WorldWideScience

Sample records for maximal finite periodic

  1. Maximizing band gaps in plate structures

    DEFF Research Database (Denmark)

    Halkjær, Søren; Sigmund, Ole; Jensen, Jakob Søndergaard

    2006-01-01

    periodic plate using Bloch theory, which conveniently reduces the maximization problem to that of a single base cell. Secondly, we construct a finite periodic plate using a number of the optimized base cells in a postprocessed version. The dynamic properties of the finite plate are investigated......Band gaps, i.e., frequency ranges in which waves cannot propagate, can be found in elastic structures for which there is a certain periodic modulation of the material properties or structure. In this paper, we maximize the band gap size for bending waves in a Mindlin plate. We analyze an infinite...... theoretically and experimentally and the issue of finite size effects is addressed....

  2. Maximal Repetitions in Written Texts: Finite Energy Hypothesis vs. Strong Hilberg Conjecture

    Directory of Open Access Journals (Sweden)

    Łukasz Dębowski

    2015-08-01

    Full Text Available The article discusses two mutually-incompatible hypotheses about the stochastic mechanism of the generation of texts in natural language, which could be related to entropy. The first hypothesis, the finite energy hypothesis, assumes that texts are generated by a process with exponentially-decaying probabilities. This hypothesis implies a logarithmic upper bound for maximal repetition, as a function of the text length. The second hypothesis, the strong Hilberg conjecture, assumes that the topological entropy grows as a power law. This hypothesis leads to a hyperlogarithmic lower bound for maximal repetition. By a study of 35 written texts in German, English and French, it is found that the hyperlogarithmic growth of maximal repetition holds for natural language. In this way, the finite energy hypothesis is rejected, and the strong Hilberg conjecture is partly corroborated.

  3. Finite translation surfaces with maximal number of translations

    OpenAIRE

    Schlage-Puchta, Jan-Christoph; Weitze-Schmithuesen, Gabriela

    2013-01-01

    The natural automorphism group of a translation surface is its group of translations. For finite translation surfaces of genus g > 1 the order of this group is naturally bounded in terms of g due to a Riemann-Hurwitz formula argument. In analogy with classical Hurwitz surfaces, we call surfaces which achieve the maximal bound Hurwitz translation surfaces. We study for which g there exist Hurwitz translation surfaces of genus g.

  4. Dynamical Symmetry Breaking of Maximally Generalized Yang-Mills Model and Its Restoration at Finite Temperatures

    International Nuclear Information System (INIS)

    Wang Dianfu

    2008-01-01

    In terms of the Nambu-Jona-Lasinio mechanism, dynamical breaking of gauge symmetry for the maximally generalized Yang-Mills model is investigated. The gauge symmetry behavior at finite temperature is also investigated and it is shown that the gauge symmetry broken dynamically at zero temperature can be restored at finite temperatures

  5. Comparison of Periodized and Non-Periodized Resistance Training on Maximal Strength: A Meta-Analysis.

    Science.gov (United States)

    Williams, Tyler D; Tolusso, Danilo V; Fedewa, Michael V; Esco, Michael R

    2017-10-01

    Periodization is a logical method of organizing training into sequential phases and cyclical time periods in order to increase the potential for achieving specific performance goals while minimizing the potential for overtraining. Periodized resistance training plans are proposed to be superior to non-periodized training plans for enhancing maximal strength. The primary aim of this study was to examine the previous literature comparing periodized resistance training plans to non-periodized resistance training plans and determine a quantitative estimate of effect on maximal strength. All studies included in the meta-analysis met the following inclusion criteria: (1) peer-reviewed publication; (2) published in English; (3) comparison of a periodized resistance training group to a non-periodized resistance training group; (4) maximal strength measured by 1-repetition maximum (1RM) squat, bench press, or leg press. Data were extracted and independently coded by two authors. Random-effects models were used to aggregate a mean effect size (ES), 95% confidence intervals (CIs) and potential moderators. The cumulative results of 81 effects gathered from 18 studies published between 1988 and 2015 indicated that the magnitude of improvement in 1RM following periodized resistance training was greater than non-periodized resistance training (ES = 0.43, 95% CI 0.27-0.58; P training status (β = -0.59; P = 0.0305), study length (β = 0.03; P = 0.0067), and training frequency (β = 0.46; P = 0.0123) were associated with a change in 1RM. These results indicate that undulating programs were more favorable for strength gains. Improvements in 1RM were greater among untrained participants. Additionally, higher training frequency and longer study length were associated with larger improvements in 1RM. These results suggest that periodized resistance training plans have a moderate effect on 1RM compared to non-periodized training plans. Variation in training stimuli

  6. Periodicity and quasi-periodicity for super-integrable hamiltonian systems

    International Nuclear Information System (INIS)

    Kibler, M.; Winternitz, P.

    1990-01-01

    Classical trajectories are calculated for two Hamiltonian systems with ring shaped potentials. Both systems are super-integrable, but not maximally super-integrable, having four globally defined single-valued integrals of motion each. All finite trajectories are quasi-periodical; they become truly periodical if a commensurability condition is imposed on an angular momentum component

  7. On natural frequencies of non-uniform beams modulated by finite periodic cells

    International Nuclear Information System (INIS)

    Xu, Yanlong; Zhou, Xiaoling; Wang, Wei; Wang, Longqi; Peng, Fujun; Li, Bin

    2016-01-01

    It is well known that an infinite periodic beam can support flexural wave band gaps. However, in real applications, the number of the periodic cells is always limited. If a uniform beam is replaced by a non-uniform beam with finite periodicity, the vibration changes are vital by mysterious. This paper employs the transfer matrix method (TMM) to study the natural frequencies of the non-uniform beams with modulation by finite periodic cells. The effects of the amounts, cross section ratios, and arrangement forms of the periodic cells on the natural frequencies are explored. The relationship between the natural frequencies of the non-uniform beams with finite periodicity and the band gap boundaries of the corresponding infinite periodic beam is also investigated. Numerical results and conclusions obtained here are favorable for designing beams with good vibration control ability. - Highlights: • The transfer matrix method to study the natural frequencies of the finite periodic non-uniform beams is derived. • The transfer matrix method to study the band gaps of the infinite periodic non-uniform beams is derived. • The effects of the periodic cells on the natural frequencies are explored. • The relationships of the natural frequencies and band gap boundaries are investigated.

  8. On natural frequencies of non-uniform beams modulated by finite periodic cells

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yanlong, E-mail: xuyanlong@nwpu.edu.cn [School of Aeronautics, Northwestern Polytechnical University, Xi' an 710072, Shaanxi (China); Zhou, Xiaoling [Shanghai Institute of Aerospace System Engineering, Shanghai 201109 (China); Wang, Wei [School of Aeronautics, Northwestern Polytechnical University, Xi' an 710072, Shaanxi (China); Wang, Longqi [School of Civil & Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Peng, Fujun [Shanghai Institute of Aerospace System Engineering, Shanghai 201109 (China); Li, Bin [School of Aeronautics, Northwestern Polytechnical University, Xi' an 710072, Shaanxi (China)

    2016-09-23

    It is well known that an infinite periodic beam can support flexural wave band gaps. However, in real applications, the number of the periodic cells is always limited. If a uniform beam is replaced by a non-uniform beam with finite periodicity, the vibration changes are vital by mysterious. This paper employs the transfer matrix method (TMM) to study the natural frequencies of the non-uniform beams with modulation by finite periodic cells. The effects of the amounts, cross section ratios, and arrangement forms of the periodic cells on the natural frequencies are explored. The relationship between the natural frequencies of the non-uniform beams with finite periodicity and the band gap boundaries of the corresponding infinite periodic beam is also investigated. Numerical results and conclusions obtained here are favorable for designing beams with good vibration control ability. - Highlights: • The transfer matrix method to study the natural frequencies of the finite periodic non-uniform beams is derived. • The transfer matrix method to study the band gaps of the infinite periodic non-uniform beams is derived. • The effects of the periodic cells on the natural frequencies are explored. • The relationships of the natural frequencies and band gap boundaries are investigated.

  9. Scattering analysis of periodic structures using finite-difference time-domain

    CERN Document Server

    ElMahgoub, Khaled; Elsherbeni, Atef Z

    2012-01-01

    Periodic structures are of great importance in electromagnetics due to their wide range of applications such as frequency selective surfaces (FSS), electromagnetic band gap (EBG) structures, periodic absorbers, meta-materials, and many others. The aim of this book is to develop efficient computational algorithms to analyze the scattering properties of various electromagnetic periodic structures using the finite-difference time-domain periodic boundary condition (FDTD/PBC) method. A new FDTD/PBC-based algorithm is introduced to analyze general skewed grid periodic structures while another algor

  10. Maximizing the retention level for proportional reinsurance under  -regulation of the finite time surplus process with unit-equalized interarrival time

    Directory of Open Access Journals (Sweden)

    Sukanya Somprom

    2016-07-01

    Full Text Available The research focuses on an insurance model controlled by proportional reinsurance in the finite-time surplus process with a unit-equalized time interval. We prove the existence of the maximal retention level for independent and identically distributed claim processes under α-regulation, i.e., a model where the insurance company has to manage the probability of insolvency to be at most α. In addition, we illustrate the maximal retention level for exponential claims by applying the bisection technique.

  11. Analyzing logistic map pseudorandom number generators for periodicity induced by finite precision floating-point representation

    International Nuclear Information System (INIS)

    Persohn, K.J.; Povinelli, R.J.

    2012-01-01

    Highlights: ► A chaotic pseudorandom number generator (C-PRNG) poorly explores the key space. ► A C-PRNG is finite and periodic when implemented on a finite precision computer. ► We present a method to determine the period lengths of a C-PRNG. - Abstract: Because of the mixing and aperiodic properties of chaotic maps, such maps have been used as the basis for pseudorandom number generators (PRNGs). However, when implemented on a finite precision computer, chaotic maps have finite and periodic orbits. This manuscript explores the consequences finite precision has on the periodicity of a PRNG based on the logistic map. A comparison is made with conventional methods of generating pseudorandom numbers. The approach used to determine the number, delay, and period of the orbits of the logistic map at varying degrees of precision (3 to 23 bits) is described in detail, including the use of the Condor high-throughput computing environment to parallelize independent tasks of analyzing a large initial seed space. Results demonstrate that in terms of pathological seeds and effective bit length, a PRNG based on the logistic map performs exponentially worse than conventional PRNGs.

  12. Periodic Boundary Conditions in the ALEGRA Finite Element Code

    International Nuclear Information System (INIS)

    Aidun, John B.; Robinson, Allen C.; Weatherby, Joe R.

    1999-01-01

    This document describes the implementation of periodic boundary conditions in the ALEGRA finite element code. ALEGRA is an arbitrary Lagrangian-Eulerian multi-physics code with both explicit and implicit numerical algorithms. The periodic boundary implementation requires a consistent set of boundary input sets which are used to describe virtual periodic regions. The implementation is noninvasive to the majority of the ALEGRA coding and is based on the distributed memory parallel framework in ALEGRA. The technique involves extending the ghost element concept for interprocessor boundary communications in ALEGRA to additionally support on- and off-processor periodic boundary communications. The user interface, algorithmic details and sample computations are given

  13. Magnetic flux periodicities and finite momentum pairing in unconventional superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Loder, Florian

    2009-12-22

    This work contains a thorough study of the magnetic flux periodicity of loops of conventional and unconventional, especially d-wave, superconductors. Although already in 1961, several independent works showed that the flux period of a conventional superconducting loop is the superconducting flux quantum hc/2e, this question has never been investigated deeply for unconventional superconductors. And indeed, we show here that d-wave superconducting loops show a basic flux period of the normal flux quantum hc/e, a property originating from the nodal quasi-particle states. This doubling of the flux periodicity is best visible in the persistent current circulating in the loop, and it affects other properties of the superconductor such as the periodicity of d-wave Josephson junctions. In the second part of this work, the theory of electron pairing with finite center-of-mass momentum, necessary for the description of superconducting loops, is extended to systems in zero magnetic field. We show that even in the field free case, an unconventional pairing symmetry can lead to a superconducting ground state with finite-momentum electron pairs. Such a state has an inhomogeneous charge density and therefore is a basis for the description of coexistence of superconductivity and stripe order. (orig.)

  14. Preconditioned finite-difference frequency-domain for modelling periodic dielectric structures - comparisons with FDTD

    NARCIS (Netherlands)

    Chabory, A.; Hon, de B.P.; Schilders, W.H.A.; Tijhuis, A.G.

    2008-01-01

    Finite-difference techniques are very popular and versatile numerical tools in computational electromagnetics. In this paper, we propose a preconditioned finite-difference frequency-domain method (FDFD) to model periodic structures in 2D and 3D. The preconditioner follows from a modal decoupling

  15. Preconditioned finite-difference frequency-domain for modelling periodic dielectric structures : comparisons with FDTD

    NARCIS (Netherlands)

    Chabory, A.; Hon, de B.P.; Schilders, W.H.A.; Tijhuis, A.G.

    2008-01-01

    Finite-difference techniques are very popular and versatile numerical tools in computational electromagnetics. In this paper, we propose a preconditioned finite-difference frequency-domain method (FDFD) to model periodic structures in 2D and 3D. The preconditioner follows from a modal decoupling

  16. Utility maximization and mode of payment

    NARCIS (Netherlands)

    Koning, R.H.; Ridder, G.; Heijmans, R.D.H.; Pollock, D.S.G.; Satorra, A.

    2000-01-01

    The implications of stochastic utility maximization in a model of choice of payment are examined. Three types of compatibility with utility maximization are distinguished: global compatibility, local compatibility on an interval, and local compatibility on a finite set of points. Keywords:

  17. Existence and stability of periodic solution in impulsive Hopfield neural networks with finite distributed delays

    International Nuclear Information System (INIS)

    Yang Xiaofan; Liao Xiaofeng; Evans, David J.; Tang Yuanyan

    2005-01-01

    In this Letter, we introduce a class of Hopfield neural networks with periodic impulses and finite distributed delays. We then derive a sufficient condition for the existence and global exponential stability of a unique periodic solution of the networks, which assumes neither the differentiability nor the monotonicity of the activation functions. Our condition extends and generalizes a known condition for the global exponential periodicity of continuous Hopfield neural networks with finite distributed delays

  18. Maximally Symmetric Composite Higgs Models.

    Science.gov (United States)

    Csáki, Csaba; Ma, Teng; Shu, Jing

    2017-09-29

    Maximal symmetry is a novel tool for composite pseudo Goldstone boson Higgs models: it is a remnant of an enhanced global symmetry of the composite fermion sector involving a twisting with the Higgs field. Maximal symmetry has far-reaching consequences: it ensures that the Higgs potential is finite and fully calculable, and also minimizes the tuning. We present a detailed analysis of the maximally symmetric SO(5)/SO(4) model and comment on its observational consequences.

  19. Explicit finite-difference solution of two-dimensional solute transport with periodic flow in homogenous porous media

    Directory of Open Access Journals (Sweden)

    Djordjevich Alexandar

    2017-12-01

    Full Text Available The two-dimensional advection-diffusion equation with variable coefficients is solved by the explicit finitedifference method for the transport of solutes through a homogenous two-dimensional domain that is finite and porous. Retardation by adsorption, periodic seepage velocity, and a dispersion coefficient proportional to this velocity are permitted. The transport is from a pulse-type point source (that ceases after a period of activity. Included are the firstorder decay and zero-order production parameters proportional to the seepage velocity, and periodic boundary conditions at the origin and at the end of the domain. Results agree well with analytical solutions that were reported in the literature for special cases. It is shown that the solute concentration profile is influenced strongly by periodic velocity fluctuations. Solutions for a variety of combinations of unsteadiness of the coefficients in the advection-diffusion equation are obtainable as particular cases of the one demonstrated here. This further attests to the effectiveness of the explicit finite difference method for solving two-dimensional advection-diffusion equation with variable coefficients in finite media, which is especially important when arbitrary initial and boundary conditions are required.

  20. Convergence analysis of the rebalance methods in multiplying finite slab having periodic boundary conditions

    International Nuclear Information System (INIS)

    Hong, Ser Gi; Lee, Young Ouk; Song, Jae Seung

    2009-01-01

    This paper analyzes the convergence of the rebalance iteration methods for the discrete ordinates transport equation in the multiplying finite slab problem. The finite slab is assumed to be homogeneous and it has the periodic boundary conditions. A general formulation is used to include three well-known rebalance methods of the linearized form in a unified way. The rebalance iteration methods considered in this paper are the CMR (Coarse-Mesh Rebalance), the CMFD (Coarse-Mesh Finite Difference), and p-CMFD (Partial Current-Based Coarse Mesh Finite Difference) methods which have been popularly used in the reactor physics. The convergence analysis is performed with the well-known Fourier analysis through a linearization. The analyses are applied for one-group problems. The theoretical analysis shows that there are one fundamental mode and N-1 Eigen-modes which determine the convergence if the finite slab is divided into N uniform meshes. The numerical tests show that the Fourier convergence analysis provides the reasonable estimate of the numerical spectral radii for the model problems and the spectral radius for the finite slab approaches the one for the infinite slab as the thickness of the slab increases. (author)

  1. On the maximal superalgebras of supersymmetric backgrounds

    International Nuclear Information System (INIS)

    Figueroa-O'Farrill, Jose; Hackett-Jones, Emily; Moutsopoulos, George; Simon, Joan

    2009-01-01

    In this paper we give a precise definition of the notion of a maximal superalgebra of certain types of supersymmetric supergravity backgrounds, including the Freund-Rubin backgrounds, and propose a geometric construction extending the well-known construction of its Killing superalgebra. We determine the structure of maximal Lie superalgebras and show that there is a finite number of isomorphism classes, all related via contractions from an orthosymplectic Lie superalgebra. We use the structure theory to show that maximally supersymmetric waves do not possess such a maximal superalgebra, but that the maximally supersymmetric Freund-Rubin backgrounds do. We perform the explicit geometric construction of the maximal superalgebra of AdS 4 X S 7 and find that it is isomorphic to osp(1|32). We propose an algebraic construction of the maximal superalgebra of any background asymptotic to AdS 4 X S 7 and we test this proposal by computing the maximal superalgebra of the M2-brane in its two maximally supersymmetric limits, finding agreement.

  2. Homogenization of Periodic Masonry Using Self-Consistent Scheme and Finite Element Method

    Science.gov (United States)

    Kumar, Nitin; Lambadi, Harish; Pandey, Manoj; Rajagopal, Amirtham

    2016-01-01

    Masonry is a heterogeneous anisotropic continuum, made up of the brick and mortar arranged in a periodic manner. Obtaining the effective elastic stiffness of the masonry structures has been a challenging task. In this study, the homogenization theory for periodic media is implemented in a very generic manner to derive the anisotropic global behavior of the masonry, through rigorous application of the homogenization theory in one step and through a full three-dimensional behavior. We have considered the periodic Eshelby self-consistent method and the finite element method. Two representative unit cells that represent the microstructure of the masonry wall exactly are considered for calibration and numerical application of the theory.

  3. Finite-size scaling of the entanglement entropy of the quantum Ising chain with homogeneous, periodically modulated and random couplings

    International Nuclear Information System (INIS)

    Iglói, Ferenc; Lin, Yu-Cheng

    2008-01-01

    Using free-fermionic techniques we study the entanglement entropy of a block of contiguous spins in a large finite quantum Ising chain in a transverse field, with couplings of different types: homogeneous, periodically modulated and random. We carry out a systematic study of finite-size effects at the quantum critical point, and evaluate subleading corrections both for open and for periodic boundary conditions. For a block corresponding to a half of a finite chain, the position of the maximum of the entropy as a function of the control parameter (e.g. the transverse field) can define the effective critical point in the finite sample. On the basis of homogeneous chains, we demonstrate that the scaling behavior of the entropy near the quantum phase transition is in agreement with the universality hypothesis, and calculate the shift of the effective critical point, which has different scaling behaviors for open and for periodic boundary conditions

  4. Transient hydrodynamic finite-size effects in simulations under periodic boundary conditions

    Science.gov (United States)

    Asta, Adelchi J.; Levesque, Maximilien; Vuilleumier, Rodolphe; Rotenberg, Benjamin

    2017-06-01

    We use lattice-Boltzmann and analytical calculations to investigate transient hydrodynamic finite-size effects induced by the use of periodic boundary conditions. These effects are inevitable in simulations at the molecular, mesoscopic, or continuum levels of description. We analyze the transient response to a local perturbation in the fluid and obtain the local velocity correlation function via linear response theory. This approach is validated by comparing the finite-size effects on the steady-state velocity with the known results for the diffusion coefficient. We next investigate the full time dependence of the local velocity autocorrelation function. We find at long times a crossover between the expected t-3 /2 hydrodynamic tail and an oscillatory exponential decay, and study the scaling with the system size of the crossover time, exponential rate and amplitude, and oscillation frequency. We interpret these results from the analytic solution of the compressible Navier-Stokes equation for the slowest modes, which are set by the system size. The present work not only provides a comprehensive analysis of hydrodynamic finite-size effects in bulk fluids, which arise regardless of the level of description and simulation algorithm, but also establishes the lattice-Boltzmann method as a suitable tool to investigate such effects in general.

  5. Energy localization in maximally entangled two- and three-qubit phase space

    International Nuclear Information System (INIS)

    Pashaev, Oktay K; Gurkan, Zeynep N

    2012-01-01

    Motivated by the Möbius transformation for symmetric points under the generalized circle in the complex plane, the system of symmetric spin coherent states corresponding to antipodal qubit states is introduced. In terms of these states, we construct the maximally entangled complete set of two-qubit coherent states, which in the limiting cases reduces to the Bell basis. A specific property of our symmetric coherent states is that they never become unentangled for any value of ψ from the complex plane. Entanglement quantifications of our states are given by the reduced density matrix and the concurrence determinant, and it is shown that our basis is maximally entangled. Universal one- and two-qubit gates in these new coherent state basis are calculated. As an application, we find the Q symbol of the XY Z model Hamiltonian operator H as an average energy function in maximally entangled two- and three-qubit phase space. It shows regular finite-energy localized structure with specific local extremum points. The concurrence and fidelity of quantum evolution with dimerization of double periodic patterns are given. (paper)

  6. Numerical and Experimental Investigation of Stop-Bands in Finite and Infinite Periodic One-Dimensional Structures

    DEFF Research Database (Denmark)

    Domadiya, Parthkumar Gandalal; Manconi, Elisabetta; Vanali, Marcello

    2016-01-01

    Adding periodicity to structures leads to wavemode interaction, which generates pass- and stop-bands. The frequencies at which stop-bands occur are related to the periodic nature of the structure. Thus structural periodicity can be shaped in order to design vibro-acoustic filters for reducing...... method deals with the evaluation of a vibration level difference (VLD) in a finite periodic structure embedded within an infinite one-dimensional waveguide. This VLD is defined to predict the performance in terms of noise and vibration insulation of periodic cells embedded in an otherwise uniform...

  7. Finite-Difference Time-Domain Simulation of Light Propagation in 2D Periodic and Quasi-Periodic Photonic Structures

    Directory of Open Access Journals (Sweden)

    N. Dadashzadeh

    2013-09-01

    Full Text Available Ultra-short pulse is a promising technology for achieving ultra-high data rate transmission which is required to follow the increased demand of data transport over an optical communication system. Therefore, the propagation of such type of pulses and the effects that it may suffer during its transmission through an optical waveguide has received a great deal of attention in the recent years. We provide an overview of recent theoretical developments in a numerical modeling of Maxwell's equations to analyze the propagation of short laser pulses in photonic structures. The process of short light pulse propagation through 2D periodic and quasi-periodic photonic structures is simulated based on Finite-Difference Time-Domain calculations of Maxwell’s equations.

  8. Study of the zero modes of the Faddeev–Popov operator in the maximal Abelian gauge

    International Nuclear Information System (INIS)

    Capri, M.A.L.; Guimaraes, M.S.; Lemes, V.E.R.; Sorella, S.P.; Tedesco, D.G.

    2014-01-01

    A study of the zero modes of the Faddeev–Popov operator in the maximal Abelian gauge is presented in the case of the gauge group SU(2) and for different Euclidean space–time dimensions. Explicit examples of classes of normalizable zero modes and corresponding gauge field configurations are constructed by taking into account two boundary conditions, namely: (i) the finite Euclidean Yang–Mills action, (ii) the finite Hilbert norm. -- Highlights: •We study the zero modes of the Faddeev–Popov operator in the maximal Abelian gauge. •For d=2 we obtain solutions with finite action but not finite Hilbert norm. •For d=3,4 we obtain solutions with finite action and finite Hilbert norm. •These results can be compared with those previously obtained in the Landau gauge

  9. Finite element solution of nonlinear eddy current problems with periodic excitation and its industrial applications.

    Science.gov (United States)

    Bíró, Oszkár; Koczka, Gergely; Preis, Kurt

    2014-05-01

    An efficient finite element method to take account of the nonlinearity of the magnetic materials when analyzing three-dimensional eddy current problems is presented in this paper. The problem is formulated in terms of vector and scalar potentials approximated by edge and node based finite element basis functions. The application of Galerkin techniques leads to a large, nonlinear system of ordinary differential equations in the time domain. The excitations are assumed to be time-periodic and the steady-state periodic solution is of interest only. This is represented either in the frequency domain as a finite Fourier series or in the time domain as a set of discrete time values within one period for each finite element degree of freedom. The former approach is the (continuous) harmonic balance method and, in the latter one, discrete Fourier transformation will be shown to lead to a discrete harmonic balance method. Due to the nonlinearity, all harmonics, both continuous and discrete, are coupled to each other. The harmonics would be decoupled if the problem were linear, therefore, a special nonlinear iteration technique, the fixed-point method is used to linearize the equations by selecting a time-independent permeability distribution, the so-called fixed-point permeability in each nonlinear iteration step. This leads to uncoupled harmonics within these steps. As industrial applications, analyses of large power transformers are presented. The first example is the computation of the electromagnetic field of a single-phase transformer in the time domain with the results compared to those obtained by traditional time-stepping techniques. In the second application, an advanced model of the same transformer is analyzed in the frequency domain by the harmonic balance method with the effect of the presence of higher harmonics on the losses investigated. Finally a third example tackles the case of direct current (DC) bias in the coils of a single-phase transformer.

  10. Weak incidence algebra and maximal ring of quotients

    Directory of Open Access Journals (Sweden)

    Surjeet Singh

    2004-01-01

    Full Text Available Let X, X′ be two locally finite, preordered sets and let R be any indecomposable commutative ring. The incidence algebra I(X,R, in a sense, represents X, because of the well-known result that if the rings I(X,R and I(X′,R are isomorphic, then X and X′ are isomorphic. In this paper, we consider a preordered set X that need not be locally finite but has the property that each of its equivalence classes of equivalent elements is finite. Define I*(X,R to be the set of all those functions f:X×X→R such that f(x,y=0, whenever x⩽̸y and the set Sf of ordered pairs (x,y with xfinite. For any f,g∈I*(X,R, r∈R, define f+g, fg, and rf in I*(X,R such that (f+g(x+y=f(x,y+g(x,y, fg(x,y=∑x≤z≤yf(x,zg(z,y, rf(x,y=r⋅f(x,y. This makes I*(X,R an R-algebra, called the weak incidence algebra of X over R. In the first part of the paper it is shown that indeed I*(X,R represents X. After this all the essential one-sided ideals of I*(X,R are determined and the maximal right (left ring of quotients of I*(X,R is discussed. It is shown that the results proved can give a large class of rings whose maximal right ring of quotients need not be isomorphic to its maximal left ring of quotients.

  11. Observations on finite quantum mechanics

    International Nuclear Information System (INIS)

    Balian, R.; Itzykson, C.

    1986-01-01

    We study the canonical transformations of the quantum mechanics on a finite phase space. For simplicity we assume that the configuration variable takes an odd prime number 4 K±1 of distinct values. We show that the canonical group is unitarily implemented. It admits a maximal abelian subgroup of order 4 K, commuting with the finite Fourier transform F, a finite analogue of the harmonic oscillator group. This provides a natural construction of F 1/K and of an orthogonal basis of eigenstates of F [fr

  12. Asymptotics of linear initial boundary value problems with periodic boundary data on the half-line and finite intervals

    KAUST Repository

    Dujardin, G. M.

    2009-08-12

    This paper deals with the asymptotic behaviour of the solutions of linear initial boundary value problems with constant coefficients on the half-line and on finite intervals. We assume that the boundary data are periodic in time and we investigate whether the solution becomes time-periodic after sufficiently long time. Using Fokas\\' transformation method, we show that, for the linear Schrödinger equation, the linear heat equation and the linearized KdV equation on the half-line, the solutions indeed become periodic for large time. However, for the same linear Schrödinger equation on a finite interval, we show that the solution, in general, is not asymptotically periodic; actually, the asymptotic behaviour of the solution depends on the commensurability of the time period T of the boundary data with the square of the length of the interval over. © 2009 The Royal Society.

  13. Singularity Structure of Maximally Supersymmetric Scattering Amplitudes

    DEFF Research Database (Denmark)

    Arkani-Hamed, Nima; Bourjaily, Jacob L.; Cachazo, Freddy

    2014-01-01

    We present evidence that loop amplitudes in maximally supersymmetric (N=4) Yang-Mills theory (SYM) beyond the planar limit share some of the remarkable structures of the planar theory. In particular, we show that through two loops, the four-particle amplitude in full N=4 SYM has only logarithmic ...... singularities and is free of any poles at infinity—properties closely related to uniform transcendentality and the UV finiteness of the theory. We also briefly comment on implications for maximal (N=8) supergravity theory (SUGRA)....

  14. Identities on maximal subgroups of GLn(D)

    International Nuclear Information System (INIS)

    Kiani, D.; Mahdavi-Hezavehi, M.

    2002-04-01

    Let D be a division ring with centre F. Assume that M is a maximal subgroup of GL n (D), n≥1 such that Z(M) is algebraic over F. Group identities on M and polynomial identities on the F-linear hull F[M] are investigated. It is shown that if F[M] is a PI-algebra, then [D:F] n (D) and M is a maximal subgroup of N. If M satisfies a group identity, it is shown that M is abelian-by-finite. (author)

  15. A Finite Element Solution of Lateral Periodic Poisson–Boltzmann Model for Membrane Channel Proteins

    Science.gov (United States)

    Xu, Jingjie; Lu, Benzhuo

    2018-01-01

    Membrane channel proteins control the diffusion of ions across biological membranes. They are closely related to the processes of various organizational mechanisms, such as: cardiac impulse, muscle contraction and hormone secretion. Introducing a membrane region into implicit solvation models extends the ability of the Poisson–Boltzmann (PB) equation to handle membrane proteins. The use of lateral periodic boundary conditions can properly simulate the discrete distribution of membrane proteins on the membrane plane and avoid boundary effects, which are caused by the finite box size in the traditional PB calculations. In this work, we: (1) develop a first finite element solver (FEPB) to solve the PB equation with a two-dimensional periodicity for membrane channel proteins, with different numerical treatments of the singular charges distributions in the channel protein; (2) add the membrane as a dielectric slab in the PB model, and use an improved mesh construction method to automatically identify the membrane channel/pore region even with a tilt angle relative to the z-axis; and (3) add a non-polar solvation energy term to complete the estimation of the total solvation energy of a membrane protein. A mesh resolution of about 0.25 Å (cubic grid space)/0.36 Å (tetrahedron edge length) is found to be most accurate in linear finite element calculation of the PB solvation energy. Computational studies are performed on a few exemplary molecules. The results indicate that all factors, the membrane thickness, the length of periodic box, membrane dielectric constant, pore region dielectric constant, and ionic strength, have individually considerable influence on the solvation energy of a channel protein. This demonstrates the necessity to treat all of those effects in the PB model for membrane protein simulations. PMID:29495644

  16. Increasing average period lengths by switching of robust chaos maps in finite precision

    Science.gov (United States)

    Nagaraj, N.; Shastry, M. C.; Vaidya, P. G.

    2008-12-01

    Grebogi, Ott and Yorke (Phys. Rev. A 38, 1988) have investigated the effect of finite precision on average period length of chaotic maps. They showed that the average length of periodic orbits (T) of a dynamical system scales as a function of computer precision (ɛ) and the correlation dimension (d) of the chaotic attractor: T ˜ɛ-d/2. In this work, we are concerned with increasing the average period length which is desirable for chaotic cryptography applications. Our experiments reveal that random and chaotic switching of deterministic chaotic dynamical systems yield higher average length of periodic orbits as compared to simple sequential switching or absence of switching. To illustrate the application of switching, a novel generalization of the Logistic map that exhibits Robust Chaos (absence of attracting periodic orbits) is first introduced. We then propose a pseudo-random number generator based on chaotic switching between Robust Chaos maps which is found to successfully pass stringent statistical tests of randomness.

  17. Similarities between the Hubbard and Periodic Anderson Models at Finite Temperatures

    International Nuclear Information System (INIS)

    Held, K.; Huscroft, C.; Scalettar, R. T.; McMahan, A. K.

    2000-01-01

    The single band Hubbard and the two band periodic Anderson Hamiltonians have traditionally been applied to rather different physical problems--the Mott transition and itinerant magnetism, and Kondo singlet formation and scattering off localized magnetic states, respectively. In this paper, we compare the magnetic and charge correlations, and spectral functions, of the two systems. We show quantitatively that they exhibit remarkably similar behavior, including a nearly identical topology of the finite temperature phase diagrams at half filling. We address potential implications of this for theories of the rare earth ''volume collapse'' transition. (c) 2000 The American Physical Society

  18. New advances in the forced response computation of periodic structures using the wave finite element (WFE) method

    OpenAIRE

    Mencik , Jean-Mathieu

    2014-01-01

    International audience; The wave finite element (WFE) method is investigated to describe the harmonic forced response of onedimensional periodic structures like those composed of complex substructures and encountered in engineering applications. The dynamic behavior of these periodic structures is analyzed over wide frequency bands where complex spatial dynamics, inside the substructures, are likely to occur.Within theWFE framework, the dynamic behavior of periodic structures is described in ...

  19. A double expansion method for the frequency response of finite-length beams with periodic parameters

    Science.gov (United States)

    Ying, Z. G.; Ni, Y. Q.

    2017-03-01

    A double expansion method for the frequency response of finite-length beams with periodic distribution parameters is proposed. The vibration response of the beam with spatial periodic parameters under harmonic excitations is studied. The frequency response of the periodic beam is the function of parametric period and then can be expressed by the series with the product of periodic and non-periodic functions. The procedure of the double expansion method includes the following two main steps: first, the frequency response function and periodic parameters are expanded by using identical periodic functions based on the extension of the Floquet-Bloch theorem, and the period-parametric differential equation for the frequency response is converted into a series of linear differential equations with constant coefficients; second, the solutions to the linear differential equations are expanded by using modal functions which satisfy the boundary conditions, and the linear differential equations are converted into algebraic equations according to the Galerkin method. The expansion coefficients are obtained by solving the algebraic equations and then the frequency response function is finally determined. The proposed double expansion method can uncouple the effects of the periodic expansion and modal expansion so that the expansion terms are determined respectively. The modal number considered in the second expansion can be reduced remarkably in comparison with the direct expansion method. The proposed double expansion method can be extended and applied to the other structures with periodic distribution parameters for dynamics analysis. Numerical results on the frequency response of the finite-length periodic beam with various parametric wave numbers and wave amplitude ratios are given to illustrate the effective application of the proposed method and the new frequency response characteristics, including the parameter-excited modal resonance, doubling-peak frequency response

  20. Uncountably many maximizing measures for a dense subset of continuous functions

    Science.gov (United States)

    Shinoda, Mao

    2018-05-01

    Ergodic optimization aims to single out dynamically invariant Borel probability measures which maximize the integral of a given ‘performance’ function. For a continuous self-map of a compact metric space and a dense set of continuous functions, we show the existence of uncountably many ergodic maximizing measures. We also show that, for a topologically mixing subshift of finite type and a dense set of continuous functions there exist uncountably many ergodic maximizing measures with full support and positive entropy.

  1. Effective monopole potential for SU(2) lattice gluodynamics in spatial maximal Abelian gauge

    International Nuclear Information System (INIS)

    Chernodub, M.N.; Polikarpov, M.I.; Veselov, A.I.

    1999-01-01

    We investigate the dual superconductor hypothesis in finite-temperature SU(2) lattice gluodynamics in the Spatial Maximal Abelian gauge. This gauge is more physical than the ordinary Maximal Abelian gauge due to absence of non-localities in temporal direction. We shown numerically that in the Spatial Maximal Abelian gauge the probability distribution of the abelian monopole field is consistent with the dual superconductor mechanism of confinement [ru

  2. Ground state metamorphosis for Yang-Mills fields on a finite periodic lattice

    International Nuclear Information System (INIS)

    Gonzalez-Arroyo, A.; Jurkiewicz, J.; Korthals-Altes, C.P.

    1983-01-01

    The authors study the weak coupling behaviour of the partition function of non-abelian gauge fields on a finite lattice. Periodic boundary conditions are imposed. Two different power laws in the coupling BETA -1 arise for the partition function, when the dimension d of space time is larger or smaller than a critical dimension d /SUB c/ . For SU(2) d /SUB c/ = 4 and they find at this dimension power behaviour corrected by log BETA. The phenomenon is of practical importance in Monte Carlo simulations of the twisted action

  3. Ruin probabilities with compounding assets for discrete time finite horizon problem, independent period claim sizes and general premium structure

    NARCIS (Netherlands)

    Kok, de A.G.

    2003-01-01

    In this paper, we present fast and accurate approximations for the probability of ruin over a finite number of periods, assuming inhomogeneous independent claim size distributions and arbitrary premium income in subsequent periods. We develop exact recursive expressions for the non-ruin

  4. Ruin probabilities with compounding assets for discrete time finite horizon problems, independent period claim sizes and general premium structure

    NARCIS (Netherlands)

    Kok, de A.G.

    2003-01-01

    In this paper we present fast and accurate approximations for the probability of ruin over a finite number of periods, assuming inhomogeneous independent claim size distributions and arbitrary premium income in subsequent periods. We develop exact recursive expressions for the non-ruin probabilities

  5. Physisorption of helium on a TiO{sub 2}(110) surface: Periodic and finite cluster approaches

    Energy Technology Data Exchange (ETDEWEB)

    Lara-Castells, Maria Pilar de, E-mail: Pilar.deLara.Castells@csic.es [Instituto de Fisica Fundamental (C.S.I.C.), Serrano 123, E-28006 Madrid (Spain); Aguirre, Nestor F. [Instituto de Fisica Fundamental (C.S.I.C.), Serrano 123, E-28006 Madrid (Spain); Mitrushchenkov, Alexander O. [Universite Paris-Est, Laboratoire Modelisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallee (France)

    2012-05-03

    Graphical abstract: The physisorption of helium on the TiO{sub 2}(110) surface is explored by using finite cluster and periodic approaches (see left panel). Once the basis set is specifically tailored to minimize the BSSE (rigth panel), DFT periodic calculations using the PBE functional (left panel) yield interaction potentials in good agreement with those obtained using post-HF methods as the LMP2 treatment (see left panel). Highlights: Black-Right-Pointing-Pointer He/TiO{sub 2}(110) is a simplest example of physisorption on transition-metal oxide surfaces. Black-Right-Pointing-Pointer Optimized basis sets that minimize the BSSE are better suited for physisorption problems. Black-Right-Pointing-Pointer FCI benchmarks on the He{sub 2} bound-state assess the Counterpoise scheme reliability. Black-Right-Pointing-Pointer Periodic DFT-PBE and post-HF results on H-saturated clusters compare satisfactorily. Black-Right-Pointing-Pointer Correlation energies by using embedded and H-saturated clusters agree well. - Abstract: As a proto-typical case of physisorption on an extended transition-metal oxide surface, the interaction of a helium atom with a TiO{sub 2}(110) - (1 Multiplication-Sign 1) surface is studied here by using finite cluster and periodic approaches and both wave-function-based (post-Hartree-Fock) quantum chemistry methods and density functional theory. Both classical and advanced finite cluster approaches, based on localized Wannier orbitals combined with one-particle embedding potentials, are applied to provide (reference) coupled-cluster and second-order Moeller-Plesset interaction energies. It is shown that, once the basis set is specifically tailored to minimize the basis set superposition error, periodic calculations using the Perdew-Burke-Ernzerhof functional yield short and medium-range interaction potentials in very reasonable agreement with those obtained using the correlated wave-function-based methods, while small long-range dispersion corrections

  6. Topology optimization of periodic microstructures for enhanced dynamic properties of viscoelastic composite materials

    DEFF Research Database (Denmark)

    Andreassen, Erik; Jensen, Jakob Søndergaard

    2014-01-01

    We present a topology optimization method for the design of periodic composites with dissipative materials for maximizing the loss/attenuation of propagating waves. The computational model is based on a finite element discretization of the periodic unit cell and a complex eigenvalue problem...... with a prescribed wave frequency. The attenuation in the material is described by its complex wavenumber, and we demonstrate in several examples optimized distributions of a stiff low loss and a soft lossy material in order to maximize the attenuation. In the examples we cover different frequency ranges and relate...... the results to previous studies on composites with high damping and stiffness based on quasi-static conditions for low frequencies and the bandgap phenomenon for high frequencies. Additionally, we consider the issues of stiffness and connectivity constraints and finally present optimized composites...

  7. A Maximal Element Theorem in FWC-Spaces and Its Applications

    Science.gov (United States)

    Hu, Qingwen; Miao, Yulin

    2014-01-01

    A maximal element theorem is proved in finite weakly convex spaces (FWC-spaces, in short) which have no linear, convex, and topological structure. Using the maximal element theorem, we develop new existence theorems of solutions to variational relation problem, generalized equilibrium problem, equilibrium problem with lower and upper bounds, and minimax problem in FWC-spaces. The results represented in this paper unify and extend some known results in the literature. PMID:24782672

  8. Estimating interevent time distributions from finite observation periods in communication networks

    Science.gov (United States)

    Kivelä, Mikko; Porter, Mason A.

    2015-11-01

    A diverse variety of processes—including recurrent disease episodes, neuron firing, and communication patterns among humans—can be described using interevent time (IET) distributions. Many such processes are ongoing, although event sequences are only available during a finite observation window. Because the observation time window is more likely to begin or end during long IETs than during short ones, the analysis of such data is susceptible to a bias induced by the finite observation period. In this paper, we illustrate how this length bias is born and how it can be corrected without assuming any particular shape for the IET distribution. To do this, we model event sequences using stationary renewal processes, and we formulate simple heuristics for determining the severity of the bias. To illustrate our results, we focus on the example of empirical communication networks, which are temporal networks that are constructed from communication events. The IET distributions of such systems guide efforts to build models of human behavior, and the variance of IETs is very important for estimating the spreading rate of information in networks of temporal interactions. We analyze several well-known data sets from the literature, and we find that the resulting bias can lead to systematic underestimates of the variance in the IET distributions and that correcting for the bias can lead to qualitatively different results for the tails of the IET distributions.

  9. a class of finite fields, for odd primes l

    Indian Academy of Sciences (India)

    We see that the Fermat curves correspond precisely to those curves among each class (for = , 2), that are maximal or minimal over F q . We observe that each Fermat prime gives rise to explicit maximal and minimal curves over finite fields of characteristic 2. For = 2, we explicitly determine the -function(s) for this ...

  10. On Maximal Non-Disjoint Families of Subsets

    Directory of Open Access Journals (Sweden)

    Yu. A. Zuev

    2017-01-01

    Full Text Available The paper studies maximal non-disjoint families of subsets of a finite set. Non-disjointness means that any two subsets of a family have a nonempty intersection. The maximality is expressed by the fact that adding a new subset to the family cannot increase its power without violating a non-disjointness condition. Studying the properties of such families is an important section of the extreme theory of sets. Along with purely combinatorial interest, the problems considered here play an important role in informatics, anti-noise coding, and cryptography.In 1961 this problem saw the light of day in the Erdos, Ko and Rado paper, which established a maximum power of the non-disjoint family of subsets of equal power. In 1974 the Erdos and Claytman publication estimated the number of maximal non-disjoint families of subsets without involving the equality of their power. These authors failed to establish an asymptotics of the logarithm of the number of such families when the power of a basic finite set tends to infinity. However, they suggested such an asymptotics as a hypothesis. A.D. Korshunov in two publications in 2003 and 2005 established the asymptotics for the number of non-disjoint families of the subsets of arbitrary powers without maximality condition of these families.The basis for the approach used in the paper to study the families of subsets is their description in the language of Boolean functions. A one-to-one correspondence between a family of subsets and a Boolean function is established by the fact that the characteristic vectors of subsets of a family are considered to be the unit sets of a Boolean function. The main theoretical result of the paper is that the maximal non-disjoint families are in one-to-one correspondence with the monotonic self-dual Boolean functions. When estimating the number of maximal non-disjoint families, this allowed us to use the result of A.A. Sapozhenko, who established the asymptotics of the number of the

  11. Asymptotics of linear initial boundary value problems with periodic boundary data on the half-line and finite intervals

    KAUST Repository

    Dujardin, G. M.

    2009-01-01

    This paper deals with the asymptotic behaviour of the solutions of linear initial boundary value problems with constant coefficients on the half-line and on finite intervals. We assume that the boundary data are periodic in time and we investigate

  12. Thermal protection from a finite period of heat exposure – Heat survival of flight data recorders

    International Nuclear Information System (INIS)

    Rana, Ruhul Amin; Li, Ri

    2015-01-01

    This work relates to developing thermal protection for a finite period of exposure to a high temperature environment. This type of transient heat transfer problem starts with a heating period, which is then followed by a cooling period once the high temperature environment disappears. The study is particularly relevant to the thermal protection of flight data recorders from high temperature flame. In this work, transient heat conduction through a three-concentric-layer configuration is numerically studied, which includes a metal housing, a thermal insulation, and a phase change material. The thermal performance is evaluated using the center temperature changing with time. It is found that the center temperature reaches a peak during cooling period rather than heating period. Time taken to reach the peak and the peak value depend on the sizes and properties of the layers. The properties include latent heat of fusion, melting temperature, heat capacities, and thermal conductivities. Parametric study is conducted to analyze and distinguish the influence of these parameters. The study provides general guidance for determining sizes and selecting materials for the thermal design of flight data recorders. Additionally, the study is also useful for other similar applications, for which thermal management and protection over a period of time is needed. In this paper, analysis starts with a baseline configuration composed of specific materials and sizes. Finite changes are applied to sizes, properties of the materials, and the results are compared to understand the roles of the varied parameters in affecting the thermal protection performance. - Highlights: • We study the thermal design of flight data recorders for heat survival. • Consecutive heating and cooling of 3-layer configuration is investigated. • Influences of sizes and material properties on thermal protection are explored

  13. Dynamical stability for finite quantum spin chains against a time-periodic inhomogeneous perturbation

    International Nuclear Information System (INIS)

    Kudo, Kazue; Nakamura, Katsuhiro

    2009-01-01

    We investigate dynamical stability of the ground state against a time-periodic and spatially-inhomogeneous magnetic field for finite quantum XXZ spin chains. We use the survival probability as a measure of stability and demonstrate that it decays as P(t) ∝ t -1/2 under a certain condition. The dynamical properties should also be related to the level statistics of the XXZ spin chains with a constant spatially-inhomogeneous magnetic field. The level statistics depends on the anisotropy parameter and the field strength. We show how the survival probability depends on the anisotropy parameter, the strength and frequency of the field.

  14. Asymmetric fluid criticality. II. Finite-size scaling for simulations.

    Science.gov (United States)

    Kim, Young C; Fisher, Michael E

    2003-10-01

    The vapor-liquid critical behavior of intrinsically asymmetric fluids is studied in finite systems of linear dimensions L focusing on periodic boundary conditions, as appropriate for simulations. The recently propounded "complete" thermodynamic (L--> infinity) scaling theory incorporating pressure mixing in the scaling fields as well as corrections to scaling [Phys. Rev. E 67, 061506 (2003)] is extended to finite L, initially in a grand canonical representation. The theory allows for a Yang-Yang anomaly in which, when L--> infinity, the second temperature derivative (d2musigma/dT2) of the chemical potential along the phase boundary musigmaT diverges when T-->Tc-. The finite-size behavior of various special critical loci in the temperature-density or (T,rho) plane, in particular, the k-inflection susceptibility loci and the Q-maximal loci--derived from QL(T,L) is identical with 2L/L where m is identical with rho-L--is carefully elucidated and shown to be of value in estimating Tc and rhoc. Concrete illustrations are presented for the hard-core square-well fluid and for the restricted primitive model electrolyte including an estimate of the correlation exponent nu that confirms Ising-type character. The treatment is extended to the canonical representation where further complications appear.

  15. Phononic thermal resistance due to a finite periodic array of nano-scatterers

    Energy Technology Data Exchange (ETDEWEB)

    Trang Nghiêm, T. T.; Chapuis, Pierre-Olivier [Univ. Lyon, CNRS, INSA-Lyon, Université Claude Bernard Lyon 1, CETHIL UMR5008, F-69621 Villeurbanne (France)

    2016-07-28

    The wave property of phonons is employed to explore the thermal transport across a finite periodic array of nano-scatterers such as circular and triangular holes. As thermal phonons are generated in all directions, we study their transmission through a single array for both normal and oblique incidences, using a linear dispersionless time-dependent acoustic frame in a two-dimensional system. Roughness effects can be directly considered within the computations without relying on approximate analytical formulae. Analysis by spatio-temporal Fourier transform allows us to observe the diffraction effects and the conversion of polarization. Frequency-dependent energy transmission coefficients are computed for symmetric and asymmetric objects that are both subject to reciprocity. We demonstrate that the phononic array acts as an efficient thermal barrier by applying the theory of thermal boundary (Kapitza) resistances to arrays of smooth scattering holes in silicon for an exemplifying periodicity of 10 nm in the 5–100 K temperature range. It is observed that the associated thermal conductance has the same temperature dependence as that without phononic filtering.

  16. Dynamic Pricing and Learning with Finite Inventories

    OpenAIRE

    Zwart, Bert; Boer, Arnoud

    2015-01-01

    We study a dynamic pricing problem with finite inventory and parametric uncertainty on the demand distribution. Products are sold during selling seasons of finite length, and inventory that is unsold at the end of a selling season, perishes. The goal of the seller is to determine a pricing strategy that maximizes the expected revenue. Inference on the unknown parameters is made by maximum likelihood estimation. We propose a pricing strategy for this problem, and show that the Regret - which i...

  17. Vibration isolation design for periodically stiffened shells by the wave finite element method

    Science.gov (United States)

    Hong, Jie; He, Xueqing; Zhang, Dayi; Zhang, Bing; Ma, Yanhong

    2018-04-01

    Periodically stiffened shell structures are widely used due to their excellent specific strength, in particular for aeronautical and astronautical components. This paper presents an improved Wave Finite Element Method (FEM) that can be employed to predict the band-gap characteristics of stiffened shell structures efficiently. An aero-engine casing, which is a typical periodically stiffened shell structure, was employed to verify the validation and efficiency of the Wave FEM. Good agreement has been found between the Wave FEM and the classical FEM for different boundary conditions. One effective wave selection method based on the Wave FEM has thus been put forward to filter the radial modes of a shell structure. Furthermore, an optimisation strategy by the combination of the Wave FEM and genetic algorithm was presented for periodically stiffened shell structures. The optimal out-of-plane band gap and the mass of the whole structure can be achieved by the optimisation strategy under an aerodynamic load. Results also indicate that geometric parameters of stiffeners can be properly selected that the out-of-plane vibration attenuates significantly in the frequency band of interest. This study can provide valuable references for designing the band gaps of vibration isolation.

  18. Interpolation of the discrete logarithm in a finite field of characteristic two by Boolean functions

    DEFF Research Database (Denmark)

    Brandstaetter, Nina; Lange, Tanja; Winterhof, Arne

    2005-01-01

    We obtain bounds on degree, weight, and the maximal Fourier coefficient of Boolean functions interpolating the discrete logarithm in finite fields of characteristic two. These bounds complement earlier results for finite fields of odd characteristic....

  19. Finite Discrete Gabor Analysis

    DEFF Research Database (Denmark)

    Søndergaard, Peter Lempel

    2007-01-01

    frequency bands at certain times. Gabor theory can be formulated for both functions on the real line and for discrete signals of finite length. The two theories are largely the same because many aspects come from the same underlying theory of locally compact Abelian groups. The two types of Gabor systems...... can also be related by sampling and periodization. This thesis extends on this theory by showing new results for window construction. It also provides a discussion of the problems associated to discrete Gabor bases. The sampling and periodization connection is handy because it allows Gabor systems...... on the real line to be well approximated by finite and discrete Gabor frames. This method of approximation is especially attractive because efficient numerical methods exists for doing computations with finite, discrete Gabor systems. This thesis presents new algorithms for the efficient computation of finite...

  20. High frequency dynamics of an isotropic Timoshenko periodic beam by the use of the Time-domain Spectral Finite Element Method

    Science.gov (United States)

    Żak, A.; Krawczuk, M.; Palacz, M.; Doliński, Ł.; Waszkowiak, W.

    2017-11-01

    In this work results of numerical simulations and experimental measurements related to the high frequency dynamics of an aluminium Timoshenko periodic beam are presented. It was assumed by the authors that the source of beam structural periodicity comes from periodical alterations to its geometry due to the presence of appropriately arranged drill-holes. As a consequence of these alterations dynamic characteristics of the beam are changed revealing a set of frequency band gaps. The presence of the frequency band gaps can help in the design process of effective sound filters or sound barriers that can selectively attenuate propagating wave signals of certain frequency contents. In order to achieve this a combination of three numerical techniques were employed by the authors. They comprise the application of the Time-domain Spectral Finite Element Method in the case of analysis of finite and semi-infinite computational domains, damage modelling in the case of analysis of drill-hole influence, as well as the Bloch reduction in the case of analysis of periodic computational domains. As an experimental technique the Scanning Laser Doppler Vibrometry was chosen. A combined application of all these numerical and experimental techniques appears as new for this purpose and not reported in the literature available.

  1. Finite-element simulation of blood perfusion in muscle tissue during compression and sustained contraction.

    Science.gov (United States)

    Vankan, W J; Huyghe, J M; Slaaf, D W; van Donkelaar, C C; Drost, M R; Janssen, J D; Huson, A

    1997-09-01

    Mechanical interaction between tissue stress and blood perfusion in skeletal muscles plays an important role in blood flow impediment during sustained contraction. The exact mechanism of this interaction is not clear, and experimental investigation of this mechanism is difficult. We developed a finite-element model of the mechanical behavior of blood-perfused muscle tissue, which accounts for mechanical blood-tissue interaction in maximally vasodilated vasculature. Verification of the model was performed by comparing finite-element results of blood pressure and flow with experimental measurements in a muscle that is subject to well-controlled mechanical loading conditions. In addition, we performed simulations of blood perfusion during tetanic, isometric contraction and maximal vasodilation in a simplified, two-dimensional finite-element model of a rat calf muscle. A vascular waterfall in the venous compartment was identified as the main cause for blood flow impediment both in the experiment and in the finite-element simulations. The validated finite-element model offers possibilities for detailed analysis of blood perfusion in three-dimensional muscle models under complicated loading conditions.

  2. Maximal Abelian sets of roots

    CERN Document Server

    Lawther, R

    2018-01-01

    In this work the author lets \\Phi be an irreducible root system, with Coxeter group W. He considers subsets of \\Phi which are abelian, meaning that no two roots in the set have sum in \\Phi \\cup \\{ 0 \\}. He classifies all maximal abelian sets (i.e., abelian sets properly contained in no other) up to the action of W: for each W-orbit of maximal abelian sets we provide an explicit representative X, identify the (setwise) stabilizer W_X of X in W, and decompose X into W_X-orbits. Abelian sets of roots are closely related to abelian unipotent subgroups of simple algebraic groups, and thus to abelian p-subgroups of finite groups of Lie type over fields of characteristic p. Parts of the work presented here have been used to confirm the p-rank of E_8(p^n), and (somewhat unexpectedly) to obtain for the first time the 2-ranks of the Monster and Baby Monster sporadic groups, together with the double cover of the latter. Root systems of classical type are dealt with quickly here; the vast majority of the present work con...

  3. Softly Broken Lepton Numbers: an Approach to Maximal Neutrino Mixing

    International Nuclear Information System (INIS)

    Grimus, W.; Lavoura, L.

    2001-01-01

    We discuss models where the U(1) symmetries of lepton numbers are responsible for maximal neutrino mixing. We pay particular attention to an extension of the Standard Model (SM) with three right-handed neutrino singlets in which we require that the three lepton numbers L e , L μ , and L τ be separately conserved in the Yukawa couplings, but assume that they are softly broken by the Majorana mass matrix M R of the neutrino singlets. In this framework, where lepton-number breaking occurs at a scale much higher than the electroweak scale, deviations from family lepton number conservation are calculable, i.e., finite, and lepton mixing stems exclusively from M R . We show that in this framework either maximal atmospheric neutrino mixing or maximal solar neutrino mixing or both can be imposed by invoking symmetries. In this way those maximal mixings are stable against radiative corrections. The model which achieves maximal (or nearly maximal) solar neutrino mixing assumes that there are two different scales in M R and that the lepton number (dash)L=L e -L μ -L τ 1 is conserved in between them. We work out the difference between this model and the conventional scenario where (approximate) (dash)L invariance is imposed directly on the mass matrix of the light neutrinos. (author)

  4. Undulatory locomotion of finite filaments: lessons from Caenorhabditis elegans

    International Nuclear Information System (INIS)

    Berman, R S; Kenneth, O; Sznitman, J; Leshansky, A M

    2013-01-01

    Undulatory swimming is a widespread propulsion strategy adopted by many small-scale organisms including various single-cell eukaryotes and nematodes. In this work, we report a comprehensive study of undulatory locomotion of a finite filament using (i) approximate resistive force theory (RFT) assuming a local nature of hydrodynamic interaction between the filament and the surrounding viscous liquid and (ii) particle-based numerical computations taking into account the intra-filament hydrodynamic interaction. Using the ubiquitous model of a propagating sinusoidal waveform, we identify the limit of applicability of the RFT and determine the optimal propulsion gait in terms of (i) swimming distance per period of undulation and (ii) hydrodynamic propulsion efficiency. The occurrence of the optimal swimming gait maximizing hydrodynamic efficiency at finite wavelength in particle-based computations diverges from the prediction of the RFT. To compare the model swimmer powered by sine wave undulations to biological undulatory swimmers, we apply the particle-based approach to study locomotion of the model organism nematode Caenorhabditis elegans using the swimming gait extracted from experiments. The analysis reveals that even though the amplitude and the wavenumber of undulations are similar to those determined for the best performing sinusoidal swimmer, C. elegans overperforms the latter in terms of both displacement and hydrodynamic efficiency. Further comparison with other undulatory microorganisms reveals that many adopt waveforms with characteristics similar to the optimal model swimmer, yet real swimmers still manage to beat the best performing sine-wave swimmer in terms of distance covered per period. Overall our results underline the importance of further waveform optimization, as periodic undulations adopted by C. elegans and other organisms deviate considerably from a simple sine wave. (paper)

  5. DISTRIBUTION OF MAXIMAL LUMINOSITY OF GALAXIES IN THE SLOAN DIGITAL SKY SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Taghizadeh-Popp, M.; Szalay, A. S. [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Ozogany, K.; Racz, Z. [Institute for Theoretical Physics-HAS, Eoetvoes University, Pazmany setany 1/a, 1117 Budapest (Hungary); Regoes, E., E-mail: mtaghiza@pha.jhu.edu [European Laboratory for Particle Physics (CERN), Geneva (Switzerland)

    2012-11-10

    Extreme value statistics is applied to the distribution of galaxy luminosities in the Sloan Digital Sky Survey. We analyze the DR8 Main Galaxy Sample (MGS), as well as the luminous red galaxies (LRGs). Maximal luminosities are sampled from batches consisting of elongated pencil beams in the radial direction of sight. For the MGS, results suggest a small and positive tail index {xi}, effectively ruling out the possibility of having a finite maximum cutoff luminosity, and implying that the luminosity distribution function may decay as a power law at the high-luminosity end. Assuming, however, {xi} = 0, a non-parametric comparison of the maximal luminosities with the Fisher-Tippett-Gumbel distribution (limit distribution for variables distributed by the Schechter fit) indicates a good agreement provided that uncertainties arising from both the finite batch size and the batch-size distribution are accounted for. For a volume-limited sample of LRGs, results show that they can be described as being the extremes of a luminosity distribution with an exponentially decaying tail, provided that the uncertainties related to batch-size distribution are taken care of.

  6. Tri-maximal vs. bi-maximal neutrino mixing

    International Nuclear Information System (INIS)

    Scott, W.G

    2000-01-01

    It is argued that data from atmospheric and solar neutrino experiments point strongly to tri-maximal or bi-maximal lepton mixing. While ('optimised') bi-maximal mixing gives an excellent a posteriori fit to the data, tri-maximal mixing is an a priori hypothesis, which is not excluded, taking account of terrestrial matter effects

  7. Ghost-free, finite, fourth-order D = 3 gravity.

    Science.gov (United States)

    Deser, S

    2009-09-04

    Canonical analysis of a recently proposed linear + quadratic curvature gravity model in D = 3 establishes its pure, irreducibly fourth derivative, quadratic curvature limit as both ghost-free and power-counting UV finite, thereby maximally violating standard folklore. This limit is representative of a generic class whose kinetic terms are conformally invariant in any dimension, but it is unique in simultaneously avoiding the transverse-traceless graviton ghosts plaguing D > 3 quadratic actions as well as double pole propagators in its other variables. While the two-term model is also unitary, its additional mode's second-derivative nature forfeits finiteness.

  8. Centralizers of maximal regular subgroups in simple Lie groups and relative congruence classes of representations

    Energy Technology Data Exchange (ETDEWEB)

    Larouche, M [Departement de Mathematiques et Statistique, Universite de Montreal, 2920 chemin de la Tour, Montreal, Quebec H3T 1J4 (Canada); Lemire, F W [Department of Mathematics, University of Windsor, Windsor, Ontario (Canada); Patera, J, E-mail: larouche@dms.umontreal.ca, E-mail: lemire@uwindsor.ca, E-mail: patera@crm.umontreal.ca [Centre de Recherches Mathematiques, Universite de Montreal, CP 6128-Centre ville, Montreal, Quebec H3C 3J7 (Canada)

    2011-10-14

    In this paper, we present a new, uniform and comprehensive description of centralizers of the maximal regular subgroups in compact simple Lie groups of all types and ranks. The centralizer is either a direct product of finite cyclic groups, a continuous group of rank 1, or a product, not necessarily direct, of a continuous group of rank 1 with a finite cyclic group. Explicit formulas for the action of such centralizers on irreducible representations of the simple Lie algebras are given. (paper)

  9. A summary of maintenance policies for a finite interval

    International Nuclear Information System (INIS)

    Nakagawa, T.; Mizutani, S.

    2009-01-01

    It would be an important problem to consider practically some maintenance policies for a finite time span, because the working times of most units are finite in actual fields. This paper converts the usual maintenance models to finite maintenance models. It is more difficult to study theoretically optimal policies for a finite time span than those for an infinite time span. Three usual models of periodic replacement with minimal repair, block replacement and simple replacement are transformed to finite replacement models. Further, optimal periodic and sequential policies for an imperfect preventive maintenance and an inspection model for a finite time span are considered. Optimal policies for each model are analytically derived and are numerically computed

  10. Theory of finite periodic systems - I: General expressions and various simple and illustrative examples

    International Nuclear Information System (INIS)

    Pereyra, Pedro; Castillo, Edith

    2001-09-01

    A comprehensive presentation of a new approach to finite periodic systems is given. The novel and general expressions obtained here, allow simple and precise calculations of various physical quantities characteristic of crystalline systems. Transmission amplitudes through n-cell multichannel quantum systems are rigorously derived. General expressions for several physical quantities are entirely expressed in terms of single-cell amplitudes and a new class of polynomials p N,n . Besides the general expressions, we study some superlattice properties as the band structure and its relation with the phase coherence phenomena, the level density and the Kronig-Penney model as its continuous espectrum limit. Bandstructure tailoring, optical multilayer systems, resonant energies and functions and channel-mixing effects in multichannel transport process are also analysed in the light of the new approach. (author)

  11. Anomalous behaviour of mutual information in finite flocks

    Science.gov (United States)

    Barnett, L.; Brown, J.; Bossomaier, T.

    2017-11-01

    The existing consensus is that flocks are poised at criticality, entailing long correlation lengths and a maximal value of Shannon mutual information in the large-system limit. We show, by contrast, that for finite flocks which do not truly break ergodicity in the long-observation-time limit, mutual information may not only fail to peak at criticality —as observed for other critical systems— but also diverge as noise tends to zero. This result carries implications for other finite-size, out-of-equilibrium systems, where observation times may vary widely compared to time scales of internal system dynamics; thus it may not be assumed that mutual information locates the phase transition.

  12. Finite-time braiding exponents

    Science.gov (United States)

    Budišić, Marko; Thiffeault, Jean-Luc

    2015-08-01

    Topological entropy of a dynamical system is an upper bound for the sum of positive Lyapunov exponents; in practice, it is strongly indicative of the presence of mixing in a subset of the domain. Topological entropy can be computed by partition methods, by estimating the maximal growth rate of material lines or other material elements, or by counting the unstable periodic orbits of the flow. All these methods require detailed knowledge of the velocity field that is not always available, for example, when ocean flows are measured using a small number of floating sensors. We propose an alternative calculation, applicable to two-dimensional flows, that uses only a sparse set of flow trajectories as its input. To represent the sparse set of trajectories, we use braids, algebraic objects that record how trajectories exchange positions with respect to a projection axis. Material curves advected by the flow are represented as simplified loop coordinates. The exponential rate at which a braid stretches loops over a finite time interval is the Finite-Time Braiding Exponent (FTBE). We study FTBEs through numerical simulations of the Aref Blinking Vortex flow, as a representative of a general class of flows having a single invariant component with positive topological entropy. The FTBEs approach the value of the topological entropy from below as the length and number of trajectories is increased; we conjecture that this result holds for a general class of ergodic, mixing systems. Furthermore, FTBEs are computed robustly with respect to the numerical time step, details of braid representation, and choice of initial conditions. We find that, in the class of systems we describe, trajectories can be re-used to form different braids, which greatly reduces the amount of data needed to assess the complexity of the flow.

  13. Application of the Recursive Finite Element Approach on 2D Periodic Structures under Harmonic Vibrations

    Directory of Open Access Journals (Sweden)

    Reem Yassine

    2016-12-01

    Full Text Available The frequency response function is a quantitative measure used in structural analysis and engineering design; hence, it is targeted for accuracy. For a large structure, a high number of substructures, also called cells, must be considered, which will lead to a high amount of computational time. In this paper, the recursive method, a finite element method, is used for computing the frequency response function, independent of the number of cells with much lesser time costs. The fundamental principle is eliminating the internal degrees of freedom that are at the interface between a cell and its succeeding one. The method is applied solely for free (no load nodes. Based on the boundary and interior degrees of freedom, the global dynamic stiffness matrix is computed by means of products and inverses resulting with a dimension the same as that for one cell. The recursive method is demonstrated on periodic structures (cranes and buildings under harmonic vibrations. The method yielded a satisfying time decrease with a maximum time ratio of 1 18 and a percentage difference of 19%, in comparison with the conventional finite element method. Close values were attained at low and very high frequencies; the analysis is supported for two types of materials (steel and plastic. The method maintained its efficiency with a high number of forces, excluding the case when all of the nodes are under loads.

  14. Superimposition of maximal stress and necrosis areas at the top of the femoral head in hip aseptic osteonecrosis.

    Science.gov (United States)

    Escudier, J-C; Ollivier, M; Donnez, M; Parratte, S; Lafforgue, P; Argenson, J-N

    2018-05-01

    Recent reports described possible mechanical factors in the development and aggravation of osteonecrosis of the femoral head (OFH), but these have yet to be confirmed on dedicated mechanical study. We therefore developed a 3D finite element model based on in-vivo data from patients with incipient OFH, with a view to determining whether the necrosis area was superimposed on the maximal stress area on the femoral head. The location of the necrosis area is determined by stress on the femoral head. All patients from the rheumatology department with early stage OFH in our center were investigated. Analysis of CT scans showed stress distribution on the head by 3D finite elements models, enabling determination of necrosis volume within the maximal stress area and of the percentage intersection of necrosis within the stress area (%I n/s: necrosis volume in stress area divided by total stress area volume and multiplied by 100) and of stress within the necrosis area (%I s/n: stress volume in necrosis area divided by total necrosis area volume and multiplied by 100). Nineteen of the 161 patients assessed retrospectively for the period between 2006 and 2015 had incipient unilateral OFH, 10 of whom (4 right, 6 left) had CT scans of sufficient quality for inclusion. Mean age was 52 years (range, 37-81 years). Mean maximal stress was 1.63MPa, mean maximal exported stress volume was 2,236.9 mm 3 and mean necrosis volume 6,291.1 mm 3 . Mean %I n/s was 83% and mean %I s/n 35%, with no significant differences according to gender, age, side or stress volume. There was a strong inverse correlation between necrosis volume and %I s/n (R 2 =-0.92) and a strong direct correlation between exported stress volume and %I s/n (R 2 =0.55). %I s/n was greater in small necrosis (stress area on the femoral head. The present results need confirmation by larger-scale studies. We consider it essential to take account of these mechanical parameters to reduce failure rates in conservative treatment of

  15. Finite-time output feedback stabilization of high-order uncertain nonlinear systems

    Science.gov (United States)

    Jiang, Meng-Meng; Xie, Xue-Jun; Zhang, Kemei

    2018-06-01

    This paper studies the problem of finite-time output feedback stabilization for a class of high-order nonlinear systems with the unknown output function and control coefficients. Under the weaker assumption that output function is only continuous, by using homogeneous domination method together with adding a power integrator method, introducing a new analysis method, the maximal open sector Ω of output function is given. As long as output function belongs to any closed sector included in Ω, an output feedback controller can be developed to guarantee global finite-time stability of the closed-loop system.

  16. Phenomenology of maximal and near-maximal lepton mixing

    International Nuclear Information System (INIS)

    Gonzalez-Garcia, M. C.; Pena-Garay, Carlos; Nir, Yosef; Smirnov, Alexei Yu.

    2001-01-01

    The possible existence of maximal or near-maximal lepton mixing constitutes an intriguing challenge for fundamental theories of flavor. We study the phenomenological consequences of maximal and near-maximal mixing of the electron neutrino with other (x=tau and/or muon) neutrinos. We describe the deviations from maximal mixing in terms of a parameter ε(equivalent to)1-2sin 2 θ ex and quantify the present experimental status for |ε| e mixing comes from solar neutrino experiments. We find that the global analysis of solar neutrino data allows maximal mixing with confidence level better than 99% for 10 -8 eV 2 ∼ 2 ∼ -7 eV 2 . In the mass ranges Δm 2 ∼>1.5x10 -5 eV 2 and 4x10 -10 eV 2 ∼ 2 ∼ -7 eV 2 the full interval |ε| e mixing in atmospheric neutrinos, supernova neutrinos, and neutrinoless double beta decay

  17. The influence of temperature dynamics and dynamic finite ion Larmor radius effects on seeded high amplitude plasma blobs

    DEFF Research Database (Denmark)

    Held, Magnus; Wiesenberger, M.; Madsen, Jens

    2016-01-01

    Thermal effects on the perpendicular convection of seeded pressure blobs in the scrape-off layer of magnetised fusion plasmas are investigated. Our numerical study is based on a four field full-F gyrofluid model, which entails the consistent description of high fluctuation amplitudes and dynamic...... finite Larmor radius effects. We find that the maximal radial blob velocity increases with the square root of the initial pressure perturbation and that a finite Larmor radius contributes to highly compact blob structures that propagate in the poloidal direction. An extensive parameter study reveals...... that a smooth transition to this compact blob regime occurs when the finite Larmor radius effect strength, defined by the ratio of the magnetic field aligned component of the ion diamagnetic to the E × B vorticity, exceeds unity. The maximal radial blob velocities agree excellently with the inertial velocity...

  18. Maximizing entropy of image models for 2-D constrained coding

    DEFF Research Database (Denmark)

    Forchhammer, Søren; Danieli, Matteo; Burini, Nino

    2010-01-01

    This paper considers estimating and maximizing the entropy of two-dimensional (2-D) fields with application to 2-D constrained coding. We consider Markov random fields (MRF), which have a non-causal description, and the special case of Pickard random fields (PRF). The PRF are 2-D causal finite...... context models, which define stationary probability distributions on finite rectangles and thus allow for calculation of the entropy. We consider two binary constraints and revisit the hard square constraint given by forbidding neighboring 1s and provide novel results for the constraint that no uniform 2...... £ 2 squares contains all 0s or all 1s. The maximum values of the entropy for the constraints are estimated and binary PRF satisfying the constraint are characterized and optimized w.r.t. the entropy. The maximum binary PRF entropy is 0.839 bits/symbol for the no uniform squares constraint. The entropy...

  19. Strategy Complexity of Finite-Horizon Markov Decision Processes and Simple Stochastic Games

    DEFF Research Database (Denmark)

    Ibsen-Jensen, Rasmus; Chatterjee, Krishnendu

    2012-01-01

    Markov decision processes (MDPs) and simple stochastic games (SSGs) provide a rich mathematical framework to study many important problems related to probabilistic systems. MDPs and SSGs with finite-horizon objectives, where the goal is to maximize the probability to reach a target state in a given...

  20. Near-optimality of special periodic protocols for fluid models of single server switched networks with switchover times

    Science.gov (United States)

    Matveev, A. S.; Ishchenko, R.

    2017-11-01

    We consider a generic deterministic time-invariant fluid model of a single server switched network, which consists of finitely many infinite size buffers (queues) and receives constant rate inflows of jobs from the outside. Any flow undergoes a multi-phase service, entering a specific buffer after every phase, and ultimately leaves the network; the route of the flow over the buffers is pre-specified, and flows may merge inside the network. They share a common source of service, which can serve at most one buffer at a time and has to switch among buffers from time to time; any switch consumes a nonzero switchover period. With respect to the long-run maximal scaled wip (work in progress) performance metric, near-optimality of periodic scheduling and service protocols is established: the deepest optimum (that is over all feasible processes in the network, irrespective of the initial state) is furnished by such a protocol up to as small error as desired. Moreover, this can be achieved with a special periodic protocol introduced in the paper. It is also shown that the exhaustive policy is optimal for any buffer whose service at the maximal rate does not cause growth of the scaled wip.

  1. A variational numerical method based on finite elements for the nonlinear solution characteristics of the periodically forced Chen system

    Science.gov (United States)

    Khan, Sabeel M.; Sunny, D. A.; Aqeel, M.

    2017-09-01

    Nonlinear dynamical systems and their solutions are very sensitive to initial conditions and therefore need to be approximated carefully. In this article, we present and analyze nonlinear solution characteristics of the periodically forced Chen system with the application of a variational method based on the concept of finite time-elements. Our approach is based on the discretization of physical time space into finite elements where each time-element is mapped to a natural time space. The solution of the system is then determined in natural time space using a set of suitable basis functions. The numerical algorithm is presented and implemented to compute and analyze nonlinear behavior at different time-step sizes. The obtained results show an excellent agreement with the classical RK-4 and RK-5 methods. The accuracy and convergence of the method is shown by comparing numerically computed results with the exact solution for a test problem. The presented method has shown a great potential in dealing with the solutions of nonlinear dynamical systems and thus can be utilized in delineating different features and characteristics of their solutions.

  2. Automatic optimization of core loading patterns to maximize cycle energy production within operational constraints

    International Nuclear Information System (INIS)

    Hobson, G.H.; Turinsky, P.J.

    1986-01-01

    Computational capability has been developed to automatically determine the core loading pattern which minimizes fuel cycle costs for a pressurized water reactor. Equating fuel cycle cost minimization with core reactivity maximization, the objective is to determine the loading pattern which maximizes core reactivity at end-of-cycle while satisfying the power peaking constraint throughout the cycle and region average discharge burnup limit. The method utilizes a two-dimensional, coarse mesh, finite difference scheme to evaluate core reactivity and fluxes for an initial reference loading pattern as a function of cycle burnup. First order perturbation theory is applied to determine the effects of assembly shuffling on reactivity, power distribution, and end-of-cycle burnup

  3. Expectation-maximization algorithms for learning a finite mixture of univariate survival time distributions from partially specified class values

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youngrok [Iowa State Univ., Ames, IA (United States)

    2013-05-15

    Heterogeneity exists on a data set when samples from di erent classes are merged into the data set. Finite mixture models can be used to represent a survival time distribution on heterogeneous patient group by the proportions of each class and by the survival time distribution within each class as well. The heterogeneous data set cannot be explicitly decomposed to homogeneous subgroups unless all the samples are precisely labeled by their origin classes; such impossibility of decomposition is a barrier to overcome for estimating nite mixture models. The expectation-maximization (EM) algorithm has been used to obtain maximum likelihood estimates of nite mixture models by soft-decomposition of heterogeneous samples without labels for a subset or the entire set of data. In medical surveillance databases we can find partially labeled data, that is, while not completely unlabeled there is only imprecise information about class values. In this study we propose new EM algorithms that take advantages of using such partial labels, and thus incorporate more information than traditional EM algorithms. We particularly propose four variants of the EM algorithm named EM-OCML, EM-PCML, EM-HCML and EM-CPCML, each of which assumes a specific mechanism of missing class values. We conducted a simulation study on exponential survival trees with five classes and showed that the advantages of incorporating substantial amount of partially labeled data can be highly signi cant. We also showed model selection based on AIC values fairly works to select the best proposed algorithm on each specific data set. A case study on a real-world data set of gastric cancer provided by Surveillance, Epidemiology and End Results (SEER) program showed a superiority of EM-CPCML to not only the other proposed EM algorithms but also conventional supervised, unsupervised and semi-supervised learning algorithms.

  4. Maximal Bell's inequality violation for non-maximal entanglement

    International Nuclear Information System (INIS)

    Kobayashi, M.; Khanna, F.; Mann, A.; Revzen, M.; Santana, A.

    2004-01-01

    Bell's inequality violation (BIQV) for correlations of polarization is studied for a product state of two two-mode squeezed vacuum (TMSV) states. The violation allowed is shown to attain its maximal limit for all values of the squeezing parameter, ζ. We show via an explicit example that a state whose entanglement is not maximal allow maximal BIQV. The Wigner function of the state is non-negative and the average value of either polarization is nil

  5. Scattering amplitudes over finite fields and multivariate functional reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Peraro, Tiziano [Higgs Centre for Theoretical Physics,School of Physics and Astronomy, The University of Edinburgh,James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD (United Kingdom)

    2016-12-07

    Several problems in computer algebra can be efficiently solved by reducing them to calculations over finite fields. In this paper, we describe an algorithm for the reconstruction of multivariate polynomials and rational functions from their evaluation over finite fields. Calculations over finite fields can in turn be efficiently performed using machine-size integers in statically-typed languages. We then discuss the application of the algorithm to several techniques related to the computation of scattering amplitudes, such as the four- and six-dimensional spinor-helicity formalism, tree-level recursion relations, and multi-loop integrand reduction via generalized unitarity. The method has good efficiency and scales well with the number of variables and the complexity of the problem. As an example combining these techniques, we present the calculation of full analytic expressions for the two-loop five-point on-shell integrands of the maximal cuts of the planar penta-box and the non-planar double-pentagon topologies in Yang-Mills theory, for a complete set of independent helicity configurations.

  6. Scattering amplitudes over finite fields and multivariate functional reconstruction

    International Nuclear Information System (INIS)

    Peraro, Tiziano

    2016-01-01

    Several problems in computer algebra can be efficiently solved by reducing them to calculations over finite fields. In this paper, we describe an algorithm for the reconstruction of multivariate polynomials and rational functions from their evaluation over finite fields. Calculations over finite fields can in turn be efficiently performed using machine-size integers in statically-typed languages. We then discuss the application of the algorithm to several techniques related to the computation of scattering amplitudes, such as the four- and six-dimensional spinor-helicity formalism, tree-level recursion relations, and multi-loop integrand reduction via generalized unitarity. The method has good efficiency and scales well with the number of variables and the complexity of the problem. As an example combining these techniques, we present the calculation of full analytic expressions for the two-loop five-point on-shell integrands of the maximal cuts of the planar penta-box and the non-planar double-pentagon topologies in Yang-Mills theory, for a complete set of independent helicity configurations.

  7. Flexural wave attenuation in a sandwich beam with viscoelastic periodic cores

    Science.gov (United States)

    Guo, Zhiwei; Sheng, Meiping; Pan, Jie

    2017-07-01

    The flexural-wave attenuation performance of traditional constraint-layer damping in a sandwich beam is improved by using periodic constrained-layer damping (PCLD), where the monolithic viscoelastic core is replaced with two periodically alternating viscoelastic cores. Closed-form solutions of the wave propagation constants of the infinite periodic sandwich beam and the forced response of the corresponding finite sandwich structure are theoretically derived, providing computational support on the analysis of attenuation characteristics. In a sandwich beam with PCLD, the flexural waves can be attenuated by both Bragg scattering effect and damping effect, where the attenuation level is mainly dominated by Bragg scattering in the band-gaps and by damping in the pass-bands. Affected by these two effects, when the parameters of periodic cores are properly selected, a sandwich beam with PCLD can effectively reduce vibrations of much lower frequencies than that with traditional constrained-layer damping. The effects of the parameters of viscoelastic periodic cores on band-gap properties are also discussed, showing that the average attenuation in the desired frequency band can be maximized by tuning the length ratio and core thickness to proper values. The research in this paper could possibly provide useful information for the researches and engineers to design damping structures.

  8. A generalized Frattini subgroup of a finite group

    Directory of Open Access Journals (Sweden)

    Prabir Bhattacharya

    1989-01-01

    Full Text Available For a finite group G and an arbitrary prime p, let SP(G denote the intersection of all maximal subgroups M of G such that [G:M] is both composite and not divisible by p; if no such M exists we set SP(G = G. Some properties of G are considered involving SP(G. In particular, we obtain a characterization of G when each M in the definition of SP(G is nilpotent.

  9. Maximizing and customer loyalty: Are maximizers less loyal?

    Directory of Open Access Journals (Sweden)

    Linda Lai

    2011-06-01

    Full Text Available Despite their efforts to choose the best of all available solutions, maximizers seem to be more inclined than satisficers to regret their choices and to experience post-decisional dissonance. Maximizers may therefore be expected to change their decisions more frequently and hence exhibit lower customer loyalty to providers of products and services compared to satisficers. Findings from the study reported here (N = 1978 support this prediction. Maximizers reported significantly higher intentions to switch to another service provider (television provider than satisficers. Maximizers' intentions to switch appear to be intensified and mediated by higher proneness to regret, increased desire to discuss relevant choices with others, higher levels of perceived knowledge of alternatives, and higher ego involvement in the end product, compared to satisficers. Opportunities for future research are suggested.

  10. Periodic and quasiperiodic revivals in periodically driven interacting quantum systems

    Science.gov (United States)

    Luitz, David J.; Lazarides, Achilleas; Bar Lev, Yevgeny

    2018-01-01

    Recently it has been shown that interparticle interactions generically destroy dynamical localization in periodically driven systems, resulting in diffusive transport and heating. In this Rapid Communication we rigorously construct a family of interacting driven systems which are dynamically localized and effectively decoupled from the external driving potential. We show that these systems exhibit tunable periodic or quasiperiodic revivals of the many-body wave function and thus of all physical observables. By numerically examining spinless fermions on a one-dimensional lattice we show that the analytically obtained revivals of such systems remain stable for finite systems with open boundary conditions while having a finite lifetime in the presence of static spatial disorder. We find this lifetime to be inversely proportional to the disorder strength.

  11. Finite time exergy analysis and multi-objective ecological optimization of a regenerative Brayton cycle considering the impact of flow rate variations

    International Nuclear Information System (INIS)

    Naserian, Mohammad Mahdi; Farahat, Said; Sarhaddi, Faramarz

    2015-01-01

    Highlights: • Defining a dimensionless parameter includes the finite-time and size concepts. • Inserting the concept of exergy of fluid streams into finite-time thermodynamics. • Defining, drawing and modifying of maximum ecological function curve. • Suggesting the appropriate performance zone, according to maximum ecological curve. - Abstract: In this study, the optimal performance of a regenerative Brayton cycle is sought through power and then ecological function maximization using finite-time thermodynamic concept and finite-size components. Multi-objective optimization is used for maximizing the ecological function. Optimizations are performed using genetic algorithm. In order to take into account the finite-time and finite-size concepts in current problem, a dimensionless mass-flow parameter is introduced deploying time variations. The variations of output power, total exergy destruction of the system, and decision variables for the optimum state (maximum ecological function state) are compared to the maximum power state using the dimensionless parameter. The modified ecological function in optimum state is obtained and plotted relating to the dimensionless mass-flow parameter. One can see that the modified ecological function study results in a better performance than that obtained with the maximum power state. Finally, the appropriate performance zone of the heat engine will be obtained

  12. Maximizing the TESS Mission’s Yield of Long-Period Planets

    Science.gov (United States)

    Dragomir, Diana; Gaudi, B. Scott; Villanueva, Steven; Crossfield, Ian; Huang, Xu; Ribas, Ignasi; Quinn, Samuel

    2018-01-01

    The upcoming TESS mission will discover thousands of transiting planets around bright stars. However, during its primary mission the satellite will observe most of the sky for just 27 days (and for at most one year even in its continuous viewing zones near the ecliptic poles), thus limiting the mission’s yield of long-period planets that show three or more transits in the TESS light curves. By also pursuing single- and double-transit events, we can increase by several hundred the number of planets with periods longer than 10 days that TESS will discover. I will show how strategic planning and the judicious use of follow-up observations can confirm these planets and refine their ephemerides. Through this program, we will generate a sample of long-period planets transiting bright stars that are ripe for detailed characterization studies such as mass measurements and atmospheric observations. In turn, these studies will provide important constraints on the composition and formation of long-period planets.

  13. Sex differences in autonomic function following maximal exercise.

    Science.gov (United States)

    Kappus, Rebecca M; Ranadive, Sushant M; Yan, Huimin; Lane-Cordova, Abbi D; Cook, Marc D; Sun, Peng; Harvey, I Shevon; Wilund, Kenneth R; Woods, Jeffrey A; Fernhall, Bo

    2015-01-01

    Heart rate variability (HRV), blood pressure variability, (BPV) and heart rate recovery (HRR) are measures that provide insight regarding autonomic function. Maximal exercise can affect autonomic function, and it is unknown if there are sex differences in autonomic recovery following exercise. Therefore, the purpose of this study was to determine sex differences in several measures of autonomic function and the response following maximal exercise. Seventy-one (31 males and 40 females) healthy, nonsmoking, sedentary normotensive subjects between the ages of 18 and 35 underwent measurements of HRV and BPV at rest and following a maximal exercise bout. HRR was measured at minute one and two following maximal exercise. Males have significantly greater HRR following maximal exercise at both minute one and two; however, the significance between sexes was eliminated when controlling for VO2 peak. Males had significantly higher resting BPV-low-frequency (LF) values compared to females and did not significantly change following exercise, whereas females had significantly increased BPV-LF values following acute maximal exercise. Although males and females exhibited a significant decrease in both HRV-LF and HRV-high frequency (HF) with exercise, females had significantly higher HRV-HF values following exercise. Males had a significantly higher HRV-LF/HF ratio at rest; however, both males and females significantly increased their HRV-LF/HF ratio following exercise. Pre-menopausal females exhibit a cardioprotective autonomic profile compared to age-matched males due to lower resting sympathetic activity and faster vagal reactivation following maximal exercise. Acute maximal exercise is a sufficient autonomic stressor to demonstrate sex differences in the critical post-exercise recovery period.

  14. Asymptotic expansion for the resistance between two maximally separated nodes on an M by N resistor network.

    Science.gov (United States)

    Izmailian, N Sh; Huang, Ming-Chang

    2010-07-01

    We analyze the exact formulas for the resistance between two arbitrary notes in a rectangular network of resistors under free, periodic and cylindrical boundary conditions obtained by Wu [J. Phys. A 37, 6653 (2004)]. Based on such expression, we then apply the algorithm of Ivashkevich, Izmailian, and Hu [J. Phys. A 35, 5543 (2002)] to derive the exact asymptotic expansions of the resistance between two maximally separated nodes on an M×N rectangular network of resistors with resistors r and s in the two spatial directions. Our results is 1/s (R(M×N))(r,s) = c(ρ)ln S + c(0)(ρ,ξ) + ∑(p=1)(∞) (c(2p)(ρ,ξ))/S(p) with S = MN, ρ = r/s and ξ = M/N. The all coefficients in this expansion are expressed through analytical functions. We have introduced the effective aspect ratio ξeff = square root(ρ)ξ for free and periodic boundary conditions and ξeff = square root(ρ)ξ/2 for cylindrical boundary condition and show that all finite-size correction terms are invariant under transformation ξeff→1/ξeff.

  15. A quantum Otto engine with finite heat baths

    DEFF Research Database (Denmark)

    Pozas-Kerstjens, Alejandro; Brown, Eric G.; Hovhannisyan, Karen V.

    2018-01-01

    We study a driven harmonic oscillator operating an Otto cycle by strongly interacting with two thermal baths of finite size. Using the tools of Gaussian quantum mechanics, we directly simulate the dynamics of the engine as a whole, without the need to make any approximations. This allows us...... to understand the non-equilibrium thermodynamics of the engine not only from the perspective of the working medium, but also as it is seen from the thermal baths' standpoint. For sufficiently large baths, our engine is capable of running a number of perfect cycles, delivering finite power while operating very...... close to maximal efficiency. Thereafter, having traversed the baths, the perturbations created by the interaction abruptly deteriorate the engine's performance. Weadditionally study the correlations generated in the system, and, in particular, we find a direct connection between the build up of bath...

  16. Principles of maximally classical and maximally realistic quantum ...

    Indian Academy of Sciences (India)

    Principles of maximally classical and maximally realistic quantum mechanics. S M ROY. Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India. Abstract. Recently Auberson, Mahoux, Roy and Singh have proved a long standing conjecture of Roy and Singh: In 2N-dimensional phase space, ...

  17. Change in maximal fat oxidation in response to different regimes of periodized high-intensity interval training (HIIT).

    Science.gov (United States)

    Astorino, Todd A; Edmunds, Ross M; Clark, Amy; Gallant, Rachael; King, Leesa; Ordille, Gina M; Heath, Brendyn; Montell, Matthew; Bandong, Jason

    2017-04-01

    Increased capacity for fat oxidation (FatOx) is demonstrated in response to chronic endurance training as well as high-intensity interval training (HIIT). This study examined changes in maximal fat oxidation (MFO) in response to 20 sessions of periodized HIIT in an attempt to identify if various regimes of HIIT similarly augment capacity for FatOx. Thirty-nine habitually active men and women (mean age and VO 2 max = 22.5 ± 4.4 year and 40.0 ± 5.6 mL/kg/min) completed training and 32 men and women with similar physical activity and fitness level served as non-exercising controls (CON). Training consisted of ten sessions of progressive low-volume HIIT on the cycle ergometer after which participants completed an additional ten sessions of sprint interval training (SIT), high-volume HIIT, or periodized HIIT, whose assignment was randomized. Before and throughout training, MFO, FatOx, and carbohydrate oxidation (CHOOx) were assessed during progressive cycling to exhaustion. Compared to CON, there was no effect of HIIT on MFO (p = 0.11). Small increases (p = 0.03) in FatOx were evident in response to HIIT leading to an additional 4.3 g of fat oxidized, although this value may not be clinically meaningful. Our results refute the widely reported increases in capacity for FatOx demonstrated with HIIT, which is likely due to marked day-to-day variability in determinations of MFO and exercise fat oxidation as well as the heterogeneity of our sample.

  18. A complementarity-based approach to phase in finite-dimensional quantum systems

    International Nuclear Information System (INIS)

    Klimov, A B; Sanchez-Soto, L L; Guise, H de

    2005-01-01

    We develop a comprehensive theory of phase for finite-dimensional quantum systems. The only physical requirement we impose is that phase is complementary to amplitude. To implement this complementarity we use the notion of mutually unbiased bases, which exist for dimensions that are powers of a prime. For a d-dimensional system (qudit) we explicitly construct d+1 classes of maximally commuting operators, each one consisting of d-1 operators. One of these classes consists of diagonal operators that represent amplitudes (or inversions). By finite Fourier transformation, it is mapped onto ladder operators that can be appropriately interpreted as phase variables. We discuss examples of qubits and qutrits, and show how these results generalize previous approaches

  19. Profit maximization mitigates competition

    DEFF Research Database (Denmark)

    Dierker, Egbert; Grodal, Birgit

    1996-01-01

    We consider oligopolistic markets in which the notion of shareholders' utility is well-defined and compare the Bertrand-Nash equilibria in case of utility maximization with those under the usual profit maximization hypothesis. Our main result states that profit maximization leads to less price...... competition than utility maximization. Since profit maximization tends to raise prices, it may be regarded as beneficial for the owners as a whole. Moreover, if profit maximization is a good proxy for utility maximization, then there is no need for a general equilibrium analysis that takes the distribution...... of profits among consumers fully into account and partial equilibrium analysis suffices...

  20. Maximizing opto‐mechanical interaction using topology optimization

    DEFF Research Database (Denmark)

    Gersborg, Allan Roulund; Sigmund, Ole

    2011-01-01

    is performed on a periodic cell and the periodic modeling of the optical and mechanical fields have been carried out using transverse electric Bloch waves and homogenization theory in a plane stress setting, respectively. Two coupling effects are included being the photoelastic effect and the geometric effect......This paper studies topology optimization of a coupled opto‐mechanical problem with the goal of finding the material layout which maximizes the optical modulation, i.e. the difference between the optical response for the mechanically deformed and undeformed configuration. The optimization...

  1. Implications of maximal Jarlskog invariant and maximal CP violation

    International Nuclear Information System (INIS)

    Rodriguez-Jauregui, E.; Universidad Nacional Autonoma de Mexico

    2001-04-01

    We argue here why CP violating phase Φ in the quark mixing matrix is maximal, that is, Φ=90 . In the Standard Model CP violation is related to the Jarlskog invariant J, which can be obtained from non commuting Hermitian mass matrices. In this article we derive the conditions to have Hermitian mass matrices which give maximal Jarlskog invariant J and maximal CP violating phase Φ. We find that all squared moduli of the quark mixing elements have a singular point when the CP violation phase Φ takes the value Φ=90 . This special feature of the Jarlskog invariant J and the quark mixing matrix is a clear and precise indication that CP violating Phase Φ is maximal in order to let nature treat democratically all of the quark mixing matrix moduli. (orig.)

  2. Left ventricle expands maximally preceding end-diastole. Radionuclide ventriculography study

    International Nuclear Information System (INIS)

    Horinouchi, Osamu

    2002-01-01

    It has been considered that left ventricle (LV) expands maximally at the end-diastole. However, is it exactly coincident with this point? This study was aimed to determine whether the maximal expansion of LV coincides with the peak of R wave on electrocardiogram. Thirty-three angina pectoris patients with normal LV motion were examined using radionuclide ventriculography. Data were obtained from every 30 ms backward frame from the peak of R wave. All patients showed the time of maximal expansion preceded the peak of R wave. The intervals from the peak of R wave and the onset of P wave to maximal expansion of LV was 105±29 ms and 88±25 ms, respectively. This period corresponds to the timing of maximal excurtion of mitral valve by atrial contraction, and the centripetal motion of LV without losing its volume before end-diastole may be interpreted on account of the movement of mitral valve toward closure. These findings suggest that LV expands maximally between P and R wave after atrial contraction, preceding the peak of R wave thought conventionally as the end-diastole. (author)

  3. Effect of sonic driving on maximal aerobic performance.

    Science.gov (United States)

    Brilla, L.R.; Hatcher, Stefanie

    2000-07-01

    The study purpose was to evaluate antecedent binaural stimulation (ABS) on maximal aerobic physical performance. Twenty-two healthy, physically active subjects, 21-34 years, randomly received one of two preparations for each session: 15 min of quiet (BLANK) or percussive sonic driving at 200+ beats per minute (bpm) using a recorded compact disc (FSS, Mill Valley, CA) with headphones (ABS). Baseline HR, blood pressure (BP), and breathing frequency (f(br)) were obtained. During each condition, HR and f(br) were recorded at 3-min intervals. The graded maximal treadmill testing was administered immediately postpreparation session on separate days, with at least 48 h rest between sessions. There were significant differences in the antecedent period means between the two conditions, ABS (HR: 70.2 +/- 10.7 bpm; f(br): 18.5 +/- 3.3 br min(-1); BP: 134.5/87.9 +/- 13.6/9.2 mm Hg) and BLANK (HR: 64.6 +/- 7.9; f(br): 14.3 +/- 2.9; BP: 126.7/80.3 +/- 12.1/8.6). Differences were noted for each 3-min interval and pre- postantecedent period. The maximal graded exercise test (GXT) results showed that there was a small but significant (P 0.05). There may be a latency to ABS related to entrainment or imagery-enhanced warm-up. Am. J. Hum. Biol. 12:558-565, 2000. Copyright 2000 Wiley-Liss, Inc.

  4. Maximizers versus satisficers

    Directory of Open Access Journals (Sweden)

    Andrew M. Parker

    2007-12-01

    Full Text Available Our previous research suggests that people reporting a stronger desire to maximize obtain worse life outcomes (Bruine de Bruin et al., 2007. Here, we examine whether this finding may be explained by the decision-making styles of self-reported maximizers. Expanding on Schwartz et al. (2002, we find that self-reported maximizers are more likely to show problematic decision-making styles, as evidenced by self-reports of less behavioral coping, greater dependence on others when making decisions, more avoidance of decision making, and greater tendency to experience regret. Contrary to predictions, self-reported maximizers were more likely to report spontaneous decision making. However, the relationship between self-reported maximizing and worse life outcomes is largely unaffected by controls for measures of other decision-making styles, decision-making competence, and demographic variables.

  5. Finite amplitude, horizontal motion of a load symmetrically supported between isotropic hyperelastic springs.

    Science.gov (United States)

    Beatty, Millard F; Young, Todd R

    2012-03-01

    The undamped, finite amplitude horizontal motion of a load supported symmetrically between identical incompressible, isotropic hyperelastic springs, each subjected to an initial finite uniaxial static stretch, is formulated in general terms. The small amplitude motion of the load about the deformed static state is discussed; and the periodicity of the arbitrary finite amplitude motion is established for all such elastic materials for which certain conditions on the engineering stress and the strain energy function hold. The exact solution for the finite vibration of the load is then derived for the classical neo-Hookean model. The vibrational period is obtained in terms of the complete Heuman lambda-function whose properties are well-known. Dependence of the period and hence the frequency on the physical parameters of the system is investigated and the results are displayed graphically.

  6. Electrostatic interactions in finite systems treated with periodic boundary conditions: application to linear-scaling density functional theory.

    Science.gov (United States)

    Hine, Nicholas D M; Dziedzic, Jacek; Haynes, Peter D; Skylaris, Chris-Kriton

    2011-11-28

    We present a comparison of methods for treating the electrostatic interactions of finite, isolated systems within periodic boundary conditions (PBCs), within density functional theory (DFT), with particular emphasis on linear-scaling (LS) DFT. Often, PBCs are not physically realistic but are an unavoidable consequence of the choice of basis set and the efficacy of using Fourier transforms to compute the Hartree potential. In such cases the effects of PBCs on the calculations need to be avoided, so that the results obtained represent the open rather than the periodic boundary. The very large systems encountered in LS-DFT make the demands of the supercell approximation for isolated systems more difficult to manage, and we show cases where the open boundary (infinite cell) result cannot be obtained from extrapolation of calculations from periodic cells of increasing size. We discuss, implement, and test three very different approaches for overcoming or circumventing the effects of PBCs: truncation of the Coulomb interaction combined with padding of the simulation cell, approaches based on the minimum image convention, and the explicit use of open boundary conditions (OBCs). We have implemented these approaches in the ONETEP LS-DFT program and applied them to a range of systems, including a polar nanorod and a protein. We compare their accuracy, complexity, and rate of convergence with simulation cell size. We demonstrate that corrective approaches within PBCs can achieve the OBC result more efficiently and accurately than pure OBC approaches.

  7. Developing maximal neuromuscular power: Part 1--biological basis of maximal power production.

    Science.gov (United States)

    Cormie, Prue; McGuigan, Michael R; Newton, Robert U

    2011-01-01

    This series of reviews focuses on the most important neuromuscular function in many sport performances, the ability to generate maximal muscular power. Part 1 focuses on the factors that affect maximal power production, while part 2, which will follow in a forthcoming edition of Sports Medicine, explores the practical application of these findings by reviewing the scientific literature relevant to the development of training programmes that most effectively enhance maximal power production. The ability of the neuromuscular system to generate maximal power is affected by a range of interrelated factors. Maximal muscular power is defined and limited by the force-velocity relationship and affected by the length-tension relationship. The ability to generate maximal power is influenced by the type of muscle action involved and, in particular, the time available to develop force, storage and utilization of elastic energy, interactions of contractile and elastic elements, potentiation of contractile and elastic filaments as well as stretch reflexes. Furthermore, maximal power production is influenced by morphological factors including fibre type contribution to whole muscle area, muscle architectural features and tendon properties as well as neural factors including motor unit recruitment, firing frequency, synchronization and inter-muscular coordination. In addition, acute changes in the muscle environment (i.e. alterations resulting from fatigue, changes in hormone milieu and muscle temperature) impact the ability to generate maximal power. Resistance training has been shown to impact each of these neuromuscular factors in quite specific ways. Therefore, an understanding of the biological basis of maximal power production is essential for developing training programmes that effectively enhance maximal power production in the human.

  8. Chiral crossover transition in a finite volume

    Science.gov (United States)

    Shi, Chao; Jia, Wenbao; Sun, An; Zhang, Liping; Zong, Hongshi

    2018-02-01

    Finite volume effects on the chiral crossover transition of strong interactions at finite temperature are studied by solving the quark gap equation within a cubic volume of finite size L. With the anti-periodic boundary condition, our calculation shows the chiral quark condensate, which characterizes the strength of dynamical chiral symmetry breaking, decreases as L decreases below 2.5 fm. We further study the finite volume effects on the pseudo-transition temperature {T}{{c}} of the crossover, showing a significant decrease in {T}{{c}} as L decreases below 3 fm. Supported by National Natural Science Foundation of China (11475085, 11535005, 11690030, 51405027), the Fundamental Research Funds for the Central Universities (020414380074), China Postdoctoral Science Foundation (2016M591808) and Open Research Foundation of State Key Lab. of Digital Manufacturing Equipment & Technology in Huazhong University of Science & Technology (DMETKF2015015)

  9. Maximal Abelian gauge and a generalized BRST transformation

    Directory of Open Access Journals (Sweden)

    Shinichi Deguchi

    2016-05-01

    Full Text Available We apply a generalized Becchi–Rouet–Stora–Tyutin (BRST formulation to establish a connection between the gauge-fixed SU(2 Yang–Mills (YM theories formulated in the Lorenz gauge and in the Maximal Abelian (MA gauge. It is shown that the generating functional corresponding to the Faddeev–Popov (FP effective action in the MA gauge can be obtained from that in the Lorenz gauge by carrying out an appropriate finite and field-dependent BRST (FFBRST transformation. In this procedure, the FP effective action in the MA gauge is found from that in the Lorenz gauge by incorporating the contribution of non-trivial Jacobian due to the FFBRST transformation of the path integral measure. The present FFBRST formulation might be useful to see how Abelian dominance in the MA gauge is realized in the Lorenz gauge.

  10. Measuring Item Fill-Rate Performance in a Finite Horizon

    OpenAIRE

    Douglas J. Thomas

    2005-01-01

    The standard treatment of fill rate relies on stationary and serially independent demand over an infinite horizon. Even if demand is stationary, managers are held accountable for performance over a finite horizon. In a finite horizon, the fill rate is a random variable. Studying the distribution is relevant because a vendor may be subject to financial penalty if she fails to achieve her target fill rate over a specified finite period. It is known that for a zero lead time, base-stock model, t...

  11. Maximizers versus satisficers

    OpenAIRE

    Andrew M. Parker; Wandi Bruine de Bruin; Baruch Fischhoff

    2007-01-01

    Our previous research suggests that people reporting a stronger desire to maximize obtain worse life outcomes (Bruine de Bruin et al., 2007). Here, we examine whether this finding may be explained by the decision-making styles of self-reported maximizers. Expanding on Schwartz et al. (2002), we find that self-reported maximizers are more likely to show problematic decision-making styles, as evidenced by self-reports of less behavioral coping, greater dependence on others when making decisions...

  12. An Efficient and Effective Design of InP Nanowires for Maximal Solar Energy Harvesting.

    Science.gov (United States)

    Wu, Dan; Tang, Xiaohong; Wang, Kai; He, Zhubing; Li, Xianqiang

    2017-11-25

    Solar cells based on subwavelength-dimensions semiconductor nanowire (NW) arrays promise a comparable or better performance than their planar counterparts by taking the advantages of strong light coupling and light trapping. In this paper, we present an accurate and time-saving analytical design for optimal geometrical parameters of vertically aligned InP NWs for maximal solar energy absorption. Short-circuit current densities are calculated for each NW array with different geometrical dimensions under solar illumination. Optimal geometrical dimensions are quantitatively presented for single, double, and multiple diameters of the NW arrays arranged both squarely and hexagonal achieving the maximal short-circuit current density of 33.13 mA/cm 2 . At the same time, intensive finite-difference time-domain numerical simulations are performed to investigate the same NW arrays for the highest light absorption. Compared with time-consuming simulations and experimental results, the predicted maximal short-circuit current densities have tolerances of below 2.2% for all cases. These results unambiguously demonstrate that this analytical method provides a fast and accurate route to guide high performance InP NW-based solar cell design.

  13. Tissue P Systems With Channel States Working in the Flat Maximally Parallel Way.

    Science.gov (United States)

    Song, Bosheng; Perez-Jimenez, Mario J; Paun, Gheorghe; Pan, Linqiang

    2016-10-01

    Tissue P systems with channel states are a class of bio-inspired parallel computational models, where rules are used in a sequential manner (on each channel, at most one rule can be used at each step). In this work, tissue P systems with channel states working in a flat maximally parallel way are considered, where at each step, on each channel, a maximal set of applicable rules that pass from a given state to a unique next state, is chosen and each rule in the set is applied once. The computational power of such P systems is investigated. Specifically, it is proved that tissue P systems with channel states and antiport rules of length two are able to compute Parikh sets of finite languages, and such P systems with one cell and noncooperative symport rules can compute at least all Parikh sets of matrix languages. Some Turing universality results are also provided. Moreover, the NP-complete problem SAT is solved by tissue P systems with channel states, cell division and noncooperative symport rules working in the flat maximally parallel way; nevertheless, if channel states are not used, then such P systems working in the flat maximally parallel way can solve only tractable problems. These results show that channel states provide a frontier of tractability between efficiency and non-efficiency in the framework of tissue P systems with cell division (assuming P ≠ NP ).

  14. Using PWE/FE method to calculate the band structures of the semi-infinite beam-like PCs: Periodic in z-direction and finite in x–y plane

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Denghui, E-mail: qdhsd318@163.com; Shi, Zhiyu, E-mail: zyshi@nuaa.edu.cn

    2017-05-03

    This paper couples the plane wave expansion (PWE) and finite element (FE) methods to calculate the band structures of the semi-infinite beam-like phononic crystals (PCs) with the infinite periodicity in z-direction and finiteness in x–y plane. Explicit matrix formulations are developed for the calculation of band structures. In order to illustrate the applicability and accuracy of the proposed coupled plane wave expansion and finite element (PWE/FE) method to beam-like PCs, several examples are displayed. At first, PWE/FE method is applied to calculate the band structures of the Pb/rubber beam-like PCs with circular and rectangular cross sections, respectively. Then, it is used to calculate the band structures of steel/epoxy and steel/aluminum beam-like PCs with the same geometric parameters. Last, the band structure of the three-component beam-like PC is also calculated by the proposed method. Moreover, all the results calculated by PWE/FE method are compared with those calculated by finite element (FE) method, and the corresponding results are in good agreement. - Highlights: • The concept of the semi-infinite beam-like phononic crystals (PCs) is proposed. • The PWE/FE method is proposed and formulized to calculate the band structures of the semi-infinite beam-like PCs. • The strong applicability and high accuracy of PWE/FE method are verified.

  15. Finite and profinite quantum systems

    CERN Document Server

    Vourdas, Apostolos

    2017-01-01

    This monograph provides an introduction to finite quantum systems, a field at the interface between quantum information and number theory, with applications in quantum computation and condensed matter physics. The first major part of this monograph studies the so-called `qubits' and `qudits', systems with periodic finite lattice as position space. It also discusses the so-called mutually unbiased bases, which have applications in quantum information and quantum cryptography. Quantum logic and its applications to quantum gates is also studied. The second part studies finite quantum systems, where the position takes values in a Galois field. This combines quantum mechanics with Galois theory. The third part extends the discussion to quantum systems with variables in profinite groups, considering the limit where the dimension of the system becomes very large. It uses the concepts of inverse and direct limit and studies quantum mechanics on p-adic numbers. Applications of the formalism include quantum optics and ...

  16. Dynamical generation of maximally entangled states in two identical cavities

    International Nuclear Information System (INIS)

    Alexanian, Moorad

    2011-01-01

    The generation of entanglement between two identical coupled cavities, each containing a single three-level atom, is studied when the cavities exchange two coherent photons and are in the N=2,4 manifolds, where N represents the maximum number of photons possible in either cavity. The atom-photon state of each cavity is described by a qutrit for N=2 and a five-dimensional qudit for N=4. However, the conservation of the total value of N for the interacting two-cavity system limits the total number of states to only 4 states for N=2 and 8 states for N=4, rather than the usual 9 for two qutrits and 25 for two five-dimensional qudits. In the N=2 manifold, two-qutrit states dynamically generate four maximally entangled Bell states from initially unentangled states. In the N=4 manifold, two-qudit states dynamically generate maximally entangled states involving three or four states. The generation of these maximally entangled states occurs rather rapidly for large hopping strengths. The cavities function as a storage of periodically generated maximally entangled states.

  17. Three dimensional periodic foundations for base seismic isolation

    International Nuclear Information System (INIS)

    Yan, Y; Mo, Y L; Cheng, Z; Shi, Z; Menq, F; Tang, Y

    2015-01-01

    Based on the concept of phononic crystals, periodic foundations made of periodic materials are investigated in this paper. The periodic foundations can provide low frequency band gaps, which cover the main frequency ranges of seismic waves. Therefore, the periodic foundations are able to protect the upper structures during earthquake events. In this paper, the basic theory of three dimensional periodic foundations is studied and the finite element method was used to conduct the sensitivity study. A simplified three-dimensional periodic foundation with a superstructure was tested in the field and the feasibility of three dimensional periodic foundations was proved. The test results showed that the response of the upper structure with the three dimensional periodic foundation was reduced under excitation waves with the main frequency falling in the attenuation zones. The finite element analysis results are consistent with the experimental data, indicating that three dimensional periodic foundations are a feasible way of reducing seismic vibrations. (paper)

  18. Entropy maximization

    Indian Academy of Sciences (India)

    Abstract. It is shown that (i) every probability density is the unique maximizer of relative entropy in an appropriate class and (ii) in the class of all pdf f that satisfy. ∫ fhi dμ = λi for i = 1, 2,...,...k the maximizer of entropy is an f0 that is pro- portional to exp(. ∑ ci hi ) for some choice of ci . An extension of this to a continuum of.

  19. Supercomputer implementation of finite element algorithms for high speed compressible flows. Progress report, period ending 30 June 1986

    International Nuclear Information System (INIS)

    Thornton, E.A.; Ramakrishnan, R.

    1986-06-01

    Prediction of compressible flow phenomena using the finite element method is of recent origin and considerable interest. Two shock capturing finite element formulations for high speed compressible flows are described. A Taylor-Galerkin formulation uses a Taylor series expansion in time coupled with a Galerkin weighted residual statement. The Taylor-Galerkin algorithms use explicit artificial dissipation, and the performance of three dissipation models are compared. A Petrov-Galerkin algorithm has as its basis the concepts of streamline upwinding. Vectorization strategies are developed to implement the finite element formulations on the NASA Langley VPS-32. The vectorization scheme results in finite element programs that use vectors of length of the order of the number of nodes or elements. The use of the vectorization procedure speeds up processing rates by over two orders of magnitude. The Taylor-Galerkin and Petrov-Galerkin algorithms are evaluated for 2D inviscid flows on criteria such as solution accuracy, shock resolution, computational speed and storage requirements. The convergence rates for both algorithms are enhanced by local time-stepping schemes. Extension of the vectorization procedure for predicting 2D viscous and 3D inviscid flows are demonstrated. Conclusions are drawn regarding the applicability of the finite element procedures for realistic problems that require hundreds of thousands of nodes

  20. LikelihoodLib - Fitting, Function Maximization, and Numerical Analysis

    CERN Document Server

    Smirnov, I B

    2001-01-01

    A new class library is designed for function maximization, minimization, solution of equations and for other problems related to mathematical analysis of multi-parameter functions by numerical iterative methods. When we search the maximum or another special point of a function, we may change and fit all parameters simultaneously, sequentially, recursively, or by any combination of these methods. The discussion is focused on the first the most complicated method, although the others are also supported by the library. For this method we apply: control of precision by interval computations; the calculation of derivatives either by differential arithmetic, or by the method of finite differences with the step lengths which provide suppression of the influence of numerical noise; possible synchronization of the subjective function calls with minimization of the number of iterations; competitive application of various methods for step calculation, and converging to the solution by many trajectories.

  1. Entropy Maximization

    Indian Academy of Sciences (India)

    It is shown that (i) every probability density is the unique maximizer of relative entropy in an appropriate class and (ii) in the class of all pdf that satisfy ∫ f h i d = i for i = 1 , 2 , … , … k the maximizer of entropy is an f 0 that is proportional to exp ⁡ ( ∑ c i h i ) for some choice of c i . An extension of this to a continuum of ...

  2. Mixed maximal and explosive strength training in recreational endurance runners.

    Science.gov (United States)

    Taipale, Ritva S; Mikkola, Jussi; Salo, Tiina; Hokka, Laura; Vesterinen, Ville; Kraemer, William J; Nummela, Ari; Häkkinen, Keijo

    2014-03-01

    Supervised periodized mixed maximal and explosive strength training added to endurance training in recreational endurance runners was examined during an 8-week intervention preceded by an 8-week preparatory strength training period. Thirty-four subjects (21-45 years) were divided into experimental groups: men (M, n = 9), women (W, n = 9), and control groups: men (MC, n = 7), women (WC, n = 9). The experimental groups performed mixed maximal and explosive exercises, whereas control subjects performed circuit training with body weight. Endurance training included running at an intensity below lactate threshold. Strength, power, endurance performance characteristics, and hormones were monitored throughout the study. Significance was set at p ≤ 0.05. Increases were observed in both experimental groups that were more systematic than in the control groups in explosive strength (12 and 13% in men and women, respectively), muscle activation, maximal strength (6 and 13%), and peak running speed (14.9 ± 1.2 to 15.6 ± 1.2 and 12.9 ± 0.9 to 13.5 ± 0.8 km Ł h). The control groups showed significant improvements in maximal and explosive strength, but Speak increased only in MC. Submaximal running characteristics (blood lactate and heart rate) improved in all groups. Serum hormones fluctuated significantly in men (testosterone) and in women (thyroid stimulating hormone) but returned to baseline by the end of the study. Mixed strength training combined with endurance training may be more effective than circuit training in recreational endurance runners to benefit overall fitness that may be important for other adaptive processes and larger training loads associated with, e.g., marathon training.

  3. Maximally incompatible quantum observables

    Energy Technology Data Exchange (ETDEWEB)

    Heinosaari, Teiko, E-mail: teiko.heinosaari@utu.fi [Turku Centre for Quantum Physics, Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland); Schultz, Jussi, E-mail: jussi.schultz@gmail.com [Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy); Toigo, Alessandro, E-mail: alessandro.toigo@polimi.it [Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Via Celoria 16, I-20133 Milano (Italy); Ziman, Mario, E-mail: ziman@savba.sk [RCQI, Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 84511 Bratislava (Slovakia); Faculty of Informatics, Masaryk University, Botanická 68a, 60200 Brno (Czech Republic)

    2014-05-01

    The existence of maximally incompatible quantum observables in the sense of a minimal joint measurability region is investigated. Employing the universal quantum cloning device it is argued that only infinite dimensional quantum systems can accommodate maximal incompatibility. It is then shown that two of the most common pairs of complementary observables (position and momentum; number and phase) are maximally incompatible.

  4. Maximally incompatible quantum observables

    International Nuclear Information System (INIS)

    Heinosaari, Teiko; Schultz, Jussi; Toigo, Alessandro; Ziman, Mario

    2014-01-01

    The existence of maximally incompatible quantum observables in the sense of a minimal joint measurability region is investigated. Employing the universal quantum cloning device it is argued that only infinite dimensional quantum systems can accommodate maximal incompatibility. It is then shown that two of the most common pairs of complementary observables (position and momentum; number and phase) are maximally incompatible.

  5. Numerical Simulation of a Novel Sensing Approach Based on Abnormal Blocking by Periodic Grating Strips near the Silicon Wire Waveguide

    Directory of Open Access Journals (Sweden)

    Andrei Tsarev

    2018-05-01

    Full Text Available This paper discusses the physical nature and the numerical modeling of a novel approach of periodic structures for applications as photonic sensors. The sensing is based on the high sensitivity to the cover index change of the notch wavelength. This sensitivity is due to the effect of abnormal blocking of the guided wave propagating along the silicon wire with periodic strips overhead it through the silica buffer. The structure sensing is numerically modeled by 2D and 3D finite difference time domain (FDTD method, taking into account the waveguide dispersion. The modeling of the long structures (more than 1000 strips is accomplished by the 2D method of lines (MoL with a maximal implementation of the analytical feature of the method. It is proved that the effect of abnormal blocking could be used for the construction of novel types of optical sensors.

  6. Finite-lattice form factors in free-fermion models

    International Nuclear Information System (INIS)

    Iorgov, N; Lisovyy, O

    2011-01-01

    We consider the general Z 2 -symmetric free-fermion model on the finite periodic lattice, which includes as special cases the Ising model on the square and triangular lattices and the Z n -symmetric BBS τ (2) -model with n = 2. Translating Kaufman's fermionic approach to diagonalization of Ising-like transfer matrices into the language of Grassmann integrals, we determine the transfer matrix eigenvectors and observe that they coincide with the eigenvectors of a square lattice Ising transfer matrix. This allows us to find exact finite-lattice form factors of spin operators for the statistical model and the associated finite-length quantum chains, of which the most general is equivalent to the XY chain in a transverse field

  7. Multi-Periodic Photonic Crystal Out-Coupling Layers for Flexible OLEDs

    DEFF Research Database (Denmark)

    Kluge, Christian; Pradana, Arfat; Adam, Jost

    2014-01-01

    Waveguide mode extraction with multi-periodic photonic crystals is studied in experiment and finite-difference time-domain (FDTD) simulations. Flexible nanostructured organic light-emitting diodes (OLEDs) are fabricated by UV nanoimprint lithography.......Waveguide mode extraction with multi-periodic photonic crystals is studied in experiment and finite-difference time-domain (FDTD) simulations. Flexible nanostructured organic light-emitting diodes (OLEDs) are fabricated by UV nanoimprint lithography....

  8. Optimized Finite-Difference Coefficients for Hydroacoustic Modeling

    Science.gov (United States)

    Preston, L. A.

    2014-12-01

    Responsible utilization of marine renewable energy sources through the use of current energy converter (CEC) and wave energy converter (WEC) devices requires an understanding of the noise generation and propagation from these systems in the marine environment. Acoustic noise produced by rotating turbines, for example, could adversely affect marine animals and human-related marine activities if not properly understood and mitigated. We are utilizing a 3-D finite-difference acoustic simulation code developed at Sandia that can accurately propagate noise in the complex bathymetry in the near-shore to open ocean environment. As part of our efforts to improve computation efficiency in the large, high-resolution domains required in this project, we investigate the effects of using optimized finite-difference coefficients on the accuracy of the simulations. We compare accuracy and runtime of various finite-difference coefficients optimized via criteria such as maximum numerical phase speed error, maximum numerical group speed error, and L-1 and L-2 norms of weighted numerical group and phase speed errors over a given spectral bandwidth. We find that those coefficients optimized for L-1 and L-2 norms are superior in accuracy to those based on maximal error and can produce runtimes of 10% of the baseline case, which uses Taylor Series finite-difference coefficients at the Courant time step limit. We will present comparisons of the results for the various cases evaluated as well as recommendations for utilization of the cases studied. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  9. Radial convection of finite ion temperature, high amplitude plasma blobs

    DEFF Research Database (Denmark)

    Wiesenberger, M.; Madsen, Jens; Kendl, Alexander

    2014-01-01

    We present results from simulations of seeded blob convection in the scrape-off-layer of magnetically confined fusion plasmas. We consistently incorporate high fluctuation amplitude levels and finite Larmor radius (FLR) effects using a fully nonlinear global gyrofluid model. This is in line......-field transport compared to blobs simulated with the local model. The maximal blob amplitude is significantly higher in the global simulations than in the local ones. When the ion temperature is comparable to the electron temperature, global blob simulations show a reduced blob coherence and a decreased cross...

  10. Four-level conservative finite-difference schemes for Boussinesq paradigm equation

    Science.gov (United States)

    Kolkovska, N.

    2013-10-01

    In this paper a two-parametric family of four level conservative finite difference schemes is constructed for the multidimensional Boussinesq paradigm equation. The schemes are explicit in the sense that no inner iterations are needed for evaluation of the numerical solution. The preservation of the discrete energy with this method is proved. The schemes have been numerically tested on one soliton propagation model and two solitons interaction model. The numerical experiments demonstrate that the proposed family of schemes has second order of convergence in space and time steps in the discrete maximal norm.

  11. Finite stage asymmetric repeated games: Both players' viewpoints

    KAUST Repository

    Li, Lichun

    2017-01-05

    In asymmetric zero-sum games, one player has superior information about the game over the other. It is known that the informed players (maximizer) face the tradeoff of exploiting its superior information at the cost of revealing its superior information, but the basic point of the uninformed player (minimizer)\\'s decision making remains unknown. This paper studies the finite stage asymmetric repeated games from both players\\' viewpoints, and derives that not only security strategies but also the opponents\\' corresponding best responses depends only on the informed player\\'s history action sequences. Moreover, efficient LP formulations to compute both player\\'s security strategies are provided.

  12. Maximal combustion temperature estimation

    International Nuclear Information System (INIS)

    Golodova, E; Shchepakina, E

    2006-01-01

    This work is concerned with the phenomenon of delayed loss of stability and the estimation of the maximal temperature of safe combustion. Using the qualitative theory of singular perturbations and canard techniques we determine the maximal temperature on the trajectories located in the transition region between the slow combustion regime and the explosive one. This approach is used to estimate the maximal temperature of safe combustion in multi-phase combustion models

  13. Developing maximal neuromuscular power: part 2 - training considerations for improving maximal power production.

    Science.gov (United States)

    Cormie, Prue; McGuigan, Michael R; Newton, Robert U

    2011-02-01

    This series of reviews focuses on the most important neuromuscular function in many sport performances: the ability to generate maximal muscular power. Part 1, published in an earlier issue of Sports Medicine, focused on the factors that affect maximal power production while part 2 explores the practical application of these findings by reviewing the scientific literature relevant to the development of training programmes that most effectively enhance maximal power production. The ability to generate maximal power during complex motor skills is of paramount importance to successful athletic performance across many sports. A crucial issue faced by scientists and coaches is the development of effective and efficient training programmes that improve maximal power production in dynamic, multi-joint movements. Such training is referred to as 'power training' for the purposes of this review. Although further research is required in order to gain a deeper understanding of the optimal training techniques for maximizing power in complex, sports-specific movements and the precise mechanisms underlying adaptation, several key conclusions can be drawn from this review. First, a fundamental relationship exists between strength and power, which dictates that an individual cannot possess a high level of power without first being relatively strong. Thus, enhancing and maintaining maximal strength is essential when considering the long-term development of power. Second, consideration of movement pattern, load and velocity specificity is essential when designing power training programmes. Ballistic, plyometric and weightlifting exercises can be used effectively as primary exercises within a power training programme that enhances maximal power. The loads applied to these exercises will depend on the specific requirements of each particular sport and the type of movement being trained. The use of ballistic exercises with loads ranging from 0% to 50% of one-repetition maximum (1RM) and

  14. Periodicity-induced effects and method in vibro-acoustics

    DEFF Research Database (Denmark)

    Sorokin, Sergey V.

    2014-01-01

    of the lecture is to illustrate these issues in simple examples and to discuss possible applications and generalisations. First, the eigenfrequency spectra of finite periodic structures are compared with the location of stop-bands for their infinite counterparts. This is done with the special attention being...... of the lecture is concerned with the numerical implementation of the Floquet theory and the experimental demonstration of periodicity effects. A brief exposition of the Wave Finite Element method and an assessment of its validity range in canonical benchmark problems are presented. The results of experimental...

  15. Electrokinetic Flow in Microchannels with Finite Reservoir Size Effects

    International Nuclear Information System (INIS)

    Yan, D; Yang, C; Nguyen, N-T; Huang, X

    2006-01-01

    In electrokinetically-driven microfluidic applications, reservoirs are indispensable and have finite sizes. During operation processes, as the liquid level difference in reservoirs keeps changing as time elapses, the flow characteristics in a microchannel exhibit a combination of the electroosmotic flow and the time-dependent induced backpressure-driven flow. In this work, an assessment of the finite reservoir size effect on electroosmotic flows is presented theoretically and experimentally. A model is developed to describe the timedependent electrokinetic flow with finite reservoir size effects. The theoretical analysis shows that under certain conditions the finite reservoir size effect is significant. The important parameters that describe the effect of finite reservoir size on the flow characteristics are discussed. A new concept denoted as 'effective pumping period' is introduced to characterize the reservoir size effect. The proposed model clearly identifies the mechanisms of the finitereservoir size effects and is further confirmed by using micro-PIV technique. The results of this study can be used for facilitating the design of microfluidic devices

  16. Cascading Constrained 2-D Arrays using Periodic Merging Arrays

    DEFF Research Database (Denmark)

    Forchhammer, Søren; Laursen, Torben Vaarby

    2003-01-01

    We consider a method for designing 2-D constrained codes by cascading finite width arrays using predefined finite width periodic merging arrays. This provides a constructive lower bound on the capacity of the 2-D constrained code. Examples include symmetric RLL and density constrained codes...

  17. Maximizing Entropy of Pickard Random Fields for 2x2 Binary Constraints

    DEFF Research Database (Denmark)

    Søgaard, Jacob; Forchhammer, Søren

    2014-01-01

    This paper considers the problem of maximizing the entropy of two-dimensional (2D) Pickard Random Fields (PRF) subject to constraints. We consider binary Pickard Random Fields, which provides a 2D causal finite context model and use it to define stationary probabilities for 2x2 squares, thus...... allowing us to calculate the entropy of the field. All possible binary 2x2 constraints are considered and all constraints are categorized into groups according to their properties. For constraints which can be modeled by a PRF approach and with positive entropy, we characterize and provide statistics...... of the maximum PRF entropy. As examples, we consider the well known hard square constraint along with a few other constraints....

  18. No division and the set of periods for tree maps

    International Nuclear Information System (INIS)

    Alseda, L.; Ye Xiangdong.

    1992-06-01

    We extend the notion of no division for star maps to tree maps. It is proved that the set of periods of a tree map is cofinite if there exists some periodic orbit of the given map with period larger than one having no division. Using this result we get some simple proofs of known results for tree maps and show that if X is a tree then a union of initial segments of some finite linear orderings which depend only on the given tree minus a finite set is the set of periods for arbitrary maps from X into itself. (author). 18 refs

  19. The Fermion boson interaction within the linear sigma model at finite temperature

    International Nuclear Information System (INIS)

    Caldas, H.C.G.

    2000-01-01

    We study the interaction of massless bosons at finite temperature. Specifically, we calculate the self-energy of massless fermions due to interaction with massless bosons at high temperature, which is the region where thermal effects are maximal. The calculations are concentrated in the limit of vanishing fermion three momentum and after considering the effective boson dressed mass, we obtain the damping rate of the fermion. It is shown that in the limit k O 2 T + g 3 T. (author)

  20. The behavioral economics of consumer brand choice: patterns of reinforcement and utility maximization.

    Science.gov (United States)

    Foxall, Gordon R; Oliveira-Castro, Jorge M; Schrezenmaier, Teresa C

    2004-06-30

    Purchasers of fast-moving consumer goods generally exhibit multi-brand choice, selecting apparently randomly among a small subset or "repertoire" of tried and trusted brands. Their behavior shows both matching and maximization, though it is not clear just what the majority of buyers are maximizing. Each brand attracts, however, a small percentage of consumers who are 100%-loyal to it during the period of observation. Some of these are exclusively buyers of premium-priced brands who are presumably maximizing informational reinforcement because their demand for the brand is relatively price-insensitive or inelastic. Others buy exclusively the cheapest brands available and can be assumed to maximize utilitarian reinforcement since their behavior is particularly price-sensitive or elastic. Between them are the majority of consumers whose multi-brand buying takes the form of selecting a mixture of economy -- and premium-priced brands. Based on the analysis of buying patterns of 80 consumers for 9 product categories, the paper examines the continuum of consumers so defined and seeks to relate their buying behavior to the question of how and what consumers maximize.

  1. Pricing and Inventory Control Strategy for a Periodic-Review Energy Buy-Back System

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jihong; CHEN Hongqiao; DING Xiaosong; LI Xian

    2016-01-01

    Along with the rapid development of economics and enhancement of industrialization,the power demand keeps rising and frequently creates mismatch between demand and supply in electricity.This provides miscellaneous energy buy-back programs with great opportunities.Such programs,when activated,offer certain amount of financial compensations to participants for reducing their energy consumption during peak time.They aim at encouraging participants to shift their electricity usage from peak to non-peak time,and thereby release the demand pressure during peak time.This paper considers a periodic-review joint pricing and inventory decision model under an energy buy-back program over finite planning horizons,in which the compensation levels,setup cost and additive random demand function are incorporated.The objective is to maximize a manufacturer's expected total profit.By using Veinott's conditions,it is shown that the manufacturer's optimal decision is a state dependent (s,S,P) policy under a peak market condition,or partly an (s,S,A,P) policy under the normal market condition.

  2. AUC-Maximizing Ensembles through Metalearning.

    Science.gov (United States)

    LeDell, Erin; van der Laan, Mark J; Petersen, Maya

    2016-05-01

    Area Under the ROC Curve (AUC) is often used to measure the performance of an estimator in binary classification problems. An AUC-maximizing classifier can have significant advantages in cases where ranking correctness is valued or if the outcome is rare. In a Super Learner ensemble, maximization of the AUC can be achieved by the use of an AUC-maximining metalearning algorithm. We discuss an implementation of an AUC-maximization technique that is formulated as a nonlinear optimization problem. We also evaluate the effectiveness of a large number of different nonlinear optimization algorithms to maximize the cross-validated AUC of the ensemble fit. The results provide evidence that AUC-maximizing metalearners can, and often do, out-perform non-AUC-maximizing metalearning methods, with respect to ensemble AUC. The results also demonstrate that as the level of imbalance in the training data increases, the Super Learner ensemble outperforms the top base algorithm by a larger degree.

  3. The Effect of Varying Jaw-elevator Muscle Forces on a Finite Element Model of a Human Cranium.

    Science.gov (United States)

    Toro-Ibacache, Viviana; O'Higgins, Paul

    2016-07-01

    Finite element analyses simulating masticatory system loading are increasingly undertaken in primates, hominin fossils and modern humans. Simplifications of models and loadcases are often required given the limits of data and technology. One such area of uncertainty concerns the forces applied to cranial models and their sensitivity to variations in these forces. We assessed the effect of varying force magnitudes among jaw-elevator muscles applied to a finite element model of a human cranium. The model was loaded to simulate incisor and molar bites using different combinations of muscle forces. Symmetric, asymmetric, homogeneous, and heterogeneous muscle activations were simulated by scaling maximal forces. The effects were compared with respect to strain distribution (i.e., modes of deformation) and magnitudes; bite forces and temporomandibular joint (TMJ) reaction forces. Predicted modes of deformation, strain magnitudes and bite forces were directly proportional to total applied muscle force and relatively insensitive to the degree of heterogeneity of muscle activation. However, TMJ reaction forces and mandibular fossa strains decrease and increase on the balancing and working sides according to the degree of asymmetry of loading. These results indicate that when modes, rather than magnitudes, of facial deformation are of interest, errors in applied muscle forces have limited effects. However the degree of asymmetric loading does impact on TMJ reaction forces and mandibular fossa strains. These findings are of particular interest in relation to studies of skeletal and fossil material, where muscle data are not available and estimation of muscle forces from skeletal proxies is prone to error. Anat Rec, 299:828-839, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Calculating the binding free energies of charged species based on explicit-solvent simulations employing lattice-sum methods: An accurate correction scheme for electrostatic finite-size effects

    Energy Technology Data Exchange (ETDEWEB)

    Rocklin, Gabriel J. [Department of Pharmaceutical Chemistry, University of California San Francisco, 1700 4th St., San Francisco, California 94143-2550, USA and Biophysics Graduate Program, University of California San Francisco, 1700 4th St., San Francisco, California 94143-2550 (United States); Mobley, David L. [Departments of Pharmaceutical Sciences and Chemistry, University of California Irvine, 147 Bison Modular, Building 515, Irvine, California 92697-0001, USA and Department of Chemistry, University of New Orleans, 2000 Lakeshore Drive, New Orleans, Louisiana 70148 (United States); Dill, Ken A. [Laufer Center for Physical and Quantitative Biology, 5252 Stony Brook University, Stony Brook, New York 11794-0001 (United States); Hünenberger, Philippe H., E-mail: phil@igc.phys.chem.ethz.ch [Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH, 8093 Zürich (Switzerland)

    2013-11-14

    The calculation of a protein-ligand binding free energy based on molecular dynamics (MD) simulations generally relies on a thermodynamic cycle in which the ligand is alchemically inserted into the system, both in the solvated protein and free in solution. The corresponding ligand-insertion free energies are typically calculated in nanoscale computational boxes simulated under periodic boundary conditions and considering electrostatic interactions defined by a periodic lattice-sum. This is distinct from the ideal bulk situation of a system of macroscopic size simulated under non-periodic boundary conditions with Coulombic electrostatic interactions. This discrepancy results in finite-size effects, which affect primarily the charging component of the insertion free energy, are dependent on the box size, and can be large when the ligand bears a net charge, especially if the protein is charged as well. This article investigates finite-size effects on calculated charging free energies using as a test case the binding of the ligand 2-amino-5-methylthiazole (net charge +1 e) to a mutant form of yeast cytochrome c peroxidase in water. Considering different charge isoforms of the protein (net charges −5, 0, +3, or +9 e), either in the absence or the presence of neutralizing counter-ions, and sizes of the cubic computational box (edges ranging from 7.42 to 11.02 nm), the potentially large magnitude of finite-size effects on the raw charging free energies (up to 17.1 kJ mol{sup −1}) is demonstrated. Two correction schemes are then proposed to eliminate these effects, a numerical and an analytical one. Both schemes are based on a continuum-electrostatics analysis and require performing Poisson-Boltzmann (PB) calculations on the protein-ligand system. While the numerical scheme requires PB calculations under both non-periodic and periodic boundary conditions, the latter at the box size considered in the MD simulations, the analytical scheme only requires three non-periodic

  5. Calculating the binding free energies of charged species based on explicit-solvent simulations employing lattice-sum methods: An accurate correction scheme for electrostatic finite-size effects

    Science.gov (United States)

    Rocklin, Gabriel J.; Mobley, David L.; Dill, Ken A.; Hünenberger, Philippe H.

    2013-11-01

    The calculation of a protein-ligand binding free energy based on molecular dynamics (MD) simulations generally relies on a thermodynamic cycle in which the ligand is alchemically inserted into the system, both in the solvated protein and free in solution. The corresponding ligand-insertion free energies are typically calculated in nanoscale computational boxes simulated under periodic boundary conditions and considering electrostatic interactions defined by a periodic lattice-sum. This is distinct from the ideal bulk situation of a system of macroscopic size simulated under non-periodic boundary conditions with Coulombic electrostatic interactions. This discrepancy results in finite-size effects, which affect primarily the charging component of the insertion free energy, are dependent on the box size, and can be large when the ligand bears a net charge, especially if the protein is charged as well. This article investigates finite-size effects on calculated charging free energies using as a test case the binding of the ligand 2-amino-5-methylthiazole (net charge +1 e) to a mutant form of yeast cytochrome c peroxidase in water. Considering different charge isoforms of the protein (net charges -5, 0, +3, or +9 e), either in the absence or the presence of neutralizing counter-ions, and sizes of the cubic computational box (edges ranging from 7.42 to 11.02 nm), the potentially large magnitude of finite-size effects on the raw charging free energies (up to 17.1 kJ mol-1) is demonstrated. Two correction schemes are then proposed to eliminate these effects, a numerical and an analytical one. Both schemes are based on a continuum-electrostatics analysis and require performing Poisson-Boltzmann (PB) calculations on the protein-ligand system. While the numerical scheme requires PB calculations under both non-periodic and periodic boundary conditions, the latter at the box size considered in the MD simulations, the analytical scheme only requires three non-periodic PB

  6. Calculating the binding free energies of charged species based on explicit-solvent simulations employing lattice-sum methods: an accurate correction scheme for electrostatic finite-size effects.

    Science.gov (United States)

    Rocklin, Gabriel J; Mobley, David L; Dill, Ken A; Hünenberger, Philippe H

    2013-11-14

    The calculation of a protein-ligand binding free energy based on molecular dynamics (MD) simulations generally relies on a thermodynamic cycle in which the ligand is alchemically inserted into the system, both in the solvated protein and free in solution. The corresponding ligand-insertion free energies are typically calculated in nanoscale computational boxes simulated under periodic boundary conditions and considering electrostatic interactions defined by a periodic lattice-sum. This is distinct from the ideal bulk situation of a system of macroscopic size simulated under non-periodic boundary conditions with Coulombic electrostatic interactions. This discrepancy results in finite-size effects, which affect primarily the charging component of the insertion free energy, are dependent on the box size, and can be large when the ligand bears a net charge, especially if the protein is charged as well. This article investigates finite-size effects on calculated charging free energies using as a test case the binding of the ligand 2-amino-5-methylthiazole (net charge +1 e) to a mutant form of yeast cytochrome c peroxidase in water. Considering different charge isoforms of the protein (net charges -5, 0, +3, or +9 e), either in the absence or the presence of neutralizing counter-ions, and sizes of the cubic computational box (edges ranging from 7.42 to 11.02 nm), the potentially large magnitude of finite-size effects on the raw charging free energies (up to 17.1 kJ mol(-1)) is demonstrated. Two correction schemes are then proposed to eliminate these effects, a numerical and an analytical one. Both schemes are based on a continuum-electrostatics analysis and require performing Poisson-Boltzmann (PB) calculations on the protein-ligand system. While the numerical scheme requires PB calculations under both non-periodic and periodic boundary conditions, the latter at the box size considered in the MD simulations, the analytical scheme only requires three non-periodic PB

  7. Finite time thermodynamic analysis and optimization of solar-dish Stirling heat engine with regenerative losses

    Directory of Open Access Journals (Sweden)

    Sharma Arjun

    2011-01-01

    Full Text Available The present study investigates the performance of the solar-driven Stirling engine system to maximize the power output and thermal efficiency using the non-linearized heat loss model of the solar dish collector and the irreversible cycle model of the Stirling engine. Finite time thermodynamic analysis has been done for combined system to calculate the finite-rate heat transfer, internal heat losses in the regenerator, conductive thermal bridging losses and finite regeneration process time. The results indicate that exergy efficiency of dish system increases as the effectiveness of regenerator increases but decreases with increase in regenerative time coefficient. It is also found that optimal range of collector temperature and corresponding concentrating ratio are 1000 K~1400 K and 1100~1400, respectively in order to get maximum value of exergy efficiency. It is reported that the exergy efficiency of this dish system can reach the maximum value when operating temperature and concentrating ratio are 1150 K and 1300, respectively.

  8. Potential benefits of maximal exercise just prior to return from weightlessness

    Science.gov (United States)

    Convertino, Victor A.

    1987-01-01

    The purpose of this study was to determine whether performance of a single maximal bout of exercise during weightlessness within hours of return to earth would enhance recovery of aerobic fitness and physical work capacities under a 1G environment. Ten healthy men were subjected to a 10-d bedrest period in the 6-deg headdown position. A graded maximal supine cycle ergometer test was performed before and at the end of bedrest to simulate exercise during weightlessness. Following 3 h of resumption of the upright posture, a second maximal exercise test was performed on a treadmill to measure work capacity under conditions of 1G. Compared to before bedrest, peak oxygen consumption, V(O2), decreased by 8.7 percent and peak heart rate (HR) increased by 5.6 percent in the supine cycle test at the end of bedrest. However, there were no significant changes in peak V(O2) and peak HR in the upright treadmill test following bedrest. These data suggest that one bout of maximal leg exercise prior to return from 10 d of weightlessness may be adequate to restore preflight aerobic fitness and physical work capacity.

  9. Is CP violation maximal

    International Nuclear Information System (INIS)

    Gronau, M.

    1984-01-01

    Two ambiguities are noted in the definition of the concept of maximal CP violation. The phase convention ambiguity is overcome by introducing a CP violating phase in the quark mixing matrix U which is invariant under rephasing transformations. The second ambiguity, related to the parametrization of U, is resolved by finding a single empirically viable definition of maximal CP violation when assuming that U does not single out one generation. Considerable improvement in the calculation of nonleptonic weak amplitudes is required to test the conjecture of maximal CP violation. 21 references

  10. Shareholder, stakeholder-owner or broad stakeholder maximization

    OpenAIRE

    Mygind, Niels

    2004-01-01

    With reference to the discussion about shareholder versus stakeholder maximization it is argued that the normal type of maximization is in fact stakeholder-owner maxi-mization. This means maximization of the sum of the value of the shares and stake-holder benefits belonging to the dominating stakeholder-owner. Maximization of shareholder value is a special case of owner-maximization, and only under quite re-strictive assumptions shareholder maximization is larger or equal to stakeholder-owner...

  11. Accuracy of finite-difference harmonic frequencies in density functional theory.

    Science.gov (United States)

    Liu, Kuan-Yu; Liu, Jie; Herbert, John M

    2017-07-15

    Analytic Hessians are often viewed as essential for the calculation of accurate harmonic frequencies, but the implementation of analytic second derivatives is nontrivial and solution of the requisite coupled-perturbed equations engenders a sizable memory footprint for large systems, given that these equations are not required for energy and gradient calculations in density functional theory. Here, we benchmark the alternative approach to harmonic frequencies based on finite differences of analytic first derivatives, a procedure that is amenable to large-scale parallelization. Not only for absolute frequencies but also for isotopic and conformer-dependent frequency shifts in flexible molecules, we find that the finite-difference approach exhibits mean errors numbers. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. Teeth grinding, oral motor performance and maximal bite force in cerebral palsy children.

    Science.gov (United States)

    Botti Rodrigues Santos, Maria Teresa; Duarte Ferreira, Maria Cristina; de Oliveira Guaré, Renata; Guimarães, Antonio Sergio; Lira Ortega, Adriana

    2015-01-01

    Identify whether the degree of oral motor performance is related to the presence of teeth grinding and maximal bite force values in children with spastic cerebral palsy. Ninety-five spastic cerebral palsy children with and without teeth grinding, according to caregivers' reports, were submitted to a comprehensive oral motor performance evaluation during the feeding process using the Oral Motor Assessment Scale. Maximal bite force was measured using an electronic gnathodynamometer. The teeth grinding group (n = 42) was younger, used anticonvulsant drugs, and was more frequently classified within the subfunctional oral motor performance category. Teeth grinding subfunctional spastic cerebral palsy children presented lower values of maximal bite force. The functional groups showing the presence or absence of teeth grinding presented higher values of maximal bite force compared with the subfunctional groups. In spastic cerebral palsy children, teeth grinding is associated with the worse oral motor performance. © 2015 Special Care Dentistry Association and Wiley Periodicals, Inc.

  13. Task-oriented maximally entangled states

    International Nuclear Information System (INIS)

    Agrawal, Pankaj; Pradhan, B

    2010-01-01

    We introduce the notion of a task-oriented maximally entangled state (TMES). This notion depends on the task for which a quantum state is used as the resource. TMESs are the states that can be used to carry out the task maximally. This concept may be more useful than that of a general maximally entangled state in the case of a multipartite system. We illustrate this idea by giving an operational definition of maximally entangled states on the basis of communication tasks of teleportation and superdense coding. We also give examples and a procedure to obtain such TMESs for n-qubit systems.

  14. Effects of volume-based overload plyometric training on maximal-intensity exercise adaptations in young basketball players.

    Science.gov (United States)

    Asadi, Abbas; Ramirez-Campillo, Rodrigo; Meylan, Cesar; Nakamura, Fabio Y; Cañas-Jamett, Rodrigo; Izquierdo, Mikel

    2017-12-01

    The aim of the present study was to compare maximal-intensity exercise adaptations in young basketball players (who were strong individuals at baseline) participating in regular basketball training versus regular plus a volume-based plyometric training program in the pre-season period. Young basketball players were recruited and assigned either to a plyometric with regular basketball training group (experimental group [EG]; N.=8), or a basketball training only group (control group [CG]; N.=8). The athletes in EG performed periodized (i.e., from 117 to 183 jumps per session) plyometric training for eight weeks. Before and after the intervention, players were assessed in vertical and broad jump, change of direction, maximal strength and a 60-meter sprint test. No significant improvements were found in the CG, while the EG improved vertical jump (effect size [ES] 2.8), broad jump (ES=2.4), agility T test (ES=2.2), Illinois agility test (ES=1.4), maximal strength (ES=1.8), and 60-m sprint (ES=1.6) (Ptraining in addition to regular basketball practice can lead to meaningful improvements in maximal-intensity exercise adaptations among young basketball players during the pre-season.

  15. On almost-periodic points of a topological Markov chain

    International Nuclear Information System (INIS)

    Bogatyi, Semeon A; Redkozubov, Vadim V

    2012-01-01

    We prove that a transitive topological Markov chain has almost-periodic points of all D-periods. Moreover, every D-period is realized by continuously many distinct minimal sets. We give a simple constructive proof of the result which asserts that any transitive topological Markov chain has periodic points of almost all periods, and study the structure of the finite set of positive integers that are not periods.

  16. FLOUTING MAXIMS IN INDONESIA LAWAK KLUB CONVERSATION

    Directory of Open Access Journals (Sweden)

    Rahmawati Sukmaningrum

    2017-04-01

    Full Text Available This study aims to identify the types of maxims flouted in the conversation in famous comedy show, Indonesia Lawak Club. Likewise, it also tries to reveal the speakers‘ intention of flouting the maxim in the conversation during the show. The writers use descriptive qualitative method in conducting this research. The data is taken from the dialogue of Indonesia Lawak club and then analyzed based on Grice‘s cooperative principles. The researchers read the dialogue‘s transcripts, identify the maxims, and interpret the data to find the speakers‘ intention for flouting the maxims in the communication. The results show that there are four types of maxims flouted in the dialogue. Those are maxim of quality (23%, maxim of quantity (11%, maxim of manner (31%, and maxim of relevance (35. Flouting the maxims in the conversations is intended to make the speakers feel uncomfortable with the conversation, show arrogances, show disagreement or agreement, and ridicule other speakers.

  17. Forced vibration and wave propagation in mono-coupled periodic structures

    DEFF Research Database (Denmark)

    Ohlrich, Mogens

    1986-01-01

    This paper describes the wave propagation and vibration characteristics of mono-coupled structures which are of spatially periodic nature. The receptance approach to periodic structure theory is applied to study undamped periodic systems with composite structural elements; particular emphasis...... and a general `closed form' solution is found for the forced harmonic response at element junctions. This `junction-receptance' is used to determine-discrete junction mode shapes of a finite system. Finally, the forced response of a finite structure with an internal obstruction is derived as a natural extension...... of the determination of the junction-receptance. The influence of such a disorder is illustrated by a simple example...

  18. VIOLATION OF CONVERSATION MAXIM ON TV ADVERTISEMENTS

    Directory of Open Access Journals (Sweden)

    Desak Putu Eka Pratiwi

    2015-07-01

    Full Text Available Maxim is a principle that must be obeyed by all participants textually and interpersonally in order to have a smooth communication process. Conversation maxim is divided into four namely maxim of quality, maxim of quantity, maxim of relevance, and maxim of manner of speaking. Violation of the maxim may occur in a conversation in which the information the speaker has is not delivered well to his speaking partner. Violation of the maxim in a conversation will result in an awkward impression. The example of violation is the given information that is redundant, untrue, irrelevant, or convoluted. Advertisers often deliberately violate the maxim to create unique and controversial advertisements. This study aims to examine the violation of maxims in conversations of TV ads. The source of data in this research is food advertisements aired on TV media. Documentation and observation methods are applied to obtain qualitative data. The theory used in this study is a maxim theory proposed by Grice (1975. The results of the data analysis are presented with informal method. The results of this study show an interesting fact that the violation of maxim in a conversation found in the advertisement exactly makes the advertisements very attractive and have a high value.

  19. Finding Maximal Quasiperiodicities in Strings

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Pedersen, Christian N. S.

    2000-01-01

    of length n in time O(n log n) and space O(n). Our algorithm uses the suffix tree as the fundamental data structure combined with efficient methods for merging and performing multiple searches in search trees. Besides finding all maximal quasiperiodic substrings, our algorithm also marks the nodes......Apostolico and Ehrenfeucht defined the notion of a maximal quasiperiodic substring and gave an algorithm that finds all maximal quasiperiodic substrings in a string of length n in time O(n log2 n). In this paper we give an algorithm that finds all maximal quasiperiodic substrings in a string...... in the suffix tree that have a superprimitive path-label....

  20. Transfer matrix representation for periodic planar media

    Science.gov (United States)

    Parrinello, A.; Ghiringhelli, G. L.

    2016-06-01

    Sound transmission through infinite planar media characterized by in-plane periodicity is faced by exploiting the free wave propagation on the related unit cells. An appropriate through-thickness transfer matrix, relating a proper set of variables describing the acoustic field at the two external surfaces of the medium, is derived by manipulating the dynamic stiffness matrix related to a finite element model of the unit cell. The adoption of finite element models avoids analytical modeling or the simplification on geometry or materials. The obtained matrix is then used in a transfer matrix method context, making it possible to combine the periodic medium with layers of different nature and to treat both hard-wall and semi-infinite fluid termination conditions. A finite sequence of identical sub-layers through the thickness of the medium can be handled within the transfer matrix method, significantly decreasing the computational burden. Transfer matrices obtained by means of the proposed method are compared with analytical or equivalent models, in terms of sound transmission through barriers of different nature.

  1. A finite different field solver for dipole modes

    International Nuclear Information System (INIS)

    Nelson, E.M.

    1992-08-01

    A finite element field solver for dipole modes in axisymmetric structures has been written. The second-order elements used in this formulation yield accurate mode frequencies with no spurious modes. Quasi-periodic boundaries are included to allow travelling waves in periodic structures. The solver is useful in applications requiring precise frequency calculations such as detuned accelerator structures for linear colliders. Comparisons are made with measurements and with the popular but less accurate field solver URMEL

  2. Shareholder, stakeholder-owner or broad stakeholder maximization

    DEFF Research Database (Denmark)

    Mygind, Niels

    2004-01-01

    With reference to the discussion about shareholder versus stakeholder maximization it is argued that the normal type of maximization is in fact stakeholder-owner maxi-mization. This means maximization of the sum of the value of the shares and stake-holder benefits belonging to the dominating...... including the shareholders of a company. Although it may be the ultimate goal for Corporate Social Responsibility to achieve this kind of maximization, broad stakeholder maximization is quite difficult to give a precise definition. There is no one-dimensional measure to add different stakeholder benefits...... not traded on the mar-ket, and therefore there is no possibility for practical application. Broad stakeholder maximization instead in practical applications becomes satisfying certain stakeholder demands, so that the practical application will be stakeholder-owner maximization un-der constraints defined...

  3. Maximal power output during incremental exercise by resistance and endurance trained athletes.

    Science.gov (United States)

    Sakthivelavan, D S; Sumathilatha, S

    2010-01-01

    This study was aimed at comparing the maximal power output by resistance trained and endurance trained athletes during incremental exercise. Thirty male athletes who received resistance training (Group I) and thirty male athletes of similar age group who received endurance training (Group II) for a period of more than 1 year were chosen for the study. Physical parameters were measured and exercise stress testing was done on a cycle ergometer with a portable gas analyzing system. The maximal progressive incremental cycle ergometer power output at peak exercise and carbon dioxide production at VO2max were measured. Highly significant (P biofeedback and perk up the athlete's performance.

  4. Finite-volume spectra of the Lee-Yang model

    Energy Technology Data Exchange (ETDEWEB)

    Bajnok, Zoltan [MTA Lendület Holographic QFT Group, Wigner Research Centre for Physics,H-1525 Budapest 114, P.O.B. 49 (Hungary); Deeb, Omar el [MTA Lendület Holographic QFT Group, Wigner Research Centre for Physics,H-1525 Budapest 114, P.O.B. 49 (Hungary); Physics Department, Faculty of Science, Beirut Arab University (BAU),Beirut (Lebanon); Pearce, Paul A. [School of Mathematics and Statistics, University of Melbourne,Parkville, Victoria 3010 (Australia)

    2015-04-15

    We consider the non-unitary Lee-Yang minimal model M(2,5) in three different finite geometries: (i) on the interval with integrable boundary conditions labelled by the Kac labels (r,s)=(1,1),(1,2), (ii) on the circle with periodic boundary conditions and (iii) on the periodic circle including an integrable purely transmitting defect. We apply φ{sub 1,3} integrable perturbations on the boundary and on the defect and describe the flow of the spectrum. Adding a Φ{sub 1,3} integrable perturbation to move off-criticality in the bulk, we determine the finite size spectrum of the massive scattering theory in the three geometries via Thermodynamic Bethe Ansatz (TBA) equations. We derive these integral equations for all excitations by solving, in the continuum scaling limit, the TBA functional equations satisfied by the transfer matrices of the associated A{sub 4} RSOS lattice model of Forrester and Baxter in Regime III. The excitations are classified in terms of (m,n) systems. The excited state TBA equations agree with the previously conjectured equations in the boundary and periodic cases. In the defect case, new TBA equations confirm previously conjectured transmission factors.

  5. Solitons supported by localized nonlinearities in periodic media

    International Nuclear Information System (INIS)

    Dror, Nir; Malomed, Boris A.

    2011-01-01

    Nonlinear periodic systems, such as photonic crystals and Bose-Einstein condensates (BEC's) loaded into optical lattices, are often described by the nonlinear Schroedinger or Gross-Pitaevskii equation with a sinusoidal potential. Here, we consider a model based on such a periodic potential, with the nonlinearity (attractive or repulsive) concentrated either at a single point or at a symmetric set of two points, which are represented, respectively, by a single δ function or a combination of two δ functions. With the attractive or repulsive sign of the nonlinearity, this model gives rise to ordinary solitons or gap solitons (GS's), which reside, respectively, in the semi-infinite or finite gaps of the system's linear spectrum, being pinned to the δ functions. Physical realizations of these systems are possible in optics and BEC's, using diverse variants of the nonlinearity management. First, we demonstrate that the single δ function multiplying the nonlinear term supports families of stableregular solitons in the self-attractive case, while a family of solitons supported by the attractive δ function in the absence of the periodic potential is completely unstable. In addition, we show that the δ function can support stable GS's in the first finite band gap in both the self-attractive and repulsive models. The stability analysis for the GS's in the second finite band gap is reported too, for both signs of the nonlinearity. Alongside the numerical analysis, analytical approximations are developed for the solitons in the semi-infinite and first two finite gaps, with the single δ function positioned at a minimum or maximum of the periodic potential. In the model with the symmetric set of two δ functions, we study the effect of the spontaneous symmetry breaking of the pinned solitons. Two configurations are considered, with the δ functions set symmetrically with respect to the minimum or maximum of the underlying potential.

  6. Geometric measures of multipartite entanglement in finite-size spin chains

    Energy Technology Data Exchange (ETDEWEB)

    Blasone, M; Dell' Anno, F; De Siena, S; Giampaolo, S M; Illuminati, F, E-mail: illuminati@sa.infn.i [Dipartimento di Matematica e Informatica, Universita degli Studi di Salerno, Via Ponte don Melillo, I-84084 Fisciano (Italy)

    2010-09-01

    We investigate the behaviour of multipartite entanglement in finite-size quantum spin systems, resorting to a hierarchy of geometric measures of multipartite entanglement recently introduced in the literature. In particular, we investigate the ground-state entanglement in the XY model defined on finite chains of N sites with periodic boundary conditions. We analyse the behaviour of the geometric measures of (N- 1)-partite and (N/2)-partite entanglement and compare them with the Wei-Goldbart geometric measure of global entanglement.

  7. Geometric measures of multipartite entanglement in finite-size spin chains

    International Nuclear Information System (INIS)

    Blasone, M; Dell'Anno, F; De Siena, S; Giampaolo, S M; Illuminati, F

    2010-01-01

    We investigate the behaviour of multipartite entanglement in finite-size quantum spin systems, resorting to a hierarchy of geometric measures of multipartite entanglement recently introduced in the literature. In particular, we investigate the ground-state entanglement in the XY model defined on finite chains of N sites with periodic boundary conditions. We analyse the behaviour of the geometric measures of (N- 1)-partite and (N/2)-partite entanglement and compare them with the Wei-Goldbart geometric measure of global entanglement.

  8. Quantum periods of Calabi–Yau fourfolds

    Energy Technology Data Exchange (ETDEWEB)

    Gerhardus, Andreas, E-mail: gerhardus@th.physik.uni-bonn.de; Jockers, Hans, E-mail: jockers@uni-bonn.de

    2016-12-15

    In this work we study the quantum periods together with their Picard–Fuchs differential equations of Calabi–Yau fourfolds. In contrast to Calabi–Yau threefolds, we argue that the large volume points of Calabi–Yau fourfolds generically are regular singular points of the Picard–Fuchs operators of non-maximally unipotent monodromy. We demonstrate this property in explicit examples of Calabi–Yau fourfolds with a single Kähler modulus. For these examples we construct integral quantum periods and study their global properties in the quantum Kähler moduli space with the help of numerical analytic continuation techniques. Furthermore, we determine their genus zero Gromov–Witten invariants, their Klemm–Pandharipande meeting invariants, and their genus one BPS invariants. In our computations we emphasize the features attributed to the non-maximally unipotent monodromy property. For instance, it implies the existence of integral quantum periods that at large volume are purely worldsheet instanton generated. To verify our results, we also present intersection theory techniques to enumerate lines with a marked point on complete intersection Calabi–Yau fourfolds in Grassmannian varieties.

  9. Maximally multipartite entangled states

    Science.gov (United States)

    Facchi, Paolo; Florio, Giuseppe; Parisi, Giorgio; Pascazio, Saverio

    2008-06-01

    We introduce the notion of maximally multipartite entangled states of n qubits as a generalization of the bipartite case. These pure states have a bipartite entanglement that does not depend on the bipartition and is maximal for all possible bipartitions. They are solutions of a minimization problem. Examples for small n are investigated, both analytically and numerically.

  10. Oxidative stress and nitrite dynamics under maximal load in elite athletes: relation to sport type.

    Science.gov (United States)

    Cubrilo, Dejan; Djordjevic, Dusica; Zivkovic, Vladimir; Djuric, Dragan; Blagojevic, Dusko; Spasic, Mihajlo; Jakovljevic, Vladimir

    2011-09-01

    Maximal workload in elite athletes induces increased generation of reactive oxygen/nitrogen species (RONS) and oxidative stress, but the dynamics of RONS production are not fully explored. The aim of our study was to examine the effects of long-term engagement in sports with different energy requirements (aerobic, anaerobic, and aerobic/anaerobic) on oxidative stress parameters during progressive exercise test. Concentrations of lactates, nitric oxide (NO) measured through stabile end product-nitrites (NO(2) (-)), superoxide anion radical (O(2) (•-)), and thiobarbituric reactive substances (TBARS) as index of lipid peroxidation were determined in rest, after maximal workload, and at 4 and 10th min of recovery in blood plasma of top level competitors in rowing, cycling, and taekwondo. Results showed that sportmen had similar concentrations of lactates and O(2) (•-) in rest. Nitrite concentrations in rest were the lowest in taekwondo fighters, while rowers had the highest levels among examined groups. The order of magnitude for TBARS level in the rest was bicycling > taekwondo > rowing. During exercise at maximal intensity, the concentration of lactate significantly elevated to similar levels in all tested sportsmen and they were persistently elevated during recovery period of 4 and 10 min. There were no significant changes in O(2) (•-), nitrite, and TBARS levels neither at the maximum intensity of exercise nor during the recovery period comparing to the rest period in examined individuals. Our results showed that long term different training strategies establish different basal nitrites and lipid peroxidation levels in sportmen. However, progressive exercise does not influence basal nitrite and oxidative stress parameters level neither at maximal load nor during the first 10 min of recovery in sportmen studied.

  11. Finite-dimensional representations of the quantum superalgebra Uq[gl(2/2)] II: Nontypical representations at generic q

    International Nuclear Information System (INIS)

    Nguyen Anh Ky; Stoilova, N.I.

    1994-11-01

    The construction approach proposed in the previous paper Ref.1 allows us there and in the present paper to construct at generic deformation parameter q all finite-dimensional representations of the quantum Lie superalgebra U q [gl(2/2)]. The finite-dimensional U q [gl(2/2)]-modules W q constructed in Ref.1 are either irreducible or indecomposable. If a module W q is indecomposable, i.e. when the condition (4.41) in Ref.1 does not hold, there exists an invariant maximal submodule of W q , to say I q k , such that the factor-representation in the factor-module W q /I q k is irreducible and called nontypical. Here, in this paper, indecomposable representations and nontypical finite-dimensional representations of the quantum Lie superalgebra U q [gl(2/2)] are considered and classified as their module structures are analyzed and the matrix elements of all nontypical representations are written down explicitly. (author). 23 refs

  12. Maximal quantum Fisher information matrix

    International Nuclear Information System (INIS)

    Chen, Yu; Yuan, Haidong

    2017-01-01

    We study the existence of the maximal quantum Fisher information matrix in the multi-parameter quantum estimation, which bounds the ultimate precision limit. We show that when the maximal quantum Fisher information matrix exists, it can be directly obtained from the underlying dynamics. Examples are then provided to demonstrate the usefulness of the maximal quantum Fisher information matrix by deriving various trade-off relations in multi-parameter quantum estimation and obtaining the bounds for the scalings of the precision limit. (paper)

  13. Understanding Violations of Gricean Maxims in Preschoolers and Adults

    Directory of Open Access Journals (Sweden)

    Mako eOkanda

    2015-07-01

    Full Text Available This study used a revised Conversational Violations Test to examine Gricean maxim violations in 4- to 6-year-old Japanese children and adults. Participants’ understanding of the following maxims was assessed: be informative (first maxim of quantity, avoid redundancy (second maxim of quantity, be truthful (maxim of quality, be relevant (maxim of relation, avoid ambiguity (second maxim of manner, and be polite (maxim of politeness. Sensitivity to violations of Gricean maxims increased with age: 4-year-olds’ understanding of maxims was near chance, 5-year-olds understood some maxims (first maxim of quantity and maxims of quality, relation, and manner, and 6-year-olds and adults understood all maxims. Preschoolers acquired the maxim of relation first and had the greatest difficulty understanding the second maxim of quantity. Children and adults differed in their comprehension of the maxim of politeness. The development of the pragmatic understanding of Gricean maxims and implications for the construction of developmental tasks from early childhood to adulthood are discussed.

  14. Complex periodic potentials with a finite number of band gaps

    International Nuclear Information System (INIS)

    Khare, Avinash; Sukhatme, Uday

    2006-01-01

    We obtain several new results for the complex generalized associated Lame potential V(x)=a(a+1)m sn 2 (y,m)+b(b+1)m sn 2 (y+K(m),m)+f(f+1)m sn 2 (y+K(m)+iK ' (m),m)+g(g+1)m sn 2 (y+iK ' (m),m), where y≡x-K(m)/2-iK ' (m)/2, sn(y,m) is the Jacobi elliptic function with modulus parameter m, and there are four real parameters a,b,f,g. First, we derive two new duality relations which, when coupled with a previously obtained duality relation, permit us to relate the band edge eigenstates of the 24 potentials obtained by permutations of the parameters a,b,f,g. Second, we pose and answer the question: how many independent potentials are there with a finite number 'a' of band gaps when a,b,f,g are integers and a≥b≥f≥g≥0? For these potentials, we clarify the nature of the band edge eigenfunctions. We also obtain several analytic results when at least one of the four parameters is a half-integer. As a by-product, we also obtain new solutions of Heun's differential equation

  15. Maximal intensity higher-order Akhmediev breathers of the nonlinear Schrödinger equation and their systematic generation

    Energy Technology Data Exchange (ETDEWEB)

    Chin, Siu A., E-mail: chin@physics.tamu.edu [Department of Physics and Astronomy, Texas A& M University, College Station, TX 77843 (United States); Ashour, Omar A. [Department of Physics and Astronomy, Texas A& M University, College Station, TX 77843 (United States); Science Program, Texas A& M University at Qatar, P.O. Box 23874 Doha (Qatar); Nikolić, Stanko N. [Science Program, Texas A& M University at Qatar, P.O. Box 23874 Doha (Qatar); Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia); Belić, Milivoj R. [Science Program, Texas A& M University at Qatar, P.O. Box 23874 Doha (Qatar)

    2016-10-23

    It is well known that Akhmediev breathers of the nonlinear cubic Schrödinger equation can be superposed nonlinearly via the Darboux transformation to yield breathers of higher order. Surprisingly, we find that the peak height of each Akhmediev breather only adds linearly to form the peak height of the final breather. Using this peak-height formula, we show that at any given periodicity, there exists a unique high-order breather of maximal intensity. Moreover, these high-order breathers form a continuous hierarchy, growing in intensity with increasing periodicity. For any such higher-order breather, a simple initial wave function can be extracted from the Darboux transformation to dynamically generate that breather from the nonlinear Schrödinger equation. - Highlights: • Proved an analytical formula for the peak-height of an nth-order Akhmediev breather. • Constructed nth-order Akhmediev breathers of maximal peak intensity. • Extracted initial wave functions that can be used experimentally to produce these maximal breathers in optical fibers.

  16. Finite gratings of many thin silver nanostrips: Optical resonances and role of periodicity

    Directory of Open Access Journals (Sweden)

    Olga V. Shapoval

    2013-04-01

    Full Text Available We study numerically the optical properties of the periodic in one dimension flat gratings made of multiple thin silver nanostrips suspended in free space. Unlike other publications, we consider the gratings that are finite however made of many strips that are well thinner than the wavelength. Our analysis is based on the combined use of two techniques earlier verified by us in the scattering by a single thin strip of conventional dielectric: the generalized (effective boundary conditions (GBCs imposed on the strip median lines and the Nystrom-type discretization of the associated singular and hyper-singular integral equations (IEs. The first point means that in the case of the metal strip thickness being only a small fraction of the free-space wavelength (typically 5 nm to 50 nm versus 300 nm to 1 μm we can neglect the internal field and consider only the field limit values. In its turn, this enables reduction of the integration contour in the associated IEs to the strip median lines. This brings significant simplification of the scattering analysis while preserving a reasonably adequate modeling. The second point guarantees fast convergence and controlled accuracy of computations that enables us to compute the gratings consisting of hundreds of thin strips, with total size in hundreds of wavelengths. Thanks to this, in the H-polarization case we demonstrate the build-up of sharp grating resonances (a.k.a. as collective or lattice resonances in the scattering and absorption cross-sections of sparse multi-strip gratings, in addition to better known localized surface-plasmon resonances on each strip. The grating modes, which are responsible for these resonances, have characteristic near-field patterns that are distinctively different from the plasmons as can be seen if the strip number gets larger. In the E-polarization case, no such resonances are detectable however the build-up of Rayleigh anomalies is observed, accompanied by the reduced

  17. On a family of KP multi-line solitons associated to rational degenerations of real hyperelliptic curves and to the finite non-periodic Toda hierarchy

    Science.gov (United States)

    Abenda, Simonetta

    2017-09-01

    We continue the program started in Abenda and Grinevich (2015) of associating rational degenerations of M-curves to points in GrTNN(k , n) using KP theory for real finite gap solutions. More precisely, we focus on the inverse problem of characterizing the soliton data which produce Krichever divisors compatible with the KP reality condition when Γ is a certain rational degeneration of a hyperelliptic M-curve. Such choice is motivated by the fact that Γ is related to the curves associated to points in GrTP(1 , n) and in GrTP(n - 1 , n) in Abenda and Grinevich (2015). We prove that the reality condition on the Krichever divisor on Γ singles out a special family of KP multi-line solitons (T-hyperelliptic solitons) in GrTP(k , n) , k ∈ [ n - 1 ] , naturally connected to the finite non-periodic Toda hierarchy. We discuss the relations between the algebraic-geometric description of KP T-hyperelliptic solitons and of the open Toda system. Finally, we also explain the effect of the space-time transformation which conjugates soliton data in GrTP(k , n) to soliton data in GrTP(n - k , n) on the Krichever divisor for such KP solitons.

  18. Alterations in Strength and Maximal Oxygen Uptake Consequent to Nautilus Circuit Weight Training.

    Science.gov (United States)

    Messier, Stephen P.; Dill, Mary Elizabeth

    1985-01-01

    The study compared the effects on muscular strength and maximal oxygen uptake of a Nautilus circuit weight training program, a free weight strength training program, and a running program. Nautilus circuit weight training appears to be equally effective for a training period of short duration. (MT)

  19. A finite element field solver for dipole modes

    International Nuclear Information System (INIS)

    Nelson, E.M.

    1992-01-01

    A finite element field solver for dipole modes in axisymmetric structures has been written. The second-order elements used in this formulation yield accurate mode frequencies with no spurious modes. Quasi-periodic boundaries are included to allow travelling waves in periodic structures. The solver is useful in applications requiring precise frequency calculations such as detuned accelerator structures for linear colliders. Comparisons are made with measurements and with the popular but less accurate field solver URMEL. (author). 7 refs., 4 figs

  20. Diffusion with finite-helicity field tensor: A mechanism of generating heterogeneity

    Science.gov (United States)

    Sato, N.; Yoshida, Z.

    2018-02-01

    Topological constraints on a dynamical system often manifest themselves as breaking of the Hamiltonian structure; well-known examples are nonholonomic constraints on Lagrangian mechanics. The statistical mechanics under such topological constraints is the subject of this study. Conventional arguments based on phase spaces, Jacobi identity, invariant measure, or the H theorem are no longer applicable since all these notions stem from the symplectic geometry underlying canonical Hamiltonian systems. Remembering that Hamiltonian systems are endowed with field tensors (canonical 2-forms) that have zero helicity, our mission is to extend the scope toward the class of systems governed by finite-helicity field tensors. Here, we introduce a class of field tensors that are characterized by Beltrami vectors. We prove an H theorem for this Beltrami class. The most general class of energy-conserving systems are non-Beltrami, for which we identify the "field charge" that prevents the entropy to maximize, resulting in creation of heterogeneous distributions. The essence of the theory can be delineated by classifying three-dimensional dynamics. We then generalize to arbitrary (finite) dimensions.

  1. Designing a solar powered Stirling heat engine based on multiple criteria: Maximized thermal efficiency and power

    International Nuclear Information System (INIS)

    Ahmadi, Mohammad Hossein; Sayyaadi, Hoseyn; Dehghani, Saeed; Hosseinzade, Hadi

    2013-01-01

    Highlights: • Thermodynamic model of a solar-dish Stirling engine was presented. • Thermal efficiency and output power of the engine were simultaneously maximized. • A final optimal solution was selected using several decision-making methods. • An optimal solution with least deviation from the ideal design was obtained. • Optimal solutions showed high sensitivity against variation of system parameters. - Abstract: A solar-powered high temperature differential Stirling engine was considered for optimization using multiple criteria. A thermal model was developed so that the output power and thermal efficiency of the solar Stirling system with finite rate of heat transfer, regenerative heat loss, conductive thermal bridging loss, finite regeneration process time and imperfect performance of the dish collector could be obtained. The output power and overall thermal efficiency were considered for simultaneous maximization. Multi-objective evolutionary algorithms (MOEAs) based on the NSGA-II algorithm were employed while the solar absorber temperature and the highest and lowest temperatures of the working fluid were considered the decision variables. The Pareto optimal frontier was obtained and a final optimal solution was also selected using various decision-making methods including the fuzzy Bellman–Zadeh, LINMAP and TOPSIS. It was found that multi-objective optimization could yield results with a relatively low deviation from the ideal solution in comparison to the conventional single objective approach. Furthermore, it was shown that, if the weight of thermal efficiency as one of the objective functions is considered to be greater than weight of the power objective, lower absorber temperature and low temperature ratio should be considered in the design of the Stirling engine

  2. Some exact solutions for maximally symmetric topological defects in Anti de Sitter space

    Science.gov (United States)

    Alvarez, Orlando; Haddad, Matthew

    2018-03-01

    We obtain exact analytical solutions for a class of SO( l) Higgs field theories in a non-dynamic background n-dimensional anti de Sitter space. These finite transverse energy solutions are maximally symmetric p-dimensional topological defects where n = ( p + 1) + l. The radius of curvature of anti de Sitter space provides an extra length scale that allows us to study the equations of motion in a limit where the masses of the Higgs field and the massive vector bosons are both vanishing. We call this the double BPS limit. In anti de Sitter space, the equations of motion depend on both p and l. The exact analytical solutions are expressed in terms of standard special functions. The known exact analytical solutions are for kink-like defects ( p = 0 , 1 , 2 , . . . ; l = 1), vortex-like defects ( p = 1 , 2 , 3; l = 2), and the 't Hooft-Polyakov monopole ( p = 0; l = 3). A bonus is that the double BPS limit automatically gives a maximally symmetric classical glueball type solution. In certain cases where we did not find an analytic solution, we present numerical solutions to the equations of motion. The asymptotically exponentially increasing volume with distance of anti de Sitter space imposes different constraints than those found in the study of defects in Minkowski space.

  3. Influence of Maternal Nutrient Restriction during the Period of ...

    African Journals Online (AJOL)

    Influence of Maternal Nutrient Restriction during the Period of Embryonic and Maximal Placental Growth on Organ Development in the Adult Sheep. ... Objective: It is apparent that maternal under nutrition at specific period during pregnancy has differential effects on placental and fetal development, such that the resulting ...

  4. Unstable periodic orbits and chaotic economic growth

    International Nuclear Information System (INIS)

    Ishiyama, K.; Saiki, Y.

    2005-01-01

    We numerically find many unstable periodic solutions embedded in a chaotic attractor in a macroeconomic growth cycle model of two countries with different fiscal policies, and we focus on a special type of the unstable periodic solutions. It is confirmed that chaotic behavior represented by the model is qualitatively and quantitatively related to the unstable periodic solutions. We point out that the structure of a chaotic solution is dissolved into a class of finite unstable periodic solutions picked out among a large number of periodic solutions. In this context it is essential for the unstable periodic solutions to be embedded in the chaotic attractor

  5. Application of Artificial Bee Colony Algorithm and Finite Element Analysis for Optimum Design of Brushless Permanent Magnet Motor

    Directory of Open Access Journals (Sweden)

    Reza Ilka

    2012-04-01

    Full Text Available ABSTRACT: This paper develops a mathematical relationship for the purpose of designing and selecting the optimum dimensions of a brushless permanent magnet motor. The design is optimised by the use of artificial bee colony algorithm with the goal of maximizing the power density and efficiency of the motor. The required dimensions of the brushless motor are calculated based on the optimum power density and efficiency requirements. Finally, the predicted results of the optimisation are validated using a 2-D numerical program based on finite element analysis.ABSTRAK: Kajian ini mencadangkan persamaan yang menghubungkan rekabentuk dan dimensi magnet motor kekal tanpa berus. Rekabentuk optima berdasarkan algorisma koloni lebah tiruan dengan tujuan meningkatkan ketumpatan kuasa dan keberkesanan dibentangkan dalam kajian ini. Dimensi magnet motor kekal tanpa berus dihitung dengan ketumpatan kuasa optima dan keberkesanan. Akhirnya, keputusan telah disahkan dengan menggunakan program berangka 2-D berdasarkan analisis elemen finit.KEYWORDS: brushless; permanent magnet motor; power density; artificial bee colony; algorithm; finite element analysis

  6. On maximal massive 3D supergravity

    OpenAIRE

    Bergshoeff , Eric A; Hohm , Olaf; Rosseel , Jan; Townsend , Paul K

    2010-01-01

    ABSTRACT We construct, at the linearized level, the three-dimensional (3D) N = 4 supersymmetric " general massive supergravity " and the maximally supersymmetric N = 8 " new massive supergravity ". We also construct the maximally supersymmetric linearized N = 7 topologically massive supergravity, although we expect N = 6 to be maximal at the non-linear level. (Bergshoeff, Eric A) (Hohm, Olaf) (Rosseel, Jan) P.K.Townsend@da...

  7. Femoral Neck Strain during Maximal Contraction of Isolated Hip-Spanning Muscle Groups

    Directory of Open Access Journals (Sweden)

    Saulo Martelli

    2017-01-01

    Full Text Available The aim of the study was to investigate femoral neck strain during maximal isometric contraction of the hip-spanning muscles. The musculoskeletal and the femur finite-element models from an elderly white woman were taken from earlier studies. The hip-spanning muscles were grouped by function in six hip-spanning muscle groups. The peak hip and knee moments in the model were matched to corresponding published measurements of the hip and knee moments during maximal isometric exercises about the hip and the knee in elderly participants. The femoral neck strain was calculated using full activation of the agonist muscles at fourteen physiological joint angles. The 5%±0.8% of the femoral neck volume exceeded the 90th percentile of the strain distribution across the 84 studied scenarios. Hip extensors, flexors, and abductors generated the highest tension in the proximal neck (2727 με, tension (986 με and compression (−2818 με in the anterior and posterior neck, and compression (−2069 με in the distal neck, respectively. Hip extensors and flexors generated the highest neck strain per unit of joint moment (63–67 με·m·N−1 at extreme hip angles. Therefore, femoral neck strain is heterogeneous and muscle contraction and posture dependent.

  8. Periodic instantons and scattering amplitudes

    International Nuclear Information System (INIS)

    Khlebnikov, S.Yu.; Rubakov, V.A.; Tinyakov, P.G.

    1991-04-01

    We discuss the role of periodic euclidean solutions with two turning points and zero winding number (periodic instantons) in instanton induced processes below the sphaleron energy E sph . We find that the periodic instantons describe certain multiparticle scattering events leading to the transitions between topologically distinct vacua. Both the semiclassical amplitudes and inital and final states of these transitions are determined by the periodic instantons. Furthermore, the corresponding probabilities are maximal among all states of given energy. We show that at E ≤ E sph , the periodic instantons can be approximated by infinite chains of ordinary instantons and anti-instantons, and they naturally emerge as deformations of the zero energy instanton. In the framework of 2d abelian Higgs model and 4d electroweak theory we show, however, that there is not obvious relation between periodic instantons and two-particle scattering amplitudes. (orig.)

  9. Expected Power-Utility Maximization Under Incomplete Information and with Cox-Process Observations

    International Nuclear Information System (INIS)

    Fujimoto, Kazufumi; Nagai, Hideo; Runggaldier, Wolfgang J.

    2013-01-01

    We consider the problem of maximization of expected terminal power utility (risk sensitive criterion). The underlying market model is a regime-switching diffusion model where the regime is determined by an unobservable factor process forming a finite state Markov process. The main novelty is due to the fact that prices are observed and the portfolio is rebalanced only at random times corresponding to a Cox process where the intensity is driven by the unobserved Markovian factor process as well. This leads to a more realistic modeling for many practical situations, like in markets with liquidity restrictions; on the other hand it considerably complicates the problem to the point that traditional methodologies cannot be directly applied. The approach presented here is specific to the power-utility. For log-utilities a different approach is presented in Fujimoto et al. (Preprint, 2012).

  10. Optimized design of micromachined electric field mills to maximize electrostatic field sensitivity

    Directory of Open Access Journals (Sweden)

    Yu Zhou

    2016-07-01

    Full Text Available This paper describes the design optimization of a micromachined electric field mill, in relation to maximizing its output signal. The cases studied are for a perforated electrically grounded shutter vibrating laterally over sensing electrodes. It is shown that when modeling the output signal of the sensor, the differential charge on the sense electrodes when exposed to vs. visibly shielded from the incident electric field must be considered. Parametric studies of device dimensions show that the shutter thickness and its spacing from the underlying electrodes should be minimized as these parameters very strongly affect the MEFM signal. Exploration of the shutter perforation size and sense electrode width indicate that the best MEFM design is one where shutter perforation widths are a few times larger than the sense electrode widths. Keywords: MEFM, Finite element method, Electric field measurement, MEMS, Micromachining

  11. Expected Power-Utility Maximization Under Incomplete Information and with Cox-Process Observations

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Kazufumi, E-mail: m_fuji@kvj.biglobe.ne.jp [Bank of Tokyo-Mitsubishi UFJ, Ltd., Corporate Risk Management Division (Japan); Nagai, Hideo, E-mail: nagai@sigmath.es.osaka-u.ac.jp [Osaka University, Division of Mathematical Science for Social Systems, Graduate School of Engineering Science (Japan); Runggaldier, Wolfgang J., E-mail: runggal@math.unipd.it [Universita di Padova, Dipartimento di Matematica Pura ed Applicata (Italy)

    2013-02-15

    We consider the problem of maximization of expected terminal power utility (risk sensitive criterion). The underlying market model is a regime-switching diffusion model where the regime is determined by an unobservable factor process forming a finite state Markov process. The main novelty is due to the fact that prices are observed and the portfolio is rebalanced only at random times corresponding to a Cox process where the intensity is driven by the unobserved Markovian factor process as well. This leads to a more realistic modeling for many practical situations, like in markets with liquidity restrictions; on the other hand it considerably complicates the problem to the point that traditional methodologies cannot be directly applied. The approach presented here is specific to the power-utility. For log-utilities a different approach is presented in Fujimoto et al. (Preprint, 2012).

  12. Mechanical behaviour of synthetic surgical meshes: finite element simulation of the herniated abdominal wall.

    Science.gov (United States)

    Hernández-Gascón, B; Peña, E; Melero, H; Pascual, G; Doblaré, M; Ginebra, M P; Bellón, J M; Calvo, B

    2011-11-01

    The material properties of meshes used in hernia surgery contribute to the overall mechanical behaviour of the repaired abdominal wall. The mechanical response of a surgical mesh has to be defined since the haphazard orientation of an anisotropic mesh can lead to inconsistent surgical outcomes. This study was designed to characterize the mechanical behaviour of three surgical meshes (Surgipro®, Optilene® and Infinit®) and to describe a mechanical constitutive law that accurately reproduces the experimental results. Finally, through finite element simulation, the behaviour of the abdominal wall was modelled before and after surgical mesh implant. Uniaxial loading of mesh samples in two perpendicular directions revealed the isotropic response of Surgipro® and the anisotropic behaviour of Optilene® and Infinit®. A phenomenological constitutive law was used to reproduce the measured experimental curves. To analyze the mechanical effect of the meshes once implanted in the abdomen, finite element simulation of the healthy and partially herniated repaired rabbit abdominal wall served to reproduce wall behaviour before and after mesh implant. In all cases, maximal displacements were lower and maximal principal stresses higher in the implanted abdomen than the intact wall model. Despite the fact that no mesh showed a behaviour that perfectly matched that of abdominal muscle, the Infinit® mesh was able to best comply with the biomechanics of the abdominal wall. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Inclusive fitness maximization: An axiomatic approach.

    Science.gov (United States)

    Okasha, Samir; Weymark, John A; Bossert, Walter

    2014-06-07

    Kin selection theorists argue that evolution in social contexts will lead organisms to behave as if maximizing their inclusive, as opposed to personal, fitness. The inclusive fitness concept allows biologists to treat organisms as akin to rational agents seeking to maximize a utility function. Here we develop this idea and place it on a firm footing by employing a standard decision-theoretic methodology. We show how the principle of inclusive fitness maximization and a related principle of quasi-inclusive fitness maximization can be derived from axioms on an individual׳s 'as if preferences' (binary choices) for the case in which phenotypic effects are additive. Our results help integrate evolutionary theory and rational choice theory, help draw out the behavioural implications of inclusive fitness maximization, and point to a possible way in which evolution could lead organisms to implement it. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. The Polytopic-k-Step Fibonacci Sequences in Finite Groups

    Directory of Open Access Journals (Sweden)

    Ömür Deveci

    2011-01-01

    Full Text Available We study the polytopic-k-step Fibonacci sequences, the polytopic-k-step Fibonacci sequences modulo m, and the polytopic-k-step Fibonacci sequences in finite groups. Also, we examine the periods of the polytopic-k-step Fibonacci sequences in semidihedral group SD2m.

  15. Periodic materials-based vibration attenuation in layered foundations: experimental validation

    International Nuclear Information System (INIS)

    Xiang, H J; Shi, Z F; Wang, S J; Mo, Y L

    2012-01-01

    Guided by the recent advances in solid-state research in periodic materials, a new type of layered periodic foundation consisting of concrete and rubber layers is experimentally investigated in this paper. The distinct feature of this new foundation is its frequency band gaps. When the frequency contents of a wave fall within the range of the frequency band gaps, the wave, and hence its energy, will be weakened or cannot propagate through the foundation, so the foundation itself can serve as a vibration isolator. Using the theory of elastodynamics and the Bloch–Floquet theorem, the mechanism of band gaps in periodic composites is presented, and a finite element model is built to show the isolation characteristic of a finite dimensional periodic foundation. Based on these analytical results, moreover, a scaled model frame and a periodic foundation were fabricated and shake table tests of the frame on the periodic foundation were performed. Ambient, strong and harmonic vibration attenuations are found when the exciting frequencies fall into the band gaps. (fast track communication)

  16. Automatic determination of pressurized water reactor core loading patterns which maximize end-of-cycle reactivity within power peaking and burnup constraints

    International Nuclear Information System (INIS)

    Hobson, G.H.

    1985-01-01

    An automated procedure for determining the optimal core loading pattern for a pressurized water reactor which maximizes end-of-cycle k/sub eff/ while satisfying constraints on power peaking and discharge burnup has been developed. The optimization algorithm combines a two energy group, two-dimensional coarse-mesh finite difference diffusion theory neutronics model to simulate core conditions, a perturbation theory approach to determine reactivity, flux, power and burnup changes as a function of assembly shuffling, and Monte Carlo integer programming to select the optimal loading pattern solution. The core examined was a typical Cycle 2 reload with no burnable poisons. Results indicate that the core loading pattern that maximizes end-of-cycle k/sub eff/ results in a 5.4% decrease in fuel cycle costs compared with the core loading pattern that minimizes the maximum relative radial power peak

  17. Measurement Uncertainty for Finite Quantum Observables

    Directory of Open Access Journals (Sweden)

    René Schwonnek

    2016-06-01

    Full Text Available Measurement uncertainty relations are lower bounds on the errors of any approximate joint measurement of two or more quantum observables. The aim of this paper is to provide methods to compute optimal bounds of this type. The basic method is semidefinite programming, which we apply to arbitrary finite collections of projective observables on a finite dimensional Hilbert space. The quantification of errors is based on an arbitrary cost function, which assigns a penalty to getting result x rather than y, for any pair ( x , y . This induces a notion of optimal transport cost for a pair of probability distributions, and we include an Appendix with a short summary of optimal transport theory as needed in our context. There are then different ways to form an overall figure of merit from the comparison of distributions. We consider three, which are related to different physical testing scenarios. The most thorough test compares the transport distances between the marginals of a joint measurement and the reference observables for every input state. Less demanding is a test just on the states for which a “true value” is known in the sense that the reference observable yields a definite outcome. Finally, we can measure a deviation as a single expectation value by comparing the two observables on the two parts of a maximally-entangled state. All three error quantities have the property that they vanish if and only if the tested observable is equal to the reference. The theory is illustrated with some characteristic examples.

  18. Finite element and finite difference methods in electromagnetic scattering

    CERN Document Server

    Morgan, MA

    2013-01-01

    This second volume in the Progress in Electromagnetic Research series examines recent advances in computational electromagnetics, with emphasis on scattering, as brought about by new formulations and algorithms which use finite element or finite difference techniques. Containing contributions by some of the world's leading experts, the papers thoroughly review and analyze this rapidly evolving area of computational electromagnetics. Covering topics ranging from the new finite-element based formulation for representing time-harmonic vector fields in 3-D inhomogeneous media using two coupled sca

  19. The Effects of Maximal Intensity Exercise on Cognitive Performance in Children

    Directory of Open Access Journals (Sweden)

    Samuel Roy David

    2017-06-01

    Full Text Available High intensity physical exercise has previously been found to lead to a decline in cognitive performance of adults. The aim of this study was to determine the effects of maximal intensity exercise on cognitive performance of children. Using a repeated-measures design, 20 children and adolescents aged 8-17 years completed a battery of tests measuring memory and attention. Forward and Backward Digit Span tests, the Rey Auditory-Verbal Learning Test (RAVLT and the Digit Symbol Substitution Test (DSST were performed at baseline, immediately after, and one hour after a maximal cardiopulmonary exercise test. Forward and Backward Digit Span scores significantly improved post-recovery compared with baseline measurements. There was a significant decrease in RAVLT scores post-exercise, which returned to baseline values after recovery. The DSST test scores were mildly elevated from post-exercise to after recovery. Maximal intensity exercise in children and adolescents may result in both beneficial and detrimental cognitive effects, including transient impairment in verbal learning. Cognitive functions applying short term memory improve following a recovery period. Parents, educators and coaches should consider these changes in memory and attention following high-intensity exercise activities in children.

  20. Maximal Entanglement in High Energy Physics

    Directory of Open Access Journals (Sweden)

    Alba Cervera-Lierta, José I. Latorre, Juan Rojo, Luca Rottoli

    2017-11-01

    Full Text Available We analyze how maximal entanglement is generated at the fundamental level in QED by studying correlations between helicity states in tree-level scattering processes at high energy. We demonstrate that two mechanisms for the generation of maximal entanglement are at work: i $s$-channel processes where the virtual photon carries equal overlaps of the helicities of the final state particles, and ii the indistinguishable superposition between $t$- and $u$-channels. We then study whether requiring maximal entanglement constrains the coupling structure of QED and the weak interactions. In the case of photon-electron interactions unconstrained by gauge symmetry, we show how this requirement allows reproducing QED. For $Z$-mediated weak scattering, the maximal entanglement principle leads to non-trivial predictions for the value of the weak mixing angle $\\theta_W$. Our results are a first step towards understanding the connections between maximal entanglement and the fundamental symmetries of high-energy physics.

  1. Computing security strategies in finite horizon repeated Bayesian games

    KAUST Repository

    Lichun Li

    2017-07-10

    This paper studies security strategies in two-player zero-sum repeated Bayesian games with finite horizon. In such games, each player has a private type which is independently chosen according to a publicly known a priori probability. Players\\' types are fixed all through the game. The game is played for finite stages. At every stage, players simultaneously choose their actions which are observed by the public. The one-stage payoff of player 1 (or penalty to player 2) depends on both players types and actions, and is not directly observed by any player. While player 1 aims to maximize the total payoff over the game, player 2 wants to minimize it. This paper provides each player two ways to compute the security strategy, i.e. the optimal strategy in the worst case. First, a security strategy that directly depends on both players\\' history actions is derived by refining the sequence form. Noticing that history action space grows exponentially with respect to the time horizon, this paper further presents a security strategy that depends on player\\'s fixed sized sufficient statistics. The sufficient statistics is shown to consist of the belief on one\\'s own type, the regret on the other player\\'s type, and the stage, and is independent of the other player\\'s strategy.

  2. Maximal Inequalities for Dependent Random Variables

    DEFF Research Database (Denmark)

    Hoffmann-Jorgensen, Jorgen

    2016-01-01

    Maximal inequalities play a crucial role in many probabilistic limit theorem; for instance, the law of large numbers, the law of the iterated logarithm, the martingale limit theorem and the central limit theorem. Let X-1, X-2,... be random variables with partial sums S-k = X-1 + ... + X-k. Then a......Maximal inequalities play a crucial role in many probabilistic limit theorem; for instance, the law of large numbers, the law of the iterated logarithm, the martingale limit theorem and the central limit theorem. Let X-1, X-2,... be random variables with partial sums S-k = X-1 + ... + X......-k. Then a maximal inequality gives conditions ensuring that the maximal partial sum M-n = max(1) (...

  3. An ethical justification of profit maximization

    DEFF Research Database (Denmark)

    Koch, Carsten Allan

    2010-01-01

    In much of the literature on business ethics and corporate social responsibility, it is more or less taken for granted that attempts to maximize profits are inherently unethical. The purpose of this paper is to investigate whether an ethical argument can be given in support of profit maximizing...... behaviour. It is argued that some form of consequential ethics must be applied, and that both profit seeking and profit maximization can be defended from a rule-consequential point of view. It is noted, however, that the result does not apply unconditionally, but requires that certain form of profit (and...... utility) maximizing actions are ruled out, e.g., by behavioural norms or formal institutions....

  4. Comparison of finite-difference and variational solutions to advection-diffusion problems

    International Nuclear Information System (INIS)

    Lee, C.E.; Washington, K.E.

    1984-01-01

    Two numerical solution methods are developed for 1-D time-dependent advection-diffusion problems on infinite and finite domains. Numerical solutions are compared with analytical results for constant coefficients and various boundary conditions. A finite-difference spectrum method is solved exactly in time for periodic boundary conditions by a matrix operator method and exhibits excellent accuracy compared with other methods, especially at late times, where it is also computationally more efficient. Finite-system solutions are determined from a conservational variational principle with cubic spatial trial functions and solved in time by a matrix operator method. Comparisons of problems with few nodes show excellent agreement with analytical solutions and exhibit the necessity of implementing Lagrangian conservational constraints for physically-correct solutions. (author)

  5. Non-renormalisation conditions in type II string theory and maximal supergravity

    International Nuclear Information System (INIS)

    Green, Michael B.; Russo, Jorge G.; Vanhove, Pierre

    2007-01-01

    This paper considers general features of the derivative expansion of Feynman diagram contributions to the four-graviton scattering amplitude in eleven-dimensional supergravity compactified on a two-torus. These are translated into statements about interactions of the form D 2k R 4 in type II superstring theories, assuming the standard M-theory/string theory duality relationships, which provide powerful constraints on the effective interactions. In the ten-dimensional IIA limit we find that there can be no perturbative contributions beyond k string loops (for k>0). Furthermore, the genus h = k contributions are determined exactly by the one-loop eleven-dimensional supergravity amplitude for all values of k. A plausible interpretation of these observations is that the sum of h-loop Feynman diagrams of maximally extended supergravity is less divergent than might be expected and could be ultraviolet finite in dimensions d<4+6/h - the same bound as for N = 4 Yang-Mills

  6. Non-renormalisation conditions in type II string theory and maximal supergravity

    Science.gov (United States)

    Green, Michael B.; Russo, Jorge G.; Vanhove, Pierre

    2007-02-01

    This paper considers general features of the derivative expansion of Feynman diagram contributions to the four-graviton scattering amplitude in eleven-dimensional supergravity compactified on a two-torus. These are translated into statements about interactions of the form D2kR4 in type II superstring theories, assuming the standard M-theory/string theory duality relationships, which provide powerful constraints on the effective interactions. In the ten-dimensional IIA limit we find that there can be no perturbative contributions beyond k string loops (for k>0). Furthermore, the genus h = k contributions are determined exactly by the one-loop eleven-dimensional supergravity amplitude for all values of k. A plausible interpretation of these observations is that the sum of h-loop Feynman diagrams of maximally extended supergravity is less divergent than might be expected and could be ultraviolet finite in dimensions d<4+6/h - the same bound as for N = 4 Yang-Mills.

  7. Free and Forced Vibrations of Periodic Multispan Beams

    Directory of Open Access Journals (Sweden)

    Liping Zhu

    1994-01-01

    Full Text Available In this study, the following two topics are considered for uniform multispan beams of both finite and infinite lengths with rigid transversal and elastic rotational constraints at each support: (a free vibration and the associated frequencies and mode shapes; (b forced vibration under a convected harmonic loading. The concept of wave propagation in periodic structures of Brillouin is utilized to investigate the wave motion at periodic supports of a multispan beam. A dispersion equation and its asymptotic form is obtained to determine the natural frequencies. For the special case of zero rotational spring stiffness, an explicit asymptotic expression for the natural frequency is also given. New expressions for the mode shapes are obtained in the complex form for multispan beams of both finite and infinite lengths. The orthogonality conditions of the mode shapes for two cases are formulated. The exact responses of both finite and infinite span beams under a convected harmonic loading are obtained. Thus, the position and the value of each peak in the harmonic response function can be determined precisely, as well as the occurrence of the so-called coincidence phenomenon, when the response is greatly enhanced.

  8. Composite Finite Sums

    KAUST Repository

    Alabdulmohsin, Ibrahim M.

    2018-03-07

    In this chapter, we extend the previous results of Chap. 2 to the more general case of composite finite sums. We describe what composite finite sums are and how their analysis can be reduced to the analysis of simple finite sums using the chain rule. We apply these techniques, next, on numerical integration and on some identities of Ramanujan.

  9. Composite Finite Sums

    KAUST Repository

    Alabdulmohsin, Ibrahim M.

    2018-01-01

    In this chapter, we extend the previous results of Chap. 2 to the more general case of composite finite sums. We describe what composite finite sums are and how their analysis can be reduced to the analysis of simple finite sums using the chain rule. We apply these techniques, next, on numerical integration and on some identities of Ramanujan.

  10. Inclusive Fitness Maximization:An Axiomatic Approach

    OpenAIRE

    Okasha, Samir; Weymark, John; Bossert, Walter

    2014-01-01

    Kin selection theorists argue that evolution in social contexts will lead organisms to behave as if maximizing their inclusive, as opposed to personal, fitness. The inclusive fitness concept allows biologists to treat organisms as akin to rational agents seeking to maximize a utility function. Here we develop this idea and place it on a firm footing by employing a standard decision-theoretic methodology. We show how the principle of inclusive fitness maximization and a related principle of qu...

  11. Does mental exertion alter maximal muscle activation?

    Directory of Open Access Journals (Sweden)

    Vianney eRozand

    2014-09-01

    Full Text Available Mental exertion is known to impair endurance performance, but its effects on neuromuscular function remain unclear. The purpose of this study was to test the hypothesis that mental exertion reduces torque and muscle activation during intermittent maximal voluntary contractions of the knee extensors. Ten subjects performed in a randomized order three separate mental exertion conditions lasting 27 minutes each: i high mental exertion (incongruent Stroop task, ii moderate mental exertion (congruent Stroop task, iii low mental exertion (watching a movie. In each condition, mental exertion was combined with ten intermittent maximal voluntary contractions of the knee extensor muscles (one maximal voluntary contraction every 3 minutes. Neuromuscular function was assessed using electrical nerve stimulation. Maximal voluntary torque, maximal muscle activation and other neuromuscular parameters were similar across mental exertion conditions and did not change over time. These findings suggest that mental exertion does not affect neuromuscular function during intermittent maximal voluntary contractions of the knee extensors.

  12. Axial anomaly at finite temperature and finite density

    International Nuclear Information System (INIS)

    Qian Zhixin; Su Rukeng; Yu, P.K.N.

    1994-01-01

    The U(1) axial anomaly in a hot fermion medium is investigated by using the real time Green's function method. After calculating the lowest order triangle diagrams, we find that finite temperature as well as finite fermion density does not affect the axial anomaly. The higher order corrections for the axial anomaly are discussed. (orig.)

  13. The Fermion boson interaction within the linear sigma model at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Caldas, H.C.G. [Fundacao de Ensino Superior de Sao Joao del Rei (FUNREI), MG (Brazil). Dept. de Ciencias Naturais (DCNAT)

    2000-07-01

    We study the interaction of massless bosons at finite temperature. Specifically, we calculate the self-energy of massless fermions due to interaction with massless bosons at high temperature, which is the region where thermal effects are maximal. The calculations are concentrated in the limit of vanishing fermion three momentum and after considering the effective boson dressed mass, we obtain the damping rate of the fermion. It is shown that in the limit k{sub O} <

  14. Prediction of Vibration Transmission within Periodic Bar Structures

    DEFF Research Database (Denmark)

    Domadiya, Parthkumar Gandalal; Andersen, Lars Vabbersgaard; Sorokin, Sergey

    2012-01-01

    The present analysis focuses on vibration transmission within semi-infinite bar structure. The bar is consisting of two different materials in a periodic manner. A periodic bar model is generated using two various methods: The Finite Element method (FEM) and a Floquet theory approach. A parameter...... study is carried out regarding the influence of the number of periods at various frequencies within a semi-infinite bar, stop bands are illustrated at certain periodic intervals within the structure. The computations are carried out in frequency domain in the range below 500 Hz. Results from both...

  15. Locally Finite Root Supersystems

    OpenAIRE

    Yousofzadeh, Malihe

    2013-01-01

    We introduce the notion of locally finite root supersystems as a generalization of both locally finite root systems and generalized root systems. We classify irreducible locally finite root supersystems.

  16. Decision analysis for conservation breeding: Maximizing production for reintroduction of whooping cranes

    Science.gov (United States)

    Smith, Des H.V.; Converse, Sarah J.; Gibson, Keith; Moehrenschlager, Axel; Link, William A.; Olsen, Glenn H.; Maguire, Kelly

    2011-01-01

    Captive breeding is key to management of severely endangered species, but maximizing captive production can be challenging because of poor knowledge of species breeding biology and the complexity of evaluating different management options. In the face of uncertainty and complexity, decision-analytic approaches can be used to identify optimal management options for maximizing captive production. Building decision-analytic models requires iterations of model conception, data analysis, model building and evaluation, identification of remaining uncertainty, further research and monitoring to reduce uncertainty, and integration of new data into the model. We initiated such a process to maximize captive production of the whooping crane (Grus americana), the world's most endangered crane, which is managed through captive breeding and reintroduction. We collected 15 years of captive breeding data from 3 institutions and used Bayesian analysis and model selection to identify predictors of whooping crane hatching success. The strongest predictor, and that with clear management relevance, was incubation environment. The incubation period of whooping crane eggs is split across two environments: crane nests and artificial incubators. Although artificial incubators are useful for allowing breeding pairs to produce multiple clutches, our results indicate that crane incubation is most effective at promoting hatching success. Hatching probability increased the longer an egg spent in a crane nest, from 40% hatching probability for eggs receiving 1 day of crane incubation to 95% for those receiving 30 days (time incubated in each environment varied independently of total incubation period). Because birds will lay fewer eggs when they are incubating longer, a tradeoff exists between the number of clutches produced and egg hatching probability. We developed a decision-analytic model that estimated 16 to be the optimal number of days of crane incubation needed to maximize the number of

  17. On maximal surfaces in asymptotically flat space-times

    International Nuclear Information System (INIS)

    Bartnik, R.; Chrusciel, P.T.; O Murchadha, N.

    1990-01-01

    Existence of maximal and 'almost maximal' hypersurfaces in asymptotically flat space-times is established under boundary conditions weaker than those considered previously. We show in particular that every vacuum evolution of asymptotically flat data for Einstein equations can be foliated by slices maximal outside a spatially compact set and that every (strictly) stationary asymptotically flat space-time can be foliated by maximal hypersurfaces. Amongst other uniqueness results, we show that maximal hypersurface can be used to 'partially fix' an asymptotic Poincare group. (orig.)

  18. Insulin resistance and maximal oxygen uptake

    DEFF Research Database (Denmark)

    Seibaek, Marie; Vestergaard, Henrik; Burchardt, Hans

    2003-01-01

    BACKGROUND: Type 2 diabetes, coronary atherosclerosis, and physical fitness all correlate with insulin resistance, but the relative importance of each component is unknown. HYPOTHESIS: This study was undertaken to determine the relationship between insulin resistance, maximal oxygen uptake......, and the presence of either diabetes or ischemic heart disease. METHODS: The study population comprised 33 patients with and without diabetes and ischemic heart disease. Insulin resistance was measured by a hyperinsulinemic euglycemic clamp; maximal oxygen uptake was measured during a bicycle exercise test. RESULTS......: There was a strong correlation between maximal oxygen uptake and insulin-stimulated glucose uptake (r = 0.7, p = 0.001), and maximal oxygen uptake was the only factor of importance for determining insulin sensitivity in a model, which also included the presence of diabetes and ischemic heart disease. CONCLUSION...

  19. Simple Finite Sums

    KAUST Repository

    Alabdulmohsin, Ibrahim M.

    2018-01-01

    We will begin our treatment of summability calculus by analyzing what will be referred to, throughout this book, as simple finite sums. Even though the results of this chapter are particular cases of the more general results presented in later chapters, they are important to start with for a few reasons. First, this chapter serves as an excellent introduction to what summability calculus can markedly accomplish. Second, simple finite sums are encountered more often and, hence, they deserve special treatment. Third, the results presented in this chapter for simple finite sums will, themselves, be used as building blocks for deriving the most general results in subsequent chapters. Among others, we establish that fractional finite sums are well-defined mathematical objects and show how various identities related to the Euler constant as well as the Riemann zeta function can actually be derived in an elementary manner using fractional finite sums.

  20. Simple Finite Sums

    KAUST Repository

    Alabdulmohsin, Ibrahim M.

    2018-03-07

    We will begin our treatment of summability calculus by analyzing what will be referred to, throughout this book, as simple finite sums. Even though the results of this chapter are particular cases of the more general results presented in later chapters, they are important to start with for a few reasons. First, this chapter serves as an excellent introduction to what summability calculus can markedly accomplish. Second, simple finite sums are encountered more often and, hence, they deserve special treatment. Third, the results presented in this chapter for simple finite sums will, themselves, be used as building blocks for deriving the most general results in subsequent chapters. Among others, we establish that fractional finite sums are well-defined mathematical objects and show how various identities related to the Euler constant as well as the Riemann zeta function can actually be derived in an elementary manner using fractional finite sums.

  1. POLITENESS MAXIM OF MAIN CHARACTER IN SECRET FORGIVEN

    Directory of Open Access Journals (Sweden)

    Sang Ayu Isnu Maharani

    2017-06-01

    Full Text Available Maxim of Politeness is an interesting subject to be discussed, since politeness has been criticized from our childhood. We are obliques to be polite to anyone either in speaking or in acting. Somehow we are manage to show politeness in our spoken expression though our intention might be not so polite. For example we must appriciate others opinion although we feel objection toward the opinion. In this article the analysis of politeness is based on maxim proposes by Leech. He proposed six types of politeness maxim. The discussion shows that the main character (Kristen and Kami use all types of maxim in their conversation. The most commonly used are approbation maxim and agreement maxim

  2. Geometry reconstruction method for patient-specific finite element models for the assessment of tibia fracture risk in osteogenesis imperfecta.

    Science.gov (United States)

    Caouette, Christiane; Ikin, Nicole; Villemure, Isabelle; Arnoux, Pierre-Jean; Rauch, Frank; Aubin, Carl-Éric

    2017-04-01

    Lower limb deformation in children with osteogenesis imperfecta (OI) impairs ambulation and may lead to fracture. Corrective surgery is based on empirical assessment criteria. The objective was to develop a reconstruction method of the tibia for OI patients that could be used as input of a comprehensive finite element model to assess fracture risks. Data were obtained from three children with OI and tibia deformities. Four pQCT scans were registered to biplanar radiographs, and a template mesh was deformed to fit the bone outline. Cortical bone thickness was computed. Sensitivity of the model to missing slices of pQCT was assessed by calculating maximal von Mises stress for a vertical hopping load case. Sensitivity of the model to ±5 % of cortical thickness measurements was assessed by calculating loads at fracture. Difference between the mesh contour and bone outline on the radiographs was below 1 mm. Removal of one pQCT slice increased maximal von Mises stress by up to 10 %. Simulated ±5 % variation of cortical bone thickness leads to variations of up to 4.1 % on predicted fracture loads. Using clinically available tibia imaging from children with OI, the developed reconstruction method allowed the building of patient-specific finite element models.

  3. Natural maximal νμ-ντ mixing

    International Nuclear Information System (INIS)

    Wetterich, C.

    1999-01-01

    The naturalness of maximal mixing between myon- and tau-neutrinos is investigated. A spontaneously broken nonabelian generation symmetry can explain a small parameter which governs the deviation from maximal mixing. In many cases all three neutrino masses are almost degenerate. Maximal ν μ -ν τ -mixing suggests that the leading contribution to the light neutrino masses arises from the expectation value of a heavy weak triplet rather than from the seesaw mechanism. In this scenario the deviation from maximal mixing is predicted to be less than about 1%. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  4. Finite element simulation of moisture movement and solute transport in a large caisson

    International Nuclear Information System (INIS)

    Huyakorn, P.S.; Jones, B.G.; Parker, J.C.; Wadsworth, T.D.; White, H.O. Jr.

    1987-01-01

    The results of the solute transport experiments performed on compacted, crushed Bandelier Tuff in caisson B of the experimental cluster described by DePoorter (1981) are simulated. Both one- and three-dimensional simulations of solute transport have been performed using two selected finite element codes. Results of bromide and iodide tracer experiments conducted during near-steady flow conditions have been analyzed for pulse additions made on December 6, 1984, and followed over a period of up to 60 days. In addition, a pulse addition of nonconservative strontium tracer on September 28, 1984, during questionably steady flow conditions has been analyzed over a period of 240 days. One-dimensional finite element flow and transport simulations were carried out assuming the porous medium to be homogeneous and the injection source uniformly distributed. To evaluate effects of the nonuniform source distribution and also to investigate effects of inhomogeneous porous medium properties, three dimensional finite element analyses of transport were carried out. Implications of the three-dimensional effects for the design and analysis of future tracer studies are discussed

  5. Gaussian maximally multipartite-entangled states

    Science.gov (United States)

    Facchi, Paolo; Florio, Giuseppe; Lupo, Cosmo; Mancini, Stefano; Pascazio, Saverio

    2009-12-01

    We study maximally multipartite-entangled states in the context of Gaussian continuous variable quantum systems. By considering multimode Gaussian states with constrained energy, we show that perfect maximally multipartite-entangled states, which exhibit the maximum amount of bipartite entanglement for all bipartitions, only exist for systems containing n=2 or 3 modes. We further numerically investigate the structure of these states and their frustration for n≤7 .

  6. Gaussian maximally multipartite-entangled states

    International Nuclear Information System (INIS)

    Facchi, Paolo; Florio, Giuseppe; Pascazio, Saverio; Lupo, Cosmo; Mancini, Stefano

    2009-01-01

    We study maximally multipartite-entangled states in the context of Gaussian continuous variable quantum systems. By considering multimode Gaussian states with constrained energy, we show that perfect maximally multipartite-entangled states, which exhibit the maximum amount of bipartite entanglement for all bipartitions, only exist for systems containing n=2 or 3 modes. We further numerically investigate the structure of these states and their frustration for n≤7.

  7. Groebner Finite Path Algebras

    OpenAIRE

    Leamer, Micah J.

    2004-01-01

    Let K be a field and Q a finite directed multi-graph. In this paper I classify all path algebras KQ and admissible orders with the property that all of their finitely generated ideals have finite Groebner bases. MS

  8. Finite-time synchronization of Lorenz chaotic systems: theory and circuits

    International Nuclear Information System (INIS)

    Louodop, Patrick; Fotsin, Hilaire; Kountchou, Michaux; Bowong, Samuel

    2013-01-01

    This paper addresses the problem of finite-time master–slave synchronization of Lorenz chaotic systems from a control theoretic point of view. We propose a family of feedback couplings which accomplish the synchronization of Lorenz chaotic systems based on Lyapunov stability theory. These feedback couplings are based on non-periodic functions. A finite horizon can be arbitrarily established by ensuring that chaos synchronization is achieved at established time. An advantage is that some of the proposed feedback couplings are simple and easy to implement. Both mathematical investigations and numerical simulations followed by a Pspice experiment are presented to show the feasibility of the proposed method. (paper)

  9. Using periodicity to mitigate ground vibration

    DEFF Research Database (Denmark)

    Andersen, Lars Vabbersgaard

    2015-01-01

    Introduction of trenches, barriers and wave impeding blocks on the transmission path between a source and receiver can be used for mitigation of ground vibration. However, to be effective a barrier must have a depth of about one wavelength of the waves to be mitigated. Hence, while great reductions......: A soil with periodic stiffening (ground improvement) and a ground with periodic changes in the surface elevation obtained by artificial landscaping. By means of a two-dimensional finite-element model, the stiffness and mass matrices are determined for a single cell of the ground with horizonal...

  10. Activity versus outcome maximization in time management.

    Science.gov (United States)

    Malkoc, Selin A; Tonietto, Gabriela N

    2018-04-30

    Feeling time-pressed has become ubiquitous. Time management strategies have emerged to help individuals fit in more of their desired and necessary activities. We provide a review of these strategies. In doing so, we distinguish between two, often competing, motives people have in managing their time: activity maximization and outcome maximization. The emerging literature points to an important dilemma: a given strategy that maximizes the number of activities might be detrimental to outcome maximization. We discuss such factors that might hinder performance in work tasks and enjoyment in leisure tasks. Finally, we provide theoretically grounded recommendations that can help balance these two important goals in time management. Published by Elsevier Ltd.

  11. The Determining Finite Automata Process

    Directory of Open Access Journals (Sweden)

    M. S. Vinogradova

    2017-01-01

    Full Text Available The theory of formal languages widely uses finite state automata both in implementation of automata-based approach to programming, and in synthesis of logical control algorithms.To ensure unambiguous operation of the algorithms, the synthesized finite state automata must be deterministic. Within the approach to the synthesis of the mobile robot controls, for example, based on the theory of formal languages, there are problems concerning the construction of various finite automata, but such finite automata, as a rule, will not be deterministic. The algorithm of determinization can be applied to the finite automata, as specified, in various ways. The basic ideas of the algorithm of determinization can be most simply explained using the representations of a finite automaton in the form of a weighted directed graph.The paper deals with finite automata represented as weighted directed graphs, and discusses in detail the procedure for determining the finite automata represented in this way. Gives a detailed description of the algorithm for determining finite automata. A large number of examples illustrate a capability of the determinization algorithm.

  12. Basic Finite Element Method

    International Nuclear Information System (INIS)

    Lee, Byeong Hae

    1992-02-01

    This book gives descriptions of basic finite element method, which includes basic finite element method and data, black box, writing of data, definition of VECTOR, definition of matrix, matrix and multiplication of matrix, addition of matrix, and unit matrix, conception of hardness matrix like spring power and displacement, governed equation of an elastic body, finite element method, Fortran method and programming such as composition of computer, order of programming and data card and Fortran card, finite element program and application of nonelastic problem.

  13. Multi-period risk sharing under financial fairness

    NARCIS (Netherlands)

    Bao, Hailong; Ponds, Eduard; Schumacher, Hans

    We work with a multi-period system where a finite number of agents need to share multiple monetary risks. We look for the solutions that are both Pareto efficient utility-wise and financially fair value-wise. A buffer enables the inter-temporal capital transfer. Expected utility is used to evaluate

  14. Multi-Period Risk Sharing under Financial Fairness

    NARCIS (Netherlands)

    Bao, Hailong; Ponds, Eduard; Schumacher, Hans

    2015-01-01

    We work with a multi-period system where a finite number of agents need to share multiple monetary risks. We look for the solutions that are both Pareto efficient utility-wise and financially fair value-wise. A buffer enables the inter-temporal capital transfer. Expected utility is used to evaluate

  15. On the Periods of the {ranshi} Random Number Generator

    Science.gov (United States)

    Gutbrod, F.

    The stochastic properties of the pseudo-random number generator {ranshi} are discussed, with emphasis on the average period. Within a factor 2 this turns out to be the root of the maximally possible period. The actual set of periods depends on minor details of the algorithm, and the system settles down in one of only a few different cycles. These features are in perfect agreement with absolute random motion in phase space, to the extent allowed by deterministic dynamics.

  16. Maximizing Entropy over Markov Processes

    DEFF Research Database (Denmark)

    Biondi, Fabrizio; Legay, Axel; Nielsen, Bo Friis

    2013-01-01

    The channel capacity of a deterministic system with confidential data is an upper bound on the amount of bits of data an attacker can learn from the system. We encode all possible attacks to a system using a probabilistic specification, an Interval Markov Chain. Then the channel capacity...... as a reward function, a polynomial algorithm to verify the existence of an system maximizing entropy among those respecting a specification, a procedure for the maximization of reward functions over Interval Markov Chains and its application to synthesize an implementation maximizing entropy. We show how...... to use Interval Markov Chains to model abstractions of deterministic systems with confidential data, and use the above results to compute their channel capacity. These results are a foundation for ongoing work on computing channel capacity for abstractions of programs derived from code....

  17. Maximizing entropy over Markov processes

    DEFF Research Database (Denmark)

    Biondi, Fabrizio; Legay, Axel; Nielsen, Bo Friis

    2014-01-01

    The channel capacity of a deterministic system with confidential data is an upper bound on the amount of bits of data an attacker can learn from the system. We encode all possible attacks to a system using a probabilistic specification, an Interval Markov Chain. Then the channel capacity...... as a reward function, a polynomial algorithm to verify the existence of a system maximizing entropy among those respecting a specification, a procedure for the maximization of reward functions over Interval Markov Chains and its application to synthesize an implementation maximizing entropy. We show how...... to use Interval Markov Chains to model abstractions of deterministic systems with confidential data, and use the above results to compute their channel capacity. These results are a foundation for ongoing work on computing channel capacity for abstractions of programs derived from code. © 2014 Elsevier...

  18. Awake craniotomy to maximize glioma resection: methods and technical nuances over a 27-year period.

    Science.gov (United States)

    Hervey-Jumper, Shawn L; Li, Jing; Lau, Darryl; Molinaro, Annette M; Perry, David W; Meng, Lingzhong; Berger, Mitchel S

    2015-08-01

    Awake craniotomy is currently a useful surgical approach to help identify and preserve functional areas during cortical and subcortical tumor resections. Methodologies have evolved over time to maximize patient safety and minimize morbidity using this technique. The goal of this study is to analyze a single surgeon's experience and the evolving methodology of awake language and sensorimotor mapping for glioma surgery. The authors retrospectively studied patients undergoing awake brain tumor surgery between 1986 and 2014. Operations for the initial 248 patients (1986-1997) were completed at the University of Washington, and the subsequent surgeries in 611 patients (1997-2014) were completed at the University of California, San Francisco. Perioperative risk factors and complications were assessed using the latter 611 cases. The median patient age was 42 years (range 13-84 years). Sixty percent of patients had Karnofsky Performance Status (KPS) scores of 90-100, and 40% had KPS scores less than 80. Fifty-five percent of patients underwent surgery for high-grade gliomas, 42% for low-grade gliomas, 1% for metastatic lesions, and 2% for other lesions (cortical dysplasia, encephalitis, necrosis, abscess, and hemangioma). The majority of patients were in American Society of Anesthesiologists (ASA) Class 1 or 2 (mild systemic disease); however, patients with severe systemic disease were not excluded from awake brain tumor surgery and represented 15% of study participants. Laryngeal mask airway was used in 8 patients (1%) and was most commonly used for large vascular tumors with more than 2 cm of mass effect. The most common sedation regimen was propofol plus remifentanil (54%); however, 42% of patients required an adjustment to the initial sedation regimen before skin incision due to patient intolerance. Mannitol was used in 54% of cases. Twelve percent of patients were active smokers at the time of surgery, which did not impact completion of the intraoperative mapping

  19. HEALTH INSURANCE: CONTRIBUTIONS AND REIMBURSEMENT MAXIMAL

    CERN Document Server

    HR Division

    2000-01-01

    Affected by both the salary adjustment index on 1.1.2000 and the evolution of the staff members and fellows population, the average reference salary, which is used as an index for fixed contributions and reimbursement maximal, has changed significantly. An adjustment of the amounts of the reimbursement maximal and the fixed contributions is therefore necessary, as from 1 January 2000.Reimbursement maximalThe revised reimbursement maximal will appear on the leaflet summarising the benefits for the year 2000, which will soon be available from the divisional secretariats and from the AUSTRIA office at CERN.Fixed contributionsThe fixed contributions, applicable to some categories of voluntarily insured persons, are set as follows (amounts in CHF for monthly contributions):voluntarily insured member of the personnel, with complete coverage:815,- (was 803,- in 1999)voluntarily insured member of the personnel, with reduced coverage:407,- (was 402,- in 1999)voluntarily insured no longer dependent child:326,- (was 321...

  20. Bifurcation theory for finitely smooth planar autonomous differential systems

    Science.gov (United States)

    Han, Maoan; Sheng, Lijuan; Zhang, Xiang

    2018-03-01

    In this paper we establish bifurcation theory of limit cycles for planar Ck smooth autonomous differential systems, with k ∈ N. The key point is to study the smoothness of bifurcation functions which are basic and important tool on the study of Hopf bifurcation at a fine focus or a center, and of Poincaré bifurcation in a period annulus. We especially study the smoothness of the first order Melnikov function in degenerate Hopf bifurcation at an elementary center. As we know, the smoothness problem was solved for analytic and C∞ differential systems, but it was not tackled for finitely smooth differential systems. Here, we present their optimal regularity of these bifurcation functions and their asymptotic expressions in the finite smooth case.

  1. On the maximal diphoton width

    CERN Document Server

    Salvio, Alberto; Strumia, Alessandro; Urbano, Alfredo

    2016-01-01

    Motivated by the 750 GeV diphoton excess found at LHC, we compute the maximal width into $\\gamma\\gamma$ that a neutral scalar can acquire through a loop of charged fermions or scalars as function of the maximal scale at which the theory holds, taking into account vacuum (meta)stability bounds. We show how an extra gauge symmetry can qualitatively weaken such bounds, and explore collider probes and connections with Dark Matter.

  2. LP Model for Periodic Recruitment and Retrenchment of Manpower ...

    African Journals Online (AJOL)

    user

    The system also allows a periodic recruitment and retrenchment for a finite time interval. In addition to the ... manpower planning models which are based on Markov chain models. .... Moreover fractional values are approximated to be integers ...

  3. Hubbard physics in the symmetric half-filled periodic anderson-hubbard model

    Science.gov (United States)

    Hagymási, I.; Itai, K.; Sólyom, J.

    2013-05-01

    Two very different methods — exact diagonalization on finite chains and a variational method — are used to study the possibility of a metal-insulator transition in the symmetric half-filled periodic Anderson-Hubbard model. With this aim we calculate the density of doubly occupied d sites ( gn d ) as a function of various parameters. In the absence of on-site Coulomb interaction ( U f ) between f electrons, the two methods yield similar results. The double occupancy of d levels remains always finite just as in the one-dimensional Hubbard model. Exact diagonalization on finite chains gives the same result for finite U f , while the Gutzwiller method leads to a Brinkman-Rice transition at a critical value ( U {/d c }), which depends on U f and V.

  4. Threshold quantities for infectious diseases in periodic environments

    NARCIS (Netherlands)

    Heesterbeek, J.A.P.; Roberts, M.G.

    1995-01-01

    In this short note we give threshold quantities that determine the stability of the infection-free steady state for periodic deterministic systems that describe the spread of infectious diseases in populations whose individuals can be divided into a finite number of distinct groups. We concentrate

  5. Three nonlinear performance relationships in the start-up state of IPMC strips based on finite element analysis

    International Nuclear Information System (INIS)

    Peng, Han Min; Ding, Qing Jun; Hui, Yao; Li, Hua Feng; Zhao, Chun Sheng

    2010-01-01

    Ionic polymer–metal composites (IPMC) are a class of electroactive polymers (EAP), and they currently attract numerous researchers to study their performance characteristics and applications. However, research on its start-up characteristics still requires more attention. In the IPMC start-up state (the moment of applying an actuation voltage at the very beginning), its mechanical performance is different in the stable working state (working for at least 10 min). Therefore, this paper focuses on three performance relationships of an IPMC strip between its maximal tip deformation and voltage, its maximal stress and voltage, as well as its maximal strain and voltage, both in the two states. Different from other reports, we found that they present nonlinear tendencies in the start-up state rather than linear ones. Therefore, based on the equivalent bimorph beam model, a finite element electromechanical coupling calculation module in the ANSYS software was utilized to simulate these characteristics. Furthermore, a test system is introduced to validate the phenomena. As a whole, these three relationships and the FEA method may be beneficial for providing control strategies effectively to IPMC actuators, especially in their start-up states

  6. Hybrid transfer-matrix FDTD method for layered periodic structures.

    Science.gov (United States)

    Deinega, Alexei; Belousov, Sergei; Valuev, Ilya

    2009-03-15

    A hybrid transfer-matrix finite-difference time-domain (FDTD) method is proposed for modeling the optical properties of finite-width planar periodic structures. This method can also be applied for calculation of the photonic bands in infinite photonic crystals. We describe the procedure of evaluating the transfer-matrix elements by a special numerical FDTD simulation. The accuracy of the new method is tested by comparing computed transmission spectra of a 32-layered photonic crystal composed of spherical or ellipsoidal scatterers with the results of direct FDTD and layer-multiple-scattering calculations.

  7. A finite landscape?

    International Nuclear Information System (INIS)

    Acharya, B.S.; Douglas, M.R.

    2006-06-01

    We present evidence that the number of string/M theory vacua consistent with experiments is finite. We do this both by explicit analysis of infinite sequences of vacua and by applying various mathematical finiteness theorems. (author)

  8. Necessary and sufficient condition for distillability with unit fidelity from finite copies of a mixed state: The most efficient purification protocol

    International Nuclear Information System (INIS)

    Chen Pingxing; Liang Linmei; Li Chengzu; Huang Mingqiu

    2002-01-01

    It is well known that any entangled mixed state in 2x2 systems can be purified via infinite copies of the mixed state. But, can one distill a pure maximally entangled state from finite copies of a mixed state in any bipartite system by local operation and classical communication? This is more meaningful in practical application. We give a necessary and sufficient condition for this distillability. This condition requires that there exist distillable subspaces. According to this condition, one can judge easily whether a mixed state is distillable or not. We also analyze some properties of distillable subspaces, and discuss the most efficient purification protocol. Finally, we discuss the distillable enanglement of a two-qubit system for the case of finite copies

  9. Fractional finite Fourier transform.

    Science.gov (United States)

    Khare, Kedar; George, Nicholas

    2004-07-01

    We show that a fractional version of the finite Fourier transform may be defined by using prolate spheroidal wave functions of order zero. The transform is linear and additive in its index and asymptotically goes over to Namias's definition of the fractional Fourier transform. As a special case of this definition, it is shown that the finite Fourier transform may be inverted by using information over a finite range of frequencies in Fourier space, the inversion being sensitive to noise. Numerical illustrations for both forward (fractional) and inverse finite transforms are provided.

  10. A comparison of successful and unsuccessful attempts in maximal bench pressing.

    Science.gov (United States)

    van den Tillaar, Roland; Ettema, Gertjan

    2009-11-01

    This study was designed to compare the differences in EMG and kinematics between successful and unsuccessful attempts in bench pressing at one repetition maximum (1RM) in recreational weight-trained subjects. We hypothesized that failure occurs during the sticking period (the period during which there is a temporary reduction in movement velocity). Eleven male subjects (age = 21.9 +/- 1.8 yr, mass = 80.0 +/- 11.2 kg, height = 1.79 +/- 0.08 m) with at least 1 yr of bench press training experience participated in this study. They performed attempts at 1RM and 1RM + 2.5 kg in bench press during which kinematics and muscle activity were recorded. One successful attempt and one unsuccessful attempt were used for further analysis. Both attempts showed the same sticking period, but only half of the failures occurred during that period. The main differences in the kinematics occurred during the sticking period. Muscle activity, in contrast, showed the same pattern in both attempts and only differed during the downward and the start of the upward movement of the lift. The sticking period occurs in both successful and unsuccessful attempts in maximal bench press. However, failure does not always occur during the sticking period.

  11. Automatic determination of pressurized water reactor core loading patterns that maximize beginning-of-cycle reactivity within power-peaking and burnup constraints

    International Nuclear Information System (INIS)

    Hobson, G.H.; Turinsky, P.J.

    1986-01-01

    Computational capability has been developed to automatically determine a good estimate of the core loading pattern, which minimizes fuel cycle costs for a pressurized water reactor (PWR). Equating fuel cycle cost minimization with core reactivity maximization, the objective is to determine the loading pattern that maximizes core reactivity while satisfying power peaking, discharge burnup, and other constraints. The method utilizes a two-dimensional, coarse-mesh, finite difference scheme to evaluate core reactivity and fluxes for an initial reference loading pattern. First-order perturbation theory is applied to determine the effects of assembly shuffling on reactivity, power distribution, end-of-cycle burnup. Monte Carlo integer programming is then used to determine a near-optimal loading pattern within a range of loading patterns near the reference pattern. The process then repeats with the new loading pattern as the reference loading pattern and terminates when no better loading pattern can be determined. The process was applied with both reactivity maximization and radial power-peaking minimization as objectives. Results on a typical large PWR indicate that the cost of obtaining an 8% improvement in radial power-peaking margin is ≅2% in fuel cycle costs, for the reload core loaded without burnable poisons that was studied

  12. Short-term Periodization Models: Effects on Strength and Speed-strength Performance.

    Science.gov (United States)

    Hartmann, Hagen; Wirth, Klaus; Keiner, Michael; Mickel, Christoph; Sander, Andre; Szilvas, Elena

    2015-10-01

    Dividing training objectives into consecutive phases to gain morphological adaptations (hypertrophy phase) and neural adaptations (strength and power phases) is called strength-power periodization (SPP). These phases differ in program variables (volume, intensity, and exercise choice or type) and use stepwise intensity progression and concomitant decreasing volume, converging to peak intensity (peaking phase). Undulating periodization strategies rotate these program variables in a bi-weekly, weekly, or daily fashion. The following review addresses the effects of different short-term periodization models on strength and speed-strength both with subjects of different performance levels and with competitive athletes from different sports who use a particular periodization model during off-season, pre-season, and in-season conditioning. In most periodization studies, it is obvious that the strength endurance sessions are characterized by repetition zones (12-15 repetitions) that induce muscle hypertrophy in persons with a low performance level. Strictly speaking, when examining subjects with a low training level, many periodization studies include mainly hypertrophy sessions interspersed with heavy strength/power sessions. Studies have demonstrated equal or statistically significant higher gains in maximal strength for daily undulating periodization compared with SPP in subjects with a low to moderate performance level. The relatively short intervention period and the lack of concomitant sports conditioning call into question the practical value of these findings for competitive athletes. Possibly owing to differences in mesocycle length, conditioning programs, and program variables, competitive athletes either maintained or improved strength and/or speed-strength performance by integrating daily undulating periodization and SPP during off-season, pre-season and in-season conditioning. In high-performance sports, high-repetition strength training (>15) should be

  13. The finite-difference and finite-element modeling of seismic wave propagation and earthquake motion

    International Nuclear Information System (INIS)

    Moszo, P.; Kristek, J.; Galis, M.; Pazak, P.; Balazovijech, M.

    2006-01-01

    Numerical modeling of seismic wave propagation and earthquake motion is an irreplaceable tool in investigation of the Earth's structure, processes in the Earth, and particularly earthquake phenomena. Among various numerical methods, the finite-difference method is the dominant method in the modeling of earthquake motion. Moreover, it is becoming more important in the seismic exploration and structural modeling. At the same time we are convinced that the best time of the finite-difference method in seismology is in the future. This monograph provides tutorial and detailed introduction to the application of the finite-difference, finite-element, and hybrid finite-difference-finite-element methods to the modeling of seismic wave propagation and earthquake motion. The text does not cover all topics and aspects of the methods. We focus on those to which we have contributed. (Author)

  14. An inverse-source problem for maximization of pore-fluid oscillation within poroelastic formations

    KAUST Repository

    Jeong, C.; Kallivokas, L. F.

    2016-01-01

    This paper discusses a mathematical and numerical modeling approach for identification of an unknown optimal loading time signal of a wave source, atop the ground surface, that can maximize the relative wave motion of a single-phase pore fluid within fluid-saturated porous permeable (poroelastic) rock formations, surrounded by non-permeable semi-infinite elastic solid rock formations, in a one-dimensional setting. The motivation stems from a set of field observations, following seismic events and vibrational tests, suggesting that shaking an oil reservoir is likely to improve oil production rates. This maximization problem is cast into an inverse-source problem, seeking an optimal loading signal that minimizes an objective functional – the reciprocal of kinetic energy in terms of relative pore-fluid wave motion within target poroelastic layers. We use the finite element method to obtain the solution of the governing wave physics of a multi-layered system, where the wave equations for the target poroelastic layers and the elastic wave equation for the surrounding non-permeable layers are coupled with each other. We use a partial-differential-equation-constrained-optimization framework (a state-adjoint-control problem approach) to tackle the minimization problem. The numerical results show that the numerical optimizer recovers optimal loading signals, whose dominant frequencies correspond to amplification frequencies, which can also be obtained by a frequency sweep, leading to larger amplitudes of relative pore-fluid wave motion within the target hydrocarbon formation than other signals.

  15. An inverse-source problem for maximization of pore-fluid oscillation within poroelastic formations

    KAUST Repository

    Jeong, C.

    2016-07-04

    This paper discusses a mathematical and numerical modeling approach for identification of an unknown optimal loading time signal of a wave source, atop the ground surface, that can maximize the relative wave motion of a single-phase pore fluid within fluid-saturated porous permeable (poroelastic) rock formations, surrounded by non-permeable semi-infinite elastic solid rock formations, in a one-dimensional setting. The motivation stems from a set of field observations, following seismic events and vibrational tests, suggesting that shaking an oil reservoir is likely to improve oil production rates. This maximization problem is cast into an inverse-source problem, seeking an optimal loading signal that minimizes an objective functional – the reciprocal of kinetic energy in terms of relative pore-fluid wave motion within target poroelastic layers. We use the finite element method to obtain the solution of the governing wave physics of a multi-layered system, where the wave equations for the target poroelastic layers and the elastic wave equation for the surrounding non-permeable layers are coupled with each other. We use a partial-differential-equation-constrained-optimization framework (a state-adjoint-control problem approach) to tackle the minimization problem. The numerical results show that the numerical optimizer recovers optimal loading signals, whose dominant frequencies correspond to amplification frequencies, which can also be obtained by a frequency sweep, leading to larger amplitudes of relative pore-fluid wave motion within the target hydrocarbon formation than other signals.

  16. Winding transitions at finite energy and temperature: An O(3) model

    International Nuclear Information System (INIS)

    Habib, S.; Mottola, E.; Tinyakov, P.

    1996-01-01

    Winding number transitions in the two-dimensional softly broken O(3) nonlinear σ model are studied at finite energy and temperature. New periodic instanton solutions which dominate the semiclassical transition amplitudes are found analytically at low energies, and numerically for all energies up to the sphaleron scale. The Euclidean period β of these finite energy instantons increases with energy, contrary to the behavior found in the Abelian Higgs model or simple one-dimensional systems. This results in a sharp crossover from instanton-dominated tunneling to sphaleron-dominated thermal activation at a certain critical temperature. Since this behavior is traceable to the soft breaking of conformal invariance by the mass term in the σ model, semiclassical winding number transition amplitudes in the electroweak theory in 3+1 dimensions should exhibit a similar sharp crossover. We argue that this is indeed the case in the standard model for M H W . copyright 1996 The American Physical Society

  17. Summation of all-loop UV divergences in maximally supersymmetric gauge theories

    International Nuclear Information System (INIS)

    Borlakov, A.T.; Kazakov, D.I.; Tolkachev, D.M.; Vlasenko, D.E.

    2016-01-01

    We consider the leading and subleading UV divergences for the four-point on-shell scattering amplitudes in D=6,8,10 supersymmetric Yang-Mills theories in the planar limit. These theories belong to the class of maximally supersymmetric gauge theories and presumably possess distinguished properties beyond perturbation theory. In the previous works, we obtained the recursive relations that allow one to get the leading and subleading divergences in all loops in a pure algebraic way. The all loop summation of the leading divergences is performed with the help of the differential equations which are the generalization of the RG equations for non-renormalizable theories. Here we mainly focus on solving and analyzing these equations. We discuss the properties of the obtained solutions and interpretation of the results. The key issue is that the summation of infinite series for the leading and the subleading divergences does improve the situation and does not allow one to remove the regularization and obtain the finite answer. This means that despite numerous cancellations of divergent diagrams these theories remain non-renormalizable.

  18. Summation of all-loop UV divergences in maximally supersymmetric gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Borlakov, A.T. [Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research,Dubna (Russian Federation); Moscow Institute of Physics and Technology,Dolgoprudny (Russian Federation); Kazakov, D.I. [Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research,Dubna (Russian Federation); Alikhanov Institute for Theoretical and Experimental Physics,Moscow (Russian Federation); Moscow Institute of Physics and Technology,Dolgoprudny (Russian Federation); Tolkachev, D.M. [Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research,Dubna (Russian Federation); Stepanov Institute of Physics,Minsk (Belarus); Vlasenko, D.E. [Department of Physics, South Federal State University,Rostov-Don (Russian Federation)

    2016-12-29

    We consider the leading and subleading UV divergences for the four-point on-shell scattering amplitudes in D=6,8,10 supersymmetric Yang-Mills theories in the planar limit. These theories belong to the class of maximally supersymmetric gauge theories and presumably possess distinguished properties beyond perturbation theory. In the previous works, we obtained the recursive relations that allow one to get the leading and subleading divergences in all loops in a pure algebraic way. The all loop summation of the leading divergences is performed with the help of the differential equations which are the generalization of the RG equations for non-renormalizable theories. Here we mainly focus on solving and analyzing these equations. We discuss the properties of the obtained solutions and interpretation of the results. The key issue is that the summation of infinite series for the leading and the subleading divergences does improve the situation and does not allow one to remove the regularization and obtain the finite answer. This means that despite numerous cancellations of divergent diagrams these theories remain non-renormalizable.

  19. Lexical Organization in Second Language Acquisition: Does the Critical Period Matter?

    Science.gov (United States)

    Cardimona, Kimberly; Smith, Pamela; Roberts, Lauren Sones

    2016-01-01

    This study examined lexical organization in English language learners (ELLs) who acquired their second language (L2) either during or after the period of maximal sensitivity related to the critical period hypothesis. Twenty-three native-Spanish-speaking ELLs completed psycholinguistic tasks to examine age effects in bilingual lexical organization.…

  20. High-Order Entropy Stable Finite Difference Schemes for Nonlinear Conservation Laws: Finite Domains

    Science.gov (United States)

    Fisher, Travis C.; Carpenter, Mark H.

    2013-01-01

    Developing stable and robust high-order finite difference schemes requires mathematical formalism and appropriate methods of analysis. In this work, nonlinear entropy stability is used to derive provably stable high-order finite difference methods with formal boundary closures for conservation laws. Particular emphasis is placed on the entropy stability of the compressible Navier-Stokes equations. A newly derived entropy stable weighted essentially non-oscillatory finite difference method is used to simulate problems with shocks and a conservative, entropy stable, narrow-stencil finite difference approach is used to approximate viscous terms.

  1. Finite element analysis-based study of fiber Bragg grating sensor for cracks detection in reinforced concrete

    Science.gov (United States)

    Wang, Lili; Xin, Xiangjun; Song, Jun; Wang, Honggang; Sai, Yaozhang

    2018-02-01

    Fiber Bragg sensor is applied for detecting and monitoring the cracks that occur in the reinforced concrete. We use the three-dimensional finite element model to provide the three-axial stresses along the fiber Bragg sensor and then converted the stresses as a wavelength deformation of fiber Bragg grating (FBG) reflected spectrum. For the crack detection, an FBG sensor with 10-mm length is embedded in the reinforced concrete, and its reflection spectrum is measured after loading is applied to the concrete slab. As a result, the main peak wavelength and the ratio of the peak reflectivity to the maximal side-mode reflectivity of the optic-fiber grating represent the fracture severity. The fact that the sharp decreasing of the ratio of the peak reflectivity to the maximal side-mode reflectivity represents the early crack is confirmed by the theoretical calculation. The method can be used to detect the cracks in the reinforced concrete and give safety evaluation of large-scale infrastructure.

  2. On finite density effects on cosmic reheating and moduli decay and implications for Dark Matter production

    International Nuclear Information System (INIS)

    Drewes, Marco

    2014-01-01

    We study the damping of an oscillating scalar field in a Friedmann-Robertson-Walker spacetime by perturbative processes, taking into account the back-reaction of the plasma of decay products on the damping rate. The scalar field may be identified with the inflaton, in which case this process resembles the reheating of the universe after inflation. It can also model a modulus that dominates the energy density of the universe at later times. We find that the finite density corrections to the damping rate can have a drastic effect on the thermal history and considerably increase both, the maximal temperature in the early universe and the reheating temperature at the onset of the radiation dominated era. As a result the abundance of some Dark Matter candidates may be considerably larger than previously estimated. We give improved analytic estimates for the maximal and the reheating temperatures and confirm them numerically in a simple model

  3. Phase transitions in ideal and weakly interacting Bose gases with a finite number of particles confined in a box

    International Nuclear Information System (INIS)

    Wang Jianhui; Ma Yongli

    2009-01-01

    We generalize the scheme to characterize phase transitions of finite systems in a complex temperature plane and approach the classifications of phase transitions in ideal and weakly interacting Bose gases of a finite number of particles, confined in a cubic box of volume L 3 with different boundary conditions. For this finite ideal Bose system, by extending the classification parameters to all regions, we predict that the phase transition for periodic boundary conditions is of second order, while the transition in Dirichlet boundary conditions is of first order. For a weakly interacting Bose gas with periodic boundary conditions, we discuss the effects of finite particle numbers and inter-particle interactions on the nature of the phase transitions. We show that this homogenous weakly interacting Bose gas undergoes a second-order phase transition, which is in accordance with universality arguments for infinite systems. We also discuss the dependence of transition temperature on interaction strengths and particle numbers.

  4. Finite rotation shells basic equations and finite elements for Reissner kinematics

    CERN Document Server

    Wisniewski, K

    2010-01-01

    This book covers theoretical and computational aspects of non-linear shells. Several advanced topics of shell equations and finite elements - not included in standard textbooks on finite elements - are addressed, and the book includes an extensive bibliography.

  5. Finite Precision Logistic Map between Computational Efficiency and Accuracy with Encryption Applications

    Directory of Open Access Journals (Sweden)

    Wafaa S. Sayed

    2017-01-01

    Full Text Available Chaotic systems appear in many applications such as pseudo-random number generation, text encryption, and secure image transfer. Numerical solutions of these systems using digital software or hardware inevitably deviate from the expected analytical solutions. Chaotic orbits produced using finite precision systems do not exhibit the infinite period expected under the assumptions of infinite simulation time and precision. In this paper, digital implementation of the generalized logistic map with signed parameter is considered. We present a fixed-point hardware realization of a Pseudo-Random Number Generator using the logistic map that experiences a trade-off between computational efficiency and accuracy. Several introduced factors such as the used precision, the order of execution of the operations, parameter, and initial point values affect the properties of the finite precision map. For positive and negative parameter cases, the studied properties include bifurcation points, output range, maximum Lyapunov exponent, and period length. The performance of the finite precision logistic map is compared in the two cases. A basic stream cipher system is realized to evaluate the system performance for encryption applications for different bus sizes regarding the encryption key size, hardware requirements, maximum clock frequency, NIST and correlation, histogram, entropy, and Mean Absolute Error analyses of encrypted images.

  6. Periodic orbits from Δ-modulation of stable linear systems

    OpenAIRE

    Xia, X.; Zinober, A.

    2004-01-01

    The �-modulated control of a single input, discrete time, linear stable system is investigated. The modulation direction is given by cTx where c �Rn/{0} is a given, otherwise arbitrary, vector. We obtain necessary and sufficient conditions for the existence of periodic points of a finite order. Some concrete results about the existence of a certain order of periodic points are also derived. We also study the relationship between certain polyhedra and the periodicity of the �-modulated orb...

  7. A Criterion to Identify Maximally Entangled Four-Qubit State

    International Nuclear Information System (INIS)

    Zha Xinwei; Song Haiyang; Feng Feng

    2011-01-01

    Paolo Facchi, et al. [Phys. Rev. A 77 (2008) 060304(R)] presented a maximally multipartite entangled state (MMES). Here, we give a criterion for the identification of maximally entangled four-qubit states. Using this criterion, we not only identify some existing maximally entangled four-qubit states in the literature, but also find several new maximally entangled four-qubit states as well. (general)

  8. Finite Boltzmann schemes

    NARCIS (Netherlands)

    Sman, van der R.G.M.

    2006-01-01

    In the special case of relaxation parameter = 1 lattice Boltzmann schemes for (convection) diffusion and fluid flow are equivalent to finite difference/volume (FD) schemes, and are thus coined finite Boltzmann (FB) schemes. We show that the equivalence is inherent to the homology of the

  9. Development of a partitioned finite volume-finite element fluid-structure interaction scheme for strongly-coupled problems

    CSIR Research Space (South Africa)

    Suliman, Ridhwaan

    2012-07-01

    Full Text Available -linear deformations are accounted for. As will be demonstrated, the finite volume approach exhibits similar disad- vantages to the linear Q4 finite element formulation when undergoing bending. An enhanced finite volume approach is discussed and compared with finite...

  10. The period-luminosity relation for Cepheids

    International Nuclear Information System (INIS)

    Brodie, J.P.

    1980-01-01

    Numerical simulations of the empirical determination of the period-luminosity-colour relation for classical Cepheids are presented. In this study the quantitative effects of random errors, reddening, sample size and the presence of both colour and period cut-offs (imposed by the finite extent of the instability strip) on the observational redetermination of the original relation are evaluated. Both random errors in the photometry and correlated errors in the reddening corrections are shown to have systematic effects. Especially sensitive to these errors is the colour coefficient in the period-luminosity-colour relation, where the ratio of the error to the width of the instability strip is the determining factor. With present observations only broad confidence limits can be placed on present knowledge of the intrinsic period-luminosity-colour relation and/or its variations from galaxy to galaxy. (author)

  11. Structural biomechanics of the craniomaxillofacial skeleton under maximal masticatory loading: Inferences and critical analysis based on a validated computational model.

    Science.gov (United States)

    Pakdel, Amir R; Whyne, Cari M; Fialkov, Jeffrey A

    2017-06-01

    The trend towards optimizing stabilization of the craniomaxillofacial skeleton (CMFS) with the minimum amount of fixation required to achieve union, and away from maximizing rigidity, requires a quantitative understanding of craniomaxillofacial biomechanics. This study uses computational modeling to quantify the structural biomechanics of the CMFS under maximal physiologic masticatory loading. Using an experimentally validated subject-specific finite element (FE) model of the CMFS, the patterns of stress and strain distribution as a result of physiological masticatory loading were calculated. The trajectories of the stresses were plotted to delineate compressive and tensile regimes over the entire CMFS volume. The lateral maxilla was found to be the primary vertical buttress under maximal bite force loading, with much smaller involvement of the naso-maxillary buttress. There was no evidence that the pterygo-maxillary region is a buttressing structure, counter to classical buttress theory. The stresses at the zygomatic sutures suggest that two-point fixation of zygomatic complex fractures may be sufficient for fixation under bite force loading. The current experimentally validated biomechanical FE model of the CMFS is a practical tool for in silico optimization of current practice techniques and may be used as a foundation for the development of design criteria for future technologies for the treatment of CMFS injury and disease. Copyright © 2017 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  12. Biosphere Dose Conversion Factors for Reasonably Maximally Exposed Individual and Average Member of Critical Group

    International Nuclear Information System (INIS)

    K. Montague

    2000-01-01

    The purpose of this calculation is to develop additional Biosphere Dose Conversion Factors (BDCFs) for a reasonably maximally exposed individual (RMEI) for the periods 10,000 years and 1,000,000 years after the repository closure. In addition, Biosphere Dose Conversion Factors for the average member of a critical group are calculated for those additional radionuclides postulated to reach the environment during the period after 10,000 years and up to 1,000,000 years. After the permanent closure of the repository, the engineered systems within the repository will eventually lose their abilities to contain radionuclide inventory, and the radionuclides will migrate through the geosphere and eventually enter the local water table moving toward inhabited areas. The primary release scenario is a groundwater well used for drinking water supply and irrigation, and this calculation takes these postulated releases and follows them through various pathways until they result in a dose to either a member of critical group or a reasonably maximally exposed individual. The pathways considered in this calculation include inhalation, ingestion, and direct exposure

  13. Perception and Practice of Periodic Medical Checkup by Traders in ...

    African Journals Online (AJOL)

    Eke CO , Eke NO , Joe-Ikechebelu NN , Okoye. SC. ABSTRACT ... secondary school education and 1.2% had post secondary ... Age, gender and educational status were found not to ... to benefit maximally from periodic medical checkups.

  14. QCD and instantons at finite temperature

    International Nuclear Information System (INIS)

    Gross, D.J.; Pisarski, R.D.; Yaffe, L.G.

    1981-01-01

    The current understanding of the behavior of quantum chromodynamics at finite temperature is presented. Perturbative methods are used to explore the high-temperature dynamics. At sufficiently high temperatures the plasma of thermal excitations screens all color electric fields and quarks are unconfined. It is believed that the high-temperature theory develops a dynamical mass gap. However in perturbation theory the infrared behavior of magnetic fluctuations is so singular that beyond some order the perturbative expansion breaks down. The topological classification of finite-energy, periodic fields is presented and the classical solutions which minimize the action in each topological sector are examined. These include periodic instantons and magnetic monopoles. At sufficiently high temperature only fields with integral topological charge can contribute to the functional integral. Electric screening completely suppresses the contribution of fields with nonintegral topological charge. Consequently the theta dependence of the free energy at high temperature is dominated by the contribution of instantons. The complete temperature dependence of the instanton density is explicitly computed and large-scale instantons are found to be suppressed. Therefore the effects of instantons may be reliably calculated at sufficiently high temperature. The behavior of the theory in the vicinity of the transition from the high-temperature quark phase to the low-temperature hadronic phase cannot be accurately computed. However, at least in the absence of light quarks, semiclassical techniques and lattice methods may be combined to yield a simple picture of the dynamics valid for both high and low temperature, and to estimate the transition temperature

  15. Finite quantum field theories

    International Nuclear Information System (INIS)

    Lucha, W.; Neufeld, H.

    1986-01-01

    We investigate the relation between finiteness of a four-dimensional quantum field theory and global supersymmetry. To this end we consider the most general quantum field theory and analyse the finiteness conditions resulting from the requirement of the absence of divergent contributions to the renormalizations of the parameters of the theory. In addition to the gauge bosons, both fermions and scalar bosons turn out to be a necessary ingredient in a non-trivial finite gauge theory. In all cases discussed, the supersymmetric theory restricted by two well-known constraints on the dimensionless couplings proves to be the unique solution of the finiteness conditions. (Author)

  16. Biomechanical characteristics of self-ligating brackets in a vertically displaced canine model: a finite element analysis.

    Science.gov (United States)

    Kim, S-J; Kwon, Y-H; Hwang, C-J

    2016-05-01

    The objective of this study was to compare the biomechanical characteristics between two types of self-ligating brackets and conventional metal brackets using finite element analysis of a vertically displaced canine model focusing on the desired force on the canine and undesirable forces on adjacent teeth. Three-dimensional finite element models of the maxillary dentition with 1-mm, 2-mm, and 3-mm vertically displaced canines were constructed. Two different self-ligating brackets (In-Ovation C and Smart clip) and a conventional metal bracket (Micro-arch) were modeled. After a 0.016-inch NiTi (0.40 mm, round) wire was engaged, the displacement of each tooth was calculated using x-, y-, and z-coordinates, and the tensile and compressive stresses were calculated. The extrusion and maximal tensile stress of the canine differed little between the three brackets, but the intrusion and minimal compressive stress values of the adjacent teeth differed considerably and were highest in the Smart clip and least in the In-Ovation C. The extrusion and maximal tensile stress of the canine in the 3-mm displacement model was less than that in the 2-mm displacement model, and the intrusion and minimal compressive stress of the adjacent teeth increased with the degree of displacement. Self-ligating brackets were not superior to conventional brackets in leveling a vertically displaced canine. A continuous arch wire may not be recommended for leveling of severely displaced canines whether using self-ligating or conventional brackets. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. General conditions for maximal violation of non-contextuality in discrete and continuous variables

    International Nuclear Information System (INIS)

    Laversanne-Finot, A; Ketterer, A; Coudreau, T; Keller, A; Milman, P; Barros, M R; Walborn, S P

    2017-01-01

    The contextuality of quantum mechanics can be shown by the violation of inequalities based on measurements of well chosen observables. An important property of such observables is that their expectation value can be expressed in terms of probabilities for obtaining two exclusive outcomes. Examples of such inequalities have been constructed using either observables with a dichotomic spectrum or using periodic functions obtained from displacement operators in phase space. Here we identify the general conditions on the spectral decomposition of observables demonstrating state independent contextuality of quantum mechanics. Our results not only unify existing strategies for maximal violation of state independent non-contextuality inequalities but also lead to new scenarios enabling such violations. Among the consequences of our results is the impossibility of having a state independent maximal violation of non-contextuality in the Peres–Mermin scenario with discrete observables of odd dimensions. (paper)

  18. Vacua of maximal gauged D=3 supergravities

    International Nuclear Information System (INIS)

    Fischbacher, T; Nicolai, H; Samtleben, H

    2002-01-01

    We analyse the scalar potentials of maximal gauged three-dimensional supergravities which reveal a surprisingly rich structure. In contrast to maximal supergravities in dimensions D≥4, all these theories possess a maximally supersymmetric (N=16) ground state with negative cosmological constant Λ 2 gauged theory, whose maximally supersymmetric groundstate has Λ = 0. We compute the mass spectra of bosonic and fermionic fluctuations around these vacua and identify the unitary irreducible representations of the relevant background (super)isometry groups to which they belong. In addition, we find several stationary points which are not maximally supersymmetric, and determine their complete mass spectra as well. In particular, we show that there are analogues of all stationary points found in higher dimensions, among them are de Sitter (dS) vacua in the theories with noncompact gauge groups SO(5, 3) 2 and SO(4, 4) 2 , as well as anti-de Sitter (AdS) vacua in the compact gauged theory preserving 1/4 and 1/8 of the supersymmetries. All the dS vacua have tachyonic instabilities, whereas there do exist nonsupersymmetric AdS vacua which are stable, again in contrast to the D≥4 theories

  19. Dynamics of unsymmetric piecewise-linear/non-linear systems using finite elements in time

    Science.gov (United States)

    Wang, Yu

    1995-08-01

    The dynamic response and stability of a single-degree-of-freedom system with unsymmetric piecewise-linear/non-linear stiffness are analyzed using the finite element method in the time domain. Based on a Hamilton's weak principle, this method provides a simple and efficient approach for predicting all possible fundamental and sub-periodic responses. The stability of the steady state response is determined by using Floquet's theory without any special effort for calculating transition matrices. This method is applied to a number of examples, demonstrating its effectiveness even for a strongly non-linear problem involving both clearance and continuous stiffness non-linearities. Close agreement is found between available published findings and the predictions of the finite element in time approach, which appears to be an efficient and reliable alternative technique for non-linear dynamic response and stability analysis of periodic systems.

  20. Method for solving the periodic problem for integro-differential equations

    Directory of Open Access Journals (Sweden)

    Snezhana G. Hristova

    1989-05-01

    Full Text Available In the paper a monotone-iterative method for approximate finding a couple of minimal and maximal quasisolutions of the periodic problem for a system of integro-differential equations of Volterra type is justified.

  1. The reliability and validity of fatigue measures during short-duration maximal-intensity intermittent cycling.

    Science.gov (United States)

    Glaister, Mark; Stone, Michael H; Stewart, Andrew M; Hughes, Michael; Moir, Gavin L

    2004-08-01

    The purpose of the present study was to assess the reliability and validity of fatigue measures, as derived from 4 separate formulae, during tests of repeat sprint ability. On separate days over a 3-week period, 2 groups of 7 recreationally active men completed 6 trials of 1 of 2 maximal (20 x 5 seconds) intermittent cycling tests with contrasting recovery periods (10 or 30 seconds). All trials were conducted on a friction-braked cycle ergometer, and fatigue scores were derived from measures of mean power output for each sprint. Apart from formula 1, which calculated fatigue from the percentage difference in mean power output between the first and last sprint, all remaining formulae produced fatigue scores that showed a reasonably good level of test-retest reliability in both intermittent test protocols (intraclass correlation range: 0.78-0.86; 95% likely range of true values: 0.54-0.97). Although between-protocol differences in the magnitude of the fatigue scores suggested good construct validity, within-protocol differences highlighted limitations with each formula. Overall, the results support the use of the percentage decrement score as the most valid and reliable measure of fatigue during brief maximal intermittent work.

  2. Finite element analysis and modeling of temperature distribution in turning of titanium alloys

    Directory of Open Access Journals (Sweden)

    Moola Mohan Reddy

    2018-04-01

    Full Text Available The titanium alloys (Ti-6Al-4V have been widely used in aerospace, and medical applications and the demand is ever-growing due to its outstanding properties. In this paper, the finite element modeling on machinability of Ti-6Al-4V using cubic boron nitride and polycrystalline diamond tool in dry turning environment was investigated. This research was carried out to generate mathematical models at 95% confidence level for cutting force and temperature distribution regarding cutting speed, feed rate and depth of cut. The Box-Behnken design of experiment was used as Response Surface Model to generate combinations of cutting variables for modeling. Then, finite element simulation was performed using AdvantEdge®. The influence of each cutting parameters on the cutting responses was investigated using Analysis of Variance. The analysis shows that depth of cut is the most influential parameter on resultant cutting force whereas feed rate is the most influential parameter on cutting temperature. Also, the effect of the cutting-edge radius was investigated for both tools. This research would help to maximize the tool life and to improve surface finish.

  3. Finite fields and applications

    CERN Document Server

    Mullen, Gary L

    2007-01-01

    This book provides a brief and accessible introduction to the theory of finite fields and to some of their many fascinating and practical applications. The first chapter is devoted to the theory of finite fields. After covering their construction and elementary properties, the authors discuss the trace and norm functions, bases for finite fields, and properties of polynomials over finite fields. Each of the remaining chapters details applications. Chapter 2 deals with combinatorial topics such as the construction of sets of orthogonal latin squares, affine and projective planes, block designs, and Hadamard matrices. Chapters 3 and 4 provide a number of constructions and basic properties of error-correcting codes and cryptographic systems using finite fields. Each chapter includes a set of exercises of varying levels of difficulty which help to further explain and motivate the material. Appendix A provides a brief review of the basic number theory and abstract algebra used in the text, as well as exercises rel...

  4. Tax rate to maximize the revenue: Laffer curve for the Czech Republic

    Directory of Open Access Journals (Sweden)

    Michal Karas

    2012-01-01

    Full Text Available The aim of this article is to model the relationship between the rate of personal income tax and the revenue it generates, and to derive a tax rate that would maximize this revenue within the Czech Republic, using methodologies described in earlier works (Hsing, 1996. This tax rate represents an upper limit. Overstepping it has negative consequences for corporate finances and government budgetary funding alike, because it undermines the workers’ motivation to work, reduces buying power, and shifts work activities in favor of gray economy. The period of interest is a time series from 1993 to 2010. Two models were devised. The basic research instrument was a second-degree polynomial regression with a logarithmic transformation of the input data. The explaining variable was the tax revenue, the explanatory variable in Model 1 was the ratio of tax revenue to personal gross annual income. Model 2 featured the ratio of tax revenue to gross domestic product. To limit model instability, all data was stated per capita, in 2010 prices. Both models are statistically significant. By comparison, it was determined that, in the period of 1994–2010, the historical tax rate was lower than the rate designed to maximize the revenue. It approached the theoretical optimum most closely in 2007, and deviated from it most severely in 1995.

  5. On finite quantum field theories

    International Nuclear Information System (INIS)

    Rajpoot, S.; Taylor, J.G.

    1984-01-01

    The properties that make massless versions of N = 4 super Yang-Mills theory and a class of N = 2 supersymmetric theories finite are: (I) a universal coupling for the gauge and matter interactions, (II) anomaly-free representations to which the bosonic and fermionic matter belong, and (III) no charge renormalisation, i.e. β(g) = 0. It was conjectured that field theories constructed out of N = 1 matter multiplets are also finite if they too share the above properties. Explicit calculations have verified these theories to be finite up to two loops. The implications of the finiteness conditions for N = 1 finite field theories with SU(M) gauge symmetry are discussed. (orig.)

  6. Finite size scaling theory

    International Nuclear Information System (INIS)

    Rittenberg, V.

    1983-01-01

    Fischer's finite-size scaling describes the cross over from the singular behaviour of thermodynamic quantities at the critical point to the analytic behaviour of the finite system. Recent extensions of the method--transfer matrix technique, and the Hamiltonian formalism--are discussed in this paper. The method is presented, with equations deriving scaling function, critical temperature, and exponent v. As an application of the method, a 3-states Hamiltonian with Z 3 global symmetry is studied. Diagonalization of the Hamiltonian for finite chains allows one to estimate the critical exponents, and also to discover new phase transitions at lower temperatures. The critical points lambda, and indices v estimated for finite-scaling are given

  7. Seismic isolation of two dimensional periodic foundations

    International Nuclear Information System (INIS)

    Yan, Y.; Mo, Y. L.; Laskar, A.; Cheng, Z.; Shi, Z.; Menq, F.; Tang, Y.

    2014-01-01

    Phononic crystal is now used to control acoustic waves. When the crystal goes to a larger scale, it is called periodic structure. The band gaps of the periodic structure can be reduced to range from 0.5 Hz to 50 Hz. Therefore, the periodic structure has potential applications in seismic wave reflection. In civil engineering, the periodic structure can be served as the foundation of upper structure. This type of foundation consisting of periodic structure is called periodic foundation. When the frequency of seismic waves falls into the band gaps of the periodic foundation, the seismic wave can be blocked. Field experiments of a scaled two dimensional (2D) periodic foundation with an upper structure were conducted to verify the band gap effects. Test results showed the 2D periodic foundation can effectively reduce the response of the upper structure for excitations with frequencies within the frequency band gaps. When the experimental and the finite element analysis results are compared, they agree well with each other, indicating that 2D periodic foundation is a feasible way of reducing seismic vibrations.

  8. A finite element method for calculating the 3-dimensional magnetic fields of cyclotron

    International Nuclear Information System (INIS)

    Zhao Xiaofeng

    1986-01-01

    A series of formula of the finite element method (scalar potential) for calculating the three-dimensional magnetic field of the main magnet of a sector focused cyclotron, and the realization method of the periodic boundary conditions in the code are given

  9. Eccentric exercise decreases maximal insulin action in humans

    DEFF Research Database (Denmark)

    Asp, Svend; Daugaard, J R; Kristiansen, S

    1996-01-01

    subjects participated in two euglycaemic clamps, performed in random order. One clamp was preceded 2 days earlier by one-legged eccentric exercise (post-eccentric exercise clamp (PEC)) and one was without the prior exercise (control clamp (CC)). 2. During PEC the maximal insulin-stimulated glucose uptake...... for all three clamp steps used (P maximal activity of glycogen synthase was identical in the two thighs for all clamp steps. 3. The glucose infusion rate (GIR......) necessary to maintain euglycaemia during maximal insulin stimulation was lower during PEC compared with CC (15.7%, 81.3 +/- 3.2 vs. 96.4 +/- 8.8 mumol kg-1 min-1, P maximal...

  10. Maximize x(a - x)

    Science.gov (United States)

    Lange, L. H.

    1974-01-01

    Five different methods for determining the maximizing condition for x(a - x) are presented. Included is the ancient Greek version and a method attributed to Fermat. None of the proofs use calculus. (LS)

  11. $\\delta$-Expansion at Finite Temperature

    OpenAIRE

    Ramos, Rudnei O.

    1996-01-01

    We apply the $\\delta$-expansion perturbation scheme to the $\\lambda \\phi^{4}$ self-interacting scalar field theory in 3+1 D at finite temperature. In the $\\delta$-expansion the interaction term is written as $\\lambda (\\phi^{2})^{ 1 + \\delta}$ and $\\delta$ is considered as the perturbation parameter. We compute within this perturbative approach the renormalized mass at finite temperature at a finite order in $\\delta$. The results are compared with the usual loop-expansion at finite temperature.

  12. Finite spatial volume approach to finite temperature field theory

    International Nuclear Information System (INIS)

    Weiss, Nathan

    1981-01-01

    A relativistic quantum field theory at finite temperature T=β -1 is equivalent to the same field theory at zero temperature but with one spatial dimension of finite length β. This equivalence is discussed for scalars, for fermions, and for gauge theories. The relationship is checked for free field theory. The translation of correlation functions between the two formulations is described with special emphasis on the nonlocal order parameters of gauge theories. Possible applications are mentioned. (auth)

  13. Existence of Periodic Orbits with Zeno Behavior in Completed Lagrangian Hybrid Systems

    OpenAIRE

    Or, Yizhar; Ames, Aaron D.

    2009-01-01

    In this paper, we consider hybrid models of mechanical systems undergoing impacts, Lagrangian hybrid systems, and study their periodic orbits in the presence of Zeno behavior-an infinite number of impacts occurring in finite time. The main result of this paper is explicit conditions under which the existence of stable periodic orbits for a Lagrangian hybrid system with perfectly plastic impacts implies the existence of periodic orbits in the same system with non-plastic impacts. Such periodic...

  14. A collocation--Galerkin finite element model of cardiac action potential propagation.

    Science.gov (United States)

    Rogers, J M; McCulloch, A D

    1994-08-01

    A new computational method was developed for modeling the effects of the geometric complexity, nonuniform muscle fiber orientation, and material inhomogeneity of the ventricular wall on cardiac impulse propagation. The method was used to solve a modification to the FitzHugh-Nagumo system of equations. The geometry, local muscle fiber orientation, and material parameters of the domain were defined using linear Lagrange or cubic Hermite finite element interpolation. Spatial variations of time-dependent excitation and recovery variables were approximated using cubic Hermite finite element interpolation, and the governing finite element equations were assembled using the collocation method. To overcome the deficiencies of conventional collocation methods on irregular domains, Galerkin equations for the no-flux boundary conditions were used instead of collocation equations for the boundary degrees-of-freedom. The resulting system was evolved using an adaptive Runge-Kutta method. Converged two-dimensional simulations of normal propagation showed that this method requires less CPU time than a traditional finite difference discretization. The model also reproduced several other physiologic phenomena known to be important in arrhythmogenesis including: Wenckebach periodicity, slowed propagation and unidirectional block due to wavefront curvature, reentry around a fixed obstacle, and spiral wave reentry. In a new result, we observed wavespeed variations and block due to nonuniform muscle fiber orientation. The findings suggest that the finite element method is suitable for studying normal and pathological cardiac activation and has significant advantages over existing techniques.

  15. Finite-dimensional calculus

    International Nuclear Information System (INIS)

    Feinsilver, Philip; Schott, Rene

    2009-01-01

    We discuss topics related to finite-dimensional calculus in the context of finite-dimensional quantum mechanics. The truncated Heisenberg-Weyl algebra is called a TAA algebra after Tekin, Aydin and Arik who formulated it in terms of orthofermions. It is shown how to use a matrix approach to implement analytic representations of the Heisenberg-Weyl algebra in univariate and multivariate settings. We provide examples for the univariate case. Krawtchouk polynomials are presented in detail, including a review of Krawtchouk polynomials that illustrates some curious properties of the Heisenberg-Weyl algebra, as well as presenting an approach to computing Krawtchouk expansions. From a mathematical perspective, we are providing indications as to how to implement infinite terms Rota's 'finite operator calculus'.

  16. Finite element analysis of surface acoustic waves in high aspect ratio electrodes

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard; Laude, Vincent; Khelif, Abdelkrim

    2008-01-01

    This paper elaborates on how the finite element method is employed to model surface acoustic waves generated by high aspect ratio electrodes and their interaction with optical waves in a waveguide. With a periodic model it is shown that these electrodes act as a mechanical resonator which slows...

  17. Form factors of the finite quantum XY-chain

    International Nuclear Information System (INIS)

    Iorgov, Nikolai

    2011-01-01

    Explicit factorized formulas for the matrix elements (form factors) of the spin operators σ x and σ y between the eigenvectors of the Hamiltonian of the finite quantum periodic XY-chain in a transverse field were derived. The derivation is based on the relations between three models: the model of quantum XY-chain, Ising model on 2D lattice and N = 2 Baxter-Bazhanov-Stroganov τ (2) -model. Due to these relations we transfer the formulas for the form factors of the latter model recently obtained by the use of separation of variables method to the model of quantum XY-chain. Hopefully, the formulas for the form factors will help in analysis of multipoint dynamic correlation functions at a finite temperature. As an example, we re-derive the asymptotics of the two-point correlation function in the disordered phase without the use of the Toeplitz determinants and the Wiener-Hopf factorization method.

  18. Utility Maximization in Nonconvex Wireless Systems

    CERN Document Server

    Brehmer, Johannes

    2012-01-01

    This monograph formulates a framework for modeling and solving utility maximization problems in nonconvex wireless systems. First, a model for utility optimization in wireless systems is defined. The model is general enough to encompass a wide array of system configurations and performance objectives. Based on the general model, a set of methods for solving utility maximization problems is developed. The development is based on a careful examination of the properties that are required for the application of each method. The focus is on problems whose initial formulation does not allow for a solution by standard convex methods. Solution approaches that take into account the nonconvexities inherent to wireless systems are discussed in detail. The monograph concludes with two case studies that demonstrate the application of the proposed framework to utility maximization in multi-antenna broadcast channels.

  19. Mesh-size errors in diffusion-theory calculations using finite-difference and finite-element methods

    International Nuclear Information System (INIS)

    Baker, A.R.

    1982-07-01

    A study has been performed of mesh-size errors in diffusion-theory calculations using finite-difference and finite-element methods. As the objective was to illuminate the issues, the study was performed for a 1D slab model of a reactor with one neutron-energy group for which analytical solutions were possible. A computer code SLAB was specially written to perform the finite-difference and finite-element calculations and also to obtain the analytical solutions. The standard finite-difference equations were obtained by starting with an expansion of the neutron current in powers of the mesh size, h, and keeping terms as far as h 2 . It was confirmed that these equations led to the well-known result that the criticality parameter varied with the square of the mesh size. An improved form of the finite-difference equations was obtained by continuing the expansion for the neutron current as far as the term in h 4 . In this case, the critical parameter varied as the fourth power of the mesh size. The finite-element solutions for 2 and 3 nodes per element revealed that the criticality parameter varied as the square and fourth power of the mesh size, respectively. Numerical results are presented for a bare reactive core of uniform composition with 2 zones of different uniform mesh and for a reactive core with an absorptive reflector. (author)

  20. Unveiling Quasiperiodicity through Nonlinear Wave Mixing in Periodic Media

    International Nuclear Information System (INIS)

    Bahabad, Alon; Arie, Ady; Voloch, Noa; Bruner, Ariel; Eger, David

    2007-01-01

    Quasiperiodicity is the concept of order without translation symmetry. The discovery of quasiperiodic order in natural materials transformed the way scientists examine and define ordered structure. We show and verify experimentally that quasiperiodicity can be observed by scattering processes from a periodic structure, provided the interaction area is of finite width. This is made through a momentum conservation condition, physically realizing a geometrical method used to model quasiperiodic structures by projecting a periodic structure of a higher dimension

  1. Phlebotomy eliminates the maximal cardiac output response to six weeks of exercise training

    DEFF Research Database (Denmark)

    Bonne, Thomas Christian; Doucende, Gregory; Flück, Daniela

    2014-01-01

    With this study we tested the hypothesis that six weeks of endurance training increases maximal cardiac output (Qmax) relatively more by elevating blood volume (BV) than by inducing structural and functional changes within the heart. Nine healthy but untrained volunteers (VO2max 47 ± 5 ml.min(-1......).kg(-1)) underwent supervised training (60 min; 4 times weekly at 65% VO2max for six weeks) and Qmax was determined by inert gas re-breathing during cycle ergometer exercise before and after the training period. After the training period, blood volume (determined in duplicates by CO re......-breathing) was re-established to pre-training values by phlebotomy and Qmax was quantified again. Resting echography revealed no structural heart adaptations as a consequence of the training intervention. Following the training period, plasma volume (PV), red blood cell volume (RBCV) and BV increased (p...

  2. Nilpotent -local finite groups

    Science.gov (United States)

    Cantarero, José; Scherer, Jérôme; Viruel, Antonio

    2014-10-01

    We provide characterizations of -nilpotency for fusion systems and -local finite groups that are inspired by known result for finite groups. In particular, we generalize criteria by Atiyah, Brunetti, Frobenius, Quillen, Stammbach and Tate.

  3. Maximizing Team Performance: The Critical Role of the Nurse Leader.

    Science.gov (United States)

    Manges, Kirstin; Scott-Cawiezell, Jill; Ward, Marcia M

    2017-01-01

    Facilitating team development is challenging, yet critical for ongoing improvement across healthcare settings. The purpose of this exemplary case study is to examine the role of nurse leaders in facilitating the development of a high-performing Change Team in implementing a patient safety initiative (TeamSTEPPs) using the Tuckman Model of Group Development as a guiding framework. The case study is the synthesis of 2.5 years of critical access hospital key informant interviews (n = 50). Critical juncture points related to team development and key nurse leader actions are analyzed, suggesting that nurse leaders are essential to maximize clinical teams' performance. © 2016 Wiley Periodicals, Inc.

  4. Aging and loss decision making: increased risk aversion and decreased use of maximizing information, with correlated rationality and value maximization.

    Science.gov (United States)

    Kurnianingsih, Yoanna A; Sim, Sam K Y; Chee, Michael W L; Mullette-Gillman, O'Dhaniel A

    2015-01-01

    We investigated how adult aging specifically alters economic decision-making, focusing on examining alterations in uncertainty preferences (willingness to gamble) and choice strategies (what gamble information influences choices) within both the gains and losses domains. Within each domain, participants chose between certain monetary outcomes and gambles with uncertain outcomes. We examined preferences by quantifying how uncertainty modulates choice behavior as if altering the subjective valuation of gambles. We explored age-related preferences for two types of uncertainty, risk, and ambiguity. Additionally, we explored how aging may alter what information participants utilize to make their choices by comparing the relative utilization of maximizing and satisficing information types through a choice strategy metric. Maximizing information was the ratio of the expected value of the two options, while satisficing information was the probability of winning. We found age-related alterations of economic preferences within the losses domain, but no alterations within the gains domain. Older adults (OA; 61-80 years old) were significantly more uncertainty averse for both risky and ambiguous choices. OA also exhibited choice strategies with decreased use of maximizing information. Within OA, we found a significant correlation between risk preferences and choice strategy. This linkage between preferences and strategy appears to derive from a convergence to risk neutrality driven by greater use of the effortful maximizing strategy. As utility maximization and value maximization intersect at risk neutrality, this result suggests that OA are exhibiting a relationship between enhanced rationality and enhanced value maximization. While there was variability in economic decision-making measures within OA, these individual differences were unrelated to variability within examined measures of cognitive ability. Our results demonstrate that aging alters economic decision-making for

  5. Aging and loss decision making: increased risk aversion and decreased use of maximizing information, with correlated rationality and value maximization

    Directory of Open Access Journals (Sweden)

    Yoanna Arlina Kurnianingsih

    2015-05-01

    Full Text Available We investigated how adult aging specifically alters economic decision-making, focusing on examining alterations in uncertainty preferences (willingness to gamble and choice strategies (what gamble information influences choices within both the gains and losses domains. Within each domain, participants chose between certain monetary outcomes and gambles with uncertain outcomes. We examined preferences by quantifying how uncertainty modulates choice behavior as if altering the subjective valuation of gambles. We explored age-related preferences for two types of uncertainty, risk and ambiguity. Additionally, we explored how aging may alter what information participants utilize to make their choices by comparing the relative utilization of maximizing and satisficing information types through a choice strategy metric. Maximizing information was the ratio of the expected value of the two options, while satisficing information was the probability of winning.We found age-related alterations of economic preferences within the losses domain, but no alterations within the gains domain. Older adults (OA; 61 to 80 years old were significantly more uncertainty averse for both risky and ambiguous choices. OA also exhibited choice strategies with decreased use of maximizing information. Within OA, we found a significant correlation between risk preferences and choice strategy. This linkage between preferences and strategy appears to derive from a convergence to risk neutrality driven by greater use of the effortful maximizing strategy. As utility maximization and value maximization intersect at risk neutrality, this result suggests that OA are exhibiting a relationship between enhanced rationality and enhanced value maximization. While there was variability in economic decision-making measures within OA, these individual differences were unrelated to variability within examined measures of cognitive ability. Our results demonstrate that aging alters economic

  6. Finite flavour groups of fermions

    International Nuclear Information System (INIS)

    Grimus, Walter; Ludl, Patrick Otto

    2012-01-01

    We present an overview of the theory of finite groups, with regard to their application as flavour symmetries in particle physics. In a general part, we discuss useful theorems concerning group structure, conjugacy classes, representations and character tables. In a specialized part, we attempt to give a fairly comprehensive review of finite subgroups of SO(3) and SU(3), in which we apply and illustrate the general theory. Moreover, we also provide a concise description of the symmetric and alternating groups and comment on the relationship between finite subgroups of U(3) and finite subgroups of SU(3). Although in this review we give a detailed description of a wide range of finite groups, the main focus is on the methods which allow the exploration of their different aspects. (topical review)

  7. The maximal-density mass function for primordial black hole dark matter

    Science.gov (United States)

    Lehmann, Benjamin V.; Profumo, Stefano; Yant, Jackson

    2018-04-01

    The advent of gravitational wave astronomy has rekindled interest in primordial black holes (PBH) as a dark matter candidate. As there are many different observational probes of the PBH density across different masses, constraints on PBH models are dependent on the functional form of the PBH mass function. This complicates general statements about the mass functions allowed by current data, and, in particular, about the maximum total density of PBH. Numerical studies suggest that some forms of extended mass functions face tighter constraints than monochromatic mass functions, but they do not preclude the existence of a functional form for which constraints are relaxed. We use analytical arguments to show that the mass function which maximizes the fraction of the matter density in PBH subject to all constraints is a finite linear combination of monochromatic mass functions. We explicitly compute the maximum fraction of dark matter in PBH for different combinations of current constraints, allowing for total freedom of the mass function. Our framework elucidates the dependence of the maximum PBH density on the form of observational constraints, and we discuss the implications of current and future constraints for the viability of the PBH dark matter paradigm.

  8. Finite elements and approximation

    CERN Document Server

    Zienkiewicz, O C

    2006-01-01

    A powerful tool for the approximate solution of differential equations, the finite element is extensively used in industry and research. This book offers students of engineering and physics a comprehensive view of the principles involved, with numerous illustrative examples and exercises.Starting with continuum boundary value problems and the need for numerical discretization, the text examines finite difference methods, weighted residual methods in the context of continuous trial functions, and piecewise defined trial functions and the finite element method. Additional topics include higher o

  9. A Bidding Methodology by Nash Equilibrium for Finite Generators Participating in Imperfect Electricity Markets

    Science.gov (United States)

    Satyaramesh, P. V.

    2014-01-01

    This paper presents an application of finite n-person non-cooperative game theory for analyzing bidding strategies of generators in a deregulated energy marketplace with Pool Bilateral contracts so as to maximize their net profits. A new methodology to build bidding methodology for generators participating in oligopoly electricity market has been proposed in this paper. It is assumed that each generator bids a supply function. This methodology finds out the coefficients in the supply function of generators in order to maximize benefits in an environment of competing rival bidders. A natural choice for developing strategies is Nash Equilibrium (NE) model incorporating mixed strategies, for solving the bidding problem of electrical market. Associated optimal profits are evaluated for a combination of set of pure strategies of bidding of generators, and payoff matrix has been constructed. The optimal payoff is calculated by using NE. An attempt has also been made to minimize the gap between the optimal payoff and the payoff obtained by a possible mixed strategies combination. The algorithm is coded in MATLAB. A numerical example is used to illustrate the essential features of the approach and the results are proved to be the optimal values.

  10. Maximally Informative Observables and Categorical Perception

    OpenAIRE

    Tsiang, Elaine

    2012-01-01

    We formulate the problem of perception in the framework of information theory, and prove that categorical perception is equivalent to the existence of an observable that has the maximum possible information on the target of perception. We call such an observable maximally informative. Regardless whether categorical perception is real, maximally informative observables can form the basis of a theory of perception. We conclude with the implications of such a theory for the problem of speech per...

  11. On the finite element modeling of the asymmetric cracked rotor

    Science.gov (United States)

    AL-Shudeifat, Mohammad A.

    2013-05-01

    The advanced phase of the breathing crack in the heavy duty horizontal rotor system is expected to be dominated by the open crack state rather than the breathing state after a short period of operation. The reason for this scenario is the expected plastic deformation in crack location due to a large compression stress field appears during the continuous shaft rotation. Based on that, the finite element modeling of a cracked rotor system with a transverse open crack is addressed here. The cracked rotor with the open crack model behaves as an asymmetric shaft due to the presence of the transverse edge crack. Hence, the time-varying area moments of inertia of the cracked section are employed in formulating the periodic finite element stiffness matrix which yields a linear time-periodic system. The harmonic balance method (HB) is used for solving the finite element (FE) equations of motion for studying the dynamic behavior of the system. The behavior of the whirl orbits during the passage through the subcritical rotational speeds of the open crack model is compared to that for the breathing crack model. The presence of the open crack with the unbalance force was found only to excite the 1/2 and 1/3 of the backward critical whirling speed. The whirl orbits in the neighborhood of these subcritical speeds were found to have nearly similar behavior for both open and breathing crack models. While unlike the breathing crack model, the subcritical forward whirling speeds have not been observed for the open crack model in the response to the unbalance force. As a result, the behavior of the whirl orbits during the passage through the forward subcritical rotational speeds is found to be enough to distinguish the breathing crack from the open crack model. These whirl orbits with inner loops that appear in the neighborhood of the forward subcritical speeds are then a unique property for the breathing crack model.

  12. Morphological changes of the internal structure of maxillae with tooth loss. Three-dimensional and mechanical analysis using micro-CT and finite element method

    International Nuclear Information System (INIS)

    Usami, Akinobu; Hara, Toshihiro; Ide, Yoshinobu

    2003-01-01

    The purpose of this study was to analyze the morphological and mechanical properties of the internal structures of maxillae at the molar region using a micro-CT system. Ten dentulous and edentulous maxillae were employed in this study. Images and angle information from all materials were taken by a micro-CT and 100 x 100 x 100 voxels were extracted from the fixed buccal and palatal molar regions in each material for three-dimensional morphological analysis of the internal structure. The bone volume fraction, trabecular thickness, trabecular separation and trabecular number were calculated. To analyze mechanical properties all voxels were converted to micro finite element models with element size of 33 x 33 x 33 μm 3 and maximal stiffness, axial stiffness and angle between the stiffest direction of trabecular and the axial loading direction (angleα) were determined using micro finite element method. In the result, the morphological changes including decrease of bone volume fraction, trabecular thickness and increase of trabecular separation were evident with tooth loss, although trabecular number was not changed. Mechanically, maximal stiffness was decreased with tooth loss at buccal region. However, the axial stiffness at buccal region was larger and the angleα was distributed widely in each edentulous maxilla, comparing to the same region of dentulous maxilla. These findings suggest that trabecular bone become thinner in both buccal and palatal regions, consequently maximal stiffness at buccal region become smaller with tooth loss. On the other hand, axial stiffness at the buccal region in edentulous was larger than one in dentulous. It seems to be caused by the change of the angleα. (author)

  13. Using finite mixture models in thermal-hydraulics system code uncertainty analysis

    Energy Technology Data Exchange (ETDEWEB)

    Carlos, S., E-mail: scarlos@iqn.upv.es [Department d’Enginyeria Química i Nuclear, Universitat Politècnica de València, Camí de Vera s.n, 46022 València (Spain); Sánchez, A. [Department d’Estadística Aplicada i Qualitat, Universitat Politècnica de València, Camí de Vera s.n, 46022 València (Spain); Ginestar, D. [Department de Matemàtica Aplicada, Universitat Politècnica de València, Camí de Vera s.n, 46022 València (Spain); Martorell, S. [Department d’Enginyeria Química i Nuclear, Universitat Politècnica de València, Camí de Vera s.n, 46022 València (Spain)

    2013-09-15

    Highlights: • Best estimate codes simulation needs uncertainty quantification. • The output variables can present multimodal probability distributions. • The analysis of multimodal distribution is performed using finite mixture models. • Two methods to reconstruct output variable probability distribution are used. -- Abstract: Nuclear Power Plant safety analysis is mainly based on the use of best estimate (BE) codes that predict the plant behavior under normal or accidental conditions. As the BE codes introduce uncertainties due to uncertainty in input parameters and modeling, it is necessary to perform uncertainty assessment (UA), and eventually sensitivity analysis (SA), of the results obtained. These analyses are part of the appropriate treatment of uncertainties imposed by current regulation based on the adoption of the best estimate plus uncertainty (BEPU) approach. The most popular approach for uncertainty assessment, based on Wilks’ method, obtains a tolerance/confidence interval, but it does not completely characterize the output variable behavior, which is required for an extended UA and SA. However, the development of standard UA and SA impose high computational cost due to the large number of simulations needed. In order to obtain more information about the output variable and, at the same time, to keep computational cost as low as possible, there has been a recent shift toward developing metamodels (model of model), or surrogate models, that approximate or emulate complex computer codes. In this way, there exist different techniques to reconstruct the probability distribution using the information provided by a sample of values as, for example, the finite mixture models. In this paper, the Expectation Maximization and the k-means algorithms are used to obtain a finite mixture model that reconstructs the output variable probability distribution from data obtained with RELAP-5 simulations. Both methodologies have been applied to a separated

  14. Maximally Entangled Multipartite States: A Brief Survey

    International Nuclear Information System (INIS)

    Enríquez, M; Wintrowicz, I; Życzkowski, K

    2016-01-01

    The problem of identifying maximally entangled quantum states of a composite quantum systems is analyzed. We review some states of multipartite systems distinguished with respect to certain measures of quantum entanglement. Numerical results obtained for 4-qubit pure states illustrate the fact that the notion of maximally entangled state depends on the measure used. (paper)

  15. Corporate Social Responsibility and Profit Maximizing Behaviour

    OpenAIRE

    Becchetti, Leonardo; Giallonardo, Luisa; Tessitore, Maria Elisabetta

    2005-01-01

    We examine the behavior of a profit maximizing monopolist in a horizontal differentiation model in which consumers differ in their degree of social responsibility (SR) and consumers SR is dynamically influenced by habit persistence. The model outlines parametric conditions under which (consumer driven) corporate social responsibility is an optimal choice compatible with profit maximizing behavior.

  16. Parallel iterative procedures for approximate solutions of wave propagation by finite element and finite difference methods

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. [Purdue Univ., West Lafayette, IN (United States)

    1994-12-31

    Parallel iterative procedures based on domain decomposition techniques are defined and analyzed for the numerical solution of wave propagation by finite element and finite difference methods. For finite element methods, in a Lagrangian framework, an efficient way for choosing the algorithm parameter as well as the algorithm convergence are indicated. Some heuristic arguments for finding the algorithm parameter for finite difference schemes are addressed. Numerical results are presented to indicate the effectiveness of the methods.

  17. Exercise Training at Maximal Fat Oxidation Intensity for Older Women with Type 2 Diabetes.

    Science.gov (United States)

    Tan, Sijie; Du, Ping; Zhao, Wanting; Pang, Jiaqi; Wang, Jianxiong

    2018-05-01

    The purpose of this study was to investigate the pleiotropic effects of 12 weeks of supervised exercise training at maximal fat oxidation (FATmax) intensity on body composition, lipid profile, glycemic control, insulin sensitivity and serum adipokine levels in older women with type 2 diabetes. Thirty-one women with type 2 diabetes, aged 60 to 69 years, were randomly allocated into exercise and control groups. Body composition, lipid profile, blood glucose, insulin resistance and serum leptin and adiponectin concentrations were measured before and after the intervention. Exercise group (n=16) walked at individualized FATmax intensities for 1 h/day for 3 days/week over 12 weeks. No dietary intervention was introduced during the experimental period. Maximal fat oxidation rate was 0.37±0.10 g/min, and occurred at 37.3±7.3% of the estimated VO 2 max. Within the exercise group, significant improvements were observed for most of the measured variables compared to non-exercising controls; in particular, the FATmax program reduced body fat% (presistance (pchange in daily energy intake for all participants during the intervention period. These results suggest that individualized FATmax training is an effective exercise training intensity for managing type 2 diabetes in older women. © Georg Thieme Verlag KG Stuttgart · New York.

  18. Finite size effects in neutron star and nuclear matter simulations

    Energy Technology Data Exchange (ETDEWEB)

    Giménez Molinelli, P.A., E-mail: pagm@df.uba.ar; Dorso, C.O.

    2015-01-15

    In this work we study molecular dynamics simulations of symmetric nuclear and neutron star matter using a semi-classical nucleon interaction model. Our aim is to gain insight on the nature of the so-called “finite size effects”, unavoidable in this kind of simulations, and to understand what they actually affect. To do so, we explore different geometries for the periodic boundary conditions imposed on the simulation cell: cube, hexagonal prism and truncated octahedron. For nuclear matter simulations we show that, at sub-saturation densities and low temperatures, the solutions are non-homogeneous structures reminiscent of the “nuclear pasta” phases expected in neutron star matter simulations, but only one structure per cell and shaped by specific artificial aspects of the simulations—for the same physical conditions (i.e. number density and temperature) different cells yield different solutions. The particular shape of the solution at low enough temperature and a given density can be predicted analytically by surface minimization. We also show that even if this behavior is due to the imposition of periodic boundary conditions on finite systems, this does not mean that it vanishes for very large systems, and it is actually independent of the system size. We conclude that, for nuclear matter simulations, the cells' size sets the only characteristic length scale for the inhomogeneities, and the geometry of the periodic cell determines the shape of those inhomogeneities. To model neutron star matter we add a screened Coulomb interaction between protons, and perform simulations in the three cell geometries. Our simulations indeed produce the well known nuclear pasta, with (in most cases) several structures per cell. However, we find that for systems not too large results are affected by finite size in different ways depending on the geometry of the cell. In particular, at the same certain physical conditions and system size, the hexagonal prism yields a

  19. Finite volume spectrum of 2D field theories from Hirota dynamics

    International Nuclear Information System (INIS)

    Gromov, Nikolay; Kazakov, Vladimir; Vieira, Pedro; Univ. do Porto

    2008-12-01

    We propose, using the example of the O(4) sigma model, a general method for solving integrable two dimensional relativistic sigma models in a finite size periodic box. Our starting point is the so-called Y-system, which is equivalent to the thermodynamic Bethe ansatz equations of Yang and Yang. It is derived from the Zamolodchikov scattering theory in the cross channel, for virtual particles along the non-compact direction of the space-time cylinder. The method is based on the integrable Hirota dynamics that follows from the Y-system. The outcome is a nonlinear integral equation for a single complex function, valid for an arbitrary quantum state and accompanied by the finite size analogue of Bethe equations. It is close in spirit to the Destri-deVega (DdV) equation. We present the numerical data for the energy of various states as a function of the size, and derive the general Luescher-type formulas for the finite size corrections. We also re-derive by our method the DdV equation for the SU(2) chiral Gross-Neveu model. (orig.)

  20. Massively Parallel Finite Element Programming

    KAUST Repository

    Heister, Timo; Kronbichler, Martin; Bangerth, Wolfgang

    2010-01-01

    Today's large finite element simulations require parallel algorithms to scale on clusters with thousands or tens of thousands of processor cores. We present data structures and algorithms to take advantage of the power of high performance computers in generic finite element codes. Existing generic finite element libraries often restrict the parallelization to parallel linear algebra routines. This is a limiting factor when solving on more than a few hundreds of cores. We describe routines for distributed storage of all major components coupled with efficient, scalable algorithms. We give an overview of our effort to enable the modern and generic finite element library deal.II to take advantage of the power of large clusters. In particular, we describe the construction of a distributed mesh and develop algorithms to fully parallelize the finite element calculation. Numerical results demonstrate good scalability. © 2010 Springer-Verlag.

  1. Massively Parallel Finite Element Programming

    KAUST Repository

    Heister, Timo

    2010-01-01

    Today\\'s large finite element simulations require parallel algorithms to scale on clusters with thousands or tens of thousands of processor cores. We present data structures and algorithms to take advantage of the power of high performance computers in generic finite element codes. Existing generic finite element libraries often restrict the parallelization to parallel linear algebra routines. This is a limiting factor when solving on more than a few hundreds of cores. We describe routines for distributed storage of all major components coupled with efficient, scalable algorithms. We give an overview of our effort to enable the modern and generic finite element library deal.II to take advantage of the power of large clusters. In particular, we describe the construction of a distributed mesh and develop algorithms to fully parallelize the finite element calculation. Numerical results demonstrate good scalability. © 2010 Springer-Verlag.

  2. Guinea pig maximization test

    DEFF Research Database (Denmark)

    Andersen, Klaus Ejner

    1985-01-01

    Guinea pig maximization tests (GPMT) with chlorocresol were performed to ascertain whether the sensitization rate was affected by minor changes in the Freund's complete adjuvant (FCA) emulsion used. Three types of emulsion were evaluated: the oil phase was mixed with propylene glycol, saline...

  3. Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond

    International Nuclear Information System (INIS)

    Bern, Zvi; Dixon, Lance J.; Smirnov, Vladimir A.

    2005-01-01

    We compute the leading-color (planar) three-loop four-point amplitude of N=4 supersymmetric Yang-Mills theory in 4-2ε dimensions, as a Laurent expansion about ε=0 including the finite terms. The amplitude was constructed previously via the unitarity method, in terms of two Feynman loop integrals, one of which has been evaluated already. Here we use the Mellin-Barnes integration technique to evaluate the Laurent expansion of the second integral. Strikingly, the amplitude is expressible, through the finite terms, in terms of the corresponding one- and two-loop amplitudes, which provides strong evidence for a previous conjecture that higher-loop planar N=4 amplitudes have an iterative structure. The infrared singularities of the amplitude agree with the predictions of Sterman and Tejeda-Yeomans based on resummation. Based on the four-point result and the exponentiation of infrared singularities, we give an exponentiated Ansatz for the maximally helicity-violating n-point amplitudes to all loop orders. The 1/ε 2 pole in the four-point amplitude determines the soft, or cusp, anomalous dimension at three loops in N=4 supersymmetric Yang-Mills theory. The result confirms a prediction by Kotikov, Lipatov, Onishchenko and Velizhanin, which utilizes the leading-twist anomalous dimensions in QCD computed by Moch, Vermaseren and Vogt. Following similar logic, we are able to predict a term in the three-loop quark and gluon form factors in QCD

  4. Wavelet-based spectral finite element dynamic analysis for an axially moving Timoshenko beam

    Science.gov (United States)

    Mokhtari, Ali; Mirdamadi, Hamid Reza; Ghayour, Mostafa

    2017-08-01

    In this article, wavelet-based spectral finite element (WSFE) model is formulated for time domain and wave domain dynamic analysis of an axially moving Timoshenko beam subjected to axial pretension. The formulation is similar to conventional FFT-based spectral finite element (SFE) model except that Daubechies wavelet basis functions are used for temporal discretization of the governing partial differential equations into a set of ordinary differential equations. The localized nature of Daubechies wavelet basis functions helps to rule out problems of SFE model due to periodicity assumption, especially during inverse Fourier transformation and back to time domain. The high accuracy of WSFE model is then evaluated by comparing its results with those of conventional finite element and SFE results. The effects of moving beam speed and axial tensile force on vibration and wave characteristics, and static and dynamic stabilities of moving beam are investigated.

  5. Gradient Dynamics and Entropy Production Maximization

    Science.gov (United States)

    Janečka, Adam; Pavelka, Michal

    2018-01-01

    We compare two methods for modeling dissipative processes, namely gradient dynamics and entropy production maximization. Both methods require similar physical inputs-how energy (or entropy) is stored and how it is dissipated. Gradient dynamics describes irreversible evolution by means of dissipation potential and entropy, it automatically satisfies Onsager reciprocal relations as well as their nonlinear generalization (Maxwell-Onsager relations), and it has statistical interpretation. Entropy production maximization is based on knowledge of free energy (or another thermodynamic potential) and entropy production. It also leads to the linear Onsager reciprocal relations and it has proven successful in thermodynamics of complex materials. Both methods are thermodynamically sound as they ensure approach to equilibrium, and we compare them and discuss their advantages and shortcomings. In particular, conditions under which the two approaches coincide and are capable of providing the same constitutive relations are identified. Besides, a commonly used but not often mentioned step in the entropy production maximization is pinpointed and the condition of incompressibility is incorporated into gradient dynamics.

  6. Inquiry in bibliography some of the bustan`s maxim

    Directory of Open Access Journals (Sweden)

    sajjad rahmatian

    2016-12-01

    Full Text Available Sa`di is on of those poets who`s has placed a special position to preaching and guiding the people and among his works, allocated throughout the text of bustan to advice and maxim on legal and ethical various subjects. Surely, sa`di on the way of to compose this work and expression of its moral point, direct or indirect have been affected by some previous sources and possibly using their content. The main purpose of this article is that the pay review of basis and sources of bustan`s maxims and show that sa`di when expression the maxims of this work has been affected by which of the texts and works. For this purpose is tried to with search and research on the resources that have been allocated more or less to the aphorisms, to discover and extract traces of influence sa`di from their moral and didactic content. From the most important the finding of this study can be mentioned that indirect effect of some pahlavi books of maxim (like maxims of azarbad marespandan and bozorgmehr book of maxim and also noted sa`di directly influenced of moral and ethical works of poets and writers before him, and of this, sa`di`s influence from abo- shakur balkhi maxims, ferdowsi and keikavus is remarkable and noteworthy.

  7. Can monkeys make investments based on maximized pay-off?

    Directory of Open Access Journals (Sweden)

    Sophie Steelandt

    2011-03-01

    Full Text Available Animals can maximize benefits but it is not known if they adjust their investment according to expected pay-offs. We investigated whether monkeys can use different investment strategies in an exchange task. We tested eight capuchin monkeys (Cebus apella and thirteen macaques (Macaca fascicularis, Macaca tonkeana in an experiment where they could adapt their investment to the food amounts proposed by two different experimenters. One, the doubling partner, returned a reward that was twice the amount given by the subject, whereas the other, the fixed partner, always returned a constant amount regardless of the amount given. To maximize pay-offs, subjects should invest a maximal amount with the first partner and a minimal amount with the second. When tested with the fixed partner only, one third of monkeys learned to remove a maximal amount of food for immediate consumption before investing a minimal one. With both partners, most subjects failed to maximize pay-offs by using different decision rules with each partner' quality. A single Tonkean macaque succeeded in investing a maximal amount to one experimenter and a minimal amount to the other. The fact that only one of over 21 subjects learned to maximize benefits in adapting investment according to experimenters' quality indicates that such a task is difficult for monkeys, albeit not impossible.

  8. The Burnside problem and related topics

    International Nuclear Information System (INIS)

    Adian, Sergei I

    2011-01-01

    This paper gives a survey of results related to the famous Burnside problem on periodic groups. A negative solution of this problem was first published in joint papers of P.S. Novikov and the author in 1968. The theory of transformations of words in free periodic groups that was created in these papers and its various modifications give a very productive approach to the investigation of hard problems in group theory. In 1950 the Burnside problem gave rise to another problem on finite periodic groups, formulated by Magnus and called by him the restricted Burnside problem. Here it is called the Burnside-Magnus problem. In the Burnside problem the question of local finiteness of periodic groups of a given exponent was posed, but the Burnside-Magnus problem is the question of the existence of a maximal finite periodic group R(m,n) of a fixed period n with a given number m of generators. These problems complement each other. The publication in a joint paper by the author and Razborov in 1987 of the first effective proof of the well-known result of Kostrikin on the existence of a maximal group R(m,n) for any prime n, together with an indication of primitive recursive upper bounds for the orders of these groups, stimulated investigations of the Burnside-Magnus problem as well. Very soon other effective proofs appeared, and then Zel'manov extended Kostrikin's result to the case when n is any power of a prime number. These results are discussed in the last section of this paper. Bibliography: 105 titles.

  9. Maximal lattice free bodies, test sets and the Frobenius problem

    DEFF Research Database (Denmark)

    Jensen, Anders Nedergaard; Lauritzen, Niels; Roune, Bjarke Hammersholt

    Maximal lattice free bodies are maximal polytopes without interior integral points. Scarf initiated the study of maximal lattice free bodies relative to the facet normals in a fixed matrix. In this paper we give an efficient algorithm for computing the maximal lattice free bodies of an integral m...... method is inspired by the novel algorithm by Einstein, Lichtblau, Strzebonski and Wagon and the Groebner basis approach by Roune....

  10. Jauch-Piron logics with finiteness conditions

    International Nuclear Information System (INIS)

    Rogalewicz, V.

    1991-01-01

    An event structure (so-called quantum logic) of a quantum mechanical system is commonly assumed to be an orthomodular poset L. A state of such a system is then interpreted as a probability measure on L. It turns out that the orthomodular posets which may potentially serve as logics must have reasonably rich spaces of states. Moreover, the following condition on the state space appears among the axioms of a quantum system: if Φ is a state on a logic L, and Φ(a) = Φ(b) = 1 for some a, b element-of L, then there is a c element-of L such that c ≤ a, c ≤ b, and Φ(c) = 1. Such a state is said to be a Jauch-Piron state. If all states on L fulfill this condition, then L is called a Jauch-Piron logic. The condition was originally introduced by Jauch (1968) and Piron (1976). The author investigates unital Jauch-Piron logics with finitely many blocks (maximal Boolean subalgebras). He shows that such a logic is always Boolean, i.e., it represents a purely classical system. In other words, and orthomodular poset must have infinitely many blocks in order to describe a (nonclassical) quantum system

  11. Introduction to finite temperature and finite density QCD

    International Nuclear Information System (INIS)

    Kitazawa, Masakiyo

    2014-01-01

    It has been pointed out that QCD (Quantum Chromodynamics) in the circumstances of medium at finite temperature and density shows numbers of phenomena similar to the characteristics of solid state physics, e.g. phase transitions. In the past ten years, the very high temperature and density matter came to be observed experimentally at the heavy ion collisions. At the same time, the numerical QCD analysis at finite temperature and density attained quantitative level analysis possible owing to the remarkable progress of computers. In this summer school lecture, it has been set out to give not only the recent results, but also the spontaneous breaking of the chiral symmetry, the fundamental theory of finite temperature and further expositions as in the following four sections. The first section is titled as 'Introduction to Finite Temperature and Density QCD' with subsections of 1.1 standard model and QCD, 1.2 phase transition and phase structure of QCD, 1.3 lattice QCD and thermodynamic quantity, 1.4 heavy ion collision experiments, and 1.5 neutron stars. The second one is 'Equilibrium State' with subsections of 2.1 chiral symmetry, 2.2 vacuum state: BCS theory, 2.3 NJL (Nambu-Jona-Lasinio) model, and 2.4 color superconductivity. The third one is 'Static fluctuations' with subsections of 3.1 fluctuations, 3.2 moment and cumulant, 3.3 increase of fluctuations at critical points, 3.4 analysis of fluctuations by lattice QCD and Taylor expansion, and 3.5 experimental exploration of QCD phase structure. The fourth one is 'Dynamical Structure' with 4.1 linear response theory, 4.2 spectral functions, 4.3 Matsubara function, and 4.4 analyses of dynamical structure by lattice QCD. (S. Funahashi)

  12. Disk Density Tuning of a Maximal Random Packing.

    Science.gov (United States)

    Ebeida, Mohamed S; Rushdi, Ahmad A; Awad, Muhammad A; Mahmoud, Ahmed H; Yan, Dong-Ming; English, Shawn A; Owens, John D; Bajaj, Chandrajit L; Mitchell, Scott A

    2016-08-01

    We introduce an algorithmic framework for tuning the spatial density of disks in a maximal random packing, without changing the sizing function or radii of disks. Starting from any maximal random packing such as a Maximal Poisson-disk Sampling (MPS), we iteratively relocate, inject (add), or eject (remove) disks, using a set of three successively more-aggressive local operations. We may achieve a user-defined density, either more dense or more sparse, almost up to the theoretical structured limits. The tuned samples are conflict-free, retain coverage maximality, and, except in the extremes, retain the blue noise randomness properties of the input. We change the density of the packing one disk at a time, maintaining the minimum disk separation distance and the maximum domain coverage distance required of any maximal packing. These properties are local, and we can handle spatially-varying sizing functions. Using fewer points to satisfy a sizing function improves the efficiency of some applications. We apply the framework to improve the quality of meshes, removing non-obtuse angles; and to more accurately model fiber reinforced polymers for elastic and failure simulations.

  13. Finite element computational fluid mechanics

    International Nuclear Information System (INIS)

    Baker, A.J.

    1983-01-01

    This book analyzes finite element theory as applied to computational fluid mechanics. It includes a chapter on using the heat conduction equation to expose the essence of finite element theory, including higher-order accuracy and convergence in a common knowledge framework. Another chapter generalizes the algorithm to extend application to the nonlinearity of the Navier-Stokes equations. Other chapters are concerned with the analysis of a specific fluids mechanics problem class, including theory and applications. Some of the topics covered include finite element theory for linear mechanics; potential flow; weighted residuals/galerkin finite element theory; inviscid and convection dominated flows; boundary layers; parabolic three-dimensional flows; and viscous and rotational flows

  14. Designs and finite geometries

    CERN Document Server

    1996-01-01

    Designs and Finite Geometries brings together in one place important contributions and up-to-date research results in this important area of mathematics. Designs and Finite Geometries serves as an excellent reference, providing insight into some of the most important research issues in the field.

  15. An information maximization model of eye movements

    Science.gov (United States)

    Renninger, Laura Walker; Coughlan, James; Verghese, Preeti; Malik, Jitendra

    2005-01-01

    We propose a sequential information maximization model as a general strategy for programming eye movements. The model reconstructs high-resolution visual information from a sequence of fixations, taking into account the fall-off in resolution from the fovea to the periphery. From this framework we get a simple rule for predicting fixation sequences: after each fixation, fixate next at the location that minimizes uncertainty (maximizes information) about the stimulus. By comparing our model performance to human eye movement data and to predictions from a saliency and random model, we demonstrate that our model is best at predicting fixation locations. Modeling additional biological constraints will improve the prediction of fixation sequences. Our results suggest that information maximization is a useful principle for programming eye movements.

  16. A Comparative Study of Frequent and Maximal Periodic Pattern Mining Algorithms in Spatiotemporal Databases

    Science.gov (United States)

    Obulesu, O.; Rama Mohan Reddy, A., Dr; Mahendra, M.

    2017-08-01

    Detecting regular and efficient cyclic models is the demanding activity for data analysts due to unstructured, vigorous and enormous raw information produced from web. Many existing approaches generate large candidate patterns in the occurrence of huge and complex databases. In this work, two novel algorithms are proposed and a comparative examination is performed by considering scalability and performance parameters. The first algorithm is, EFPMA (Extended Regular Model Detection Algorithm) used to find frequent sequential patterns from the spatiotemporal dataset and the second one is, ETMA (Enhanced Tree-based Mining Algorithm) for detecting effective cyclic models with symbolic database representation. EFPMA is an algorithm grows models from both ends (prefixes and suffixes) of detected patterns, which results in faster pattern growth because of less levels of database projection compared to existing approaches such as Prefixspan and SPADE. ETMA uses distinct notions to store and manage transactions data horizontally such as segment, sequence and individual symbols. ETMA exploits a partition-and-conquer method to find maximal patterns by using symbolic notations. Using this algorithm, we can mine cyclic models in full-series sequential patterns including subsection series also. ETMA reduces the memory consumption and makes use of the efficient symbolic operation. Furthermore, ETMA only records time-series instances dynamically, in terms of character, series and section approaches respectively. The extent of the pattern and proving efficiency of the reducing and retrieval techniques from synthetic and actual datasets is a really open & challenging mining problem. These techniques are useful in data streams, traffic risk analysis, medical diagnosis, DNA sequence Mining, Earthquake prediction applications. Extensive investigational outcomes illustrates that the algorithms outperforms well towards efficiency and scalability than ECLAT, STNR and MAFIA approaches.

  17. On the way towards a generalized entropy maximization procedure

    International Nuclear Information System (INIS)

    Bagci, G. Baris; Tirnakli, Ugur

    2009-01-01

    We propose a generalized entropy maximization procedure, which takes into account the generalized averaging procedures and information gain definitions underlying the generalized entropies. This novel generalized procedure is then applied to Renyi and Tsallis entropies. The generalized entropy maximization procedure for Renyi entropies results in the exponential stationary distribution asymptotically for q element of (0,1] in contrast to the stationary distribution of the inverse power law obtained through the ordinary entropy maximization procedure. Another result of the generalized entropy maximization procedure is that one can naturally obtain all the possible stationary distributions associated with the Tsallis entropies by employing either ordinary or q-generalized Fourier transforms in the averaging procedure.

  18. Violating Bell inequalities maximally for two d-dimensional systems

    International Nuclear Information System (INIS)

    Chen Jingling; Wu Chunfeng; Oh, C. H.; Kwek, L. C.; Ge Molin

    2006-01-01

    We show the maximal violation of Bell inequalities for two d-dimensional systems by using the method of the Bell operator. The maximal violation corresponds to the maximal eigenvalue of the Bell operator matrix. The eigenvectors corresponding to these eigenvalues are described by asymmetric entangled states. We estimate the maximum value of the eigenvalue for large dimension. A family of elegant entangled states |Ψ> app that violate Bell inequality more strongly than the maximally entangled state but are somewhat close to these eigenvectors is presented. These approximate states can potentially be useful for quantum cryptography as well as many other important fields of quantum information

  19. Non-periodic one-dimensional ideal conductors and integrable turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Zakharov, Dmitry V. [Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY, 10012 (United States); Zakharov, Vladimir E. [Department of Mathematics, University of Arizona, Tucson, AZ, 85791 (United States); Dyachenko, Sergey A., E-mail: sdyachen@math.uiuc.edu [Department of Mathematics, University of Illinois, Urbana-Champaign, IL, 61801 (United States)

    2016-12-01

    Highlights: • An efficient procedure for construction of non-periodic, non-vanishing reflectionless potentials is presented. • The analytical procedure is reinforced by numerical simulation that presents some of these potentials. • The present work is a key ingredient for the study of integrable turbulence and statistical description of “solitonic gas”. - Abstract: To relate the motion of a quantum particle to the properties of the potential is a fundamental problem of physics, which is far from being solved. Can a medium with a potential which is neither periodic nor quasi-periodic be a conductor? That question seems to have been never addressed, despite being both interesting and having practical importance. Here we propose a new approach to the spectral problem of the one-dimensional Schrödinger operator with a bounded potential. We construct a wide class of potentials having a spectrum consisting of the positive semiaxis and finitely many bands on the negative semiaxis. These potentials, which we call primitive, are reflectionless for positive energy and in general are neither periodic nor quasi-periodic. Moreover, they can be stochastic, and yet allow ballistic transport, and thus describe one-dimensional ideal conductors. Primitive potentials also generate a new class of solutions of the KdV hierarchy. Stochastic primitive potentials describe integrable turbulence, which is important for hydrodynamics and nonlinear optics. We construct the potentials by numerically solving a system of singular integral equations. We hypothesize that finite-gap potentials are a subclass of primitive potentials, and prove this in the case of one-gap potentials.

  20. A hybrid finite-volume and finite difference scheme for depth-integrated non-hydrostatic model

    Science.gov (United States)

    Yin, Jing; Sun, Jia-wen; Wang, Xing-gang; Yu, Yong-hai; Sun, Zhao-chen

    2017-06-01

    A depth-integrated, non-hydrostatic model with hybrid finite difference and finite volume numerical algorithm is proposed in this paper. By utilizing a fraction step method, the governing equations are decomposed into hydrostatic and non-hydrostatic parts. The first part is solved by using the finite volume conservative discretization method, whilst the latter is considered by solving discretized Poisson-type equations with the finite difference method. The second-order accuracy, both in time and space, of the finite volume scheme is achieved by using an explicit predictor-correction step and linear construction of variable state in cells. The fluxes across the cell faces are computed in a Godunov-based manner by using MUSTA scheme. Slope and flux limiting technique is used to equip the algorithm with total variation dimensioning property for shock capturing purpose. Wave breaking is treated as a shock by switching off the non-hydrostatic pressure in the steep wave front locally. The model deals with moving wet/dry front in a simple way. Numerical experiments are conducted to verify the proposed model.

  1. The influence of finite Larmor radius effects on the radial interchange motions of plasma filaments

    DEFF Research Database (Denmark)

    Madsen, Jens; Garcia, Odd E.; Larsen, Jeppe Stærk

    2011-01-01

    The influence of finite Larmor radius (FLR) effects on the perpendicular convection of isolated particle density filaments driven by interchange motions in magnetized plasmas is investigated using a two-moment gyrofluid model. By means of numerical simulations on a two-dimensional, bi-periodic do......The influence of finite Larmor radius (FLR) effects on the perpendicular convection of isolated particle density filaments driven by interchange motions in magnetized plasmas is investigated using a two-moment gyrofluid model. By means of numerical simulations on a two-dimensional, bi......-periodic domain perpendicular to the magnetic field, it is demonstrated that the radial velocities of the blob-like filaments are roughly described by the inertial scaling, which prescribes a velocity proportional to the square root of the summed electron and ion pressures times the square root of the blob width...

  2. Static, self-dual, finite action SU(3) gauge fields in the de Sitter space

    International Nuclear Information System (INIS)

    Chakrabarti, A.; Comtet, A.; Viswanathan, K.S.; Simon Fraser Univ., Burnaby, British Columbia

    1980-01-01

    Static, self-dual, finite action SU(3) gauge fields are constructed on the euclidean section of the positive curvature de Sitter metric with periodic time. Their relation to known time dependent flat space solutions is pointed out. Their significances and possible applications are indicated. (orig.)

  3. Real-time topic-aware influence maximization using preprocessing.

    Science.gov (United States)

    Chen, Wei; Lin, Tian; Yang, Cheng

    2016-01-01

    Influence maximization is the task of finding a set of seed nodes in a social network such that the influence spread of these seed nodes based on certain influence diffusion model is maximized. Topic-aware influence diffusion models have been recently proposed to address the issue that influence between a pair of users are often topic-dependent and information, ideas, innovations etc. being propagated in networks are typically mixtures of topics. In this paper, we focus on the topic-aware influence maximization task. In particular, we study preprocessing methods to avoid redoing influence maximization for each mixture from scratch. We explore two preprocessing algorithms with theoretical justifications. Our empirical results on data obtained in a couple of existing studies demonstrate that one of our algorithms stands out as a strong candidate providing microsecond online response time and competitive influence spread, with reasonable preprocessing effort.

  4. Complex oscillatory behaviour in a delayed protein cross talk model with periodic forcing

    International Nuclear Information System (INIS)

    Nikolov, Svetoslav

    2009-01-01

    The purpose of this paper is to examine the effects of periodic forcing on the time delay protein cross talk model behaviour. We assume periodic variation for the plasma membrane permeability. The dynamic behaviour of the system is simulated and bifurcation diagrams are obtained for different parameters. The results show that periodic forcing can very easily give rise to complex dynamics, including a period-doubling cascade, chaos, quasi-periodic oscillating, and periodic windows. Finally, we calculate the maximal Lyapunov exponent in the regions of the parameter space where chaotic motion of delayed protein cross talk model with periodic forcing exists.

  5. A Busy period analysis of the level dependent PH/PH/1/K queue

    NARCIS (Netherlands)

    Al Hanbali, Ahmad

    2011-01-01

    In this paper, we study the transient behavior of a level dependent single server queuing system with a waiting room of finite size during the busy period. The focus is on the level dependent PH/PH/1/K queue. We derive in closed form the joint transform of the length of the busy period, the number

  6. Cardiorespiratory Coordination in Repeated Maximal Exercise

    Directory of Open Access Journals (Sweden)

    Sergi Garcia-Retortillo

    2017-06-01

    Full Text Available Increases in cardiorespiratory coordination (CRC after training with no differences in performance and physiological variables have recently been reported using a principal component analysis approach. However, no research has yet evaluated the short-term effects of exercise on CRC. The aim of this study was to delineate the behavior of CRC under different physiological initial conditions produced by repeated maximal exercises. Fifteen participants performed 2 consecutive graded and maximal cycling tests. Test 1 was performed without any previous exercise, and Test 2 6 min after Test 1. Both tests started at 0 W and the workload was increased by 25 W/min in males and 20 W/min in females, until they were not able to maintain the prescribed cycling frequency of 70 rpm for more than 5 consecutive seconds. A principal component (PC analysis of selected cardiovascular and cardiorespiratory variables (expired fraction of O2, expired fraction of CO2, ventilation, systolic blood pressure, diastolic blood pressure, and heart rate was performed to evaluate the CRC defined by the number of PCs in both tests. In order to quantify the degree of coordination, the information entropy was calculated and the eigenvalues of the first PC (PC1 were compared between tests. Although no significant differences were found between the tests with respect to the performed maximal workload (Wmax, maximal oxygen consumption (VO2 max, or ventilatory threshold (VT, an increase in the number of PCs and/or a decrease of eigenvalues of PC1 (t = 2.95; p = 0.01; d = 1.08 was found in Test 2 compared to Test 1. Moreover, entropy was significantly higher (Z = 2.33; p = 0.02; d = 1.43 in the last test. In conclusion, despite the fact that no significant differences were observed in the conventionally explored maximal performance and physiological variables (Wmax, VO2 max, and VT between tests, a reduction of CRC was observed in Test 2. These results emphasize the interest of CRC

  7. Existence of pseudo almost periodic solutions for a class of partial functional differential equations

    Directory of Open Access Journals (Sweden)

    Hui-Sheng Ding

    2013-04-01

    Full Text Available In this paper, we first introduce a new class of pseudo almost periodic type functions and investigate some properties of pseudo almost periodic type functions; and then we discuss the existence of pseudo almost periodic solutions to the class of abstract partial functional differential equations $x'(t=Ax(t+f(t,x_t$ with finite delay in a Banach space X.

  8. Unified Digital Periodic Signal Filters for Power Converter Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Xin, Zhen; Zhou, Keliang

    2017-01-01

    Periodic signal controllers like repetitive and resonant controllers have demonstrated much potential in the control of power electronic converters, where periodic signals (e.g., ac voltages and currents) can be precisely regulated to follow references. Beyond the control of periodic signals, ac...... signal processing (e.g., in synchronization and pre-filtering) is also very important for power converter systems. Hence, this paper serves to unify digital periodic signal filters so as to maximize their roles in power converter systems (e.g., enhance the control of ac signals). The unified digital...... periodic signal filters behave like a comb filter, but it can also be configured to selectively filter out the harmonics of interest (e.g., the odd-order harmonics in single-phase power converter systems). Moreover, a virtual variable-sampling-frequency unit delay that enables frequency adaptive periodic...

  9. El culto de Maximón en Guatemala

    OpenAIRE

    Pédron‑Colombani, Sylvie

    2009-01-01

    Este artículo se enfoca en la figura de Maximón, deidad sincrética de Guatemala, en un contexto de desplazamiento de la religión católica popular por parte de las iglesias protestantes. Esta divinidad híbrida a la cual se agregan santos católicos como Judas Iscariote o el dios maya Mam, permite la apropiación de Maximón por segmentos diferenciados de la población (tanto indígena como mestiza). Permite igualmente ser símbolo de protestas sociales enmascaradas cuando se asocia Maximón con figur...

  10. Self-consistent collective-coordinate method for ''maximally-decoupled'' collective subspace and its boson mapping: Quantum theory of ''maximally-decoupled'' collective motion

    International Nuclear Information System (INIS)

    Marumori, T.; Sakata, F.; Maskawa, T.; Une, T.; Hashimoto, Y.

    1983-01-01

    The main purpose of this paper is to develop a full quantum theory, which is capable by itself of determining a ''maximally-decoupled'' collective motion. The paper is divided into two parts. In the first part, the motivation and basic idea of the theory are explained, and the ''maximal-decoupling condition'' on the collective motion is formulated within the framework of the time-dependent Hartree-Fock theory, in a general form called the invariance principle of the (time-dependent) Schrodinger equation. In the second part, it is shown that when the author positively utilize the invariance principle, we can construct a full quantum theory of the ''maximally-decoupled'' collective motion. This quantum theory is shown to be a generalization of the kinematical boson-mapping theories so far developed, in such a way that the dynamical ''maximal-decoupling condition'' on the collective motion is automatically satisfied

  11. Infinte Periodic Structure of Lightweight Elements

    DEFF Research Database (Denmark)

    Domadiya, Parthkumar Gandalal; Andersen, Lars Vabbersgaard; Sorokin, Sergey

    2013-01-01

    Lightweight wooden structures have become more popular as a sustainable, environmental- friendly and cost-effective alternative to concrete, steel and masonry buildings. However, there are certain drawbacks regarding noise and vibration due to the smaller weight and stiffness of wooden buildings....... Furthermore, lightweight building elements are typically periodic structures that behave as filters for sound propagation within certain frequency ranges (stop bands), thus only allowing transmission within the pass bands. Hence, traditional methods based on statistical energy analysis cannot be used...... for proper dynamic assessment of lightweight buildings. Instead, this paper discusses and compares the use of finite element analysis and a wave approach based on Floquet theory. The present analysis has focus on the effect of periodicity on vibration transmission within semi-infinite beam structures. Two...

  12. Relativistic finite-temperature Thomas-Fermi model

    Science.gov (United States)

    Faussurier, Gérald

    2017-11-01

    We investigate the relativistic finite-temperature Thomas-Fermi model, which has been proposed recently in an astrophysical context. Assuming a constant distribution of protons inside the nucleus of finite size avoids severe divergence of the electron density with respect to a point-like nucleus. A formula for the nuclear radius is chosen to treat any element. The relativistic finite-temperature Thomas-Fermi model matches the two asymptotic regimes, i.e., the non-relativistic and the ultra-relativistic finite-temperature Thomas-Fermi models. The equation of state is considered in detail. For each version of the finite-temperature Thomas-Fermi model, the pressure, the kinetic energy, and the entropy are calculated. The internal energy and free energy are also considered. The thermodynamic consistency of the three models is considered by working from the free energy. The virial question is also studied in the three cases as well as the relationship with the density functional theory. The relativistic finite-temperature Thomas-Fermi model is far more involved than the non-relativistic and ultra-relativistic finite-temperature Thomas-Fermi models that are very close to each other from a mathematical point of view.

  13. Supersymmetric theories and finiteness

    International Nuclear Information System (INIS)

    Helayel-Neto, J.A.

    1989-01-01

    We attempt here to present a short survey of the all-order finite Lagrangian field theories known at present in four-and two-dimensional space-times. The question of the possible relevance of these ultraviolet finite models in the formulation of consistent unified frameworks for the fundamental forces is also addressed to. (author)

  14. A first course in finite elements

    CERN Document Server

    Fish, Jacob

    2007-01-01

    Developed from the authors, combined total of 50 years undergraduate and graduate teaching experience, this book presents the finite element method formulated as a general-purpose numerical procedure for solving engineering problems governed by partial differential equations.  Focusing on the formulation and application of the finite element method through the integration of finite element theory, code development, and software application, the book is both introductory and self-contained, as well as being a hands-on experience for any student. This authoritative text on Finite Elements:Adopts

  15. Features of finite quantum field theories

    International Nuclear Information System (INIS)

    Boehm, M.; Denner, A.

    1987-01-01

    We analyse general features of finite quantum field theories. A quantum field theory is considered to be finite, if the corresponding renormalization constants evaluated in the dimensional regularization scheme are free from divergences in all orders of perturbation theory. We conclude that every finite renormalizable quantum field theory with fields of spin one or less must contain both scalar fields and fermion fields and nonabelian gauge fields. Some secific nonsupersymmetric models are found to be finite at the one- and two-loop level. (orig.)

  16. Periodization Strategies in Older Adults: Impact on Physical Function and Health.

    Science.gov (United States)

    Conlon, Jenny A; Newton, Robert U; Tufano, James J; Banyard, Harry G; Hopper, Amanda J; Ridge, Ashley J; Haff, G Gregory

    2016-12-01

    This study compared the effect of periodized versus nonperiodized (NP) resistance training (RT) on physical function and health outcomes in older adults. Forty-one apparently healthy untrained older adults (women = 21, men = 20; 70.9 ± 5.1 yr; 166.3 ± 8.2 cm; 72.9 ± 13.4 kg) were recruited and randomly stratified to a NP, block periodized, or daily undulating periodized training group. Outcome measures were assessed at baseline and after a 22-wk × 3 d·wk RT intervention, including; anthropometrics, body composition, blood pressure and biomarkers, maximal strength, functional capacity, balance confidence, and quality of life. Thirty-three subjects satisfied all study requirements and were included in analyses (women = 17, men = 16; 71.3 ± 5.4 yr; 166.3 ± 8.5 cm; 72.5 ± 13.7 kg). The main finding was that all three RT models produced significant improvements in several physical function and physiological health outcomes, including; systolic blood pressure, blood biomarkers, body composition, maximal strength, functional capacity and balance confidence, with no between-group differences. Periodized RT, specifically block periodization and daily undulating periodized, and NP RT are equally effective for promoting significant improvements in physical function and health outcomes among apparently healthy untrained older adults. Therefore, periodization strategies do not appear to be necessary during the initial stages of RT in this population. Practitioners should work toward increasing RT participation in the age via feasible and efficacious interventions targeting long-term adherence in minimally supervised settings.

  17. Variational integrators for the dynamics of thermo-elastic solids with finite speed thermal waves

    International Nuclear Information System (INIS)

    Mata, Pablo; Lew, Adrian J.

    2014-01-01

    This paper formulates variational integrators for finite element discretizations of deformable bodies with heat conduction in the form of finite speed thermal waves. The cornerstone of the construction consists in taking advantage of the fact that the Green–Naghdi theory of type II for thermo-elastic solids has a Hamiltonian structure. Thus, standard techniques to construct variational integrators can be applied to finite element discretizations of the problem. The resulting discrete-in-time trajectories are then consistent with the laws of thermodynamics for these systems: for an isolated system, they exactly conserve the total entropy, and nearly exactly conserve the total energy over exponentially long periods of time. Moreover, linear and angular momenta are also exactly conserved whenever the exact system does. For definiteness, we construct an explicit second-order accurate algorithm for affine tetrahedral elements in two and three dimensions, and demonstrate its performance with numerical examples

  18. Assessment of the Maximal Split-Half Coefficient to Estimate Reliability

    Science.gov (United States)

    Thompson, Barry L.; Green, Samuel B.; Yang, Yanyun

    2010-01-01

    The maximal split-half coefficient is computed by calculating all possible split-half reliability estimates for a scale and then choosing the maximal value as the reliability estimate. Osburn compared the maximal split-half coefficient with 10 other internal consistency estimates of reliability and concluded that it yielded the most consistently…

  19. Periodicity-induced effects and methods in vibro-acoustics

    DEFF Research Database (Denmark)

    Sorokin, Sergey V.

    2015-01-01

    issue addressed in the paper is an influence of the corrugation shape and amplitude on the broadness and location of the stop- and pass-bands in an infinite periodic structure. Explicit asymptotic formulae for the stop band borders are given and the topology of the stop band pattern is explained......The paper is concerned with the modelling of wave propagation in and vibration of periodic elastic structures. Although analysis of waveguide properties of infinite periodic structures is a well establish research subject, some issues have not yet been fully addressed in the literature. The aim...... of the paper is to illustrate these issues in simple examples and to discuss possible applications and generalisations. First, the eigenfrequency spectra of finite periodic structures are compared with the location of stop-bands for their infinite counterparts. Special attention is paid to eigenfrequencies...

  20. Learning curves for mutual information maximization

    International Nuclear Information System (INIS)

    Urbanczik, R.

    2003-01-01

    An unsupervised learning procedure based on maximizing the mutual information between the outputs of two networks receiving different but statistically dependent inputs is analyzed [S. Becker and G. Hinton, Nature (London) 355, 161 (1992)]. For a generic data model, I show that in the large sample limit the structure in the data is recognized by mutual information maximization. For a more restricted model, where the networks are similar to perceptrons, I calculate the learning curves for zero-temperature Gibbs learning. These show that convergence can be rather slow, and a way of regularizing the procedure is considered

  1. Net returns, fiscal risks, and the optimal patient mix for a profit-maximizing hospital.

    Science.gov (United States)

    Ozatalay, S; Broyles, R

    1987-10-01

    As is well recognized, the provisions of PL98-21 not only transfer financial risks from the Medicare program to the hospital but also induce institutions to adjust the diagnostic mix of Medicare beneficiaries so as to maximize net income or minimize the net loss. This paper employs variation in the set of net returns as the sole measure of financial risk and develops a model that identifies the mix of beneficiaries that maximizes net income, subject to a given level of risk. The results indicate that the provisions of PL98-21 induce the institution to deny admission to elderly patients presenting conditions for which the net return is relatively low and the variance in the cost per case is large. Further, the paper suggests that the treatment of beneficiaries at a level commensurate with previous periods or the preferences of physicians may jeopardize the viability and solvency of Medicare-dependent hospitals.

  2. Breakdown of maximality conjecture in continuous phase transitions

    International Nuclear Information System (INIS)

    Mukamel, D.; Jaric, M.V.

    1983-04-01

    A Landau-Ginzburg-Wilson model associated with a single irreducible representation which exhibits an ordered phase whose symmetry group is not a maximal isotropy subgroup of the symmetry group of the disordered phase is constructed. This example disproves the maximality conjecture suggested in numerous previous studies. Below the (continuous) transition, the order parameter points along a direction which varies with the temperature and with the other parameters which define the model. An extension of the maximality conjecture to reducible representations was postulated in the context of Higgs symmetry breaking mechanism. Our model can also be extended to provide a counter example in these cases. (author)

  3. Maximizers versus satisficers: Decision-making styles, competence, and outcomes

    OpenAIRE

    Andrew M. Parker; Wändi Bruine de Bruin; Baruch Fischhoff

    2007-01-01

    Our previous research suggests that people reporting a stronger desire to maximize obtain worse life outcomes (Bruine de Bruin et al., 2007). Here, we examine whether this finding may be explained by the decision-making styles of self-reported maximizers. Expanding on Schwartz et al.\\ (2002), we find that self-reported maximizers are more likely to show problematic decision-making styles, as evidenced by self-reports of less behavioral coping, greater dependence on others when making decision...

  4. Overgroups of root groups in classical groups

    CERN Document Server

    Aschbacher, Michael

    2016-01-01

    The author extends results of McLaughlin and Kantor on overgroups of long root subgroups and long root elements in finite classical groups. In particular he determines the maximal subgroups of this form. He also determines the maximal overgroups of short root subgroups in finite classical groups and the maximal overgroups in finite orthogonal groups of c-root subgroups.

  5. IMNN: Information Maximizing Neural Networks

    Science.gov (United States)

    Charnock, Tom; Lavaux, Guilhem; Wandelt, Benjamin D.

    2018-04-01

    This software trains artificial neural networks to find non-linear functionals of data that maximize Fisher information: information maximizing neural networks (IMNNs). As compressing large data sets vastly simplifies both frequentist and Bayesian inference, important information may be inadvertently missed. Likelihood-free inference based on automatically derived IMNN summaries produces summaries that are good approximations to sufficient statistics. IMNNs are robustly capable of automatically finding optimal, non-linear summaries of the data even in cases where linear compression fails: inferring the variance of Gaussian signal in the presence of noise, inferring cosmological parameters from mock simulations of the Lyman-α forest in quasar spectra, and inferring frequency-domain parameters from LISA-like detections of gravitational waveforms. In this final case, the IMNN summary outperforms linear data compression by avoiding the introduction of spurious likelihood maxima.

  6. PARAMETRIZATION OF INNER STRUCTURE OF AGRICULTURAL SYSTEMS ON THE BASIS OF MAXIMAL YIELDS ISOLINES (ISOCARPS

    Directory of Open Access Journals (Sweden)

    K KUDRNA

    2004-07-01

    Full Text Available On the basis of analysis of yield time series from a ten-year period, isolines of maximal yields of crops (isocarps have been constructed, homogenized yield zones have been determined, and inner structures of the agricultural system have been calculated. The algorithm of a normal and an optimal structure calculation have been used, and differences in the structure of the agricultural system have been determined for every defi ned zone.

  7. Strong interaction at finite temperature

    Indian Academy of Sciences (India)

    Quantum chromodynamics; finite temperature; chiral perturbation theory; QCD sum rules. PACS Nos 11.10. ..... at finite temperature. The self-energy diagrams of figure 2 modify it to ..... method of determination at present. Acknowledgement.

  8. Neutrino mass textures with maximal CP violation

    International Nuclear Information System (INIS)

    Aizawa, Ichiro; Kitabayashi, Teruyuki; Yasue, Masaki

    2005-01-01

    We show three types of neutrino mass textures, which give maximal CP violation as well as maximal atmospheric neutrino mixing. These textures are described by six real mass parameters: one specified by two complex flavor neutrino masses and two constrained ones and the others specified by three complex flavor neutrino masses. In each texture, we calculate mixing angles and masses, which are consistent with observed data, as well as Majorana CP phases

  9. Hydrodynamic interaction of two particles in confined linear shear flow at finite Reynolds number

    Science.gov (United States)

    Yan, Yiguang; Morris, Jeffrey F.; Koplik, Joel

    2007-11-01

    We discuss the hydrodynamic interactions of two solid bodies placed in linear shear flow between parallel plane walls in a periodic geometry at finite Reynolds number. The computations are based on the lattice Boltzmann method for particulate flow, validated here by comparison to previous results for a single particle. Most of our results pertain to cylinders in two dimensions but some examples are given for spheres in three dimensions. Either one mobile and one fixed particle or else two mobile particles are studied. The motion of a mobile particle is qualitatively similar in both cases at early times, exhibiting either trajectory reversal or bypass, depending upon the initial vector separation of the pair. At longer times, if a mobile particle does not approach a periodic image of the second, its trajectory tends to a stable limit point on the symmetry axis. The effect of interactions with periodic images is to produce nonconstant asymptotic long-time trajectories. For one free particle interacting with a fixed second particle within the unit cell, the free particle may either move to a fixed point or take up a limit cycle. Pairs of mobile particles starting from symmetric initial conditions are shown to asymptotically reach either fixed points, or mirror image limit cycles within the unit cell, or to bypass one another (and periodic images) indefinitely on a streamwise periodic trajectory. The limit cycle possibility requires finite Reynolds number and arises as a consequence of streamwise periodicity when the system length is sufficiently short.

  10. Electromagnetic-field amplification in finite one-dimensional photonic crystals

    International Nuclear Information System (INIS)

    Gorelik, V. S.; Kapaev, V. V.

    2016-01-01

    The electromagnetic-field distribution in a finite one-dimensional photonic crystal is studied using the numerical solution of Maxwell’s equations by the transfer-matrix method. The dependence of the transmission coefficient T on the period d (or the wavelength λ) has the characteristic form with M–1 (M is the number of periods in the structure) maxima with T = 1 in the allowed band of an infinite crystal and zero values in the forbidden band. The field-modulus distribution E(x) in the structure for parameters that correspond to the transmission maxima closest to the boundaries of forbidden bands has maxima at the center of the structure; the value at the maximum considerably exceeds the incident-field strength. For the number of periods M ~ 50, more than an order of magnitude increase in the field amplification is observed. The numerical results are interpreted with an analytic theory constructed by representing the solution in the form of a linear combination of counterpropagating Floquet modes in a periodic structure.

  11. Comparison of changes in the mobility of the pelvic floor muscle on during the abdominal drawing-in maneuver, maximal expiration, and pelvic floor muscle maximal contraction

    OpenAIRE

    Jung, Halim; Jung, Sangwoo; Joo, Sunghee; Song, Changho

    2016-01-01

    [Purpose] The purpose of this study was to compare changes in the mobility of the pelvic floor muscle during the abdominal drawing-in maneuver, maximal expiration, and pelvic floor muscle maximal contraction. [Subjects] Thirty healthy adults participated in this study (15 men and 15 women). [Methods] All participants performed a bridge exercise and abdominal curl-up during the abdominal drawing-in maneuver, maximal expiration, and pelvic floor muscle maximal contraction. Pelvic floor mobility...

  12. Effect of Loss on Slow-light-enhanced Second Harmonic Generation in Periodic Nanostructures

    DEFF Research Database (Denmark)

    Saravi, Sina; Quintero-Bermudez, Rafael; Setzpfandt, Frank

    2016-01-01

    We analyze, analytically and through nonlinear simulations, the dependence of SHG efficiency on the group index in lossy periodic structures, and find that the optimal efficiency is reached for finite values of the group index....

  13. Using Floquet periodicity to easily calculate dispersion curves and wave structures of homogeneous waveguides

    Science.gov (United States)

    Hakoda, Christopher; Rose, Joseph; Shokouhi, Parisa; Lissenden, Clifford

    2018-04-01

    Dispersion curves are essential to any guided-wave-related project. The Semi-Analytical Finite Element (SAFE) method has become the conventional way to compute dispersion curves for homogeneous waveguides. However, only recently has a general SAFE formulation for commercial and open-source software become available, meaning that until now SAFE analyses have been variable and more time consuming than desirable. Likewise, the Floquet boundary conditions enable analysis of waveguides with periodicity and have been an integral part of the development of metamaterials. In fact, we have found the use of Floquet boundary conditions to be an extremely powerful tool for homogeneous waveguides, too. The nuances of using periodic boundary conditions for homogeneous waveguides that do not exhibit periodicity are discussed. Comparisons between this method and SAFE are made for selected homogeneous waveguide applications. The COMSOL Multiphysics software is used for the results shown, but any standard finite element software that can implement Floquet periodicity (user-defined or built-in) should suffice. Finally, we identify a number of complex waveguides for which dispersion curves can be found with relative ease by using the periodicity inherent to the Floquet boundary conditions.

  14. Finiteness of quantum field theories and supersymmetry

    International Nuclear Information System (INIS)

    Lucha, W.; Neufeld, H.

    1986-01-01

    We study the consequences of finiteness for a general renormalizable quantum field theory by analysing the finiteness conditions resulting from the requirement of absence of divergent contributions to the renormalizations of the parameters of an arbitrary gauge theory. In all cases considered, the well-known two-loop finite supersymmetric theories prove to be the unique solution of the finiteness criterion. (Author)

  15. Long-term evolution of broken wakefields in finite radius plasmas

    CERN Document Server

    Lotov, Konstantin; Petrenko, Alexey

    2014-01-01

    A novel effect of fast heating and charging a finite-radius plasma is discovered in the context of plasma wakefield acceleration. As the plasma wave breaks, the most of its energy is transferred to plasma electrons which create strong charge-separation electric field and azimuthal magnetic field around the plasma. The slowly varying field structure is preserved for hundreds of wakefield periods and contains (together with hot electrons) up to 80% of the initial wakefield energy.

  16. Automatic Construction of Finite Algebras

    Institute of Scientific and Technical Information of China (English)

    张健

    1995-01-01

    This paper deals with model generation for equational theories,i.e.,automatically generating (finite)models of a given set of (logical) equations.Our method of finite model generation and a tool for automatic construction of finite algebras is described.Some examples are given to show the applications of our program.We argue that,the combination of model generators and theorem provers enables us to get a better understanding of logical theories.A brief comparison betwween our tool and other similar tools is also presented.

  17. Maximally-localized position, Euclidean path-integral, and thermodynamics in GUP quantum mechanics

    Science.gov (United States)

    Bernardo, Reginald Christian S.; Esguerra, Jose Perico H.

    2018-04-01

    In dealing with quantum mechanics at very high energies, it is essential to adapt to a quasiposition representation using the maximally-localized states because of the generalized uncertainty principle. In this paper, we look at maximally-localized states as eigenstates of the operator ξ = X + iβP that we refer to as the maximally-localized position. We calculate the overlap between maximally-localized states and show that the identity operator can be expressed in terms of the maximally-localized states. Furthermore, we show that the maximally-localized position is diagonal in momentum-space and that the maximally-localized position and its adjoint satisfy commutation and anti-commutation relations reminiscent of the harmonic oscillator commutation and anti-commutation relations. As application, we use the maximally-localized position in developing the Euclidean path-integral and introduce the compact form of the propagator for maximal localization. The free particle momentum-space propagator and the propagator for maximal localization are analytically evaluated up to quadratic-order in β. Finally, we obtain a path-integral expression for the partition function of a thermodynamic system using the maximally-localized states. The partition function of a gas of noninteracting particles is evaluated. At temperatures exceeding the Planck energy, we obtain the gas' maximum internal energy N / 2 β and recover the zero heat capacity of an ideal gas.

  18. Complexity of hierarchically and 1-dimensional periodically specified problems

    Energy Technology Data Exchange (ETDEWEB)

    Marathe, M.V.; Hunt, H.B. III; Stearns, R.E.; Radhakrishnan, V.

    1995-08-23

    We study the complexity of various combinatorial and satisfiability problems when instances are specified using one of the following specifications: (1) the 1-dimensional finite periodic narrow specifications of Wanke and Ford et al. (2) the 1-dimensional finite periodic narrow specifications with explicit boundary conditions of Gale (3) the 2-way infinite1-dimensional narrow periodic specifications of Orlin et al. and (4) the hierarchical specifications of Lengauer et al. we obtain three general types of results. First, we prove that there is a polynomial time algorithm that given a 1-FPN- or 1-FPN(BC)specification of a graph (or a C N F formula) constructs a level-restricted L-specification of an isomorphic graph (or formula). This theorem along with the hardness results proved here provides alternative and unified proofs of many hardness results proved in the past either by Lengauer and Wagner or by Orlin. Second, we study the complexity of generalized CNF satisfiability problems of Schaefer. Assuming P {ne} PSPACE, we characterize completely the polynomial time solvability of these problems, when instances are specified as in (1), (2),(3) or (4). As applications of our first two types of results, we obtain a number of new PSPACE-hardness and polynomial time algorithms for problems specified as in (1), (2), (3) or(4). Many of our results also hold for O(log N) bandwidth bounded planar instances.

  19. Why firms should not always maximize profits

    OpenAIRE

    Kolstad, Ivar

    2006-01-01

    Though corporate social responsibility (CSR) is on the agenda of most major corporations, corporate executives still largely support the view that corporations should maximize the returns to their owners. There are two lines of defence for this position. One is the Friedmanian view that maximizing owner returns is the corporate social responsibility of corporations. The other is a position voiced by many executives, that CSR and profits go together. This paper argues that the first position i...

  20. Synchronization of finite-size particles by a traveling wave in a cylindrical flow

    Science.gov (United States)

    Melnikov, D. E.; Pushkin, D. O.; Shevtsova, V. M.

    2013-09-01

    Motion of small finite-size particles suspended in a cylindrical thermocapillary flow with an azimuthally traveling wave is studied experimentally and numerically. At certain flow regimes the particles spontaneously align in dynamic accumulation structures (PAS) of spiral shape. We find that long-time trajectories of individual particles in this flow fall into three basic categories that can be described, borrowing the dynamical systems terminology, as the stable periodic, the quasiperiodic, and the quasistable periodic orbits. Besides these basic types of orbits, we observe the "doubled" periodic orbits and shuttle-like particle trajectories. We find that ensembles of particles having periodic orbits give rise to one-dimensional spiral PAS, while ensembles of particles having quasiperiodic orbits form two-dimensional PAS of toroidal shape. We expound the reasons why these types of orbits and the emergence of the corresponding accumulation structures should naturally be anticipated based on the phase locking theory of PAS formation. We give a further discussion of PAS features, such as the finite thickness of PAS spirals and the probable scenarios of the spiral PAS destruction. Finally, in numerical simulations of inertial particles we observe formation of the spiral structures corresponding to the 3:1 "resonance" between the particle turnover frequency and the wave oscillations frequency, thus confirming another prediction of the phase locking theory. In view of the generality of the arguments involved, we expect the importance of this structure-forming mechanism to go far beyond the realm of the laboratory-friendly thermocapillary flows.

  1. Numerical analysis of creep brittle rupture by the finite element method

    International Nuclear Information System (INIS)

    Goncalves, O.J.A.; Owen, D.R.J.

    1983-01-01

    In this work an implicit algorithm is proposed for the numerical analysis of creep brittle rupture problems by the finite element method. This kind of structural failure, typical in components operating at high temperatures for long periods of time, is modelled using either a three dimensional generalization of the Kachanov-Rabotnov equations due to Leckie and Hayhurst or the Monkman-Grant fracture criterion together with the Linear Life Fraction Rule. The finite element equations are derived by the displacement method and isoparametric elements are used for the spatial discretization. Geometric nonlinear effects (large displacements) are accounted for by an updated Lagrangian formulation. Attention is also focussed on the solution of the highly stiff differential equations that govern damage growth. Finally the numerical results of a three-dimensional analysis of a pressurized thin cylinder containing oxidised pits in its external wall are discussed. (orig.)

  2. Finding Maximal Pairs with Bounded Gap

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Lyngsø, Rune B.; Pedersen, Christian N. S.

    1999-01-01

    . In this paper we present methods for finding all maximal pairs under various constraints on the gap. In a string of length n we can find all maximal pairs with gap in an upper and lower bounded interval in time O(n log n+z) where z is the number of reported pairs. If the upper bound is removed the time reduces...... to O(n+z). Since a tandem repeat is a pair where the gap is zero, our methods can be seen as a generalization of finding tandem repeats. The running time of our methods equals the running time of well known methods for finding tandem repeats....

  3. Toward finite quantum field theories

    International Nuclear Information System (INIS)

    Rajpoot, S.; Taylor, J.G.

    1986-01-01

    The properties that make the N=4 super Yang-Mills theory free from ultraviolet divergences are (i) a universal coupling for gauge and matter interactions, (ii) anomaly-free representations, (iii) no charge renormalization, and (iv) if masses are explicitly introduced into the theory, then these are required to satisfy the mass-squared supertrace sum rule Σsub(s=0.1/2)(-1)sup(2s+1)(2s+1)M 2 sub(s)=O. Finite N=2 theories are found to satisfy the above criteria. The missing member in this class of field theories are finite field theories consisting of N=1 superfields. These theories are discussed in the light of the above finiteness properties. In particular, the representations of all simple classical groups satisfying the anomaly-free and no-charge renormalization conditions for finite N=1 field theories are discussed. A consequence of these restrictions on the allowed representations is that an N=1 finite SU(5)-based model of strong and electroweak interactions can contain at most five conventional families of quarks and leptons, a constraint almost compatible with the one deduced from cosmological arguments. (author)

  4. The key kinematic determinants of undulatory underwater swimming at maximal velocity.

    Science.gov (United States)

    Connaboy, Chris; Naemi, Roozbeh; Brown, Susan; Psycharakis, Stelios; McCabe, Carla; Coleman, Simon; Sanders, Ross

    2016-01-01

    The optimisation of undulatory underwater swimming is highly important in competitive swimming performance. Nineteen kinematic variables were identified from previous research undertaken to assess undulatory underwater swimming performance. The purpose of the present study was to determine which kinematic variables were key to the production of maximal undulatory underwater swimming velocity. Kinematic data at maximal undulatory underwater swimming velocity were collected from 17 skilled swimmers. A series of separate backward-elimination analysis of covariance models was produced with cycle frequency and cycle length as dependent variables (DVs) and participant as a fixed factor, as including cycle frequency and cycle length would explain 100% of the maximal swimming velocity variance. The covariates identified in the cycle-frequency and cycle-length models were used to form the saturated model for maximal swimming velocity. The final parsimonious model identified three covariates (maximal knee joint angular velocity, maximal ankle angular velocity and knee range of movement) as determinants of the variance in maximal swimming velocity (adjusted-r2 = 0.929). However, when participant was removed as a fixed factor there was a large reduction in explained variance (adjusted r2 = 0.397) and only maximal knee joint angular velocity continued to contribute significantly, highlighting its importance to the production of maximal swimming velocity. The reduction in explained variance suggests an emphasis on inter-individual differences in undulatory underwater swimming technique and/or anthropometry. Future research should examine the efficacy of other anthropometric, kinematic and coordination variables to better understand the production of maximal swimming velocity and consider the importance of individual undulatory underwater swimming techniques when interpreting the data.

  5. Kinetic theory in maximal-acceleration invariant phase space

    International Nuclear Information System (INIS)

    Brandt, H.E.

    1989-01-01

    A vanishing directional derivative of a scalar field along particle trajectories in maximal acceleration invariant phase space is identical in form to the ordinary covariant Vlasov equation in curved spacetime in the presence of both gravitational and nongravitational forces. A natural foundation is thereby provided for a covariant kinetic theory of particles in maximal-acceleration invariant phase space. (orig.)

  6. Half-maximal supersymmetry from exceptional field theory

    Energy Technology Data Exchange (ETDEWEB)

    Malek, Emanuel [Arnold Sommerfeld Center for Theoretical Physics, Department fuer Physik, Ludwig-Maximilians-Universitaet Muenchen (Germany)

    2017-10-15

    We study D ≥ 4-dimensional half-maximal flux backgrounds using exceptional field theory. We define the relevant generalised structures and also find the integrability conditions which give warped half-maximal Minkowski{sub D} and AdS{sub D} vacua. We then show how to obtain consistent truncations of type II / 11-dimensional SUGRA which break half the supersymmetry. Such truncations can be defined on backgrounds admitting exceptional generalised SO(d - 1 - N) structures, where d = 11 - D, and N is the number of vector multiplets obtained in the lower-dimensional theory. Our procedure yields the most general embedding tensors satisfying the linear constraint of half-maximal gauged SUGRA. We use this to prove that all D ≥ 4 half-maximal warped AdS{sub D} and Minkowski{sub D} vacua of type II / 11-dimensional SUGRA admit a consistent truncation keeping only the gravitational supermultiplet. We also show to obtain heterotic double field theory from exceptional field theory and comment on the M-theory / heterotic duality. In five dimensions, we find a new SO(5, N) double field theory with a (6 + N)-dimensional extended space. Its section condition has one solution corresponding to 10-dimensional N = 1 supergravity and another yielding six-dimensional N = (2, 0) SUGRA. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Generalized finite elements

    International Nuclear Information System (INIS)

    Wachspress, E.

    2009-01-01

    Triangles and rectangles are the ubiquitous elements in finite element studies. Only these elements admit polynomial basis functions. Rational functions provide a basis for elements having any number of straight and curved sides. Numerical complexities initially associated with rational bases precluded extensive use. Recent analysis has reduced these difficulties and programs have been written to illustrate effectiveness. Although incorporation in major finite element software requires considerable effort, there are advantages in some applications which warrant implementation. An outline of the basic theory and of recent innovations is presented here. (authors)

  8. Characterization of resonances using finite size effects

    International Nuclear Information System (INIS)

    Pozsgay, B.; Takacs, G.

    2006-01-01

    We develop methods to extract resonance widths from finite volume spectra of (1+1)-dimensional quantum field theories. Our two methods are based on Luscher's description of finite size corrections, and are dubbed the Breit-Wigner and the improved ''mini-Hamiltonian'' method, respectively. We establish a consistent framework for the finite volume description of sufficiently narrow resonances that takes into account the finite size corrections and mass shifts properly. Using predictions from form factor perturbation theory, we test the two methods against finite size data from truncated conformal space approach, and find excellent agreement which confirms both the theoretical framework and the numerical validity of the methods. Although our investigation is carried out in 1+1 dimensions, the extension to physical 3+1 space-time dimensions appears straightforward, given sufficiently accurate finite volume spectra

  9. Mechanical low-frequency filter via modes separation in 3D periodic structures

    Science.gov (United States)

    D'Alessandro, L.; Belloni, E.; Ardito, R.; Braghin, F.; Corigliano, A.

    2017-12-01

    This work presents a strategy to design three-dimensional elastic periodic structures endowed with complete bandgaps, the first of which is ultra-wide, where the top limits of the first two bandgaps are overstepped in terms of wave transmission in the finite structure. Thus, subsequent bandgaps are merged, approaching the behaviour of a three-dimensional low-pass mechanical filter. This result relies on a proper organization of the modal characteristics, and it is validated by performing numerical and analytical calculations over the unit cell. A prototype of the analysed layout, made of Nylon by means of additive manufacturing, is experimentally tested to assess the transmission spectrum of the finite structure, obtaining good agreement with numerical predictions. The presented strategy paves the way for the development of a class of periodic structures to be used in robust and reliable wave attenuation over a wide frequency band.

  10. Comparison of spatial harmonics in infinite and finite Bragg stacks for metamaterial homogenization

    DEFF Research Database (Denmark)

    Clausen, Niels Christian Jerichau; Arslanagic, Samel; Breinbjerg, Olav

    2014-01-01

    Metamaterial homogenization may be based on the dominance of a single Floquet-Bloch spatial harmonic in an infinite periodic structure - with the dominance quantified in terms of the relative magnitude of the associated spatial harmonic Poynting vector. For the corresponding finite structure...... the field is not quasi-periodic and cannot be expanded in Floquet-Bloch spatial harmonics; however, a set of pseudo spatial harmonics can be defined and the dominance of a single such harmonic likewise be used to determine whether the structure can be homogenized. For three different lossless Bragg stack...

  11. A game theoretic approach to a finite-time disturbance attenuation problem

    Science.gov (United States)

    Rhee, Ihnseok; Speyer, Jason L.

    1991-01-01

    A disturbance attenuation problem over a finite-time interval is considered by a game theoretic approach where the control, restricted to a function of the measurement history, plays against adversaries composed of the process and measurement disturbances, and the initial state. A zero-sum game, formulated as a quadratic cost criterion subject to linear time-varying dynamics and measurements, is solved by a calculus of variation technique. By first maximizing the quadratic cost criterion with respect to the process disturbance and initial state, a full information game between the control and the measurement residual subject to the estimator dynamics results. The resulting solution produces an n-dimensional compensator which expresses the controller as a linear combination of the measurement history. A disturbance attenuation problem is solved based on the results of the game problem. For time-invariant systems it is shown that under certain conditions the time-varying controller becomes time-invariant on the infinite-time interval. The resulting controller satisfies an H(infinity) norm bound.

  12. A spatial discretization of the MHD equations based on the finite volume - spectral method

    International Nuclear Information System (INIS)

    Miyoshi, Takahiro

    2000-05-01

    Based on the finite volume - spectral method, we present new discretization formulae for the spatial differential operators in the full system of the compressible MHD equations. In this approach, the cell-centered finite volume method is adopted in a bounded plane (poloidal plane), while the spectral method is applied to the differential with respect to the periodic direction perpendicular to the poloidal plane (toroidal direction). Here, an unstructured grid system composed of the arbitrary triangular elements is utilized for constructing the cell-centered finite volume method. In order to maintain the divergence free constraint of the magnetic field numerically, only the poloidal component of the rotation is defined at three edges of the triangular element. This poloidal component is evaluated under the assumption that the toroidal component of the operated vector times the radius, RA φ , is linearly distributed in the element. The present method will be applied to the nonlinear MHD dynamics in an realistic torus geometry without the numerical singularities. (author)

  13. On beam shaping of the field radiated by a line source coupled to finite or infinite photonic crystals.

    Science.gov (United States)

    Ceccuzzi, Silvio; Jandieri, Vakhtang; Baccarelli, Paolo; Ponti, Cristina; Schettini, Giuseppe

    2016-04-01

    Comparison of the beam-shaping effect of a field radiated by a line source, when an ideal infinite structure constituted by two photonic crystals and an actual finite one are considered, has been carried out by means of two different methods. The lattice sums technique combined with the generalized reflection matrix method is used to rigorously investigate the radiation from the infinite photonic crystals, whereas radiation from crystals composed of a finite number of rods along the layers is analyzed using the cylindrical-wave approach. A directive radiation is observed with the line source embedded in the structure. With an increased separation distance between the crystals, a significant edge diffraction appears that provides the main radiation mechanism in the finite layout. Suitable absorbers are implemented to reduce the above-mentioned diffraction and the reflections at the boundaries, thus obtaining good agreement between radiation patterns of a localized line source coupled to finite and infinite photonic crystals, when the number of periods of the finite structure is properly chosen.

  14. Maximal slicing of D-dimensional spherically symmetric vacuum spacetime

    International Nuclear Information System (INIS)

    Nakao, Ken-ichi; Abe, Hiroyuki; Yoshino, Hirotaka; Shibata, Masaru

    2009-01-01

    We study the foliation of a D-dimensional spherically symmetric black-hole spacetime with D≥5 by two kinds of one-parameter families of maximal hypersurfaces: a reflection-symmetric foliation with respect to the wormhole slot and a stationary foliation that has an infinitely long trumpetlike shape. As in the four-dimensional case, the foliations by the maximal hypersurfaces avoid the singularity irrespective of the dimensionality. This indicates that the maximal slicing condition will be useful for simulating higher-dimensional black-hole spacetimes in numerical relativity. For the case of D=5, we present analytic solutions of the intrinsic metric, the extrinsic curvature, the lapse function, and the shift vector for the foliation by the stationary maximal hypersurfaces. These data will be useful for checking five-dimensional numerical-relativity codes based on the moving puncture approach.

  15. Structural modeling techniques by finite element method

    International Nuclear Information System (INIS)

    Kang, Yeong Jin; Kim, Geung Hwan; Ju, Gwan Jeong

    1991-01-01

    This book includes introduction table of contents chapter 1 finite element idealization introduction summary of the finite element method equilibrium and compatibility in the finite element solution degrees of freedom symmetry and anti symmetry modeling guidelines local analysis example references chapter 2 static analysis structural geometry finite element models analysis procedure modeling guidelines references chapter 3 dynamic analysis models for dynamic analysis dynamic analysis procedures modeling guidelines and modeling guidelines.

  16. Output of the type 4051 and 4061 period meters during startup transients

    International Nuclear Information System (INIS)

    Cummins, J.D.

    1963-05-01

    The report describes a digital computer programme for the Ferranti Mercury computer. With this programme startup transients for the recently developed period meters Types 4051 and 4061 may be computed. The reactivity disturbances considered are steps and terminated ramps of reactivity. Due allowance is taken of the variable time constant which is a feature of these period meters. The reactor may be critical or subcritical initially as desired and the initial input time constant of the period meter may be zero or finite. Some representative transients obtained with the programme are presented and discussed. (author)

  17. Supersymmetry at finite temperature

    International Nuclear Information System (INIS)

    Clark, T.E.; Love, S.T.

    1983-01-01

    Finite-temperature supersymmetry (SUSY) is characterized by unbroken Ward identities for SUSY variations of ensemble averages of Klein-operator inserted imaginary time-ordered products of fields. Path-integral representations of these products are defined and the Feynman rules in superspace are given. The finite-temperature no-renormalization theorem is derived. Spontaneously broken SUSY at zero temperature is shown not to be restored at high temperature. (orig.)

  18. An introduction to finite tight frames

    CERN Document Server

    Waldron, Shayne F D

    2018-01-01

    This textbook is an introduction to the theory and applications of finite tight frames, an area that has developed rapidly in the last decade. Stimulating much of this growth are the applications of finite frames to diverse fields such as signal processing, quantum information theory, multivariate orthogonal polynomials, and remote sensing. Key features and topics: * First book entirely devoted to finite frames * Extensive exercises and MATLAB examples for classroom use * Important examples, such as harmonic and Heisenberg frames, are presented in preliminary chapters, encouraging readers to explore and develop an intuitive feeling for tight frames * Later chapters delve into general theory details and recent research results * Many illustrations showing the special aspects of the geometry of finite frames * Provides an overview of the field of finite tight frames * Discusses future research directions in the field Featuring exercises and MATLAB examples in each chapter, the book is well suited as a textbook ...

  19. Analysis of the neutron flux in an annular pulsed reactor by using finite volume method

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Mário A.B. da; Narain, Rajendra; Bezerra, Jair de L., E-mail: mabs500@gmail.com, E-mail: narain@ufpe.br, E-mail: jairbezerra@gmail.com [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Centro de Tecnologia e Geociências. Departamento de Energia Nuclear

    2017-07-01

    Production of very intense neutron sources is important for basic nuclear physics and for material testing and isotope production. Nuclear reactors have been used as sources of intense neutron fluxes, although the achievement of such levels is limited by the inability to remove fission heat. Periodic pulsed reactors provide very intense fluxes by a rotating modulator near a subcritical core. A concept for the production of very intense neutron fluxes that combines features of periodic pulsed reactors and steady state reactors was proposed by Narain (1997). Such a concept is known as Very Intense Continuous High Flux Pulsed Reactor (VICHFPR) and was analyzed by using diffusion equation with moving boundary conditions and Finite Difference Method with Crank-Nicolson formalism. This research aims to analyze the flux distribution in the Very Intense Continuous Flux High Pulsed Reactor (VICHFPR) by using the Finite Volume Method and compares its results with those obtained by the previous computational method. (author)

  20. Analysis of the neutron flux in an annular pulsed reactor by using finite volume method

    International Nuclear Information System (INIS)

    Silva, Mário A.B. da; Narain, Rajendra; Bezerra, Jair de L.

    2017-01-01

    Production of very intense neutron sources is important for basic nuclear physics and for material testing and isotope production. Nuclear reactors have been used as sources of intense neutron fluxes, although the achievement of such levels is limited by the inability to remove fission heat. Periodic pulsed reactors provide very intense fluxes by a rotating modulator near a subcritical core. A concept for the production of very intense neutron fluxes that combines features of periodic pulsed reactors and steady state reactors was proposed by Narain (1997). Such a concept is known as Very Intense Continuous High Flux Pulsed Reactor (VICHFPR) and was analyzed by using diffusion equation with moving boundary conditions and Finite Difference Method with Crank-Nicolson formalism. This research aims to analyze the flux distribution in the Very Intense Continuous Flux High Pulsed Reactor (VICHFPR) by using the Finite Volume Method and compares its results with those obtained by the previous computational method. (author)

  1. Non-linear finite element modeling

    DEFF Research Database (Denmark)

    Mikkelsen, Lars Pilgaard

    The note is written for courses in "Non-linear finite element method". The note has been used by the author teaching non-linear finite element modeling at Civil Engineering at Aalborg University, Computational Mechanics at Aalborg University Esbjerg, Structural Engineering at the University...

  2. K-theory and periodic cyclic homology of some noncompact quantum algebras

    International Nuclear Information System (INIS)

    Do Ngoc Diep; Kuku, Aderemi O.

    2003-07-01

    We prove in this paper that the periodic cyclic homology of the quantized algebras of functions on coadjoint orbits of connected and simply connected Lie group, are isomorphic to the periodic cyclic homology of the quantized algebras of functions on coadjoint orbits of compact maximal subgroups, without localization. Some noncompact quantum groups and algebras were constructed and their irreducible representations were classified in recent works of Do Ngoc Diep and Nguyen Viet Hai [DH1]-[DH2] and Do Due Hanh [DD] by using deformation quantization. In this paper we compute their K-groups, periodic cyclic homology groups and their Chern characters. (author)

  3. Maximization of regional probabilities using Optimal Surface Graphs

    DEFF Research Database (Denmark)

    Arias Lorza, Andres M.; Van Engelen, Arna; Petersen, Jens

    2018-01-01

    Purpose: We present a segmentation method that maximizes regional probabilities enclosed by coupled surfaces using an Optimal Surface Graph (OSG) cut approach. This OSG cut determines the globally optimal solution given a graph constructed around an initial surface. While most methods for vessel...... wall segmentation only use edge information, we show that maximizing regional probabilities using an OSG improves the segmentation results. We applied this to automatically segment the vessel wall of the carotid artery in magnetic resonance images. Methods: First, voxel-wise regional probability maps...... were obtained using a Support Vector Machine classifier trained on local image features. Then, the OSG segments the regions which maximizes the regional probabilities considering smoothness and topological constraints. Results: The method was evaluated on 49 carotid arteries from 30 subjects...

  4. Short Term Strategies for a Dynamic Multi-Period Routing Problem

    NARCIS (Netherlands)

    Angelelli, E.; Bianchessi, N.; Mansini, R.; Speranza, M. G.

    2009-01-01

    We consider a Dynamic Multi-Period Routing Problem (DMPRP) faced by a company which deals with on-line pick-up requests and has to serve them by a fleet of uncapacitated vehicles over a finite time horizon. When a request is issued, a deadline of a given number of days d ≤ 2 is associated to it: if

  5. Domain decomposition solvers for nonlinear multiharmonic finite element equations

    KAUST Repository

    Copeland, D. M.

    2010-01-01

    In many practical applications, for instance, in computational electromagnetics, the excitation is time-harmonic. Switching from the time domain to the frequency domain allows us to replace the expensive time-integration procedure by the solution of a simple elliptic equation for the amplitude. This is true for linear problems, but not for nonlinear problems. However, due to the periodicity of the solution, we can expand the solution in a Fourier series. Truncating this Fourier series and approximating the Fourier coefficients by finite elements, we arrive at a large-scale coupled nonlinear system for determining the finite element approximation to the Fourier coefficients. The construction of fast solvers for such systems is very crucial for the efficiency of this multiharmonic approach. In this paper we look at nonlinear, time-harmonic potential problems as simple model problems. We construct and analyze almost optimal solvers for the Jacobi systems arising from the Newton linearization of the large-scale coupled nonlinear system that one has to solve instead of performing the expensive time-integration procedure. © 2010 de Gruyter.

  6. Spatial bandwidth enlargement and field enhancement of shear horizontal waves in finite graded piezoelectric layered media

    International Nuclear Information System (INIS)

    Xu, Yanlong

    2015-01-01

    Shear horizontal (SH) wave propagation in finite graded piezoelectric layered media is investigated by transfer matrix method. Different from the previous studies on SH wave propagation in completely periodic layered media, calculations on band structure and transmission in this paper show that the graded layered media possess very large band gaps. Harmonic wave simulation by finite element method (FEM) confirms that the reason of bandwidth enlargement is that waves within the band gap ranges are spatially enhanced and stopped by the corresponding graded units. The study suggests that the graded structure possesses the property of manipulating elastic waves spatially, which shows potential applications in strengthening energy trapping and harvesting. - Highlights: • Shear horizontal wave propagation in finite graded piezoelectric layered media is investigated by transfer matrix method. • Calculations on band structure and transmission show that the graded layered media possess very large band gaps. • Finite element method confirms that waves in band gaps are spatially enhanced and stopped by the graded units. • The study suggests that the graded structure possesses the property of manipulating elastic waves spatially

  7. Adaptive maximal poisson-disk sampling on surfaces

    KAUST Repository

    Yan, Dongming

    2012-01-01

    In this paper, we study the generation of maximal Poisson-disk sets with varying radii on surfaces. Based on the concepts of power diagram and regular triangulation, we present a geometric analysis of gaps in such disk sets on surfaces, which is the key ingredient of the adaptive maximal Poisson-disk sampling framework. Moreover, we adapt the presented sampling framework for remeshing applications. Several novel and efficient operators are developed for improving the sampling/meshing quality over the state-of-theart. © 2012 ACM.

  8. Is the β phase maximal?

    International Nuclear Information System (INIS)

    Ferrandis, Javier

    2005-01-01

    The current experimental determination of the absolute values of the CKM elements indicates that 2 vertical bar V ub /V cb V us vertical bar =(1-z), with z given by z=0.19+/-0.14. This fact implies that irrespective of the form of the quark Yukawa matrices, the measured value of the SM CP phase β is approximately the maximum allowed by the measured absolute values of the CKM elements. This is β=(π/6-z/3) for γ=(π/3+z/3), which implies α=π/2. Alternatively, assuming that β is exactly maximal and using the experimental measurement sin(2β)=0.726+/-0.037, the phase γ is predicted to be γ=(π/2-β)=66.3 o +/-1.7 o . The maximality of β, if confirmed by near-future experiments, may give us some clues as to the origin of CP violation

  9. Tool supported modeling of sensor communication networks by using finite-source priority retrial queues

    Directory of Open Access Journals (Sweden)

    Tamas Berczes

    2012-06-01

    Full Text Available The main aim of the present paper is to draw the attention of the readers of this special issue to the modeling issues of sensor networks. The novelty of this investigation is the introduction of servers vacation combined with priority customers for finite-source retrial queues and its application to wireless sensor networks. In this paper we analyze a priority finite-source retrial queue with repeated vacations. Two types of priority customers are defined, customers with priority 1 (P1 go directly to an ordinary FIFO queue. However, if customers with priority 2 (P2 find the server in busy or unavailable state go to the orbit. These customers stay in the orbit and retry their request until find the server in idle and available state. We assume that P1 customers have non-preemptive priority over P2 customers. The server starts with a listening period and if no customer arrive during this period it will enter in the vacation mode. When the vacation period is terminated, then the node wakes up. If there is a P1 customer in the queue the server begin to serve it, and when there is no any P1 customer, the node will remain awake for exponentially distributed time period. If that period expires without arrivals the node will enter in the next sleeping period. All random variables involved in model construction are supposed to be independent and exponentially distributed ones. Our main interest is to give the main steady-state performance measures of the system computed by the help of the MOSEL tool. Several Figures illustrate the effect of input parameters on the mean response time.

  10. The finite-dimensional Freeman thesis.

    Science.gov (United States)

    Rudolph, Lee

    2008-06-01

    I suggest a modification--and mathematization--of Freeman's thesis on the relations among "perception", "the finite brain", and "the world", based on my recent proposal that the theory of finite topological spaces is both an adequate and a natural mathematical foundation for human psychology.

  11. Sound radiation from finite surfaces

    DEFF Research Database (Denmark)

    Brunskog, Jonas

    2013-01-01

    A method to account for the effect of finite size in acoustic power radiation problem of planar surfaces using spatial windowing is developed. Cremer and Heckl presents a very useful formula for the power radiating from a structure using the spatially Fourier transformed velocity, which combined...... with spatially windowing of a plane waves can be used to take into account the finite size. In the present paper, this is developed by means of a radiation impedance for finite surfaces, that is used instead of the radiation impedance for infinite surfaces. In this way, the spatial windowing is included...

  12. Photon propagators at finite temperature

    International Nuclear Information System (INIS)

    Yee, J.H.

    1982-07-01

    We have used the real time formalism to compute the one-loop finite temperature corrections to the photon self energies in spinor and scalar QED. We show that, for a real photon, only the transverse components develop the temperature-dependent masses, while, for an external static electromagnetic field applied to the finite temperature system, only the static electric field is screened by thermal fluctuations. After showing how to compute systematically the imaginary parts of the finite temperature Green functions, we have attempted to give a microscopic interpretation of the imaginary parts of the self energies. (author)

  13. A New Augmentation Based Algorithm for Extracting Maximal Chordal Subgraphs.

    Science.gov (United States)

    Bhowmick, Sanjukta; Chen, Tzu-Yi; Halappanavar, Mahantesh

    2015-02-01

    A graph is chordal if every cycle of length greater than three contains an edge between non-adjacent vertices. Chordal graphs are of interest both theoretically, since they admit polynomial time solutions to a range of NP-hard graph problems, and practically, since they arise in many applications including sparse linear algebra, computer vision, and computational biology. A maximal chordal subgraph is a chordal subgraph that is not a proper subgraph of any other chordal subgraph. Existing algorithms for computing maximal chordal subgraphs depend on dynamically ordering the vertices, which is an inherently sequential process and therefore limits the algorithms' parallelizability. In this paper we explore techniques to develop a scalable parallel algorithm for extracting a maximal chordal subgraph. We demonstrate that an earlier attempt at developing a parallel algorithm may induce a non-optimal vertex ordering and is therefore not guaranteed to terminate with a maximal chordal subgraph. We then give a new algorithm that first computes and then repeatedly augments a spanning chordal subgraph. After proving that the algorithm terminates with a maximal chordal subgraph, we then demonstrate that this algorithm is more amenable to parallelization and that the parallel version also terminates with a maximal chordal subgraph. That said, the complexity of the new algorithm is higher than that of the previous parallel algorithm, although the earlier algorithm computes a chordal subgraph which is not guaranteed to be maximal. We experimented with our augmentation-based algorithm on both synthetic and real-world graphs. We provide scalability results and also explore the effect of different choices for the initial spanning chordal subgraph on both the running time and on the number of edges in the maximal chordal subgraph.

  14. High-order finite-element seismic wave propagation modeling with MPI on a large GPU cluster

    International Nuclear Information System (INIS)

    Komatitsch, Dimitri; Erlebacher, Gordon; Goeddeke, Dominik; Michea, David

    2010-01-01

    We implement a high-order finite-element application, which performs the numerical simulation of seismic wave propagation resulting for instance from earthquakes at the scale of a continent or from active seismic acquisition experiments in the oil industry, on a large cluster of NVIDIA Tesla graphics cards using the CUDA programming environment and non-blocking message passing based on MPI. Contrary to many finite-element implementations, ours is implemented successfully in single precision, maximizing the performance of current generation GPUs. We discuss the implementation and optimization of the code and compare it to an existing very optimized implementation in C language and MPI on a classical cluster of CPU nodes. We use mesh coloring to efficiently handle summation operations over degrees of freedom on an unstructured mesh, and non-blocking MPI messages in order to overlap the communications across the network and the data transfer to and from the device via PCIe with calculations on the GPU. We perform a number of numerical tests to validate the single-precision CUDA and MPI implementation and assess its accuracy. We then analyze performance measurements and depending on how the problem is mapped to the reference CPU cluster, we obtain a speedup of 20x or 12x.

  15. Finite-time barriers to reaction front propagation

    Science.gov (United States)

    Locke, Rory; Mahoney, John; Mitchell, Kevin

    2015-11-01

    Front propagation in advection-reaction-diffusion systems gives rise to rich geometric patterns. It has been shown for time-independent and time-periodic fluid flows that invariant manifolds, termed burning invariant manifolds (BIMs), serve as one-sided dynamical barriers to the propagation of reaction front. More recently, theoretical work has suggested that one-sided barriers, termed burning Lagrangian Coherent structures (bLCSs), exist for fluid velocity data prescribed over a finite time interval, with no assumption on the time-dependence of the flow. In this presentation, we use a time-varying fluid ``wind'' in a double-vortex channel flow to demonstrate that bLCSs form the (locally) most attracting or repelling fronts.

  16. Pharmacokinetics of detomidine administered to horses at rest and after maximal exercise.

    Science.gov (United States)

    Hubbell, J A E; Sams, R A; Schmall, L M; Robertson, J T; Hinchcliff, K W; Muir, W W

    2009-05-01

    Increased doses of detomidine are required to produce sedation in horses after maximal exercise compared to calm or resting horses. To determine if the pharmacokinetics of detomidine in Thoroughbred horses are different when the drug is given during recuperation from a brief period of maximal exercise compared to administration at rest. Six Thoroughbred horses were preconditioned by exercising them on a treadmill. Each horse ran a simulated race at a treadmill speed that caused it to exercise at 120% of its maximal oxygen consumption. One minute after the end of exercise, horses were treated with detomidine. Each horse was treated with the same dose of detomidine on a second occasion a minimum of 14 days later while standing in a stocks. Samples of heparinised blood were obtained at various time points on both occasions. Plasma detomidine concentrations were determined by liquid chromatography-mass spectrometry. The plasma concentration vs. time data were analysed by nonlinear regression analysis. Median back-extrapolated time zero plasma concentration was significantly lower and median plasma half-life and median mean residence time were significantly longer when detomidine was administered after exercise compared to administration at rest. Median volume of distribution was significantly higher after exercise but median plasma clearance was not different between the 2 administrations. Detomidine i.v. is more widely distributed when administered to horses immediately after exercise compared to administration at rest resulting in lower peak plasma concentrations and a slower rate of elimination. The dose requirement to produce an equivalent effect may be higher in horses after exercise than in resting horses and less frequent subsequent doses may be required to produce a sustained effect.

  17. A novel asymptotic expansion homogenization analysis for 3-D composite with relieved periodicity in the thickness direction

    KAUST Repository

    Nasution, Muhammad Ridlo Erdata

    2014-06-01

    A new asymptotic expansion homogenization analysis is proposed to analyze 3-D composite in which thermomechanical and finite thickness effects are considered. Finite thickness effect is captured by relieving periodic boundary condition at the top and bottom of unit-cell surfaces. The mathematical treatment yields that only 2-D periodicity (i.e. in in-plane directions) is taken into account. A unit-cell representing the whole thickness of 3-D composite is built to facilitate the present method. The equivalent in-plane thermomechanical properties of 3-D orthogonal interlock composites are calculated by present method, and the results are compared with those obtained by standard homogenization method (with 3-D periodicity). Young\\'s modulus and Poisson\\'s ratio obtained by present method are also compared with experiments whereby a good agreement is particularly found for the Young\\'s modulus. Localization analysis is carried out to evaluate the stress responses within the unit-cell of 3-D composites for two cases: thermal and biaxial tensile loading. Standard finite element (FE) analysis is also performed to validate the stress responses obtained by localization analysis. It is found that present method results are in a good agreement with standard FE analysis. This fact emphasizes that relieving periodicity in the thickness direction is necessary to accurately simulate the real free-traction condition in 3-D composite. © 2014 Elsevier Ltd.

  18. A novel asymptotic expansion homogenization analysis for 3-D composite with relieved periodicity in the thickness direction

    KAUST Repository

    Nasution, Muhammad Ridlo Erdata; Watanabe, Naoyuki; Kondo, Atsushi; Yudhanto, Arief

    2014-01-01

    A new asymptotic expansion homogenization analysis is proposed to analyze 3-D composite in which thermomechanical and finite thickness effects are considered. Finite thickness effect is captured by relieving periodic boundary condition at the top and bottom of unit-cell surfaces. The mathematical treatment yields that only 2-D periodicity (i.e. in in-plane directions) is taken into account. A unit-cell representing the whole thickness of 3-D composite is built to facilitate the present method. The equivalent in-plane thermomechanical properties of 3-D orthogonal interlock composites are calculated by present method, and the results are compared with those obtained by standard homogenization method (with 3-D periodicity). Young's modulus and Poisson's ratio obtained by present method are also compared with experiments whereby a good agreement is particularly found for the Young's modulus. Localization analysis is carried out to evaluate the stress responses within the unit-cell of 3-D composites for two cases: thermal and biaxial tensile loading. Standard finite element (FE) analysis is also performed to validate the stress responses obtained by localization analysis. It is found that present method results are in a good agreement with standard FE analysis. This fact emphasizes that relieving periodicity in the thickness direction is necessary to accurately simulate the real free-traction condition in 3-D composite. © 2014 Elsevier Ltd.

  19. Axial anomaly at finite temperature

    International Nuclear Information System (INIS)

    Chaturvedi, S.; Gupte, Neelima; Srinivasan, V.

    1985-01-01

    The Jackiw-Bardeen-Adler anomaly for QED 4 and QED 2 are calculated at finite temperature. It is found that the anomaly is independent of temperature. Ishikawa's method [1984, Phys. Rev. Lett. vol. 53 1615] for calculating the quantised Hall effect is extended to finite temperature. (author)

  20. Collaborative Systems – Finite State Machines

    Directory of Open Access Journals (Sweden)

    Ion IVAN

    2011-01-01

    Full Text Available In this paper the finite state machines are defined and formalized. There are presented the collaborative banking systems and their correspondence is done with finite state machines. It highlights the role of finite state machines in the complexity analysis and performs operations on very large virtual databases as finite state machines. It builds the state diagram and presents the commands and documents transition between the collaborative systems states. The paper analyzes the data sets from Collaborative Multicash Servicedesk application and performs a combined analysis in order to determine certain statistics. Indicators are obtained, such as the number of requests by category and the load degree of an agent in the collaborative system.

  1. Robust mixed finite element methods to deal with incompressibility in finite strain in an industrial framework

    International Nuclear Information System (INIS)

    Al-Akhrass, Dina

    2014-01-01

    Simulations in solid mechanics exhibit several difficulties, as dealing with incompressibility, with nonlinearities due to finite strains, contact laws, or constitutive laws. The basic motivation of our work is to propose efficient finite element methods capable of dealing with incompressibility in finite strain context, and using elements of low order. During the three last decades, many approaches have been proposed in the literature to overcome the incompressibility problem. Among them, mixed formulations offer an interesting theoretical framework. In this work, a three-field mixed formulation (displacement, pressure, volumetric strain) is investigated. In some cases, this formulation can be condensed in a two-field (displacement - pressure) mixed formulation. However, it is well-known that the discrete problem given by the Galerkin finite element technique, does not inherit the 'inf-sup' stability condition from the continuous problem. Hence, the interpolation orders in displacement and pressure have to be chosen in a way to satisfy the Brezzi-Babuska stability conditions when using Galerkin approaches. Interpolation orders must be chosen so as to satisfy this condition. Two possibilities are considered: to use stable finite element satisfying this requirement, or to use finite element that does not satisfy this condition, and to add terms stabilizing the FE Galerkin formulation. The latter approach allows the use of equal order interpolation. In this work, stable finite element P2/P1 and P2/P1/P1 are used as reference, and compared to P1/P1 and P1/P1/P1 formulations stabilized with a bubble function or with a VMS method (Variational Multi-Scale) based on a sub-grid-space orthogonal to the FE space. A finite strain model based on logarithmic strain is selected. This approach is extended to three and two field mixed formulations with stable or stabilized elements. These approaches are validated on academic cases and used on industrial cases. (author)

  2. Quantum speedup in solving the maximal-clique problem

    Science.gov (United States)

    Chang, Weng-Long; Yu, Qi; Li, Zhaokai; Chen, Jiahui; Peng, Xinhua; Feng, Mang

    2018-03-01

    The maximal-clique problem, to find the maximally sized clique in a given graph, is classically an NP-complete computational problem, which has potential applications ranging from electrical engineering, computational chemistry, and bioinformatics to social networks. Here we develop a quantum algorithm to solve the maximal-clique problem for any graph G with n vertices with quadratic speedup over its classical counterparts, where the time and spatial complexities are reduced to, respectively, O (√{2n}) and O (n2) . With respect to oracle-related quantum algorithms for the NP-complete problems, we identify our algorithm as optimal. To justify the feasibility of the proposed quantum algorithm, we successfully solve a typical clique problem for a graph G with two vertices and one edge by carrying out a nuclear magnetic resonance experiment involving four qubits.

  3. Muscle mitochondrial capacity exceeds maximal oxygen delivery in humans

    DEFF Research Database (Denmark)

    Boushel, Robert Christopher; Gnaiger, Erich; Calbet, Jose A L

    2011-01-01

    Across a wide range of species and body mass a close matching exists between maximal conductive oxygen delivery and mitochondrial respiratory rate. In this study we investigated in humans how closely in-vivo maximal oxygen consumption (VO(2) max) is matched to state 3 muscle mitochondrial respira...

  4. Partially-massless higher-spin algebras and their finite-dimensional truncations

    International Nuclear Information System (INIS)

    Joung, Euihun; Mkrtchyan, Karapet

    2016-01-01

    The global symmetry algebras of partially-massless (PM) higher-spin (HS) fields in (A)dS d+1 are studied. The algebras involving PM generators up to depth 2 (ℓ−1) are defined as the maximal symmetries of free conformal scalar field with 2 ℓ order wave equation in d dimensions. We review the construction of these algebras by quotienting certain ideals in the universal enveloping algebra of (A)dS d+1 isometries. We discuss another description in terms of Howe duality and derive the formula for computing trace in these algebras. This enables us to explicitly calculate the bilinear form for this one-parameter family of algebras. In particular, the bilinear form shows the appearance of additional ideal for any non-negative integer values of ℓ−d/2 , which coincides with the annihilator of the one-row ℓ-box Young diagram representation of so d+2 . Hence, the corresponding finite-dimensional coset algebra spanned by massless and PM generators is equivalent to the symmetries of this representation.

  5. Reliability enhancement of portal frame structure by finite element synthesis

    International Nuclear Information System (INIS)

    Nakagiri, S.

    1989-01-01

    The stochastic finite element methods have been applied to the evaluation of structural response and reliability of uncertain structural systems. The structural reliability index of the advanced first-order second moment (AFOSM) method is a candidate of the measure of assessing structural safety and reliability. The reliability index can be evaluated when a baseline design of structures under interest is proposed and the covariance matrix of the probabilistic variables is acquired to represent uncertainties involved in the structure systems. The reliability index thus evaluated is not assured the largest one for the structure. There is left a possibility to enhance the structural reliability for the given covariance matrix by changing the baseline design. From such a viewpoint of structural optimization, some ideas have been proposed to maximize the reliability or to minimize the failure probability of uncertain structural systems. A method of changing the design is proposed to increase the reliability index from its baseline value to another desired value. The reliability index in this paper is calculated mainly by the method of Lagrange multiplier

  6. Finite p′-nilpotent groups. II

    Directory of Open Access Journals (Sweden)

    S. Srinivasan

    1987-01-01

    Full Text Available In this paper we continue the study of finite p′-nilpotent groups that was started in the first part of this paper. Here we give a complete characterization of all finite groups that are not p′-nilpotent but all of whose proper subgroups are p′-nilpotent.

  7. Electrical machine analysis using finite elements

    CERN Document Server

    Bianchi, Nicola

    2005-01-01

    OUTLINE OF ELECTROMAGNETIC FIELDSVector AnalysisElectromagnetic FieldsFundamental Equations SummaryReferencesBASIC PRINCIPLES OF FINITE ELEMENT METHODSIntroductionField Problems with Boundary ConditionsClassical Method for the Field Problem SolutionThe Classical Residual Method (Galerkin's Method)The Classical Variational Method (Rayleigh-Ritz's Method)The Finite Element MethodReferencesAPPLICATIONS OF THE FINITE ELEMENT METHOD TO TWO-DIMENSIONAL FIELDSIntroductionLinear Interpolation of the Function fApplication of the Variational MethodSimple Descriptions of Electromagnetic FieldsAppendix: I

  8. What is finiteness? (Abhishek Banerjee) (Indian Institute of Science)

    Indian Academy of Sciences (India)

    Do finites get enough respect? • Finiteness is easy, no? • Just count whether 1, 2, 3,... • But then we miss out on the true richness of the concept of finitness. • There's more finiteness around. In fact, finiteness is what helps us really understand things. 5 ...

  9. Periodic flows to chaos in time-delay systems

    CERN Document Server

    Luo, Albert C J

    2017-01-01

    This book for the first time examines periodic motions to chaos in time-delay systems, which exist extensively in engineering. For a long time, the stability of time-delay systems at equilibrium has been of great interest from the Lyapunov theory-based methods, where one cannot achieve the ideal results. Thus, time-delay discretization in time-delay systems was used for the stability of these systems. In this volume, Dr. Luo presents an accurate method based on the finite Fourier series to determine periodic motions in nonlinear time-delay systems. The stability and bifurcation of periodic motions are determined by the time-delayed system of coefficients in the Fourier series and the method for nonlinear time-delay systems is equivalent to the Laplace transformation method for linear time-delay systems. Facilitates discovery of analytical solutions of nonlinear time-delay systems; Illustrates bifurcation trees of periodic motions to chaos; Helps readers identify motion complexity and singularity; Explains pro...

  10. Skeletal muscle fiber type composition and performance during repeated bouts of maximal, concentric contractions

    Science.gov (United States)

    Colliander, E. B.; Dudley, G. A.; Tesch, P. A.

    1988-01-01

    Force output and fatigue and recovery patterns were studied during intermittent short-term exercise. 27 men performed three bouts of 30 maximal unilateral knee extensions on 2 different occasions. Blood flow was maintained or occluded during recovery periods (60 s). Blood flow was restricted by inflating a pneumatic cuff placed around the proximal thigh. Muscle biopsies from vastus lateralis were analyzed for identification of fast twitch (FT) and slow twitch (ST) fibers and relative FT area. Peak torque decreased during each bout of exercise and more when blood flow was restricted during recovery. Initial peak torque (IPT) and average peak torque (APT) decreased over the three exercise bouts. This response was 3 fold greater without than with blood flow during recovery. IPT and APT decreased more in individuals with mainly FT fibers than in those with mainly ST fibers. It is suggested that performance during repeated bouts of maximal concentric contractions differs between individuals with different fiber type composition. Specifically, in high intensity, intermittent exercise with emphasis on anaerobic energy release a high FT composition may not necessarily be advantageous for performance.

  11. Finite Metric Spaces of Strictly negative Type

    DEFF Research Database (Denmark)

    Hjorth, Poul G.

    If a finite metric space is of strictly negative type then its transfinite diameter is uniquely realized by an infinite extent (“load vector''). Finite metric spaces that have this property include all trees, and all finite subspaces of Euclidean and Hyperbolic spaces. We prove that if the distance...

  12. Probabilistic finite elements

    Science.gov (United States)

    Belytschko, Ted; Wing, Kam Liu

    1987-01-01

    In the Probabilistic Finite Element Method (PFEM), finite element methods have been efficiently combined with second-order perturbation techniques to provide an effective method for informing the designer of the range of response which is likely in a given problem. The designer must provide as input the statistical character of the input variables, such as yield strength, load magnitude, and Young's modulus, by specifying their mean values and their variances. The output then consists of the mean response and the variance in the response. Thus the designer is given a much broader picture of the predicted performance than with simply a single response curve. These methods are applicable to a wide class of problems, provided that the scale of randomness is not too large and the probabilistic density functions possess decaying tails. By incorporating the computational techniques we have developed in the past 3 years for efficiency, the probabilistic finite element methods are capable of handling large systems with many sources of uncertainties. Sample results for an elastic-plastic ten-bar structure and an elastic-plastic plane continuum with a circular hole subject to cyclic loadings with the yield stress on the random field are given.

  13. Quantization and representation theory of finite W algebras

    International Nuclear Information System (INIS)

    Boer, J. de; Tjin, T.

    1993-01-01

    In this paper we study the finitely generated algebras underlying W algebras. These so called 'finite W algebras' are constructed as Poisson reductions of Kirillov Poisson structures on simple Lie algebras. The inequivalent reductions are labeled by the inequivalent embeddings of sl 2 into the simple Lie algebra in question. For arbitrary embeddings a coordinate free formula for the reduced Poisson structure is derived. We also prove that any finite W algebra can be embedded into the Kirillov Poisson algebra of a (semi)simple Lie algebra (generalized Miura map). Furthermore it is shown that generalized finite Toda systems are reductions of a system describing a free particle moving on a group manifold and that they have finite W symmetry. In the second part we BRST quantize the finite W algebras. The BRST cohomoloy is calculated using a spectral sequence (which is different from the one used by Feigin and Frenkel). This allows us to quantize all finite W algebras in one stroke. Examples are given. In the last part of the paper we study the representation theory of finite W algebras. It is shown, using a quantum inversion of the generalized Miura transformation, that the representations of finite W algebras can be constructed from the representations of a certain Lie subalgebra of the original simple Lie algebra. As a byproduct of this we are able to construct the Fock realizations of arbitrary finite W algebras. (orig.)

  14. Enumerating all maximal frequent subtrees in collections of phylogenetic trees.

    Science.gov (United States)

    Deepak, Akshay; Fernández-Baca, David

    2014-01-01

    A common problem in phylogenetic analysis is to identify frequent patterns in a collection of phylogenetic trees. The goal is, roughly, to find a subset of the species (taxa) on which all or some significant subset of the trees agree. One popular method to do so is through maximum agreement subtrees (MASTs). MASTs are also used, among other things, as a metric for comparing phylogenetic trees, computing congruence indices and to identify horizontal gene transfer events. We give algorithms and experimental results for two approaches to identify common patterns in a collection of phylogenetic trees, one based on agreement subtrees, called maximal agreement subtrees, the other on frequent subtrees, called maximal frequent subtrees. These approaches can return subtrees on larger sets of taxa than MASTs, and can reveal new common phylogenetic relationships not present in either MASTs or the majority rule tree (a popular consensus method). Our current implementation is available on the web at https://code.google.com/p/mfst-miner/. Our computational results confirm that maximal agreement subtrees and all maximal frequent subtrees can reveal a more complete phylogenetic picture of the common patterns in collections of phylogenetic trees than maximum agreement subtrees; they are also often more resolved than the majority rule tree. Further, our experiments show that enumerating maximal frequent subtrees is considerably more practical than enumerating ordinary (not necessarily maximal) frequent subtrees.

  15. Implicit and fully implicit exponential finite difference methods

    Indian Academy of Sciences (India)

    Burgers' equation; exponential finite difference method; implicit exponential finite difference method; ... This paper describes two new techniques which give improved exponential finite difference solutions of Burgers' equation. ... Current Issue

  16. Topology optimization of reduced rare-earth permanent magnet arrays with finite coercivity

    Science.gov (United States)

    Teyber, R.; Trevizoli, P. V.; Christiaanse, T. V.; Govindappa, P.; Rowe, A.

    2018-05-01

    The supply chain risk of rare-earth permanent magnets has yielded research efforts to improve both materials and magnetic circuits. While a number of magnet optimization techniques exist, literature has not incorporated the permanent magnet failure process stemming from finite coercivity. To address this, a mixed-integer topology optimization is formulated to maximize the flux density of a segmented Halbach cylinder while avoiding permanent demagnetization. The numerical framework is used to assess the efficacy of low-cost (rare-earth-free ferrite C9), medium-cost (rare-earth-free MnBi), and higher-cost (Dy-free NdFeB) permanent magnet materials. Novel magnet designs are generated that produce flux densities 70% greater than the segmented Halbach array, albeit with increased magnet mass. Three optimization formulations are then explored using ferrite C9 that demonstrates the trade-off between manufacturability and design sophistication, generating flux densities in the range of 0.366-0.483 T.

  17. Maximal heart rate does not limit cardiovascular capacity in healthy humans

    DEFF Research Database (Denmark)

    Munch, G D W; Svendsen, J H; Damsgaard, R

    2014-01-01

    In humans, maximal aerobic power (VO2 max ) is associated with a plateau in cardiac output (Q), but the mechanisms regulating the interplay between maximal heart rate (HRmax) and stroke volume (SV) are unclear. To evaluate the effect of tachycardia and elevations in HRmax on cardiovascular function...... and capacity during maximal exercise in healthy humans, 12 young male cyclists performed incremental cycling and one-legged knee-extensor exercise (KEE) to exhaustion with and without right atrial pacing to increase HR. During control cycling, Q and leg blood flow increased up to 85% of maximal workload (WLmax...... and RAP (P healthy...

  18. Power Converters Maximize Outputs Of Solar Cell Strings

    Science.gov (United States)

    Frederick, Martin E.; Jermakian, Joel B.

    1993-01-01

    Microprocessor-controlled dc-to-dc power converters devised to maximize power transferred from solar photovoltaic strings to storage batteries and other electrical loads. Converters help in utilizing large solar photovoltaic arrays most effectively with respect to cost, size, and weight. Main points of invention are: single controller used to control and optimize any number of "dumb" tracker units and strings independently; power maximized out of converters; and controller in system is microprocessor.

  19. No Mikheyev-Smirnov-Wolfenstein Effect in Maximal Mixing

    OpenAIRE

    Harrison, P. F.; Perkins, D. H.; Scott, W. G.

    1996-01-01

    We investigate the possible influence of the MSW effect on the expectations for the solar neutrino experiments in the maximal mixing scenario suggested by the atmospheric neutrino data. A direct numerical calculation of matter induced effects in the Sun shows that the naive vacuum predictions are left completely undisturbed in the particular case of maximal mixing, so that the MSW effect turns out to be unobservable. We give a qualitative explanation of this result.

  20. Determination of critical period for weed control in the second crop ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-09-15

    Sep 15, 2009 ... maximize crop yield by eliminating weed competition and/ or minimizing ... fertilizer. When corn plants reached 80 cm in height, 170 kg N ha-1 was applied ... describing the effect of increasing duration of weed interference on corn yield ... corresponding value of length of weed-free period (d°C) and b and.

  1. Single maximal versus combination punch kinematics.

    Science.gov (United States)

    Piorkowski, Barry A; Lees, Adrian; Barton, Gabor J

    2011-03-01

    The aim of this study was to determine the influence of punch type (Jab, Cross, Lead Hook and Reverse Hook) and punch modality (Single maximal, 'In-synch' and 'Out of synch' combination) on punch speed and delivery time. Ten competition-standard volunteers performed punches with markers placed on their anatomical landmarks for 3D motion capture with an eight-camera optoelectronic system. Speed and duration between key moments were computed. There were significant differences in contact speed between punch types (F(2,18,84.87) = 105.76, p = 0.001) with Lead and Reverse Hooks developing greater speed than Jab and Cross. There were significant differences in contact speed between punch modalities (F(2,64,102.87) = 23.52, p = 0.001) with the Single maximal (M+/- SD: 9.26 +/- 2.09 m/s) higher than 'Out of synch' (7.49 +/- 2.32 m/s), 'In-synch' left (8.01 +/- 2.35 m/s) or right lead (7.97 +/- 2.53 m/s). Delivery times were significantly lower for Jab and Cross than Hook. Times were significantly lower 'In-synch' than a Single maximal or 'Out of synch' combination mode. It is concluded that a defender may have more evasion-time than previously reported. This research could be of use to performers and coaches when considering training preparations.

  2. Formation Control for the MAXIM Mission

    Science.gov (United States)

    Luquette, Richard J.; Leitner, Jesse; Gendreau, Keith; Sanner, Robert M.

    2004-01-01

    Over the next twenty years, a wave of change is occurring in the space-based scientific remote sensing community. While the fundamental limits in the spatial and angular resolution achievable in spacecraft have been reached, based on today s technology, an expansive new technology base has appeared over the past decade in the area of Distributed Space Systems (DSS). A key subset of the DSS technology area is that which covers precision formation flying of space vehicles. Through precision formation flying, the baselines, previously defined by the largest monolithic structure which could fit in the largest launch vehicle fairing, are now virtually unlimited. Several missions including the Micro-Arcsecond X-ray Imaging Mission (MAXIM), and the Stellar Imager will drive the formation flying challenges to achieve unprecedented baselines for high resolution, extended-scene, interferometry in the ultraviolet and X-ray regimes. This paper focuses on establishing the feasibility for the formation control of the MAXIM mission. MAXIM formation flying requirements are on the order of microns, while Stellar Imager mission requirements are on the order of nanometers. This paper specifically addresses: (1) high-level science requirements for these missions and how they evolve into engineering requirements; and (2) the development of linearized equations of relative motion for a formation operating in an n-body gravitational field. Linearized equations of motion provide the ground work for linear formation control designs.

  3. Conversational Implicature of Peanuts Comic Strip Based on Grice’s Maxim Theory

    Directory of Open Access Journals (Sweden)

    Muhartoyo Muhartoyo

    2013-04-01

    Full Text Available This article discusses about conversational implicature that occurs in Peanuts comic strips. The objectives of this study are to find out the implied meaning in the conversation between Charlie Brown with Lucy van Pelt and Lucy van Pelt with Linus van Pelt to evaluate the existence of maxim flouting and maxim violating in those conversations in relation to the four maxims such as quantity, quality, relation, and manner. Likewise, this study attempts to find out the reason for using conversational implicature in a comic strip. The writers uses a qualitative method with library research concerning to Grice’s maxim theory to analyze the conversational implicature. Based on the analysis, it can be concluded that all the comics that comprise 14 comics generate conversational implicature since all the characters breach rules of maxim. The result of this analysis shows that flouting maxim of manner has the highest occurrence of conversational implicature and the least occurrences belong to flouting maxim of relation and violating maxim of quantity. Moreover, the writers concludes that to make a successful communication ideally the speaker and the hearer to cooperate in the conversation by saying explicitly so the hearer can grasp the meaning as the goal of communication is to deliver a message to the hearer.  

  4. Comparison of changes in the mobility of the pelvic floor muscle on during the abdominal drawing-in maneuver, maximal expiration, and pelvic floor muscle maximal contraction.

    Science.gov (United States)

    Jung, Halim; Jung, Sangwoo; Joo, Sunghee; Song, Changho

    2016-01-01

    [Purpose] The purpose of this study was to compare changes in the mobility of the pelvic floor muscle during the abdominal drawing-in maneuver, maximal expiration, and pelvic floor muscle maximal contraction. [Subjects] Thirty healthy adults participated in this study (15 men and 15 women). [Methods] All participants performed a bridge exercise and abdominal curl-up during the abdominal drawing-in maneuver, maximal expiration, and pelvic floor muscle maximal contraction. Pelvic floor mobility was evaluated as the distance from the bladder base using ultrasound. [Results] According to exercise method, bridge exercise and abdominal curl-ups led to significantly different pelvic floor mobility. The pelvic floor muscle was elevated during the abdominal drawing-in maneuver and descended during maximal expiration. Finally, pelvic floor muscle mobility was greater during abdominal curl-up than during the bridge exercise. [Conclusion] According to these results, the abdominal drawing-in maneuver induced pelvic floor muscle contraction, and pelvic floor muscle contraction was greater during the abdominal curl-up than during the bridge exercise.

  5. Descriptive Analysis on Flouting and Hedging of Conversational Maxims in the “Post Grad” Movie

    Directory of Open Access Journals (Sweden)

    Nastiti Rokhmania

    2012-11-01

    Full Text Available This research is focused on analyzing flouting and hedging of conversational maxim of utterances used by the main characters in “Post Grad” movie. Conversational maxims are the rules of cooperative principle categorized into four categories; Maxim of Quality, Maxim of Quantity, Maxim of Relevance, and Maxim of Manner. If these maxims are used in conversations, the conversations can go smoothly. However, people often break the maxims overtly (flouting maxim and sometimes break the maxims secretly (hedging maxims when they make a conversation. This research is conducted using descriptive qualitative method based on the theory known as Grice’s Maxims. The data are in form of utterances used by the characters in “Post Grad” movie. The data analysis reveals some finding covering the formulated research question. The maxims are flouted when the speaker breaks some conversational maxims when using the utterances in the form of rhetorical strategies, such as tautology, metaphor, hyperbole, irony, and rhetorical question. On the other hand, conversational maxims are also hedged when the information is not totally accurate or unclearly stated but seems informative, well-founded, and relevant.

  6. Performance and scalability of finite-difference and finite-element wave-propagation modeling on Intel's Xeon Phi

    NARCIS (Netherlands)

    Zhebel, E.; Minisini, S.; Kononov, A.; Mulder, W.A.

    2013-01-01

    With the rapid developments in parallel compute architectures, algorithms for seismic modeling and imaging need to be reconsidered in terms of parallelization. The aim of this paper is to compare scalability of seismic modeling algorithms: finite differences, continuous mass-lumped finite elements

  7. The effect of acute maximal exercise on postexercise hemodynamics and central arterial stiffness in obese and normal-weight individuals.

    Science.gov (United States)

    Bunsawat, Kanokwan; Ranadive, Sushant M; Lane-Cordova, Abbi D; Yan, Huimin; Kappus, Rebecca M; Fernhall, Bo; Baynard, Tracy

    2017-04-01

    Central arterial stiffness is associated with incident hypertension and negative cardiovascular outcomes. Obese individuals have higher central blood pressure (BP) and central arterial stiffness than their normal-weight counterparts, but it is unclear whether obesity also affects hemodynamics and central arterial stiffness after maximal exercise. We evaluated central hemodynamics and arterial stiffness during recovery from acute maximal aerobic exercise in obese and normal-weight individuals. Forty-six normal-weight and twenty-one obese individuals underwent measurements of central BP and central arterial stiffness at rest and 15 and 30 min following acute maximal exercise. Central BP and normalized augmentation index (AIx@75) were derived from radial artery applanation tonometry, and central arterial stiffness was obtained via carotid-femoral pulse wave velocity (cPWV) and corrected for central mean arterial pressure (cPWV/cMAP). Central arterial stiffness increased in obese individuals but decreased in normal-weight individuals following acute maximal exercise, after adjusting for fitness. Obese individuals also exhibited an overall higher central BP ( P  <   0.05), with no exercise effect. The increase in heart rate was greater in obese versus normal-weight individuals following exercise ( P  <   0.05), but there was no group differences or exercise effect for AIx@75 In conclusion, obese (but not normal-weight) individuals increased central arterial stiffness following acute maximal exercise. An assessment of arterial stiffness response to acute exercise may serve as a useful detection tool for subclinical vascular dysfunction. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  8. Finite element formulation for fluid-structure interaction in three-dimensional space

    International Nuclear Information System (INIS)

    Kulak, R.F.

    1979-01-01

    A development is presented for a three-dimension hexahedral hydrodynamic finite-element. Using trilinear shape functions and assuming a constant pressure field in each element, simple relations were obtained for internal nodal forces. Because the formulation was based upon a rate approach it was applicable to problems involving large displacements. This element was incorporated into an existing plate-shell finite element code. Diagonal mass matrices were used and the resulting discrete equations of motion were solved using explicit temporal integrator. Results for several problems were presented which compare numerical predictions to closed form analytical solutions. In addition, the fluid-structure interaction problem of a fluid-filled, cylindrical vessel containing internal cylinders was studied. The internal cylinders were cantilever supported from the top cover of the vessel and were periodically located circumferentially at a fixed radius. A pressurized cylindrical cavity located at the bottom of the vessel at its centerline provided the loading

  9. Controller Synthesis for Periodically Forced Chaotic Systems

    Science.gov (United States)

    Basso, Michele; Genesio, Roberto; Giovanardi, Lorenzo

    Delayed feedback controllers are an appealing tool for stabilization of periodic orbits in chaotic systems. Despite their conceptual simplicity, specific and reliable design procedures are difficult to obtain, partly also because of their inherent infinite-dimensional structure. This chapter considers the use of finite dimensional linear time invariant controllers for stabilization of periodic solutions in a general class of sinusoidally forced nonlinear systems. For such controllers — which can be interpreted as rational approximations of the delayed ones — we provide a computationally attractive synthesis technique based on Linear Matrix Inequalities (LMIs), by mixing results concerning absolute stability of nonlinear systems and robustness of uncertain linear systems. The resulting controllers prove to be effective for chaos suppression in electronic circuits and systems, as shown by two different application examples.

  10. Maximal and anaerobic threshold cardiorespiratory responses during deepwater running

    Directory of Open Access Journals (Sweden)

    Ana Carolina Kanitz

    2014-12-01

    Full Text Available DOI: http://dx.doi.org/10.5007/1980-0037.2015v17n1p41   Aquatic exercises provide numerous benefits to the health of their practitioners. To secure these benefits, it is essential to have proper prescriptions to the needs of each individual and, therefore, it is important to study the cardiorespiratory responses of different activities in this environment. Thus, the aim of this study was to compare the cardiorespiratory responses at the anaerobic threshold (AT between maximal deep-water running (DWR and maximal treadmill running (TMR. In addition, two methods of determining the AT (the heart rate deflection point [HRDP] and ventilatory method [VM] are compared in the two evaluated protocols. Twelve young women performed the two maximal protocols. Two-factor ANOVA for repeated measures with a post-hoc Bonferroni test was used (α < 0.05. Significantly higher values of maximal heart rate (TMR: 33.7 ± 3.9; DWR: 22.5 ± 4.1 ml.kg−1.min−1 and maximal oxygen uptake (TMR: 33.7 ± 3.9; DWR: 22.5 ± 4.1 ml.kg−1.min−1 in TMR compared to the DWR were found. Furthermore, no significant differences were found between the methods for determining the AT (TMR: VM: 28.1 ± 5.3, HRDP: 26.6 ± 5.5 ml.kg−1.min−1; DWR: VM: 18.7 ± 4.8, HRDP: 17.8 ± 4.8 ml.kg−1.min−1. The results indicate that a specific maximal test for the trained modality should be conducted and the HRDP can be used as a simple and practical method of determining the AT, based on which the training intensity can be determined

  11. Spatial bandwidth enlargement and field enhancement of shear horizontal waves in finite graded piezoelectric layered media

    KAUST Repository

    Xu, Yanlong

    2015-09-01

    Shear horizontal (SH) wave propagation in finite graded piezoelectric layered media is investigated by transfer matrix method. Different from the previous studies on SH wave propagation in completely periodic layered media, calculations on band structure and transmission in this paper show that the graded layered media possess very large band gaps. Harmonic wave simulation by finite element method (FEM) confirms that the reason of bandwidth enlargement is that waves within the band gap ranges are spatially enhanced and stopped by the corresponding graded units. The study suggests that the graded structure possesses the property of manipulating elastic waves spatially, which shows potential applications in strengthening energy trapping and harvesting. © 2015.

  12. Homogenization-based interval analysis for structural-acoustic problem involving periodical composites and multi-scale uncertain-but-bounded parameters.

    Science.gov (United States)

    Chen, Ning; Yu, Dejie; Xia, Baizhan; Liu, Jian; Ma, Zhengdong

    2017-04-01

    This paper presents a homogenization-based interval analysis method for the prediction of coupled structural-acoustic systems involving periodical composites and multi-scale uncertain-but-bounded parameters. In the structural-acoustic system, the macro plate structure is assumed to be composed of a periodically uniform microstructure. The equivalent macro material properties of the microstructure are computed using the homogenization method. By integrating the first-order Taylor expansion interval analysis method with the homogenization-based finite element method, a homogenization-based interval finite element method (HIFEM) is developed to solve a periodical composite structural-acoustic system with multi-scale uncertain-but-bounded parameters. The corresponding formulations of the HIFEM are deduced. A subinterval technique is also introduced into the HIFEM for higher accuracy. Numerical examples of a hexahedral box and an automobile passenger compartment are given to demonstrate the efficiency of the presented method for a periodical composite structural-acoustic system with multi-scale uncertain-but-bounded parameters.

  13. The analysis of three-dimensional effects of nitanium palatal expander 2 and hyrax maxillary expansion appliances on craniofacial structures: A finite element study

    Directory of Open Access Journals (Sweden)

    Avinash Kumar

    2017-01-01

    Full Text Available Objectives: To analyze three-dimensional effects of stress distribution and displacement on the craniofacial structures, following the application of forces from Nitanium Palatal Expander 2 (NPE2 and Hyrax appliance in early mixed dentition period using finite element analysis. Materials and Methods: Three-dimensional finite element models of the young dried human skull, NPE2 and Hyrax were constructed, and the initial activation of the expanders was simulated to carry out the analysis and to evaluate the von misses stresses and displacement on the craniofacial structures. Results: Both the models demonstrated the highest stresses at the mid-palatal suture, with maximum posterior dislocation. The inferior nasal floor showed highest downward displacement and point A showed outward, backward, and upward displacement in both the models. The pattern of stress distribution was almost similar in both the groups, but NPE2 revealed lower magnitude stresses than Hyrax. The cusp of the erupting canine and the mesiobuccal cusp of the second molar showed outward, backward, and downward displacement signifying eruption pattern following maxillary expansion. Conclusions: Nickel titanium palatal expander-2 and Hyrax produced similar stress pattern in early mixed dentition period finite element model. We conclude from this finite element method study that NPE2 is equally effective as Hyrax when used in early mixed dentition period as it exhibits orthopedic nature of expansion with minimal residual stresses in the craniofacial structures.

  14. A New Multi-Step Iterative Algorithm for Approximating Common Fixed Points of a Finite Family of Multi-Valued Bregman Relatively Nonexpansive Mappings

    Directory of Open Access Journals (Sweden)

    Wiyada Kumam

    2016-05-01

    Full Text Available In this article, we introduce a new multi-step iteration for approximating a common fixed point of a finite class of multi-valued Bregman relatively nonexpansive mappings in the setting of reflexive Banach spaces. We prove a strong convergence theorem for the proposed iterative algorithm under certain hypotheses. Additionally, we also use our results for the solution of variational inequality problems and to find the zero points of maximal monotone operators. The theorems furnished in this work are new and well-established and generalize many well-known recent research works in this field.

  15. Quantization with maximally degenerate Poisson brackets: the harmonic oscillator!

    International Nuclear Information System (INIS)

    Nutku, Yavuz

    2003-01-01

    Nambu's construction of multi-linear brackets for super-integrable systems can be thought of as degenerate Poisson brackets with a maximal set of Casimirs in their kernel. By introducing privileged coordinates in phase space these degenerate Poisson brackets are brought to the form of Heisenberg's equations. We propose a definition for constructing quantum operators for classical functions, which enables us to turn the maximally degenerate Poisson brackets into operators. They pose a set of eigenvalue problems for a new state vector. The requirement of the single-valuedness of this eigenfunction leads to quantization. The example of the harmonic oscillator is used to illustrate this general procedure for quantizing a class of maximally super-integrable systems

  16. An introduction to finite projective planes

    CERN Document Server

    Albert, Abraham Adrian

    2015-01-01

    Geared toward both beginning and advanced undergraduate and graduate students, this self-contained treatment offers an elementary approach to finite projective planes. Following a review of the basics of projective geometry, the text examines finite planes, field planes, and coordinates in an arbitrary plane. Additional topics include central collineations and the little Desargues' property, the fundamental theorem, and examples of finite non-Desarguesian planes.Virtually no knowledge or sophistication on the part of the student is assumed, and every algebraic system that arises is defined and

  17. Maximally flat radiation patterns of a circular aperture

    Science.gov (United States)

    Minkovich, B. M.; Mints, M. Ia.

    1989-08-01

    The paper presents an explicit solution to the problems of maximizing the area utilization coefficient and of obtaining the best approximation (on the average) of a sectorial Pi-shaped radiation pattern of an antenna with a circular aperture when Butterworth conditions are imposed on the approximating pattern with the aim of flattening it. Constraints on the choice of admissible minimum and maximum antenna dimensions are determined which make possible the synthesis of maximally flat patterns with small sidelobes.

  18. On Maximally Dissipative Shock Waves in Nonlinear Elasticity

    OpenAIRE

    Knowles, James K.

    2010-01-01

    Shock waves in nonlinearly elastic solids are, in general, dissipative. We study the following question: among all plane shock waves that can propagate with a given speed in a given one-dimensional nonlinearly elastic bar, which one—if any—maximizes the rate of dissipation? We find that the answer to this question depends strongly on the qualitative nature of the stress-strain relation characteristic of the given material. When maximally dissipative shocks do occur, they propagate according t...

  19. The Large Margin Mechanism for Differentially Private Maximization

    OpenAIRE

    Chaudhuri, Kamalika; Hsu, Daniel; Song, Shuang

    2014-01-01

    A basic problem in the design of privacy-preserving algorithms is the private maximization problem: the goal is to pick an item from a universe that (approximately) maximizes a data-dependent function, all under the constraint of differential privacy. This problem has been used as a sub-routine in many privacy-preserving algorithms for statistics and machine-learning. Previous algorithms for this problem are either range-dependent---i.e., their utility diminishes with the size of the universe...

  20. A least squares principle unifying finite element, finite difference and nodal methods for diffusion theory

    International Nuclear Information System (INIS)

    Ackroyd, R.T.

    1987-01-01

    A least squares principle is described which uses a penalty function treatment of boundary and interface conditions. Appropriate choices of the trial functions and vectors employed in a dual representation of an approximate solution established complementary principles for the diffusion equation. A geometrical interpretation of the principles provides weighted residual methods for diffusion theory, thus establishing a unification of least squares, variational and weighted residual methods. The complementary principles are used with either a trial function for the flux or a trial vector for the current to establish for regular meshes a connection between finite element, finite difference and nodal methods, which can be exact if the mesh pitches are chosen appropriately. Whereas the coefficients in the usual nodal equations have to be determined iteratively, those derived via the complementary principles are given explicitly in terms of the data. For the further development of the connection between finite element, finite difference and nodal methods, some hybrid variational methods are described which employ both a trial function and a trial vector. (author)

  1. Enumerating all maximal frequent subtrees in collections of phylogenetic trees

    Science.gov (United States)

    2014-01-01

    Background A common problem in phylogenetic analysis is to identify frequent patterns in a collection of phylogenetic trees. The goal is, roughly, to find a subset of the species (taxa) on which all or some significant subset of the trees agree. One popular method to do so is through maximum agreement subtrees (MASTs). MASTs are also used, among other things, as a metric for comparing phylogenetic trees, computing congruence indices and to identify horizontal gene transfer events. Results We give algorithms and experimental results for two approaches to identify common patterns in a collection of phylogenetic trees, one based on agreement subtrees, called maximal agreement subtrees, the other on frequent subtrees, called maximal frequent subtrees. These approaches can return subtrees on larger sets of taxa than MASTs, and can reveal new common phylogenetic relationships not present in either MASTs or the majority rule tree (a popular consensus method). Our current implementation is available on the web at https://code.google.com/p/mfst-miner/. Conclusions Our computational results confirm that maximal agreement subtrees and all maximal frequent subtrees can reveal a more complete phylogenetic picture of the common patterns in collections of phylogenetic trees than maximum agreement subtrees; they are also often more resolved than the majority rule tree. Further, our experiments show that enumerating maximal frequent subtrees is considerably more practical than enumerating ordinary (not necessarily maximal) frequent subtrees. PMID:25061474

  2. FINITE ELEMENT MODEL FOR PREDICTING RESIDUAL ...

    African Journals Online (AJOL)

    FINITE ELEMENT MODEL FOR PREDICTING RESIDUAL STRESSES IN ... the transverse residual stress in the x-direction (σx) had a maximum value of 375MPa ... the finite element method are in fair agreement with the experimental results.

  3. Pace's Maxims for Homegrown Library Projects. Coming Full Circle

    Science.gov (United States)

    Pace, Andrew K.

    2005-01-01

    This article discusses six maxims by which to run library automation. The following maxims are discussed: (1) Solve only known problems; (2) Avoid changing data to fix display problems; (3) Aut viam inveniam aut faciam; (4) If you cannot make it yourself, buy something; (5) Kill the alligator closest to the boat; and (6) Just because yours is…

  4. Gravitational collapse of charged dust shell and maximal slicing condition

    International Nuclear Information System (INIS)

    Maeda, Keiichi

    1980-01-01

    The maximal slicing condition is a good time coordinate condition qualitatively when pursuing the gravitational collapse by the numerical calculation. The analytic solution of the gravitational collapse under the maximal slicing condition is given in the case of a spherical charged dust shell and the behavior of time slices with this coordinate condition is investigated. It is concluded that under the maximal slicing condition we can pursue the gravitational collapse until the radius of the shell decreases to about 0.7 x (the radius of the event horizon). (author)

  5. Characterization of finite spaces having dispersion points

    International Nuclear Information System (INIS)

    Al-Bsoul, A. T

    1997-01-01

    In this paper we shall characterize the finite spaces having dispersion points. Also, we prove that the dispersion point of a finite space with a dispersion points fixed under all non constant continuous functions which answers the question raised by J. C obb and W. Voxman in 1980 affirmatively for finite space. Some open problems are given. (author). 16 refs

  6. A definition of maximal CP-violation

    International Nuclear Information System (INIS)

    Roos, M.

    1985-01-01

    The unitary matrix of quark flavour mixing is parametrized in a general way, permitting a mathematically natural definition of maximal CP violation. Present data turn out to violate this definition by 2-3 standard deviations. (orig.)

  7. Deconstructing facts and frames in energy research: Maxims for evaluating contentious problems

    International Nuclear Information System (INIS)

    Sovacool, Benjamin K.; Brown, Marilyn A.

    2015-01-01

    In this article, we argue that assumptions and values can play a combative, corrosive role in the generation of objective energy analysis. We then propose six maxims for energy analysts and researchers. Our maxim of information asks readers to keep up to date on trends in energy resources and technology. Our maxim of inclusivity asks readers to involve citizens and other public actors more in energy decisions. Our maxim of symmetry asks readers to keep their analysis of energy technologies centered always on both technology and society. Our maxim of reflexivity asks readers to be self-aware of one's assumptions. Our maxim of prudence asks readers to make energy decisions that are ethical or at least informed. Our maxim of agnosticism asks readers to look beyond a given energy technology to the services it provides and recognize that many systems can provide a desired service. We conclude that decisions in energy are justified by, if not predicated on, beliefs—beliefs which may or may not be supported by objective data, constantly blurring the line between fact, fiction, and frames. - Highlights: • Assumptions and values can play a combative, corrosive role in the generation of objective energy analysis. • Decisions in energy are justified by, if not predicated on, beliefs. • We propose six maxims for energy analysts and researcher.

  8. Finite element methods a practical guide

    CERN Document Server

    Whiteley, Jonathan

    2017-01-01

    This book presents practical applications of the finite element method to general differential equations. The underlying strategy of deriving the finite element solution is introduced using linear ordinary differential equations, thus allowing the basic concepts of the finite element solution to be introduced without being obscured by the additional mathematical detail required when applying this technique to partial differential equations. The author generalizes the presented approach to partial differential equations which include nonlinearities. The book also includes variations of the finite element method such as different classes of meshes and basic functions. Practical application of the theory is emphasised, with development of all concepts leading ultimately to a description of their computational implementation illustrated using Matlab functions. The target audience primarily comprises applied researchers and practitioners in engineering, but the book may also be beneficial for graduate students.

  9. Finite Volumes for Complex Applications VII

    CERN Document Server

    Ohlberger, Mario; Rohde, Christian

    2014-01-01

    The methods considered in the 7th conference on "Finite Volumes for Complex Applications" (Berlin, June 2014) have properties which offer distinct advantages for a number of applications. The second volume of the proceedings covers reviewed contributions reporting successful applications in the fields of fluid dynamics, magnetohydrodynamics, structural analysis, nuclear physics, semiconductor theory and other topics. The finite volume method in its various forms is a space discretization technique for partial differential equations based on the fundamental physical principle of conservation. Recent decades have brought significant success in the theoretical understanding of the method. Many finite volume methods preserve further qualitative or asymptotic properties, including maximum principles, dissipativity, monotone decay of free energy, and asymptotic stability. Due to these properties, finite volume methods belong to the wider class of compatible discretization methods, which preserve qualitative propert...

  10. A multigrid solution method for mixed hybrid finite elements

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, W. [Universitaet Augsburg (Germany)

    1996-12-31

    We consider the multigrid solution of linear equations arising within the discretization of elliptic second order boundary value problems of the form by mixed hybrid finite elements. Using the equivalence of mixed hybrid finite elements and non-conforming nodal finite elements, we construct a multigrid scheme for the corresponding non-conforming finite elements, and, by this equivalence, for the mixed hybrid finite elements, following guidelines from Arbogast/Chen. For a rectangular triangulation of the computational domain, this non-conforming schemes are the so-called nodal finite elements. We explicitly construct prolongation and restriction operators for this type of non-conforming finite elements. We discuss the use of plain multigrid and the multilevel-preconditioned cg-method and compare their efficiency in numerical tests.

  11. Moving mesh finite element method for finite time extinction of distributed parameter systems with positive exponential feedback

    International Nuclear Information System (INIS)

    Garnadi, A.D.

    1997-01-01

    In the distributed parameter systems with exponential feedback, non-global existence of solution is not always exist. For some positive initial values, there exist finite time T such that the solution goes to infinity, i.e. finite time extinction or blow-up. Here is present a numerical solution using Moving Mesh Finite Element to solve the distributed parameter systems with exponential feedback close to blow-up time. The numerical behavior of the mesh close to the time of extinction is the prime interest in this study

  12. Maximal isometric strength of the cervical musculature in 100 healthy volunteers

    DEFF Research Database (Denmark)

    Jordan, A; Mehlsen, J; Bülow, P M

    1999-01-01

    A descriptive study involving maximal isometric strength measurements of the cervical musculature.......A descriptive study involving maximal isometric strength measurements of the cervical musculature....

  13. The Observation of Fault Finiteness and Rapid Velocity Variation in Pnl Waveforms for the Mw 6.5, San Simeon, California Earthquake

    Science.gov (United States)

    Konca, A. O.; Ji, C.; Helmberger, D. V.

    2004-12-01

    We observed the effect of the fault finiteness in the Pnl waveforms from regional distances (4° to 12° ) for the Mw6.5 San Simeon Earthquake on 22 December 2003. We aimed to include more of the high frequencies (2 seconds and longer periods) than the studies that use regional data for focal solutions (5 to 8 seconds and longer periods). We calculated 1-D synthetic seismograms for the Pn_l portion for both a point source, and a finite fault solution. The comparison of the point source and finite fault waveforms with data show that the first several seconds of the point source synthetics have considerably higher amplitude than the data, while finite fault does not have a similar problem. This can be explained by reversely polarized depth phases overlapping with the P waves from the later portion of the fault, and causing smaller amplitudes for the beginning portion of the seismogram. This is clearly a finite fault phenomenon; therefore, can not be explained by point source calculations. Moreover, the point source synthetics, which are calculated with a focal solution from a long period regional inversion, are overestimating the amplitude by three to four times relative to the data amplitude, while finite fault waveforms have the similar amplitudes to the data. Hence, a moment estimation based only on the point source solution of the regional data could have been wrong by half of magnitude. We have also calculated the shifts of synthetics relative to data to fit the seismograms. Our results reveal that the paths from Central California to the south are faster than to the paths to the east and north. The P wave arrival to the TUC station in Arizona is 4 seconds earlier than the predicted Southern California model, while most stations to the east are delayed around 1 second. The observed higher uppermost mantle velocities to the south are consistent with some recent tomographic models. Synthetics generated with these models significantly improves the fits and the

  14. Finite Markov processes and their applications

    CERN Document Server

    Iosifescu, Marius

    2007-01-01

    A self-contained treatment of finite Markov chains and processes, this text covers both theory and applications. Author Marius Iosifescu, vice president of the Romanian Academy and director of its Center for Mathematical Statistics, begins with a review of relevant aspects of probability theory and linear algebra. Experienced readers may start with the second chapter, a treatment of fundamental concepts of homogeneous finite Markov chain theory that offers examples of applicable models.The text advances to studies of two basic types of homogeneous finite Markov chains: absorbing and ergodic ch

  15. Finite-volume scheme for anisotropic diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Es, Bram van, E-mail: bramiozo@gmail.com [Centrum Wiskunde & Informatica, P.O. Box 94079, 1090GB Amsterdam (Netherlands); FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, The Netherlands" 1 (Netherlands); Koren, Barry [Eindhoven University of Technology (Netherlands); Blank, Hugo J. de [FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, The Netherlands" 1 (Netherlands)

    2016-02-01

    In this paper, we apply a special finite-volume scheme, limited to smooth temperature distributions and Cartesian grids, to test the importance of connectivity of the finite volumes. The area of application is nuclear fusion plasma with field line aligned temperature gradients and extreme anisotropy. We apply the scheme to the anisotropic heat-conduction equation, and compare its results with those of existing finite-volume schemes for anisotropic diffusion. Also, we introduce a general model adaptation of the steady diffusion equation for extremely anisotropic diffusion problems with closed field lines.

  16. Finite element analysis of piezoelectric materials

    International Nuclear Information System (INIS)

    Lowrie, F.; Stewart, M.; Cain, M.; Gee, M.

    1999-01-01

    This guide is intended to help people wanting to do finite element analysis of piezoelectric materials by answering some of the questions that are peculiar to piezoelectric materials. The document is not intended as a complete beginners guide for finite element analysis in general as this is better dealt with by the individual software producers. The guide is based around the commercial package ANSYS as this is a popular package amongst piezoelectric material users, however much of the information will still be useful to users of other finite element codes. (author)

  17. From Finite Time to Finite Physical Dimensions Thermodynamics: The Carnot Engine and Onsager's Relations Revisited

    Science.gov (United States)

    Feidt, Michel; Costea, Monica

    2018-04-01

    Many works have been devoted to finite time thermodynamics since the Curzon and Ahlborn [1] contribution, which is generally considered as its origin. Nevertheless, previous works in this domain have been revealed [2], [3], and recently, results of the attempt to correlate Finite Time Thermodynamics with Linear Irreversible Thermodynamics according to Onsager's theory were reported [4]. The aim of the present paper is to extend and improve the approach relative to thermodynamic optimization of generic objective functions of a Carnot engine with linear response regime presented in [4]. The case study of the Carnot engine is revisited within the steady state hypothesis, when non-adiabaticity of the system is considered, and heat loss is accounted for by an overall heat leak between the engine heat reservoirs. The optimization is focused on the main objective functions connected to engineering conditions, namely maximum efficiency or power output, except the one relative to entropy that is more fundamental. Results given in reference [4] relative to the maximum power output and minimum entropy production as objective function are reconsidered and clarified, and the change from finite time to finite physical dimension was shown to be done by the heat flow rate at the source. Our modeling has led to new results of the Carnot engine optimization and proved that the primary interest for an engineer is mainly connected to what we called Finite Physical Dimensions Optimal Thermodynamics.

  18. Probabilistic finite element investigation of prestressing loss in nuclear containment wall segments

    International Nuclear Information System (INIS)

    Balomenos, Georgios P.; Pandey, Mahesh D.

    2017-01-01

    Highlights: • Probabilistic finite element framework for assessing concrete strain distribution. • Investigation of prestressing loss based on concrete strain distribution. • Application to 3D nuclear containment wall segments. • Use of ABAQUS with python programing for Monte Carlo simulation. - Abstract: The main function of the concrete containment structures is to prevent radioactive leakage to the environment in case of a loss of coolant accident (LOCA). The Canadian Standard CSA N287.6 (2011) proposes periodic inspections, i.e., pressure testing, in order to assess the strength and design criteria of the containment (proof test) and the leak tightness of the containment boundary (leakage rate test). During these tests, the concrete strains are measured and are expected to have a distribution due to several uncertainties. Therefore, this study aims to propose a probabilistic finite element analysis framework. Then, investigates the relationship between the concrete strains and the prestressing loss, in order to examine the possibility of estimating the average prestressing loss during pressure testing inspections. The results indicate that the concrete strain measurements during the leakage rate test may provide information with respect to the prestressing loss of the bonded system. In addition, the demonstrated framework can be further used for the probabilistic finite element analysis of real scale containments.

  19. Probabilistic finite element investigation of prestressing loss in nuclear containment wall segments

    Energy Technology Data Exchange (ETDEWEB)

    Balomenos, Georgios P., E-mail: gbalomen@uwaterloo.ca; Pandey, Mahesh D., E-mail: mdpandey@uwaterloo.ca

    2017-01-15

    Highlights: • Probabilistic finite element framework for assessing concrete strain distribution. • Investigation of prestressing loss based on concrete strain distribution. • Application to 3D nuclear containment wall segments. • Use of ABAQUS with python programing for Monte Carlo simulation. - Abstract: The main function of the concrete containment structures is to prevent radioactive leakage to the environment in case of a loss of coolant accident (LOCA). The Canadian Standard CSA N287.6 (2011) proposes periodic inspections, i.e., pressure testing, in order to assess the strength and design criteria of the containment (proof test) and the leak tightness of the containment boundary (leakage rate test). During these tests, the concrete strains are measured and are expected to have a distribution due to several uncertainties. Therefore, this study aims to propose a probabilistic finite element analysis framework. Then, investigates the relationship between the concrete strains and the prestressing loss, in order to examine the possibility of estimating the average prestressing loss during pressure testing inspections. The results indicate that the concrete strain measurements during the leakage rate test may provide information with respect to the prestressing loss of the bonded system. In addition, the demonstrated framework can be further used for the probabilistic finite element analysis of real scale containments.

  20. Hybrid FDTD Analysis for Periodic On-Chip Terahertz (THZ) Structures

    Energy Technology Data Exchange (ETDEWEB)

    Hussein, Yasser A.; Spencer, James E.; /SLAC

    2005-06-07

    We present electromagnetic analysis and radiation efficiency calculations for on-chip terahertz (THz) structures based on a hybrid, finite-difference, time-domain (HFDTD) technique. The method employs the FDTD technique to calculate S-parameters for one cell of a periodic structure. The transmission ABCD matrix is then estimated and multiplied by itself n times to obtain the n-cell periodic structure ABCD parameters that are then converted back to S-parameters. Validation of the method is carried out by comparing the results of the hybrid technique with FDTD calculations of the entire periodic structure as well as with HFSS which all agree quite well. This procedure reduces the CPU-time and allows efficient design and optimization of periodic THz radiation sources. Future research will involve coupling of Maxwell's equations with a more detailed, physics-based transport model for higher-order effects.

  1. Nonadditive entropy maximization is inconsistent with Bayesian updating

    Science.gov (United States)

    Pressé, Steve

    2014-11-01

    The maximum entropy method—used to infer probabilistic models from data—is a special case of Bayes's model inference prescription which, in turn, is grounded in basic propositional logic. By contrast to the maximum entropy method, the compatibility of nonadditive entropy maximization with Bayes's model inference prescription has never been established. Here we demonstrate that nonadditive entropy maximization is incompatible with Bayesian updating and discuss the immediate implications of this finding. We focus our attention on special cases as illustrations.

  2. Subgroups of GLn(R) for local rings R

    International Nuclear Information System (INIS)

    Kuku, A.O.; Mahdavi-Hezavehi, M.

    2002-07-01

    Let R be a local ring, with maximal ideal m, and residue class division ring R/m=D. Put A=M n (R)-n≥1, and denote by A*=GL n (R) the group of units of A. Here we investigate some algebraic structure of subnormal and maximal subgroups of A * . For instance, when D is of finite dimension over its center, it is shown that finitely generated subnormal subgroups of A* are central. It is also proved that maximal subgroups of A* are not finitely generated. Furthermore, assume that P is a nonabelian maximal subgroup of GL 1 (R) such that P contains a noncentral soluble normal subgroup of finite index, it is shown that D is a crossed product division algebra. (author)

  3. Les Ambivalences du Silence: Les "Maximes" de la Rochefoucauld Par Quatre Chemins

    Science.gov (United States)

    Turcat, Eric

    2012-01-01

    Maxims are famous for their moral pronouncements, yet La Rochefoucauld's "Maximes" (1678) have become infamous for offering little moral guidance. Morally ambivalent at best, the "Maximes" are also less known for their other forms of ambivalence, whether rhetorical, psychological, anthropological or linguistic. Such are…

  4. FLOUTS OF THE COOPERATIVE PRINCIPLE MAXIMS IN SBY’S PRESIDENTIAL INTERVIEWS

    Directory of Open Access Journals (Sweden)

    Fahrus Zaman Fadhly

    2012-12-01

    Full Text Available This paper analyzed the presidential interviews of the President of Republic of Indonesia, Susilo Bambang Yudoyono (SBY, based on Grice’s theory of the Cooperative Principles (CP. This study employed a qualitative research design and the data were three transcripts of interview discourse between SBY and eight Indonesian journalists obtained through the presidential official website: http://www.presidentsby.info. The research investigated the ways of SBY in flouting the CP maxims in his presidential interviews and the functions of the flouts were. The research revealed that SBY flouted all the CP maxims and the maxim of Quantity was frequently flouted. Meanwhile, there were four ways used by SBY in flouting the CP maxims, i.e. hedging, indirectness, open answer and detailed element. The function of the flouts, i.e. face saving acts (FSA, self-protection, awareness, politeness, interestingness, control of information, elaboration and ignorance. This research also revealed that CP maxims of Grice are not universal.

  5. Evaluation of anti-hyperglycemic effect of Actinidia kolomikta (Maxim. etRur.) Maxim. root extract.

    Science.gov (United States)

    Hu, Xuansheng; Cheng, Delin; Wang, Linbo; Li, Shuhong; Wang, Yuepeng; Li, Kejuan; Yang, Yingnan; Zhang, Zhenya

    2015-05-01

    This study aimed to evaluate the anti-hyperglycemic effect of ethanol extract from Actinidia kolomikta (Maxim. etRur.) Maxim. root (AKE).An in vitro evaluation was performed by using rat intestinal α-glucosidase (maltase and sucrase), the key enzymes linked with type 2 diabetes. And an in vivo evaluation was also performed by loading maltose, sucrose, glucose to normal rats. As a result, AKE showed concentration-dependent inhibition effects on rat intestinal maltase and rat intestinal sucrase with IC(50) values of 1.83 and 1.03mg/mL, respectively. In normal rats, after loaded with maltose, sucrose and glucose, administration of AKE significantly reduced postprandial hyperglycemia, which is similar to acarbose used as an anti-diabetic drug. High contents of total phenolics (80.49 ± 0.05mg GAE/g extract) and total flavonoids (430.69 ± 0.91mg RE/g extract) were detected in AKE. In conclusion, AKE possessed anti-hyperglycemic effects and the possible mechanisms were associated with its inhibition on α-glucosidase and the improvement on insulin release and/or insulin sensitivity as well. The anti-hyperglycemic activity possessed by AKE maybe attributable to its high contents of phenolic and flavonoid compounds.

  6. On the location of spectral edges in \\mathbb {Z}-periodic media

    KAUST Repository

    Exner, Pavel; Kuchment, Peter; Winn, Brian

    2010-01-01

    Periodic second-order ordinary differential operators on ℝ are known to have the edges of their spectra to occur only at the spectra of periodic and antiperiodic boundary value problems. The multi-dimensional analog of this property is false, as was shown in a 2007 paper by some of the authors of this paper. However, one sometimes encounters the claims that in the case of a single periodicity (i.e., with respect to the lattice ℤ), the 1D property still holds, and spectral edges occur at the periodic and anti-periodic spectra only. In this work, we show that even in the simplest case of quantum graphs this is not true. It is shown that this is true if the graph consists of a 1D chain of finite graphs connected by single edges, while if the connections are formed by at least two edges, the spectral edges can already occur away from the periodic and anti-periodic spectra. © 2010 IOP Publishing Ltd.

  7. On the location of spectral edges in \\mathbb {Z}-periodic media

    KAUST Repository

    Exner, Pavel

    2010-11-09

    Periodic second-order ordinary differential operators on ℝ are known to have the edges of their spectra to occur only at the spectra of periodic and antiperiodic boundary value problems. The multi-dimensional analog of this property is false, as was shown in a 2007 paper by some of the authors of this paper. However, one sometimes encounters the claims that in the case of a single periodicity (i.e., with respect to the lattice ℤ), the 1D property still holds, and spectral edges occur at the periodic and anti-periodic spectra only. In this work, we show that even in the simplest case of quantum graphs this is not true. It is shown that this is true if the graph consists of a 1D chain of finite graphs connected by single edges, while if the connections are formed by at least two edges, the spectral edges can already occur away from the periodic and anti-periodic spectra. © 2010 IOP Publishing Ltd.

  8. Bipartite Bell Inequality and Maximal Violation

    International Nuclear Information System (INIS)

    Li Ming; Fei Shaoming; Li-Jost Xian-Qing

    2011-01-01

    We present new bell inequalities for arbitrary dimensional bipartite quantum systems. The maximal violation of the inequalities is computed. The Bell inequality is capable of detecting quantum entanglement of both pure and mixed quantum states more effectively. (general)

  9. Maximally efficient protocols for direct secure quantum communication

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Anindita [Department of Physics and Materials Science Engineering, Jaypee Institute of Information Technology, A-10, Sector-62, Noida, UP-201307 (India); Department of Physics and Center for Astroparticle Physics and Space Science, Bose Institute, Block EN, Sector V, Kolkata 700091 (India); Pathak, Anirban, E-mail: anirban.pathak@jiit.ac.in [Department of Physics and Materials Science Engineering, Jaypee Institute of Information Technology, A-10, Sector-62, Noida, UP-201307 (India); RCPTM, Joint Laboratory of Optics of Palacky University and Institute of Physics of Academy of Science of the Czech Republic, Faculty of Science, Palacky University, 17. Listopadu 12, 77146 Olomouc (Czech Republic)

    2012-10-01

    Two protocols for deterministic secure quantum communication (DSQC) using GHZ-like states have been proposed. It is shown that one of these protocols is maximally efficient and that can be modified to an equivalent protocol of quantum secure direct communication (QSDC). Security and efficiency of the proposed protocols are analyzed and compared. It is shown that dense coding is sufficient but not essential for DSQC and QSDC protocols. Maximally efficient QSDC protocols are shown to be more efficient than their DSQC counterparts. This additional efficiency arises at the cost of message transmission rate. -- Highlights: ► Two protocols for deterministic secure quantum communication (DSQC) are proposed. ► One of the above protocols is maximally efficient. ► It is modified to an equivalent protocol of quantum secure direct communication (QSDC). ► It is shown that dense coding is sufficient but not essential for DSQC and QSDC protocols. ► Efficient QSDC protocols are always more efficient than their DSQC counterparts.

  10. Chamaebatiaria millefolium (Torr.) Maxim.: fernbush

    Science.gov (United States)

    Nancy L. Shaw; Emerenciana G. Hurd

    2008-01-01

    Fernbush - Chamaebatiaria millefolium (Torr.) Maxim. - the only species in its genus, is endemic to the Great Basin, Colorado Plateau, and adjacent areas of the western United States. It is an upright, generally multistemmed, sweetly aromatic shrub 0.3 to 2 m tall. Bark of young branches is brown and becomes smooth and gray with age. Leaves are leathery, alternate,...

  11. Generalized Yosida Approximations Based on Relatively A-Maximal m-Relaxed Monotonicity Frameworks

    Directory of Open Access Journals (Sweden)

    Heng-you Lan

    2013-01-01

    Full Text Available We introduce and study a new notion of relatively A-maximal m-relaxed monotonicity framework and discuss some properties of a new class of generalized relatively resolvent operator associated with the relatively A-maximal m-relaxed monotone operator and the new generalized Yosida approximations based on relatively A-maximal m-relaxed monotonicity framework. Furthermore, we give some remarks to show that the theory of the new generalized relatively resolvent operator and Yosida approximations associated with relatively A-maximal m-relaxed monotone operators generalizes most of the existing notions on (relatively maximal monotone mappings in Hilbert as well as Banach space and can be applied to study variational inclusion problems and first-order evolution equations as well as evolution inclusions.

  12. Maximal violation of a bipartite three-setting, two-outcome Bell inequality using infinite-dimensional quantum systems

    International Nuclear Information System (INIS)

    Pal, Karoly F.; Vertesi, Tamas

    2010-01-01

    The I 3322 inequality is the simplest bipartite two-outcome Bell inequality beyond the Clauser-Horne-Shimony-Holt (CHSH) inequality, consisting of three two-outcome measurements per party. In the case of the CHSH inequality the maximal quantum violation can already be attained with local two-dimensional quantum systems; however, there is no such evidence for the I 3322 inequality. In this paper a family of measurement operators and states is given which enables us to attain the maximum quantum value in an infinite-dimensional Hilbert space. Further, it is conjectured that our construction is optimal in the sense that measuring finite-dimensional quantum systems is not enough to achieve the true quantum maximum. We also describe an efficient iterative algorithm for computing quantum maximum of an arbitrary two-outcome Bell inequality in any given Hilbert space dimension. This algorithm played a key role in obtaining our results for the I 3322 inequality, and we also applied it to improve on our previous results concerning the maximum quantum violation of several bipartite two-outcome Bell inequalities with up to five settings per party.

  13. Maximizing the productivity of the microalgae Scenedesmus AMDD cultivated in a continuous photobioreactor using an online flow rate control.

    Science.gov (United States)

    McGinn, Patrick J; MacQuarrie, Scott P; Choi, Jerome; Tartakovsky, Boris

    2017-01-01

    In this study, production of the microalga Scenedesmus AMDD in a 300 L continuous flow photobioreactor was maximized using an online flow (dilution rate) control algorithm. To enable online control, biomass concentration was estimated in real time by measuring chlorophyll-related culture fluorescence. A simple microalgae growth model was developed and used to solve the optimization problem aimed at maximizing the photobioreactor productivity. When optimally controlled, Scenedesmus AMDD culture demonstrated an average volumetric biomass productivity of 0.11 g L -1  d -1 over a 25 day cultivation period, equivalent to a 70 % performance improvement compared to the same photobioreactor operated as a turbidostat. The proposed approach for optimizing photobioreactor flow can be adapted to a broad range of microalgae cultivation systems.

  14. Finite temperature field theory

    CERN Document Server

    Das, Ashok

    1997-01-01

    This book discusses all three formalisms used in the study of finite temperature field theory, namely the imaginary time formalism, the closed time formalism and thermofield dynamics. Applications of the formalisms are worked out in detail. Gauge field theories and symmetry restoration at finite temperature are among the practical examples discussed in depth. The question of gauge dependence of the effective potential and the Nielsen identities are explained. The nonrestoration of some symmetries at high temperature (such as supersymmetry) and theories on nonsimply connected space-times are al

  15. Mutually Unbiased Maximally Entangled Bases for the Bipartite System Cd⊗ C^{dk}

    Science.gov (United States)

    Nan, Hua; Tao, Yuan-Hong; Wang, Tian-Jiao; Zhang, Jun

    2016-10-01

    The construction of maximally entangled bases for the bipartite system Cd⊗ Cd is discussed firstly, and some mutually unbiased bases with maximally entangled bases are given, where 2≤ d≤5. Moreover, we study a systematic way of constructing mutually unbiased maximally entangled bases for the bipartite system Cd⊗ C^{dk}.

  16. Finite Size Scaling of Perceptron

    OpenAIRE

    Korutcheva, Elka; Tonchev, N.

    2000-01-01

    We study the first-order transition in the model of a simple perceptron with continuous weights and large, bit finite value of the inputs. Making the analogy with the usual finite-size physical systems, we calculate the shift and the rounding exponents near the transition point. In the case of a general perceptron with larger variety of inputs, the analysis only gives bounds for the exponents.

  17. Finite p′-nilpotent groups. I

    Directory of Open Access Journals (Sweden)

    S. Srinivasan

    1987-01-01

    Full Text Available In this paper we consider finite p′-nilpotent groups which is a generalization of finite p-nilpotent groups. This generalization leads us to consider the various special subgroups such as the Frattini subgroup, Fitting subgroup, and the hypercenter in this generalized setting. The paper also considers the conditions under which product of p′-nilpotent groups will be a p′-nilpotent group.

  18. Maximal near-field radiative heat transfer between two plates

    Science.gov (United States)

    Nefzaoui, Elyes; Ezzahri, Younès; Drévillon, Jérémie; Joulain, Karl

    2013-09-01

    Near-field radiative transfer is a promising way to significantly and simultaneously enhance both thermo-photovoltaic (TPV) devices power densities and efficiencies. A parametric study of Drude and Lorentz models performances in maximizing near-field radiative heat transfer between two semi-infinite planes separated by nanometric distances at room temperature is presented in this paper. Optimal parameters of these models that provide optical properties maximizing the radiative heat flux are reported and compared to real materials usually considered in similar studies, silicon carbide and heavily doped silicon in this case. Results are obtained by exact and approximate (in the extreme near-field regime and the electrostatic limit hypothesis) calculations. The two methods are compared in terms of accuracy and CPU resources consumption. Their differences are explained according to a mesoscopic description of nearfield radiative heat transfer. Finally, the frequently assumed hypothesis which states a maximal radiative heat transfer when the two semi-infinite planes are of identical materials is numerically confirmed. Its subsequent practical constraints are then discussed. Presented results enlighten relevant paths to follow in order to choose or design materials maximizing nano-TPV devices performances.

  19. Finite automata over magmas: models and some applications in Cryptography

    Directory of Open Access Journals (Sweden)

    Volodymyr V. Skobelev

    2018-05-01

    Full Text Available In the paper the families of finite semi-automata and reversible finite Mealy and Moore automata over finite magmas are defined and analyzed in detail. On the base of these models it is established that the set of finite quasigroups is the most acceptable subset of the set of finite magmas at resolving model problems in Cryptography, such as design of iterated hash functions and stream ciphers. Defined families of finite semi-automata and reversible finite automata over finite $T$-quasigroups are investigated in detail. It is established that in this case models time and space complexity for simulation of the functioning during one instant of automaton time can be much lower than in general case.

  20. Estimation of Finite Population Mean in Multivariate Stratified Sampling under Cost Function Using Goal Programming

    Directory of Open Access Journals (Sweden)

    Atta Ullah

    2014-01-01

    Full Text Available In practical utilization of stratified random sampling scheme, the investigator meets a problem to select a sample that maximizes the precision of a finite population mean under cost constraint. An allocation of sample size becomes complicated when more than one characteristic is observed from each selected unit in a sample. In many real life situations, a linear cost function of a sample size nh is not a good approximation to actual cost of sample survey when traveling cost between selected units in a stratum is significant. In this paper, sample allocation problem in multivariate stratified random sampling with proposed cost function is formulated in integer nonlinear multiobjective mathematical programming. A solution procedure is proposed using extended lexicographic goal programming approach. A numerical example is presented to illustrate the computational details and to compare the efficiency of proposed compromise allocation.