge). In this paper, we present a fully serial implementation using bidirectional SATA connectors with a pair of low-voltage differential signaling (LVDS) wires for each direction. The proposed implementation can multiplex a number of conventional parallel AER links for each physical LVDS connection. It uses flow control, clock correction, and byte alignment techniques to transmit 32-bit address events reliably over multiplexed serial connections. The setup has been tested using commercial Spartan6 FPGAs attaining a maximum event transmission speed of 75 Meps (Mega events per second) for 32-bit events at a line rate of 3.0 Gbps. Full HDL codes (vhdl/verilog) and example demonstration codes for the SpiNNaker platform will be made available.

  16. Dual-tone optical vector millimeter wave signal generated by frequency-nonupling the radio frequency 16-star quadrature-amplitude-modulation signal

    Science.gov (United States)

    Wu, Tonggen; Ma, Jianxin

    2017-12-01

    This paper proposes an original scheme to generate the photonic dual-tone optical millimeter wave (MMW) carrying the 16-star quadrature-amplitude-modulation (QAM) signal via an optical phase modulator (PM) and an interleaver with adaptive photonic frequency-nonupling without phase precoding. To enable the generated optical vector MMW signal to resist the power fading effect caused by the fiber chromatic dispersion, the modulated -5th- and +4th-order sidebands are selected from the output of the PM, which is driven by the precoding 16-star QAM signal. The modulation index of the PM is optimized to gain the maximum opto-electrical conversion efficiency. A radio over fiber link is built by simulation, and the simulated constellations and the bit error rate graph demonstrate that the frequency-nonupling 16-star QAM MMW signal has good transmission performance. The simulation results agree well with our theoretical results.

  17. Method of making imbalanced compensated drill bit

    International Nuclear Information System (INIS)

    Brett, J.F.; Warren, T.M.

    1991-01-01

    This patent describes a method for making a drill bit of the type having a bearing zone on a side portion of a bit body and a cutting zone with cutters mounted on the bit body. It comprises: mounting a preselected number of cutters within the cutting zone on the bit body; generating a model of the geometry of the bit body and cutters mounted thereon; calculating the imbalance force which would occur in the bit body under defined drilling parameters; using the imbalance force and model to calculate the position of at least one additional cutter which when mounted within the cutting zone on the bit body in the calculated position would create a net imbalance force directed towards the bearing zone; and mounting an additional cutter within the cutting zone on the bit body in the position so calculated

  18. Bits extraction for palmprint template protection with Gabor magnitude and multi-bit quantization

    NARCIS (Netherlands)

    Mu, Meiru; Shao, X.; Ruan, Qiuqi; Spreeuwers, Lieuwe Jan; Veldhuis, Raymond N.J.

    2013-01-01

    In this paper, we propose a method of fixed-length binary string extraction (denoted by LogGM_DROBA) from low-resolution palmprint image for developing palmprint template protection technology. In order to extract reliable (stable and discriminative) bits, multi-bit equal-probability-interval

  19. Supersymmetric quantum mechanics for string bits

    International Nuclear Information System (INIS)

    Thorn, C.B.

    1997-01-01

    We develop possible versions of supersymmetric single-particle quantum mechanics, with application to superstring-bit models in view. We focus principally on space dimensions d=1,2,4,8, the transverse dimensionalities of superstring in 3, 4, 6, and 10 space-time dimensions. These are the cases for which open-quotes classicalclose quotes superstring makes sense, and also the values of d for which Hooke close-quote s force law is compatible with the simplest superparticle dynamics. The basic question we address is the following: When is it possible to replace such harmonic force laws with more general ones, including forces which vanish at large distances? This is an important question because forces between string bits that do not fall off with distance will almost certainly destroy cluster decomposition. We show that the answer is affirmative for d=1,2, negative for d=8, and so far inconclusive for d=4. copyright 1997 The American Physical Society

  20. Duel frequency echo data acquisition system for sea-floor classification

    Digital Repository Service at National Institute of Oceanography (India)

    Navelkar, G.S.; Desai, R.G.P.; Chakraborty, B.

    An echo data acquisition system is designed to digitize echo signal from a single beam shipboard echo-sounder for use in sea-floor classification studies using a 12 bit analog to digital (A/D) card with a maximum sampling frequency of 1 MHz. Both 33...

  1. 16-Bit RISC Processor Design for Convolution Application

    OpenAIRE

    Anand Nandakumar Shardul

    2013-01-01

    In this project, we propose a 16-bit non-pipelined RISC processor, which is used for signal processing applications. The processor consists of the blocks, namely, program counter, clock control unit, ALU, IDU and registers. Advantageous architectural modifications have been made in the incremented circuit used in program counter and carry select adder unit of the ALU in the RISC CPU core. Furthermore, a high speed and low power modified modifies multiplier has been designed and introduced in ...

  2. b.i.t. Bremerhaven: Thin Clients entlasten Schulen

    Science.gov (United States)

    Das Schulamt Bremerhaven zentralisiert die Verwaltungs-IT und schafft dadurch Freiräume für pädagogische und organisatorische Herausforderungen. Pflege und Support der neuen Infrastruktur übernimmt der Dienstleister b.i.t. Bremerhaven, die Thin Clients kommen vom Bremer Hersteller IGEL Technology. Ganztagsschulen, das 12-jährige Abitur, PISA, der Wegfall der Orientierungsstufe - deutsche Schulen müssen derzeit zahlreiche organisatorische und pädagogische Herausforderungen bewältigen. Um die neuen Strukturen umsetzen zu können, werden zusätzliche Ressourcen benötigt. Das Schulamt Bremerhaven hat gemeinsam mit dem Dienstleister b.i.t. Bremerhaven (Betrieb für Informationstechnologie) eine intelligente Lösung gefunden, wie sich die benötigten finanziellen Freiräume schaffen lassen.

  3. Towards the generation of random bits at terahertz rates based on a chaotic semiconductor laser

    International Nuclear Information System (INIS)

    Kanter, Ido; Aviad, Yaara; Reidler, Igor; Cohen, Elad; Rosenbluh, Michael

    2010-01-01

    Random bit generators (RBGs) are important in many aspects of statistical physics and crucial in Monte-Carlo simulations, stochastic modeling and quantum cryptography. The quality of a RBG is measured by the unpredictability of the bit string it produces and the speed at which the truly random bits can be generated. Deterministic algorithms generate pseudo-random numbers at high data rates as they are only limited by electronic hardware speed, but their unpredictability is limited by the very nature of their deterministic origin. It is widely accepted that the core of any true RBG must be an intrinsically non-deterministic physical process, e.g. measuring thermal noise from a resistor. Owing to low signal levels, such systems are highly susceptible to bias, introduced by amplification, and to small nonrandom external perturbations resulting in a limited generation rate, typically less than 100M bit/s. We present a physical random bit generator, based on a chaotic semiconductor laser, having delayed optical feedback, which operates reliably at rates up to 300Gbit/s. The method uses a high derivative of the digitized chaotic laser intensity and generates the random sequence by retaining a number of the least significant bits of the high derivative value. The method is insensitive to laser operational parameters and eliminates the necessity for all external constraints such as incommensurate sampling rates and laser external cavity round trip time. The randomness of long bit strings is verified by standard statistical tests.

  4. Towards the generation of random bits at terahertz rates based on a chaotic semiconductor laser

    Science.gov (United States)

    Kanter, Ido; Aviad, Yaara; Reidler, Igor; Cohen, Elad; Rosenbluh, Michael

    2010-06-01

    Random bit generators (RBGs) are important in many aspects of statistical physics and crucial in Monte-Carlo simulations, stochastic modeling and quantum cryptography. The quality of a RBG is measured by the unpredictability of the bit string it produces and the speed at which the truly random bits can be generated. Deterministic algorithms generate pseudo-random numbers at high data rates as they are only limited by electronic hardware speed, but their unpredictability is limited by the very nature of their deterministic origin. It is widely accepted that the core of any true RBG must be an intrinsically non-deterministic physical process, e.g. measuring thermal noise from a resistor. Owing to low signal levels, such systems are highly susceptible to bias, introduced by amplification, and to small nonrandom external perturbations resulting in a limited generation rate, typically less than 100M bit/s. We present a physical random bit generator, based on a chaotic semiconductor laser, having delayed optical feedback, which operates reliably at rates up to 300Gbit/s. The method uses a high derivative of the digitized chaotic laser intensity and generates the random sequence by retaining a number of the least significant bits of the high derivative value. The method is insensitive to laser operational parameters and eliminates the necessity for all external constraints such as incommensurate sampling rates and laser external cavity round trip time. The randomness of long bit strings is verified by standard statistical tests.

  5. Invariance of the bit error rate in the ancilla-assisted homodyne detection

    International Nuclear Information System (INIS)

    Yoshida, Yuhsuke; Takeoka, Masahiro; Sasaki, Masahide

    2010-01-01

    We investigate the minimum achievable bit error rate of the discrimination of binary coherent states with the help of arbitrary ancillary states. We adopt homodyne measurement with a common phase of the local oscillator and classical feedforward control. After one ancillary state is measured, its outcome is referred to the preparation of the next ancillary state and the tuning of the next mixing with the signal. It is shown that the minimum bit error rate of the system is invariant under the following operations: feedforward control, deformations, and introduction of any ancillary state. We also discuss the possible generalization of the homodyne detection scheme.

  6. Superconducting frustration bit

    International Nuclear Information System (INIS)

    Tanaka, Y.

    2014-01-01

    Highlights: • A frustration bit element is proposed for a conventional superconducting circuit. • It is composed of π-junctions. • It mimics the multiband superconductor. - Abstract: A basic design is proposed for a classical bit element of a superconducting circuit that mimics a frustrated multiband superconductor and is composed of an array of π-Josephson junctions (π-junction). The phase shift of π provides the lowest energy for one π-junction, but neither a π nor a zero phase shift gives the lowest energy for an assembly of π-junctions. There are two chiral states that can be used to store one bit information. The energy scale for reading and writing to memory is of the same order as the junction energy, and is thus in the same order of the driving energy of the circuit. In addition, random access is also possible

  7. A holistic approach to bit preservation

    DEFF Research Database (Denmark)

    Zierau, Eld

    2012-01-01

    Purpose: The purpose of this paper is to point out the importance of taking a holistic approach to bit preservation when setting out to find an optimal bit preservation solution for specific digital materials. In the last decade there has been an increasing awareness that bit preservation, which ...

  8. A 14-bit 50 MS/s sample-and-hold circuit for pipelined ADC

    International Nuclear Information System (INIS)

    Yue Sen; Zhao Yiqiang; Pang Ruilong; Sheng Yun

    2014-01-01

    A high performance sample-and-hold (S/H) circuit used in a pipelined analog-to-digital converter (ADC) is presented. Capacitor flip-around architecture is used in this S/H circuit with a novel gain-boosted differential folded cascode operational transconductance amplifier. A double-bootstrapped switch is designed to improve the performance of the circuit. The circuit is implemented using a 0.18 μm 1P6M CMOS process. Measurement results show that the effective number of bits is 14.03 bits, the spurious free dynamic range is 94.62 dB, the signal to noise and distortion ratio is 86.28 dB, and the total harmonic distortion is −91:84 dB for a 5 MHz input signal with 50 MS/s sampling rate. A pipeline ADC with the designed S/H circuit has been implemented. (semiconductor integrated circuits)

  9. Twelve-bit 20-GHz reduced size pipeline accumulator in 0.25 μm SiGe:C technology for direct digital synthesiser applications

    DEFF Research Database (Denmark)

    Jensen, Brian Sveistrup; Khafaji, M. M.; Johansen, T. K.

    2012-01-01

    /Fmax of 180/220 GHz. The accumulator architecture omits the pre-skewing registers of the pipeline, thereby lowering both power consumption and circuit complexity. Some limitations to this design are discussed and the necessary equations for determining the phase jump encountered each time the control word...... (synthesised frequency) is changed are presented. For many applications employing signal processing after detection, this phase shift can then be corrected for. Compared to a full pipeline architecture (omitting the input circuitry for the most significant bit, as is customary for such designs......This article presents a 20 GHz, 12-bit pipeline accumulator with a reduced number of registers, suitable for direct digital synthesiser (DDS) applications. The accumulator is implemented in the IHP SG25H1 (0.25 μm) SiGe:C technology featuring heterojunction bipolar transistors (HBTs) with Ft...

  10. Single-chip pulse programmer for magnetic resonance imaging using a 32-bit microcontroller.

    Science.gov (United States)

    Handa, Shinya; Domalain, Thierry; Kose, Katsumi

    2007-08-01

    A magnetic resonance imaging (MRI) pulse programmer has been developed using a single-chip microcontroller (ADmicroC7026). The microcontroller includes all the components required for the MRI pulse programmer: a 32-bit RISC CPU core, 62 kbytes of flash memory, 8 kbytes of SRAM, two 32-bit timers, four 12-bit DA converters, and 40 bits of general purpose I/O. An evaluation board for the microcontroller was connected to a host personal computer (PC), an MRI transceiver, and a gradient driver using interface circuitry. Target (embedded) and host PC programs were developed to enable MRI pulse sequence generation by the microcontroller. The pulse programmer achieved a (nominal) time resolution of approximately 100 ns and a minimum time delay between successive events of approximately 9 micros. Imaging experiments using the pulse programmer demonstrated the effectiveness of our approach.

  11. 16QAM transmission with 5.2 bits/s/Hz spectral efficiency over transoceanic distance.

    Science.gov (United States)

    Zhang, H; Cai, J-X; Batshon, H G; Davidson, C R; Sun, Y; Mazurczyk, M; Foursa, D G; Pilipetskii, A; Mohs, G; Bergano, Neal S

    2012-05-21

    We transmit 160 x 100 G PDM RZ 16 QAM channels with 5.2 bits/s/Hz spectral efficiency over 6,860 km. There are more than 3 billion 16 QAM symbols, i.e., 12 billion bits, processed in total. Using coded modulation and iterative decoding between a MAP decoder and an LDPC based FEC all channels are decoded with no remaining errors.

  12. 49 CFR 1242.12 - Administration-signals (account XX-19-04).

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Administration-signals (account XX-19-04). 1242.12... Structures § 1242.12 Administration—signals (account XX-19-04). Separate common administration—signals... (XX-17-19) Switching (XX-18-19) ...

  13. A bit faster : ReedHycalog focuses new drill bit technology on the needs of western Canadian drillers

    Energy Technology Data Exchange (ETDEWEB)

    Wells, P.

    2009-06-15

    ReedHycalog, a division of National Oilwell Varco Inc., is advancing its drill bit technology and is setting performance records in an effort to meet the needs of drillers in western Canada. This article described the company's new drill bit technology. Through its motor series polycrystalline diamond cutter (PDC) bits, ReedHycalog developed and commercialized several unique and proprietary drill bit features that reduced variations in torque. This lowered the risk of stick-slip while improving lateral stability, directional control and drilling efficiency. The design of the motor series bits was reviewed along with laboratory and field testing. Smooth torque was identified as one of the greatest challenges when drilling with a drill bit on a directional assembly. Test results revealed that there are 4 distinct characteristics for optimal steerable motor performance, such as smooth torque control components (TCC) that were specifically positioned in the cone of the bit to prevent cutter over engagement reducing in torque fluctuations for optimal tool face control; optimized cutter backrakes that provided high penetration rates in rotating mode, while TCCs were optimized to control torque when sliding; gauge inserts for lateral control that provided a low-friction bearing surface; and laterally exposed gauge cutters that cleaned up the hole in rotating mode, and a tapered upper section that reduced gauge pad interference while in sliding mode. The motor series bits performed extremely well in the vertical, build and horizontal intervals with multiple operators. 1 ref., 3 figs.

  14. KEAMANAN CITRA DENGAN WATERMARKING MENGGUNAKAN PENGEMBANGAN ALGORITMA LEAST SIGNIFICANT BIT

    Directory of Open Access Journals (Sweden)

    Kurniawan Kurniawan

    2015-01-01

    Full Text Available Image security is a process to save digital. One method of securing image digital is watermarking using Least Significant Bit algorithm. Main concept of image security using LSB algorithm is to replace bit value of image at specific location so that created pattern. The pattern result of replacing the bit value of image is called by watermark. Giving watermark at image digital using LSB algorithm has simple concept so that the information which is embedded will lost easily when attacked such as noise attack or compression. So need modification like development of LSB algorithm. This is done to decrease distortion of watermark information against those attacks. In this research is divided by 6 process which are color extraction of cover image, busy area search, watermark embed, count the accuracy of watermark embed, watermark extraction, and count the accuracy of watermark extraction. Color extraction of cover image is process to get blue color component from cover image. Watermark information will embed at busy area by search the area which has the greatest number of unsure from cover image. Then watermark image is embedded into cover image so that produce watermarked image using some development of LSB algorithm and search the accuracy by count the Peak Signal to Noise Ratio value. Before the watermarked image is extracted, need to test by giving noise and doing compression into jpg format. The accuracy of extraction result is searched by count the Bit Error Rate value.

  15. Implementation of an FIR Band Pass Filter Using a Bit-Slice Processor.

    Science.gov (United States)

    1987-06-01

    SYSTEM ’ SOFTWARE FIRMWARE HARDWARE Figure 2.1 Instruction Levels CRef. 5] 16 are microprogrammed (firmware) to enable physical control signals to the...Controllers and ALUs, pp. 9, 30-42, 70-71, Garland STPM Press, 1981. 6. Wolfe, C.F., "Bit-slice Processors Come To Mainframe Design," Electronics

  16. The architecture design of a 2mW 18-bit high speed weight voltage type DAC based on dual weight resistance chain

    Science.gov (United States)

    Qixing, Chen; Qiyu, Luo

    2013-03-01

    At present, the architecture of a digital-to-analog converter (DAC) in essence is based on the weight current, and the average value of its D/A signal current increases in geometric series according to its digital signal bits increase, which is 2n-1 times of its least weight current. But for a dual weight resistance chain type DAC, by using the weight voltage manner to D/A conversion, the D/A signal current is fixed to chain current Icha; it is only 1/2n-1 order of magnitude of the average signal current value of the weight current type DAC. Its principle is: n pairs dual weight resistances form a resistance chain, which ensures the constancy of the chain current; if digital signals control the total weight resistance from the output point to the zero potential point, that could directly control the total weight voltage of the output point, so that the digital signals directly turn into a sum of the weight voltage signals; thus the following goals are realized: (1) the total current is less than 200 μA (2) the total power consumption is less than 2 mW; (3) an 18-bit conversion can be realized by adopting a multi-grade structure; (4) the chip area is one order of magnitude smaller than the subsection current-steering type DAC; (5) the error depends only on the error of the unit resistance, so it is smaller than the error of the subsection current-steering type DAC; (6) the conversion time is only one action time of switch on or off, so its speed is not lower than the present DAC.

  17. The architecture design of a 2mW 18-bit high speed weight voltage type DAC based on dual weight resistance chain

    International Nuclear Information System (INIS)

    Chen Qixing; Luo Qiyu

    2013-01-01

    At present, the architecture of a digital-to-analog converter (DAC) in essence is based on the weight current, and the average value of its D/A signal current increases in geometric series according to its digital signal bits increase, which is 2 n−1 times of its least weight current. But for a dual weight resistance chain type DAC, by using the weight voltage manner to D/A conversion, the D/A signal current is fixed to chain current I cha ; it is only 1/2 n−1 order of magnitude of the average signal current value of the weight current type DAC. Its principle is: n pairs dual weight resistances form a resistance chain, which ensures the constancy of the chain current; if digital signals control the total weight resistance from the output point to the zero potential point, that could directly control the total weight voltage of the output point, so that the digital signals directly turn into a sum of the weight voltage signals; thus the following goals are realized: (1) the total current is less than 200 μA; (2) the total power consumption is less than 2 mW; (3) an 18-bit conversion can be realized by adopting a multi-grade structure; (4) the chip area is one order of magnitude smaller than the subsection current-steering type DAC; (5) the error depends only on the error of the unit resistance, so it is smaller than the error of the subsection current-steering type DAC; (6) the conversion time is only one action time of switch on or off, so its speed is not lower than the present DAC. (semiconductor integrated circuits)

  18. Influence of transmission bit rate on performance of optical fibre communication systems with direct modulation of laser diodes

    International Nuclear Information System (INIS)

    Ahmed, Moustafa F

    2009-01-01

    This paper reports on the influence of the transmission bit rate on the performance of optical fibre communication systems employing laser diodes subjected to high-speed direct modulation. The performance is evaluated in terms of the bit error rate (BER) and power penalty associated with increasing the transmission bit rate while keeping the transmission distance. The study is based on numerical analysis of the stochastic rate equations of the laser diode and takes into account noise mechanisms in the receiver. Correlation between BER and the Q-parameter of the received signal is presented. The relative contributions of the transmitter noise and the circuit and shot noises of the receiver to BER are quantified as functions of the transmission bit rate. The results show that the power penalty at BER = 10 -9 required to keep the transmission distance increases moderately with the increase in the bit rate near 1 Gbps and at high bias currents. In this regime, the shot noise is the main contributor to BER. At higher bit rates and lower bias currents, the power penalty increases remarkably, which comes mainly from laser noise induced by the pseudorandom bit-pattern effect.

  19. X-band 5-bit MMIC phase shifter with GaN HEMT technology

    Science.gov (United States)

    Sun, Pengpeng; Liu, Hui; Zhang, Zongjing; Geng, Miao; Zhang, Rong; Luo, Weijun

    2017-10-01

    The design approach and performance of a 5-bit digital phase shifter implemented with 0.25 μm GaN HEMT technology for X-band phased arrays are described. The switched filter and high-pass/low-pass networks are proposed in this article. For all 32 states of the 5-bit phase shifter, the RMS phase error less than 5.5°, RMS amplitude error less than 0.8 dB, insertion loss less than 12 dB and input/output return loss less than 8.5 dB are obtained overall 8-12 GHz. The continuous wave power capability is also measured, and a typical input RF P1dB data of 32 dBm is achieved at 8 GHz.

  20. Giga-bit optical data transmission module for Beam Instrumentation

    CERN Document Server

    Roedne, L T; Cenkeramaddi, L R; Jiao, L

    Particle accelerators require electronic instrumentation for diagnostic, assessment and monitoring during operation of the transferring and circulating beams. A sensor located near the beam provides an electrical signal related to the observable quantity of interest. The front-end electronics provides analog-to-digital conversion of the quantity being observed and the generated data are to be transferred to the external digital back-end for data processing, and to display to the operators and logging. This research project investigates the feasibility of radiation-tolerant giga-bit data transmission over optic fibre for beam instrumentation applications, starting from the assessment of the state of the art technology, identification of challenges and proposal of a system level solution, which should be validated with a PCB design in an experimental setup. Radiation tolerance of 10 kGy (Si) Total Ionizing Dose (TID) over 10 years of operation, Bit Error Rate (BER) 10-6 or better. The findings and results of th...

  1. Statistical mechanics approach to 1-bit compressed sensing

    International Nuclear Information System (INIS)

    Xu, Yingying; Kabashima, Yoshiyuki

    2013-01-01

    Compressed sensing is a framework that makes it possible to recover an N-dimensional sparse vector x∈R N from its linear transformation y∈R M of lower dimensionality M 1 -norm-based signal recovery scheme for 1-bit compressed sensing using statistical mechanics methods. We show that the signal recovery performance predicted by the replica method under the replica symmetric ansatz, which turns out to be locally unstable for modes breaking the replica symmetry, is in good consistency with experimental results of an approximate recovery algorithm developed earlier. This suggests that the l 1 -based recovery problem typically has many local optima of a similar recovery accuracy, which can be achieved by the approximate algorithm. We also develop another approximate recovery algorithm inspired by the cavity method. Numerical experiments show that when the density of nonzero entries in the original signal is relatively large the new algorithm offers better performance than the abovementioned scheme and does so with a lower computational cost. (paper)

  2. FastBit: Interactively Searching Massive Data

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Kesheng; Ahern, Sean; Bethel, E. Wes; Chen, Jacqueline; Childs, Hank; Cormier-Michel, Estelle; Geddes, Cameron; Gu, Junmin; Hagen, Hans; Hamann, Bernd; Koegler, Wendy; Lauret, Jerome; Meredith, Jeremy; Messmer, Peter; Otoo, Ekow; Perevoztchikov, Victor; Poskanzer, Arthur; Prabhat,; Rubel, Oliver; Shoshani, Arie; Sim, Alexander; Stockinger, Kurt; Weber, Gunther; Zhang, Wei-Ming

    2009-06-23

    As scientific instruments and computer simulations produce more and more data, the task of locating the essential information to gain insight becomes increasingly difficult. FastBit is an efficient software tool to address this challenge. In this article, we present a summary of the key underlying technologies, namely bitmap compression, encoding, and binning. Together these techniques enable FastBit to answer structured (SQL) queries orders of magnitude faster than popular database systems. To illustrate how FastBit is used in applications, we present three examples involving a high-energy physics experiment, a combustion simulation, and an accelerator simulation. In each case, FastBit significantly reduces the response time and enables interactive exploration on terabytes of data.

  3. Receiver Architecture for 12.5 Gb/s 16-ary Pulse Position Modulation (PPM) Signaling

    Energy Technology Data Exchange (ETDEWEB)

    Mendez, A J; Gagliardi, R M; Hernandez, V J; Bennett, C V

    2008-07-11

    PPM is a signaling scheme that enables the transmission of multiple bits per symbol [1]. It has found favor in the regime of free space optical communications ('FSO' or 'Lasercom'); however, PPM has yet to be widely applied to fiber optic-based communications. Its limitation in fiber results from the exceedingly high bandwidth requirements needed to electronically process a directly detected pulse, especially as the symbol rate increases and the pulse width correspondingly decreases. As a solution, we introduced the concept of a virtual quadrant receiver for receiving 1.25 Gb/s 4-ary PPM, where photonic processing reduced the number of required electronic components [2]. In this paper, we extend these photonic process techniques to a 16-ary, 12.5 Gb/s (10 Gb/s plus 8B/10B line coding) PPM communications system for fiber optic avionics, wherein much of the receiver processing is enabled by techniques based on planar lightwave circuits (PLCs). The architecture is applicable to higher input data rates and M-ary PPM. In the following, we present the PPM encoding and decoding architectures and numerically simulated results.

  4. A Bit Stream Scalable Speech/Audio Coder Combining Enhanced Regular Pulse Excitation and Parametric Coding

    Directory of Open Access Journals (Sweden)

    Albertus C. den Brinker

    2007-01-01

    Full Text Available This paper introduces a new audio and speech broadband coding technique based on the combination of a pulse excitation coder and a standardized parametric coder, namely, MPEG-4 high-quality parametric coder. After presenting a series of enhancements to regular pulse excitation (RPE to make it suitable for the modeling of broadband signals, it is shown how pulse and parametric codings complement each other and how they can be merged to yield a layered bit stream scalable coder able to operate at different points in the quality bit rate plane. The performance of the proposed coder is evaluated in a listening test. The major result is that the extra functionality of the bit stream scalability does not come at the price of a reduced performance since the coder is competitive with standardized coders (MP3, AAC, SSC.

  5. A Bit Stream Scalable Speech/Audio Coder Combining Enhanced Regular Pulse Excitation and Parametric Coding

    Science.gov (United States)

    Riera-Palou, Felip; den Brinker, Albertus C.

    2007-12-01

    This paper introduces a new audio and speech broadband coding technique based on the combination of a pulse excitation coder and a standardized parametric coder, namely, MPEG-4 high-quality parametric coder. After presenting a series of enhancements to regular pulse excitation (RPE) to make it suitable for the modeling of broadband signals, it is shown how pulse and parametric codings complement each other and how they can be merged to yield a layered bit stream scalable coder able to operate at different points in the quality bit rate plane. The performance of the proposed coder is evaluated in a listening test. The major result is that the extra functionality of the bit stream scalability does not come at the price of a reduced performance since the coder is competitive with standardized coders (MP3, AAC, SSC).

  6. Ultra Wideband Signal Detection with a Schottky Diode Based Envelope Detector

    DEFF Research Database (Denmark)

    Rommel, Simon; Cimoli, Bruno; Valdecasa, Guillermo Silva

    error correction threshold are achieved for wireless distances of 20 cm and 50 cm at respective data rates of 2.5 Gbit/s and 1.25 Gbit/s. uwb transmission is one of the most attractive alternatives for low-power high-speed wireless communication systems over short distances, its popularity stemming from....... The receiver is able to detect an ultra-wideband signal compliant with the Federal Communications Commission (fcc) regulations for uwb transmission and consisting of a 2.5 Gbit/s non-return-to-zero (nrz) data signal on a 6.9 GHz carrier after 20 cm wireless transmission. Bit error rates (ber) below the forward...... its interoperability with existing wireless services and its license free operation. The latter is conditioned on meeting a number of standards and regulations for maximum radiated powers, designed to ensure the former by defining uwb signals as signals with large bandwidths in the frequency range...

  7. Bit selection using field drilling data and mathematical investigation

    Science.gov (United States)

    Momeni, M. S.; Ridha, S.; Hosseini, S. J.; Meyghani, B.; Emamian, S. S.

    2018-03-01

    A drilling process will not be complete without the usage of a drill bit. Therefore, bit selection is considered to be an important task in drilling optimization process. To select a bit is considered as an important issue in planning and designing a well. This is simply because the cost of drilling bit in total cost is quite high. Thus, to perform this task, aback propagation ANN Model is developed. This is done by training the model using several wells and it is done by the usage of drilling bit records from offset wells. In this project, two models are developed by the usage of the ANN. One is to find predicted IADC bit code and one is to find Predicted ROP. Stage 1 was to find the IADC bit code by using all the given filed data. The output is the Targeted IADC bit code. Stage 2 was to find the Predicted ROP values using the gained IADC bit code in Stage 1. Next is Stage 3 where the Predicted ROP value is used back again in the data set to gain Predicted IADC bit code value. The output is the Predicted IADC bit code. Thus, at the end, there are two models that give the Predicted ROP values and Predicted IADC bit code values.

  8. True random bit generators based on current time series of contact glow discharge electrolysis

    Science.gov (United States)

    Rojas, Andrea Espinel; Allagui, Anis; Elwakil, Ahmed S.; Alawadhi, Hussain

    2018-05-01

    Random bit generators (RBGs) in today's digital information and communication systems employ a high rate physical entropy sources such as electronic, photonic, or thermal time series signals. However, the proper functioning of such physical systems is bound by specific constrains that make them in some cases weak and susceptible to external attacks. In this study, we show that the electrical current time series of contact glow discharge electrolysis, which is a dc voltage-powered micro-plasma in liquids, can be used for generating random bit sequences in a wide range of high dc voltages. The current signal is quantized into a binary stream by first using a simple moving average function which makes the distribution centered around zero, and then applying logical operations which enables the binarized data to pass all tests in industry-standard randomness test suite by the National Institute of Standard Technology. Furthermore, the robustness of this RBG against power supply attacks has been examined and verified.

  9. Entropy of Bit-Stuffing-Induced Measures for Two-Dimensional Checkerboard Constraints

    DEFF Research Database (Denmark)

    Forchhammer, Søren; Vaarby, Torben Strange

    2007-01-01

    A modified bit-stuffing scheme for two-dimensional (2-D) checkerboard constraints is introduced. The entropy of the scheme is determined based on a probability measure defined by the modified bit-stuffing. Entropy results of the scheme are given for 2-D constraints on a binary alphabet....... The constraints considered are 2-D RLL (d, infinity) for d = 2, 3 and 4 as well as for the constraint with a minimum 1-norm distance of 3 between Is. For these results the entropy is within 1-2% of an upper bound on the capacity for the constraint. As a variation of the scheme, periodic merging arrays are also...

  10. Bit-Serial Adder Based on Quantum Dots

    Science.gov (United States)

    Fijany, Amir; Toomarian, Nikzad; Modarress, Katayoon; Spotnitz, Mathew

    2003-01-01

    A proposed integrated circuit based on quantum-dot cellular automata (QCA) would function as a bit-serial adder. This circuit would serve as a prototype building block for demonstrating the feasibility of quantum-dots computing and for the further development of increasingly complex and increasingly capable quantum-dots computing circuits. QCA-based bit-serial adders would be especially useful in that they would enable the development of highly parallel and systolic processors for implementing fast Fourier, cosine, Hartley, and wavelet transforms. The proposed circuit would complement the QCA-based circuits described in "Implementing Permutation Matrices by Use of Quantum Dots" (NPO-20801), NASA Tech Briefs, Vol. 25, No. 10 (October 2001), page 42 and "Compact Interconnection Networks Based on Quantum Dots" (NPO-20855), which appears elsewhere in this issue. Those articles described the limitations of very-large-scale-integrated (VLSI) circuitry and the major potential advantage afforded by QCA. To recapitulate: In a VLSI circuit, signal paths that are required not to interact with each other must not cross in the same plane. In contrast, for reasons too complex to describe in the limited space available for this article, suitably designed and operated QCA-based signal paths that are required not to interact with each other can nevertheless be allowed to cross each other in the same plane without adverse effect. In principle, this characteristic could be exploited to design compact, coplanar, simple (relative to VLSI) QCA-based networks to implement complex, advanced interconnection schemes. To enable a meaningful description of the proposed bit-serial adder, it is necessary to further recapitulate the description of a quantum-dot cellular automation from the first-mentioned prior article: A quantum-dot cellular automaton contains four quantum dots positioned at the corners of a square cell. The cell contains two extra mobile electrons that can tunnel (in the

  11. An Efficient Method for Image and Audio Steganography using Least Significant Bit (LSB) Substitution

    Science.gov (United States)

    Chadha, Ankit; Satam, Neha; Sood, Rakshak; Bade, Dattatray

    2013-09-01

    In order to improve the data hiding in all types of multimedia data formats such as image and audio and to make hidden message imperceptible, a novel method for steganography is introduced in this paper. It is based on Least Significant Bit (LSB) manipulation and inclusion of redundant noise as secret key in the message. This method is applied to data hiding in images. For data hiding in audio, Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT) both are used. All the results displayed prove to be time-efficient and effective. Also the algorithm is tested for various numbers of bits. For those values of bits, Mean Square Error (MSE) and Peak-Signal-to-Noise-Ratio (PSNR) are calculated and plotted. Experimental results show that the stego-image is visually indistinguishable from the original cover-image when nsteganography process does not reveal presence of any hidden message, thus qualifying the criteria of imperceptible message.

  12. Classification of EEG signals using a genetic-based machine learning classifier.

    Science.gov (United States)

    Skinner, B T; Nguyen, H T; Liu, D K

    2007-01-01

    This paper investigates the efficacy of the genetic-based learning classifier system XCS, for the classification of noisy, artefact-inclusive human electroencephalogram (EEG) signals represented using large condition strings (108bits). EEG signals from three participants were recorded while they performed four mental tasks designed to elicit hemispheric responses. Autoregressive (AR) models and Fast Fourier Transform (FFT) methods were used to form feature vectors with which mental tasks can be discriminated. XCS achieved a maximum classification accuracy of 99.3% and a best average of 88.9%. The relative classification performance of XCS was then compared against four non-evolutionary classifier systems originating from different learning techniques. The experimental results will be used as part of our larger research effort investigating the feasibility of using EEG signals as an interface to allow paralysed persons to control a powered wheelchair or other devices.

  13. Acquisition and Retaining Granular Samples via a Rotating Coring Bit

    Science.gov (United States)

    Bar-Cohen, Yoseph; Badescu, Mircea; Sherrit, Stewart

    2013-01-01

    This device takes advantage of the centrifugal forces that are generated when a coring bit is rotated, and a granular sample is entered into the bit while it is spinning, making it adhere to the internal wall of the bit, where it compacts itself into the wall of the bit. The bit can be specially designed to increase the effectiveness of regolith capturing while turning and penetrating the subsurface. The bit teeth can be oriented such that they direct the regolith toward the bit axis during the rotation of the bit. The bit can be designed with an internal flute that directs the regolith upward inside the bit. The use of both the teeth and flute can be implemented in the same bit. The bit can also be designed with an internal spiral into which the various particles wedge. In another implementation, the bit can be designed to collect regolith primarily from a specific depth. For that implementation, the bit can be designed such that when turning one way, the teeth guide the regolith outward of the bit and when turning in the opposite direction, the teeth will guide the regolith inward into the bit internal section. This mechanism can be implemented with or without an internal flute. The device is based on the use of a spinning coring bit (hollow interior) as a means of retaining granular sample, and the acquisition is done by inserting the bit into the subsurface of a regolith, soil, or powder. To demonstrate the concept, a commercial drill and a coring bit were used. The bit was turned and inserted into the soil that was contained in a bucket. While spinning the bit (at speeds of 600 to 700 RPM), the drill was lifted and the soil was retained inside the bit. To prove this point, the drill was turned horizontally, and the acquired soil was still inside the bit. The basic theory behind the process of retaining unconsolidated mass that can be acquired by the centrifugal forces of the bit is determined by noting that in order to stay inside the interior of the bit, the

  14. A digital divider with extension bits for position-sensitive detectors

    International Nuclear Information System (INIS)

    Koike, Masaki; Hasegawa, Ken-ichi

    1988-01-01

    Digitizing errors produced in a digital divider for position-sensitive detectors have been reduced by adding extension bits to data bits. A relation between the extension bits and the data bits to obtain perfect position uniformity is also given. A digital divider employing 10 bit ADCs and 6 bit extension circuits has been constructed. (orig.)

  15. Stochastic p -Bits for Invertible Logic

    Science.gov (United States)

    Camsari, Kerem Yunus; Faria, Rafatul; Sutton, Brian M.; Datta, Supriyo

    2017-07-01

    Conventional semiconductor-based logic and nanomagnet-based memory devices are built out of stable, deterministic units such as standard metal-oxide semiconductor transistors, or nanomagnets with energy barriers in excess of ≈40 - 60 kT . In this paper, we show that unstable, stochastic units, which we call "p -bits," can be interconnected to create robust correlations that implement precise Boolean functions with impressive accuracy, comparable to standard digital circuits. At the same time, they are invertible, a unique property that is absent in standard digital circuits. When operated in the direct mode, the input is clamped, and the network provides the correct output. In the inverted mode, the output is clamped, and the network fluctuates among all possible inputs that are consistent with that output. First, we present a detailed implementation of an invertible gate to bring out the key role of a single three-terminal transistorlike building block to enable the construction of correlated p -bit networks. The results for this specific, CMOS-assisted nanomagnet-based hardware implementation agree well with those from a universal model for p -bits, showing that p -bits need not be magnet based: any three-terminal tunable random bit generator should be suitable. We present a general algorithm for designing a Boltzmann machine (BM) with a symmetric connection matrix [J ] (Ji j=Jj i) that implements a given truth table with p -bits. The [J ] matrices are relatively sparse with a few unique weights for convenient hardware implementation. We then show how BM full adders can be interconnected in a partially directed manner (Ji j≠Jj i) to implement large logic operations such as 32-bit binary addition. Hundreds of stochastic p -bits get precisely correlated such that the correct answer out of 233 (≈8 ×1 09) possibilities can be extracted by looking at the statistical mode or majority vote of a number of time samples. With perfect directivity (Jj i=0 ) a small

  16. Improved Bit Rate Control for Real-Time MPEG Watermarking

    Directory of Open Access Journals (Sweden)

    Pranata Sugiri

    2004-01-01

    Full Text Available The alteration of compressed video bitstream due to embedding of digital watermark tends to produce unpredictable video bit rate variations which may in turn lead to video playback buffer overflow/underflow or transmission bandwidth violation problems. This paper presents a novel bit rate control technique for real-time MPEG watermarking applications. In our experiments, spread spectrum watermarks are embedded in the quantized DCT domain without requantization and motion reestimation to achieve fast watermarking. The proposed bit rate control scheme evaluates the combined bit lengths of a set of multiple watermarked VLC codewords, and successively replaces watermarked VLC codewords having the largest increase in bit length with their corresponding unmarked VLC codewords until a target bit length is achieved. The proposed method offers flexibility and scalability, which are neglected by similar works reported in the literature. Experimental results show that the proposed bit rate control scheme is effective in meeting the bit rate targets and capable of improving the watermark detection robustness for different video contents compressed at different bit rates.

  17. Cross Institutional Cooperation on a Shared Bit Repository

    DEFF Research Database (Denmark)

    Zierau, Eld; Kejser, Ulla Bøgvad

    2013-01-01

    This paper explores how independent institutions, such as archives and libraries, can cooperate on managing a shared bit repository with bit preservation, in order to use their resources for preservation in a more cost-effective way. It uses the OAIS Reference Model to provide a framework...... for systematically analysing institutions technical and organisational requirements for a remote bit repository. Instead of viewing a bit repository simply as Archival Storage for the institutions repositories, we argue for viewing it as consisting of a subset of functions from all entities defined by the OAIS...... Reference Model. The work is motivated by and used in a current Danish feasibility study for establishing a national bit repository. The study revealed that depending on their missions and the collections they hold, the institutions have varying requirements e.g. for bit safety, accessibility...

  18. Cross Institutional Cooperation on a Shared Bit Repository

    DEFF Research Database (Denmark)

    Zierau, Eld; Kejser, Ulla Bøgvad

    2010-01-01

    This paper explores how independent institutions, such as archives and libraries, can cooperate on managing a shared bit repository with bit preservation in order to use their resources for preservation n in a more cost-effective way. It uses the OAIS Reference Model to provide a framework...... for systematically analysing the technical and organizational requirements of institutions for a remote bit repository. Instead of viewing a bit repository simply as Archival Storage for the institutions’ repositories, we argue for viewing it as consisting of a subset of functions from all entities defined...... by the OAIS Reference Model. The work is motivated by and used in a current Danish feasibility study for establishing a national bit repository. The study revealed that depending on their missions and the collections they hold, the institutions have varying requirements, such as for bit safety, accessibility...

  19. Method to manufacture bit patterned magnetic recording media

    Science.gov (United States)

    Raeymaekers, Bart; Sinha, Dipen N

    2014-05-13

    A method to increase the storage density on magnetic recording media by physically separating the individual bits from each other with a non-magnetic medium (so-called bit patterned media). This allows the bits to be closely packed together without creating magnetic "cross-talk" between adjacent bits. In one embodiment, ferromagnetic particles are submerged in a resin solution, contained in a reservoir. The bottom of the reservoir is made of piezoelectric material.

  20. Robustness of spiking Deep Belief Networks to noise and reduced bit precision of neuro-inspired hardware platforms.

    Science.gov (United States)

    Stromatias, Evangelos; Neil, Daniel; Pfeiffer, Michael; Galluppi, Francesco; Furber, Steve B; Liu, Shih-Chii

    2015-01-01

    Increasingly large deep learning architectures, such as Deep Belief Networks (DBNs) are the focus of current machine learning research and achieve state-of-the-art results in different domains. However, both training and execution of large-scale Deep Networks require vast computing resources, leading to high power requirements and communication overheads. The on-going work on design and construction of spike-based hardware platforms offers an alternative for running deep neural networks with significantly lower power consumption, but has to overcome hardware limitations in terms of noise and limited weight precision, as well as noise inherent in the sensor signal. This article investigates how such hardware constraints impact the performance of spiking neural network implementations of DBNs. In particular, the influence of limited bit precision during execution and training, and the impact of silicon mismatch in the synaptic weight parameters of custom hybrid VLSI implementations is studied. Furthermore, the network performance of spiking DBNs is characterized with regard to noise in the spiking input signal. Our results demonstrate that spiking DBNs can tolerate very low levels of hardware bit precision down to almost two bits, and show that their performance can be improved by at least 30% through an adapted training mechanism that takes the bit precision of the target platform into account. Spiking DBNs thus present an important use-case for large-scale hybrid analog-digital or digital neuromorphic platforms such as SpiNNaker, which can execute large but precision-constrained deep networks in real time.

  1. Inter-track interference mitigation with two-dimensional variable equalizer for bit patterned media recording

    Directory of Open Access Journals (Sweden)

    Yao Wang

    2017-05-01

    Full Text Available The increased track density in bit patterned media recording (BPMR causes increased inter-track interference (ITI, which degrades the bit error rate (BER performance. In order to mitigate the effect of the ITI, signals from multiple tracks can be equalized by a 2D equalizer with 1D target. Usually, the 2D fixed equalizer coefficients are obtained by using a pseudo-random bit sequence (PRBS for training. In this study, a 2D variable equalizer is proposed, where various sets of 2D equalizer coefficients are predetermined and stored for different ITI patterns besides the usual PRBS training. For data detection, as the ITI patterns are unknown in the first global iteration, the main and adjacent tracks are equalized with the conventional 2D fixed equalizer, detected with Bahl-Cocke-Jelinek-Raviv (BCJR detector and decoded with low-density parity-check (LDPC decoder. Then using the estimated bit information from main and adjacent tracks, the ITI pattern for each island of the main track can be estimated and the corresponding 2D variable equalizers are used to better equalize the bits on the main track. This process is executed iteratively by feeding back the main track information. Simulation results indicate that for both single-track and two-track detection, the proposed 2D variable equalizer can achieve better BER and frame error rate (FER compared to that with the 2D fixed equalizer.

  2. Compact battery-less information terminal (CoBIT) for location-based support systems

    Science.gov (United States)

    Nishimura, Takuichi; Itoh, Hideo; Yamamoto, Yoshinobu; Nakashima, Hideyuki

    2002-06-01

    The target of ubiquitous computing environment is to support users to get necessary information and services in a situation-dependent form. Therefore, we propose a location-based information support system by using Compact Battery-less Information Terminal (CoBIT). A CoBIT can communicate with the environmental system and with the user by only the energy supply from the environment. It has a solar cell and get a modulated light from an environmental optical beam transmitter. The current from the solar cell is directly (or through passive circuit) introduced into an earphone, which generates sound for the user. The current is also used to make vibration, LED signal or electrical stimulus on the skin. The sizes of CoBITs are about 2cm in diameter, 3cm in length, which can be hanged on ears conveniently. The cost of it would be only about 1 dollar if produced massively. The CoBIT also has sheet type corner reflector, which reflect optical beam back in the direction of the light source. Therefore the environmental system can easily detect the terminal position and direction as well as some simple signs from the user by multiple cameras with infra-red LEDs. The system identifies the sign by the modulated patterns of the reflected light, which the user makes by occluding the reflector by hand. The environmental system also recognizes other objects using other sensors and displays video information on a nearby monitor in order to realize situated support.

  3. An efficient parallel pseudorandom bit generator based on an ...

    Indian Academy of Sciences (India)

    bit sequences pass all of the NIST SP800-22 statistical tests. ... local map, the chaotic behaviours of which depend only on the local map parameter, ..... 3, 4, ..., N. Thus, one-bit change of a 64-bit IV can result in 8(N − 2) + 1 bits change for 32N ...

  4. Installation of MCNP on 64-bit parallel computers

    International Nuclear Information System (INIS)

    Meginnis, A.B.; Hendricks, J.S.; McKinney, G.W.

    1995-01-01

    The Monte Carlo radiation transport code MCNP has been successfully ported to two 64-bit workstations, the SGI and DEC Alpha. We found the biggest problem for installation on these machines to be Fortran and C mismatches in argument passing. Correction of these mismatches enabled, for the first time, dynamic memory allocation on 64-bit workstations. Although the 64-bit hardware is faster because 8-bytes are processed at a time rather than 4-bytes, we found no speed advantage in true 64-bit coding versus implicit double precision when porting an existing code to the 64-bit workstation architecture. We did find that PVM multiasking is very successful and represents a significant performance enhancement for scientific workstations

  5. A software reconfigurable optical multiband UWB system utilizing a bit-loading combined with adaptive LDPC code rate scheme

    Science.gov (United States)

    He, Jing; Dai, Min; Chen, Qinghui; Deng, Rui; Xiang, Changqing; Chen, Lin

    2017-07-01

    In this paper, an effective bit-loading combined with adaptive LDPC code rate algorithm is proposed and investigated in software reconfigurable multiband UWB over fiber system. To compensate the power fading and chromatic dispersion for the high frequency of multiband OFDM UWB signal transmission over standard single mode fiber (SSMF), a Mach-Zehnder modulator (MZM) with negative chirp parameter is utilized. In addition, the negative power penalty of -1 dB for 128 QAM multiband OFDM UWB signal are measured at the hard-decision forward error correction (HD-FEC) limitation of 3.8 × 10-3 after 50 km SSMF transmission. The experimental results show that, compared to the fixed coding scheme with the code rate of 75%, the signal-to-noise (SNR) is improved by 2.79 dB for 128 QAM multiband OFDM UWB system after 100 km SSMF transmission using ALCR algorithm. Moreover, by employing bit-loading combined with ALCR algorithm, the bit error rate (BER) performance of system can be further promoted effectively. The simulation results present that, at the HD-FEC limitation, the value of Q factor is improved by 3.93 dB at the SNR of 19.5 dB over 100 km SSMF transmission, compared to the fixed modulation with uncoded scheme at the same spectrum efficiency (SE).

  6. Servicing a globally broadcast interrupt signal in a multi-threaded computer

    Science.gov (United States)

    Attinella, John E.; Davis, Kristan D.; Musselman, Roy G.; Satterfield, David L.

    2015-12-29

    Methods, apparatuses, and computer program products for servicing a globally broadcast interrupt signal in a multi-threaded computer comprising a plurality of processor threads. Embodiments include an interrupt controller indicating in a plurality of local interrupt status locations that a globally broadcast interrupt signal has been received by the interrupt controller. Embodiments also include a thread determining that a local interrupt status location corresponding to the thread indicates that the globally broadcast interrupt signal has been received by the interrupt controller. Embodiments also include the thread processing one or more entries in a global interrupt status bit queue based on whether global interrupt status bits associated with the globally broadcast interrupt signal are locked. Each entry in the global interrupt status bit queue corresponds to a queued global interrupt.

  7. Comparison of two different high performance mixed signal controllers for DC/DC converters

    DEFF Research Database (Denmark)

    Jakobsen, Lars Tønnes; Andersen, Michael Andreas E.

    2006-01-01

    This paper describes how mixed signal controllers combining a cheap microcontroller with a simple analogue circuit can offer high performance digital control for DC/DC converters. Mixed signal controllers have the same versatility and performance as DSP based controllers. It is important to have...... an engineer experienced in microcontroller programming write the software algorithms to achieve optimal performance. Two mixed signal controller designs based on the same 8-bit microcontroller are compared both theoretically and experimentally. A 16-bit PID compensator with a sampling frequency of 200 k......Hz implemented in the 16 MIPS, 8-bit ATTiny26 microcontroller is demonstrated....

  8. 12/13 signaling promotes cervical cancer invasion through the RhoA/ROCK-JNK signaling axis

    International Nuclear Information System (INIS)

    Yuan, Bo; Cui, Jinquan; Wang, Wuliang; Deng, Kehong

    2016-01-01

    Several reports have indicated a role for the members of the G12 family of heterotrimeric G proteins (Gα12 and Gα13) in oncogenesis and tumor cell growth. The aims of the present study were to evaluate the role of G12 signaling in cervical cancer. We demonstrated that expression of the G12 proteins was highly upregulated in cervical cancer cells. Additionally, expression of the activated forms of Gα12/Gα13 but not expression of activated Gαq induced cell invasion through the activation of the RhoA family of G proteins, but had no effect on cell proliferation in the cervical cancer cells. Inhibition of G12 signaling by expression of the RGS domain of the p115-Rho-specific guanine nucleotide exchange factor (p115-RGS) blocked thrombin-stimulated cell invasion, but did not inhibit cell proliferation in cervical cells, whereas the inhibition of Gαq (RGS2) had no effect. Furthermore, G12 signaling was able to activate Rho proteins, and this stimulation was inhibited by p115-RGS, and Gα12-induced invasion was blocked by an inhibitor of RhoA/B/C (C3 toxin). Pharmacological inhibition of JNK remarkably decreased G12-induced JNK activation. Both a JNK inhibitor (SP600125) and a ROCK inhibitor (Y27632) reduced G12-induced JNK and c-Jun activation, and markedly inhibited G12-induced cellular invasion. Collectively, these findings demonstrate that stimulation of G12 proteins is capable of promoting invasion through RhoA/ROCK-JNK activation. -- Highlights: •Gα12/Gα13 is upregulated in cervical cancer cell lines. •Gα12/Gα13 is not involved in cervical cancer cell proliferation. •Gα12/Gα13 promotes cervical cancer cell invasion. •The role of Rho G proteins in G12-promoted cervical cancer cell invasion. •G12 promotes cell invasion through activation of the ROCK-JNK signaling axis.

  9. Assessing the efficiency of carbide drill bits and factors influencing their application to debris-rich subglacial ice

    Science.gov (United States)

    Yang, Cheng; Jiang, Jianliang; Cao, Pinlu; Wang, Jinsong; Fan, Xiaopeng; Shang, Yuequan; Talalay, Pavel

    2017-09-01

    When drilling into subglacial bedrock, drill operators commonly encounter basal ice containing high concentrations of rock debris and melt water. As such conditions can easily damage conventional ice drills, researchers have experimented with carbide, diamond, and polycrystalline diamond compact drill bits, with varying degrees of success. In this study, we analyzed the relationship between drilling speed and power consumption for a carbide drill bit penetrating debris-rich ice. We also assessed drill load, rotation speed, and various performance parameters for the cutting element, as well as the physical and mechanical properties of rock and ice, to construct mathematical models. We show that our modeled results are in close agreement with the experimental data, and that both penetration speed and power consumption are positively correlated with drill speed and load. When used in ice with 30% rock content, the maximum penetration speed of the carbide bit is 3.4 mm/s with a power consumption of ≤0.5 kW, making the bit suitable for use with existing electromechanical drills. Our study also provides a guide for further research into cutting heat and equipment design.

  10. A Low-Power Single-Bit Continuous-Time ΔΣ Converter with 92.5 dB Dynamic Range for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Vishal Saxena

    2012-07-01

    Full Text Available A third-order single-bit CT-ΔΣ modulator for generic biomedical applications is implemented in a 0.15 µm FDSOI CMOS process. The overall power efficiency is attained by employing a single-bit ΔΣ and a subthreshold FDSOI process. The loop-filter coefficients are determined using a systematic design centering approach by accounting for the integrator non-idealities. The single-bit CT-ΔΣ modulator consumes 110 µW power from a 1.5 V power supply when clocked at 6.144 MHz. The simulation results for the modulator exhibit a dynamic range of 94.4 dB and peak SNDR of 92.4 dB for 6 kHz signal bandwidth. The figure of merit (FoM for the third-order, single-bit CT-ΔΣ modulator is 0.271 pJ/level.

  11. A bit-rate flexible and power efficient all-optical demultiplexer realised by monolithically integrated Michelson interferometer

    DEFF Research Database (Denmark)

    Vaa, Michael; Mikkelsen, Benny; Jepsen, Kim Stokholm

    1996-01-01

    A novel bit-rate flexible and very power efficient all-optical demultiplexer using differential optical control of a monolithically integrated Michelson interferometer with MQW SOAs is demonstrated at 40 to 10 Gbit/s. Gain switched DFB lasers provide ultra stable data and control signals....

  12. A mixed signal ECG processing platform with an adaptive sampling ADC for portable monitoring applications.

    Science.gov (United States)

    Kim, Hyejung; Van Hoof, Chris; Yazicioglu, Refet Firat

    2011-01-01

    This paper describes a mixed-signal ECG processing platform with an 12-bit ADC architecture that can adapt its sampling rate according to the input signals rate of change. This enables the sampling of ECG signals with significantly reduced data rate without loss of information. The presented adaptive sampling scheme reduces the ADC power consumption, enables the processing of ECG signals with lower power consumption, and reduces the power consumption of the radio while streaming the ECG signals. The test results show that running a CWT-based R peak detection algorithm using the adaptively sampled ECG signals consumes only 45.6 μW and it leads to 36% less overall system power consumption.

  13. Ultra low bit-rate speech coding

    CERN Document Server

    Ramasubramanian, V

    2015-01-01

    "Ultra Low Bit-Rate Speech Coding" focuses on the specialized topic of speech coding at very low bit-rates of 1 Kbits/sec and less, particularly at the lower ends of this range, down to 100 bps. The authors set forth the fundamental results and trends that form the basis for such ultra low bit-rates to be viable and provide a comprehensive overview of various techniques and systems in literature to date, with particular attention to their work in the paradigm of unit-selection based segment quantization. The book is for research students, academic faculty and researchers, and industry practitioners in the areas of speech processing and speech coding.

  14. Robustness of spiking Deep Belief Networks to noise and reduced bit precision of neuro-inspired hardware platforms

    Directory of Open Access Journals (Sweden)

    Evangelos eStromatias

    2015-07-01

    Full Text Available Increasingly large deep learning architectures, such as Deep Belief Networks (DBNs are the focus of current machine learning research and achieve state-of-the-art results in different domains. However, both training and execution of large-scale Deep Networks requires vast computing resources, leading to high power requirements and communication overheads. The on-going work on design and construction of spike-based hardware platforms offers an alternative for running deep neural networks with significantly lower power consumption, but has to overcome hardware limitations in terms of noise and limited weight precision, as well as noise inherent in the sensor signal. This article investigates how such hardware constraints impact the performance of spiking neural network implementations of DBNs. In particular, the influence of limited bit precision during execution and training, and the impact of silicon mismatch in the synaptic weight parameters of custom hybrid VLSI implementations is studied. Furthermore, the network performance of spiking DBNs is characterized with regard to noise in the spiking input signal. Our results demonstrate that spiking DBNs can tolerate very low levels of hardware bit precision down to almost 2 bits, and shows that their performance can be improved by at least 30% through an adapted training mechanism that takes the bit precision of the target platform into account. Spiking DBNs thus present an important use-case for large-scale hybrid analog-digital or digital neuromorphic platforms such as SpiNNaker, which can execute large but precision-constrained deep networks in real time.

  15. The Economics of BitCoin Price Formation

    OpenAIRE

    Pavel Ciaian; Miroslava Rajcaniova; d'Artis Kancs

    2014-01-01

    This is the first article that studies BitCoin price formation by considering both the traditional determinants of currency price, e.g., market forces of supply and demand, and digital currencies specific factors, e.g., BitCoin attractiveness for investors and users. The conceptual framework is based on the Barro (1979) model, from which we derive testable hypotheses. Using daily data for five years (2009–2015) and applying time-series analytical mechanisms, we find that market forces and Bit...

  16. Mixed-Signal Hardware Security: Attacks and Countermeasures for ΔΣ ADC

    Directory of Open Access Journals (Sweden)

    Shayan Taheri

    2017-08-01

    Full Text Available Mixed-signal integrated circuits (ICs play an eminent and critical role in design and development of the embedded systems leveraged within smart weapons and military systems. These ICs can be a golden target for adversaries to compromise in order to function maliciously. In this work, we study the security aspects of a tunnel field effect transistor (TFET-based first-order one-bit delta-sigma ( Δ Σ analog to digital converter (ADC through proposing four attack and one defense models. The first attack manipulates the input signal to the Δ Σ modulator. The second attack manipulates the analog version of the modulator output bit and is triggered by the noise signal. The third attack manipulates the modulator output bit and has a controllable trigger mechanism. The fourth attack manipulates the analog version of the modulator output bit and is triggered by a victim capacitance within the chip. For the defense, a number of signal processing filters are used in order to purge the analog version of the modulator output bit for elimination of the malicious unwanted features, introduced by the attacks. According to the simulation results, the second threat model displays the strongest attack. Derived from the countermeasure evaluation, the best filter to confront the threat models is the robust regression using the least absolute residual computing method.

  17. Feasibility of bit patterned media for HAMR at 5 Tb/in{sup 2}

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Sumei, E-mail: wang3936@umn.edu; Ghoreyshi, Ali; Victora, R. H. [MINT, Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2015-05-07

    We have investigated the feasibility of BPM for HAMR via Finite Difference Time Domain and atomistic simulation and we have substantiated the feasibility of 5 Tb/in{sup 2} with two filling factors 25% and 56% even when the maximum on-track bit temperature is below the Curie temperature. The success of this underheated switching is attributed to sufficiently low anisotropy instead of reduction of Curie temperature. The temperature gradient in the cross-track direction is almost doubled if the optical head width is reduced by half, indicating the possibility of higher areal densities. Moreover, contrary to continuous media, we also found that the power absorption peaks at the bottom of the bit patterned FePt when the media is illuminated from above, which is probably due to stronger coupling there between FePt and the surrounding materials.

  18. Symbol and Bit Error Rates Analysis of Hybrid PIM-CDMA

    Directory of Open Access Journals (Sweden)

    Ghassemlooy Z

    2005-01-01

    Full Text Available A hybrid pulse interval modulation code-division multiple-access (hPIM-CDMA scheme employing the strict optical orthogonal code (SOCC with unity and auto- and cross-correlation constraints for indoor optical wireless communications is proposed. In this paper, we analyse the symbol error rate (SER and bit error rate (BER of hPIM-CDMA. In the analysis, we consider multiple access interference (MAI, self-interference, and the hybrid nature of the hPIM-CDMA signal detection, which is based on the matched filter (MF. It is shown that the BER/SER performance can only be evaluated if the bit resolution conforms to the condition set by the number of consecutive false alarm pulses that might occur and be detected, so that one symbol being divided into two is unlikely to occur. Otherwise, the probability of SER and BER becomes extremely high and indeterminable. We show that for a large number of users, the BER improves when increasing the code weight . The results presented are compared with other modulation schemes.

  19. Use break-even analysis to optimize bit runs

    International Nuclear Information System (INIS)

    Kelly, J. Jr.

    1992-01-01

    Applying a technique known as break-even analysis during the bit selection process enables the operator to more definitively estimate drilling costs. The break-even chart can be used in a variety of ways to evaluate bit and operating parameter alternatives. Frequent application of this technique significantly improves the user's understanding of drilling economics and their ability to plan more effective drilling programs. This paper reports on several examples of drilling cost estimates obtained through application of the break-even analysis, which determines the bit performance required to match established drilling cost records in similar applications. It is especially helpful when new bit features are being considered for the first time. Two common examples with today's rolling cutter bits are changes from steel teeth to tungsten carbide inserts (TCI) and O-ring to metal bearing seals

  20. A Memristor as Multi-Bit Memory: Feasibility Analysis

    Directory of Open Access Journals (Sweden)

    O. Bass

    2015-06-01

    Full Text Available The use of emerging memristor materials for advanced electrical devices such as multi-valued logic is expected to outperform today's binary logic digital technologies. We show here an example for such non-binary device with the design of a multi-bit memory. While conventional memory cells can store only 1 bit, memristors-based multi-bit cells can store more information within single device thus increasing the information storage density. Such devices can potentially utilize the non-linear resistance of memristor materials for efficient information storage. We analyze the performance of such memory devices based on their expected variations in order to determine the viability of memristor-based multi-bit memory. A design of read/write scheme and a simple model for this cell, lay grounds for full integration of memristor multi-bit memory cell.

  1. Chaos based encryption system for encrypting electroencephalogram signals.

    Science.gov (United States)

    Lin, Chin-Feng; Shih, Shun-Han; Zhu, Jin-De

    2014-05-01

    In the paper, we use the Microsoft Visual Studio Development Kit and C# programming language to implement a chaos-based electroencephalogram (EEG) encryption system involving three encryption levels. A chaos logic map, initial value, and bifurcation parameter for the map were used to generate Level I chaos-based EEG encryption bit streams. Two encryption-level parameters were added to these elements to generate Level II chaos-based EEG encryption bit streams. An additional chaotic map and chaotic address index assignment process was used to implement the Level III chaos-based EEG encryption system. Eight 16-channel EEG Vue signals were tested using the encryption system. The encryption was the most rapid and robust in the Level III system. The test yielded superior encryption results, and when the correct deciphering parameter was applied, the EEG signals were completely recovered. However, an input parameter error (e.g., a 0.00001 % initial point error) causes chaotic encryption bit streams, preventing the recovery of 16-channel EEG Vue signals.

  2. Bit-padding information guided channel hopping

    KAUST Repository

    Yang, Yuli

    2011-02-01

    In the context of multiple-input multiple-output (MIMO) communications, we propose a bit-padding information guided channel hopping (BP-IGCH) scheme which breaks the limitation that the number of transmit antennas has to be a power of two based on the IGCH concept. The proposed scheme prescribes different bit-lengths to be mapped onto the indices of the transmit antennas and then uses padding technique to avoid error propagation. Numerical results and comparisons, on both the capacity and the bit error rate performances, are provided and show the advantage of the proposed scheme. The BP-IGCH scheme not only offers lower complexity to realize the design flexibility, but also achieves better performance. © 2011 IEEE.

  3. On seeing the trees and the forest: single-signal and multisignal analysis of periictal intracranial EEG.

    Science.gov (United States)

    Schindler, Kaspar; Gast, Heidemarie; Goodfellow, Marc; Rummel, Christian

    2012-09-01

    Epileptic seizures are associated with a dysregulation of electrical brain activity on many different spatial scales. To better understand the dynamics of epileptic seizures, that is, how the seizures initiate, propagate, and terminate, it is important to consider changes of electrical brain activity on different spatial scales. Herein we set out to analyze periictal electrical brain activity on comparatively small and large spatial scales by assessing changes in single intracranial electroencephalography (EEG) signals and of averaged interdependences of pairs of EEG signals. Single and multiple EEG signals are analyzed by combining methods from symbolic dynamics and information theory. This computationally efficient approach is chosen because at its core it consists of analyzing the occurrence of patterns and bears analogy to classical visual EEG reading. Symbolization is achieved by first mapping the EEG signals into bit strings, that is, long sequences of zeros and ones, depending solely on whether their amplitudes increase or decrease. Bit strings reflect relational aspects between consecutive values of the original EEG signals, but not the values themselves. For each bit string the relative frequencies of the different constituent short bit patterns are then determined and used to compute two information theoretical measures: (1) redundancy (R) of single bit strings characterizes electrical brain activity on a comparatively small spatial scale represented by a single EEG signal and (2) averaged pair-wise mutual information with all other bit strings (M), which allows tracking of larger-scale EEG dynamics. We analyzed 20 periictal intracranial EEG recordings from five patients with pharmacoresistant temporal lobe epilepsy. At seizure onset, R first strongly increased and then decreased toward seizure termination, whereas M gradually increased throughout the seizure. Bit strings with maximal R were always derived from EEG signals recorded from the visually

  4. Evaluation of In-Situ Magnetic Signals from Iron Oxide Nanoparticle-Labeled PC12 Cells by Atomic Force Microscopy.

    Science.gov (United States)

    Wang, Lijun; Min, Yue; Wang, Zhigang; Riggio, Cristina; Calatayud, M Pilar; Pinkernelle, Josephine; Raffa, Vittoria; Goya, Gerardo F; Keilhoff, Gerburg; Cuschieri, Alfred

    2015-03-01

    The magnetic signals from magnetite nanoparticle-labeled PC12 cells were assessed by magnetic force microscopy by deploying a localized external magnetic field to magnetize the nanoparticles and the magnetic tip simultaneously so that the interaction between the tip and PC12 cell-associated Fe3O4 nanoparticles could be detected at lift heights (the distance between the tip and the sample) larger than 100 nm. The use of large lift heights during the raster scanning of the probe eliminates the non-magnetic interference from the complex and rugged cell surface and yet maintains the sufficient sensitivity for magnetic detection. The magnetic signals of the cell-bound nanoparticles were semi-quantified by analyzing cell surface roughness upon three-dimensional reconstruction generated by the phase shift of the cantilever oscillation. The obtained data can be used for the evaluation of the overall cellular magnetization as well as the maximum magnetic forces from magnetic nanoparticle-labeled cells which is crucial for the biomedical application of these nanomaterials.

  5. 12-Bit High Dynamic Range ADC

    National Research Council Canada - National Science Library

    Oyama, Bert

    1997-01-01

    .... The results were discussed during a teleconference held on September 4, 1997 (attendees were: 0. Nichols, B. Oyama, S. Nelson, M. Englekirk, and B. Wong). Summaries of the analysis results are shown in Figures 1-1 and 1-2...

  6. Efficient Bit-to-Symbol Likelihood Mappings

    Science.gov (United States)

    Moision, Bruce E.; Nakashima, Michael A.

    2010-01-01

    This innovation is an efficient algorithm designed to perform bit-to-symbol and symbol-to-bit likelihood mappings that represent a significant portion of the complexity of an error-correction code decoder for high-order constellations. Recent implementation of the algorithm in hardware has yielded an 8- percent reduction in overall area relative to the prior design.

  7. Lathe tool bit and holder for machining fiberglass materials

    Science.gov (United States)

    Winn, L. E. (Inventor)

    1972-01-01

    A lathe tool and holder combination for machining resin impregnated fiberglass cloth laminates is described. The tool holder and tool bit combination is designed to accommodate a conventional carbide-tipped, round shank router bit as the cutting medium, and provides an infinite number of cutting angles in order to produce a true and smooth surface in the fiberglass material workpiece with every pass of the tool bit. The technique utilizes damaged router bits which ordinarily would be discarded.

  8. Multiple Memory Structure Bit Reversal Algorithm Based on Recursive Patterns of Bit Reversal Permutation

    Directory of Open Access Journals (Sweden)

    K. K. L. B. Adikaram

    2014-01-01

    Full Text Available With the increasing demand for online/inline data processing efficient Fourier analysis becomes more and more relevant. Due to the fact that the bit reversal process requires considerable processing time of the Fast Fourier Transform (FFT algorithm, it is vital to optimize the bit reversal algorithm (BRA. This paper is to introduce an efficient BRA with multiple memory structures. In 2009, Elster showed the relation between the first and the second halves of the bit reversal permutation (BRP and stated that it may cause serious impact on cache performance of the computer, if implemented. We found exceptions, especially when the said index mapping was implemented with multiple one-dimensional memory structures instead of multidimensional or one-dimensional memory structure. Also we found a new index mapping, even after the recursive splitting of BRP into equal sized slots. The four-array and the four-vector versions of BRA with new index mapping reported 34% and 16% improvement in performance in relation to similar versions of Linear BRA of Elster which uses single one-dimensional memory structure.

  9. n-Order and maximum fuzzy similarity entropy for discrimination of signals of different complexity: Application to fetal heart rate signals.

    Science.gov (United States)

    Zaylaa, Amira; Oudjemia, Souad; Charara, Jamal; Girault, Jean-Marc

    2015-09-01

    This paper presents two new concepts for discrimination of signals of different complexity. The first focused initially on solving the problem of setting entropy descriptors by varying the pattern size instead of the tolerance. This led to the search for the optimal pattern size that maximized the similarity entropy. The second paradigm was based on the n-order similarity entropy that encompasses the 1-order similarity entropy. To improve the statistical stability, n-order fuzzy similarity entropy was proposed. Fractional Brownian motion was simulated to validate the different methods proposed, and fetal heart rate signals were used to discriminate normal from abnormal fetuses. In all cases, it was found that it was possible to discriminate time series of different complexity such as fractional Brownian motion and fetal heart rate signals. The best levels of performance in terms of sensitivity (90%) and specificity (90%) were obtained with the n-order fuzzy similarity entropy. However, it was shown that the optimal pattern size and the maximum similarity measurement were related to intrinsic features of the time series. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Hey! A Mosquito Bit Me! (For Kids)

    Science.gov (United States)

    ... First Aid & Safety Doctors & Hospitals Videos Recipes for Kids Kids site Sitio para niños How the Body Works ... Español Hey! A Mosquito Bit Me! KidsHealth / For Kids / Hey! A Mosquito Bit Me! Print en español ¡ ...

  11. IMAGE STEGANOGRAPHY DENGAN METODE LEAST SIGNIFICANT BIT (LSB

    Directory of Open Access Journals (Sweden)

    M. Miftakul Amin

    2014-02-01

    Full Text Available Security in delivering a secret message is an important factor in the spread of information in cyberspace. Protecting that message to be delivered to the party entitled to, should be made a message concealment mechanism. The purpose of this study was to hide a secret text message into digital images in true color 24 bit RGB format. The method used to insert a secret message using the LSB (Least Significant Bit by replacing the last bit or 8th bit in each RGB color component. RGB image file types option considering that messages can be inserted capacity greater than if use a grayscale image, this is because in one pixel can be inserted 3 bits message. Tests provide results that are hidden messages into a digital image does not reduce significantly the quality of the digital image, and the message has been hidden can be extracted again, so that messages can be delivered to the recipient safely.

  12. Preserving privacy of online digital physiological signals using blind and reversible steganography.

    Science.gov (United States)

    Shiu, Hung-Jr; Lin, Bor-Sing; Huang, Chien-Hung; Chiang, Pei-Ying; Lei, Chin-Laung

    2017-11-01

    Physiological signals such as electrocardiograms (ECG) and electromyograms (EMG) are widely used to diagnose diseases. Presently, the Internet offers numerous cloud storage services which enable digital physiological signals to be uploaded for convenient access and use. Numerous online databases of medical signals have been built. The data in them must be processed in a manner that preserves patients' confidentiality. A reversible error-correcting-coding strategy will be adopted to transform digital physiological signals into a new bit-stream that uses a matrix in which is embedded the Hamming code to pass secret messages or private information. The shared keys are the matrix and the version of the Hamming code. An online open database, the MIT-BIH arrhythmia database, was used to test the proposed algorithms. The time-complexity, capacity and robustness are evaluated. Comparisons of several evaluations subject to related work are also proposed. This work proposes a reversible, low-payload steganographic scheme for preserving the privacy of physiological signals. An (n,  m)-hamming code is used to insert (n - m) secret bits into n bits of a cover signal. The number of embedded bits per modification is higher than in comparable methods, and the computational power is efficient and the scheme is secure. Unlike other Hamming-code based schemes, the proposed scheme is both reversible and blind. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Fitness Probability Distribution of Bit-Flip Mutation.

    Science.gov (United States)

    Chicano, Francisco; Sutton, Andrew M; Whitley, L Darrell; Alba, Enrique

    2015-01-01

    Bit-flip mutation is a common mutation operator for evolutionary algorithms applied to optimize functions over binary strings. In this paper, we develop results from the theory of landscapes and Krawtchouk polynomials to exactly compute the probability distribution of fitness values of a binary string undergoing uniform bit-flip mutation. We prove that this probability distribution can be expressed as a polynomial in p, the probability of flipping each bit. We analyze these polynomials and provide closed-form expressions for an easy linear problem (Onemax), and an NP-hard problem, MAX-SAT. We also discuss a connection of the results with runtime analysis.

  14. Universality and clustering in 1 + 1 dimensional superstring-bit models

    International Nuclear Information System (INIS)

    Bergman, O.; Thorn, C.B.

    1996-01-01

    We construct a 1+1 dimensional superstring-bit model for D=3 Type IIB superstring. This low dimension model escapes the problem encountered in higher dimension models: (1) It possesses full Galilean supersymmetry; (2) For noninteracting Polymers of bits, the exactly soluble linear superpotential describing bit interactions is in a large universality class of superpotentials which includes ones bounded at spatial infinity; (3) The latter are used to construct a superstring-bit model with the clustering properties needed to define an S-matrix for closed polymers of superstring-bits

  15. Patterns in the distribution of digital games via BitTorrent

    DEFF Research Database (Denmark)

    Drachen, Anders; Veitch, Robert W. D.

    2013-01-01

    The distribution of illegal copies of computer games via digital networks forms the centre in one of the most heated debates in the international games environment, but there is minimal objective information available. Here the results of a large-scale, open-method analysis of the distribution...... of computer games via BitTorrent peer-to-peer file-sharing protocol is presented. 173 games were included, tracked over a period of three months from 2010 to 2011. A total of 12.6 million unique peers were identified across over 200 countries. Analysis indicates that the distribution of illegal copies...... of games follows distinct pattern, e.g., that a few game titles drive the traffic - the 10 most accessed games encompassed 42.7% of the number of peers tracked. The traffic is geographically localised - 20 countries encompassed 76.7% of the total. Geographic patterns in the distribution of BitTorrent peers...

  16. DarkBit. A GAMBIT module for computing dark matter observables and likelihoods

    Energy Technology Data Exchange (ETDEWEB)

    Bringmann, Torsten; Dal, Lars A. [University of Oslo, Department of Physics, Oslo (Norway); Conrad, Jan; Edsjoe, Joakim; Farmer, Ben [AlbaNova University Centre, Oskar Klein Centre for Cosmoparticle Physics, Stockholm (Sweden); Stockholm University, Department of Physics, Stockholm (Sweden); Cornell, Jonathan M. [McGill University, Department of Physics, Montreal, QC (Canada); Kahlhoefer, Felix; Wild, Sebastian [DESY, Hamburg (Germany); Kvellestad, Anders; Savage, Christopher [NORDITA, Stockholm (Sweden); Putze, Antje [LAPTh, Universite de Savoie, CNRS, Annecy-le-Vieux (France); Scott, Pat [Blackett Laboratory, Imperial College London, Department of Physics, London (United Kingdom); Weniger, Christoph [University of Amsterdam, GRAPPA, Institute of Physics, Amsterdam (Netherlands); White, Martin [University of Adelaide, Department of Physics, Adelaide, SA (Australia); Australian Research Council Centre of Excellence for Particle Physics at the Tera-scale, Parkville (Australia); Collaboration: The GAMBIT Dark Matter Workgroup

    2017-12-15

    We introduce DarkBit, an advanced software code for computing dark matter constraints on various extensions to the Standard Model of particle physics, comprising both new native code and interfaces to external packages. This release includes a dedicated signal yield calculator for gamma-ray observations, which significantly extends current tools by implementing a cascade-decay Monte Carlo, as well as a dedicated likelihood calculator for current and future experiments (gamLike). This provides a general solution for studying complex particle physics models that predict dark matter annihilation to a multitude of final states. We also supply a direct detection package that models a large range of direct detection experiments (DDCalc), and that provides the corresponding likelihoods for arbitrary combinations of spin-independent and spin-dependent scattering processes. Finally, we provide custom relic density routines along with interfaces to DarkSUSY, micrOMEGAs, and the neutrino telescope likelihood package nulike. DarkBit is written in the framework of the Global And Modular Beyond the Standard Model Inference Tool (GAMBIT), providing seamless integration into a comprehensive statistical fitting framework that allows users to explore new models with both particle and astrophysics constraints, and a consistent treatment of systematic uncertainties. In this paper we describe its main functionality, provide a guide to getting started quickly, and show illustrative examples for results obtained with DarkBit (both as a stand-alone tool and as a GAMBIT module). This includes a quantitative comparison between two of the main dark matter codes (DarkSUSY and micrOMEGAs), and application of DarkBit's advanced direct and indirect detection routines to a simple effective dark matter model. (orig.)

  17. Selection of the signal synchronization method in software GPS receivers

    Directory of Open Access Journals (Sweden)

    Vlada S. Sokolović

    2011-04-01

    Full Text Available Introduction This paper presents a critical analysis of the signal processing flow carried out in a software GPS receiver and a critical comparison of different architectures for signal processing within the GPS receiver. A model of software receivers is shown. Based on the displayed model, a receiver has been realized in the MATLAB software package, in which the simulations of signal processing were carried out. The aim of this paper is to demonstrate the advantages and disadvantages of different methods of the synchronization of signals in the receiver, and to propose a solution acceptable for possible implementation. The signal processing flow was observed from the input circuit to the extraction of the bits of the navigation message. The entire signal processing was performed on the L1 signal and the data collected by the input circuit SE4110. A radio signal from the satellite was accepted with the input circuit, filtered and translated into a digital form. The input circuit ends with the hardware of the receiver. A digital signal from the input circuit is brought into the PC Pentium 4 (AMD 3000 + where the receiver is realized in Matlab. Model of software GPS receiver The first level of processing is signal acquisition. Signal acquisition was realized using the cyclic convolution. The acquisition process was carried out by measuring signals from satellites, and these parameters are passed to the next level of processing. The next level was done by monitoring the synchronization signal and extracting the navigation message bits. On the basis of the detection of the navigation message the receiver calculates the position of a satellite and then, based on the position of the satellite, its own position. Tracking of GPS signal synchronization In order to select the most acceptable method of signal synchronization in the receiver, different methods of signal synchronization are compared. The early-late-DLL (Delay Lock Loop, TDL (Tau Dither Loop

  18. Optimal quantum state estimation with use of the no-signaling principle

    International Nuclear Information System (INIS)

    Han, Yeong-Deok; Bae, Joonwoo; Wang Xiangbin; Hwang, Won-Young

    2010-01-01

    A simple derivation of the optimal state estimation of a quantum bit was obtained by using the no-signaling principle. In particular, the no-signaling principle determines a unique form of the guessing probability independent of figures of merit, such as the fidelity or information gain. This proves that the optimal estimation for a quantum bit can be achieved by the same measurement for almost all figures of merit.

  19. Fast digitizing and digital signal processing of detector signals

    International Nuclear Information System (INIS)

    Hannaske, Roland

    2008-01-01

    A fast-digitizer data acquisition system recently installed at the neutron time-of-flight experiment nELBE, which is located at the superconducting electron accelerator ELBE of Forschungszentrum Dresden-Rossendorf, is tested with two different detector types. Preamplifier signals from a high-purity germanium detector are digitized, stored and finally processed. For a precise determination of the energy of the detected radiation, the moving-window deconvolution algorithm is used to compensate the ballistic deficit and different shaping algorithms are applied. The energy resolution is determined in an experiment with γ-rays from a 22 Na source and is compared to the energy resolution achieved with analogously processed signals. On the other hand, signals from the photomultipliers of barium fluoride and plastic scintillation detectors are digitized. These signals have risetimes of a few nanoseconds only. The moment of interaction of the radiation with the detector is determined by methods of digital signal processing. Therefore, different timing algorithms are implemented and tested with data from an experiment at nELBE. The time resolutions achieved with these algorithms are compared to each other as well as to reference values coming from analog signal processing. In addition to these experiments, some properties of the digitizing hardware are measured and a program for the analysis of stored, digitized data is developed. The analysis of the signals shows that the energy resolution achieved with the 10-bit digitizer system used here is not competitive to a 14-bit peak-sensing ADC, although the ballistic deficit can be fully corrected. However, digital methods give better result in sub-ns timing than analog signal processing. (orig.)

  20. Novel relations between the ergodic capacity and the average bit error rate

    KAUST Repository

    Yilmaz, Ferkan

    2011-11-01

    Ergodic capacity and average bit error rate have been widely used to compare the performance of different wireless communication systems. As such recent scientific research and studies revealed strong impact of designing and implementing wireless technologies based on these two performance indicators. However and to the best of our knowledge, the direct links between these two performance indicators have not been explicitly proposed in the literature so far. In this paper, we propose novel relations between the ergodic capacity and the average bit error rate of an overall communication system using binary modulation schemes for signaling with a limited bandwidth and operating over generalized fading channels. More specifically, we show that these two performance measures can be represented in terms of each other, without the need to know the exact end-to-end statistical characterization of the communication channel. We validate the correctness and accuracy of our newly proposed relations and illustrated their usefulness by considering some classical examples. © 2011 IEEE.

  1. Integer Representations towards Efficient Counting in the Bit Probe Model

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Greve, Mark; Pandey, Vineet

    2011-01-01

    Abstract We consider the problem of representing numbers in close to optimal space and supporting increment, decrement, addition and subtraction operations efficiently. We study the problem in the bit probe model and analyse the number of bits read and written to perform the operations, both...... in the worst-case and in the average-case. A counter is space-optimal if it represents any number in the range [0,...,2 n  − 1] using exactly n bits. We provide a space-optimal counter which supports increment and decrement operations by reading at most n − 1 bits and writing at most 3 bits in the worst......-case. To the best of our knowledge, this is the first such representation which supports these operations by always reading strictly less than n bits. For redundant counters where we only need to represent numbers in the range [0,...,L] for some integer L bits, we define the efficiency...

  2. Bit Loading Algorithms for Cooperative OFDM Systems

    Directory of Open Access Journals (Sweden)

    Gui Bo

    2008-01-01

    Full Text Available Abstract We investigate the resource allocation problem for an OFDM cooperative network with a single source-destination pair and multiple relays. Assuming knowledge of the instantaneous channel gains for all links in the entire network, we propose several bit and power allocation schemes aiming at minimizing the total transmission power under a target rate constraint. First, an optimal and efficient bit loading algorithm is proposed when the relay node uses the same subchannel to relay the information transmitted by the source node. To further improve the performance gain, subchannel permutation, in which the subchannels are reallocated at relay nodes, is considered. An optimal subchannel permutation algorithm is first proposed and then an efficient suboptimal algorithm is considered to achieve a better complexity-performance tradeoff. A distributed bit loading algorithm is also proposed for ad hoc networks. Simulation results show that significant performance gains can be achieved by the proposed bit loading algorithms, especially when subchannel permutation is employed.

  3. Bit Loading Algorithms for Cooperative OFDM Systems

    Directory of Open Access Journals (Sweden)

    Bo Gui

    2007-12-01

    Full Text Available We investigate the resource allocation problem for an OFDM cooperative network with a single source-destination pair and multiple relays. Assuming knowledge of the instantaneous channel gains for all links in the entire network, we propose several bit and power allocation schemes aiming at minimizing the total transmission power under a target rate constraint. First, an optimal and efficient bit loading algorithm is proposed when the relay node uses the same subchannel to relay the information transmitted by the source node. To further improve the performance gain, subchannel permutation, in which the subchannels are reallocated at relay nodes, is considered. An optimal subchannel permutation algorithm is first proposed and then an efficient suboptimal algorithm is considered to achieve a better complexity-performance tradeoff. A distributed bit loading algorithm is also proposed for ad hoc networks. Simulation results show that significant performance gains can be achieved by the proposed bit loading algorithms, especially when subchannel permutation is employed.

  4. Secure self-calibrating quantum random-bit generator

    International Nuclear Information System (INIS)

    Fiorentino, M.; Santori, C.; Spillane, S. M.; Beausoleil, R. G.; Munro, W. J.

    2007-01-01

    Random-bit generators (RBGs) are key components of a variety of information processing applications ranging from simulations to cryptography. In particular, cryptographic systems require 'strong' RBGs that produce high-entropy bit sequences, but traditional software pseudo-RBGs have very low entropy content and therefore are relatively weak for cryptography. Hardware RBGs yield entropy from chaotic or quantum physical systems and therefore are expected to exhibit high entropy, but in current implementations their exact entropy content is unknown. Here we report a quantum random-bit generator (QRBG) that harvests entropy by measuring single-photon and entangled two-photon polarization states. We introduce and implement a quantum tomographic method to measure a lower bound on the 'min-entropy' of the system, and we employ this value to distill a truly random-bit sequence. This approach is secure: even if an attacker takes control of the source of optical states, a secure random sequence can be distilled

  5. Observational Evidence for Two Cosmological Predictions Made by Bit-String Physics; TOPICAL

    International Nuclear Information System (INIS)

    Noyes, H. Pierre

    2001-01-01

    A decade ago bit-string physics predicted that the baryon/photon ratio at the time of nucleogenesis(eta)= 1 1/256(sup 4) and that the dark matter/baryonic matter ratio(Omega)(sub DM)/(Omega)(sub B)= 12.7. Accepting that the normalized Hubble constant is constrained observationally to lie in the range 0.6 and lt; h(sub 0) and lt; 0.8, this translates into a prediction that 0.325 and gt;(Omega)(sub M) and gt; 0.183. This and a prediction by E.D. Jones, using a model-independent argument and ideas with which bit-string physics is not inconsistent, that the cosmological constant(Omega)(sub(Lambda))= 0.6(+-) 0.1 are in reasonable agreement with recent cosmological observations, including the BOOMERANG data

  6. A digitally assisted, signal folding neural recording amplifier.

    Science.gov (United States)

    Chen, Yi; Basu, Arindam; Liu, Lei; Zou, Xiaodan; Rajkumar, Ramamoorthy; Dawe, Gavin Stewart; Je, Minkyu

    2014-08-01

    A novel signal folding and reconstruction scheme for neural recording applications that exploits the 1/f(n) characteristics of neural signals is described in this paper. The amplified output is 'folded' into a predefined range of voltages by using comparison and reset circuits along with the core amplifier. After this output signal is digitized and transmitted, a reconstruction algorithm can be applied in the digital domain to recover the amplified signal from the folded waveform. This scheme enables the use of an analog-to-digital convertor with less number of bits for the same effective dynamic range. It also reduces the transmission data rate of the recording chip. Both of these features allow power and area savings at the system level. Other advantages of the proposed topology are increased reliability due to the removal of pseudo-resistors, lower harmonic distortion and low-voltage operation. An analysis of the reconstruction error introduced by this scheme is presented along with a behavioral model to provide a quick estimate of the post reconstruction dynamic range. Measurement results from two different core amplifier designs in 65 nm and 180 nm CMOS processes are presented to prove the generality of the proposed scheme in the neural recording applications. Operating from a 1 V power supply, the amplifier in 180 nm CMOS has a gain of 54.2 dB, bandwidth of 5.7 kHz, input referred noise of 3.8 μVrms and power dissipation of 2.52 μW leading to a NEF of 3.1 in spike band. It exhibits a dynamic range of 66 dB and maximum SNDR of 43 dB in LFP band. It also reduces system level power (by reducing the number of bits in the ADC by 2) as well as data rate to 80% of a conventional design. In vivo measurements validate the ability of this amplifier to simultaneously record spike and LFP signals.

  7. Maximum mutual information vector quantization of log-likelihood ratios for memory efficient HARQ implementations

    DEFF Research Database (Denmark)

    Danieli, Matteo; Forchhammer, Søren; Andersen, Jakob Dahl

    2010-01-01

    analysis leads to using maximum mutual information (MMI) as optimality criterion and in turn Kullback-Leibler (KL) divergence as distortion measure. Simulations run based on an LTE-like system have proven that VQ can be implemented in a computationally simple way at low rates of 2-3 bits per LLR value......Modern mobile telecommunication systems, such as 3GPP LTE, make use of Hybrid Automatic Repeat reQuest (HARQ) for efficient and reliable communication between base stations and mobile terminals. To this purpose, marginal posterior probabilities of the received bits are stored in the form of log...

  8. Multi-Gigahertz radar range processing of baseband and RF carrier modulated signals in Tm:YAG

    International Nuclear Information System (INIS)

    Merkel, K.D.; Krishna Mohan, R.; Cole, Z.; Chang, T.; Olson, A.; Babbitt, W.R.

    2004-01-01

    An optical device is described and demonstrated that uses a spatial-spectral holographic material to perform coherent signal processing operations on analog, high-bandwidth optical signals with large time-bandwidth-products. Signal processing is performed as the material records the coherent spectral interference (or cross-power spectrum) of modulated optical signals as a spatial-spectral population grating between electronic transition states. Multiple exposures of processing pulse sequences are integrated with increasing grating strength. The device, coined as the Spatial-Spectral Coherent Holographic Integrating Processor (or S 2 -CHIP), is described as currently envisioned for a broadband, mid-to-high pulse repetition frequency range-Doppler radar signal processing system. Experiments were performed in Tm:YAG (0.1 at% at 5 K) to demonstrate time delay variation, integration dynamics, and effects of coding as applied to a radar range processor. These demonstrations used baseband modulation with a 1 gigabit per second (GPBS) bit rate and code length of 512 bits (512 ns), where delays up to 1.0 μs were resolved with greater than a 40 dB peak to RMS sidelobe ratio after 800 processing shots. Multi-GHz processing was demonstrated using a bit rate of 2.5 GBPS (baseband modulation) and code length of 2048 bits (819.2 ns). Processing of double-sideband modulated signals on a radio frequency (RF) carrier was demonstrated, where 512 bit, 1.0 GBPS codes were modulated on a 1.75 GHz carrier and then modulated on the optical carrier

  9. Factorization of a 512-bit RSA modulus

    NARCIS (Netherlands)

    S.H. Cavallar; W.M. Lioen (Walter); H.J.J. te Riele (Herman); B. Dodson; A.K. Lenstra (Arjen); P.L. Montgomery; B. Murphy

    2000-01-01

    textabstractOn August 22, 1999, we completed the factorization of the 512--bit 155--digit number RSA--155 with the help of the Number Field Sieve factoring method (NFS). This is a new record for factoring general numbers. Moreover, 512--bit RSA keys are frequently used for the protection of

  10. Device-independent bit commitment based on the CHSH inequality

    International Nuclear Information System (INIS)

    Aharon, N; Massar, S; Pironio, S; Silman, J

    2016-01-01

    Bit commitment and coin flipping occupy a unique place in the device-independent landscape, as the only device-independent protocols thus far suggested for these tasks are reliant on tripartite GHZ correlations. Indeed, we know of no other bipartite tasks, which admit a device-independent formulation, but which are not known to be implementable using only bipartite nonlocality. Another interesting feature of these protocols is that the pseudo-telepathic nature of GHZ correlations—in contrast to the generally statistical character of nonlocal correlations, such as those arising in the violation of the CHSH inequality—is essential to their formulation and analysis. In this work, we present a device-independent bit commitment protocol based on CHSH testing, which achieves the same security as the optimal GHZ-based protocol, albeit at the price of fixing the time at which Alice reveals her commitment. The protocol is analyzed in the most general settings, where the devices are used repeatedly and may have long-term quantum memory. We also recast the protocol in a post-quantum setting where both honest and dishonest parties are restricted only by the impossibility of signaling, and find that overall the supra-quantum structure allows for greater security. (paper)

  11. Individual Drilling Bit Design and Optimization in Mahu Area

    Directory of Open Access Journals (Sweden)

    Zhang Wenbo

    2017-01-01

    Full Text Available There are three sets of gravels in Mahu region. The gravels formation is characterized by high heterogeneity, high abrasiveness and poor drillability. It is so difficult to optimize bit that restrict seriously the overall exploration and development process. The compressive strength, internal friction angle, and drillability of the formation are tested to check the rock mechanical characteristic profile established by logging data. The individual bit design is carried out by the 3D simulation technology. A new PDC bit type is designed to form the drill bit series for Mahu area. Single PDC bit increases 90% of the drilling footage. The trip average footage is improved 3.45 times, the horizontal section average penetration increased 34.8%. The technical achievements have greatly improved economic development benefits of Mahu region by improving drilling speed and saving drilling costs.

  12. Distribution of digital games via BitTorrent

    DEFF Research Database (Denmark)

    Drachen, Anders; Bauer, Kevin; Veitch, Robert W. D.

    2011-01-01

    distribution across game titles and game genres. This paper presents the first large-scale, open-method analysis of the distribution of digital game titles, which was conducted by monitoring the BitTorrent peer-to-peer (P2P) file-sharing protocol. The sample includes 173 games and a collection period of three...... months from late 2010 to early 2011. With a total of 12.6 million unique peers identified, it is the largest examination of game piracy via P2P networks to date. The study provides findings that reveal the magnitude of game piracy, the time-frequency of game torrents, which genres that get pirated...

  13. Bit Error Rate Performance of a MIMO-CDMA System Employing Parity-Bit-Selected Spreading in Frequency Nonselective Rayleigh Fading

    Directory of Open Access Journals (Sweden)

    Claude D'Amours

    2011-01-01

    Full Text Available We analytically derive the upper bound for the bit error rate (BER performance of a single user multiple input multiple output code division multiple access (MIMO-CDMA system employing parity-bit-selected spreading in slowly varying, flat Rayleigh fading. The analysis is done for spatially uncorrelated links. The analysis presented demonstrates that parity-bit-selected spreading provides an asymptotic gain of 10log(Nt dB over conventional MIMO-CDMA when the receiver has perfect channel estimates. This analytical result concurs with previous works where the (BER is determined by simulation methods and provides insight into why the different techniques provide improvement over conventional MIMO-CDMA systems.

  14. Multi-channel logical circuit module used for high-speed, low amplitude signals processing and QDC gate signals generation

    International Nuclear Information System (INIS)

    Su Hong; Li Xiaogang; Zhu Haidong; Ma Xiaoli; Yin Weiwei; Li Zhuyu; Jin Genming; Wu Heyu

    2001-01-01

    A new kind of logical circuit will be introduced in brief. There are 16 independent channels in the module. The module receives low amplitude signals(≥40 mV), and processes them to amplify, shape, delay, sum and etc. After the processing each channel produces 2 pairs of ECL logical signal to feed the gate of QDC as the gate signal of QDC. The module consists of high-speed preamplifier unit, high-speed discriminate unit, delaying and shaping unit, summing unit and trigger display unit. The module is developed for 64 CH. 12 BIT Multi-event QDC. The impedance of QDC is 110 Ω. Each gate signal of QDC requires a pair of differential ECL level, Min. Gate width 30 ns and Max. Gate width 1 μs. It has showed that the outputs of logical circuit module satisfy the QDC requirements in experiment. The module can be used on data acquisition system to acquire thousands of data at high-speed ,high-density and multi-parameter, in heavy particle nuclear physics experiment. It also can be used to discriminate multi-coincidence events

  15. Bit-error-rate performance analysis of self-heterodyne detected radio-over-fiber links using phase and intensity modulation

    DEFF Research Database (Denmark)

    Yin, Xiaoli; Yu, Xianbin; Tafur Monroy, Idelfonso

    2010-01-01

    We theoretically and experimentally investigate the performance of two self-heterodyne detected radio-over-fiber (RoF) links employing phase modulation (PM) and quadrature biased intensity modulation (IM), in term of bit-error-rate (BER) and optical signal-to-noise-ratio (OSNR). In both links, self...

  16. IIR digital filter design for powerline noise cancellation of ECG signal using arduino platform

    Science.gov (United States)

    Rahmatillah, Akif; Ataulkarim

    2017-05-01

    Powerline noise has been one of significant noises of Electrocardiogram (ECG) signal measurement. This noise is characterized by a sinusoidal signal which has 50 Hz of noise and 0.3 mV of maximum amplitude. This paper describes the design of IIR Notch filter design to reject a 50 Hz power line noise. IIR filter coefficients were calculated using pole placement method with three variations of band stop cut off frequencies of (49-51)Hz, (48 - 52)Hz, and (47 - 53)Hz. The algorithm and coefficients of filter were embedded to Arduino DUE (ARM 32 bit microcontroller). IIR notch filter designed has been able to reject power line noise with average square of error value of 0.225 on (49-51) Hz filter design and 0.2831 on (48 - 52)Hz filter design.

  17. Drilling bits for deep drilling and process for their manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Rhode, H.; Juergens, R.; Feenstra, R.; Busking, B.E.

    1978-11-30

    The invention concerns a drilling head or a drilling bit for use in deep drilling in underground formations and particularly concerns a drilling bit with a drilling bit body, which has a shank and a hollow space, which is connected with a duct extending through the shank. The drilling bit body has several separate cutting elements for removing material from the floor of a borehole and hydraulic devices for cooling and/or cleaning the cutting elements are provided.

  18. On the low SNR capacity of maximum ratio combining over rician fading channels with full channel state information

    KAUST Repository

    Benkhelifa, Fatma; Rezki, Zouheir; Alouini, Mohamed-Slim

    2013-01-01

    In this letter, we study the ergodic capacity of a maximum ratio combining (MRC) Rician fading channel with full channel state information (CSI) at the transmitter and at the receiver. We focus on the low Signal-to-Noise Ratio (SNR) regime and we show that the capacity scales as L ΩK+L SNRx log(1SNR), where Ω is the expected channel gain per branch, K is the Rician fading factor, and L is the number of diversity branches. We show that one-bit CSI feedback at the transmitter is enough to achieve this capacity using an on-off power control scheme. Our framework can be seen as a generalization of recently established results regarding the fading-channels capacity characterization in the low-SNR regime. © 2012 IEEE.

  19. On the low SNR capacity of maximum ratio combining over rician fading channels with full channel state information

    KAUST Repository

    Benkhelifa, Fatma

    2013-04-01

    In this letter, we study the ergodic capacity of a maximum ratio combining (MRC) Rician fading channel with full channel state information (CSI) at the transmitter and at the receiver. We focus on the low Signal-to-Noise Ratio (SNR) regime and we show that the capacity scales as L ΩK+L SNRx log(1SNR), where Ω is the expected channel gain per branch, K is the Rician fading factor, and L is the number of diversity branches. We show that one-bit CSI feedback at the transmitter is enough to achieve this capacity using an on-off power control scheme. Our framework can be seen as a generalization of recently established results regarding the fading-channels capacity characterization in the low-SNR regime. © 2012 IEEE.

  20. Signal processing for high granularity calorimeter: amplification, filtering, memorization and digitalization

    Energy Technology Data Exchange (ETDEWEB)

    Royer, L; Manen, S; Gay, P, E-mail: royer@clermont.in2p3.f [Clermont Universite, Universite Blaise Pascal, CNRS/IN2P3, LPC, BP 10448, F-63000 Clermont-Ferrand (France)

    2010-12-15

    A very-front-end electronics dedicated to high granularity calorimeters has been designed and its performance measured. This electronics performs the amplification of the charge delivered by the detector thanks to a low-noise Charge Sensitive Amplifier. The dynamic range is improved using a bandpass filter based on a Gated Integrator. Studying its weighting function, we show that this filter is more efficient than standard CRRC shaper, thanks to the integration time which can be expand near the bunch interval time, whereas the peaking time of the CRRC shaper is limited to pile-up consideration. Moreover, the Gated Integrator performs intrinsically the analog memorization of the signal before its delayed digital conversion. The analog-to-digital conversion is performed through a 12-bit cyclic ADC specifically developed for this application. The very-front-end channel has been fabricated using a 0.35 {mu}m CMOS technology. Measurements show a global non-linearity better than 0.1%. The Equivalent Noise Charge at the input of the channel is evaluated to 1.8 fC, compare to the maximum input charge of 10 pC. The power consumption of the complete channel is limited to 6.5 mW.

  1. FPGA implementation of bit controller in double-tick architecture

    Science.gov (United States)

    Kobylecki, Michał; Kania, Dariusz

    2017-11-01

    This paper presents a comparison of the two original architectures of programmable bit controllers built on FPGAs. Programmable Logic Controllers (which include, among other things programmable bit controllers) built on FPGAs provide a efficient alternative to the controllers based on microprocessors which are expensive and often too slow. The presented and compared methods allow for the efficient implementation of any bit control algorithm written in Ladder Diagram language into the programmable logic system in accordance with IEC61131-3. In both cases, we have compared the effect of the applied architecture on the performance of executing the same bit control program in relation to its own size.

  2. Improved Iris Recognition through Fusion of Hamming Distance and Fragile Bit Distance.

    Science.gov (United States)

    Hollingsworth, Karen P; Bowyer, Kevin W; Flynn, Patrick J

    2011-12-01

    The most common iris biometric algorithm represents the texture of an iris using a binary iris code. Not all bits in an iris code are equally consistent. A bit is deemed fragile if its value changes across iris codes created from different images of the same iris. Previous research has shown that iris recognition performance can be improved by masking these fragile bits. Rather than ignoring fragile bits completely, we consider what beneficial information can be obtained from the fragile bits. We find that the locations of fragile bits tend to be consistent across different iris codes of the same eye. We present a metric, called the fragile bit distance, which quantitatively measures the coincidence of the fragile bit patterns in two iris codes. We find that score fusion of fragile bit distance and Hamming distance works better for recognition than Hamming distance alone. To our knowledge, this is the first and only work to use the coincidence of fragile bit locations to improve the accuracy of matches.

  3. Aplikasi Steganografi Menggunakan LSB 4 Bit Sisipan dengan Kombinasi Algoritme Substitusi dan Vigenere Berbasis Android

    Directory of Open Access Journals (Sweden)

    Priyagung Hernawandra

    2018-03-01

    Full Text Available This study aims to implement steganography with 4 bit LSB method combined with Vigenere and substitution encryption algorithms. This combination strengthens the security of text messages that are inserted into the image because the message is already a ciphertext as the result of the Vigenere and substitution encryption process. This steganography is realized as an application that runs on Android devices. This application can insert text messages that contain space characters and a combination of uppercase letters in a digital image. Using this application, insertion of messages into images causes the increase of images size by an average of 12.77% of the original size from 10 sample images. Penelitian ini bertujuan untuk mengaplikasikan steganografi dengan metode LSB 4 bit penyisipan yang digabungkan dengan algoritme enkripsi Vigenere dan substitusi. Penggunaan algoritme enkripsi ini memperkuat keamanan pesan teks yang disisipkan ke gambar karena pesan tersebut sudah berupa ciphertext hasil dari proses enkripsi dengan Vigenere dan substitusi. Pesan yang berisi karakter spasi dan kombinasi huruf besar kecil juga dapat disisipkan dalam citra digital. Steganografi ini diwujudkan sebagai aplikasi yang berjalan di devais Android. Dengan menggunakan aplikasi ini, penyisipan pesan dengan metode LSB 4 bit sisipan ke gambar menyebabkan penambahan besar gambar rata-rata 12,77% dari besar aslinya untuk 10 gambar uji.

  4. 24-Hour Relativistic Bit Commitment.

    Science.gov (United States)

    Verbanis, Ephanielle; Martin, Anthony; Houlmann, Raphaël; Boso, Gianluca; Bussières, Félix; Zbinden, Hugo

    2016-09-30

    Bit commitment is a fundamental cryptographic primitive in which a party wishes to commit a secret bit to another party. Perfect security between mistrustful parties is unfortunately impossible to achieve through the asynchronous exchange of classical and quantum messages. Perfect security can nonetheless be achieved if each party splits into two agents exchanging classical information at times and locations satisfying strict relativistic constraints. A relativistic multiround protocol to achieve this was previously proposed and used to implement a 2-millisecond commitment time. Much longer durations were initially thought to be insecure, but recent theoretical progress showed that this is not so. In this Letter, we report on the implementation of a 24-hour bit commitment solely based on timed high-speed optical communication and fast data processing, with all agents located within the city of Geneva. This duration is more than 6 orders of magnitude longer than before, and we argue that it could be extended to one year and allow much more flexibility on the locations of the agents. Our implementation offers a practical and viable solution for use in applications such as digital signatures, secure voting and honesty-preserving auctions.

  5. Maximum likelihood estimation of signal detection model parameters for the assessment of two-stage diagnostic strategies.

    Science.gov (United States)

    Lirio, R B; Dondériz, I C; Pérez Abalo, M C

    1992-08-01

    The methodology of Receiver Operating Characteristic curves based on the signal detection model is extended to evaluate the accuracy of two-stage diagnostic strategies. A computer program is developed for the maximum likelihood estimation of parameters that characterize the sensitivity and specificity of two-stage classifiers according to this extended methodology. Its use is briefly illustrated with data collected in a two-stage screening for auditory defects.

  6. Effects of plastic bits on the condition and behaviour of captive-reared pheasants.

    Science.gov (United States)

    Butler, D A; Davis, C

    2010-03-27

    Between 2005 and 2007, data were collected from game farms across England and Wales to examine the effects of the use of bits on the physiological condition and behaviour of pheasants. On each site, two pheasant pens kept in the same conditions were randomly allocated to either use bits or not. The behaviour and physiological conditions of pheasants in each treatment pen were assessed on the day of bitting and weekly thereafter until release. Detailed records of feed usage, medications and mortality were also kept. Bits halved the number of acts of bird-on-bird pecking, but they doubled the incidence of headshaking and scratching. Bits caused nostril inflammation and bill deformities in some birds, particularly after seven weeks of age. In all weeks after bitting, feather condition was poorer in non-bitted pheasants than in those fitted with bits. Less than 3 per cent of bitted birds had damaged skin, but in the non-bitted pens this figure increased over time to 23 per cent four weeks later. Feed use and mortality did not differ between bitted and non-bitted birds.

  7. Introduction to bit slices and microprogramming

    International Nuclear Information System (INIS)

    Van Dam, A.

    1981-01-01

    Bit-slice logic blocks are fourth-generation LSI components which are natural extensions of traditional mulitplexers, registers, decoders, counters, ALUs, etc. Their functionality is controlled by microprogramming, typically to implement CPUs and peripheral controllers where both speed and easy programmability are required for flexibility, ease of implementation and debugging, etc. Processors built from bit-slice logic give the designer an alternative for approaching the programmibility of traditional fixed-instruction-set microprocessors with a speed closer to that of hardwired random logic. (orig.)

  8. Development and testing of a Mudjet-augmented PDC bit.

    Energy Technology Data Exchange (ETDEWEB)

    Black, Alan (TerraTek, Inc.); Chahine, Georges (DynaFlow, Inc.); Raymond, David Wayne; Matthews, Oliver (Security DBS); Grossman, James W.; Bertagnolli, Ken (US Synthetic); Vail, Michael (US Synthetic)

    2006-01-01

    This report describes a project to develop technology to integrate passively pulsating, cavitating nozzles within Polycrystalline Diamond Compact (PDC) bits for use with conventional rig pressures to improve the rock-cutting process in geothermal formations. The hydraulic horsepower on a conventional drill rig is significantly greater than that delivered to the rock through bit rotation. This project seeks to leverage this hydraulic resource to extend PDC bits to geothermal drilling.

  9. Entre grafos y bits

    Directory of Open Access Journals (Sweden)

    Carla Boserman

    2014-02-01

    Full Text Available Este texto se propone ahondar en las intersecciones de lo analógico y lo digital, en el encuentro de la baja y la alta tecnología. Tomando consciencia de la materialidad de ambas esferas para pensar desde ahí en objetos, prácticas de dibujo y documentación que puedan aportar otras formulaciones aplicables a métodos de investigación. Entre grafos y bits, diseccionaremos un objeto, el #relatograma, analizaremos su ecología y propondremos una reflexión acerca de su condición digital que genera paisajes por agregación #coreograma, explorando así su capacidad de ser reporte y aporte cognitivo. Between graphs and bits  Abstract This paper delves into the intersections of analogue and digital cultures, at the points at which low and high technology converge. While acknowledging the materiality of these two spheres, I aim to produce an enquiry into objects, drawings and documentation practices that can contribute to developing new research methods. Among graphs and bits, I will dissect one object: the #relatograma, in order to analyze its ecology and propose a critical reflection on its digital condition and its ability to produce aggregated landscapes, or what I define as #coreograma. I will thereby explore its ability to be share information and produce knowledge. Keywords: Material culture; research methods; digital objects; drawing; #relatograma.

  10. Subband coding of digital audio signals without loss of quality

    NARCIS (Netherlands)

    Veldhuis, Raymond N.J.; Breeuwer, Marcel; van de Waal, Robbert

    1989-01-01

    A subband coding system for high quality digital audio signals is described. To achieve low bit rates at a high quality level, it exploits the simultaneous masking effect of the human ear. It is shown how this effect can be used in an adaptive bit-allocation scheme. The proposed approach has been

  11. 10–25 GHz frequency reconfigurable MEMS 5-bit phase shifter using push–pull actuator based toggle mechanism

    International Nuclear Information System (INIS)

    Dey, Sukomal; Koul, Shiban K

    2015-01-01

    This paper presents a frequency tunable 5-bit true-time-delay digital phase shifter using radio frequency microelectromechanical system (RF MEMS) technology. The phase shifter is based on the distributed MEMS transmission line (DMTL) concept utilizing a MEMS varactor. The main source of frequency tuning in this work is a bridge actuation mechanism followed by capacitance variation. Two stages of actuation mechanisms (push and pull) are used to achieve a 2:1 tuning ratio. Accurate control of the actuation voltage between the pull to push stages contributes differential phase shift over the band of interest. The functional behavior of the push–pull actuation over the phase shifter application is theoretically established, experimentally investigated and validated with simulation. The phase shifter is fabricated monolithically using a gold based surface micromachining process on an alumina substrate. The individual primary phase-bits (11.25°/22.5°/45°/90°/180°) that are the fundamental building blocks of the complete 5-bit phase shifter are designed, fabricated and experimentally characterized from 10–25 GHz for specific applications. Finally, the complete 5-bit phase shifter demonstrates an average phase error of 4.32°, 2.8°, 1° and 1.58°, an average insertion loss of 3.76, 4.1, 4.2 and 4.84 dB and an average return loss of 11.7, 12, 14 and 11.8 dB at 10, 12, 17.2 and 25 GHz, respectively. To the best of the authors’ knowledge, this is the first reported band tunable stand alone 5-bit phase shifter in the literature which can work over the large spectrum for different applications. The total area of the 5-bit phase shifter is 15.6 mm 2 . Furthermore, the cold-switched reliability of the unit cell and the complete 5-bit MEMS phase shifter are extensively investigated and presented. (paper)

  12. A 2-GS/s 6-bit self-calibrated flash ADC

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Youtao; Chen Chen [National Key Laboratory of Monolithic Integrated Circuits and Modules, Nanjing Electronic Devices Institute, Nanjing 210016 (China); Li Xiaopeng; Zhang Min; Liu Ao, E-mail: zhangyt@nedc-ic.co [Nanjing Electronic Devices Institute, Nanjing 210016 (China)

    2010-09-15

    A single channel 2-GS/s 6-bit ADC with cascade resistive averaging and self foreground calibration is demonstrated in 0.18-{mu}m CMOS. The calibration method based on DAC trimming improves the linearity and dynamic performance further. The peak DNL and INL are measured as 0.34 and 0.22 LSB, respectively. The SNDR and SFDR have achieved 36.5 and 45.9 dB, respectively, with 1.22 MHz input signal and 2 GS/s. The proposed ADC, including on-chip track-and-hold amplifiers and clock buffers, consumes 570 mW from a single 1.8 V supply while operating at 2 GS/s. (semiconductor integrated circuits)

  13. SOLAR TRACKER CERDAS DAN MURAH BERBASIS MIKROKONTROLER 8 BIT ATMega8535

    OpenAIRE

    I Wayan Sutaya; Ketut Udy Ariawan

    2016-01-01

    prototipe produk solar tracker cerdas berbasis mikrokontroler AVR 8 bit. Solar tracker ini memasukkan filter digital IIR (Infinite Impulse Response) pada bagian program. Memprogram filter ini membutuhkan perkalian 32 bit sedangkan prosesor yang tersedia pada mikrokontroler yang dipakai adalah 8 bit. Proses perkalian ini hanya bisa dilakukan pada mikrokontroler 8 bit dengan menggunakan bahasa assembly yang merupakan bahasa level hardware. Solar tracker cerdas yang menggunakan mikrokontroler 8 ...

  14. Maximum likelihood convolutional decoding (MCD) performance due to system losses

    Science.gov (United States)

    Webster, L.

    1976-01-01

    A model for predicting the computational performance of a maximum likelihood convolutional decoder (MCD) operating in a noisy carrier reference environment is described. This model is used to develop a subroutine that will be utilized by the Telemetry Analysis Program to compute the MCD bit error rate. When this computational model is averaged over noisy reference phase errors using a high-rate interpolation scheme, the results are found to agree quite favorably with experimental measurements.

  15. Five-level polybinary signaling for 10 Gbps data transmission systems

    DEFF Research Database (Denmark)

    Vegas Olmos, Juan José; Suhr, Lau Frejstrup; Li, Bomin

    2013-01-01

    This paper presents a revitalization effort towards exploiting multilevel polybinary signals for spectral efficient data links. Specifically, we present five level polybinary signaling for 10 Gbps signals. By proper coding to avoid error propagation and degeneracy of the bit error rate performance...

  16. A Novel Least Significant Bit First Processing Parallel CRC Circuit

    Directory of Open Access Journals (Sweden)

    Xiujie Qu

    2013-01-01

    Full Text Available In HDLC serial communication protocol, CRC calculation can first process the most or least significant bit of data. Nowadays most CRC calculation is based on the most significant bit (MSB first processing. An algorithm of the least significant bit (LSB first processing parallel CRC is proposed in this paper. Based on the general expression of the least significant bit first processing serial CRC, using state equation method of linear system, we derive a recursive formula by the mathematical deduction. The recursive formula is applicable to any number of bits processed in parallel and any series of generator polynomial. According to the formula, we present the parallel circuit of CRC calculation and implement it with VHDL on FPGA. The results verify the accuracy and effectiveness of this method.

  17. Spline-based high-accuracy piecewise-polynomial phase-to-sinusoid amplitude converters.

    Science.gov (United States)

    Petrinović, Davor; Brezović, Marko

    2011-04-01

    We propose a method for direct digital frequency synthesis (DDS) using a cubic spline piecewise-polynomial model for a phase-to-sinusoid amplitude converter (PSAC). This method offers maximum smoothness of the output signal. Closed-form expressions for the cubic polynomial coefficients are derived in the spectral domain and the performance analysis of the model is given in the time and frequency domains. We derive the closed-form performance bounds of such DDS using conventional metrics: rms and maximum absolute errors (MAE) and maximum spurious free dynamic range (SFDR) measured in the discrete time domain. The main advantages of the proposed PSAC are its simplicity, analytical tractability, and inherent numerical stability for high table resolutions. Detailed guidelines for a fixed-point implementation are given, based on the algebraic analysis of all quantization effects. The results are verified on 81 PSAC configurations with the output resolutions from 5 to 41 bits by using a bit-exact simulation. The VHDL implementation of a high-accuracy DDS based on the proposed PSAC with 28-bit input phase word and 32-bit output value achieves SFDR of its digital output signal between 180 and 207 dB, with a signal-to-noise ratio of 192 dB. Its implementation requires only one 18 kB block RAM and three 18-bit embedded multipliers in a typical field-programmable gate array (FPGA) device. © 2011 IEEE

  18. A 12-bit spectroscopy analog-to-digital converter type SAA (Successive Approximation type with channel width Averaging) intended for multichannel pulse height analyzer SWAN-1 based on IBM PC/XT/AT

    International Nuclear Information System (INIS)

    Borsuk, S.; Kulka, Z.

    1989-12-01

    A 12-bit spectroscopy analog-to-digital converter (ADC) type SAA (Successive Approximation type with channel width Averaging) intended for multichannel pulse height analyzer SWAN-1 based on IBM PC/XT/AT has been described. Design principles, specifications and measurements of a fundamental SAA-2 converter version are reported. Finally, two next versions of the converter with introduced modifications are discussed. 6 refs., 7 figs. (author)

  19. Maximum Throughput in a C-RAN Cluster with Limited Fronthaul Capacity

    OpenAIRE

    Duan , Jialong; Lagrange , Xavier; Guilloud , Frédéric

    2016-01-01

    International audience; Centralized/Cloud Radio Access Network (C-RAN) is a promising future mobile network architecture which can ease the cooperation between different cells to manage interference. However, the feasibility of C-RAN is limited by the large bit rate requirement in the fronthaul. This paper study the maximum throughput of different transmission strategies in a C-RAN cluster with transmission power constraints and fronthaul capacity constraints. Both transmission strategies wit...

  20. A high-speed digital signal processor for atmospheric radar, part 7.3A

    Science.gov (United States)

    Brosnahan, J. W.; Woodard, D. M.

    1984-01-01

    The Model SP-320 device is a monolithic realization of a complex general purpose signal processor, incorporating such features as a 32-bit ALU, a 16-bit x 16-bit combinatorial multiplier, and a 16-bit barrel shifter. The SP-320 is designed to operate as a slave processor to a host general purpose computer in applications such as coherent integration of a radar return signal in multiple ranges, or dedicated FFT processing. Presently available is an I/O module conforming to the Intel Multichannel interface standard; other I/O modules will be designed to meet specific user requirements. The main processor board includes input and output FIFO (First In First Out) memories, both with depths of 4096 W, to permit asynchronous operation between the source of data and the host computer. This design permits burst data rates in excess of 5 MW/s.

  1. SOLAR TRACKER CERDAS DAN MURAH BERBASIS MIKROKONTROLER 8 BIT ATMega8535

    Directory of Open Access Journals (Sweden)

    I Wayan Sutaya

    2016-08-01

    Full Text Available prototipe produk solar tracker cerdas berbasis mikrokontroler AVR 8 bit. Solar tracker ini memasukkan filter digital IIR (Infinite Impulse Response pada bagian program. Memprogram filter ini membutuhkan perkalian 32 bit sedangkan prosesor yang tersedia pada mikrokontroler yang dipakai adalah 8 bit. Proses perkalian ini hanya bisa dilakukan pada mikrokontroler 8 bit dengan menggunakan bahasa assembly yang merupakan bahasa level hardware. Solar tracker cerdas yang menggunakan mikrokontroler 8 bit sebagai otak utama pada penelitian ini menjadikan produk ini berbiaya rendah. Pengujian yang dilakukan menunjukkan bahwa solar tracker cerdas dibandingkan dengan solar tracker biasa mempunyai perbedaan konsumsi daya baterai yang sangat signifikan yaitu terjadi penghematan sebesar 85 %. Besar penghematan konsumsi daya ini tentunya bukan sebuah angka konstan melainkan tergantung seberapa besar noise yang dikenakan pada alat solar tracker. Untuk sebuah perlakuan yang sama, maka semakin besar noise semakin besar pula perbedaan penghematan konsumsi daya pada solar tracker yang cerdas. Kata-kata kunci: solar tracker, filter digital, mikrokontroler 8 bit, konsumsi daya Abstract This research had made a prototype of smart solar tracker product based on microcontroller AVR 8 bit. The solar tracker used digital filter IIR (Infinite Impulse Response on its software. Filter programming needs 32 bit multiplication but the processor inside of the microcontroller that used in this research is 8 bit. This multiplication is only can be solved on microcontroller 8 bit by using assembly language in programming. The language is a hardware level language. The smart solar tracker using the microcontroller 8 bit as a main brain in this research made the product had a low cost. The test results show that the comparison in saving of baterai power consumption between the smart solar tracker and the normal one is 85 %. The percentage of the saving indubitably is not a constant

  2. Brownian motion properties of optoelectronic random bit generators based on laser chaos.

    Science.gov (United States)

    Li, Pu; Yi, Xiaogang; Liu, Xianglian; Wang, Yuncai; Wang, Yongge

    2016-07-11

    The nondeterministic property of the optoelectronic random bit generator (RBG) based on laser chaos are experimentally analyzed from two aspects of the central limit theorem and law of iterated logarithm. The random bits are extracted from an optical feedback chaotic laser diode using a multi-bit extraction technique in the electrical domain. Our experimental results demonstrate that the generated random bits have no statistical distance from the Brownian motion, besides that they can pass the state-of-the-art industry-benchmark statistical test suite (NIST SP800-22). All of them give a mathematically provable evidence that the ultrafast random bit generator based on laser chaos can be used as a nondeterministic random bit source.

  3. Quantum bit commitment with misaligned reference frames

    International Nuclear Information System (INIS)

    Harrow, Aram; Oliveira, Roberto; Terhal, Barbara M.

    2006-01-01

    Suppose that Alice and Bob define their coordinate axes differently, and the change of reference frame between them is given by a probability distribution μ over SO(3). We show that this uncertainty of reference frame is of no use for bit commitment when μ is uniformly distributed over a (sub)group of SO(3), but other choices of μ can give rise to a partially or even arbitrarily secure bit commitment

  4. Distortion-Free 1-Bit PWM Coding for Digital Audio Signals

    Directory of Open Access Journals (Sweden)

    John Mourjopoulos

    2007-01-01

    Full Text Available Although uniformly sampled pulse width modulation (UPWM represents a very efficient digital audio coding scheme for digital-to-analog conversion and full-digital amplification, it suffers from strong harmonic distortions, as opposed to benign non-harmonic artifacts present in analog PWM (naturally sampled PWM, NPWM. Complete elimination of these distortions usually requires excessive oversampling of the source PCM audio signal, which results to impractical realizations of digital PWM systems. In this paper, a description of digital PWM distortion generation mechanism is given and a novel principle for their minimization is proposed, based on a process having some similarity to the dithering principle employed in multibit signal quantization. This conditioning signal is termed “jither” and it can be applied either in the PCM amplitude or the PWM time domain. It is shown that the proposed method achieves significant decrement of the harmonic distortions, rendering digital PWM performance equivalent to that of source PCM audio, for mild oversampling (e.g., ×4 resulting to typical PWM clock rates of 90 MHz.

  5. Distortion-Free 1-Bit PWM Coding for Digital Audio Signals

    Directory of Open Access Journals (Sweden)

    Mourjopoulos John

    2007-01-01

    Full Text Available Although uniformly sampled pulse width modulation (UPWM represents a very efficient digital audio coding scheme for digital-to-analog conversion and full-digital amplification, it suffers from strong harmonic distortions, as opposed to benign non-harmonic artifacts present in analog PWM (naturally sampled PWM, NPWM. Complete elimination of these distortions usually requires excessive oversampling of the source PCM audio signal, which results to impractical realizations of digital PWM systems. In this paper, a description of digital PWM distortion generation mechanism is given and a novel principle for their minimization is proposed, based on a process having some similarity to the dithering principle employed in multibit signal quantization. This conditioning signal is termed "jither" and it can be applied either in the PCM amplitude or the PWM time domain. It is shown that the proposed method achieves significant decrement of the harmonic distortions, rendering digital PWM performance equivalent to that of source PCM audio, for mild oversampling (e.g., resulting to typical PWM clock rates of 90 MHz.

  6. Experimental demonstration of real-time adaptively modulated DDO-OFDM systems with a high spectral efficiency up to 5.76bit/s/Hz transmission over SMF links.

    Science.gov (United States)

    Chen, Ming; He, Jing; Tang, Jin; Wu, Xian; Chen, Lin

    2014-07-28

    In this paper, a FPGAs-based real-time adaptively modulated 256/64/16QAM-encoded base-band OFDM transceiver with a high spectral efficiency up to 5.76bit/s/Hz is successfully developed, and experimentally demonstrated in a simple intensity-modulated direct-detection optical communication system. Experimental results show that it is feasible to transmit a raw signal bit rate of 7.19Gbps adaptively modulated real-time optical OFDM signal over 20km and 50km single mode fibers (SMFs). The performance comparison between real-time and off-line digital signal processing is performed, and the results show that there is a negligible power penalty. In addition, to obtain the best transmission performance, direct-current (DC) bias voltage for MZM and launch power into optical fiber links are explored in the real-time optical OFDM systems.

  7. Diamond bits for directional drilling of wells and technology of using them

    Energy Technology Data Exchange (ETDEWEB)

    Romanov, V P; Steblev, B Ye; Sumaneyev, N N

    1979-01-01

    Characteristics are presented for a diamond bit for directional drilling ADN-08. Technology of using it is described, as well as cutter bits for directional drilling. Based on specially developed technique, the economic effect of using the diamond bits is calculated. This indicates that the use of the diamond bits in rocks of the VIII category significantly improves the quality of directional drilling.

  8. Bit-Wise Arithmetic Coding For Compression Of Data

    Science.gov (United States)

    Kiely, Aaron

    1996-01-01

    Bit-wise arithmetic coding is data-compression scheme intended especially for use with uniformly quantized data from source with Gaussian, Laplacian, or similar probability distribution function. Code words of fixed length, and bits treated as being independent. Scheme serves as means of progressive transmission or of overcoming buffer-overflow or rate constraint limitations sometimes arising when data compression used.

  9. Uniqueness: skews bit occurrence frequencies in randomly generated fingerprint libraries.

    Science.gov (United States)

    Chen, Nelson G

    2016-08-01

    Requiring that randomly generated chemical fingerprint libraries have unique fingerprints such that no two fingerprints are identical causes a systematic skew in bit occurrence frequencies, the proportion at which specified bits are set. Observed frequencies (O) at which each bit is set within the resulting libraries systematically differ from frequencies at which bits are set at fingerprint generation (E). Observed frequencies systematically skew toward 0.5, with the effect being more pronounced as library size approaches the compound space, which is the total number of unique possible fingerprints given the number of bit positions each fingerprint contains. The effect is quantified for varying library sizes as a fraction of the overall compound space, and for changes in the specified frequency E. The cause and implications for this systematic skew are subsequently discussed. When generating random libraries of chemical fingerprints, the imposition of a uniqueness requirement should either be avoided or taken into account.

  10. Surgical drill system and surgical drill bit to be used therein

    NARCIS (Netherlands)

    Margallo Balbas, E.; Wieringa, P.A.; French, P.J.; Lee, R.A.; Breedveld, P.

    2007-01-01

    Surgical drill system comprising a mechanical drill bit and means for imaging the vicinity of the drill bit tip, said means comprising: at least one optical fiber having a distal end and a proximal end, said distal end being located adjacent said drill bit tip, an optical processing unit, said

  11. Analysis of bit-rock interaction during stick-slip vibrations using PDC cutting force model

    Energy Technology Data Exchange (ETDEWEB)

    Patil, P.A.; Teodoriu, C. [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). ITE

    2013-08-01

    Drillstring vibration is one of the limiting factors maximizing the drilling performance and also causes premature failure of drillstring components. Polycrystalline diamond compact (PDC) bit enhances the overall drilling performance giving the best rate of penetrations with less cost per foot but the PDC bits are more susceptible to the stick slip phenomena which results in high fluctuations of bit rotational speed. Based on the torsional drillstring model developed using Matlab/Simulink for analyzing the parametric influence on stick-slip vibrations due to drilling parameters and drillstring properties, the study of relations between weight on bit, torque on bit, bit speed, rate of penetration and friction coefficient have been analyzed. While drilling with the PDC bits, the bit-rock interaction has been characterized by cutting forces and the frictional forces. The torque on bit and the weight on bit have both the cutting component and the frictional component when resolved in horizontal and vertical direction. The paper considers that the bit is undergoing stick-slip vibrations while analyzing the bit-rock interaction of the PDC bit. The Matlab/Simulink bit-rock interaction model has been developed which gives the average cutting torque, T{sub c}, and friction torque, T{sub f}, values on cutters as well as corresponding average weight transferred by the cutting face, W{sub c}, and the wear flat face, W{sub f}, of the cutters value due to friction.

  12. Designing embedded systems with 32-bit PIC microcontrollers and MikroC

    CERN Document Server

    Ibrahim, Dogan

    2013-01-01

    The new generation of 32-bit PIC microcontrollers can be used to solve the increasingly complex embedded system design challenges faced by engineers today. This book teaches the basics of 32-bit C programming, including an introduction to the PIC 32-bit C compiler. It includes a full description of the architecture of 32-bit PICs and their applications, along with coverage of the relevant development and debugging tools. Through a series of fully realized example projects, Dogan Ibrahim demonstrates how engineers can harness the power of this new technology to optimize their embedded design

  13. PDC: A wire chamber cathode read-out on 6-bit fast ADC

    Energy Technology Data Exchange (ETDEWEB)

    De Giorgi, M; Gasparini, F; Meneguzzo, A T; Pitacco, G [Istituto Nazionale di Fisica Nucleare, Padua (Italy); Padua Univ. (Italy). Ist. di Fisica)

    1984-06-01

    A read-out for MWPC and drift chamber is presented in which the coordinate along the sense wires is obtained by measuring the centre of gravity (CoG) of the charge induced on cathode strips or pads. The peak value of the signals coming from subsets of 8-pad cathodes are recorded by a parallel sample and hold, strobed by their own OR, and then serially digitized by one 6-bit fast ADC (FADC). The basic module of the system is a peak detector and converter (PDC) built in CAMAC cards, which could be an interesting approach to the analog signal acquisition of large particle detectors. The system has been designed to equip the central detector in an experiment at the CERN LEAR facility. A prototype of a card will be described and the results of some tests will be presented.

  14. Case histories of roller cone core bit application in crystalline rock

    International Nuclear Information System (INIS)

    Dahlem, J.S.

    1988-01-01

    The increased interest in deep crystalline rock drilling projects has resulted in a requirement for premium coring bits which are effective in such a harsh and abrasive environment. Hard formation roller cone insert bits have traditionally and constantly performed well in crystalline rock. As a result, the application of state of the art roller cone rock bit technology to the design and development of core bits has made crystalline coring projects more viable than ever before. This paper follows the development of roller cone core bits by examining their use on project such as HDR (Hot Dry Rock, Los Alamos); NAGRA (Nuclear Waste Disposal Wells in Switzerland); Camborne School of Mines Geothermal Project in Cornwall, UK; Deep Gas Project in Sweden; and the KTB Deep Drilling Project in West Germany

  15. Detection of surface electromyography recording time interval without muscle fatigue effect for biceps brachii muscle during maximum voluntary contraction.

    Science.gov (United States)

    Soylu, Abdullah Ruhi; Arpinar-Avsar, Pinar

    2010-08-01

    The effects of fatigue on maximum voluntary contraction (MVC) parameters were examined by using force and surface electromyography (sEMG) signals of the biceps brachii muscles (BBM) of 12 subjects. The purpose of the study was to find the sEMG time interval of the MVC recordings which is not affected by the muscle fatigue. At least 10s of force and sEMG signals of BBM were recorded simultaneously during MVC. The subjects reached the maximum force level within 2s by slightly increasing the force, and then contracted the BBM maximally. The time index of each sEMG and force signal were labeled with respect to the time index of the maximum force (i.e. after the time normalization, each sEMG or force signal's 0s time index corresponds to maximum force point). Then, the first 8s of sEMG and force signals were divided into 0.5s intervals. Mean force, median frequency (MF) and integrated EMG (iEMG) values were calculated for each interval. Amplitude normalization was performed by dividing the force signals to their mean values of 0s time intervals (i.e. -0.25 to 0.25s). A similar amplitude normalization procedure was repeated for the iEMG and MF signals. Statistical analysis (Friedman test with Dunn's post hoc test) was performed on the time and amplitude normalized signals (MF, iEMG). Although the ANOVA results did not give statistically significant information about the onset of the muscle fatigue, linear regression (mean force vs. time) showed a decreasing slope (Pearson-r=0.9462, pfatigue starts after the 0s time interval as the muscles cannot attain their peak force levels. This implies that the most reliable interval for MVC calculation which is not affected by the muscle fatigue is from the onset of the EMG activity to the peak force time. Mean, SD, and range of this interval (excluding 2s gradual increase time) for 12 subjects were 2353, 1258ms and 536-4186ms, respectively. Exceeding this interval introduces estimation errors in the maximum amplitude calculations

  16. Comparison of Bit Error Rate of Line Codes in NG-PON2

    Directory of Open Access Journals (Sweden)

    Tomas Horvath

    2016-05-01

    Full Text Available This article focuses on simulation and comparison of line codes NRZ (Non Return to Zero, RZ (Return to Zero and Miller’s code for NG-PON2 (Next-Generation Passive Optical Network Stage 2 using. Our article provides solutions with Q-factor, BER (Bit Error Rate, and bandwidth comparison. Line codes are the most important part of communication over the optical fibre. The main role of these codes is digital signal representation. NG-PON2 networks use optical fibres for communication that is the reason why OptSim v5.2 is used for simulation.

  17. Bit rate and pulse width dependence of four-wave mixing of short optical pulses in semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Diez, S.; Mecozzi, A.; Mørk, Jesper

    1999-01-01

    We investigate the saturation properties of four-wave mixing of short optical pulses in a semiconductor optical amplifier. By varying the gain of the optical amplifier, we find a strong dependence of both conversion efficiency and signal-to-background ratio on pulse width and bit rate....... In particular, the signal-to-background ratio can be optimized for a specific amplifier gain. This behavior, which is coherently described in experiment and theory, is attributed to the dynamics of the amplified spontaneous emission, which is the main source of noise in a semiconductor optical amplifier....

  18. Test plan for core sampling drill bit temperature monitor

    International Nuclear Information System (INIS)

    Francis, P.M.

    1994-01-01

    At WHC, one of the functions of the Tank Waste Remediation System division is sampling waste tanks to characterize their contents. The push-mode core sampling truck is currently used to take samples of liquid and sludge. Sampling of tanks containing hard salt cake is to be performed with the rotary-mode core sampling system, consisting of the core sample truck, mobile exhauster unit, and ancillary subsystems. When drilling through the salt cake material, friction and heat can be generated in the drill bit. Based upon tank safety reviews, it has been determined that the drill bit temperature must not exceed 180 C, due to the potential reactivity of tank contents at this temperature. Consequently, a drill bit temperature limit of 150 C was established for operation of the core sample truck to have an adequate margin of safety. Unpredictable factors, such as localized heating, cause this buffer to be so great. The most desirable safeguard against exceeding this threshold is bit temperature monitoring . This document describes the recommended plan for testing the prototype of a drill bit temperature monitor developed for core sampling by Sandia National Labs. The device will be tested at their facilities. This test plan documents the tests that Westinghouse Hanford Company considers necessary for effective testing of the system

  19. Development of an RSFQ 4-bit ALU

    International Nuclear Information System (INIS)

    Kim, J. Y.; Baek, S. H.; Kim, S. H.; Kang, K. R.; Jung, K. R.; Lim, H. Y.; Park, J. H.; Han, T. S.

    2005-01-01

    We have developed and tested an RSFQ 4-bit Arithmetic Logic Unit (ALU) based on half adder cells and de switches. ALU is a core element of a computer processor that performs arithmetic and logic operations on the operands in computer instruction words. The designed ALU had limited operation functions of OR, AND, XOR, and ADD. It had a pipeline structure. We have simulated the circuit by using Josephson circuit simulation tools in order to reduce the timing problem, and confirmed the correct operation of the designed ALU. We used simulation tools of XIC TM ,WRspice TM , and Julia. The fabricated 4-bit ALU circuit had a size of 3000 calum X 1500, and the chip size was 5 mm X 5 mm. The test speeds were 1000 kHz and 5 GHz. For high-speed test, we used an eye-diagram technique. Our 4-bit ALU operated correctly up to 5 GHz clock frequency. The chip was tested at the liquid-helium temperature.

  20. Cosmic shear measurement with maximum likelihood and maximum a posteriori inference

    Science.gov (United States)

    Hall, Alex; Taylor, Andy

    2017-06-01

    We investigate the problem of noise bias in maximum likelihood and maximum a posteriori estimators for cosmic shear. We derive the leading and next-to-leading order biases and compute them in the context of galaxy ellipticity measurements, extending previous work on maximum likelihood inference for weak lensing. We show that a large part of the bias on these point estimators can be removed using information already contained in the likelihood when a galaxy model is specified, without the need for external calibration. We test these bias-corrected estimators on simulated galaxy images similar to those expected from planned space-based weak lensing surveys, with promising results. We find that the introduction of an intrinsic shape prior can help with mitigation of noise bias, such that the maximum a posteriori estimate can be made less biased than the maximum likelihood estimate. Second-order terms offer a check on the convergence of the estimators, but are largely subdominant. We show how biases propagate to shear estimates, demonstrating in our simple set-up that shear biases can be reduced by orders of magnitude and potentially to within the requirements of planned space-based surveys at mild signal-to-noise ratio. We find that second-order terms can exhibit significant cancellations at low signal-to-noise ratio when Gaussian noise is assumed, which has implications for inferring the performance of shear-measurement algorithms from simplified simulations. We discuss the viability of our point estimators as tools for lensing inference, arguing that they allow for the robust measurement of ellipticity and shear.

  1. Hybrid Data Hiding Scheme Using Right-Most Digit Replacement and Adaptive Least Significant Bit for Digital Images

    Directory of Open Access Journals (Sweden)

    Mehdi Hussain

    2016-05-01

    Full Text Available The goal of image steganographic methods considers three main key issues: high embedding capacity, good visual symmetry/quality, and security. In this paper, a hybrid data hiding method combining the right-most digit replacement (RMDR with an adaptive least significant bit (ALSB is proposed to provide not only high embedding capacity but also maintain a good visual symmetry. The cover-image is divided into lower texture (symmetry patterns and higher texture (asymmetry patterns areas and these textures determine the selection of RMDR and ALSB methods, respectively, according to pixel symmetry. This paper has three major contributions. First, the proposed hybrid method enhanced the embedding capacity due to efficient ALSB utilization in the higher texture areas of cover images. Second, the proposed hybrid method maintains the high visual quality because RMDR has the closest selection process to generate the symmetry between stego and cover pixels. Finally, the proposed hybrid method is secure against statistical regular or singular (RS steganalysis and pixel difference histogram steganalysis because RMDR is capable of evading the risk of RS detection attacks due to pixel digits replacement instead of bits. Extensive experimental tests (over 1500+ cover images are conducted with recent least significant bit (LSB-based hybrid methods and it is demonstrated that the proposed hybrid method has a high embedding capacity (800,019 bits while maintaining good visual symmetry (39.00% peak signal-to-noise ratio (PSNR.

  2. Balance, Sustainable Development, and Integration: Innovative Path for BIT Practice

    OpenAIRE

    Zeng Huaqun

    2014-01-01

    Bilateral investment treaties (BITs) have emerged as one of the most remarkable recent developments in international law and the hot topic of international lawyers. The author indicates that in the history of BIT practice, there is an issue on imbalance and/or un-equality between developed states and developing states due to historical and practical reasons. Under the economic globalization the main clauses of BITs have been further developed to the traditional track elaborately designed by d...

  3. A 2 GS/s 8-bit folding and interpolating ADC in 90 nm CMOS

    International Nuclear Information System (INIS)

    He Wenwei; Meng Qiao; Zhang Yi; Tang Kai

    2014-01-01

    A single-channel 2 GS/s 8-bit analog-to-digital converter in 90 nm CMOS process technology is presented. It utilizes cascade folding architecture, which incorporates an additional inter-stage sample-and-hold amplifier between the folding circuits to enhance the quantization time. It also uses the foreground on-chip digital-assisted calibration circuit to improve the linearity of the circuit. The post simulation results demonstrate that it has a differential nonlinearity < ±0.3 LSB and an integral nonlinearity < ±0.25 LSB at the Nyquist frequency. Moreover, 7.338 effective numbers of bits can be achieved at 2 GSPS. The whole chip area is 0.88 × 0.88 mm 2 with the pad. It consumes 210 mW from a 1.2 V single supply. (semiconductor integrated circuits)

  4. VLSI for High-Speed Digital Signal Processing

    Science.gov (United States)

    1994-09-30

    particular, the design, layout and fab - rication of integrated circuits. The primary project for this grant has been the design and implementation of a...targeted at 33.36 dB, and PSNR (dB) Rate ( bpp ) the FRSBC algorithm, targeted at 0.5 bits/pixel, respec- Filter FDSBC FRSBC FDSBC FRSBC tively. The filter...to mean square error d by as shown in Fig. 6, is used, yielding a total of 16 subbands. 255’ The rates, in bits per pixel ( bpp ), and the peak signal

  5. Fast physical random bit generation with chaotic semiconductor lasers

    Science.gov (United States)

    Uchida, Atsushi; Amano, Kazuya; Inoue, Masaki; Hirano, Kunihito; Naito, Sunao; Someya, Hiroyuki; Oowada, Isao; Kurashige, Takayuki; Shiki, Masaru; Yoshimori, Shigeru; Yoshimura, Kazuyuki; Davis, Peter

    2008-12-01

    Random number generators in digital information systems make use of physical entropy sources such as electronic and photonic noise to add unpredictability to deterministically generated pseudo-random sequences. However, there is a large gap between the generation rates achieved with existing physical sources and the high data rates of many computation and communication systems; this is a fundamental weakness of these systems. Here we show that good quality random bit sequences can be generated at very fast bit rates using physical chaos in semiconductor lasers. Streams of bits that pass standard statistical tests for randomness have been generated at rates of up to 1.7 Gbps by sampling the fluctuating optical output of two chaotic lasers. This rate is an order of magnitude faster than that of previously reported devices for physical random bit generators with verified randomness. This means that the performance of random number generators can be greatly improved by using chaotic laser devices as physical entropy sources.

  6. Coder and decoder of fractal signals of comb-type structure

    Directory of Open Access Journals (Sweden)

    Politanskyi R. L.

    2014-08-01

    Full Text Available The article presents a coder and decoder of fractal signals of comb-type structure (FSCS based on microcontrollers (MC. The coder and decoder consist of identical control modules, while their managed modules have different schematic constructions. The control module performs forming or recognition of signals, and also carries out the function of information exchange with a computer. The basic element of the control module is a PIC18F2550 microcontroller from MicroChip. The coder of the system forms fractal signals of a given order according to the information bits coming from the computer. Samples of the calculated values of the amplitudes of elementary rectangular pulses that constitute the structure of fractal pulses are stored in the memory of the microcontroller as a table. Minimum bit capacity of the DAC necessary for the generation of FSCS of fourth order is four bits. The operation algorithm, "wired" into the controller of the program, provides for encoding of the transmitted information by two-bit symbols. Recognition of the start of transmission of each byte in communication channel is performed by the transmission of the timing signal. In a decoder the microcontroller carries out reception and decoding of the received fractal signals which are then transmitted to the computer. The developed algorithm of the program for the microcontroller of the decoder is carried out by determination of order of fractal impulse after the value of sum of amplitudes of elementary impulses, constituents fractal signal. The programs for coder and decoder are written in "C". In the most critical places of the program influencing on the fast-acting of chart “assembler” insertions are done. The blocks of the coder and decoder were connected with a coaxial 10 meters long cable with an impendance of 75 Ohm. The signals generated by the developed coder of FSCS, were studied using a digital oscillograph. On the basis of the obtained spectrums, it is possible

  7. Security bound of cheat sensitive quantum bit commitment.

    Science.gov (United States)

    He, Guang Ping

    2015-03-23

    Cheat sensitive quantum bit commitment (CSQBC) loosens the security requirement of quantum bit commitment (QBC), so that the existing impossibility proofs of unconditionally secure QBC can be evaded. But here we analyze the common features in all existing CSQBC protocols, and show that in any CSQBC having these features, the receiver can always learn a non-trivial amount of information on the sender's committed bit before it is unveiled, while his cheating can pass the security check with a probability not less than 50%. The sender's cheating is also studied. The optimal CSQBC protocols that can minimize the sum of the cheating probabilities of both parties are found to be trivial, as they are practically useless. We also discuss the possibility of building a fair protocol in which both parties can cheat with equal probabilities.

  8. Security bound of cheat sensitive quantum bit commitment

    Science.gov (United States)

    He, Guang Ping

    2015-03-01

    Cheat sensitive quantum bit commitment (CSQBC) loosens the security requirement of quantum bit commitment (QBC), so that the existing impossibility proofs of unconditionally secure QBC can be evaded. But here we analyze the common features in all existing CSQBC protocols, and show that in any CSQBC having these features, the receiver can always learn a non-trivial amount of information on the sender's committed bit before it is unveiled, while his cheating can pass the security check with a probability not less than 50%. The sender's cheating is also studied. The optimal CSQBC protocols that can minimize the sum of the cheating probabilities of both parties are found to be trivial, as they are practically useless. We also discuss the possibility of building a fair protocol in which both parties can cheat with equal probabilities.

  9. Methylcobalamin promotes proliferation and migration and inhibits apoptosis of C2C12 cells via the Erk1/2 signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Michio [Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Tanaka, Hiroyuki, E-mail: tanahiro-osk@umin.ac.jp [Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Okada, Kiyoshi [Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Kuroda, Yusuke [Department of Orthopaedic Surgery, Kansai Rosai Hospital, 3-1-69 Inabaso, Amagasaki, Hyogo 660-8511 (Japan); Nishimoto, Shunsuke; Murase, Tsuyoshi; Yoshikawa, Hideki [Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2014-01-17

    Highlights: •Methylcobalamin activated the Erk1/2 signaling pathway in C2C12 cells. •Methylcobalamin promoted the proliferation and migration in C2C12 cells. •C2C12 cell apoptosis during differentiation was inhibited by methylcobalamin. -- Abstract: Methylcobalamin (MeCbl) is a vitamin B12 analog that has some positive effects on peripheral nervous disorders. Although some previous studies revealed the effects of MeCbl on neurons, its effect on the muscle, which is the final target of motoneuron axons, remains to be elucidated. This study aimed to determine the effect of MeCbl on the muscle. We found that MeCbl promoted the proliferation and migration of C2C12 myoblasts in vitro and that these effects are mediated by the Erk1/2 signaling pathway without affecting the activity of the Akt signaling pathway. We also demonstrated that MeCbl inhibits C2C12 cell apoptosis during differentiation. Our results suggest that MeCbl has beneficial effects on the muscle in vitro. MeCbl administration may provide a novel therapeutic approach for muscle injury or degenerating muscle after denervation.

  10. The digital agenda of virtual currencies: Can BitCoin become a global currency?

    OpenAIRE

    CIAIAN PAVEL; RAJCANIOVA MIROSLAVA; KANCS D'ARTIS

    2015-01-01

    This paper identifies and analyzes BitCoin features which may facilitate BitCoin to become a global currency, as well as characteristics which may impede the use of BitCoin as a medium of exchange, a unit of account and a store of value, and compares BitCoin with standard currencies with respect to the main functions of money. Among all analyzed BitCoin features, the extreme price volatility stands out most clearly compared to standard currencies. In order to understand the reasons for such e...

  11. Equipment for the Transient Capture of Chaotic Microwave Signals

    Science.gov (United States)

    2017-09-14

    author(s) and should not contrued as an official Department of the Army position, policy or decision , unless so designated by other documentation. 9...times are needed and over-sampling by a factor of 8 is required so that the effective number of bits can be increased from the actual bit resolution...of 8 can be extended to 12 effective bits after over- sampling. Accomplishments: aADPO77002SX Tektronix Oscilloscope was purchased for the

  12. Digital signal processing the Tevatron BPM signals

    International Nuclear Information System (INIS)

    Cancelo, G.; James, E.; Wolbers, S.

    2005-01-01

    The Beam Position Monitor (TeV BPM) readout system at Fermilab's Tevatron has been updated and is currently being commissioned. The new BPMs use new analog and digital hardware to achieve better beam position measurement resolution. The new system reads signals from both ends of the existing directional stripline pickups to provide simultaneous proton and antiproton measurements. The signals provided by the two ends of the BPM pickups are processed by analog band-pass filters and sampled by 14-bit ADCs at 74.3MHz. A crucial part of this work has been the design of digital filters that process the signal. This paper describes the digital processing and estimation techniques used to optimize the beam position measurement. The BPM electronics must operate in narrow-band and wide-band modes to enable measurements of closed-orbit and turn-by-turn positions. The filtering and timing conditions of the signals are tuned accordingly for the operational modes. The analysis and the optimized result for each mode are presented

  13. Bit-wise arithmetic coding for data compression

    Science.gov (United States)

    Kiely, A. B.

    1994-01-01

    This article examines the problem of compressing a uniformly quantized independent and identically distributed (IID) source. We present a new compression technique, bit-wise arithmetic coding, that assigns fixed-length codewords to the quantizer output and uses arithmetic coding to compress the codewords, treating the codeword bits as independent. We examine the performance of this method and evaluate the overhead required when used block-adaptively. Simulation results are presented for Gaussian and Laplacian sources. This new technique could be used as the entropy coder in a transform or subband coding system.

  14. SSTL Based Low Power Thermal Efficient WLAN Specific 32bit ALU Design on 28nm FPGA

    DEFF Research Database (Denmark)

    Kalia, Kartik; Pandey, Bishwajeet; Das, Teerath

    2016-01-01

    at minimum and maximum temperature as compared to all other considered I/O standards. This design has application where 32bit ALU design is considered for designing an electronic device such as WLAN. The design can be implemented on different nano chips for better efficiency depending upon the design...... with consideration of airflow toward hit sink and different frequency on which ALU operate in network processor or any WLAN devices. We have done total power analysis of WLAN operating on different frequencies. We have considered a set of frequencies, which are based on IEEE 802.11 standards. First we did...... efficient IO standard. While analyzing we found out that when WLAN device shift from 343.15K to 283.15K, there is maximum thermal power reduction in SSTL135_R as compared to all considered I/O standards. When we compared same I/Os for different frequencies we observed maximum thermal efficiency in SSTL15...

  15. An Optimization-Based Reconfigurable Design for a 6-Bit 11-MHz Parallel Pipeline ADC with Double-Sampling S&H

    Directory of Open Access Journals (Sweden)

    Wilmar Carvajal

    2012-01-01

    Full Text Available This paper presents a 6 bit, 11 MS/s time-interleaved pipeline A/D converter design. The specification process, from block level to elementary circuits, is gradually covered to draw a design methodology. Both power consumption and mismatch between the parallel chain elements are intended to be reduced by using some techniques such as double and bottom-plate sampling, fully differential circuits, RSD digital correction, and geometric programming (GP optimization of the elementary analog circuits (OTAs and comparators design. Prelayout simulations of the complete ADC are presented to characterize the designed converter, which consumes 12 mW while sampling a 500 kHz input signal. Moreover, the block inside the ADC with the most stringent requirements in power, speed, and precision was sent to fabrication in a CMOS 0.35 μm AMS technology, and some postlayout results are shown.

  16. All-Optical Wavelength Conversion of a High-Speed RZ-OOK Signal in a Silicon Nanowire

    DEFF Research Database (Denmark)

    Hu, Hao; Ji, Hua; Galili, Michael

    2011-01-01

    All-optical wavelength conversion of a 320 Gb/s line-rate RZ-OOK signal is demonstrated based on four-wave mixing in a 3.6 mm long silicon nanowire. Bit error rate measurements validate the performance within FEC limits.......All-optical wavelength conversion of a 320 Gb/s line-rate RZ-OOK signal is demonstrated based on four-wave mixing in a 3.6 mm long silicon nanowire. Bit error rate measurements validate the performance within FEC limits....

  17. Experimental bit commitment based on quantum communication and special relativity.

    Science.gov (United States)

    Lunghi, T; Kaniewski, J; Bussières, F; Houlmann, R; Tomamichel, M; Kent, A; Gisin, N; Wehner, S; Zbinden, H

    2013-11-01

    Bit commitment is a fundamental cryptographic primitive in which Bob wishes to commit a secret bit to Alice. Perfectly secure bit commitment between two mistrustful parties is impossible through asynchronous exchange of quantum information. Perfect security is however possible when Alice and Bob split into several agents exchanging classical and quantum information at times and locations suitably chosen to satisfy specific relativistic constraints. Here we report on an implementation of a bit commitment protocol using quantum communication and special relativity. Our protocol is based on [A. Kent, Phys. Rev. Lett. 109, 130501 (2012)] and has the advantage that it is practically feasible with arbitrary large separations between the agents in order to maximize the commitment time. By positioning agents in Geneva and Singapore, we obtain a commitment time of 15 ms. A security analysis considering experimental imperfections and finite statistics is presented.

  18. An Image Encryption Method Based on Bit Plane Hiding Technology

    Institute of Scientific and Technical Information of China (English)

    LIU Bin; LI Zhitang; TU Hao

    2006-01-01

    A novel image hiding method based on the correlation analysis of bit plane is described in this paper. Firstly, based on the correlation analysis, different bit plane of a secret image is hided in different bit plane of several different open images. And then a new hiding image is acquired by a nesting "Exclusive-OR" operation on those images obtained from the first step. At last, by employing image fusion technique, the final hiding result is achieved. The experimental result shows that the method proposed in this paper is effective.

  19. Optimization of rock-bit life based on bearing failure criteria

    International Nuclear Information System (INIS)

    Feav, M.J.; Thorogood, J.L.; Whelehan, O.P.; Williamson, H.S.

    1992-01-01

    This paper reports that recent advances in rock-bit seal technology have allowed greater predictability of bearing life. Cone loss following bearing failure incurs costs related to remedial activities. A risk analysis approach, incorporating bearing-life relationships and the inter-dependence of drilling events, is used to formulate a bit-run cost-optimization method. The procedure enables a choice to be made between elastomeric and metal seals on a lowest-replacement-cost basis. The technique also provides a formal method for assessing the opportunity cost for using a device to detect bit-bearing failures downhole

  20. Quantifying the Impact of Single Bit Flips on Floating Point Arithmetic

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, James J [ORNL; Mueller, Frank [North Carolina State University; Stoyanov, Miroslav K [ORNL; Webster, Clayton G [ORNL

    2013-08-01

    In high-end computing, the collective surface area, smaller fabrication sizes, and increasing density of components have led to an increase in the number of observed bit flips. If mechanisms are not in place to detect them, such flips produce silent errors, i.e. the code returns a result that deviates from the desired solution by more than the allowed tolerance and the discrepancy cannot be distinguished from the standard numerical error associated with the algorithm. These phenomena are believed to occur more frequently in DRAM, but logic gates, arithmetic units, and other circuits are also susceptible to bit flips. Previous work has focused on algorithmic techniques for detecting and correcting bit flips in specific data structures, however, they suffer from lack of generality and often times cannot be implemented in heterogeneous computing environment. Our work takes a novel approach to this problem. We focus on quantifying the impact of a single bit flip on specific floating-point operations. We analyze the error induced by flipping specific bits in the most widely used IEEE floating-point representation in an architecture-agnostic manner, i.e., without requiring proprietary information such as bit flip rates and the vendor-specific circuit designs. We initially study dot products of vectors and demonstrate that not all bit flips create a large error and, more importantly, expected value of the relative magnitude of the error is very sensitive on the bit pattern of the binary representation of the exponent, which strongly depends on scaling. Our results are derived analytically and then verified experimentally with Monte Carlo sampling of random vectors. Furthermore, we consider the natural resilience properties of solvers based on the fixed point iteration and we demonstrate how the resilience of the Jacobi method for linear equations can be significantly improved by rescaling the associated matrix.

  1. HIGH-POWER TURBODRILL AND DRILL BIT FOR DRILLING WITH COILED TUBING

    Energy Technology Data Exchange (ETDEWEB)

    Robert Radtke; David Glowka; Man Mohan Rai; David Conroy; Tim Beaton; Rocky Seale; Joseph Hanna; Smith Neyrfor; Homer Robertson

    2008-03-31

    Commercial introduction of Microhole Technology to the gas and oil drilling industry requires an effective downhole drive mechanism which operates efficiently at relatively high RPM and low bit weight for delivering efficient power to the special high RPM drill bit for ensuring both high penetration rate and long bit life. This project entails developing and testing a more efficient 2-7/8 in. diameter Turbodrill and a novel 4-1/8 in. diameter drill bit for drilling with coiled tubing. The high-power Turbodrill were developed to deliver efficient power, and the more durable drill bit employed high-temperature cutters that can more effectively drill hard and abrasive rock. This project teams Schlumberger Smith Neyrfor and Smith Bits, and NASA AMES Research Center with Technology International, Inc (TII), to deliver a downhole, hydraulically-driven power unit, matched with a custom drill bit designed to drill 4-1/8 in. boreholes with a purpose-built coiled tubing rig. The U.S. Department of Energy National Energy Technology Laboratory has funded Technology International Inc. Houston, Texas to develop a higher power Turbodrill and drill bit for use in drilling with a coiled tubing unit. This project entails developing and testing an effective downhole drive mechanism and a novel drill bit for drilling 'microholes' with coiled tubing. The new higher power Turbodrill is shorter, delivers power more efficiently, operates at relatively high revolutions per minute, and requires low weight on bit. The more durable thermally stable diamond drill bit employs high-temperature TSP (thermally stable) diamond cutters that can more effectively drill hard and abrasive rock. Expectations are that widespread adoption of microhole technology could spawn a wave of 'infill development' drilling of wells spaced between existing wells, which could tap potentially billions of barrels of bypassed oil at shallow depths in mature producing areas. At the same time, microhole

  2. 32-Bit FASTBUS computer

    International Nuclear Information System (INIS)

    Blossom, J.M.; Hong, J.P.; Kellner, R.G.

    1985-01-01

    Los Alamos National Laboratory is building a 32-bit FASTBUS computer using the NATIONAL SEMICONDUCTOR 32032 central processing unit (CPU) and containing 16 million bytes of memory. The board can act both as a FASTBUS master and as a FASTBUS slave. It contains a custom direct memory access (DMA) channel which can perform 80 million bytes per second block transfers across the FASTBUS

  3. FastBit: an efficient indexing technology for accelerating data-intensive science

    International Nuclear Information System (INIS)

    Wu Kesheng

    2005-01-01

    FastBit is a software tool for searching large read-only datasets. It organizes user data in a column-oriented structure which is efficient for on-line analytical processing (OLAP), and utilizes compressed bitmap indices to further speed up query processing. Analyses have proven the compressed bitmap index used in FastBit to be theoretically optimal for onedimensional queries. Compared with other optimal indexing methods, bitmap indices are superior because they can be efficiently combined to answer multi-dimensional queries whereas other optimal methods can not. In this paper, we first describe the searching capability of FastBit, then briefly highlight two applications that make extensive use of FastBit, namely Grid Collector and DEX

  4. FastBit: An Efficient Indexing Technology For AcceleratingData-Intensive Science

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Kesheng

    2005-06-27

    FastBit is a software tool for searching large read-only data sets. It organizes user data in a column-oriented structure which is efficient for on-line analytical processing (OLAP), and utilizes compressed bitmap indices to further speed up query processing. Analyses have proven the compressed bitmap index used in FastBit to be theoretically optimal for one-dimensional queries. Compared with other optimal indexing methods, bitmap indices are superior because they can be efficiently combined to answer multi-dimensional queries whereas other optimal methods cannot. In this paper, we first describe the searching capability of FastBit, then briefly highlight two applications that make extensive use of FastBit, namely Grid Collector and DEX.

  5. FastBit: an efficient indexing technology for accelerating data-intensive science

    Science.gov (United States)

    Wu, Kesheng

    2005-01-01

    FastBit is a software tool for searching large read-only datasets. It organizes user data in a column-oriented structure which is efficient for on-line analytical processing (OLAP), and utilizes compressed bitmap indices to further speed up query processing. Analyses have proven the compressed bitmap index used in FastBit to be theoretically optimal for onedimensional queries. Compared with other optimal indexing methods, bitmap indices are superior because they can be efficiently combined to answer multi-dimensional queries whereas other optimal methods can not. In this paper, we first describe the searching capability of FastBit, then briefly highlight two applications that make extensive use of FastBit, namely Grid Collector and DEX.

  6. DRAGON, a GPI-anchored membrane protein, inhibits BMP signaling in C2C12 myoblasts.

    Science.gov (United States)

    Kanomata, Kazuhiro; Kokabu, Shoichiro; Nojima, Junya; Fukuda, Toru; Katagiri, Takenobu

    2009-06-01

    Bone morphogenetic proteins (BMPs) induce osteoblastic differentiation of myoblasts via binding to cell surface receptors. Repulsive guidance molecules (RGMs) have been identified as BMP co-receptors. We report here that DRAGON/RGMb, a member of the RGM family, suppressed BMP signaling in C2C12 myoblasts via a novel mechanism. All RGMs were expressed in C2C12 cells that were differentiated into myocytes and osteoblastic cells, but RGMc was not detected in immature cells. In C2C12 cells, only DRAGON suppressed ALP and Id1 promoter activities induced by BMP-4 or by constitutively activated BMP type I receptors. This inhibition by DRAGON was dependent on the secretory form of the von Willbrand factor type D domain. DRAGON even suppressed BMP signaling induced by constitutively activated Smad1. Over-expression of neogenin did not alter the inhibitory capacity of DRAGON. Taken together, these findings indicate that DRAGON may be an inhibitor of BMP signaling in C2C12 myoblasts. We also suggest that a novel molecule(s) expressed on the cell membrane may mediate the signal transduction of DRAGON in order to suppress BMP signaling in C2C12 myoblasts.

  7. Report on ignitability testing of ''no-flow'' push bit

    International Nuclear Information System (INIS)

    Witwer, K.S.

    1997-01-01

    Testing was done to determine if an ignition occurs during a sixty foot drop of a Universal Sampler onto a push-mode bit in a flammable gas environment. Ten drops each of the sampler using both a push-mode and rotary mode insert onto a push-mode bit were completed. No ignition occurred during any of the drops

  8. Ku to V-band 4-bit MEMS phase shifter bank using high isolation SP4T switches and DMTL structures

    Science.gov (United States)

    Dey, Sukomal; Koul, Shiban K.; Poddar, Ajay K.; Rohde, Ulrich L.

    2017-10-01

    This work presents a micro-electro-mechanical system (MEMS) based on a wide-band 4-bit phase shifter using two back-to-back single-pole-four-throw (SP4T) switches and four different distributed MEMS transmission line (DMTL) structures that are implemented on 635 µm alumina substrate using surface micromachining process. An SP4T switch is designed with a series-shunt configuration and it demonstrates an average return loss of  >17 dB, an insertion loss of  28 dB up to 60 GHz. A maximum area of the SP4T switch is ~0.76 mm2. Single-pole-single-throw and SP4T switches are capable of handling 1 W of radio frequency (RF) power up to  >100 million cycles at 25° C; they can even sustained up to  >70 million cycles with 1 W at 85 °C. The proposed wide-band phase shifter works at 17 GHz (Ku-band), 25 GHz (K-band), 35 GHz (Ka-band) and 60 GHz (V-band) frequencies. Finally,a 4-bit phase shifter demonstrates an average insertion loss of  10 dB and maximum phase error of ~3.8° at 60 GHz frequency over 500 MHz bandwidth. Total area of the fabricated device is ~11 mm2. In addition, the proposed device works well up to  >107 cycles with 1 W of RF power. To the best of the author’s knowledge, this is the best reported wide-band MEMS 4-bit phase shifter in the literature that works with a constant resolution.

  9. MTBP inhibits the Erk1/2-Elk-1 signaling in hepatocellular carcinoma

    Science.gov (United States)

    Ranjan, Atul; Iyer, Swathi V.; Ward, Christopher; Link, Tim; Diaz, Francisco J.; Dhar, Animesh; Tawfik, Ossama W.; Weinman, Steven A.; Azuma, Yoshiaki; Izumi, Tadahide; Iwakuma, Tomoo

    2018-01-01

    Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide, and the prognosis of HCC patients, especially those with metastasis, remains extremely poor. This is partly due to unclear molecular mechanisms underlying HCC metastasis. Our previous study indicates that MDM2 Binding Protein (MTBP) suppresses migration and metastasis of HCC cells. However, signaling pathways regulated by MTBP remain unknown. To identify metastasis-associated signaling pathways governed by MTBP, we have performed unbiased luciferase reporter-based signal array analyses and found that MTBP suppresses the activity of the ETS-domain transcription factor Elk-1, a downstream target of Erk1/2 MAP kinases. MTBP also inhibits phosphorylation of Elk-1 and decreases mRNA expression of Elk-1 target genes. Reduced Elk-1 activity is caused by inhibited nuclear translocation of phosphorylated Erk1/2 (p-Erk) by MTBP and subsequent inhibition of Elk-1 phosphorylation. We also reveal that MTBP inhibits the interaction of p-Erk with importin-7/RanBP7 (IPO7), an importin family member which shuttles p-Erk into the nucleus, by binding to IPO7. Moreover, high levels of MTBP in human HCC tissues are correlated with cytoplasmic localization of p-Erk1/2. Our study suggests that MTBP suppresses metastasis, at least partially, by down-modulating the Erk1/2-Elk-1 signaling pathway, thus identifying a novel regulatory mechanism of HCC metastasis by regulating the subcellular localization of p-Erk. PMID:29765550

  10. A low-power 10-bit continuous-time CMOS ΣΔ A/D converter

    DEFF Research Database (Denmark)

    Nielsen, Jannik Hammel; Bruun, Erik

    2004-01-01

    This paper presents the design of a third-order low-pass ΣΔ analog-to-digital converter (ADC) employing a continuous-time (CT) loop filter. The loop filter is implemented using Gm - C integrators, where the transconductors are implemented using CMOS transistors only. System level as well...... as transistor level design issues for power efficiency is discussed. A prototype ΣΔ ADC intended for weak biological signals restricted to bandwidths below 4 kHz has been manufactured in a standard 0.35 μm CMOS technology. The ADC has a measured resolution of 10 bits and a dynamic range (DR) of 67 d...

  11. Content Progressive Coding of Limited Bits/pixel Images

    DEFF Research Database (Denmark)

    Jensen, Ole Riis; Forchhammer, Søren

    1999-01-01

    A new lossless context based method for content progressive coding of limited bits/pixel images is proposed. Progressive coding is achieved by separating the image into contelnt layers. Digital maps are compressed up to 3 times better than GIF.......A new lossless context based method for content progressive coding of limited bits/pixel images is proposed. Progressive coding is achieved by separating the image into contelnt layers. Digital maps are compressed up to 3 times better than GIF....

  12. Seismic Prediction While Drilling (SPWD: Looking Ahead of the Drill Bit by Application of Phased Array Technology

    Directory of Open Access Journals (Sweden)

    Marco Groh

    2010-04-01

    Full Text Available Geophysical exploration is indispensable for planning deep drilling. Usually 2D- or 3D-seismics investigations are applied and, depending on the resulting geologic model for the underground, the drill site and drilling path are determined. In recent years the focus of exploration has shifted towards small-scale geological structures such as local layers and faults. Depending on the source frequencies and the target depth, 2D- or 3D-seismics from surface cannot always resolve such structures in particular at larger depths. In general, signal frequencies of about 30–70 Hz are typical for surface seismic methods. The deeper and smaller the sought-after structures are, the worse will be the resolution. Therefore, borehole seismic measurements like Vertical Seismic Profile (VSP or Seismic While Drilling (SWD have been developed (Fig. 1. For the VSP method geophones are normally integrated in the borehole, while the seismicsource generates seismic waves at the surface. The SWD method uses the drill bit as the seismic source. Hence, the quality of the seismic signals is highly dependent on the drilled rock and the type of drill bit, but even well-suited rock conditions and adequate drilling may not provide sufficient data quality.

  13. Scaling vectors of attoJoule per bit modulators

    Science.gov (United States)

    Sorger, Volker J.; Amin, Rubab; Khurgin, Jacob B.; Ma, Zhizhen; Dalir, Hamed; Khan, Sikandar

    2018-01-01

    Electro-optic modulation performs the conversion between the electrical and optical domain with applications in data communication for optical interconnects, but also for novel optical computing algorithms such as providing nonlinearity at the output stage of optical perceptrons in neuromorphic analog optical computing. While resembling an optical transistor, the weak light-matter-interaction makes modulators 105 times larger compared to their electronic counterparts. Since the clock frequency for photonics on-chip has a power-overhead sweet-spot around tens of GHz, ultrafast modulation may only be required in long-distance communication, not for short on-chip links. Hence, the search is open for power-efficient on-chip modulators beyond the solutions offered by foundries to date. Here, we show scaling vectors towards atto-Joule per bit efficient modulators on-chip as well as some experimental demonstrations of novel plasmonic modulators with sub-fJ/bit efficiencies. Our parametric study of placing different actively modulated materials into plasmonic versus photonic optical modes shows that 2D materials overcompensate their miniscule modal overlap by their unity-high index change. Furthermore, we reveal that the metal used in plasmonic-based modulators not only serves as an electrical contact, but also enables low electrical series resistances leading to near-ideal capacitors. We then discuss the first experimental demonstration of a photon-plasmon-hybrid graphene-based electro-absorption modulator on silicon. The device shows a sub-1 V steep switching enabled by near-ideal electrostatics delivering a high 0.05 dB V-1 μm-1 performance requiring only 110 aJ/bit. Improving on this demonstration, we discuss a plasmonic slot-based graphene modulator design, where the polarization of the plasmonic mode aligns with graphene’s in-plane dimension; where a push-pull dual-gating scheme enables 2 dB V-1 μm-1 efficient modulation allowing the device to be just 770 nm

  14. Bit Error Rate Minimizing Channel Shortening Equalizers for Single Carrier Cyclic Prefixed Systems

    National Research Council Canada - National Science Library

    Martin, Richard K; Vanbleu, Koen; Ysebaert, Geert

    2007-01-01

    .... Previous work on channel shortening has largely been in the context of digital subscriber lines, a wireline system that allows bit allocation, thus it has focused on maximizing the bit rate for a given bit error rate (BER...

  15. Maximum magnitude in bias-dependent spin accumulation signals of CoFe/MgO/Si on insulator devices

    International Nuclear Information System (INIS)

    Ishikawa, M.; Sugiyama, H.; Inokuchi, T.; Tanamoto, T.; Saito, Y.; Hamaya, K.; Tezuka, N.

    2013-01-01

    We study in detail how the bias voltage (V bias ) and interface resistance (RA) depend on the magnitude of spin accumulation signals (|ΔV| or |ΔV|/I, where I is current) as detected by three-terminal Hanle measurements in CoFe/MgO/Si on insulator (SOI) devices with various MgO layer thicknesses and SOI carrier densities. We find the apparent maximum magnitude of spin polarization as a function of V bias and the correlation between the magnitude of spin accumulation signals and the shape of differential conductance (dI/dV) curves within the framework of the standard spin diffusion model. All of the experimental results can be explained by taking into account the density of states (DOS) in CoFe under the influence of the applied V bias and the quality of MgO tunnel barrier. These results indicate that it is important to consider the DOS of the ferromagnetic materials under the influence of an applied V bias and the quality of tunnel barrier when observing large spin accumulation signals in Si

  16. Linear, Constant-rounds Bit-decomposition

    DEFF Research Database (Denmark)

    Reistad, Tord; Toft, Tomas

    2010-01-01

    When performing secure multiparty computation, tasks may often be simple or difficult depending on the representation chosen. Hence, being able to switch representation efficiently may allow more efficient protocols. We present a new protocol for bit-decomposition: converting a ring element x ∈ ℤ M...

  17. A configurable and low-power mixed signal SoC for portable ECG monitoring applications.

    Science.gov (United States)

    Kim, Hyejung; Kim, Sunyoung; Van Helleputte, Nick; Artes, Antonio; Konijnenburg, Mario; Huisken, Jos; Van Hoof, Chris; Yazicioglu, Refet Firat

    2014-04-01

    This paper describes a mixed-signal ECG System-on-Chip (SoC) that is capable of implementing configurable functionality with low-power consumption for portable ECG monitoring applications. A low-voltage and high performance analog front-end extracts 3-channel ECG signals and single channel electrode-tissue-impedance (ETI) measurement with high signal quality. This can be used to evaluate the quality of the ECG measurement and to filter motion artifacts. A custom digital signal processor consisting of 4-way SIMD processor provides the configurability and advanced functionality like motion artifact removal and R peak detection. A built-in 12-bit analog-to-digital converter (ADC) is capable of adaptive sampling achieving a compression ratio of up to 7, and loop buffer integration reduces the power consumption for on-chip memory access. The SoC is implemented in 0.18 μm CMOS process and consumes 32 μ W from a 1.2 V while heart beat detection application is running, and integrated in a wireless ECG monitoring system with Bluetooth protocol. Thanks to the ECG SoC, the overall system power consumption can be reduced significantly.

  18. Time-space modal logic for verification of bit-slice circuits

    Science.gov (United States)

    Hiraishi, Hiromi

    1996-03-01

    The major goal of this paper is to propose a new modal logic aiming at formal verification of bit-slice circuits. The new logic is called as time-space modal logic and its major feature is that it can handle two transition relations: one for time transition and the other for space transition. As for a verification algorithm, a symbolic model checking algorithm of the new logic is shown. This could be applicable to verification of bit-slice microprocessor of infinite bit width and 1D systolic array of infinite length. A simple benchmark result shows the effectiveness of the proposed approach.

  19. Fast optical signal processing in high bit rate OTDM systems

    DEFF Research Database (Denmark)

    Poulsen, Henrik Nørskov; Jepsen, Kim Stokholm; Clausen, Anders

    1998-01-01

    As all-optical signal processing is maturing, optical time division multiplexing (OTDM) has also gained interest for simple networking in high capacity backbone networks. As an example of a network scenario we show an OTDM bus interconnecting another OTDM bus, a single high capacity user...

  20. On the relationships between higher and lower bit-depth system measurements

    Science.gov (United States)

    Burks, Stephen D.; Haefner, David P.; Doe, Joshua M.

    2018-04-01

    The quality of an imaging system can be assessed through controlled laboratory objective measurements. Currently, all imaging measurements require some form of digitization in order to evaluate a metric. Depending on the device, the amount of bits available, relative to a fixed dynamic range, will exhibit quantization artifacts. From a measurement standpoint, measurements are desired to be performed at the highest possible bit-depth available. In this correspondence, we described the relationship between higher and lower bit-depth measurements. The limits to which quantization alters the observed measurements will be presented. Specifically, we address dynamic range, MTF, SiTF, and noise. Our results provide guidelines to how systems of lower bit-depth should be characterized and the corresponding experimental methods.

  1. Oracle database 12c release 2 in-memory tips and techniques for maximum performance

    CERN Document Server

    Banerjee, Joyjeet

    2017-01-01

    This Oracle Press guide shows, step-by-step, how to optimize database performance and cut transaction processing time using Oracle Database 12c Release 2 In-Memory. Oracle Database 12c Release 2 In-Memory: Tips and Techniques for Maximum Performance features hands-on instructions, best practices, and expert tips from an Oracle enterprise architect. You will learn how to deploy the software, use In-Memory Advisor, build queries, and interoperate with Oracle RAC and Multitenant. A complete chapter of case studies illustrates real-world applications. • Configure Oracle Database 12c and construct In-Memory enabled databases • Edit and control In-Memory options from the graphical interface • Implement In-Memory with Oracle Real Application Clusters • Use the In-Memory Advisor to determine what objects to keep In-Memory • Optimize In-Memory queries using groups, expressions, and aggregations • Maximize performance using Oracle Exadata Database Machine and In-Memory option • Use Swingbench to create d...

  2. Hardware description ADSP-21020 40-bit floating point DSP as designed in a remotely controlled digital CW Doppler radar

    Science.gov (United States)

    Morrison, R. E.; Robinson, S. H.

    A continuous wave Doppler radar system has been designed which is portable, easily deployed, and remotely controlled. The heart of this system is a DSP/control board using Analog Devices ADSP-21020 40-bit floating point digital signal processor (DSP) microprocessor. Two 18-bit audio A/D converters provide digital input to the DSP/controller board for near real time target detection. Program memory for the DSP is dual ported with an Intel 87C51 microcontroller allowing DSP code to be up-loaded or down-loaded from a central controlling computer. The 87C51 provides overall system control for the remote radar and includes a time-of-day/day-of-year real time clock, system identification (ID) switches, and input/output (I/O) expansion by an Intel 82C55 I/O expander.

  3. Diamonds are forever: drill bit advances may offer cheaper and stronger alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, J.

    2001-02-01

    The rise to prominence of polycrystalline diamond compact (PDC) and diamond-impregnated drill bits, slowly providing stiff competition to the roller-cone type bits that for many years was the standard in the drilling industry, is discussed. A roller-cone drill bit, although much improved by heat treatment of the metal and the addition of tungsten carbide, is still mostly steel. It works by crushing the rock by overcoming its compressive strength, whereas PDC drill bits shear the rock away in a manner similar to scraping ice from a car windshield. PDC bits typically have three to six cutting surfaces, each one edged with a row of polycrystalline diamond cutters, bonded to a tungsten carbide base by a process called microwave sintering. Compared to roller cones, PDCs drill at least twice as fast, especially in the soft rock and clay where they have been used principally. In addition to saving rig time, PDC bits can handle longer runs; in the right application it is possible to drill the total depth of a well with only one bit. The microwave-sintered tungsten carbide also has higher corrosion resistance than the same material bonded under high pressure; PDCs are also less subject to mechanical failure than roller cones which use moveable bearings, seals and rotating cones. 1 photo.

  4. Designing the optimal bit: balancing energetic cost, speed and reliability.

    Science.gov (United States)

    Deshpande, Abhishek; Gopalkrishnan, Manoj; Ouldridge, Thomas E; Jones, Nick S

    2017-08-01

    We consider the challenge of operating a reliable bit that can be rapidly erased. We find that both erasing and reliability times are non-monotonic in the underlying friction, leading to a trade-off between erasing speed and bit reliability. Fast erasure is possible at the expense of low reliability at moderate friction, and high reliability comes at the expense of slow erasure in the underdamped and overdamped limits. Within a given class of bit parameters and control strategies, we define 'optimal' designs of bits that meet the desired reliability and erasing time requirements with the lowest operational work cost. We find that optimal designs always saturate the bound on the erasing time requirement, but can exceed the required reliability time if critically damped. The non-trivial geometry of the reliability and erasing time scales allows us to exclude large regions of parameter space as suboptimal. We find that optimal designs are either critically damped or close to critical damping under the erasing procedure.

  5. Klasifikasi Bit-Plane Noise untuk Penyisipan Pesan pada Teknik Steganography BPCS Menggunakan Fuzzy Inference Sistem Mamdani

    Directory of Open Access Journals (Sweden)

    Rahmad Hidayat

    2015-04-01

    Full Text Available Bit-Plane Complexity Segmentation (BPCS is a fairly new steganography technique. The most important process in BPCS is the calculation of complexity value of a bit-plane. The bit-plane complexity is calculated by looking at the amount of bit changes contained in a bit-plane. If a bit-plane has a high complexity, the bi-plane is categorized as a noise bit-plane that does not contain valuable information on the image. Classification of the bit-plane using the set cripst set (noise/not is not fair, where a little difference of the value will significantly change the status of the bit-plane. The purpose of this study is to apply the principles of fuzzy sets to classify the bit-plane into three sets that are informative, partly informative, and the noise region. Classification of the bit-plane into a fuzzy set is expected to classify the bit-plane in a more objective approach and ultimately message capacity of the images can be improved by using the Mamdani fuzzy inference to take decisions which bit-plane will be replaced with a message based on the classification of bit-plane and the size of the message that will be inserted. This research is able to increase the capability of BPCS steganography techniques to insert a message in bit-pane with more precise so that the container image quality would be better. It can be seen that the PSNR value of original image and stego-image is only slightly different.

  6. Warped Discrete Cosine Transform-Based Low Bit-Rate Block Coding Using Image Downsampling

    Directory of Open Access Journals (Sweden)

    Ertürk Sarp

    2007-01-01

    Full Text Available This paper presents warped discrete cosine transform (WDCT-based low bit-rate block coding using image downsampling. While WDCT aims to improve the performance of conventional DCT by frequency warping, the WDCT has only been applicable to high bit-rate coding applications because of the overhead required to define the parameters of the warping filter. Recently, low bit-rate block coding based on image downsampling prior to block coding followed by upsampling after the decoding process is proposed to improve the compression performance for low bit-rate block coders. This paper demonstrates that a superior performance can be achieved if WDCT is used in conjunction with image downsampling-based block coding for low bit-rate applications.

  7. Real time implementation of a linear predictive coding algorithm on digital signal processor DSP32C

    International Nuclear Information System (INIS)

    Sheikh, N.M.; Usman, S.R.; Fatima, S.

    2002-01-01

    Pulse Code Modulation (PCM) has been widely used in speech coding. However, due to its high bit rate. PCM has severe limitations in application where high spectral efficiency is desired, for example, in mobile communication, CD quality broadcasting system etc. These limitation have motivated research in bit rate reduction techniques. Linear predictive coding (LPC) is one of the most powerful complex techniques for bit rate reduction. With the introduction of powerful digital signal processors (DSP) it is possible to implement the complex LPC algorithm in real time. In this paper we present a real time implementation of the LPC algorithm on AT and T's DSP32C at a sampling frequency of 8192 HZ. Application of the LPC algorithm on two speech signals is discussed. Using this implementation , a bit rate reduction of 1:3 is achieved for better than tool quality speech, while a reduction of 1.16 is possible for speech quality required in military applications. (author)

  8. A short introduction to bit-string physics

    International Nuclear Information System (INIS)

    Noyes, H.P.

    1997-06-01

    This paper starts with a personal memoir of how some significant ideas arose and events took place during the period from 1972, when the author first encountered Ted Bastin, to 1979, when the author proposed the foundation of ANPA. He then discusses program universe, the fine structure paper and its rejection, the quantitative results up to ANPA 17 and take a new look at the handy-dandy formula. Following the historical material is a first pass at establishing new foundations for bit-string physics. An abstract model for a laboratory notebook and a historical record are developed, culminating in the bit-string representation. The author set up a tic-toc laboratory with two synchronized clocks and shows how this can be used to analyze arbitrary incoming data. This allows him to discuss (briefly) finite and discrete Lorentz transformations, commutation relations, and scattering theory. Earlier work on conservation laws in 3- and 4-events and the free space Dirac and Maxwell equations is cited. The paper concludes with a discussion of the quantum gravity problem from his point of view and speculations about how a bit-string theory of strong, electromagnetic, weak and gravitational unification could take shape

  9. Comparison and status of 32 bit backplane bus architectures

    International Nuclear Information System (INIS)

    Muller, K.D.

    1985-01-01

    With the introduction of 32 bit microprocessors several new 32 bit backplane bus architectures have been developed and are in the process for standardization. Among these are Future Bus (IEEE P896.1), VME-Bus (IEEE 1014), MULTIBUS II, Nu-Bus and Fastbus (IEEE 960). The paper describes and compares the main features of these bus architectures and mentions the status of national and international standardization efforts

  10. Minimal-post-processing 320-Gbps true random bit generation using physical white chaos.

    Science.gov (United States)

    Wang, Anbang; Wang, Longsheng; Li, Pu; Wang, Yuncai

    2017-02-20

    Chaotic external-cavity semiconductor laser (ECL) is a promising entropy source for generation of high-speed physical random bits or digital keys. The rate and randomness is unfortunately limited by laser relaxation oscillation and external-cavity resonance, and is usually improved by complicated post processing. Here, we propose using a physical broadband white chaos generated by optical heterodyning of two ECLs as entropy source to construct high-speed random bit generation (RBG) with minimal post processing. The optical heterodyne chaos not only has a white spectrum without signature of relaxation oscillation and external-cavity resonance but also has a symmetric amplitude distribution. Thus, after quantization with a multi-bit analog-digital-convertor (ADC), random bits can be obtained by extracting several least significant bits (LSBs) without any other processing. In experiments, a white chaos with a 3-dB bandwidth of 16.7 GHz is generated. Its entropy rate is estimated as 16 Gbps by single-bit quantization which means a spectrum efficiency of 96%. With quantization using an 8-bit ADC, 320-Gbps physical RBG is achieved by directly extracting 4 LSBs at 80-GHz sampling rate.

  11. Stereoscopic Visual Attention-Based Regional Bit Allocation Optimization for Multiview Video Coding

    Directory of Open Access Journals (Sweden)

    Dai Qionghai

    2010-01-01

    Full Text Available We propose a Stereoscopic Visual Attention- (SVA- based regional bit allocation optimization for Multiview Video Coding (MVC by the exploiting visual redundancies from human perceptions. We propose a novel SVA model, where multiple perceptual stimuli including depth, motion, intensity, color, and orientation contrast are utilized, to simulate the visual attention mechanisms of human visual system with stereoscopic perception. Then, a semantic region-of-interest (ROI is extracted based on the saliency maps of SVA. Both objective and subjective evaluations of extracted ROIs indicated that the proposed SVA model based on ROI extraction scheme outperforms the schemes only using spatial or/and temporal visual attention clues. Finally, by using the extracted SVA-based ROIs, a regional bit allocation optimization scheme is presented to allocate more bits on SVA-based ROIs for high image quality and fewer bits on background regions for efficient compression purpose. Experimental results on MVC show that the proposed regional bit allocation algorithm can achieve over % bit-rate saving while maintaining the subjective image quality. Meanwhile, the image quality of ROIs is improved by  dB at the cost of insensitive image quality degradation of the background image.

  12. Linear transceiver design for nonorthogonal amplify-and-forward protocol using a bit error rate criterion

    KAUST Repository

    Ahmed, Qasim Zeeshan

    2014-04-01

    The ever growing demand of higher data rates can now be addressed by exploiting cooperative diversity. This form of diversity has become a fundamental technique for achieving spatial diversity by exploiting the presence of idle users in the network. This has led to new challenges in terms of designing new protocols and detectors for cooperative communications. Among various amplify-and-forward (AF) protocols, the half duplex non-orthogonal amplify-and-forward (NAF) protocol is superior to other AF schemes in terms of error performance and capacity. However, this superiority is achieved at the cost of higher receiver complexity. Furthermore, in order to exploit the full diversity of the system an optimal precoder is required. In this paper, an optimal joint linear transceiver is proposed for the NAF protocol. This transceiver operates on the principles of minimum bit error rate (BER), and is referred as joint bit error rate (JBER) detector. The BER performance of JBER detector is superior to all the proposed linear detectors such as channel inversion, the maximal ratio combining, the biased maximum likelihood detectors, and the minimum mean square error. The proposed transceiver also outperforms previous precoders designed for the NAF protocol. © 2002-2012 IEEE.

  13. Extracellular signal-regulated kinases 1/2 as regulators of cardiac hypertrophy

    Directory of Open Access Journals (Sweden)

    Michael eMutlak

    2015-07-01

    Full Text Available Cardiac hypertrophy results from increased mechanical load on the heart and through the actions of local and systemic neuro-humoral factors, cytokines and growth factors. These mechanical and neuroendocrine effectors act through stretch, G protein-coupled receptors and tyrosine kinases to induce the activation of a myriad of intracellular signaling pathways including the extracellular signal-regulated kinases 1/2 (ERK1/2. Since most stimuli that provoke myocardial hypertrophy also elicit an acute phosphorylation of the threonine-glutamate-tyrosine (TEY motif within the activation loops of ERK1 and ERK2 kinases, resulting in their activation, ERKs have long been considered promotors of cardiac hypertrophy. Several mouse models were generated in order to directly understand the causal role of ERK1/2 activation in the heart. These models include direct manipulation of ERK1/2 such as overexpression, mutagenesis or knockout models, manipulations of upstream kinases such as MEK1 and manipulations of the phosphatases that depohosphorylate ERK1/2 such as DUSP6. The emerging understanding from these studies, as will be discussed here, is more complex than originally considered. While there is little doubt that ERK1/2 activation or the lack of it modulates the hypertrophic process or the type of hypertrophy that develops, it appears that not all ERK1/2 activation events are the same. While much has been learned, some questions remain regarding the exact role of ERK1/2 in the heart, the upstream events that result in ERK1/2 activation and the downstream effector in hypertrophy.

  14. Eight paths of ERK1/2 signalling pathway regulating hepatocyte ...

    Indian Academy of Sciences (India)

    2011-12-05

    Dec 5, 2011 ... This study aims at exploring which paths of ERK1/2 signalling pathway participate in the regulation of rat .... total RNA was used to synthesize the first strand of cDNA. ..... stem cells contribute to regeneration of injured liver.

  15. Digital storage of repeated signals

    International Nuclear Information System (INIS)

    Prozorov, S.P.

    1984-01-01

    An independent digital storage system designed for repeated signal discrimination from background noises is described. The signal averaging is performed off-line in the real time mode by means of multiple selection of the investigated signal and integration in each point. Digital values are added in a simple summator and the result is recorded the storage device with the volume of 1024X20 bit from where it can be output on an oscillograph, a plotter or transmitted to a compUter for subsequent processing. The described storage is reliable and simple device on one base of which the systems for the nuclear magnetic resonapce signal acquisition in different experiments are developed

  16. Sweet Spot Control of 1:2 Array Antenna using A Modified Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Kyo-Hwan HYUN

    2007-10-01

    Full Text Available This paper presents a novel scheme that quickly searches for the sweet spot of 1:2 array antennas, and locks on to it for high-speed millimeter wavelength transmissions, when communications to another antenna array are disconnected. The proposed method utilizes a modified genetic algorithm, which selects a superior initial group through preprocessing in order to solve the local solution in a genetic algorithm. TDD (Time Division Duplex is utilized as the transfer method and data controller for the antenna. Once the initial communication is completed for the specific number of individuals, no longer antenna's data will be transmitted until each station processes GA in order to produce the next generation. After reproduction, individuals of the next generation become the data, and communication between each station is made again. The simulation results of 1:1, 1:2 array antennas, and experiment results of 1:1 array antenna confirmed the efficiency of the proposed method. The bit of gene is each 8bit, 16bit and 16bit split gene. 16bit split has similar performance as 16bit gene, but the gene of antenna is 8bit.

  17. Possibility, impossibility, and cheat sensitivity of quantum-bit string commitment

    NARCIS (Netherlands)

    Buhrman, H.; Christandl, M.; Hayden, P.; Lo, H.-K.; Wehner, S.

    2008-01-01

    Unconditionally secure nonrelativistic bit commitment is known to be impossible in both the classical and the quantum worlds. But when committing to a string of n bits at once, how far can we stretch the quantum limits? In this paper, we introduce a framework for quantum schemes where Alice commits

  18. Eliminating ambiguity in digital signals

    Science.gov (United States)

    Weber, W. J., III

    1979-01-01

    Multiamplitude minimum shift keying (mamsk) transmission system, method of differential encoding overcomes problem of ambiguity associated with advanced digital-transmission techniques with little or no penalty in transmission rate, error rate, or system complexity. Principle of method states, if signal points are properly encoded and decoded, bits are detected correctly, regardless of phase ambiguities.

  19. Data Capture Technique for High Speed Signaling

    Science.gov (United States)

    Barrett, Wayne Melvin; Chen, Dong; Coteus, Paul William; Gara, Alan Gene; Jackson, Rory; Kopcsay, Gerard Vincent; Nathanson, Ben Jesse; Vranas, Paylos Michael; Takken, Todd E.

    2008-08-26

    A data capture technique for high speed signaling to allow for optimal sampling of an asynchronous data stream. This technique allows for extremely high data rates and does not require that a clock be sent with the data as is done in source synchronous systems. The present invention also provides a hardware mechanism for automatically adjusting transmission delays for optimal two-bit simultaneous bi-directional (SiBiDi) signaling.

  20. PHO-ERK1/2 interaction with mitochondria regulates the permeability transition pore in cardioprotective signaling.

    Science.gov (United States)

    Hernández-Reséndiz, Sauri; Zazueta, Cecilia

    2014-07-11

    The molecular mechanism(s) by which extracellular signal-regulated kinase 1/2 (ERK1/2) and other kinases communicate with downstream targets have not been fully determined. Multiprotein signaling complexes undergoing spatiotemporal redistribution may enhance their interaction with effector proteins promoting cardioprotective response. Particularly, it has been proposed that some active kinases in association with caveolae may converge into mitochondria. Therefore, in this study we investigate if PHO-ERK1/2 interaction with mitochondria may provide a mechanistic link in the regulation of these organelles in cardioprotective signaling. Using a model of dilated cardiomyopathy followed by ischemia-reperfusion injury, we determined ERK1/2 signaling at the level of mitochondria and evaluated its effect on the permeability transition pore. The most important finding of the present study is that, under cardioprotective conditions, a subpopulation of activated ERK1/2 was directed to the mitochondrial membranes through vesicular trafficking, concurring with increased phosphorylation of mitochondrial proteins and inhibition of the mitochondrial permeability transition pore opening. In addition, our results suggest that vesicles enriched with caveolin-3 could form structures that may drive ERK1/2, GSK3β and Akt to mitochondria. Signaling complexes including PHO-ERK, PHO-Akt, PHO-eNOS and caveolin-3 contribute to cardioprotection by directly targeting the mitochondrial proteome and regulating the opening of the permeability transition pore in this model. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. The Digital Agenda of Virtual Currencies. Can BitCoin Become a Global Currency?

    OpenAIRE

    KANCS D'ARTIS; CIAIAN PAVEL; MIROSLAVA RAJCANIOVA

    2015-01-01

    This paper identifies and analyzes BitCoin features which may facilitate Bitcoin to become a global currency, as well as characteristics which may impede the use of BitCoin as a medium of exchange, a unit of account and a store of value, and compares BitCoin with standard currencies with respect to the main functions of money. Among all analyzed BitCoin features, the extreme price volatility stands out most clearly compared to standard currencies. In order to understand the reasons for such e...

  2. Optical Switching and Bit Rates of 40 Gbit/s and above

    DEFF Research Database (Denmark)

    Ackaert, A.; Demester, P.; O'Mahony, M.

    2003-01-01

    Optical switching in WDM networks introduces additional aspects to the choice of single channel bit rates compared to WDM transmission systems. The mutual impact of optical switching and bit rates of 40 Gbps and above is discussed....

  3. An Integrated Signaling-Encryption Mechanism to Reduce Error Propagation in Wireless Communications: Performance Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Olama, Mohammed M [ORNL; Matalgah, Mustafa M [ORNL; Bobrek, Miljko [ORNL

    2015-01-01

    Traditional encryption techniques require packet overhead, produce processing time delay, and suffer from severe quality of service deterioration due to fades and interference in wireless channels. These issues reduce the effective transmission data rate (throughput) considerably in wireless communications, where data rate with limited bandwidth is the main constraint. In this paper, performance evaluation analyses are conducted for an integrated signaling-encryption mechanism that is secure and enables improved throughput and probability of bit-error in wireless channels. This mechanism eliminates the drawbacks stated herein by encrypting only a small portion of an entire transmitted frame, while the rest is not subject to traditional encryption but goes through a signaling process (designed transformation) with the plaintext of the portion selected for encryption. We also propose to incorporate error correction coding solely on the small encrypted portion of the data to drastically improve the overall bit-error rate performance while not noticeably increasing the required bit-rate. We focus on validating the signaling-encryption mechanism utilizing Hamming and convolutional error correction coding by conducting an end-to-end system-level simulation-based study. The average probability of bit-error and throughput of the encryption mechanism are evaluated over standard Gaussian and Rayleigh fading-type channels and compared to the ones of the conventional advanced encryption standard (AES).

  4. Optical Performance Monitoring and Signal Optimization in Optical Networks

    DEFF Research Database (Denmark)

    Petersen, Martin Nordal

    2006-01-01

    The thesis studies performance monitoring for the next generation optical networks. The focus is on all-optical networks with bit-rates of 10 Gb/s or above. Next generation all-optical networks offer large challenges as the optical transmitted distance increases and the occurrence of electrical-optical......-electrical regeneration points decreases. This thesis evaluates the impact of signal degrading effects that are becoming of increasing concern in all-optical high-speed networks due to all-optical switching and higher bit-rates. Especially group-velocity-dispersion (GVD) and a number of nonlinear effects will require...... enhanced attention to avoid signal degradations. The requirements for optical performance monitoring features are discussed, and the thesis evaluates the advantages and necessity of increasing the level of performance monitoring parameters in the physical layer. In particular, methods for optical...

  5. Analysis of Button Bit Wear and Performance of Down-The-Hole ...

    African Journals Online (AJOL)

    Michael O. Mensah

    2015-12-02

    Dec 2, 2015 ... revealed that wear of rock drill bit is influenced by rock properties. ... equivalent quartz content and silica content are dominant rock properties affecting wear rate of bit button of DTH drill. ..... Cutting, Drilling and Blasting: Rock.

  6. Hardware Design and Implementation of Fixed-Width Standard and Truncated 4×4, 6×6, 8×8 and 12×12-BIT Multipliers Using Fpga

    Science.gov (United States)

    Rais, Muhammad H.

    2010-06-01

    This paper presents Field Programmable Gate Array (FPGA) implementation of standard and truncated multipliers using Very High Speed Integrated Circuit Hardware Description Language (VHDL). Truncated multiplier is a good candidate for digital signal processing (DSP) applications such as finite impulse response (FIR) and discrete cosine transform (DCT). Remarkable reduction in FPGA resources, delay, and power can be achieved using truncated multipliers instead of standard parallel multipliers when the full precision of the standard multiplier is not required. The truncated multipliers show significant improvement as compared to standard multipliers. Results show that the anomaly in Spartan-3 AN average connection and maximum pin delay have been efficiently reduced in Virtex-4 device.

  7. BER and optimal power allocation for amplify-and-forward relaying using pilot-aided maximum likelihood estimation

    KAUST Repository

    Wang, Kezhi

    2014-10-01

    Bit error rate (BER) and outage probability for amplify-and-forward (AF) relaying systems with two different channel estimation methods, disintegrated channel estimation and cascaded channel estimation, using pilot-aided maximum likelihood method in slowly fading Rayleigh channels are derived. Based on the BERs, the optimal values of pilot power under the total transmitting power constraints at the source and the optimal values of pilot power under the total transmitting power constraints at the relay are obtained, separately. Moreover, the optimal power allocation between the pilot power at the source, the pilot power at the relay, the data power at the source and the data power at the relay are obtained when their total transmitting power is fixed. Numerical results show that the derived BER expressions match with the simulation results. They also show that the proposed systems with optimal power allocation outperform the conventional systems without power allocation under the same other conditions. In some cases, the gain could be as large as several dB\\'s in effective signal-to-noise ratio.

  8. BER and optimal power allocation for amplify-and-forward relaying using pilot-aided maximum likelihood estimation

    KAUST Repository

    Wang, Kezhi; Chen, Yunfei; Alouini, Mohamed-Slim; Xu, Feng

    2014-01-01

    Bit error rate (BER) and outage probability for amplify-and-forward (AF) relaying systems with two different channel estimation methods, disintegrated channel estimation and cascaded channel estimation, using pilot-aided maximum likelihood method in slowly fading Rayleigh channels are derived. Based on the BERs, the optimal values of pilot power under the total transmitting power constraints at the source and the optimal values of pilot power under the total transmitting power constraints at the relay are obtained, separately. Moreover, the optimal power allocation between the pilot power at the source, the pilot power at the relay, the data power at the source and the data power at the relay are obtained when their total transmitting power is fixed. Numerical results show that the derived BER expressions match with the simulation results. They also show that the proposed systems with optimal power allocation outperform the conventional systems without power allocation under the same other conditions. In some cases, the gain could be as large as several dB's in effective signal-to-noise ratio.

  9. The 40 Gbps cascaded bit-interleaving PON

    Science.gov (United States)

    Vyncke, A.; Torfs, G.; Van Praet, C.; Verbeke, M.; Duque, A.; Suvakovic, D.; Chow, H. K.; Yin, X.

    2015-12-01

    In this paper, a 40 Gbps cascaded bit-interleaving passive optical network (CBI-PON) is proposed to achieve power reduction in the network. The massive number of devices in the access network makes that power consumption reduction in this part of the network has a major impact on the total network power consumption. Starting from the proven BiPON technology, an extension to this concept is proposed to introduce multiple levels of bit-interleaving. The paper discusses the CBI protocol in detail, as well as an ASIC implementation of the required custom CBI Repeater and End-ONT. From the measurements of this first 40 Gbps ASIC prototype, power consumption reduction estimates are presented.

  10. Nanocrystalline, superhard, ductile ceramic coatings for roller-cone bit bearings

    Energy Technology Data Exchange (ETDEWEB)

    Namavar, F.; Colter, P.; Karimy, H. [Spire Corp., Bedford, MA (United States)] [and others

    1997-12-31

    The established method for construction of roller bits utilizes carburized steel, frequently with inserted metal bearing surfaces. This construction provides the necessary surface hardness while maintaining other desirable properties in the core. Protective coatings are a logical development where enhanced hardness, wear resistance, corrosion resistance, and surface properties are required. The wear properties of geothermal roller-cone bit bearings could be further improved by application of protective ceramic hard coatings consisting of nanometer-sized crystallites. Nanocrystalline protective coatings provide the required combination of hardness and toughness which has not been available thus far using traditional ceramics having larger grains. Increased durability of roller-cone bit bearings will ultimately reduce the cost of drilling geothermal wells through increased durability.

  11. A Symmetric Chaos-Based Image Cipher with an Improved Bit-Level Permutation Strategy

    Directory of Open Access Journals (Sweden)

    Chong Fu

    2014-02-01

    Full Text Available Very recently, several chaos-based image ciphers using a bit-level permutation have been suggested and shown promising results. Due to the diffusion effect introduced in the permutation stage, the workload of the time-consuming diffusion stage is reduced, and hence the performance of the cryptosystem is improved. In this paper, a symmetric chaos-based image cipher with a 3D cat map-based spatial bit-level permutation strategy is proposed. Compared with those recently proposed bit-level permutation methods, the diffusion effect of the new method is superior as the bits are shuffled among different bit-planes rather than within the same bit-plane. Moreover, the diffusion key stream extracted from hyperchaotic system is related to both the secret key and the plain image, which enhances the security against known/chosen plaintext attack. Extensive security analysis has been performed on the proposed scheme, including the most important ones like key space analysis, key sensitivity analysis, plaintext sensitivity analysis and various statistical analyses, which has demonstrated the satisfactory security of the proposed scheme

  12. A current-steering self-calibration 14-bit 100-MSPs DAC

    International Nuclear Information System (INIS)

    Qiu Dong; Fang Sheng; Li Ran; Xie Renzhong; Yi Ting; Hong Zhfflang

    2010-01-01

    This paper presents the design and implementation of a 14-bit, 100 MS/s CMOS digital-to-analog converter (DAC). Analog background self-calibration based on the concept of analog current trimming is introduced. A constant clock load switch driver, a calibration period randomization circuit and a return-to-zero output stage have been adopted to improve the dynamic performance. The chip has been manufactured in a SMIC 0.13-μm process and occupies 1.33 x 0.97 mm 2 of the core area. The current consumption is 50 mA under 1.2/3.3 V dual power supplies for digital and analog, respectively. The measured differential and integral nonlinearity is 3.1 LSB and 4.3 LSB, respectively. The SFDR is 72.8 dB at a 1 MHz signal and a 100 MHz sampling frequency. (semiconductor integrated circuits)

  13. Biometric Quantization through Detection Rate Optimized Bit Allocation

    Directory of Open Access Journals (Sweden)

    C. Chen

    2009-01-01

    Full Text Available Extracting binary strings from real-valued biometric templates is a fundamental step in many biometric template protection systems, such as fuzzy commitment, fuzzy extractor, secure sketch, and helper data systems. Previous work has been focusing on the design of optimal quantization and coding for each single feature component, yet the binary string—concatenation of all coded feature components—is not optimal. In this paper, we present a detection rate optimized bit allocation (DROBA principle, which assigns more bits to discriminative features and fewer bits to nondiscriminative features. We further propose a dynamic programming (DP approach and a greedy search (GS approach to achieve DROBA. Experiments of DROBA on the FVC2000 fingerprint database and the FRGC face database show good performances. As a universal method, DROBA is applicable to arbitrary biometric modalities, such as fingerprint texture, iris, signature, and face. DROBA will bring significant benefits not only to the template protection systems but also to the systems with fast matching requirements or constrained storage capability.

  14. BAMBI Promotes C2C12 Myogenic Differentiation by Enhancing Wnt/β-Catenin Signaling

    Directory of Open Access Journals (Sweden)

    Qiangling Zhang

    2015-08-01

    Full Text Available Bone morphogenic protein and activin membrane-bound inhibitor (BAMBI is regarded as an essential regulator of cell proliferation and differentiation that represses transforming growth factor-β and enhances Wnt/β-catenin signaling in various cell types. However, its role in skeletal muscle remains largely unknown. In the current study, we found that the expression level of BAMBI peaked in the early differentiation phase of the C2C12 rodent myoblast cell line. Knockdown of BAMBI via siRNA inhibited C2C12 differentiation, indicated by repressed MyoD, MyoG, and MyHC expression as well as reductions in the differentiation and fusion indices. BAMBI knockdown reduced the activity of Wnt/β-catenin signaling, as characterized by the decreased nuclear translocation of β-catenin and the lowered transcription of Axin2, which is a well-documented target gene of the Wnt/β-catenin signaling pathway. Furthermore, treatment with LiCl, an activator of Wnt/β-catenin signaling, rescued the reduction in C2C12 differentiation caused by BAMBI siRNA. Taken together, our data suggest that BAMBI is required for normal C2C12 differentiation, and that its role in myogenesis is mediated by the Wnt/β-catenin pathway.

  15. Cheat sensitive quantum bit commitment.

    Science.gov (United States)

    Hardy, Lucien; Kent, Adrian

    2004-04-16

    We define cheat sensitive cryptographic protocols between mistrustful parties as protocols which guarantee that, if either cheats, the other has some nonzero probability of detecting the cheating. We describe an unconditionally secure cheat sensitive nonrelativistic bit commitment protocol which uses quantum information to implement a task which is classically impossible; we also describe a simple relativistic protocol.

  16. Fast storage of nuclear quadrupole resonance signals

    International Nuclear Information System (INIS)

    Anferov, V.P.; Molchanov, S.V.; Levchun, O.D.

    1988-01-01

    Fast multichannel storage of nuclear quadrupole resonance (NQR) signals is described. Analog-to-digital converter, arithmetic-logical unit, internal memory device (IMD) selection-storage unit and control unit are the storage main units. The storage is based on 43 microcircuits and provides for record and storage of NQR-signals at the contributed operation with Mera-60 microcomputer. Time of analog-to-digital conversion and signal recording into IMD is ∼ 1 mks. Capacity of analog-to-digital converter constitutes 8-10 bits. IMD capacity is 4 K bitsx16. Number of storage channels is 4

  17. Preparation and comparitive analysis of MCNP thermal libraries for liquid hydrogen and deuterium using NJOY97 on 32 bit and 64 bit computers

    International Nuclear Information System (INIS)

    Jo, Y. S.; Kim, J. D.; Kil, C. S.; Jang, J. H.

    1999-01-01

    The scattering laws and MCNP thermal libraries for liquid hydrogen and deuterium are comparatively calculated on HP715 (32-bit computer) and SGI IP27 (64-bit computer) using NJOY97. The results are also compared with the experimental data. In addition, MCNP calculations for the nuclear design of a cold neutron source at HANARO are performed with the newly generated MCNP thermal libraries from two different computers and the results are compared

  18. Fatigue life of drilling bit bearings under arbitrary random loads

    Energy Technology Data Exchange (ETDEWEB)

    Talimi, M.; Farshidi, R. [Calgary Univ., AB (Canada)

    2009-07-01

    A fatigue analysis was conducted in order to estimate the bearing life of a roller cone rock bit under arbitrary random loads. The aim of the study was to reduce bearing failures that can interrupt well operations. Fatigue was considered as the main reason for bearing failure. The expected value of cumulative fatigue damage was used to estimate bearing life. An equation was used to express the relation between bearing life and bearing load when the bearing was subjected to a steady load and constant speed. The Palmgren-Miner hypothesis was used to determine the ultimate tensile strength of the material. The rain flow counting principle was used to determine distinct amplitude cycles. Hertzian equations were used to determine maximum stress loads. Fourier series were used to obtain simple harmonic functions for estimating stress-life relations. It was concluded that the method can be used during the well planning phase to prevent bearing failures. 6 refs.

  19. System for memorizing maximum values

    Science.gov (United States)

    Bozeman, Richard J., Jr.

    1992-08-01

    The invention discloses a system capable of memorizing maximum sensed values. The system includes conditioning circuitry which receives the analog output signal from a sensor transducer. The conditioning circuitry rectifies and filters the analog signal and provides an input signal to a digital driver, which may be either linear or logarithmic. The driver converts the analog signal to discrete digital values, which in turn triggers an output signal on one of a plurality of driver output lines n. The particular output lines selected is dependent on the converted digital value. A microfuse memory device connects across the driver output lines, with n segments. Each segment is associated with one driver output line, and includes a microfuse that is blown when a signal appears on the associated driver output line.

  20. Comparison between maximum radial expansion of ultrasound contrast agents and experimental postexcitation signal results.

    Science.gov (United States)

    King, Daniel A; O'Brien, William D

    2011-01-01

    Experimental postexcitation signal data of collapsing Definity microbubbles are compared with the Marmottant theoretical model for large amplitude oscillations of ultrasound contrast agents (UCAs). After taking into account the insonifying pulse characteristics and size distribution of the population of UCAs, a good comparison between simulated results and previously measured experimental data is obtained by determining a threshold maximum radial expansion (Rmax) to indicate the onset of postexcitation. This threshold Rmax is found to range from 3.4 to 8.0 times the initial bubble radius, R0, depending on insonification frequency. These values are well above the typical free bubble inertial cavitation threshold commonly chosen at 2R0. The close agreement between the experiment and models suggests that lipid-shelled UCAs behave as unshelled bubbles during most of a large amplitude cavitation cycle, as proposed in the Marmottant equation.

  1. Computer-Aided Design for Built-In-Test (CADBIT) - BIT Library. Volume 2

    Science.gov (United States)

    1989-10-01

    TECHNIQUE: ON-BOARD RONI CATEGORY: LONG TUTORIA \\L PAG E 5 of 14I SUBCATEGORY: BIT TECHNIQUE ATTRIBUTES DATA TYPE: TEXT El LIST E] TABLE [ GRAPHIC E...SHIFT REGISTER (MISR) CATEGORY: LONG TUTORIA -L PAGE i Of 13 SUBCATEGORY: BIT TECH-{MQUE ATTRIBUTES DATA TYPE: TEXT LIST El TABLE GRAPHIC E EQUATIONS...ELEMENT DATA SHEET BIT TECHNIQUE: UTILIZING REDUNDANCY CATEGORY: LONG TUTORIA L PAGE 9 of 10 SUBCATEGORY: PARTS DATA TABLE DATA TYPE: TEXT F1 UST C3

  2. 44 CFR 208.12 - Maximum Pay Rate Table.

    Science.gov (United States)

    2010-10-01

    ...) Physicians. DHS uses the latest Special Salary Rate Table Number 0290 for Medical Officers (Clinical... Personnel, in which case the Maximum Pay Rate Table would not apply. (3) Compensation for Sponsoring Agency... organizations, e.g., HMOs or medical or engineering professional associations, under the revised definition of...

  3. Video steganography based on bit-plane decomposition of wavelet-transformed video

    Science.gov (United States)

    Noda, Hideki; Furuta, Tomofumi; Niimi, Michiharu; Kawaguchi, Eiji

    2004-06-01

    This paper presents a steganography method using lossy compressed video which provides a natural way to send a large amount of secret data. The proposed method is based on wavelet compression for video data and bit-plane complexity segmentation (BPCS) steganography. BPCS steganography makes use of bit-plane decomposition and the characteristics of the human vision system, where noise-like regions in bit-planes of a dummy image are replaced with secret data without deteriorating image quality. In wavelet-based video compression methods such as 3-D set partitioning in hierarchical trees (SPIHT) algorithm and Motion-JPEG2000, wavelet coefficients in discrete wavelet transformed video are quantized into a bit-plane structure and therefore BPCS steganography can be applied in the wavelet domain. 3-D SPIHT-BPCS steganography and Motion-JPEG2000-BPCS steganography are presented and tested, which are the integration of 3-D SPIHT video coding and BPCS steganography, and that of Motion-JPEG2000 and BPCS, respectively. Experimental results show that 3-D SPIHT-BPCS is superior to Motion-JPEG2000-BPCS with regard to embedding performance. In 3-D SPIHT-BPCS steganography, embedding rates of around 28% of the compressed video size are achieved for twelve bit representation of wavelet coefficients with no noticeable degradation in video quality.

  4. GaAs mixed signal multi-function X-band MMIC with 7 bit phase and amplitude control and integrated serial to parallel converter

    NARCIS (Netherlands)

    Boer, A. de; Mouthaan, K.

    2000-01-01

    The design and measured performance of a GaAs multi-function X-band MMIC for spacebased synthetic aperture radar (SAR) applications with 7-bit phase and amplitude control and integrated serial to parallel converter (including level conversion) is presented. The main application for the

  5. A preliminary study on the containment building integrity following BIT removal for nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Jong Young; Song, Dong Soo; Byun, Choong Sub [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    2008-07-01

    Boron Injection Tank(BIT) is a component of the Safety Injection System, which its sole function is to provide concentrated boric acid to the reactor coolant in order to mitigate the consequences of postulated main steamline break accidents. Although BIT plays an important role in mitigating the accident, high concentration of 20,000ppm causes valve leakage, clog of precipitation and continuous heat tracing have to be provided. For the removal of BIT, benchmarking analysis is performed between COPATTA code used in final safety analysis report and CONTEMPT code to be used this study. CONTEMPT is well compatible with COPATTA. The sensitivity study for integrity is performed for the three cases of full double ended rupture at 102% power with diesel generator failure, 3.4m{sup 3} and 2400ppm BIT, 3.4m{sup 3} and 0ppm BIT and no volume of BIT. The results show that the deactivation of BIT is plausible for success.

  6. A preliminary study on the containment building integrity following BIT removal for nuclear power plant

    International Nuclear Information System (INIS)

    Jo, Jong Young; Song, Dong Soo; Byun, Choong Sub

    2008-01-01

    Boron Injection Tank(BIT) is a component of the Safety Injection System, which its sole function is to provide concentrated boric acid to the reactor coolant in order to mitigate the consequences of postulated main steamline break accidents. Although BIT plays an important role in mitigating the accident, high concentration of 20,000ppm causes valve leakage, clog of precipitation and continuous heat tracing have to be provided. For the removal of BIT, benchmarking analysis is performed between COPATTA code used in final safety analysis report and CONTEMPT code to be used this study. CONTEMPT is well compatible with COPATTA. The sensitivity study for integrity is performed for the three cases of full double ended rupture at 102% power with diesel generator failure, 3.4m 3 and 2400ppm BIT, 3.4m 3 and 0ppm BIT and no volume of BIT. The results show that the deactivation of BIT is plausible for success

  7. Kombinasi Steganografi Berbasis Bit Matching dan Kriptografi DES untuk Pengamanan Data

    Directory of Open Access Journals (Sweden)

    Budi Prasetiyo

    2015-05-01

    Full Text Available Pada penelitian ini dilakukan kombinasi steganografi dan kriptografi untuk pengamanan data dengan tidak mengubah kualitas media cover. Metode steganografi yang digunakan dengan melakukan pencocokan bit pesan pada bit MSB citra. Proses pencocokan dilakukan secara divide and conquer. Hasil indeks posisi bit kemudian dienkripsi menggunakan algoritma kriptografi Data Encryption Standard (DES. Masukkan data berupa pesan teks, citra, dan kunci. Output yang dihasilkan berupa chiperteks posisi bit yang dapat digunakan untuk merahasiakan data. Untuk mengetahui isi pesan semula diperlukan kunci dan citra yang sama. Kombinasi yang dihasilkan dapat digunakan untuk pengamanan data. Kelebihan metode tersebut citra tidak mengalami perubahan kualitas dan kapasitas pesan yang disimpan dapat lebih besar dari citra. Hasil pengujian menunjukkan citra hitam putih maupun color dapat digunakan sebagai cover, kecuali citra 100% hitam dan 100% putih. Proses pencocokan pada warna citra yang bervariasi lebih cepat. Kerusakan pesan dengan penambahan noise salt and peper mulai terjadi pada nilai MSE 0,0067 dan gaussian mulai terjadi pada nilai MSE 0,00234. 

  8. Cheat sensitive quantum bit commitment via pre- and post-selected quantum states

    Science.gov (United States)

    Li, Yan-Bing; Wen, Qiao-Yan; Li, Zi-Chen; Qin, Su-Juan; Yang, Ya-Tao

    2014-01-01

    Cheat sensitive quantum bit commitment is a most important and realizable quantum bit commitment (QBC) protocol. By taking advantage of quantum mechanism, it can achieve higher security than classical bit commitment. In this paper, we propose a QBC schemes based on pre- and post-selected quantum states. The analysis indicates that both of the two participants' cheat strategies will be detected with non-zero probability. And the protocol can be implemented with today's technology as a long-term quantum memory is not needed.

  9. SignalPlant: an open signal processing software platform.

    Science.gov (United States)

    Plesinger, F; Jurco, J; Halamek, J; Jurak, P

    2016-07-01

    The growing technical standard of acquisition systems allows the acquisition of large records, often reaching gigabytes or more in size as is the case with whole-day electroencephalograph (EEG) recordings, for example. Although current 64-bit software for signal processing is able to process (e.g. filter, analyze, etc) such data, visual inspection and labeling will probably suffer from rather long latency during the rendering of large portions of recorded signals. For this reason, we have developed SignalPlant-a stand-alone application for signal inspection, labeling and processing. The main motivation was to supply investigators with a tool allowing fast and interactive work with large multichannel records produced by EEG, electrocardiograph and similar devices. The rendering latency was compared with EEGLAB and proves significantly faster when displaying an image from a large number of samples (e.g. 163-times faster for 75  ×  10(6) samples). The presented SignalPlant software is available free and does not depend on any other computation software. Furthermore, it can be extended with plugins by third parties ensuring its adaptability to future research tasks and new data formats.

  10. High-Capacity Wireless Signal Generation and Demodulation in 75- to 110-GHz Band Employing All-Optical OFDM

    DEFF Research Database (Denmark)

    Zibar, Darko; Sambaraju, Rakesh; Caballero Jambrina, Antonio

    2011-01-01

    We present a radio-frequency (RF) and bit-rate scalable technique for multigigabit wireless signal generation based on all-optical orthogonal frequency-division multiplexing (OFDM) and photonic up-conversion. Coherent detection supported by digital signal processing is used for signal demodulatio...

  11. Interference Cancellation Technique Based on Discovery of Spreading Codes of Interference Signals and Maximum Correlation Detection for DS-CDMA System

    Science.gov (United States)

    Hettiarachchi, Ranga; Yokoyama, Mitsuo; Uehara, Hideyuki

    This paper presents a novel interference cancellation (IC) scheme for both synchronous and asynchronous direct-sequence code-division multiple-access (DS-CDMA) wireless channels. In the DS-CDMA system, the multiple access interference (MAI) and the near-far problem (NFP) are the two factors which reduce the capacity of the system. In this paper, we propose a new algorithm that is able to detect all interference signals as an individual MAI signal by maximum correlation detection. It is based on the discovery of all the unknowing spreading codes of the interference signals. Then, all possible MAI patterns so called replicas are generated as a summation of interference signals. And the true MAI pattern is found by taking correlation between the received signal and the replicas. Moreover, the receiver executes MAI cancellation in a successive manner, removing all interference signals by single-stage. Numerical results will show that the proposed IC strategy, which alleviates the detrimental effect of the MAI and the near-far problem, can significantly improve the system performance. Especially, we can obtain almost the same receiving characteristics as in the absense of interference for asynchrnous system when received powers are equal. Also, the same performances can be seen under any received power state for synchronous system.

  12. Cheat Sensitive Quantum Bit Commitment

    OpenAIRE

    Hardy, Lucien; Kent, Adrian

    1999-01-01

    We define cheat sensitive cryptographic protocols between mistrustful parties as protocols which guarantee that, if either cheats, the other has some nonzero probability of detecting the cheating. We give an example of an unconditionally secure cheat sensitive non-relativistic bit commitment protocol which uses quantum information to implement a task which is classically impossible; we also describe a simple relativistic protocol.

  13. On algorithmic equivalence of instruction sequences for computing bit string functions

    NARCIS (Netherlands)

    Bergstra, J.A.; Middelburg, C.A.

    2015-01-01

    Every partial function from bit strings of a given length to bit strings of a possibly different given length can be computed by a finite instruction sequence that contains only instructions to set and get the content of Boolean registers, forward jump instructions, and a termination instruction. We

  14. On algorithmic equivalence of instruction sequences for computing bit string functions

    NARCIS (Netherlands)

    Bergstra, J.A.; Middelburg, C.A.

    2014-01-01

    Every partial function from bit strings of a given length to bit strings of a possibly different given length can be computed by a finite instruction sequence that contains only instructions to set and get the content of Boolean registers, forward jump instructions, and a termination instruction. We

  15. Cloning the entanglement of a pair of quantum bits

    International Nuclear Information System (INIS)

    Lamoureux, Louis-Philippe; Navez, Patrick; Cerf, Nicolas J.; Fiurasek, Jaromir

    2004-01-01

    It is shown that any quantum operation that perfectly clones the entanglement of all maximally entangled qubit pairs cannot preserve separability. This 'entanglement no-cloning' principle naturally suggests that some approximate cloning of entanglement is nevertheless allowed by quantum mechanics. We investigate a separability-preserving optimal cloning machine that duplicates all maximally entangled states of two qubits, resulting in 0.285 bits of entanglement per clone, while a local cloning machine only yields 0.060 bits of entanglement per clone

  16. How to Convert a Flavor of Quantum Bit Commitment

    DEFF Research Database (Denmark)

    Crepeau, Claude; Legare, Frédéric; Salvail, Louis

    2001-01-01

    In this paper we show how to convert a statistically binding but computationally concealing quantum bit commitment scheme into a computationally binding but statistically concealing QBC scheme. For a security parameter n, the construction of the statistically concealing scheme requires O(n2......) executions of the statistically binding scheme. As a consequence, statistically concealing but computationally binding quantum bit commitments can be based upon any family of quantum one-way functions. Such a construction is not known to exist in the classical world....

  17. How to deal with malleability of BitCoin transactions

    OpenAIRE

    Andrychowicz, Marcin; Dziembowski, Stefan; Malinowski, Daniel; Mazurek, Łukasz

    2013-01-01

    BitCoin transactions are malleable in a sense that given a transaction an adversary can easily construct an equivalent transaction which has a different hash. This can pose a serious problem in some BitCoin distributed contracts in which changing a transaction's hash may result in the protocol disruption and a financial loss. The problem mostly concerns protocols, which use a "refund" transaction to withdraw a deposit in a case of the protocol interruption. In this short note, we show a gener...

  18. Maximum Power Point Tracking in Variable Speed Wind Turbine Based on Permanent Magnet Synchronous Generator Using Maximum Torque Sliding Mode Control Strategy

    Institute of Scientific and Technical Information of China (English)

    Esmaeil Ghaderi; Hossein Tohidi; Behnam Khosrozadeh

    2017-01-01

    The present study was carried out in order to track the maximum power point in a variable speed turbine by minimizing electromechanical torque changes using a sliding mode control strategy.In this strategy,fhst,the rotor speed is set at an optimal point for different wind speeds.As a result of which,the tip speed ratio reaches an optimal point,mechanical power coefficient is maximized,and wind turbine produces its maximum power and mechanical torque.Then,the maximum mechanical torque is tracked using electromechanical torque.In this technique,tracking error integral of maximum mechanical torque,the error,and the derivative of error are used as state variables.During changes in wind speed,sliding mode control is designed to absorb the maximum energy from the wind and minimize the response time of maximum power point tracking (MPPT).In this method,the actual control input signal is formed from a second order integral operation of the original sliding mode control input signal.The result of the second order integral in this model includes control signal integrity,full chattering attenuation,and prevention from large fluctuations in the power generator output.The simulation results,calculated by using MATLAB/m-file software,have shown the effectiveness of the proposed control strategy for wind energy systems based on the permanent magnet synchronous generator (PMSG).

  19. Entropy of a bit-shift channel

    NARCIS (Netherlands)

    Baggen, Stan; Balakirsky, Vladimir; Denteneer, Dee; Egner, Sebastian; Hollmann, Henk; Tolhuizen, Ludo; Verbitskiy, Evgeny

    2006-01-01

    We consider a simple transformation (coding) of an iid source called a bit-shift channel. This simple transformation occurs naturally in magnetic or optical data storage. The resulting process is not Markov of any order. We discuss methods of computing the entropy of the transformed process, and

  20. Bit-error-rate testing of fiber optic data links for MMIC-based phased array antennas

    Science.gov (United States)

    Shalkhauser, K. A.; Kunath, R. R.; Daryoush, A. S.

    1990-01-01

    The measured bit-error-rate (BER) performance of a fiber optic data link to be used in satellite communications systems is presented and discussed. In the testing, the link was measured for its ability to carry high burst rate, serial-minimum shift keyed (SMSK) digital data similar to those used in actual space communications systems. The fiber optic data link, as part of a dual-segment injection-locked RF fiber optic link system, offers a means to distribute these signals to the many radiating elements of a phased array antenna. Test procedures, experimental arrangements, and test results are presented.

  1. Bit error rate testing of fiber optic data links for MMIC-based phased array antennas

    Science.gov (United States)

    Shalkhauser, K. A.; Kunath, R. R.; Daryoush, A. S.

    1990-01-01

    The measured bit-error-rate (BER) performance of a fiber optic data link to be used in satellite communications systems is presented and discussed. In the testing, the link was measured for its ability to carry high burst rate, serial-minimum shift keyed (SMSK) digital data similar to those used in actual space communications systems. The fiber optic data link, as part of a dual-segment injection-locked RF fiber optic link system, offers a means to distribute these signals to the many radiating elements of a phased array antenna. Test procedures, experimental arrangements, and test results are presented.

  2. On the Lorentz invariance of bit-string geometry

    International Nuclear Information System (INIS)

    Noyes, H.P.

    1995-09-01

    We construct the class of integer-sided triangles and tetrahedra that respectively correspond to two or three discriminately independent bit-strings. In order to specify integer coordinates in this space, we take one vertex of a regular tetrahedron whose common edge length is an even integer as the origin of a line of integer length to the open-quotes pointclose quotes and three integer distances to this open-quotes pointclose quotes from the three remaining vertices of the reference tetrahedron. This - usually chiral - integer coordinate description of bit-string geometry is possible because three discriminately independent bit-strings generate four more; the Hamming measures of these seven strings always allow this geometrical interpretation. On another occasion we intend to prove the rotational invariance of this coordinate description. By identifying the corners of these figures with the positions of recording counters whose clocks are synchronized using the Einstein convention, we define velocities in this space. This suggests that it may be possible to define boosts and discrete Lorentz transformations in a space of integer coordinates. We relate this description to our previous work on measurement accuracy and the discrete ordered calculus of Etter and Kauffman (DOC)

  3. A current-steering self-calibration 14-bit 100-MSPs DAC

    Energy Technology Data Exchange (ETDEWEB)

    Qiu Dong; Fang Sheng; Li Ran; Xie Renzhong; Yi Ting; Hong Zhfflang, E-mail: yiting@fudan.edu.cn [State Key Laboratory of ASIC and System, Fudan University, Shanghai 201203 (China)

    2010-12-15

    This paper presents the design and implementation of a 14-bit, 100 MS/s CMOS digital-to-analog converter (DAC). Analog background self-calibration based on the concept of analog current trimming is introduced. A constant clock load switch driver, a calibration period randomization circuit and a return-to-zero output stage have been adopted to improve the dynamic performance. The chip has been manufactured in a SMIC 0.13-{mu}m process and occupies 1.33 x 0.97 mm{sup 2} of the core area. The current consumption is 50 mA under 1.2/3.3 V dual power supplies for digital and analog, respectively. The measured differential and integral nonlinearity is 3.1 LSB and 4.3 LSB, respectively. The SFDR is 72.8 dB at a 1 MHz signal and a 100 MHz sampling frequency. (semiconductor integrated circuits)

  4. Hanford coring bit temperature monitor development testing results report

    International Nuclear Information System (INIS)

    Rey, D.

    1995-05-01

    Instrumentation which directly monitors the temperature of a coring bit used to retrieve core samples of high level nuclear waste stored in tanks at Hanford was developed at Sandia National Laboratories. Monitoring the temperature of the coring bit is desired to enhance the safety of the coring operations. A unique application of mature technologies was used to accomplish the measurement. This report documents the results of development testing performed at Sandia to assure the instrumentation will withstand the severe environments present in the waste tanks

  5. Generating bit reversed numbers for calculating fast fourier transform

    Digital Repository Service at National Institute of Oceanography (India)

    Suresh, T.

    prerequisite of these methods are that data elements be available for shuffling in an array. Thus in a software environment, if the input data values are to be read from a file, reordering can be done only after al1 the values have been read into the array.... Alternately, data values can be read and placed directly at respective bit reversed positions by generating bit reversed addresses. Such a method can help in real-time data acquisition and FFT calculation. Thus, an efficient method of generating sequence...

  6. A new ion detector array and digital-signal-processor-based interface

    International Nuclear Information System (INIS)

    Langstaff, D.P.; McGinnity, T.M.; Forbes, D.M.; Birkinshaw, K.; Lawton, M.W.

    1994-01-01

    A new one-dimensional ion detector array on a silicon chip has been developed for use in mass spectrometry. It is much smaller and simpler than electro-optical arrays currently in use and in addition has a higher resolution and a zero noise level. The array consists of a one-dimensional array of metal strips (electrodes) with a pitch of 25 μm on the top surface of a silicon chip, each electrode having its own charge pulse sensor, 8-bit counter and control/interface circuitry. The chip is mounted on a ceramic substrate and is preceded by a micro-channel plate electron multiplier. Chips are butted to give a longer array. Test results show a stable operating region. A digital-signal-processor-based interface is described, which controls the mode of operation and reads the accumulated array data at the maximum rate to avoid counter overflow. (author)

  7. A new ion detector array and digital-signal-processor-based interface

    Energy Technology Data Exchange (ETDEWEB)

    Langstaff, D.P.; McGinnity, T.M.; Forbes, D.M.; Birkinshaw, K. (University Coll. of Wales, Aberystwyth (United Kingdom). Dept. of Physics); Lawton, M.W. (University of Wales Aberystwyth (United Kingdom). Dept. of Computer Science)

    1994-04-01

    A new one-dimensional ion detector array on a silicon chip has been developed for use in mass spectrometry. It is much smaller and simpler than electro-optical arrays currently in use and in addition has a higher resolution and a zero noise level. The array consists of a one-dimensional array of metal strips (electrodes) with a pitch of 25 [mu]m on the top surface of a silicon chip, each electrode having its own charge pulse sensor, 8-bit counter and control/interface circuitry. The chip is mounted on a ceramic substrate and is preceded by a micro-channel plate electron multiplier. Chips are butted to give a longer array. Test results show a stable operating region. A digital-signal-processor-based interface is described, which controls the mode of operation and reads the accumulated array data at the maximum rate to avoid counter overflow. (author).

  8. Influence du compartiment trophique dans les réponses des populations de poissons aux variations artificielles de débit

    Directory of Open Access Journals (Sweden)

    ORTH D. J.

    1995-04-01

    Full Text Available Les réponses des populations de poissons aux altérations de débit sont assez peu souvent correctement prédites à partir des simulations physiques d'habitat. Actuellement, les évaluations de débit réservé sont basées sur des analyses de l'habitat physique, qui sont supposées avoir une influence sur ces populations. Cela conduit au dilemme en matière de détermination de ces débits : combien d'espèces et de stades faut-il analyser et comment pondérer leur importance respective ? Dans certains cours d'eau, les simulations d'habitat physique issues de PHABSIM (Physical Habitat Simulation pour les poissons les plus courants montrent une surface pondérée utile insensible ou maximum à faible débit. Or, les débits moyens à forts débits sont indubitablement importants pour différentes raisons, telles que le recrutement des espèces inféodées à la plaine alluviale, le nettoyage du fond du lit, les entrées de matière organique et la production des invertébrés benthiques. La densité, la diversité et la production des insectes aquatiques dans différents types de cours d'eau montrent des variations spatiales et interannuelles considérables, souvent directement reliables aux débits. De même, la croissance et le succès de prise de nourriture des poissons varient en fonction de l'abondance des proies. Un modèle de chaîne trophique a été développé pour étudier l'influence de la nourriture de base (insectes aquatiques, proies constituées par les poissons de petite taille et écrevisses sur la production des poissons prédateurs clé (Black bass à petite bouche, Micropterus dolomieu, Rock bass, Ambloplites rupestris, et Poisson chat à tête plate, Pylodictis olivaris dans un grand cours d'eau à régime thermique chaud. L'analyse du modèle indique que la production des poissons est très dépendante de la disponibilité des proies, en particulier les insectes aquatiques et les écrevisses. A partir des analyses du mod

  9. Ultrasound shock wave generator with one-bit time reversal in a dispersive medium, application to lithotripsy

    Science.gov (United States)

    Montaldo, Gabriel; Roux, Philippe; Derode, Arnaud; Negreira, Carlos; Fink, Mathias

    2002-02-01

    The building of high-power ultrasonic sources from piezoelectric ceramics is limited by the maximum voltage that the ceramics can endure. We have conceived a device that uses a small number of piezoelectric transducers fastened to a cylindrical metallic waveguide. A one-bit time- reversal operation transforms the long-lasting low-level dispersed wave forms into a sharp pulse, thus taking advantage of dispersion to generate high-power ultrasound. The pressure amplitude that is generated at the focus is found to be 15 times greater than that achieved with comparable standard techniques. Applications to lithotripsy are discussed and the destructive efficiency of the system is demonstrated on pieces of chalk.

  10. Signals, processes, and systems an interactive multimedia introduction to signal processing

    CERN Document Server

    Karrenberg, Ulrich

    2013-01-01

    This is a very new concept for learning Signal Processing, not only from the physically-based scientific fundamentals, but also from the didactic perspective, based on modern results of brain research. The textbook together with the DVD form a learning system that provides investigative studies and enables the reader to interactively visualize even complex processes. The unique didactic concept is built on visualizing signals and processes on the one hand, and on graphical programming of signal processing systems on the other. The concept has been designed especially for microelectronics, computer technology and communication. The book allows to develop, modify, and optimize useful applications using DasyLab - a professional and globally supported software for metrology and control engineering. With the 3rd edition, the software is also suitable for 64 bit systems running on Windows 7. Real signals can be acquired, processed and played on the sound card of your computer. The book provides more than 200 pre-pr...

  11. Parity Bit Replenishment for JPEG 2000-Based Video Streaming

    Directory of Open Access Journals (Sweden)

    François-Olivier Devaux

    2009-01-01

    Full Text Available This paper envisions coding with side information to design a highly scalable video codec. To achieve fine-grained scalability in terms of resolution, quality, and spatial access as well as temporal access to individual frames, the JPEG 2000 coding algorithm has been considered as the reference algorithm to encode INTRA information, and coding with side information has been envisioned to refresh the blocks that change between two consecutive images of a video sequence. One advantage of coding with side information compared to conventional closed-loop hybrid video coding schemes lies in the fact that parity bits are designed to correct stochastic errors and not to encode deterministic prediction errors. This enables the codec to support some desynchronization between the encoder and the decoder, which is particularly helpful to adapt on the fly pre-encoded content to fluctuating network resources and/or user preferences in terms of regions of interest. Regarding the coding scheme itself, to preserve both quality scalability and compliance to the JPEG 2000 wavelet representation, a particular attention has been devoted to the definition of a practical coding framework able to exploit not only the temporal but also spatial correlation among wavelet subbands coefficients, while computing the parity bits on subsets of wavelet bit-planes. Simulations have shown that compared to pure INTRA-based conditional replenishment solutions, the addition of the parity bits option decreases the transmission cost in terms of bandwidth, while preserving access flexibility.

  12. A IF Signal Precessing System Design Based on Software Radio Platform

    Directory of Open Access Journals (Sweden)

    Zhao Jing

    2018-01-01

    Full Text Available Software radio is a definition of a design thought about how to implement flexible functions by using fixed hardware platform. Any platform based on this is characterized to be universal, standardized, modular, open and highly flexible. Due to some realistic reasons, a software radio platform is hard to be realized. So, most signal processing is operated after mixing. According to software radio requirements, a “FPGA+ADC+DAC” structure is designed. Compared with former processors, this module has broad application prospects with the small size, low power, configurable and programmable feathers. It has multifunction, such as generating IF signals, performing digital down conversion and realizing the synchronous demodulation and the other functions. This module also provides the extended host interface to communicate with upper computers. According to the practical test, take MSK signal for example, if the bit rate is 1Mb/s, bit error rate is lower than 10-6.

  13. Energy-signal quality trade-offs in a WiMAX mobile station with a booster amplifier

    Science.gov (United States)

    Suherman; Mubarakah, N.; Wiranata, O.; Kasim, S. T.

    2018-02-01

    Worldwide Interoperability for Microwave Access (WiMAX) is a broadband wireless access technology that is able to provide high bit rate mobile internet services. Battery endurance remains a problem in current mobile communication. On the other hand, signal quality determines the successful run of the mobile applications. Energy consumption optimization cannot sacrifice the signal level required by the application to run smoothly. On the contrary, the application should consider battery life time. This paper examines the tradeoffs between energy and signal quality in WiMAX subscriber station by adjusting signal level using a booster amplifier. Simulation evaluations show that an increment of 0.00000104% energy consumption on using amplifier adaptively produces 16.411% signal to noise ratio (SNR) increment and 10.7% bit error rate (BER) decrement. By keeping the amplifier turned on, energy consumption increases up to 0.00000136%, causing the SNR rises to 17.2638% and BER drops to 11.13%. The evaluated application is video streaming, other application may behave differently.

  14. Development of a jet-assisted polycrystalline diamond drill bit

    Energy Technology Data Exchange (ETDEWEB)

    Pixton, D.S.; Hall, D.R.; Summers, D.A.; Gertsch, R.E.

    1997-12-31

    A preliminary investigation has been conducted to evaluate the technical feasibility and potential economic benefits of a new type of drill bit. This bit transmits both rotary and percussive drilling forces to the rock face, and augments this cutting action with high-pressure mud jets. Both the percussive drilling forces and the mud jets are generated down-hole by a mud-actuated hammer. Initial laboratory studies show that rate of penetration increases on the order of a factor of two over unaugmented rotary and/or percussive drilling rates are possible with jet-assistance.

  15. PAM-4 signal delivery in one radio-over-fiber system

    Science.gov (United States)

    Wang, Hada; Zhou, Wen; Yu, Jianjun

    2017-10-01

    We propose and experimentally demonstrate four-level pulse-amplitude-modulation (PAM-4) signal delivery in a radio-over-fiber system for the first time. Over 8-Gbit/s PAM-4 signals have been transmitted over 20-km single-mode fiber-28 and 1-m wireless distance. The signal after transmission is detected directly by an envelope detector at the receiver side. The maximal bit rate could be increased if the bandpass amplifier and envelope detector have more bandwidth.

  16. Fast-Acquisition/Weak-Signal-Tracking GPS Receiver for HEO

    Science.gov (United States)

    Wintemitz, Luke; Boegner, Greg; Sirotzky, Steve

    2004-01-01

    A report discusses the technical background and design of the Navigator Global Positioning System (GPS) receiver -- . a radiation-hardened receiver intended for use aboard spacecraft. Navigator is capable of weak signal acquisition and tracking as well as much faster acquisition of strong or weak signals with no a priori knowledge or external aiding. Weak-signal acquisition and tracking enables GPS use in high Earth orbits (HEO), and fast acquisition allows for the receiver to remain without power until needed in any orbit. Signal acquisition and signal tracking are, respectively, the processes of finding and demodulating a signal. Acquisition is the more computationally difficult process. Previous GPS receivers employ the method of sequentially searching the two-dimensional signal parameter space (code phase and Doppler). Navigator exploits properties of the Fourier transform in a massively parallel search for the GPS signal. This method results in far faster acquisition times [in the lab, 12 GPS satellites have been acquired with no a priori knowledge in a Low-Earth-Orbit (LEO) scenario in less than one second]. Modeling has shown that Navigator will be capable of acquiring signals down to 25 dB-Hz, appropriate for HEO missions. Navigator is built using the radiation-hardened ColdFire microprocessor and housing the most computationally intense functions in dedicated field-programmable gate arrays. The high performance of the algorithm and of the receiver as a whole are made possible by optimizing computational efficiency and carefully weighing tradeoffs among the sampling rate, data format, and data-path bit width.

  17. Ultrafast all-optical signal processing using semiconductor optical amplifiers

    NARCIS (Netherlands)

    Li, Z.

    2007-01-01

    As the bit rate of one wavelength channel and the number of channels keep increasing in the telecommunication networks thanks to the advancement of optical transmission technologies, switching is experiencing the transition from the electrical domain to the optical domain. All-optical signal

  18. Evaluation of Giga-bit Ethernet instrumentation for SalSA electronics readout

    International Nuclear Information System (INIS)

    Varner, Gary S.; Murakami, Laine; Ridley, David; Zhu Chaopin; Gorham, Peter

    2005-01-01

    An instrumentation prototype for acquiring high-speed transient data from an array of high bandwidth antennas is presented. Multi-kilometer cable runs complicate acquisition of such large bandwidth radio signals from an extensive antenna array. Solutions using analog fiber optic links are being explored though are very expensive. We propose an inexpensive solution that allows for individual operation of each antenna element, operating at potentially high local self-trigger rates. Digitized data packets are transmitted to the surface via commercially available Giga-bit Ethernet hardware. Events are then reconstructed on a computer farm by sorting the received packets using standard networking gear, eliminating the need for custom, very high speed trigger hardware. Such a system is completely scalable and leverages the enormous capital investment made by the telecommunications industry. Test results from a demonstration prototype are presented

  19. Simple proof of the impossibility of bit commitment in generalized probabilistic theories using cone programming

    Science.gov (United States)

    Sikora, Jamie; Selby, John

    2018-04-01

    Bit commitment is a fundamental cryptographic task, in which Alice commits a bit to Bob such that she cannot later change the value of the bit, while, simultaneously, the bit is hidden from Bob. It is known that ideal bit commitment is impossible within quantum theory. In this work, we show that it is also impossible in generalized probabilistic theories (under a small set of assumptions) by presenting a quantitative trade-off between Alice's and Bob's cheating probabilities. Our proof relies crucially on a formulation of cheating strategies as cone programs, a natural generalization of semidefinite programs. In fact, using the generality of this technique, we prove that this result holds for the more general task of integer commitment.

  20. Factorization of a 768-Bit RSA Modulus

    OpenAIRE

    Kleinjung, Thorsten; Aoki, Kazumaro; Franke, Jens; Lenstra, Arjen K.; Thome, Emmanuel; Bos, Joppe Willem; Gaudry, Pierrick; Kruppa, Alexander; Montgomery, Peter L.; Osvik, Dag Arne; Riele, Herman Te; Timofeev, Andrey; Zimmermann, Paul

    2010-01-01

    The original publication is available at www.springerlink.com; International audience; This paper reports on the factorization of the 768-bit number RSA-768 by the number field sieve factoring method and discusses some implications for RSA.

  1. A High Density Low Cost Digital Signal Processing Module for Large Scale Radiation Detectors

    International Nuclear Information System (INIS)

    Tan, Hui; Hennig, Wolfgang; Walby, Mark D.; Breus, Dimitry; Harris, Jackson T.; Grudberg, Peter M.; Warburton, William K.

    2013-06-01

    A 32-channel digital spectrometer PIXIE-32 is being developed for nuclear physics or other radiation detection applications requiring digital signal processing with large number of channels at relatively low cost. A single PIXIE-32 provides spectrometry and waveform acquisition for 32 input signals per module whereas multiple modules can be combined into larger systems. It is based on the PCI Express standard which allows data transfer rates to the host computer of up to 800 MB/s. Each of the 32 channels in a PIXIE-32 module accepts signals directly from a detector preamplifier or photomultiplier. Digitally controlled offsets can be individually adjusted for each channel. Signals are digitized in 12-bit, 50 MHz multi-channel ADCs. Triggering, pile-up inspection and filtering of the data stream are performed in real time, and pulse heights and other event data are calculated on an event-by event basis. The hardware architecture, internal and external triggering features, and the spectrometry and waveform acquisition capability of the PIXIE- 32 as well as its capability to distribute clock and triggers among multiple modules, are presented. (authors)

  2. Efficient and Robust Detection of GFSK Signals under Dispersive Channel, Modulation Index, and Carrier Frequency Offset Conditions

    Directory of Open Access Journals (Sweden)

    Stephan Weiss

    2005-09-01

    Full Text Available Gaussian frequency shift keying is the modulation scheme specified for Bluetooth. Signal adversities typical in Bluetooth networks include AWGN, multipath propagation, carrier frequency, and modulation index offsets. In our effort to realise a robust but efficient Bluetooth receiver, we adopt a high-performance matched-filter-based detector, which is near optimal in AWGN, but requires a prohibitively costly filter bank for processing of K bits worth of the received signal. However, through filtering over a single bit period and performing phase propagation of intermediate results over successive single-bit stages, we eliminate redundancy involved in providing the matched filter outputs and reduce its complexity by up to 90% (for K=9. The constant modulus signal characteristic and the potential for carrier frequency offsets make the constant modulus algorithm (CMA suitable for channel equalisation, and we demonstrate its effectiveness in this paper. We also introduce a stochastic gradient-based algorithm for carrier frequency offset correction, and show that the relative rotation between successive intermediate filter outputs enables us to detect and correct offsets in modulation index.

  3. Maximum a posteriori decoder for digital communications

    Science.gov (United States)

    Altes, Richard A. (Inventor)

    1997-01-01

    A system and method for decoding by identification of the most likely phase coded signal corresponding to received data. The present invention has particular application to communication with signals that experience spurious random phase perturbations. The generalized estimator-correlator uses a maximum a posteriori (MAP) estimator to generate phase estimates for correlation with incoming data samples and for correlation with mean phases indicative of unique hypothesized signals. The result is a MAP likelihood statistic for each hypothesized transmission, wherein the highest value statistic identifies the transmitted signal.

  4. Single-molecule magnets on a polymeric thin film as magnetic quantum bits

    Science.gov (United States)

    Ruiz-Molina, Daniel; Gomez, Jordi; Mas-Torrent, Marta; Balana, Ana Isabel; Domingo, Nues; Tejada, Javier; Martinez, Maria Teresa; Rovira, Concepcio; Veciana, Jaume

    2003-04-01

    Single-molecule magnets (SMM) have a large-spin ground state with appreciable magnetic anisotropy, resulting in a barrier for the spin reversal As a consequence, interesting magnetic properties such as out-of-phase ac magnetic susceptibility signals and stepwise magnetization hysteresis loops are observed. In addition to resonant magnetization tunnelling, during the last few years several other interesting phenomena have also been reported. The origin of the slow magnetization relaxation rates as well as of other phenomena are due to individual molecules rather than to long-range ordering; as confirmed by magnetization relaxation and heat capacity studies. Therefore, SMM represent nanoscale magnetic particles of a sharply defined size that offer the potential access to the ultimate high-density information storage devices as well as for quantum computing applications. However, if a truly molecular computational device based on SMM is to be achieved, new systematic studies that allow us to find a proper way to address properly oriented individual molecules or molecular aggregates onto the surface of a thin film, where each molecule or molecular aggregate can be used as a bit of information, are highly required. Here we report a new soft, reliable and simple methodology to address individual Mn12 molecules onto a film surface, as revealed by Atomic Force Microscopy (AFM) and Magnetic Force Microscopy (MFM) images. Moreover, the advantageous properties of polymeric matrices, such as flexibility, transparency and low density, make this type of materials very interesting for potential applications.

  5. SPRY4-mediated ERK1/2 signaling inhibition abolishes 17β-estradiol-induced cell growth in endometrial adenocarcinoma cell.

    Science.gov (United States)

    Li, Mingjiang; Zhang, Hui; Zhao, Xingbo; Yan, Lei; Wang, Chong; Li, Chunyan; Li, Changzhong

    2014-08-01

    Basic fibroblast growth factor (FGF2)-mediated Extracellular signal-regulated kinases1/2 (ERK1/2) signaling is a critical modulator in angiogenesis. SPRY4 has been reported to be a feedback negative regulator of FGFs-induced ERK1/2 signaling. The aim of this study was to explore the role of SPRY4 in endometrial adenocarcinoma cell. The effect of SPRY4 expression on FGF2-mediated ERK1/2 signaling was detected by luciferase assay and Western blot analysis. The growth of Ishikawa cells was detected using colony formation assay and cell number counting experiment. We found that plasmid-driven SPRY4 expression efficiently blocked the activity of FGF2-induced ERK1/2 signaling in Ishikawa cells. SPRY4 expression significantly reduced the proliferation and 17β-estradiol-induced proliferation of Ishikawa cells. SPRY4 may function as a tumor suppressor in endometrial adenocarcinoma.

  6. Fluid shear promotes chondrosarcoma cell invasion by activating matrix metalloproteinase 12 via IGF-2 and VEGF signaling pathways

    Science.gov (United States)

    Wang, P; Chen, S-H; Hung, W-C; Paul, C; Zhu, F; Guan, P-P; Huso, DL; Kontrogianni-Konstantopoulos, A; Konstantopoulos, K

    2015-01-01

    Interstitial fluid flow in and around the tumor tissue is a physiologically relevant mechanical signal that regulates intracellular signaling pathways throughout the tumor. Yet, the effects of interstitial flow and associated fluid shear stress on the tumor cell function have been largely overlooked. Using in vitro bioengineering models in conjunction with molecular cell biology tools, we found that fluid shear (2 dyn/cm2) markedly upregulates matrix metalloproteinase 12 (MMP-12) expression and its activity in human chondrosarcoma cells. MMP-12 expression is induced in human chondrocytes during malignant transformation. However, the signaling pathway regulating MMP-12 expression and its potential role in human chondrosarcoma cell invasion and metastasis have yet to be delineated. We discovered that fluid shear stress induces the synthesis of insulin growth factor-2 (IGF-2) and vascular endothelial growth factor (VEGF) B and D, which in turn transactivate MMP-12 via PI3-K, p38 and JNK signaling pathways. IGF-2-, VEGF-B- or VEGF-D-stimulated chondrosarcoma cells display markedly higher migratory and invasive potentials in vitro, which are blocked by inhibiting MMP-12, PI3-K, p38 or JNK activity. Moreover, recombinant human MMP-12 or MMP-12 overexpression can potentiate chondrosarcoma cell invasion in vitro and the lung colonization in vivo. By reconstructing and delineating the signaling pathway regulating MMP-12 activation, potential therapeutic strategies that interfere with chondrosarcoma cell invasion may be identified. PMID:25435370

  7. Inadvertently programmed bits in Samsung 128 Mbit flash devices: a flaky investigation

    Science.gov (United States)

    Swift, G.

    2002-01-01

    JPL's X2000 avionics design pioneers new territory by specifying a non-volatile memory (NVM) board based on flash memories. The Samsung 128Mb device chosen was found to demonstrate bit errors (mostly program disturbs) and block-erase failures that increase with cycling. Low temperature, certain pseudo- random patterns, and, probably, higher bias increase the observable bit errors. An experiment was conducted to determine the wearout dependence of the bit errors to 100k cycles at cold temperature using flight-lot devices (some pre-irradiated). The results show an exponential growth rate, a wide part-to-part variation, and some annealing behavior.

  8. Corrected multiple upsets and bit reversals for improved 1-s resolution measurements

    International Nuclear Information System (INIS)

    Brucker, G.J.; Stassinopoulos, E.G.; Stauffer, C.A.

    1994-01-01

    Previous work has studied the generation of single and multiple errors in control and irradiated static RAM samples (Harris 6504RH) which were exposed to heavy ions for relatively long intervals of time (minute), and read out only after the beam was shut off. The present investigation involved storing 4k x 1 bit maps every second during 1 min ion exposures at low flux rates of 10 3 ions/cm 2 -s in order to reduce the chance of two sequential ions upsetting adjacent bits. The data were analyzed for the presence of adjacent upset bit locations in the physical memory plane, which were previously defined to constitute multiple upsets. Improvement in the time resolution of these measurements has provided more accurate estimates of multiple upsets. The results indicate that the percentage of multiples decreased from a high of 17% in the previous experiment to less than 1% for this new experimental technique. Consecutive double and triple upsets (reversals of bits) were detected. These were caused by sequential ions hitting the same bit, with one or two reversals of state occurring in a 1-min run. In addition to these results, a status review for these same parts covering 3.5 years of imprint damage recovery is also presented

  9. Large signal simulation of photonic crystal Fano laser

    DEFF Research Database (Denmark)

    Zali, Aref Rasoulzadeh; Yu, Yi; Moravvej-Farshi, Mohammad Kazem

    2017-01-01

    be modulated at frequencies exceeding 1 THz which is much higher than its corresponding relaxation oscillation frequency. Large signal simulation of the Fano laser is also investigated based on pseudorandom bit sequence at 0.5 Tbit/s. It shows eye patterns are open at such high modulation frequency, verifying...

  10. Tit-Bits, New Journalism, and early Sherlock Holmes fandom

    Directory of Open Access Journals (Sweden)

    Ann K. McClellan

    2017-03-01

    Full Text Available The Strand's more popular sister magazine, Tit-Bits, played a significant role in establishing Sherlock Holmes as a literary and cultural icon, particularly through its use of participatory practices, cross-promotion, and transmedia storytelling. I argue that Tit-Bits' late 19th-century New Journalism techniques like contests and prizes, inquiry columns, correspondence, and internal advertising fostered a corporately devised participatory fandom that directly contributed to Sherlock Holmes's popularity. Tit-Bits audiences were invited and encouraged to imagine new scenarios for their favorite character that were validated through publication. Such practices not only created a unique identity for Sherlock Holmes fandom but also directly contributed to the creation and maintenance of Holmes's fictional world. With fandom studies reaching more and more audiences—both academic and popular—historicizing early fan practices like the early publication and reception of the Sherlock Holmes stories provides important insight into how audiences have historically responded to, and interacted with, fictional characters, and how they helped sustain and expand those characters' fictional worlds.

  11. A 10MS/s 8-bit charge-redistribution ADC for hybrid pixel applications in 65m CMOS

    CERN Document Server

    Kishishita, T; Krüger, H; Koch, M; Germic, L; Wermes, N

    2013-01-01

    The design and measurement results of an 8-bit SAR ADC, based on a charge-redistribution DAC, are presented. This ADC is characterized by superior power efficiency and small area, realized by employing a lateral metal–metal capacitor array and a dynamic two-stage comparator. To avoid the need for a highspeed clock and its associated power consumption, an asynchronous logic was implemented in a logic control cell. A test chip has been developed in a 65 nm CMOS technology, including eight ADC channels with different layout flavors of the capacitor array, a transimpedance amplifier as a signal input structure, a serializer, and a custom-made LVDS driver for data transmission. The integral (INL) and differential (DNL) nonlinearities are measured below 0.5 LSB and 0.8 LSB, respectively, for the best channel operating at a sampling frequency of 10 MS/s. The area occupies 40 μm 70 μm for one ADC channel. The power consumption is estimated as 4 μW at 1 MS/s and 38 μW at 10 MS/s with a supply rail of 1.2 V. Th...

  12. Altered ERK1/2 Signaling in the Brain of Learned Helpless Rats: Relevance in Vulnerability to Developing Stress-Induced Depression

    Directory of Open Access Journals (Sweden)

    Yogesh Dwivedi

    2016-01-01

    Full Text Available Extracellular signal-regulated kinase 1/2- (ERK1/2- mediated cellular signaling plays a major role in synaptic and structural plasticity. Although ERK1/2 signaling has been shown to be involved in stress and depression, whether vulnerability to develop depression is associated with abnormalities in ERK1/2 signaling is not clearly known. The present study examined ERK1/2 signaling in frontal cortex and hippocampus of rats that showed vulnerability (learned helplessness, (LH or resiliency (non-learned helplessness, (non-LH to developing stress-induced depression. In frontal cortex and hippocampus of LH rats, we found that mRNA and protein expressions of ERK1 and ERK2 were significantly reduced, which was associated with their reduced activation and phosphorylation in cytosolic and nuclear fractions, where ERK1 and ERK2 target their substrates. In addition, ERK1/2-mediated catalytic activities and phosphorylation of downstream substrates RSK1 (cytosolic and nuclear and MSK1 (nuclear were also lower in the frontal cortex and hippocampus of LH rats without any change in their mRNA or protein expression. None of these changes were evident in non-LH rats. Our study indicates that ERK1/2 signaling is differentially regulated in LH and non-LH rats and suggests that abnormalities in ERK1/2 signaling may be crucial in the vulnerability to developing depression.

  13. Architecture and performance of radiation-hardened 64-bit SOS/MNOS memory

    International Nuclear Information System (INIS)

    Kliment, D.C.; Ronen, R.S.; Nielsen, R.L.; Seymour, R.N.; Splinter, M.R.

    1976-01-01

    This paper discusses the circuit architecture and performance of a nonvolatile 64-bit MNOS memory fabricated on silicon on sapphire (SOS). The circuit is a test vehicle designed to demonstrate the feasibility of a high-performance, high-density, radiation-hardened MNOS/SOS memory. The array is organized as 16 words by 4 bits and is fully decoded. It utilizes a two-(MNOS) transistor-per-bit cell and differential sensing scheme and is realized in PMOS static resistor load logic. The circuit was fabricated and tested as both a fast write random access memory (RAM) and an electrically alterable read only memory (EAROM) to demonstrate design and process flexibility. Discrete device parameters such as retention, circuit electrical characteristics, and tolerance to total dose and transient radiation are presented

  14. Least reliable bits coding (LRBC) for high data rate satellite communications

    Science.gov (United States)

    Vanderaar, Mark; Budinger, James; Wagner, Paul

    1992-01-01

    LRBC, a bandwidth efficient multilevel/multistage block-coded modulation technique, is analyzed. LRBC uses simple multilevel component codes that provide increased error protection on increasingly unreliable modulated bits in order to maintain an overall high code rate that increases spectral efficiency. Soft-decision multistage decoding is used to make decisions on unprotected bits through corrections made on more protected bits. Analytical expressions and tight performance bounds are used to show that LRBC can achieve increased spectral efficiency and maintain equivalent or better power efficiency compared to that of BPSK. The relative simplicity of Galois field algebra vs the Viterbi algorithm and the availability of high-speed commercial VLSI for block codes indicates that LRBC using block codes is a desirable method for high data rate implementations.

  15. Modern X86 assembly language programming 32-bit, 64-bit, SSE, and AVX

    CERN Document Server

    Kusswurm, Daniel

    2014-01-01

    Modern X86 Assembly Language Programming shows the fundamentals of x86 assembly language programming. It focuses on the aspects of the x86 instruction set that are most relevant to application software development. The book's structure and sample code are designed to help the reader quickly understand x86 assembly language programming and the computational capabilities of the x86 platform. Major topics of the book include the following: 32-bit core architecture, data types, internal registers, memory addressing modes, and the basic instruction setX87 core architecture, register stack, special

  16. Bit Error Rate Due to Misalignment of Earth Station Antenna Pointing to Satellite

    Directory of Open Access Journals (Sweden)

    Wahyu Pamungkas

    2010-04-01

    Full Text Available One problem causing reduction of energy in satellite communications system is the misalignment of earth station antenna pointing to satellite. Error in pointing would affect the quality of information signal to energy bit in earth station. In this research, error in pointing angle occurred only at receiver (Rx antenna, while the transmitter (Tx antennas precisely point to satellite. The research was conducted towards two satellites, namely TELKOM-1 and TELKOM-2. At first, measurement was made by directing Tx antenna precisely to satellite, resulting in an antenna pattern shown by spectrum analyzer. The output from spectrum analyzers is drawn with the right scale to describe swift of azimuth and elevation pointing angle towards satellite. Due to drifting from the precise pointing, it influenced the received link budget indicated by pattern antenna. This antenna pattern shows reduction of power level received as a result of pointing misalignment. As a conclusion, the increasing misalignment of pointing to satellite would affect in the reduction of received signal parameters link budget of down-link traffic.

  17. THE APPLICATION OF LASERS IN MEASUREMENT OF FLUID FLOW THROUGH DRILLING BIT NOZZLES

    Directory of Open Access Journals (Sweden)

    Radenko Drakulić

    1993-12-01

    Full Text Available Two optical methods based on laser and video technology and digital signal and image processing techniques - Laser Doppler velocimetry (LDV and Particle image velocimetry (PIV were applied in highly accurate fluid flow measurement. Their application in jet velocity measurement of flows through drilling bit nozzles is presented. The role of nozzles in drilling technology together with procedures and tests performed on their optimization are reviewed. In addition, some experimental results for circular nozzle obtained both with LDV and PIV are elaborated. The experimental set-up and the testing procedure arc briefly discussed, as well as potential improvements in the design. Possible other applications of LDV and PIV in the domain of petroleum engineering are suggested (the paper is published in Croatian.

  18. Up to 20 Gbit/s bit-rate transparent integrated interferometric wavelength converter

    DEFF Research Database (Denmark)

    Jørgensen, Carsten; Danielsen, Søren Lykke; Hansen, Peter Bukhave

    1996-01-01

    We present a compact and optimised multiquantum-well based, integrated all-active Michelson interferometer for 26 Gbit/s optical wavelength conversion. Bit-rate transparent operation is demonstrated with a conversion penalty well below 0.5 dB at bit-rates ranging from 622 Mbit/s to 20 Gbit/s....

  19. Exploration of Least Significant Bit Based Watermarking and Its Robustness against Salt and Pepper Noise

    OpenAIRE

    Kamaldeep Joshi; Rajkumar Yadav; Sachin Allwadhi

    2016-01-01

    Image steganography is the best aspect of information hiding. In this, the information is hidden within an image and the image travels openly on the Internet. The Least Significant Bit (LSB) is one of the most popular methods of image steganography. In this method, the information bit is hidden at the LSB of the image pixel. In one bit LSB steganography method, the total numbers of the pixels and the total number of message bits are equal to each other. In this paper, the LSB method of image ...

  20. Self-organized neural network for the quality control of 12-lead ECG signals

    International Nuclear Information System (INIS)

    Chen, Yun; Yang, Hui

    2012-01-01

    Telemedicine is very important for the timely delivery of health care to cardiovascular patients, especially those who live in the rural areas of developing countries. However, there are a number of uncertainty factors inherent to the mobile-phone-based recording of electrocardiogram (ECG) signals such as personnel with minimal training and other extraneous noises. PhysioNet organized a challenge in 2011 to develop efficient algorithms that can assess the ECG signal quality in telemedicine settings. This paper presents our efforts in this challenge to integrate multiscale recurrence analysis with a self-organizing map for controlling the ECG signal quality. As opposed to directly evaluating the 12-lead ECG, we utilize an information-preserving transform, i.e. Dower transform, to derive the 3-lead vectorcardiogram (VCG) from the 12-lead ECG in the first place. Secondly, we delineate the nonlinear and nonstationary characteristics underlying the 3-lead VCG signals into multiple time-frequency scales. Furthermore, a self-organizing map is trained, in both supervised and unsupervised ways, to identify the correlations between signal quality and multiscale recurrence features. The efficacy and robustness of this approach are validated using real-world ECG recordings available from PhysioNet. The average performance was demonstrated to be 95.25% for the training dataset and 90.0% for the independent test dataset with unknown labels. (paper)

  1. ColliderBit. A GAMBIT module for the calculation of high-energy collider observables and likelihoods

    Energy Technology Data Exchange (ETDEWEB)

    Balazs, Csaba [Monash University, School of Physics and Astronomy, Melbourne, VIC (Australia); Australian Research Council Centre of Excellence for Particle Physics at the Tera-scale (Australia); Buckley, Andy [University of Glasgow, SUPA, School of Physics and Astronomy, Glasgow (United Kingdom); Dal, Lars A.; Krislock, Abram; Raklev, Are [University of Oslo, Department of Physics, Oslo (Norway); Farmer, Ben [AlbaNova University Centre, Oskar Klein Centre for Cosmoparticle Physics, Stockholm (Sweden); Jackson, Paul; Murnane, Daniel; White, Martin [Australian Research Council Centre of Excellence for Particle Physics at the Tera-scale (Australia); University of Adelaide, Department of Physics, Adelaide, SA (Australia); Kvellestad, Anders [NORDITA, Stockholm (Sweden); Putze, Antje [Universite de Savoie, LAPTh, Annecy-le-Vieux (France); Rogan, Christopher [Harvard University, Department of Physics, Cambridge, MA (United States); Saavedra, Aldo [Australian Research Council Centre of Excellence for Particle Physics at the Tera-scale (Australia); The University of Sydney, Faculty of Engineering and Information Technologies, Centre for Translational Data Science, School of Physics, Sydney, NSW (Australia); Scott, Pat [Imperial College London, Blackett Laboratory, Department of Physics, London (United Kingdom); Weniger, Christoph [University of Amsterdam, GRAPPA, Institute of Physics, Amsterdam (Netherlands); Collaboration: The GAMBIT Scanner Workgroup

    2017-11-15

    We describe ColliderBit, a new code for the calculation of high energy collider observables in theories of physics beyond the Standard Model (BSM). ColliderBit features a generic interface to BSM models, a unique parallelised Monte Carlo event generation scheme suitable for large-scale supercomputer applications, and a number of LHC analyses, covering a reasonable range of the BSM signatures currently sought by ATLAS and CMS. ColliderBit also calculates likelihoods for Higgs sector observables, and LEP searches for BSM particles. These features are provided by a combination of new code unique toColliderBit, and interfaces to existing state-of-the-art public codes. ColliderBit is both an important part of the GAMBIT framework for BSM inference, and a standalone tool for efficiently applying collider constraints to theories of new physics. (orig.)

  2. 12th International Conference on Intelligent Information Hiding and Multimedia Signal Processing

    CERN Document Server

    Tsai, Pei-Wei; Huang, Hsiang-Cheh

    2017-01-01

    This volume of Smart Innovation, Systems and Technologies contains accepted papers presented in IIH-MSP-2016, the 12th International Conference on Intelligent Information Hiding and Multimedia Signal Processing. The conference this year was technically co-sponsored by Tainan Chapter of IEEE Signal Processing Society, Fujian University of Technology, Chaoyang University of Technology, Taiwan Association for Web Intelligence Consortium, Fujian Provincial Key Laboratory of Big Data Mining and Applications (Fujian University of Technology), and Harbin Institute of Technology Shenzhen Graduate School. IIH-MSP 2016 is held in 21-23, November, 2016 in Kaohsiung, Taiwan. The conference is an international forum for the researchers and professionals in all areas of information hiding and multimedia signal processing. .

  3. A Novel Nondestructive Bit-Line Discharging Scheme for Deep Submicrometer STT-RAM

    DEFF Research Database (Denmark)

    Zeinali, Behzad; Madsen, Jens Kargaard; Raghavan, Praveen

    . In this paper, we propose a novel non-destructive self-reference sensing scheme for STT-RAM. The proposed technique overcomes the large bit-to-bit variation of MTJ resistance. In the proposed scheme, the stored value in the STTRAM cell preserves, hence, the long write-back operation is eliminated. Besides...

  4. Pseudo-random bit generator based on Chebyshev map

    Science.gov (United States)

    Stoyanov, B. P.

    2013-10-01

    In this paper, we study a pseudo-random bit generator based on two Chebyshev polynomial maps. The novel derivative algorithm shows perfect statistical properties established by number of statistical tests.

  5. Digitally programmable signal generator

    International Nuclear Information System (INIS)

    Priatko, G.J.; Kaskey, J.A.

    1988-01-01

    A digitally programmable signal generator (DPSG) includes a first memory from which data is written into a second memory formed of n banks. Each bank includes four memories and a multiplexer, the banks being read once during each time frame, the read-out bits being multiplexed and fed out serially in synchronism with a plurality of clock pulses occuring during a time frame. The resulting serial bit streams may be fed in parallel to a digital-to-analog converter. The DPSG can be used in applications such as Atomic Vapor Laser Isotope Separation (AVLIS) to create an optimal match between the process laser's spectral profile and that of the vaporized material, optical telecommunications, non-optical telecommunication in the microwave and radio spectrum, radar, electronic countermeasures, high speed computer interconnects, local area networks, high definition video transport and the multiplexing of large quantities of slow digital memory into high speed data streams. This invention extends the operation of DPSGs into the GHz range. (author)

  6. FastBit Reference Manual

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Kesheng

    2007-08-02

    An index in a database system is a data structure that utilizes redundant information about the base data to speed up common searching and retrieval operations. Most commonly used indexes are variants of B-trees, such as B+-tree and B*-tree. FastBit implements a set of alternative indexes call compressed bitmap indexes. Compared with B-tree variants, these indexes provide very efficient searching and retrieval operations by sacrificing the efficiency of updating the indexes after the modification of an individual record. In addition to the well-known strengths of bitmap indexes, FastBit has a special strength stemming from the bitmap compression scheme used. The compression method is called the Word-Aligned Hybrid (WAH) code. It reduces the bitmap indexes to reasonable sizes and at the same time allows very efficient bitwise logical operations directly on the compressed bitmaps. Compared with the well-known compression methods such as LZ77 and Byte-aligned Bitmap code (BBC), WAH sacrifices some space efficiency for a significant improvement in operational efficiency. Since the bitwise logical operations are the most important operations needed to answer queries, using WAH compression has been shown to answer queries significantly faster than using other compression schemes. Theoretical analyses showed that WAH compressed bitmap indexes are optimal for one-dimensional range queries. Only the most efficient indexing schemes such as B+-tree and B*-tree have this optimality property. However, bitmap indexes are superior because they can efficiently answer multi-dimensional range queries by combining the answers to one-dimensional queries.

  7. Differential Fault Analysis on CLEFIA with 128, 192, and 256-Bit Keys

    Science.gov (United States)

    Takahashi, Junko; Fukunaga, Toshinori

    This paper describes a differential fault analysis (DFA) attack against CLEFIA. The proposed attack can be applied to CLEFIA with all supported keys: 128, 192, and 256-bit keys. DFA is a type of side-channel attack. This attack enables the recovery of secret keys by injecting faults into a secure device during its computation of the cryptographic algorithm and comparing the correct ciphertext with the faulty one. CLEFIA is a 128-bit blockcipher with 128, 192, and 256-bit keys developed by the Sony Corporation in 2007. CLEFIA employs a generalized Feistel structure with four data lines. We developed a new attack method that uses this characteristic structure of the CLEFIA algorithm. On the basis of the proposed attack, only 2 pairs of correct and faulty ciphertexts are needed to retrieve the 128-bit key, and 10.78 pairs on average are needed to retrieve the 192 and 256-bit keys. The proposed attack is more efficient than any previously reported. In order to verify the proposed attack and estimate the calculation time to recover the secret key, we conducted an attack simulation using a PC. The simulation results show that we can obtain each secret key within three minutes on average. This result shows that we can obtain the entire key within a feasible computational time.

  8. Time Domain Equalizer Design Using Bit Error Rate Minimization for UWB Systems

    Directory of Open Access Journals (Sweden)

    Syed Imtiaz Husain

    2009-01-01

    Full Text Available Ultra-wideband (UWB communication systems occupy huge bandwidths with very low power spectral densities. This feature makes the UWB channels highly rich in resolvable multipaths. To exploit the temporal diversity, the receiver is commonly implemented through a Rake. The aim to capture enough signal energy to maintain an acceptable output signal-to-noise ratio (SNR dictates a very complicated Rake structure with a large number of fingers. Channel shortening or time domain equalizer (TEQ can simplify the Rake receiver design by reducing the number of significant taps in the effective channel. In this paper, we first derive the bit error rate (BER of a multiuser and multipath UWB system in the presence of a TEQ at the receiver front end. This BER is then written in a form suitable for traditional optimization. We then present a TEQ design which minimizes the BER of the system to perform efficient channel shortening. The performance of the proposed algorithm is compared with some generic TEQ designs and other Rake structures in UWB channels. It is shown that the proposed algorithm maintains a lower BER along with efficiently shortening the channel.

  9. Bitlis Bibliophil Association and One-Book Project

    Directory of Open Access Journals (Sweden)

    Hakan Yücel

    2014-03-01

    Full Text Available The article deals with Bitlis Bibliophil Association and One-Book Project which was established in January of the current year by a group of volunteer including several professions such as students, librarians, sociologists, engineers, civil cervants, teachers, bankers, poets, jorunalists, accountants.

  10. Single-word multiple-bit upsets in static random access devices

    International Nuclear Information System (INIS)

    Koga, R.; Pinkerton, S.D.; Lie, T.J.; Crawford, K.B.

    1993-01-01

    Energetic ions and protons can cause single event upsets (SEUs) in static random access memory (SRAM) cells. In some cases multiple bits may be upset as the result of a single event. Space-borne electronics systems incorporating high-density SRAM are vulnerable to single-word multiple-bit upsets (SMUs). The authors review here recent observations of SMU, present the results of a systematic investigation of the physical cell arrangements employed in several currently available SRAM device types, and discuss implications for the occurrence and mitigation of SMU

  11. VLSI System Implementation of 200 MHz, 8-bit, 90nm CMOS Arithmetic and Logic Unit (ALU Processor Controller

    Directory of Open Access Journals (Sweden)

    Fazal NOORBASHA

    2012-08-01

    Full Text Available In this present study includes the Very Large Scale Integration (VLSI system implementation of 200MHz, 8-bit, 90nm Complementary Metal Oxide Semiconductor (CMOS Arithmetic and Logic Unit (ALU processor control with logic gate design style and 0.12µm six metal 90nm CMOS fabrication technology. The system blocks and the behaviour are defined and the logical design is implemented in gate level in the design phase. Then, the logic circuits are simulated and the subunits are converted in to 90nm CMOS layout. Finally, in order to construct the VLSI system these units are placed in the floor plan and simulated with analog and digital, logic and switch level simulators. The results of the simulations indicates that the VLSI system can control different instructions which can divided into sub groups: transfer instructions, arithmetic and logic instructions, rotate and shift instructions, branch instructions, input/output instructions, control instructions. The data bus of the system is 16-bit. It runs at 200MHz, and operating power is 1.2V. In this paper, the parametric analysis of the system, the design steps and obtained results are explained.

  12. Enhanced bit rate-distance product impulse radio ultra-wideband over fiber link

    DEFF Research Database (Denmark)

    Rodes Lopez, Roberto; Jensen, Jesper Bevensee; Caballero Jambrina, Antonio

    2010-01-01

    We report on a record distance and bit rate-wireless impulse radio (IR) ultra-wideband (UWB) link with combined transmission over a 20 km long fiber link. We are able to improve the compliance with the regulated frequency emission mask and achieve bit rate-distance products as high as 16 Gbit/s·m....

  13. Accurate Bit Error Rate Calculation for Asynchronous Chaos-Based DS-CDMA over Multipath Channel

    Science.gov (United States)

    Kaddoum, Georges; Roviras, Daniel; Chargé, Pascal; Fournier-Prunaret, Daniele

    2009-12-01

    An accurate approach to compute the bit error rate expression for multiuser chaosbased DS-CDMA system is presented in this paper. For more realistic communication system a slow fading multipath channel is considered. A simple RAKE receiver structure is considered. Based on the bit energy distribution, this approach compared to others computation methods existing in literature gives accurate results with low computation charge. Perfect estimation of the channel coefficients with the associated delays and chaos synchronization is assumed. The bit error rate is derived in terms of the bit energy distribution, the number of paths, the noise variance, and the number of users. Results are illustrated by theoretical calculations and numerical simulations which point out the accuracy of our approach.

  14. Measuring the electric activity of chick embryos heart through 16 bit audio card monitored by the Goldwavetm software

    Science.gov (United States)

    Silva, Dilson; Cortez, Celia Martins

    2015-12-01

    In the present work we used a high-resolution, low-cost apparatus capable of detecting waves fit inside the sound bandwidth, and the software package GoldwaveTM for graphical display, processing and monitoring the signals, to study aspects of the electric heart activity of early avian embryos, specifically at the 18th Hamburger & Hamilton stage of the embryo development. The species used was the domestic chick (Gallus gallus), and we carried out 23 experiments in which cardiographic spectra of QRS complex waves representing the propagation of depolarization waves through ventricles was recorded using microprobes and reference electrodes directly on the embryos. The results show that technique using 16 bit audio card monitored by the GoldwaveTM software was efficient to study signal aspects of heart electric activity of early avian embryos.

  15. BER analysis for MPAM signal constellations in the presence of fading and ADC quantization noise

    NARCIS (Netherlands)

    Rizvi, U.H.; Janssen, G.J.M.; Weber, J.H.

    2009-01-01

    In this letter, closed-form expressions for the bit error rate of M-ary pulse amplitude modulated signal constellations as a function of the analog-to-digital converter word length, the signal-to-noise ratio and the fading distribution, are derived. These results allow for a rapid and accurate

  16. All-optical wavelength conversion and signal regeneration using an electroabsorption modulator

    DEFF Research Database (Denmark)

    Højfeldt, Sune; Bischoff, Svend; Mørk, Jesper

    2000-01-01

    All-optical wavelength conversion and signal regeneration based on cross-absorption modulation in an InGaAsP quantum well electroabsorption modulator (EAM) is studied at different bit rates. We present theoretical results showing wavelength conversion efficiency in agreement with existing...

  17. All-optical wavelength conversion and signal regeneration using an electroabsorption modulator

    DEFF Research Database (Denmark)

    Højfeldt, Sune; Bischoff, Svend; Mørk, Jesper

    1999-01-01

    All-optical wavelength conversion in an InGaAsP quantum well electroabsorption modulator is studied at different bit-rates. We present theoretical results showing wavelength conversion efficiency in agreement with existing experimental results, and signal regeneration capability is demonstrated....

  18. The bit slice micro-processor 'GESPRO' as a project in the UA2 experiment

    CERN Document Server

    Becam, C; Delanghe, J; Fest, H M; Lecoq, J; Martin, H; Mencik, M; MerkeI, B; Meyer, J M; Perrin, M; Plothow, H; Rampazzo, J P; Schittly, A

    1981-01-01

    The bit slice micro-processor GESPRO is a CAMAC module plugged into a standard Elliot system crate via which it communicates as a slave with its host computer. It has full control of CAMAC as a master unit. GESPRO is a 24 bit machine with multi-mode memory addressing capacity of 64K words. The micro-processor structure uses 5 buses including pipe-line registers to mask access time and 16 interrupt levels. The micro-program memory capacity is 2K (RAM) words of 48 bits each. A special hardwired module allows floating point, as well as integer, multiplication of 24*24 bits, result in 48 bits, in about 200 ns. This micro-processor could be used in the UA2 data acquisition chain and trigger system for the following tasks: (a) online data reduction, i.e. to read DURANDAL, process the information resulting in accepting or rejecting the event; (b) readout and analysis of the accepted data; (c) preprocess the data. The UA2 version of GESPRO is under construction, programs and micro-programs are under development. Hard...

  19. 2014 Metro, Oregon 4-Band 8 Bit Imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are LiDAR orthorectified aerial photographs (8-bit GeoTIFF format) within the Oregon Lidar Consortium Portland project area. The imagery coverage is...

  20. ParBiBit: Parallel tool for binary biclustering on modern distributed-memory systems.

    Science.gov (United States)

    González-Domínguez, Jorge; Expósito, Roberto R

    2018-01-01

    Biclustering techniques are gaining attention in the analysis of large-scale datasets as they identify two-dimensional submatrices where both rows and columns are correlated. In this work we present ParBiBit, a parallel tool to accelerate the search of interesting biclusters on binary datasets, which are very popular on different fields such as genetics, marketing or text mining. It is based on the state-of-the-art sequential Java tool BiBit, which has been proved accurate by several studies, especially on scenarios that result on many large biclusters. ParBiBit uses the same methodology as BiBit (grouping the binary information into patterns) and provides the same results. Nevertheless, our tool significantly improves performance thanks to an efficient implementation based on C++11 that includes support for threads and MPI processes in order to exploit the compute capabilities of modern distributed-memory systems, which provide several multicore CPU nodes interconnected through a network. Our performance evaluation with 18 representative input datasets on two different eight-node systems shows that our tool is significantly faster than the original BiBit. Source code in C++ and MPI running on Linux systems as well as a reference manual are available at https://sourceforge.net/projects/parbibit/.

  1. An efficient parallel pseudorandom bit generator based

    Indian Academy of Sciences (India)

    In this paper, an asymmetric coupled map lattice (CML) combining sawtooth map as a local map is presented and its chaotic behaviours are analysed. Based on this asymmetric CML, a pseudorandom bit generator (PRBG) is proposed. The specific parameters of the system that make complicated floating-point computation ...

  2. Real-Time, General-Purpose, High-Speed Signal Processing Systems for Underwater Research. Proceedings of a Working Level Conference held at Supreme Allied Commander, Atlantic, Anti-Submarine Warfare Research Center (SACLANTCEN) on 18-21 September 1979. Part 1. Sessions I to III.

    Science.gov (United States)

    1979-12-01

    good communication with the external world. Some excellent features are: Logical rather than absolute buffers. Several data formats (32 bits, 16 bits...channel/track and DAPAAN 18 channel/track. Once the analog signal is demultiplexed, it is amplified, anti-alias filtered by a six-pole six- zero elliptic...receiver. The receiver outputs a binary 8-bit parallel signal with a resolution of degree Farenheit . D. Nairn With reference to use of non-rugged gear in

  3. Corticotropin-Releasing Factor Mediates Pain-Induced Anxiety through the ERK1/2 Signaling Cascade in Locus Coeruleus Neurons

    Science.gov (United States)

    Borges, Gisela Patrícia; Micó, Juan Antonio; Neto, Fani Lourença

    2015-01-01

    Background: The corticotropin-releasing factor is a stress-related neuropeptide that modulates locus coeruleus activity. As locus coeruleus has been involved in pain and stress-related patologies, we tested whether the pain-induced anxiety is a result of the corticotropin-releasing factor released in the locus coeruleus. Methods: Complete Freund’s adjuvant-induced monoarthritis was used as inflammatory chronic pain model. α-Helical corticotropin-releasing factor receptor antagonist was microinjected into the contralateral locus coeruleus of 4-week-old monoarthritic animals. The nociceptive and anxiety-like behaviors, as well as phosphorylated extracellular signal-regulated kinases 1/2 and corticotropin-releasing factor receptors expression, were quantified in the paraventricular nucleus and locus coeruleus. Results: Monoarthritic rats manifested anxiety and increased phosphorylated extracellular signal-regulated kinases 1/2 levels in the locus coeruleus and paraventricular nucleus, although the expression of corticotropin-releasing factor receptors was unaltered. α-Helical corticotropin-releasing factor antagonist administration reversed both the anxiogenic-like behavior and the phosphorylated extracellular signal-regulated kinases 1/2 levels in the locus coeruleus. Conclusions: Pain-induced anxiety is mediated by corticotropin-releasing factor neurotransmission in the locus coeruleus through extracellular signal-regulated kinases 1/2 signaling cascade. PMID:25716783

  4. Implementation of RSA 2048-bit and AES 256-bit with Digital Signature for Secure Electronic Health Record Application

    Directory of Open Access Journals (Sweden)

    Mohamad Ali Sadikin

    2016-10-01

    Full Text Available This research addresses the implementation of encryption and digital signature technique for electronic health record to prevent cybercrime such as robbery, modification and unauthorised access. In this research, RSA 2048-bit algorithm, AES 256-bit and SHA 256 will be implemented in Java programming language. Secure Electronic Health Record Information (SEHR application design is intended to combine given services, such as confidentiality, integrity, authentication, and nonrepudiation. Cryptography is used to ensure the file records and electronic documents for detailed information on the medical past, present and future forecasts that have been given only to the intended patients. The document will be encrypted using an encryption algorithm based on NIST Standard. In the application, there are two schemes, namely the protection and verification scheme. This research uses black-box testing and whitebox testing to test the software input, output, and code without testing the process and design that occurs in the system.We demonstrated the implementation of cryptography in SEHR. The implementation of encryption and digital signature in this research can prevent archive thievery.

  5. "Push back" technique: A simple method to remove broken drill bit from the proximal femur.

    Science.gov (United States)

    Chouhan, Devendra K; Sharma, Siddhartha

    2015-11-18

    Broken drill bits can be difficult to remove from the proximal femur and may necessitate additional surgical exploration or special instrumentation. We present a simple technique to remove a broken drill bit that does not require any special instrumentation and can be accomplished through the existing incision. This technique is useful for those cases where the length of the broken drill bit is greater than the diameter of the bone.

  6. FlavBit. A GAMBIT module for computing flavour observables and likelihoods

    Energy Technology Data Exchange (ETDEWEB)

    Bernlochner, Florian U. [Physikalisches Institut der Rheinischen Friedrich-Wilhelms-Universitaet Bonn (Germany); Chrzaszcz, Marcin [Universitaet Zuerich, Physik-Institut, Zurich (Switzerland); Polish Academy of Sciences, H. Niewodniczanski Institute of Nuclear Physics, Krakow (Poland); Dal, Lars A. [University of Oslo, Department of Physics, Oslo (Norway); Farmer, Ben [Oskar Klein Centre for Cosmoparticle Physics, AlbaNova University Centre, Stockholm (Sweden); Stockholm University, Department of Physics, Stockholm (Sweden); Jackson, Paul; White, Martin [University of Adelaide, Department of Physics, Adelaide, SA (Australia); Australian Research Council Centre of Excellence for Particle Physics at the Tera-scale (Australia); Kvellestad, Anders [NORDITA, Stockholm (Sweden); Mahmoudi, Farvah [Univ Lyon, Univ Lyon 1, ENS de Lyon, CNRS, Centre de Recherche Astrophysique de Lyon UMR5574, Saint-Genis-Laval (France); CERN, Theoretical Physics Department, Geneva (Switzerland); Putze, Antje [LAPTh, Universite de Savoie, CNRS, Annecy-le-Vieux (France); Rogan, Christopher [Harvard University, Department of Physics, Cambridge, MA (United States); Scott, Pat [Imperial College London, Department of Physics, Blackett Laboratory, London (United Kingdom); Serra, Nicola [Universitaet Zuerich, Physik-Institut, Zurich (Switzerland); Weniger, Christoph [University of Amsterdam, GRAPPA, Institute of Physics, Amsterdam (Netherlands); Collaboration: The GAMBIT Flavour Workgroup

    2017-11-15

    Flavour physics observables are excellent probes of new physics up to very high energy scales. Here we present FlavBit, the dedicated flavour physics module of the global-fitting package GAMBIT. FlavBit includes custom implementations of various likelihood routines for a wide range of flavour observables, including detailed uncertainties and correlations associated with LHCb measurements of rare, leptonic and semileptonic decays of B and D mesons, kaons and pions. It provides a generalised interface to external theory codes such as SuperIso, allowing users to calculate flavour observables in and beyond the Standard Model, and then test them in detail against all relevant experimental data. We describe FlavBit and its constituent physics in some detail, then give examples from supersymmetry and effective field theory illustrating how it can be used both as a standalone library for flavour physics, and within GAMBIT. (orig.)

  7. Adaptive bit plane quadtree-based block truncation coding for image compression

    Science.gov (United States)

    Li, Shenda; Wang, Jin; Zhu, Qing

    2018-04-01

    Block truncation coding (BTC) is a fast image compression technique applied in spatial domain. Traditional BTC and its variants mainly focus on reducing computational complexity for low bit rate compression, at the cost of lower quality of decoded images, especially for images with rich texture. To solve this problem, in this paper, a quadtree-based block truncation coding algorithm combined with adaptive bit plane transmission is proposed. First, the direction of edge in each block is detected using Sobel operator. For the block with minimal size, adaptive bit plane is utilized to optimize the BTC, which depends on its MSE loss encoded by absolute moment block truncation coding (AMBTC). Extensive experimental results show that our method gains 0.85 dB PSNR on average compare to some other state-of-the-art BTC variants. So it is desirable for real time image compression applications.

  8. A 6-bit 4 GS/s pseudo-thermometer segmented CMOS DAC

    Science.gov (United States)

    Yijun, Song; Wenyuan, Li

    2014-06-01

    A 6-bit 4 GS/s, high-speed and power-efficient DAC for ultra-high-speed transceivers in 60 GHz band millimeter wave technology is presented. A novel pseudo-thermometer architecture is proposed to realize a good compromise between the fast conversion speed and the chip area. Symmetrical and compact floor planning and layout techniques including tree-like routing, cross-quading and common-centroid method are adopted to guarantee the chip is fully functional up to near-Nyquist frequency in a standard 0.18 μm CMOS process. Post simulation results corroborate the feasibility of the designed DAC, which canperform good static and dynamic linearity without calibration. DNL errors and INL errors can be controlled within ±0.28 LSB and ±0.26 LSB, respectively. SFDR at 4 GHz clock frequency for a 1.9 GHz near-Nyquist sinusoidal output signal is 40.83 dB and the power dissipation is less than 37 mW.

  9. A 6-bit 4 GS/s pseudo-thermometer segmented CMOS DAC

    International Nuclear Information System (INIS)

    Song Yijun; Li Wenyuan

    2014-01-01

    A 6-bit 4 GS/s, high-speed and power-efficient DAC for ultra-high-speed transceivers in 60 GHz band millimeter wave technology is presented. A novel pseudo-thermometer architecture is proposed to realize a good compromise between the fast conversion speed and the chip area. Symmetrical and compact floor planning and layout techniques including tree-like routing, cross-quading and common-centroid method are adopted to guarantee the chip is fully functional up to near-Nyquist frequency in a standard 0.18 μm CMOS process. Post simulation results corroborate the feasibility of the designed DAC, which canperform good static and dynamic linearity without calibration. DNL errors and INL errors can be controlled within ±0.28 LSB and ±0.26 LSB, respectively. SFDR at 4 GHz clock frequency for a 1.9 GHz near-Nyquist sinusoidal output signal is 40.83 dB and the power dissipation is less than 37 mW. (semiconductor integrated circuits)

  10. Bit Plane Coding based Steganography Technique for JPEG2000 Images and Videos

    Directory of Open Access Journals (Sweden)

    Geeta Kasana

    2016-02-01

    Full Text Available In this paper, a Bit Plane Coding (BPC based steganography technique for JPEG2000 images and Motion JPEG2000 video is proposed. Embedding in this technique is performed in the lowest significant bit planes of the wavelet coefficients of a cover image. In JPEG2000 standard, the number of bit planes of wavelet coefficients to be used in encoding is dependent on the compression rate and are used in Tier-2 process of JPEG2000. In the proposed technique, Tier-1 and Tier-2 processes of JPEG2000 and Motion JPEG2000 are executed twice on the encoder side to collect the information about the lowest bit planes of all code blocks of a cover image, which is utilized in embedding and transmitted to the decoder. After embedding secret data, Optimal Pixel Adjustment Process (OPAP is applied on stego images to enhance its visual quality. Experimental results show that proposed technique provides large embedding capacity and better visual quality of stego images than existing steganography techniques for JPEG2000 compressed images and videos. Extracted secret image is similar to the original secret image.

  11. Two-bit trinary full adder design based on restricted signed-digit numbers

    Science.gov (United States)

    Ahmed, J. U.; Awwal, A. A. S.; Karim, M. A.

    1994-08-01

    A 2-bit trinary full adder using a restricted set of a modified signed-digit trinary numeric system is designed. When cascaded together to design a multi-bit adder machine, the resulting system is able to operate at a speed independent of the size of the operands. An optical non-holographic content addressable memory based on binary coded arithmetic is considered for implementing the proposed adder.

  12. Presettable up-down CAMAC counter for 24 bit

    International Nuclear Information System (INIS)

    Kuhn, K.; Meyer, U.; Weidhase, F.

    1976-01-01

    A module containing a presettable binary up-down CAMAC counter for 24 bit is described. The use of dataway is discussed. As an example for application in nuclear physics, control of beam position by the up-down counter is illustrated

  13. Maximum permissible voltage of YBCO coated conductors

    Energy Technology Data Exchange (ETDEWEB)

    Wen, J.; Lin, B.; Sheng, J.; Xu, J.; Jin, Z. [Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai (China); Hong, Z., E-mail: zhiyong.hong@sjtu.edu.cn [Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai (China); Wang, D.; Zhou, H.; Shen, X.; Shen, C. [Qingpu Power Supply Company, State Grid Shanghai Municipal Electric Power Company, Shanghai (China)

    2014-06-15

    Highlights: • We examine three kinds of tapes’ maximum permissible voltage. • We examine the relationship between quenching duration and maximum permissible voltage. • Continuous I{sub c} degradations under repetitive quenching where tapes reaching maximum permissible voltage. • The relationship between maximum permissible voltage and resistance, temperature. - Abstract: Superconducting fault current limiter (SFCL) could reduce short circuit currents in electrical power system. One of the most important thing in developing SFCL is to find out the maximum permissible voltage of each limiting element. The maximum permissible voltage is defined as the maximum voltage per unit length at which the YBCO coated conductors (CC) do not suffer from critical current (I{sub c}) degradation or burnout. In this research, the time of quenching process is changed and voltage is raised until the I{sub c} degradation or burnout happens. YBCO coated conductors test in the experiment are from American superconductor (AMSC) and Shanghai Jiao Tong University (SJTU). Along with the quenching duration increasing, the maximum permissible voltage of CC decreases. When quenching duration is 100 ms, the maximum permissible of SJTU CC, 12 mm AMSC CC and 4 mm AMSC CC are 0.72 V/cm, 0.52 V/cm and 1.2 V/cm respectively. Based on the results of samples, the whole length of CCs used in the design of a SFCL can be determined.

  14. Mixed logic style adder circuit designed and fabricated using SOI substrate for irradiation-hardened experiment

    Science.gov (United States)

    Yuan, Shoucai; Liu, Yamei

    2016-08-01

    This paper proposed a rail to rail swing, mixed logic style 28-transistor 1-bit full adder circuit which is designed and fabricated using silicon-on-insulator (SOI) substrate with 90 nm gate length technology. The main goal of our design is space application where circuits may be damaged by outer space radiation; so the irradiation-hardened technique such as SOI structure should be used. The circuit's delay, power and power-delay product (PDP) of our proposed gate diffusion input (GDI)-based adder are HSPICE simulated and compared with other reported high-performance 1-bit adder. The GDI-based 1-bit adder has 21.61% improvement in delay and 18.85% improvement in PDP, over the reported 1-bit adder. However, its power dissipation is larger than that reported with 3.56% increased but is still comparable. The worst case performance of proposed 1-bit adder circuit is also seen to be less sensitive to variations in power supply voltage (VDD) and capacitance load (CL), over a wide range from 0.6 to 1.8 V and 0 to 200 fF, respectively. The proposed and reported 1-bit full adders are all layout designed and wafer fabricated with other circuits/systems together on one chip. The chip measurement and analysis has been done at VDD = 1.2 V, CL = 20 fF, and 200 MHz maximum input signal frequency with temperature of 300 K.

  15. The Signal and Noise Analysis of Direct Conversion EHM Transceivers

    Directory of Open Access Journals (Sweden)

    Shayegh

    2006-01-01

    Full Text Available A direct conversion modulator-demodulator with even harmonic mixers with emphasis on noise analysis is presented. The circuits consist of even harmonic mixers (EHMs realized with antiparallel diode pairs (APDPs. We evaluate the different levels of I/Q imbalances and DC offsets and use signal space concepts to analyze the bit error rate (BER of the proposed transceiver using M-ary QAM schemes. Moreover, the simultaneous analysis of the signal and noise has been presented.

  16. An Information-Theoretic Perspective on the Quantum Bit Commitment Impossibility Theorem

    Directory of Open Access Journals (Sweden)

    Marius Nagy

    2018-03-01

    Full Text Available This paper proposes a different approach to pinpoint the causes for which an unconditionally secure quantum bit commitment protocol cannot be realized, beyond the technical details on which the proof of Mayers’ no-go theorem is constructed. We have adopted the tools of quantum entropy analysis to investigate the conditions under which the security properties of quantum bit commitment can be circumvented. Our study has revealed that cheating the binding property requires the quantum system acting as the safe to harbor the same amount of uncertainty with respect to both observers (Alice and Bob as well as the use of entanglement. Our analysis also suggests that the ability to cheat one of the two fundamental properties of bit commitment by any of the two participants depends on how much information is leaked from one side of the system to the other and how much remains hidden from the other participant.

  17. Refinements of multi-track Viterbi bit-detection

    NARCIS (Netherlands)

    Hekstra, A.P.; Coene, W.M.J.; Immink, A.H.J.

    2006-01-01

    In optical storage, data can be arranged on the disc in a meta-spiral consisting of a large number of bit-rows with a small track-pitch. Successive revolutions of the meta-spiral are separated by a narrow guard band. For high storage densities, such a system results in severe 2-D inter-symbol

  18. Pseudo Asynchronous Level Crossing adc for ecg Signal Acquisition.

    Science.gov (United States)

    Marisa, T; Niederhauser, T; Haeberlin, A; Wildhaber, R A; Vogel, R; Goette, J; Jacomet, M

    2017-02-07

    A new pseudo asynchronous level crossing analogue-to-digital converter (adc) architecture targeted for low-power, implantable, long-term biomedical sensing applications is presented. In contrast to most of the existing asynchronous level crossing adc designs, the proposed design has no digital-to-analogue converter (dac) and no continuous time comparators. Instead, the proposed architecture uses an analogue memory cell and dynamic comparators. The architecture retains the signal activity dependent sampling operation by generating events only when the input signal is changing. The architecture offers the advantages of smaller chip area, energy saving and fewer analogue system components. Beside lower energy consumption the use of dynamic comparators results in a more robust performance in noise conditions. Moreover, dynamic comparators make interfacing the asynchronous level crossing system to synchronous processing blocks simpler. The proposed adc was implemented in [Formula: see text] complementary metal-oxide-semiconductor (cmos) technology, the hardware occupies a chip area of 0.0372 mm 2 and operates from a supply voltage of [Formula: see text] to [Formula: see text]. The adc's power consumption is as low as 0.6 μW with signal bandwidth from [Formula: see text] to [Formula: see text] and achieves an equivalent number of bits (enob) of up to 8 bits.

  19. Bit Bang 4: Future of internet - Societal, business, governance and technological aspects

    OpenAIRE

    Neuvo, Yrjö (ed.); Karvonen, Elina (ed.)

    2012-01-01

    Bit Bang – Future of the Internet: Societal, business, governance and technological aspects was the fourth multidisciplinary post-graduate course for doctoral students at Aalto University. Altogether 24 students were selected from five Aalto University Schools: School of Arts, Design and Architecture; School of Economics; School of Electrical Engineering; School of Engineering; and School of Science. Bit Bang is part of the MIDE (Multidisciplinary Institute of Digitalisation and Energy) resea...

  20. Wear Detection of Drill Bit by Image-based Technique

    Science.gov (United States)

    Sukeri, Maziyah; Zulhilmi Paiz Ismadi, Mohd; Rahim Othman, Abdul; Kamaruddin, Shahrul

    2018-03-01

    Image processing for computer vision function plays an essential aspect in the manufacturing industries for the tool condition monitoring. This study proposes a dependable direct measurement method to measure the tool wear using image-based analysis. Segmentation and thresholding technique were used as the means to filter and convert the colour image to binary datasets. Then, the edge detection method was applied to characterize the edge of the drill bit. By using cross-correlation method, the edges of original and worn drill bits were correlated to each other. Cross-correlation graphs were able to detect the difference of the worn edge despite small difference between the graphs. Future development will focus on quantifying the worn profile as well as enhancing the sensitivity of the technique.

  1. Different Mass Processing Services in a Bit Repository

    DEFF Research Database (Denmark)

    Jurik, Bolette; Zierau, Eld

    2011-01-01

    This paper investigates how a general bit repository mass processing service using different programming models and platforms can be specified. Such a service is needed in large data archives, especially libraries, where different ways of doing mass processing is needed for different digital...

  2. mDia2 and CXCL12/CXCR4 chemokine signaling intersect to drive tumor cell amoeboid morphological transitions.

    Science.gov (United States)

    Wyse, Meghan M; Goicoechea, Silvia; Garcia-Mata, Rafael; Nestor-Kalinoski, Andrea L; Eisenmann, Kathryn M

    2017-03-04

    Morphological plasticity in response to environmental cues in migrating cancer cells requires F-actin cytoskeletal rearrangements. Conserved formin family proteins play critical roles in cell shape, tumor cell motility, invasion and metastasis, in part, through assembly of non-branched actin filaments. Diaphanous-related formin-2 (mDia2/Diaph3/Drf3/Dia) regulates mesenchymal-to-amoeboid morphological conversions and non-apoptotic blebbing in tumor cells by interacting with its inhibitor diaphanous-interacting protein (DIP), and disrupting cortical F-actin assembly and bundling. F-actin disruption is initiated by a CXCL12-dependent mechanism. Downstream CXCL12 signaling partners inducing mDia2-dependent amoeboid conversions remain enigmatic. We found in MDA-MB-231 tumor cells CXCL12 induces DIP and mDia2 interaction in blebs, and engages its receptor CXCR4 to induce RhoA-dependent blebbing. mDia2 and CXCR4 associate in blebs upon CXCL12 stimulation. Both CXCR4 and RhoA are required for CXCL12-induced blebbing. Neither CXCR7 nor other Rho GTPases that activate mDia2 are required for CXCL12-induced blebbing. The Rho Guanine Nucleotide Exchange Factor (GEF) Net1 is required for CXCL12-driven RhoA activation and subsequent blebbing. These results reveal CXCL12 signaling, through CXCR4, directs a Net1/RhoA/mDia-dependent signaling hub to drive cytoskeleton rearrangements to regulate morphological plasticity in tumor cells. These signaling hubs may be conserved during normal and cancer cells responding to chemotactic cues. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Design of a low power 10 bit 300 ksps multi-channel SAR ADC for wireless sensor network applications

    International Nuclear Information System (INIS)

    Hong Hui; Li Shiliang; Zhou Tao

    2015-01-01

    This paper presents a low power 10 bit 300 ksps successive approximation register analog-to-digital converter (SAR ADC) which is applied in wireless sensor network (WSN) applications. A single ended energy-saving split capacitor DAC array and a latch comparator with a rail to rail input stage are utilized to implement the ADC, which can reduce power dissipation while expanding the full scale input range and improve the signal-to-noise ratio (SNR). For power optimization the supply voltage of the SAR ADC is designed to be as low as 2 V. Four analog input channels are designed which make the ADC more suitable for WSN applications. The prototype circuit is fabricated using 3.3 V, 0.35 μm 2P4M CMOS technology and occupies an active chip area of 1.23 mm 2 . The test results show that the power dissipation is only 200 μW at a 2 V power supply and a sampling rate of 166 ksps. The calculated SNR is 58.25 dB, the ENOB is 9.38 bit and the FOM is 4.95 pJ/conversion-step. (paper)

  4. Performance evaluations of hybrid modulation with different optical labels over PDQ in high bit-rate OLS network systems.

    Science.gov (United States)

    Xu, M; Li, Y; Kang, T Z; Zhang, T S; Ji, J H; Yang, S W

    2016-11-14

    Two orthogonal modulation optical label switching(OLS) schemes, which are based on payload of polarization multiplexing-differential quadrature phase shift keying(POLMUX-DQPSK or PDQ) modulated with identifications of duobinary (DB) label and pulse position modulation(PPM) label, are researched in high bit-rate OLS network. The BER performance of hybrid modulation with payload and label signals are discussed and evaluated in theory and simulation. The theoretical BER expressions of PDQ, PDQ-DB and PDQ-PPM are given with analysis method of hybrid modulation encoding in different the bit-rate ratios of payload and label. Theoretical derivation results are shown that the payload of hybrid modulation has a certain gain of receiver sensitivity than payload without label. The sizes of payload BER gain obtained from hybrid modulation are related to the different types of label. The simulation results are consistent with that of theoretical conclusions. The extinction ratio (ER) conflicting between hybrid encoding of intensity and phase types can be compromised and optimized in OLS system of hybrid modulation. The BER analysis method of hybrid modulation encoding in OLS system can be applied to other n-ary hybrid modulation or combination modulation systems.

  5. Radiation hardened COTS-based 32-bit microprocessor

    International Nuclear Information System (INIS)

    Haddad, N.; Brown, R.; Cronauer, T.; Phan, H.

    1999-01-01

    A high performance radiation hardened 32-bit RISC microprocessor based upon a commercial single chip CPU has been developed. This paper presents the features of radiation hardened microprocessor, the methods used to radiation harden this device, the results of radiation testing, and shows that the RAD6000 is well-suited for the vast majority of space applications. (authors)

  6. Controlling torque and cutting costs: steerable drill bits deliver in Latin America

    Energy Technology Data Exchange (ETDEWEB)

    Barton, Steve; Garcia, Alexis; Amorim, Dalmo [ReedHycalog, Stonehouse (United Kingdom); Iramina, Wilson [University of Sao Paulo (USP), SP (Brazil); Herrera, Gabriel

    2008-07-01

    Tool face Control is widely regarded as one of the greatest directional drilling challenges with a Fixed Cutter (FC) drill bit on a Steerable Motor assembly. Tool face offset is proportional to the torque generated by the bit, and by nature, FC bits are capable of generating high levels of torque. If large changes in downhole torque are produced while drilling, this will cause rotation of the drill string, and loss of tool face orientation. This results in inefficient drilling and increases risk of bit and downhole tool damage. This paper examines the effect of various FC drill bit components to determine the key design requirements to deliver a smooth torque response and an improved directional performance. Included is a review of the results from comprehensive laboratory testing to determine the effectiveness of a number of different configurations of removable Torque Controlling Components (TCC). These, in combination with specific cutting structure layouts, combine to provide predictable torque response while optimized for high rates of penetration. In addition, unique gauge geometry is disclosed that was engineered to reduce drag and deliver improved borehole quality. This gauge design produces less torque when sliding and beneficial gauge pad interaction with the borehole when in rotating mode. Field performance studies from within Latin America clearly demonstrate that matching TCC, an optimized cutting structure, and gauge geometry to a steerable assembly delivers smooth torque response and improved directional control. Benefits with regard to improved stability are also discussed. Successful application has resulted in significant time and cost savings for the operator, demonstrating that Stability and Steerability improvements can be achieved with an increase in penetration rate. (author)

  7. Threshold quantum cryptograph based on Grover's algorithm

    International Nuclear Information System (INIS)

    Du Jianzhong; Qin Sujuan; Wen Qiaoyan; Zhu Fuchen

    2007-01-01

    We propose a threshold quantum protocol based on Grover's operator and permutation operator on one two-qubit signal. The protocol is secure because the dishonest parties can only extract 2 bits from 3 bits information of operation on one two-qubit signal while they have to introduce error probability 3/8. The protocol includes a detection scheme to resist Trojan horse attack. With probability 1/2, the detection scheme can detect a multi-qubit signal that is used to replace a single-qubit signal, while it makes every legitimate qubit invariant

  8. Two-dimensional signal processing using a morphological filter for holographic memory

    Science.gov (United States)

    Kondo, Yo; Shigaki, Yusuke; Yamamoto, Manabu

    2012-03-01

    Today, along with the wider use of high-speed information networks and multimedia, it is increasingly necessary to have higher-density and higher-transfer-rate storage devices. Therefore, research and development into holographic memories with three-dimensional storage areas is being carried out to realize next-generation large-capacity memories. However, in holographic memories, interference between bits, which affect the detection characteristics, occurs as a result of aberrations such as the deviation of a wavefront in an optical system. In this study, we pay particular attention to the nonlinear factors that cause bit errors, where filters with a Volterra equalizer and the morphologies are investigated as a means of signal processing.

  9. LDPC product coding scheme with extrinsic information for bit patterned media recoding

    Science.gov (United States)

    Jeong, Seongkwon; Lee, Jaejin

    2017-05-01

    Since the density limit of the current perpendicular magnetic storage system will soon be reached, bit patterned media recording (BPMR) is a promising candidate for the next generation storage system to achieve an areal density beyond 1 Tb/in2. Each recording bit is stored in a fabricated magnetic island and the space between the magnetic islands is nonmagnetic in BPMR. To approach recording densities of 1 Tb/in2, the spacing of the magnetic islands must be less than 25 nm. Consequently, severe inter-symbol interference (ISI) and inter-track interference (ITI) occur. ITI and ISI degrade the performance of BPMR. In this paper, we propose a low-density parity check (LDPC) product coding scheme that exploits extrinsic information for BPMR. This scheme shows an improved bit error rate performance compared to that in which one LDPC code is used.

  10. Experimentally generated randomness certified by the impossibility of superluminal signals.

    Science.gov (United States)

    Bierhorst, Peter; Knill, Emanuel; Glancy, Scott; Zhang, Yanbao; Mink, Alan; Jordan, Stephen; Rommal, Andrea; Liu, Yi-Kai; Christensen, Bradley; Nam, Sae Woo; Stevens, Martin J; Shalm, Lynden K

    2018-04-01

    From dice to modern electronic circuits, there have been many attempts to build better devices to generate random numbers. Randomness is fundamental to security and cryptographic systems and to safeguarding privacy. A key challenge with random-number generators is that it is hard to ensure that their outputs are unpredictable 1-3 . For a random-number generator based on a physical process, such as a noisy classical system or an elementary quantum measurement, a detailed model that describes the underlying physics is necessary to assert unpredictability. Imperfections in the model compromise the integrity of the device. However, it is possible to exploit the phenomenon of quantum non-locality with a loophole-free Bell test to build a random-number generator that can produce output that is unpredictable to any adversary that is limited only by general physical principles, such as special relativity 1-11 . With recent technological developments, it is now possible to carry out such a loophole-free Bell test 12-14,22 . Here we present certified randomness obtained from a photonic Bell experiment and extract 1,024 random bits that are uniformly distributed to within 10 -12 . These random bits could not have been predicted according to any physical theory that prohibits faster-than-light (superluminal) signalling and that allows independent measurement choices. To certify and quantify the randomness, we describe a protocol that is optimized for devices that are characterized by a low per-trial violation of Bell inequalities. Future random-number generators based on loophole-free Bell tests may have a role in increasing the security and trust of our cryptographic systems and infrastructure.

  11. Radioactive tracer system to indicate drill bit wear or failure

    International Nuclear Information System (INIS)

    Fries, B.A.

    1975-01-01

    A radioactive tracer system for indicating drill bit wear or failure utilizing radioactive krypton 85 in clathrate form, in the form of water-soluble kryptonates, or dissolved grease, is described. Preferably the radioactive krypton is placed so that when drill bit wear or failure occurs, the radioactive krypton 85 is relased and effectively becomes diffused in the circulating drilling fluid. At the surface, the radioactive krypton 85 gas is separated from the circulating drilling fluid by gas-mud separating means and is transported as a gas to a counting chamber where an accurate radioactivity count of beta rays released from the krypton is obtained. (Patent Office Record)

  12. Multi-Channel Maximum Likelihood Pitch Estimation

    DEFF Research Database (Denmark)

    Christensen, Mads Græsbøll

    2012-01-01

    In this paper, a method for multi-channel pitch estimation is proposed. The method is a maximum likelihood estimator and is based on a parametric model where the signals in the various channels share the same fundamental frequency but can have different amplitudes, phases, and noise characteristics....... This essentially means that the model allows for different conditions in the various channels, like different signal-to-noise ratios, microphone characteristics and reverberation. Moreover, the method does not assume that a certain array structure is used but rather relies on a more general model and is hence...

  13. "Material interactions": from atoms & bits to entangled practices

    DEFF Research Database (Denmark)

    Vallgårda, Anna

    and intellectually stimulating panel moderated by Prof. Mikael Wiberg consisting of a number of scholars with a well-developed view on digital materialities to fuel a discussion on material interactions - from atoms & bits to entangled practices. These scholars include: Prof. Hiroshi Ishii, Prof. Paul Dourish...

  14. Using Pulse Width Modulation for Wireless Transmission of Neural Signals in Multichannel Neural Recording Systems

    Science.gov (United States)

    Yin, Ming; Ghovanloo, Maysam

    2013-01-01

    We have used a well-known technique in wireless communication, pulse width modulation (PWM) of time division multiplexed (TDM) signals, within the architecture of a novel wireless integrated neural recording (WINeR) system. We have evaluated the performance of the PWM-based architecture and indicated its accuracy and potential sources of error through detailed theoretical analysis, simulations, and measurements on a setup consisting of a 15-channel WINeR prototype as the transmitter and two types of receivers; an Agilent 89600 vector signal analyzer and a custom wideband receiver, with 36 and 75 MHz of maximum bandwidth, respectively. Furthermore, we present simulation results from a realistic MATLAB-Simulink model of the entire WINeR system to observe the system behavior in response to changes in various parameters. We have concluded that the 15-ch WINeR prototype, which is fabricated in a 0.5-μm standard CMOS process and consumes 4.5 mW from ±1.5 V supplies, can acquire and wirelessly transmit up to 320 k-samples/s to a 75-MHz receiver with 8.4 bits of resolution, which is equivalent to a wireless data rate of ~ 2.26 Mb/s. PMID:19497823

  15. Cepstral domain modification of audio signals for data embedding: preliminary results

    Science.gov (United States)

    Gopalan, Kaliappan

    2004-06-01

    A method of embedding data in an audio signal using cepstral domain modification is described. Based on successful embedding in the spectral points of perceptually masked regions in each frame of speech, first the technique was extended to embedding in the log spectral domain. This extension resulted at approximately 62 bits /s of embedding with less than 2 percent of bit error rate (BER) for a clean cover speech (from the TIMIT database), and about 2.5 percent for a noisy speech (from an air traffic controller database), when all frames - including silence and transition between voiced and unvoiced segments - were used. Bit error rate increased significantly when the log spectrum in the vicinity of a formant was modified. In the next procedure, embedding by altering the mean cepstral values of two ranges of indices was studied. Tests on both a noisy utterance and a clean utterance indicated barely noticeable perceptual change in speech quality when lower range of cepstral indices - corresponding to vocal tract region - was modified in accordance with data. With an embedding capacity of approximately 62 bits/s - using one bit per each frame regardless of frame energy or type of speech - initial results showed a BER of less than 1.5 percent for a payload capacity of 208 embedded bits using the clean cover speech. BER of less than 1.3 percent resulted for the noisy host with a capacity was 316 bits. When the cepstrum was modified in the region of excitation, BER increased to over 10 percent. With quantization causing no significant problem, the technique warrants further studies with different cepstral ranges and sizes. Pitch-synchronous cepstrum modification, for example, may be more robust to attacks. In addition, cepstrum modification in regions of speech that are perceptually masked - analogous to embedding in frequency masked regions - may yield imperceptible stego audio with low BER.

  16. All-optical signal regeneration at 40 Gbit/s using a Mach-Zehnder Interferometer based on semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Bischoff, Svend; Mørk, Jesper

    2000-01-01

    Summary form only given. All-optical signal regeneration and processing are interesting for high bit-rate transmission systems. The Mach-Zehnder interferometer (MZI) is a promising device for functionalities like all-optical add/drop and signal regeneration. Wavelength conversion up-to 20 Gbit...... and optimization issues....

  17. A Methodology and Tool for Investigation of Artifacts Left by the BitTorrent Client

    Directory of Open Access Journals (Sweden)

    Algimantas Venčkauskas

    2016-05-01

    Full Text Available The BitTorrent client application is a popular utility for sharing large files over the Internet. Sometimes, this powerful utility is used to commit cybercrimes, like sharing of illegal material or illegal sharing of legal material. In order to help forensics investigators to fight against these cybercrimes, we carried out an investigation of the artifacts left by the BitTorrent client. We proposed a methodology to locate the artifacts that indicate the BitTorrent client activity performed. Additionally, we designed and implemented a tool that searches for the evidence left by the BitTorrent client application in a local computer running Windows. The tool looks for the four files holding the evidence. The files are as follows: *.torrent, dht.dat, resume.dat, and settings.dat. The tool decodes the files, extracts important information for the forensic investigator and converts it into XML format. The results are combined into a single result file.

  18. A 10-bit 120-MS/s pipelined ADC with improved switch and layout scaling strategy

    International Nuclear Information System (INIS)

    Zhou Jia; Xu Lili; Li Fule; Wang Zhihua

    2015-01-01

    A 10 bit, 120 MS/s two-channel pipelined analog-to digital converter (ADC) is presented. The ADC is featured with improved switch by using the body effect to improve its conduction performance. A scaling down strategy is proposed to get more efficiency in the OTAs layout design. Implemented in a 0.18-μm CMOS technology, the ADC's prototype occupied an area of 2.05 × 1.83 mm 2 . With a sampling rate of 120-MS/s and an input of 4.9 MHz, the ADC achieves a spurious-free-dynamic range of 74.32 dB and signal-to-noise-and-distortion ratio of 55.34 dB, while consuming 220-mW/channel at 3-V supply. (paper)

  19. Power penalties for multi-level PAM modulation formats at arbitrary bit error rates

    Science.gov (United States)

    Kaliteevskiy, Nikolay A.; Wood, William A.; Downie, John D.; Hurley, Jason; Sterlingov, Petr

    2016-03-01

    There is considerable interest in combining multi-level pulsed amplitude modulation formats (PAM-L) and forward error correction (FEC) in next-generation, short-range optical communications links for increased capacity. In this paper we derive new formulas for the optical power penalties due to modulation format complexity relative to PAM-2 and due to inter-symbol interference (ISI). We show that these penalties depend on the required system bit-error rate (BER) and that the conventional formulas overestimate link penalties. Our corrections to the standard formulas are very small at conventional BER levels (typically 1×10-12) but become significant at the higher BER levels enabled by FEC technology, especially for signal distortions due to ISI. The standard formula for format complexity, P = 10log(L-1), is shown to overestimate the actual penalty for PAM-4 and PAM-8 by approximately 0.1 and 0.25 dB respectively at 1×10-3 BER. Then we extend the well-known PAM-2 ISI penalty estimation formula from the IEEE 802.3 standard 10G link modeling spreadsheet to the large BER case and generalize it for arbitrary PAM-L formats. To demonstrate and verify the BER dependence of the ISI penalty, a set of PAM-2 experiments and Monte-Carlo modeling simulations are reported. The experimental results and simulations confirm that the conventional formulas can significantly overestimate ISI penalties at relatively high BER levels. In the experiments, overestimates up to 2 dB are observed at 1×10-3 BER.

  20. 2015 Big Windy, Oregon 4-Band 8 Bit Imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are LiDAR orthorectified aerial photographs (8-bit GeoTIFF format) within the Oregon Lidar Consortium Big Windy project area. The imagery coverage is...

  1. Automatic shape recognition of a fast transient signal

    International Nuclear Information System (INIS)

    Charles, Gilbert.

    1976-01-01

    A system was developed to recognize if the shape of a signal x(t) is similar (or identical) to the one of an element yi(t) of an ensemble S composed by N known signals, that are memorised. x(t) is a time limited T 2 ) give the similarity measure of two signals. To solve the problem of the digital recording of the signals x(t) two devices were realized: a digital-to-analog converter which permits the recording of fast transient signals (band pass>1GHz, sampling-frequency approximately 100GHz, resolution: 9 bits, 576 samples); an automatic attenuator which scales the signal x(t) before the digitalization (the band pass is 70MHz at -1dB). A theoretical analysis permits to determine what must be the resolution of the digital-to-analog converter as a fonction of the signal-caracteristics and of the wanted precision for the calculus of rho 2 [fr

  2. Area-efficient readout with 14-bit SAR-ADC for CMOS image sensors

    Directory of Open Access Journals (Sweden)

    Aziza Sassi Ben

    2016-01-01

    Full Text Available This paper proposes a readout design for CMOS image sensors. It has been squeezed into a 7.5um pitch under a 0.28um 1P3M technology. The ADC performs one 14-bit conversion in only 1.5us and targets a theoretical DNL feature about +1.3/-1 at 14-bit accuracy. Correlated Double Sampling (CDS is performed both in the analog and digital domains to preserve the image quality.

  3. Increasing the bit rate in OCDMA systems using pulse position modulation techniques.

    Science.gov (United States)

    Arbab, Vahid R; Saghari, Poorya; Haghi, Mahta; Ebrahimi, Paniz; Willner, Alan E

    2007-09-17

    We have experimentally demonstrated two novel pulse position modulation techniques, namely Double Pulse Position Modulation (2-PPM) and Differential Pulse Position Modulation (DPPM) in Time-Wavelength OCDMA systems that will operate at a higher bit rate compared to traditional OOK-OCDMA systems with the same bandwidth. With 2-PPM technique, the number of active users will be more than DPPM while their bit rate is almost the same. Both techniques provide variable quality of service in OCDMA networks.

  4. LDPC product coding scheme with extrinsic information for bit patterned media recoding

    Directory of Open Access Journals (Sweden)

    Seongkwon Jeong

    2017-05-01

    Full Text Available Since the density limit of the current perpendicular magnetic storage system will soon be reached, bit patterned media recording (BPMR is a promising candidate for the next generation storage system to achieve an areal density beyond 1 Tb/in2. Each recording bit is stored in a fabricated magnetic island and the space between the magnetic islands is nonmagnetic in BPMR. To approach recording densities of 1 Tb/in2, the spacing of the magnetic islands must be less than 25 nm. Consequently, severe inter-symbol interference (ISI and inter-track interference (ITI occur. ITI and ISI degrade the performance of BPMR. In this paper, we propose a low-density parity check (LDPC product coding scheme that exploits extrinsic information for BPMR. This scheme shows an improved bit error rate performance compared to that in which one LDPC code is used.

  5. A facile approach for screening isolated nanomagnetic behavior for bit-patterned media

    International Nuclear Information System (INIS)

    Thiyagarajah, Naganivetha; Ng, Vivian; Asbahi, Mohamed; Yakovlev, Nikolai L; Yang, Joel K W; Wong, Rick T J; Low, Kendrick W M

    2014-01-01

    Bit-patterned media (BPM) fabricated by the direct deposition of magnetic material onto prepatterned arrays of nanopillars is a promising approach for increasing magnetic recording of areal density. One of the key challenges of this approach is to identify and control the magnetic interaction between the bits (on top of the nanopillars) and the trench material between the pillars. Using independent techniques, including magnetic force microscopy, the variable-angle magneto-optic Kerr effect, and remanence curves, we were able to determine the presence and relative intensities of exchange and dipolar interactions in Co-Pd multilayer-based BPM fabricated by direct deposition. We found that for pitches of 30 nm or less, there were negligible exchange interactions, and the bits were found to be magnetically isolated. As we move to higher densities, the absence of exchange interactions indicates that direct deposition is a promising approach to BPM fabrication. (papers)

  6. A Research on Maximum Symbolic Entropy from Intrinsic Mode Function and Its Application in Fault Diagnosis

    Directory of Open Access Journals (Sweden)

    Zhuofei Xu

    2017-01-01

    Full Text Available Empirical mode decomposition (EMD is a self-adaptive analysis method for nonlinear and nonstationary signals. It has been widely applied to machinery fault diagnosis and structural damage detection. A novel feature, maximum symbolic entropy of intrinsic mode function based on EMD, is proposed to enhance the ability of recognition of EMD in this paper. First, a signal is decomposed into a collection of intrinsic mode functions (IMFs based on the local characteristic time scale of the signal, and then IMFs are transformed into a serious of symbolic sequence with different parameters. Second, it can be found that the entropies of symbolic IMFs are quite different. However, there is always a maximum value for a certain symbolic IMF. Third, take the maximum symbolic entropy as features to describe IMFs from a signal. Finally, the proposed features are applied to evaluate the effect of maximum symbolic entropy in fault diagnosis of rolling bearing, and then the maximum symbolic entropy is compared with other standard time analysis features in a contrast experiment. Although maximum symbolic entropy is only a time domain feature, it can reveal the signal characteristic information accurately. It can also be used in other fields related to EMD method.

  7. FODA/IBEA satellite access scheme for MIXED traffic at variable bit and coding rates system description

    OpenAIRE

    Celandroni, Nedo; Ferro, Erina; Mihal, Vlado; Potort?, Francesco

    1992-01-01

    This report describes the FODA system working at variable coding and bit rates (FODA/IBEA-TDMA) FODA/IBEA is the natural evolution of the FODA-TDMA satellite access scheme working at 2 Mbit/s fixed rate with data 1/2 coded or uncoded. FODA-TDMA was used in the European SATINE-II experiment [8]. We remind here that the term FODA/IBEA system is comprehensive of the FODA/IBEA-TDMA (1) satellite access scheme and of the hardware prototype realised by the Marconi R.C. (U.K.). Both of them come fro...

  8. Factoring estimates for a 1024-bit RSA modulus

    NARCIS (Netherlands)

    Lenstra, A.K.; Tromer, E.; Shamir, A.; Kortsmit, W.J.P.M.; Dodson, B.; Hughes, J.; Leyland, P.; Laih, Chi Sung

    2003-01-01

    We estimate the yield of the number field sieve factoring algorithm when applied to the 1024-bit composite integer RSA-1024 and the parameters as proposed in the draft version [17] of the TWIRL hardware factoring device [18]. We present the details behind the resulting improved parameter choices

  9. BitTorrent's dilemma: Enhancing reciprocity or reducing inequity

    NARCIS (Netherlands)

    Jia, A.L.; D'Acunto, L.; Meulpolder, M.; Pouwelse, J.A.; Epema, D.H.J.

    2011-01-01

    Enhancing reciprocity has been one of the primary motivations for the design of incentive policies in BitTorrent-like P2P systems. Reciprocity implies that peers need to contribute their bandwidth to other peers if they want to receive bandwidth in return. However, the over-provisioning that

  10. Euclidean Geometry Codes, minimum weight words and decodable error-patterns using bit-flipping

    DEFF Research Database (Denmark)

    Høholdt, Tom; Justesen, Jørn; Jonsson, Bergtor

    2005-01-01

    We determine the number of minimum wigth words in a class of Euclidean Geometry codes and link the performance of the bit-flipping decoding algorithm to the geometry of the error patterns.......We determine the number of minimum wigth words in a class of Euclidean Geometry codes and link the performance of the bit-flipping decoding algorithm to the geometry of the error patterns....

  11. DMPD: Signaling by IL-12 and IL-23 and the immunoregulatory roles of STAT4. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15546391 Signaling by IL-12 and IL-23 and the immunoregulatory roles of STAT4. Watf...ord WT, Hissong BD, Bream JH, Kanno Y, Muul L, O'Shea JJ. Immunol Rev. 2004 Dec;202:139-56. (.png) (.svg) (....html) (.csml) Show Signaling by IL-12 and IL-23 and the immunoregulatory roles of STAT4. PubmedID 15546391 T...itle Signaling by IL-12 and IL-23 and the immunoregulatory roles of STAT4. Author...s Watford WT, Hissong BD, Bream JH, Kanno Y, Muul L, O'Shea JJ. Publication Immunol Rev. 2004 Dec;202:139-56

  12. FY 1975 Report on results of Sunshine Project. Development of techniques of digging high-temperature beds (Researches on roller cutter bits); 1975 nendo koon chiso kussaku gijutsu no kaihatsu. Roller cutter bit no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-03-31

    It is necessary to establish the techniques for digging bedrocks under elevated temperature and pressure for development and utilization of geothermal energy. This project is aimed at development of heat- and wear-resistant bit cutters, which have efficient tooth edge forms and arrangements. Another factor that determines bit serviceability is the bearing built in a cutter, and this project is also aimed at development of long-serviceable bit bearings by improving their resistance to heat. Four types of bits were developed, on a trial basis, and tested (size: 8.625 inches, two types of tooth forms, different shapes and arrangements of insert tips). They were tested for, e.g., their excavation rate, under the conditions of 5 tons as load and 100 rpm. It is found that their excavation rate vary with load, speed of rotation, tooth height and tooth form. Excavation torque increases in almost proportion to load. The sliding bearings of silver and its alloy were tested, to confirm the effects of silver. It is necessary to conduct the field tests in an actual geothermal area of high rock temperature and the ground tests with test machines to dig heated rocks in and after FY 1975, for overall evaluation of the bits developed. (NEDO)

  13. Maximum-likelihood methods for array processing based on time-frequency distributions

    Science.gov (United States)

    Zhang, Yimin; Mu, Weifeng; Amin, Moeness G.

    1999-11-01

    This paper proposes a novel time-frequency maximum likelihood (t-f ML) method for direction-of-arrival (DOA) estimation for non- stationary signals, and compares this method with conventional maximum likelihood DOA estimation techniques. Time-frequency distributions localize the signal power in the time-frequency domain, and as such enhance the effective SNR, leading to improved DOA estimation. The localization of signals with different t-f signatures permits the division of the time-frequency domain into smaller regions, each contains fewer signals than those incident on the array. The reduction of the number of signals within different time-frequency regions not only reduces the required number of sensors, but also decreases the computational load in multi- dimensional optimizations. Compared to the recently proposed time- frequency MUSIC (t-f MUSIC), the proposed t-f ML method can be applied in coherent environments, without the need to perform any type of preprocessing that is subject to both array geometry and array aperture.

  14. Metformin inhibits 17β-estradiol-induced epithelial-to-mesenchymal transition via βKlotho-related ERK1/2 signaling and AMPKα signaling in endometrial adenocarcinoma cells.

    Science.gov (United States)

    Liu, Zhao; Qi, Shasha; Zhao, Xingbo; Li, Mingjiang; Ding, Sentai; Lu, Jiaju; Zhang, Hui

    2016-04-19

    The potential role of metformin in treating endometrial cancer remains to be explored. The current study investigated the role of metformin in 17β-estradiol-induced epithelial-mesenchymal transition (EMT) in endometrial adenocarcinoma cells. We found that 17β-estradiol promoted proliferation and migration, attenuated apoptosis in both estrogen receptor (ER) positive and ER negative endometrial adenocarcinoma cells (Ishikawa and KLE cells, respectively). Metformin abolished 17β-estradiol-induced cell proliferation and reversed 17β-estradiol-induced EMT in Ishikawa cells. In addition, metformin increased the expression of βKlotho, a fibroblast growth factors (FGFs) coreceptor, and decreased ERK1/2 phosphorylation in both Ishikawa and KLE cells. Decreased expression of βKlotho was noted in human endometrial adenocarcinomas, and plasmid-driven expression of βKlotho in Ishikawa cells abolished 17β-estradiol-induced EMT via inhibiting ERK1/2 signaling. βKlotho expression and metformin show synergetic effects on the proliferation and the EMT in Ishikawa cells. Furthermore, we demonstrated that the anti-EMT effects of metformin could be partly abolished by introducing Compound C, a specific AMPKα signaling inhibitor. In conclusion, metformin abolishes 17β-estradiol-induced cell proliferation and EMT in endometrial adenocarcinoma cells by upregulating βKlotho expression, inhibiting ERK1/2 signaling, and activating AMPKα signaling. Our study provides novel mechanistic insight into the anti-tumor effects of metformin.

  15. Power consumption analysis of constant bit rate video transmission over 3G networks

    DEFF Research Database (Denmark)

    Ukhanova, Ann; Belyaev, Evgeny; Wang, Le

    2012-01-01

    This paper presents an analysis of the power consumption of video data transmission with constant bit rate over 3G mobile wireless networks. The work includes the description of the radio resource control transition state machine in 3G networks, followed by a detailed power consumption analysis...... and measurements of the radio link power consumption. Based on this description and analysis, we propose our power consumption model. The power model was evaluated on a smartphone Nokia N900, which follows 3GPP Release 5 and 6 supporting HSDPA/HSUPA data bearers. We also propose a method for parameter selection...... for the 3GPP transition state machine that allows to decrease power consumption on a mobile device taking signaling traffic, buffer size and latency restrictions into account. Furthermore, we discuss the gain in power consumption vs. PSNR for transmitted video and show the possibility of performing power...

  16. A novel image encryption algorithm based on synchronized random bit generated in cascade-coupled chaotic semiconductor ring lasers

    Science.gov (United States)

    Li, Jiafu; Xiang, Shuiying; Wang, Haoning; Gong, Junkai; Wen, Aijun

    2018-03-01

    In this paper, a novel image encryption algorithm based on synchronization of physical random bit generated in a cascade-coupled semiconductor ring lasers (CCSRL) system is proposed, and the security analysis is performed. In both transmitter and receiver parts, the CCSRL system is a master-slave configuration consisting of a master semiconductor ring laser (M-SRL) with cross-feedback and a solitary SRL (S-SRL). The proposed image encryption algorithm includes image preprocessing based on conventional chaotic maps, pixel confusion based on control matrix extracted from physical random bit, and pixel diffusion based on random bit stream extracted from physical random bit. Firstly, the preprocessing method is used to eliminate the correlation between adjacent pixels. Secondly, physical random bit with verified randomness is generated based on chaos in the CCSRL system, and is used to simultaneously generate the control matrix and random bit stream. Finally, the control matrix and random bit stream are used for the encryption algorithm in order to change the position and the values of pixels, respectively. Simulation results and security analysis demonstrate that the proposed algorithm is effective and able to resist various typical attacks, and thus is an excellent candidate for secure image communication application.

  17. 10-bit rapid single flux quantum digital-to-analog converter for ac voltage standard

    International Nuclear Information System (INIS)

    Maezawa, M; Hirayama, F

    2008-01-01

    Digital-to-analog (D/A) converters based on rapid single flux quantum (RSFQ) technology are under development for ac voltage standard applications. We present design and test results on a prototype 10-bit version integrated on a single chip. The 10-bit chip includes over 6000 Josephson junctions and consumes a bias current exceeding 1 A. To reduce the effects of the high bias current on circuit operation, a custom design method was employed in part and large circuit blocks were divided into smaller ones. The 10-bit chips were fabricated and tested at low speed. The test results suggested that our design approach could manage large bias currents on the order of 1 A per chip

  18. Twin-bit via resistive random access memory in 16 nm FinFET logic technologies

    Science.gov (United States)

    Shih, Yi-Hong; Hsu, Meng-Yin; King, Ya-Chin; Lin, Chrong Jung

    2018-04-01

    A via resistive random access memory (RRAM) cell fully compatible with the standard CMOS logic process has been successfully demonstrated for high-density logic nonvolatile memory (NVM) modules in advanced FinFET circuits. In this new cell, the transition metal layers are formed on both sides of a via, given two storage bits per via. In addition to its compact cell area (1T + 14 nm × 32 nm), the twin-bit via RRAM cell features a low operation voltage, a large read window, good data retention, and excellent cycling capability. As fine alignments between mask layers become possible, the twin-bit via RRAM cell is expected to be highly scalable in advanced FinFET technology.

  19. Position encoder

    International Nuclear Information System (INIS)

    Goursky, Vsevolod

    1975-01-01

    A circuitry for deriving the quotient of signal delivered by position-sensitive detectors is described. Digital output is obtained in the form of 10- to 12-bit words. Impact position may be determined with 0.25% accuracy when the dynamic range of the energy signal is less 1:10, and 0.5% accuracy when the dynamic range is 1:20. The division requires an average time of 5μs for 10-bit words

  20. Student laboratory experiments exploring optical fibre communication systems, eye diagrams, and bit error rates

    Science.gov (United States)

    Walsh, Douglas; Moodie, David; Mauchline, Iain; Conner, Steve; Johnstone, Walter; Culshaw, Brian

    2005-06-01

    Optical fibre communications has proved to be one of the key application areas, which created, and ultimately propelled the global growth of the photonics industry over the last twenty years. Consequently the teaching of the principles of optical fibre communications has become integral to many university courses covering photonics technology. However to reinforce the fundamental principles and key technical issues students examine in their lecture courses and to develop their experimental skills, it is critical that the students also obtain hands-on practical experience of photonics components, instruments and systems in an associated teaching laboratory. In recognition of this need OptoSci, in collaboration with university academics, commercially developed a fibre optic communications based educational package (ED-COM). This educator kit enables students to; investigate the characteristics of the individual communications system components (sources, transmitters, fibre, receiver), examine and interpret the overall system performance limitations imposed by attenuation and dispersion, conduct system design and performance analysis. To further enhance the experimental programme examined in the fibre optic communications kit, an extension module to ED-COM has recently been introduced examining one of the most significant performance parameters of digital communications systems, the bit error rate (BER). This add-on module, BER(COM), enables students to generate, evaluate and investigate signal quality trends by examining eye patterns, and explore the bit-rate limitations imposed on communication systems by noise, attenuation and dispersion. This paper will examine the educational objectives, background theory, and typical results for these educator kits, with particular emphasis on BER(COM).

  1. Development of integrated superconducting devices for signal preprocessing. Final report; Entwicklung supraleitender Bausteine der Signalvorverarbeitung. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Biehl, M.; Koch, R.; Neuhaus, M.; Scherer, T.; Jutzi, W.

    1998-02-01

    SPICE and CADENCE based tools for designing, simulating and optimizing SFQ and RSFQ circuits have been developed as well as a standard cell library corresponding to the fabrication technology established at the IEGI. A 12 bit flux shuttle shift register using Nb/Al Josephson junctions with a new write and readout gate has been fabricated and tested successfully; the power dissipation is 9 nW/bit/GHz. A pseudo random pulse generator was developed correspondingly. Simulations of RSFQ toggle flipflops during a large number of clock cycles demonstrated that the digital performance of counters is limited to clock frequencies below 100 GHz by dynamic effects, especially of parasitic inductances. Therefore dc measurements based on the voltage-frequency Josephson relationship must be followed by real time measurements of single SFQ word pulses. A four stage Nb based RSFQ counter in a coplanar waveguide test jig was tested up to a frequency of 2 GHz, limited by the available 32 bit pattern generator and the bandwith of the sampling oscilloscope, yielding bit error rates of about 10{sup -12}. Using YBCO technology, a 4 bit SFQ shift register (T=40 K) as well as miniaturized coplanar microwave devices for satellite and communication applications at 10 GHz (T=77 K) have been designed and fabricated. A 4 bit instantaneous real time frequency meter (IFM) and a microwave filter with a 3-dB bandwidth of only 1.8% have been mounted on the cold head of a split-cycle Stirling cooler (AEG, 1.5 W rate at 80 K) and tested successfully. Hybrid devices, e.g. amplifiers and oscillators, combining active semiconductor components and low loss coplanar YBCO transmission lines operated at 77 K seem very promising. (orig.) [Deutsch] Werkzeuge der Auslegung, Simulation und Optimierung von SFQ- und RSFQ-Schaltungen auf der Basis von SPICE und CADENCE wurden am IEGI entwickelt und eingesetzt. Eine auf die Technologien des Instituts zugeschnittene Bibliothek von Zellen ist vorhanden. Mit der

  2. Analytical expression for the bit error rate of cascaded all-optical regenerators

    DEFF Research Database (Denmark)

    Mørk, Jesper; Öhman, Filip; Bischoff, S.

    2003-01-01

    We derive an approximate analytical expression for the bit error rate of cascaded fiber links containing all-optical 2R-regenerators. A general analysis of the interplay between noise due to amplification and the degree of reshaping (nonlinearity) of the regenerator is performed.......We derive an approximate analytical expression for the bit error rate of cascaded fiber links containing all-optical 2R-regenerators. A general analysis of the interplay between noise due to amplification and the degree of reshaping (nonlinearity) of the regenerator is performed....

  3. The bit slice micro-processor 'GESPRO' as a project in the UA2 experiment

    International Nuclear Information System (INIS)

    Becam, C.; Bernaudin, P.; Delanghe, J.; Mencik, M.; Merkel, B.; Plothow, H.; Fest, H.M.; Lecoq, J.; Martin, H.; Meyer, J.M.

    1981-01-01

    The bit slice micro-processor GESPRO, as it is proposed for use in the UA 2 data acquisition chain and trigger system, is a CAMAC module plugged into a standard Elliott System crate via which it communicates as a slave with its host computer (ND, DEC). It has full control of CAMAC as a master unit. GESPRO is a 24 bit machine (150 ns effective cycle time) with multi-mode memory addressing capacity of 64 K words. The micro-processor structure uses 5 busses including pipe-line registers to mask access time and 16 interrupt levels. The micro-program memory capacity is 2 K (RAM) words of 48 bits each. A special hardwired module allows floating point (as well as integer) multiplication of 24 x 24 bits, result in 48 bits, in about 200 ns. This micro-processor could be used in the UA2 data acquisition chain and trigger system for the following tasks: a) online data reduction, i.e. to read DURANDAL (fast ADC's = the hardware trigger in the experiment), process the information (effective mass calculation, etc.) resulting in accepting or rejecting the event. b) read out and analysis of the accepted data (collect statistical information). c) preprocess the data (calculation of pointers, address decoding, etc.). The UA2 version of GESPRO is under construction, programs and micro-programs are under development. Hardware and software will be tested with simulated data. First results are expected in about one year from now. (orig.)

  4. arXiv FlavBit: A GAMBIT module for computing flavour observables and likelihoods

    CERN Document Server

    Bernlochner, Florian U.; Dal, Lars A.; Farmer, Ben; Jackson, Paul; Kvellestad, Anders; Mahmoudi, Farvah; Putze, Antje; Rogan, Christopher; Scott, Pat; Serra, Nicola; Weniger, Christoph; White, Martin

    2017-11-21

    Flavour physics observables are excellent probes of new physics up to very high energy scales. Here we present FlavBit, the dedicated flavour physics module of the global-fitting package GAMBIT. FlavBit includes custom implementations of various likelihood routines for a wide range of flavour observables, including detailed uncertainties and correlations associated with LHCb measurements of rare, leptonic and semileptonic decays of B and D mesons, kaons and pions. It provides a generalised interface to external theory codes such as SuperIso, allowing users to calculate flavour observables in and beyond the Standard Model, and then test them in detail against all relevant experimental data. We describe FlavBit and its constituent physics in some detail, then give examples from supersymmetry and effective field theory illustrating how it can be used both as a standalone library for flavour physics, and within GAMBIT.

  5. Modular trigger processing The GCT muon and quiet bit system

    CERN Document Server

    Stettler, Matthew; Hansen, Magnus; Iles, Gregory; Jones, John; PH-EP

    2007-01-01

    The CMS Global Calorimeter Trigger system's HCAL Muon and Quiet bit reformatting function is being implemented with a novel processing architecture. This architecture utilizes micro TCA, a modern modular communications standard based on high speed serial links, to implement a processing matrix. This matrix is configurable in both logical functionality and data flow, allowing far greater flexibility than current trigger processing systems. In addition, the modular nature of this architecture allows flexibility in scale unmatched by traditional approaches. The Muon and Quiet bit system consists of two major components, a custom micro TCA backplane and processing module. These components are based on Xilinx Virtex5 and Mindspeed crosspoint switch devices, bringing together state of the art FPGA based processing and Telcom switching technologies.

  6. Finger Vein Recognition Based on a Personalized Best Bit Map

    Science.gov (United States)

    Yang, Gongping; Xi, Xiaoming; Yin, Yilong

    2012-01-01

    Finger vein patterns have recently been recognized as an effective biometric identifier. In this paper, we propose a finger vein recognition method based on a personalized best bit map (PBBM). Our method is rooted in a local binary pattern based method and then inclined to use the best bits only for matching. We first present the concept of PBBM and the generating algorithm. Then we propose the finger vein recognition framework, which consists of preprocessing, feature extraction, and matching. Finally, we design extensive experiments to evaluate the effectiveness of our proposal. Experimental results show that PBBM achieves not only better performance, but also high robustness and reliability. In addition, PBBM can be used as a general framework for binary pattern based recognition. PMID:22438735

  7. A Preliminary Study on the Containment Integrity following BIT Removal for Kori NPP Unit 3,4

    Energy Technology Data Exchange (ETDEWEB)

    Song, Dong Soo; Byun, Choong Sup [KEPRI, Nuclear Power Generation Laboratory, Daejeon (Korea, Republic of); Jo, Jong Young [ENERGEO Inc., Sungnam (Korea, Republic of)

    2008-05-15

    The Boron Injection Tank (BIT) is to provide high concentrated boric acid to the reactor in order to mitigate the consequences of postulated Main Steam Line Break accidents (MSLB). Although BIT plays an important role in mitigating the accident, high concentration of 20,000ppm causes valve leakage, pipe clog, precipitation and continuous heat tracing have to be provided. This paper is for the feasibility study of containment integrity using CONTEMPT code for BIT removal of Kori Nuclear Power Plant (NPP) Unit 3, 4.

  8. A Preliminary Study on the Containment Integrity following BIT Removal for Kori NPP Unit 3,4

    International Nuclear Information System (INIS)

    Song, Dong Soo; Byun, Choong Sup; Jo, Jong Young

    2008-01-01

    The Boron Injection Tank (BIT) is to provide high concentrated boric acid to the reactor in order to mitigate the consequences of postulated Main Steam Line Break accidents (MSLB). Although BIT plays an important role in mitigating the accident, high concentration of 20,000ppm causes valve leakage, pipe clog, precipitation and continuous heat tracing have to be provided. This paper is for the feasibility study of containment integrity using CONTEMPT code for BIT removal of Kori Nuclear Power Plant (NPP) Unit 3, 4

  9. A 10 MS/s 8-bit charge-redistribution ADC for hybrid pixel applications in 65 m CMOS

    International Nuclear Information System (INIS)

    Kishishita, Tetsuichi; Hemperek, Tomasz; Krüger, Hans; Koch, Manuel; Germic, Leonard; Wermes, Norbert

    2013-01-01

    The design and measurement results of an 8-bit SAR ADC, based on a charge-redistribution DAC, are presented. This ADC is characterized by superior power efficiency and small area, realized by employing a lateral metal–metal capacitor array and a dynamic two-stage comparator. To avoid the need for a high-speed clock and its associated power consumption, an asynchronous logic was implemented in a logic control cell. A test chip has been developed in a 65 nm CMOS technology, including eight ADC channels with different layout flavors of the capacitor array, a transimpedance amplifier as a signal input structure, a serializer, and a custom-made LVDS driver for data transmission. The integral (INL) and differential (DNL) nonlinearities are measured below 0.5 LSB and 0.8 LSB, respectively, for the best channel operating at a sampling frequency of 10 MS/s. The area occupies 40μm×70μm for one ADC channel. The power consumption is estimated as 4μW at 1 MS/s and 38μW at 10 MS/s with a supply rail of 1.2 V. These excellent performance features and the natural radiation hardness of the design, due to the thin gate oxide thickness of transistors, are very interesting for front-end electronics ICs of future hybrid-pixel detector systems

  10. A 10 MS/s 8-bit charge-redistribution ADC for hybrid pixel applications in 65 m CMOS

    Energy Technology Data Exchange (ETDEWEB)

    Kishishita, Tetsuichi, E-mail: kisisita@physik.uni-bonn.de; Hemperek, Tomasz; Krüger, Hans; Koch, Manuel; Germic, Leonard; Wermes, Norbert

    2013-12-21

    The design and measurement results of an 8-bit SAR ADC, based on a charge-redistribution DAC, are presented. This ADC is characterized by superior power efficiency and small area, realized by employing a lateral metal–metal capacitor array and a dynamic two-stage comparator. To avoid the need for a high-speed clock and its associated power consumption, an asynchronous logic was implemented in a logic control cell. A test chip has been developed in a 65 nm CMOS technology, including eight ADC channels with different layout flavors of the capacitor array, a transimpedance amplifier as a signal input structure, a serializer, and a custom-made LVDS driver for data transmission. The integral (INL) and differential (DNL) nonlinearities are measured below 0.5 LSB and 0.8 LSB, respectively, for the best channel operating at a sampling frequency of 10 MS/s. The area occupies 40μm×70μm for one ADC channel. The power consumption is estimated as 4μW at 1 MS/s and 38μW at 10 MS/s with a supply rail of 1.2 V. These excellent performance features and the natural radiation hardness of the design, due to the thin gate oxide thickness of transistors, are very interesting for front-end electronics ICs of future hybrid-pixel detector systems.

  11. Parallel-Bit Stream for Securing Iris Recognition

    OpenAIRE

    Elsayed Mostafa; Maher Mansour; Heba Saad

    2012-01-01

    Biometrics-based authentication schemes have usability advantages over traditional password-based authentication schemes. However, biometrics raises several privacy concerns, it has disadvantages comparing to traditional password in which it is not secured and non revocable. In this paper, we propose a fast method for securing revocable iris template using parallel-bit stream watermarking to overcome these problems. Experimental results prove that the proposed method has low computation time ...

  12. Traffic management mechanism for intranets with available-bit-rate access to the Internet

    Science.gov (United States)

    Hassan, Mahbub; Sirisena, Harsha R.; Atiquzzaman, Mohammed

    1997-10-01

    The design of a traffic management mechanism for intranets connected to the Internet via an available bit rate access- link is presented. Selection of control parameters for this mechanism for optimum performance is shown through analysis. An estimate for packet loss probability at the access- gateway is derived for random fluctuation of available bit rate of the access-link. Some implementation strategies of this mechanism in the standard intranet protocol stack are also suggested.

  13. Extending Landauer's bound from bit erasure to arbitrary computation

    Science.gov (United States)

    Wolpert, David

    The minimal thermodynamic work required to erase a bit, known as Landauer's bound, has been extensively investigated both theoretically and experimentally. However, when viewed as a computation that maps inputs to outputs, bit erasure has a very special property: the output does not depend on the input. Existing analyses of thermodynamics of bit erasure implicitly exploit this property, and thus cannot be directly extended to analyze the computation of arbitrary input-output maps. Here we show how to extend these earlier analyses of bit erasure to analyze the thermodynamics of arbitrary computations. Doing this establishes a formal connection between the thermodynamics of computers and much of theoretical computer science. We use this extension to analyze the thermodynamics of the canonical ``general purpose computer'' considered in computer science theory: a universal Turing machine (UTM). We consider a UTM which maps input programs to output strings, where inputs are drawn from an ensemble of random binary sequences, and prove: i) The minimal work needed by a UTM to run some particular input program X and produce output Y is the Kolmogorov complexity of Y minus the log of the ``algorithmic probability'' of Y. This minimal amount of thermodynamic work has a finite upper bound, which is independent of the output Y, depending only on the details of the UTM. ii) The expected work needed by a UTM to compute some given output Y is infinite. As a corollary, the overall expected work to run a UTM is infinite. iii) The expected work needed by an arbitrary Turing machine T (not necessarily universal) to compute some given output Y can either be infinite or finite, depending on Y and the details of T. To derive these results we must combine ideas from nonequilibrium statistical physics with fundamental results from computer science, such as Levin's coding theorem and other theorems about universal computation. I would like to ackowledge the Santa Fe Institute, Grant No

  14. Terahertz wave manipulation based on multi-bit coding artificial electromagnetic surfaces

    Science.gov (United States)

    Li, Jiu-Sheng; Zhao, Ze-Jiang; Yao, Jian-Quan

    2018-05-01

    A polarization insensitive multi-bit coding artificial electromagnetic surface is proposed for terahertz wave manipulation. The coding artificial electromagnetic surfaces composed of four-arrow-shaped particles with certain coding sequences can generate multi-bit coding in the terahertz frequencies and manipulate the reflected terahertz waves to the numerous directions by using of different coding distributions. Furthermore, we demonstrate that our coding artificial electromagnetic surfaces have strong abilities to reduce the radar cross section with polarization insensitive for TE and TM incident terahertz waves as well as linear-polarized and circular-polarized terahertz waves. This work offers an effectively strategy to realize more powerful manipulation of terahertz wave.

  15. Demonstrating Multi-bit Magnetic Memory in the Fe8 High Spin Molecule by Muon Spin Rotation

    OpenAIRE

    Shafir, Oren; Keren, Amit; Maegawa, Satoru; Ueda, Miki; Amato, Alex; Baines, Chris

    2005-01-01

    We developed a method to detect the quantum nature of high spin molecules using muon spin rotation, and a three-step field cycle ending always with the same field. We use this method to demonstrate that the Fe8 molecule can remember 6 (possibly 8) different histories (bits). A wide range of fields can be used to write a particular bit, and the information is stored in discrete states. Therefore, Fe8 can be used as a model compound for Multi-bit Magnetic Memory. Our experiment also paves the w...

  16. Head and bit patterned media optimization at areal densities of 2.5 Tbit/in2 and beyond

    International Nuclear Information System (INIS)

    Bashir, M.A.; Schrefl, T.; Dean, J.; Goncharov, A.; Hrkac, G.; Allwood, D.A.; Suess, D.

    2012-01-01

    Global optimization of writing head is performed using micromagnetics and surrogate optimization. The shape of the pole tip is optimized for bit patterned, exchange spring recording media. The media characteristics define the effective write field and the threshold values for the head field that acts at islands in the adjacent track. Once the required head field characteristics are defined, the pole tip geometry is optimized in order to achieve a high gradient of the effective write field while keeping the write field at the adjacent track below a given value. We computed the write error rate and the adjacent track erasure for different maximum anisotropy in the multilayer, graded media. The results show a linear trade off between the error rate and the number of passes before erasure. For optimal head media combinations we found a bit error rate of 10 -6 with 10 8 pass lines before erasure at 2.5 Tbit/in 2 . - Research Highlights: → Global optimization of writing head is performed using micromagnetics and surrogate optimization. → A method is provided to optimize the pole tip shape while maintaining the head field that acts in the adjacent tracks. → Patterned media structures providing an area density of 2.5 Tbit/in 2 are discussed as a case study. → Media reliability is studied, while taking into account, the magnetostatic field interactions from neighbouring islands and adjacent track erasure under the influence of head field.

  17. Maximum Likelihood Blind Channel Estimation for Space-Time Coding Systems

    Directory of Open Access Journals (Sweden)

    Hakan A. Çırpan

    2002-05-01

    Full Text Available Sophisticated signal processing techniques have to be developed for capacity enhancement of future wireless communication systems. In recent years, space-time coding is proposed to provide significant capacity gains over the traditional communication systems in fading wireless channels. Space-time codes are obtained by combining channel coding, modulation, transmit diversity, and optional receive diversity in order to provide diversity at the receiver and coding gain without sacrificing the bandwidth. In this paper, we consider the problem of blind estimation of space-time coded signals along with the channel parameters. Both conditional and unconditional maximum likelihood approaches are developed and iterative solutions are proposed. The conditional maximum likelihood algorithm is based on iterative least squares with projection whereas the unconditional maximum likelihood approach is developed by means of finite state Markov process modelling. The performance analysis issues of the proposed methods are studied. Finally, some simulation results are presented.

  18. Exosome uptake depends on ERK1/2-heat shock protein 27 signaling and lipid Raft-mediated endocytosis negatively regulated by caveolin-1.

    Science.gov (United States)

    Svensson, Katrin J; Christianson, Helena C; Wittrup, Anders; Bourseau-Guilmain, Erika; Lindqvist, Eva; Svensson, Lena M; Mörgelin, Matthias; Belting, Mattias

    2013-06-14

    The role of exosomes in cancer can be inferred from the observation that they transfer tumor cell derived genetic material and signaling proteins, resulting in e.g. increased tumor angiogenesis and metastasis. However, the membrane transport mechanisms and the signaling events involved in the uptake of these virus-like particles remain ill-defined. We now report that internalization of exosomes derived from glioblastoma (GBM) cells involves nonclassical, lipid raft-dependent endocytosis. Importantly, we show that the lipid raft-associated protein caveolin-1 (CAV1), in analogy with its previously described role in virus uptake, negatively regulates the uptake of exosomes. We find that exosomes induce the phosphorylation of several downstream targets known to associate with lipid rafts as signaling and sorting platforms, such as extracellular signal-regulated kinase-1/2 (ERK1/2) and heat shock protein 27 (HSP27). Interestingly, exosome uptake appears dependent on unperturbed ERK1/2-HSP27 signaling, and ERK1/2 phosphorylation is under negative influence by CAV1 during internalization of exosomes. These findings significantly advance our general understanding of exosome-mediated uptake and offer potential strategies for how this pathway may be targeted through modulation of CAV1 expression and ERK1/2 signaling.

  19. Dynamic detection-rate-based bit allocation with genuine interval concealment for binary biometric representation.

    Science.gov (United States)

    Lim, Meng-Hui; Teoh, Andrew Beng Jin; Toh, Kar-Ann

    2013-06-01

    Biometric discretization is a key component in biometric cryptographic key generation. It converts an extracted biometric feature vector into a binary string via typical steps such as segmentation of each feature element into a number of labeled intervals, mapping of each interval-captured feature element onto a binary space, and concatenation of the resulted binary output of all feature elements into a binary string. Currently, the detection rate optimized bit allocation (DROBA) scheme is one of the most effective biometric discretization schemes in terms of its capability to assign binary bits dynamically to user-specific features with respect to their discriminability. However, we learn that DROBA suffers from potential discriminative feature misdetection and underdiscretization in its bit allocation process. This paper highlights such drawbacks and improves upon DROBA based on a novel two-stage algorithm: 1) a dynamic search method to efficiently recapture such misdetected features and to optimize the bit allocation of underdiscretized features and 2) a genuine interval concealment technique to alleviate crucial information leakage resulted from the dynamic search. Improvements in classification accuracy on two popular face data sets vindicate the feasibility of our approach compared with DROBA.

  20. Analysis of the maximum discharge of karst springs

    Science.gov (United States)

    Bonacci, Ognjen

    2001-07-01

    Analyses are presented of the conditions that limit the discharge of some karst springs. The large number of springs studied show that, under conditions of extremely intense precipitation, a maximum value exists for the discharge of the main springs in a catchment, independent of catchment size and the amount of precipitation. Outflow modelling of karst-spring discharge is not easily generalized and schematized due to numerous specific characteristics of karst-flow systems. A detailed examination of the published data on four karst springs identified the possible reasons for the limitation on the maximum flow rate: (1) limited size of the karst conduit; (2) pressure flow; (3) intercatchment overflow; (4) overflow from the main spring-flow system to intermittent springs within the same catchment; (5) water storage in the zone above the karst aquifer or epikarstic zone of the catchment; and (6) factors such as climate, soil and vegetation cover, and altitude and geology of the catchment area. The phenomenon of limited maximum-discharge capacity of karst springs is not included in rainfall-runoff process modelling, which is probably one of the main reasons for the present poor quality of karst hydrological modelling. Résumé. Les conditions qui limitent le débit de certaines sources karstiques sont présentées. Un grand nombre de sources étudiées montrent que, sous certaines conditions de précipitations extrêmement intenses, il existe une valeur maximale pour le débit des sources principales d'un bassin, indépendante des dimensions de ce bassin et de la hauteur de précipitation. La modélisation des débits d'exhaure d'une source karstique n'est pas facilement généralisable, ni schématisable, à cause des nombreuses caractéristiques spécifiques des écoulements souterrains karstiques. Un examen détaillé des données publiées concernant quatre sources karstiques permet d'identifier les raisons possibles de la limitation de l'écoulement maximal: (1