Moments of meson distribution functions with dynamical twisted mass fermions
Baron, R; Carbonell, J; Jansen, K; Liu, Z; Pène, O; Urbach, C
2007-01-01
We present our preliminary results on the lowest moment of quark distribution functions of the pion using two flavor dynamical simulations with Wilson twisted mass fermions at maximal twist. The calculation is done in a range of pion masses from 300 to 500 MeV. A stochastic source method is used to reduce inversions in calculating propagators. Finite volume effects at the lowest quark mass are examined by using two different lattice volumes. Our results show that we achieve statistical errors of only a few percent. We plan to compute renormalization constants non-perturbatively and extend the calculation to two more lattice spacings and to the nucleons.
Alkjær, Tine; Simonsen, Erik B; Magnusson, S Peter
2012-01-01
INTRODUCTION: Coactivation of the hamstring muscles during dynamic knee extension may compensate for increased knee joint laxity in anterior cruciate ligament (ACL) deficient subjects. This study examined if antagonist muscle coactivation during maximal dynamic knee extension was elevated...... in subjects with anterior cruciate ligament (ACL) deficiency compared to age-matched healthy controls. METHODS: Electromyography (EMG) and net knee joint moments were recorded during maximal concentric quadriceps and eccentric hamstring contractions, performed in an isokinetic dynamometer (ROM: 90......-10°, angular speed: 30°/s). Hamstring antagonist EMG recorded during concentric quadriceps contraction was converted into antagonist moment based on the EMG-moment relationship observed during eccentric agonist contractions. RESULTS: The magnitude of antagonist hamstring EMG was 65.5% higher in ACL deficient...
Light Meson Physics from Maximally Twisted Mass Lattice QCD
Baron, R; Dimopoulos, P; Farchioni, F; Frezzotti, R; Gimenez, V; Herdoiza, G; Jansen, K; Lubicz, V; Michael, C; Muenster, G; Palao, D; Rossi, G C; Scorzato, L; Shindler, A; Simula, S; Sudmann, T; Urbach, C; Wenger, U
2009-01-01
We present a comprehensive investigation of light meson physics using maximally twisted mass fermions for two mass-degenerate quark flavours. By employing four values of the lattice spacing, spatial lattice extents ranging from 2.0 fm to 2.5 fm and pseudo scalar masses in the range 280 MeV to 650 MeV we control the major systematic effects of our calculation. This enables us to confront our data with chiral perturbation theory and extract low energy constants of the effective chiral Lagrangian and derived quantities, such as the light quark mass, with high precision.
Geoelectrical inference of mass transfer parameters using temporal moments
Day-Lewis, F. D.; Singha, K.
2008-01-01
We present an approach to infer mass transfer parameters based on (1) an analytical model that relates the temporal moments of mobile and bulk concentration and (2) a bicontinuum modification to Archie's law. Whereas conventional geochemical measurements preferentially sample from the mobile domain, electrical resistivity tomography (ERT) is sensitive to bulk electrical conductivity and, thus, electrolytic solute in both the mobile and immobile domains. We demonstrate the new approach, in which temporal moments of collocated mobile domain conductivity (i.e., conventional sampling) and ERT-estimated bulk conductivity are used to calculate heterogeneous mass transfer rate and immobile porosity fractions in a series of numerical column experiments. Copyright 2008 by the American Geophysical Union.
Anomalous center of mass shift gravitational dipole moment
Jeong, E J
1996-01-01
The anomalous, energy dependent shift of the center of mass of an idealized, perfectly rigid, uniformly rotating hemispherical shell which is caused by the relativistic mass increase effect is investigated in detail. It is shown that a classical object on impact which has the harmonic binding force between the adjacent constituent particles has the similar effect of the energy dependent, anomalous shift of the center of mass. From these observations, the general mode of the linear acceleration is suggested to be caused by the anomalous center of mass shift whether it's due to classical or relativistic origin. The effect of the energy dependent center of mass shift perpendicular to the plane of rotation of a rotating hemisphere appears as the non zero gravitational dipole moment in general relativity. Controlled experiment for the measurement of the gravitational dipole field and its possible links to the cylindrical type line formation of a worm hole in the extreme case are suggested. The jets from the black ...
Looking at the gluon moment of the nucleon with dynamical twisted mass fermions
Alexandrou, Constantia; Hadjiyiannakou, Kyriakos; Jansen, Karl; Kostrzewa, Bartosz; Wiese, Christian
2013-01-01
To understand the structure of hadrons it is important to know the PDF of their constituents, the quarks and gluons. In our work we aim to compute the first moment of the gluon PDF $\\langle x \\rangle_g$ for the nucleon. We follow two possible approaches in order to extract the gluon moment: the Feynman-Hellmann theorem and a direct method with smearing of the gluon operator. We present preliminary results computed on $24^3 \\times 48$ lattices for the case where the Feynman-Hellman theorem is used and $32^3 \\times 64$ lattices for the direct method, employing $N_f=2+1+1$ maximally twisted mass fermions.
Looking at the gluon moment of the nucleon with dynamical twisted mass fermions
Alexandrou, Constantia [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center; Drach, Vincent; Wiese, Christian [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Hadjiyiannakou, Kyriakos [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Jansen, Karl [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Kostrzewa, Bartosz [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik
2013-11-15
To understand the structure of hadrons it is important to know the PDF of their constituents, the quarks and gluons. In our work we aim to compute the first moment of the gluon PDF left angle x right angle {sub g} for the nucleon. We follow two possible approaches in order to extract the gluon moment: the Feynman-Hellmann theorem and a direct method with smearing of the gluon operator. We present preliminary results computed on 24{sup 3} x 48 lattices for the case where the Feynman-Hellman theorem is used and 32{sup 3} x 64 lattices for the direct method, employing N{sub f}=2+1+1 maximally twisted mass fermions.
Quark Mass Dependence of Nucleon Magnetic Moment and Charge Radii
MA Wei-Xing; ZHOU Li-Juan; GU Yun-Ting; PING Rong-Gang
2005-01-01
Understanding hadron structure within the framework of QCD is an extremely challenging problem. Our purpose here is to explain the model-independent consequences of the approximated chiral symmetry of QCD for two famous results concerning the quark structure of the nucleon. We show that both the apparent success of the constituent quark model in reproducing the ratio of proton to neutron magnetic moments and the apparent success of the Foldy term in reproducing the observed charge radius of the neutron are coincidental. That is, a relatively small change of the current quark mass would spoil both results.
Scaling and chiral extrapolation of pion mass and decay constant with maximally twisted mass QCD
Dimopoulos, P; Herdoiza, G; Jansen, K; Michael, C; Urbach, C
2008-01-01
We present an update of the results for pion mass and pion decay constant as obtained by the ETM collaboration in large scale simulations with maximally twisted mass fermions and two mass degenerate flavours of light quarks. We discuss the continuum, chiral and infinite volume extrapolation of these quantities as well as the extraction of low energy constants, and investigate possible systematic uncertainties.
Anomalous center of mass shift: gravitational dipole moment.
Jeong, Eue Jin
1997-02-01
The anomalous, energy dependent shift of the center of mass of an idealized, perfectly rigid, uniformly rotating hemispherical shell which is caused by the relativistic mass increase effect is investigated in detail. It is shown that a classical object on impact which has the harmonic binding force between the adjacent constituent particles has the similar effect of the energy dependent, anomalous shift of the center of mass. From these observations, the general mode of the linear acceleration is suggested to be caused by the anomalous center of mass shift whether it's due to classical or relativistic origin. The effect of the energy dependent center of mass shift perpendicular to the plane of rotation of a rotating hemisphere appears as the non zero gravitational dipole moment in general relativity. Controlled experiment for the measurement of the gravitational dipole field and its possible links to the cylindrical type line formation of a worm hole in the extreme case are suggested. The jets from the black hole accretion disc and the observed anomalous red shift from far away galaxies are considered to be the consequences of the two different aspects of the dipole gravity.
Maximal Unitarity for the Four-Mass Double Box
Johansson, Henrik; Larsen, Kasper J.
2014-01-01
We extend the maximal-unitarity formalism at two loops to double-box integrals with four massive external legs. These are relevant for higher-point processes, as well as for heavy vector rescattering, VV -> VV. In this formalism, the two-loop amplitude is expanded over a basis of integrals. We obtain formulas for the coefficients of the double-box integrals, expressing them as products of tree-level amplitudes integrated over specific complex multidimensional contours. The contours are subject to the consistency condition that integrals over them annihilate any integrand whose integral over real Minkowski space vanishes. These include integrals over parity-odd integrands and total derivatives arising from integration-by-parts (IBP) identities. We find that, unlike the zero- through three-mass cases, the IBP identities impose no constraints on the contours in the four-mass case. We also discuss the algebraic varieties connected with various double-box integrals, and show how discrete symmetries of these variet...
Sharp maximal inequalities for the moments of martingales and non-negative submartingales
Osȩkowski, Adam
2012-01-01
In the paper we study sharp maximal inequalities for martingales and non-negative submartingales: if $f$, $g$ are martingales satisfying \\[|\\mathrm{d}g_n|\\leq|\\mathrm{d}f_n|,\\qquad n=0,1,2,...,\\] almost surely, then \\[\\Bigl\\|\\sup_{n\\geq0}|g_n|\\Bigr\\|_p\\leq p\\|f\\|_p,\\qquad p\\geq2,\\] and the inequality is sharp. Furthermore, if $\\alpha\\in[0,1]$, $f$ is a non-negative submartingale and $g$ satisfies \\[|\\mathrm{d}g_n|\\leq|\\mathrm{d}f_n|\\quad and\\quad |\\mathbb{E}(\\mathrm{d}g_{n+1}|\\mathcal {F}_n)|\\leq\\alpha\\mathbb{E}(\\mathrm{d}f_{n+1}|\\mathcal{F}_n),\\qquad n=0,1,2,...,\\] almost surely, then \\[\\Bigl\\|\\sup_{n\\geq0}|g_n|\\Bigr\\|_p\\leq(\\alpha+1)p\\|f\\|_p,\\qquad p\\geq2,\\] and the inequality is sharp. As an application, we establish related estimates for stochastic integrals and It\\^{o} processes. The inequalities strengthen the earlier classical results of Burkholder and Choi.
Simulating QCD at the physical point with N{sub f}=2 Wilson twisted mass fermions at maximal twist
Abdel-Rehim, A. [The Cyprus Institute, Nicosia (Cyprus). CaSToRC; Alexandrou, C. [The Cyprus Institute, Nicosia (Cyprus). CaSToRC; Cyprus Univ. Nicosia (Cyprus). Dept. of Physics; Burger, F. [DESY Zeuthen (Germany). NIC; Collaboration: European Twisted Mass Collaboration; and others
2015-12-15
We present simulations of QCD using N{sub f}=2 dynamical Wilson twisted mass lattice QCD with physical value of the pion mass and at one value of the lattice spacing. Such simulations at a∼0.09 fm became possible by adding the clover term to the action. While O(a) improvement is still guaranteed by Wilson twisted mass fermions at maximal twist, the introduction of the clover term reduces O(a{sup 2}) cutoff effects related to isospin symmetry breaking. We give results for a set of phenomenologically interesting observables like pseudo-scalar masses and decay constants, quark masses and the anomalous magnetic moments of leptons. We mostly find remarkably good agreement with phenomenology, even though we cannot take the continuum and thermodynamic limits.
Simulating QCD at the Physical Point with $N_f=2$ Wilson Twisted Mass Fermions at Maximal Twist
Abdel-Rehim, A; Burger, F; Constantinou, M; Dimopoulos, P; Frezzotti, R; Hadjiyiannakou, K; Jansen, K; Kallidonis, C; Kostrzewa, B; Koutsou, G; Mangin-Brinet, M; Petschlies, M; Pientka, G; Rossi, G C; Urbach, C; Wenger, U
2015-01-01
We present simulations of QCD using Nf=2 dynamical Wilson twisted mass lattice QCD with physical value of the pion mass and at one value of the lattice spacing. Such simulations at ~0.09 fm became possible by adding the clover term to the action. While O(a) improvement is still guaranteed by Wilson twisted mass fermions at maximal twist, the introduction of the clover term reduces cutoff effects related to isospin symmetry breaking. We give results for a set of phenomenologically interesting observables like pseudo-scalar masses and decay constants, quark masses and the anomalous magnetic moments of leptons. We mostly find remarkably good agreement with phenomenology, even though we cannot take the continuum and thermodynamic limits.
Sytematics of dynamic moment of inertia in super-deformed bands in Mass ~150 region
Roy, S
2016-01-01
An empirical semi-classical model have been proposed to investigate the nature of dynamic moment-of-inertia , of the super-deformed (SD) bands in nuclei of mass 150 region. The model incorporates an additional frequency dependent distortion, to the dynamic moment-of-inertia term akin to a vibrational component to explain the extreme spin structure of these bands. Using this model two separate components to the dynamic moment of inertia, $\\Im^{(2)}$ have been identified for the SD band structure for the mass 150 region. Three distinct nature of the moment-of-inertia, also have been identified using the two parameter model.
Mass, center of mass, and moment of inertia estimates for infant limb segments.
Schneider, K; Zernicke, R F
1992-02-01
To quantify limb dynamics, accurate estimates are needed of anthropometric inertia parameters (mass, center-of-mass location, and moments of inertia). These estimates, however, are not available for human infants; therefore, the movement dynamics of infants have not been studied extensively. Here, regression equations for the masses, center-of-mass locations, and transverse moments of inertia of upper and lower limb segments (upper arm, forearm, and hand; thigh, leg, and foot) of 0.04 to 1.50 yr old infants are provided. A mathematical model of the human body was used to determine the anthropometric inertia parameters for upper limbs in 44 infants and for lower limbs in 70 infants. Stepwise linear regressions were used to fit the distributions of the anthropometric inertia parameters. The regression equations accounted for significant amounts of the variance (64-98%), and the R2-values compared favorably when our equations were cross-validated. Consequently, these regression equations can provide, for infants of similar ages, reasonable estimates of upper and lower limb anthropometric inertia parameters, suitable for equations of motion in the analysis of limb dynamics in human infants.
Two-Loop Maximal Unitarity with External Masses
Johansson, Henrik; Larsen, Kasper J
2013-01-01
We extend the maximal unitarity method at two loops to double-box basis integrals with up to three external massive legs. We use consistency equations based on the requirement that integrals of total derivatives vanish. We obtain unique formulae for the coefficients of the master double-box integrals. These formulae can be used either analytically or numerically.
Maximizing your teaching moment
... your own demeanor. This includes adopting the right tone of voice and making the appropriate amount of eye contact (based on cultural needs). It is also important to refrain from judgment and not rushing the ...
The calculation of the mass moment of inertia of a fluid in a rotating rectangular tank
1977-01-01
This analysis calculated the mass moment of inertia of a nonviscous fluid in a slowly rotating rectangular tank. Given the dimensions of the tank in the x, y, and z coordinates, the axis of rotation, the percentage of the tank occupied by the fluid, and angle of rotation, an algorithm was written that could calculate the mass moment of inertia of the fluid. While not included in this paper, the change in the mass moment of inertia of the fluid could then be used to calculate the force exerted by the fluid on the container wall.
Perihelion Precession in Gravitational Field of Center Mass with Electric Charge and Magnetic Moment
WANG Jun; WANG Yong-Jiu
2005-01-01
With a perfect mathematical method by us, we obtain some expressions of the orbital effect for a test particle and some meaningful results in the gravitational field of the center mass with electric charge and magnetic moment.
Aubert, Bernard; Boutigny, D; Gaillard, J M; Hicheur, A; Karyotakis, Yu; Lees, J P; Robbe, P; Tisserand, V; Zghiche, A; Palano, A; Pompili, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Borgland, A W; Breon, A B; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Day, C T; Gill, M S; Gritsan, A V; Groysman, Y; Jacobsen, R G; Kadel, R W; Kadyk, J; Kerth, L T; Kolomensky, Yu G; Kral, J F; Kukartsev, G; Le Clerc, C; Levi, M E; Lynch, G; Mir, L M; Oddone, P J; Orimoto, T J; Pripstein, M; Roe, N A; Romosan, A; Ronan, Michael T; Shelkov, V G; Telnov, A V; Wenzel, W A; Ford, K; Harrison, T J; Hawkes, C M; Knowles, D J; Morgan, S E; Penny, R C; Watson, A T; Watson, N K; Deppermann, T; Goetzen, K; Koch, H; Lewandowski, B; Pelizaeus, M; Peters, K; Schmücker, H; Steinke, M; Barlow, N R; Boyd, J T; Chevalier, N; Cottingham, W N; Kelly, M P; Latham, T E; MacKay, C; Wilson, F F; Abe, K; Çuhadar-Dönszelmann, T; Hearty, C; Mattison, T S; McKenna, J A; Thiessen, D; Kyberd, P; McKemey, A K; Blinov, V E; Bukin, A D; Golubev, V B; Ivanchenko, V N; Kravchenko, E A; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Yushkov, A N; Best, D; Bruinsma, M; Chao, M; Kirkby, D; Lankford, A J; Mandelkern, M A; Mommsen, R K; Röthel, W; Stoker, D P; Buchanan, C; Hartfiel, B L; Shen, B C; Del Re, D; Hadavand, H K; Hill, E J; MacFarlane, D B; Paar, H P; Rahatlou, S; Schwanke, U; Sharma, V; Berryhill, J W; Campagnari, C; Dahmes, B; Kuznetsova, N; Levy, S L; Long, O; Lu, A; Mazur, M A; Richman, J D; Verkerke, W; Beck, T W; Beringer, J; Eisner, A M; Heusch, C A; Lockman, W S; Schalk, T; Schmitz, R E; Schumm, B A; Seiden, A; Turri, M; Walkowiak, W; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dubois-Felsmann, G P; Dvoretskii, A; Hitlin, D G; Narsky, I; Porter, F C; Ryd, A; Samuel, A; Yang, S; Jayatilleke, S M; Mancinelli, G; Meadows, B T; Sokoloff, M D; Abe, T; Blanc, F; Bloom, P; Chen, S; Clark, P J; Ford, W T; Nauenberg, U; Olivas, A; Rankin, P; Roy, J; Smith, J G; Van Hoek, W C; Zhang, L; Harton, J L; Hu, T; Soffer, A; Toki, W H; Wilson, R J; Zhang, J; Altenburg, D; Brandt, T; Brose, J; Colberg, T; Dickopp, M; Dubitzky, R S; Hauke, A; Lacker, H M; Maly, E; Müller-Pfefferkorn, R; Nogowski, R; Otto, S; Schubert, J; Schubert, Klaus R; Schwierz, R; Spaan, B; Wilden, L; Bernard, D; Bonneaud, G R; Brochard, F; Cohen-Tanugi, J; Grenier, P; Thiebaux, C; Vasileiadis, G; Verderi, M; Khan, A; Lavin, D; Muheim, F; Playfer, S; Swain, J E; Tinslay, J; Andreotti, M; Azzolini, V; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Piemontese, L; Sarti, A; Treadwell, E; Anulli, F; Baldini-Ferroli, R; Biasini, M; Calcaterra, A; De Sangro, R; Falciai, D; Finocchiaro, G; Patteri, P; Peruzzi, I M; Piccolo, M; Pioppi, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Crosetti, G; Lo Vetere, M; Macri, M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Bailey, S; Morii, M; Won, E; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Eschrich, I; Gaillard, J R; Morton, G W; Nash, J A; Sanders, P; Taylor, G P; Grenier, G J; Lee, S J; Mallik, U; Cochran, J; Crawley, H B; Lamsa, J; Meyer, W T; Prell, S; Rosenberg, E I; Yi, J; Davier, M; Grosdidier, G; Höcker, A; Laplace, S; Le Diberder, F R; Lepeltier, V; Lutz, A M; Petersen, T C; Plaszczynski, S; Schune, M H; Tantot, L; Wormser, G; Brigljevic, V; Cheng, C H; Lange, D J; Wright, D M; Bevan, A J; Coleman, J P; Fry, J R; Gabathuler, Erwin; Gamet, R; Kay, M; Parry, R J; Payne, D J; Sloane, R J; Touramanis, C; Back, J J; Harrison, P F; Shorthouse, H W; Strother, P; Vidal, P B; Brown, C L; Cowan, G; Flack, R L; Flächer, H U; George, S; Green, M G; Kurup, A; Marker, C E; McMahon, T R; Ricciardi, S; Salvatore, F; Vaitsas, G; Winter, M A; Brown, D; Davis, C L; Allison, J; Barlow, R J; Forti, A C; Hart, P A; Jackson, F; Lafferty, G D; Lyon, A J; Weatherall, J H; Williams, J C; Farbin, A; Jawahery, A; Kovalskyi, D; Lae, C K; Lillard, V; Roberts, D A; Blaylock, G; Dallapiccola, C; Flood, K T; Hertzbach, S S; Kofler, R; Koptchev, V B; Moore, T B; Saremi, S; Stängle, H; Willocq, S; Cowan, R; Sciolla, G; Taylor, F; Yamamoto, R K; Mangeol, D J J; Milek, M; Patel, P M; Lazzaro, A; Palombo, F; Bauer, J M; Cremaldi, L M; Eschenburg, V; Godang, R; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Cote-Ahern, D; Hast, C; Taras, P; Levesque, J A; Nicholson, H; Cartaro, C; Cavallo, N; De Nardo, Gallieno; Fabozzi, F; Gatto, C; Lista, L; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M A; Raven, G; LoSecco, J M; Gabriel, T A; Brau, B; Gan, K K; Honscheid, K; Hufnagel, D; Kagan, H; Kass, R; Pulliam, T; Wong, Q K; Brau, J E; Frey, R; Potter, C T; Sinev, N B; Strom, D; Torrence, E; Colecchia, F; Dorigo, A; Galeazzi, F; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Tiozzo, G; Voci, C; Benayoun, M; Briand, H; Chauveau, J; David, P; La Vaissière, C de; Del Buono, L; Hamon, O; John, M J J; Leruste, P; Ocariz, J; Pivk, M; Roos, L; Stark, J; T'Jampens, S; Therin, G; Manfredi, P F; Re, V; Behera, P K; Gladney, L; Guo, Q H; Panetta, J; Angelini, C; Batignani, G; Bettarini, S; Bondioli, M; Bucci, F; Calderini, G; Carpinelli, M; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Martínez-Vidal, F; Morganti, M; Neri, N; Paoloni, E; Rama, M; Rizzo, G; Sandrelli, F; Walsh, J; Haire, M; Judd, D; Paick, K; Wagoner, D E; Danielson, N; Elmer, P; Lü, C; Miftakov, V; Olsen, J; Smith, A J S; Tanaka, H A; Varnes, E W; Bellini, F; Cavoto, G; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Mazzoni, M A; Morganti, S; Pierini, M; Piredda, G; Safai-Tehrani, F; Voena, C; Christ, S; Wagner, G; Waldi, R; Adye, T; De Groot, N; Franek, B J; Geddes, N I; Gopal, G P; Olaiya, E O; Xella, S M; Aleksan, Roy; Emery, S; Gaidot, A; Ganzhur, S F; Giraud, P F; Hamel de Monchenault, G; Kozanecki, Witold; Langer, M; Legendre, M; London, G W; Mayer, B; Schott, G; Vasseur, G; Yéche, C; Zito, M; Purohit, M V; Weidemann, A W; Yumiceva, F X; Aston, D; Bartoldus, R; Berger, N; Boyarski, A M; Buchmüller, O L; Convery, M R; Coupal, D P; Dong, D; Dorfan, J; Dujmic, D; Dunwoodie, W M; Field, R C; Glanzman, T; Gowdy, S J; Graugès-Pous, E; Hadig, T; Halyo, V; Hrynóva, T; Innes, W R; Jessop, C P; Kelsey, M H; Kim, P; Kocian, M L; Langenegger, U; Leith, D W G S; Luitz, S; Lüth, V; Lynch, H L; Marsiske, H; Messner, R; Müller, D R; O'Grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Petrak, S; Ratcliff, B N; Robertson, S H; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Simi, G; Snyder, A; Soha, A; Stelzer, J; Su, D; Sullivan, M K; Vavra, J; Wagner, S R; Weaver, M; Weinstein, A J R; Wisniewski, W J; Wright, D H; Young, C C; Burchat, Patricia R; Edwards, A J; Meyer, T I; Petersen, B A; Roat, C; Ahmed, S; Alam, M S; Ernst, J A; Saleem, M; Wappler, F R; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Kim, H; Ritchie, J L; Schwitters, R F; Izen, J M; Kitayama, I; Lou, X C; Ye, S; Bianchi, F; Bóna, M; Gallo, F; Gamba, D; Borean, C; Bosisio, L; Della Ricca, G; Dittongo, S; Grancagnolo, S; Lanceri, L; Poropat, P; Vitale, L; Vuagnin, G; Panvini, R S; Banerjee, Sw; Brown, C M; Fortin, D; Jackson, P D; Kowalewski, R V; Roney, J M; Band, H R; Dasu, S; Datta, M; Eichenbaum, A M; Johnson, J R; Kutter, P E; Li, H; Liu, R; Di Lodovico, F; Mihályi, A; Mohapatra, A K; Pan, Y; Prepost, R; Sekula, S J; Von, J H; Wimmersperg-Toeller; Wu, J; Wu Sau Lan; Yu, Z; Neal, H
2003-01-01
We report a preliminary measurement of the first and second moments of the hadronic mass distributions in B --> X_c lv decays. The measurements are based on Upsilon (4S) --> BBbar events where the hadronic decay of one of the B mesons is fully reconstructed and a charged lepton from the decay of the other B meson is identified. The moments are presented for threshold lepton momenta ranging from 0.9 to 1.6 GeV. From the $$ moments we determine the non-perturbative Heavy Quark Expansion (HQE) parameters, $\\bar{\\Lambda}$ and $\\lambda_1$. We combine the measured moments $$ with earlier BABAR measurements of the semileptonic branching ratios and B lifetimes and perform a simultaneous fit to the HQE for the moments obtained for different threshold lepton momenta and the semileptonic decay width. This fit results in an improved value for the CKM matrix element $|V_{cb}|$.
Maximum mass, moment of inertia and compactness of relativistic stars
Breu, Cosima
2016-01-01
A number of recent works have highlighted that it is possible to express the properties of general-relativistic stellar equilibrium configurations in terms of functions that do not depend on the specific equation of state employed to describe matter at nuclear densities. These functions are normally referred to as "universal relations" and have been found to apply, within limits, both to static or stationary isolated stars, as well as to fully dynamical and merging binary systems. Further extending the idea that universal relations can be valid also away from stability, we show that a universal relation is exhibited also by equilibrium solutions that are not stable. In particular, the mass of rotating configurations on the turning-point line shows a universal behaviour when expressed in terms of the normalised Keplerian angular momentum. In turn, this allows us to compute the maximum mass allowed by uniform rotation, M_{max}, simply in terms of the maximum mass of the nonrotating configuration, M_{TOV}, findi...
First results of ETMC simulations with Nf=2+1+1 maximally twisted mass fermions
Baron, R.; Blossier, B.; Boucaud, P.; Deuzeman, A.; Drach, V.; Farchioni, F.; Gimenez, V.; Herdoiza, G.; Jansen, K.; Michael, C.; Montvay, I.; Palao, D.; Pallante, E.; Pène, O.; Reker, S.; Urbach, C.; Wagner, M.; Wenger, U.; Collaboration, for the ETM
2009-01-01
We present first results from runs performed with Nf=2+1+1 flavours of dynamical twisted mass fermions at maximal twist: a degenerate light doublet and a mass split heavy doublet. An overview of the input parameters and tuning status of our ensembles is given, together with a comparison with results
A new method to break the mass-sheet degeneracy using aperture moments
Rexroth, Markus; Natarajan, Priyamvada; Kneib, Jean-Paul
2016-08-01
Mass determinations from gravitational lensing shear and the higher order estimator flexion are both subject to the mass-sheet degeneracy. Mass sheet degeneracy refers to a transformation that leaves the reduced shear and flexion invariant. In general, this transformation can be approximated by the addition of a constant surface mass density sheet. We propose a new technique to break the mass-sheet degeneracy. The method uses mass moments of the shear or flexion fields in combination with convergence information derived from number counts which exploit the magnification bias. The difference between the measured mass moments provides an estimator for the magnitude of the additive constant that is the mass sheet. For demonstrating this, we derive relations that hold true in general for nth order moments and show how they can be employed effectively to break the degeneracy. We investigate the detectability of this degeneracy parameter from our method and find that the degeneracy parameter can be feasibly determined from stacked galaxy-galaxy lensing data and cluster lensing data. Furthermore, we compare the signal-to-noise ratios of convergence information from number counts with shear and flexion for singular isothermal sphere and Navarro-Frenk-White models. We find that the combination of shear and flexion performs best on galaxy and cluster scales and the convergence information can therefore be used to break the mass-sheet degeneracy without quality loss in the mass reconstruction. In summary, there is power in the combination of shear, flexion, convergence and their higher order moments. With the anticipated wealth of lensing data from upcoming and future satellite missions - EUCLID and WFIRST - this technique will be feasible.
Alexandrou, C. [Univ. of Cyprus, Nicosia (Cyprus). Dept. of Physics; Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center; Constantinou, M.; Kallidonis, C. [Univ. of Cyprus, Nicosia (Cyprus). Dept. of Physics; Dinter, S.; Drach, V. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Jansen, K. [Univ. of Cyprus, Nicosia (Cyprus). Dept. of Physics; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Koutsou, G. [Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center; Collaboration: European Twisted Mass Collaboration
2013-04-15
We present results on the axial and the electromagnetic form factors of the nucleon, as well as, on the first moments of the nucleon generalized parton distributions using maximally twisted mass fermions. We analyze two N{sub f}=2+1+1 ensembles having pion masses of 210 MeV and 354 MeV at two values of the lattice spacing. The lattice scale is determined using the nucleon mass computed on a total of 18 N{sub f}=2+1+1 ensembles generated at three values of the lattice spacing, a. The renormalization constants are evaluated non-perturbatively with a perturbative subtraction of O(a''2)-terms. The moments of the generalized parton distributions are given in the MS scheme at a scale of {mu}=2 GeV. We compare with recent results obtained using different discretization schemes. The implications on the spin content of the nucleon are also discussed.
Measurements of Moments of the Hadronic Mass Distribution in Semileptonic B Decays
Aubert, Bernard; Boutigny, D; Couderc, F; Gaillard, J M; Hicheur, A; Karyotakis, Yu; Lees, J P; Tisserand, V; Zghiche, A; Palano, A; Pompili, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Borgland, A W; Breon, A B; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Day, C T; Gill, M S; Gritsan, A V; Groysman, Y; Jacobsen, R G; Kadel, R W; Kadyk, J; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Le Clerc, C; Levi, M E; Lynch, G; Mir, L M; Oddone, P J; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, Michael T; Shelkov, V G; Telnov, A V; Wenzel, W A; Ford, K; Harrison, T J; Hawkes, C M; Morgan, S E; Watson, A T; Watson, N K; Fritsch, M; Goetzen, K; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Peters, K; Schmücker, H; Steinke, M; Boyd, J T; Chevalier, N; Cottingham, W N; Kelly, M P; Latham, T E; MacKay, C; Wilson, F F; Abe, K; Çuhadar-Dönszelmann, T; Hearty, C; Mattison, T S; McKenna, J A; Thiessen, D; Kyberd, P; McKemey, A K; Teodorescu, L; Blinov, V E; Bukin, A D; Golubev, V B; Ivanchenko, V N; Kravchenko, E A; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Yushkov, A N; Best, D; Bruinsma, M; Chao, M; Eschrich, I; Kirkby, D; Lankford, A J; Mandelkern, M A; Mommsen, R K; Röthel, W; Stoker, D P; Buchanan, C; Hartfiel, B L; Gary, J W; Layter, J; Shen, B C; Wang, K; Del Re, D; Hadavand, H K; Hill, E J; MacFarlane, D B; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Dahmes, B; Levy, S L; Long, O; Lu, A; Mazur, M A; Richman, J D; Verkerke, W; Beck, T W; Beringer, J; Eisner, A M; Heusch, C A; Lockman, W S; Schalk, T; Schmitz, R E; Schumm, B A; Seiden, A; Spradlin, P; Walkowiak, W; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dubois-Felsmann, G P; Dvoretskii, A; Erwin, R J; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Ryd, A; Samuel, A; Yang, S; Jayatilleke, S M; Mancinelli, G; Meadows, B T; Sokoloff, M D; Abe, T; Blanc, F; Bloom, P; Chen, S; Clark, P J; Ford, W T; Nauenberg, U; Olivas, A; Rankin, P; Roy, J; Smith, J G; Van Hoek, W C; Zhang, L; Harton, J L; Hu, T; Soffer, A; Toki, W H; Wilson, R J; Zhang, J; Altenburg, D; Brandt, T; Brose, J; Colberg, T; Dickopp, M; Feltresi, E; Hauke, A; Lacker, H M; Maly, E; Müller-Pfefferkorn, R; Nogowski, R; Otto, S; Schubert, J; Schubert, Klaus R; Schwierz, R; Spaan, B; Bernard, D; Bonneaud, G R; Brochard, F; Grenier, P; Thiebaux, C; Vasileiadis, G; Verderi, M; Bard, D J; Khan, A; Lavin, D; Muheim, F; Playfer, S; Andreotti, M; Azzolini, V; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Piemontese, L; Sarti, A; Treadwell, E; Baldini-Ferroli, R; Calcaterra, A; De Sangro, R; Finocchiaro, G; Patteri, P; Piccolo, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Crosetti, G; Lo Vetere, M; Macri, M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Bailey, S; Morii, M; Won, E; Dubitzky, R S; Langenegger, U; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Gaillard, J R; Morton, G W; Nash, J A; Taylor, G P; Grenier, G J; Lee, S J; Mallik, U; Cochran, J; Crawley, H B; Lamsa, J; Meyer, W T; Prell, S; Rosenberg, E I; Yi, J; Davier, M; Grosdidier, G; Höcker, A; Laplace, S; Le, F; Diberder; Lepeltier, V; Lutz, A M; Petersen, T C; Plaszczynski, S; Schune, M H; Tantot, L; Wormser, G; Brigljevic, V; Cheng, C H; Lange, D J; Simani, M C; Wright, D M; Bevan, A J; Coleman, J P; Fry, J R; Gabathuler, Erwin; Gamet, R; Kay, M; Parry, R J; Payne, D J; Sloane, R J; Touramanis, C; Back, J J; Harrison, P F; Mohanty, G B; Brown, C L; Cowan, G; Flack, R L; Flächer, H U; George, S; Green, M G; Kurup, A; Marker, C E; McMahon, T R; Ricciardi, S; Salvatore, F; Vaitsas, G; Winter, M A; Brown, D; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Hart, P A; Hodgkinson, M C; Lafferty, G D; Lyon, A J; Williams, J C; Farbin, A; Hulsbergen, W D; Jawahery, A; Kovalskyi, D; Lae, C K; Lillard, V; Roberts, D A; Blaylock, G; Dallapiccola, C; Flood, K T; Hertzbach, S S; Kofler, R; Koptchev, V B; Moore, T B; Saremi, S; Stängle, H; Willocq, S; Cowan, R; Sciolla, G; Taylor, F; Yamamoto, R K; Mangeol, D J J; Patel, P M; Robertson, S H; Lazzaro, A; Palombo, F; Bauer, J M; Cremaldi, L M; Eschenburg, V; Godang, R; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Cote-Ahern, D; Taras, P; Nicholson, H; Cartaro, C; Cavallo, N; De Nardo, Gallieno; Fabozzi, F; Gatto, C; Lista, L; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M A; Raven, G; Wilden, L; Jessop, C P; LoSecco, J M; Gabriel, T A; Allmendinger, T; Brau, B; Gan, K K; Honscheid, K; Hufnagel, D; Kagan, H; Kass, R; Pulliam, T; Ter-Antonian, R; Wong, Q K; Brau, J E; Frey, R; Igonkina, O; Potter, C T; Sinev, N B; Strom, D; Torrence, E; Colecchia, F; Dorigo, A; Galeazzi, F; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Tiozzo, G; Voci, C; Benayoun, M; Briand, H; Chauveau, J; David, P; La Vaissière, C de; Del Buono, L; Hamon, O; John, M J J; Leruste, P; Ocariz, J; Pivk, M; Roos, L; T'Jampens, S; Therin, G; Manfredi, P F; Re, V; Behera, P K; Gladney, L; Guo, Q H; Panetta, J; Anulli, F; Biasini, M; Peruzzi, I M; Pioppi, M; Angelini, C; Batignani, G; Bettarini, S; Bondioli, M; Bucci, F; Calderini, G; Carpinelli, M; Del Gamba, V; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Martínez-Vidal, F; Morganti, M; Neri, N; Paoloni, E; Rama, M; Rizzo, G; Sandrelli, F; Walsh, J; Haire, M; Judd, D; Paick, K; Wagoner, D E; Danielson, N; Elmer, P; Lü, C; Miftakov, V; Olsen, J; Smith, A J S; Varnes, E W; Bellini, F; Cavoto, G; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Mazzoni, M A; Morganti, S; Pierini, M; Piredda, G; Safai-Tehrani, F; Voena, C; Christ, S; Wagner, G; Waldi, R; Adye, T; De Groot, N; Franek, B J; Geddes, N I; Gopal, G P; Olaiya, E O; Xella, S M; Aleksan, Roy; Emery, S; Gaidot, A; Ganzhur, S F; Giraud, P F; Hamel de Monchenault, G; Monchenault; Kozanecki, Witold; Langer, M; Legendre, M; London, G W; Mayer, B; Schott, G; Vasseur, G; Yéche, C; Zito, M; Purohit, M V; Weidemann, A W; Yumiceva, F X; Aston, D; Bartoldus, R; Berger, N; Boyarski, A M; Buchmüller, O L; Convery, M R; Cristinziani, M; Dong, D; Dorfan, J; Dujmic, D; Dunwoodie, W M; Elsen, E E; Field, R C; Glanzman, T; Gowdy, S J; Hadig, T; Halyo, V; Hast, C; Hrynóva, T; Innes, W R; Kelsey, M H; Kim, P; Kocian, M L; Leith, D W G S; Libby, J; Luitz, S; Lüth, V; Lynch, H L; Marsiske, H; Messner, R; Müller, D R; O'Grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Petrak, S; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Simi, G; Snyder, A; Soha, A; Stelzer, J; Su, D; Sullivan, M K; Vavra, J; Wagner, S R; Weaver, M; Weinstein, A J R; Wisniewski, W J; Wright, D H; Young, C C; Burchat, Patricia R; Edwards, A J; Meyer, T I; Petersen, B A; Roat, C; Ahmed, M; Ahmed, S; Alam, M S; Ernst, J A; Saeed, M A; Saleem, M; Wappler, F R; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Kim, H; Ritchie, J L; Satpathy, A; Schwitters, R F; Izen, J M; Kitayama, I; Lou, X C; Ye, S; Bianchi, F; Bóna, M; Gallo, F; Gamba, D; Borean, C; Bosisio, L; Cossutti, F; Della Ricca, G; Dittongo, S; Grancagnolo, S; Lanceri, L; Poropat, P; Vitale, L; Vuagnin, G; Panvini, R S; Banerjee, Sw; Brown, C M; Fortin, D; Jackson, P D; Kowalewski, R V; Roney, J M; Band, H R; Dasu, S; Datta, M; Eichenbaum, A M; Johnson, J R; Kutter, P E; Li, H; Liu, R; Di Lodovico, F; Mihályi, A; Mohapatra, A K; Pan, Y; Prepost, R; Sekula, S J; Von Wimmersperg-Töller, J H; Wu, J; Wu Sau Lan; Yu, Z; Neal, H
2004-01-01
We report a measurement of the first four moments of the hadronic mass distribution in B --> X_c lv decays. The measurements are based on 89 million Upsilon(4S) --> BBbar events where the hadronic decay of one of the B mesons is fully reconstructed and a charged lepton from the decay of the other B meson is identified. The moments are presented for minimum lepton momenta ranging from 0.9 to 1.6 GeV in the B rest frame. It is expected that such measurements will lead to improved determinations of |V_{cb}| and |V_{ub}|.
Maximal neutron star mass and the resolution of hyperon puzzle in modified gravity
Astashenok, Artyom V; Odintsov, Sergei D
2014-01-01
The so-called hyperon puzzle in the theory of neutron stars is considered in the framework of modified $f(R)$ gravity. We show that for simple hyperon equations of state, it is possible to obtain the maximal neutron star mass which satisfies the recent observational data for PSR J1614-2230, in higher-derivative models with power-law terms as $f(R) = R+\\alpha R^2+ \\beta R^3$. The soft hyperon equation of state under consideration is usually treated as non-realistic in the standard General Relativity. The numerical analysis of Mass-Radius relation for massive neutron stars with hyperon equation of state in modified gravity turns out to be consistent with observations. Thus, we show that the same modified gravity can solve at once three problems: consistent description of the maximal mass of neutron star, realistic Mass-Radius relation and account for hyperons in equation of state.
Lamothe, Alain R.
2014-01-01
This article investigates the possibility that e-journal collections can reach a maximum size that satisfies long-term patron needs without further significant expansion. The study included collection and usage data taken from 2000 to 2013. In terms of the e-journal collection, the occurrence of a maximal mass appears to be very real. The…
Lamothe, Alain R.
2014-01-01
This article investigates the possibility that e-journal collections can reach a maximum size that satisfies long-term patron needs without further significant expansion. The study included collection and usage data taken from 2000 to 2013. In terms of the e-journal collection, the occurrence of a maximal mass appears to be very real. The…
Influence of mass moment of inertia on normal modes of preloaded solar array mast
Armand, Sasan C.; Lin, Paul
1992-01-01
Earth-orbiting spacecraft often contain solar arrays or antennas supported by a preloaded mast. Because of weight and cost considerations, the structures supporting the spacecraft appendages are extremely light and flexible; therefore, it is vital to investigate the influence of all physical and structural parameters that may influence the dynamic behavior of the overall structure. The study primarily focuses on the mast for the space station solar arrays, but the formulations and the techniques developed in this study apply to any large and flexible mast in zero gravity. Furthermore, to determine the influence on the circular frequencies, the mass moment of inertia of the mast was incorporated into the governing equation of motion for bending. A finite element technique (MSC/NASTRAN) was used to verify the formulation. Results indicate that when the mast is relatively flexible and long, the mass moment inertia influences the circular frequencies.
A first look at maximally twisted mass lattice QCD calculations at the physical point
Abdel-Rehim, A. [The Cyprus Institute, Nicosia (Cyprus). CaSToRC; Boucaud, P. [Paris XI Univ., Orsay (France). Laboratoire de Physique Theorique; Carrasco, N. [Valencia-CSIC Univ. (Spain). Dept. de Fisica Teorica; IFIC, Valencia (Spain); and others
2013-11-15
In this contribution, a first look at simulations using maximally twisted mass Wilson fermions at the physical point is presented. A lattice action including clover and twisted mass terms is presented and the Monte Carlo histories of one run with two mass-degenerate flavours at a single lattice spacing are shown. Measurements from the light and heavy-light pseudoscalar sectors are compared to previous N{sub f}=2 results and their phenomenological values. Finally, the strategy for extending simulations to N{sub f}=2+1+1 is outlined.
A first look at maximally twisted mass lattice QCD calculations at the physical point
Abdel-Rehim, A; Carrasco, N; Deuzeman, A; Dimopoulos, P; Frezzotti, R; Herdoiza, G; Jansen, K; Kostrzewa, B; Mangin-Brinet, M; Montvay, I; Palao, D; Rossi, G C; Sanfilippo, F; Scorzato, L; Shindler, A; Urbach, C; Wenger, U
2013-01-01
In this contribution, a first look at simulations using maximally twisted mass Wilson fermions at the physical point is presented. A lattice action including clover and twisted mass terms is presented and the Monte Carlo histories of one run with two mass-degenerate flavours at a single lattice spacing are shown. Measurements from the light and heavy-light pseudoscalar sectors are compared to previous $N_f = 2$ results and their phenomenological values. Finally, the strategy for extending simulations to $N_f = 2 + 1 + 1$ is outlined.
Massive particles' tunnelling radiation from the black hole with a mass-quadruple moment
Han Yi-Wen
2007-01-01
In this paper, we extend Zhang and Zhao's recent work to the black hole with a mass-quadruple moment. The behaviour of the tunnelling massive particles is investigated, and the emission rate at which massive particles tunnel across the event horizon of the black hole is calculated. The result is consistent with an underlying unitary theory, and takes the same functional form as that of a massless particle.
Masses and magnetic moments of ground-state baryons in covariant baryon chiral perturbation theory
Geng, L S; Alvarez-Ruso, L; Vicente-Vacas, M J
2012-01-01
We report on some recent developments in our understanding of the light-quark mass dependence and the SU(3) flavor symmetry breaking corrections to the magnetic moments of the ground-state baryons in a covariant formulation of baryon chiral perturbation theory, the so-called EOMS formulation. We show that this covariant ChPT exhibits some promising features compared to its heavy-baryon and infrared counterparts.
Using baryon octet magnetic moments and masses to fix the pion cloud contribution
Gross, Franz; Tsushima, K
2009-01-01
Using SU(3) symmetry to constrain the pion BB' couplings, assuming SU(3) breaking comes only from one-loop pion cloud contributions, and using the the covariant spectator theory to describe the photon coupling to the quark core, we show how the experimental masses and magnetic moments of the baryon octet can be used to set a model independent constraint on the strength of the pion cloud contributions to the octet, and hence the nucleon, form factors at Q2=0.
Measurement of the Moments of the Hadronic Invariant Mass Distribution in Semileptonic B Decays
Acosta, D; Affolder, T; Akimoto, T; Albrow, M G; Ambrose, D; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arisawa, T; Arguin, J F; Artikov, A; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Bacchetta, N; Bachacou, H; Badgett, W; Barbaro-Galtieri, A; Barker, G J; Barnes, V E; Barnett, B A; Baroiant, S; Barone, M; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bellettini, G; Bellinger, J; Ben-Haim, E; Benjamin, D; Beretvas, A; Bhatti, A A; Binkley, M; Bisello, D; Bishai, M; Blair, R E; Blocker, C; Bloom, K; Blumenfeld, B; Bocci, A; Bodek, A; Bölla, G; Bolshov, A; Booth, P S L; Bortoletto, D; Boudreau, J; Bourov, S; Brau, B; Bromberg, C; Brubaker, E; Budagov, Yu A; Budd, H S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canepa, A; Casarsa, M; Carlsmith, D; Carron, S; Carosi, R; Cavalli-Sforza, M; Castro, A; Catastini, P; Cauz, D; Cerri, A; Cerrito, L; Chapman, J; Chen, C; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Chu, M L; Chuang, S; Chung, J Y; Chung, W H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A G; Clark, D; Coca, M; Connolly, A; Convery, M; Conway, J; Cooper, B; Cordelli, M; Cortiana, G; Cranshaw, J; Cuevas-Maestro, J; Culbertson, R; Currat, C; Cyr, D; Dagenhart, D; Da Ronco, S; D'Auria, S; De Barbaro, P; De Cecco, S; De Lentdecker, G; Dell'Agnello, S; Dell'Orso, Mauro; Demers, S; Demortier, L; Deninno, M; De Pedis, D; Derwent, P F; Dionisi, C; Dittmann, J R; Dorr, C; Doksus, P; Dominguez, A; Donati, S; Donega, M; Donini, J; D'Onofrio, M; Dorigo, T; Drollinger, V; Ebina, K; Eddy, N; Ehlers, J; Ely, R; Erbacher, R; Erdmann, M; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernández, J P; Ferretti, C; Field, R D; Flanagan, G; Flaugher, B; Flores-Castillo, L R; Foland, A; Forrester, S; Foster, G W; Franklin, M; Freeman, J C; Fujii, Y; Furic, I; Gajjar, A; Gallas, A; Galyardt, J; Gallinaro, M; García-Sciveres, M; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D W; Gerchtein, E; Giagu, S; Giannetti, P; Gibson, A; Gibson, K; Ginsburg, C; Giolo, K; Giordani, M; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, D; Goldstein, J; Gómez, G; Gómez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Gotra, Yu; Goulianos, K; Gresele, A; Griffiths, M; Grosso-Pilcher, C; Grundler, U; Günther, M; Guimarães da Costa, J; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B Y; Handler, R; Happacher, F; Hara, K; Hare, M; Harr, R F; Harris, R M; Hartmann, F; Hatakeyama, K; Hauser, J; Hays, C; Hayward, H; Heider, E; Heinemann, B; Heinrich, J; Hennecke, M; Herndon, M; Hill, C; Hirschbuehl, D; Höcker, A; Hoffman, K D; Holloway, A; Hou, S; Houlden, M A; Huffman, B T; Huang, Y; Hughes, R E; Huston, J; Ikado, K; Incandela, J R; Introzzi, G; Iori, M; Ishizawa, Y; Issever, C; Ivanov, A; Iwata, Y; Iyutin, B; James, E; Jang, D; Jarrell, J; Jeans, D; Jensen, H; Jeon, E J; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kamon, T; Kang, J; Karagoz-Unel, M; Karchin, P E; Kartal, S; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, M S; Kim, S B; Kim, S H; Kim, T H; Kim, Y K; King, B T; Kirby, M; Kirsch, L; Klimenko, S; Knuteson, B; Ko, B R; Kobayashi, H; Koehn, P; Kong, D J; Kondo, K; Konigsberg, J; Kordas, K; Korn, A J; Korytov, A; Kotelnikov, K; Kotwal, A V; Kovalev, A; Kraus, J; Kravchenko, I; Kreymer, A; Kroll, J; Kruse, M; Krutelyov, V; Kuhlmann, S E; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, J; Lancaster, M; Lander, R; Lannon, K; Lath, A; Latino, G; Lauhakangas, R; Lazzizzera, I; Le, Y; Lecci, C; LeCompte, T; Lee, J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Li, K; Lin, C; Lin, C S; Lindgren, M; Liss, T M; Lister, A; Litvintsev, D O; Liu, T; Liu, Y; Lockyer, N S; Loginov, A; Loreti, M; Loverre, P F; Lu, R S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; MacQueen, D; Madrak, R; Maeshima, K; Maksimovic, P; Malferrari, L; Manca, G; Marginean, R; Marino, C; Martin, A; Martin, M; Martin, V; Martínez, M; Maruyama, T; Matsunaga, H; Mattson, M; Mazzanti, P; McFarland, K S; McGivern, D; McIntyre, P M; McNamara, P; NcNulty, R; Mehta, A; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miller, L; Miller, R; Miller, J S; Miquel, R; Miscetti, S; Mitselmakher, G; Miyamoto, A; Miyazaki, Y; Moggi, N; Mohr, B; Moore, R; Morello, M; Movilla-Fernández, P A; Mukherjee, A; Mulhearn, M; Müller, T; Mumford, R; Munar, A; Murat, P; Nachtman, J; Nahn, S; Nakamura, I; Nakano, I; Napier, A; Napora, R; Naumov, D V; Necula, V; Niell, F; Nielsen, J; Nelson, C; Nelson, T; Neu, C; Neubauer, M S; Newman-Holmes, C; Nigmanov, T; Nodulman, L; Norniella, O; Österberg, K; Ogawa, T; Oh, S H; Oh, Y D; Ohsugi, T; Okusawa, T; Oldeman, R G C; Orava, R; Orejudos, W; Pagliarone, C; Palencia, E; Paoletti, R; Papadimitriou, V; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Pauly, T; Paus, C; Pellett, D; Penzo, Aldo L; Phillips, T J; Piacentino, G; Piedra, J; Pitts, K T; Plager, C; Pompos, A; Pondrom, L; Pope, G; Portell, X; Poukhov, O; Prakoshyn, F; Pratt, T; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Rademacker, J; Rahaman, M A; Rakitine, A; Rappoccio, S; Ratnikov, F; Ray, H; Reisert, B; Rekovic, V; Renton, P B; Rescigno, M; Rimondi, F; Rinnert, K; Ristori, L; Robertson, W J; Robson, A; Rodrigo, T; Rolli, S; Rosenson, L; Roser, R; Rossin, R; Rott, C; Russ, J; Rusu, V; Ruiz, A; Ryan, D; Saarikko, H; Sabik, S; Safonov, A; Saint-Denis, R; Sakumoto, W K; Salamanna, G; Saltzberg, D; Sánchez, C; Sansoni, A; Santi, L; Sarkar, S; Sato, K; Savard, P; Savoy-Navarro, A; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semeria, F; Sexton-Kennedy, L; Sfiligoi, I; Shapiro, M D; Shears, T G; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Siegrist, J; Siket, M; Sill, A; Sinervo, P; Sissakian, A N; Skiba, A; Slaughter, A J; Sliwa, K; Smirnov, D; Smith, J R; Snider, F D; Snihur, R; Soha, A; Somalwar, S V; Spalding, J; Spezziga, M; Spiegel, L; Spinella, F; Spiropulu, M; Squillacioti, P; Stadie, H; Stelzer, B; Stelzer-Chilton, O; Strologas, J; Stuart, D; Sukhanov, A; Sumorok, K; Sun, H; Suzuki, T; Taffard, A C; Tafirout, R; Takach, S F; Takano, H; Takashima, R; Takeuchi, Y; Takikawa, K; Tanaka, M; Tanaka, R; Tanimoto, N; Tapprogge, Stefan; Tecchio, M; Teng, P K; Terashi, K; Tesarek, R J; Tether, S; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tollefson, K; Tomura, T; Tonelli, D; Tonnesmann, M; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tseng, J; Tsuchiya, R; Tsuno, S; Tsybychev, D; Turini, N; Turner, M; Ukegawa, F; Unverhau, T; Uozumi, S; Usynin, D; Vacavant, L; Vaiciulis, A W; Varganov, A; Vataga, E; Vejcik, S; Velev, G V; Veszpremi, V; Veramendi, G; Vickey, T; Vidal, R; Vila, I; Vilar, R; Vollrath, I; Volobuev, I P; Von der Mey, M; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wallny, R; Walter, T; Yamashita, T; Yamamoto, K; Wan, Z; Wang, M J; Wang, S M; Warburton, A; Ward, B; Waschke, S; Waters, D; Watts, T; Weber, M; Wester, W C; Whitehouse, B; Wicklund, A B; Wicklund, E; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolter, M; Worcester, M; Worm, S; Wright, T; Wu, X; Würthwein, F; Wyatt, A; Yagil, A; Yang, C; Yang, U K; Yao, W; Yeh, G P; Yi, K; Yoh, J; Yoon, P; Yorita, K; Yoshida, T; Yu, I; Yu, S; Yu, Z; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zetti, F; Zhou, J; Zsenei, A; Zucchelli, S
2005-01-01
Using 180 pb^-1 of data collected with the CDF II detector at the Tevatron, we measure the first two moments of the hadronic invariant mass-squared distribution in charmed semileptonic B decays. From these we determine the non-perturbative Heavy Quark Effective Theory parameters Lambda and lambda_1, used to relate the B meson semileptonic branching ratio to the CKM matrix element |V_cb|. For a minimum lepton momentum of 0.7 GeV/c in the B rest frame me measure the first two moments of the D** --> D(*) pi component to be = (5.83 +/- 0.16(stat) +/- 0.08(syst)) GeV^2, )^2> = (1.30 +/- 0.69(stat) +/- 0.22(syst)) GeV^4. Combining these with the discrete mass terms from the D and D* mesons, we find the total moments to be - mbar_D^2 = (0.467 +/- 0.038_(stat) +/- 0.068(syst)) GeV^2, )^2> = (1.05 +/- 0.26(stat) +/- 0.13(syst)) GeV^4, where mbar_D is the spin-averaged D mass. The systematic error is dominated by the uncertainties in the world-average branching ratios used to combine the D, D* and D** contributions. ...
Chow, Amy Y; Dickerson, Clark R
2016-04-01
Pushing and pulling are common occupational exertions that are increasingly associated with musculoskeletal complaints. This study focuses on the sensitivity of shoulder capacity to gender, handle height, exertion type (push or pull) and handle orientation for these tasks. All factors except for handle orientation influenced unilateral and total manual force strength (p < 0.01), with exertion type being the most influential. Interaction effects also existed between handle height and exertion type. Additionally, joint moments at the shoulders and low back were influenced by all factors studied (p < 0.01), with exertion type again being most influential. Knowledge of the relative influence of multiple factors on shoulder capacity can provide guidance regarding these factors when designing or evaluating occupational pushing and pulling tasks for a diverse population. Practitioner Summary: pushing and pulling comprise nearly half of all manual materials handling tasks. Practitioners often assess, design or modify these tasks while incorporating constraints, including manual force direction and handle interface. This study provides guidance to aid design of pushing and pulling tasks in the context of shoulder physical capacity.
Viability of bi-maximal solution of the Zee mass matrix
Brahmachari, B; Brahmachari, Biswajoy; Choubey, Sandhya
2002-01-01
We know $L_e-L_\\mu-L_\\tau$ symmetry gives $m^2_1= m^2_2 >> m^2_3$ pattern in Zee model. $\\Delta m^2_\\odot$ emerges from a small breaking of this symmetry. Because this symmetry is broken very weakly $\\theta_\\odot$ does not deviate much from $\\tan^2 \\theta_\\odot=1$ which is its value in the symmetric limit. This gives a mismatch with LMA solution where mixing is large but not exactly maximal. We confront this property of Zee mass matrix by phenomenologically analyzing recent results from solar and atmospheric neutrino oscillation experiments at various confidence levels. We conclude that LOW type solution is compatible with the Zee mass matrix at 99% confidence level when atmospheric neutrino deficit is explained by maximal $\
Near maximal atmospheric mixing in neutrino mass matrices with two vanishing minors
Dev, S., E-mail: dev5703@yahoo.com [Department of Physics, Himachal Pradesh University, Shimla 171005 (India); Gupta, Shivani, E-mail: shiroberts_1980@yahoo.co.in [Department of Physics, Himachal Pradesh University, Shimla 171005 (India); Gautam, Radha Raman, E-mail: gautamrrg@gmail.com [Department of Physics, Himachal Pradesh University, Shimla 171005 (India); Singh, Lal, E-mail: lalsingh96@yahoo.com [Department of Physics, Himachal Pradesh University, Shimla 171005 (India)
2011-12-06
In the flavor basis there are seven cases of two vanishing minors in the neutrino mass matrix which can accommodate the present neutrino oscillation data including the recent T2K data. It is found that two of these cases, namely B{sub 5} and B{sub 6} predict near maximal atmospheric neutrino mixing in the limit of large effective neutrino mass. This feature remains irrespective of the values of solar and reactor mixing angles. A non-zero reactor mixing angle is naturally accommodated in these textures.
Near Maximal Atmospheric Neutrino Mixing in Neutrino Mass Models with Two Texture Zeros
Dev, S; Singh, Lal; Gupta, Manmohan
2014-01-01
The implications of a large value of the effective Majorana neutrino mass for a class of two texture zero neutrino mass matrices have been studied in the flavor basis. It is found that these textures predict near maximal atmospheric neutrino mixing angle in the limit of large effective Majorana neutrino mass. It is noted that this prediction is independent of the values of solar and reactor neutrino mixing angles. We present the symmetry realization of these textures using the discrete cyclic group $Z_3$. It is found that the texture zeros realised in this work remain stable under renormalization group running of the neutrino mass matrix from the seesaw scale to the electroweak scale, at one loop level.
First results of ETMC simulations with Nf=2+1+1 maximally twisted mass fermions
Baron, R; Boucaud, P; Deuzeman, A; Drach, V; Farchioni, F; Gimenez, V; Herdoiza, G; Jansen, K; Michael, C; Montvay, I; Palao, D; Pallante, E; Pène, O; Reker, S; Urbach, C; Wagner, M; Wenger, U
2009-01-01
We present first results from runs performed with Nf=2+1+1 flavours of dynamical twisted mass fermions at maximal twist: a degenerate light doublet and a mass split heavy doublet. An overview of the input parameters and tuning status of our ensembles is given, together with a comparison with results obtained with Nf=2 flavours. The problem of extracting the mass of the K- and D-mesons is discussed, and the tuning of the strange and charm quark masses examined. Finally we compare two methods of extracting the lattice spacings to check the consistency of our data and we present some first results of ChiPT fits in the light meson sector.
Masses and magnetic moments of triple heavy flavour baryons in hypercentral model
Bhavin Patel; Ajay Majethiya; P C Vinodkumar
2009-04-01
Triple heavy flavour baryons are studied using the hypercentral description of the three-body system. The confinement potential is assumed as hypercentral Coulomb plus power potential with power index . The ground state ($J^{P} = \\dfrac{1}{2}^{+}$ and $\\dfrac{3}{2}^{+}$) masses of heavy flavour baryons are computed for different power index, starting from 0.5 to 2.0. The predicted masses are found to attain a saturated value with respect to variation in p beyond the power index > 1.0. Using the spin-flavour structure of the constituting quarks and by defining effective mass of the confined quarks within the baryons, the magnetic moments are computed with no additional free parameters.
The role of segmental mass and moment of inertia in dynamic-contact task construction.
Brown, Nicholas A T; Jensen, Jody L
2006-07-01
The authors examined whether differences between children and adults in the application of muscle forces during a dynamic-contact task (cycling) can be attributed to children's relatively lower segmental mass and moment of inertia. They examined pedal-force construction as adults and younger and older children (n = 7 in each group), with and without mass added to their limbs, pedaled an appropriately scaled bicycle ergometer. When mass was added to their limbs, children adjusted muscular forces on the pedal in a way that began to approach the pattern demonstrated by adults. Because age, neuromotor maturation, and motor experience were held constant, it seems plausible that by 6 to 8 years of age, and perhaps younger, physical size and growth limit children's production of adult-like muscle forces on the pedal.
Bini, Donato; Luongo, Orlando; Quevedo, Hernando
2009-01-01
An exact solution of Einstein's field equations in empty space first found in 1985 by Quevedo and Mashhoon is analyzed in detail. This solution generalizes Kerr spacetime to include the case of matter with arbitrary mass quadrupole moment and is specified by three parameters, the mass $M$, the angular momentum per unit mass $a$ and the quadrupole parameter $q$. It reduces to the Kerr spacetime in the limiting case $q=0$ and to the Erez-Rosen spacetime when the specific angular momentum $a$ vanishes. The geometrical properties of such a solution are investigated. Causality violations, directional singularities and repulsive effects occur in the region close to the source. Geodesic motion and accelerated motion are studied on the equatorial plane which, due to the reflection symmetry property of the solution, turns out to be also a geodesic plane.
Bini, Donato [Istituto per le Applicazioni del Calcolo ' M. Picone' , CNR I-00185 Rome (Italy); Geralico, Andrea; Luongo, Orlando; Quevedo, Hernando, E-mail: binid@icra.i [ICRA, University of Rome ' La Sapienza' , I-00185 Rome (Italy)
2009-11-21
An exact solution of Einstein's field equations in empty space first found in 1985 by Quevedo and Mashhoon is analyzed in detail. This solution generalizes Kerr spacetime to include the case of matter with an arbitrary mass quadrupole moment and is specified by three parameters, the mass M, the angular momentum per unit mass a and the quadrupole parameter q. It reduces to the Kerr spacetime in the limiting case q = 0 and to the Erez-Rosen spacetime when the specific angular momentum a vanishes. The geometrical properties of such a solution are investigated. Causality violations, directional singularities and repulsive effects occur in the region close to the source. Geodesic motion and accelerated motion are studied on the equatorial plane which, due to the reflection symmetry property of the solution, also turns out to be a geodesic plane.
Sliding Mode Control for Mass Moment Aerospace Vehicles Using Dynamic Inversion Approach
Xiao-Yu Zhang
2013-01-01
Full Text Available The moving mass actuation technique offers significant advantages over conventional aerodynamic control surfaces and reaction control systems, because the actuators are contained entirely within the airframe geometrical envelope. Modeling, control, and simulation of Mass Moment Aerospace Vehicles (MMAV utilizing moving mass actuators are discussed. Dynamics of the MMAV are separated into two parts on the basis of the two time-scale separation theory: the dynamics of fast state and the dynamics of slow state. And then, in order to restrain the system chattering and keep the track performance of the system by considering aerodynamic parameter perturbation, the flight control system is designed for the two subsystems, respectively, utilizing fuzzy sliding mode control approach. The simulation results describe the effectiveness of the proposed autopilot design approach. Meanwhile, the chattering phenomenon that frequently appears in the conventional variable structure systems is also eliminated without deteriorating the system robustness.
Neutron electric dipole moment using N{sub f}=2+1+1 twisted mass fermions
Alexandrou, C.; Athenodorou, A.; Constantinou, M.; Hadjiyiannakou, K. [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; The Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center; Jansen, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Koutsou, G. [The Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center; Ottnad, K. [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Bonn Univ. (Germany). Helmholtz-Institut fuer Strahlen- und Kernphysik; Bonn Univ. (Germany). Bethe Center for Theoretical Physics; Petschlies, M. [The Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center; Bonn Univ. (Germany). Helmholtz-Institut fuer Strahlen- und Kernphysik; Bonn Univ. (Germany). Bethe Center for Theoretical Physics
2016-03-15
We evaluate the neutron electric dipole moment vertical stroke vector d{sub N} vertical stroke using lattice QCD techniques. The gauge configurations analyzed are produced by the European Twisted Mass Collaboration using N{sub f}=2+1+1 twisted mass fermions at one value of the lattice spacing of a ≅0.082 fm and a light quark mass corresponding to m{sub π}≅373 MeV. Our approach to extract the neutron electric dipole moment is based on the calculation of the CP-odd electromagnetic form factor F{sub 3}(Q{sup 2}) for small values of the vacuum angle θ in the limit of zero Euclidean momentum transfer Q{sup 2}. The limit Q{sup 2}→0 is realized either by adopting a parameterization of the momentum dependence of F{sub 3}(Q{sup 2}) and performing a fit, or by employing new position space methods, which involve the elimination of the kinematical momentum factor in front of F{sub 3}(Q{sup 2}). The computation in the presence of a CP-violating term requires the evaluation of the topological charge Q. This is computed by applying the cooling technique and the gradient flow with three different actions, namely the Wilson, the Symanzik tree-level improved and the Iwasaki action. We demonstrate that cooling and gradient flow give equivalent results for the neutron electric dipole moment. Our analysis yields a value of vertical stroke vector d{sub N} vertical stroke =0.045(6)(1) anti θ e.fm for the ensemble with m{sub π}=373 MeV considered.
The Neutron Electric Dipole Moment using $N_f{=}2{+}1{+}1$ twisted mass fermions
Alexandrou, C; Constantinou, M; Hadjiyiannakou, K; Jansen, K; Koutsou, G; Ottnad, K; Petschlies, M
2015-01-01
We evaluate the neutron electric dipole moment $\\vert\\vec{d}_N\\vert$ using lattice QCD techniques. The gauge configurations analysed are produced by the European Twisted Mass Collaboration using $N_f{=}2{+}1{+}1$ twisted mass fermions at one value of the lattice spacing of $a \\simeq 0.082 \\ {\\rm fm}$ and a light quark mass corresponding to $m_{\\pi} \\simeq 373 \\ {\\rm MeV}$. Our approach to extract the neutron electric dipole moment is based on the calculation of the $CP$-odd electromagnetic form factor $F_3(Q^2)$ for small values of the vacuum angle $\\theta$ in the limit of zero Euclidean momentum transfer $Q^2$. The limit $Q^2 \\to 0$ is realised either by adopting a parameterization of the momentum dependence of $F_3(Q^2)$ and performing a fit, or by employing new position space methods, which involve the elimination of the kinematical momentum factor in front of $F_3(Q^2)$. The computation in the presence of a $CP$-violating term requires the evaluation of the topological charge ${\\cal Q}$. This is computed ...
The pi+ pi+ scattering length from maximally twisted mass lattice QCD
Feng, Xu; Renner, Dru B
2009-01-01
We calculate the s-wave pion-pion scattering length in the isospin I=2 channel in lattice QCD for pion masses ranging from 270 Mev to 485 Mev using two flavors of maximally twisted mass fermions at a lattice spacing of 0.086 fm. Additionally, we check for lattice artifacts with one calculation at a finer lattice spacing of 0.067 fm. We use chiral perturbation theory at next-to-leading order to extrapolate our results. At the physical pion mass, we find m_pi a_pipi(I=2)=-0.04385(28)(38) for the scattering length, where the first error is statistical and the second is our estimate of several systematic effects.
Relationship between changes in haemoglobin mass and maximal oxygen uptake after hypoxic exposure.
Saunders, Philo U; Garvican-Lewis, Laura A; Schmidt, Walter F; Gore, Christopher J
2013-12-01
Endurance athletes have been using altitude training for decades to improve near sea-level performance. The predominant mechanism is thought to be accelerated erythropoiesis increasing haemoglobin mass (Hb(mass)) resulting in a greater maximal oxygen uptake (VO₂(max)). Not all studies have shown a proportionate increase in VO₂(max) as a result of increased Hb(mass). The aim of this study was to determine the relationship between the two parameters in a large group of endurance athletes after altitude training. 145 elite endurance athletes (94 male and 51 female) who participated in various altitude studies as altitude or control participants were used for the analysis. Participants performed Hb(mass) and VO₂(max) testing before and after intervention. For the pooled data, the correlation between per cent change in Hb(mass) and per cent change in VO₂(max) was significant (pmax) of more than half the magnitude of the increase in Hb(mass), which supports the use of altitude training by athletes. But race performance is not perfectly related to relative VO₂(max), and other non-haematological factors altered from altitude training, such as running economy and lactate threshold, may also be beneficial to performance.
Nucleon form factors and moments of parton distributions in twisted mass lattice QCD
Alexandrou, C; Carbonell, J; Constantinou, M; Guichon, P; Harraud, P A; Jansen, K; Kallidonis, C; Korzec, T; Papinutto, M
2012-01-01
We present results on the electroweak form factors and on the lower moments of parton distributions of the nucleon, within lattice QCD using two dynamical flavors of degenerate twisted mass fermions. Results are obtained on lattices with three different values of the lattice spacings, namely a=0.089 fm, a=0.070 fm and a=0.056 fm, allowing the investigation of cut-off effects. The volume dependence is examined by comparing results on two lattices of spatial length L=2.1 fm and L=2.8 fm. The simulations span pion masses in the range of 260-470 MeV. Our results are renormalized non-perturbatively and the values are given in the MS-scheme at a scale mu=2 GeV.
Yang, Xiong Wei; Lee, Joong Seok; Kim, Yoon Young
2016-11-01
Because effective material properties are essential concepts in the analyses of wave phenomena in metamaterials, they may also be utilized in the optimal design of metamaterials. In this work, we propose a topology optimization method directly using the Effective Mass Density (EMD) concept to maximize the first bandgaps of two-dimensional solid Locally Resonant Acoustic Metamaterials (LRAMs). When the first bandgap is characterized by the negative EMD, the bandgap maximization can be formulated efficiently as a topology optimization problem to broaden the frequency zone of the negative EMD values. In this work, EMD is calculated by considering the macroscopic isotropy of LRAMs in the long wavelength limit. To facilitate the analytical sensitivity analysis, we propose an elaborate calculation scheme of EMD. A sensitivity averaging technique is also suggested to guarantee the macroscopically isotropic behavior of the LRAMs. In the present study, the coating layer interfacing the core and the matrix of a ternary LRAM is chosen as the design region because it significantly influences the bandgap. By considering several numerical examples, the validity of this method is verified, and the effects of the mass constraint ratios on the optimized results are also investigated.
Mass and magnetic dipole moment of negative-parity heavy baryons with spin-3/2
Azizi, K.; Sundu, H.
2017-01-01
We calculate the mass and residue of the heavy spin-3/2 negative-parity baryons with single heavy bottom or charm quark by use of a two-point correlation function. We use the obtained results to investigate the diagonal radiative transitions among the baryons under consideration. In particular, we compute corresponding transition form factors via light cone QCD sum rules, which are then used to obtain the magnetic dipole moments of the heavy spin-3/2 negative-parity baryons. We remove the pollutions coming from the positive-parity spin-3/2 and positive/negative-parity spin-1/2 baryons by constructing sum rules for different Lorentz structures. We compare the results obtained with the existing theoretical predictions.
Recent results on the mass, gravitational field and moments of inertia of the moon.
Michael, W. H., Jr.; Blackshear, W. T.
1972-01-01
Use of Doppler tracking data from the Lunar Orbiter series of spacecraft in an analysis of the spherical harmonic coefficients of the lunar gravitational field through thirteenth degree and order. The value obtained for the mass of the moon, GM = 4902.84 cu km/sec/sec, is in good agreement with previous results and with results obtained by alternate procedures. Acceleration contour plots, derived from the gravitational coefficients, show correlations with surface features on the near side of the moon, but are of questionable validity for the far side because of the lack of direct tracking data on the far side. Based on the most recent gravitational field data, the current estimate for the polar moment of inertia of the moon is C/Ma squared = 0.4019 super + 0.004 sub - 0.002. This value indicates that the interior of the moon can be homogeneous, but some results presented strongly suggest that the moon is differentiated, with an excess of mass in the direction toward the earth.
Physical properties of the human head: mass, center of gravity and moment of inertia.
Yoganandan, Narayan; Pintar, Frank A; Zhang, Jiangyue; Baisden, Jamie L
2009-06-19
This paper presents a synthesis of biomedical investigations of the human head with specific reference to certain aspects of physical properties and development of anthropometry data, leading to the advancement of dummies used in crashworthiness research. As a significant majority of the studies have been summarized as reports, an effort has been made to chronologically review the literature with the above objectives. The first part is devoted to early studies wherein the mass, center of gravity (CG), and moment of inertia (MOI) properties are obtained from human cadaver experiments. Unembalmed and preserved whole-body and isolated head and head-neck experiments are discussed. Acknowledging that the current version of the Hybrid III dummy is the most widely used anthropomorphic test device in motor vehicle crashworthiness research for frontal impact applications for over 30 years, bases for the mass and MOI-related data used in the dummy are discussed. Since the development and federalization of the dummy in the United States, description of methods used to arrive at these properties form a part of the manuscript. Studies subsequent to the development of this dummy including those from the US Military are also discussed. As the head and neck are coupled in any impact, and increasing improvements in technology such as advanced airbags, and pre-tensioners and load limiters in manual seatbelts affect the kinetics of the head-neck complex, the manuscript underscores the need to pursue studies to precisely determine all the physical properties of the head. Because the most critical parameters (locations of CG and occipital condyles (OC), mass, and MOI) have not been determined on a specimen-by-specimen basis in any single study, it is important to gather these data in future experiments. These critical data will be of value for improving occupant safety, designing advanced restraint systems, developing second generation dummies, and assessing the injury mitigating
Automated Abnormal Mass Detection in the Mammogram Images Using Chebyshev Moments
Alireza Talebpour
2013-01-01
Full Text Available Breast cancer is the second leading cause of cancer mortality among women after lung cancer. Early diagnosis of this disease has a major role in its treatment. Thus the use of computer systems as a detection tool could be viewed as essential to helping with this disease. In this study a new system for automated mass detection in mammography images is presented as being more accurate and valid. After optimization of the image and extracting a better picture of the breast tissue from the image and applying log-polar transformation, Chebyshev moments can be calculated in all areas of breast tissue. Then after extracting effective features in the diagnosis of mammography images, abnormal masses, which are important for the physician and specialists, can be determined with applying the appropriate threshold. To check the system performance, images in the MIAS (Mammographic Image Analysis Society mammogram database have been used and the results allowed us to draw a FROC (Free Response Receiver Operating Characteristic curve. When compared the FROC curve with similar systems experts, the high ability of our system was confirmed. In this system, images of different thresholds, specifically 445, 450, 455 are processed and then put through a sensitivity analysis. The process garnered good results 100, 92 and 84%, respectively and a false positive rate per image 2.56, 0.86, 0.26, respectively have been calculated. Comparing other automatic mass detection systems, the proposed method has a few advantages over prior systems: Our process allows us to determine the amount of false positives and/or sensitivity parameters within the system. This can be determined by the importance of the detection work being done. The proposed system achieves 100% sensitivity and 2.56 false positive for every image.
Higgs mass and muon anomalous magnetic moment in the MSSM with gauge-gravity hybrid mediation
Zhu, Bin; Ding, Ran; Li, Tianjun
2017-08-01
In general, we can propose the hybrid supersymmetry breakings and hybrid mediations in the supersymmetric standard models. In this paper, we study the hybrid mediation for supersymmetry (SUSY) breaking. In particular, we study how to keep the good properties of gravity mediation, gauge mediation, and anomaly mediation, while solving their problems simultaneously. As an example, we consider the gauge-gravity mediation, where all the supersymmetric particles (sparticles) obtain the SUSY breaking soft terms from the traditional gravity mediation while gauge mediation gives dominant contributions to the soft terms in the colored sector due to the splitted messengers. Thus, we can realize the electroweak supersymmetry naturally where the sleptons, sneutrinos, and electroweakinos are light within one TeV while the squarks and gluino are heavy around a few TeVs. Then we can explain 125 GeV Higgs mass, satisfy the LHC SUSY search bounds, and explain the anomalous magnetic moment of muon, etc. Moreover, the gluino and squarks are well beyond the current LHC run II searches.
Wone, B W M; Madsen, Per; Donovan, E R;
2015-01-01
Metabolic rates are correlated with many aspects of ecology, but how selection on different aspects of metabolic rates affects their mutual evolution is poorly understood. Using laboratory mice, we artificially selected for high maximal mass-independent metabolic rate (MMR) without direct selecti...
A Review of the N-bound and the Maximal Mass Conjectures Using NUT-Charged dS Spacetimes
Clarkson, R; Mann, R B
2004-01-01
The proposed dS/CFT correspondence remains an intriguing paradigm in the context of string theory. Recently it has motivated two interesting conjectures: the entropic N-bound and the maximal mass conjecture. The former states that there is an upper bound to the entropy in asymptotically de Sitter spacetimes, given by the entropy of pure de Sitter space. The latter states that any asymptotically de Sitter spacetime cannot have a mass larger than the pure de Sitter case without inducing a cosmological singularity. Here we review the status of these conjectures and demonstrate their limitation. We first describe a generalization of gravitational thermodynamics to asymptotically de Sitter spacetimes, and show how to compute conserved quantities and gravitational entropy using this formalism. From this we proceed to a discussion of the N-bound and maximal mass conjectures. We then illustrate that these conjectures are not satisfied for certain asymptotically de Sitter spacetimes with NUT charge. We close with a pr...
V. E. Merzlikin
2015-01-01
Full Text Available The article deals with the search for optimal parameter estimation of the parameters of the process of homogenization of dairy products. Provides a theoretical basis for relationship of the relaxation time of the fat globules and attenuation coefficient of ultrasonic oscillations in dairy products. Suggested from the measured acoustic properties of milk to make the calculations of the mass distribution of fat globules. Studies on the proof of this hypothesis. Morphological analysis procedure carried out for homogenized milk samples at different pressures, as well as homogenized. As a result of research obtained distribution histogram of fat globules in dependence on the homogenization pressure. Also performed acoustic studies to obtain the frequency characteristics of loss modulus as a function of homogenization pressure. For further research the choice of method for approximating dependences is obtained using statistical moments of distributions. The parameters for the approximation of the distribution of fat globules and loss modulus versus pressure homogenization were obtained. Was carried out to test the hypothesis on the relationship parameters of approximation of the distribution of the fat globules and loss modulus as a function of pressure homogenization. Correlation analysis showed a clear dependence of the first and second statistical moment distributions of the pressure homogenization. The obtain ed dependence is consistent with the physical meaning of the first two moments of a statistical distribution. Correlation analysis was carried out according to the statistical moments of the distribution of the fat globules from moments of loss modulus. It is concluded that the possibility of ultrasonic testing the degree of homogenization and mass distribution of the fat globules of milk products.
Effect of 29 days of simulated microgravity on maximal oxygen consumption and fat-free mass of rats
Woodman, Christopher R.; Stump, Craig S.; Stump, Jane A.; Rahman, Zia; Tipton, Charles M.
1991-01-01
Effects of a 29-days exposure to simulated microgravity on the values of maximal oxygen consumption and fat-free mass (FFM) and on the mechanical efficiency of running were investigated in rats randomly assigned to one of three regimens: head-down suspension (HDS) at 45 deg, horizontal suspension (HS), or cage control (CC). Before suspension and on days 7, 14, 21, and 28, five exercise performance tests were carried out, with measurements related to maximal oxygen consumption, treadmill run time, and mechanical efficiency. It was found that maximal oxygen consumption of both HDS and HS groups decreased significantly at day 7, after which the HDS rats remained decreased while the HS rats returned to presuspension values. Apparent mechanical efficiency in the HDS and HS groups decreased by 22-35 percent during the experimental period, and FFM decreased significantly.
Effect of 29 days of simulated microgravity on maximal oxygen consumption and fat-free mass of rats
Woodman, Christopher R.; Stump, Craig S.; Stump, Jane A.; Rahman, Zia; Tipton, Charles M.
1991-01-01
Effects of a 29-days exposure to simulated microgravity on the values of maximal oxygen consumption and fat-free mass (FFM) and on the mechanical efficiency of running were investigated in rats randomly assigned to one of three regimens: head-down suspension (HDS) at 45 deg, horizontal suspension (HS), or cage control (CC). Before suspension and on days 7, 14, 21, and 28, five exercise performance tests were carried out, with measurements related to maximal oxygen consumption, treadmill run time, and mechanical efficiency. It was found that maximal oxygen consumption of both HDS and HS groups decreased significantly at day 7, after which the HDS rats remained decreased while the HS rats returned to presuspension values. Apparent mechanical efficiency in the HDS and HS groups decreased by 22-35 percent during the experimental period, and FFM decreased significantly.
G. Renzetti
2013-12-01
I consider a satellite moving around a non-spherical body of mass and equatorial radius , and calculate its orbital precessions caused by the body’s octupolar mass moment 4. I consider only the effects averaged over one orbital period of the satellite. I give exact formulas, not restricted to any special values of either the eccentricity or the inclination of the satellite’s orbit. I do not assume any preferential orientation for the body’s spin axis $\\hat{\\mathbf{k}}$ because in many cases of potential interest (exoplanets, neutron stars, black holes) it is poorly known or unknown at all.
Wright, Jonathan W.
Experimental satellite attitude simulators have long been used to test and analyze control algorithms in order to drive down risk before implementation on an operational satellite. Ideally, the dynamic response of a terrestrial-based experimental satellite attitude simulator would be similar to that of an on-orbit satellite. Unfortunately, gravitational disturbance torques and poorly characterized moments of inertia introduce uncertainty into the system dynamics leading to questionable attitude control algorithm experimental results. This research consists of three distinct, but related contributions to the field of developing robust satellite attitude simulators. In the first part of this research, existing approaches to estimate mass moments and products of inertia are evaluated followed by a proposition and evaluation of a new approach that increases both the accuracy and precision of these estimates using typical on-board satellite sensors. Next, in order to better simulate the micro-torque environment of space, a new approach to mass balancing satellite attitude simulator is presented, experimentally evaluated, and verified. Finally, in the third area of research, we capitalize on the platform improvements to analyze a control moment gyroscope (CMG) singularity avoidance steering law. Several successful experiments were conducted with the CMG array at near-singular configurations. An evaluation process was implemented to verify that the platform remained near the desired test momentum, showing that the first two components of this research were effective in allowing us to conduct singularity avoidance experiments in a representative space-like test environment.
Kaon-kaon scattering at maximal isospin from $N_f=2+1+1$ twisted mass lattice QCD
Helmes, Christopher; Knippschild, Bastian; Kostrzewa, Bartosz; Liu, Liuming; Urbach, Carsten; Werner, Markus
2016-01-01
We present results for the interaction of two kaons at maximal isospin. The calculation is based on 2+1+1 flavour gauge configurations generated by the ETM Collaboration (ETMC) featuring pion masses ranging from about 230 MeV to 450 MeV at three values of the lattice spacing. The elastic scattering length $a_0^{I=1}$ is calculated at several values of the bare strange quark and light quark masses. We find $M_K a_0 =-0.397(11)(_{-8}^{+0})$ as the result of a chiral and continuum extrapolation to the physical point. This number is compared to other lattice results.
吴岳良
2000-01-01
The gauge model with SO(3)F flavor symmetry and three Higgs triplets is studied. We show how the intriguing nearly degenerate neutrino mass and bi-maximal mixing scenario comes out naturally after spontaneous breaking of the symmetry. The hierarchy between the neutrino mass-squared differences, which is needed for reconciling both solar and atmospheric neutrino data, naturally results from an approximate permutation symmetry. The model can also lead to interesting phenomena on lepton-flavor violations via the SO(3)F gauge interactions.
Magnetic moments in chemically ordered mass-selected CoPt and FePt clusters
Dupuis, V., E-mail: Veronique.Dupuis@univ-lyon1.fr [Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne cedex (France); Khadra, G.; Linas, S.; Hillion, A. [Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne cedex (France); Gragnaniello, L. [Institute of Condensed Matter Physics, EPFL, CH-1015 Lausanne (Switzerland); Tamion, A.; Tuaillon-Combes, J.; Bardotti, L.; Tournus, F. [Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne cedex (France); Otero, E.; Ohresser, P. [Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin BP 48, F-91192 Gif-sur-Yvette Cedex (France); Rogalev, A.; Wilhelm, F. [European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex (France)
2015-06-01
By combining high photon flux and chemical selectivity, X-ray absorption spectroscopy and X-ray magnetic circular dichroism (XMCD) have been used to study the magnetism of CoPt and FePt clusters before and after their transition to the chemically ordered L1{sub 0}-like phase. Compared to the bulk, we find larger magnetic spin and orbital moments of Fe, Co and Pt atoms in nanoalloys. - Highlights: • Study of magnetism on well-defined CoPt and FePt clusters embedded in carbon matrix • X-ray magnetic circular dichroism (XMCD) at each specific Fe, Co and Pt edges, before and after annealing to induce transition to the chemically L1{sub 0}-like phase. • Quantitative values of the spin and orbital magnetic moments of Co (resp. Fe) and Pt after the chemical ordering transition. • Specific nanoalloy effects.
Klose, Verena [Dresden Univ. of Technology (Germany)
2011-08-12
This thesis presents first measurements of moments of the hadronic n_{X}^{2} distribution measured in inclusive semileptonic decays of B mesons to final states containing a charm quark, B → X_{c}ℓν. The variable n_{X}^{2} is a combination of the invariant mass of the charmed meson m_{X}, its energy in the B-meson rest-frame E_{X;BRF}, and a constant ~Λ = 0.65 GeV, n_{X}^{2} = m_{X}^{2}c^{4}-2~ΛE_{X,BRF} + ~Λ^{2}. The moments
Klose, V.
2007-11-29
This thesis presents first measurements of moments of the hadronic n{sub X}{sup 2} distribution measured in inclusive semileptonic decays of B mesons to final states containing a charm quark, B{yields}X{sub c}l{sub {nu}}. The variable n{sub X}{sup 2} is a combination of the invariant mass of the charmed meson m{sub X}, its energy in the B-meson rest-frame E{sub X,BRF}, and a constant {lambda}=0.65 GeV, n{sub X}{sup 2}=m{sub X}{sup 2}c{sup 4}-2{lambda}E{sub X,BRF}+{lambda}{sup 2}. The moments left angle n{sub X}{sup k} right angle with k=2,4,6 are measured as proposed by theory to constrain assumptions made in the theoretical description of inclusive observables in semileptonic B-meson decays. This description uses Heavy Quark Expansion (HQE), an effective QCD combined with an Operator Product Expansion. The measurement is based on a sample of 231.6 million e{sup +}e{sup -} {yields} {upsilon}(4S) {yields} B anti B events recorded with the BABAR experiment at the PEP-II e{sup +}e{sup -}-storage rings at SLAC. We reconstruct the semileptonic decay by identifying a charged lepton in events tagged by a fully reconstructed hadronic decay of the second B meson. Correction procedures are derived from Monte Carlo simulations to ensure an unbiased measurement of the moments of the n{sub X}{sup 2} distribution. All moments are measured requiring minimum lepton momenta between 0.8 GeV/c and 1.9 GeV/c in the rest frame of the B meson. Performing a simultaneous fit to the measured moments left angle n{sub X}{sup k} right angle up to order k = 6 combined with other measurements of moments of the lepton-energy spectrum in decays B{yields}X{sub c}l{sub {nu}} and moments of the photon-energy spectrum in decays B{yields} X{sub s}{gamma}, we determine the quark-mixing parameter vertical stroke V{sub cb} vertical stroke, the bottom and charm quark masses, the semileptonic branching fraction B(B{yields}X{sub c}l{sub {nu}}), and four non-perturbative heavy quark parameters. Using HQE
Mathai, Varghese; Zhu, Xiaojue; Sun, Chao; Lohse, Detlef
2017-08-01
In this Letter, we study the motion and wake patterns of freely rising and falling cylinders in quiescent fluid. We show that the amplitude of oscillation and the overall system dynamics are intricately linked to two parameters: the particle's mass density relative to the fluid m*≡ρp/ρf and its relative moment of inertia I*≡Ip/If. This supersedes the current understanding that a critical mass density (m*≈0.54 ) alone triggers the sudden onset of vigorous vibrations. Using over 144 combinations of m* and I*, we comprehensively map out the parameter space covering very heavy (m*>10 ) to very buoyant (m*data collapse into two scaling regimes demarcated by a transitional Strouhal number Stt≈0.17 . Stt separates a mass-dominated regime from a regime dominated by the particle's moment of inertia. A shift from one regime to the other also marks a gradual transition in the wake-shedding pattern: from the classical two-single (2 S ) vortex mode to a two-pair (2 P ) vortex mode. Thus, autorotation can have a significant influence on the trajectories and wakes of freely rising isotropic bodies.
Sloat, T. N.; Edwards, R. H.; Collins, R. L.
1971-01-01
One-dimensional flow between two fixed parallel walls composed of the same substance but at different temperatures and spaced a distance 1 apart is considered. The hot plate is the evaporating surface (source) and the cold plate is the condensing surface (sink). The vapor between the two plates is assumed to be a monatomic gas consisting of Maxwell molecules. Lee's moment method is used to obtain a set of six nonlinear equations. Both the nonlinear equations and a linearized approximation to them are solved.
Cichy, K; Garcia-Ramos, E; Jansen, K
2011-01-01
We study the 'spectral projector' method for the computation of the chiral condensate and the topological susceptibility, using $N_f=2+1+1$ dynamical flavors of maximally twisted mass Wilson fermions. In particular, we perform a study of the quark mass dependence of the chiral condensate $\\Sigma$ and topological susceptibility $\\chi_{top}$ in the range $270 MeV < m_{\\pi} < 500 MeV$ and compare our data with analytical predictions. In addition, we compute $\\chi_{top} in the quenched approximation where we match the lattice spacing to the $N_f=2+1+1$ dynamical simulations. Using the Kaon, $\\eta$ and $\\eta^{\\prime}$ meson masses computed on the $N_f=2+1+1$ ensembles, we then perform a preliminary test of the Witten-Veneziano relation.
Characterizing Center of Mass and Moment of Inertia of Soldiers’ Loads Packed for Combat
2004-12-01
where ICM is the MOI about the COM and M is the mass ( Serway , 1990). Since the platform is symmetrical, the COM of the platform is located in the...mass location to the metabolic cost of load carriage [Abstract], Med. Sci. Sports Exerc., 29, S205. Serway , R.A., 1990: Physics for scientists and
Blum, Thomas; Hayakawa, Masashi; Izubuchi, Taku; Jin, Luchang; Jung, Chulwoo; Lehner, Christoph
2016-01-01
We report a lattice QCD calculation of the hadronic light-by-light contribution to the muon anomalous magnetic moment at physical pion mass. The calculation includes the connected diagrams and the leading, quark-line-disconnected diagrams. We incorporate algorithmic improvements developed in our previous work. The calculation was performed on the $48^3 \\times 96$ ensemble generated with a physical-pion-mass and a 5.5 fm spatial extent by the RBC and UKQCD collaborations using the chiral, domain wall fermion (DWF) formulation. We find $a_\\mu^{\\text{HLbL}} = 5.35 (1.35) \\times 10^{- 10}$, where the error is statistical only. The finite-volume and finite lattice-spacing errors could be quite large and are the subject of on-going research. The omitted disconnected graphs, while expected to give a correction of order 10\\%, also need to be computed.
R. HARI KRISHNAN
2016-02-01
Full Text Available Knowledge of Mass Moment of Inertia of human body and its segments are necessary for various problems in biomechanics and its applications. This paper focusses on the estimation of Moment of Inertia of a human body when bending forward, which is needed for designing a robotic self-transfer facility for elderly and disabled. This paper also covers a brief review on studies of different anthropometric data like mass of the body segments, Centre of Mass, radius of gyration, etc. Using these data and certain assumptions, Mass Moment of Inertia of human body bending forward is estimated by applying laws of basic mechanics. This estimated value is then validated using a solid modelling CAD software.
Maximal exercise in obese patients with COPD: the role of fat free mass
Aiello, Marina; Teopompi, Elisabetta; Tzani, Panagiota; Ramponi, Sara; Gioia, Maria Rosaria; Marangio, Emilio; Chetta, Alfredo
2014-01-01
Background Obese patients (OB) with COPD may better tolerate exercise as compared to normal weight (NW) COPD patients, even if the reason for this is not yet fully understood. We investigated the interactions between obesity, lung hyperinflation, fat-free mass (FFM) and exercise capacity in COPD. Methods Forty-four patients (16 females; age 65 ± 8 yrs) were assessed by resting lung function and body composition and exercised on a cycle-ergometer to exhaustion. Results Twenty-two OB and 22 NW ...
Nuclear-moment studies in the odd-mass In isotopes up to N=82 using the Tilted Foils technique
We propose to study the magnetic moments of the neutron-rich odd-even In isotopes up to N=82 using the Tilted Foils technique and the recently installed $\\beta$-NMR setup at REX -ISOLDE. With only one proton hole in Z=50 and a neutron number approaching N=82, the indium isotopes should be a very good test ground for the extreme single-particle approximation and could provide essential data for tuning the nuclear interaction in the vicinity of the doubly-magic $^{132}$ Sn. Moments of single-particle states adjacent to closed shells are also crucial to determine the corrections to the M1 operator from core polarization and meson exchange effects. In addition to the 9/2$^{+}$, presumed to be of pure single proton hole configuration, the ½$^{-}$ isomeric states should shed light on a recent hypothesis of low-energy vibration/collectivity in the region. The detailed study of the Tilted Foils technique at higher masses is of crucial importance for its application for further g-factor studies and for the production...
V S Uma; Alpana Goel; Archana Yadav; A K Jain
2016-01-01
The band-head spin (0) of superdeformed (SD) rotational bands in ∼ 190 mass region is predicted using the variable moment of inertia (VMI) model for 66 SD rotational bands. The superdeformed rotational bands exhibited considerably good rotational property and rigid behaviour. The transition energies were dependent on the prescribed band-head spins. The ratio of transition energies over spin /2 (RTEOS) vs. angular momentum ( ) have confirmed the rigid behaviour, provided the band-head spin value is assigned correctly. There is a good agreement between the calculated and the observed transition energies. This method gives a very comprehensive interpretation for spin assignment of SD rotational bands which could help in designing future experiments for SD bands.
The electric dipole moment of the neutron from N{sub f}=2+1+1 twisted mass fermions
Alexandrou, C.; Athenodorou, A.; Constantinou, M. [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center; Hadjiyiannakou, K. [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center; George Washington Univ., Washington, DC (United States). Dept. of Physics; Jansen, K. [DESY Zeuthen (Germany). NIC; Koutsou, G. [Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center; Ottnad, K. [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Bonn Univ. (Germany). Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics; Petschlies, M. [Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center; Bonn Univ. (Germany). Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics
2015-11-15
We extract the neutron electric dipole moment (nEDM) vertical stroke vector d{sub n} vertical stroke on configurations produced with N{sub f}=2+1+1 twisted mass fermions with lattice spacing of a ≅0.082 fm and a light quark mass that corresponds to M{sub π} ≅ 373 MeV. We do so by evaluating the CP-odd form factor F{sub 3} for small values of the CP-violation parameter θ in the limit of zero momentum transfer. This limit is extracted using the usual parametrization but in addition position space methods. The topological charge is computed via cooling and gradient flow using the Wilson, Symanzik tree-level improved and Iwasaki actions for smoothing. We obtain consistent results for all choices of smoothing procedures and methods to extract F{sub 3} at zero momentum transfer. For the ensemble analyzed we find a value of nEDM of vertical stroke vector d{sub n} vertical stroke /θ=0.045(6)(1) e.fm.
Neuromuscular factors contributing to in vivo eccentric moment generation.
Webber, S; Kriellaars, D
1997-07-01
Muscle series elasticity and its contribution to eccentric moment generation was examined in humans. While subjects [male, n = 30; age 26.3 +/- 4.8 (SD) yr; body mass 78.8 +/- 13.1 kg] performed an isometric contraction of the knee extensors at 60 degrees of knee flexion, a quick stretch was imposed with a 12 degrees -step displacement at 100 degrees /s. The test was performed at 10 isometric activation levels ranging from 1.7 to 95.2% of maximal voluntary contraction (MVC). A strong linear relationship was observed between the peak imposed eccentric moment derived from quick stretch and the isometric activation level (y = 1.44x + 7.08; r = 0.99). This increase in the eccentric moment is consistent with an actomyosin-dependent elasticity located in series with the contractile element of muscle. By extrapolating the linear relationship to 100% MVC, the predicted maximum eccentric moment was found to be 151% MVC, consistent with in vitro data. A maximal voluntary, knee extensor strength test was also performed (5-95 degrees, 3 repetitions, +/-50, 100, 150, 200, and 250 degrees/s). The predicted maximum eccentric moment was 206% of the angle- and velocity-matched, maximal voluntary eccentric moments. This was attributed to a potent neural regulatory mechanism that limits the recruitment and/or discharge of motor units during maximal voluntary eccentric contractions.
Meichsner, J
2015-01-01
Perturbations of satellite orbits in the gravitational field of a body with a mass monopole and arbitrary spin multipole moments are considered for an axisymmetric and stationary situation. Periodic and secular effects caused by the central gravitomagnetic field are derived by a first order perturbation theory. For a central spin-dipole field these results reduce to the well known Lense-Thirring effects.
Burger, Florian [Humboldt U. Berlin; Feng, Xu [KEK; Hotzel, Grit [Humboldt U. Berlin; Jansen, Karl [DESY; Petschlies, Marcus [The Cyprus Institute; Renner, Dru B. [JLAB
2013-11-01
We present results for the leading order QCD correction to the anomalous magnetic moment of the muon including the first two generations of quarks as dynamical degrees of freedom. Several light quark masses are examined in order to yield a controlled extrapolation to the physical pion mass. We analyse ensembles for three different lattice spacings and several volumes in order to investigate lattice artefacts and finite-size effects, respectively. We also provide preliminary results for this quantity for two flavours of mass-degenerate quarks at the physical value of the pion mass.
Burger, Florian; Hotzel, Grit [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Feng, Xu [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki (Japan); Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Petschlies, Marcus [The Cyprus Institute, Nicosia (Cyprus); Renner, Dru B. [Jefferson Lab, Newport News, VA (United States)
2013-12-15
We present results for the leading order QCD correction to the anomalous magnetic moment of the muon including the first two generations of quarks as dynamical degrees of freedom. Several light quark masses are examined in order to yield a controlled extrapolation to the physical pion mass. We analyse ensembles for three different lattice spacings and several volumes in order to investigate lattice artefacts and finite-size effects, respectively. We also provide preliminary results for this quantity for two flavours of mass-degenerate quarks at the physical value of the pion mass.
Slusher, Aaron L; Huang, Chun-Jung
2016-07-01
Pentraxin 3 (PTX3), a cardioprotective protein, has recently been shown to be associated with improved insulin resistance (IR) and glucose metabolism. Therefore, the primary purpose of this study was to examine whether or not increased plasma PTX3 following maximal aerobic exercise would differ between obese and normal-mass subjects, and its association with the homeostatic model assessment of insulin resistance (HOMA-IR) and glucose response. Twenty-five untrained obese (n = 13 [6 males and 7 females]) and normal-mass (n = 12 [5 males and 7 females]) subjects performed an acute bout of maximal aerobic exercise to assess maximal oxygen consumption (VO2max). At baseline, plasma PTX3 concentrations are decreased in obese compared with normal-mass subjects and are negatively associated with plasma insulin and HOMA-IR values. In response to maximal exercise, plasma PTX3 responses were similar in obese and normal-mass subjects while the intensity of plasma PTX3 response as indicated by area under the curve analysis (AUCi) was not associated with HOMA-IR or glucose AUCi. However, PTX3 AUCi was positively associated with cardiorespiratory fitness levels (relative VO2max). These findings suggest that PTX3 could serve as a biomarker for both metabolic health, as well as a measurement to monitor the effectiveness of exercise interventions in obesity.
Gao, Hong; Gritti, Fabrice; Guiochon, Georges
2013-06-14
This work is a systematic investigation of the linear velocity dependence of the external mass transfer coefficient provided by fitting experimental results to the solution of the GR (General Rate) model that was previously derived. The second and third statistical moments of eluted peaks were measured at different flow rates, under different experimental conditions and analyzed. The results of this analysis confirm the validity of this dependence under our current experimental conditions. The other mass transfer parameters provided by the GR model were determined. The variations of these parameters with the experimental conditions were measured. The results are discussed and interpreted. Copyright © 2013 Elsevier B.V. All rights reserved.
Paul R. Reed; Carol J. Cumber
2000-01-01
In October, 1996 Private Moments, an adult novelty store, opened for business in Huntsville, Texas. Huntsville had no ordinances in place to prevent the opening of this type of business. In fact, the local Small Business Development Center provided guidance and assistance to Edward Delagarza, the founder and owner of Private Moments. Many of the Huntsville citizens, unhappy with the opening of Private Moments, approached the City Council requesting that it be closed immediately and asked for ...
Li, Zhujie; Dai, Ying; Ma, Xiangchao; Zhu, Yingtao; Huang, Baibiao
2014-02-21
Recently, Cu2(OH)PO4 was found as the first photocatalyst active in the near-infrared(NIR) region of the solar spectrum (Angew. Chem., Int. Ed., 2013, 52, 4810; Chem. Eng. News, 2013, 91, 36), motivating us to explore systemically its photocatalytic mechanism under near-infrared light and how to improve and tune its photocatalytic performance. Herein, electronic structures, and effective masses of electron and hole at energy band edges are theoretically investigated by employing spin-polarized density functional theory calculations. The calculated energy band structure supports the absorption spectra of Cu2(OH)PO4 in the NIR region corresponding to the electron excitation from the valence band to the unoccupied bands in the gap. Our charge density analysis indicates that the O atoms in the hydroxyl serves as the effective bridge for the favoring separation of the photogenerated electron-hole pairs. Furthermore, the effective masses of electron and hole analysis demonstrate that the separation and transfer of photogenerated carriers along the [011] direction may be more effective than other possible directions. A qualitative comparison of carrier transfer ability along all the directions in the specific planes is displayed by the three-dimensional band structure. Interestingly, the calculated net dipole moment for the two basic units of Cu2(OH)PO4, octahedron and trigonal bipyramid, indicate that the macroscopic dipole moment for Cu2(OH)PO4 is zero, however, the distorted octahedron unit has a net dipole moment, which enables us to tune the macroscopic dipole moment by doping. The present work provides theoretical insight leading to a better understanding of the photocatalytic performance of Cu2(OH)PO4 and it may be beneficial to prepare more efficient Cu2(OH)PO4 for NIR light photocatalysis, which will also be helpful to design and prepare novel photocatalysts.
Brendle, Joerg
2016-01-01
We show that, consistently, there can be maximal subtrees of P (omega) and P (omega) / fin of arbitrary regular uncountable size below the size of the continuum. We also show that there are no maximal subtrees of P (omega) / fin with countable levels. Our results answer several questions of Campero, Cancino, Hrusak, and Miranda.
Hoffmann, Sebastian; Shutler, Jamie D.; Lobbes, Marc; Burgeth, Bernhard; Meyer-Bäse, Anke
2013-12-01
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) represents an established method for the detection and diagnosis of breast lesions. While mass-like enhancing lesions can be easily categorized according to the Breast Imaging Reporting and Data System (BI-RADS) MRI lexicon, a majority of diagnostically challenging lesions, the so called non-mass-like enhancing lesions, remain both qualitatively as well as quantitatively difficult to analyze. Thus, the evaluation of kinetic and/or morphological characteristics of non-masses represents a challenging task for an automated analysis and is of crucial importance for advancing current computer-aided diagnosis (CAD) systems. Compared to the well-characterized mass-enhancing lesions, non-masses have no well-defined and blurred tumor borders and a kinetic behavior that is not easily generalizable and thus discriminative for malignant and benign non-masses. To overcome these difficulties and pave the way for novel CAD systems for non-masses, we will evaluate several kinetic and morphological descriptors separately and a novel technique, the Zernike velocity moments, to capture the joint spatio-temporal behavior of these lesions, and additionally consider the impact of non-rigid motion compensation on a correct diagnosis.
Moment inference from tomograms
Day-Lewis, F. D.; Chen, Y.; Singha, K.
2007-01-01
Time-lapse geophysical tomography can provide valuable qualitative insights into hydrologic transport phenomena associated with aquifer dynamics, tracer experiments, and engineered remediation. Increasingly, tomograms are used to infer the spatial and/or temporal moments of solute plumes; these moments provide quantitative information about transport processes (e.g., advection, dispersion, and rate-limited mass transfer) and controlling parameters (e.g., permeability, dispersivity, and rate coefficients). The reliability of moments calculated from tomograms is, however, poorly understood because classic approaches to image appraisal (e.g., the model resolution matrix) are not directly applicable to moment inference. Here, we present a semi-analytical approach to construct a moment resolution matrix based on (1) the classic model resolution matrix and (2) image reconstruction from orthogonal moments. Numerical results for radar and electrical-resistivity imaging of solute plumes demonstrate that moment values calculated from tomograms depend strongly on plume location within the tomogram, survey geometry, regularization criteria, and measurement error. Copyright 2007 by the American Geophysical Union.
Blum, Thomas; Christ, Norman; Hayakawa, Masashi; Izubuchi, Taku; Jin, Luchang; Jung, Chulwoo; Lehner, Christoph
2017-01-01
We report a lattice QCD calculation of the hadronic light-by-light contribution to the muon anomalous magnetic moment at a physical pion mass. The calculation includes the connected diagrams and the leading, quark-line-disconnected diagrams. We incorporate algorithmic improvements developed in our previous work. The calculation was performed on the 4 83×96 ensemble generated with a physical pion mass and a 5.5 fm spatial extent by the RBC and UKQCD Collaborations using the chiral, domain wall fermion formulation. We find aμHLbL=5.35 (1.35 )×10-10 , where the error is statistical only. The finite-volume and finite lattice-spacing errors could be quite large and are the subject of ongoing research. The omitted disconnected graphs, while expected to give a correction of order 10%, also need to be computed.
Ahlberg, Jari P; Kovero, Outi A; Hurmerinta, Kirsti A; Zepa, Inta; Nissinen, Maunu J; Könönen, Mauno H
2003-10-01
The purpose of this population-based cohort was to measure maximal bite force (MBF) in the molar and incisal regions and to examine whether MBF was associated with TMD, gender, occlusion (in terms of overjet, overbite, and total number of occluding contacts), and body mass index (BMI). MBF in the molar and incisal regions was measured using a calibrated method in 384 (196 males, 188 females) and 357 (181 males, 176 females) subjects, respectively. Two attempts in each region (right molar, left molar, and incisal) were made in random order. The subjects completed a multiple-choice questionnaire including subjective symptoms of TMD and were subsequently clinically examined. Helkimo's clinical dysfunction index and BMI were calculated. The mean MBF value in the molar region was significantly higher in males (878 N, SD 194) than in females (690 N, SD 175) (p TMD and studied occlusal factors, unlike body mass, associate independently with MBF.
K B Athreya
2009-09-01
It is shown that (i) every probability density is the unique maximizer of relative entropy in an appropriate class and (ii) in the class of all pdf that satisfy $\\int fh_id_=_i$ for $i=1,2,\\ldots,\\ldots k$ the maximizer of entropy is an $f_0$ that is proportional to $\\exp(\\sum c_i h_i)$ for some choice of $c_i$. An extension of this to a continuum of constraints and many examples are presented.
Ananthanarayan, B
2016-01-01
We introduce an optimal renormalization group analysis pertinent to the analysis of polarization functions associated with the $s$-quark mass relevant in $\\tau$-decay. The technique is based on the renormalization group invariance constraints which lead to closed form summation of all the leading and next-to-leading logarithms at each order in perturbation theory. The new perturbation series exhibit reduced sensitivity to renormalization scale and improved behavior in the complex plane along the integration contour. Using improved experimental and theory inputs we have extracted the value of strange quark mass $m_s(2{\\rm GeV}) = 106.70 \\pm 9.36~{\\rm MeV}$ and $m_s(2{\\rm GeV}) = 74.47 \\pm 7.77~{\\rm MeV}$ from presently available ALEPH and OPAL data respectively. These determinations are in agreement with the determinations in other phenomenological methods and from the lattice.
V. E. Merzlikin
2015-01-01
The article deals with the search for optimal parameter estimation of the parameters of the process of homogenization of dairy products. Provides a theoretical basis for relationship of the relaxation time of the fat globules and attenuation coefficient of ultrasonic oscillations in dairy products. Suggested from the measured acoustic properties of milk to make the calculations of the mass distribution of fat globules. Studies on the proof of this hypothesis. Morphological analysis procedure ...
Aubert, Bernard; Boutigny, D; Couderc, F; Gaillard, J M; Hicheur, A; Karyotakis, Yu; Lees, J P; Tisserand, V; Zghiche, A; Palano, A; Pompili, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Borgland, A W; Breon, A B; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Day, C T; Gill, M S; Gritsan, A V; Groysman, Y; Jacobsen, R G; Kadel, R W; Kadyk, J; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Le Clerc, C; Lynch, G; Merchant, A M; Mir, L M; Oddone, P J; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, Michael T; Shelkov, V G; Wenzel, W A; Ford, K; Harrison, T J; Hawkes, C M; Morgan, S E; Watson, A T; Fritsch, M; Goetzen, K; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Steinke, M; Boyd, J T; Chevalier, N; Cottingham, W N; Kelly, M P; Latham, T E; Wilson, F F; Çuhadar-Dönszelmann, T; Hearty, C; Knecht, N S; Mattison, T S; McKenna, J A; Thiessen, D; Khan, A; Kyberd, P; Teodorescu, L; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Ivanchenko, V N; Kravchenko, E A; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Yushkov, A N; Best, D; Bruinsma, M; Chao, M; Eschrich, I; Kirkby, D; Lankford, A J; Mandelkern, M A; Mommsen, R K; Röthel, W; Stoker, D P; Buchanan, C; Hartfiel, B L; Gary, J W; Shen, B C; Wang, K; Del Re, D; Hadavand, H K; Hill, E J; MacFarlane, D B; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Dahmes, B; Levy, S L; Long, O; Lu, A; Mazur, M A; Richman, J D; Verkerke, W; Beck, T W; Eisner, A M; Heusch, C A; Lockman, W S; Schalk, T; Schmitz, R E; Schumm, B A; Seiden, A; Spradlin, P; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dubois-Felsmann, G P; Dvoretskii, A; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Ryd, A; Samuel, A; Yang, S; Jayatilleke, S M; Mancinelli, G; Meadows, B T; Sokoloff, M D; Abe, T; Blanc, F; Bloom, P; Chen, S; Ford, W T; Nauenberg, U; Olivas, A; Rankin, P; Smith, J G; Zhang, J; Zhang, L; Chen, A; Harton, J L; Soffer, A; Toki, W H; Wilson, R J; Zeng, Q L; Altenburg, D; Brandt, T; Brose, J; Colberg, T; Dickopp, M; Feltresi, E; Hauke, A; Lacker, H M; Maly, E; Müller-Pfefferkorn, R; Nogowski, R; Otto, S; Petzold, A; Schubert, J; Schubert, Klaus R; Schwierz, R; Spaan, B; Sundermann, J E; Bernard, D; Bonneaud, G R; Brochard, F; Grenier, P; Schrenk, S; Thiebaux, C; Vasileiadis, G; Verderi, M; Bard, D J; Clark, P J; Lavin, D; Muheim, F; Playfer, S; Xie, Y; Andreotti, M; Azzolini, V; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Sarti, A; Treadwell, E; Baldini-Ferroli, R; Calcaterra, A; De Sangro, R; Finocchiaro, G; Patteri, P; Piccolo, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Crosetti, G; Lo Vetere, M; Macri, M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Bailey, S; Brandenburg, G; Morii, M; Won, E; Dubitzky, R S; Langenegger, U; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Gaillard, J R; Morton, G W; Nash, J A; Taylor, G P; Grenier, G J; Mallik, U; Cochran, J; Crawley, H B; Lamsa, J; Meyer, W T; Prell, S; Rosenberg, E I; Yi, J; Davier, M; Grosdidier, G; Höcker, A; Laplace, S; Le Diberder, F R; Lepeltier, V; Lutz, A M; Petersen, T C; Plaszczynski, S; Schune, M H; Tantot, L; Wormser, G; Cheng, C H; Lange, D J; Simani, M C; Wright, D M; Bevan, A J; Coleman, J P; Fry, J R; Gabathuler, Erwin; Gamet, R; Parry, R J; Payne, D J; Sloane, R J; Touramanis, C; Back, J J; Harrison, P F; Mohanty, G B; Brown, C L; Cowan, G; Flack, R L; Flächer, H U; Green, M G; Marker, C E; McMahon, T R; Ricciardi, S; Salvatore, F; Vaitsas, G; Winter, M A; Brown, D; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Hart, P A; Hodgkinson, M C; Lafferty, G D; Lyon, A J; Williams, J C; Farbin, A; Hulsbergen, W D; Jawahery, A; Kovalskyi, D; Lae, C K; Lillard, V; Roberts, D A; Blaylock, G; Dallapiccola, C; Flood, K T; Hertzbach, S S; Kofler, R; Koptchev, V B; Moore, T B; Saremi, S; Stängle, H; Willocq, S; Cowan, R; Sciolla, G; Taylor, F; Yamamoto, R K; Mangeol, D J J; Patel, P M; Robertson, S H; Lazzaro, A; Palombo, F; Bauer, J M; Cremaldi, L M; Eschenburg, V; Godang, R; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Taras, P; Nicholson, H; Cavallo, N; Fabozzi, F; Gatto, C; Lista, L; Monorchio, D; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M; Bulten, H; Raven, G; Wilden, L; Jessop, C P; LoSecco, J M; Gabriel, T A; Allmendinger, T; Brau, B; Gan, K K; Honscheid, K; Hufnagel, D; Kagan, H; Kass, R; Pulliam, T; Rahimi, A M; Ter-Antonian, R; Wong, Q K; Brau, J E; Frey, R; Igonkina, O; Potter, C T; Sinev, N B; Strom, D; Torrence, E; Colecchia, F; Dorigo, A; Galeazzi, F; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Tiozzo, G; Voci, C; Benayoun, M; Briand, H; Chauveau, J; David, P; La Vaissière, C de; Del Buono, L; Hamon, O; John, M J J; Leruste, P; Ocariz, J; Pivk, M; Roos, L; T'Jampens, S; Therin, G; Manfredi, P F; Re, V; Behera, P K; Gladney, L; Guo, Q H; Panetta, J; Anulli, F; Biasini, M; Peruzzi, I M; Pioppi, M; Angelini, C; Batignani, G; Bettarini, S; Bondioli, M; Bucci, F; Calderini, G; Carpinelli, M; Del Gamba, V; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Martínez-Vidal, F; Morganti, M; Neri, N; Paoloni, E; Rama, M; Rizzo, G; Sandrelli, F; Walsh, J; Haire, M; Judd, D; Paick, K; Wagoner, D E; Danielson, N; Elmer, P; Lü, C; Miftakov, V; Olsen, J; Smith, A J S; Telnov, A V; Bellini, F; Cavoto, G; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Li Gioi, L; Mazzoni, M A; Morganti, S; Pierini, M; Piredda, G; Safai-Tehrani, F; Voena, C; Christ, S; Wagner, G; Waldi, R; Adye, T; De Groot, N; Franek, B J; Geddes, N I; Gopal, G P; Olaiya, E O; Aleksan, Roy; Emery, S; Gaidot, A; Ganzhur, S F; Giraud, P F; Hamel, G; de Monchenault; Kozanecki, Witold; Langer, M; Legendre, M; London, G W; Mayer, B; Schott, G; Vasseur, G; Yéche, C; Zito, M; Purohit, M V; Weidemann, A W; Yumiceva, F X; Aston, D; Bartoldus, R; Berger, N; Boyarski, A M; Buchmüller, O L; Convery, M R; Cristinziani, M; De, G; Nardo; Dong, D; Dorfan, J; Dujmic, D; Dunwoodie, W M; Elsen, E E; Fan, S; Field, R C; Glanzman, T; Gowdy, S J; Hadig, T; Halyo, V; Hrynóva, T; Innes, W R; Kelsey, M H; Kim, P; Kocian, M L; Leith, D W G S; Libby, J; Luitz, S; Lüth, V; Lynch, H L; Marsiske, H; Messner, R; Müller, D R; O'Grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Petrak, S; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Simi, G; Snyder, A; Soha, A; Stelzer, J; Su, D; Sullivan, M K; Vavra, J; Wagner, S R; Weaver, M; Weinstein, A J R; Wisniewski, W J; Wittgen, M; Wright, D H; Yarritu, A K; Young, C C; Burchat, Patricia R; Edwards, A J; Meyer, T I; Petersen, B A; Roat, C; Ahmed, S; Alam, M S; Ernst, J A; Saeed, M A; Saleem, M; Wappler, F R; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Kim, H; Ritchie, J L; Satpathy, A; Schwitters, R F; Izen, J M; Kitayama, I; Lou, X C; Ye, S; Bianchi, F; Bóna, M; Gallo, F; Gamba, D; Borean, C; Bosisio, L; Cartaro, C; Cossutti, F; Della, G; Ricca; Dittongo, S; Grancagnolo, S; Lanceri, L; Poropat, P; Vitale, L; Vuagnin, G; Panvini, R S; Banerjee, Sw; Brown, C M; Fortin, D; Jackson, P D; Kowalewski, R V; Roney, J M; Band, H R; Dasu, S; Datta, M; Eichenbaum, A M; Graham, M; Hollar, J J; Johnson, J R; Kutter, P E; Li, H; Liu, R; Di Lodovico, F; Mihályi, A; Mohapatra, A K; Pan, Y; Prepost, R; Rubin, A E; Sekula, S J; Tan, P; Von Wimmersperg-Töller, J H; Wu, J; Wu, S L; Yu, Z; Neal, H
2004-01-01
We determine the inclusive B --> Xc l nu branching fraction, the CKM matrix element |Vcb|, and other heavy-quark parameters from a simultaneous fit to moments of the hadronic-mass and lepton-energy distributions in semileptonic B-meson decays, measured as a function of the lower limit on the lepton energy, using data recorded with the BABAR detector. Using Heavy Quark Expansions (HQEs) to order 1/mb^3, we extract BR_cenu=(10.61 +- 0.16(exp) +- 0.06(HQE))% and |Vcb| = (41.4 +- 0.4(exp) +- 0.4(HQE) +- 0.6(th)) 10^-3. The stated errors refer to the experimental, HQE, and additional theoretical uncertainties.
Effects of moment of inertia on restricted motion swing speed.
Schorah, David; Choppin, Simon; James, David
2015-06-01
In many sports, the maximum swing speed of a racket, club, or bat is a key performance parameter. Previous research in multiple sports supports the hypothesis of an inverse association between the swing speed and moment of inertia of an implement. The aim of this study was to rigorously test and quantify this relationship using a restricted swinging motion. Eight visually identical rods with a common mass but variable moment of inertia were manufactured. Motion capture technology was used to record eight participants' maximal effort swings with the rods. Strict exclusion criteria were applied to data that did not adhere to the prescribed movement pattern. The study found that for all participants, swing speed decreased with respect to moment of inertia according to a power relationship. However, in contrast to previous studies, the rate of decrease varied from participant to participant. With further analysis it was found that participants performed more consistently at the higher end of the moment of inertia range tested. The results support the inverse association between swing speed and moment of inertia but only for higher moment of inertia implements.
Biswas, Anirban; Choubey, Sandhya; Khan, Sarif
2016-09-01
The observation of neutrino masses, mixing and the existence of dark matter are amongst the most important signatures of physics beyond the Standard Model (SM). In this paper, we propose to extend the SM by a local L μ - L τ gauge symmetry, two additional complex scalars and three right-handed neutrinos. The L μ - L τ gauge symmetry is broken spontaneously when one of the scalars acquires a vacuum expectation value. The L μ - L τ gauge symmetry is known to be anomaly free and can explain the beyond SM measurement of the anomalous muon ( g - 2) through additional contribution arising from the extra Z μτ mediated diagram. Small neutrino masses are explained naturally through the Type-I seesaw mechanism, while the mixing angles are predicted to be in their observed ranges due to the broken L μ - L τ symmetry. The second complex scalar is shown to be stable and becomes the dark matter candidate in our model. We show that while the Z μτ portal is ineffective for the parameters needed to explain the anomalous muon ( g - 2) data, the correct dark matter relic abundance can easily be obtained from annihilation through the Higgs portal. Annihilation of the scalar dark matter in our model can also explain the Galactic Centre gamma ray excess observed by Fermi-LAT. We show the predictions of our model for future direct detection experiments and neutrino oscillation experiments.
Biswas, Anirban; Khan, Sarif
2016-01-01
The observation of neutrino masses, mixing and the existence of dark matter are amongst the most important signatures of physics beyond the Standard Model (SM). In this paper, we propose to extend the SM by a local $L_\\mu - L_\\tau$ gauge symmetry, two additional complex scalars and three right-handed neutrinos. The $L_\\mu - L_\\tau$ gauge symmetry is broken spontaneously when one of the scalars acquires a vacuum expectation value. The $L_\\mu - L_\\tau$ gauge symmetry is known to be anomaly free and can explain the beyond SM measurement of the anomalous muon $({\\rm g-2})$ through additional contribution arising from the extra $Z_{\\mu\\tau}$ mediated diagram. Small neutrino masses are explained naturally through the Type-I seesaw mechanism, while the mixing angles are predicted to be in their observed ranges due to the broken $L_\\mu-L_\\tau$ symmetry. The second complex scalar is shown to be stable and becomes the dark matter candidate in our model. We show that while the $Z_{\\mu\\tau}$ portal is ineffective for the...
Xiaoliang eCheng
2013-12-01
Full Text Available Production of biofuels via enzymatic hydrolysis of complex plant polysaccharides is a subject of intense global interest. Microbial communities are known to express a wide range of enzymes necessary for the saccharification of lignocellulosic feedstocks and serve as a powerful reservoir for enzyme discovery. However, the growth temperature and conditions that yield high cellulase activity vary widely, and the throughput to identify optimal conditions has been limited by the slow handling and conventional analysis. A rapid method that uses small volumes of isolate culture to resolve specific enzyme activity is needed. In this work, a high throughput nanostructure-initiator mass spectrometry (NIMS based approach was developed for screening a thermophilic cellulolytic actinomycete, Thermobispora bispora, for β-glucosidase production under various growth conditions. Media that produced high β-glucosidase activity were found to be I/S + glucose or microcrystalline cellulose (MCC, Medium 84 + rolled oats, and M9TE + MCC at 45 °C. Supernatants of cell cultures grown in M9TE + 1% MCC cleaved 2.5 times more substrate at 45 °C than at all other temperatures. While T. bispora is reported to grow optimally at 60 °C in Medium 84 + rolled oats and M9TE + 1% MCC, approximately 40% more conversion was observed at 45 °C. This high throughput NIMS approach may provide an important tool in discovery and characterization of enzymes from environmental microbes for industrial and biofuel applications.
Krutchinsky, Andrew N; Padovan, Júlio C; Cohen, Herbert; Chait, Brian T
2015-04-01
We have discovered that an electrode containing a conical channel with a small angular divergence can transmit into the vacuum almost 100% of an electrospray ion current produced at atmospheric pressure. Our first implementation of such a conical duct, which we term "ConDuct," uses a conductive plastic pipette tip containing an approximately 1.6° divergent channel at its entrance. We observed that the beam formed by the ConDuct electrode has a very low divergence (less than 1°) and persists for long distances in vacuum. Intrigued by these properties, we incorporated this electrode into a novel atmosphere-to-vacuum ion transmission interface, and devised a technique for evaluating its performance relative to the commercial reference interfaces that contain heated metal capillaries. We determined that our new interface transmits at least 400 times more ions than the commercial Thermo LCQ DECA XP atmosphere-to-vacuum interface and 2 to 3 times more than the commercial interface in the Thermo Velos Orbitrap and the Q Exactive mass spectrometers. We conclude that it might be possible to optimize the properties of the transmitted ions further by manufacturing ConDuct inlet electrodes from metal rather than conductive plastic and by determining the optimum angle of channel divergence and channel length.
Cichy, Krzysztof [DESY, Zeuthen (Germany). NIC; Adam Mickiewicz Univ., Poznan (Poland). Faculty of Physics; Jansen, Karl [DESY, Zeuthen (Germany). NIC; Korcyl, Piotr [DESY, Zeuthen (Germany). NIC; Jagiellonian Univ., Krakow (Poland). M. Smoluchowski Inst. of Physics
2012-07-15
We present results of a lattice QCD application of a coordinate space renormalization scheme for the extraction of renormalization constants for flavour non-singlet bilinear quark operators. The method consists in the analysis of the small-distance behaviour of correlation functions in Euclidean space and has several theoretical and practical advantages, in particular: it is gauge invariant, easy to implement and has relatively low computational cost. The values of renormalization constants in the X-space scheme can be converted to the MS scheme via 4-loop continuum perturbative formulae. Our results for N{sub f}=2 maximally twisted mass fermions with tree-level Symanzik improved gauge action are compared to the ones from the RI-MOM scheme and show full agreement with this method. (orig.)
Tawfik, Abdel Nasser; Magdy, Niseem
2015-01-01
Effects of an external magnetic field on various properties of quantum chromodynamics (QCD) matter under extreme conditions of temperature and density (chemical potential) have been analyzed. To this end, we use SU(3) Polyakov linear-σ model and assume that the external magnetic field (e B ) adds some restrictions to the quarks' energy due to the existence of free charges in the plasma phase. In doing this, we apply the Landau theory of quantization, which assumes that the cyclotron orbits of charged particles in a magnetic field should be quantized. This requires an additional temperature to drive the system through the chiral phase transition. Accordingly, the dependence of the critical temperature of chiral and confinement phase transitions on the magnetic field is characterized. Based on this, we have studied the thermal evolution of thermodynamic quantities (energy density and trace anomaly) and the first four higher-order moment of particle multiplicity. Having all these calculations, we have studied the effects of the magnetic field on the chiral phase transition. We found that both critical temperature Tc and critical chemical potential increase with increasing magnetic field, e B . Last but not least, the magnetic effects of the thermal evolution of four scalar and four pseudoscalar meson states are studied. We concluded that the meson masses decrease as the temperature increases up to Tc. Then, the vacuum effect becomes dominant and rapidly increases with the temperature T . At low T , the scalar meson masses normalized to the lowest Matsubara frequency rapidly decrease as T increases. Then, starting from Tc, we find that the thermal dependence almost vanishes. Furthermore, the meson masses increase with increasing magnetic field. This gives a characteristic phase diagram of T vs external magnetic field e B . At high T , we find that the masses of almost all meson states become temperature independent. It is worthwhile to highlight that the various meson
Neutron star moments of inertia
Ravenhall, D. G.; Pethick, C. J.
1994-01-01
An approximation for the moment of inertia of a neutron star in terms of only its mass and radius is presented, and insight into it is obtained by examining the behavior of the relativistic structural equations. The approximation is accurate to approximately 10% for a variety of nuclear equations of state, for all except very low mass stars. It is combined with information about the neutron-star crust to obtain a simple expression (again in terms only of mass and radius) for the fractional moment of inertia of the crust.
Legreneur, Pierre; Homberger, Dominique G; Bels, Vincent
2012-07-01
This study provides a morphometric data set of body segments that are biomechanically relevant for locomotion in two ecomorphs of adult male anoles, namely, the trunk-ground Anolis sagrei and the trunk-crown Anolis carolinensis. For each species, 10 segments were characterized, and for each segment, length, mass, location of the center of mass, and radius of gyration were measured or calculated, respectively. The radii of gyration were computed from the moments of inertia by using the double swing pendulum method. The trunk-ground A. sagrei has relatively longer and stockier hindlimbs and forelimbs with smaller body than A. carolinensis. These differences between the two ecomorphs demonstrated a clear relationship between morphology and performance, particularly in the context of predator avoidance behavior, such as running or jumping in A. sagrei and crypsis in A. carolinensis. Our results provide new perspectives on the mechanism of adaptive radiation as the limbs of the two species appear to scale via linear factors and, therefore, may also provide explanations for the mechanism of evolutionary changes of structures within an ecological context.
Wesseling, Mariska; de Groote, Friedl; Jonkers, Ilse
2014-01-22
This study examined the effect of body segment parameter (BSP) perturbations on joint moments calculated using an inverse dynamics procedure and muscle forces calculated using computed muscle control (CMC) during gait. BSP (i.e. segment mass, center of mass location (com) and inertia tensor) of the left thigh, shank and foot of a scaled musculoskeletal model were perturbed. These perturbations started from their nominal value and were adjusted to ±40% in steps of 10%, for both individual as well as combined perturbations in BSP. For all perturbations, an inverse dynamics procedure calculated the ankle, knee and hip moments based on an identical inverse kinematics solution. Furthermore, the effect of applying a residual reduction algorithm (RRA) was investigated. Muscle excitations and resulting muscle forces were calculated using CMC. The results show only a limited effect of an individual parameter perturbation on the calculated moments, where the largest effect is found when perturbing the shank com (MS(com,shank), the ratio of absolute difference in torque and relative parameter perturbation, is maximally -7.81 N m for hip flexion moment). The additional influence of perturbing two parameters simultaneously is small (MS(mass+com,thigh) is maximally 15.2 N m for hip flexion moment). RRA made small changes to the model to increase the dynamic consistency of the simulation (after RRA MS(com,shank) is maximally 5.01 N m). CMC results show large differences in muscle forces when BSP are perturbed. These result from the underlying forward integration of the dynamic equations.
Cristiano Diniz Da Silva
2008-09-01
Full Text Available Investigations in the physiological demands of soccer have identified that a significant percentage of energy production in match performance is provided through the aerobic pathways. It is therefore important to assess maximal oxygen uptake (VO2Max of players in order to evaluate their aerobic fitness status and optimize their physical conditioning. However, it is also important to consider the variation of (VO2Max profiles for soccer players, with differences having been identified in terms of playing position as well as playing style. This paper reviews the academic literature between 1996 and 2006 and reports on the methodologies employed and the values obtained for stature, body mass and (VO2Max profiles of soccer players of different positions in professional Brazilian clubs at U-17, U-20 and First Division levels. Indirect measurements accounted for the majority of tests conducted at U-17 (70% and U-20 (84.6% levels whereas at First Division level almost half of the (VO2Max evaluations were performed by direct measurements (47.8%. The mean (VO2Max profiles obtained for outfield players in U-17 was 56.95 ± 3.60 ml·kg-1·min-1, 58.13 ± 3.21 ml·kg-1·min-1 for U-20 players and 56.58 ± 5.03 ml·kg-1·min-1 for First Division players. In Brazil, the U-20 players appear to have highest VO2Max values, however the profiles reported for all outfield positions in U-17 and First Division levels are often lower than those reported for the same category of players from other countries. This may be a reflection of the style of play used in Brazilian soccer. This is further emphasized by the fact that the playing position with the highest VO2Max values was the external defenders whereas most findings from studies performed in European soccer indicate that midfielders require the highest VO2Max values.
The growth of children's moment of inertia.
Jensen, R K
1986-08-01
As children grow, their moments of inertia increase. The magnitude and timing of these changes can affect the rotations of the body. The present study evaluated inter-individual differences in the transverse centroidal moment of inertia for 12 boys between 5 and 16 yr, using intra-individual data from three successive years. Segmental masses and moments of inertia were estimated using the elliptical zone model and the model then repositioned into two configurations: a layout position from a back handspring and a tuck position from a back somersault. In each case, the mass centroid and the moment of inertia about the transverse axis were calculated. With growth indexed by age, it was shown that the rate of change increases with age. For the children 10 yr and younger, the rate of change of moment of inertia was approximately 30% of the rate for the older children. Also, at each age level, there was a wide range of moments of inertia. In order to improve the prediction of moment of inertia, height and mass were tried as predictors with a noticeable improvement in correlation and linearity. The best predictor, however, was found to be the product of mass and height squared (M X H2) with correlations of 0.99 and 0.97. It is suggested that, because of the effects of growth on the moment of inertia. M X H2 could be used in conjunction with age in order to better appreciate the potential effects of change of moment of inertia.
Measuring the Moment of Inertia
Lehmberg, George L.
1978-01-01
Two physics experiments are described, One, involving a laboratory cart accelerated along a level surface, examines the concept of inertial mass in translation and the other, using a solid cylinder, measures the moment of inertia of a wheel. Equations and illustrations are included. (MA)
Mineev, V. P.
2009-01-01
The roton excitation in the superfluid He-4 does not possess a stationary dipole moment. However, a roton has an instantaneous dipole moment, such that at any given moment one can find it in the state either with positive or with negative dipole moment projection on its momentum direction. The instantaneous value of electric dipole moment of roton excitation is evaluated. The result is in reasonable agreement with recent experimental observation of the splitting of microwave resonance absorpt...
Moment-to-Moment Emotions during Reading
Graesser, Arthur C.; D'Mello, Sidney
2012-01-01
Moment-to-moment emotions are affective states that dynamically change during reading and potentially influence comprehension. Researchers have recently identified these emotions and the emotion trajectories in reading, tutoring, and problem solving. The primary learning-centered emotions are boredom, frustration, confusion, flow (engagement),…
Cristiano Diniz Da Silva; Jonathan Bloomfield; João Carlos Bouzas Marins
2008-01-01
Investigations in the physiological demands of soccer have identified that a significant percentage of energy production in match performance is provided through the aerobic pathways. It is therefore important to assess maximal oxygen uptake (VO2Max) of players in order to evaluate their aerobic fitness status and optimize their physical conditioning. However, it is also important to consider the variation of (VO2Max) profiles for soccer players, with differences having been identified in ter...
Profit maximization mitigates competition
Dierker, Egbert; Grodal, Birgit
1996-01-01
We consider oligopolistic markets in which the notion of shareholders' utility is well-defined and compare the Bertrand-Nash equilibria in case of utility maximization with those under the usual profit maximization hypothesis. Our main result states that profit maximization leads to less price...... competition than utility maximization. Since profit maximization tends to raise prices, it may be regarded as beneficial for the owners as a whole. Moreover, if profit maximization is a good proxy for utility maximization, then there is no need for a general equilibrium analysis that takes the distribution...... of profits among consumers fully into account and partial equilibrium analysis suffices...
Experimental review on moment analyses
Calvi, M
2003-01-01
Moments of photon energy spectrum in B->Xs gamma decays, of hadronic mass spectrum and of lepton energy spectrum in B->Xc l nu decays are sensitive to the masses of the heavy quarks as well as to the non-perturbative parameters of the heavy quark expansion. Several measurements have been performed both at the Upsilon(4S) resonance and at Z0 center of mass energies. They provide constraints on the non-perturbative parameters, give a test of the consistency of the theoretical predictions and of the underlying assumptions and allow to reduce the indetermination in the |Vcb| extraction.
Solving moment hierarchies for chemical reaction networks
Krishnamurthy, Supriya; Smith, Eric
2017-10-01
The study of chemical reaction networks (CRN’s) is a very active field. Earlier well-known results (Feinberg 1987 Chem. Enc. Sci. 42 2229, Anderson et al 2010 Bull. Math. Biol. 72 1947) identify a topological quantity called deficiency, for any CRN, which, when exactly equal to zero, leads to a unique factorized steady-state for these networks. No results exist however for the steady states of non-zero-deficiency networks. In this paper, we show how to write the full moment-hierarchy for any non-zero-deficiency CRN obeying mass-action kinetics, in terms of equations for the factorial moments. Using these, we can recursively predict values for lower moments from higher moments, reversing the procedure usually used to solve moment hierarchies. We show, for non-trivial examples, that in this manner we can predict any moment of interest, for CRN’s with non-zero deficiency and non-factorizable steady states.
Unified Maximally Natural Supersymmetry
Huang, Junwu
2016-01-01
Maximally Natural Supersymmetry, an unusual weak-scale supersymmetric extension of the Standard Model based upon the inherently higher-dimensional mechanism of Scherk-Schwarz supersymmetry breaking (SSSB), possesses remarkably good fine tuning given present LHC limits. Here we construct a version with precision $SU(2)_{\\rm L} \\times U(1)_{\\rm Y} $ unification: $\\sin^2 \\theta_W(M_Z) \\simeq 0.231$ is predicted to $\\pm 2\\%$ by unifying $SU(2)_{\\rm L} \\times U(1)_{\\rm Y} $ into a 5D $SU(3)_{\\rm EW}$ theory at a Kaluza-Klein scale of $1/R_5 \\sim 4.4\\,{\\rm TeV}$, where SSSB is simultaneously realised. Full unification with $SU(3)_{\\rm C}$ is accommodated by extending the 5D theory to a $N=4$ supersymmetric $SU(6)$ gauge theory on a 6D rectangular orbifold at $1/R_6 \\sim 40 \\,{\\rm TeV}$. TeV-scale states beyond the SM include exotic charged fermions implied by $SU(3)_{\\rm EW}$ with masses lighter than $\\sim 1.2\\,{\\rm TeV}$, and squarks in the mass range $1.4\\,{\\rm TeV} - 2.3\\,{\\rm TeV}$, providing distinct signature...
Maximally incompatible quantum observables
Heinosaari, Teiko, E-mail: teiko.heinosaari@utu.fi [Turku Centre for Quantum Physics, Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland); Schultz, Jussi, E-mail: jussi.schultz@gmail.com [Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy); Toigo, Alessandro, E-mail: alessandro.toigo@polimi.it [Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Via Celoria 16, I-20133 Milano (Italy); Ziman, Mario, E-mail: ziman@savba.sk [RCQI, Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 84511 Bratislava (Slovakia); Faculty of Informatics, Masaryk University, Botanická 68a, 60200 Brno (Czech Republic)
2014-05-01
The existence of maximally incompatible quantum observables in the sense of a minimal joint measurability region is investigated. Employing the universal quantum cloning device it is argued that only infinite dimensional quantum systems can accommodate maximal incompatibility. It is then shown that two of the most common pairs of complementary observables (position and momentum; number and phase) are maximally incompatible.
Updating neutrino magnetic moment constraints
Canas, B C; Parada, A; Tortola, M; Valle, J W F
2015-01-01
In this paper we provide an updated analysis of the neutrino magnetic moments (NMMs), discussing both the constraints on the magnitudes of the three transition moments Lambda_i as well as the role of the CP violating phases present both in the mixing matrix and in the NMM matrix. The scattering of solar neutrinos off electrons in Borexino provides the most stringent restrictions, due to its robust statistics and the low energies observed, below 1 MeV. Our new limit on the effective neutrino magnetic moment which follows from the most recent Borexino data is 3.1 x 10^-11 mu_B at 90% C.L. This corresponds to the individual transition magnetic moment constraints: |Lambda_1| < 5.6 x10^-11 mu_B, |Lambda_2| < 4.0 x 10^-11 mu_B, and |Lambda_3| < 3.1 x 10^-11 mu_B (90% C.L.), irrespective of any complex phase. Indeed, the incoherent admixture of neutrino mass eigenstates present in the solar flux makes Borexino insensitive to the Majorana phases present in the NMM matrix. For this reason we also provide a gl...
Updating neutrino magnetic moment constraints
B.C. Cañas
2016-02-01
Full Text Available In this paper we provide an updated analysis of the neutrino magnetic moments (NMMs, discussing both the constraints on the magnitudes of the three transition moments Λi and the role of the CP violating phases present both in the mixing matrix and in the NMM matrix. The scattering of solar neutrinos off electrons in Borexino provides the most stringent restrictions, due to its robust statistics and the low energies observed, below 1 MeV. Our new limit on the effective neutrino magnetic moment which follows from the most recent Borexino data is 3.1×10−11μB at 90% C.L. This corresponds to the individual transition magnetic moment constraints: |Λ1|≤5.6×10−11μB, |Λ2|≤4.0×10−11μB, and |Λ3|≤3.1×10−11μB (90% C.L., irrespective of any complex phase. Indeed, the incoherent admixture of neutrino mass eigenstates present in the solar flux makes Borexino insensitive to the Majorana phases present in the NMM matrix. For this reason we also provide a global analysis including the case of reactor and accelerator neutrino sources, presenting the resulting constraints for different values of the relevant CP phases. Improved reactor and accelerator neutrino experiments will be needed in order to underpin the full profile of the neutrino electromagnetic properties.
Tawfik, Abdel Nasser
2015-01-01
Effects of external magnetic field on various properties of the quantum chromodynamics under extreme conditions of temperature and density have been analysed. To this end, we use SU(3) Polyakov linear sigma-model and assume that the external magnetic field eB adds some restrictions to the quarks energy due to the existence of free charges in the plasma phase. In doing this, we apply the Landau theory of quantization. This requires an additional temperature to drive the system through the chiral phase-transition. Accordingly, the dependence of the critical temperature of chiral and confinement phase-transitions on the magnetic field is characterized. Based on this, we have studied the thermal evolution of thermodynamic quantities and the first four higher-order moment of particle multiplicity. Having all these calculations, we have studied the effects of magnetic field on chiral phase-transition. We found that both critical temperature T_c and critical chemical potential increase with increasing the magnetic f...
Xing, Zhi-zhong
2012-01-01
In a simple extension of the standard electroweak theory where the phenomenon of lepton flavor mixing is described by a 3x3 unitary matrix V, the electric and magnetic dipole moments of three active neutrinos are suppressed not only by their tiny masses but also by the Glashow-Iliopoulos-Maiani (GIM) mechanism. We show that it is possible to lift the GIM suppression if the canonical seesaw mechanism of neutrino mass generation, which allows V to be slightly non-unitary, is taken into account. In view of current experimental constraints on the non-unitarity of V, we find that the effective electromagnetic dipole moments of three neutrinos and the rates of their radiative decays can be maximally enhanced by a factor of O(10^2) and a factor of O(10^4), respectively. This nontrivial observation reveals an intrinsic and presumably significant correlation between the electromagnetic properties of massive neutrinos and the origin of their small masses.
Dunning, R. S.
1973-01-01
Equations are developed which give the pressure profile, the forces and torques on a disk pendulum by means of point source wave theory from acoustics. The pressure, force and torque equations for an unbaffled disk are developed. These equations are then used to calculate the apparent mass and apparent inertia for the pendulum.
Moment graphs and representations
Jantzen, Jens Carsten
2012-01-01
Moment graphs and sheaves on moment graphs are basically combinatorial objects that have be used to describe equivariant intersectiion cohomology. In these lectures we are going to show that they can be used to provide a direct link from this cohomology to the representation theory of simple Lie...
Balantekin, A. B.
2006-01-01
Current experimental and observational limits on the neutrino magnetic moment are reviewed. Implications of the recent results from the solar and reactor neutrino experiments for the value of the neutrino magnetic moment are discussed. It is shown that spin-flavor precession in the Sun is suppressed.
Court of Law because there has emerged the professional called the lawyer who must speak .... The literary interview is a discourse that occupies the borderland .... rewriting should be understood as any changing of the pristine primal text into .... a moment of rewriting the Self But the resistance is also a moment of rewriting.
Moment graphs and representations
Jantzen, Jens Carsten
2012-01-01
Moment graphs and sheaves on moment graphs are basically combinatorial objects that have be used to describe equivariant intersectiion cohomology. In these lectures we are going to show that they can be used to provide a direct link from this cohomology to the representation theory of simple Lie...... algebras and of simple algebraic groups. The first section contains some background on equivariant cohomology....
Zamick, Larry
2012-01-01
We note that for a system of 2 nucleons in a stretched case (J=J1+J2) the magnetic moment of the combined system is the sum of the magnetic moments of the 2 constituents. In general there is no additive rule for g factors.
Michael Ramsey-Musolf; Wick Haxton; Ching-Pang Liu
2002-03-29
Nuclear anapole moments are parity-odd, time-reversal-even E1 moments of the electromagnetic current operator. Although the existence of this moment was recognized theoretically soon after the discovery of parity nonconservation (PNC), its experimental isolation was achieved only recently, when a new level of precision was reached in a measurement of the hyperfine dependence of atomic PNC in 133Cs. An important anapole moment bound in 205Tl also exists. In this paper, we present the details of the first calculation of these anapole moments in the framework commonly used in other studies of hadronic PNC, a meson exchange potential that includes long-range pion exchange and enough degrees of freedom to describe the five independent S-P amplitudes induced by short-range interactions. The resulting contributions of pi-, rho-, and omega-exchange to the single-nucleon anapole moment, to parity admixtures in the nuclear ground state, and to PNC exchange currents are evaluated, using configuration-mixed shell-model wave functions. The experimental anapole moment constraints on the PNC meson-nucleon coupling constants are derived and compared with those from other tests of the hadronic weak interaction. While the bounds obtained from the anapole moment results are consistent with the broad ''reasonable ranges'' defined by theory, they are not in good agreement with the constraints from the other experiments. We explore possible explanations for the discrepancy and comment on the potential importance of new experiments.
Parker, Andrew M.; Wandi Bruine de Bruin; Baruch Fischhoff
2007-01-01
Our previous research suggests that people reporting a stronger desire to maximize obtain worse life outcomes (Bruine de Bruin et al., 2007). Here, we examine whether this finding may be explained by the decision-making styles of self-reported maximizers. Expanding on Schwartz et al. (2002), we find that self-reported maximizers are more likely to show problematic decision-making styles, as evidenced by self-reports of less behavioral coping, greater dependence on others when making decisions...
Bali, Gunnar S; Gläßle, Benjamin; Göckeler, Meinulf; Najjar, Johannes; Rödl, Rudolf H; Schäfer, Andreas; Schiel, Rainer W; Sternbeck, André; Söldner, Wolfgang
2014-01-01
We present an update of our analysis [1] which includes additional ensembles at different quark masses, lattice spacings and volumes, all with high statistics. We use $N_f=2$ mass-degenerate quark flavours, employing the non-perturbatively improved clover action. The lattice matrix elements are converted to the $\\overline{\\rm MS}$ scheme via renormalization factors determined non-perturbatively in the RI$^\\prime$-MOM scheme. We have systematically investigated excited state contributions, in particular, at the smallest, near physical, pion mass. While our results~(with much increased precision) are consistent with Ref.~[1], comparing with previous determinations we find that excited state contributions can be significant if the quark smearing is not suitably optimized, in agreement with other recent studies. The difference with respect to the value for $\\langle x\\rangle_{u-d}$ extracted from experimental data is reduced but not resolved. Using lattice sizes in the range $L m_\\pi\\sim 3.4-6.7$, no significant f...
On the Neutron Electric Dipole Moment
Z. Bentalha; O. Lazrec
2004-01-01
@@ Within the Kobayashi-Maskawa mechanism of electroweak interaction and using the recent measured mass of the top quark, we estimate the neutron electric dipole moment (NEDM) via the diquark electroweak interaction.The resulting moment is about 10-30 e cm. The actual upper bound on the NEDM is 6.3 × 10-26 ecm and it can reach the value 5 × 10-28 ecm predicted by experiments in recent years.
On the dipole moment of CO/+/.
Certain, P. R.; Woods, R. C.
1973-01-01
Results of self-consistent field calculations on neutral CO, its positive ion, and on neutral CN to verify an earlier estimate of the dipole moment of CO(+) in its ground super 2 Sigma state. Based on the above-mentioned calculations, direct evidence is obtained that the dipole moment (relative to the center of mass) is approximately 2.5 plus or minus 0.5 C, as previously determined by Kopelman and Klemperer (1962).
The moments of inertia of Mars
Bills, Bruce G.
1989-01-01
The mean moment of inertia of Mars is, at present, very poorly constrained. The generally accepted value of 0.365 M(R-squared) is obtained by assuming that the observed second degree gravity field can be decomposed into a hydrostatic oblate spheroid and a nonhydrostatic prolate spheroid with an equatorial axis of symmetry. An alternative decomposition is advocated in the present analysis. If the nonhydrostatic component is a maximally triaxial ellipsoid (intermediate moment exactly midway between greatest and least), the hydrostatic component is consistent with a mean moment of 0.345 M(R-squared). The plausibility of this decomposition is supported by statistical arguments and comparison with the earth, moon and Venus.
Kim, Yong-Hyun; Kim, Ki-Hyun
2016-07-01
A multitude of analytical systems are needed to analyze diverse odorants with various functionalities. In this study, an experimental method was developed to assess the maximum covering range of odorants using a single experimental setup consisting of a thermal desorber-gas chromatography-mass spectrometry system. To this end, a total of 20 offensive odorants (aldehyde, ketone, ester, alcohol, aromatic, sulfide, amine, and carboxyl) were selected and tested by a single system. The analytical results of standards and environmental samples were evaluated in a number of respects. In the analysis of the standards, all targets were quantified via Carbopack (C + B + X) tube sampling while operating the thermal desorber at -25 °C. The method detection limits of 18 targets (exception of 2 out of the 20 targets: acetaldehyde and methanethiol) were excellent (mean 0.04 ± 0.03 ppb) in terms of their odor threshold values (74.7 ± 140 ~ 624 ± 1,729 ppb). The analysis of organic fertilizer plant samples at a pig farm (slurry treatment facility, compost facility, and ambient air) confirmed the presence of 18 odorants from 0.03 ppb (dimethyldisulfide, ambient sample) to 522 ppb (methyl ethyl ketone, slurry treatment facility). As such, our method allowed simultaneous quantitation of most key odorants with sufficient reliability and sensitivity.
Kim, Yong-Hyun; Kim, Ki-Hyun
2016-07-11
A multitude of analytical systems are needed to analyze diverse odorants with various functionalities. In this study, an experimental method was developed to assess the maximum covering range of odorants using a single experimental setup consisting of a thermal desorber-gas chromatography-mass spectrometry system. To this end, a total of 20 offensive odorants (aldehyde, ketone, ester, alcohol, aromatic, sulfide, amine, and carboxyl) were selected and tested by a single system. The analytical results of standards and environmental samples were evaluated in a number of respects. In the analysis of the standards, all targets were quantified via Carbopack (C + B + X) tube sampling while operating the thermal desorber at -25 °C. The method detection limits of 18 targets (exception of 2 out of the 20 targets: acetaldehyde and methanethiol) were excellent (mean 0.04 ± 0.03 ppb) in terms of their odor threshold values (74.7 ± 140 ~ 624 ± 1,729 ppb). The analysis of organic fertilizer plant samples at a pig farm (slurry treatment facility, compost facility, and ambient air) confirmed the presence of 18 odorants from 0.03 ppb (dimethyldisulfide, ambient sample) to 522 ppb (methyl ethyl ketone, slurry treatment facility). As such, our method allowed simultaneous quantitation of most key odorants with sufficient reliability and sensitivity.
Ming Yi WANG; Guo ZHAO
2005-01-01
A right R-module E over a ring R is said to be maximally injective in case for any maximal right ideal m of R, every R-homomorphism f : m → E can be extended to an R-homomorphism f' : R → E. In this paper, we first construct an example to show that maximal injectivity is a proper generalization of injectivity. Then we prove that any right R-module over a left perfect ring R is maximally injective if and only if it is injective. We also give a partial affirmative answer to Faith's conjecture by further investigating the property of maximally injective rings. Finally, we get an approximation to Faith's conjecture, which asserts that every injective right R-module over any left perfect right self-injective ring R is the injective hull of a projective submodule.
Andrew M. Parker
2007-12-01
Full Text Available Our previous research suggests that people reporting a stronger desire to maximize obtain worse life outcomes (Bruine de Bruin et al., 2007. Here, we examine whether this finding may be explained by the decision-making styles of self-reported maximizers. Expanding on Schwartz et al. (2002, we find that self-reported maximizers are more likely to show problematic decision-making styles, as evidenced by self-reports of less behavioral coping, greater dependence on others when making decisions, more avoidance of decision making, and greater tendency to experience regret. Contrary to predictions, self-reported maximizers were more likely to report spontaneous decision making. However, the relationship between self-reported maximizing and worse life outcomes is largely unaffected by controls for measures of other decision-making styles, decision-making competence, and demographic variables.
Brüstle, Thomas; Pérotin, Matthieu
2012-01-01
Maximal green sequences are particular sequences of quiver mutations which were introduced by Keller in the context of quantum dilogarithm identities and independently by Cecotti-Cordova-Vafa in the context of supersymmetric gauge theory. Our aim is to initiate a systematic study of these sequences from a combinatorial point of view. Interpreting maximal green sequences as paths in various natural posets arising in representation theory, we prove the finiteness of the number of maximal green sequences for cluster finite quivers, affine quivers and acyclic quivers with at most three vertices. We also give results concerning the possible numbers and lengths of these maximal green sequences. Finally we describe an algorithm for computing maximal green sequences for arbitrary valued quivers which we used to obtain numerous explicit examples that we present.
Sums of magnetic eigenvalues are maximal on rotationally symmetric domains
Laugesen, Richard S; Roy, Arindam
2011-01-01
The sum of the first n energy levels of the planar Laplacian with constant magnetic field of given total flux is shown to be maximal among triangles for the equilateral triangle, under normalization of the ratio (moment of inertia)/(area)^3 on the domain. The result holds for both Dirichlet and Neumann boundary conditions, with an analogue for Robin (or de Gennes) boundary conditions too. The square similarly maximizes the eigenvalue sum among parallelograms, and the disk maximizes among ellipses. More generally, a domain with rotational symmetry will maximize the magnetic eigenvalue sum among all linear images of that domain. These results are new even for the ground state energy (n=1).
Sums of Laplace eigenvalues - rotationally symmetric maximizers in the plane
Laugesen, R S
2010-01-01
The sum of the first $n \\geq 1$ eigenvalues of the Laplacian is shown to be maximal among triangles for the equilateral triangle, maximal among parallelograms for the square, and maximal among ellipses for the disk, provided the ratio $\\text{(area)}^3/\\text{(moment of inertia)}$ for the domain is fixed. This result holds for both Dirichlet and Neumann eigenvalues, and similar conclusions are derived for Robin boundary conditions and Schr\\"odinger eigenvalues of potentials that grow at infinity. A key ingredient in the method is the tight frame property of the roots of unity. For general convex plane domains, the disk is conjectured to maximize sums of Neumann eigenvalues.
Naturalness Bounds on Dipole Moments from New Physics
Akama, K; Katsuura, K; Akama, Keiichi; Hattori, Takashi; Katsuura, Kazuo
2002-01-01
Assuming naturalness that the quantum corrections to the mass should not exceed the order of the observed mass, we derive and apply model-independent bounds on the anomalous magnetic moments and electric dipole moments of leptons and quarks due to new physics.
Model Independent Naturalness Bounds on Magnetic Moments of Majorana Neutrinos
Gorchtein, Mikhail; Bell, Nicole F.; Ramsey-Musolf, Michael J.; Vogel, Petr; Wang, Peng
2007-01-01
We analyze the implications of neutrino masses for the magnitude of neutrino magnetic moments. By considering electroweak radiative corrections to the neutrino mass, we derive model-independent naturalness upper bounds on neutrino magnetic moments, generated by physics above the electroweak scale. For Majorana neutrinos, these bounds are weaker than present experimental limits if $\\mu_\
Chang, D. (Northwestern Univ., Evanston, IL (USA). Dept. of Physics and Astronomy Fermi National Accelerator Lab., Batavia, IL (USA)); Senjanovic, G. (Zagreb Univ. (Yugoslavia). Dept. of Theoretical Physics)
1990-01-01
We review attempts to achieve a large neutrino magnetic moment ({mu}{sub {nu}} {le} 10{sup {minus}11}{mu}{sub B}), while keeping neutrino light or massless. The application to the solar neutrino puzzle is discussed. 24 refs.
Swann, Andrew Francis; Madsen, Thomas Bruun
2012-01-01
We introduce a notion of moment map adapted to actions of Lie groups that preserve a closed three-form. We show existence of our multi-moment maps in many circumstances, including mild topological assumptions on the underlying manifold. Such maps are also shown to exist for all groups whose secon......-torus symmetry in terms of tri-symplectic geometry of four-manifolds. (C) 2012 Elsevier Inc. All rights reserved....
Multipole Moments of numerical spacetimes
Pappas, George
2012-01-01
In this article we present some recent results on identifying correctly the relativistic multipole moments of numerically constructed spacetimes, and the consequences that this correction has on searching for appropriate analytic spacetimes that can approximate well the previously mentioned numerical spacetimes. We also present expressions that give the quadrupole and the spin octupole as functions of the spin parameter of a neutron star for various equations of state and in a range of masses for every equation of state used. These results are relevant for describing the exterior spacetime of rotating neutron stars that are made up of matter obeying realistic equations of state.
Rogowski, Isabelle; Creveaux, Thomas; Chèze, Laurence; Macé, Pierre; Dumas, Raphaël
2014-01-01
This study examined the effect of the polar moment of inertia of a tennis racket on upper limb loading in the serve. Eight amateur competition tennis players performed two sets of 10 serves using two rackets identical in mass, position of center of mass and moments of inertia other than the polar moment of inertia (0.00152 vs 0.00197 kg.m2). An eight-camera motion analysis system collected the 3D trajectories of 16 markers, located on the thorax, upper limbs and racket, from which shoulder, elbow and wrist net joint moments and powers were computed using inverse dynamics. During the cocking phase, increased racket polar moment of inertia was associated with significant increases in the peak shoulder extension and abduction moments, as well the peak elbow extension, valgus and supination moments. During the forward swing phase, peak wrist extension and radial deviation moments significantly increased with polar moment of inertia. During the follow-through phase, the peak shoulder adduction, elbow pronation and wrist external rotation moments displayed a significant inverse relationship with polar moment of inertia. During the forward swing, the magnitudes of negative joint power at the elbow and wrist were significantly larger when players served using the racket with a higher polar moment of inertia. Although a larger polar of inertia allows players to better tolerate off-center impacts, it also appears to place additional loads on the upper extremity when serving and may therefore increase injury risk in tennis players.
Isabelle Rogowski
Full Text Available This study examined the effect of the polar moment of inertia of a tennis racket on upper limb loading in the serve. Eight amateur competition tennis players performed two sets of 10 serves using two rackets identical in mass, position of center of mass and moments of inertia other than the polar moment of inertia (0.00152 vs 0.00197 kg.m2. An eight-camera motion analysis system collected the 3D trajectories of 16 markers, located on the thorax, upper limbs and racket, from which shoulder, elbow and wrist net joint moments and powers were computed using inverse dynamics. During the cocking phase, increased racket polar moment of inertia was associated with significant increases in the peak shoulder extension and abduction moments, as well the peak elbow extension, valgus and supination moments. During the forward swing phase, peak wrist extension and radial deviation moments significantly increased with polar moment of inertia. During the follow-through phase, the peak shoulder adduction, elbow pronation and wrist external rotation moments displayed a significant inverse relationship with polar moment of inertia. During the forward swing, the magnitudes of negative joint power at the elbow and wrist were significantly larger when players served using the racket with a higher polar moment of inertia. Although a larger polar of inertia allows players to better tolerate off-center impacts, it also appears to place additional loads on the upper extremity when serving and may therefore increase injury risk in tennis players.
Rogowski, Isabelle; Creveaux, Thomas; Chèze, Laurence; Macé, Pierre; Dumas, Raphaël
2014-01-01
This study examined the effect of the polar moment of inertia of a tennis racket on upper limb loading in the serve. Eight amateur competition tennis players performed two sets of 10 serves using two rackets identical in mass, position of center of mass and moments of inertia other than the polar moment of inertia (0.00152 vs 0.00197 kg.m2). An eight-camera motion analysis system collected the 3D trajectories of 16 markers, located on the thorax, upper limbs and racket, from which shoulder, elbow and wrist net joint moments and powers were computed using inverse dynamics. During the cocking phase, increased racket polar moment of inertia was associated with significant increases in the peak shoulder extension and abduction moments, as well the peak elbow extension, valgus and supination moments. During the forward swing phase, peak wrist extension and radial deviation moments significantly increased with polar moment of inertia. During the follow-through phase, the peak shoulder adduction, elbow pronation and wrist external rotation moments displayed a significant inverse relationship with polar moment of inertia. During the forward swing, the magnitudes of negative joint power at the elbow and wrist were significantly larger when players served using the racket with a higher polar moment of inertia. Although a larger polar of inertia allows players to better tolerate off-center impacts, it also appears to place additional loads on the upper extremity when serving and may therefore increase injury risk in tennis players. PMID:25117871
Moment equations for chromatography based on Langmuir type reaction kinetics.
Miyabe, Kanji
2014-08-22
Moment equations were derived for chromatography, in which the reaction kinetics between solute molecules and functional ligands on the stationary phase was represented by the Langmuir type rate equation. A set of basic equations of the general rate model of chromatography representing the mass balance, mass transfer rate, and reaction kinetics in the column were analytically solved in the Laplace domain. The moment equations for the first absolute moment and the second central moment in the real time domain were derived from the analytical solution in the Laplace domain. The moment equations were used for predicting the chromatographic behavior under hypothetical HPLC conditions. The influence of the parameters relating to the adsorption equilibrium and to the reaction kinetics on the chromatographic behavior was quantitatively evaluated. It is expected that the moment equations are effective for a detailed analysis of the influence of the mass transfer rates and of the Langmuir type reaction kinetics on the column efficiency.
Rudiger Bubner
1998-12-01
Full Text Available Even though the maxims' theory is not at thecenter of Kant's ethics, it is the unavoidable basis of the categoric imperative's formulation. Kant leanson the transmitted representations of modem moral theory. During the last decades, the notion of maxims has deserved more attention, due to the philosophy of language's debates on rules, and due to action theory's interest in this notion. I here by brietly expound my views in these discussions.
Maximal Hypersurfaces in Spacetimes with Translational Symmetry
Bulawa, Andrew
2016-01-01
We consider four-dimensional vacuum spacetimes which admit a free isometric spacelike R-action. Taking a quotient with respect to the R-action produces a three-dimensional quotient spacetime. We establish several results regarding maximal hypersurfaces (spacelike hypersurfaces of zero mean curvature) in quotient spacetimes. First, we show that complete noncompact maximal hypersurfaces must either be flat cylinders S^1 x R or conformal to the Euclidean plane. Second, we establish a positive mass theorem for certain maximal hypersurfaces. Finally, while it is meaningful to use a bounded lapse when adopting the maximal hypersurface gauge condition in the four-dimensional (asymptotically flat) setting, it is shown here that nontrivial quotient spacetimes admit the maximal hypersurface gauge only with an unbounded lapse.
Exact collisional moments for plasma fluid theories
Pfefferlé, D.; Hirvijoki, E.; Lingam, M.
2017-04-01
The velocity-space moments of the often troublesome nonlinear Landau collision operator are expressed exactly in terms of multi-index Hermite-polynomial moments of distribution functions. The collisional moments are shown to be generated by derivatives of two well-known functions, namely, the Rosenbluth-MacDonald-Judd-Trubnikov potentials for a Gaussian distribution. The resulting formula has a nonlinear dependency on the relative mean flow of the colliding species normalised to the root-mean-square of the corresponding thermal velocities and a bilinear dependency on densities and higher-order velocity moments of the distribution functions, with no restriction on temperature, flow, or mass ratio of the species. The result can be applied to both the classic transport theory of plasmas that relies on the Chapman-Enskog method, as well as to derive collisional fluid equations that follow Grad's moment approach. As an illustrative example, we provide the collisional ten-moment equations with exact conservation laws for momentum- and energy-transfer rates.
Pieters, Jurgen
2001-01-01
'Moments of Negotiation' offers the first book-length and indepth analysis of the New Historicist reading method, which the American Shakespeare-scolar Stephen Greenblatt introduced at the beginning of the 1980s. Ever since, Greenblatt has been hailed as the prime representative of this movement,
Higgins, Chris
2014-01-01
In "The Humanist Moment," Chris Higgins sets out to recover a tenable, living humanism, rejecting both the version vilified by the anti-humanists and the one sentimentalized by the reactionary nostalgists. Rescuing humanism from such polemics is only the first step, as we find at least nine rival, contemporary definitions of humanism.…
Pieters, Jurgen
2001-01-01
'Moments of Negotiation' offers the first book-length and indepth analysis of the New Historicist reading method, which the American Shakespeare-scolar Stephen Greenblatt introduced at the beginning of the 1980s. Ever since, Greenblatt has been hailed as the prime representative of this movement, wh
Classroom Ready Teaching Moments
Whalen, D. Joel; Coker, Kesha K.
2017-01-01
This article features thumbnail descriptions of 26 "Teaching Moments" presented at the Society for Marketing Advances 2016 Annual Conference. A wide variety of marketing education interventions are presented, from games that teach marketing fundamentals and enhance faculty effectiveness when counseling students, to visualizing data, and…
Dark forces and atomic electric dipole moments
Gharibnejad, Heman; Derevianko, Andrei
2015-02-01
Postulating the existence of a finite-mass mediator of T,P-odd coupling between atomic electrons and nucleons, we consider its effect on the permanent electric dipole moment (EDM) of diamagnetic atoms. We present both numerical and analytical analysis for such mediator-induced EDMs and compare it with EDM results for the conventional contact interaction. Based on this analysis, we derive limits on coupling strengths and carrier masses from experimental limits on EDM of the 199Hg atom.
Spin Structure Moments of the Proton and Deuteron
Slifer, Karl; Rondon-Aramayo, Oscar; Aghalaryan, Aram; Ahmidouch, Abdellah; Asaturyan, Razmik; Bloch, Frederic; Boeglin, Werner; Bosted, Peter; Carasco, Cedric; Carlini, Roger; Cha, Jinseok; Chen, Jian-Ping; Christy, Michael; Cole, Leon; Coman, Luminita; Crabb, Donald; Danagoulian, Samuel; Day, Donal; Dunne, James; Elaasar, Mostafa; Ent, Rolf; Fenker, Howard; Frlez, Emil; Gaskell, David; Gan, Liping; Gomez, Javier; Hu, Bitao; Jourdan, Juerg; Jones, Mark; Keith, Christopher; Keppel, Cynthia; Khandaker, Mahbubul; Klein, Andreas; Kramer, Laird; Liang, Yongguang; Lichtenstadt, Jechiel; Lindgren, Richard; Mack, David; McKee, Paul; McNulty, Dustin; Meekins, David; Mkrtchyan, Hamlet; Nasseripour, Rakhsha; Niculescu, Maria-Ioana; Normand, Kristoff; Norum, Blaine; Pocanic, Dinko; Prok, Yelena; Raue, Brian; Reinhold, Joerg; Roche, Julie; Rohe, Daniela; Savvinov, Nikolai; Sawatzky, Bradley; Seely, Mikell; Sick, Ingo; Smith, C.; Smith, G.; Stepanyan, Samuel; Tang, Liguang; Tajima, Shigeyuki; Testa, Giuseppe; Vulcan, William; Wang, Kebin; Warren, G.; Wesselmann, Frank; Wood, Stephen; Yan, Chen; Yuan, Lulin; Yun, Junho; Zeier, Markus; Guo Zhu, Hong
2009-01-01
Moments of the spin structure functions g1 and g2 of the proton and deuteron have been measured in the resonance region at intermediate four momentum transfer. We perform a Nachtmann moment analysis of this data, along with isovector and isoscalar combinations, in order to rigorously account for target mass effects. This analysis provides the first definitive evidence for dynamic higher twists.
Spin Structure Moments of the Proton and Deuteron
Slifer, K; Aghalaryan, A; Ahmidouch, A; Asaturyan, R; Bloch, F; Boeglin, W; Bosted, P; Carasco, C; Carlini, R; Cha, J; Chen, J P; Christy, M E; Cole, L; Coman, L; Crabb, D; Danagulyan, S; Day, D; Dunne, J; Elaasar, M; Ent, R; Fenker, H; Frlez, E; Gaskell, D; Gan, L; Gómez, J; Hu, B; Jourdan, J; Jones, M K; Keith, C; Keppel, C E; Khandaker, M; Klein, A; Kramer, L; Liang, Y; Lichtenstadt, J; Lindgren, R; Mack, D; McKee, P; McNulty, D; Meekins, D; Mkrtchyan, H; Nasseripour, R; Niculescu, I; Normand, K; Norum, B; Pocanic, D; Prok, Y; Raue, B; Reinhold, J; Roche, J; Kiselev, D; Savvinov, N; Sawatzky, B; Seely, M; Sick, I; Smith, C; Smith, G; Stepanyan, S; Tang, L; Tajima, S; Testa, G; Vulcan, W; Wang, K; Warren, G; Wesselmann, F R; Wood, S; Yan, C; Yuan, L; Yun, J; Zeier, M; Zhu, H
2008-01-01
Moments of the spin structure functions g1 and g2 of the proton and deuteron have been measured in the resonance region at intermediate four momentum transfer. We perform a Nachtmann moment analysis of this data, along with isovector and isoscalar combinations, in order to rigorously account for target mass effects. This analysis provides the first definitive evidence for dynamic higher twists.
Solar rotation gravitational moments
A. Ajabshirizadeh
2005-09-01
Full Text Available Gravitational multipole moments of the Sun are still poorly known. Theoretically, the difficulty is mainly due to the differential rotation for which the velocity rate varies both on the surface and with the depth. From an observational point of view, the multipole moments cannot be directly measured. However, recent progresses have been made proving the existence of a strong radial differential rotation in a thin layer near the solar surface (the leptocline. Applying the theory of rotating stars, we will first compute values of J2 and J4 taking into account the radial gradient of rotation, then we will compare these values with the existing ones, giving a more complete review. We will explain some astrophysical outcomes, mainly on the relativistic Post Newtonian parameters. Finally we will conclude by indicating how space experiments (balloon SDS flights, Golf NG, Beppi-Colombo, Gaia... will be essential to unambiguously determine these parameters.
Redefining the political moment
James Arvanitakis
2011-07-01
Full Text Available On 16 February 2003, more than half a million people gathered in Sydney, Australia, as part of a global anti-war protest aimed at stopping the impending invasion of Iraq by the then US Administration. It is difficult to estimate how many millions marched on the coordinated protest, but it was by far the largest mobilization of a generation. Walking and chanting on the streets of Sydney that day, it seemed that a political moment was upon us. In a culture that rarely embraces large scale activism, millions around Australian demanded to be heard. The message was clear: if you do not hear us, we would be willing to bring down a government. The invasion went ahead, however, with the then Australian government, under the leadership of John Howard, being one of the loudest and staunchest supporters of the Bush Administrations drive to war. Within 18 months, anti-war activists struggled to have a few hundred participants take part in anti-Iraq war rallies, and the Howard Government was comfortably re-elected for another term. The political moment had come and gone, with both social commentators and many members of the public looking for a reason. While the conservative media was often the focus of analysis, this paper argues that in a time of late capitalism, the political moment is hollowed out by ‘Politics’ itself. That is to say, that formal political processes (or ‘Politics’ undermine the political practices that people participate in everyday (or ‘politics’. Drawing on an ongoing research project focusing on democracy and young people, I discuss how the concept of ’politics‘ has been destabilised and subsequently, the political moment has been displaced. This displacement has led to a re-definition of ‘political action’ and, I argue, the emergence of a different type of everyday politics.
Effects of hip center location on the moment-generating capacity of the muscles.
Delp, S L; Maloney, W
1993-01-01
We have developed a three-dimensional biomechanical model of the human lower extremity to study how the location of the hip center affects the moment-generating capacity of four muscle groups: the hip abductors, adductors, flexors, and extensors. The model computes the maximum isometric force and the resulting joint moments that each of 25 muscle-tendon complexes develops at any body position. Abduction, adduction, flexion, and extension moments calculated with the model correspond closely with isometric joint moments measured during maximum voluntary contractions. We used the model to determine (1) the hip center locations that maximize and minimize the moment-generating capacity of each muscle group and (2) the effects of superior-inferior, anterior-posterior, and medial-lateral displacement of the hip center on the moment arms, maximum isometric muscle forces, and maximum isometric moments generated by each muscle group. We found that superior-inferior displacement of the hip center has the greatest effect on the force- and moment-generating capacity of the muscles. A 2 cm superior displacement decreases abduction force (44%), moment arm (12%), and moment (49%), while a 2 cm inferior displacement increases abduction force (20%), moment arm (7%) and moment (26%). Similarly, a 2 cm superior displacement decreases flexion force (27%), moment arm (6%), and moment (22%), while inferior displacement increases all three variables. Anterior-posterior displacement alters the moment-generating capacity of the flexors and extensors considerably, primarily due to moment arm changes. Medial-lateral displacement has a large effect on the moment-generating capacity of the adductors only. A 2 cm medial displacement decreases adduction moment arm (20%), force (26%) and moment (40%). These results demonstrate that the force- and moment-generating capacities of the muscles are sensitive to the location of the hip center.
Exterior and interior metrics with quadrupole moment
Quevedo, Hernando
2010-01-01
We present the Ernst potential and the line element of an exact solution of Einstein's vacuum field equations that contains as arbitrary parameters the total mass, the angular momentum, and the quadrupole moment of a rotating mass distribution. We show that in the limiting case of slowly rotating and slightly deformed configuration, there exists a coordinate transformation that relates the exact solution with the approximate Hartle solution. It is shown that this approximate solution can be smoothly matched with an interior perfect fluid solution with physically reasonable properties. This opens the possibility of considering the quadrupole moment as an additional physical degree of freedom that could be used to search for a realistic exact solution, representing both the interior and exterior gravitational field generated by a self-gravitating axisymmetric distribution of mass of perfect fluid in stationary rotation.
Velocity moments of dark matter haloes
Wojtak, R; Gottlöber, S; Mamon, G A; Wojtak, Radoslaw; Lokas, Ewa L.; Gottloeber, Stefan; Mamon, Gary A.
2006-01-01
Using cosmological N-body simulations we study the line-of-sight velocity distribution of dark matter haloes focusing on the lowest-order even moments, dispersion and kurtosis, and their application to estimate the mass profiles of cosmological structures. For each of the ten massive haloes selected from the simulation box we determine the virial mass, concentration and the anisotropy parameter. In order to emulate observations from each halo we choose randomly 300 particles and project their velocities and positions along the line of sight and on the surface of the sky, respectively. After removing interlopers we calculate the profiles of the line-of-sight velocity moments and fit them with the solutions of the Jeans equations. The estimates of virial mass, concentration parameter and velocity anisotropy obtained in this way are in good agreement with the values found from the full 3D analysis.
Janusz Brzozowski
2014-05-01
Full Text Available The atoms of a regular language are non-empty intersections of complemented and uncomplemented quotients of the language. Tight upper bounds on the number of atoms of a language and on the quotient complexities of atoms are known. We introduce a new class of regular languages, called the maximally atomic languages, consisting of all languages meeting these bounds. We prove the following result: If L is a regular language of quotient complexity n and G is the subgroup of permutations in the transition semigroup T of the minimal DFA of L, then L is maximally atomic if and only if G is transitive on k-subsets of 1,...,n for 0 <= k <= n and T contains a transformation of rank n-1.
Andersen, Klaus Ejner
1985-01-01
Guinea pig maximization tests (GPMT) with chlorocresol were performed to ascertain whether the sensitization rate was affected by minor changes in the Freund's complete adjuvant (FCA) emulsion used. Three types of emulsion were evaluated: the oil phase was mixed with propylene glycol, saline with...... to the saline/oil emulsion. Placing of the challenge patches affected the response, as simultaneous chlorocresol challenge on the flank located 2 cm closer to the abdomen than the usual challenge site gave decreased reactions....
Zak, Michail
2008-01-01
A report discusses an algorithm for a new kind of dynamics based on a quantum- classical hybrid-quantum-inspired maximizer. The model is represented by a modified Madelung equation in which the quantum potential is replaced by different, specially chosen 'computational' potential. As a result, the dynamics attains both quantum and classical properties: it preserves superposition and entanglement of random solutions, while allowing one to measure its state variables, using classical methods. Such optimal combination of characteristics is a perfect match for quantum-inspired computing. As an application, an algorithm for global maximum of an arbitrary integrable function is proposed. The idea of the proposed algorithm is very simple: based upon the Quantum-inspired Maximizer (QIM), introduce a positive function to be maximized as the probability density to which the solution is attracted. Then the larger value of this function will have the higher probability to appear. Special attention is paid to simulation of integer programming and NP-complete problems. It is demonstrated that the problem of global maximum of an integrable function can be found in polynomial time by using the proposed quantum- classical hybrid. The result is extended to a constrained maximum with applications to integer programming and TSP (Traveling Salesman Problem).
Distributions on unbounded moment spaces and random moment sequences
Nagel, Jan
2010-01-01
In this paper we define distributions on moment spaces corresponding to measures on the real line with an unbounded support. We identify these distributions as limiting distributions of random moment vectors defined on compact moment spaces and as distributions corresponding to random spectral measures associated with the Jacobi, Laguerre and Hermite ensemble from random matrix theory. For random vectors on the unbounded moment spaces we prove a central limit theorem where the centering vectors correspond to the moments of the Marchenko-Pastur distribution and Wigner's semi-circle law.
Pairing Field and Moments of Inertia of Superdeformed Nuclei
陈永静; 陈永寿; 陈辅新
2002-01-01
We have systematically analysed the dynamic moments of inertia of the experimental superdeformed (SD)bands observed in the A = 190, 150 and 60-80 mass regions as functions of rotational frequency. By combining the different mass regions, the dramatic features of the dynamic moments of inertia were found and explained based on the calculations of the pairing fields of SD nuclei with the anisotropic harmonic oscillator quadrupole pairing Hartree-Fock-Bogoliubov model.
Baryon magnetic moments in the background field method
Lee, F X; Zhou, L; Wilcox, W
2005-01-01
We present a calculation of the magnetic moments for the baryon octet and decuplet using the background-field method and standard Wilson gauge and fermion actions in the quenched approximation of lattice QCD. Progressively smaller static magnetic fields are introduced on a $24^4$ lattice at beta=6.0 and the pion mass is probed down to about 500 MeV. Magnetic moments are extracted from the linear response of the masses to the background field.
Paul Callaghan luminous moments
Callaghan, Paul
2013-01-01
Acknowledged internationally for his ground-breaking scientific research in the field of magnetic resonance, Sir Paul Callaghan was a scientist and visionary with a rare gift for promoting science to a wide audience. He was named New Zealander of the Year in 2011. His death in early 2012 robbed New Zealand of an inspirational leader. Paul Callaghan: Luminous Moments brings together some of his most significant writing. Whether he describes his childhood in Wanganui, reflects on discovering the beauty of science, sets out New Zealand's future potential or discusses the experience of fa
Electric dipole moments of charged leptons with sterile fermions
Abada, Asmaa
2016-01-01
We address the impact of sterile fermions on charged lepton electric dipole moments. We show that in order to have a non-vanishing contribution to electric dipole moments, the minimal extension necessitates the addition of at least two sterile fermion states. Sterile neutrinos can give significant contributions to the charged lepton electric dipole moments if the masses of the non-degenerate sterile states are both above the electroweak scale. In addition, the Majorana nature of neutrinos is also important. Furthermore, we apply the computations of the electric dipole moments for the most minimal realisation of the Inverse Seesaw mechanism, in which the Standard Model is extended by two right-handed neutrinos and two sterile fermion states. We show that the two pairs of (heavy) pseudo-Dirac mass eigenstates can give significant contributions to the electron electric dipole moment, lying close to future experimental sensitivity. We further discuss the possibility of beyond the minimal Inverse Seesaw models and...
Social group utility maximization
Gong, Xiaowen; Yang, Lei; Zhang, Junshan
2014-01-01
This SpringerBrief explains how to leverage mobile users' social relationships to improve the interactions of mobile devices in mobile networks. It develops a social group utility maximization (SGUM) framework that captures diverse social ties of mobile users and diverse physical coupling of mobile devices. Key topics include random access control, power control, spectrum access, and location privacy.This brief also investigates SGUM-based power control game and random access control game, for which it establishes the socially-aware Nash equilibrium (SNE). It then examines the critical SGUM-b
Brandes, U; Gaertler, M; Goerke, R; Hoefer, M; Nikoloski, Z; Wagner, D
2006-01-01
Several algorithms have been proposed to compute partitions of networks into communities that score high on a graph clustering index called modularity. While publications on these algorithms typically contain experimental evaluations to emphasize the plausibility of results, none of these algorithms has been shown to actually compute optimal partitions. We here settle the unknown complexity status of modularity maximization by showing that the corresponding decision version is NP-complete in the strong sense. As a consequence, any efficient, i.e. polynomial-time, algorithm is only heuristic and yields suboptimal partitions on many instances.
Device enables measurement of moments of inertia about three axes
Conn, J.
1965-01-01
Device measures moments of inertia of an irregularly shaped mass about three mutually perpendicular axes by the standard pendulum and torque methods. A fixture suspends the test mass at one point and can be adjusted to allow oscillation of the mass.
Marc eWittmann
2011-10-01
Full Text Available It has been suggested that perception and action can be understood as evolving in temporal epochs or sequential processing units. Successive events are fused into units forming a unitary experience or ‘psychological present’. Studies have identified several temporal integration levels on different time scales which are fundamental for our understanding of behaviour and subjective experience. In recent literature concerning the philosophy and neuroscience of consciousness these separate temporal processing levels are not always precisely distinguished. Therefore, empirical evidence from psychophysics and neuropsychology on these distinct temporal processing levels is presented and discussed within philosophical conceptualizations of time experience. On an elementary level, one can identify a functional moment, a basic temporal building block of perception in the range of milliseconds that defines simultaneity and succession. Below a certain threshold temporal order is not perceived, individual events are processed as co-temporal. On a second level, an experienced moment, which is based on temporal integration of up to a few seconds, has been reported in many qualitatively different experiments in perception and action. It has been suggested that this segmental processing mechanism creates temporal windows that provide a logistical basis for conscious representation and the experience of nowness. On a third level of integration, continuity of experience is enabled by working-memory in the range of multiple seconds allowing the maintenance of cognitive operations and emotional feelings, leading to mental presence, a temporal window of an individual’s experienced presence.
Maximizing without difficulty: A modified maximizing scale and its correlates
Linda Lai
2010-01-01
This article presents several studies that replicate and extend previous research on maximizing. A modified scale for measuring individual maximizing tendency is introduced. The scale has adequate psychometric properties and reflects maximizers' aspirations for high standards and their preference for extensive alternative search, but not the decision difficulty aspect included in several previous studies. Based on this scale, maximizing is positively correlated with optimism, need for cogniti...
Measurable Maximal Energy and Minimal Time Interval
Dahab, Eiman Abou El
2014-01-01
The possibility of finding the measurable maximal energy and the minimal time interval is discussed in different quantum aspects. It is found that the linear generalized uncertainty principle (GUP) approach gives a non-physical result. Based on large scale Schwarzshild solution, the quadratic GUP approach is utilized. The calculations are performed at the shortest distance, at which the general relativity is assumed to be a good approximation for the quantum gravity and at larger distances, as well. It is found that both maximal energy and minimal time have the order of the Planck time. Then, the uncertainties in both quantities are accordingly bounded. Some physical insights are addressed. Also, the implications on the physics of early Universe and on quantized mass are outlined. The results are related to the existence of finite cosmological constant and minimum mass (mass quanta).
CP-violation and electric dipole moments
Le Dall, Matthias; Ritz, Adam
2013-03-01
Searches for intrinsic electric dipole moments of nucleons, atoms and molecules are precision flavour-diagonal probes of new -odd physics. We review and summarise the effective field theory analysis of the observable EDMs in terms of a general set of CP-odd operators at 1 GeV, and the ensuing model-independent constraints on new physics. We also discuss the implications for supersymmetric models, in light of the mass limits emerging from the LHC.
HEMI: Hyperedge Majority Influence Maximization
Gangal, Varun; Narayanam, Ramasuri
2016-01-01
In this work, we consider the problem of influence maximization on a hypergraph. We first extend the Independent Cascade (IC) model to hypergraphs, and prove that the traditional influence maximization problem remains submodular. We then present a variant of the influence maximization problem (HEMI) where one seeks to maximize the number of hyperedges, a majority of whose nodes are influenced. We prove that HEMI is non-submodular under the diffusion model proposed.
SELECTION MOMENTS AND GENERALIZED METHOD OF MOMENTS FOR HETEROSKEDASTIC MODELS
Constantin ANGHELACHE
2016-06-01
Full Text Available In this paper, the authors describe the selection methods for moments and the application of the generalized moments method for the heteroskedastic models. The utility of GMM estimators is found in the study of the financial market models. The selection criteria for moments are applied for the efficient estimation of GMM for univariate time series with martingale difference errors, similar to those studied so far by Kuersteiner.
Andersen, Klaus Ejner
1985-01-01
Guinea pig maximization tests (GPMT) with chlorocresol were performed to ascertain whether the sensitization rate was affected by minor changes in the Freund's complete adjuvant (FCA) emulsion used. Three types of emulsion were evaluated: the oil phase was mixed with propylene glycol, saline...... with 30% (v/v) ethanol or saline, respectively. Relative viscosity was used as one measure of physical properties of the emulsion. Higher degrees of sensitization (but not rates) were obtained at the 48 h challenge reading with the oil/propylene glycol and oil/saline + ethanol emulsions compared...... to the saline/oil emulsion. Placing of the challenge patches affected the response, as simultaneous chlorocresol challenge on the flank located 2 cm closer to the abdomen than the usual challenge site gave decreased reactions....
Moment Distributions of Phase Type
Bladt, Mogens; Nielsen, Bo Friis
-type distributions. We construct representations for moment distributions based on a general matrix-exponential distribution which turns out to be a generalization of the moment distributions based on exponential distributions. For moment distributions based on phase{type distributions we find an appropriate...... alternative representation in terms of sub{intensity matrices. Finally we are able to nd explicit expressions for both the Lorenz curve and the Gini index....
Indirect Inference for Stochastic Differential Equations Based on Moment Expansions
Ballesio, Marco
2016-01-06
We provide an indirect inference method to estimate the parameters of timehomogeneous scalar diffusion and jump diffusion processes. We obtain a system of ODEs that approximate the time evolution of the first two moments of the process by the approximation of the stochastic model applying a second order Taylor expansion of the SDE s infinitesimal generator in the Dynkin s formula. This method allows a simple and efficient procedure to infer the parameters of such stochastic processes given the data by the maximization of the likelihood of an approximating Gaussian process described by the two moments equations. Finally, we perform numerical experiments for two datasets arising from organic and inorganic fouling deposition phenomena.
MAXIMS VIOLATIONS IN LITERARY WORK
Widya Hanum Sari Pertiwi
2015-12-01
Full Text Available This study was qualitative research action that focuses to find out the flouting of Gricean maxims and the functions of the flouting in the tales which are included in collection of children literature entitled My Giant Treasury of Stories and Rhymes. The objective of the study is generally to identify the violation of maxims of quantity, quality, relevance, and manner in the data sources and also to analyze the use of the flouting in the tales which are included in the book. Qualitative design using categorizing strategies, specifically coding strategy, was applied. Thus, the researcher as the instrument in this investigation was selecting the tales, reading them, and gathering every item which reflects the violation of Gricean maxims based on some conditions of flouting maxims. On the basis of the data analysis, it was found that the some utterances in the tales, both narration and conversation, flouting the four maxims of conversation, namely maxim of quality, maxim of quantity, maxim of relevance, and maxim of manner. The researcher has also found that the flouting of maxims has one basic function that is to encourage the readers’ imagination toward the tales. This one basic function is developed by six others functions: (1 generating specific situation, (2 developing the plot, (3 enlivening the characters’ utterance, (4 implicating message, (5 indirectly characterizing characters, and (6 creating ambiguous setting. Keywords: children literature, tales, flouting maxims
Swanepoel, Konrad J
2011-01-01
A subset of a normed space X is called equilateral if the distance between any two points is the same. Let m(X) be the smallest possible size of an equilateral subset of X maximal with respect to inclusion. We first observe that Petty's construction of a d-dimensional X of any finite dimension d >= 4 with m(X)=4 can be generalised to show that m(X\\oplus_1\\R)=4 for any X of dimension at least 2 which has a smooth point on its unit sphere. By a construction involving Hadamard matrices we then show that both m(\\ell_p) and m(\\ell_p^d) are finite and bounded above by a function of p, for all 1 1 such that m(X) <= d+1 for all d-dimensional X with Banach-Mazur distance less than c from \\ell_p^d. Using Brouwer's fixed-point theorem we show that m(X) <= d+1 for all d-\\dimensional X with Banach-Mazur distance less than 3/2 from \\ell_\\infty^d. A graph-theoretical argument furthermore shows that m(\\ell_\\infty^d)=d+1. The above results lead us to conjecture that m(X) <= 1+\\dim X.
Bounds on neutrino magnetic moment tensor from solar neutrinos
Joshipura, A S; Joshipura, Anjan S.; Mohanty, Subhendra
2002-01-01
Solar neutrinos with non-zero magnetic moments will contribute to the electron scattering rates in the Super-Kamiokande experiment. The magnetic moment scattering events in Super-K can be accommodated in the standard VO or MSW solutions by a change of the parameter space of mass square difference and mixing angle-but the shifted neutrino parameters obtained from Super-K will (for some values of neutrino magnetic moments) become incompatible with the fits from SNO, Gallium and Chlorine experiments. We compute the upper bounds on the Dirac and Majorana magnetic moments of solar neutrinos by simultaneously fitting all the observed solar neutrino rates. The bounds the magnetic moment matrix elements are of the order of 10^{-10} Bohr magnetron.
Lee, Hyun; Lee, Sang Jin; Lee, Sang Ho [Busan Wooridul Hospital, Busan (Korea, Republic of)
2006-03-15
Lumbar degenerative kyphosis (LDK) is a subgroup of the flatback syndrome, which is a condition caused by spinal degeneration. LDK is reported to be the most frequent cause of lumbar spine deformity in the farming districts of the 'oriental' countries. We investigated the relationship between the cross-sectional area (CSA) and the moment arm length (MAL) of the erector spinae muscle and the thickness of the psoas major muscle (PT) and the body mass index (BMI) by performing statistical analysis, and we tried to show the crucial role of these variables for diagnosing LDK. From July 2004 to April 2005, we retrospectively reviewed 17 LDK patients who had undergone anterior lumbar interbody fusion (ALIF) with posterior stabilization. We measured both the CSA and MAL on the transverse cross-sectional MR image of the trunk at the fourth to fifth vertebrae (L4/5). The MAL was defined as the anterior-posterior distance between the center of the erector spinae muscle and that of the vertebral body. A comparative study was undertaken between the LDK group and the matched (according to age and gender) control group with regard to the CSA, MAL, PT and BMI. The 17 LDK patients were all females [age: 62.5 {+-} 4.93 years, height: 157 {+-} 6.19 cm, weight: 55.59 {+-} 4.7 kg, and BMI: 22.58 {+-} 2.08 kg/m{sup 2}]. The control group patients were all female [age: 63.6 {+-} 2.27 years, height: 156 {+-} 5.05 cm, weight: 59.65 {+-} 7.39 kg and BMI: 24.38 {+-} 2.94 kg/m{sup 2}]. Spearman's rho indicated a positive association between the CSA and BMI (rho = 0.49, {rho} = 0.046), between the MAL and BMI (rho = 0.808, {rho} = 0.000) and between the CSA and PT (rho = 0.566, {rho} = 0.018) in the LDK patients. In terms of the CSA versus MAL, there was a positive association in both groups (rho = 0.67, {rho} = 0.000, MAL = 0.023CSA + 5.454 in the LDK group; rho = 0.564, {rho} 0.018, MAL = 0.02CSA + 5.832 in the control group with using linear regression analysis). Independent
Modification of Fox-Wolfram Moments for Hadron Colliders
Spiller, Laurence Anthony
2015-01-01
Collisions of composite particles impose an arbitrary boost in the longitudinal direction on a given event. This implies that the centre-of-mass frame at hadron colliders is undetermined for processes with missing energy in the final state. This motivates the modification of the Fox-Wolfram moments such that the moments for a given event are identical when viewed in the lab or centre-of-mass frame of the beam. The resulting moments are invariant under rotations in the plane transverse to the beam and boosts parallel to the beam. These moments are then used to demonstrate improved signal separation in the channel where the Higgs decays to two b-quarks while being produced in association with a vector boson.
Modification of Fox-Wolfram moments for hadron colliders
Spiller, L.A. [University of Melbourne,Victoria (Australia)
2016-03-07
Collisions of composite particles impose an arbitrary boost in the longitudinal direction on a given event. This implies that the centre-of-mass frame at hadron colliders is undetermined for processes with missing energy in the final state. This motivates the modification of the Fox-Wolfram moments such that the moments for a given event are identical when viewed in the lab or centre-of-mass frame of the beam. The resulting moments are invariant under rotations in the plane transverse to the beam and boosts parallel to the beam. These moments are then used to demonstrate improved signal separation in the channel where the Higgs decays to two b-quarks while being produced in association with a vector boson.
2002-01-01
Experiment IS358 uses the intense and pure beams of copper isotopes provided by the ISOLDE RILIS (resonance ionization laser ion source). The isotopes are implanted and oriented in the low temperature nuclear orientation set-up NICOLE. Magnetic moments are measured by $\\beta$-NMR. Copper (Z=29), with a single proton above the proton-magic nickel isotopes provides an ideal testground for precise shell model calculations of magnetic moments and their experimental verification. In the course of our experiments we already determined the magnetic moments of $^{67}$Ni, $^{67}$Cu, $^{68g}$Cu, $^{69}$Cu and $^{71}$Cu which provide important information on the magicity of the N=40 subshell closure. In 2001 we plan to conclude our systematic investigations by measuring the magnetic moment of the neutron-deficient isotope $^{59}$Cu. This will pave the way for a subsequent study of the magnetic moment of $^{57}$Cu with a complementary method.
侯召华; 邹飞雪
2015-01-01
The essential oil was extracted from Angelica pubescens Maxim. by steam distillation and fractionated by molecular distillation ( MD ) . The crude essential oil was used as the feed for two molecular distillation processes. One residue ( RF2 ) and two distillate ( DF1 and DF2 ) fractions were prepared by MD. Three fractions were obtained under the operation parameters of 30 ℃,5. 0mbar;and 60℃, 5. 0mbar, respectively. The chemical components of different fractions were analyzed by Gas chromatography/mass spectrometry ( GC-MS) . Results:The yields of distilled fractions ( DF1 ,and DF2 ) and residued fractions (RF2)were 33. 65%,61. 39%,and 3. 88% (w/w),respectively. GC-MS results revealed that 21 ingredients were detected in the essential oil, including (+)-Limonene,α-Pinene,β-Pinene, Terpinen-4-ol, Eucalyptol, Terpinolene, and (-)-Carveol et. Concentrations and compositions of chemical components in different factions were significantly different. In conclusion, the technology of molecular distillation is a feasible separaction method for essential oil.%独活原油由水蒸汽蒸馏法得到,经过分子蒸馏拆分,得到不同馏分,进行气相色谱-质谱( GC-MS)分析。分子蒸馏为二级,一级条件：蒸发温度30℃、真空度500 Pa、刮膜转速150 r/min；二级条件：蒸发温度60℃、真空度500 Pa、刮膜转速200 r/min；两级进样温度30℃、冷凝水温度10℃。两级分子蒸馏共得到3部分,总上样量336.17 g,回收得到332.51 g,回收率98.92%；一级轻组分(DF1)113.12 g(33.65%)；二级轻组分(DF2)206.36 g (61.39%)；二级重组分(RF2)13.03 g,所占质量比3.88%。原油和馏分物中共确定21种化合物,主要是右旋萜二烯、α-蒎烯、4-异丙基甲苯、萜品烯、月桂烯等；三部分馏分物( DF1,DF2和RF2)和原油中组分数量分别为8、10、17和6种；且不同组分中成分数量及浓度差异显著。分子蒸馏是一种有效的分离纯化技术,可应用于挥发油的加工利用。
Radial velocity moments of dark matter haloes
Wojtak, R; Gottlöber, S; Mamon, G A; Wojtak, Radoslaw; Lokas, Ewa L.; Gottloeber, Stefan; Mamon, Gary A.
2005-01-01
Using cosmological N-body simulations we study the radial velocity distribution in dark matter haloes focusing on the lowest-order even moments, dispersion and kurtosis. We determine the properties of ten massive haloes in the simulation box approximating their density distribution by the NFW formula characterized by the virial mass and concentration. We also calculate the velocity anisotropy parameter of the haloes and find it mildly radial and increasing with distance from the halo centre. The radial velocity dispersion of the haloes shows a characteristic profile with a maximum, while the radial kurtosis profile decreases with distance starting from a value close to Gaussian near the centre. We therefore confirm that dark matter haloes possess intrinsically non-Gaussian, flat-topped velocity distributions. We find that the radial velocity moments of the simulated haloes are very well reproduced by the solutions of the Jeans equations obtained for the halo parameters with the anisotropy measured in the simu...
Multipole moments of bumpy black holes
Vigeland, Sarah J
2010-01-01
General relativity predicts the existence of black holes, compact objects whose spacetimes depend on only their mass and spin (the famous "no hair" theorem). As various observations probe deeper into the strong fields of black hole candidates, it is becoming possible to test this prediction. Previous work suggested that such tests can be performed by measuring whether the multipolar structure of black hole candidates has the form that general relativity demands, and introduced a family of "bumpy black hole" spacetimes to be used for making these measurements. These spacetimes are black holes with the "wrong" multipoles, where the deviation from general relativity depends on the spacetime's "bumpiness." In this paper, we show how to compute the Geroch-Hansen moments of a bumpy black hole, demonstrating that there is a clean mapping between the deviations used in the bumpy black hole formalism and the Geroch-Hansen moments. We also extend our previous results to define bumpy black holes whose {\\it current} mome...
Maximal subgroups of finite groups
S. Srinivasan
1990-01-01
Full Text Available In finite groups maximal subgroups play a very important role. Results in the literature show that if the maximal subgroup has a very small index in the whole group then it influences the structure of the group itself. In this paper we study the case when the index of the maximal subgroups of the groups have a special type of relation with the Fitting subgroup of the group.
Magnetic dipole moment and keV neutrino dark matter
Geng, Chao-Qiang, E-mail: geng@phys.nthu.edu.tw [Department of Physics, National Tsing Hua University, Hsinchu 300, Taiwan (China); Physics Division, National Center for Theoretical Sciences, Hsinchu 300, Taiwan (China); Takahashi, Ryo, E-mail: ryo.takahasi88@gmail.com [Department of Physics, National Tsing Hua University, Hsinchu 300, Taiwan (China)
2012-04-04
We study magnetic dipole moments of right-handed neutrinos in a keV neutrino dark matter model. This model is a simple extension of the standard model with only right-handed neutrinos and a pair of charged particles added. One of the right-handed neutrinos is the candidate of dark matter with a keV mass. Some bounds on the dark matter magnetic dipole moment and model parameters are obtained from cosmological observations.
Magnetic dipole moment and keV neutrino dark matter
Geng, Chao-Qiang
2012-01-01
We study magnetic dipole moments of right-handed neutrinos in a keV neutrino dark matter model. This model is a simple extension of the standard model with only right-handed neutrinos and a pair of charged particles added. One of the right-handed neutrinos is the candidate of dark matter with a keV mass. Some bounds on the dark matter magnetic dipole moment and model parameters are obtained from cosmological observations.
Pairing Field and Moments of Inertia of Superdeformed Nuclei
2002-01-01
The dynamic moments of inertia of the experimental superdeformed bands observed in the A=190,150 and 60～80 mass regions were systematically analyzed. By getting together the different massregions the dramatic features of the dynamic moments of inertia were found and explained based on thecalculations of the pairing fields of SD nuclei with the anisotropic harmonic oscillator quadrupole pairingHartree-Fock-Bogolyubor model. The gradually rising behavior of J2 indicates that the SD states in the
Measurement of the Weak Dipole Moments of the $\\tau$ Lepton
Acciarri, M; Aguilar-Benítez, M; Ahlen, S P; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Ambrosi, G; Anderhub, H; Andreev, V P; Angelescu, T; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Baksay, L; Ball, R C; Banerjee, S; Banerjee, Sw; Banicz, K; Barczyk, A; Barillère, R; Barone, L; Bartalini, P; Baschirotto, A; Basile, M; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Bhattacharya, S; Biasini, M; Biland, A; Bilei, G M; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böck, R K; Böhm, A; Boldizsar, L; Borgia, B; Bourilkov, D; Bourquin, Maurice; Boutigny, D; Braccini, S; Branson, J G; Brigljevic, V; Brock, I C; Buffini, A; Buijs, A; Burger, J D; Burger, W J; Busenitz, J K; Cai, X D; Campanelli, M; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Castellini, G; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada-Canales, M; Cesaroni, F; Chamizo-Llatas, M; Chang, Y H; Chaturvedi, U K; Chekanov, S V; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chen, M; Chiefari, G; Chien, C Y; Cifarelli, Luisa; Cindolo, F; Civinini, C; Clare, I; Clare, R; Cohn, H O; Coignet, G; Colijn, A P; Colino, N; Costantini, S; Cotorobai, F; de la Cruz, B; Csilling, Akos; Dai, T S; D'Alessandro, R; De Asmundis, R; Degré, A; Deiters, K; Denes, P; De Notaristefani, F; DiBitonto, Daryl; Diemoz, M; Van Dierendonck, D N; Di Lodovico, F; Dionisi, C; Dittmar, Michael; Dominguez, A; Doria, A; Dova, M T; Drago, E; Duchesneau, D; Duinker, P; Durán, I; Dutta, S; Easo, S; Efremenko, Yu V; El-Mamouni, H; Engler, A; Eppling, F J; Erné, F C; Ernenwein, J P; Extermann, Pierre; Fabre, M; Faccini, R; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Fenyi, B; Ferguson, T; Ferroni, F; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisk, I; Forconi, G; Fredj, L; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gau, S S; Gentile, S; Gerald, J; Gheordanescu, N; Giagu, S; Goldfarb, S; Goldstein, J; Gong, Z F; Gougas, Andreas; Gratta, Giorgio; Grünewald, M W; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hartmann, B; Hasan, A; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hirschfelder, J; Van Hoek, W C; Hofer, H; Hoorani, H; Hou, S R; Hu, G; Innocente, Vincenzo; Jenkes, K; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Kasser, A; Khan, R A; Kamrad, D; Kamyshkov, Yu A; Kapustinsky, J S; Karyotakis, Yu; Kaur, M; Kienzle-Focacci, M N; Kim, D; Kim, D H; Kim, J K; Kim, S C; Kinnison, W W; Kirkby, A; Kirkby, D; Kirkby, Jasper; Kiss, D; Kittel, E W; Klimentov, A; König, A C; Kopp, A; Korolko, I; Koutsenko, V F; Krämer, R W; Krenz, W; Kunin, A; Lacentre, P E; Ladrón de Guevara, P; Landi, G; Lapoint, C; Lassila-Perini, K M; Laurikainen, P; Lavorato, A; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Lee, H J; Leggett, C; Le Goff, J M; Leiste, R; Leonardi, E; Levchenko, P M; Li Chuan; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lu, W; Lü, Y S; Lübelsmeyer, K; Luci, C; Luckey, D; Luminari, L; Lustermann, W; Ma Wen Gan; Maity, M; Majumder, G; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Mangla, S; Marchesini, P A; Marin, A; Martin, J P; Marzano, F; Massaro, G G G; McNally, D; Mele, S; Merola, L; Meschini, M; Metzger, W J; Von der Mey, M; Mi, Y; Migani, D; Mihul, A; Van Mil, A J W; Milcent, H; Mirabelli, G; Mnich, J; Molnár, P; Monteleoni, B; Moore, R; Moulik, T; Mount, R; Muheim, F; Muijs, A J M; Nahn, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nippe, A; Nisati, A; Oh, Yu D; Opitz, H; Organtini, G; Ostonen, R; Palit, S; Palomares, C; Pandoulas, D; Paoletti, S; Paolucci, P; Park, H K; Park, I H; Pascale, G; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Peach, D; Pei, Y J; Pensotti, S; Perret-Gallix, D; Petersen, B; Petrak, S; Pevsner, A; Piccolo, D; Pieri, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Postema, H; Produit, N; Prokofev, D; Prokofiev, D O; Quartieri, J; Rahal-Callot, G; Raja, N; Rancoita, P G; Rattaggi, M; Raven, G; Razis, P A; Read, K; Ren, D; Rescigno, M; Reucroft, S; Van Rhee, T; Riemann, S; Riles, K; Rind, O; Robohm, A; Rodin, J; Roe, B P; Romero, L; Rosier-Lees, S; Rosselet, P; Van Rossum, W; Roth, S; Rubio, Juan Antonio; Ruschmeier, D; Rykaczewski, H; Salicio, J; Sánchez, E; Sanders, M P; Sarakinos, M E; Sarkar, S; Sauvage, G; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schneegans, M; Scholz, N; Schopper, Herwig Franz; Schotanus, D J; Schwenke, J; Schwering, G; Sciacca, C; Sciarrino, D; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shukla, J; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Soulimov, V; Smith, B; Spillantini, P; Steuer, M; Stickland, D P; Stone, H; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Susinno, G F; Suter, H; Swain, J D; Tang, X W; Tauscher, Ludwig; Taylor, L; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tuchscherer, H; Tung, K L; Uchida, Y; Ulbricht, J; Uwer, U; Valente, E; Vesztergombi, G; Vetlitskii, I; Viertel, Gert M; Vivargent, M; Vlachos, S; Völkert, R; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Vorvolakos, A; Wadhwa, M; Wallraff, W; Wang, J C; Wang, X L; Wang, Z M; Weber, A; Wu, S X; Wynhoff, S; Xu, J; Xu, Z Z; Yang, B Z; Yang, C G; Yao, X Y; Ye, J B; Yeh, S C; You, J M; Zalite, A; Zalite, Yu; Zemp, P; Zeng, Y; Zhang, Z; Zhang, Z P; Zhou, B; Zhou, Y; Zhu, G Y; Zhu, R Y; Zichichi, Antonino; Ziegler, F
1998-01-01
Using the data collected by the L3 experiment at LEP from 1991 to 1995 at energies around the $\\Zo$ mass, a measurement of the weak anomalous magnetic dipole moment, $a^w_{\\tau}$,~ and of the weak electric dipole moment, $d^w_{\\tau}$, of the $\\tau$ lepton is performed. These quantities are obtained from angular distributions in $e^{+}e^{-}\\rightarrow\\tau^{+}\\tau^{-} \\rightarrow h^{+} \\bar{\
Finding Maximal Quasiperiodicities in Strings
Brodal, Gerth Stølting; Pedersen, Christian N. S.
2000-01-01
of length n in time O(n log n) and space O(n). Our algorithm uses the suffix tree as the fundamental data structure combined with efficient methods for merging and performing multiple searches in search trees. Besides finding all maximal quasiperiodic substrings, our algorithm also marks the nodes......Apostolico and Ehrenfeucht defined the notion of a maximal quasiperiodic substring and gave an algorithm that finds all maximal quasiperiodic substrings in a string of length n in time O(n log2 n). In this paper we give an algorithm that finds all maximal quasiperiodic substrings in a string...
Maximizing Entropy over Markov Processes
Biondi, Fabrizio; Legay, Axel; Nielsen, Bo Friis
2013-01-01
computation reduces to finding a model of a specification with highest entropy. Entropy maximization for probabilistic process specifications has not been studied before, even though it is well known in Bayesian inference for discrete distributions. We give a characterization of global entropy of a process...... as a reward function, a polynomial algorithm to verify the existence of an system maximizing entropy among those respecting a specification, a procedure for the maximization of reward functions over Interval Markov Chains and its application to synthesize an implementation maximizing entropy. We show how...
Maximizing entropy over Markov processes
Biondi, Fabrizio; Legay, Axel; Nielsen, Bo Friis
2014-01-01
computation reduces to finding a model of a specification with highest entropy. Entropy maximization for probabilistic process specifications has not been studied before, even though it is well known in Bayesian inference for discrete distributions. We give a characterization of global entropy of a process...... as a reward function, a polynomial algorithm to verify the existence of a system maximizing entropy among those respecting a specification, a procedure for the maximization of reward functions over Interval Markov Chains and its application to synthesize an implementation maximizing entropy. We show how...
Three Moments in Jewish Philosophy
Stefan Goltzberg
2012-04-01
Full Text Available I would like to thank the following people for having proofread my text: Noémie Benchimol, Shemuel Lampronti and Georges-Elia Sarfati. The purpose of this article is to offer a new periodization of Jewish philosophy and to reflect on the definition of Jewish philosophy. It will therefore deal with the characteristic style of each Jewish philosophy rather than with their content. I shall identify three moments in the history of Jewish philosophy: the Arab moment, the German moment, and the an...
Gonzalez-Sanchez, Jon
2010-01-01
Let $w = w(x_1,..., x_n)$ be a word, i.e. an element of the free group $F =$ on $n$ generators $x_1,..., x_n$. The verbal subgroup $w(G)$ of a group $G$ is the subgroup generated by the set $\\{w (g_1,...,g_n)^{\\pm 1} | g_i \\in G, 1\\leq i\\leq n \\}$ of all $w$-values in $G$. We say that a (finite) group $G$ is $w$-maximal if $|G:w(G)|> |H:w(H)|$ for all proper subgroups $H$ of $G$ and that $G$ is hereditarily $w$-maximal if every subgroup of $G$ is $w$-maximal. In this text we study $w$-maximal and hereditarily $w$-maximal (finite) groups.
High Order Moment Model for Polydisperse Evaporating Sprays Towards Interfacial Geometry
Essadki, Mohamed; Laurent, Frédérique; Massot, Marc
2016-01-01
In this paper we propose a new Eulerian modeling and related accurate and robust numerical methods, describing polydisperse evaporating sprays, based on high order moment methods in size. The main novelty of this model is its capacity to describe some geometrical variables of the droplet-gas interface, by analogy with the liquid-gas interface in interfacial flows. For this purpose, we use fractional size-moments, where the size variable is taken as the droplet surface. In order to evaluate the evaporation of the polydisperse spray, we use a smooth reconstruction which maximizes the Shannon entropy. However, the use of fractional moments introduces some theoretical and numerical difficulties, which need to be tackled. First, relying on a study of the moment space, we extend the Maximum Entropy (ME) reconstruction of the size distribution to the case of fractional moments. Then, we propose a new accurate and realizable algorithm to solve the moment evolution due to evaporation, which preserves the structure of ...
Moment methods in extremal geometry
De Laat, D.
2016-01-01
In this thesis we develop techniques for solving problems in extremal geometry. We give an infinite dimensional generalization of moment techniques from polynomial optimization. We use this to construct semidefinite programming hierarchies for approximating optimal packing densities and ground state
Radiation reaction of multipole moments
Kazinski, P. O.
2007-08-01
A Poincaré-invariant description is proposed for the effective dynamics of a localized system of charged particles in classical electrodynamics in terms of the intrinsic multipole moments of the system. A relativistic-invariant definition for the intrinsic multipole moments of a system of charged particles is given. A new generally covariant action functional for a relativistic perfect fluid is proposed. In the case of relativistic charged dust, it is proven that the description of the problem of radiation reaction of multipole moments by the model of particles is equivalent to the description of this problem by a hydrodynamic model. An effective model is obtained for a pointlike neutral system of charged particles that possesses an intrinsic dipole moment, and the free dynamics of this system is described. The bound momentum of a point dipole is found.
Moment methods in extremal geometry
De Laat, D.
2016-01-01
In this thesis we develop techniques for solving problems in extremal geometry. We give an infinite dimensional generalization of moment techniques from polynomial optimization. We use this to construct semidefinite programming hierarchies for approximating optimal packing densities and ground state
Face recognition using Krawtchouk moment
J Sheeba Rani; D Devaraj
2012-08-01
Feature extraction is one of the important tasks in face recognition. Moments are widely used feature extractor due to their superior discriminatory power and geometrical invariance. Moments generally capture the global features of the image. This paper proposes Krawtchouk moment for feature extraction in face recognition system, which has the ability to extract local features from any region of interest. Krawtchouk moment is used to extract both local features and global features of the face. The extracted features are fused using summed normalized distance strategy. Nearest neighbour classiﬁer is employed to classify the faces. The proposed method is tested using ORL and Yale databases. Experimental results show that the proposed method is able to recognize images correctly, even if the images are corrupted with noise and possess change in facial expression and tilt.
Audrey
2008-01-01
@@ Chinese people would never for-get the moment-14:28, on May 12, 2008, as the 8.0-magnitude earthquake shook the whole of Sichuan; at that moment the world's at-tention was focused on the southwest of China - the homeland of the Giant Panda. This rare yet catastrophic natural disaster has resulted in the heavy loss of lives and property throughout the region.
Maximizing without difficulty: A modified maximizing scale and its correlates
Lai, Linda
2010-01-01
... included in several previous studies. Based on this scale, maximizing is positively correlated with optimism, need for cognition, desire for consistency, risk aversion, intrinsic motivation, self-efficacy and perceived workload, whereas...
Maximizing and customer loyalty: Are maximizers less loyal?
Linda Lai
2011-06-01
Full Text Available Despite their efforts to choose the best of all available solutions, maximizers seem to be more inclined than satisficers to regret their choices and to experience post-decisional dissonance. Maximizers may therefore be expected to change their decisions more frequently and hence exhibit lower customer loyalty to providers of products and services compared to satisficers. Findings from the study reported here (N = 1978 support this prediction. Maximizers reported significantly higher intentions to switch to another service provider (television provider than satisficers. Maximizers' intentions to switch appear to be intensified and mediated by higher proneness to regret, increased desire to discuss relevant choices with others, higher levels of perceived knowledge of alternatives, and higher ego involvement in the end product, compared to satisficers. Opportunities for future research are suggested.
Are maximizers really unhappy? The measurement of maximizing tendency,
Dalia L. Diab
2008-06-01
Full Text Available Recent research suggesting that people who maximize are less happy than those who satisfice has received considerable fanfare. The current study investigates whether this conclusion reflects the construct itself or rather how it is measured. We developed an alternative measure of maximizing tendency that is theory-based, has good psychometric properties, and predicts behavioral outcomes. In contrast to the existing maximization measure, our new measure did not correlate with life (dissatisfaction, nor with most maladaptive personality and decision-making traits. We conclude that the interpretation of maximizers as unhappy may be due to poor measurement of the construct. We present a more reliable and valid measure for future researchers to use.
Principles of maximally classical and maximally realistic quantum mechanics
S M Roy
2002-08-01
Recently Auberson, Mahoux, Roy and Singh have proved a long standing conjecture of Roy and Singh: In 2-dimensional phase space, a maximally realistic quantum mechanics can have quantum probabilities of no more than + 1 complete commuting cets (CCS) of observables coexisting as marginals of one positive phase space density. Here I formulate a stationary principle which gives a nonperturbative deﬁnition of a maximally classical as well as maximally realistic phase space density. I show that the maximally classical trajectories are in fact exactly classical in the simple examples of coherent states and bound states of an oscillator and Gaussian free particle states. In contrast, it is known that the de Broglie–Bohm realistic theory gives highly nonclassical trajectories.
Maximal temperature in a simple thermodynamical system
Dai, De-Chang
2016-01-01
Temperature in a simple thermodynamical system is not limited from above. It is also widely believed that it does not make sense talking about temperatures higher than the Planck temperature in the absence of the full theory of quantum gravity. Here, we demonstrate that there exist a maximal achievable temperature in a system where particles obey the laws of quantum mechanics and classical gravity before we reach the realm of quantum gravity. Namely, if two particles with a given center of mass energy come at the distance shorter than the Schwarzschild diameter apart, according to classical gravity they will form a black hole. It is possible to calculate that a simple thermodynamical system will be dominated by black holes at a critical temperature which is about three times lower than the Planck temperature. That represents the maximal achievable temperature in a simple thermodynamical system.
Inquiry-Based Science: Turning Teachable Moments into Learnable Moments
Haug, Berit S.
2014-02-01
This study examines how an inquiry-based approach to teaching and learning creates teachable moments that can foster conceptual understanding in students, and how teachers capitalize upon these moments. Six elementary school teachers were videotaped as they implemented an integrated inquiry-based science and literacy curriculum in their classrooms. In this curriculum, science inquiry implies that students search for evidence in order to make and revise explanations based on the evidence found and through critical and logical thinking. Furthermore, the curriculum material is designed to address science key concepts multiple times through multiple modalities (do it, say it, read it, write it). Two types of teachable moments were identified: planned and spontaneous. Results suggest that the consolidation phases of inquiry, when students reinforce new knowledge and connect their empirical findings to theory, can be considered as planned teachable moments. These are phases of inquiry during which the teacher should expect, and be prepared for, student utterances that create opportunities to further student learning. Spontaneous teachable moments are instances when the teacher must choose to either follow the pace of the curriculum or adapt to the students' need. One implication of the study is that more teacher support is required in terms of how to plan for and effectively utilize the consolidation phases of inquiry.
Magnetic Moments of Octet Baryons in Hot and Dense Nuclear Matter
Singh, Harpreet; Dahiya, Harleen
2016-01-01
We have calculated the in-medium magnetic moments of octet baryons in the presence of hot and dense symmetric nuclear matter. Effective magnetic moments of baryons have been derived from medium modified quark masses within chiral SU(3) quark mean field model.Further, for better insight of medium modification of baryonic magnetic moments, we have considered the explicit contributions from the valence as well as sea quark effects. These effects have been successful in giving the description of baryonic magnetic moments in vacuum. The magnetic moments of baryons are found to vary significantly as a function of density of nuclear medium.
Performance of Object Classification Using Zernike Moment
Ariffuddin Joret; Mohammad Faiz Liew Abdullah; Muhammad Suhaimi Sulong; Asmarashid Ponniran; Siti Zuraidah Zainudin
2014-01-01
Moments have been used in all sorts of object classification systems based on image. There are lots of moments studied by many researchers in the area of object classification and one of the most preference moments is the Zernike moment. In this paper, the performance of object classification using the Zernike moment has been explored. The classifier based on neural networks has been used in this study. The results indicate the best performance in identifying the aggregate is at 91.4% with a ten orders of the Zernike moment. This encouraging result has shown that the Zernike moment is a suitable moment to be used as a feature of object classification systems.
Effect of transition magnetic moments on collective supernova neutrino oscillations
Gouvêa, André de; Shalgar, Shashank, E-mail: degouvea@northwestern.edu, E-mail: shashank@northwestern.edu [Department of Physics and Astronomy, Northwestern University, Evanston IL 60208-3112 (United States)
2012-10-01
We study the effect of Majorana transition magnetic moments on the flavor evolution of neutrinos and antineutrinos inside the core of Type-II supernova explosions. We find non-trivial collective oscillation effects relating neutrinos and antineutrinos of different flavors, even if one restricts the discussion to Majorana transition electromagnetic moment values that are not much larger than those expected from standard model interactions and nonzero neutrino Majorana masses. This appears to be, to the best of our knowledge, the only potentially observable phenomenon sensitive to such small values of Majorana transition magnetic moments. We briefly comment on the effect of Dirac transition magnetic moments and on the consequences of our results for future observations of the flux of neutrinos of different flavors from a nearby supernova explosion.
Anatomy of maximal stop mixing in the MSSM
Bruemmer, Felix [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kraml, Sabine; Kulkarni, Suchita [CNRS/IN2P3, INPG, Grenoble (France). Laboratoire de Physique Subatomique et de Cosmologie
2012-05-15
A Standard Model-like Higgs near 125 GeV in the MSSM requires multi-TeV stop masses, or a near-maximal contribution to its mass from stop mixing. We investigate the maximal mixing scenario, and in particular its prospects for being realized it in potentially realistic GUT models. We work out constraints on the possible GUT-scale soft terms, which we compare with what can be obtained from some well-known mechanisms of SUSY breaking mediation. Finally, we analyze two promising scenarios in detail, namely gaugino mediation and gravity mediation with non-universal Higgs masses.
Maximizing ROI with yield management
Neil Snyder
2001-01-01
.... the technology is based on the concept of yield management, which aims to sell the right product to the right customer at the right price and the right time therefore maximizing revenue, or yield...
Willems Paul JB
2009-02-01
Full Text Available Abstract Background Patients with diabetic polyneuropathy (DPN are often confronted with ulceration of foot soles. Increased plantar pressure under the forefoot has been identified as a major risk factor for ulceration. This study sets out to test the hypothesis that changes in gait characteristics induced by DPN related muscle weakness are the origin of the elevated plantar pressures. Methods Three groups of subjects participated: people diagnosed with diabetes without polyneuropathy (DC, people diagnosed with diabetic polyneuropathy (DPN and healthy, age-matched controls (HC. In all subjects isometric strength of plantar and dorsal flexors was assessed. Moreover, joint moments at ankle, knee and hip joints were determined while walking barefoot at a velocity of 1.4 m/s. Simultaneously plantar pressure patterns were measured. Results Compared to HC-subjects, DPN-participants walked with a significantly increased internal plantar flexor moment at the first half of the stance phase. Also in DPN-subjects the maximal braking and propelling force applied to the floor was decreased. Moreover, in DPN-subjects the ratio of forefoot-to-rear foot plantar pressures was increased. Body-mass normalized strength of dorsal flexors showed a trend to be reduced in people with diabetes, both DC and DPN, compared to HC-subjects. Plantar flexors tended to be less weak in DC compared to HC and in DPN relative to DC. Conclusion The results of this study suggest that adverse plantar pressure patterns are associated with redistribution of joint moments, and a consequent reduced capacity to control forward velocity at heel strike.
Are CEOs Expected Utility Maximizers?
John List; Charles Mason
2009-01-01
Are individuals expected utility maximizers? This question represents much more than academic curiosity. In a normative sense, at stake are the fundamental underpinnings of the bulk of the last half-century's models of choice under uncertainty. From a positive perspective, the ubiquitous use of benefit-cost analysis across government agencies renders the expected utility maximization paradigm literally the only game in town. In this study, we advance the literature by exploring CEO's preferen...
Gaussian maximally multipartite entangled states
Facchi, Paolo; Lupo, Cosmo; Mancini, Stefano; Pascazio, Saverio
2009-01-01
We introduce the notion of maximally multipartite entangled states (MMES) in the context of Gaussian continuous variable quantum systems. These are bosonic multipartite states that are maximally entangled over all possible bipartitions of the system. By considering multimode Gaussian states with constrained energy, we show that perfect MMESs, which exhibit the maximum amount of bipartite entanglement for all bipartitions, only exist for systems containing n=2 or 3 modes. We further numerically investigate the structure of MMESs and their frustration for n <= 7.
All maximally entangling unitary operators
Cohen, Scott M. [Department of Physics, Duquesne University, Pittsburgh, Pennsylvania 15282 (United States); Department of Physics, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213 (United States)
2011-11-15
We characterize all maximally entangling bipartite unitary operators, acting on systems A and B of arbitrary finite dimensions d{sub A}{<=}d{sub B}, when ancillary systems are available to both parties. Several useful and interesting consequences of this characterization are discussed, including an understanding of why the entangling and disentangling capacities of a given (maximally entangling) unitary can differ and a proof that these capacities must be equal when d{sub A}=d{sub B}.
Salvio, Alberto; Strumia, Alessandro; Urbano, Alfredo
2016-01-01
Motivated by the 750 GeV diphoton excess found at LHC, we compute the maximal width into $\\gamma\\gamma$ that a neutral scalar can acquire through a loop of charged fermions or scalars as function of the maximal scale at which the theory holds, taking into account vacuum (meta)stability bounds. We show how an extra gauge symmetry can qualitatively weaken such bounds, and explore collider probes and connections with Dark Matter.
On the maximal efficiency of the collisional Penrose process
Leiderschneider, Elly
2015-01-01
The center of mass (CM) energy in a collisional Penrose process - a collision taking place within the ergosphere of a Kerr black hole - can diverge under suitable extreme conditions (maximal Kerr, near horizon collision and suitable impact parameters). We present an analytic expression for the CM energy, refining expressions given in the literature. Even though the CM energy diverges, we show that the maximal energy attained by a particle that escapes the black hole's gravitational pull and reaches infinity is modest. We obtain an analytic expression for the energy of an escaping particle resulting from a collisional Penrose process, and apply it to derive the maximal energy and the maximal efficiency for several physical scenarios: pair annihilation, Compton scattering, and the elastic scattering of two massive particles. In all physically reasonable cases (in which the incident particles initially fall from infinity towards the black hole) the maximal energy (and the corresponding efficiency) are only one o...
Stochastic Generalized Method of Moments
Yin, Guosheng
2011-08-16
The generalized method of moments (GMM) is a very popular estimation and inference procedure based on moment conditions. When likelihood-based methods are difficult to implement, one can often derive various moment conditions and construct the GMM objective function. However, minimization of the objective function in the GMM may be challenging, especially over a large parameter space. Due to the special structure of the GMM, we propose a new sampling-based algorithm, the stochastic GMM sampler, which replaces the multivariate minimization problem by a series of conditional sampling procedures. We develop the theoretical properties of the proposed iterative Monte Carlo method, and demonstrate its superior performance over other GMM estimation procedures in simulation studies. As an illustration, we apply the stochastic GMM sampler to a Medfly life longevity study. Supplemental materials for the article are available online. © 2011 American Statistical Association.
Radiation reaction for multipole moments
Kazinski, P O
2006-01-01
We propose a Poincare-invariant description for the effective dynamics of systems of charged particles by means of intrinsic multipole moments. To achieve this goal we study the effective dynamics of such systems within two frameworks -- the particle itself and hydrodynamical one. We give a relativistic-invariant definition for the intrinsic multipole moments both pointlike and extended relativistic objects. Within the hydrodynamical framework we suggest a covariant action functional for a perfect fluid with pressure. In the case of a relativistic charged dust we prove the equivalence of the particle approach to the hydrodynamical one to the problem of radiation reaction for multipoles. As the particular example of a general procedure we obtain the effective model for a neutral system of charged particles with dipole moment.
Characterizing flow fluctuations with moments
Bhalerao, Rajeev S. [Department of Theoretical Physics, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005 (India); Ollitrault, Jean-Yves, E-mail: jean-yves.ollitrault@cea.fr [CNRS, URA2306, IPhT, Institut de physique théorique de Saclay, F-91191 Gif-sur-Yvette (France); Pal, Subrata [Department of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005 (India)
2015-03-06
We present a complete set of multiparticle correlation observables for ultrarelativistic heavy-ion collisions. These include moments of the distribution of the anisotropic flow in a single harmonic and also mixed moments, which contain the information on correlations between event planes of different harmonics. We explain how all these moments can be measured using just two symmetric subevents separated by a rapidity gap. This presents a multi-pronged probe of the physics of flow fluctuations. For instance, it allows to test the hypothesis that event-plane correlations are generated by non-linear hydrodynamic response. We illustrate the method with simulations of events in A MultiPhase Transport (AMPT) model.
Characterizing flow fluctuations with moments
Rajeev S. Bhalerao
2015-03-01
Full Text Available We present a complete set of multiparticle correlation observables for ultrarelativistic heavy-ion collisions. These include moments of the distribution of the anisotropic flow in a single harmonic and also mixed moments, which contain the information on correlations between event planes of different harmonics. We explain how all these moments can be measured using just two symmetric subevents separated by a rapidity gap. This presents a multi-pronged probe of the physics of flow fluctuations. For instance, it allows to test the hypothesis that event-plane correlations are generated by non-linear hydrodynamic response. We illustrate the method with simulations of events in A MultiPhase Transport (AMPT model.
Probing the deviation from maximal mixing of atmospheric neutrinos
Choubey, S; Choubey, Sandhya; Roy, Probir
2006-01-01
Pioneering atmospheric muon neutrino experiments have demonstrated the near-maximal magnitude of the flavor mixing angle $\\theta_{23}$. But the precise value of the deviation $D \\equiv 1/2 - \\sin^2 \\theta_{23}$ from maximality (if nonzero) needs to be known, being of great interest -- especially to builders of neutrino mass and mixing models. We quantitatively investigate in a three generation framework the feasibility of determining $D$ in a statistically significant manner from studies of the atmospheric $\
The magnetic moments of the hidden-charm pentaquark states
Wang, Guang-Juan; Ma, Li; Liu, Xiang; Zhu, Shi-Lin
2016-01-01
The magnetic moment of a baryon state is an equally important dynamical observable as its mass, which encodes crucial information of its underlying structure. According to the different color-flavor structure, we have calculated the magnetic moments of the hidden-charm pentaquark states with $J^P={\\frac{1}{2}}^{\\pm}$, ${\\frac{3}{2}}^{\\pm}$, ${\\frac{5}{2}}^{\\pm}$ and ${\\frac{7}{2}}^{+}$ in the molecular model, the diquark-triquark model and the diquark-diquark-antiquark model respectively. Although a good description for the pentaquark mass spectrum and decay patterns has been obtained in all the three models, different color-flavor structures lead to different magnetic moments, which can be used to pin down their inner structures and distinguish various models.
Electron electric dipole moment in Inverse Seesaw models
Abada, Asmaa
2016-01-01
We consider the contribution of sterile neutrinos to the electric dipole moment of charged leptons in the most minimal realisation of the Inverse Seesaw mechanism, in which the Standard Model is extended by two right-handed neutrinos and two sterile fermion states. Our study shows that the two pairs of (heavy) pseudo-Dirac mass eigenstates can give significant contributions to the electron electric dipole moment, lying close to future experimental sensitivity if their masses are above the electroweak scale. The major contribution comes from two-loop diagrams with pseudo-Dirac neutrino states running in the loops. In our analysis we further discuss the possibility of having a successful leptogenesis in this framework, compatible with a large electron electric dipole moment.
Inflation in maximal gauged supergravities
Kodama, Hideo [Theory Center, KEK,Tsukuba 305-0801 (Japan); Department of Particles and Nuclear Physics,The Graduate University for Advanced Studies,Tsukuba 305-0801 (Japan); Nozawa, Masato [Dipartimento di Fisica, Università di Milano, and INFN, Sezione di Milano,Via Celoria 16, 20133 Milano (Italy)
2015-05-18
We discuss the dynamics of multiple scalar fields and the possibility of realistic inflation in the maximal gauged supergravity. In this paper, we address this problem in the framework of recently discovered 1-parameter deformation of SO(4,4) and SO(5,3) dyonic gaugings, for which the base point of the scalar manifold corresponds to an unstable de Sitter critical point. In the gauge-field frame where the embedding tensor takes the value in the sum of the 36 and 36’ representations of SL(8), we present a scheme that allows us to derive an analytic expression for the scalar potential. With the help of this formalism, we derive the full potential and gauge coupling functions in analytic forms for the SO(3)×SO(3)-invariant subsectors of SO(4,4) and SO(5,3) gaugings, and argue that there exist no new critical points in addition to those discovered so far. For the SO(4,4) gauging, we also study the behavior of 6-dimensional scalar fields in this sector near the Dall’Agata-Inverso de Sitter critical point at which the negative eigenvalue of the scalar mass square with the largest modulus goes to zero as the deformation parameter s approaches a critical value s{sub c}. We find that when the deformation parameter s is taken sufficiently close to the critical value, inflation lasts more than 60 e-folds even if the initial point of the inflaton allows an O(0.1) deviation in Planck units from the Dall’Agata-Inverso critical point. It turns out that the spectral index n{sub s} of the curvature perturbation at the time of the 60 e-folding number is always about 0.96 and within the 1σ range n{sub s}=0.9639±0.0047 obtained by Planck, irrespective of the value of the η parameter at the critical saddle point. The tensor-scalar ratio predicted by this model is around 10{sup −3} and is close to the value in the Starobinsky model.
Method of moments in electromagnetics
Gibson, Walton C
2007-01-01
Responding to the need for a clear, up-to-date introduction to the field, The Method of Moments in Electromagnetics explores surface integral equations in electromagnetics and presents their numerical solution using the method of moments (MOM) technique. It provides the numerical implementation aspects at a nuts-and-bolts level while discussing integral equations and electromagnetic theory at a higher level. The author covers a range of topics in this area, from the initial underpinnings of the MOM to its current applications. He first reviews the frequency-domain electromagnetic theory and t
A. Garmroodi Asil
2017-09-01
To further reduce the sulfur dioxide emission of the entire refining process, two scenarios of acid gas or air preheats are investigated when either of them is used simultaneously with the third enrichment scheme. The maximum overall sulfur recovery efficiency and highest combustion chamber temperature is slightly higher for acid gas preheats but air preheat is more favorable because it is more benign. To the best of our knowledge, optimization of the entire GTU + enrichment section and SRU processes has not been addressed previously.
Algebraic curves of maximal cyclicity
Caubergh, Magdalena; Dumortier, Freddy
2006-01-01
The paper deals with analytic families of planar vector fields, studying methods to detect the cyclicity of a non-isolated closed orbit, i.e. the maximum number of limit cycles that can locally bifurcate from it. It is known that this multi-parameter problem can be reduced to a single-parameter one, in the sense that there exist analytic curves in parameter space along which the maximal cyclicity can be attained. In that case one speaks about a maximal cyclicity curve (mcc) in case only the number is considered and of a maximal multiplicity curve (mmc) in case the multiplicity is also taken into account. In view of obtaining efficient algorithms for detecting the cyclicity, we investigate whether such mcc or mmc can be algebraic or even linear depending on certain general properties of the families or of their associated Bautin ideal. In any case by well chosen examples we show that prudence is appropriate.
Correlation between Quadriceps Endurance and Adduction Moment in Medial Knee Osteoarthritis.
Soon-Hyuck Lee
Full Text Available It is not clear whether the strength or endurance of thigh muscles (quadriceps and hamstring is positively or negatively correlated with the adduction moment of osteoarthritic knees. This study therefore assessed the relationships between the strength and endurance of the quadriceps and hamstring muscles and adduction moment in osteoarthritic knees and evaluated predictors of the adduction moment. The study cohort comprised 35 patients with unilateral medial osteoarthritis and varus deformity who were candidates for open wedge osteotomy. The maximal torque (60°/sec and total work (180°/sec of the quadriceps and hamstring muscles and knee adduction moment were evaluated using an isokinetic testing device and gait analysis system. The total work of the quadriceps (r = 0.429, P = 0.037 and hamstring (r = 0.426, P = 0.045 muscles at 180°/sec each correlated with knee adduction moment. Preoperative varus deformity was positively correlated with adduction moment (r = 0.421, P = 0.041. Multiple linear regression analysis showed that quadriceps endurance at 180°/sec was the only factor independently associated with adduction moment (β = 0.790, P = 0.032. The adduction moment of osteoarthritic knees correlated with the endurance, but not the strength, of the quadriceps muscle. However, knee adduction moment did not correlate with the strength or endurance of the hamstring muscle.
Searching for electric dipole moments
Jungmann, Klaus
2013-01-01
Searches for a permanent Electric Dipole Moment (EDM) of a fundamental particle provide a wide window for the discovery of potential New Physics. Within todays Standard Model in particle physics the well established violation of CP symmetry gives rise to EDMs which are several orders of magnitude be
Moment of Inertia by Differentiation
Rizcallah, Joseph A.
2015-01-01
The calculation of the moment of inertia of an extended body, as presented in standard introductory-level textbooks, involves the evaluation of a definite integral--an operation often not fully mastered by beginners, let alone the conceptual difficulties it presents, even to the advanced student, in understanding and setting up the integral in the…
Particle electric dipole-moments
Pendlebury, J.M. [Sussex Univ., Brighton (United Kingdom)
1997-04-01
The incentive to detect particle electric dipole-moments, as a window on time-reversal violation, remains undiminished. Efforts to improve the measurements for the neutron, the electron and some nuclei are still making rapid progress as more powerful experimental methods are brought to bear. A new measurement for the neutron at ILL is presented. (author). 7 refs.
Anomalous magnetic moment of anyons
Gat, G; Gat, Gil; Ray, Rashmi
1994-01-01
The anomalous magnetic moment of anyons is calculated to leading order in a 1/N expansion. It is shown that the gyromagnetic ratio g remains 2 to the leading order in 1/N. This result strongly supports that obtained in \\cite{poly}, namely that g=2 is in fact exact.
Quiet Moment around the Campfire
2014-06-18
Byron Breedlove reads his essay, "Quiet Moment around the Campfire," about the art of Frederic Remington and the transmission of pathogens as frontiers expand. Created: 6/18/2014 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID). Date Released: 6/19/2014.
Moment Distributions of Phase Type
Bladt, Mogens; Nielsen, Bo Friis
2011-01-01
Moment distributions of phase-type and matrix-exponential distributions are shown to remain within their respective classes. We provide a probabilistic phase-type representation for the former case and an alternative representation, with an analytically appealing form, for the latter. First order...
Unteachable Moments and Pedagogical Relationships
Wang, Hongyu
2016-01-01
This paper discusses how Julia Kristeva's theory can inform our understanding of unteachable moments. It proposes a pedagogical relationship that can contain breakdowns of meanings and work toward breakthroughs to new awareness, particularly related to social justice pedagogy in teacher education. First, one example from the author's own teaching…
On Maximal Weight Moment and Overturn Tendency of Multi-Sucker Wall-Climbing Mechanism
1999-01-01
１ＩｎｔｒｏｄｕｃｔｉｏｎＴｈｅｓａｆｅｔｙｏｆｗａｌｃｌｉｍｂｉｎｇｒｏｂｏｔｉｓｏｆｇｒｅａｔｉｍｐｏｒｔａｎｃｅｉｎｒｏｂｏｔｄｅｓｉｇｎａｎｄｇａｉｔｐｒｏｇｒａｍｍｉｎｇ．Ｓａｆｅｔｙｒｅｑｕｉｒｅｍｅｎｔｓｉｎｃｌｕｄｅｂｏｔｈａｎ...
BOUNDEDNESS OF MAXIMAL SINGULAR INTEGRALS
CHEN JIECHENG; ZHU XIANGRONG
2005-01-01
The authors study the singular integrals under the Hormander condition and the measure not satisfying the doubling condition. At first, if the corresponding singular integral is bounded from L2 to itseff, it is proved that the maximal singu lar integral is bounded from L∞ to RBMO except that it is infinite μ-a.e. on Rd. A sufficient condition and a necessary condition such that the maximal singular integral is bounded from L2 to itself are also obtained. There is a small gap between the two conditions.
Test Operations Procedure 01- 2- 520 Moments of Inertia
2017-08-03
dynamics and mobility computer models, where MOI data for a vehicle’s total, sprung, and unsprung masses are often required. Moments of inertia are...information on a vehicle’s mass distribution. The properties impact vehicle design and safety and are primary inputs to vehicle dynamics and mobility ...Iyy (pitch) measurements, it is recommended that two vehicle displacement sensors be used to dynamically measure longitudinal movement of the vehicle
Magnetic Moment Fields in Dense Relativistic Plasma Interacting with Laser Radiations
B.Ghosh1* , S.N.Paul 1 , S.Bannerjee2 and C.Das3
2013-04-01
Full Text Available Theory of the generation of magnetic moment field from resonant interaction of three high frequency electromagnetic waves in un-magnetized dense electron plasma is developed including the relativistic change of electron mass. It is shown that the inclusion of relativistic effect enhances the magnetic moment field. For high intensity laser beams this moment field may be of the order of a few mega gauss. Such a high magnetic field can considerably affect the transport of electrons in fusion plasma
From entropy-maximization to equality-maximization: Gauss, Laplace, Pareto, and Subbotin
Eliazar, Iddo
2014-12-01
The entropy-maximization paradigm of statistical physics is well known to generate the omnipresent Gauss law. In this paper we establish an analogous socioeconomic model which maximizes social equality, rather than physical disorder, in the context of the distributions of income and wealth in human societies. We show that-on a logarithmic scale-the Laplace law is the socioeconomic equality-maximizing counterpart of the physical entropy-maximizing Gauss law, and that this law manifests an optimized balance between two opposing forces: (i) the rich and powerful, striving to amass ever more wealth, and thus to increase social inequality; and (ii) the masses, struggling to form more egalitarian societies, and thus to increase social equality. Our results lead from log-Gauss statistics to log-Laplace statistics, yield Paretian power-law tails of income and wealth distributions, and show how the emergence of a middle-class depends on the underlying levels of socioeconomic inequality and variability. Also, in the context of asset-prices with Laplace-distributed returns, our results imply that financial markets generate an optimized balance between risk and predictability.
AN ENDPOINT ESTIMATE FOR MAXIMAL MULTILINEAR SINGULAR INTEGRAL OPERATORS
无
2007-01-01
A weak type endpoint estimate for the maximal multilinear singular integral operator T*Af(x)=supε＞0|(f)(x-y)＞ε (Ω(x-y)/(|x-y|(n+1)))(A(x)-A(y)-▽A(y)(x-y))f(y)dy| is established, where Ω is homogeneous of degree zero, integrable on the unit sphere and has vanishing moment of order one, and A has derivatives of order one in BMO(Rn). A regularity condition on Ω which implies an LlogL type estimate of T*A is given.
Understanding maximal repetitions in strings
Crochemore, Maxime
2008-01-01
The cornerstone of any algorithm computing all repetitions in a string of length n in O(n) time is the fact that the number of runs (or maximal repetitions) is O(n). We give a simple proof of this result. As a consequence of our approach, the stronger result concerning the linearity of the sum of exponents of all runs follows easily.
Bulk Flow and Shear Moments of the SFI++ Survey
Feldman, Hume A
2008-01-01
We find the nine bulk--flow and shear moments from the SFI++ survey, as well as for subsamples of group and field galaxies. We constrain the velocity power spectrum shape parameter $\\Gamma$ in linear theory using these moments. A likelihood function for $\\Gamma$ was found after marginalizing over the power spectrum amplitude $\\sigma_8\\Omega_m^{0.6}$ using constraints obtained from comparisons between redshift surveys and peculiar velocity data. We have estimated the velocity noise $\\sigma_*$ from the data to maximize the accuracy. We also performed a statistical analysis of the difference between the field and group catalogues and found that the results from each reflect the same underlying large scale flows. We found that we can constrain the power spectrum shape parameter to be $\\Gamma=0.15^{+0.18}_{-0.08}$ for the groups catalogue and $\\Gamma=0.09^{+0.04}_{-0.04}$ for the field galaxy catalogue in fair agreement with the value from WMAP.
Measurement of electric dipole moments at storage rings
Jörg Pretz JEDI Collaboration
2015-11-01
The electric dipole moment (EDM) is a fundamental property of a particle, like mass, charge and magnetic moment. What makes this property in particular interesting is the fact that a fundamental particle can only acquire an EDM via {P} and {T} violating processes. EDM measurements contribute to the understanding of the matter over anti-matter dominance in the universe, a question closely related to the violation of fundamental symmetries. Up to now measurements of EDMs have concentrated on neutral particles. Charged particle EDMs can be measured at storage ring. Plans at Forschungszentrum Jülich and results of first test measurements at the COoler SYnchrotron COSY will be presented.
On calculations of dipole moments of HCl+ and DCl+ molecular ions
Gurin, V S
2015-01-01
Dipole moment functions of isotopomeric molecular ions, HCl+ and DCl+, are considered in the two coordinate systems, center of mass of nuclei and center of nuclear charges, both through simple analytical derivations and ab initio calculations of electronic structure at various interatomic separations. An origin of the different values for dipole moments of the isotopomers is discussed and demonstrated by the calculation data.
2006-01-01
One of the first events reconstructed in the Muon Drift Tubes, the Hadron Calorimeter and elements of the Silicon Tracker (TK) at 3 Tesla. The atmosphere in the CMS control rooms was electric. Everbody was at the helm for the first full-scale testing of the experiment. This was a crunch moment for the entire collaboration. On Tuesday, 22 August the magnet attained almost its nominal power of 4 Tesla! At the same moment, in a tiny improvised control room, the physicists were keyed up to test the entire detector system for the first time. The first cosmic ray tracks appeared on their screens in the week of 15 August. The tests are set to continue for several weeks more until the first CMS components are lowered into their final positions in the cavern.
Electric dipole moments: A global analysis
Chupp, Timothy; Ramsey-Musolf, Michael
2015-03-01
We perform a global analysis of searches for the permanent electric dipole moments (EDMs) of the neutron, neutral atoms, and molecules in terms of six leptonic, semileptonic, and nonleptonic interactions involving photons, electrons, pions, and nucleons. By translating the results into fundamental charge-conjugation-parity symmetry (CP) violating effective interactions through dimension six involving standard model particles, we obtain rough lower bounds on the scale of beyond the standard model CP-violating interactions ranging from 1.5 TeV for the electron EDM to 1300 TeV for the nuclear spin-independent electron-quark interaction. We show that planned future measurements involving systems or combinations of systems with complementary sensitivities to the low-energy parameters may extend the mass reach by an order of magnitude or more.
Electric dipole moments in natural supersymmetry
Nakai, Yuichiro; Reece, Matthew
2017-08-01
We discuss electric dipole moments (EDMs) in the framework of CP-violating natural supersymmetry (SUSY). Recent experimental results have significantly tightened constraints on the EDMs of electrons and of mercury, and substantial further progress is expected in the near future. We assess how these results constrain the parameter space of natural SUSY. In addition to our discussion of SUSY, we provide a set of general formulas for two-loop fermion EDMs, which can be applied to a wide range of models of new physics. In the SUSY context, the two-loop effects of stops and charginos respectively constrain the phases of A t μ and M 2 μ to be small in the natural part of parameter space. If the Higgs mass is lifted to 125 GeV by a new tree-level superpotential interaction and soft term with CP-violating phases, significant EDMs can arise from the two-loop effects of W bosons and tops. We compare the bounds arising from EDMs to those from other probes of new physics including colliders, b → sγ, and dark matter searches. Importantly, improvements in reach not only constrain higher masses, but require the phases to be significantly smaller in the natural parameter space at low mass. The required smallness of phases sharpens the CP problem of natural SUSY model building.
Note on maximal distance separable codes
YANG Jian-sheng; WANG De-xiu; JIN Qing-fang
2009-01-01
In this paper, the maximal length of maximal distance separable(MDS)codes is studied, and a new upper bound formula of the maximal length of MDS codes is obtained. Especially, the exact values of the maximal length of MDS codes in some parameters are given.
Solving the Coagulation Equation by the Moments Method
Estrada, Paul R
2008-01-01
We demonstrate an approach to solving the coagulation equation that involves using a finite number of moments of the particle size distribution. This approach is particularly useful when only general properties of the distribution, and their time evolution, are needed. The numerical solution to the integro-differential Smoluchowski coagulation equation at every time step, for every particle size, and at every spatial location is computationally expensive, and serves as the primary bottleneck in running evolutionary models over long periods of time. The advantage of using the moments method comes in the computational time savings gained from only tracking the time rate of change of the moments, as opposed to tracking the entire mass histogram which can contain hundreds or thousands of bins depending on the desired accuracy. The collision kernels of the coagulation equation contain all the necessary information about particle relative velocities, cross-sections, and sticking coefficients. We show how arbitrary ...
Score-moment combined linear discrimination analysis (SMC-LDA) as an improved discrimination method.
Han, Jintae; Chung, Hoeil; Han, Sung-Hwan; Yoon, Moon-Young
2007-01-01
A new discrimination method called the score-moment combined linear discrimination analysis (SMC-LDA) has been developed and its performance has been evaluated using three practical spectroscopic datasets. The key concept of SMC-LDA was to use not only the score from principal component analysis (PCA), but also the moment of the spectrum, as inputs for LDA to improve discrimination. Along with conventional score, moment is used in spectroscopic fields as an effective alternative for spectral feature representation. Three different approaches were considered. Initially, the score generated from PCA was projected onto a two-dimensional feature space by maximizing Fisher's criterion function (conventional PCA-LDA). Next, the same procedure was performed using only moment. Finally, both score and moment were utilized simultaneously for LDA. To evaluate discrimination performances, three different spectroscopic datasets were employed: (1) infrared (IR) spectra of normal and malignant stomach tissue, (2) near-infrared (NIR) spectra of diesel and light gas oil (LGO) and (3) Raman spectra of Chinese and Korean ginseng. For each case, the best discrimination results were achieved when both score and moment were used for LDA (SMC-LDA). Since the spectral representation character of moment was different from that of score, inclusion of both score and moment for LDA provided more diversified and descriptive information.
Maximization, learning, and economic behavior.
Erev, Ido; Roth, Alvin E
2014-07-22
The rationality assumption that underlies mainstream economic theory has proved to be a useful approximation, despite the fact that systematic violations to its predictions can be found. That is, the assumption of rational behavior is useful in understanding the ways in which many successful economic institutions function, although it is also true that actual human behavior falls systematically short of perfect rationality. We consider a possible explanation of this apparent inconsistency, suggesting that mechanisms that rest on the rationality assumption are likely to be successful when they create an environment in which the behavior they try to facilitate leads to the best payoff for all agents on average, and most of the time. Review of basic learning research suggests that, under these conditions, people quickly learn to maximize expected return. This review also shows that there are many situations in which experience does not increase maximization. In many cases, experience leads people to underweight rare events. In addition, the current paper suggests that it is convenient to distinguish between two behavioral approaches to improve economic analyses. The first, and more conventional approach among behavioral economists and psychologists interested in judgment and decision making, highlights violations of the rational model and proposes descriptive models that capture these violations. The second approach studies human learning to clarify the conditions under which people quickly learn to maximize expected return. The current review highlights one set of conditions of this type and shows how the understanding of these conditions can facilitate market design.
Nuclear Quadrupole Moments and Nuclear Shell Structure
Townes, C. H.; Foley, H. M.; Low, W.
1950-06-23
Describes a simple model, based on nuclear shell considerations, which leads to the proper behavior of known nuclear quadrupole moments, although predictions of the magnitudes of some quadrupole moments are seriously in error.
First on-line $\\beta$-NMR on oriented nuclei magnetic dipole moments of the $\
Giles, T; Stone, N J; Van Esbroeck, K; White, G; Wöhr, A; Veskovic, M; Towner, I S; Mantica, P F; Prisciandaro, J I; Morrissey, D J; Fedosseev, V; Mishin, V I; Köster, U; Walters, W B
2000-01-01
The first fully on-line use of the angular distribution of $\\beta$ - emission in detection of NMR of nuclei oriented at low temperatures is reported. The magnetic moments of the single valence particle, intermediate mass, isotopes $^{67}$Ni($\
Defining moments in leadership character development.
Bleich, Michael R
2015-06-01
Critical moments in life define one's character and clarify true values. Reflective leadership is espoused as an important practice for transformational leaders. Professional development educators can help surface and explore defining moments, strengthen leadership behavior with defining moments as a catalyst for change, and create safe spaces for leaders to expand their leadership capacity.
On the interpretation of the support moment
Hof, AL
2000-01-01
It has been suggested by Winter (J. Biomech. 13 (1980) 923-927) that the 'support moment', the sum of the sagittal extension moments, shows less variability in walking than any of the joint moments separately. A simple model is put forward to explain this finding. It is proposed to reformulate the d
Maximal mixing as a `sum' of small mixings
Chakrabortty, Joydeep; Mehta, Poonam; Vempati, Sudhir K
2009-01-01
In models with two sources of neutrino masses, we look at the possibility of generating maximal/large mixing angles in the total mass matrix, where both the sources have only small mixing angles. We show that in the two generation case, maximal mixing can naturally arise only when the total neutrino mass matrix has a quasi-degenerate pattern. The best way to demonstrate this is by decomposing the quasi-degenerate spectrum in to hierarchial and inverse-hierarchial mass matrices, both with small mixing. Such a decomposition of the quasi-degenerate spectra is in fact very general and can be done irrespective of the mixing present in the mass matrices. With three generations, and two sources, we show that only one or all the three small mixing angles in the total neutrino mass matrix can be converted to maximal/large mixing angles. The decomposition of the degenerate pattern in this case is best realised in to sub-matrices whose dominant eigenvalues have an alternating pattern. On the other hand, it is possible t...
Fermion Dipole Moment and Holography
Kulaxizi, Manuela
2015-01-01
In the background of a charged AdS black hole, we consider a Dirac particle endowed with an arbitrary magnetic dipole moment. For non-zero charge and dipole coupling of the bulk fermion, we find that the dual boundary theory can be plagued with superluminal modes. Requiring consistency of the dual CFT amounts to constraining the strength of the dipole coupling by an upper bound. We briefly discuss the implications of our results for the physics of holographic non-Fermi liquids.
Moment-specific compliance with hand hygiene.
Lau, Tiffany; Tang, Grace; Mak, Ka-lun; Leung, Gilberto
2014-06-01
Hand hygiene is an important component of patient-safety education. The World Health Organization recommends the use of hand hygiene measures at five clinical moments. While previous studies have treated hand hygiene as a single entity, we investigated whether and how the compliance of students may vary across the five clinical moments. We also studied their reasons for non-compliance with a view to inform teaching. A voluntary self-administered questionnaire survey was conducted on a convenient sample of 339 medical and nursing students. The five clinical moments studied were: before touching a patient (moment 1); before a clean/aseptic procedure (moment 2); after body fluid exposure risk (moment 3); after touching a patient (moment 4); and after touching the patient's surroundings (moment 5). The overall reported compliance rate was 83.0 per cent. The compliance rates were significantly lower at moments 1 and 5. Nursing students reported better overall compliance (p = 0.01), and at moments 2 (p = 0.0001) and 3 (p = 0.0001), than medical students. Medical students fared better at moment 4 (p = 0.009). The most common reason reported for non-compliance was 'forgetfulness'. We identified differences in compliance rates across the five clinical moments of hand hygiene. Education programmes should not treat the hand hygiene process as a single entity, but should adopt a moment-specific approach to promote recall, with particular emphases on moments 1 and 5. Nursing and medical students may require different education strategies. Future studies on hand hygiene may also adopt a moment-specific approach. © 2014 John Wiley & Sons Ltd.
Asymptotics of robust utility maximization
Knispel, Thomas
2012-01-01
For a stochastic factor model we maximize the long-term growth rate of robust expected power utility with parameter $\\lambda\\in(0,1)$. Using duality methods the problem is reformulated as an infinite time horizon, risk-sensitive control problem. Our results characterize the optimal growth rate, an optimal long-term trading strategy and an asymptotic worst-case model in terms of an ergodic Bellman equation. With these results we propose a duality approach to a "robust large deviations" criterion for optimal long-term investment.
Multivariate residues and maximal unitarity
Søgaard, Mads; Zhang, Yang
2013-12-01
We extend the maximal unitarity method to amplitude contributions whose cuts define multidimensional algebraic varieties. The technique is valid to all orders and is explicitly demonstrated at three loops in gauge theories with any number of fermions and scalars in the adjoint representation. Deca-cuts realized by replacement of real slice integration contours by higher-dimensional tori encircling the global poles are used to factorize the planar triple box onto a product of trees. We apply computational algebraic geometry and multivariate complex analysis to derive unique projectors for all master integral coefficients and obtain compact analytic formulae in terms of tree-level data.
Beeping a Maximal Independent Set
Afek, Yehuda; Alon, Noga; Bar-Joseph, Ziv; Cornejo, Alejandro; Haeupler, Bernhard; Kuhn, Fabian
2012-01-01
We consider the problem of computing a maximal independent set (MIS) in an extremely harsh broadcast model that relies only on carrier sensing. The model consists of an anonymous broadcast network in which nodes have no knowledge about the topology of the network or even an upper bound on its size. Furthermore, it is assumed that an adversary chooses at which time slot each node wakes up. At each time slot a node can either beep, that is, emit a signal, or be silent. At a particular time slot...
Maximal Congruences on Some Semigroups
Jintana Sanwong; R.P. Sullivan
2007-01-01
In 1976 Howie proved that a finite congruence-free semigroup is a simple group if it has at least three elements but no zero elementInfinite congruence-free semigroups are far more complicated to describe, but some have been constructed using semigroups of transformations (for example, by Howie in 1981 and by Marques in 1983)Here, forcertain semigroups S of numbers and of transformations, we determine all congruences p on S such that S/p is congruence-free, that is, we describe all maximal congruences on such semigroups S.
Miniature, Variable-Speed Control Moment Gyroscope
Bilski, Steve; Kline-Schoder, Robert; Sorensen, Paul
2011-01-01
The Miniature Variable-Speed Control Moment Gyroscope (MVS-CMG) was designed for small satellites (mass from less than 1 kg up to 500 kg). Currently available CMGs are too large and heavy, and available miniature CMGs do not provide sufficient control authority for use on practical satellites. This primarily results from the need to greatly increase the speed of rotation of the flywheel in order to reduce the flywheel size and mass. This goal was achieved by making use of a proprietary, space-qualified, high-speed (100,000 rpm) motor technology to spin the flywheel at a speed ten times faster than other known miniature CMGs under development. NASA is supporting innovations in propulsion, power, and guidance and navigation systems for low-cost small spacecraft. One of the key enabling technologies is attitude control mechanisms. CMGs are particularly attractive for spacecraft attitude control since they can achieve higher torques with lower mass and power than reaction wheels, and they provide continuous torque capability that enables precision pointing (in contrast to on-off thruster control). The aim of this work was to develop a miniature, variable-speed CMG that is sized for use on small satellites. To achieve improved agility, these spacecraft must be able to slew at high rate, which requires attitude control actuators that can apply torques on the order of 5 N-m. The MVS-CMG is specifically designed to achieve a high-torque output with a minimum flywheel and system mass. The flywheel can be run over a wide range of speeds, which is important to help reduce/eliminate potential gimbal lock, and can be used to optimize the operational envelope of the CMG.
Nucleon tensor charges and electric dipole moments
Pitschmann, Mario; Seng, Chien-Yeah; Roberts, Craig D.; Schmidt, Sebastian M.
2015-04-01
A symmetry-preserving Dyson-Schwinger equation treatment of a vector-vector contact interaction is used to compute dressed-quark-core contributions to the nucleon σ -term and tensor charges. The latter enable one to directly determine the effect of dressed-quark electric dipole moments (EDMs) on neutron and proton EDMs. The presence of strong scalar and axial-vector diquark correlations within ground-state baryons is a prediction of this approach. These correlations are active participants in all scattering events and thereby modify the contribution of the singly represented valence quark relative to that of the doubly represented quark. Regarding the proton σ -term and that part of the proton mass which owes to explicit chiral symmetry breaking, with a realistic d -u mass splitting, the singly represented d quark contributes 37% more than the doubly represented u quark; and in connection with the proton's tensor charges, δTu , δTd , the ratio δTd /δTu is 18% larger than anticipated from simple quark models. Of particular note, the size of δTu is a sensitive measure of the strength of dynamical chiral symmetry breaking; and δTd measures the amount of axial-vector diquark correlation within the proton, vanishing if such correlations are absent.
Knowledge discovery by accuracy maximization.
Cacciatore, Stefano; Luchinat, Claudio; Tenori, Leonardo
2014-04-01
Here we describe KODAMA (knowledge discovery by accuracy maximization), an unsupervised and semisupervised learning algorithm that performs feature extraction from noisy and high-dimensional data. Unlike other data mining methods, the peculiarity of KODAMA is that it is driven by an integrated procedure of cross-validation of the results. The discovery of a local manifold's topology is led by a classifier through a Monte Carlo procedure of maximization of cross-validated predictive accuracy. Briefly, our approach differs from previous methods in that it has an integrated procedure of validation of the results. In this way, the method ensures the highest robustness of the obtained solution. This robustness is demonstrated on experimental datasets of gene expression and metabolomics, where KODAMA compares favorably with other existing feature extraction methods. KODAMA is then applied to an astronomical dataset, revealing unexpected features. Interesting and not easily predictable features are also found in the analysis of the State of the Union speeches by American presidents: KODAMA reveals an abrupt linguistic transition sharply separating all post-Reagan from all pre-Reagan speeches. The transition occurs during Reagan's presidency and not from its beginning.
Inapproximability of maximal strip recovery
Jiang, Minghui
2009-01-01
In comparative genomic, the first step of sequence analysis is usually to decompose two or more genomes into syntenic blocks that are segments of homologous chromosomes. For the reliable recovery of syntenic blocks, noise and ambiguities in the genomic maps need to be removed first. Maximal Strip Recovery (MSR) is an optimization problem proposed by Zheng, Zhu, and Sankoff for reliably recovering syntenic blocks from genomic maps in the midst of noise and ambiguities. Given $d$ genomic maps as sequences of gene markers, the objective of \\msr{d} is to find $d$ subsequences, one subsequence of each genomic map, such that the total length of syntenic blocks in these subsequences is maximized. For any constant $d \\ge 2$, a polynomial-time 2d-approximation for \\msr{d} was previously known. In this paper, we show that for any $d \\ge 2$, \\msr{d} is APX-hard, even for the most basic version of the problem in which all gene markers are distinct and appear in positive orientation in each genomic map. Moreover, we provi...
Maximal right smooth extension chains
Huang, Yun Bao
2010-01-01
If $w=u\\alpha$ for $\\alpha\\in \\Sigma=\\{1,2\\}$ and $u\\in \\Sigma^*$, then $w$ is said to be a \\textit{simple right extension}of $u$ and denoted by $u\\prec w$. Let $k$ be a positive integer and $P^k(\\epsilon)$ denote the set of all $C^\\infty$-words of height $k$. Set $u_{1},\\,u_{2},..., u_{m}\\in P^{k}(\\epsilon)$, if $u_{1}\\prec u_{2}\\prec ...\\prec u_{m}$ and there is no element $v$ of $P^{k}(\\epsilon)$ such that $v\\prec u_{1}\\text{or} u_{m}\\prec v$, then $u_{1}\\prec u_{2}\\prec...\\prec u_{m}$ is said to be a \\textit{maximal right smooth extension (MRSE) chains}of height $k$. In this paper, we show that \\textit{MRSE} chains of height $k$ constitutes a partition of smooth words of height $k$ and give the formula of the number of \\textit{MRSE} chains of height $k$ for each positive integer $k$. Moreover, since there exist the minimal height $h_1$ and maximal height $h_2$ of smooth words of length $n$ for each positive integer $n$, we find that \\textit{MRSE} chains of heights $h_1-1$ and $h_2+1$ are good candidates t...
Moment-to-moment dynamics of ADHD behaviour
Aase Heidi
2005-08-01
learning long behavioural sequences may ultimately lead to deficient development of verbally governed behaviour and self control. The study represents a new approach to analyzing the moment-to-moment dynamics of behaviour, and provides support for the theory that reinforcement processes are altered in ADHD.
Cross sections, multiplicity and moment distributions at the LHC
Beggio, P C
2013-01-01
The unitarity of the $S$-matrix requires that the absorptive part of the elastic scattering amplitude receives contributions from both the inelastic and the elastic channels. We explore this unitarity condition in order to describe, in a connected way, hadron-hadron observables like the total and elastic differential cross sections, the ratio of the real to imaginary part of the forward scattering amplitude and the inclusive multiplicity distributions in full phase space, over a large range of energies. We introduce non-perturbative QCD effects in the forward scattering amplitude by using the infrared QCD effective charge dependent on the dynamical gluon mass. In our analysis we pay special attention to the theoretical uncertainties in the predictions due to this mass scale variation. We also present quantitative predictions for the $H_{q}$ moments at high energies. Our results reproduce the moment oscillations observed in experimental data, and are consistent with the behavior predicted by QCD.
Cross sections, multiplicity and moment distributions at the LHC
Beggio, P.C. [Laboratório de Ciências Matemáticas, Universidade Estadual do Norte Fluminense Darcy Ribeiro, 28013-602, Campos dos Goytacazes, RJ (Brazil); Instituto de Física, Universidade Federal do Rio Grande do Sul, CP 15051, 91501-970, Porto Alegre, RS (Brazil); Luna, E.G.S. [Instituto de Física, Universidade Federal do Rio Grande do Sul, CP 15051, 91501-970, Porto Alegre, RS (Brazil)
2014-09-15
The unitarity of the S-matrix requires that the absorptive part of the elastic scattering amplitude receives contributions from both the inelastic and the elastic channels. We explore this unitarity condition in order to describe, in a connected way, hadron–hadron observables like the total and elastic differential cross sections, the ratio of the real to imaginary part of the forward scattering amplitude and the inclusive multiplicity distributions in full phase space, over a large range of energies. We introduce non-perturbative QCD effects in the forward scattering amplitude by using the infrared QCD effective charge dependent on the dynamical gluon mass. In our analysis we pay special attention to the theoretical uncertainties in the predictions due to this mass scale variation. We also present quantitative predictions for the H{sub q} moments at high energies. Our results reproduce the moment oscillations observed in experimental data, and are consistent with the behavior predicted by QCD.
Arampatzis, Adamantios; Morey-Klapsing, Gaspar; Karamanidis, Kiros; DeMonte, Gianpiero; Stafilidis, Savvas; Brüggemann, Gert-Peter
2005-04-01
The purpose of this study was to examine two hypotheses: (a) during voluntary and electrically induced isometric contractions the moments measured at the dynamometer are different from the resultant moments in the same plane around the ankle joint and (b) at a given resultant moment during electrically induced isometric contractions the ankle angle while loading is different from the ankle angle while unloading. Twenty-seven long distance runners participated in the study. All subjects performed isometric maximal voluntary contractions (MVC) and contractions induced by electrostimulation at four different ankle-knee angle combinations on a Biodex-dynamometer. The kinematics of the leg were recorded using the vicon 624 system with eight cameras operating at 120 Hz. The main findings were: (a) the resultant moment at the ankle joint and the moment measured by the Biodex-dynamometer during isometric contractions are different, (b) during a plantar flexion effort the ankle angle changes significantly, whereas the knee angle shows only small and in most cases not significant changes, and (c) at identical resultant ankle joint moments the ankle angles are different between the loading and the unloading phases. The observed differences may lead to erroneous conclusions concerning the following: (a) diagnostic of muscle architecture, (b) estimation of the moment-ankle angle relationship and (c) estimation of the strain and hysteresis of tendons and aponeuroses.
New insights into the neutron electric dipole moment
Ottnad, K; Meißner, U -G; Guo, F -K
2009-01-01
We analyze the CP-violating electric dipole form factor of the nucleon in the framework of covariant baryon chiral perturbation theory. We give a new upper bound on the vacuum angle, |\\theta_0| \\lesssim 2.5 \\cdot 10^{-10}. The quark mass dependence of the electric dipole moment is discussed and compared to lattice QCD data. We also perform the matching between its representations in the three- and two-flavor theories.
Williams, S B; Wilson, A M; Daynes, J; Peckham, K; Payne, R C
2008-10-01
We provide quantitative muscle-tendon architecture and geometry data for the racing greyhound thoracic limb. Muscle mass, belly length, fascicle lengths, pennation angles and moment arms were measured, as were tendon masses and lengths. Maximum isometric force and maximum power were estimated for muscles, and maximum stress and strain were estimated for tendons. Results are compared with other fast quadrupedal runners, and to previously published data in mixed-breed dogs. The implications of the functional adaptations of the greyhound thoracic limb for sprinting performance are discussed. The thoracic limb was found to benefit from a similar proportion of locomotor muscle mass to the pelvic limb, suggesting that it may be used to some extent in propulsion, or alternatively that stabilisation is very important in this animal. Extrinsic muscles, especially latissimus dorsi and pectoralis profundus, were predicted to be powerful and important for generating net positive work during accelerations. Proximal biarticular muscles show specialisation toward preventing collapse of the shoulder and elbow joints to enable strut-like limb function, or some form of dynamic control. Distal muscles did not appear specialised for elastic energy storage, a functional difference to pelvic limb muscles, and the equivalents in horse thoracic limbs. The greyhound thoracic limb appears to possess substantial differences from both that of more 'sub-maximal specialist' quadrupeds, and from the greyhound pelvic limb.
Harmonic moment dynamics in Laplacian growth.
Leshchiner, Alexander; Thrasher, Matthew; Mineev-Weinstein, Mark B; Swinney, Harry L
2010-01-01
Harmonic moments are integrals of integer powers of z=x+iy over a domain. Here, the domain is an exterior of a bubble of air growing in an oil layer between two horizontal closely spaced plates. Harmonic moments are a natural basis for such Laplacian growth phenomena because, unlike other representations, these moments linearize the zero surface tension problem [S. Richardson, J. Fluid Mech. 56, 609 (1972)], so that all moments except the lowest one (the area of the bubble) are conserved in time. In our experiments, we directly determine the harmonic moments and show that for nonzero surface tension, all moments (except the lowest one) decay in time rather than exhibiting the divergences of other representations. Further, we derive an expression that relates the derivative of the k(th) harmonic moment M(k) to measurable quantities (surface tension, viscosity, the distance between the plates, and a line integral over the contour encompassing the growing bubble). The laboratory observations are in good accord with the expression we derive for dM(k)/dt , which is proportional to the surface tension; thus in the zero surface tension limit, the moments (above k=0) are all conserved, in accord with Richardson's theory. In addition, from the measurements of the time evolution of the harmonic moments we obtain a value for the surface tension that is within 20% of the accepted value. In conclusion, our analysis and laboratory observations demonstrate that an interface dynamics description in terms of harmonic moments is physically realizable and robust.
Magnetic Moments of Excited Baryons
Metag Volker
2017-01-01
Full Text Available In project A.3, the reaction γ p → π0γ’p has been studied using the TAPS photon spectrometer in the energy range √s= 1221-1331 MeV. Energy tagged photon beams have been produced with the Glasgow tagging spectrometer from electron beams provided by the MAMI-B accelerator. Angle and energy differential cross sections have been measured and compared to theoretical calculations. This comparison allows the magnetic moment of the Δ+ isobar to be extracted for the first time to μΔ+ = [2.7+1.3−1.0(stat±1.5(syst±3(theo] μN. In an extension of the A3 project to the meson sector, the time-like transition form factor of the η meson has been measured with the Crystal Ball/TAPS detector system at MAMI-C.
The maximal D = 4 supergravities
Wit, Bernard de [Institute for Theoretical Physics and Spinoza Institute, Utrecht University, Postbus 80.195, NL-3508 TD Utrecht (Netherlands); Samtleben, Henning [Laboratoire de Physique, ENS Lyon, 46 allee d' Italie, F-69364 Lyon CEDEX 07 (France); Trigiante, Mario [Dept. of Physics, Politecnico di Torino, Corso Duca degli Abruzzi 24, I-10129 Turin (Italy)
2007-06-15
All maximal supergravities in four space-time dimensions are presented. The ungauged Lagrangians can be encoded in an E{sub 7(7)}-Sp(56; R)/GL(28) matrix associated with the freedom of performing electric/magnetic duality transformations. The gauging is defined in terms of an embedding tensor {theta} which encodes the subgroup of E{sub 7(7)} that is realized as a local invariance. This embedding tensor may imply the presence of magnetic charges which require corresponding dual gauge fields. The latter can be incorporated by using a recently proposed formulation that involves tensor gauge fields in the adjoint representation of E{sub 7(7)}. In this formulation the results take a universal form irrespective of the electric/magnetic duality basis. We present the general class of supersymmetric and gauge invariant Lagrangians and discuss a number of applications.
Maximizing profit using recommender systems
Das, Aparna; Ricketts, Daniel
2009-01-01
Traditional recommendation systems make recommendations based solely on the customer's past purchases, product ratings and demographic data without considering the profitability the items being recommended. In this work we study the question of how a vendor can directly incorporate the profitability of items into its recommender so as to maximize its expected profit while still providing accurate recommendations. Our approach uses the output of any traditional recommender system and adjust them according to item profitabilities. Our approach is parameterized so the vendor can control how much the recommendation incorporating profits can deviate from the traditional recommendation. We study our approach under two settings and show that it achieves approximately 22% more profit than traditional recommendations.
The maximal D=5 supergravities
de Wit, Bernard; Trigiante, M; Wit, Bernard de; Samtleben, Henning; Trigiante, Mario
2007-01-01
The general Lagrangian for maximal supergravity in five spacetime dimensions is presented with vector potentials in the \\bar{27} and tensor fields in the 27 representation of E_6. This novel tensor-vector system is subject to an intricate set of gauge transformations, describing 3(27-t) massless helicity degrees of freedom for the vector fields and 3t massive spin degrees of freedom for the tensor fields, where the (even) value of t depends on the gauging. The kinetic term of the tensor fields is accompanied by a unique Chern-Simons coupling which involves both vector and tensor fields. The Lagrangians are completely encoded in terms of the embedding tensor which defines the E_6 subgroup that is gauged by the vectors. The embedding tensor is subject to two constraints which ensure the consistency of the combined vector-tensor gauge transformations and the supersymmetry of the full Lagrangian. This new formulation encompasses all possible gaugings.
Constraint Propagation as Information Maximization
Abdallah, A Nait
2012-01-01
Dana Scott used the partial order among partial functions for his mathematical model of recursively defined functions. He interpreted the partial order as one of information content. In this paper we elaborate on Scott's suggestion of regarding computation as a process of information maximization by applying it to the solution of constraint satisfaction problems. Here the method of constraint propagation can be interpreted as decreasing uncertainty about the solution -- that is, as gain in information about the solution. As illustrative example we choose numerical constraint satisfaction problems to be solved by interval constraints. To facilitate this approach to constraint solving we formulate constraint satisfaction problems as formulas in predicate logic. This necessitates extending the usual semantics for predicate logic so that meaning is assigned not only to sentences but also to formulas with free variables.
Direct Maximization of Protein Identifications from Tandem Mass Spectra*
Spivak, Marina; Weston, Jason; Tomazela, Daniela; MacCoss, Michael J.; Noble, William Stafford
2012-01-01
The goal of many shotgun proteomics experiments is to determine the protein complement of a complex biological mixture. For many mixtures, most methodological approaches fall significantly short of this goal. Existing solutions to this problem typically subdivide the task into two stages: first identifying a collection of peptides with a low false discovery rate and then inferring from the peptides a corresponding set of proteins. In contrast, we formulate the protein identification problem as a single optimization problem, which we solve using machine learning methods. This approach is motivated by the observation that the peptide and protein level tasks are cooperative, and the solution to each can be improved by using information about the solution to the other. The resulting algorithm directly controls the relevant error rate, can incorporate a wide variety of evidence and, for complex samples, provides 18–34% more protein identifications than the current state of the art approaches. PMID:22052992
The Krein condition for the moment problem
Pedersen, Henrik Laurberg
2005-01-01
In this paper, we describe a class of Wiener functionals that are `indeterminate by their moments', that is, whose distributions are not uniquely determined by their moments. In particular, it is proved that the integral of a geometric Brownian motion is indeterminate by its moments and, moreover......, shown that previous proofs of this result are incorrect. The main result of this paper is based on geometric inequalities in Gauss space and on a generalization of the Krein criterion due to H. L. Pedersen....
Moments of inertia of relativistic magnetized stars
Konno, K
2001-01-01
We consider principal moments of inertia of axisymmetric, magnetically deformed stars in the context of general relativity. The general expression for the moment of inertia with respect to the symmetric axis is obtained. The numerical estimates are derived for several polytropic stellar models. We find that the values of the principal moments of inertia are modified by a factor of 2 at most from Newtonian estimates.
Fox-Wolfram Moments in Higgs Physics
Bernaciak, Catherine; Butter, Anja; Plehn, Tilman
2012-01-01
Geometric correlations between jets as part of hard processes or in addition to hard processes are key ingredients to many LHC analyses. Fox--Wolfram moments systematically describe these correlations in terms of spherical harmonics. These moments, either computed from the tagging jets or from all jets in each event, can significantly improve Higgs searches in weak boson fusion. Applications of Fox--Wolfram moments in LHC analyses obviously surpass jets as analysis objects as well as Higgs searches in terms of analyses.
Estimation of Schiff moments using the nuclear shell model
Teruya, Eri; Yoshinaga, Naotaka; Arai, Ryoichi; Higashiyama, Koji
2014-09-01
The existence of finite permanent electric dipole moment (EDM) of an elementary particle or an atom indicates violation of time-reversal symmetry. The time reversal invariance implies violation of charge and parity symmetry through the CPT theorem. The predicted fundamental particle's EDMs are too small to be observed in the Standard Model. However, some models beyond the Standard Model produce much larger EDMs which may be observed in future. Thus, if we observe finite EDMs, we can conclude that we need a new extended model for the Standard Model and the specific value of an EDM gives a constraint on constructing a new model. Experimental efforts searching for atomic EDMs are now in progress. The EDM of a neutral atom is mainly induced by the nuclear Schiff moment, since the electron EDM is very small and the nuclear EDM is shielded by outside electrons owing to the Schiff theorem. In this work we estimate the Schiff moments for the lowest 1/2+ states of Xe isotopes around the mass 130. The nuclear wave functions beyond mean-field theories are calculated in terms of the nuclear shell model. We discuss influences of core excitations and over shell excitations on the Schiff moments.
Physics of defect induced local moments in pnictide superconductors
Grinenko, Vadim; Drechsler, Stefan-Ludwig; Abdel-Hafiez, Mahmoud; Aswartham, Saicharan; Wolter-Giraud, Anja; Hess, Christian; Kumar, Manoj; Wurmehl, Sabine; Fuchs, Guenter; Nenkov, Konstantin; Hammerath, Franziska; Lang, Guillaume; Grafe, Hans-Joachim; Holzapfel, Bernhard; Brink, Jeroen van den; Buechner, Bernd; Schultz, Ludwig [IFW Dresden (Germany); Kikoin, Konstatin [School of Physics and Astronomy, Tel-Aviv University (Israel)
2012-07-01
Many unusual physical properties of Fe-pnictide superconductors are related to the presence of local magnetic moments induced by point-defects, e.g. As-vacancies. In the La-1111 system they improve the superconducting properties as compared with As-stoichiometric samples enhancing T{sub c} and the -dH{sub c2}/dT at T{sub c}. But they also enhance strongly the spin susceptibility, which governs the Pauli limiting behavior of the As-deficient La-1111. In heavily hole doped K-122 superconducting single crystals the local moments leads to a complex phase diagram with a Griffith and a spin glass phase. The local moments picture explains also the observed non-Fermi-liquid behavior and the large effective mass enhancement of the quasi-particles in K-122. In Co-doped Ba-122 superconducting single crystals the local moments form also a spin glass state and lead to a strong Pauli limiting behavior.
Planar Hall ring sensor for ultra-low magnetic moment sensing
Hung, Tran Quang; Terki, Ferial; Kamara, Souleymanne; Kim, Kunwoo; Charar, Salam; Kim, CheolGi
2015-04-01
The field sensitivity of a planar Hall effect (PHE) micro-ring type biosensor has been investigated as a function of magnetizing angle of the sensor material, for the sensing of low magnetic moment superparamagnetic labels. The field sensitivity is maximal at a magnetizing angle of α = 20°. At this optimized magnetizing angle, the field sensitivity of a PHE sensor is about 3.6 times higher than that measured at the conventional configuration, α = 90°. This optimization enables the PHE-ring sensor to detect superparamagnetic biolabels with ultra-low magnetic moments down to 4 × 10-13 emu.
Planar Hall ring sensor for ultra-low magnetic moment sensing
Hung, Tran Quang; Terki, Ferial; Kamara, Souleymanne
2015-01-01
The field sensitivity of a planar Hall effect (PHE) micro-ring type biosensor has been investigated as a function of magnetizing angle of the sensor material, for the sensing of low magnetic moment superparamagnetic labels. The field sensitivity is maximal at a magnetizing angle of α = 20......°. At this optimized magnetizing angle, the field sensitivity of a PHE sensor is about 3.6 times higher than that measured at the conventional configuration, α = 90°. This optimization enables the PHE-ring sensor to detect superparamagnetic biolabels with ultra-low magnetic moments down to 4 × 10-13 emu....
Practical Fast Computation of Zernike Moments
Al-Rawi Mohammed; 杨杰
2002-01-01
The fast computation of Zernike moments from normalized geometric moments has been developed in this paper. The computation is multiplication free and only additions are needed to generate Zernike moments. Geometric moments are generated using Hatamian's filter up to high orders by a very simple and straightforward computation scheme. Other kinds of moments (e.g., Legendre, pseudo Zernike) can be computed using the same algorithm after giving the proper transformations that state their relations to geometric moments. Proper normalizations of geometric moments are necessary so that the method can be used in the efficient computation of Zernike moments. To ensure fair comparisons, recursive algorithms are used to generate Zernike polynomials and other coefficients. The computational complexity model and test programs show that the speed-up factor of the proposed algorithm is superior with respect to other fast and/or direct computations. It perhaps is the first time that Zernike moments can be computed in real time rates, which encourages the use of Zernike momentfeatures in different image retrieval systems that support huge databases such as the XM experimental model stated for the MPEG-7 experimental core. It is concluded that choosing direct computation would be impractical.
Optimized Set of RST Moment Invariants
Khalid M. Hosny
2008-01-01
Full Text Available Moment invariants are widely used in image processing, pattern recognition and computer vision. Several methods and algorithms have been proposed for fast and efficient calculation of moment's invariants where numerical approximation errors are involved in most of these methods. In this paper, an optimized set of moment invariants with respect to rotation, scaling and translation is presented. An accurate method is used for exact computation of moment invariants for gray level images. A fast algorithm is applied to accelerate the process of computation. Error analysis is presented and a comparison with other conventional methods is performed. The obtained results explain the superiority of the proposed method.
A uniform parameterization of moment tensors
Tape, C.; Tape, W.
2015-12-01
A moment tensor is a 3 x 3 symmetric matrix that expresses an earthquake source. We construct a parameterization of the five-dimensional space of all moment tensors of unit norm. The coordinates associated with the parameterization are closely related to moment tensor orientations and source types. The parameterization is uniform, in the sense that equal volumes in the coordinate domain of the parameterization correspond to equal volumes of moment tensors. Uniformly distributed points in the coordinate domain therefore give uniformly distributed moment tensors. A cartesian grid in the coordinate domain can be used to search efficiently over moment tensors. We find that uniformly distributed moment tensors have uniformly distributed orientations (eigenframes), but that their source types (eigenvalue triples) are distributed so as to favor double couples. An appropriate choice of a priori moment tensor probability is a prerequisite for parameter estimation. As a seemingly sensible choice, we consider the homogeneous probability, in which equal volumes of moment tensors are equally likely. We believe that it will lead to improved characterization of source processes.
Model-Independent Inference of Neutron Star Radii from Moment of Inertia Measurements
Raithel, Carolyn A; Psaltis, Dimitrios
2016-01-01
A precise moment of inertia measurement for PSR J0737-3039A in the double pulsar system is expected within the next five years. We present here a new method of mapping the anticipated measurement of the moment of inertia directly into the neutron star structure. We determine the maximum and minimum values possible for the moment of inertia of a neutron star of a given radius based on physical stability arguments, assuming knowledge of the equation of state only at densities below the nuclear saturation density. If the equation of state is trusted up to the nuclear saturation density, we find that a measurement of the moment of inertia will place absolute bounds on the radius of PSR J0737-3039A to within $\\pm$1 km. The resulting combination of moment of inertia, mass, and radius measurements for a single source will allow for new, stringent constraints on the dense-matter equation of state.
Beeping a Maximal Independent Set
Afek, Yehuda; Bar-Joseph, Ziv; Cornejo, Alejandro; Haeupler, Bernhard; Kuhn, Fabian
2012-01-01
We consider the problem of computing a maximal independent set (MIS) in an extremely harsh broadcast model that relies only on carrier sensing. The model consists of an anonymous broadcast network in which nodes have no knowledge about the topology of the network or even an upper bound on its size. Furthermore, it is assumed that an adversary chooses at which time slot each node wakes up. At each time slot a node can either beep, that is, emit a signal, or be silent. At a particular time slot, beeping nodes receive no feedback, while silent nodes can only differentiate between none of its neighbors beeping, or at least one of its neighbors beeping. We start by proving a lower bound that shows that in this model, it is not possible to locally converge to an MIS in sub-polynomial time. We then study four different relaxations of the model which allow us to circumvent the lower bound and find an MIS in polylogarithmic time. First, we show that if a polynomial upper bound on the network size is known, it is possi...
Maximal switchability of centralized networks
Vakulenko, Sergei; Morozov, Ivan; Radulescu, Ovidiu
2016-08-01
We consider continuous time Hopfield-like recurrent networks as dynamical models for gene regulation and neural networks. We are interested in networks that contain n high-degree nodes preferably connected to a large number of N s weakly connected satellites, a property that we call n/N s -centrality. If the hub dynamics is slow, we obtain that the large time network dynamics is completely defined by the hub dynamics. Moreover, such networks are maximally flexible and switchable, in the sense that they can switch from a globally attractive rest state to any structurally stable dynamics when the response time of a special controller hub is changed. In particular, we show that a decrease of the controller hub response time can lead to a sharp variation in the network attractor structure: we can obtain a set of new local attractors, whose number can increase exponentially with N, the total number of nodes of the nework. These new attractors can be periodic or even chaotic. We provide an algorithm, which allows us to design networks with the desired switching properties, or to learn them from time series, by adjusting the interactions between hubs and satellites. Such switchable networks could be used as models for context dependent adaptation in functional genetics or as models for cognitive functions in neuroscience.
A Maximally Supersymmetric Kondo Model
Harrison, Sarah; Kachru, Shamit; Torroba, Gonzalo; /Stanford U., Phys. Dept. /SLAC
2012-02-17
We study the maximally supersymmetric Kondo model obtained by adding a fermionic impurity to N = 4 supersymmetric Yang-Mills theory. While the original Kondo problem describes a defect interacting with a free Fermi liquid of itinerant electrons, here the ambient theory is an interacting CFT, and this introduces qualitatively new features into the system. The model arises in string theory by considering the intersection of a stack of M D5-branes with a stack of N D3-branes, at a point in the D3 worldvolume. We analyze the theory holographically, and propose a dictionary between the Kondo problem and antisymmetric Wilson loops in N = 4 SYM. We perform an explicit calculation of the D5 fluctuations in the D3 geometry and determine the spectrum of defect operators. This establishes the stability of the Kondo fixed point together with its basic thermodynamic properties. Known supergravity solutions for Wilson loops allow us to go beyond the probe approximation: the D5s disappear and are replaced by three-form flux piercing a new topologically non-trivial S3 in the corrected geometry. This describes the Kondo model in terms of a geometric transition. A dual matrix model reflects the basic properties of the corrected gravity solution in its eigenvalue distribution.
Higher Moments of Underlying Event Distributions
Xu, Zhen
2017-01-01
We perform an Underlying Event analysis for real data sets from pp collisions at center of mass energy $ \\sqrt{s}=5 $ and 13 TeV and pPb collisions at $ \\sqrt{s}=7 $ TeV at the LHC, together with the Monte Carlo data sets generated with Pythia8 and EPOS in the same conditions. The analysis is focused on the transverse region which is more sensitive to the Underlying Event, and performed as a function of the leading track transverse - momentum $p_t$ in each event. In our work, not only the average underlying event activity but also its fluctuation, namely its root mean square (RMS), Skewness and Kurtosis, are analyzed. We find that the particle density, energy density and their fluctuation magnitude (RMS) are suppressed at leading $p_t\\approx$ 5 GeV/c for all these cases, with EPOS having evident deviation of 10\\%-25\\%. The higher moments skewness and kurtosis decrease rapidly in low leading $p_t$ region, and follow an interesting Gaussian-like peak centered at leading $p_t\\approx$ 15 GeV/c.
Schiff moment of the Mercury nucleus and the proton dipole moment
Dmitriev, V. F.; Sen'kov, R. A.
2003-01-01
We calculated the contribution of internal nucleon electric dipole moments to the Schiff moment of $^{199}$Hg. The contribution of the proton electric dipole moment was obtained via core polarization effects that were treated in the framework of random phase approximation with effective residual forces. We derived a new upper bound $|d_p|< 5.4\\times 10^{-24} e\\cdot$cm of the proton electric dipole moment.
Magnetic moments of odd spherical nuclei
Levon, A.I.; Fedotkin, S.N.; Vdovin, A.I.
1986-06-01
Using the quasiparticle-phonon model, the magnetic moments of the ground state and several of the excited states are calculated for spherical nuclei. The polarization of the core is taken into account, by means of 1+ phonons, as well as 2/sup +/ and 3/sup -/ excitations, which give a collective contribution to the magnetic moment.
Neutrino induced magnetic moment and spin precession
Ternov, A. I.
2016-07-01
When propagating through a dispersing medium, a massive neutrino acquires an induced magnetic moment that may give rise to a helicity flip in an external magnetic field with a larger probability than that caused by the anomalous magnetic moment. This phenomenon is investigated in the framework of relativistic quantum mechanics and of the generalized Bargmann-Michel-Telegdi equation.
Balancing Beams--For a Few Moments
Kibble, Bob
2008-01-01
A 2 m long wooden beam provides an ideal demonstration tool for exploring moments. A class set is cheap and can be used at introductory and advanced levels. This article explores how such beams can be used to support learning about moments, equilibrium, vectors, and simultaneous equations. (Contains 7 figures.)
Learn to Live in the Present Moment
贾庆文
2002-01-01
To a large degree, the measure of our peace of mind is determined by how much we are able to live in the present moment. Irrespective of what happened yesterday or last year, and what may or may not happen tomorrow, the present moment is where you are-always!
A note on noncommutative moment problems
MA Xiujuan
2005-01-01
Noncommutative moment problems for C*-algebras are studied. We generalize a result of Hadwin on tracial states to nontracial case. Our results are applied to obtain simple solutions to moment problems on the square and the circle as well as extend the positive unital functionals from a (discrete) complex group algebra to states on the group C*-algebra.
Teachable Moment: Google Earth Takes Us There
Williams, Ann; Davinroy, Thomas C.
2015-01-01
In the current educational climate, where clearly articulated learning objectives are required, it is clear that the spontaneous teachable moment still has its place. Authors Ann Williams and Thomas Davinroy think that instructors from almost any discipline can employ Google Earth as a tool to take advantage of teachable moments through the…
HELMHOLTZ COILS FOR MEASURING MAGNETIC MOMENTS
P. N. Dobrodeyev
2013-01-01
Full Text Available The optimal configuration of the double Helmholtz coils for measuring of the magnetic dipole moments was defined. It was determined that measuring coils should have round shape and compensative coils – the square one. Analytically confirmed the feasibility of the proposed configuration of these coils as primary transmitters of magnetic dipole moments.
How to Introduce the Magnetic Dipole Moment
Bezerra, M.; Kort-Kamp, W. J. M.; Cougo-Pinto, M. V.; Farina, C.
2012-01-01
We show how the concept of the magnetic dipole moment can be introduced in the same way as the concept of the electric dipole moment in introductory courses on electromagnetism. Considering a localized steady current distribution, we make a Taylor expansion directly in the Biot-Savart law to obtain, explicitly, the dominant contribution of the…
Closed forms and multi-moment maps
Madsen, Thomas Bruun; Swann, Andrew Francis
2013-01-01
We extend the notion of multi-moment map to geometries defined by closed forms of arbitrary degree. We give fundamental existence and uniqueness results and discuss a number of essential examples, including geometries related to special holonomy. For forms of degree four, multi-moment maps are gu...
Teachable Moment: Google Earth Takes Us There
Williams, Ann; Davinroy, Thomas C.
2015-01-01
In the current educational climate, where clearly articulated learning objectives are required, it is clear that the spontaneous teachable moment still has its place. Authors Ann Williams and Thomas Davinroy think that instructors from almost any discipline can employ Google Earth as a tool to take advantage of teachable moments through the…
D2-brane Chern-Simons theories: F-maximization = a-maximization
Fluder, Martin
2015-01-01
We study a system of N D2-branes probing a generic Calabi-Yau three-fold singularity in the presence of a non-zero quantized Romans mass n. We argue that the low-energy effective N = 2 Chern-Simons quiver gauge theory flows to a superconformal fixed point in the IR, and construct the dual AdS_4 solution in massive IIA supergravity. We compute the free energy F of the gauge theory on S^3 using localization. In the large N limit we find F = c(nN)^{1/3}a^{2/3}, where c is a universal constant and a is the a-function of the "parent" four-dimensional N = 1 theory on N D3-branes probing the same Calabi-Yau singularity. It follows that maximizing F over the space of admissible R-symmetries is equivalent to maximizing a for this class of theories. Moreover, we show that the gauge theory result precisely matches the holographic free energy of the supergravity solution, and provide a similar matching of the VEV of a BPS Wilson loop operator.
Inter-segmental moment analysis characterises the partial correspondence of jumping and jerking
Cleather, Daniel J; Goodwin, Jon E; Bull, Anthony MJ
2014-01-01
The aim of this study was to quantify internal joint moments of the lower limb during vertical jumping and the weightlifting jerk in order to improve awareness of the control strategies and correspondence between these activities, and to facilitate understanding of the likely transfer of training effects. Athletic males completed maximal unloaded vertical jumps (n=12) and explosive push jerks at 40 kg (n=9). Kinematic data were collected using optical motion tracking and kinetic data via a force plate, both at 200 Hz. Joint moments were calculated using a previously described biomechanical model of the right lower limb. Peak moment results highlighted that sagittal plane control strategies differed between jumping and jerking (p0.05) possibly indicating a limit to the direct transferability of jerk performance to jumping. Ankle joint moments were poorly related to jump performance (p>0.05). Peak knee and hip moment generating capacity are important to vertical jump performance. The jerk appears to offer an effective strategy to overload joint moment generation in the knee relative to jumping. However, an absence of hip involvement would appear to make it a general, rather than specific, training modality in relation to jumping. PMID:22362089
Innovative moments and change in narrative therapy.
Matos, Marlene; Santos, Anita; Gonçalves, Miguel; Martins, Carla
2009-01-01
Narrative therapy suggests that change happens by paying close attention in therapy to "unique outcomes," which are narrative details outside the main story (White & Epston, 1990). In this exploratory study, unique outcomes were analyzed in five good-outcome and five poor-outcome psychotherapy cases using the Innovative Moments Coding System (Gonçalves, Matos, & Santos, 2008). Across 127 sessions, innovative moments were coded in terms of salience and type. In accordance with the theory, results suggest that innovative moments are important to therapeutic change. Poor- and good-outcome groups have a global difference in the salience of the innovative moments. In addition, results suggest that two particular types of innovative moments are needed in narrative therapy for therapeutic change to take place: re-conceptualization and new experiences. Implications for future research using this model of analysis are discussed.
Constraints on the Moment of Inertia of a Proto Neutron Star from the Hyperon Coupling Constants
Xian-Feng Zhao; Huan-Yu Jia
2012-09-01
The influence of the hyperon coupling constants on the moment of inertia of a proto neutron star has been investigated within the framework of relativistic mean field theory for the baryon octet {, , , -, 0, +, Ξ-, Ξ0} system. It is found that for a proto neutron star, the mass, the moment of inertia and their own maximum values as a function of radius or / are all more sensitive to the hyperon coupling constants. For all the different hyperon coupling constants mentioned, the case of no hyperons corresponds to the largest moment of inertia.
Hypernuclear Magnetic Moments and ∧-N Interaction in 17∧O
L(U) Hong-Feng
2007-01-01
Hypernuclear magnetic moment and ∧-N interaction in 17∧O has been studied within relativistic mean field theory.Without core polarization, the relativistic results are found to fit the Schmidt value well and not be sensitive to ∧-N interaction. The relativistic magnetic moment is enhanced with nearly equal contributions of the relativistic and free masses. When ∧ hyperon occupies the l = 0 or l = 1 orbit, the effect of ∧-N interaction on the magnetic moment of valence proton is different.
On the Physical Origin of the Anomalous Magnetic Moment of Electron
Mandache, N B
2013-01-01
A simple physical insight into the origin of the magnetic moment anomaly of electron is presented. This approach is based on the assumption that the electromagnetic mass of the electron due to the electric field generated by electron charge in the exterior of the sphere of radius half of the Compton wavelength of the electron, does not contribute to the magnetic moment of the electron. This explanation is compatible with the well-known quantum electrodynamics approach. A formula is derived, which is similar to that obtained by quantum electrodynamics calculus of one loop contribution to anomalous part of the magnetic moment.
Kinematical Analysis along Maximal Lactate Steady State Swimming Intensity
Pedro Figueiredo, Rafael Nazario, Marisa Sousa, Jailton Gregório Pelarigo, João Paulo Vilas-Boas, Ricardo Fernandes
2014-09-01
Full Text Available The purpose of this study was to conduct a kinematical analysis during swimming at the intensity corresponding to maximal lactate steady state (MLSS. Thirteen long distance swimmers performed, in different days, an intermittent incremental protocol of n x 200 m until exhaustion and two to four 30-min submaximal constant speed bouts to determine the MLSS. The video analysis, using APAS System (Ariel Dynamics Inc., USA, allowed determining the following relevant swimming determinants (in five moments of the 30-min test: 0, 25, 50, 75, and 100%: stroke rate, stroke length, trunk incline, intracyclic velocity variation, propelling efficiency, index of coordination and the time allotted to propulsion per distance unit. An ANOVA for repeated measures was used to compare the parameters mean values along each moment of analysis. Stoke rate tended to increase and stroke length to decrease along the test; a tendency to decrease was also found for intracyclic velocity variation and propelling efficiency whereas the index of coordination and the propulsive impulse remained stable during the MLSS test. It can be concluded that the MLSS is not only an intensity to maintain without a significant increase of blood lactate concentration, but a concomitant stability for some biomechanical parameters exists (after an initial adaptation. However, efficiency indicators seem to be more sensitive to changes occurring during swimming at this threshold intensity.
Numerical Research of the Viscous Effect of the Bilge Keel on the Damping Moment
Deng Rui
2015-09-01
Full Text Available Bilge keels are effective passive devices in mitigating the rolling motion, and the usage of them covers almost all the sea going vessels. This paper focuses on the viscous effect of the bilge keel, ignored the effect of the free surface and the effect of the ship hull, for the general viscous characteristic of the bilge keel. In order to investigate the viscous effect of the bilge keel on the total damping moment, a special 2 dimensional numerical model, which includes a submerged cylinder with and without bilge keels, is designed for the simulation of forced rolling. Three important factors such as bilge keels width, rolling periods, as well as maximal rolling angles are taken into account, and the viscous flow field around the cylinder is simulated by some codes based on the viscous method in different conditions, in which the three factors are coupled. Verification and validation based on the ITTC method are performed for the cylinder without bilge keels in the conditions of different rolling periods and maximal rolling angles. The primary calculation of damping moment induced by the cylinder with 0mm, 4mm, and 10mm width bilge keels shows some interesting results, and a systematic analysis is conducted. The analysis of the damping moment components suggests there is phase difference between the damping moment induced by the cylinder and the bilge keels, and when the bilge keels width reaches a special size, the total damping moment is mitigated. The calculation of the damping moments induced by the cylinder with some larger bilge keels are also performed, and the results suggest that, the damping moment induced by the bilge keels is increased rapidly and becomes the dominant part in the total damping moment while the width of the bilge keels are increased, but the damping moment induced by the cylinder is not changed significantly. Some illustration of the vortices formation and shedding is included, which is the mechanism of the damping
Maximal inequalities for demimartingales and their applications
WANG XueJun; HU ShuHe
2009-01-01
In this paper,we establish some maximal inequalities for demimartingales which generalize and improve the results of Christofides.The maximal inequalities for demimartingales are used as key inequalities to establish other results including Doob's type maximal inequality for demimartingales,strong laws of large numbers and growth rate for demimartingales and associated random variables.At last,we give an equivalent condition of uniform integrability for demisubmartingales.
Maximal inequalities for demimartingales and their applications
无
2009-01-01
In this paper, we establish some maximal inequalities for demimartingales which generalize and improve the results of Christofides. The maximal inequalities for demimartingales are used as key inequalities to establish other results including Doob’s type maximal inequality for demimartingales, strong laws of large numbers and growth rate for demimartingales and associated random variables. At last, we give an equivalent condition of uniform integrability for demisubmartingales.
Moment inequalities for the partial sums of random variables
YANG; Shanchao
2001-01-01
［1］Yang Shanchao, Moment inequality of partial sum for a class of random variables and its application, Chinese Science Bulletin (in Chinese), 998, 43(7): 823.［2］Bryc, W., Smolenski, W., Moment conditions for almost sure convergence of weakly correlated variables, Proceedings of Amer, Math. Society, 993, 9(2): 629.［3］Peligrad, M., Invariance principles for mixing sequences of random variables, Ann. Probab., 982, 0(4): 968.［4］Peligrad, M., Convergence rates of the strong law for stationary mixing sequences, Z Wahr Verw Gebiete, 985, 70: 307.［5］Peligrad, M., On the central limit theorem for ρ-mixing sequences of random variables, Ann. Probab., 987, 5(4): 387.［6］Collomb, G., Propriétés de convergence presque compléte du prédicteur à noyau, Z Wahr Verw Gebiete, 984, 66: 44.［7］Matula, P., A note on the almost sure convergence of sums of negatively dependence random variables, Statist. Probab. Lett., 992, 5(3): 209.［8］Shao Qiman, Maximal inequalities for partial sums of ρ-mixing sequences, Ann. Probab., 995, 23(2): 948.［9］Shao Qiman, A moment inequality and its applications, Acta Mathematica Sinica (in Chinese), 988, 3(6): 736.［10］Shao Qiman, Complete convergence for ρ-mixing sequence, Acta Mathematica Sinica (in Chinese), 989, 32(3): 377.［11］Su Chun, Zhao Lincheng, Wang Yuebao, Moment inequalities for NA sequence and weak convergence, Science in China (Series A)(in Chinese), 996, 26(2): 09.［12］Zhang Lixin, Rosenthal type inequality for B-value strong mixing field and its application, Science in China (Series A)(in Chinese), 998, 28(4): 328.［13］Yang Shanchao, Moment inequality for mixing sequences and nonparametric estimation, Acta Mathemation Sinica (in Chinese), 997, 40(2): 27.［14］Joag-Dev, K., Proschan, F., Negative association of random variables with applications, Ann. Statist., 983, (1): 286.
Task-oriented maximally entangled states
Agrawal, Pankaj; Pradhan, B, E-mail: agrawal@iopb.res.i, E-mail: bpradhan@iopb.res.i [Institute of Physics, Sachivalaya Marg, Bhubaneswar, Orissa 751 005 (India)
2010-06-11
We introduce the notion of a task-oriented maximally entangled state (TMES). This notion depends on the task for which a quantum state is used as the resource. TMESs are the states that can be used to carry out the task maximally. This concept may be more useful than that of a general maximally entangled state in the case of a multipartite system. We illustrate this idea by giving an operational definition of maximally entangled states on the basis of communication tasks of teleportation and superdense coding. We also give examples and a procedure to obtain such TMESs for n-qubit systems.
Wang, Fei; Reid, Greg; Wolkowicz, Henry
2016-01-01
Recent breakthroughs have been made in the use of semidefinite programming and its application to real polynomial solving. For example, the real radical of a zero dimensional ideal, can be determined by such approaches as shown by Lasserre and collaborators. Some progress has been made on the determination of the real radical in positive dimension by Ma, Wang and Zhi. Such work involves the determination of maximal rank semidefinite moment matrices. Existing methods are computationally expens...
Uniform asymptotics for the full moment conjecture of the Riemann zeta function
Hiary, Ghaith A
2011-01-01
Conrey, Farmer, Keating, Rubinstein, and Snaith recently conjectured formulas for the full asymptotics of the moments of $L$-functions. In the case of the Riemann zeta function, their conjecture states that the $2k$-th absolute moment of zeta on the critical line is asymptotically given by a certain $2k$-fold residue integral. This residue integral can be expressed as a polynomial of degree $k^2$, whose coefficients are given in exact form by elaborate and complicated formulas. In this article, uniform asymptotics for roughly the first $k$ coefficients of the moment polynomial are derived. Numerical data to support our asymptotic formula are presented. An application to bounding the maximal size of the zeta function is considered.
Table of nuclear electric quadrupole moments
Stone, N. J.
2016-09-01
This Table is a compilation of experimental measurements of static electric quadrupole moments of ground states and excited states of atomic nuclei throughout the periodic table. To aid identification of the states, their excitation energy, half-life, spin and parity are given, along with a brief indication of the method and any reference standard used in the particular measurement. Experimental data from all quadrupole moment measurements actually provide a value of the product of the moment and the electric field gradient [EFG] acting at the nucleus. Knowledge of the EFG is thus necessary to extract the quadrupole moment. A single recommended moment value is given for each state, based, for each element, wherever possible, upon a standard reference moment for a nuclear state of that element studied in a situation in which the electric field gradient has been well calculated. For several elements one or more subsidiary EFG/moment reference is required and their use is specified. The literature search covers the period to mid-2015.
Maximal sfermion flavour violation in super-GUTs
Ellis, John [King' s College London, Theoretical Particle Physics and Cosmology Group, Department of Physics, London (United Kingdom); Olive, Keith A. [CERN, Theoretical Physics Department, Geneva (Switzerland); University of Minnesota, William I. Fine Theoretical Physics Institute, School of Physics and Astronomy, Minneapolis, MN (United States); Velasco-Sevilla, L. [University of Bergen, Department of Physics and Technology, PO Box 7803, Bergen (Norway)
2016-10-15
We consider supersymmetric grand unified theories with soft supersymmetry-breaking scalar masses m{sub 0} specified above the GUT scale (super-GUTs) and patterns of Yukawa couplings motivated by upper limits on flavour-changing interactions beyond the Standard Model. If the scalar masses are smaller than the gaugino masses m{sub 1/2}, as is expected in no-scale models, the dominant effects of renormalisation between the input scale and the GUT scale are generally expected to be those due to the gauge couplings, which are proportional to m{sub 1/2} and generation independent. In this case, the input scalar masses m{sub 0} may violate flavour maximally, a scenario we call MaxSFV, and there is no supersymmetric flavour problem. We illustrate this possibility within various specific super-GUT scenarios that are deformations of no-scale gravity. (orig.)
Maximal sfermion flavour violation in super-GUTs
AUTHOR|(CDS)2108556; Velasco-Sevilla, Liliana
2016-01-01
We consider supersymmetric grand unified theories with soft supersymmetry-breaking scalar masses $m_0$ specified above the GUT scale (super-GUTs) and patterns of Yukawa couplings motivated by upper limits on flavour-changing interactions beyond the Standard Model. If the scalar masses are smaller than the gaugino masses $m_{1/2}$, as is expected in no-scale models, the dominant effects of renormalization between the input scale and the GUT scale are generally expected to be those due to the gauge couplings, which are proportional to $m_{1/2}$ and generation-independent. In this case, the input scalar masses $m_0$ may violate flavour maximally, a scenario we call MaxFV, and there is no supersymmetric flavour problem. We illustrate this possibility within various specific super-GUT scenarios that are deformations of no-scale gravity.
Matta, Chérif F; Sowlati-Hashjin, Shahin; Bandrauk, André D
2013-08-15
The partitioning of the dipole moment of an isolated molecule or that of a reacting system is reviewed and applied to a dynamic reacting system whereby the system's dipole moment surface is constructed in parallel to its potential energy surface. The dipole moment surface is then decomposed into two origin-independent surfaces: (1) an atomic polarization (AP) surface and a charge transfer (CT) surface. The dipole moment surface as well as its two composing AP and CT surfaces are all further broken down into atomic and/or group contributions with the aid of the quantum theory of atoms in molecules (QTAIM). This approach is applied to the title's laser-induced chemical reactions [CH4 + (•)X → CH3(•) + HX (X = F, Cl)] previously studied by Bandrauk et al. [ J. Chem. Phys. 2004 , 121 , 7764 - 7775 ], and which were found to exhibit marked peaks in the dipole moment and in the polarizability tensor component at (or near) the transition state. These peaks afford a means to control the kinetics of these reactions with the proper adjustment of an external laser field intensity and phase. The entrance channel potentials of these reactions have recently been probed by photodetachment spectroscopy by Bowman and collaborators [ J. Chem. Phys. 2011 , 134 , 191102_1 - 4 ]. The understanding of the origin of the peaks in the dipole moment can provide, eventually, an additional layer of control in the design of reactions tunable by external fields through the proper selection of the reactants to maximize the field-molecule interaction.
Computing Maximally Supersymmetric Scattering Amplitudes
Stankowicz, James Michael, Jr.
This dissertation reviews work in computing N = 4 super-Yang--Mills (sYM) and N = 8 maximally supersymmetric gravity (mSUGRA) scattering amplitudes in D = 4 spacetime dimensions in novel ways. After a brief introduction and overview in Ch. 1, the various techniques used to construct amplitudes in the remainder of the dissertation are discussed in Ch. 2. This includes several new concepts such as d log and pure integrand bases, as well as how to construct the amplitude using exactly one kinematic point where it vanishes. Also included in this chapter is an outline of the Mathematica package on shell diagrams and numerics.m (osdn) that was developed for the computations herein. The rest of the dissertation is devoted to explicit examples. In Ch. 3, the starting point is tree-level sYM amplitudes that have integral representations with residues that obey amplitude relations. These residues are shown to have corresponding residue numerators that allow a double copy prescription that results in mSUGRA residues. In Ch. 4, the two-loop four-point sYM amplitude is constructed in several ways, showcasing many of the techniques of Ch. 2; this includes an example of how to use osdn. The two-loop five-point amplitude is also presented in a pure integrand representation with comments on how it was constructed from one homogeneous cut of the amplitude. On-going work on the two-loop n-point amplitude is presented at the end of Ch. 4. In Ch. 5, the three-loop four-point amplitude is presented in the d log representation and in the pure integrand representation. In Ch. 6, there are several examples of four- through seven-loop planar diagrams that illustrate how considerations of the singularity structure of the amplitude underpin dual-conformal invariance. Taken with the previous examples, this is additional evidence that the structure known to exist in the planar sector extends to the full theory. At the end of this chapter is a proof that all mSUGRA amplitudes have a pole at
Are all maximally entangled states pure?
Cavalcanti, D; Terra-Cunha, M O
2005-01-01
In this Letter we study if all maximally entangled states are pure through several entanglement monotones. Our conclusions allow us to generalize the idea of monogamy of entanglement. Then we propose a polygamy of entanglement, which express that if a general multipartite state is maximally entangled it is necessarily factorized by any other system.
Sampling and Representation Complexity of Revenue Maximization
Dughmi, Shaddin; Han, Li; Nisan, Noam
2014-01-01
We consider (approximate) revenue maximization in auctions where the distribution on input valuations is given via "black box" access to samples from the distribution. We observe that the number of samples required -- the sample complexity -- is tightly related to the representation complexity of an approximately revenue-maximizing auction. Our main results are upper bounds and an exponential lower bound on these complexities.
Lisonek, Petr
1996-01-01
our classifications confirmthe maximality of previously known sets, the results in E^7 and E^8are new. Their counterpart in dimension larger than 10is a set of unit vectors with only two values of inner products in the Lorentz space R^{d,1}.The maximality of this set again follows from a bound due...
An ethical justification of profit maximization
Koch, Carsten Allan
2010-01-01
In much of the literature on business ethics and corporate social responsibility, it is more or less taken for granted that attempts to maximize profits are inherently unethical. The purpose of this paper is to investigate whether an ethical argument can be given in support of profit maximizing b...
Alternative trailer configurations for maximizing payloads
Jason D. Thompson; Dana Mitchell; John Klepac
2017-01-01
In order for harvesting contractors to stay ahead of increasing costs, it is imperative that they employ all options to maximize productivity and efficiency. Transportation can account for half the cost to deliver wood to a mill. Contractors seek to maximize truck payload to increase productivity. The Forest Operations Research Unit, Southern Research Station, USDA...
Cohomology of Weakly Reducible Maximal Triangular Algebras
董浙; 鲁世杰
2000-01-01
In this paper, we introduce the concept of weakly reducible maximal triangular algebras φwhich form a large class of maximal triangular algebras. Let B be a weakly closed algebra containing 5φ, we prove that the cohomology spaces Hn(φ, B) (n≥1) are trivial.
Inclusive fitness maximization: An axiomatic approach.
Okasha, Samir; Weymark, John A; Bossert, Walter
2014-06-07
Kin selection theorists argue that evolution in social contexts will lead organisms to behave as if maximizing their inclusive, as opposed to personal, fitness. The inclusive fitness concept allows biologists to treat organisms as akin to rational agents seeking to maximize a utility function. Here we develop this idea and place it on a firm footing by employing a standard decision-theoretic methodology. We show how the principle of inclusive fitness maximization and a related principle of quasi-inclusive fitness maximization can be derived from axioms on an individual׳s 'as if preferences' (binary choices) for the case in which phenotypic effects are additive. Our results help integrate evolutionary theory and rational choice theory, help draw out the behavioural implications of inclusive fitness maximization, and point to a possible way in which evolution could lead organisms to implement it. Copyright © 2014 Elsevier Ltd. All rights reserved.
Energy, complexity and wealth maximization
Ayres, Robert
2016-01-01
This book is about the mechanisms of wealth creation, or what we like to think of as evolutionary “progress”. For the modern economy, natural wealth consists of complex physical structures of condensed (“frozen”) energy – mass - maintained in the earth’s crust far from thermodynamic equilibrium. However, we usually perceive wealth as created when mutation or “invention” – a change agent - introduces something different, and fitter, and usually after some part of the natural wealth of the planet has been exploited in an episode of “creative destruction”. Selection out of the resulting diversity is determined by survival in a competitive environment, whether a planet, a habitat, or a market. While human wealth is associated with money and what it can buy, it is ultimately based on natural wealth, both as materials transformed into useful artifacts, and how those artifacts, activated by energy, can create and transmit useful information. Humans have learned how to transform natural wealth i...
Prediction and evaluation of magnetic moments in T =1 /2 , 3/2, and 5/2 mirror nuclei
Mertzimekis, Theo J.
2016-12-01
The Buck-Perez analysis of mirror nuclei magnetic moments has been applied on an updated set of data for T =1 /2 ,3 /2 mirror pairs and attempted for the first time for T =5 /2 nuclei. The spin expectation value for mirror nuclei up to mass A =63 has been reexamined. The main purpose is to test Buck-Perez analysis effectiveness as a prediction and—more importantly—an evaluation tool of magnetic moments in mirror nuclei. In this scheme, ambiguous signs of magnetic moments are resolved, evaluations of moments with multiple existing measurements have been performed, and a set of predicted values for missing moments, especially for several neutron-deficient nuclei is produced. A resolution for the case of the 57Cu ground-state magnetic moment is proposed. Overall, the method seems to be promising for future evaluations and planning future measurements.
Magnetic moments in graphene with vacancies.
Chen, Jing-Jing; Wu, Han-Chun; Yu, Da-Peng; Liao, Zhi-Min
2014-08-07
Vacancies can induce local magnetic moments in graphene, paving the way to make magnetic functional graphene. Due to the interaction between magnetic moments and conduction carriers, the magnetotransport properties of graphene can be modulated. Here, the effects of vacancy induced magnetic moments on the electrical properties of graphene are studied via magnetotransport measurements and spin-polarized density functional theory calculations. We show by quantum Hall measurements that a sharp resonant Vπ state is introduced in the midgap region of graphene with vacancies, resulting in the local magnetic moment. The coupling between the localized Vπ state and the itinerant carrier is tuned by varying the carrier concentration, temperature, magnetic field, and vacancy density, which results in a transition between hopping transport and the Kondo effect and a transition between giant negative magnetoresistance (MR) and positive MR. This modulated magnetotransport is valuable for graphene based spintronic devices.
Moment of Inertia of a Physical Pendulum.
Reidl, Charles J., Jr.
1996-01-01
Presents a simple and inexpensive procedure for determining the moment of inertia of a physical pendulum both experimentally and analytically. The simplicity of the apparatus enables students to easily change parameters and obtain a wide variety of measurements. (JRH)
Tinker Toys Have Their Moments of Inertia.
Taylor, Kenneth Neal
1983-01-01
Describes use of Tinker Toys in several moment of inertia laboratory experiments at the advanced high school or introductory college levels. Includes procedures to be followed, arrangements of the Tinker Toy parts during experiments, and typical student data obtained. (JM)
Anomalous magnetic moment with heavy virtual leptons
Kurz, Alexander [Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe (Germany); Deutsches Elektronen Synchrotron (DESY), 15738 Zeuthen (Germany); Liu, Tao [Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe (Germany); Marquard, Peter [Deutsches Elektronen Synchrotron (DESY), 15738 Zeuthen (Germany); Steinhauser, Matthias [Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe (Germany)
2014-02-15
We compute the contributions to the electron and muon anomalous magnetic moment induced by heavy leptons up to four-loop order. Asymptotic expansion is applied to obtain three analytic expansion terms which show rapid convergence.
Anomalous magnetic moment with heavy virtual leptons
Kurz, Alexander; Marquard, Peter; Steinhauser, Matthias
2013-01-01
We compute the contributions to the electron and muon anomalous magnetic moment induced by heavy leptons up to four-loop order. Asymptotic expansion is applied to obtain three analytic expansion terms which show rapid convergence.
Bayesian analysis in moment inequality models
Liao, Yuan; 10.1214/09-AOS714
2010-01-01
This paper presents a study of the large-sample behavior of the posterior distribution of a structural parameter which is partially identified by moment inequalities. The posterior density is derived based on the limited information likelihood. The posterior distribution converges to zero exponentially fast on any $\\delta$-contraction outside the identified region. Inside, it is bounded below by a positive constant if the identified region is assumed to have a nonempty interior. Our simulation evidence indicates that the Bayesian approach has advantages over frequentist methods, in the sense that, with a proper choice of the prior, the posterior provides more information about the true parameter inside the identified region. We also address the problem of moment and model selection. Our optimality criterion is the maximum posterior procedure and we show that, asymptotically, it selects the true moment/model combination with the most moment inequalities and the simplest model.
Anomalous magnetic moment with heavy virtual leptons
Kurz, Alexander [Karlsruher Institut fuer Technologie (Germany). Inst. fuer Theoretische Teilchenphysik; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Liu, Tao; Steinhauser, Matthias [Karlsruher Institut fuer Technologie (Germany). Inst. fuer Theoretische Teilchenphysik; Marquard, Peter [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)
2013-11-15
We compute the contributions to the electron and muon anomalous magnetic moment induced by heavy leptons up to four-loop order. Asymptotic expansion is applied to obtain three analytic expansion terms which show rapid convergence.
Moments of the folded logistic distribution
Saralees Nadarajah; Samuel Kotz
2007-01-01
The recent paper by Cooray et al. introduced the folded logistic distribution. The moments properties given in the paper appear too complicated. In this note, a simple formula is derived in terms of the well known Lerch function.
Truncated Moment Analysis of Nucleon Structure Functions
A. Psaker; W. Melnitchouk; M. E. Christy; C. E. Keppel
2007-11-16
We employ a novel new approach using "truncated" moments, or integrals of structure functions over restricted regions of x, to study local quark-hadron duality, and the degree to which individual resonance regions are dominated by leading twists. Because truncated moments obey the same Q^2 evolution equations as the leading twist parton distributions, this approach makes possible for the first time a description of resonance region data and the phenomenon of quark-hadron duality directly from QCD.
Link between chips and cutting moments evolution
Cahuc, Olivier; Gérard, Alain; 10.4028/WWW.scientific.net/AMR.423.89
2012-01-01
The better understanding of the material cutting process has been shown with the benefit of the forces and moments measurement since some years ago. In paper, simultaneous six mechanical components and chip orientation measurements were realized during turning tests. During these tests, the influence of the depth of cut or feed rate has been observed and a link between the chip orientation and the moment vector orientation or the central axis characteristics has been shown.
From Moments to Functions in Quantum Chromodynamics
Blümlein, J; Klein, S; Schneider, C
2009-01-01
Single-scale quantities, like the QCD anomalous dimensions and Wilson coefficients, obey difference equations. Therefore their analytic form can be determined from a finite number of moments. We demonstrate this in an explicit calculation by establishing and solving large scale recursions by means of computer algebra for the anomalous dimensions and Wilson coefficients in unpolarized deeply inelastic scattering from their Mellin moments to 3-loop order.
An online database of nuclear electromagnetic moments
Mertzimekis, T. J.; Stamou, K.; Psaltis, A.
2016-01-01
Measurements of nuclear magnetic dipole and electric quadrupole moments are considered quite important for the understanding of nuclear structure both near and far from the valley of stability. The recent advent of radioactive beams has resulted in a plethora of new, continuously flowing, experimental data on nuclear structure - including nuclear moments - which hinders the information management. A new, dedicated, public and user friendly online database
Moment matrices, border bases and radical computation
Mourrain, B.; J. B. Lasserre; Laurent, Monique; Rostalski, P.; Trebuchet, Philippe
2013-01-01
In this paper, we describe new methods to compute the radical (resp. real radical) of an ideal, assuming it complex (resp. real) variety is nte. The aim is to combine approaches for solving a system of polynomial equations with dual methods which involve moment matrices and semi-denite programming. While the border basis algorithms of [17] are ecient and numerically stable for computing complex roots, algorithms based on moment matrices [12] allow the incorporation of additional polynomials, ...
From moments to functions in quantum chromodynamics
Bluemlein, Johannes; Klein, Sebastian [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Kauers, Manuel; Schneider, Carsten [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation
2009-02-15
Single-scale quantities, like the QCD anomalous dimensions andWilson coefficients, obey difference equations. Therefore their analytic form can be determined from a finite number of moments. We demonstrate this in an explicit calculation by establishing and solving large scale recursions by means of computer algebra for the anomalous dimensions and Wilson coefficients in unpolarized deeply inelastic scattering from their Mellin moments to 3-loop order. (orig.)
Search for anomalous weak dipole moments of the $\\tau$ lepton
Heister, A; Barate, R; De Bonis, I; Décamp, D; Goy, C; Lees, J P; Merle, E; Minard, M N; Pietrzyk, B; Bravo, S; Casado, M P; Chmeissani, M; Crespo, J M; Fernández, E; Fernández-Bosman, M; Garrido, L; Martínez, M; Pacheco, A; Ruiz, H; Colaleo, A; Creanza, D; De Palma, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Azzurri, P; Buchmüller, O L; Cattaneo, M; Cerutti, F; Clerbaux, B; Drevermann, H; Forty, R W; Frank, M; Gianotti, F; Hansen, J B; Harvey, J; Hutchcroft, D E; Janot, P; Jost, B; Kado, M; Mato, P; Moutoussi, A; Ranjard, F; Rolandi, Luigi; Schlatter, W D; Schneider, O; Sguazzoni, G; Tejessy, W; Teubert, F; Valassi, Andrea; Videau, I; Ward, J; Badaud, F; Falvard, A; Gay, P; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Kyriakis, A; Markou, C; Simopoulou, Errietta; Vayaki, Anna; Zachariadou, K; Blondel, A; Bonneaud, G R; Brient, J C; Rougé, A; Rumpf, M; Swynghedauw, M; Verderi, M; Videau, H L; Ciulli, V; Focardi, E; Parrini, G; Antonelli, A; Antonelli, M; Bencivenni, G; Bossi, F; Capon, G; Chiarella, V; Laurelli, P; Mannocchi, G; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Lynch, J G; Negus, P; O'Shea, V; Raine, C; Thompson, A S; Wasserbaech, S R; Cavanaugh, R J; Geweniger, C; Hanke, P; Hepp, V; Kluge, E E; Putzer, A; Stenzel, H; Tittel, K; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, P J; Girone, M; Marinelli, N; Sedgbeer, J K; Thompson, J C; Ghete, V M; Girtler, P; Kneringer, E; Kuhn, D; Rudolph, G; Bouhova-Thacker, E; Bowdery, C K; Finch, A J; Foster, F; Hughes, G; Jones, R W L; Pearson, M R; Robertson, N A; Jakobs, K; Kleinknecht, K; Renk, B; Sander, H G; Wachsmuth, H W; Zeitnitz, C; Bonissent, A; Coyle, P; Leroy, O; Payre, P; Rousseau, D; Talby, M; Ragusa, F; David, A; Dietl, H; Ganis, G; Hüttmann, K; Lütjens, G; Männer, W; Moser, H G; Settles, Ronald; Wolf, G; Boucrot, J; Callot, O; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacholkowska, A; Lefrançois, J; Veillet, J J; Yuan, C; Bagliesi, G; Boccali, T; Foà, L; Giammanco, A; Giassi, A; Ligabue, F; Messineo, A; Palla, Fabrizio; Sanguinetti, G; Sciabà, A; Tenchini, Roberto; Venturi, A; Verdini, P G; Blair, G A; Cowan, G; Green, M G; Medcalf, T; Misiejuk, A; Strong, J A; Teixeira-Dias, P; Clifft, R W; Edgecock, T R; Norton, P R; Tomalin, I R; Bloch-Devaux, B; Colas, P; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Rander, J; Schuller, J P; Vallage, B; Konstantinidis, N P; Litke, A M; Taylor, G; Booth, C N; Cartwright, S L; Combley, F; Lehto, M H; Thompson, L F; Böhrer, A; Brandt, S; Grupen, Claus; Ngac, A; Prange, G; Giannini, G; Rothberg, J E; Armstrong, S R; Berkelman, K; Cranmer, K; Ferguson, D P S; Gao, Y; Gonzáles, S; Hayes, O J; Hu, H; Jin, S; Kile, J; McNamara, P A; Nielsen, J; Pan, Y B; Von Wimmersperg-Töller, J H; Wiedenmann, W; Wu, J; Wu Sau Lan; Wu, X; Zobernig, G; Dissertori, G
2003-01-01
The anomalous weak dipole moments of the $\\tau$ lepton are measured in a data sample collected by ALEPH from 1990 to 1995 corresponding to an integrated luminosity of 155~pb$^{-1}$. Tau leptons produced in the reaction $e^+ e^- \\rightarrow \\tau^+ \\tau^-$ at energies close to the ${\\rm Z}$ mass are studied using their semileptonic decays to $\\pi$, $\\rho$, $a_1 \\rightarrow \\pi 2\\pi^0$ or $a_1 \\rightarrow 3 \\pi$. The real and imaginary components of both the anomalous weak magnetic dipole moment and the CP-violating anomalous weak electric dipole moment, $ {\\rm Re}\\,\\mu_{\\tau}$, ${\\rm Im}\\,\\mu_{\\tau}$, ${\\rm Re}\\,d_{\\tau}$ and ${\\rm Im}\\,d_{\\tau}$, are measured simultaneously by means of a likelihood fit built from the full differential cross section. No evidence of new physics is found. The following bounds are obtained (95\\% CL): $|{\\rm Re}\\, \\mu_{\\tau} | < 1.14 \\times 10^{-3}$, $|{\\rm Im}\\, \\mu_{\\tau} | < 2.65 \\times 10^{-3}$, $|{\\rm Re}\\, d_{\\tau} | < 0.91 \\times 10^{-3}$, and $|{\\rm Im}\\, d_{\\tau} ...
Extracting the Omega- electric quadrupole moment from lattice QCD data
Ramalho, G
2010-01-01
The Omega- has an extremely long lifetime, and is the most stable of the baryons with spin 3/2. Therefore the Omega- magnetic moment is very accurately known. Nevertheless, its electric quadrupole moment was never measured, although estimates exist in different formalisms. In principle, lattice QCD simulations provide at present the most appropriate way to estimate the Omega- form factors, as function of the square of the transferred four-momentum, Q2, since it describes baryon systems at the physical mass for the strange quark. However, lattice QCD form factors, and in particular GE2, are determined at finite Q2 only, and the extraction of the electric quadrupole moment, Q_Omega= GE2(0) e/(2 M_Omega), involves an extrapolation of the numerical lattice results. In this work we reproduce the lattice QCD data with a covariant spectator quark model for Omega- which includes a mixture of S and two D states for the relative quark-diquark motion. Once the model is calibrated, it is used to determine Q_Omega. Our pr...
What is the Magnetic Moment of the Electron?
Steinmann, Othmar
Because of infrared effects the charged sectors of QED contain no eigenstates of the mass operator. The electron is therefore not definable as a Wigner particle. There exists no sharp, unambiguous, definition of the notion of a 1-electron state. The assignment of a fixed value of the magnetic moment - or similar quantities - to the electron is therefore at first problematic. It is not clear a priori that such a notion is meaningful. Conventionally this problem is solved by first calculating the desired quantity in an IR-regularized theory and then removing the regularization. If this method yields a finite value, that is considered sufficient proof of its soundness. This is clearly less than satisfactory. Here we propose a more convincing way of defining the intrinsic magnetic moment of the electron, which does not use any regularizations and is not based on an interaction with external fields. A pseudostatic 1-electron state is defined in a phenomenological way. Its magnetic moment, as defined here, does not depend on the unavoidable ambiguities inherent in this definition. The method leads to the same analytic expression as the conventional approach, thus preserving the excellent agreement between theory and experiment.
Extracting the Omega- electric quadrupole moment from lattice QCD data
G. Ramalho, M.T. Pena
2011-03-01
The Omega- has an extremely long lifetime, and is the most stable of the baryons with spin 3/2. Therefore the Omega- magnetic moment is very accurately known. Nevertheless, its electric quadrupole moment was never measured, although estimates exist in different formalisms. In principle, lattice QCD simulations provide at present the most appropriate way to estimate the Omega- form factors, as function of the square of the transferred four-momentum, Q2, since it describes baryon systems at the physical mass for the strange quark. However, lattice QCD form factors, and in particular GE2, are determined at finite Q2 only, and the extraction of the electric quadrupole moment, Q_Omega= GE2(0) e/(2 M_Omega), involves an extrapolation of the numerical lattice results. In this work we reproduce the lattice QCD data with a covariant spectator quark model for Omega- which includes a mixture of S and two D states for the relative quark-diquark motion. Once the model is calibrated, it is used to determine Q_Omega. Our prediction is Q_Omega= (0.96 +/- 0.02)*10^(-2) efm2 [GE2(0)=0.680 +/- 0.012].
Lattice Results for Low Moments of Light Meson Distribution Amplitudes
Arthur, R; Brommel, D; Donnellan, M A; Flynn, J M; Juttner, A; Rae, T D; Sachrajda, C T.C
2011-01-01
As part of the UKQCD and RBC collaborations' N_f=2+1 domain-wall fermion phenomenology programme, we calculate the first two moments of the light-cone distribution amplitudes of the pseudoscalar mesons pion and kaon and the (longitudinally-polarised) vector mesons rho, K-star and phi. We obtain the desired quantities with good precision and are able to discern the expected quark-mass dependence of SU(3)-flavour breaking effects. An important ingredient of the calculation is the nonperturbative renormalisation of lattice operators using the RI'/MOM technique.
Lattice results for low moments of light meson distribution amplitudes
Arthur, R.; Boyle, P.A. [Edinburgh Univ. (United Kingdom). SUPA, School of Physics; Broemmel, D.; Flynn, J.M.; Rae, T.D.; Sachrajda, C.T.C. [Southampton Univ. (United Kingdom). School of Physics and Astronomy; Donnellan, M.A. [NIC/DESY Zeuthen (Germany); Juettner, A. [CERN, Geneva (Switzerland). Physics Dept.
2010-12-15
As part of the UKQCD and RBC collaborations' N{sub f} = 2+1 domain-wall fermion phenomenology programme, we calculate the first two moments of the light-cone distribution amplitudes of the pseudoscalar mesons {pi} and K and the (longitudinally-polarised) vector mesons {rho}, K{sup *} and {phi}. We obtain the desired quantities with good precision and are able to discern the expected quark-mass dependence of SU(3)-flavour breaking effects. An important ingredient of the calculation is the nonperturbative renormalisation of lattice operators using the RI{sup '}/MOM technique. (orig.)
Improving Bending Moment Measurements on Wind Turbine Blades
Post, Nathan L.
2016-03-15
Full-scale fatigue testing of wind turbine blades is conducted using resonance test techniques where the blade plus additional masses is excited at its first resonance frequency to achieve the target loading amplitude. Because there is not a direct relationship between the force applied by an actuator and the bending moment, the blade is instrumented with strain gauges that are calibrated under static loading conditions to determine the sensitivity or relationship between strain and applied moment. Then, during dynamic loading the applied moment is calculated using the strain response of the structure. A similar procedure is also used in the field to measure in-service loads on turbine blades. Because wind turbine blades are complex twisted structures and the deflections are large, there is often significant cross-talk coupling in the sensitivity of strain gauges placed on the structure. Recent work has shown that a sensitivity matrix with nonzero cross terms must be employed to find constant results when a blade is subjected to both flap and lead-lag loading. However, even under controlled laboratory conditions, potential for errors of 3 percent or more in the measured moment exist when using the typical cross-talk matrix approach due to neglecting the influence of large deformations and torsion. This is particularly critical when considering a biaxial load as would be applied on the turbine or during a biaxial fatigue test. This presentation describes these results demonstrating errors made when performing current loads measurement practices on wind turbine blades in the lab and evaluating potential improvements using enhanced cross-talk matrix approaches and calibration procedures.
Origin of Constrained Maximal CP Violation in Flavor Symmetry
He, Hong-Jian; Xu, Xun-Jie
2015-01-01
Current data from neutrino oscillation experiments are in good agreement with $\\delta=-\\pi/2$ and $\\theta_{23} = \\pi/4$. We define the notion of "constrained maximal CP violation" for these features and study their origin in flavor symmetry models. We give various parametrization-independent definitions of constrained maximal CP violation and present a theorem on how it can be generated. This theorem takes advantage of residual symmetries in the neutrino and charged lepton mass matrices, and states that, up to a few exceptions, $\\delta=\\pm\\pi/2$ and $\\theta_{23} = \\pi/4$ are generated when those symmetries are real. The often considered $\\mu$-$\\tau$ reflection symmetry, as well as specific discrete subgroups of $O(3)$, are special case of our theorem.
Phase formation, thermal stability and magnetic moment of cobalt nitride thin films
Gupta, Rachana [Institute of Engineering and Technology DAVV, Khandwa Road, Indore 452 017 (India); Pandey, Nidhi; Tayal, Akhil; Gupta, Mukul, E-mail: mgupta@csr.res.in, E-mail: dr.mukul.gupta@gmail.com [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452 001 (India)
2015-09-15
Cobalt nitride (Co-N) thin films prepared using a reactive magnetron sputtering process are studied in this work. During the thin film deposition process, the relative nitrogen gas flow (R{sub N{sub 2}}) was varied. As R{sub N{sub 2}} increases, Co(N), Co{sub 4}N, Co{sub 3}N and CoN phases are formed. An incremental increase in R{sub N{sub 2}}, after emergence of Co{sub 4}N phase at R{sub N{sub 2}} = 10%, results in a linear increase of the lattice constant (a) of Co{sub 4}N. For R{sub N{sub 2}} = 30%, a maximizes and becomes comparable to its theoretical value. An expansion in a of Co{sub 4}N, results in an enhancement of the magnetic moment, to the extent that it becomes even larger than pure Co. Such larger than pure metal magnetic moment for tetra-metal nitrides (M{sub 4}N) have been theoretically predicted. Incorporation of N atoms in M{sub 4}N configuration results in an expansion of a (relative to pure metal) and enhances the itinerary of conduction band electrons leading to larger than pure metal magnetic moment for M{sub 4}N compounds. Though a higher (than pure Fe) magnetic moment for Fe{sub 4}N thin films has been evidenced experimentally, higher (than pure Co) magnetic moment is evidenced in this work.
Vastus lateralis muscle architecture to estimate knee extension moment of older individuals
Guilherme Auler Brodt
2015-12-01
Full Text Available Abstract The aim of this study was to compare the knee extension moment of older individuals with the muscle moment estimated through a biomechanical model. This was accomplished by using (1 the specific muscle architecture data of individuals, and (2 the generic muscle architecture available in the literature. The muscle force estimate was determined using a model with the muscle architecture from cadavers and the individual vastus lateralis muscle architecture of sixteen older volunteers. For the muscle moment comparison, all of the volunteers performed maximal voluntary isometric contractions (MVIC in five different knee extension position angles. The architectural data was acquired using both resonance and ultrasound imaging. Both estimated muscle moments (generic and individual were higher than the experimental. The architecture of the other vastii may be necessary to make the model more accurate for the older population. Although other factors inherent to ageing, such as co-contractions, fiber type percentage, and passive forces are not considered in the model, they could be responsible for the differences between moments in older people.
Are all maximally entangled states pure?
Cavalcanti, D.; Brandão, F. G. S. L.; Terra Cunha, M. O.
2005-10-01
We study if all maximally entangled states are pure through several entanglement monotones. In the bipartite case, we find that the same conditions which lead to the uniqueness of the entropy of entanglement as a measure of entanglement exclude the existence of maximally mixed entangled states. In the multipartite scenario, our conclusions allow us to generalize the idea of the monogamy of entanglement: we establish the polygamy of entanglement, expressing that if a general state is maximally entangled with respect to some kind of multipartite entanglement, then it is necessarily factorized of any other system.
An ethical justification of profit maximization
Koch, Carsten Allan
2010-01-01
In much of the literature on business ethics and corporate social responsibility, it is more or less taken for granted that attempts to maximize profits are inherently unethical. The purpose of this paper is to investigate whether an ethical argument can be given in support of profit maximizing...... behaviour. It is argued that some form of consequential ethics must be applied, and that both profit seeking and profit maximization can be defended from a rule-consequential point of view. It is noted, however, that the result does not apply unconditionally, but requires that certain form of profit (and...
Robust utility maximization in a discontinuous filtration
Jeanblanc, Monique; Ngoupeyou, Armand
2012-01-01
We study a problem of utility maximization under model uncertainty with information including jumps. We prove first that the value process of the robust stochastic control problem is described by the solution of a quadratic-exponential backward stochastic differential equation with jumps. Then, we establish a dynamic maximum principle for the optimal control of the maximization problem. The characterization of the optimal model and the optimal control (consumption-investment) is given via a forward-backward system which generalizes the result of Duffie and Skiadas (1994) and El Karoui, Peng and Quenez (2001) in the case of maximization of recursive utilities including model with jumps.
Nonadiabatic Induced Dipole Moment by High Intensity Femtosecond Optical Pulses
Koprinkov, I. G.
2006-01-01
Nonadiabtic dressed states and nonadiabatic induced dipole moment in the leading order of nonadiabaticity is proposed. The nonadiabatic induced dipole moment is studied in the femtosecond time domain.
Core Polarization and Tensor Coupling Effects on Magnetic Moments of Hypernuclei
YAO Jiang-Ming; L(U) Hong-Feng; Hillhouse Greg; MENG Jie
2008-01-01
Effects of core polarization and tensor coupling on the magnetic moments in 13Λ C,17Λ O,and 41Λ Ca Λ-hypernuclei are studied by employing the Dirac equation with scalar,vector and tensor potentials.It is found that the effect of core polarization on the magnetic moments is suppressed by Λ tensor coupling.The Λ tensor potential reduces the spin-orbit splitting of PΛ states considerably.However,almost the same magnetic moments are obtained using the hyperon wavefunction obtained via the Dirac equation either with or without the Λ tensor potential in the electromagnetic current vertex.The deviations of magnetic moments for pΛ states from the Schmidt values are found to increase with nuclear mass number.
Measurement of magnetic moment via optical transmission
Heidsieck, Alexandra, E-mail: aheidsieck@tum.de; Schmid, Daniel; Gleich, Bernhard
2016-03-01
The magnetic moment of nanoparticles is an important property for drug targeting and related applications as well as for the simulation thereof. However, the measurement of the magnetic moment of nanoparticles, nanoparticle–virus-complexes or microspheres in solution can be difficult and often yields unsatisfying or incomparable results. To measure the magnetic moment, we designed a custom measurement device including a magnetic set-up to observe nanoparticles indirectly via light transmission in solution. We present a simple, cheap device of manageable size, which can be used in any laboratory as well as a novel evaluation method to determine the magnetic moment of nanoparticles via the change of the optical density of the particle suspension in a well-defined magnetic gradient field. In contrast to many of the established measurement methods, we are able to observe and measure the nanoparticle complexes in their natural state in the respective medium. The nanoparticles move along the magnetic gradient and thereby away from the observation point. Due to this movement, the optical density of the fluid decreases and the transmission increases over time at the measurement location. By comparing the measurement with parametric simulations, we can deduce the magnetic moment from the observed behavior. - Highlights: • Performance of a direct detection camera in the context of off-axis electron holography has been evaluated. • A measurement device to indirectly observe magnetic nanoparticles (MNPs) is described. • MNPs can be observed in the respective medium via light transmission. • An evaluation method to determine the magnetic moment of the MNPs is presented. • The magnetic moment can be deduced from the observed change in optical density.
Boundary effects in welded steel moment connections
Lee, Kyoung-Hyeog
Unprecedented widespread failure of welded moment connections in steel frames caused by the 1994 Northridge and the 1995 Kobe earthquakes have alarmed the engineering communities throughout the world. Welded moment connections in steel frames have been traditionally designed by using the classical beam theory which leads to assumptions that the flanges transfer moment while the web connection primarily resists the shear force. However, this study shows that the magnitude and direction of the principal stresses in the connection region are better approximated by using truss analogy rather than the classical beam theory. Accordingly, both the bending moment and the shear force are transferred across the connection near the beam flanges through diagonal strut action. Thus, the beam flange region of the traditionally designed connection is overloaded. This conclusion explains, to a large extent, the recently observed steel moment connection failures. In this study, detailed finite element analyses were carried out for a representative beam-to-column subassemblage with fully welded connection. The stress distribution in the beam web and flanges in the vicinity of the connection were closely studied. The factors responsible for stress redistribution and concentration were identified by using fundamental principles of mechanics. It was concluded that peak resultant stresses can exceed the values used in simple design calculations by large margins. Using the finite element analysis results and the truss analogy to establish a realistic load path in the connection, a practical and more rational analysis and design procedure was developed. The proposed design procedure and the new connection details were successfully validated through cyclic load testing of a nearly full size specimen. The truss model represented the force transmission around the beam-to-column moment connection region very well. Results of the finite element analyses and the laboratory testing showed
HEALTH INSURANCE: CONTRIBUTIONS AND REIMBURSEMENT MAXIMAL
HR Division
2000-01-01
Affected by both the salary adjustment index on 1.1.2000 and the evolution of the staff members and fellows population, the average reference salary, which is used as an index for fixed contributions and reimbursement maximal, has changed significantly. An adjustment of the amounts of the reimbursement maximal and the fixed contributions is therefore necessary, as from 1 January 2000.Reimbursement maximalThe revised reimbursement maximal will appear on the leaflet summarising the benefits for the year 2000, which will soon be available from the divisional secretariats and from the AUSTRIA office at CERN.Fixed contributionsThe fixed contributions, applicable to some categories of voluntarily insured persons, are set as follows (amounts in CHF for monthly contributions):voluntarily insured member of the personnel, with complete coverage:815,- (was 803,- in 1999)voluntarily insured member of the personnel, with reduced coverage:407,- (was 402,- in 1999)voluntarily insured no longer dependent child:326,- (was 321...
Maximizing throughput by evaluating critical utilization paths
Weeda, P.J.
1991-01-01
Recently the relationship between batch structure, bottleneck machine and maximum throughput has been explored for serial, convergent and divergent process configurations consisting of two machines and three processes. In three of the seven possible configurations a multiple batch structure maximize
Relationship between maximal exercise parameters and individual ...
Relationship between maximal exercise parameters and individual time trial ... It is widely accepted that the ventilatory threshold (VT) is an important ... This study investigated whether the physiological responses during a 20km time trial (TT) ...
In vivo maximal fascicle-shortening velocity during plantar flexion in humans.
Hauraix, Hugo; Nordez, Antoine; Guilhem, Gaël; Rabita, Giuseppe; Dorel, Sylvain
2015-12-01
Interindividual variability in performance of fast movements is commonly explained by a difference in maximal muscle-shortening velocity due to differences in the proportion of fast-twitch fibers. To provide a better understanding of the capacity to generate fast motion, this study aimed to 1) measure for the first time in vivo the maximal fascicle-shortening velocity of human muscle; 2) evaluate the relationship between angular velocity and fascicle-shortening velocity from low to maximal angular velocities; and 3) investigate the influence of musculo-articular features (moment arm, tendinous tissues stiffness, and muscle architecture) on maximal angular velocity. Ultrafast ultrasound images of the gastrocnemius medialis were obtained from 31 participants during maximal isokinetic and light-loaded plantar flexions. A strong linear relationship between fascicle-shortening velocity and angular velocity was reported for all subjects (mean R(2) = 0.97). The maximal shortening velocity (V(Fmax)) obtained during the no-load condition (NLc) ranged between 18.8 and 43.3 cm/s. V(Fmax) values were very close to those of the maximal shortening velocity (V(max)), which was extrapolated from the F-V curve (the Hill model). Angular velocity reached during the NLc was significantly correlated with this V(Fmax) (r = 0.57; P < 0.001). This finding was in agreement with assumptions about the role of muscle fiber type, whereas interindividual comparisons clearly support the fact that other parameters may also contribute to performance during fast movements. Nevertheless, none of the biomechanical features considered in the present study were found to be directly related to the highest angular velocity, highlighting the complexity of the upstream mechanics that lead to maximal-velocity muscle contraction.
Simple technique for maximal thoracic muscle harvest.
Marshall, M Blair; Kaiser, Larry R; Kucharczuk, John C
2004-04-01
We present a modification of technique for standard muscle flap harvest, the placement of cutaneous traction sutures. This technique allows for maximal dissection of the thoracic muscles even through minimal incisions. Through improved exposure and traction, complete dissection of the muscle bed can be performed and the tissue obtained maximized. Because more muscle bulk is obtained with this technique, the need for a second muscle may be prevented.
MAXIMAL POINTS OF A REGULAR TRUTH FUNCTION
Every canonical linearly separable truth function is a regular function, but not every regular truth function is linearly separable. The most...promising method of determining which of the regular truth functions are linearly separable r quires finding their maximal and minimal points. In this...report is developed a quick, systematic method of finding the maximal points of any regular truth function in terms of its arithmetic invariants. (Author)
Maximal Subgroups of Skew Linear Groups
M. Mahdavi-Hezavehi
2002-01-01
Let D be an infinite division algebra of finite dimension over its centre Z(D) = F, and n a positive integer. The structure of maximal subgroups of skew linear groups are investigated. In particular, assume N is a normal subgroup of GLn(D) and M is a maximal subgroup of N containing Z(N). It is shown that if M/Z(N) is finite, then N is central.
Additive Approximation Algorithms for Modularity Maximization
Kawase, Yasushi; Matsui, Tomomi; Miyauchi, Atsushi
2016-01-01
The modularity is a quality function in community detection, which was introduced by Newman and Girvan (2004). Community detection in graphs is now often conducted through modularity maximization: given an undirected graph $G=(V,E)$, we are asked to find a partition $\\mathcal{C}$ of $V$ that maximizes the modularity. Although numerous algorithms have been developed to date, most of them have no theoretical approximation guarantee. Recently, to overcome this issue, the design of modularity max...
Changes in the lower leg moment of inertia due to child's growth.
Lebiedowska, M K; Polisiakiewicz, A
1997-07-01
During growth the size and shape of the child's body changes. It is not clear whether the shape of a body segment changes proportionally in children between the age 5 and 18 years. The aim of this study is to describe these changes for the lower leg moment of inertia in a population of children. The segment moment of inertia describes the mass distribution along the body segment axis. The moment of inertia of the lower leg (including the foot) was measured by the free oscillation technique in 90 healthy children (61 boys and 29 girls) between and 5 and 18 years of age. The period of free oscillation was measured with and without external mass loading. The moment of inertia was calculated using a relation between the mass and the period of oscillation. A two-cylinder model of constant body density was used to predict the moment of inertia. Anthropometric measurements of length of the lower leg and foot, the circumference of the knee, ankle and foot were made. Experimental and model data of the lower leg of inertia were described by a fifth power function of body height. The experimental and model data showed high degree of convergence, confirming that the segment growth of the human body can be treated like the volume growth of a cylindrical object of constant body density. Thus it was experimentally confirmed that the lower leg segment growth between age 5 and 18 years may be considered as proportional.
Maximal Frequent Itemset Generation Using Segmentation Apporach
M.Rajalakshmi
2011-09-01
Full Text Available Finding frequent itemsets in a data source is a fundamental operation behind Association Rule Mining.Generally, many algorithms use either the bottom-up or top-down approaches for finding these frequentitemsets. When the length of frequent itemsets to be found is large, the traditional algorithms find all thefrequent itemsets from 1-length to n-length, which is a difficult process. This problem can be solved bymining only the Maximal Frequent Itemsets (MFS. Maximal Frequent Itemsets are frequent itemsets whichhave no proper frequent superset. Thus, the generation of only maximal frequent itemsets reduces thenumber of itemsets and also time needed for the generation of all frequent itemsets as each maximal itemsetof length m implies the presence of 2m-2 frequent itemsets. Furthermore, mining only maximal frequentitemset is sufficient in many data mining applications like minimal key discovery and theory extraction. Inthis paper, we suggest a novel method for finding the maximal frequent itemset from huge data sourcesusing the concept of segmentation of data source and prioritization of segments. Empirical evaluationshows that this method outperforms various other known methods.
Natural selection and the maximization of fitness.
Birch, Jonathan
2016-08-01
The notion that natural selection is a process of fitness maximization gets a bad press in population genetics, yet in other areas of biology the view that organisms behave as if attempting to maximize their fitness remains widespread. Here I critically appraise the prospects for reconciliation. I first distinguish four varieties of fitness maximization. I then examine two recent developments that may appear to vindicate at least one of these varieties. The first is the 'new' interpretation of Fisher's fundamental theorem of natural selection, on which the theorem is exactly true for any evolving population that satisfies some minimal assumptions. The second is the Formal Darwinism project, which forges links between gene frequency change and optimal strategy choice. In both cases, I argue that the results fail to establish a biologically significant maximization principle. I conclude that it may be a mistake to look for universal maximization principles justified by theory alone. A more promising approach may be to find maximization principles that apply conditionally and to show that the conditions were satisfied in the evolution of particular traits.
Parreno, Assumpta; Tiburzi, Brian C; Wilhelm, Jonas; Chang, Emmanuel; Detmold, William; Orginos, Kostas
2016-01-01
Lattice QCD calculations with background magnetic fields are used to determine the magnetic moments of the octet baryons. Computations are performed at the physical value of the strange quark mass, and two values of the light quark mass, one corresponding to the SU(3) flavor-symmetric point, where the pion mass is ~ 800 MeV, and the other corresponding to a pion mass ~ 450 MeV. The moments are found to exhibit only mild pion-mass dependence when expressed in terms of appropriately chosen magneton units---the natural baryon magneton. This suggests that simple extrapolations can be used to determine magnetic moments at the physical point, and extrapolated results are found to agree with experiment within uncertainties. A curious pattern is revealed among the anomalous baryon magnetic moments which is linked to the constituent quark model, however, careful scrutiny exposes additional features. Relations expected to hold in the large-Nc limit of QCD are studied; and, in one case, the quark model prediction is sig...
Interference phase of mass neutrino in CM space-time
Chen Xia; Wang Yong-Jiu
2009-01-01
In the gravitational field of central mass with electric and magnetic charges and magnetic moment(CM space-time),this paper calculates the interference phase of mass neutrino along geodesic in the radial direction,and discusses the contribution of the electric and magnetic charges and magnetic moment of the central mass to the phase.
Evidence For Intrinsic Magnetic Moments in Black Hole Candidates
Robertson, S L; Robertson, Stanley L.; Leiter, Darryl J.
2002-01-01
We show that the power law part of the quiescent x-ray emissions of neutron stars in low mass x-ray binaries is magnetospheric in origin. It can be very accurately calculated from rates of spin and the $\\sim 10^{3 - 4}$ times brighter luminosity at the transition to the hard spectral state. We establish that the spectral state transition for neutron stars is a magnetospheric propeller effect. We test the hypothesis that the similar spectral state switches and quiescent power law emissions of the black hole candidates might be magnetospheric effects. In the process we derive proposed magnetic moments and rates of spin for them and accurately predict their quiescent luminosities. We discuss other tests of the hypothesis and consider some attractive aspects of a unified magnetospheric model for low mass x-ray binaries. We also consider some of the changes that would be needed for strong-field gravity theories to accomodate intrinsic magnetic moments in collapsed objects.
Moments of nucleon generalized parton distributions from lattice QCD
Alexandrou, C. [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center; Carbonell, J.; Harraud, P.A.; Papinutto, M. [UJF/CNRS/IN2P3, Grenoble (France). Lab. de Physique Subatomique et Cosmologie; Constantinou, M.; Kallidonis, C. [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Guichon, P. [CEA-Saclay, Gif-sur-Yvette (France). IRFU-Service de Physique Nucleaire; Jansen, K. [DESY, Zeuthen (Germany). NIC; Korzec, T. [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Humboldt Univ. Berlin (Germany). Inst. fuer Physik
2011-07-15
We present results on the lower moments of the nucleon generalized parton distributions within lattice QCD using two dynamical flavors of degenerate twisted mass fermions. Our simulations are performed on lattices with three different values of the lattice spacings, namely a=0.089 fm, a=0.070 fm and a=0.056 fm, allowing the investigation of cut-off effects. The volume dependence is examined using simulations on two lattices of spatial length L=2.1 fm and L=2.8 fm. The simulations span pion masses in the range of 260-470 MeV. Our results are renormalized nonperturbatively and the values are given in the MS scheme at a scale {mu}=2 GeV. They are chirally extrapolated to the physical point in order to compare with experiment. The consequences of these results on the spin carried by the quarks in the nucleon are investigated. (orig.)
Neutron electric dipole moment in the minimal supersymmetric standard model
Inui, T; Sakai, N; Sasaki, T; Inui, T; Mumura, Y; Sakai, N; Sasaki, T
1995-01-01
Neutron electric dipole moment (EDM) due to single quark EDM and to the transition EDM is calculated in the minimal supersymmetric standard model. Assuming that the Cabibbo-Kobayashi-Maskawa matrix at the grand unification scale is the only source of CP violation, complex phases are induced in parameters of soft supersymmetry breaking at low energies. Chargino one-loop diagram is found to give the dominant contribution of the order of 10^{-27}\\sim 10^{-29}\\:e\\cdotcm for quark EDM, assuming the light chargino mass and the universal scalar mass to be 50 GeV and 100 GeV, respectively. Therefore the neutron EDM in this class of model is difficult to measure experimentally. Gluino one-loop diagram also contributes due to the flavor changing gluino coupling. The transition EDM is found to give dominant contributions for certain parameter regions.
Moment scaling at the sol-gel transition
Botet, R. [Paris-11 Univ., 91 - Orsay (France). Lab. de Physique des Solides; Ploszajczak, M. [Grand Accelerateur National d`Ions Lourds, 14 - Caen (France)
1998-05-06
Two standard models of sol-gel transition are revisited here from the point of view of their fluctuations in various moments of both the mass-distribution and the gel-mass. Bond-percolation model is an at-equilibrium system and undergoes a static second-order phase transition, while Monte-Carlo Smoluchowski model is an off-equilibrium one and shows a dynamical critical phenomenon. It is shown that the macroscopic quantities can be splitted into the three classes with different scaling properties of their fluctuations, depending on whether they correspond to: (i) non-critical quantities, (ii) critical quantities or to (iii) an order parameter. (author) 15 refs.
Moments of nucleon generalized parton distributions from lattice QCD
Alexandrou, C; Constantinou, M; Harraud, P A; Guichon, P; Jansen, K; Kallidonis, C; Korzec, T; Papinutto, M
2011-01-01
We present results on the lower moments of the nucleon generalized parton distri butions within lattice QCD using two dynamical flavors of degenerate twisted mass fermions. Our simulations are performed on lattices with three different values of the lattice spacings, namely $a=0.089$ fm, $a=0.070$ fm and $a=0.056$ fm, allowing the investigation of cut-off effects. The volume dependence is examined using simulations on two lattices of spatial length $L=2.1$ fm and $L=2.8$ fm. The simulations span pion masses in the range of 260-470 MeV. Our results are renormalized non-perturbatively and the values are given in the $\\bar{\\rm MS}$ scheme at a scale $ \\mu=2$ GeV. They are chirally extrapolated to the physical point in order to compare with experiment. The consequences of these results on the spin carried by the quarks in the nucleon are investigated.
Measurement of the electric dipole moment and magnetic moment anomaly of the muon
Onderwater, CJG
2005-01-01
The experimental precision of the anomalous magnetic moment of the muon has been improved to 0.5 part-per-million by the Brookhaven E821 experiment, similar to the theoretical uncertainty. In the same experiment, a new limit on the electric dipole moment of 2.8 x 10(-19) e-cm (95% CL) was set. The e
Skew t distribution and its moments
Saralees NADARAJAH; Arjun K.GUPTA
2006-01-01
A random variable X is said to have the skew- t distribution if its pdf is f (x) = 2g (x) G (λx), where g (·) and G(·), respectively, denote the pdf and the cdf of the Student's t distribution with degrees of freedom ν. The moments of this distribution appear not to have been studied in detail. In this paper, we derive general expressions for the nth moment of X by considering the cases ν odd and ν even separately. These expressions turn out to involve sums of the Gauss hypergeometric function. We also provide closed form expressions for the moments of X for the particular cases ν = 2, …, 10.
The inverse moment problem for convex polytopes
Gravin, Nick; Pasechnik, Dmitrii; Robins, Sinai
2011-01-01
The goal of this paper is to present a general and novel approach for the reconstruction of any convex d-dimensional polytope P, from knowledge of its moments. In particular, we show that the vertices of an N-vertex polytope in R^d can be reconstructed from the knowledge of O(DN) axial moments (w.r.t. to an unknown polynomial measure od degree D) in d+1 distinct generic directions. Our approach is based on the collection of moment formulas due to Brion, Lawrence, Khovanskii-Pukhikov, and Barvinok that arise in the discrete geometry of polytopes, and what variously known as Prony's method, or Vandermonde factorization of finite rank Hankel matrices.
Vlasov moments, integrable systems and singular solutions
Gibbons, John [Department of Mathematics, Imperial College London, London SW7 2AZ (United Kingdom); Holm, Darryl D. [Department of Mathematics, Imperial College London, London SW7 2AZ (United Kingdom); Computer and Computational Science Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)], E-mail: d.holm@ic.ac.uk; Tronci, Cesare [Department of Mathematics, Imperial College London, London SW7 2AZ (United Kingdom); TERA Foundation for Oncological Hadrontherapy, 11 V. Puccini, Novara 28100 (Italy)
2008-02-11
The Vlasov equation governs the evolution of the single-particle probability distribution function (PDF) for a system of particles interacting without dissipation. Its singular solutions correspond to the individual particle motions. The operation of taking the moments of the Vlasov equation is a Poisson map. The resulting Lie-Poisson Hamiltonian dynamics of the Vlasov moments is found to be integrable is several cases. For example, the dynamics for coasting beams in particle accelerators is associated by a hodograph transformation to the known integrable Benney shallow-water equation. After setting the context, the Letter focuses on geodesic Vlasov moment equations. Continuum closures of these equations at two different orders are found to be integrable systems whose singular solutions characterize the geodesic motion of the individual particles.
Theory of the Muon Anomalous Magnetic Moment
Melnikov, Kirill
2006-01-01
The theory of the muon anomalous magnetic moment is "particle physics in a nutshell" and as such is interesting, exciting and difficult. The current precision of the experimental value for this quantity, improved significantly in the past several years due to experiment E821 at Brookhaven National Laboratory, is so high that a large number of subtle effects not relevant previously, become important for the interpretation of the experimental result. The theory of the muon anomalous magnetic moment is at the cutting edge of current research in particle physics and includes multiloop calculations in both QED and electroweak theory, precision low-energy hadron physics, isospin violations and scattering of light by light. Any deviation between the theoretical prediction and the experimental value might be interpreted as a signal of an as-yet-unknown new physics. This book provides a comprehensive review of the theory of the muon anomalous magnetic moment.
Real object recognition using moment invariants
Muharrem Mercimek; Kayhan Gulez; Tarik Veli Mumcu
2005-12-01
Moments and functions of moments have been extensively employed as invariant global features of images in pattern recognition. In this study, a flexible recognition system that can compute the good features for high classiﬁcation of 3-D real objects is investigated. For object recognition, regardless of orientation, size and position, feature vectors are computed with the help of nonlinear moment invariant functions. Representations of objects using two-dimensional images that are taken from different angles of view are the main features leading us to our objective. After efﬁcient feature extraction, the main focus of this study, the recognition performance of classiﬁers in conjunction with moment–based feature sets, is introduced.
Pulsar braking: Time dependent moment of inertia?
Urbanec, Martin
2017-08-01
Pulsars rotate with extremely stable rotational frequency enabling one to measure its first and second time derivatives. These observed values can be combined to the so-called braking index. However observed values of braking index differ from the theoretical value of 3 corresponding to braking by magnetic dipole radiation being the dominant theoretical model. Such a difference can be explained by contribution of other mechanism like pulsar wind or quadrupole radiation, or by time dependency of magnetic field or moment of inertia. In this presentation we focus on influence of time dependent moment of inertia on the braking index. We will also discuss possible physical models for time-dependence of moment of inertia.
The anomalous magnetic moment of the muon
Jegerlehner, Friedrich
2017-01-01
This research monograph covers extensively the theory of the muon anomalous magnetic moment and provides estimates of the theoretical uncertainties. The muon anomalous magnetic moment is one of the most precisely measured quantities in elementary particle physics and provides one of the most stringent tests of relativistic quantum field theory as a fundamental theoretical framework. It allows for an extremely precise check of the standard model of elementary particles and of its limitations. This book reviews the present state of knowledge of the anomalous magnetic moment a=(g-2)/2 of the muon. Recent experiments at the Brookhaven National Laboratory now reach the unbelievable precision of 0.5 parts per million, improving the accuracy of previous g-2 experiments at CERN by a factor of 14. In addition, quantum electrodynamics and electroweak and hadronic effects are reviewed. Since non-perturbative hadronic effects play a key role for the precision test, their evaluation is described in detail. Perspectives fo...
Nuclear Schiff moment and soft vibrational modes
Zelevinsky, Vladimir; Auerbach, Naftali
2008-01-01
The atomic electric dipole moment (EDM) currently searched by a number of experimental groups requires that both parity and time-reversal invariance be violated. According to current theoretical understanding, the EDM is induced by the nuclear Schiff moment. The enhancement of the Schiff moment by the combination of static quadrupole and octupole deformation was predicted earlier. Here we study a further idea of the possible enhancement in the absence of static deformation but in a nuclear system with soft collective vibrations of two types. Both analytical approximation and numerical solution of the simplified problem confirm the presence of the enhancement. We discuss related aspects of nuclear structure which should be studied beyond mean-field and random phase approximations.
Ohtsubo, T., E-mail: tohtsubo@np.gs.niigata-u.ac.jp; Kawamura, Y.; Ohya, S. [Niigata University, Department of Physics (Japan); Izumikawa, T. [Niigata University, Radioisotope Center (Japan); Nishimura, K. [Toyama University, Faculty of Engineering (Japan); Muto, S. [Neutron Science Laboratory, KEK (Japan); Shinozuka, T. [Tohoku University, Cyclotron and Radioisotope Center (Japan)
2007-11-15
Nuclear magnetic resonances were measured for {sup 48}Sc and {sup 44m}Sc oriented at 8 mK in an Fe host metal. The magnetic hyperfine splitting frequencies at an external magnetic field of 0.2 T were determined to be 63.22(11) MHz and 64.81(1) MHz for {sup 48}Sc and {sup 44m}Sc, respectively. With the known magnetic moment of {mu}({sup 44m}Sc)=+3.88 (1) {mu}{sub N}, the magnetic moment of {sup 48}Sc is deduced as {mu}({sup 44}Sc)=+3.785(12) {mu}{sub N}. The measured magnetic moment of {sup 48}Sc is discussed in terms of the shell model using the effective interactions.
A New Tetrahydrofuran Lignan Diglycoside from Viola tianshanica Maxim
Yan Qin
2013-11-01
Full Text Available A new lignan glycoside, tianshanoside A (1, together with a known phenylpropanoid glycoside, syringin (2 and two known lignan glycosides, picraquassioside C (3, and aketrilignoside B (4, were isolated from the whole plant of Viola tianshanica Maxim. The structure of the new compound was elucidated by extensive NMR (1H, 13C, COSY, HSQC, HMBC and ROESY and high resolution mass spectrometry analysis. The three lignans 1, 3, and 4 did not exhibit significant cytotoxicity against human gastric cancer Ags cells or HepG2 liver cancer cells. This is the first report of the isolation of a lignan skeleton from the genus Viola L.
McGraw, Robert [Atmospheric Sciences Division, Environmental Sciences Department Brookhaven National Laboratory, Upton, NY 11973 (United States)
2007-07-15
Nonlinear transport algorithms designed to reduce numerical diffusion fail to preserve correlations between moments, isotope abundances, etc. when these scalar densities are transported in models as separate tracers. In case of the particle size/composition coordinates of an aerosol, such loss can give rise to unphysical moment sets. New statistical approaches to aerosol dynamics, which involve tracking moments directly, offer highly efficient alternatives to sectional and modal methods for representing aerosols in climate models, but it is essential that moment set integrity be preserved throughout a simulation. In this paper we review the problem and weaknesses of previous attempts at solution, including vector transport - a scheme in which the moments, as internal aerosol coordinates, are transported together with a single lead tracer such as number or mass. A non-negative least squares (NNLS) solution that finally eliminates the problem without requiring modification of the transport algorithm itself is presented. Following each transport step, new moment sets are resolved into sums of previously validated sets with non-negative coefficients using NNLS Transport errors are removed and the now guaranteed-to-be-valid moment sets are ready for passage to the aerosol dynamics module. In addition to moment set validation, the new scheme reduces numerical diffusion during transport and provides greater accuracy for the source apportionment of aerosol mixtures. The method is not limited to moment transport - similar improvements in accuracy are expected using NNLS in conjunction with modal and sectional methods.
Magnetic moment nonconservation in magnetohydrodynamic turbulence models.
Dalena, S; Greco, A; Rappazzo, A F; Mace, R L; Matthaeus, W H
2012-07-01
The fundamental assumptions of the adiabatic theory do not apply in the presence of sharp field gradients or in the presence of well-developed magnetohydrodynamic turbulence. For this reason, in such conditions the magnetic moment μ is no longer expected to be constant. This can influence particle acceleration and have considerable implications in many astrophysical problems. Starting with the resonant interaction between ions and a single parallel propagating electromagnetic wave, we derive expressions for the magnetic moment trapping width Δμ (defined as the half peak-to-peak difference in the particle magnetic moments) and the bounce frequency ω(b). We perform test-particle simulations to investigate magnetic moment behavior when resonance overlapping occurs and during the interaction of a ring-beam particle distribution with a broadband slab spectrum. We find that the changes of magnetic moment and changes of pitch angle are related when the level of magnetic fluctuations is low, δB/B(0) = (10(-3),10(-2)), where B(0) is the constant and uniform background magnetic field. Stochasticity arises for intermediate fluctuation values and its effect on pitch angle is the isotropization of the distribution function f(α). This is a transient regime during which magnetic moment distribution f(μ) exhibits a characteristic one-sided long tail and starts to be influenced by the onset of spatial parallel diffusion, i.e., the variance grows linearly in time as in normal diffusion. With strong fluctuations f(α) becomes completely isotropic, spatial diffusion sets in, and the f(μ) behavior is closely related to the sampling of the varying magnetic field associated with that spatial diffusion.
Laurent polynomial moment problem: a case study
Pakovich, F; Zvonkin, A
2009-01-01
In recent years, the so-called polynomial moment problem, motivated by the classical Poincare center-focus problem, was thoroughly studied, and the answers to the main questions have been found. The study of a similar problem for rational functions is still at its very beginning. In this paper, we make certain progress in this direction; namely, we construct an example of a Laurent polynomial for which the solutions of the corresponding moment problem behave in a significantly more complicated way than it would be possible for a polynomial.
Closed forms and multi-moment maps
Madsen, Thomas Bruun; Swann, Andrew Francis
We extend the notion of multi-moment map to geometries defined by closed forms of arbitrary degree. We give fundamental existence and uniqueness results and discuss a number of essential examples, including geometries related to special holonomy. For forms of degree four, multi-moment maps...... are guaranteed to exist and are unique when the symmetry group is (3, 4)-trivial, meaning that the group is connected and the third and fourth Lie algebra Betti numbers vanish. We give a structural description of some classes of (3, 4)-trivial algebras and provide a number of examples....
Spin and orbital moments in actinide compounds
Lebech, B.; Wulff, M.; Lander, G.H.
1991-01-01
experiments designed to determine the magnetic moments at the actinide and transition-metal sublattice sites in compounds such as UFe2, NpCo2, and PuFe2 and to separate the spin and orbital components at the actinide sites. The results show, indeed, that the ratio of the orbital to spin moment is reduced......The extended spatial distribution of both the transition-metal 3d electrons and the actinide 5f electrons results in a strong interaction between these electron states when the relevant elements are alloyed. A particular interesting feature of this hybridization, which is predicted by single...
Magnetic moment densities in selected UTX compounds
Javorsky, P.; Schweizer, J.; Givord, F.; Boucherle, J.-X.; Andreev, A.V.; Divis, M.; Lelievre-Berna, E.; Sechovsky, V
2004-07-15
We present results of polarized neutron-diffraction studies of magnetization distribution in several isostructural UTX compounds. Besides the uranium magnetic moment, we observe a significant magnetization also on the transition-metal sites and in the interstitial region, close to the X-atom site. The values of the moments induced on the T-atoms in the U-T and T-X basal planes are rather similar for compounds with 3d-metals, UNiGa, UNiAl, and UCoAl, while a difference occurs in UPtAl. Our results are compared with literature data for URhAl and URuAl.
Moment in Peking and Chinese Traditional Culture
杨晶金
2014-01-01
Lin Yutang’s Moment in Peking was a huge success, because he showed the long history of Chinese traditional culture in the book. The era background, character set and the plot of Moment in Peking reflects the significance of Chinese culture in many aspects. The great English masterpiece is a Chinese culture carrier which painted a grand social and historical picture, created a series of vivid images, especially images of traditional Chinese women character. The philosophy of novel is going through the history of space and time tunnel and becoming the main clue of many events in the book.
Time and the Algebraic Theory of Moments
Hiley, Basil J.
2013-01-01
We introduce the notion of an extended moment in time, the duron. This is a region of temporal ambiguity which arises naturally in the nature of process which we take to be basic. We introduce an algebra of process and show how it is related to, but different from, the monoidal category introduced by Abramsky and Coecke. By considering the limit as the duration of the moment approaches the infinitesimal, we obtain a pair of dynamical equations, one expressed in terms of a commutator and the o...
Moment searching algorithm for bioluminescence tomography
Ludong Jin; Yan Wu; Jie Tian; Heyu Huang; Xiaochao Qu
2009-01-01
To avoid the ill-posedness in the inverse problem of bioluminescence tomography, a moment searching algorithm fusing the finite element method (FEM) with the moment concept in theoretical mechanics is developed. In the algorithm, the source's information is mapped to the surface photon flux density by FEM, and the source's position is modified with the feedback through the algorithm of barycenter searching, which makes full use of the position information of the photon flux density on surface. The position is modified in every iterative step and will finally converge to the real source's value theoretically.
Muscle mitochondrial capacity exceeds maximal oxygen delivery in humans
Boushel, Robert Christopher; Gnaiger, Erich; Calbet, Jose A L
2011-01-01
Across a wide range of species and body mass a close matching exists between maximal conductive oxygen delivery and mitochondrial respiratory rate. In this study we investigated in humans how closely in-vivo maximal oxygen consumption (VO(2) max) is matched to state 3 muscle mitochondrial...... respiration. High resolution respirometry was used to quantify mitochondrial respiration from the biopsies of arm and leg muscles while in-vivo arm and leg VO(2) were determined by the Fick method during leg cycling and arm cranking. We hypothesized that muscle mitochondrial respiratory rate exceeds...... that of systemic oxygen delivery. The state 3 mitochondrial respiration of the deltoid muscle (4.3±0.4 mmol o(2)kg(-1) min(-1)) was similar to the in-vivo VO(2) during maximal arm cranking (4.7±0.5 mmol O(2) kg(-1) min(-1)) with 6 kg muscle. In contrast, the mitochondrial state 3 of the quadriceps was 6.9±0.5 mmol...
Dynamics of hydrogen-like atom bounded by maximal acceleration
Friedman, Yaakov
2012-01-01
The existence of a maximal acceleration for massive objects was conjectured by Caianiello 30 years ago based on the Heisenberg uncertainty relations. Many consequences of this hypothesis have been studied, but until now, there has been no evidence that boundedness of the acceleration may lead to quantum behavior. In previous research, we predicted the existence of a universal maximal acceleration and developed a new dynamics for which all admissible solutions have an acceleration bounded by the maximal one. Based on W. K\\"{u}ndig's experiment, as reanalyzed by Kholmetskii et al, we estimated its value to be of the order $10^{19}m/s^2$. We present here a solution of our dynamical equation for a classical hydrogen-like atom and show that this dynamics leads to some aspects of quantum behavior. We show that the position of an electron in a hydrogen-like atom can be described only probabilistically. We also show that in this model, the notion of "center of mass" must be modified. This modification supports the no...
Welfare-maximizing and revenue-maximizing tariffs with a few domestic firms
Bruno Larue; Jean-Philippe Gervais
2002-01-01
In this paper we compare the orthodox optimal tariff formula with the appropriate welfare-maximizing tariff when there are a few producing or importing firms. The welfare-maximizing tariff can be very low, voire negative in some cases, while in others it can even exceed the maximum-revenue tariff. The relationship between the welfare-maximizing tariff and the number of firms need not be monotonically increasing, because the tariff is not strictly used to internalize terms of trade externality...
Variation in the human Achilles tendon moment arm during walking.
Rasske, Kristen; Thelen, Darryl G; Franz, Jason R
2017-02-01
The Achilles tendon (AT) moment arm is an important determinant of ankle moment and power generation during locomotion. Load and depth-dependent variations in the AT moment arm are generally not considered, but may be relevant given the complex triceps surae architecture. We coupled motion analysis and ultrasound imaging to characterize AT moment arms during walking in 10 subjects. Muscle loading during push-off amplified the AT moment arm by 10% relative to heel strike. AT moment arms also varied by 14% over the tendon thickness. In walking, AT moment arms are not strictly dependent on kinematics, but exhibit important load and spatial dependencies.
Maximizing Complementary Quantities by Projective Measurements
M. Souza, Leonardo A.; Bernardes, Nadja K.; Rossi, Romeu
2017-04-01
In this work, we study the so-called quantitative complementarity quantities. We focus in the following physical situation: two qubits ( q A and q B ) are initially in a maximally entangled state. One of them ( q B ) interacts with a N-qubit system ( R). After the interaction, projective measurements are performed on each of the qubits of R, in a basis that is chosen after independent optimization procedures: maximization of the visibility, the concurrence, and the predictability. For a specific maximization procedure, we study in detail how each of the complementary quantities behave, conditioned on the intensity of the coupling between q B and the N qubits. We show that, if the coupling is sufficiently "strong," independent of the maximization procedure, the concurrence tends to decay quickly. Interestingly enough, the behavior of the concurrence in this model is similar to the entanglement dynamics of a two qubit system subjected to a thermal reservoir, despite that we consider finite N. However, the visibility shows a different behavior: its maximization is more efficient for stronger coupling constants. Moreover, we investigate how the distinguishability, or the information stored in different parts of the system, is distributed for different couplings.
Quark ACM with topologically generated gluon mass
Choudhury, Ishita Dutta
2016-01-01
We investigate the effect of a small, gauge-invariant mass of the gluon on the anomalous chromomagnetic moment of quarks (ACM) by perturbative calculations at one loop level. The mass of the gluon is taken to have been generated via a topological mass generation mechanism, in which the gluon acquires a mass through its interaction with an antisymmetric tensor field $B_{\\mu \
H theorem, regularization, and boundary conditions for linearized 13 moment equations.
Struchtrup, Henning; Torrilhon, Manuel
2007-07-06
An H theorem for the linearized Grad 13 moment equations leads to regularizing constitutive equations for higher fluxes and to a complete set of boundary conditions. Solutions for Couette and Poiseuille flows show good agreement with direct simulation Monte Carlo calculations. The Knudsen minimum for the relative mass flow rate is reproduced.
The moment of inertia of bird wings and the inertial power requirement for flapping flight
Berg; Rayner
1995-01-01
The agility and manoeuvrability of a flying animal and the inertial power required to flap the wings are related to the moment of inertia of the wings. The moments of inertia of the wings of 29 bird species and three bat species were determined using wing strip analysis. We also measured wing length, wing span, wing area, wing mass and body mass. A strong correlation (r2=0.997) was found between the moment of inertia and the product of wing mass and the square of wing length. Using this relationship, it was found that all birds that use their wings for underwater flight had a higher than average moment of inertia. Assuming sinusoidal wing movement, the inertial power requirement was found to be proportional to (body mass)0.799, an exponent close to literature values for both metabolic power output and minimum power required for flight. Ignoring wing retraction, a fairly approximate estimate showed that the inertial power required is 1115 % of the minimum flight power. If the kinetic energy of the wings is partly converted into aerodynamic (useful) work at stroke reversal, the power loss due to inertial effects may be smaller.
A Martian Invasion of Teachable Moments for Environmental Science and Related Issues
Cherif, Abour H.; Adams, Gerald E.; Morabito, David; Aron, Robert; Dunning, Jeremy; Gialamas, Stefanos
2010-01-01
The recent missions to Mars have produced a mass of data and information in all forms and have forced the minds of many people world-wide to rethink their own perspectives on life itself. This drama unfolding about 35 million miles from Earth, and digitally on our TV screens, is offering a growing reservoir for teachable moments. The curiosity and…
Active dynamic balancing unit for controlled shaking force and shaking moment balancing
van der Wijk, V.; Herder, Justus Laurens
2010-01-01
For a mechanism with many elements that needs to be shaking-force and shaking-moment balanced with a low addition of mass, a low addition of inertia, and a low addition of complexity, the use of actively computer-controlled balancing elements is promising. With these actively controlled elements the
The significance of moment-of-inertia variation in flight manoeuvres of butterflies.
Lin, T; Zheng, L; Hedrick, T; Mittal, R
2012-12-01
The objective of this study is to understand the role that changes in body moment of inertia might play during flight manoeuvres of insects. High-speed, high-resolution videogrammetry is used to quantify the trajectory and body conformation of Painted Lady butterflies during flight manoeuvres; the 3D kinematics of the centre of masses of the various body parts of the insect is determined experimentally. Measurements of the mass properties of the insect are used to parameterize a simple flight dynamics model of the butterfly. Even though the mass of the flapping wings is small compared to the total mass of the insect, these experiments and subsequent analysis indicate that changes in moment of inertia during flight are large enough to influence the manoeuvres of these insects.
Magnetic Moments of Delta and Omega- baryons with dynamical clover fermions
Aubin, Christopher; Orginos, Konstantinos; Pascalutsa, Vladimir; Vanderhaeghen, Marc
2009-01-01
We calculate the magnetic dipole moment of the Delta(1232) and Omega- baryons with 2+1-flavors of clover fermions on anisotropic lattices using a background magnetic field. This is the first dynamical calculation of these magnetic moments using a background field technique. The calculation for Omega- is done at the physical strange quark mass, with the result in units of the physical nuclear magneton Âµ_(Omega-) = -1.93(8)(12) (where the first error is statistical and the second is systematic) compared to the experimental number: -2.02(5). The Delta has been studied at three unphysical quark masses, corresponding to pion mass 366, 438, and 548 MeV. The pion-mass dependence is compared with the behavior obtained from chiral effective-field theory.
Exploration of Learning Strategies Associated With Aha Learning Moments.
Pilcher, Jobeth W
2016-01-01
Educators recognize aha moments as powerful aspects of learning. Yet limited research has been performed regarding how to promote these learning moments. This article describes an exploratory study of aha learning moments as experienced and described by participants. Findings showed use of visuals, scenarios, storytelling, Socratic questions, and expert explanation led to aha learning moments. The findings provide guidance regarding the types of learning strategies that can be used to promote aha moments.
Posterior moments computed by mixed integration
H.K. van Dijk (Herman); T. Kloek (Teun); C.G.E. Boender
1985-01-01
textabstractA flexible numerical integration method is proposed for the computation of moments of a multivariate posterior density with different tail properties in different directions. The method (called mixed integration) amounts to a combination of classical numerical integration and Monte Carlo
Real Moments of the Restrictive Factor
Andrew Ledoan; Alexandru Zaharescu
2009-09-01
Let be a real number such that 0 < < 1. We establish asymptotic formulas for the weighted real moments $\\sum_{n≤ x}R^(n)(1-n/x)$, where $R(n)=\\prod^k_{v=1}p^{ v-1}_v$ is the Atanassov strong restrictive factor function and $n=\\prod^k_{v=1}p^{ v}_v$ is the prime factorization of .
The isotopic dipole moment of HDO
Assafrao, Denise; Mohallem, Jose R [Laboratorio de Atomos e Moleculas Especiais, Departamento de Fisica, ICEx, Universidade Federal de Minas Gerais, CP 702, 30123-970, Belo Horizonte, MG (Brazil)
2007-03-14
An adiabatic variational approximation is used to study the monodeuterated water molecule, HDO, accounting for the isotopic effect. The isotopic dipole moment, pointing from D to H, is then calculated for the first time, yielding (1.5 {+-} 0.1) x 10{sup -3} Debye, being helpful in the interpretation of experiments. (fast track communication)
Moment of inertia, backbending, and molecular bifurcation.
Tyng, Vivian; Kellman, Michael E
2007-07-28
We predict an anomaly in highly excited bending spectra of acetylene with high vibrational angular momentum. We interpret this in terms of a vibrational shape effect with moment of inertia backbending, induced by a sequence of bifurcations with a transition from "local" to "orthogonal" modes.
Critical moments in police-citizen reconciliation
Stronks, Sara; Adang, Otto M. J.
2015-01-01
Purpose - The purpose of this paper is to analyze the interaction of police and citizen representatives during critical moments in reconciliation processes through a relational model. Design/methodology/approach - Based on 26 in-depth interviews with key actors in three different cases of media-sali
The Doubling Moment: Resurrecting Edgar Allan Poe
Minnick, J. Bradley; Mergil, Fernando
2008-01-01
This article expands upon Jeffrey Wilhelm's and Brian Edmiston's (1998) concept of a doubling of viewpoints by encouraging middle level students to use dramatization to take on multiple perspectives, to pose interpretive questions, and to enhance critical inquiry from inside and outside of texts. The doubling moment is both the activation of…
Expert judgement combination using moment methods
Wisse, Bram [Department of Management Science, University of Strathclyde, Glasgow, Scotland (United Kingdom); TNO Defence, Security and Safety, The Hague (Netherlands)], E-mail: bram.wisse@strath.ac.uk; Bedford, Tim [Department of Management Science, University of Strathclyde, Glasgow, Scotland (United Kingdom)], E-mail: tim.bedford@strath.ac.uk; Quigley, John [Department of Management Science, University of Strathclyde, Glasgow, Scotland (United Kingdom)], E-mail: j.quigley@strath.ac.uk
2008-05-15
Moment methods have been employed in decision analysis, partly to avoid the computational burden that decision models involving continuous probability distributions can suffer from. In the Bayes linear (BL) methodology prior judgements about uncertain quantities are specified using expectation (rather than probability) as the fundamental notion. BL provides a strong foundation for moment methods, rooted in work of De Finetti and Goldstein. The main objective of this paper is to discuss in what way expert assessments of moments can be combined, in a non-Bayesian way, to construct a prior assessment. We show that the linear pool can be justified in an analogous but technically different way to linear pools for probability assessments, and that this linear pool has a very convenient property: a linear pool of experts' assessments of moments is coherent if each of the experts has given coherent assessments. To determine the weights of the linear pool we give a method of performance based weighting analogous to Cooke's classical model and explore its properties. Finally, we compare its performance with the classical model on data gathered in applications of the classical model.
The approach of moments for polynomial equations
M. Laurent (Monique); P. Rostalski
2012-01-01
htmlabstractIn this chapter we present the moment based approach for computing all real solutions of a given system of polynomial equations. This approach builds upon a lifting method for constructing semidefinite relaxations of several nonconvex optimization problems, using sums of squares of
The Doubling Moment: Resurrecting Edgar Allan Poe
Minnick, J. Bradley; Mergil, Fernando
2008-01-01
This article expands upon Jeffrey Wilhelm's and Brian Edmiston's (1998) concept of a doubling of viewpoints by encouraging middle level students to use dramatization to take on multiple perspectives, to pose interpretive questions, and to enhance critical inquiry from inside and outside of texts. The doubling moment is both the activation of…
The Magic Moment: Creating Color Harmony
Bartges, Dan
2009-01-01
If there is a truly magic moment in art class, it must be when a student--of any age--attains a working knowledge of color's core principles. At that point, she or he becomes able to consistently create color harmony in any painting, regardless of the subject matter. From then on, that student gains greater confidence, can paint better pictures…
Avalanche!--Teachable Moments in Outdoor Education
Galloway, Shayne
2005-01-01
Rarely do outdoor educators get the opportunity to safely incorporate an avalanche while the topic of the day is actually avalanche awareness and forecasting. Many similar possibilities exist in the expeditionary context, but even brief excursions may result in incredible learning experiences. These "teachable moments" occur regularly in the…
Moment matrices, border bases and radical computation
Mourrain, B.; Lasserre, J.B.; Laurent, M.; Rostalski, P.; Trebuchet, P.
2011-01-01
In this paper, we describe new methods to compute the radical (resp. real radical) of an ideal, assuming it complex (resp. real) variety is nte. The aim is to combine approaches for solving a system of polynomial equations with dual methods which involve moment matrices and semi-denite programming.
Moment matrices, border bases and radical computation
Mourrain, B.; Lasserre, J.B.; Laurent, M.; Rostalski, P.; Trebuchet, P.
2013-01-01
In this paper, we describe new methods to compute the radical (resp. real radical) of an ideal, assuming it complex (resp. real) variety is nte. The aim is to combine approaches for solving a system of polynomial equations with dual methods which involve moment matrices and semi-denite programming.
Using Aha! Moments to Understand Leadership Theory
Moore, Lori L.; Lewis, Lauren J.
2012-01-01
As Huber (2002) noted, striving to understand how leadership is taught and learned is both a challenge and an opportunity facing leadership educators. This article describes the "Leadership Aha! Moment" assignment used in a leadership theory course to help students recognize the intersection of leadership theories and their daily lives while…
Pedagogical Moments: Affective Sexual Literacies in Film
Clarke, Kyra
2013-01-01
This paper considers three pedagogical moments in the film "Tomorrow, When the War Began" (2010), contemplating the way in which they open a space for conversations about feelings, sexuality and gender. "Tomorrow, When the War Began" follows the plight of 17-year-old Ellie who returns to her rural town from a camping trip with…
Right-handed neutrino magnetic moments
Aparici, Alberto; Santamaria, Arcadi; Wudka, Jose
2009-01-01
We discuss the phenomenology of the most general effective Lagrangian, up to operators of dimension 5, build with standard model fields and interactions including right-handed neutrinos. In particular we find there is a dimension 5 electroweak moment operator of right-handed neutrinos, not discussed previously in the literature, which could have interesting phenomenological consequences.
Polyploidy Induction of Pteroceltis tatarinowii Maxim
Lin ZHANG; Feng WANG; Zhongkui SUN; Cuicui ZHU; Rongwei CHEN
2015-01-01
3%Objective] This study was conducted to obtain tetraploid Pteroceltis tatari-nowi Maxim. with excel ent ornamental traits. [Method] The stem apex growing points of Pteroceltis tatarinowi Maxim. were treated with different concentrations of colchicine solution for different hours to figure out a proper method and obtain poly-ploids. [Result] The most effective induction was obtained by treatment with 0.6%-0.8% colchicine for 72 h with 34.2% mutation rate. Flow cytometry and chromosome observation of the stem apex growing point of P. tatarinowi Maxim. proved that the tetraploid plants were successful y obtained with chromosome number 2n=4x=36. [Conclusion] The result not only fil s the blank of polyploid breeding of P. tatarinowi , but also provides an effective way to broaden the methods of cultivation of fast-growing, high-quality, disease-resilience, new varieties of Pteroceltis.
Quantum theory allows for absolute maximal contextuality
Amaral, Barbara; Cunha, Marcelo Terra; Cabello, Adán
2015-12-01
Contextuality is a fundamental feature of quantum theory and a necessary resource for quantum computation and communication. It is therefore important to investigate how large contextuality can be in quantum theory. Linear contextuality witnesses can be expressed as a sum S of n probabilities, and the independence number α and the Tsirelson-like number ϑ of the corresponding exclusivity graph are, respectively, the maximum of S for noncontextual theories and for the theory under consideration. A theory allows for absolute maximal contextuality if it has scenarios in which ϑ /α approaches n . Here we show that quantum theory allows for absolute maximal contextuality despite what is suggested by the examination of the quantum violations of Bell and noncontextuality inequalities considered in the past. Our proof is not constructive and does not single out explicit scenarios. Nevertheless, we identify scenarios in which quantum theory allows for almost-absolute-maximal contextuality.
The maximal process of nonlinear shot noise
Eliazar, Iddo; Klafter, Joseph
2009-05-01
In the nonlinear shot noise system-model shots’ statistics are governed by general Poisson processes, and shots’ decay-dynamics are governed by general nonlinear differential equations. In this research we consider a nonlinear shot noise system and explore the process tracking, along time, the system’s maximal shot magnitude. This ‘maximal process’ is a stationary Markov process following a decay-surge evolution; it is highly robust, and it is capable of displaying both a wide spectrum of statistical behaviors and a rich variety of random decay-surge sample-path trajectories. A comprehensive analysis of the maximal process is conducted, including its Markovian structure, its decay-surge structure, and its correlation structure. All results are obtained analytically and in closed-form.
Energy Band Calculations for Maximally Even Superlattices
Krantz, Richard; Byrd, Jason
2007-03-01
Superlattices are multiple-well, semiconductor heterostructures that can be described by one-dimensional potential wells separated by potential barriers. We refer to a distribution of wells and barriers based on the theory of maximally even sets as a maximally even superlattice. The prototypical example of a maximally even set is the distribution of white and black keys on a piano keyboard. Black keys may represent wells and the white keys represent barriers. As the number of wells and barriers increase, efficient and stable methods of calculation are necessary to study these structures. We have implemented a finite-element method using the discrete variable representation (FE-DVR) to calculate E versus k for these superlattices. Use of the FE-DVR method greatly reduces the amount of calculation necessary for the eigenvalue problem.
Armstrong, Jeff; Lervik, Anders; Bresme, Fernando
2013-11-27
It has been recently shown that liquid water polarizes as a response to a temperature gradient. This polarization effect can be significant for temperature gradients that can be achieved at micro and nanoscales. In this paper we investigate the dependence of the polarization response of liquid and supercritical water at different thermodynamic conditions using both equilibrium and nonequilibrium molecular dynamics simulations for the extended point charge water model. We find that the thermal polarization features a nonmonotonic behavior with temperature, reaching a maximum response at specific thermodynamic states. We show that the thermal polarization is maximized when the density of states of the heat flux and dipole moment correlation functions feature the strongest overlap. The librational modes of water are shown to play an important role in determining this behavior as well as the heat transport mechanism in water. The librational frequencies show a significant dependence with temperature and pressure. This dependence provides a microscopic mechanism to explain the observed maximization of the thermal-polarization effect. Our work provides new microscopic insights on the mechanism determining the orientation of polar fluids under thermal gradients, as well as new strategies to maximize their orientation by manipulating the dynamic correlations between the heat flux and the sample dipole moment.
Microbial hotspots and hot moments in soil
Kuzyakov, Yakov; Blagodatskaya, Evgenia
2015-04-01
Soils are the most heterogeneous parts of the biosphere, with an extremely high differentiation of properties and processes within nano- to macroscales. The spatial and temporal heterogeneity of input of labile organics by plants creates microbial hotspots over short periods of time - the hot moments. We define microbial hotspots as small soil volumes with much faster process rates and much more intensive interactions compared to the average soil conditions. Such hotspots are found in the rhizosphere, detritusphere, biopores (including drilosphere) and on aggregate surfaces, but hotspots are frequently of mixed origin. Hot moments are short-term events or sequences of events inducing accelerated process rates as compared to the averaged rates. Thus, hotspots and hot moments are defined by dynamic characteristics, i.e. by process rates. For this hotspot concept we extensively reviewed and examined the localization and size of hotspots, spatial distribution and visualization approaches, transport of labile C to and from hotspots, lifetime and process intensities, with a special focus on process rates and microbial activities. The fraction of active microorganisms in hotspots is 2-20 times higher than in the bulk soil, and their specific activities (i.e. respiration, microbial growth, mineralization potential, enzyme activities, RNA/DNA ratio) may also be much higher. The duration of hot moments in the rhizosphere is limited and is controlled by the length of the input of labile organics. It can last a few hours up to a few days. In the detritusphere, however, the duration of hot moments is regulated by the output - by decomposition rates of litter - and lasts for weeks and months. Hot moments induce succession in microbial communities and intense intra- and interspecific competition affecting C use efficiency, microbial growth and turnover. The faster turnover and lower C use efficiency in hotspots counterbalances the high C inputs, leading to the absence of strong
Forces and moments generated by the human arm: Variability and control
Xu, Y; Terekhov, AV; Latash, ML; Zatsiorsky, VM
2012-01-01
This is an exploratory study of the accurate endpoint force vector production by the human arm in isometric conditions. We formulated three common-sense hypotheses and falsified them in the experiment. The subjects (n=10) exerted static forces on the handle in eight directions in a horizontal plane for 25 seconds. The forces were of 4 magnitude levels (10 %, 20%, 30% and 40% of individual MVC). The torsion moment on the handle (grasp moment) was not specified in the instruction. The two force components and the grasp moment were recorded, and the shoulder, elbow, and wrist joint torques were computed. The following main facts were observed: (a) While the grasp moment was not prescribed by the instruction, it was always produced. The moment magnitude and direction depended on the instructed force magnitude and direction. (b) The within-trial angular variability of the exerted force vector (angular precision) did not depend on the target force magnitude (a small negative correlation was observed). (c) Across the target force directions, the variability of the exerted force magnitude and directional variability exhibited opposite trends: In the directions where the variability of force magnitude was maximal, the directional variability was minimal and vice versa. (d) The time profiles of joint torques in the trials were always positively correlated, even for the force directions where flexion torque was produced at one joint and extension torque was produced at the other joint. (e) The correlations between the grasp moment and the wrist torque were negative across the tasks and positive within the individual trials. (f) In static serial kinematic chains, the pattern of the joint torques distribution could not be explained by an optimization cost function additive with respect to the torques. Plans for several future experiments have been suggested. PMID:23080084
Absence of parasympathetic reactivation after maximal exercise.
de Oliveira, Tiago Peçanha; de Alvarenga Mattos, Raphael; da Silva, Rhenan Bartels Ferreira; Rezende, Rafael Andrade; de Lima, Jorge Roberto Perrout
2013-03-01
The ability of the human organism to recover its autonomic balance soon after physical exercise cessation has an important impact on the individual's health status. Although the dynamics of heart rate recovery after maximal exercise has been studied, little is known about heart rate variability after this type of exercise. The aim of this study is to analyse the dynamics of heart rate and heart rate variability recovery after maximal exercise in healthy young men. Fifteen healthy male subjects (21·7 ± 3·4 years; 24·0 ± 2·1 kg m(-2) ) participated in the study. The experimental protocol consisted of an incremental maximal exercise test on a cycle ergometer, until maximal voluntary exhaustion. After the test, recovery R-R intervals were recorded for 5 min. From the absolute differences between peak heart rate values and the heart rate values at 1 and 5 min of the recovery, the heart rate recovery was calculated. Postexercise heart rate variability was analysed from calculations of the SDNN and RMSSD indexes, in 30-s windows (SDNN(30s) and RMSSD(30s) ) throughout recovery. One and 5 min after maximal exercise cessation, the heart rate recovered 34·7 (±6·6) and 75·5 (±6·1) bpm, respectively. With regard to HRV recovery, while the SDNN(30s) index had a slight increase, RMSSD(30s) index remained totally suppressed throughout the recovery, suggesting an absence of vagal modulation reactivation and, possibly, a discrete sympathetic withdrawal. Therefore, it is possible that the main mechanism associated with the fall of HR after maximal exercise is sympathetic withdrawal or a vagal tone restoration without vagal modulation recovery. © 2012 The Authors Clinical Physiology and Functional Imaging © 2012 Scandinavian Society of Clinical Physiology and Nuclear Medicine.
Agnieszka Z Burzynska
Full Text Available Higher cardiorespiratory fitness (CRF and physical activity (PA in old age are associated with greater brain structural and functional integrity, and higher cognitive functioning. However, it is not known how different aspects of lifestyle such as sedentariness, light PA (LI-PA, or moderate-to-vigorous physical activity (MV-PA relate to neural activity in aging. In addition, it is not known whether the effects of PA on brain function differ or overlap with those of CRF. Here, we objectively measured CRF as oxygen consumption during a maximal exercise test and measured PA with an accelerometer worn for 7 days in 100 healthy but low active older adults (aged 60-80 years. We modeled the relationships between CRF, PA, and brain functional integrity using multivariate partial least squares analysis. As an index of functional brain integrity we used spontaneous moment-to-moment variability in the blood oxygenation level-dependent signal (SDBOLD, known to be associated with better cognitive functioning in aging. We found that older adults who engaged more in LI-PA and MV-PA had greater SDBOLD in brain regions that play a role in integrating segregated functional domains in the brain and benefit from greater CRF or PA, such as precuneus, hippocampus, medial and lateral prefrontal, and temporal cortices. Our results suggest that engaging in higher intensity PA may have protective effects on neural processing in aging. Finally, we demonstrated that older adults with greater overall WM microstructure were those showing more LI-PA and MV-PA and greater SDBOLD. We conclude that SDBOLD is a promising correlate of functional brain health in aging. Future analyses will evaluate whether SDBOLD is modifiable with interventions aimed to increase PA and CRF in older adults.
Maximal atmospheric neutrino mixing in an SU(5) model
Grimus, W.; Lavoura, L.
2003-05-01
We show that maximal atmospheric and large solar neutrino mixing can be implemented in SU(5) gauge theories, by making use of the U(1) F symmetry associated with a suitably defined family number F, together with a Z2 symmetry which does not commute with F. U(1) F is softly broken by the mass terms of the right-handed neutrino singlets, which are responsible for the seesaw mechanism; in additio n, U(1) F is also spontaneously broken at the electroweak scale. In our scenario, lepton mixing stems exclusively from the right-handed-neutrino Majorana mass matrix, whereas the CKM matrix originates solely in the up-type-quark sector. We show that, despite the non-supersymmetric character of our model, unification of the gauge couplings can be achieved at a scale 1016 GeV particula r solution to this problem which yields results almost identical to the ones of the minimal supersymmetric standard model.
Moment tensors of a dislocation in a porous medium
Wang, Zhi; Hu, Hengshan
2016-06-01
A dislocation can be represented by a moment tensor for calculating seismic waves. However, the moment tensor expression was derived in an elastic medium and cannot completely describe a dislocation in a porous medium. In this paper, effective moment tensors of a dislocation in a porous medium are derived. It is found that the dislocation is equivalent to two independent moment tensors, i.e., the bulk moment tensor acting on the bulk of the porous medium and the isotropic fluid moment tensor acting on the pore fluid. Both of them are caused by the solid dislocation as well as the fluid-solid relative motion corresponding to fluid injection towards the surrounding rocks (or fluid outflow) through the fault plane. For a shear dislocation, the fluid moment tensor is zero, and the dislocation is equivalent to a double couple acting on the bulk; for an opening dislocation or fluid injection, the two moment tensors are needed to describe the source. The fluid moment tensor only affects the radiated compressional waves. By calculating the ratio of the radiation fields generated by unit fluid moment tensor and bulk moment tensor, it is found that the fast compressional wave radiated by the bulk moment tensor is much stronger than that radiated by the fluid moment tensor, while the slow compressional wave radiated by the fluid moment tensor is several times stronger than that radiated by the bulk moment tensor.
Maximizing band gaps in plate structures
Halkjær, Søren; Sigmund, Ole; Jensen, Jakob Søndergaard
2006-01-01
Band gaps, i.e., frequency ranges in which waves cannot propagate, can be found in elastic structures for which there is a certain periodic modulation of the material properties or structure. In this paper, we maximize the band gap size for bending waves in a Mindlin plate. We analyze an infinite...... periodic plate using Bloch theory, which conveniently reduces the maximization problem to that of a single base cell. Secondly, we construct a finite periodic plate using a number of the optimized base cells in a postprocessed version. The dynamic properties of the finite plate are investigated...
Maximal and Minimal Congruences on Some Semigroups
Jintana SANWONG; Boorapa SINGHA; R.P.SULLIVAN
2009-01-01
In 2006,Sanwong and Sullivan described the maximal congruences on the semigroup N consisting of all non-negative integers under standard multiplication,and on the semigroup T(X) consisting of all total transformations of an infinite set X under composition. Here,we determine all maximal congruences on the semigroup Zn under multiplication modulo n. And,when Y X,we do the same for the semigroup T(X,Y) consisting of all elements of T(X) whose range is contained in Y. We also characterise the minimal congruences on T(X,Y).
Maximizing oil yields may not optimize economics
1987-03-01
The Los Alamos National Laboratory has used the ASPEN computer code to calculate the economics of different hydroretorting conditions. When the oil yield was maximized and a oil shale plant designed around this process, the costs turned out much higher than expected. However, calculations based on runs of less than maximum yields showed lower cost estimates. It is recommended that future efforts should be concentrated on minimizing production costs rather than maximizing yields. An oil shale plant has been designed around minimum production cost, but has not been able to be tested experimentally.
Maximal Inequalities for Dependent Random Variables
Hoffmann-Jorgensen, Jorgen
2016-01-01
Maximal inequalities play a crucial role in many probabilistic limit theorem; for instance, the law of large numbers, the law of the iterated logarithm, the martingale limit theorem and the central limit theorem. Let X-1, X-2,... be random variables with partial sums S-k = X-1 + ... + X-k. Then a......Maximal inequalities play a crucial role in many probabilistic limit theorem; for instance, the law of large numbers, the law of the iterated logarithm, the martingale limit theorem and the central limit theorem. Let X-1, X-2,... be random variables with partial sums S-k = X-1 + ... + X...
Singularity Structure of Maximally Supersymmetric Scattering Amplitudes
Arkani-Hamed, Nima; Bourjaily, Jacob L.; Cachazo, Freddy
2014-01-01
We present evidence that loop amplitudes in maximally supersymmetric (N=4) Yang-Mills theory (SYM) beyond the planar limit share some of the remarkable structures of the planar theory. In particular, we show that through two loops, the four-particle amplitude in full N=4 SYM has only logarithmic ...... singularities and is free of any poles at infinity—properties closely related to uniform transcendentality and the UV finiteness of the theory. We also briefly comment on implications for maximal (N=8) supergravity theory (SUGRA)....
Magnetic moment and electric dipole moment of the {tau}-lepton
Gutierrez-Rodriguez, A [Facultad de Fisica, Universidad Autonoma de Zacatecas, Apartado Postal C-580, 98060 Zacatecas, Zacatecas (Mexico); Hernandez-Ruiz, M A [Facultad de Ciencias Quimicas, Universidad Autonoma de Zacatecas, Codigo Postal 98600 Zacatecas, Zacatecas (Mexico); Luis-Noriega, L N [Facultad de Fisica, Universidad Autonoma de Zacatecas, Apartado Postal C-580, 98060 Zacatecas, Zacatecas (Mexico)
2006-05-15
Limits on the anomalous magnetic moment and the electric dipole moment of the {tau} lepton are calculated through the reaction e{sup +}e{sup -} {yields} {tau}{sup +}{tau}{sup -} {gamma} at the Z{sub 1}-pole and in the framework of a left-right symmetric model. The results are based on the recent data reported by the L3 Collaboration at CERN LEP. Due to the stringent limit of the model mixing angle {phi}, the effect of this angle on the dipole moments is quite small.
A non-standard CP transformation leading to maximal atmospheric neutrino mixing
Grimus, Walter; Lavoura, Luis
2004-01-15
We discuss a neutrino mass matrix M{sub {nu}} originally found by Babu, Ma, and Valle (BMV) and show that this mass matrix can be characterized by a simple algebraic relation. From this relation it follows that atmospheric neutrino mixing is exactly maximal while at the same time an arbitrary mixing angle {theta}{sub 13} of the lepton mixing matrix U is allowed and--in the usual phase convention--CP violation in mixing is maximal; moreover, neither the neutrino mass spectrum nor the solar mixing angle are restricted. We put forward a seesaw extension of the Standard Model, with three right-handed neutrinos and three Higgs doublets, where the family lepton numbers are softly broken by the Majorana mass terms of the right-handed neutrino singlets and the BMV mass matrix results from a non-standard CP symmetry.
Cycle-maximal triangle-free graphs
Durocher, Stephane; Gunderson, David S.; Li, Pak Ching;
2015-01-01
Abstract We conjecture that the balanced complete bipartite graph K ⌊ n / 2 ⌋ , ⌈ n / 2 ⌉ contains more cycles than any other n -vertex triangle-free graph, and we make some progress toward proving this. We give equivalent conditions for cycle-maximal triangle-free graphs; show bounds...
Gradient dynamics and entropy production maximization
Janečka, Adam
2016-01-01
Gradient dynamics describes irreversible evolution by means of a dissipation potential, which leads to several advantageous features like Maxwell--Onsager relations, distinguishing between thermodynamic forces and fluxes or geometrical interpretation of the dynamics. Entropy production maximization is a powerful tool for predicting constitutive relations in engineering. In this paper, both approaches are compared and their shortcomings and advantages are discussed.
Robust Utility Maximization Under Convex Portfolio Constraints
Matoussi, Anis, E-mail: anis.matoussi@univ-lemans.fr [Université du Maine, Risk and Insurance institut of Le Mans Laboratoire Manceau de Mathématiques (France); Mezghani, Hanen, E-mail: hanen.mezghani@lamsin.rnu.tn; Mnif, Mohamed, E-mail: mohamed.mnif@enit.rnu.tn [University of Tunis El Manar, Laboratoire de Modélisation Mathématique et Numérique dans les Sciences de l’Ingénieur, ENIT (Tunisia)
2015-04-15
We study a robust maximization problem from terminal wealth and consumption under a convex constraints on the portfolio. We state the existence and the uniqueness of the consumption–investment strategy by studying the associated quadratic backward stochastic differential equation. We characterize the optimal control by using the duality method and deriving a dynamic maximum principle.
Maximizing the Motivated Mind for Emergent Giftedness.
Rea, Dan
2001-01-01
This article explains how the theory of the motivated mind conceptualizes the productive interaction of intelligence, creativity, and achievement motivation and how this theory can help educators to maximize students' emergent potential for giftedness. It discusses the integration of cold-order thinking and hot-chaotic thinking into fluid-adaptive…
The Winning Edge: Maximizing Success in College.
Schmitt, David E.
This book offers college students ideas on how to maximize their success in college by examining the personal management techniques a student needs to succeed. Chapters are as follows: "Getting and Staying Motivated"; "Setting Goals and Tapping Your Resources"; "Conquering Time"; "Think Yourself to College Success"; "Understanding and Remembering…
MAXIMAL ELEMENTS AND EQUILIBRIUM OF ABSTRACT ECONOMY
刘心歌; 蔡海涛
2001-01-01
An existence theorem of maximal elements for a new type of preference correspondences which are Qθ-majorized is given. Then some existence theorems of equilibrium for abstract economy and qualitative game in which the constraint or preference correspondences are Qθ-majorized are obtained in locally convex topological vector spaces.
DNA solution of the maximal clique problem.
Ouyang, Q; Kaplan, P D; Liu, S; Libchaber, A
1997-10-17
The maximal clique problem has been solved by means of molecular biology techniques. A pool of DNA molecules corresponding to the total ensemble of six-vertex cliques was built, followed by a series of selection processes. The algorithm is highly parallel and has satisfactory fidelity. This work represents further evidence for the ability of DNA computing to solve NP-complete search problems.
Maximal workload capacity on moving platforms
Heus, R.; Wertheim, A.H.
1996-01-01
Physical tasks on a moving platform required more energy than the same tasks on a non-moving platform. In this study the maximum aerobic performance (defined as V_O2max) of people working on a moving floor was established compared to the maximal aerobic performance on a non-moving floor. The main
Maximal workload capacity on moving platforms
Heus, R.; Wertheim, A.H.
1996-01-01
Physical tasks on a moving platform required more energy than the same tasks on a non-moving platform. In this study the maximum aerobic performance (defined as V_O2max) of people working on a moving floor was established compared to the maximal aerobic performance on a non-moving floor. The main qu
Maximizing Resource Utilization in Video Streaming Systems
Alsmirat, Mohammad Abdullah
2013-01-01
Video streaming has recently grown dramatically in popularity over the Internet, Cable TV, and wire-less networks. Because of the resource demanding nature of video streaming applications, maximizing resource utilization in any video streaming system is a key factor to increase the scalability and decrease the cost of the system. Resources to…
Maximizing throughput in an automated test system
朱君
2007-01-01
@@ Overview This guide is collection of whitepapers designed to help you develop test systems that lower your cost, increase your test throughput, and can scale with future requirements. This whitepaper provides strategies for maximizing system throughput. To download the complete developers guide (120 pages), visit ni. com/automatedtest.
The gaugings of maximal D=6 supergravity
Bergshoeff, E.; Samtleben, H.; Sezgin, E.
2008-01-01
We construct the most general gaugings of the maximal D = 6 supergravity. The theory is ( 2, 2) supersymmetric, and possesses an on-shell SO( 5, 5) duality symmetry which plays a key role in determining its couplings. The field content includes 16 vector fields that carry a chiral spinor representat
WEIGHTED BOUNDEDNESS OF A ROUGH MAXIMAL OPERATOR
无
2000-01-01
In this note the authors give the weighted Lp-boundedness fora class of maximal singular integral operators with rough kernel.The result in this note is an improvement and extension ofthe result obtained by Chen and Lin in 1990.
Maximizing the Range of a Projectile.
Brown, Ronald A.
1992-01-01
Discusses solutions to the problem of maximizing the range of a projectile. Presents three references that solve the problem with and without the use of calculus. Offers a fourth solution suitable for introductory physics courses that relies more on trigonometry and the geometry of the problem. (MDH)
Ehrenfest's Lottery--Time and Entropy Maximization
Ashbaugh, Henry S.
2010-01-01
Successful teaching of the Second Law of Thermodynamics suffers from limited simple examples linking equilibrium to entropy maximization. I describe a thought experiment connecting entropy to a lottery that mixes marbles amongst a collection of urns. This mixing obeys diffusion-like dynamics. Equilibrium is achieved when the marble distribution is…
Testing maximality in muon neutrino flavor mixing
Choubey, S; Choubey, Sandhya; Roy, Probir
2003-01-01
The small difference between the survival probabilities of muon neutrino and antineutrino beams, traveling through earth matter in a long baseline experiment such as MINOS, is shown to be an important measure of any possible deviation from maximality in the flavor mixing of those states.
Average utility maximization: A preference foundation
A.V. Kothiyal (Amit); V. Spinu (Vitalie); P.P. Wakker (Peter)
2014-01-01
textabstractThis paper provides necessary and sufficient preference conditions for average utility maximization over sequences of variable length. We obtain full generality by using a new algebraic technique that exploits the richness structure naturally provided by the variable length of the sequen
On the Hardy-Littlewood maximal theorem
Shinji Yamashita
1982-01-01
Full Text Available The Hardy-Littlewood maximal theorem is extended to functions of class PL in the sense of E. F. Beckenbach and T. Radó, with a more precise expression of the absolute constant in the inequality. As applications we deduce some results on hyperbolic Hardy classes in terms of the non-Euclidean hyperbolic distance in the unit disk.
Maximal Cartel Pricing and Leniency Programs
Houba, H.E.D.; Motchenkova, E.; Wen, Q.
2008-01-01
For a general class of oligopoly models with price competition, we analyze the impact of ex-ante leniency programs in antitrust regulation on the endogenous maximal-sustainable cartel price. This impact depends upon industry characteristics including its cartel culture. Our analysis disentangles the
How to Generate Good Profit Maximization Problems
Davis, Lewis
2014-01-01
In this article, the author considers the merits of two classes of profit maximization problems: those involving perfectly competitive firms with quadratic and cubic cost functions. While relatively easy to develop and solve, problems based on quadratic cost functions are too simple to address a number of important issues, such as the use of…
Ehrenfest's Lottery--Time and Entropy Maximization
Ashbaugh, Henry S.
2010-01-01
Successful teaching of the Second Law of Thermodynamics suffers from limited simple examples linking equilibrium to entropy maximization. I describe a thought experiment connecting entropy to a lottery that mixes marbles amongst a collection of urns. This mixing obeys diffusion-like dynamics. Equilibrium is achieved when the marble distribution is…
Maximally entangled mixed states made easy
Aiello, A; Voigt, D; Woerdman, J P
2006-01-01
We show that, contrarily to a recent claim [M. Ziman and V. Bu\\v{z}ek, Phys. Rev. A. \\textbf{72}, 052325 (2005)], it is possible to achieve maximally entangled mixed states of two qubits from the singlet state via the action of local nonunital quantum channels. Moreover, we present a simple, feasible linear optical implementation of one of such channels.
Maximizing Resource Utilization in Video Streaming Systems
Alsmirat, Mohammad Abdullah
2013-01-01
Video streaming has recently grown dramatically in popularity over the Internet, Cable TV, and wire-less networks. Because of the resource demanding nature of video streaming applications, maximizing resource utilization in any video streaming system is a key factor to increase the scalability and decrease the cost of the system. Resources to…
Maximizing scientific knowledge from randomized clinical trials
Gustafsson, Finn; Atar, Dan; Pitt, Bertram
2010-01-01
Trialists have an ethical and financial responsibility to plan and conduct clinical trials in a manner that will maximize the scientific knowledge gained from the trial. However, the amount of scientific information generated by randomized clinical trials in cardiovascular medicine is highly...
Maximal Heat Generation in Nanoscale Systems
ZHOU Li-Ling; LI Shu-Shen; ZENG Zhao-Yang
2009-01-01
We investigate the heat generation in a nanoscale system coupled to normal leads and find that it is maximal when the average occupation of the electrons in the nanoscale system is 0.5,no matter what mechanism induces the heat generation.
Understanding violations of Gricean maxims in preschoolers and adults.
Okanda, Mako; Asada, Kosuke; Moriguchi, Yusuke; Itakura, Shoji
2015-01-01
This study used a revised Conversational Violations Test to examine Gricean maxim violations in 4- to 6-year-old Japanese children and adults. Participants' understanding of the following maxims was assessed: be informative (first maxim of quantity), avoid redundancy (second maxim of quantity), be truthful (maxim of quality), be relevant (maxim of relation), avoid ambiguity (second maxim of manner), and be polite (maxim of politeness). Sensitivity to violations of Gricean maxims increased with age: 4-year-olds' understanding of maxims was near chance, 5-year-olds understood some maxims (first maxim of quantity and maxims of quality, relation, and manner), and 6-year-olds and adults understood all maxims. Preschoolers acquired the maxim of relation first and had the greatest difficulty understanding the second maxim of quantity. Children and adults differed in their comprehension of the maxim of politeness. The development of the pragmatic understanding of Gricean maxims and implications for the construction of developmental tasks from early childhood to adulthood are discussed.
Understanding Violations of Gricean Maxims in Preschoolers and Adults
Mako eOkanda
2015-07-01
Full Text Available This study used a revised Conversational Violations Test to examine Gricean maxim violations in 4- to 6-year-old Japanese children and adults. Participants’ understanding of the following maxims was assessed: be informative (first maxim of quantity, avoid redundancy (second maxim of quantity, be truthful (maxim of quality, be relevant (maxim of relation, avoid ambiguity (second maxim of manner, and be polite (maxim of politeness. Sensitivity to violations of Gricean maxims increased with age: 4-year-olds’ understanding of maxims was near chance, 5-year-olds understood some maxims (first maxim of quantity and maxims of quality, relation, and manner, and 6-year-olds and adults understood all maxims. Preschoolers acquired the maxim of relation first and had the greatest difficulty understanding the second maxim of quantity. Children and adults differed in their comprehension of the maxim of politeness. The development of the pragmatic understanding of Gricean maxims and implications for the construction of developmental tasks from early childhood to adulthood are discussed.
Neutron Electric Dipole Moment in Two Higgs Doublet Model
Hayashi, T; Matsuda, M; Tanimoto, M; Hayashi, Tkemi; Koide, Yoshio; Matsuda, Masahisa; Tanimoto, Morimitsu
1994-01-01
We study the effect of the "chromo-electric" dipole moment on the electric dipole moment(EDM) of the neutron in the two Higgs doublet model. We systematically investigate the Weinberg's operator $O_{3g}=GG\\t G$ and the operator $O_{qg}=\\bar q\\sigma\\t Gq$, in the cases of $\\tan\\b\\gg 1$, $\\tan\\b\\ll 1$ and $\\tan\\b\\simeq 1$. It is shown that $O_{sg}$ gives the main contribution to the neutron EDM compared to the other operators, and also that the contributions of $O_{ug}$ and $O_{3g}$ cancel out each other. It is pointed out that the inclusion of second lightest neutral Higgs scalar adding to the lightest one is of essential importance to estimate the neutron EDM. The neutron EDM is considerably reduced due to the destructive contribution with each other if the mass difference of the two Higgs scalars is of the order $O(50\\G)$.
Muon Anomalous Magnetic Moment in a Supersymmetric U(1)' Model
Barger, V; Langacker, P; Lee, H S; Barger, Vernon; Kao, Chung; Langacker, Paul; Lee, Hye-Sung
2005-01-01
We study the muon anomalous magnetic moment a_\\mu = (g_\\mu - 2)/2 in a supersymmetric U(1)' model. The neutralino sector has extra components from the superpartners of the U(1)' gauge boson and the extra Higgs singlets that break the U(1)' symmetry. The theoretical maximum bound on the lightest neutralino mass is much smaller than that of the Minimal Supersymmetric Standard Model (MSSM) because of the mixing pattern of the extra components. In a U(1)' model where the U(1)' symmetry is broken by a secluded sector (the S-model), tan\\beta is required to be < 3 to have realistic electroweak symmetry breaking. These facts suggest that the a_\\mu prediction may be meaningfully different from that of the MSSM. We evaluate and compare the muon anomalous magnetic moment in this model and the MSSM and discuss the constraints on tan\\beta and relevant soft breaking terms. There are regions of the parameter space that can explain the experimental deviation of a_\\mu from the Standard Model calculation and yield an accept...
Kurz, Alexander; Liu, Tao; Marquard, Peter; Steinhauser, Matthias [Institut fuer Theoretische Teilchenphysik, Karlsruhe (Germany)
2013-07-01
We present results for the QED contribution from a heavy lepton loop to the anomalous magnetic moment of the muon and the electron. Exploiting the strong hierarchy between the tau, muon and electron masses (m{sub τ} >>m{sub μ} >>m{sub e}), we use the method of asymptotic expansion which leads to on-shell and vacuum integrals up to three and four loops, respectively. Analytic results are presented up to four loops for the muon anomalous moment involving virtual τ-lepton loops and for the electron magnetic moment involving τ- and μ-lepton loops.
Gouvêa, André de; Shalgar, Shashank, E-mail: degouvea@northwestern.edu, E-mail: shashank@northwestern.edu [Department of Physics and Astronomy, Northwestern University, Evanston IL 60208-3112 (United States)
2013-04-01
We demonstrate the non-negligible effect of transition magnetic moments on three-flavor collective oscillations of Majorana neutrinos in the core of type-II supernovae, within the single-angle approximation. We argue that data from a galactic supernova in conjunction with terrestrial experiments can potentially give us clues about the non-zero nature of neutrino transition magnetic moments if these are Majorana fermions, even if their values are as small as those predicted by the Standard Model augmented by nonzero neutrino Majorana masses.
First Measurement of the Atomic Electric Dipole Moment of (225)Ra.
Parker, R H; Dietrich, M R; Kalita, M R; Lemke, N D; Bailey, K G; Bishof, M; Greene, J P; Holt, R J; Korsch, W; Lu, Z-T; Mueller, P; O'Connor, T P; Singh, J T
2015-06-12
The radioactive radium-225 ((225)Ra) atom is a favorable case to search for a permanent electric dipole moment. Because of its strong nuclear octupole deformation and large atomic mass, (225)Ra is particularly sensitive to interactions in the nuclear medium that violate both time-reversal symmetry and parity. We have developed a cold-atom technique to study the spin precession of (225)Ra atoms held in an optical dipole trap, and demonstrated the principle of this method by completing the first measurement of its atomic electric dipole moment, reaching an upper limit of |d((225)Ra)|<5.0×10(-22) e cm (95% confidence).
Supernova neutrino signals by liquid Argon detector and neutrino magnetic moment
Yoshida, Takashi; Kimura, Keiichi; Kawagoe, Shio; Kajino, Toshitaka; Yokomakura, Hidekazu
2011-01-01
We study electron-neutrino and electron-antineutrino signals from a supernova with strong magnetic field detected by a 100 kton liquid Ar detector. The change of neutrino flavors by resonant spin-flavor conversions, matter effects, and neutrino self-interactions are taken into account. Different neutrino signals, characterized by neutronization burst event and the total event numbers of electron-neutrinos and electron-antineutrinos, are expected with different neutrino oscillation parameters and neutrino magnetic moment. Observations of supernova neutrino signals by a 100 kton liquid Ar detector would constrain oscillation parameters as well as neutrino magnetic moment in either normal and inverted mass hierarchies.
Steiner, Andrew W; Fattoyev, Farrukh J; Newton, William G
2014-01-01
We perform a systematic assessment of models for the equation of state of dense matter in the context of recent neutron star mass and radius measurements to obtain a broad picture of the structure of neutron stars. We demonstrate that currently available neutron star mass and radius measurements provide strong constraints on moments of inertia, tidal deformabilities, and crust thicknesses. A measurement of the moment of inertia of PSR J0737-3039A with 10% error, without any other information from observations, will constrain the EOS over a range of densities to within 50-60%. We find tidal deformabilities are less than 2.6$\\times 10^{36}$ g cm$^{2}$ s$^{2}$ to 95% confidence, except for neutron stars less massive than 1.4 solar masses. The crustal fraction of the moment of inertia can be as large as 10% for a 1.4 M$_{\\odot}$ permitting crusts to have a large enough moment of inertia reservoir to explain glitches in the Vela pulsar even with a large amount of superfluid entrainment. Finally, due to the uncerta...
Measurement of the First Hadronic Spectral Moment from Semileptonic B Decays
Aubert, Bernard; Gaillard, Jean-Marc; Hicheur, A; Karyotakis, Yu; Lees, J P; Robbe, P; Tisserand, V; Zghiche, A; Palano, A; Pompili, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Borgland, A W; Breon, A B; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Gill, M S; Gritsan, A V; Groysman, Y; Jacobsen, R G; Kadel, R W; Kadyk, J; Kerth, L T; Kolomensky, Yu G; Kral, J F; Le Clerc, C; Levi, M E; Lynch, G; Mir, L M; Oddone, P J; Orimoto, T J; Pripstein, M; Roe, N A; Romosan, A; Ronan, Michael T; Shelkov, V G; Telnov, A V; Wenzel, W A; Harrison, T J; Hawkes, C M; Knowles, D J; O'Neale, S W; Penny, R C; Watson, A T; Watson, N K; Deppermann, T; Goetzen, K; Koch, H; Lewandowski, B; Peters, K; Schmücker, H; Steinke, M; Barlow, N R; Bhimji, W; Boyd, J T; Chevalier, N; Clark, P J; Cottingham, W N; MacKay, C; Wilson, F F; Abe, K; Hearty, C; Mattison, T S; McKenna, J A; Thiessen, D; Jolly, S; McKemey, A K; Blinov, V E; Bukin, A D; Buzykaev, A R; Golubev, V B; Ivanchenko, V N; Korol, A A; Kravchenko, E A; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Yushkov, A N; Best, D; Chao, M; Kirkby, D; Lankford, A J; Mandelkern, M A; McMahon, S; Stoker, D P; Buchanan, C; Chun, S; Hadavand, H K; Hill, E J; MacFarlane, D B; Paar, H P; Prell, S; Rahatlou, S; Raven, G; Schwanke, U; Sharma, V; Berryhill, J W; Campagnari, C; Dahmes, B; Hart, P A; Kuznetsova, N P; Levy, S L; Long, O; Lu, A; Mazur, M A; Richman, J D; Verkerke, W; Beringer, J; Eisner, A M; Grothe, M; Heusch, C A; Lockman, W S; Pulliam, T; Schalk, T L; Schmitz, R E; Schumm, B A; Seiden, A; Turri, M; Walkowiak, W; Williams, D C; Wilson, M G; Chen, E; Dubois-Felsmann, G P; Dvoretskii, A; Hitlin, D G; Porter, F C; Ryd, A; Samuel, A; Yang, S; Jayatilleke, S M; Mancinelli, G; Meadows, B T; Sokoloff, M D; Barillari, T; Bloom, P; Ford, W T; Nauenberg, U; Olivas, A; Rankin, P; Roy, J; Smith, J G; Van Hoek, W C; Zhang, L; Harton, J L; Hu, T; Krishnamurthy, M; Soffer, A; Toki, W H; Wilson, R J; Zhang, J; Altenburg, D; Brandt, T; Brose, J; Colberg, T; Dickopp, M; Dubitzky, R S; Hauke, A; Maly, E; Müller-Pfefferkorn, R; Otto, S; Schubert, Klaus R; Schwierz, R; Spaan, B; Wilden, L; Bernard, D; Bonneaud, G R; Brochard, F; Cohen-Tanugi, J; Ferrag, S; T'Jampens, S; Thiebaux, C; Vasileiadis, G; Verderi, M; Anjomshoaa, A; Bernet, R; Khan, A; Lavin, D; Muheim, F; Playfer, S; Swain, J E; Tinslay, J; Falbo, M; Borean, C; Bozzi, C; Piemontese, L; Sarti, A; Treadwell, E; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; De Sangro, R; Falciai, D; Finocchiaro, G; Patteri, P; Peruzzi, I M; Piccolo, M; Zallo, A; Bagnasco, S; Buzzo, A; Contri, R; Crosetti, G; Lo Vetere, M; Macri, M; Monge, M R; Passaggio, S; Pastore, F C; Patrignani, C; Robutti, E; Santroni, A; Tosi, S
2002-01-01
A preliminary determination of the first moment of the hadronic mass distribution in semileptonic B decays has been obtained as a function of the minimum lepton momentum, ranging from 0.9 to 1.6 GeV/c. The measurement is based on a new technique involving BBbar event s in which one fully reconstructed B meson decays hadronically and the recoiling B decays semileptonically. The mass of the hadrons in the semileptonic decay is determined from a kinematic fit to the whole event. For different minimum lepton momenta, the mass distrib ution is decomposed into contributions from various charm resonant states and a non-resonant contribution, allowing for the determination of the first moment. From these moments the Heavy Quark Effective Theory (HQET) parameters lambda_1 and Lambdabar can be derived. For lepton momenta in the B rest frame above 1.5 GeV/c, we find a first moment that is compatible with existing measurements. However, if we extend the measurement to lower values of lepton momenta, the data can only be...
Preliminary Measurement of the First Hadronic Spectral Moment from Semileptonic B Decays
Flaecher, Henning U
2002-07-26
A preliminary determination of the first moment of the hadronic mass distribution
Local neighborliness of the symmetric moment curve
Lee, Seung Jin
2011-01-01
A centrally symmetric analogue of the cyclic polytope, the bicyclic polytope, was defined in [BN08]. The bicyclic polytope is defined by the convex hull of finitely many points on the symmetric moment curve where the set of points has a symmetry about the origin. In this paper, we study the Barvinok-Novik orbitope, the convex hull of the symmetric moment curve. It was proven in [BN08] that the orbitope is locally $k$-neighborly, that is, the convex hull of any set of $k$ distinct points on an arc of length not exceeding $\\phi_k$ in $\\mathbb{S}^1$ is a $(k-1)$-dimensional face of the orbitope for some positive constant $\\phi_k$. We prove that we can choose $\\phi_k $ bigger than $\\gamma k^{-3/2} $ for some positive constant $\\gamma$.
Matrix elements from moments of correlation functions
Bouchard, Chris; Orginos, Kostas; Richards, David
2016-01-01
Momentum-space derivatives of matrix elements can be related to their coordinate-space moments through the Fourier transform. We derive these expressions as a function of momentum transfer $Q^2$ for asymptotic in/out states consisting of a single hadron. We calculate corrections to the finite volume moments by studying the spatial dependence of the lattice correlation functions. This method permits the computation of not only the values of matrix elements at momenta accessible on the lattice, but also the momentum-space derivatives, providing {\\it a priori} information about the $Q^2$ dependence of form factors. As a specific application we use the method, at a single lattice spacing and with unphysically heavy quarks, to directly obtain the slope of the isovector form factor at various $Q^2$, whence the isovector charge radius. The method has potential application in the calculation of any hadronic matrix element with momentum transfer, including those relevant to hadronic weak decays.