WorldWideScience

Sample records for mawan electricity plant

  1. Marginal cost pricing for coal fired electricity in coastal cities of China: the case of Mawan Electricity Plant in Shenzhen City, China.

    Science.gov (United States)

    Zhang, Shi-Qiu; Duan, Yan-Xin

    2003-05-01

    By developing a GDMOD model to estimate the environmental externalities associated with electricity generation, this project provides a detailed analysis of the damages and costs caused by different pollutants at varying distances from the Mawan Electricity Plant in Shenzhen, China. The major findings of this study can be summarized that (1) environmental damages caused by electricity production are large and are mainly imposed on regions far away from the electricity plant; (2) air pollution is the most significant contributor to the total damages, and SO2, NO(x), and particulate matter are the three major pollutants with highest damages; (3) the damages caused per unit of particulate,NO(x), and SO2 emissions are much higher than pollution treatment and prevention costs. The research results of this project showed that China needs to have a more effective levy system on SO2, and a more manageable electricity tariff mechanism to internalize the environmental externalities. The results have also implications for pollution control strategies, compensation schemes as well an emission trading arrangements.

  2. Proceedings: Power Plant Electric Auxiliary Systems Workshop

    International Nuclear Information System (INIS)

    1992-06-01

    The EPRI Power Plant Electric Auxiliary Systems Workshop, held April 24--25, 1991, in Princeton, New Jersey, brought together utilities, architect/engineers, and equipment suppliers to discuss common problems with power plant auxiliary systems. Workshop participants presented papers on monitoring, identifying, and solving problems with auxiliary systems. Panel discussions focused on improving systems and existing and future plants. The solutions presented to common auxiliary system problems focused on practical ideas that can enhance plant availability, reduce maintenance costs, and simplify the engineering process. The 13 papers in these proceedings include: Tutorials on auxiliary electrical systems and motors; descriptions of evaluations, software development, and new technologies used recently by electric utilities; an analysis of historical performance losses caused by power plant auxiliary systems; innovative design concepts for improving auxiliary system performance in future power plants

  3. Slovak Electric, plc, Mochovce Nuclear Power Plant

    International Nuclear Information System (INIS)

    1999-01-01

    In this popular scientific brochure a brief description of construction scheme of Bohunice Nuclear Power Plant is presented. Electricity generation in a nuclear power plant is described. Instrumentation and control system as well as nuclear safety principles applied on the NPP are presented

  4. Slovak Electric, plc, Mochovce Nuclear Power Plant

    International Nuclear Information System (INIS)

    2000-01-01

    In this popular scientific brochure a brief description of history construction of Bohunice Nuclear Power Plant is presented. The chart of electricity generation in WWER 440/V-213 nuclear power plant is described. Operation and safety improvements at Mochovce NPP as well as environment protection are presented. Basic data of Mochovce NPP are included

  5. Slovak Electric, plc, Bohunice Nuclear Power Plant

    International Nuclear Information System (INIS)

    1999-01-01

    A brief account of activities carried out by the Bohunice Nuclear Power Plant in 1998 is presented. These activities are reported under the headings: (1) Operation and electric power generation; (2) Nuclear and radiation safety; (3) Maintenance and scheduled refuelling out-gages; (4) Investment and WWER units upgrading; (5) Power Plants Personnel; (6) Public relations

  6. 1-MWp electrical photovoltaic plant (EPHOP - project)

    International Nuclear Information System (INIS)

    Vitanov, P.; Toneva, A.; Petkanchin, L.; Ivancheva, J.; Neshev, S.

    2000-01-01

    The presented project concerns the realization of a grid connected 1-MW p pilot photovoltaic plant on the territory of Bulgaria.The purpose of the project is to demonstrate and prove solar energy advantages. A special attention will be paid to the possibility the generated electricity to join the national electric network. The site selection according to the meteorological conditions as well as general aspects of the project are discussed

  7. Corrosion control in electric power plants

    International Nuclear Information System (INIS)

    Syrett, B.C.

    1992-01-01

    This paper reports that corrosion of components in power plants costs the US electric power utility industry billions of dollars each year. Through the Electric Power Research Institute's (EPRI) research and development, several approaches have been developed to reduce these huge costs. They include improved materials selection procedures, coatings, cathodic protection, inhibitors, removal of aggressive species from the environment, and on-line corrosion monitoring. In addition, as part of an on-going technology transfer effort, EPRI is developing databases and expert systems that will help utilities obtain corrosion information and guide them in materials selection and failure analysis

  8. Plant life extensions for German nuclear power plants? Controversial discussion on potential electricity price effects

    International Nuclear Information System (INIS)

    Matthes, Felix C.; Hermann, Hauke

    2009-06-01

    The discussions on electricity price effects in case of the plant life extension of German nuclear power plants covers the following topics: (1) Introduction and methodology. (2) Electricity generation in nuclear power plants and electricity price based on an empirical view: electricity generation in nuclear power plants and final consumption price for households and industry in the European Union; electricity generation in nuclear power plants and electricity wholesale price in case of low availability of nuclear power plants in Germany; comparison of electricity wholesale prices in Germany and France. (3) Model considerations in relation to electricity prices and nuclear phase-out. (4) Concluding considerations.

  9. Electric power plants and networks. Elektrische Kraftwerke

    Energy Technology Data Exchange (ETDEWEB)

    Happoldt, H [Brown, Boveri und Cie A.G., Mannheim (Germany, F.R.). Abt. Centralen; Oeding, D [Brown, Boveri und Cie A.G., Mannheim (Germany, F.R.). Zentralbereich Forschung und Entwicklung

    1978-01-01

    This book is itended for enginers working in the planning, construction and operation of plants to generate and distribute electric power; it is also a valuable aid for students of power engineering. This new edition places more emphasis on the presentation and calculation of three-phase current networks with the aid of symmetric components. The equations used for calculation are adapted to VDE regulations as far as possible.

  10. Virtual Power Plants of Electric Vehicles in Sustainable Smart Electricity Markets

    NARCIS (Netherlands)

    M.T. Kahlen (Micha)

    2017-01-01

    markdownabstractThe batteries of electric vehicles can be used as Virtual Power Plants to balance out frequency deviations in the electricity grid. Carsharing fleet owners have the options to charge an electric vehicle's battery, discharge an electric vehicle's battery, or keep an electric vehicle

  11. Vogtle Electric Generating Plant ETE Analysis Review

    Energy Technology Data Exchange (ETDEWEB)

    Diediker, Nona H.; Jones, Joe A.

    2006-12-09

    Under contract with the Nuclear Regulatory Commission (NRC), staff from Pacific Northwest National Laboratory (PNNL) and Sandia National Laboratory (SNL)-Albuquerque reviewed the evacuation time estimate (ETE) analysis dated April 2006 prepared by IEM for the Vogtle Electric Generating Plant (VEGP). The ETE analysis was reviewed for consistency with federal regulations using the NRC guidelines in Review Standard (RS)-002, Supplement 2 and Appendix 4 to NUREG-0654, and NUREG/CR-4831. Additional sources of information referenced in the analysis and used in the review included NUREG/CR-6863 and NUREG/CR-6864. The PNNL report includes general comments, data needs or clarifications, and requests for additional information (RAI) resulting from review of the ETE analysis.

  12. Wind power plant for electricity generation

    Energy Technology Data Exchange (ETDEWEB)

    Landsiedel, E

    1978-11-09

    The invention concerns a wind power plant which rotates on a vertical axis and is suitable for the generation of electricity. This wind power machine with a vertical axis can be mounted at any height, so that it can catch the wind on the vertical axis of rotation. Further, it does not have to be turned into the direction of the wind and fixed. The purpose of the invention is to obtain equal load on the structure due to the vertical axis. The purpose of the invention is fulfilled by having the wind vanes fixed above one another from the bottom to the top in 6 different directions. The particular advantage of the invention lies in the fact that the auxiliary blades can bring the other blades to the operating position in good time, due to their particular method of fixing.

  13. The PBMR electric power generation plant

    International Nuclear Information System (INIS)

    Perez S, G.; Santacruz I, I.; Martin del Campo M, C.

    2003-01-01

    This work has as purpose to diffuse in a general way the technology of the one modulate reactor of pebble bed. Because our country is in developing ways, the electric power demand goes in increase with that which it is presented the great challenge of satisfying this necessity, not only being in charge of the one fact per se, but also involving the environmental aspect and of security. Both factors are covered by the PBMR technology, which we approach in their basic aspects with the purpose that the public opinion knows it and was familiarized with this type of reactors that well could represent a solution for our growing electricity demand. We will treat this reactor visualizing it like part of a generation plant defining in first place to the itself reactor. We will see because that the system PBMR consists of 2 main sections: the reactor and the unit of energy conversion, highlighting that the principle of the PBMR reactor operation is based on the thermodynamic Brayton cycle cooled by helium and that, in turn, it transmits the energy in form of heat toward a gas turbine. In what concerns to the fuel, it peculiar design due to its spherical geometry is described, aspect that make to this reactor different from the traditional ones that use fuel rods. In fact in the fuel spheres of the PBMR it is where it resides great part of it inherent security since each particle of fuel, consistent in uranium dioxide, is lined one with coal and silicon carbide those which form an impenetrable barrier containing to the fuel and those radioactive products that result of the nuclear reactions. Such particles are encapsulated in graphite to form the sphere or 'pebble', of here born the name of this innovative technology. (Author)

  14. Cost and quality of fuels for electric utility plants, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-14

    This document presents an annual summary of statistics at the national, Census division, State, electric utility, and plant levels regarding the quantity, quality, and cost of fossil fuels used to produce electricity. Purpose of this publication is to provide energy decision-makers with accurate, timely information that may be used in forming various perspectives on issues regarding electric power.

  15. Electric plant cost and power production expenses 1990

    International Nuclear Information System (INIS)

    1992-06-01

    Electric Plant Cost and Power Production Expenses is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA); US Department of Energy. This publication presents electric utility statistics on power production expenses and construction costs of electric generating plants. Data presented here are intended to provide information to the electric utility industry, educational institutions, Federal, State, and local governments, and the general public. These data are collected and published to fulfill data collection and dissemination responsibilities of the Energy Information Administration (EIA), as specified in the Federal Energy Administration Act (Public Law 93-275), as amended

  16. Electric plant cost and power production expenses 1991

    International Nuclear Information System (INIS)

    1993-01-01

    Electric Plant Cost and Power Production Expenses is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels (CNEAF); Energy Information Administration (EIA); US Department of Energy. This publication presents electric utility statistics on power production expenses and construction costs of electric generating plants. Data presented here are intended to provide information to the electric utility industry, educational institutions, Federal, State, and local governments, and the general public. These data are collected and published to fulfill data collection and dissemination responsibilities of the Energy Information Administration (EIA), as specified in the Federal Energy Administration Act (Public Law 93-275), as amended

  17. Revenue opportunities for gas plants arising from electricity deregulation

    International Nuclear Information System (INIS)

    Bachmann, G.C.

    1999-01-01

    A brief overview of deregulation in the electric power industry and an explanation of how these changes can be used to increase revenues of gas processing plants is provided. Deregulation in the electric power industry provides the potential to significantly reduce energy costs for the gas plant and allows technology to be applied to make a better use of a valuable commodity. Owners and operators of gas processing plants increase their operating income by taking advantage of co-generation systems which provide heat and electrical energy to the gas plant. Such an application has three revenue streams, the main one being the power sales to the gas plant, the second one heat sales, and the third increased revenues from the gas plant through a reduction of overall costs, not to mention significantly reduced downtime. Further savings are possible through diversion of excess energy produced to other facilities owned by the gas plant owner

  18. Historical plant cost and annual production expenses for selected electric plants, 1982

    International Nuclear Information System (INIS)

    1984-01-01

    This publication is a composite of the two prior publications, Hydroelectric Plant Construction Cost and Annual Production Expenses and Thermal-Electric Plant Construction Cost and Annual Production Expenses. Beginning in 1979, Thermal-Electric Plant Construction Cost and Annual Production Expenses contained information on both steam-electric and gas-turbine electric plant construction cost and annual production expenses. The summarized historical plant cost described under Historical Plant Cost in this report is the net cumulative-to-date actual outlays or expenditures for land, structures, and equipment to the utility. Historical plant cost is the initial investment in plant (cumulative to the date of initial commercial operation) plus the costs of all additions to the plant, less the value of retirements. Thus, historical plant cost includes expenditures made over several years, as modifications are made to the plant. Power Production Expenses is the reporting year's plant operation and maintenance expenses, including fuel expenses. These expenses do not include annual fixed charges on plant cost (capital costs) such as interest on debt, depreciation or amortization expenses, and taxes. Consequently, total production expenses and the derived unit costs are not the total cost of producing electric power at the various plants. This publication contains data on installed generating capacity, net generation, net capability, historical plant cost, production expenses, fuel consumption, physical and operating plant characteristics, and other relevant statistical information for selected plants

  19. Use of plant woody species electrical potential for irrigation scheduling.

    Science.gov (United States)

    Ríos-Rojas, Liliana; Morales-Moraga, David; Alcalde, José A; Gurovich, Luis A

    2015-01-01

    The electrical response of plants to environmental stimuli can be measured and quantitatively related to the intensity of several stimulating sources, like temperature, solar radiation, soil water content, evapotranspiration rates, sap flow and dendrometric cycles. These relations can be used to assess the influence of different environmental situations on soil water availability to plants, defined as a steady state condition between leaf transpirative flow and soil water flow to plant roots. A restricted soil water flow due to soil dryness can trigger water stress in plants, if the atmospheric evaporative demand is high, causing partial stomata closure as a physiological response to avoid plant dehydration; water stressed and unstressed plants manifest a differential electrical response. Real time plant electrical response measurements can anticipate actions that prevent the plant reaching actual stress conditions, optimizing stomata gas exchange and photosynthetic rates. An electrophysiological sensor developed in this work, allows remote real-time recording information on plant electrical potential (EP) in the field, which is highly related to EP measurements obtained with a laboratory Keithley voltmeter sensor used in an highly controlled experimental setup. Our electrophysiological sensor is a wireless, autonomous devise, which transmits EP information via Internet to a data server. Using both types of sensors (EP electrodes with a Keithley voltmeter and the electrophysiological sensor), we measured in real time the electrical responses of Persea americana and Prunus domestica plants, to induced water deficits. The differential response for 2 scenarios: irrigation and water restriction is identified by a progressive change in slope on the daily maximal and minimal electric signal values in stressed plants, and a zero-slope for similar signals for well-watered plants. Results show a correspondence between measured signals obtained by our electrophysiological

  20. The electrical system of nuclear power plant

    International Nuclear Information System (INIS)

    Firman Silitonga; Gunarwan Prayitno

    2009-01-01

    In these system, electrical power system is supplied from two-offsite transmission system respective main transformer and house service transformer; and reserve transformer. The electrical load in these system consist of safety electrical system and non-safety electrical system, The safety electrical and non safety electrical systems consist of four 6,9 kV AC medium voltage bus and 480 V AC low voltage bus system. The DC power system consist of four safety 125 V DC power system and the two non-safety 125 DC power systems. The equipment in these electrical system is main turbine-generator; GTG safety; GTG alternate; uninterrupted power supply (UPS) and battery system. To protect electrical equipment and building to direct stroke and non direct stroke disturbances is installed netral grounding system and lightning protection and protection the personnel to touch-voltage is installed equipment grounding system and station grounding. The lightning arrester system is connected to station station grounding system. (author)

  1. Qualification of electric equipments for nuclear power plants

    International Nuclear Information System (INIS)

    Chauvin, G.; Raimondo, E.

    1983-03-01

    Description of the testing equipment, testing methods and standards of the resistance to seisms of electrical equipments (switches, pump motors, electrovalves, ...) for electronuclear power plants in France. Presentation of the French design and construction rules for electrical devices in the domestic and export nuclear market (resistance to thermodynamical and chemical stresses, to seisms, etc...) [fr

  2. Competitiveness of biomass-fueled electrical power plants.

    Science.gov (United States)

    Bruce A. McCarl; Darius M. Adams; Ralph J. Alig; John T. Chmelik

    2000-01-01

    One way countries like the United States can comply with suggested rollbacks in greenhouse gas emissions is by employing power plants fueled with biomass. We examine the competitiveness of biomass-based fuel for electrical power as opposed to coal using a mathematical programming structure. We consider fueling power plants from milling residues, whole trees, logging...

  3. Miksova hydro-electric power plant is awaiting the fortieths

    International Nuclear Information System (INIS)

    Regula, E.

    2004-01-01

    In this paper the history of cascade of the Miksova hydro-electric power plants (HEPP, in the Slovak Republic) is described. This cascade of power plants consists of the following hydro-electric power plant: Hricov HEPP, Miksova HEPP, Povazska Bystrica HEPP and Nosice HEPP. In the Miksova HEPP are installed three turbo-sets with Kaplan turbine from the CKD Blansko and with synchronous hydro-alternator. Synchronous hydroelectric alternators have maximal output by 31.2 MW. Their installed output is together 93.6 MW and projected production of electric energy is 207 GWh annually. To the end 2003 Miksova HEPP during 40 years has produced together 7,161,342 MWh of electric energy

  4. Comparative Study on Electric Generation Cost of HTR with Another Electric Plant Using LEGECOST Program

    International Nuclear Information System (INIS)

    Mochamad-Nasrullah; Soetrisnanto, Arnold Y.; Tosi-Prastiadi; Adiwardojo

    2000-01-01

    Monetary and economic crisis in Indonesia resulted in impact of electricity and demand and supply planning that it has to be reevaluated. One of the reasons is budget limitation of the government as well as private companies. Considering this reason, the economic calculation for all of aspect could be performed, especially the calculation of electric generation cost. This paper will discuss the economic aspect of several power plants using fossil and nuclear fuel including High Temperature Reactor (HTR). Using Levelized Generation Cost (LEGECOST) program developed by IAEA (International Atomic Energy Agency), the electric generation cost of each power plant could be calculated. And then, the sensitivity analysis has to be done using several economic parameters and scenarios, in order to be known the factors that influence the electric generation cost. It could be concluded, that the electric generation cost of HTR is cheapest comparing the other power plants including nuclear conventional. (author)

  5. Nuclear Power Plants in a Competitive Electricity Market

    International Nuclear Information System (INIS)

    Jankauskas, V.

    2002-01-01

    Electricity demand is growing in the world by an average rate of 3% and, according to the International Energy Agency, is going to keep this pace of growth for the 1st quarter of the 21st century. At the same time, the role of the nuclear in the world energy mix is diminishing, and in 2020 only 9% of the world electricity will be produced at the nuclear plants versus 17% in 2000. The main reasons for the nuclear power diminishing share in the world market are not environmental or safety problems, as one may assume, but technical and economical. Long construction time, high capital cost, huge liabilities connected with the spent nuclear fuel and radioactive waste treatment, storage and final disposal are the main factors restricting the further growth of the nuclear power. Nevertheless, in the liberalized markets (U.K., Germany, Scandinavian countries) nuclear power plants are operating rather successfully. In a short run nuclear plants may become very competitive as they have very low short-run marginal costs, but in the long run they may become very in competitive. The Ignalina NPP plays the dominant ro]e in the Lithuanian electricity market, producing more than 75% of the total domestic electricity. It produces the cheapest electricity in Lithuania, mostly due to its higher availability, than the thermal power plants. The price of electricity sold by Ignalina is also lower as it does not cover all costs connected with the future decommissioning of the plant, spent fuel storage and final disposal. If at least part of this cost were included into the selling price, Ignalina might become highly competitive in a liberalised electricity market. As the Lithuanian Electricity law requires to deregulate electricity. generation prices, these prices should be set by the market. (author)

  6. Decentralised electrical distribution network in power plants

    International Nuclear Information System (INIS)

    Mannila, P.; Lehtonen, M.

    2000-02-01

    A centralised network is a dominating network solution in today's power plants. In this study a centralised and a decentralised network were designed in order to compare them economically and technically. The emphasis of this study was on economical aspects, but also the most important technical aspects were included. The decentralised network requires less space and less cabling since there is no switchgear building and distribution transformers are placed close to the consumption in the field of a power plant. MV-motors and distribution transformers build up a ring. Less cabling and an absent switchgear building cause considerable savings. Component costs of both of the networks were estimated by using data from fulfilled power plant projects and turned out to be smaller for the decentralised network. Simulations for the decentralised network were done in order to find a way to carry out earth fault protection and location. It was found out that in high resistance earthed system the fault distance can be estimated by a relatively simple method. The decentralised network uses a field bus, which offers many new features to the automation system of a power plant. Diversified information can be collected from the protection devices in order to schedule only the needed maintenance duties at the right time. Through the field bus it is also possible to control remotely a power plant. The decentralised network is built up from ready-to-install modules. These modules are tested by the module manufacturer decreasing the need for field testing dramatically. The work contribution needed in the electrification and the management of a power plant project reduces also due the modules. During the lifetime of a power plant, maintenance is easier and more economical. (orig.)

  7. Scenarios for low carbon and low water electric power plant ...

    Science.gov (United States)

    In the water-energy nexus, water use for the electric power sector is critical. Currently, the operational phase of electric power production dominates the electric sector's life cycle withdrawal and consumption of fresh water resources. Water use associated with the fuel cycle and power plant equipment manufacturing phase is substantially lower on a life cycle basis. An outstanding question is: how do regional shifts to lower carbon electric power mixes affect the relative contribution of the upstream life cycle water use? To test this, we examine a range of scenarios comparing a baseline with scenarios of carbon reduction and water use constraints using the MARKet ALlocation (MARKAL) energy systems model with ORD's 2014 U.S. 9-region database (EPAUS9r). The results suggest that moving toward a low carbon and low water electric power mix may increase the non-operational water use. In particular, power plant manufacturing water use for concentrating solar power, and fuel cycle water use for biomass feedstock, could see sharp increases under scenarios of high deployment of these low carbon options. Our analysis addresses the following questions. First, how does moving to a lower carbon electricity generation mix affect the overall regional electric power water use from a life cycle perspective? Second, how does constraining the operational water use for power plants affect the mix, if at all? Third, how does the life cycle water use differ among regions under

  8. Nuclear electric power plants. [Journal, in Russian]. Atomnye elektricheskie stantsii

    Energy Technology Data Exchange (ETDEWEB)

    Voronin, L M [ed.

    1980-01-01

    Separate articles are concerned with experience gained in the planning, exploitation, and adjustment of nuclear power plants with channel reactors. An examination is made of measures to be taken for assuring equipment reliability for nuclear power plants during the planning stage. Also examined is the experience gained in the operation of the pilot plants of the Kursk and Chernobyl' nuclear power plants, and the Bilibin nuclear thermal electric power plant. Considerable attention is given to the reprocessing and disposal of radioactive waste, the quality control of metal ducts in nuclear power plants, and the development of methods and means of controlling technological processes and equipment. The journal is intended for engineering-technical personnel of power plants, power supply administrations, adjustment, repair, and planning organizations.

  9. Fundamentals of Electrical Propulsion Plant Design,

    Science.gov (United States)

    1982-04-06

    contacts DVI and DV2 close the indicator light LS2 and L53 circuits. Electric Fan starter n. r. contacts DVl and DY2 close the red indicator light...forward rotation, /. corresponding tD vessel movement i///’,/iI X,, /;/forward; ’ are curves of GED -tJ ’ !’ i ’ " f \\ \\ ’ . . L---,torques after reversal...Calculation based on generator static characteristics, i. e., based on parameters Xd and Td , are linked with the most difficult GED operating conditions

  10. Nuclear power plants. Electrical equipment of the safety system. Qualification

    International Nuclear Information System (INIS)

    2001-01-01

    This International Standard applies to electrical parts of safety systems employed at nuclear power plants, including components and equipment of any interface whose failure could affect unfavourably properties of the safety system. The standard also applies to non-electrical safety-related interfaces. Furthermore, the standard describes the generic process of qualification certification procedures and methods of qualification testing and related documentation. (P.A.)

  11. What about improving the productivity of electric power plants

    International Nuclear Information System (INIS)

    Lawroski, H.; Knecht, P.D.; Prideaux, D.L.; Zahner, R.R.

    1976-01-01

    The FEA in April of 1974 established an Interagency Task Group on Power Plant Reliability, which was charged with the broad objective of improving the productivity of existing and planned large fossil-fueled and nuclear power plants. It took approximately 11 months for the task force to publish a report, ''Report on Improving the Productivity of Electrical Power Plants'' (FEA-263-G), a detailed analysis and comparison of successful and below-average-performance power plants. The Nuclear Service Corp. portion of this study examined four large central-station power plants: two fossil (coal) and two nuclear plants. Only plants with electrical generation capacities greater than 400 MWe were considered. The study included the following: staff technical skill, engineering support, QA program, plant/corporate coordination, operation philosophy, maintenance programs, federal/state regulations, network control, and equipment problems. Personnel were interviewed, and checklists providing input from some 21 or more plant and corporate personnel of each utility were utilized. Reports and other documentation were also reviewed. It was recognized early that productivity is closely allied to technical skills and positive motivation. For this reason, considerable attention was given to people in this study

  12. Vibrations measurement at the Embalse nuclear power plant's electrical generator

    International Nuclear Information System (INIS)

    Salomoni, R.C.; Belinco, C.G.; Pastorini, A.J.; Sacchi, M.A.

    1987-01-01

    After the modifications made at the Embalse nuclear power plant's electrical generator to reduce its vibration level produced by electromagnetic phenomena, it was necessary to perform measurements at the new levels, under different areas and power conditions. To this purpose, a work was performed jointly with the 'Vibrations Team' of the ANSALDO Company (the generator constructor) and the Hydrodynamic Assays Division under the coordination and supervision of the plant's electrical maintenance responsible. This paper includes the main results obtained and the instrumentation criteria and analysis performed. (Author)

  13. Cost and quality of fuels for electric utility plants 1991

    International Nuclear Information System (INIS)

    1992-01-01

    Data for 1991 and 1990 receipts and costs for fossil fuels discussed in the Executive Summary are displayed in Tables ES1 through ES7. These data are for electric generating plants with a total steam-electric and combined-cycle nameplate capacity of 50 or more megawatts. Data presented in the Executive Summary on generation, consumption, and stocks of fossil fuels at electric utilities are based on data collected on the Energy Information Administration, Form EIA-759, ''Monthly Power Plant Report.'' These data cover all electric generating plants. The average delivered cost of coal, petroleum, and gas each decreased in 1991 from 1990 levels. Overall, the average annual cost of fossil fuels delivered to electric utilities in 1991 was $1.60 per million Btu, a decrease of $0.09 per million Btu from 1990. This was the lowest average annual cost since 1978 and was the result of the abundant supply of coal, petroleum, and gas available to electric utilities. US net generation of electricity by all electric utilities in 1991 increased by less than I percent--the smallest increase since the decline that occurred in 1982.3 Coal and gas-fired steam net generation, each, decreased by less than I percent and petroleum-fired steam net generation by nearly 5 percent. Nuclear-powered net generation, however, increased by 6 percent. Fossil fuels accounted for 68 percent of all generation; nuclear, 22 percent; and hydroelectric, 10 percent. Sales of electricity to ultimate consumers in 1991 were 2 percent higher than during 1990

  14. Aging assessment of large electric motors in nuclear power plants

    International Nuclear Information System (INIS)

    Villaran, M.; Subudhi, M.

    1996-03-01

    Large electric motors serve as the prime movers to drive high capacity pumps, fans, compressors, and generators in a variety of nuclear plant systems. This study examined the stressors that cause degradation and aging in large electric motors operating in various plant locations and environments. The operating history of these machines in nuclear plant service was studied by review and analysis of failure reports in the NPRDS and LER databases. This was supplemented by a review of motor designs, and their nuclear and balance of plant applications, in order to characterize the failure mechanisms that cause degradation, aging, and failure in large electric motors. A generic failure modes and effects analysis for large squirrel cage induction motors was performed to identify the degradation and aging mechanisms affecting various components of these large motors, the failure modes that result, and their effects upon the function of the motor. The effects of large motor failures upon the systems in which they are operating, and on the plant as a whole, were analyzed from failure reports in the databases. The effectiveness of the industry's large motor maintenance programs was assessed based upon the failure reports in the databases and reviews of plant maintenance procedures and programs

  15. A CALCULATION METHOD OF TRANSIENT MODES OF ELECTRIC SHIPS’ PROPELLING ELECTRIC PLANTS

    Directory of Open Access Journals (Sweden)

    V. A. Yarovenko

    2017-12-01

    Full Text Available The purpose of the work is to develop the method for calculating the transient modes of electric ships’ propelling electric plants during maneuver. This will allow us to evaluate and improve the maneuverability of vessels with electric motion. Methodology. The solution to the problems is proposed to be carried out on the basis of mathematical modeling of maneuvering modes. The duration of transient modes in an electric power plant at electric ships’ maneuvers is commensurable with the transient operation modes of the vessel itself. Therefore, the analysis of the electric power plants’ maneuvering modes should be made in unity with all the components of the ship’s propulsion complex. Results. A specified mathematical model of transient regimes of electric ship’s propulsion complex, including thermal motors, synchronous generators, electric power converters, propulsion motors, propellers, rudder, ship’s hull is developed. The model is universal. It covers the vast majority of modern and promising electric ships with a traditional type of propulsors. It allows calculating the current values of the basic mode indicators and assessing the quality indicators of maneuvering. The model is made in relative units. Dimensionless parameters of the complex are obtained. These parameters influence the main indicators of the quality of maneuvering. The adequacy of the suggested specified mathematical model and the developed computation method based on it were confirmed. To do this, the results of mathematical modeling for a real electric ship were compared with the data obtained in the course of field experiments conducted by other researchers. Originality. The mathematical description of a generator unit, as an integral part of an indivisible ship’s propulsion complex, makes it possible to calculate the dynamic operation modes of electric power sources during electric vessels’ maneuvering. There is an opportunity to design the electric ships

  16. Assessment of electrical equipment aging for nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    The electrical and instrumentation equipments, especially whose parts are made of polymer material, are gradually degraded by thermal and radiation environment in the normal operation, and the degradation is thought to progress rapidly when they are exposed to the environment of the design basis event (DBE). The integrity of the equipments is evaluated by the environmental qualification (EQ) test simulating the environment of the normal operation and the DBE. The project of 'Assessment of Cable Aging for Nuclear Power Plants' (ACA, 2002-2008) indicated the importance of applying simultaneous thermal and radiation aging for simulating the aging in normal operation. The project of 'Assessment of Electrical Equipment Aging for Nuclear Power Plants' (AEA) was initiated in FY2008 to apply the outcome of ACA to the other electrical and instrumentation equipment and to establish an advanced EQ test method that can appropriately simulate the environment in actual plants. In FY2012, aging characteristics of thermal aging and simultaneous aging were obtained for the epoxy resin of electrical penetrations and the O-ring of connectors. Physical property measurement was carried out for epoxy resin of electrical penetration subject to the type testing in FY2010. (author)

  17. Assessment of electrical equipment aging for nuclear power plant

    International Nuclear Information System (INIS)

    2013-01-01

    The electrical and instrumentation equipments, especially whose parts are made of polymer material, are gradually degraded by thermal and radiation environment in the normal operation, and the degradation is thought to progress rapidly when they are exposed to the environment of the design basis event (DBE). The integrity of the equipments is evaluated by the environmental qualification (EQ) test simulating the environment of the normal operation and the DBE. The project of 'Assessment of Cable Aging for Nuclear Power Plants' (ACA, 2002-2008) indicated the importance of applying simultaneous thermal and radiation aging for simulating the aging in normal operation. The project of 'Assessment of Electrical Equipment Aging for Nuclear Power Plants' (AEA) was initiated in FY2008 to apply the outcome of ACA to the other electrical and instrumentation equipment and to establish an advanced EQ test method that can appropriately simulate the environment in actual plants. In FY2012, aging characteristics of thermal aging and simultaneous aging were obtained for the epoxy resin of electrical penetrations and the O-ring of connectors. Physical property measurement was carried out for epoxy resin of electrical penetration subject to the type testing in FY2010. (author)

  18. Experience of Milled Peat Burning at Thermal Electric Power Plant

    Directory of Open Access Journals (Sweden)

    G. I. Zhikhar

    2013-01-01

    Full Text Available The paper presents extensive knowledge and practical experience on burning of milled peat in the boilers of thermal electric power plants in Belarus and Russia. The accumulated experience can be used for solution of problems pertaining to substitution of some types of fuel imported to Belarus by milled peat which is extracted at many fuel effective peat enterprises of the Republic.

  19. New nuclear power plants and the electricity market competition

    International Nuclear Information System (INIS)

    Ruska, M.; Koreneff, G.

    2009-11-01

    The study assesses the effects the different nuclear power plant projects would have on crossownership, market concentration and market power in electricity market. The analyses are given both for Finnish and Nordic power markets. The authors feel that the electricity market should primarily be viewed as a common Nordic market in the future. During 2000 to 2008 the hours when Finland was an own price area ranged from 1 % to 29 % as annual averages. In the future it will be more and more seldom that Finland will become an own deficit price area, because the cross-border transmission capacity to Sweden will increase as will Finnish electricity production capacity. In addition, the extension of Nord Pool to the Baltic will increase the size of the market. The ownership of power plants is typically organized through power share companies in Finland. Two of the three nuclear power plant projects are joint ventures with several electricity producers and consumers. The current ownership relations and what effects the new projects might have on them were analyzed in this study. The competitiveness of different electricity production forms in the future was assessed using different market scenarios based on varying demand expectations. The capacity structure was assumed to stay quite unchanged, where the biggest change is expected to come from new renewable power capacity due to EU targets. Conventional condensing power production will decrease and Nordic electricity exports will increase in the future. The market concentration would increase in Finland with new nuclear plants, the most if Fortum were the builder. Vattenfall has a decidedly larger electricity production in the Nordic countries than Fortum, and Vattenfall's capacity would be unchanged by the new planned nuclear plants. The nuclear power plant projects do not therefore increase market concentration significantly on a Nordic level. Nuclear power is not used for day or hour regulation in Finland, which means

  20. Experimental results of wind powered pumping plant with electrical transmission

    International Nuclear Information System (INIS)

    Falchetta, M.; Prischich, D.; Benedetti, A.; Cara, G.

    1992-01-01

    A demonstrative application of deep well pumping system employing a wind powered pumping plant with an electric transmission was set-up and tested for two years at the test field of the Casaccia center of ENEA (Italian Agency for Energy, New Technologies and the Environment), near Rome. The tests permitted the evaluation of the practical performance, advantages and drawbacks of a wind pumping plant of this type, in order to permit a design optimization and a proper choice of components and of control strategies for future commercial applications. The main point of investigation was the evaluation of the effectiveness of a control scheme based on a 'permanent link' between electric generator and electric motor, avoiding any electronics and switching components, and leading to a very robust and reliable means of transferring energy to the pump at variable speed, and at low cost

  1. Simulation of power plant construction in competitive Korean electricity market

    International Nuclear Information System (INIS)

    Ahn, Nam Sung; Huh, Sung Chul

    2001-01-01

    This paper describes the forecast of power plant construction in competitive Korean electricity market. In Korea, KEPCO (Korean Electric Power Corporation, fully controlled by government) was responsible for from the production of the electricity to the sale of electricity to customer. However, the generation part is separated from KEPCO and six generation companies were established for whole sale competition from April 1st, 2001. The generation companies consist of five fossil power companies and one nuclear power company. Fossil power companies are schedule to be sold to private companies including foreign investors. Nuclear power company is owned by government. The competition in generation market will start from 2003. ISO (Independence System Operator) will purchase the electricity from the power exchange market. The market price is determined by the SMP (System Marginal Price) which is decided by the balance between demand and supply of electricity in power exchange market. Under this uncertain circumstance, the energy policy planners are interested to the construction of the power plant in the future. These interests are accelerated due to the recent shortage of electricity supply in California. In the competitive market, investors are no longer interested in the investment for the capital intensive, long lead time generating technologies. Large nuclear and coal plants were no longer the top choices. Instead, investors in the competitive market are interested in smaller, more efficient, cheaper, cleaner technologies such as CCGT (Combined Cycle Gas Turbine). Electricity is treated as commodity in the competitive market. The investor's behavior in the commodity market shows that the new investment decision is made when the market price exceeds the sum of capital cost and variable cost of the new facility and the existing facility utilization depends on the marginal cost of the facility. This investor's behavior can be applied to the new investments for the

  2. Electric power plant international. 1976--1977 edition

    Energy Technology Data Exchange (ETDEWEB)

    1975-01-01

    ''Electric Power Plant International'' is intended to provide a comprehensive commercial and technical information source for use by suppliers, operators, and potential purchasers of power plant, and also by suppliers of materials and services to such organizations. It contains information that will help those considering the purchase of power plant to gain a reasonable understanding of the factors that should be taken into account when making a purchasing decision. Consideration is given to the operation, maintenance, and modification of power systems that will be of relevance to those currently operating plant. The publication is designed to act as an interface between suppliers and users of power plant. As part of this function, reference sections contain listings of all the companies that have been located throughout the world, supplying prime movers, generators, generator sets, and fixed-frequency inverter systems. Details of products currently available from these companies are included wherever possible and this is being continuously up-dated and extended to give increased coverage in future editions. The Electrical Research Association Ltd. does not manufacture or supply power plant (apart from some special-purpose static inverter systems), but would be pleased to receive requirement details from any company wishing to inquire about plant purchase. These will be forwarded to appropriate suppliers throughout the world who will be able to submit tenders for suitable products. Inquiry forms are included in Chapter 6 for this purpose.

  3. Electricity supply. Older plants' impact on reliability and air quality

    International Nuclear Information System (INIS)

    England-Joseph, Judy A.; Adams, Charles M.; Wood, David G.; Feehan, Daniel J.; Veal, Howard F.; Skeen, John H. III; Koenigs, Melvin J.; Lichtenfeld, David I.; Seretakis, Pauline J.

    1990-09-01

    Life extension of fossil fuel plants is a relatively recent phenomenon; thus, utilities have little experience to demonstrate the longer-term operating reliability of plants with an extended service life. While utility industry officials and government and industry studies express optimism that these plants will continue to operate reliably, the officials and the studies also caution that it is too soon to determine how pursuing life extension will affect the reliability of the nation's electricity supply. According to DOE, the number of fossil fuel generating units' 30 years old or older is expected to increase from about 2,500 in 1989 to roughly 3,700 in 1998, increasing such plants' share of overall generating capacity from 13 percent in 1989 to 27 percent in 1998. EPA estimates that with existing air quality requirements, fossil fuel plant emissions will increase steadily during the coming decade. Proposed acid rain control legislation, which would affect many plants that may have their service life extended, would require utilities to significantly reduce emissions by the year 2000 but would allow utilities flexibility in deciding how and where to achieve the reductions. If such legislation is enacted, utilities generally are expected to find reducing emissions from existing plants more cost-effective than replacing them and to continue extending plants' service life. Officials of DOE and utility organizations expressed concern, however, that EPA could decide, as it did for one plant in 1988, that alterations made in extending the service life of plants exempted from the Clean Air Act would result in increased emissions and thus cause the altered plants to lose their exemption. According to the officials, the additional costs of achieving the Clean Air Act's standards could discourage some life extension projects. However, such decisions by EPA could also reduce the nation's total power plant emissions by eliminating an existing incentive to retain exempt

  4. Nuclear plant aging research - an overview (electrical and mechanical components)

    International Nuclear Information System (INIS)

    Vora, J.P.

    1985-01-01

    As the operating nuclear power plants advance in age there must be a conscious national and international effort to understand the influence and safety implications of aging and service wear of components and structures in nuclear power plants and develop measures which are practical and cost effective for timely mitigation of aging degradation that could significantly affect plant safety. The Office of Nuclear Regulatory Research has, therefore, initiated a multi-year, multi-disciplinary program on Nuclear Plant Aging Research (NPAR). The overall goals identified for the program are as follows: 1) to identify and characterize aging and service wear effects associated with electrical and mechanical components, interfaces, and systems whose failure could impair plant safety; 2) to identify and recommend methods of inspection, surveillance and condition monitoring of electrical and mechanical components and systems which will be effective in detecting significant aging effects prior to loss of safety function so that timely maintenance and repair or replacement can be implemented; and, 3) to identify and recommend acceptable maintenance practices which can be undertaken to mitigate the effects of aging and to diminish the rate and extent of degradation caused by aging and service wear. The specific research activities to be implemented to achieve these goals are described

  5. Electrical design requirements for electrode boilers for nuclear plants

    International Nuclear Information System (INIS)

    Kempker, M.J.

    1979-01-01

    Medium-voltage steam electrode boilers, in the 20- to 50-MW range, have become an attractive alternative to comparable fossil-fueled boilers as a source of auxiliary steam during the startup and normal shutdown of nuclear power plants. The electrode boiler represents a favorable option because of environmental, fire protection, and licensing considerations. However, this electrical option brings some difficult design problems for which solutions are required in order to integrate the electrode boiler into the plant low resistance grounded power system. These considerations include the effects of an unbalanced electrode boiler on the performance of polyphase induction motors, boiler grounding for personnel safety, boiler neutral grounding, and ground relaying

  6. Simulation of gaseous emissions from electricity generating plant

    International Nuclear Information System (INIS)

    Bellhouse, G.M.; Whittington, H.W.

    1996-01-01

    In electricity supply networks, traditional dispatch algorithms are based on features such as economics and plant availability. Annual limits on emissions from fossil-fuelled stations are regarded as a restriction and set a ceiling on generation from particular stations. With the impending introduction of financial penalties on emissions, for example cal bon taxation, algorithms will have to be developed which allow the dispatch engineer to assess the cost in real-time of different generation options involving fossil-fuelled plants. Such an algorithm is described in this paper. (UK)

  7. Solar wind power electric plant on Vis (Croatia)

    International Nuclear Information System (INIS)

    1998-01-01

    A project of a solar photovoltaic electric power plant presented by the Republic of Croatia at the meeting of the E.P.I.A. Mission for photovoltaic technology of the Mediterranean countries, aroused a great interest of the representatives of the invited countries. However, the interest within Croatia in the project has disappeared although E.P.I.A. offered a financing of two thirds of costs. There are attempts to construct 1800 kw wind-driven generators at the same location not taking into consideration a possibility of building a hybrid solar-wind-power electric plant. The chance that the solar part is completely of domestic origin is not accepted but the preference is given to the building of imported wind-driven generators. (orig.)

  8. Profitability of producing electricity in nuclear power plants

    International Nuclear Information System (INIS)

    Marecki, J.

    2001-01-01

    In the first part of this paper, the method used in energy economics to calculate the annual costs of electricity generation is described. The procedure of discounting these costs for complex time distributions of costs and effects is also presented. Hence the principles of choosing the optimum variant from different solutions having the same or not the same effects are determined. Subsequently, the conditions of competitiveness are formulated for nuclear power plants in comparison with other energy options. As example, the the results of calculating total annual costs of electricity generation in various (coal-fired, gas-fired and nuclear) power plants are given for two different values of the discount rate: 5% and 10%. (author)

  9. Nanosecond electric pulses trigger actin responses in plant cells

    International Nuclear Information System (INIS)

    Berghoefer, Thomas; Eing, Christian; Flickinger, Bianca; Hohenberger, Petra; Wegner, Lars H.; Frey, Wolfgang; Nick, Peter

    2009-01-01

    We have analyzed the cellular effects of nanosecond pulsed electrical fields on plant cells using fluorescently tagged marker lines in the tobacco cell line BY-2 and confocal laser scanning microscopy. We observe a disintegration of the cytoskeleton in the cell cortex, followed by contraction of actin filaments towards the nucleus, and disintegration of the nuclear envelope. These responses are accompanied by irreversible permeabilization of the plasma membrane manifest as uptake of Trypan Blue. By pretreatment with the actin-stabilizing drug phalloidin, the detachment of transvacuolar actin from the cell periphery can be suppressed, and this treatment can also suppress the irreversible perforation of the plasma membrane. We discuss these findings in terms of a model, where nanosecond pulsed electric fields trigger actin responses that are key events in the plant-specific form of programmed cell death.

  10. Review of the Brunswick Steam Electric Plant Probabilistic Risk Assessment

    International Nuclear Information System (INIS)

    Sattison, M.B.; Davis, P.R.; Satterwhite, D.G.; Gilmore, W.E.; Gregg, R.E.

    1989-11-01

    A review of the Brunswick Steam Electric Plant probabilistic risk Assessment was conducted with the objective of confirming the safety perspectives brought to light by the probabilistic risk assessment. The scope of the review included the entire Level I probabilistic risk assessment including external events. This is consistent with the scope of the probabilistic risk assessment. The review included an assessment of the assumptions, methods, models, and data used in the study. 47 refs., 14 figs., 15 tabs

  11. Electric boilers for nuclear power plant in Liebstadt

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    A type of electric boiler, two of which are to be supplied to the Liebstadt nuclear power plant by Sulzer, is described. They are to be used for start-up and as reserve for the normal steam supply. The mode of operation is that feed water is sprayed into a high tension electrode such that the falling water conducts the current to the earthed electrode. This type of boiler presents advantages in space requrements and enviromental factors. (JIW)

  12. Electric boilers for nuclear power plant in Liebstadt

    Energy Technology Data Exchange (ETDEWEB)

    1977-11-29

    A type of electric boiler, two of which are to be supplied to the Liebstadt nuclear power plant by Sulzer, is described. They are to be used for start-up and as reserve for the normal steam supply. The mode of operation is that feedwater is sprayed into a high tension electrode such that the falling water conducts the current to the earthed electrode. This type of boiler presents advantages in space requrements and enviromental factors.

  13. Local CHP Plants between the Natural Gas and Electricity Systems

    DEFF Research Database (Denmark)

    Bregnbæk, Lars; Schaumburg-Müller, Camilla

    2005-01-01

    , and they contribute significantly to the electricity production. CHP is, together with the wind power, the almost exclusive distributed generation in Denmark. This paper deals with the CHP as intermediary between the natural gas system and the electricity system. In particular, the relationship between the peak hour......Local combined heat and power (CHP) plants in Denmark constitute an important part of the national energy conversion capacity. In particular they supply a large share of the district heating networks with heat. At the same time they are important consumers as seen from the gas network system...... characteristics of the electricity and gas systems will be investigated. The point is here that the two systems will tend to have peak demand during the same hours. This is the typical situation, since load is high during the same hours of the day and of the year. Moreover, the random variations in the load...

  14. Consequences of reduced production of electricity in nuclear power plants

    International Nuclear Information System (INIS)

    The Swedish Power Administration has assessed the possibilities of expanding electric power sources other than nuclear power plants for the years 1980 and 1985. Reports on costs in the form of loss of capital and increased operating costs involved in the dismantling of nuclear power plants are made in Supplement 1. The economics division of the Finance Department, starting with a long-range study model of the Swedish economy, has calculated the consequences of a cutback in electric power up to 1980 for Sweden's economy and employment in that year. The consequences of reduction of electricity supplies up to 1985 are summarized in Supplement 2 in this report. It is concluded that in order to be able to manage the problem of supplying electricity by 1985, it will be necessary to increase oil power above what was assumed in the energy policy program. There will have to be new oil-based power as well. According to the Power Administration, oil-power facilities can be expanded to varying degrees, depending upon when the decision is made. The Power Administration's calculations show that 125 TWh is possible in 1985 without nuclear power only if a decision for discontinuation is made in the fall of 1976. This is based on very optimistic assumptions about the time of execution of a program for oil-steam operation, and also on the assumption that extreme measures will be initiated to force expansion of both district-heating distribution and power + heat facilities. Oil consumption for production of electricity in such an electric power system would be about 9 million m 3 , which is about 5 times more than at present and about one-third of the present total consumption of petroleum products in Sweden

  15. Environment pollution with aluminium around a coalburning electric power plant

    International Nuclear Information System (INIS)

    Hermann, J.

    1997-01-01

    The experiments were carried out from November 1991 till November 1993 on the area surrounding an electric power plant within the circle of 20 km diameter and five geographical directions (N, S, SE, E, W). The results presented in this paper have indicated the threats caused by emissions of the power plant ashes and dusts. Mean aluminium content in soil has been multiply surpassed on the area studied. This must have as impact on fauna and flora. The distribution and intensity of pollution is determined first of all by the distance from the emitters and direction of prevailing winds. A part of aluminium contained in water soluble compounds can be distributed on large areas, what adds a lot to the threat to animals. That is why high chimneys do not solve the problem of pollution around big industrial plants. (author)

  16. Aging Management Guideline for commercial nuclear power plants: Electrical switchgear

    International Nuclear Information System (INIS)

    Toman, G.; Gazdzinski, R.; Schuler, K.

    1993-07-01

    This Aging Management Guideline (AMG) provides recommended methods for effective detection and mitigation of age-related degradation mechanisms in BWR and PWR commercial nuclear power plant electrical switchgear important to license renewal. The latent of this AMG to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR Part 54. This AMG is presented in a manner which allows personnel responsible for performance analysis and maintenance, to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein

  17. Electrical predictive maintenance at Trillo I Nuclear Power Plant

    International Nuclear Information System (INIS)

    Vicente, L. R.; Fernandez de la Mata, R.; Cano Gonzalez, J. C.

    1998-01-01

    An electrical predictive maintenance plan is currently being put into effect at Trillo I Nuclear Power Plant which is initially being applied to three types of equipment: motors, transformers and motor-driven valves. This paper describes the different phases considered in the implementation of the Predictive Maintenance Plan: study of existing techniques for such equipment (tangoδ, spectral analysis of stator current, chromatographic analysis of gases, spectral analysis of the axial stray magnetic flux, etc), study of the special characteristics of the electrical equipment at Trillo NPP, analysis of applicable techniques (characteristic parameters, alert-alarm values, experience with such techniques, etc), analysis of machine history records, study of the optimum preventive-predictive case, study of applicable frequencies and definition of the computerised predictive maintenance management tool. With the exception of the computerised predictive maintenance management applications which are presently being implemented, all the activities described above have been carried out on the three types of equipment mentioned. (Author)

  18. Improvements in steam cycle electric power generating plants

    International Nuclear Information System (INIS)

    Bienvenu, Claude.

    1973-01-01

    The invention relates to a steam cycle electric energy generating plants of the type comprising a fossil or nuclear fuel boiler for generating steam and a turbo alternator group, the turbine of which is fed by the boiler steam. The improvement is characterized in that use is made of a second energy generating group in which a fluid (e.g. ammoniac) undergoes a condensation cycle the heat source of said cycle being obtained through a direct or indirect heat exchange with a portion of the boiler generated steam whereby it is possible without overloading the turbo-alternator group, to accomodate any increase of the boiler power resulting from the use of another fuel while maintaining a maximum energy output. This can be applied to electric power stations [fr

  19. Industrial plant electrical systems: Simplicity, reliability, cost savings, redundancies

    International Nuclear Information System (INIS)

    Silvestri, A.; Tommazzolli, F.; Pavia Univ.

    1992-01-01

    This article represents a compact but complete design and construction manual for industrial plant electrical systems. It is to be used by design engineers having prior knowledge of local power supply routes and voltages and regards principally the optimum choice of internal distribution systems which can be radial or single, double ringed or with various network configurations, and with single or multiple supplies, and many or few redundancies. After giving guidelines on the choosing of these options, the manual deals with problematics relevant to suitable cable sizing. A cost benefit benefit analysis method is suggested for the choice of the number of redundancies. Recommendations are given for the choice of transformers, motorized equipment, switch boards and circuit breakers. Reference is made to Italian electrical safety and building codes

  20. [Measurement of chemical agents in metallurgy field: electric steel plant].

    Science.gov (United States)

    Cottica, D; Grignani, E; Ghitti, R; Festa, D; Apostoli, P

    2012-01-01

    The steel industry maintains its important position in the context of the Italian production involving thousands of workers. The iron and steel processes are divided into primary steel industry, production of intermediate minerals, and secondary steel, scrap from the production of semi-finished industrial and consumer sector (metal inserted into components and metal used for dissipative uses, primarily coatings) and industrial waste. The paper presents the results of environmental monitoring carried out in some electric steel plant for the measurement of airborne chemicals that characterize the occupational exposure of workers employed in particular area like electric oven, to treatment outside the furnace, continuous casting area. For the sampling of the pollutants were used both personal and in fixed positions samplers. The pollutants measured are those typical of steel processes inhalable dust, metals, respirable dust, crystalline silica, but also Polycyclic Aromatic Hydrocarbons (PAH), polychlorinated dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs).

  1. Investments into plant replacements in a deregulated electricity market

    International Nuclear Information System (INIS)

    Elsaesser, R.F.

    2004-01-01

    The amendment to the Power Energy Act in April 1998 marked the complete deregulation of the electricity market in Germany. The debate is now beginning about ways and means to ensure new capital investments safeguarding the continuity of supply. The present power plant park has been characterized by a broad mix of primary energy sources and, admittedly, by some overcapacity as well. However, any further reduction of generating capacity will be at the expense of the continuity of supply. Although electricity prices in Germany are on the rise again after a clear drop, they have not yet reached a level sufficient for new investments. Only subsidized power plants are recovering their full costs. The question is for how long our economy is going to sustain this state of affairs. The balance among the energy policy goals of continuity of supply, environmental performance, and economic efficiency has been upset. In the period up until 2020, Germany alone will require approx. 37,000 MW of new generating capacity. Renewable and decentralized technologies alone do not constitute a sufficient and reliable alternative. However, there is the matter also of the practical feasibility of building the new power plants required. No experience is as yet available with re-investment cycles in the deregulated electricity market. Options are needed for a diversified structure of primary energy sources. There must be neither political definition of generating technologies nor exaggerated goals of environmental protection and climate protection. We advocate the free system of market prices and free access to the market. Major players able to guarantee sufficient security of investments are needed to cope with the challenges ahead. New investments with a life of thirty to forty years require a modicum of stability and realism in political framework conditions. (orig.)

  2. Particulars in design of the electrical part of the Kiev Pumped-Storage Electric Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Brimerberg, V P

    1976-01-01

    The Kiev Pumped-Storage Electric Power Plant is the first such installation in the Soviet Union. The power capacity of the plant is 225 MW. There are six vertical hydraulic generators: three are connected to vertical pump-turbines and operate as motor-generators; the other three are connected to vertical radial-axial hydraulic turbines and operate as generators only. Each generator is a type SVO 733/130-36 with power of 45.6 MVA. The active power load is 83.5 MW, reactive--75.1, and total--112.5 MVA. The installation can be used for 500 h/yr at maximum power, producing 110 million kWh. During the high-water period, the plant is used daily for about 100 days, covering the peak of the load schedule of the southern power system. During the low-water period the plant is used as needed. During the slack hours at night the system operates in the pump mode for about 1400 h/yr, using 160 million kWh. During the remainder of the day the generators work as synchronous compensators with a total load on each of 36,500 kvar. Electrical circuits and a cross section of the generator are given. An explanation is also given of the grounding precautions taken to ensure an equipotential field at all points of the installation where personnel may be located.

  3. Phased array UT (Ultrasonic Testing) used in electricity production plants

    International Nuclear Information System (INIS)

    Kodaira, Takeshi

    2012-01-01

    Phased Array-Ultrasonic testing techniques widely used for detection and quantitative determination of the lattice defects which have been formed from fatigues or stress corrosion cracking in the materials used in the electricity production plants are presented with particular focus on the accurate determination of the defects depth (sizing) and defects discrimination applicable to weld metals of austenite stainless steels and Ni base alloys. The principle of this non-destructive analysis is briefly explained, followed by point and matrix focus phased array methods developed by Mitsubishi Heavy Industries, Ltd are explained rather in detail with illustration and the evaluated results. (S. Ohno)

  4. Tapping of electrical energy from plant leaves: Sansevieria trifasciata

    Energy Technology Data Exchange (ETDEWEB)

    Jain, K.A.; Hundet, A.; Abraham, S.; Nigam, H.L.

    Some investigations on the prospective use of plant leaves as useful battery material have been described in this paper. A bio-emf-device (BED) has been developed using the leaf of Sansevieria trifasciata. The current - voltage (I-V) and the current - power (I-power) characteristics have been measured. Kinetic studies have also been made taking different loads. The results based on these characteristics of BED indicate a close involvement of the bio-contribution in the generation of electric power. Some applications of using these BEDs are also suggested to operate low power electronic circuits.

  5. Advanced design nuclear power plants: Competitive, economical electricity. An analysis of the cost of electricity from coal, gas and nuclear power plants

    International Nuclear Information System (INIS)

    1992-06-01

    This report presents an updated analysis of the projected cost of electricity from new baseload power plants beginning operation around the year 2000. Included in the study are: (1) advanced-design, standardized nuclear power plants; (2) low emissions coal-fired power plants; (3) gasified coal-fired power plants; and (4) natural gas-fired power plants. This analysis shows that electricity from advanced-design, standardized nuclear power plants will be economically competitive with all other baseload electric generating system alternatives. This does not mean that any one source of electric power is always preferable to another. Rather, what this analysis indicates is that, as utilities and others begin planning for future baseload power plants, advanced-design nuclear plants should be considered an economically viable option to be included in their detailed studies of alternatives. Even with aggressive and successful conservation, efficiency and demand-side management programs, some new baseload electric supply will be needed during the 1990s and into the future. The baseload generating plants required in the 1990s are currently being designed and constructed. For those required shortly after 2000, the planning and alternatives assessment process must start now. It takes up to ten years to plan, design, license and construct a new coal-fired or nuclear fueled baseload electric generating plant and about six years for a natural gas-fired plant. This study indicates that for 600-megawatt blocks of capacity, advanced-design nuclear plants could supply electricity at an average of 4.5 cents per kilowatt-hour versus 4.8 cents per kilowatt-hour for an advanced pulverized-coal plant, 5.0 cents per kilowatt-hour for a gasified-coal combined cycle plant, and 4.3 cents per kilowatt-hour for a gas-fired combined cycle combustion turbine plant

  6. Safety requirements for a nuclear power plant electric power system

    Energy Technology Data Exchange (ETDEWEB)

    Fouad, L F; Shinaishin, M A

    1988-06-15

    This work aims at identifying the safety requirements for the electric power system in a typical nuclear power plant, in view of the UNSRC and the IAEA. Description of a typical system is provided, followed by a presentation of the scope of the information required for safety evaluation of the system design and performance. The acceptance and design criteria that must be met as being specified by both regulatory systems, are compared. Means of implementation of such criteria as being described in the USNRC regulatory guides and branch technical positions on one hand and in the IAEA safety guides on the other hand are investigated. It is concluded that the IAEA regulations address the problems that may be faced with in countries having varying grid sizes ranging from large stable to small potentially unstable ones; and that they put emphasis on the onsite standby power supply. Also, in this respect the Americans identify the grid as the preferred power supply to the plant auxiliaries, while the IAEA leaves the possibility that the preferred power supply could be either the grid or the unit main generator depending on the reliability of each. Therefore, it is found that it is particularly necessary in this area of electric power supplies to deal with the IAEA and the American sets of regulations as if each complements and not supplements the other. (author)

  7. 77 FR 24228 - Condition Monitoring Techniques for Electric Cables Used in Nuclear Power Plants

    Science.gov (United States)

    2012-04-23

    ... Used in Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION: Regulatory guide; issuance... guide, (RG) 1.218, ``Condition Monitoring Techniques for Electric Cables Used in Nuclear Power Plants... of electric cables for nuclear power plants. RG 1.218 is not intended to be prescriptive, instead it...

  8. Standard Technical Specifications, General Electric plants, BWR/4

    International Nuclear Information System (INIS)

    1992-09-01

    This NUREG contains improved Standard Technical Specifications (STS) for General Electric Plants, BWR/6, and documents the positions of the Nuclear Regulatory Commission based on the B ampersand W Owners Group's proposed STS. This document is the result of extensive technical meetings and discussions among the NRC staff, the Nuclear Steam Supply System (NSSS) Owners Groups, the NSSS vendors, and the Nuclear Management and Resources Council (NUMARC). The improved STS were developed based on the criteria in the interim Commission Policy Statement on Technical Specification Improvements for Nuclear Power Reactors, dated February 6, 1987. The improved STS will be used as the basis for individual nuclear power plant licensees to develop improved plant-specific technical specifications. This report contains three volumes. Volume 1 contains the Specifications for all chapters and sections of the improved STS. Volume 2 contains the Bases for Chapters 2.0 and 3.0, and Sections 3.1--3.3 of the improved STS. This document Volume 3, contains the Bases for Sections 3.4--3.10 of the improved STS

  9. Standard Technical Specifications, General Electric Plants, BWR/6

    International Nuclear Information System (INIS)

    1992-09-01

    This NUREG contains improved Standard Technical Specifications (STS) for General Electric Plants, BWR/6, and documents the positions of the Nuclear Regulatory Commission based on the B ampersand W Owners Group's proposed STS. This document is the result of extensive technical meetings and discussions among the NRC staff, the Nuclear Steam Supply System (NSSS) Owners Groups, the NSSS vendors, and the Nuclear Management and Resources Council (NUMARC). The improved STS were developed based on the criteria in the interim Commission Policy Statement on Technical Specification Improvements for Nuclear Power Reactors, dated February 6, 1987. The improved STS will be used as the basis for individual nuclear power plant licensees to develop improved plant-specific technical specifications. This report contains three volumes. This document Volume 1, contains the Specifications for all chapters and sections of the improved STS. Volume 2 contains the Bases for Chapters 2.0 and 3.0, and Sections 3.1--3.3 of the improved STS. Volume 3 contains the Bases for Sections 3.4--3.10 of the improved STS

  10. Standard Technical Specifications, General Electric plants, BWR/4

    International Nuclear Information System (INIS)

    1992-09-01

    This NUREG contains improved Standard Technical Specifications (STS) for General Electric Plants, BWR/6, and documents the positions of the Nuclear Regulatory Commission based on the BWR Owners Group's proposed STS. This document is the result of extensive technical meetings and discussions among the NRC staff, the Nuclear Steam Supply System (NSSS) Owners Groups, the NSSS vendors, and the Nuclear Management and Resources Council (NUMARC). The improved STS were developed based on the criteria in the interim Commission Policy Statement on Technical Specification Improvements for Nuclear Power Reactors, dated February 6, 1987. The improved STS will be used as the basis for individual nuclear power plant licensees to develop improved plant-specific technical specifications. This report contains three volumes. This document Volume 1 contains the Specifications for all chapters and sections of the improved STS. Volume 2 contains the Bases for Chapters 2.0 and 3.0, and Sections 3.1--3.3 of the improved STS. Volume 3 contains the Bases for Sections 3.4--3.10 of the improved STS

  11. Standard Technical Specifications, General Electric Plants, BWR/6

    International Nuclear Information System (INIS)

    1992-09-01

    This NUREG contains improved Standard Technical Specifications (STS) for General Electric Plants, BWR/4, and documents the positions of the Nuclear Regulatory Commission based on the BWR Owners Group's proposed STS. This document is the result of extensive technical meetings and discussions among the NRC staff, the Nuclear Steam Supply System (NSSS) Owners Groups, the NSSS vendors, and the Nuclear Management and Resources Council (NUMARC). The improved STS were developed based on the criteria in the interim Commission Policy Statement on Technical Specification Improvements for Nuclear Power Reactors, dated February 6, 1987. The improved STS will be used as the basis for individual nuclear power plant licensees to develop improved plant-specific technical specifications. This report contains three volumes. Volume 1 contains the Specifications for all chapters and sections of the improved STS. Volume 2 contains the Bases for Chapters 2.0 and 3.0, and Sections 3.1--3.3 of the improved STS. Volume 3, contains the Bases for Sections 3.4--3.10 of the improved STS

  12. Standard Technical Specifications, General Electric plants, BWR/6

    International Nuclear Information System (INIS)

    1992-09-01

    This NUREG contains improved Standard Technical Specifications (STS) for General Electric Plants, BWR/6, and documents the positions of the Nuclear Regulatory Commission based on the B ampersand W Owners Group's proposed STS. This document is the result of extensive technical meetings and discussions among the NRC staff, the Nuclear Steam Supply System (NSSS) Owners Groups, the NSSS vendors, and the Nuclear Management and Resources Council (NUMARC). The improved STS were developed based on the criteria in the interim Commission Policy Statement on Technical Specification Improvements for Nuclear Power Reactors, dated February 6, 1987. The improved STS will be used as the basis for individual nuclear power plant licensees to develop improved plant-specific technical specifications. This report contains three volumes. Volume 1 contains the Specifications for all chapters and sections of the improved STS. This document Volume 2, contains the Bases for Chapters 2.0 and 3.0, and Sections 3.1--3.3 of the improved STS. Volume 3 contains the Bases for Sections 3.4--3.10 of the improved STS

  13. Perception of the People Concerning Nuclear Power Plant for Electricity

    International Nuclear Information System (INIS)

    Suroyo, A.M. Djuliati

    2003-01-01

    Preliminary research on the perception and resistance of the people concerning government's plan to build a nuclear power plant for electricity at Muria peninsula, in Jepara, has that some people refused, some were ready to accept, and some just hesitated. In general the beaurocrats accepted the plan, although some felt doubtful since they are in change of environment conservation. Parliament members and religious leaders have the tendency to be doubtful in response of the government's plan on nuclear power plant. Those NGO members, especially these under young activist leaders have refused the plan, while other religious leaders and some rural leaders tend to accept it. The various perception and attitudes which exist in the society are mostly caused by conditions such as one's position, his group's perception in which he attached to, and factors either socio-cultural, socio-political, or socio-economics. Especially those with negative perception were actually influenced by the feeling of distrust to the government. At this time the government is trying to rebuild people's confidence by planning some development programs with bottom-up approach, but since it has a bad reputation in the post, that different attitudes have emerged toward state's projects, since in the past many persons have corrupted the project they carried-out for their own benefit. The various attitudes of the people toward the government have their impact on the government plan to build nuclear plant in Jepara. In this situation it will be more who reject the plan. To this moment is seems that the government has not successfully changed its image to have public trust, due to their prejudice to government projects, more over for its nuclear power plant. Input of information, especially about nuclear. They select information about nuclear mostly from the negative side only, although there should be also positive side

  14. Standard Technical Specifications, General Electric plants, BWR/4

    International Nuclear Information System (INIS)

    1992-09-01

    This NUREG contains improved Standard Technical Specifications (STS) for General Electric Plants, BWR/4, and documents the positions of the Nuclear Regulatory Commission based on the BWR Owners Group's proposed STS. This document is the result of extensive technical meetings and discussions among the NRC staff, the Nuclear Steam Supply System (NSSS) Owners Groups, the NSSS vendors, and the Nuclear Management and Resources Council (NUMARC). The improved STS were developed based on the criteria in the interim Commission Policy Statement on Technical Specification Improvements for Nuclear Power Reactors, dated February 6, 1987. The improved STS will be used as the basis for individual nuclear power specifications. This report contains three volumes. This document, Volume 2, contains the Bases for Chapters 2.0 and 3.0, and Sections 3.1--3.3 of the improved STS

  15. Industrial DSM in a deregulated European electricity market - a case study of 11 plants in Sweden

    International Nuclear Information System (INIS)

    Trygg, Louise; Karlsson, B.G.

    2005-01-01

    In 2004 Sweden will become part of a common European electricity market. This implies that the price of electricity in Swedish will adapt to a higher European electricity price due to the increase in cross-border trading. Swedish plant is characterized as more electricity-intensive than plant on the European continent, and this, in combination with a higher European electricity price will lead to a precarious scenario. This paper studies the energy use of 11 plants in the municipality of Oskarshamn in Sweden. The aim is to show how these plants can reduce their electricity use to adapt to a European level. We have found that the plants could reduce their use of electricity by 48% and their use of energy by 40%. In a European perspective, where coal-condensing power is assumed to be the marginal production that alters as the electricity demand changes, the decrease in the use of electricity in this study leads to a reduction in global emissions of carbon dioxide of 69,000 tonne a year. Electricity generated in Sweden emits very low emissions of carbon dioxide and have thus consequently very low external cost. The freed capacity in Sweden could therefore replace electricity generated with higher external cost and as a result lower the total external cost in Europe. The emissions from the saved electricity could also be valuable within the EU emissions trading scheme, if the emissions calculation is done assuming the marginal electricity is fossil fuel based

  16. Nuclear plants in the expansion of the Mexican electrical system

    International Nuclear Information System (INIS)

    Estrada S, G. J.; Martin del Campo M, C.

    2009-10-01

    In this work the results of four studies appear that were realized to analyze plans of long term expansion of Mexican electrical system of generation for the study period 2005-2025. The objective is to identify between the two third generation reactors with greater maturity at present which is it is that it can be integrated better in the expansion of the Mexican electrical system of generation. It was analyzed which of the four cases represents the best expansion plan in terms of two only parameters that are: 1) total cost of generation and, 2) the diversity of generated energy in all the period. In all studies candidates three different units of combined cycle were considered (802, 583 and 291 MW), a turbo gas unit of 267 MW, units of 700 MW with coal base and integrated de sulphur, geo thermo electrical units of 26.95 MW and two different types of nuclear units. In both first studies the Advanced Boiling Water Reactor (A BWR) for the nuclear units is considered, considering that is technology with more maturity of all the third generation reactors. In the following two studies were considered the European Pressurized Reactor (EPR), also of third generation, that uses in essence technology more spread to world-wide level. For this task was used the uni nodal planning model WASP-IV, developed by the IAEA to find the expansion configuration with less generation cost for each study. Considering the present situation of the generation system, the capacity additions begin starting from the year 2012 for the four studies. It is not considered the installation of nuclear plants before 2016 considering that its planning period takes 3 years, and the construction period requires at least of 5 years. In order to evaluate the diversity of each study it was used the Stirling Index or of Shannon-Weiner. In order to classify the studies in cost terms and diversity it was used like decision tool the Savage criterion, called also of minimal repentance. With this data, taking

  17. Procedure for estimating nonfuel operation and maintenance costs for large steam-electric power plants

    International Nuclear Information System (INIS)

    Myers, M.L.; Fuller, L.C.

    1979-01-01

    Revised guidelines are presented for estimating annual nonfuel operation and maintenance costs for large steam-electric power plants, specifically light-water-reactor plants and coal-fired plants. Previous guidelines were published in October 1975 in ERDA 76-37, a Procedure for Estimating Nonfuel Operating and Maintenance Costs for Large Steam-Electric Power Plants. Estimates for coal-fired plants include the option of limestone slurry scrubbing for flue gas desulfurization. A computer program, OMCOST, is also presented which covers all plant options

  18. Needs for Constructing and Possibilities of Nuclear Power Plants Interconnection to the Croatian Electricity Grid

    International Nuclear Information System (INIS)

    Zeljko, M.; Bajs, D.

    1998-01-01

    Due to development of electric power system and considering an increase of electrical energy consumption, needs for larger units in new power plants are obvious. Connection of large nuclear power plants to the grid, depending on their power and location, usually requires significant investments in transmission network development and construction. Considering the capacity of the 400 kV transmission network in Croatia, this problem is evident. This paper deals with the possibilities of nuclear power plants construction, as one possible option in electric power system development, and their interconnection to the electricity grid. (author)

  19. Industrial Electricity. In-Plant Distribution. Vocational Trade and Industrial Education.

    Science.gov (United States)

    Teague, Cash; Pewewardy, Garner

    This curriculum guide, part of a series of industrial electricity curriculum guides, consists of materials for use in teaching a course on the in-plant distribution of electricity. Discussed in the introductory lessons are the National Electrical Code, power equipment, and blueprint reading. The next section, a series of units on branch-circuit…

  20. On-site electric power source facility for Japanese nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Oohara, T. [Incident/Failure Analysis and Evaluation Office, Nuclear Power Safety Information Research Centre, Nuclear Power Engineering Test Centre, 2nd Floor, Shuwa-Kamiyacho Bldg., 3-13, 4-Chome, Toranomon Minato-ku, Tokyo 105 (Japan)

    1986-02-15

    Trends of construction of nuclear power plants in Japan, occurrence rate of incidents/failures of electric facilities, major example of incidents/failures, their countermeasure to prevent recurrence are introduced. Furthermore, safety administration system of the Government, electric utilities and manufacturers, and various countermeasures to prevent incident/ failure of electrical facilities from the hardware and software sides are discussed. (author)

  1. On-site electric power source facility for Japanese nuclear power plant

    International Nuclear Information System (INIS)

    Oohara, T.

    1986-01-01

    Trends of construction of nuclear power plants in Japan, occurrence rate of incidents/failures of electric facilities, major example of incidents/failures, their countermeasure to prevent recurrence are introduced. Furthermore, safety administration system of the Government, electric utilities and manufacturers, and various countermeasures to prevent incident/ failure of electrical facilities from the hardware and software sides are discussed. (author)

  2. Systems studies of dual purpose electric/synthetic fuels fusion plants

    International Nuclear Information System (INIS)

    Beardsworth, E.; Powell, J.

    1975-02-01

    A reactor power plant is proposed that can meet base load electrical demand, while the remainder can generate synthetic fuels and meet intermittent electrical demands. Two principal objectives of this study are: (1) to examine how strongly various economic demand and resource factors affect the amount of installed CTR capacity, and (2) to examine what increase in CTR capacity can be expected with dual purpose electric/synthetic fuel fusion plants, and also the relative importance of the different production modes

  3. Water releasing electric generating device for nuclear power plant

    International Nuclear Information System (INIS)

    Umehara, Toshihiro; Tomohara, Yasutaka; Usui, Yoshihiko.

    1994-01-01

    Warm sea water discharged after being used for cooling in an equipment of a coastal nuclear powder plant is discharged from a water discharge port to a water discharge pit, and a conduit vessel is disposed in front of the water discharge port for receiving overflown warm sea water. The warm sea water taken to the conduit vessel is converted to a fallen flow and charged to a turbine generator under water, and electric power is generated by the water head energy of the fallen flow before it is discharged to the water discharge pit. The conduit vessel incorporates a foam preventing unit having spiral flow channels therein, so that the warm sea water taken to the conduit vessel is flown into the water discharge pit after consuming the water head energy while partially branched and flown downwardly and gives lateral component to the downwarding flowing direction. Then, warm sea water is made calm when it is flown into the water discharge pit and, accordingly, generation of bubbles on the water surface of the water discharge pit is avoided. (N.H.)

  4. How is Electricity Generated from Nuclear Power Plant

    International Nuclear Information System (INIS)

    Lajnef, D.

    2015-01-01

    Nuclear power is a proven, safe and clean source of power generation. A nuclear power plant is a thermal power station in which the heat source is a nuclear reactor. As is typical in all conventional thermal power stations the heat is used to generate steam which drives a steam turbine: the energy released from continuous fission of the atoms of the fuel is harnessed as heat in either a gas or water, and is used to produce steam. Nuclear Reactors are classified by several methods. It can be classified by type of nuclear reaction, by the moderator material, by coolant or by generation. There are several components common to most types of reactors: fuel, moderator, control rods, coolant, and containment. Nuclear reactor technology has been under continuous development since the first commercial exploitation of civil nuclear power in the 1950s. We can mention seven key reactor attributes that illuminate the essential differences between the various generations of reactors: cost effectiveness, safety, security and non-proliferation, fuel cycle, grid appropriateness and Economics. Today there are about 437 nuclear power reactors that are used to generate electricity in about 30 countries around the world. (author)

  5. FEATURES OF ELECTRIC MOTOR CHOICE FOR NUCLEAR POWER PLANT TECHNOLOGICAL OBJECTS

    Directory of Open Access Journals (Sweden)

    V.V. Shevchenko

    2013-06-01

    Full Text Available Nuclear power plants remain the basic power generating enterprises for Ukraine. Execution of works on their reliability control and operating conditions optimization is therefore of current importance. Trouble-free nuclear power plant operation is a vital technical, economical, and ecological problem, a solution to which is largely specified by reliable operation of electric equipment, namely, electric motors of nuclear power plant technological process drives.

  6. Electrical systems design applications on Japanese PWR plants in light of the Fukushima Daiichi Accident

    International Nuclear Information System (INIS)

    Nomoto, Tsutomu

    2015-01-01

    After the Fukushima Daiichi nuclear power plant (1F-NPP) accident (i.e. Station Blackout), several design enhancements have been incorporated or are under considering to Mitsubishi PWR plants' design of not only operational plants' design but also new plants' design. Especially, there are several important enhancements in the area of the electrical system design. In this presentation, design enhancements related to following electrical systems/equipment are introduced; - Offsite Power System; - Emergency Power Source; - Safety-related Battery; - Alternative AC Power Supply Systems. In addition, relevant design requirements/conditions which are or will be considered in Mitsubishi PWR plants are introduced. (authors)

  7. Scheduling the maintenance of gaseous diffusion and electric power distribution plants

    International Nuclear Information System (INIS)

    Chauvet, D.

    1990-01-01

    A computer aided scheduling applied to the maintenance of a uranium enrichment plant is presented. The plant exploits gaseous diffusion and electric power distribution plants, for which the operating conditions must be satisfied. The management and the execution of the maintenance actions are computer aided. Concerning the techniques, the cost, the safety and the scheduling actions were optimized [fr

  8. Fitting of power generated by nuclear power plants into the Hungarian electricity system

    International Nuclear Information System (INIS)

    Lengyel, Gyula; Potecz, Bela

    1984-01-01

    The moderate increase of electrical energy demands (3% at present) can only be met by the parallel application of fossil and nuclear power plants and by electric power import via the transmission lines of the CMEA countries. The changes in the electrical energy and fuel demands and the development of the available capacities during the last 35 years are reviewed. The major purpose of Hungarian power economy is to save hydrocarbon fuels by taking advantages of power import opportunities by operating nuclear power plants at maximum capacity and the coal fired power stations at high capacity. The basic principles, the algorithm applied to optimize the load distribution of the electrical power system are discussed in detail with special attention to the role of nuclear power. The planned availability of nuclear power plants and the amount of electricity generated by nuclear plants should also be optimized. (V.N.)

  9. Flexible use of electricity in heat-only district heating plants

    Directory of Open Access Journals (Sweden)

    Erik Trømborg

    2017-01-01

    Full Text Available European energy systems are in a period of significant transition, with the increasing shares of variable renewable energy (VRE and less flexible fossil-based generation units as predominant factors. The supply-side changes are expected to cause large short-term electricity price volatility. More frequent periods of low electricity prices may mean that electric use in flexible heating systems will become more profitable, and such flexible heating systems may, in turn, improve the integration of increasing shares of VRE. The objective of this study is to analyze the likely future of Nordic electricity price levels and variations and how the expected prices might affect the use of electricity and thermal storage in heat-only district heating plants. We apply the North European energy market model Balmorel to provide scenarios for future hourly electricity prices in years with normal, high, and low inflow levels to the hydro power system. The simulation tool energyPRO is subsequently applied to quantify how these electricity price scenarios affect the hourly use of thermal storage and individual boilers in heat-only district heating plants located in Norway. The two studied example plants use wood chips or heat pump as base load representing common technologies for district heating in Norway. The Balmorel results show that annual differences in inflow is still a decisive factor for Norwegian and Nordic electricity prices in year 2030 and that short-term (daily price variability is expected to increase. In the plant-level simulations, we find that tank storage, which is currently installed in only a few district heating plants in Norway, is a profitable flexibility option that will significantly reduce the use of fossil peak load in both biomass and heat-pump-based systems. Installation of an electric boiler in addition to tank storage is profitable in the heat pump system due to the limited capacity of the heat pump. Electricity will hence, to a

  10. Strategy of investment in electricity sources--Market value of a power plant and the electricity market

    Science.gov (United States)

    Bartnik, R.; Hnydiuk-Stefan, A.; Buryn, Z.

    2017-11-01

    This paper reports the results of the investment strategy analysis in different electricity sources. New methodology and theory of calculating the market value of the power plant and value of the electricity market supplied by it are presented. The financial gain forms the most important criteria in the assessment of an investment by an investor. An investment strategy has to involve a careful analysis of each considered project in order that the right decision and selection will be made while various components of the projects will be considered. The latter primarily includes the aspects of risk and uncertainty. Profitability of an investment in the electricity sources (as well as others) is offered by the measures applicable for the assessment of the economic effectiveness of an investment based on calculations e.g. power plant market value and the value of the electricity that is supplied by a power plant. The values of such measures decide on an investment strategy in the energy sources. This paper contains analysis of exemplary calculations results of power plant market value and the electricity market value supplied by it.

  11. The end of cheap electric power from nuclear power plants. 2. ed.

    International Nuclear Information System (INIS)

    Franke, J.; Viefhues, D.

    1984-04-01

    The economic efficiency of a nuclear power plant is compared with that of a coal-fired power plant of the same size. A technical and economic computer model was developed which took account of the power plant and all its units as well as the fuel cycle (including intermediate storage and reprocessing). It was found that future nuclear power plants will be inferior to coal-fired power plants in all economic respects. Further, there was no load range in which the cost of electric power generation was more favourable in nuclear power plants than in coal-fired power plants. (orig./HSCH) [de

  12. Demonstration tokamak fusion power plant for early realization of net electric power generation

    International Nuclear Information System (INIS)

    Hiwatari, R.; Okano, K.; Asaoka, Y.; Shinya, K.; Ogawa, Y.

    2005-01-01

    A demonstration tokamak fusion power plant Demo-CREST is proposed as the device for early realization of net electric power generation by fusion energy. The plasma configuration for Demo-CREST is optimized to satisfy the electric breakeven condition (the condition for net electric power, P e net = 0 MW) with the plasma performance of the ITER reference operation mode. This optimization method is considered to be suitable for the design of a demonstration power plant for early realization of net electric power generation, because the demonstration power plant has to ensure the net electric generation. Plasma performance should also be more reliably achieved than in past design studies. For the plasma performance planned in the present ITER programme, net electric power from 0 to 500 MW is possible with Demo-CREST under the following engineering conditions: maximum magnetic field 16 T, thermal efficiency 30%, NBI system efficiency 50% and NBI current drive power restricted to 200 MW. By replacing the blanket system with one of higher thermal efficiency, a net electric power of about 1000 MW is also possible so that the performance of the commercial plant with Demo-CREST can also be studied from the economic point of view. The development path from the experimental reactor 'ITER' to the commercial plant 'CREST' through the demonstration power plant 'Demo-CREST' is proposed as an example of the fast track concept. (author)

  13. How to design electrical systems with central control capability for industrial plants

    Energy Technology Data Exchange (ETDEWEB)

    Cigolini, S.; Galati, G.; Lionetto, P.F.; Stiz, M. (Siemens, Milan (Italy) Centro Elettrotecnico Sperimentale Italiano, Milan (Italy))

    1991-12-01

    The modern centralized control system, incorporating microprocessors, constitutes an extremely efficacious instrument for the management of an industrial plant's electrical system and provides the performance, reliability, flexibility and safety features required by today's technologically advanced plant processes. The use of intelligent centralized control systems, capable of autonomous operation and dialoguing with industrial plant electrical systems, simplifies the design of the overall plant. This paper reviews the main design criteria for the automated systems and gives examples of some suitable commercially available intelligent systems.

  14. Introduction of Electrical System Simulation and Analysis Used in Korean Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kim, Sang Hak; Jeong, Woo Sung

    2015-01-01

    The purpose of this paper is to introduce the simulation methods and tools to analyse and predict the performance of the electric power distribution system for nuclear power plants (NPPs) in Korea. Electrical System design engineers are to evaluate the load flow, bus voltage profiles, short circuit levels, motor starting, and fast bus transfer under various plant operating conditions and to verify the adequacy of power distribution System for a reliable power supply to plant loads under various disturbances which could jeopardize a safe and reliable operation of nuclear power plants. (authors)

  15. Possibilities for retrofitting of the existing thermal electric power plants using solar power technologies

    International Nuclear Information System (INIS)

    Matjanov, Erkinjon K.; Abduganieva, Farogat A.; Aminov, Zarif Z.

    2012-01-01

    Full text: Total installed electric power output of the existing thermal electric power plants in Uzbekistan is reaches 12 GW. Thermal electric power plants, working on organic fuel, produce around 88 % of the electricity in the country. The emission coefficient of CO 2 gases is 620 gram/kwph. Average electric efficiency of the thermal electric power plants is 32.1 %. The mentioned above data certifies, that the existing thermal electric power plants of Uzbekistan are physically and morally aged and they need to be retrofitted. Retrofitting of the existing thermal electric power plants can be done by several ways such as via including gas turbine toppings, by using solar technologies, etc. Solar thermal power is a relatively new technology which has already shown its enormous promise. With few environmental impacts and a massive resource, it offers a comparable opportunity to the sunniest Uzbekistan. Solar thermal power uses direct sunlight, so it must be sited in regions with high direct solar radiation. In many regions, one square km of land is enough to generate as much as 100-120 GWh of electricity per year using the solar thermal technology. This is equivalent to the annual production of a 50 MW conventional coal or gas-fired mid-load power plant. Solar thermal power plants can be designed for solar-only or for hybrid operation. Producing electricity from the energy in the sun's rays is a straightforward process: direct solar radiation can be concentrated and collected by a range of Concentrating Solar Power technologies to provide medium- to high temperature heat. This heat is then used to operate a conventional power cycle, for example through a steam turbine or a Stirling engine. Solar heat collected during the day can also be stored in liquid or solid media such as molten salts, ceramics, concrete or, in the future, phase-changing salt mixtures. At night, it can be extracted from the storage medium thereby continuing turbine operation. Currently, the

  16. Preparing for electrical-system startup at a nuclear power plant

    International Nuclear Information System (INIS)

    Boissy, G.J.

    1977-01-01

    Experience at St Lucie Unit No. 1 nuclear power plant regarding organization for electrical startup is related and analyzed. Problems of staffing, organization procedures, test standard development, and implementation of the program are considered

  17. Scenarios for low carbon and low water electric power plant operations: implications for upstream water use

    Data.gov (United States)

    U.S. Environmental Protection Agency — The dataset includes all data used in the creation of figures and graphs in the paper: "Scenarios for low carbon and low water electric power plant operations:...

  18. 78 FR 53483 - Inspections, Tests, Analyses, and Acceptance Criteria; Vogtle Electric Generating Plant, Unit 3

    Science.gov (United States)

    2013-08-29

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 052-00025; NRC-2008-0252] Inspections, Tests, Analyses, and Acceptance Criteria; Vogtle Electric Generating Plant, Unit 3 AGENCY: Nuclear Regulatory Commission. ACTION: Determination of inspections, tests, analyses, and acceptance criteria (ITAAC) completion...

  19. 78 FR 53484 - Inspections, Tests, Analyses, and Acceptance Criteria; Vogtle Electric Generating Plant, Unit 4

    Science.gov (United States)

    2013-08-29

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 052-00026; NRC-2008-0252] Inspections, Tests, Analyses, and Acceptance Criteria; Vogtle Electric Generating Plant, Unit 4 AGENCY: Nuclear Regulatory Commission. ACTION: Determination of inspections, tests, analyses, and acceptance criteria (ITAAC) completion...

  20. 78 FR 65007 - Inspections, Tests, Analyses, and Acceptance Criteria; Vogtle Electric Generating Plant, Unit 3

    Science.gov (United States)

    2013-10-30

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 052-00026; NRC-2008-0252] Inspections, Tests, Analyses, and Acceptance Criteria; Vogtle Electric Generating Plant, Unit 3 AGENCY: Nuclear Regulatory Commission. ACTION: Determination of inspections, tests, analyses, and acceptance criteria completion...

  1. Hazardous Waste Cleanup: General Electric – Main Plant Site in Schenectady, New York

    Science.gov (United States)

    GE purchased the property at Genesee Street in 1951 and constructed a manufacturing plant that produced a variety of electrical components including radar equipment, printed circuit boards and high voltage semiconductors. In January 1986, Powerex, Inc., ac

  2. Hazardous Waste Cleanup: General Electric - Auburn Plant in Auburn, New York

    Science.gov (United States)

    GE purchased the property at Genesee Street in 1951 and constructed a manufacturing plant that produced a variety of electrical components including radar equipment, printed circuit boards and high voltage semiconductors. In January 1986, Powerex, Inc.,

  3. Tunisia- British gas intends to participate to the building of a combined cycle electric power plant

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    Here is described the project to build a combined-cycle power plant in Tunisia, project in which the British Gas is interested. The transport, distribution, import and export of electricity should be controlled by the Tunisian society of electricity and gas. In the context of an agreement with Gec-Alsthom, the british company hopes to offer to build, and exploit the future power plant. (N.C.)

  4. Integration of a nuclear power plant in electrical systems, alternative programs, optimization

    International Nuclear Information System (INIS)

    Souza, J.A.M. de.

    1991-01-01

    The problem of integration of a nuclear power plants in a electrical power system, to support the power demand of the system, and mainly also support the power demand at the critical period, I.E., peak demands, is analysed. The factors considered in this analysis are: the demand structure of the region, the availability of others power plants in the electrical net and the capacity factor. (author)

  5. Aging of electric motors in nuclear power plants

    International Nuclear Information System (INIS)

    Subudhi, M.; Taylor, J.H.

    1987-06-01

    Motor degradation due to aging and service wear decreases reliability and increases the potential for failure during nuclear plant accident and post accident conditions. The impact of motor failures on plant safety is an important concern among the nuclear utilities and the government agency regulating this industry. Economic impacts, relating to plant availability and safety, as well as corrective maintenance, have prompted utilities to improve their maintenance programs to mitigate such aging effects. 2 refs., 3 figs

  6. Getting data for prediction of electricity generation from photovoltaic power plants

    International Nuclear Information System (INIS)

    Majer, V.; Hejtmankova, P.

    2012-01-01

    This paper deals with the short term prediction of generated electricity from photovoltaic power plants. This way of electricity generation is strongly dependent on the actual weather, mainly solar radiation and temperature. In this paper the simple method for getting solar radiation data is presented. (Authors)

  7. Thermic solar plants for the production of electricity in Mexico: present and future

    International Nuclear Information System (INIS)

    Almanza, R.

    1990-01-01

    During the last decade, there are have been some important achievements in generating electricity using solar concentrators. The Instituto de Ingenieria, of the Universidad Nacional Autonoma de Mexico (UNAM), has started the design and construction of solar thermic plants for generating electricity , capable of reaching 1 Kw and 10 Kw. The Instituto continues developing the research and testing of new materials, because this way of generating electricity has become economically feasible: besides, it constitutes a non polluting alternative. (Author)

  8. Alternative strategies for electricity supply from RENEL's power plants

    International Nuclear Information System (INIS)

    Vladescu, A.; Popescu, M.; Breazu, F.; Valcereanu, G.; Oprea, G.; Velcescu, O.; Popovici, D.

    1996-01-01

    The transition to the market economy imposes the refurbishment and rehabilitation of the energy sector. This development must be based on the principles of economic efficiency having in view both the conditions of environmental protection and the energy demand and supply. This paper will describe some alternative strategies for electricity supply, taking into account the forecast of electricity demand integrated into total energy demand, as well as the environmental protection regulations. (author). 1 fig., 4 refs

  9. Electricity

    International Nuclear Information System (INIS)

    Tombs, F.

    1983-01-01

    The subject is discussed, with particular reference to the electricity industry in the United Kingdom, under the headings; importance and scope of the industry's work; future fuel supplies (estimated indigenous fossil fuels reserves); outlook for UK energy supplies; problems of future generating capacity and fuel mix (energy policy; construction programme; economics and pricing; contribution of nuclear power - thermal and fast reactors; problems of conversion of oil-burning to coal-burning plant). (U.K.)

  10. Electric power generating plant having direct-coupled steam and compressed-air cycles

    Science.gov (United States)

    Drost, M.K.

    1981-01-07

    An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

  11. Electric power generating plant having direct coupled steam and compressed air cycles

    Science.gov (United States)

    Drost, Monte K.

    1982-01-01

    An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

  12. The Integration of Electrical Signals Originating in the Root of Vascular Plants

    Directory of Open Access Journals (Sweden)

    Javier Canales

    2018-01-01

    Full Text Available Plants have developed different signaling systems allowing for the integration of environmental cues to coordinate molecular processes associated to both early development and the physiology of the adult plant. Research on systemic signaling in plants has traditionally focused on the role of phytohormones as long-distance signaling molecules, and more recently the importance of peptides and miRNAs in building up this communication process has also been described. However, it is well-known that plants have the ability to generate different types of long-range electrical signals in response to different stimuli such as light, temperature variations, wounding, salt stress, or gravitropic stimulation. Presently, it is unclear whether short or long-distance electrical communication in plants is linked to nutrient uptake. This review deals with aspects of sensory input in plant roots and the propagation of discrete signals to the plant body. We discuss the physiological role of electrical signaling in nutrient uptake and how nutrient variations may become an electrical signal propagating along the plant.

  13. Economic Evaluation of Decommissioning Cost of Nuclear Power Plant in the National Electricity Plan in Korea

    International Nuclear Information System (INIS)

    Lee, Man Ki; Nam, Ji Hee

    2008-01-01

    Decommissioning cost of a nuclear power plant includes the costs related with dismantling a nuclear power plant, disposal of a spent fuel and of a low/medium radioactive waste. The decommissioning cost is different from the other expenditures in that it is occurred after the reactor finishes its commercial operation. In this respect, the electricity act was enforced to secure provisions for decommissioning a nuclear power plant during its commercial operation. The purpose of this study is to provide economic evaluation and economic cost for a decommissioning when the cost of a decommissioning is provided as one of input to the national electricity plan. Therefore, this study does not deal with whether the estimated amount of a decommissioning cost is just or not. This study focuses how to transfer the estimated decommissioning cost given in the electricity act to the economic cost, which can be used in the national electricity plan

  14. Electrical drives of the safety system in nuclear power plants

    International Nuclear Information System (INIS)

    1990-09-01

    Actuating drives, control magnets for ventilators, machine drives and control member drives are part of this rule. The rule deals with the security and technical requirements for design, construction, calculation, fabrication, assembling, testing and operation. Furthermore, it places significant demands, with regard to planning and arrangement of electrical drives, on the accompanying technical systems. Furthermore, demands are placed on the aggregate protection for electrical drives of the security systems. The signals given to these systems do not, however, have precedence over the protection signals of the reactor. The rule is identical with KTA-3504, version 9/1988. (orig./HP) [de

  15. Availability analysis of United States BWR IV electrical generation plants

    International Nuclear Information System (INIS)

    Renick, D.H.; Li, F.; Todreas, N.E.

    1998-01-01

    Availability, as quantified by power output levels, from all active U.S. BWR IV plants were analyzed over a seven and a half year period to determine the operational characteristics of these plants throughout an operating cycle. The operational data were examined for infant mortality, end of cycle decreased availability, and seasonal availability variations. Scheduled outages were also examined to determine the industry's current approach to planning maintenance outages. The results of this study show that nuclear power plants do suffer significant infant mortality following a refueling outage. And while they do not suffer an end of cycle decrease in availability, a mid-cycle period of decreased availability is evident. This period of decreased availability is due to a combination of increased forced unavailability and seasonally scheduled maintenance and refueling outages. These findings form the start of a rational approach to increasing plant availability. (author)

  16. Analysis of Axial Turbine Pico-Hydro Electrical Power Plant in North Sulawesi Indonesia

    Science.gov (United States)

    Sangari, F. J.; Rompas, P. T. D.

    2018-02-01

    This study presents analysis of pico-hydro electrical power plant in North Sulawesi, Indonesia. The objective of this study is to get a design of axial turbine pico-hydro electrical power plant. The method used the study of literature, survey the construction site of the power plant and the characteristics of the location being a place of study, analysis of hydropower ability and analyzing costs of power plant. The result showed that the design of axial turbine pico-hydro installation is connected to a generator to produce electrical energy maximum can be used for household needs in villages. This analyze will be propose to local government of Minahasa, North Sulawesi, Indonesia.

  17. THE ANALYSIS OF STRUCTURAL RELIABILITY OF THE MAIN ELECTRIC CONNECTION CIRCUITS OF NUCLEAR POWER PLANTS

    Directory of Open Access Journals (Sweden)

    M. A. Korotkevich

    2017-01-01

    Full Text Available The reliability of the main circuit of electrical connections at a nuclear electric power plant that has two units with a capacity of 1,200 MW each has been determined. Reliability, economical, maneuverable properties of the atomic power plant under study are largely determined by its main circuit, so the choice of the circuit for the design and its status in the process of operation occur to be critical objectives. Main electrical connection circuits in nuclear electric power plants are selected on the basis of the schematic networks of the energy system and the land attached to the plant. The circuit of the connection of a nuclear power plant to the grid in the original normal operating modes at all stages of the construction of such a plant should provide the outcome of the full added capacity of a nuclear power plant and the preservation of its stability in the power system without the influence of the emergency system automatics when any outgoing transmission line is disabled. When selecting the main circuit the individual capacity of the installed units and their number are taken into account as well as the order of development of the plant and power supply system; the voltage on which the power of a plant is delivered; a shortcircuit current for switchgear high voltage and the need for their limitation by circuit means; the most power that can be lost when damage to any switch. A model of reliability of the main circuit of electrical connections is designed to detect all types of accidents that are possible at the coincidence of failures of elements with the repair and operational modes that differs in composition and damageability of the equipment, as well as under conditions of the development of accidents due to failure of operation of devices of relay protection and automation.

  18. Added value by rule IEC61850. Modernizing the electrical protection of Gundremmingen nuclear power plant

    International Nuclear Information System (INIS)

    Hoetzel, A.; Willems, D.; Maier, K.L.; Herrmann, H.J.; Einsiedler, G.

    2006-01-01

    After many years in operation the large power plant generating units B and C at Gundremmingen nuclear power plant are due for inspection and maintenance, which also requires modernizing the electrical protection. Unlike the construction of new power plants, additional constraints apply to modernization in existing plants. The new solution has to fit as seamlessly as possible into the existing units, such as signaling systems with their multitude of signaling contacts and printers, or the connection to the power plant automation system. Apart from purely technical requirements, economic factors such as short standstill times, limited budgets or phased conversions also influence the choice of a suitable solution. Planning, construction and commissioning of the electrical generating unit protection was implemented by the Secondary Systems Technology Center, a technical department of RWE-Rhein-Ruhr Netzservice GmbH, in coordination with the operator. (orig.)

  19. Source book for planning nuclear dual-purpose electric/distillation desalination plants

    International Nuclear Information System (INIS)

    Reed, S.A.

    1981-02-01

    A source book on nuclear dual-purpose electric/distillation desalination plants was prepared to assist government and other planners in preparing broad evaluations of proposed applications of dual-purpose plants. The document is divided into five major sections. Section 1 presents general discussions relating to the benefits of dual-purpose plants, and spectrum for water-to-power ratios. Section 2 presents information on commercial nuclear plants manufactured by US manufacturers. Section 3 gives information on distillation desalting processes and equipment. Section 4 presents a discussion on feedwater pretreatment and scale control. Section 5 deals with methods for coupling the distillation and electrical generating plants to operate in the dual mode

  20. Source book for planning nuclear dual-purpose electric/distillation desalination plants

    Energy Technology Data Exchange (ETDEWEB)

    Reed, S.A.

    1981-02-01

    A source book on nuclear dual-purpose electric/distillation desalination plants was prepared to assist government and other planners in preparing broad evaluations of proposed applications of dual-purpose plants. The document is divided into five major sections. Section 1 presents general discussions relating to the benefits of dual-purpose plants, and spectrum for water-to-power ratios. Section 2 presents information on commercial nuclear plants manufactured by US manufacturers. Section 3 gives information on distillation desalting processes and equipment. Section 4 presents a discussion on feedwater pretreatment and scale control. Section 5 deals with methods for coupling the distillation and electrical generating plants to operate in the dual mode.

  1. Ocean thermal gradient as a generator of electricity. OTEC power plant

    Science.gov (United States)

    Enrique, Luna-Gomez Victor; Angel, Alatorre-Mendieta Miguel

    2016-04-01

    The OTEC (Ocean Thermal Energy Conversion) is a power plant that uses the thermal gradient of the sea water between the surface and a depth of about 700 meters. It works by supplying the heat to a steam machine, for evaporation, with sea water from the surface and cold, to condense the steam, with deep sea water. The energy generated by the power plant OTEC can be transferred to the electric power grid, another use is to desalinate seawater. During the twentieth century in some countries experimental power plants to produce electricity or obtaining drinking water they were installed. On the Mexico's coast itself this thermal gradient, as it is located in tropical seas it occurs, so it has possibilities of installing OTEC power plant type. In this paper one type OTEC power plant operation is represented in most of its components.

  2. Life Cycle Assessment of Producing Electricity in Thailand: A Case Study of Natural Gas Power Plant

    Directory of Open Access Journals (Sweden)

    Usapein Parnuwat

    2017-01-01

    Full Text Available Environmental impacts from natural gas power plant in Thailand was investigated in this study. The objective was to identify the hotspot of environmental impact from electricity production and the allocation of emissions from power plant was studied. All stressors to environment were collected for annual natural gas power plant operation. The allocation of environmental load between electricity and steam was done by WRI/WBCSD method. Based on the annual power plant operation, the highest of environmental impact was fuel combustion, followed by natural gas extraction, and chemical reagent. After allocation, the result found that 1 kWh of electricity generated 0.425 kgCO2eq and 1 ton of steam generated 225 kgCO2eq. When compared based on 1GJ of energy product, the result showed that the environmental impact of electricity is higher than steam product. To improve the environmental performance, it should be focused on the fuel combustion, for example, increasing the efficiency of gas turbine, and using low sulphur content of natural gas. This result can be used as guideline for stakeholder who engage with the environmental impact from power plant; furthermore, it can be useful for policy maker to understand the allocation method between electricity and steam products.

  3. Optimal designs of small CHP plants in a market with fluctuating electricity prices

    International Nuclear Information System (INIS)

    Lund, H.; Andersen, A.N.

    2005-01-01

    Combined Heat and Power production (CHP) are essential for implementation of the climate change response objectives in many countries. In an introduction period, small CHP plants have typically been offered fixed electricity prices, but in many countries, such pricing conditions are now being replaced by spot market prices. Consequently, new methodologies and tools for the optimisation of small CHP plant designs are needed. The small CHP plants in Denmark are already experienced in optimising their electricity production against the triple tariff, which has existed for almost 10 years. Consequently, the CHP plants have long term experience in organising when to switch on and off the CHP units in order to optimise their profit. Also, the CHP owners have long term experience in designing their plants. For instance, small CHP plants in Denmark have usually invested in excess capacity on the CHP units in combination with heat storage capacity. Thereby, the plants have increased their performance in order to optimise revenues. This paper presents the Danish experience with methodologies and software tools, which have been used to design investment and operation strategies for almost all small CHP plants in Denmark during the decade of the triple tariff. Moreover, the changes in such methodologies and tools in order to optimise performance in a market with fluctuating electricity prices are presented and discussed

  4. Electric current precedes emergence of a lateral root in higher plants.

    Science.gov (United States)

    Hamada, S; Ezaki, S; Hayashi, K; Toko, K; Yamafuji, K

    1992-10-01

    Stable electrochemical patterns appear spontaneously around roots of higher plants and are closely related to growth. An electric potential pattern accompanied by lateral root emergence was measured along the surface of the primary root of adzuki bean (Phaseolus angularis) over 21 h using a microelectrode manipulated by a newly developed apparatus. The electric potential became lower at the point where a lateral root emerged. This change preceded the emergence of the lateral root by about 10 h. A theory is presented for calculating two-dimensional patterns of electric potential and electric current density around the primary root (and a lateral root) using only data on the one-dimensional electric potential measured near the surface of the primary root. The development of the lateral root inside the primary root is associated with the influx of electric current of about 0.7 muA.cm(-2) at the surface.

  5. Outline of principle of design construction of demolished concrete from electric power plant

    International Nuclear Information System (INIS)

    Takahashi, Tomohiko; Sakagami, Takeharu; Inagaki, Hirokazu; Morozumi, Hironori; Muranaka, Kenji

    2005-01-01

    'The principle of design construction of recycled demolished concrete from electric power plant' (a plan) is going to be published by TSCE Concrete Committee in 2005. The abstract of the above principle is described. A large amount of demolished concrete is generated by decommissioning of atomic power plant. About 450,000 to 500,000t of concrete with small radiation level per an atomic power plant will be generated. This report included decommissioning of Tokai power plant, characteristics of subject of demolished concrete, the recycled demolished concrete, fresh conditions of the recycled demolished concrete, the strength, deformation properties, durability, alkali silica reactivity of them and control measurement. (S.Y.)

  6. Laws and ordinances on electric arc protection. Electric arc protection of electric plants; Gesetze und Verordnungen zur Stoerlichtbogensicherheit. Stoerlichtbogensicherheit von elektrischen Betriebsstaetten

    Energy Technology Data Exchange (ETDEWEB)

    Bernards, Stefan; Buenger, Stefan; Grote, Martin [Fritz Driescher KG - Spezialfabrik fuer Elektrizitaetswerksbedarf GmbH und Co., Wegberg (Germany); Boettcher, Lutz-Michael [Ingenieurbuero Boettcher-Consult, Schulzendorf (Germany); Weck, Karl-Heinz [Forschungsgemeinschaft fuer Elektrische Anlagen und Stromwirtschaft (FGH e.V.), Mannheim (Germany)

    2011-02-28

    With the publication of the new standards IEC 62271-200/VDE 0671 part 200-2003: AC metal-enclosed switchgear and controlgear for rated voltages above 1 kV and up to and including 52 kV, and IEC 62271-202/VDE 0671 part 202-2007: High voltage/low voltage prefabricated substations and their revision, the fundamentals of arc protection qualification of plants and stations were redefined with a view to personnel protection. In the case of new transformer stations, the application of these standards is state of the art. The publications and the application of the new standards for staff protection, plant protection and object protection via electric arc qualification has raised questions concerning the safety of older plants and stations, modernization, reconstruction, enhancement, maintenance, and the re-use of used stations and plants.

  7. POWERCO, Nuclear Power Plant Electricity Cost and Economics

    International Nuclear Information System (INIS)

    Tyson, Frank D.

    1982-01-01

    1 - Description of problem or function: POWERCO calculates the cost of electricity produced by nuclear power stations, assuming all cash expenses such as investment and fuel costs, operating expenses, and taxes are known. The power cost is held constant throughout the project life. 2 - Method of solution: The cost calculation is based on the requirement that income received must provide for recovery of investment, return on investment, and all operating expenses. Equations are developed to calculate true fixed charge rates and true average fuel working capital

  8. Nuclear power plants electrical retrofitting for cost effectiveness, reliability and operating efficiency

    International Nuclear Information System (INIS)

    Ciufu, L.; Popescu, M. O.

    2016-01-01

    In the context of continuous fast growing of the energy demand the current power plants retrofitting concept may represent an important step in the emission reduction, being able to offer in the same time a maximum operating efficiency. This desideratum can be obtained by implementing a rigorous energy management plan, based on an increased energy production capacity of non-pollutant electrical power plants and future-oriented frame on extending their lifetime operation. This management is focused on using state-of-art electronic, electrical and industrial control equipments, which can represent a real key factor. Thus, in this paper an analysis of the electrical system retrofitting is presented. As a part of this research the authors propose and simulate ambitious ways to upgrade actual control and command of the electrical operating systems, by promoting variable speed for large pumps and also computer software, as SCADA, for an intelligent control and monitoring of these studied processes. (authors)

  9. Comparison of electricity production costs of nuclear and coal-fired power plants

    International Nuclear Information System (INIS)

    Peltzer, M.

    1980-01-01

    Electricity production costs of nuclear and coal-fired power plants their structure and future development are calculated and compared. Assumed beginning of operation is in the mid-1980. The technical and economical data are based on a nuclear power unit of 1 300 MW and on a coal-fired twin plant of 2 x 750 MW. The study describes and discusses the calculational method and the results. The costs for the electricity generation show an economic advantage for nuclear power. A sensitivity analysis shows that these results are valid also for changed input parameters. (orig.) [de

  10. Report of the national committee on the evaluation of special water releases for electric power plants

    International Nuclear Information System (INIS)

    2004-01-01

    During summer 2003, because of high temperatures monitored in french rivers and to guarantee the electric power supply in France, the government authorized some power plants of EDF to depart from the rules normally applied in terms of release temperatures of cooling water in rivers. This report presents the main observations realized by the Committee responsible of the electric power plants control on the ecological impacts, the prevention means and the crisis management bound to the meteorological phenomena and the consequences on the water policy. (A.L.B.)

  11. Solar fired combined RO/MED desalination plant integrated with electrical power grid

    International Nuclear Information System (INIS)

    Alrobaei, H.

    2006-01-01

    Currently, there is a strong demand for efficient seawater desalination plants, which can meet the tougher environment regulation and energy saving requirements. From this standpoint the present work was undertaken to include proposed scheme (solar Fired Combined Reverse Osmosis (ROY Multi-Effect Distillation (MED) Seawater desalination Plant (SCDP) integrated with electrical power grid (EPG)) for repowering and modification of the conventional grid connected RO desalination plants. The model of SCDP during sunny periods may be applied to the following modes operation: *Full solar desalination (i.e. solar thermal and electrical power generation in solar plant is elivered to the desalination process and the surplus electricity is fed into EPG). *Hybrid solar desalination (I.e. a small share of the electrical power consumption for desalination process compensated by EPG). During cloudly periods and at night the SCDP operates as a conventional RO desalination plant. To establish the range, in which solar energy for seawater desalination would be competitive to fossil energy and investigates the potential effect of the proposed scheme on the repowering effectiveness, mathematical model has been developed. The repowered effectiveness, mathematical model has been developed.The repowered effectiveness in optaimizing model was characterized by the condition of attaining maximum fuel saving in the EPG. The study result shows the effectiveness of proposed scheme for modification and repowering the RO plant. For the case study. (SCDP with maual share of solar electrical power generation 67.4%) the economical effect amount 138.9 ton fuel/year for each MW design thermal energy of parabolic solar collectors array and the corresponding decrease in exhaust gases emission (Nitrogen oxides (NO x ) 0.55 ton/year.MW, carbon dioxides (CO2) 434.9 ton/year.MW). Moreover, implementation of combined RO/MED design for repowering and modification of conventional grid connected RO plant will

  12. Virtual Power Plants as a Model for the Competitiveness of Small Manufacturers and Operators of Virtual Power Plants in Markets of Electricity and Gas

    International Nuclear Information System (INIS)

    Galic, T.; Tomsic, Z.

    2012-01-01

    Production of electricity from renewable energy sources and energy-efficient power sources to be connected to the electricity distribution network is still not competitive with electricity production from conventional sources of electricity. A powerful technological development of distributed energy sources and technologies for electricity storage has reduced their production costs, production costs of electricity from distributed energy sources, the costs of simultaneous production of electricity and thermal energy from cogeneration distributed energy sources and thus has facilitated their increased use in practice. It also allows them to interconnect systems such as virtual power plants in order to achieve full economic feasibility of their use. Current electricity and gas customers, now also in the role of small power producers, interconnected by virtual power plants operators, in addition to buying electricity and gas on retail markets for electricity and gas, will be able to sell electricity and new energy services also on wholesale electricity markets. Development and application of new distributed technologies will enable the production of new quantities of electricity which will increase the competitiveness of electricity producers, competitiveness of electricity suppliers of end-customers and elasticity of supply and demand in the electricity market. These processes will also increase the efficiency of the entire systems of electricity supply and of the gas supply systems.(author)

  13. Influence of Egyptian electrical grid and nuclear power plants under disturbances based on PSS/E

    International Nuclear Information System (INIS)

    Shaat, M. K.; Kotb, S. A.; Mahmoud, H. M.

    2012-12-01

    The capacity of the electrical power system in Egypt will increase rapidly in the coming twenty years. In year 2018, power generation will be connecting to the Egyptian electrical grid. Consequently, the interaction of nuclear power plants and other systems become a very important issue, and a detailed nuclear power model for the medium-term and long-term power system stability should be developed. However, there is no nuclear unit model that can describe the detailed characteristics of the nuclear unit in the available commercial power system simulation software. In this paper, a detailed pressurized water reactor (PWR) nuclear unit model for medium-term and long-term power system transient stability is proposed. The model is implemented by a user defined program in PSS/E through PSS/E Mat lab Seamanlike interface. Also this paper proposes a design of power plant rector controller for the nuclear power plant. This model can be used to analyze the difference influences between the Egyptian electrical grid and nuclear power plants for examples transient fault on electrical grid and outage of nuclear power plant. The simulation results show that the proposed model is valid. (Author)

  14. Electric utility power plant construction costs, 1st Edition

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    New UDI report combines historical construction costs for more than 1,000 coal, oil, gas, nuclear and geothermal units that have entered commercial operation since 1966 and projected power plant construction costs for about 400 utility-owned generating units scheduled to enter commercial operation during the next 20 years. Key design characteristics and equipment suppliers, A/E, constructor and original installed cost data. Direct construction costs without AFUDC are provided where known. Historical construction cost data are also provided for about 130 utility-owned hydroelectric, gas turbine, combined-cycle and diesel units (these data are generally for units entering service after 1980)

  15. French studies on the thermal effluents of electric power plants

    International Nuclear Information System (INIS)

    Dezes-Cadiere, H.

    1976-01-01

    This report presents a synthesis of studies made in France in the thermal effluent field: thermal power plant cooling systems, transfer and dispersion of thermal effluents in the receptive media, effects of thermal effluents on water physicochemistry and biochemistry, effects of thermal effluents on aquatic ecosystems, and, possibilities of waste heat recovery with the view of utilization in agriculture, aquaculture and district heating. A catalogue of French organizations working or having data on thermal effluents is presented, as also an alphabetical list of the contacted persons. A bibliography of French documents concerning the previously mentioned studies is finally given (193 refs.) [fr

  16. Ageing management of electrical and C/I-systems in power plants of RWE Power

    International Nuclear Information System (INIS)

    Hentschel, Reinhard; Kochs, Wolfgang; Zander, Ralf-Michael

    2010-01-01

    Maintenance and enhancement of the availability and safety of fossil-fired and nuclear power plants currently in operation are increasing in importance with plants' age. The paper deals with issues related to e.g. the operation of C and I-systems at the end of production and with the challenges involved in their replacement during plant operation and describes the various measures taken for monitoring electrical equipment. Taking the improvement of the existing protection systems against internal arcs in electrical bus bars as an example, practical approaches for ageing management are described. In addition, the strategic approaches will be explained that were developed within a VGB working group due to the introduction of a new regulation on ageing management in nuclear power plants. (orig.)

  17. A ''New Generation'' of Nuclear Power Plants- Electric Utility Aspects

    International Nuclear Information System (INIS)

    Marouani, D.; Reznik, L.; Tavron, B.

    1999-01-01

    A 50% increase in worldwide energy consumption in the next 20 years is anticipated, due to the global population growth and to higher standards of living. Meeting these energy demands with the fossil energy sources such as coal. gas and oil may lead to atmospheric accumulation of greenhouse gases, resulting in global warming of several degrees with catastrophic climatic consequences. Implementation of various energy conservation measures may bring only insignificant reduction in demand levels. Hopes that the renewable energy sources (such as hydroelectric, solar, wind power, biomass and geothermal) may supply the growth in the demand - are unrealistic. Only nuclear power (providing already 16% of world electricity) may meet all the energy demand growth with negligible greenhouse emission

  18. More Electricity. Methodical survey of existing plants; Mer El. Metodisk genomgaang av befintliga anlaeggningar

    Energy Technology Data Exchange (ETDEWEB)

    Axby, Fredrik; Baafaelt, Martin [Carl Bro Energikonsult AB, Malmoe (Sweden); Ifwer, Karin; Svensson, Niclas; Oehrstroem, Anna [AaF-Process AB, Stockholm (Sweden); Johansson, Inge [S.E.P. Scandinavian Energy Project AB, Goeteborg (Sweden)

    2006-11-15

    The interest in production of electricity has increased the last years as a consequence of the increased price. A high production of electricity is of interest for all kinds of CHP-plants. For large biofuel fired CHP-plants typical electrical efficiency is 35 %, for incineration plants the electrical efficiency is about 28 %. A number of reasons why it is not higher, for example corrosion, fouling, erosion, limited and varying need for heat, flue gas condensation etc, exist. A number of these reasons have earlier been studied in different Vaermeforsk reports. The results from these studies give to some extent solutions and understanding for how the production of electricity can be increased. There is however no report that has the overall picture of what actions are realistic, most cost effective, what areas need more research and gives the most benefit of allocated funds. The aim of this report is to identify the technical limitations and propose measures for increased electricity production at CHP-plants using biofuel and waste. A method for identification of the most suitable actions for each plant is also presented. The idea is to take every conceivable factor that affects electricity production into consideration and to be able to make a relevant comparison of the factors. This report doesn't take new solutions/measures and means of control into consideration. The method used is called 'Weighted Sum Method'. Every action is assessed in the means of different criteria as for example how it affects the environment, if it is profitable, if it means more maintenance etc. An extensive checklist for different conceivable measures for increased electricity production has been created. The checklist includes measures from the fuel storage to the chimney and makes a good guidance when making a review of a biofuel or incineration CHP-plant. Some of the measures can be eliminated immediately at review since they not are applicable or have already been done

  19. Pilot plant experiments for baking of anode blocks in electrically heated ovens

    Energy Technology Data Exchange (ETDEWEB)

    Grjotheim, K. (Oslo Univ. (Norway). Dept. of Chemistry); Kvande, H. (Hydro Aluminium AS, Stabekk (Norway)); Naixiang, F.; Shiheng, Z.; An, L.; Guangxia, H. (Northeast Univ. of Technology, Shenyang, LN (China). Dept. of Non-Ferrous Metallurgy)

    1990-04-01

    Pilot plant experiments were made to bake anode blocks in electrically heated baking ovens. About 70% of the baked anodes had a specific electrical resistance between 35 and 60 {Omega}xmm{sup 2}xm{sup -1}. About 25% had higher resistances, and these were returned to the baking ovens and used as heating elements in the next baking cycle. The average electrical energy consumption was 1430 kWh per tonne of anodes produced, which is about only 60% of the energy consumption in classical oil or gas-fired baking ovens. (orig.).

  20. Method for analysing the adequacy of electric power systems with wind power plants and energy storages

    Directory of Open Access Journals (Sweden)

    Perzhabinsky Sergey

    2017-01-01

    Full Text Available Currently, renewable energy sources and energy storage devices are actively introduced into electric power systems. We developed method to analyze the adequacy of these electric power systems. The method takes into account the uncertainty of electricity generation by wind power plants and the processes of energy storage. The method is based on the Monte Carlo method and allowed to use of long-term meteorological data in open access. The performed experimental research of electrical power system is constructed on the basis of the real technical and meteorological data. The method allows to estimate of effectiveness of introducing generators based on renewable energy sources and energy storages in electric power systems.

  1. Performances of nuclear power plants for combined production of electricity and hot water for district heating

    International Nuclear Information System (INIS)

    Bronzen, S.

    The possibilities for using nuclear power plants for combined production of heat and power seem to be very good in the future. With the chosen 600 MWsub (e) BWR plant a heat output up to 1200 MW can be arranged. An alternative, consisting of steam extractions from the low-pressure turbine, offers a flexible solution for heat and power generation. With this alternative the combined plant can use components from normal condensing nuclear power plants. The flexible extraction design also offers a real possibility for using the combined plant in electric peak generation. However, urban siting requires long distance heat transmission and the pipe design for this transmission is a major problem when planning and optimizing the whole nuclear combined heat and power plant. (author)

  2. Impacts from new 50 MW wind power plant - Bogdnaci on the price of electrical energy in Macedonia

    International Nuclear Information System (INIS)

    Minovski, D.; Sarac, V.; Causevski, A.

    2012-01-01

    The paper presents the impact from the new planned wind power plant Bogdnaci on the price for the end users of electrical energy in Republic of Macedonia. In the next years, 50 MW wind power will be installed in the Macedonian electric power system. Production of electricity from wind power plants is unpredictable and of stochastic nature i.e. depends on the weather or the wind speed at the appropriate locations. Output of wind power plants is changing every minute, thus changing in the hourly level can be from 0 - 100%, even several times depending on the occurrence of winds. Changes in output of wind power plants, leads to increased demand for operational reserve in a power system. Preferential price of electrical energy from the wind power plants and increased operational reserve in the electric power system will have big impact on the final price of electrical energy in Republic of Macedonia. (Authors)

  3. UF6 breeder reactor power plants for electric power generation

    International Nuclear Information System (INIS)

    Rust, J.H.; Clement, J.D.; Hohl, F.

    1976-01-01

    The reactor concept analyzed is a 233 UF 6 core surrounded by a molten salt (Li 7 F, BeF 2 , ThF 4 ) blanket. Nuclear survey calculations were carried out for both spherical and cylindrical geometries. A maximum breeding ratio of 1.22 was found. Thermodynamic cycle calculations were performed for a variety of Rankine cycles. Optimization of a Rankine cycle for a gas core breeder reactor employing an intermediate heat exchanger gave a maximum efficiency of 37 percent. A conceptual design is presented along with a system layout for a 1000 MW stationary power plant. The advantages of the GCBR are as follows: (1) high efficiency, (2) simplified on-line reprocessing, (3) inherent safety considerations, (4) high breeding ratio, (5) possibility of burning all or most of the long-lived nuclear waste actinides, and (6) possibility of extrapolating the technology to higher temperatures and MHD direct conversion

  4. Technology data for electricity and heat generating plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-03-01

    The Danish Energy Authority and the two Danish electricity transmission and system operators, Elkraft System and Eltra, initiated updating of current technology catalogues in 2003. The first updated catalogue was published in March 2004. This report presents the results of the second phase of updating. The primary objective has been to establish a uniform, commonly accepted and up-to-date basis for energy planning activities, such as future outlooks, evaluations of security of supply and environmental impacts, climate change evaluations, and technical and economic analyses. The catalogue may furthermore be used as reference for evaluations of the development perspectives for the numerous technologies available for energy generation in relation to the programming of funding schemes for research, development and demonstration of emerging technologies. It has finally been the intention to offer the catalogue for the international audience, as a contribution to similar initiates aiming at forming a public and concerted knowledge base for international analyses and negotiations. A guiding principle for developing the catalogue has been to primarily rely on well-documented and public information, secondarily on invited expert advice. Since many experts are reluctant in estimating future quantitative performance data, the data tables are not complete, in the sense that most data tables show several blank spaces. This approach has been chosen in order to achieve data, which to some extent are equivalently reliable, rather than to risk a largely incoherent data set including unfounded guesses. (au)

  5. Electricity production by hydro power plants: possibilities of forecasting

    International Nuclear Information System (INIS)

    Barkans, J.; Zicmane, I.

    2004-01-01

    Hydro energy accounts for 17% of global electricity production and is the most important source of renewable energies actively used today, being at the same time the least influential ecologically. Its only disadvantages is that this kind of energy is difficult to forecast, which hinders not only the planning of tariffs, year budgets and investments, but also contractual negotiations in particular month. The paper shows that the forecasting of hydro energy production can be linked to certain natural processes, namely, to the cyclic behaviour observed for water flows of the world's rivers. The authors propose a method according to which the forecasting procedure is performed using the data of observations as signals applied to special digital filters transforming the water flow process into integral and differential forms, which after appropriate treatment are expected again in usual water flow units. For this purpose the water flow integral function is to be divided, by means of spectral analysis, into 'low-frequency' (with a semi-period of 44 years) and 'high-frequency' (4-6 year semi-periods) components, which are of different origin. Each of them should be forecasted separately, with the following summation of the results. In the research it is shown that the cyclic fluctuations of world rivers' water flows are directly associated with variations in the Solar activity. (authors)

  6. Effect of simultaneously induced environmental stimuli on electrical signalling and gas exchange in maize plants.

    Science.gov (United States)

    Vuralhan-Eckert, Jasmin; Lautner, Silke; Fromm, Jörg

    2018-04-01

    Electrical signalling in response to environmental stimuli is a well-known phenomenon in higher plants. For example, in maize, different stimuli, such as wounding or re-irrigation after drought, incite characteristic electrical signals which have quite particular effects on gas exchange. What is less well understood is how plants (specifically maize) respond when two different environmental stimuli are applied simultaneously. To explore this, a three-stage experiment was designed. In the first stage, drought conditions were simulated by decreasing the soil water content to 30-40 % of field capacity. In these conditions, and in contrast to well-watered plants, the maize exhibited only 60-70% of the original level of stomatal conductance and 50-60 % of the original photosynthesis rate. In the second stage of the experiment the plants were re-irrigated and heat stimulated separately. Re-irrigation led to specific electrical signals followed by a gradual increase of gas exchange. In contrast, after heat stimulation of a leaf an electrical signal was evoked that reduced the net CO 2 -uptake rate as well as stomatal conductance. In the third stage, to elucidate how plants process simultaneous re-irrigation and heat stimulation, the drought-stressed maize plants were re-watered and heat-stimulated at the same time. Results showed a two phase response. In the first phase there was a rapid decrease in both the CO 2 uptake rate and the stomatal conductance, while in the second phase each of these parameters increased gradually. Thus, the results strongly support the view that the responses from both stimuli were combined, indicating that maize plants can process simultaneously applied stimuli. Copyright © 2018 Elsevier GmbH. All rights reserved.

  7. Investigating the water consumption for electricity generation at Turkish power plants

    Science.gov (United States)

    El-Khozondar, Balkess; Aydinalp Koksal, Merih

    2017-11-01

    The water-energy intertwined relationship has recently gained more importance due to the high water consumption in the energy sector and to the limited availability of the water resources. The energy and electricity demand of Turkey is increasing rapidly in the last two decades. More thermal power plants are expected to be built in the near future to supply the rapidly increasing demand in Turkey which will put pressure on water availability. In this study, the water consumption for electricity generation at Turkish power plants is investigated. The main objectives of this study are to identify the amount of water consumed to generate 1 kWh of electricity for each generation technology currently used in Turkey and to investigate ways to reduce the water consumption at power plants expected to be built in the near future to supply the increasing demand. The various electricity generation technology mixture scenarios are analyzed to determine the future total and per generation water consumption, and water savings based on changes of cooling systems used for each technology. The Long-range Energy Alternatives Planning (LEAP) program is used to determine the minimum water consuming electricity generation technology mixtures using optimization approaches between 2017 and 2035.

  8. Modernization of electric power systems of the Laguna Verde Nuclear Power Plant

    International Nuclear Information System (INIS)

    Gabaldon, M. A.; Gonzalez, J. J.; Prieto, I.

    2011-01-01

    The Power Increase Project of Laguna Verde Nuclear Plant has entailed the replacement, in one unique outage, of the main power electrical systems of the Plant (Isolated Phase Bars, Generator Circuit Breaker and Main Transformer) as well as the replacement of the Turbo-group. The simultaneous substitution of these entire system has never been done by any other Plant in the world, representing an engineering challenge that embraced the design of the new equipment up to the planning, coordination and management of the construction and commissioning works, which were successfully carried out by Iberdrola within the established outage period /47 days) for both units. (Author)

  9. The role of nuclear power plants in the wholesale electricity market

    International Nuclear Information System (INIS)

    Alonso, J. c.; Alonso, J.; Gonzalez, A.; Gonzalez, R.

    2009-01-01

    The Spanish electricity market has been running foe eleven years and its rules and procedures have proven compatible with a safe and stable operation of the nuclear power plants, helped by a wide portfolio of technologies in the Spanish system. In the near future, two issues emerge as a potential threat: the increase in renewable (mainly wind) production and its volatility and the development of new network infrastructure around the plants owned by third parties. Stricter rules on network development and operation and greater respect to the plants operational needs have to be pushed forward by the industry to succeed in life extension programs. (Author)

  10. Acceptance test report for project C-157 ''T-Plant electrical upgrade''

    International Nuclear Information System (INIS)

    Jeppson, L.A.

    1997-01-01

    This Acceptance Test Report (ATR) documents for record purposes the field results, acceptance, and approvals of the completed acceptance test per WHC-SD-Cl57-ATP-001, Rev. 0, ''Acceptance Test Proceedure for Project C-157 'T Plant Electrical Upgrade''' The test was completed and approved without any problems or exceptions

  11. 75 FR 8753 - Carolina Power & Light Company, Brunswick Steam Electric Plant, Units 1 and 2; Environmental...

    Science.gov (United States)

    2010-02-25

    ... Dusenbury of the North Carolina Department of Environment and Natural Resources regarding the environmental... & Light Company, Brunswick Steam Electric Plant, Units 1 and 2; Environmental Assessment and Finding of No... identification of licensing and regulatory actions requiring environmental assessments,'' the NRC prepared an...

  12. [Negative air ions generated by plants upon pulsed electric field stimulation applied to soil].

    Science.gov (United States)

    Wu, Ren-ye; Deng, Chuan-yuan; Yang, Zhi-jian; Weng, Hai-yong; Zhu, Tie-jun-rong; Zheng, Jin-gui

    2015-02-01

    This paper investigated the capacity of plants (Schlumbergera truncata, Aloe vera var. chinensis, Chlorophytum comosum, Schlumbergera bridgesii, Gymnocalycium mihanovichii var. friedrichii, Aspidistra elatior, Cymbidium kanran, Echinocactus grusonii, Agave americana var. marginata, Asparagus setaceus) to generate negative air ions (NAI) under pulsed electric field stimulation. The results showed that single plant generated low amounts of NAI in natural condition. The capacity of C. comosum and G. mihanovichii var. friedrichii generated most NAI among the above ten species, with a daily average of 43 ion · cm(-3). The least one was A. americana var. marginata with the value of 19 ion · cm(-3). When proper pulsed electric field stimulation was applied to soil, the NAI of ten plant species were greatly improved. The effect of pulsed electric field u3 (average voltage over the pulse period was 2.0 x 10(4) V, pulse frequency was 1 Hz, and pulse duration was 50 ms) was the greatest. The mean NAI concentration of C. kanran was the highest 1454967 ion · cm(-3), which was 48498.9 times as much as that in natural condition. The lowest one was S. truncata with the value of 34567 ion · cm(-3), which was 843.1 times as much as that in natural condition. The capacity of the same plants to generate negative air ion varied extremely under different intensity pulsed electric fields.

  13. The effect of plant growth regulators and their interaction with electric current on winter wheat development

    Czech Academy of Sciences Publication Activity Database

    Biesaga-Koscielniak, J.; Koscielniak, J.; Filek, M.; Marcinska, I.; Krekule, Jan; Macháčková, Ivana; Kubon, M.

    2010-01-01

    Roč. 32, č. 5 (2010), s. 987-995 ISSN 0137-5881 Institutional research plan: CEZ:AV0Z50380511 Keywords : In vitro culture * Plant growth regulators * Electric current Subject RIV: EF - Botanics Impact factor: 1.344, year: 2010

  14. Acceptance test report for project C-157 ``T-Plant electrical upgrade``

    Energy Technology Data Exchange (ETDEWEB)

    Jeppson, L.A.

    1997-08-05

    This Acceptance Test Report (ATR) documents for record purposes the field results, acceptance, and approvals of the completed acceptance test per WHC-SD-Cl57-ATP-001, Rev. 0, ``Acceptance Test Proceedure for Project C-157 `T Plant Electrical Upgrade``` The test was completed and approved without any problems or exceptions.

  15. Czechoslovakia's electrical energy industry with special regard on the development of nuclear power plants

    International Nuclear Information System (INIS)

    Paulina, A.

    1979-01-01

    In electric energy production and consumption, Czechoslovakia holds a remarkable place. Its development after the second world war can be divided into four characteristic periods. The author summarizes the features of the past development and points out the tasks of the future in which the extension of nuclear power plant building plays an important role. (author)

  16. Pump selection and application in a pressurized water reactor electric generating plant

    International Nuclear Information System (INIS)

    Kitch, D.M.

    1985-01-01

    Various pump applications utilized in a nuclear pressurized water reactor electric generating plant are described. Emphasis is on pumps installed in the auxiliary systems of the primary nuclear steam supply system. Hydraulic and mechanical details, the ASME Code (Nuclear Design), materials, mechanical seals, shaft design, seismic qualification, and testing are addressed

  17. Pasteurization of strawberry puree using a pilot plant pulsed electric fields (PEF) system

    Science.gov (United States)

    The processing of strawberry puree by pulsed electric fields (PEF) in a pilot plant system has never been evaluated. In addition, a method does not exist to validate the exact number and shape of the pulses applied during PEF processing. Both buffered peptone water (BPW) and fresh strawberry puree (...

  18. FleetPower: Creating Virtual Power Plants in Sustainable Smart Electricity Markets

    NARCIS (Netherlands)

    M.T. Kahlen (Micha); W. Ketter (Wolfgang); A. Gupta (Alok)

    2017-01-01

    textabstractElectric vehicles have the potential to be used as virtual power plants to provide reliable back-up power. This generates additional profits for carsharing rental firms, who rent vehicles by the minute. We show this by developing a discrete event simulation platform based on real-time

  19. TQC works in newly-built nuclear power plant and main electric power system plannings

    International Nuclear Information System (INIS)

    Akiyama, Yoshihisa; Kawakatsu, Tadashi; Hashimoto, Yasuo

    1985-01-01

    In the Kansai Electric Power Co., Inc., TQC has been introduced to solve such major problems in nuclear power generation as the securing of nuclear power reliability, the suppression of rises in the costs, the reduction in long periods of power failure and the promotion in siting of nuclear power plants. It is thus employed as a means of the ''creation of a slim and tough business constitution''. The state of activities in Kansai Electric are described in quality assurance of a newly-built nuclear power plant and in raising the reliability of the main electric power system to distribute the generated nuclear power and further the future prospects are explained. (Mori, K.)

  20. Safety assessment of emergency electric power systems for nuclear power plants

    International Nuclear Information System (INIS)

    1986-09-01

    This paper is intended to assist the safety assessor within a regulatory body, or one working as a consultant, in assessing a given design of the Emergency Electrical Power System. Those non-electric power systems which may be used in a plant design to serve as emergency energy sources are addressed only in their general safety aspects. The paper thus relates closely to Safety Series 50-SG-D7 ''Emergency Power Systems at Nuclear Power Plants'' (1982), as far as it addresses emergency electric power systems. Several aspects are dealt with: the information the assessor may expect from the applicant to fulfill his task of safety review; the main questions the reviewer has to answer in order to determine the compliance with requirements of the NUSS documents; the national or international standards which give further guidance on a certain system or piece of equipment; comments and suggestions which may help to judge a variety of possible solutions

  1. Increasing the reliability of electric energy supply to consumers in ROMAG-PROD Heavy Water Plant

    International Nuclear Information System (INIS)

    Barta, Ioan; Hanes, Marian . E-mail electrica@romag.ro

    2004-01-01

    Full text: This work aims at achieving an analysis of time evolution of the status of electrical installations, their performances and reliability, at describing the refurbishment measures adopted, at assessing the efficiency of these measures and also to suggest solutions for improving the reliability in the electric energy supply of ROMAG-PROD Heavy Water Plant. The analysis started from the original design, the manner the electrical installations were mounted, the technological level of this equipment and gives an evaluation of the deficiencies and the evolution of incidents occurred during the operation period. On the basis of the experience gathered one advances new items for equipment renewing and refurbishment of electric installations which together with the existing ones would ensure an electric energy supply more secure and efficient, leading directly to a more safe and efficient operation of the ROMAG-PROD Heavy Water Plant. In this work the incidents of electric energy nature which occurred are analyzed, the equipment which generated events identified and measures to solve these problems proposed

  2. Defence in depth for electric power supplies in Indian nuclear power plants

    International Nuclear Information System (INIS)

    Gupta, S.K.; Srivasista, K.; Solanki, R.B.

    2009-01-01

    The purpose of electric power supply system in a nuclear power plant is to supply and distribute reliable electric power to safety related systems and systems important to safety in various forms, arrangements and combinations of redundancy and diversity in order to perform safety functions required during operational states and design basis events (DBE) such as shutting down the reactor, maintaining the reactor in safe shutdown state, containment isolation and reactor core cooling preventing significant release of radioactive material to the environment. Hence the design basis of electric power supply systems includes identification of DBE that require power supplies, adequacy of redundancy and diversity, environmental conditions to which electric equipment are qualified, identification of loads requiring interrupted and uninterrupted power supplies, time sequence in which emergency loads are to be supplied in case of interruption, provisions for maintaining and testing, consideration for minimum duration capability of emergency power supplies during station blackout etc. Based on operation experience, results of probability safety assessment and certain weaknesses noticed in defence in depth of electric power supply systems, several continuous design improvements have been made in Indian nuclear power plants during operating phase and life extension. Instituting various tests during initial commissioning, subsequent operation and life extension has ensured high standards of performance of electric power supplies. Some of these aspects are highlighted in this paper

  3. Study of Formosa's electrical offer for installing a commercial nuclear power plant

    International Nuclear Information System (INIS)

    Torino Araoz, Ines; Parera, Maria D.

    2011-01-01

    Within the specific agreement for the siting study of the CAREM nuclear power plant in Formosa Province, signed between the National Atomic Energy Commission and the Government of Formosa, a detailed study of electrical supply was conducted in order to analyze the requirements and the electricity supply as a result of its future installation. This topic is part of the analysis developed in the Level II of the site survey study. The analysis focuses on a plan for long-term projections from 2005 to 2030, using the IAEA’s MESSAGE model (Model for Energy Supply Strategy Alternatives and Their General Environmental Impacts). The existing electrical infrastructure and the plans for expansion of transmission and distribution lines, the generation technologies and the electricity flows with the provinces and neighboring countries have been taken into account. The study was based on the evaluation of two site scenarios based on the availability of infrastructure in the province and the conclusions obtained in the Level I of the siting study. The modelling results indicate that the current situation that characterizes the Province as a net importer of electricity will be reversed due to the operation of the nuclear plant since 2019. However, it is important to note that to keep Formosa’s feature as an electricity exporter from the year 2026, according to the less favorable scenario (highest demand), ongoing energy planning and investment in the province will be done. (author) [es

  4. Expanded spent fuel storage project at Yankee Atomic Electric Plant

    International Nuclear Information System (INIS)

    Chin, S.L.

    1980-01-01

    A detailed discussion on the project at the Yankee Rowe power reactor for expanding the capacity of the at-reactor storage pool by building double-tier storage racks. Various alternatives for providing additional capacity were examined by the operators. Away-from-reactor alternatives included shipment to existing privately owned facilities, a regional independent storage facility, and transshipments to other New England nuclear power plant pools. At-reactor alternatives evaluated included a new pool modification of the existing structure and finally, modification of the spent fuel pit. The establishment of a federal policy precluding transshipment of spent fuel prohibited the use of off-site alternatives. The addition of another pool was too expensive. The possibility of modifying an existing on-site structure required a new safety evaluation by the regulatory group with significant cost and time delays. Therefore, the final alternative - utilizing the existing spent fuel pool with some modification - was chosen due to cost, licensing possibility, no transport requirements, and the fact that the factors involved were mainly under the control of the operator. Modification of the pool was accomplished in phases. In the first phase, a dam was installed in the center of the pool (after the spent fuel was moved to one end). In the second phase, the empty end of the pool was drained and lined with stainless steel and the double-tier rack supports were added. In the third phase, the pool was refilled and the dam was removed. Then the spent fuel was moved into the completed end. In the fourth phase, the dam was replaced and the empty part of the pool was drained. The liner and double-tier rack supports were installed, the pool was refilled, and the dam was removed.The project demonstrated that the modification of existing spent fuel fuel pools for handling double-tier fuel racks is a viable solution for increasing the storage capacity at the reactor

  5. The economics of new nuclear power plants in liberalized electricity markets

    International Nuclear Information System (INIS)

    Linares, Pedro; Conchado, Adela

    2013-01-01

    Even after Fukushima, the nuclear debate is strong in many countries, with the discussion of its economics being a significant part of it. However, most of the estimates are based on a levelized-cost methodology, which presents several shortcomings, particularly when applied to liberalized electricity markets. Our paper provides results based on a different methodology, by which we determine the break-even investment cost for nuclear power plants to be competitive with other electricity generation technologies. Our results show that the cost competitiveness of nuclear power plants is questionable, and that public support of some sort would be needed if new nuclear power plants are to be built in liberalized markets. - Highlights: • We propose an alternative more realistic than LEC for the evaluation of the economics of nuclear electricity. • Our results show that the cost competitiveness of nuclear power plants is questionable. • Building nuclear power plants will require public support, particularly regarding risk management. • These results are less optimistic than previous, LEC-based, estimates

  6. The value of dispatchability of CSP plants in the electricity systems of Morocco and Algeria

    International Nuclear Information System (INIS)

    Brand, Bernhard; Boudghene Stambouli, Amine; Zejli, Driss

    2012-01-01

    This paper examines the effects of an increased integration of concentrated solar power (CSP) into the conventional electricity systems of Morocco and Algeria. A cost-minimizing linear optimization tool was used to calculate the best CSP plant configuration for Morocco's coal-dominated power system as well as for Algeria, where flexible gas-fired power plants prevail. The results demonstrate that in both North African countries, storage-based CSP plants offer significant economic advantages over non-storage, low-dispatchable CSP configurations. However, in a generalized renewable integration scenario, where CSP has to compete with other renewable generation technologies, like wind or photovoltaic (PV) power, it was found that the cost advantages of dispatchability only justify CSP investments when a relatively high renewable penetration is targeted in the electricity mix. - Highlights: ► Market model to optimize CSP plant configuration in North African power systems. ► Value of storage-based CSP plants compared to non-dispatchable configurations: 28–55 €/MWh. ► Assessment of Morocco's and Algeria's renewable electricity targets until 2030. ► CSP becomes more competitive with intermittent technologies when high RES-E quota are targeted.

  7. Steelmaking plants: towards lower energy consumption and lower CO2 production using more electricity

    International Nuclear Information System (INIS)

    Nicolle, R.

    2010-01-01

    Production processes of integrated steel plants, mostly based on coal as an energy source, produce about 2 tons of CO 2 per ton of steel. As specific CO 2 production has to be decreased by 20% in the mid-term (2020), immediate action is required to further decrease the specific energy consumption. The integrated plant is not energy self-sufficient as extra electricity must be bought from outside, but on the other hand, produces an excess of process gas that has to be used within the plant. Optimisation of the use of the internally produced gases is a key issue as either they are burned at the power plant with a conversion yield to electricity of about 40% and often much lower, or might be valued in the plant internal heat exchangers with a much higher efficiency such as ∼90% in the hot stoves or ∼65% or more in the present reheating furnaces. This paper shows that using the high-value coke oven gas as a chemical reactant (for DRI production) leads to significant extra metal production. From a global viewpoint, this extra metal production is almost carbon-free, as it requires only electricity for its manufacture. (author)

  8. Electricity-market price and nuclear power plant shutdown: Evidence from California

    International Nuclear Information System (INIS)

    Woo, C.K.; Ho, T.; Zarnikau, J.; Olson, A.; Jones, R.; Chait, M.; Horowitz, I.; Wang, J.

    2014-01-01

    Japan's Fukushima nuclear disaster, triggered by the March 11, 2011 earthquake, has led to calls for shutting down existing nuclear plants. To maintain resource adequacy for a grid's reliable operation, one option is to expand conventional generation, whose marginal unit is typically fueled by natural-gas. Two timely and relevant questions thus arise for a deregulated wholesale electricity market: (1) what is the likely price increase due to a nuclear plant shutdown? and (2) what can be done to mitigate the price increase? To answer these questions, we perform a regression analysis of a large sample of hourly real-time electricity-market price data from the California Independent System Operator (CAISO) for the 33-month sample period of April 2010–December 2012. Our analysis indicates that the 2013 shutdown of the state's San Onofre plant raised the CAISO real-time hourly market prices by $6/MWH to $9/MWH, and that the price increases could have been offset by a combination of demand reduction, increasing solar generation, and increasing wind generation. - Highlights: • Japan's disaster led to calls for shutting down existing nuclear plants. • We perform a regression analysis of California's real-time electricity-market prices. • We estimate that the San Onofre plant shutdown has raised the market prices by $6/MWH to $9/MWH. • The price increases could be offset by demand reduction and renewable generation increase

  9. Bidding strategy for pumped-storage plant in pool-based electricity market

    International Nuclear Information System (INIS)

    Kanakasabapathy, P.; Shanti Swarup, K.

    2010-01-01

    This paper develops optimal bidding strategies for a pumped-storage plant in a pool-based electricity market. In the competitive regime, when compared to simple hydroelectric generator, profit of the pumped-storage plant is maximized by operating it as a generator when market clearing price is high and as a pump when the price is low. Based on forecasted hourly market clearing price, a multistage looping algorithm to maximize the profit of a pumped-storage plant is developed, considering both the spinning and non-spinning reserve bids and meeting the technical operating constraints of the plant. The proposed model is adaptive for the nonlinear three-dimensional relationship between the power produced, the energy stored, and the head of the associated reservoir. Different operating cycles for a realistic pumped-storage plant are considered and simulation results are reported and compared. (author)

  10. Development of management systems for nuclear power plant of Hokuriku Electric Power Company

    International Nuclear Information System (INIS)

    Nakamura, Tatsuaki; Hasunuma, Junichi; Suzuki, Shintaro

    2009-01-01

    Hokuriku Electric Power Company has been operating the Shika Nuclear Power Station that it constructed in Shika city, Ishikawa prefecture, for over 15 years since bringing Unit 1 of this plant online in July 1993. In addition to electricity generation, maintenance and inspection tasks constitute a big part of operating a large-scale nuclear power plant, and in recent years, problems at power stations in the nuclear power industry have led to several revisions of nationally regulated maintenance and inspection systems. This paper describes the background, objectives, development method, and features of the Maintenance Management System and Maintenance History Management System that make effective use of information technology to promote safer and more efficient maintenance work at large-scale nuclear power plants. (author)

  11. VGB congress 'power plants 2003'. Generation gap - risk and challenge for the electricity market

    International Nuclear Information System (INIS)

    Anon.

    2003-01-01

    The VGB Congress 'Power Plants 2003' took place in Copenhagen from 15th to 17th September 2003. The motto of this year's Congress was 'Generation Gap - Risk and Challenge for the Electricity Market'. More than 800 participants took the opportunity for discussion and information in the plenary and technical lectures 'Market and Competition' and 'Technology, Operation and Environment'. Apart from the special features of the Scandinavian and Baltic electricity market, the main focus was on papers reflecting the situation of nuclear power (Finland), operating experience with new power plants, new materials for power plant construction, application of renewables and issues of climate protection. The Congress was again rounded off by technical visits and a side programme. (orig.) [de

  12. 75 FR 82414 - Carolina Power & Light Company; H. B. Robinson Steam Electric Plant, Unit No. 2; Exemption

    Science.gov (United States)

    2010-12-30

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-261; NRC-2010-0062] Carolina Power & Light Company; H. B. Robinson Steam Electric Plant, Unit No. 2; Exemption 1.0 Background Carolina Power & Light... authorizes operation of the H.B. Robinson Steam Electric Plant, Unit 2 (HBRSEP). The license provides, among...

  13. 75 FR 11579 - Carolina Power & Light Company H. B. Robinson Steam Electric Plant, Unit No. 2; Exemption

    Science.gov (United States)

    2010-03-11

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-261; NRC-2010-0062] Carolina Power & Light Company H. B. Robinson Steam Electric Plant, Unit No. 2; Exemption 1.0 Background Carolina Power & Light... of the H. B. Robinson Steam Electric Plant, Unit 2 (HBRSEP). The license provides, among other things...

  14. Report on assessment of electrical equipment aging for nuclear power plant (AEA), FY2011

    International Nuclear Information System (INIS)

    Minakawa, T.

    2012-11-01

    Electrical components with safety function used in nuclear power plants, such as cables, medium voltage motors, low voltage motors, electrical penetration of reactor containment vessel, motor operated valve, pressure transmitter, temperature detector, etc, are required to be operational under the environment of design basis event (DBE) to shut down a reactor safely and to prevent radioactive materials from being leaked to outside. Polymer materials used as parts of these equipments are gradually degraded by thermal and radiation environment in the normal operation. In addition, the degradation is thought to progress rapidly when they are exposed to the DBE environment and a decrease in performance of the equipment may be caused. From these reason, electrical components with safety function are tested for long-term integrity in accordance with IEEE standard. However, conventional method of accelerated aging which assumes thermal and radiation aging during normal operation is said to have uncertainty in simulating the degradation given in actual operating environment. To address this issue, the project of 'Assessment of Cable Aging for Nuclear Power Plants' (ACA, 2002-2008) was carried out and 'Guide for Cable Environmental Qualification Test for Nuclear Power Plant' was developed. The need for developing an aging evaluation method for other electrical and I and C components was pointed out in the 'Strategy maps 2007', prepared by the cooperation among government, industry and academia. Under the circumstance, the project of 'Assessment of Electrical Equipment Aging for Nuclear Power Plants' (AEA) was initiated in FY2008. In this study, parts of electrical and I and C component with safety function used in nuclear power plant whose aging needs to be considered are employed as specimens, and their aging characteristics under the thermal environment and the combined radiation and thermal environment are obtained (herein after referred to as 'critical part test

  15. Analysis of technologies and economics for geothermal energy utilization of electric power plant

    International Nuclear Information System (INIS)

    Haijie, C.

    1993-01-01

    Geothermal energy -- it is a kind of heat energy which pertains to the internal heat of the earth. It carries the heat of the earth outward by the underground water of the rock section of the earth. Normally, the temperature of the thermal water is 50 degrees-140 degrees. During the 20th century, the rapid development of industry and agriculture quickly increased the need for large amounts of electric power. Now, although there are coal power plants, oil and nature gas power plants, hydroelectric power and nuclear power plants, all countries of the world attach importance to the prospect of geothermal power plants. It is the most economic (no consumption fuel) and safe (no pollution) power plant. (Present author considered that the chlorofluorocarbon refrigerants such as RII, R12, and etc. are not used). In 1904, Italy established the first geothermal power plant in the world. Soon afterwards, the U.S.A., Iceland, Japan, Russia, and New Zealand also established geothermal power plants. In 1970, China, North China, Jiang province and Guangdong province also established geothermal power plants. In 1975, the U.S.A. geothermal power plant capacity of 522mw was the first in the world

  16. Production planning of combined heat and power plants with regards to electricity price spikes : A machine learning approach

    OpenAIRE

    Fransson, Nathalie

    2017-01-01

    District heating systems could help manage the expected increase of volatility on the Nordic electricity market by starting a combined heat and power production plant (CHP) instead of a heat only production plant when electricity prices are expected to be high. Fortum Värme is interested in adjusting the production planning of their district heating system more towards high electricity prices and in their system there is a peak load CHP unit that could be utilised for this purpose. The econom...

  17. Electrical systems at the nuclear power plant of Laguna Verde after the event in Fukushima

    International Nuclear Information System (INIS)

    Lopez J, J. F.

    2016-09-01

    During the event at the nuclear power plant of Fukushima Daichii (Japan), the electrical systems were affected both Onsite and Offsite, which were lost for a long time with irreversible consequences. Therefore, the Mexican Regulatory Body known as the Comision Nacional de Seguridad Nuclear y Salvaguardias (CNSNS) has taken various actions to review the current capacity of the electrical systems at the nuclear power plant of Laguna Verde (NPP-LV) before an event beyond the design bases. The CNSNS made special inspections to the NPP-LV to verify the current capacity of the electrical systems of Ac and Dc; as a result of the inspections, requirements were generated that must be met to demonstrate that has the capacity to deal with events beyond the design bases. In addition, CNSNS has participated in the Ibero-American Forum to deal with resistance testing. Is important to note that prior to the event at the nuclear power plant of Fukushima, the NPP-LV had implemented 1) the project Extended Power Increase in both Units of the NPP-LV, and 2) the Generic Charter 2006-02, both issues are considered contributions in the robustness of electrical systems. But it is also important to mention that the US Nuclear Regulatory Commission will soon issue mitigation strategies for a Station Blackout event, which could involve new actions at nuclear power plants. Based on the aforementioned, the CNSNS concludes that all the actions being taken contribute to the strengthening of the NPP-LV electrical systems, in order to increase their reliability, safety and operation when these are required to deal with events beyond the design bases as the event occurred in Fukushima Daichii and avoid as far as possible, damage in the reactor cores of the NPP-LV. (Author)

  18. Ethics on the TEPCO bankruptcy, nuclear power plants and regulatory reform in the electric power industry

    International Nuclear Information System (INIS)

    Koga, Shigeaki

    2013-01-01

    Although regulatory reform in the electric power industry had been considered as part of social system reform like in the finance and communications to liberalize the market, there still continued to exist regional monopoly, integrated system for power generation, transmission and distribution, and lack of competition. The Fukushima accident showed such electric power system was unethical as social system compared to ordinary industries, because electric power company getting profit could not be prepared for nuclear damage liability and would burden third unrelated parties with risk. Electric power company should be forced to insure nuclear power plants for nuclear accidents. Otherwise restart of nuclear power plant operation should not be allowed. Nuclear power had been justified to be entitled grant or subsidy from the government for public good, which would be unfair to people. This article presented speeding-up scheme of Fukushima accident treatment leading to TEPCO bankruptcy and discussed measures against concerns or comments about bankruptcy procedures, major part of which might be mitigation of fund-raising fear by government support. At the proceeding of bankruptcy procedure including spinning off of separate companies, regulatory reform in the electric power industry could be taken in advanced. (T. Tanaka)

  19. Scenarios for Low Carbon and Low Water Electric Power Plant Operations: Implications for Upstream Water Use.

    Science.gov (United States)

    Dodder, Rebecca S; Barnwell, Jessica T; Yelverton, William H

    2016-11-01

    Electric sector water use, in particular for thermoelectric operations, is a critical component of the water-energy nexus. On a life cycle basis per unit of electricity generated, operational (e.g., cooling system) water use is substantially higher than water demands for the fuel cycle (e.g., natural gas and coal) and power plant manufacturing (e.g., equipment and construction). However, could shifting toward low carbon and low water electric power operations create trade-offs across the electricity life cycle? We compare business-as-usual with scenarios of carbon reductions and water constraints using the MARKet ALlocation (MARKAL) energy system model. Our scenarios show that, for water withdrawals, the trade-offs are minimal: operational water use accounts for over 95% of life cycle withdrawals. For water consumption, however, this analysis identifies potential trade-offs under some scenarios. Nationally, water use for the fuel cycle and power plant manufacturing can reach up to 26% of the total life cycle consumption. In the western United States, nonoperational consumption can even exceed operational demands. In particular, water use for biomass feedstock irrigation and manufacturing/construction of solar power facilities could increase with high deployment. As the United States moves toward lower carbon electric power operations, consideration of shifting water demands can help avoid unintended consequences.

  20. ORC power plant for electricity production from forest and agriculture biomass

    International Nuclear Information System (INIS)

    Borsukiewicz-Gozdur, A.; Wiśniewski, S.; Mocarski, S.; Bańkowski, M.

    2014-01-01

    Highlights: • Results for three variants of CHP plant fuelled by sawmill biomass are presented. • Octamethyltrisiloxane, MDM, methanol and H 2 O working fluids was conducted in CHP. • CHP with internal regeneration and “dry” working fluid has the highest electric power. • Power output, drying heat and drying temperature depend on CHP variant and ORC fluid. - Abstract: The paper presents the calculation results for three variants of CHP plant fuelled by sawmill biomass. The plant shall produce electricity and heat for a drying chamber. An analysis of the system efficiency for four different working fluids was conducted: octamethyltrisiloxane, methylcyclohexane, methanol and water. The highest electric power was obtained for the system with internal regeneration and methylcyclohexane applied as the “dry” working fluid, the highest temperature to supply the drying chamber was obtained for the system with external regeneration and octamethyltrisiloxane applied as the working fluid. The results of the analysis indicate that, by proper choice of the working fluid and of the regeneration variant (internal or external), it is possible to “adjust” the work of the system to the needs and expectations of the plant investor (user)

  1. Planning of maintenance of electrical equipment in nuclear plants/laboratories [Paper No.: VB-3

    International Nuclear Information System (INIS)

    Narasinga Rao, S.N.; Bhattacharyya, A.K.

    1981-01-01

    Satisfactory operating performance of electrical systems ensures continuous availability of power to the various plants and machinery in nuclear plant and laboratories. For effective optimal functioning of the electrical equipment and to reduce their down time, scheduled planning of maintenance to the equipment is essential. Maintenance of power plant, nuclear or fossil, and industrial plant and research laboratories demands essential ingredients such as right type of trained and motivated technical personnel, adoption of standard procedures for maintenance, adequate safety and protection for equipment, safety procedures adopted in the installation to prevent hazards to the workers, provision of adequate stores and inventories, facilities for quick repairs and testing of equipment and effective planning of procedures for their maintenance. While breakdown maintenance allows equipment to operate before it is repaired or replaced, preventive maintenance makes use of scheduled inspection and periodical equipment overhaul and has little value for predicting future continuous performances of equipment. The engineered maintenance is most advantageous and offers maximum operating time to reduce down time of the equipment while adding predictive testing technique to aid in determining the frequency of overhaul of equipment. The important checks to be conducted and preventive maintenance programme to be scheduled are discussed in this paper. The safety and reliable functioning of the electrical equipment depend on proper optimal design, selection of equipment, their installation, subsequent maintenance and strict compliance with safety regulations. (author)

  2. Influence of plant roots on electrical resistivity measurements of cultivated soil columns

    Science.gov (United States)

    Maloteau, Sophie; Blanchy, Guillaume; Javaux, Mathieu; Garré, Sarah

    2016-04-01

    Electrical resistivity methods have been widely used for the last 40 years in many fields: groundwater investigation, soil and water pollution, engineering application for subsurface surveys, etc. Many factors can influence the electrical resistivity of a media, and thus influence the ERT measurements. Among those factors, it is known that plant roots affect bulk electrical resistivity. However, this impact is not yet well understood. The goals of this experiment are to quantify the effect of plant roots on electrical resistivity of the soil subsurface and to map a plant roots system in space and time with ERT technique in a soil column. For this research, it is assumed that roots system affect the electrical properties of the rhizosphere. Indeed the root activity (by transporting ions, releasing exudates, changing the soil structure,…) will modify the rhizosphere electrical conductivity (Lobet G. et al, 2013). This experiment is included in a bigger research project about the influence of roots system on geophysics measurements. Measurements are made on cylinders of 45 cm high and a diameter of 20 cm, filled with saturated loam on which seeds of Brachypodium distachyon (L.) Beauv. are sowed. Columns are equipped with electrodes, TDR probes and temperature sensors. Experiments are conducted at Gembloux Agro-Bio Tech, in a growing chamber with controlled conditions: temperature of the air is fixed to 20° C, photoperiod is equal to 14 hours, photosynthetically active radiation is equal to 200 μmol m-2s-1, and air relative humidity is fixed to 80 %. Columns are fully saturated the first day of the measurements duration then no more irrigation is done till the end of the experiment. The poster will report the first results analysis of the electrical resistivity distribution in the soil columns through space and time. These results will be discussed according to the plant development and other controlled factors. Water content of the soil will also be detailed

  3. Effect of Aquatic Plants on Phosphorus Removal and Electrical Conductivity Decrease in Municipal Effluent

    Directory of Open Access Journals (Sweden)

    Sara Samimi Loghmani

    2014-05-01

    Full Text Available Phosphorus (P is one of essential elements for living organisms, though its critical concentration in surface and ground waters impose a serious problem such as eutrophication. So treatment of polluted waters is required before discharging to water resources. One of effective ways to decrease water pollution is using aquatic plants. An experiment was conducted in pilots with a closed flowing system on two plants, elodea (egria densa and duck weed (lemna minor with four treatments and three replications. Data were analyzed in a factorial completely randomized design. Treatments included effluent with and without the plants, and effluent diluted (dilution grade 1/2 with and without the plants. Total dissolved P, electrical conductivity (EC and pH value were measured after 8, 16 and 24 days in effluent samples. The results showed that pH value decreased up to 0.2 units during of 24 days of the experiment, but there was found no significant difference (p≤0.05 in pH values among the treatments. Both plants decreased EC about 7 % relative to the control (without plant after 24 days. The plants were also effective in reducing total dissolved phosphorus, so that duck weed and elodea decreased total dissolved P in the effluent about 49 and 7%, respectively. It is concluded that duck weed is more effective in the P removal from the effluent than the other plant.

  4. Evaluation Of Electricity Production Cost Of Commercial Nuclear Power Plant Models

    OpenAIRE

    DÖNER, Nimeti

    2017-01-01

    The level of the development of countries is being measured by thecountry’s quantity of production and consumption energy. Concerning Turkey,according to an energy report of The World Energy Council Turkish NationalCommittee in order to meet the electricity needs of the country in 2010, there should befounded a 2000 MW(e) capacity nuclear power plant. For the nuclear electric powerplant considered to be founded in Turkey, three types of commercial reactor models,that are Pressiued Water React...

  5. Estimating the contribution of the private power plant on electricity market in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Sonn, Yang-Hoon; Park, Jong-Bae

    2010-09-15

    This paper aims to measure the contribution of merchant power provider in electricity market in Korea. In spite of the restructuring process of last one decade, wholesale power market is still dominated by KEPCO and its subsidiaries. The share of the public-owned power plants is 89% in capacity, and 96% in generation. The participation of the private power shows very significant contribution in promoting the competition in the market in spite of the small share. The conclusion of the paper is that we need to enhance the competition among suppliers in order to build stable electricity market for the consumer.

  6. Cost structure of coal- and nuclear-fired electric power plants

    International Nuclear Information System (INIS)

    Helmuth, J.A.

    1981-01-01

    This dissertation investigates the cost structure of coal and nuclear electric power generation. The emphasis of the paper is to empirically estimate the direct costs of generating base-load electric power at the plant level. Empirically, the paper first investigates the relative comparative costs of nuclear and coal power generation, based on historical operating data. Consideration of the learning curve and other dynamic elements is incorporated in the analysis. The second empirical thrust is to inestigate economies of scale for both technologies. The results from the empirical studies give an indication as to the future and present cost viability of each technology. Implications toward energy policy are discussed

  7. Determination of leveled costs of electric generation for gas plants, coal and nuclear

    International Nuclear Information System (INIS)

    Alonso V, G.; Palacios H, J.C.; Ramirez S, J.R.; Gomez, A.

    2005-01-01

    The present work analyzes the leveled costs of electric generation for different types of nuclear reactors known as Generation III, these costs are compared with the leveled costs of electric generation of plants with the help of natural gas and coal. In the study several discount rates were used to determine their impact in the initial investment. The obtained results are comparable with similar studies and they show that it has more than enough the base of the leveled cost the nuclear option it is quite competitive in Mexico. Also in this study it is also thinks about the economic viability of a new nuclear power station in Mexico. (Author)

  8. Analysis of electrical energy consumers operation in the heating plant with proposal of energy savings measures

    Directory of Open Access Journals (Sweden)

    Nikolić Aleksandar

    2016-01-01

    Full Text Available The results of power quality measurements, obtained during an energy audit in the heating plant Vreoci in the Electric Power System of Serbia, are presented in the paper. Two steam boilers, rated at 120MW each, are installed in this heating plant, using coal as a fuel. The energy audit encompassed the measurements of the complete set of parameters needed to determine the thermal efficacy of boilers and the entire heating plant. Based on the measurement results, several technical measures for improving energy efficiency of the plant are proposed. The measures evaluated in the paper should contribute to the reduction of fossil fuel usage and CO2 emissions, thereby resulting in a significant impact in both financial and ecological areas.

  9. Optimization of scheduling system for plant watering using electric cars in agro techno park

    Science.gov (United States)

    Oktavia Adiwijaya, Nelly; Herlambang, Yudha; Slamin

    2018-04-01

    Agro Techno Park in University of Jember is a special area used for the development of agriculture, livestock and fishery. In this plantation, the process of watering the plants is according to the frequency of each plant needs. This research develops the optimization of plant watering scheduling system using edge coloring of graph. This research was conducted in 3 stages, namely, data collection phase, analysis phase, and system development stage. The collected data was analyzed and then converted into a graph by using bipartite adjacency matrix representation. The development phase is conducted to build a web-based watering schedule optimization system. The result of this research showed that the schedule system is optimal because it can maximize the use of all electric cars to water the plants and minimize the number of idle cars.

  10. European utility requirements: common rules to design next LWR plants in an open electricity market

    International Nuclear Information System (INIS)

    Berbey, Pierre; Ingemarsson, Karl-Fredrik

    2004-01-01

    The major European electricity producers want to keep able to build new nuclear power plants and they believe 3. generation LWRs would be the most adapted response to their needs in the first decades of this century. Producing a common European Utility Requirement (EUR) document has been one of the basic tasks towards this objective. In this common frame, standardized and competitive LWR NPPs could be developed and offered to the investors. This idea is now well supported by all the other actors on the European electricity market: vendors, regulators, grid managers, administrations although in the competitive and unified European electricity market that is emerging, the electricity producers' stakes are more and more different from the other electricity business actors'. The next term objectives of the electricity producers involved in EUR are focused on negotiating common rules of the game together with the regulators. This covers the nuclear safety approaches, the conditions requested to connect a plant to a HV grid, as well as the design standards. Discussions are going on between the EUR organization and all the corresponding bodies to develop stabilized and predictable design rules that would meet the constraints of nuclear electricity generation in this new environment. Finally there cannot be competition without competitors. The EUR organization has proven to be the right place to establish trustful relationship between the vendors and their potential customers, through fair assessment of the proposed designs performance vs. the utility needs. This will be continued and developed with the main vendors present in Europe, so as to keep alive a list of 4 to 6 designs 'qualified', i.e. showing an acceptable score of non-compliance vs. EUR. (authors)

  11. Analysis of existing structure and emissions of wood combustion plants for the production of heat and electricity in Bavaria

    International Nuclear Information System (INIS)

    Joa, Bettina

    2014-01-01

    This work deals with the detailed analysis of the existing structure of all Bavarian wood burning plants for the generation of heat and electricity as well as the determination of the resulting emission emissions in 2013. The number of wood burning plants in the single-chamber fireplaces, wood central heating and wood-fired heating plants which are in operation in the year 2013 were determined, and how many plants are existing in the various areas like pellet stoves, traditional ovens, wood-burning fireplace, pellet central heating systems, wood chips central heating systems, fire-wood central heating systems, wood combined heat and power plant (electricity and heat) and wood power plants (heat). In addition, the regional distribution of the wood burning plants in the Bavarian governmental districts is investigated as well as the type and amount of energy produced by them (heat, electricity). [de

  12. Complex analysis of hazards to the man and natural environment due to electricity production in nuclear and coal power plants

    International Nuclear Information System (INIS)

    Strupczewski, A.

    1990-01-01

    The report presents a complex analysis of hazards connected with electrical energy production in nuclear power plants and coal power plants, starting with fuel mining, through power plant construction, operation, possible accidents and decommissioning to long term global effects. The comparison is based on contemporary, proven technologies of coal fired power plants and nuclear power plants with pressurized water reactors. The hazards to environment and man due to nuclear power are shown to be much smaller than those due to coal power cycle. The health benefits due to electrical power availability are shown to be much larger than the health losses due to its production. (author). 71 refs, 17 figs, 12 tabs

  13. Germany's nuclear power plant closures and the integration of electricity markets in Europe

    International Nuclear Information System (INIS)

    Menezes, Lilian M. de; Houllier, Melanie A.

    2015-01-01

    This paper examines the potential implications of national policies that lead to a sudden increase of wind power in the electricity mix for interconnected European electricity markets. More specifically, it examines market integration before and after the closures of eight nuclear power plants that occurred within a period of a few months in Germany during 2011. The short- and- long run interrelationships of daily electricity spot prices, from November 2009 to October 2012, in: APX-ENDEX, BELPEX, EPEX-DE, EPEX-FR, NORDPOOL, OMEL and SWISSIX; and wind power in the German system are analysed. Two MGARCH (Multivariate Generalized Autoregressive Conditional Heteroscedasticity) models with dynamic correlations are used to assess spot market behaviour in the short run, and a fractional cointegration analysis is conducted to investigate changes in the long-run behaviour of electricity spot prices. Results show: positive time-varying correlations between spot prices in markets with substantial shared interconnector capacity; a negative association between wind power penetration in Germany and electricity spot prices in the German and neighbouring markets; and, for most markets, a decreasing speed in mean reversion. -- Highlights: •Associations between spot prices and wind power are time-varying. •Greater spot price and volatility associations across markets are observed. •In the long run, the German market is less integrated with neighbouring markets. •Policies on a local electricity mix can affect spot prices in connected markets

  14. Validation of a methodology for the study of generation cost of electric power for nuclear power plants

    International Nuclear Information System (INIS)

    Ortega C, R.F.; Martin del Campo M, C.

    2004-01-01

    It was developed a model for the calculation of costs of electric generation of nuclear plants. The developed pattern was validated with the one used by the United States Council for Energy Awareness (USCEA) and the Electric Power Research Institute (EPRI), in studies of comparison of alternatives for electric generation of nuclear plants and fossil plants with base of gas and of coal in the United States described in the guides calls Technical Assessment Guides of EPRI. They are mentioned in qualitative form some changes in the technology of nucleo electric generation that could be included in the annual publication of Costs and Parameters of Reference for the Formulation of Projects of Investment in the Electric Sector of the Federal Commission of Electricity. These changes are in relation to the advances in the technology, in the licensing, in the construction and in the operation of the reactors called advanced as the A BWR built recently in Japan. (Author)

  15. Renewable Electric Plant Information System user interface manual: Paradox 7 Runtime for Windows

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    The Renewable Electric Plant Information System (REPiS) is a comprehensive database with detailed information on grid-connected renewable electric plants in the US. The current version, REPiS3 beta, was developed in Paradox for Windows. The user interface (UI) was developed to facilitate easy access to information in the database, without the need to have, or know how to use, Paradox for Windows. The UI is designed to provide quick responses to commonly requested sorts of the database. A quick perusal of this manual will familiarize one with the functions of the UI and will make use of the system easier. There are six parts to this manual: (1) Quick Start: Instructions for Users Familiar with Database Applications; (2) Getting Started: The Installation Process; (3) Choosing the Appropriate Report; (4) Using the User Interface; (5) Troubleshooting; (6) Appendices A and B.

  16. Inspection maintenance and planning of shutdown in thermal electric generating plants

    International Nuclear Information System (INIS)

    Dezordi, W.L.; Correa, D.A.; Kina, M.

    1984-01-01

    The schedule shutdown of an industrial plant and, more specifically, of an electrical generating station, is becoming increasingly important. The major parameters to be taken into account for the planning of such a shutdown are basically of economic-financial nature such as costs of the related services (materials, equipment, manpower, etc), loss of revenue caused by the station's shutdown as well as by the station availability, and other requirements expected from it by the Load Dispatch and consumers. Improving the equipment's performances and the station's availability are the fundamental objectives to be strived for. The authors present in this paper, in an abridged form, the planning tools used for thermal electric generating plants shutdowns for inspections, maintenance and design changes implementation. (Author) [pt

  17. Solar microclimatology. [tables (data) on insolation for application to solar energy conversion by electric power plants

    Science.gov (United States)

    Mckenney, D. B.; Beauchamp, W. T.

    1975-01-01

    It has become apparent in recent years that solar energy can be used for electric power production by several methods. Because of the diffuse nature of the solar insolation, the area involved in any central power plant design can encompass several square miles. A detailed design of these large area collection systems will require precise knowledge of the local solar insolation. Detailed information will also be needed concerning the temporal nature of the insolation and the local spatial distribution. Therefore, insolation data was collected and analyzed for a network of sensors distributed over an area of several square kilometers in Arizona. The analyses of this data yielded probability distributions of cloud size, velocity, and direction of motion which were compared with data obtained from the National Weather Service. Microclimatological analyses were also performed for suitable modeling parameters pertinent to large scale electric power plant design. Instrumentation used to collect the data is described.

  18. Model-based investigation of the electricity market. Unit commitment and power plant investments

    International Nuclear Information System (INIS)

    Sun, Ninghong

    2013-01-01

    The German Federal Government published its energy concept in September 2010 with a description of the road into the era of renewable energies. Therefore, the future renewable energy installed in Germany is expected to consist mostly of wind and solar, which are subject to intermittency of supply and significant fluctuations. The growing portion of energy generation by fluctuating sources is turning to a big challenge for the power plant unit commitment and the investment decisions as well. In this thesis, a fundamental electricity market model with combined modeling of these two aspects is developed. This model is subsequently applied to the German electricity market to investigate what kind of power plant investments are indispensable, considering the steadily increasing portion of energy generation from fluctuating sources, to ensure a reliable energy supply in a cost-effective way in the future. In addition, current energy policy in Germany regarding the use of renewable energy and nuclear energy is analyzed.

  19. Kawasaki steam power plant of Tokyo Electric Power Co. and an example of geothermal power generation

    Energy Technology Data Exchange (ETDEWEB)

    1961-01-01

    The first part of this discussion is devoted to a description of the Kawasaki steam power plant, installed by Tokyo Electric Co. to supply electricity to the Keihin industrial area. The output is 700 MW and it possesses a thermal efficiency of 36.9%. The plant is operated automatically by remote control. The latter section describes the status of a geothermal power station in Hakone. It outlines the steam distribution piping, the steam itself, the turbine and vapor/water separation equipment. With regard to technical problems, it is suggested that old wells having weak pressure can be restored by self-cleaning and that further improvement can be brought about by dynamiting the base of the borehole.

  20. A guide to qualification of electrical equipment for nuclear power plants. Final report, November 1983

    International Nuclear Information System (INIS)

    Marion, A.; Lamken, D.; Harrall, T.; Kasturi, S.; Holzman, P.; Carfagno, S.; Thompson, D.; Boyer, B.; Hanneman, H.; Rule, W.

    1983-09-01

    Equipment qualification demonstrates that nuclear power plant equipment can perform its safety function - that despite age or the adverse conditions of a design basis accident the equipment can work as needed. This report is a guide to the overall process of electrical equipment qualification. It should interest those who design such equipment, those who buy it, or test it, and even those who install and maintain it. (author)

  1. Evaluation of the electric power production cost growth due to decommissioning of nuclear power plants

    International Nuclear Information System (INIS)

    Basso, G.

    1982-01-01

    The increase of production cost for electric power generated by nuclear plants, due to their decommissioning and the end of operating life, is analysed in respect to (a) waiting time from indefinite shut-down date to the start of dismantlement, (b) financing method, (c) interest and inflation rates. The analysis shows that the additional cost is always small for those solutions which have higher probability to be adopted

  2. THE CHOICE OF THE GENERATOR AND ELECTRICITY STABILIZATION FOR SMALL HYDROPOWER PLANTS

    OpenAIRE

    Kvitko A. V.; Daybova L. A.; Kondratenko Y. E.

    2015-01-01

    The article analyzes the main characteristics of the electricity generators to use them as a part of small hydroelectric power plants. It is shown, that contactless asynchronous generators in comparison with synchronous generators and DC generators have improved their operational and technical characteristics, and above all, their reliability and performance efficiency. We have shown graphic dependences of the cost and the weight of power generators. It is proposed using direct frequency conv...

  3. Harmonic effects of solar geomagnetically induced currents on the electrical distribution system in nuclear power plants

    International Nuclear Information System (INIS)

    Carroll, D.P.; Kasturi, S.; Subudhi, M.; Gunther, W.

    1992-01-01

    Most previous analysis on the effects of geomagnetically induced currents (GIC) on electric utility systems has steady-state phenomena, with the main interest in the generator step-up transformer and the off-site power system. This paper begins to investigate the possible effects that a GIC event might have on the power plant itself, by examining the harmonic distortion that could exist at various voltage levels in the on-site distribution system

  4. Costs of electric power generation in different types of power plants

    International Nuclear Information System (INIS)

    Weible, H.

    1977-01-01

    In the framework of our study 'energy - environment - industry' we need among other things the costs of electric power generation. We register their structure in a sub-model. Recently there was disagreement on effective costs of electric power generation particularly when comparing fossil-fuel power plants to nuclear power plants. For this reason, expertises on the costs of electric power generation in nuclear and fossil-fuel power plants were ordered with the Energy-Economic Institute in Cologne as well as with the Battelle Institute in Frankfurt. In the framwork of our paper on the system 'energy - environment - industry' we do not want to give new data potentially required for our task, before the expertises will be finished. Therefore the results given in part III of this lecture are only meant as an example in order to show possible consequences of the cost programs set up, depending on initial data whose general recognition is to be aimed at. Furthermore, the theoretical approach to investment calculation has to win general recognition when recording calculation methods computer-compatibly. Any new formulations discussed in industrial management have not been taken into account. (orig.) [de

  5. The effect of availability improvement of a nuclear power plant on the cost of generating electricity

    International Nuclear Information System (INIS)

    Nejat, S.M.R.

    1980-01-01

    The objective of this investigation is to study the economic benefits in operating a nuclear power plant as a result of improving the availabilitty of the secondary (steam) loop of the plant. A new method has been developed to obtain availability, frequency of failure, probability and frequency of operation, cycle time, and uptime for different capacity states of a parallel-series system having components with failure and repair rates distributed exponentially. The method has been applied to different subsystems, systems, and the seconary loop as a whole. The effect of having spare parts for several components, as measured by savings in the generation of electricity, is also studied. The Kettelle algorithm was applied to determine optimal spare part allocation in order to achieve maximum availability or minimum cost of electricity, subject to a fixed spare parts budget. It has been shown that the optimum spare parts allocation and the budget level which gives optimum availability, do not necessarily give minimum electricity cost. The savings per year for optimal spare parts allocation and different spare parts budgets were obtained. The results show that the utilty will save its customers a large amount of money if spare parts are purchased, especially at the beginning of the plant operation, and are allocated judiciously

  6. A review of electric cable aging effects and monitoring programs for plant license renewal

    International Nuclear Information System (INIS)

    Lofaro, R.J.

    1999-01-01

    As commercial nuclear power plants approach the end of their original license period, some utilities are considering the possibility of license renewal. The requirements for applying for license renewal are specified in the License Renewal Rule, which is in Title 10 of the Code of Federal Regulations, Part 54 (10 CFR54). Among the requirements specified in the rule is the performance of an Integrated Plant Assessment (IPA) which identifies and lists structures and components subject to an aging management review. The intent of this requirement is to ensure that aging degradation will not adversely affect plant safety during the license renewal period. The aging management review includes an identification of the aging effects and monitoring programs for components within the scope of the rule. Among the components within the scope are electric cables since they are passive, long-lived components that are not replaced on a periodic basis. This paper examines the aging causes and effects of electric cables, along with the programs that are typically used to ensure that proper aging management practices are in place to monitor and mitigate the effects of aging on electric cables

  7. Air Emission Reduction Benefits of Biogas Electricity Generation at Municipal Wastewater Treatment Plants.

    Science.gov (United States)

    Gingerich, Daniel B; Mauter, Meagan S

    2018-02-06

    Conventional processes for municipal wastewater treatment facilities are energy and materially intensive. This work quantifies the air emission implications of energy consumption, chemical use, and direct pollutant release at municipal wastewater treatment facilities across the U.S. and assesses the potential to avoid these damages by generating electricity and heat from the combustion of biogas produced during anaerobic sludge digestion. We find that embedded and on-site air emissions from municipal wastewater treatment imposed human health, environmental, and climate (HEC) damages on the order of $1.63 billion USD in 2012, with 85% of these damages attributed to the estimated consumption of 19 500 GWh of electricity by treatment processes annually, or 0.53% of the US electricity demand. An additional 11.8 million tons of biogenic CO 2 are directly emitted by wastewater treatment and sludge digestion processes currently installed at plants. Retrofitting existing wastewater treatment facilities with anaerobic sludge digestion for biogas production and biogas-fueled heat and electricity generation has the potential to reduce HEC damages by up to 24.9% relative to baseline emissions. Retrofitting only large plants (>5 MGD), where biogas generation is more likely to be economically viable, would generate HEC benefits of $254 annually. These findings reinforce the importance of accounting for use-phase embedded air emissions and spatially resolved marginal damage estimates when designing sustainable infrastructure systems.

  8. Pre-feasibility study for an electric power plant based on rice straw. [Mali

    Energy Technology Data Exchange (ETDEWEB)

    Fock, F. [Ea Energy Analysis, Copenhagen (Denmark); Nygaard, I. [Technical Univ. of Denmark. DTU Management Engineering, UNEP Risoe Centre on Energy, Climate and Sustainable Development, Roskilde (Denmark); Maiga, A.; Kone, B.; Kamissoko, F.; Coulibaly, N.; Ouattara, O.

    2012-11-15

    The main objective is to make a first evaluation regarding if it's technically possible, economically viable, sustainable and recommendable to build a rice straw/hulls fired power plant in Niono in Mali. Based on the available resource of rice straw and the possibilities for connecting to the grid it has been chosen to analyse a 5 MW power plant in the project. For technical reasons the rice straw should be the main fuel, but rice hulls can be used for co-firing. Up to around 20% of the fuel in the plant can be rice hulls instead of rice straw. A number of different biomass power production technologies have been evaluated in the project. This includes: 1) Grate fired boiler. 2) Bubbling fluidised bed. 3) Circulating fluidised bed. 4) Dust fired boiler. 5) Gasification. 6) Stirling engine. 7) Organic Rankine Cycle. Grate firing is the most relevant technology in this case, due to the fuel, the size of the power plant, the demand for electricity only and not heat, the demand for a robust and well proven technology. For a grate fired plant a calculation of the thermodynamic process of the power plant has been carried out in order to determine the electrical efficiency of the plant. The case consists of a 5 MW grate fired power plant with steam turbines and air cooled condenser resulting in an efficiency of 24.6% at full load (20% as yearly average). Investment costs and costs for O and M have been assumed based on experience from Danish power plants but adjusted for local conditions in Mali. The costs for collecting and transporting the rice straw and for the ash disposal have been specifically estimated in this project. The average cost of capital has been estimated based on assumptions on equity, international loans and local loans/bank finance. Based on the investment, the cost of O and M, fuel, ash disposal and the financial assumptions, a cash flow analysis is made in order to calculate the power price resulting in a Net Present Value (NPV) of the

  9. Electric equipment for Koto Refuse Incineration Plant; Tokyoto Koto seiso kojo muke denki setsubi

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-10

    Meidensha Corporation, intending to enter into refuse disposal business, delivered electric equipment to a Koto Refuse Incineration Plant, Koto Ward, Tokyo, and the facilities came into operation in October, 1998. The plant is the largest in Japan in terms of refuse processing capacity (1800t/day), and efforts are exerted to harmonize the plant with the surroundings, which involve pollution measures and a building that images a cruising yacht. The power receiving facility consists of a 66kV nominal two-circuit gas insulated switch and gas insulated transformer arranged in a space saving design. Heat from refuse incineration is fed to a steam turbine generator (yielding 50MW, the largest in Japan, with the surplus offered for sale after 15MW fed to loads in the site) and to neighboring facilities. For the suppression of fluctuations in voltage at the power receiving point, reactive power is subjected to control which is done by controlling the generator magnetic field system. An 11kV distribution system is provided to match the steam turbine generator voltage, and the voltage is stepped down to 6.6kV with the intermediary of a 23MVA gas insulated transformer. The power is fed to high voltage motors such as the one used for the induced draft fan, electric equipment in the buildings, power facilities in the plant, etc. A power monitoring board is provided in the central control room for general supervision over the power related facilities. (NEDO)

  10. The effect of plant reliability improvement in the cost of generating electricity

    International Nuclear Information System (INIS)

    Nejat, S.; Sanders, R.C.; Tsoulfanidis, N.

    1982-01-01

    The objective of this investigation is to study the economic benefits in operating a nuclear power plant, as a result of improving the availability of the secondary (steam) loop of the plant. A new method has been developed to obtain availability, frequency of failure, probability and frequency of operation, cycle time, and uptime for different capacity states of a parallel series system having components with failure and repair rates distributed exponentially in time. The method has been applied to different subsystems, systems, and the secondary loop of a plant as a whole. The effect of having spare parts for several components, as measured by savings in the generation of electricity, is also studied. The Kettelle algorithm was applied to determine optimal allocation of spare parts to achieve maximum availability or minimum cost of electricity, subject to a fixed spare parts budget. The savings per year for optimal spare parts allocation and different spare parts budgets were obtained. The results show that the utility will save its customers a large amount of money if spare parts are purchased, especially at the beginning of the plant operation, and are allocated judiciously

  11. Ageing of polymers in electrical equipment used in nuclear power plants

    International Nuclear Information System (INIS)

    Clavreul, R.

    1999-01-01

    Ageing of polymers in electrical equipment used in nuclear power plants has been studied in (Electricite de France) EDF for several years. The objective of such studies is to predict the polymers lifetime in normal and accidental conditions. The prediction of polymers behaviour in normal conditions requires accelerated tests in order to get rapidly experimental results. Experimental conditions must carefully be chosen and representative of real ageing. Accelerated ageing is usually done by applying higher temperature, (dose) or dose rate. When such experiments are done, the effects of temperature, (dose) or dose rate are first determined. In a second step, experimental results are extrapolated to real conditions. To predict lifetime of polymers, the following recommendations have to be checked: in order to assume that accelerated tests are representative of normal ageing, the observed mechanisms in experiments must be the same as those in real conditions. For accidental conditions, the same tests as those described in standards can be applied to polymers. The simulation of any accident occurring just after the installation of electrical equipment in nuclear power plants is easy to manage: only the accidental test can be carried out on the electrical equipment. To determine whether polymers in electrical equipment would have a good behaviour or not when an accident would occur after a period of several years or decades in normal conditions in a nuclear power plant, the accidental test must be done on aged materials; their physical, mechanical and electrical characteristics must be relevant to aged polymers in normal conditions. In order to detect any evolution of properties during ageing, the electrical, mechanical or chemical tests have to be proceeded on polymers samples. The characterisation tests which are applied on non-aged and aged samples depend on the nature of the polymers, their application in electrical equipment and their environment. The IEC 544

  12. Electricity supply from thermal power plants and alternative sources at the Adriatic coast

    International Nuclear Information System (INIS)

    Kurek, J.

    1999-01-01

    The Croatian coastline with its numerous islands offers the most appropriate region in the whole of Croatia for the realisation of energy supply from alternative sources as a substitute for the electricity supplied from coal-driven thermal power plants, not only from the point of view of energy but also financial results. Investment costs of a 100 MW thermal power plant served for the estimation of results which would be achieved with the introduction of alternative sources (the sun, small hydro power plants and biomass) as well as for the rationalisation of consumption and savings of the existing energy sources. The alternative programmes can be conducted partially and the investments financed from savings. However, without a systematic solution for the whole country no significant results can be expected. (author)

  13. Unavailability evaluation and allocation at the design stage for electric power plants. Methods and tools

    International Nuclear Information System (INIS)

    Bouissou, M.; Bourgade, E.

    1997-01-01

    Electricite de France is currently carrying out a project called CIDEM with the objective of integrating availability operational feedback, and maintenance in the design of future power plants (especially nuclear power plants) in order to improve their profitability. The work reported in this paper was performed in the framework of the research part of the CIDEM project, managed by the R and D Division of EDF. The paper shows that the availability assessment of an electric power plant raises a number of specific modeling problems. Only fault-tree models have been used in spite of the fact that they are essentially static models: they can be calculated in very short times, especially with the new generation of fault-tree processing codes, based on BDDs (Binary Decision Diagrams). (author)

  14. Method of bringing nuclear power plant to fractional electrical load conditions

    International Nuclear Information System (INIS)

    Iljunin, V.G.; Kuznetsoy, I.A.; Murogov, V.M.; Shmelev, A.N.

    1978-01-01

    A method is described of bringing a nuclear power plant to fractional electric load conditions, which power plant comprises at least two nuclear reactors, at least one nuclear reactor being a breeder and both reactors transferring heat to the turbine working substance, consisting in that the consumption of the turbine working substance is reduced in accordance with a predetermined fractional load. At the same time, the amount of heat being transferred from the nuclear reactors to the turbine working substance is reduced, for which purpose the reactors are included in autonomous cooling circuits to successively transfer heat to the turbine working substance. The breeding reactor is included in the cooling circuit with a lower coolant temperature, the temperature of the coolant at the inlet and outlet of the breeder being reduced to a level ensuring the operation of the nuclear power plant in predetermined fractional load conditions, due to which the power of the breeder is increased, and afterheat is removed

  15. Development of electrical conductivity measurement technology for key plant physiological information using microneedle sensor

    International Nuclear Information System (INIS)

    Jeon, Eunyong; Lee, Junghoon; Choi, Seungyul; Yeo, Kyung-Hwan; Park, Kyoung Sub; Rathod, Mitesh L

    2017-01-01

    Impedance measurement is a widely used technique for monitoring ion species in various applications. In plant cultivation, the impedance system is used to measure the electrical conductivity (EC) of nutrient solutions. Recent research has shown that the quality and quantity of horticultural crops, e.g. tomato, can be optimized by controlling the salinity of nutrient solutions. However, understanding the detailed response of a plant to a nutrient solution is not possible until the fruit is fully grown or by sacrificing the stem. To overcome this issue, horticultural crop cultivation requires real-time monitoring of the EC inside the stem. Using this data, the growth model of a plant could be constructed, and the response of the plant to external environment determined. In this paper, we propose an implantable microneedle device equipped with a micro-patterned impedance measurement system for direct measurement of the EC inside the tomato stem. The fabrication process includes silicon-based steps such as microscale deposition, photolithography, and a deep etching process. Further, microscale fabrication enables all functional elements to fulfill the area budget and be very accurate with minimal plant invasion. A two-electrode geometry is used to match the measurement condition of the tomato stem. Real-time measurement of local sap condition inside the plant in which real-time data for tomato sap EC is obtained after calibration at various concentrations of standard solution demonstrate the efficacy of the proposed device. (paper)

  16. Development of electrical conductivity measurement technology for key plant physiological information using microneedle sensor

    Science.gov (United States)

    Jeon, Eunyong; Choi, Seungyul; Yeo, Kyung-Hwan; Park, Kyoung Sub; Rathod, Mitesh L.; Lee, Junghoon

    2017-08-01

    Impedance measurement is a widely used technique for monitoring ion species in various applications. In plant cultivation, the impedance system is used to measure the electrical conductivity (EC) of nutrient solutions. Recent research has shown that the quality and quantity of horticultural crops, e.g. tomato, can be optimized by controlling the salinity of nutrient solutions. However, understanding the detailed response of a plant to a nutrient solution is not possible until the fruit is fully grown or by sacrificing the stem. To overcome this issue, horticultural crop cultivation requires real-time monitoring of the EC inside the stem. Using this data, the growth model of a plant could be constructed, and the response of the plant to external environment determined. In this paper, we propose an implantable microneedle device equipped with a micro-patterned impedance measurement system for direct measurement of the EC inside the tomato stem. The fabrication process includes silicon-based steps such as microscale deposition, photolithography, and a deep etching process. Further, microscale fabrication enables all functional elements to fulfill the area budget and be very accurate with minimal plant invasion. A two-electrode geometry is used to match the measurement condition of the tomato stem. Real-time measurement of local sap condition inside the plant in which real-time data for tomato sap EC is obtained after calibration at various concentrations of standard solution demonstrate the efficacy of the proposed device.

  17. Electrical and control equipment in nuclear power plants. Problems when replacing aging equipment

    International Nuclear Information System (INIS)

    Nordling, Anna; Haakansson, Goeran

    2012-01-01

    Interoperability between different technical systems is more complicated when old and new technology meet, such as between analog and digital technology. New electrical and I and C equipment is selected with consideration to simplify and improve the compatibility and interoperability. The original construction of nuclear power plants with electricity and I and C equipment had more natural interfaces. Generally experienced guidance, to the management of interoperability and interfaces, feels insufficient. Skills transfer programs are identified as a major need, as more and more important personnel are retiring and important information is lost with them. Lack of appropriate skills directly affects the ability to produce accurate and complete requirements specification. Failure modes of newer electrical and I and C equipment are perceived as more complex than the older equipment. When choosing equipment, attempts are made to minimize unnecessary features, to reduce the number of potential failure modes. There is a lack of consistent understanding of the meaning of robustness in electrical technology and I and C technology, in the nuclear plant engineering departments. The overall picture is that the robustness has worsened since the facilities were built. The Swedish nuclear power plants have an internal organizational structure with separated client and support organization. This splits the nuclear organization into two distinct parts which threaten to separate the two entities focus. Engineering departments at the Swedish nuclear power plants express a need for increased expertise in the client organization (blocks). Competence requested is for example, system knowledge to facilitate and enhance the quality of the initial analysis performed in the blocks. Suppliers receive more recently larger turnkey projects, both to minimize costs but also to minimize the interfaces and co-function problems. This, however, heightens demands for knowledge transfer between

  18. Evaluation of Control and Protection System for Loss of Electrical Power Supply System of Water-Cooling Nuclear Power Plant

    International Nuclear Information System (INIS)

    Suhaemi, Tjipta; Djen Djen; Setyono; Jambiar, Riswan; Rozali, Bang; Setyo P, Dwi; Tjahyono, Hendro

    2000-01-01

    Evaluation of control and protection system for loss of electrical power supply system of water-cooled nuclear power plant has been done. The loss of electrical power supply. The accident covered the loss of external electrical load and loss of ac power to the station auxiliaries. It is analysed by studying and observing the mechanism of electrical power system and mechanism of related control and protection system. The are two condition used in the evaluation i e without turbine trip and with turbine trip. From the evaluation it is concluded that the control and protection system can handled the failure caused by the loss of electrical power system

  19. Generation and export of electric energy by sugar and alcohol plants; Geracao e exportacao de energia eletrica por usinas sucroalcooleiras

    Energy Technology Data Exchange (ETDEWEB)

    Queiroz, Gil Mesquita de Oliveira Rabello; Paschoareli Junior, Dionizio; Faria Junior, Max Jose de Araujo [Universidade Estadual Paulista (DEE/UNESP), Ilha Solteira, SP (Brazil). Dept. de Engenharia Eletrica. Grupo de Pesquisa em Fontes Alternativas e Aproveitamento de Energia Eletrica

    2008-07-01

    This paper presents technical aspects necessary to allow a sugar-cane mill, which promotes cogeneration, to operate as an electrical energy producer. Changes and optimization in the process to produce alcohol and sugar-cane, which results in the increase of electrical energy to export are discussed. A case of a sugarcane mill, working as a thermoelectric power plant is presented. The necessary components to generate energy and to connect the thermoelectric plant to the main transmission system are described. (author)

  20. Impact of Auxiliary Equipments Consumption on Electricity Generation Cost in Selected Power Plants of Pakistan

    Directory of Open Access Journals (Sweden)

    DILEEP KUMAR

    2017-04-01

    Full Text Available This study focuses on higher generation cost of electricity in selected TPPs (Thermal Power Plants in Sindh, Pakistan. It also investigates the energy consumed by the auxiliary equipment of the selected TPPs in Sindh, Pakistan. The AC (Auxiliary Consumption of selected TPPs is compared with that in UK and other developed countries. Results show that the AC in selected TPPs in Sindh, Pakistan exceeds the average AC of the TPPs situated in developed countries. Many energy conservation measures such as impeller trimming and de-staging, boiler feed pump, high voltage inverter, variable frequency drive, and upgrading the existing cooling tower fan blades with fiber reinforced plastic are discussed to overcome higher AC. This study shows that harnessing various available energy conservative measures the AC and unit cost can be reduced by 4.13 and 8.8%; also adverse environmental impacts can be mitigated. Results show that the unit cost of electricity can be reduced from Rs.20 to19/kWh in JTPP (Jamshoro Thermal Power Plant, Rs.9 to 8.8/kWh in GTPS (Gas Turbine Power Station Kotri and Rs. 11 to 10.27/ kWh in LPS (Lakhara Power Station. Thus, electricity production can be improved with the existing capacity, which will eventually assist to manage the current energy crisis and ensure its conservation

  1. De-regulated electric power markets and operating nuclear power plants: the case of British energy

    International Nuclear Information System (INIS)

    Hewlett, James G.

    2005-01-01

    One issue addressed in almost all electric power restructuring/de-regulation plans in both the United States (US) and the United Kingdom (UK) was the recovery of operating nuclear power plant's spent fuel disposal costs and the expenditures to decommission the units when they are retired. Prior to restructuring, in theory at least, in both countries, electricity consumers were paying for the back end costs from operating nuclear power plants. Moreover, in virtually all cases in the US, states included special provisions to insure that consumers would continue to do so after power markets were de-regulated. When power markets in the UK were initially restructured/de-regulated and nuclear power privatized, the shareholders of British Energy (BE) were initially responsible for these costs. However, after electricity prices fell and BE collapsed, the British government shifted many of the costs to future taxpayers, as much as a century forward. If this was not done, the book value of BE's equity would have been about -3.5 billion pounds. That is, BE's liabilities would have been about -3.5 billion pounds greater than their assets. It is difficult to see how BE could remain viable under such circumstances

  2. Analysis of the Potential for Use of Floating PV Power Plant on the Skadar Lake for Electricity Supply of Aluminium Plant in Montenegro

    OpenAIRE

    Vladan Durković; Željko Đurišić

    2017-01-01

    This paper deals with a conceptual solution for the supply of a part of electrical energy for the needs of Aluminium Plant Podgorica (KAP) in Montenegro from a large Floating Photovoltaic Power Plant (FPPP), that would be installed on the nearby lake. The recommended FPPP, with an innovative azimuth angle control method and total installed power of 90 MWp, would consist of 18 power plants having an installed power of 5 MWp each. An analysis using the NREL solar insolation database ascertained...

  3. Impact of financial environmental incentives in the potential of electric power generation on the sugar cane plants

    International Nuclear Information System (INIS)

    Pinto, Claudio Plaza; Walter, Arnaldo

    1999-01-01

    The aim of the work is to present the electric power generation from biomass and the economic potential from sugar cane plants in Brazil. Computerized electricity costs simulation are presented and several financial incentives and external market effects are considered. The results are also presented and criticized

  4. Modernization of the Electric Power Systems (transformers, rods and switches) in the Laguna Verde Nuclear Power Plant (Mexico)

    International Nuclear Information System (INIS)

    Gonzalez Solarzano, J. J.; Gabaldon Martin, M. A.; Pallisa Nunez, J.; Florez Ordeonez, A.; Fernandez Corbeira, A.; Prieto Diez, I.

    2010-01-01

    Description of the changes made in the Electric Power Systems as a part of the power increase project in the Laguna Verde Nuclear Power Plant (Mexico). The main electrical changes to make, besides the turbo group, are the main generation transformers, the isolated rods and the generation switch.

  5. Improved electrical efficiency and bottom ash quality on waste combustion plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Peter A.; Nesterov, I.; Boejer, M.; Hyks, J.; Astrup, T.; Kloeft, H.; Dam-Johansen, K.; Lundtorp, K.; Hedegaard Madsen, O.; Frandsen, F. (Technical Univ. of Denmark, Kgs. Lyngby (Denmark)); Mogensen, Erhardt (Babcock and Wilcox Voelund A/S, Glostrup (Denmark))

    2010-07-01

    Investigations making it possible to evaluate and further develop concepts to improve electrical efficiency in a waste combustion plant were performed. Furthermore, one objective of the study was to investigate the possibilities of improving waste bottom ash leaching properties by use of a rotary kiln treatment. The project work included construction of a bench-scale rotary kiln, performing ash rotary kiln treatment experiments, conducting gas suction probe measurements on a waste incineration plant and making some concept evaluations. The influence of the rotary kiln thermal treatment on the leaching of Ca, Al, Si, Mg, Ba, Sr, Cl, Cu, Pb, Zn, Cr, Mo, sulfate, DOC and carbonate was determined. As a result of these tests, the rotary kiln thermal treatment of bottom ashes can be recommended for reducing the leaching of Cu, Pb, Cl, Zn and DOC; however, an increased leaching of Cr and Mo should be expected. The combustion conditions above the grate of a waste incineration plant were investigated and the release and concentration of volatile ash species in the flue gas such as Cl, Na, K, Ca, Pb, Zn and S were measured. The conducted measurements show that flue gas from grate sections 3 and 4 can produce a sufficiently hot flue gas that contains only low concentrations of corrosive species, and therefore can be used to increase superheater temperatures. Implementation of the so-called flue gas split concept together with other steam circle modifications on a waste combustion plant, and using a reasonable increase in final steam temperature from 400 to 500 deg. C, have the potential to increase electrical efficiency from 24 to 30% (with respect to lower fuel heating value) in a waste combustion plant. (Author)

  6. Future CO2 emissions and electricity generation from proposed coal-fired power plants in India

    Science.gov (United States)

    Fofrich, R.; Shearer, C.; Davis, S. J.

    2017-12-01

    India represents a critical unknown in global projections of future CO2 emissions due to its growing population, industrializing economy, and large coal reserves. In this study, we assess existing and proposed construction of coal-fired power plants in India and evaluate their implications for future energy production and emissions in the country. In 2016, India had 369 coal-fired power plants under development totaling 243 gigawatts (GW) of generating capacity. These coal-fired power plants would increase India's coal-fired generating capacity by 123% and would exceed India's projected electricity demand. Therefore, India's current proposals for new coal-fired power plants would be forced to retire early or operate at very low capacity factors and/or would prevent India from meeting its goal of producing at least 40% of its power from renewable sources by 2030. In addition, future emissions from proposed coal-fired power plants would exceed India's climate commitment to reduce its 2005 emissions intensity 33% - 35% by 2030.

  7. Efficiency and environmental impacts of electricity restructuring on coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Chan, H. Ron [Maryland Univ., College Park, MD (United States). Dept. of Economics; Fell, Harrison [Colorado School of Mines, Golden, CO (United States). Division of Economics and Business; Lange, Ian [Stirling Univ. (United Kingdom). Division of Economics; Li, Shanjun [Cornell Univ., Ithaca, NY (United States). Dyson School of Applied Economics and Management

    2013-03-15

    We investigate the impacts of electricity market restructuring on fuel efficiency, utilization and, new to this area, cost of coal purchases among coal-fired power plants using a panel data set from 1991 to 2005. Our study focuses exclusively on coal-fired power plants and uses panel data covering several years after implementation of restructuring. The estimation compares how investor-owned (IOs) plants in states with restructuring changed their behavior relative to IOs in states without. Our analysis finds that restructuring led to: (1) a two percent improvement in fuel efficiency for IOs, (2) a ten percent decrease in unit cost of heat input, and (3) a lower capacity factor even after adjusting for cross-plant generation re-allocation due to cost reductions. Based on these estimates, back-of-the-envelope calculations find that restructuring has led to about 6.5 million dollars in annual cost savings or nearly 12 percent of operating expenses and up to a 7.6 percent emissions reduction per plant.

  8. Consequences of flexible electricity production from biogas on the conventional power plant fleet and the CO2 emission

    International Nuclear Information System (INIS)

    Holzhammer, Uwe

    2013-01-01

    Electricity production using biogas is rather homogeneous throughout the year due to the compensational regulations. As a consequence of the fluctuating energy production from renewable energy sources a more flexible electricity production is needed. The contribution deals with the regulations and measures of the new renewable energy law 2012 and their impact on the conventional power plant fleet and the carbon dioxide emissions and their impact on an improvement of demand-oriented electricity production.

  9. Ideal Operation of a Photovoltaic Power Plant Equipped with an Energy Storage System on Electricity Market

    Directory of Open Access Journals (Sweden)

    Markku Järvelä

    2017-07-01

    Full Text Available There is no natural inertia in a photovoltaic (PV generator and changes in irradiation can be seen immediately at the output power. Moving cloud shadows are the dominant reason for fast PV power fluctuations taking place typically within a minute between 20 to 100% of the clear sky value roughly 100 times a day, on average. Therefore, operating a utility scale grid connected PV power plant is challenging. Currently, in many regions, renewable energy sources such as solar and wind receive feed-in tariffs that ensure a certain price for the energy. On the other hand, electricity markets operate on a supply-demand principle and a typical imbalance settlement period is one hour. This paper presents the energy, power and corresponding requirements for an energy storage system in a solar PV power plant to feed the power to the grid meeting the electricity spot markets practices. An ideal PV energy production forecast is assumed to be available to define reference powers of the system for the studied imbalance settlement periods. The analysis is done for three different PV system sizes using the existing irradiance measurements of the Tampere University of Technology solar PV power station research plant.

  10. Thermodynamic and economic evaluation of co-production plants for electricity and potable water

    International Nuclear Information System (INIS)

    1997-05-01

    Within the framework of the IAEA's activities related to seawater desalination using nuclear energy, a need was identified for developing criteria and methodologies in order to facilitate comparative economic evaluations of nuclear and fossil fuelled energy sources for desalination and generation of electricity. The aspect of costing of electricity and potable water from co-production plants is of particular interest. In response to these needs, the IAEA carried out a study to establish methodologies for allocating costs to the two final products of co-production plants based on thermodynamic criteria and to enable economic ranking of co-production plant alternatives. This publication describes the methodologies and presents the results obtained from analyzing a reference case, taken as an example. This publication has been discussed and reviewed at a consultants meeting convened by the IAEA in September 1996 in Vienna. The methodologies have been incorporated in an EXCEL spreadsheet routine which is available upon request from the IAEA. The IAEA staff member responsible for this publication is L. Breidenbach of the Division of Nuclear Power and the Fuel Cycle. 30 refs, figs, tabs

  11. Use of SP-100 thermometry technology to improve operation of electric power plants

    International Nuclear Information System (INIS)

    Shepard, R.L.

    1996-01-01

    Control of the nuclear power source for the SP-100 electric power supply required a thermometer that would be 1% accurate at temperatures to 1,100 C with no drift and unattended operation for more than 7 years in moderate radiation environment. Johnson noise thermometers had been developed by Oak Ridge National Laboratory originally for nuclear fuel centerline temperature measurements were believed to be able to provide this performance. They were then adapted for use in the SP-100. This Johnson noise technology also has direct application to two problems in the electric power plant: in situ calibration of conventional resistance thermometers installed in steam systems at temperatures up to about 560 C and measurement of combustion chamber temperatures up to bout 1,100 C. Both capacities require measurement of Johnson noise in harsh industrial environments. The final development and transfer of the SP-100 technology to the electric power sector is currently being supported by the Electric Power Research Institute (EPRI)

  12. A technology-assessment methodology for electric utility planning: With application to nuclear power plant decommissioning

    International Nuclear Information System (INIS)

    Lough, W.T.

    1987-01-01

    Electric utilities and public service commissions have not taken full advantage of the many proven methodologies and techniques available for evaluating complex technological issues. In addition, evaluations performed are deficient in their use of (1) methods for evaluating public attitudes and (2) formal methods of analysis for decision making. These oversight are substantiated through an examination of the literature relevant to electric utility planning. The assessment process known as technology assessment or TA is proposed, and a TA model is developed for route in use in utility planning by electric utilities and state regulatory commissions. Techniques to facilitate public participation and techniques to aid decision making are integral to the proposed model and are described in detail. Criteria are provided for selecting an appropriate technique on a case-by-case basis. The TA model proved to be an effective methodology for evaluating technological issues associated with electric utility planning such as decommissioning nuclear power plants. Through the use of the nominal group technique, the attitudes of a group of residential ratepayers were successfully identified and included in the decision-making process

  13. Review of nuclear electricity generation and desalination plants and evaluation of SMART application

    International Nuclear Information System (INIS)

    Kang, Han Ok; Kang, Hyung Suk; Cho, Bong Hyun; Yoon, Ju Hyeon; Kim, Hwan Yeol; Lee, Young Jin; Kim, Joo Pyung; Lee, Doo Jeong; Chang, Moon Hee

    1998-03-01

    KAERI are developing a new advanced integral reactor named SMART for dual application purpose of the electric power generation and seawater desalination. This report are describing the general desalting methods with its technology development and the coupling schemes between electricity generation system and desalting system. Though MSF takes the most part of currently operating seawater desalination plants, MED and RO has been preferred in the past decade. MED has a advantage over MSF with the view to investment costs and energy efficiency. The coupling between electricity generation system and desalination system can be realized by using one of back pressure cycle, extraction cycle, and multi-shaft cycle. New design and operating strategy has to be established for various environment and load conditions. To evaluate the candidate desalination systems of SMART and the coupling method of it with other secondary systems, the desalted water and electricity were calculated through the several options. The result shows that back pressure cycle is preferred at the high water/power ratio and extraction cycle at the low value. If energy efficiency are only considered, RO will be best choice. (author). 17 refs., 12 tabs., 31 figs

  14. Environmental impacts assessment of future electricity generating plants for the State of Minas Gerais, Brazil

    International Nuclear Information System (INIS)

    Pinheiro, Ricardo Brandt; Ribeiro, Leonardo Marcio Vilela; Loures, Marcelo de Melo Gomide

    1999-01-01

    The Energy and Power Evaluation Program was used for energy planning analysis of the entire energy system of the state of Minas Gerais, Brazil. The environmental impact and resource requirements were estimated with the IMPACTS module, using results obtained from the electricity generating system expansion plan generated by WASP, together with results of marketplace energy supply and demand balances over the study period (1995-2015) computed with the BALANCE module for five different scenarios. The results for the electricity generating system show that: the air emission levels increase in all scenarios: the growth rate of the economy and energy conservation are the most important factors affecting the emissions; the land use increase significantly, the new hydroelectric power plants contributing to almost the total of this increase. (author)

  15. Microstructural evolution of pipelines for thermal electric power plants after a prolongated operation

    International Nuclear Information System (INIS)

    Twentyman, M.; Rosetti, R.; Porta, G.

    1991-01-01

    The study of failures originated in pipelines for thermal electric power plants allows an evaluation of the limit microstructural conditions that turn the system to critical conditions. A set of pipe samples with different microsctructural evolution which had been affected by direct flame were prepared. The samples were taken close to failures, away from them, from out of use pipes, etc. Metallographic studies were carried out using optical microscopy and scanning electron microscopy. Phase distribution, morphology and their relation with the different stages of aging were observed. (Author) [es

  16. Economic and environmental balancing in response to NEPA for electric power generating plants

    International Nuclear Information System (INIS)

    Bender, M.

    1976-01-01

    Discussion of principles that can provide guidance in responding to the National Environmental Policy Act (NEPA) in the planning of electric power generating plants. The environmental assessment procedure described is initiated by considering alternative decisions in concern for environmental assessment. Having defined the decision paths, the assessment proceeds in a four-phase sequence: Correlation of the alternatives with resource and marketing restraints; screening the alternatives for environmental adequacy and specifying the needed technological refinement; examination of the economics in terms of energy costs; comparing the energy cost with the environmental index and selecting the combination that best reflects the current social preference. (Auth.)

  17. 1E Qualification of Electrical Equipment - Requirement for Safety Nuclear Power Plants

    International Nuclear Information System (INIS)

    Geambasu, C.; Segarceanu, D.; Albu, J.

    2002-01-01

    The paper presents the qualification methods of the safety related equipment according to the safety class 1E. There are presented the qualification principles, procedure and documents, emphasis being laid on the qualification approach by type tests. This approach assumes the equipment test under both normal and accident conditions (design basis events) simulating the operational conditions and covers the largest part of electrical equipment from a nuclear power plant.The safety related equipment is to be qualified is subjected to a sequential test that will be detailed in the paper. (author)

  18. Economic and environmental balancing in response to NEPA for electric power generating plants

    Energy Technology Data Exchange (ETDEWEB)

    Bender, M [Oak Ridge National Lab., Tenn. (USA)

    1976-03-01

    A discussion is given of principles that can provide guidance in responding to the National Environmental Policy Act (NEPA) in the planning of electric power generating plants. The environmental assessment procedure described is initiated by considering alternative decisions in concern for environmental assessment. Having defined the decision paths, the assessment proceeds in a four-phase sequence: correlation of the alternatives with resource and marketing restraints; screening the alternatives for environmental adequacy and specifying the needed technological refinement; examination of the economics in terms of energy costs; comparing the energy cost with the environmental index and selecting the combination that best reflects the current social preference.

  19. Development of nuclear power plant management system for Kyushu Electric Power Co., Inc

    International Nuclear Information System (INIS)

    Nakamura, Kenichi; Akiyoshi, Tatsuo; Tanimoto, Kazuo; Ogura, Kazuhito; Ibi, Yuji; Kawasaki, Michiyuki

    2002-01-01

    The Kyushu Electric Power Co., Ltd. progresses development of the nuclear power plant management system using IT under aims at upgrading of efficiency, level, and reliability on maintenance and administration business under five years planning since 1999 fiscal year. The outline of the system are explained in this paper. As a result of preparation on power station net work and personal computers set in all of company, an environment capable of using these infrastructures and introducing large scale systems on transverse business over every groups of each power station could be established. (G.K.)

  20. Generic Virtual Power Plants: Management of Distributed Energy Resources under Liberalized Electricity Market

    DEFF Research Database (Denmark)

    You, Shi; Træholt, Chresten; Poulsen, Bjarne

    2009-01-01

    The emergence of Virtual Power Plant (VPP) can be attributed to the major boost of distributed energy resources (DER), which satisfies the changing needs of modern society on energy industry. Based on this concept, DER units disregarding the differences in each individualtechnology are loosely...... aggregated with a unique interface to the external grid and energy market. This paper gives a broad overview of state-of-the-art VPP concepts and proposes a detailed generic VPP (GVPP) model running in liberalized electricity market environment. An attempt is made to provide an outline of the main functions...

  1. The influence of Goiania radiological accident on Brazilian public opinion concerning new nuclear electric plants

    International Nuclear Information System (INIS)

    Meldonian, Nelson Leon; Mattos, Luis Antonio Terribile de

    1997-01-01

    The Brazilian society is against applications of nuclear energy, mainly respecting to construction of new nuclear power plants, believing that they are harmful to population's welfare and the environment. By this reason, Brazilian nuclear sector would promote a more intensive program of public discussion, not limited to technical and scientific community. Intending to contribute to a better judgment by society about the differences between diverse employment of nuclear energy, arguments concerned to its benefits are presented, pointing out that adverse accounts to nuclear electricity based on Goiania radiological accident, are not justified

  2. Electric failure on the reactor n.3 of the nuclear power plant of Dampierre

    International Nuclear Information System (INIS)

    2007-05-01

    This note of information resumes the progress of the electric failure on the reactor n.3 of the nuclear power plant of Dampierre, the organization during the incident, it establishes then a comparison with the incident arisen to Forsmark in 2006 and reminds that it lead in an inspection on behalf of the Asn which noticed that all the procedures had been respected by the operators and did not noticed any abnormality in the maintenance. This event was classified at the level 1 of the international nuclear event scale (INES). (N.C.)

  3. 75 FR 11920 - General Electric Lighting-Ravenna Lamp Plant, Lighting Division, Including On-Site Leased Workers...

    Science.gov (United States)

    2010-03-12

    ... to the production of high intensity discharge lamps. The review shows that on August 24, 2007, a...-Ravenna Lamp Plant, Lighting Division, Including On-Site Leased Workers from Devore Technologies, Ravenna..., 2009, applicable to workers of General Electric Lighting-Ravenna Lamp Plant, Lighting Division...

  4. The role of electrical and jasmonate signalling in the recognition of captured prey in the carnivorous sundew plant Drosera capensis

    Czech Academy of Sciences Publication Activity Database

    Krausko, M.; Perůtka, M.; Šebela, M.; Šamajová, O.; Šamaj, J.; Novák, Ondřej; Pavlovič, A.

    2017-01-01

    Roč. 213, č. 4 (2017), s. 1818-1835 ISSN 0028-646X R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : action potential * carnivorous plant * Drosera * electrical signal * enzymes * jasmonates * long-distance signalling * sundew Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Plant sciences, botany Impact factor: 7.330, year: 2016

  5. Westinghouse Electric Company experiences in chemistry on-line monitoring in Eastern European nuclear power plants

    International Nuclear Information System (INIS)

    Balavage, J.

    2001-01-01

    Westinghouse Electric Company has provided a number of Chemistry On-Line Monitoring (OLM) Systems to Nuclear Power Plants in Eastern Europe. Eleven systems were provided to the Temelin Nuclear Power Plant in the south of the Czech Republic. Four systems were provided to the Russian NPP at Novovoronezh. In addition, a system design was developed for primary side chemistry monitoring for units 5 and 6 of another eastern European VVER. The status of the Temelin OLM systems is discussed including updates to the Temelin designs, and the other Eastern European installations and designs are also described briefly. Some of the problems encountered and lessons learned from these projects are also discussed. (R.P.)

  6. Reactor type choice and characteristics for a small nuclear heat and electricity co-generation plant

    International Nuclear Information System (INIS)

    Liu Kukui; Li Manchang; Tang Chuanbao

    1997-01-01

    In China heat supply consumes more than 70 percent of the primary energy resource, which makes for heavy traffic and transportation and produces a lot of polluting materials such as NO x , SO x and CO 2 because of use of the fossil fuel. The utilization of nuclear power into the heat and electricity co-generation plant contributes to the global environmental protection. The basic concept of the nuclear system is an integral type reactor with three circuits. The primary circuit equipment is enclosed in and linked up directly with reactor vessel. The third circuit produces steam for heat and electricity supply. This paper presents basic requirements, reactor type choice, design characteristics, economy for a nuclear co-generation plant and its future application. The choice of the main parameters and the main technological process is the key problem of the nuclear plant design. To make this paper clearer, take for example a double-reactor plant of 450 x 2MW thermal power. There are two sorts of main technological processes. One is a water-water-steam process. Another is water-steam-steam process. Compared the two sorts, the design which adopted the water-water-steam technological process has much more advantage. The system is simplified, the operation reliability is increased, the primary pressure reduces a lot, the temperature difference between the secondary and the third circuits becomes larger, so the size and capacity of the main components will be smaller, the scale and the cost of the building will be cut down. In this design, the secondary circuit pressure is the highest among that of the three circuits. So the primary circuit radioactivity can not leak into the third circuit in case of accidents. (author)

  7. ASCERTAINMENT OF ELECTRIC-SUPPLY SCHEMES RELIABILITY FOR THE ATOMIC POWER PLANT AUXILIARIES

    Directory of Open Access Journals (Sweden)

    A. L. Starzhinskij

    2015-01-01

    Full Text Available The paper completes ascertainment of electrical-supply scheme reliability for the auxiliaries of a nuclear power plant. Thereat the author considers the system behavior during the block normal operation, carrying out current maintenance, and capital repairs in combination with initiating events. The initiating events for reactors include complete blackout, i.e. the loss of outside power supply (normal and reserve; emergency switching one of the working turbogenerators; momentary dumping the normal rating to the level of auxiliaries with seating the cutout valve of one turbo-generator. The combination of any initiating event with the repairing mode in case of one of the system elements failure should not lead to blackout occurrence of more than one system of the reliable power supply. This requirement rests content with the help of the reliable power supply system self-dependence (electrical and functional and the emergency power-supply operational autonomy (diesel generator and accumulator batteries.The reliability indicators of the power supply system for the nuclear power plant auxiliaries are the conditional probabilities of conjoined blackout of one, two, and three sections of the reliable power supply conditional upon an initiating event emerging and the blackout of one, two, and three reliable power-supply sections under the normal operational mode. Furthermore, they also are the blackout periodicity of one and conjointly two, three, and four sections of normal operation under the block normal operational mode. It is established that the blackout of one bus section of normal operation and one section of reliable power-supply system of the auxiliaries that does not lead to complete blackout of the plant auxiliaries may occur once in three years. The probability of simultaneous power failure of two or three normal-operation sections and of two reliable power-supply sections during the power plant service life is unlikely.

  8. Acceptability analysis of technical-scale plants for electricity generation; Ansatz zur Akzeptabilitaetsanalyse grosstechnischer Anlagen zur Stromerzeugung

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, Katharina; Koch, Marco K. [Bochum Univ. (Germany). AG Reaktorsimulation und -sicherheit

    2013-03-15

    Public acceptance of technical-scale plants for electricity generation is an indispensable prerequisite for the long-term continuity of supply of electricity. Even though nuclear power in Germany continues to meet with particularly grave objections, this is no longer an exception. Problems associated with the rapidly declining willingness of the public to accept specific disadvantages connected with electricity generation are confronting not only nuclear, but also large fossil-fired and renewable-resource power plants. To investigate to what extent these objections based on subjective heuristics are justified, a model is developed for analyzing the objective acceptability of electricity-producing large power plants, which allows the assessment of their acceptability to be measured on the basis of quantitative analysis of the discrepancies between acceptability and acceptance and may serve as a tool for promoting public acceptance. (orig.)

  9. Electricity

    CERN Document Server

    Basford, Leslie

    2013-01-01

    Electricity Made Simple covers the fundamental principles underlying every aspect of electricity. The book discusses current; resistance including its measurement, Kirchhoff's laws, and resistors; electroheat, electromagnetics and electrochemistry; and the motor and generator effects of electromagnetic forces. The text also describes alternating current, circuits and inductors, alternating current circuits, and a.c. generators and motors. Other methods of generating electromagnetic forces are also considered. The book is useful for electrical engineering students.

  10. Future CO2 emissions and electricity generation from proposed coal-fired power plants in India

    Science.gov (United States)

    Shearer, Christine; Fofrich, Robert; Davis, Steven J.

    2017-04-01

    With its growing population, industrializing economy, and large coal reserves, India represents a critical unknown in global projections of future CO2 emissions. Here, we assess proposed construction of coal-fired power plants in India and evaluate their implications for future emissions and energy production in the country. As of mid-2016, 243 gigawatts (GW) of coal-fired generating capacity are under development in India, including 65 GW under construction and an additional 178 GW proposed. These under-development plants would increase the coal capacity of India's power sector by 123% and, when combined with the country's goal to produce at least 40% of its power from non-fossil sources by 2030, exceed the country's projected future electricity demand. The current proposals for new coal-fired plants could therefore either "strand" fossil energy assets (i.e., force them to retire early or else operate at very low capacity factors) and/or ensure that the goal is not met by "locking-out" new, low-carbon energy infrastructure. Similarly, future emissions from the proposed coal plants would also exceed the country's climate commitment to reduce its 2005 emissions intensity 33% to 35% by 2030, which—when combined with the commitments of all other countries—is itself not yet ambitious enough to meet the international goal of holding warming well below 2°C relative to the pre-industrial era.

  11. Standard technical specifications General Electric plants, BWR/6. Volume 1, Revision 1

    International Nuclear Information System (INIS)

    1995-04-01

    This report documents the results of the combined effort of the NRC and the industry to produce improved Standard Technical Specifications (STS), Revision 1 for General Electric BWR/6 Plants. The changes reflected in Revision 1 resulted from the experience gained from license amendment applications to convert to these improved STS or to adopt partial improvements to existing technical specifications. This NUREG is the result of extensive public technical meetings and discussions between the Nuclear Regulatory Commission (NRC) staff and various nuclear power plant licensees, Nuclear Steam Supply System (NSSS) Owners Groups, NSSS vendors, and the Nuclear Energy Institute (NEI). The improved STS were developed based on the criteria in the Final Commission Policy Statement on Technical Specifications Improvements for Nuclear Power Reactors, dated July 22, 1993. The improved STS will be used as the basis for individual nuclear power plant licensees to develop improved plant-specific technical specifications. This report contains three volumes. Volume 1 contains the Specifications for all chapters and sections of the improved STS. Volume 2 contains the Bases for Chapters 2.0 and 3.0, and Sections 3.1--3.3 of the improved STS. Volume 3 contains the Bases for Sections 3.4--3.10 of the improved STS

  12. Standard technical specifications: General Electric plants, BWR/4. Volume 1, Revision 1: Specifications

    International Nuclear Information System (INIS)

    1995-04-01

    This report documents the results of the combined effort of the NRC and the industry to produce improved Standard Technical Specifications (STS), Revision 1 for General Electric BWR/4 Plants. The changes reflected in Revision 1 resulted from the experience gained from license amendment applications to convert to these improved STS or to adopt partial improvements to existing technical specifications. This NUREG is the result of extensive public technical meetings and discussions between the Nuclear Regulatory Commission (NRC) staff and various nuclear power plant licensees, Nuclear Steam Supply System (NSSS) Owners Groups, NSSS vendors, and the Nuclear Energy Institute (NEI). The improved STS were developed based on the criteria in the Final Commission Policy Statement on Technical Specifications Improvements for Nuclear Power Reactors, dated July 22, 1993. The improved STS will be used as the basis for individual nuclear power plant licensees to develop improved plant-specific technical specifications. This report contains three volumes. Volume 1 contains the Specifications for all chapters and sections of the improved STS. Volume 2 contains the Bases for Chapters 2.0 and 3.0, and Sections 3.1--3.3 of the improved STS. Volume 3 contains the Bases for Sections 3.4--3.10 of the improved STS

  13. Valuation of marginal CO2 abatement options for electric power plants in Korea

    International Nuclear Information System (INIS)

    Park, Hojeong; Lim, Jaekyu

    2009-01-01

    The electricity generation sector in Korea is under pressure to mitigate greenhouse gases as directed by the Kyoto Protocol. The principal compliance options for power companies under the cap-and-trade include the application of direct CO 2 emission abatement and the procurement of emission allowances. The objective of this paper is to provide an analytical framework for assessing the cost-effectiveness of these options. We attempt to derive the marginal abatement cost for CO 2 using the output distance function and analyze the relative advantages of emission allowance procurement option as compared to direct abatement option. Real-option approach is adopted to incorporate emission allowance price uncertainty. Empirical result shows the marginal abatement cost with an average of Euro 14.04/ton CO 2 for fossil-fueled power plants and confirms the existence of substantial cost heterogeneity among plants which is sufficient to achieve trading gains in allowance market. The comparison of two options enables us to identify the optimal position of the compliance for each plant. Sensitivity analyses are also presented with regard to several key parameters including the initial allowance prices and interest rate. The result of this paper may help Korean power plants to prepare for upcoming regulations targeted toward the reduction of domestic greenhouse gases.

  14. Optimal short-term operation schedule of a hydropower plant in a competitive electricity market

    International Nuclear Information System (INIS)

    Perez-Diaz, Juan I.; Wilhelmi, Jose R.; Arevalo, Luis A.

    2010-01-01

    This paper presents a dynamic programming model to solve the short-term scheduling problem of a hydropower plant that sells energy in a pool-based electricity market with the objective of maximizing the revenue. This is a nonlinear and non-concave problem subject to strong technical and strategic constraints, and in which discrete and continuous variables take part. The model described in this paper determines, in each hour of the planning horizon (typically from one day to one week), both the optimal number of units in operation (unit commitment) and the power to be generated by the committed units (generation dispatch). The power generated by each unit is considered as a nonlinear function of the actual water discharge and volume of the associated reservoir. The dependence of the units' efficiency and operating limits with the available gross head is also accounted for in this model. The application of this model to a real hydropower plant demonstrates its capabilities in providing the operation schedule that maximizes the revenue of the hydro plant while satisfying several constraints of different classes. In addition, the use of this model as a supporting tool to estimate the economic feasibility of a hydropower plant development project is also analyzed in the paper. (author)

  15. Development of model reference adaptive control theory for electric power plant control applications

    Energy Technology Data Exchange (ETDEWEB)

    Mabius, L.E.

    1982-09-15

    The scope of this effort includes the theoretical development of a multi-input, multi-output (MIMO) Model Reference Control (MRC) algorithm, (i.e., model following control law), Model Reference Adaptive Control (MRAC) algorithm and the formulation of a nonlinear model of a typical electric power plant. Previous single-input, single-output MRAC algorithm designs have been generalized to MIMO MRAC designs using the MIMO MRC algorithm. This MRC algorithm, which has been developed using Command Generator Tracker methodologies, represents the steady state behavior (in the adaptive sense) of the MRAC algorithm. The MRC algorithm is a fundamental component in the MRAC design and stability analysis. An enhanced MRC algorithm, which has been developed for systems with more controls than regulated outputs, alleviates the MRC stability constraint of stable plant transmission zeroes. The nonlinear power plant model is based on the Cromby model with the addition of a governor valve management algorithm, turbine dynamics and turbine interactions with extraction flows. An application of the MRC algorithm to a linearization of this model demonstrates its applicability to power plant systems. In particular, the generated power changes at 7% per minute while throttle pressure and temperature, reheat temperature and drum level are held constant with a reasonable level of control. The enhanced algorithm reduces significantly control fluctuations without modifying the output response.

  16. Cost structure analysis of commercial nuclear power plants in Japan based on corporate financial statements of electric utility companies

    International Nuclear Information System (INIS)

    Kunitake, Norifumi; Nagano, Koji; Suzuki, Tatsujiro

    1998-01-01

    In this paper, we analyze past and current cost structure of commercial nuclear power plants in Japan based on annual corporate financial statements published by the Japanese electric utility companies, instead of employing the conventional methodology of evaluating the generation cost for a newly constructed model plant. The result of our study on existing commercial nuclear plants reveals the increasing significance of O and M and fuel cycle costs in total generation cost. Thus, it is suggested that electric power companies should take more efforts to reduce these costs in order to maintain the competitiveness of nuclear power in Japan. (author)

  17. The Concept of the Use of the Marine Reactor Plant in Small Electric Grids

    International Nuclear Information System (INIS)

    Khlopkin, N.; Makarov, V.; Pologikh, B.

    2002-01-01

    In report some aspects of the using marine nuclear reactor are considered for provision of need small non-interconnected power systems, as well as separate settlements and the mining enterprises disposed in regions with a undeveloped infrastructure. Recently for these purposes it is offered to use the nuclear small modular power plants. The required plant power for small electric grids lies within from 1 to several tens of MWe. Module can be collected and tested on machine-building plant, and then delivered in ready type to the working place on some transport, for instance, a barge. Through determined time it's possible to transport a module to the repair shop and also to the point of storage after the end of operation. Marine nuclear reactors on their powers, compactness, mass and size are ideal prototypes for creation of such modules. For instance, building at present floating power unit, intended for functioning in region of the Russian North, based on using reactor plants of nuclear icebreakers. Reliability and safety of the ship reactor are confirmed by their trouble-free operation during approximately 180 reactors-years. Unlike big stationary nuclear plant, working in base mode, power unit with marine reactor wholly capable to work in mode of the loading following. In contrast with reactor of nuclear icebreaker, advisable to increase the core lifetime and to reduce the enrichment of the uranium. This requires more uranium capacity fuel compositions and design of the core. In particular, possible transition from traditional for ship reactor of the channel core to cassette design. Other directions of evolution of the ship reactors, not touching the basic constructive decisions verified by practice, but promoting development of properties of self-security of plant are possible. Among such directions is reduction volumetric power density of a core. (author)

  18. Probabilistic Analysis of Electrical Energy Costs: Comparing Production Costs for Gas, Coal and Nuclear Power Plants. Annex III

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-12-15

    The increase in electricity demand is linked to the development of the economy and living standards in each country. This is especially true in those developing countries in which electricity consumption is far below the average of industrialized countries. To satisfy the increased demand for electricity, it is necessary to build new electrical power plants that could, in an optimum way, meet the imposed acceptability criteria. The main criteria are the potential to supply the required energy and to supply it with minimum or, at least, acceptable costs and environmental impacts, to satisfy the licensing requirements and be acceptable to the public. The main competitors for electricity production in the next few decades are fossil fuel power plants (coal and gas) and nuclear power plants. Power plants making use of renewables (solar, wind, biomass) are also important, but due to limited energy supply potential and high costs, can only be a supplement to the main generating units. Large hydropower plants would be competitive under the condition that suitable sites for the construction of such plants exist. Unfortunately, both in Croatia and in the rest of central Europe, such sites are scarce.

  19. The plant for co-production of synfuel and electricity with reduced CO{sub 2} emissions

    Energy Technology Data Exchange (ETDEWEB)

    Kler, A.M.; Tyurina, E.A.; Mednikov, A.S. [Russian Academy of Sciences, Irkutsk (Russian Federation). Energy Systems Inst.

    2013-07-01

    Consideration is given to the prospective technologies for combined production of synthetic fuel (SF) and electricity. The mathematical models of plant for co-production of synfuel and electricity (PCSE) intended for combined production of electricity and synthesis of methanol and dimethyl ether or membrane-based hydrogen production from coal were developed. They were used in the optimization studies on the installations. As a result of the studies, the design characteristics for the plant elements, the relationships between the SF and electricity productions, etc. were determined. These data were used to identify the ranges of SF price for various prices of fuel, electricity and equipment, and estimate the profitability of SF production. Special attention is paid to modeling of CO{sub 2} removal system as part of PCSE and studies on PCSE optimization. The account is taken of additional capital investments and power consumption in the systems.

  20. Resolution 147/012. It authorize the Central Libertador / SA aeolian generation company to generate an aeolian electricity source by an electric power generating plant located in Maldonado town 4 AA Catastral section, and the Sistema inerconectado Nacional connection

    International Nuclear Information System (INIS)

    2012-01-01

    This decree authorizes the generation of electricity using aeolian energy as the primary electricity source. This project was presented by the 'Libertador / S.A' aeolian generation company with the proposal to install an electrical plant in Maldonado town. This authorization is according to the Electric Wholesale Market regulation

  1. Comparison of the General Electric BWR/6 standard plant design to the IAEA NUSS codes and guides

    International Nuclear Information System (INIS)

    D'Ardenne, W.H.; Sherwood, G.G.

    1985-01-01

    The General Electric BWR/6 Mark III standard plant design meets or exceeds current requirements of published International Atomic Energy Agency (IAEA) Nuclear Safety Standards (NUSS) codes and guides. This conclusion is based on a review of the NUSS codes and guides by General Electric and by the co-ordinated US review of the NUSS codes and guides during their development. General Electric compared the published IAEA NUSS codes and guides with the General Electric design. The applicability of each code and guide to the BWR/6 Mark III standard plant design was determined. Each code or guide was reviewed by a General Electric engineer knowledgeable about the structures, systems and components addressed and the technical area covered by that code or guide. The results of this review show that the BWR/6 Mark III standard plant design meets or exceeds the applicable requirements of the published IAEA NUSS codes and guides. The co-ordinated US review of the IAEA NUSS codes and guides corroborates the General Electric review. In the co-ordinated US review, the USNRC and US industry organizations (including General Electric) review the NUSS codes and guides during their development. This review ensures that the NUSS codes and guides are consistent with the current US government regulations, guidance and regulatory practices, US voluntary industry codes and standards, and accepted US industry design, construction and operational practices. If any inconsistencies are identified, comments are submitted to the IAEA by the USNRC. All US concerns submitted to the IAEA have been resolved. General Electric design reviews and the Final Design Approval (FDA) issued by the USNRC have verified that the General Electric BWR/6 Mark III standard plant design meets or exceeds the current US requirements, guidance and practices. Since these requirements, guidance and practices meet or exceed those of the NUSS codes and guides, so does the General Electric design. (author)

  2. Calculation of investment cost and electricity tariff on first building of Nuclear power plant in Indonesia

    International Nuclear Information System (INIS)

    Mochamad Nasrullah; Sudi Arianto

    2005-01-01

    Nuclear power plant as one alternative power plant for Indonesia is expected to attract interest of investors to invest in electricity sector. Calculation of investment cost and electricity tariff is a nearly necessary Information needed by investors. Spread sheet calculations on construction cost including Interest During Construction and escalation as well as financial viability are implemented. Result of the study show that overnight cost before escalation is US $ 2.682.865.200,- and after IDC and escalation it becomes US $ 3.795.712.088 or 1.807,5 US$/k We. Levelized Tariff is at around 4,57 cents/kWh. Levelized Tariff is 3,5 cents/kWh not feasible to the project of because all financial parameter show negative value. The project is financially feasible if calculated levelized tariff within arrange of 4,0 cents/kWh-5,5 cents/kWh. The most profitable tariff for investor is within arrange of 4,87 cents/kWh - 5,11 cents/kWh. (author)

  3. Mobile test stand for evaluation of electric power plants for unmanned aircraft

    Directory of Open Access Journals (Sweden)

    Serbezov Vladimir

    2017-01-01

    Full Text Available The absence of accurate performance data is a common problem with most civilian unmanned aerial vehicle (UAV power plant producers. The reasons for this are the small size of most of the manufacturers and the high price of precise wind tunnel testing and computer simulations. To overcome this problem at Dronamics Ltd., with support from the Department of Aeronautics of TU-Sofia, a mobile test stand for evaluation of electric power plants for unmanned aircraft was developed. The stand may be used statically, or may be installed on the roof of an automobile. The measurement system of the stand is based on popular hardware that is used in radio controlled models and in general automation. The verification of the measurement system is performed by comparing static test results with data published by the manufacturer of the tested electric motor. Tests were carried out with 2 different types of propellers and the results were compared with published results for common propellers as well as with results of theoretical studies. The results are satisfactory for practical applications. The use of this type of test stands can be a cheap and effective alternative for research and development start-up companies like Dronamics.

  4. Research on the availability and environmental aspects of geothermal electric power plants in Mexico

    International Nuclear Information System (INIS)

    Mulas, P.; Mercado, S.

    1984-01-01

    Although geothermal electric power plants will make only a modest contribution to annual power generation in Mexico until the year 2000 (at present there is a capacity of 205 MW(e) in operation and 440 MW(e) under construction), new areas are being developed and, in the plants that have been in operation for several years, criteria such as the capacity factor (>85%) and the cost per kW.h generated are favourable. The main problem lies in determining the generation capacity which should be installed at the end of the exploration period. There is an economic risk here since the generation capacity is extremely uncertain and in order to reduce this risk the well production record must be carefully studied. Considerable research is being carried out in this area to improve the physical and numerical techniques available. Research is also being conducted to improve the cementing quality of the well pipes and to try to prevent or eliminate corrosion of these pipes. Study of the problem of silica incrustation has led to the adoption of economic techniques for its prevention or removal. Possibilities for the commercial utilization of waste have been studied for brine and are about to be started for gases. Heat exchangers which could turn the heat at present being wasted to account for electricity generation are also being investigated. (author)

  5. Investigation of practical use situation and performance for electric transient analysis programs in the U.S. nuclear power plants

    International Nuclear Information System (INIS)

    Shimada, Yoshio

    2010-01-01

    The purposes of the present study are firstly to investigate the status of practical use of electric transient analysis programs used in U.S. nuclear power plants, which has been extracted as good examples from the information analysis of overseas troubles, and secondly to select a program to be recommended for use in implementing electric transient analysis in domestic nuclear power plants. In addition, to promote its practical use, a selected electric transient analysis program was tested by simulating the transient response during a load sequence test of an emergency diesel generator (EDG) in a domestic representative nuclear plant to evaluate its simulation accuracy by comparing its result with the measured plant data. The results obtained are as follows: (1) In U.S. nuclear power plants, simulations using electric transient analysis programs, such as ETAP, EMPT, etc., are widely performed, which contributed to improve the plant safety. (2) A selected transient analysis program EMTP was verified in its accuracy in terms of transient response of active power, current, voltage and frequency of the EDG during the load sequence test in a domestic representative nuclear power plant. (author)

  6. Operating requirements for power plants in the liberalised electricity market; Einsatzanforderungen an Kraftwerke im liberalisierten Strommarkt

    Energy Technology Data Exchange (ETDEWEB)

    Schwarzbach, G. [Vereinigte Energiewerke AG, Berlin (Germany)

    2000-07-01

    The onset of liberalisation in the German electricity market now dates back one and a half years. All processes related to this event are still in a process of rapid change. These developments have already led to a substantial drop in electricity prices, especially for large customers, leaving suppliers with modest margins. Power supply companies such as VEAG, whose operations in East Germany include power transmission, electricity production from brown coal and wholesale trade, are taking measures to meet the new demands placed on them. Unbundling regulations and market processes are forcing companies to review their organisational and operational structures. Risk management, controlling and DP support for processes are indispensable. Profit centre structures and internal performance accounting systems are being used to distribute the market pressure evenly across the company's divisions. Companies' future success will be determined by their success in trading and selling. These developments will also have an impact on power plants, i.e. on the first stage of the supply chain. For one thing, the costs of power plant operation have to be reduced significantly. Reductions in staff costs will necessitate a review of technological processes. Furthermore, maintenance strategies and availability goals have to be reassessed. Another crucial factor is to be seen in power plants' operational flexibility, and this will also have an impact on fuel supply contracts. A particular concern of single-plant companies and small generation systems will be how to deal with strong fluctuations in demand and meet the hourly supply schedules agreed on with the customer without having to resort to the expensive regulating services of the grid operators. Electricity produced in excess of demand will find not always find buyers, not even after the establishment of physical electricity exchanges. Another factor which will increase the volatility of required power generation

  7. Improving the efficiency of phytoremediation using electrically charged plant and chelating agents.

    Science.gov (United States)

    Tahmasbian, Iman; Safari Sinegani, Ali Akbar

    2016-02-01

    The low efficiency of phytoremediation is a considerable problem that limits the application of this environmentally friendly method on heavy metal-polluted soils. The combination of chelate-assisted phytoextraction and electrokinetic remediation could offer new opportunities to improve the effectiveness of phytoextraction. The current experiment aims to investigate the effects of electrical fields and chelating agents on phytoremediation efficiency. In a pot experiment using mine soil, poultry manure extract (PME), cow manure extract (CME), and ethylenediaminetetraacetic acid (EDTA) were applied to soil as chelating agents (2 g kg(-1)) at the beginning of the flowering stage. A week later, Helianthus annuus (sunflower) was negatively charged by inserting a stainless steel needle with 10 and 30 V DC electricity in the lowest part of the stems for 1 h each day for a 14-day period. At the end of the experiment, the shoot and root dry weight, lead (Pb) concentration in plant organs, translocation factor (TF), metal uptake index (UI), and soil available Pb (diethylene triamine pentaacetic acid (DTPA) extractable) were detected. Results indicated that the application of electrical fields had no significant impact on the shoot and root dry weights, while Pb concentration and UI increased in the 10-V EDTA treatment by 500 % compared to control. There was no significant difference between UI in 30- and 10-V EDTA treatments. Soil available Pb significantly increased in the 30-V treated soil. A positive correlation was observed between the available Pb in soil near the root and Pb concentration in shoot, its TF, and UI. In conclusion, a negatively charged plant along with the application of EDTA significantly increased the phytoremediation efficiency.

  8. Systematic review of biological effects of exposure to static electric fields. Part II: Invertebrates and plants.

    Science.gov (United States)

    Schmiedchen, Kristina; Petri, Anne-Kathrin; Driessen, Sarah; Bailey, William H

    2018-01-01

    The construction of high-voltage direct current (HVDC) lines for the long-distance transport of energy is becoming increasingly popular. This has raised public concern about potential environmental impacts of the static electric fields (EF) produced under and near HVDC power lines. As the second part of a comprehensive literature analysis, the aim of this systematic review was to assess the effects of static EF exposure on biological functions in invertebrates and plants and to provide the basis for an environmental impact assessment of such exposures. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) was used to guide the methodological conduct and reporting. Thirty-three studies - 14 invertebrate and 19 plant studies - met the eligibility criteria and were included in this review. The reported behavioral responses of insects and planarians upon exposure strongly suggest that invertebrates are able to perceive the presence of a static EF. Many other studies reported effects on physiological functions that were expressed as, for example, altered metabolic activity or delayed reproductive and developmental stages in invertebrates. In plants, leaf damage, alterations in germination rates, growth and yield, or variations in the concentration of essential elements, for example, have been reported. However, these physiological responses and changes in plant morphology appear to be secondary to surface stimulation by the static EF or caused by concomitant parameters of the electrostatic environment. Furthermore, all of the included studies suffered from methodological flaws, which lowered credibility in the results. At field levels encountered from natural sources or HVDC lines (plants. At far higher field levels (> 35kV/m), adverse effects on physiology and morphology, presumably caused by corona-action, appear to be more likely. Higher quality studies are needed to unravel the role of air ions, ozone, nitric oxide and corona current on

  9. Electrical Systems at Laguna Verde Nuclear Power Plant (LVNPP) after the Fukushima accident

    International Nuclear Information System (INIS)

    Lopez Jimenez, Jose Francisco

    2015-01-01

    During the accident occurred in Fukushima Daiichi Nuclear Power Station in Japan, the onsite and offsite electrical systems were affected and lost for a long time with irreversible consequences, therefore, the Mexican Regulatory Body known as the National Commission for Nuclear Safety and Safeguards (CNSNS: for its acronym in Spanish) has taken several actions to review the current capacity of the electrical systems installed at Laguna Verde NPP to cope with an event beyond of the design basis. The first action was to require to Laguna Verde NPP the compliance with Information Notice 2011-05 'Tohoku-Taiheiyou-Oki earthquake effects on Japanese Nuclear Power Plants' and with 10 CFR 50.54 'Conditions of licenses' section 'hh', both documents were issued by the United States Nuclear Regulatory Commission (USNRC). Additionally, CNSNS has taken into account the response actions emitted by other countries after the Fukushima accident. This involved the review of documents generated by Germany, Canada, United Arab Emirates, Finland, France, the United Kingdom and the Western European Nuclear Regulator's Association (WENRA). CNSNS made special inspections to verify the current capacity of the electrical systems of AC and DC. As a result of these inspections, CNSNS issued requirements that must be addressed by Laguna Verde NPP to demonstrate that it has the capacity to cope with events beyond the design basis. Parallel to the above, Mexico has participated in the Ibero-american Forum to address matters related to the 'Resistance Tests', the evaluations of the Forum have reached similar conclusions to those required by European Nuclear Safety Regulators Group (ENSREG), under the format proposed by WENRA. The actions carried out here are closely linked to the requirements established by the USNRC. It is also important to mention that: 1) the Extended Power Up-rate project was implemented in both Units of the Laguna Verde NPP before

  10. Electric protections based in microprocessors in power plants; Protecciones electricas basadas en microprocesadores en centrales generadoras

    Energy Technology Data Exchange (ETDEWEB)

    Libreros, Domitilo; Castanon Jimenez, Jose Ismael [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1988-12-31

    This article is centered around the substitution of the conventional electric protections of a power plant in connection type unit for protections based in microprocessors. A general model of conventional protection of a power plant is described and the number of analogic and digital signals that intervene in that model are quantified. A model is setup for power plant protection with microprocessors, analyzing each one of the modules that would form it. Finally, the algorithms to carry on such protection are presented. [Espanol] Este articulo se centra en torno a la sustitucion de las protecciones electricas convencionales de una central generadora en conexion tipo unidad por protecciones basadas en microprocesadores. Se describe el modelo general de proteccion convencional de una central generadora y se cuantifica el numero de senales analogicas y digitales que interviene en dicho modelo. Se propone un modelo para proteccion de centrales generadoras mediante microprocesadores, analizandose cada uno de los modulos que lo conformarian. Finalmente, se presentan los algoritmos para realizar dicha proteccion.

  11. Power unit with GT-MHR reactor plant for electricity production and district heating

    International Nuclear Information System (INIS)

    Kiryushin, A.L.; Kodochigov, N.G.; Kuzavkov, N.G.; Golovko, V.F.

    2000-01-01

    Modular helium reactor with the gas turbine (GT-MHR) is a perspective power reactor plant for the next century. The project reactor is based on experience of operation more than 50 gas-cooled reactors on carbon dioxide and helium, and also on subsequent achievements in the field of realization direct gas turbine Brayton cycle. To the beginning of 90 years, achievements in technology of gas turbines, highly effective recuperators and magnetic bearings made it possible to start development of the reactor plant project combining a safe modular gas cooled reactor and a power conversion system, realizing the highly effective Brayton cycle. The conceptual project of the commercial GT-MHR reactor plant fulfilled in 1997 by joint efforts of international firms, combines a safe modular reactor with an annular active core of prismatic fuel blocks and a power conversion system with direct gas turbine cycle. The efficiency of GT-MHR gas turbine cycle at level of about 48% makes it competitive in the electricity production market in comparison with any fossil or nuclear power stations

  12. Electric protections based in microprocessors in power plants; Protecciones electricas basadas en microprocesadores en centrales generadoras

    Energy Technology Data Exchange (ETDEWEB)

    Libreros, Domitilo; Castanon Jimenez, Jose Ismael [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1987-12-31

    This article is centered around the substitution of the conventional electric protections of a power plant in connection type unit for protections based in microprocessors. A general model of conventional protection of a power plant is described and the number of analogic and digital signals that intervene in that model are quantified. A model is setup for power plant protection with microprocessors, analyzing each one of the modules that would form it. Finally, the algorithms to carry on such protection are presented. [Espanol] Este articulo se centra en torno a la sustitucion de las protecciones electricas convencionales de una central generadora en conexion tipo unidad por protecciones basadas en microprocesadores. Se describe el modelo general de proteccion convencional de una central generadora y se cuantifica el numero de senales analogicas y digitales que interviene en dicho modelo. Se propone un modelo para proteccion de centrales generadoras mediante microprocesadores, analizandose cada uno de los modulos que lo conformarian. Finalmente, se presentan los algoritmos para realizar dicha proteccion.

  13. CHP plant Legionowo Poland. Description of the electricity market in Poland/CHP-feasibility analysis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-04-01

    In 1997, a new energy law was passed in Poland. An important element of the law is that local energy is made obligatory. The law describes obligatory tasks and procedures for the Polish municipalities related to planning and organisation of the energy sector. With the objective of supporting the Polish municipalities in their obligations according to the energy law, the project 'Energy Planning in Poland at Municipal Level - Support to Decision Makers' was launched. As part of the project, Municipal Guideline Reports have been elaborated for three model municipalities. These guidelines present the basis for energy supply plans in the three municipalities. For the city of Legionowo, the following was recommended: 1. The planning processes initiated during the project should be continued/followed up, 2. Master Plan for the district heating system should be prepared, 3. The possibilities of establishment of a major natural gas-fired CHP plant of the combined cycle type should be investigated. The present report describes the electricity market in Poland, the market in which a CHP plant in Legionowo will have to operate. Furthermore the report presents the results of the feasibility analysis carried out for a new CHP plant in Legionowo. (BA)

  14. Conversion of solar energy into electricity by using duckweed in Direct Photosynthetic Plant Fuel Cell.

    Science.gov (United States)

    Hubenova, Yolina; Mitov, Mario

    2012-10-01

    In the present study we demonstrate for the first time the possibility for conversion of solar energy into electricity on the principles of Direct Photosynthetic Plant Fuel Cell (DPPFC) technology by using aquatic higher plants. Lemna minuta duckweed was grown autotrophically in specially constructed fuel cells under sunlight irradiation and laboratory lighting. Current and power density up to 1.62±0.10 A.m(-2) and 380±19 mW.m(-2), respectively, were achieved under sunlight conditions. The influence of the temperature, light intensity and day/night sequencing on the current generation was investigated. The importance of the light intensity was demonstrated by the higher values of generated current (at permanently connected resistance) during daytime than those through the nights, indicating the participation of light-dependent photosynthetic processes. The obtained DPPFC outputs in the night show the contribution of light-independent reactions (respiration). The electron transfer in the examined DPPFCs is associated with a production of endogenous mediator, secreted by the duckweed. The plants' adaptive response to the applied polarization is also connected with an enhanced metabolism resulting in an increase of the protein and carbohydrate intracellular content. Further investigations aiming at improvement of the DPPFC outputs and elucidation of the electron transfer mechanism are required for practical application. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Research program for seismic qualification of nuclear plant electrical and mechanical equipment. Task 4. Use of fragility in seismic design of nuclear plant equipment. Volume 4

    International Nuclear Information System (INIS)

    Kana, D.D.; Pomerening, D.J.

    1984-08-01

    The Research Program for Seismic Qualification of Nuclear Plant Electrical and Mechanical Equipment has spanned a period of three years and resulted in seven technical summary reports, each of which have covered in detail the findings of different tasks and subtasks, and have been combined into five NUREG/CR volumes. Volume 4 presents study of the use of fragility concepts in the design of nuclear plant equipment and compares the results of state-of-the-art proof testing with fragility testing

  16. Analysis of the Potential for Use of Floating PV Power Plant on the Skadar Lake for Electricity Supply of Aluminium Plant in Montenegro

    Directory of Open Access Journals (Sweden)

    Vladan Durković

    2017-09-01

    Full Text Available This paper deals with a conceptual solution for the supply of a part of electrical energy for the needs of Aluminium Plant Podgorica (KAP in Montenegro from a large Floating Photovoltaic Power Plant (FPPP, that would be installed on the nearby lake. The recommended FPPP, with an innovative azimuth angle control method and total installed power of 90 MWp, would consist of 18 power plants having an installed power of 5 MWp each. An analysis using the NREL solar insolation database ascertained that the recommended FPPP power plant can achieve a significantly higher production in comparison with previous solutions. An economic analysis has shown that the recommended power plant would yield positive economic indicators. Additionally, such a power plant would significantly contribute to the reduction of CO2 emissions.

  17. Perspectives of new fossil-fuelled power plants with CO2 capture in the liberalised European electricity market

    International Nuclear Information System (INIS)

    Kober, Tom

    2014-01-01

    Against the background of an increasing importance of climate change mitigation and the liberalization of the European energy supply this study assesses the perspectives of power plants with Carbon dioxide Capture and Storage (CCS). CCS power plants represent one option to reduce CO 2 emissions of fossil energy based electricity production significantly. In this study the deployment of CCS power plants is investigated for the European electricity market until 2050 taking different energy and climate policy framework conditions into consideration. By applying an integrated model-based approach, structural changes of the whole energy system are incorporated, including their implications on costs and emissions. The study addresses uncertainties concerning future CCS power plant invest costs and efficiencies explicitly, and analyses the effects of changes of these parameters with respect to the perspectives of CCS power plants in Europe. Thereby, interdependencies on horizontal level related to competition of different technologies within the electricity sector are examined, but also vertical interdependencies resulting from effects between the upstream and energy demand sectors. In order to reflect the heterogeneity among the national energy systems in Europe, country specific particularities on technical aspects and energy policy are taken into account, such as potentials and costs of CO 2 storage, and national regulations on the use of nuclear power and renewable energy. The results of the analysis reveal a strong influence of the stringency of the EU greenhouse gas reduction target and the policy on the use of nuclear energy on the perspectives of CCS power plants in the European electricity market. Comparing the influence of different policy frameworks analysed in this study with the influences of the variation of the technical and economic CCS power plant parameters shows, that uncertainties concerning energy policy measures can have a stronger influence on the

  18. Electricity-cost savings obtained by means of nuclear plant life extension

    International Nuclear Information System (INIS)

    Forest, L.; Fletcher, T.; DuCharme, A.; Harrison, D.L.

    1987-01-01

    This study examines savings caused by nuclear-plant life extension (NUPLEX) and describes the effects of changes in assumptions on costs and technology using an approach simpler than the large economic-model simulations used in other reports. Under the simplified approach, we estimate savings at the broad national level by comparing projected costs/kWh for the typical NUPLEX plant with those for new coal-fired plants, which seem the most likely alternative in most regions. While ignoring some complications handled by the large, regionally disaggregated econometric models, the approach used in this study has advantages in sensitivity analyses. It reveals relationships between savings and basic assumptions on costs and technology in a more transparent way than in large-model simulations. We find that, absent major technological breakthroughs for present generating options, NUPLEX saves consumers money on their electric bills under most plausible economic scenarios. Using mid-range assumptions, we find that NUPLEX saves consumers a total of about dollar 180 billion spread over the period 2010-50. Under optimistic assumptions, the savings swell to over dollar 900 billion. Under extremely pessimistic assumptions, the savings actually turn negative. This wide range of estimates largely reflects the uncertainty in cost projections. Within plausible limits, higher- or lower-than-expected load growth does not affect the savings estimates. The NUPLEX construction costs stand out as the most critical unknown. If they turn out to be 50% (dollar 500 billion) above the baseline estimate savings would fall by almost 60% (dollar 105 billion). A 50% rise in nuclear fuel costs would drop baseline savings by almost 22%. A 50% increase in nuclear-plant operations-and-maintenance costs, would cut baseline savings by about 36%. These sensitivities highlight the need for continued monitoring of economic developments

  19. Technical evaluation report on the monitoring of electric power to the reactor-protection system for the Brunswick Steam Electric Plant, Units 1 and 2

    International Nuclear Information System (INIS)

    Selan, J.C.

    1982-01-01

    This report documents the technical evaluation of the monitoring of electric power to the reactor protection system (RPS) at the Brunswick Steam Electric Plant, Units 1 and 2. The evaluation is to determine if the proposed design modification will protect the RPS from abnormal voltage and frequency conditions which could be supplied from the power supplies and will meet certain requirements set forth by the Nuclear Regulatory Commission. The proposed design modifications with time delays verified by GE, will protect the RPS from sustained abnormal voltage and frequency conditions from the supplying sources

  20. Review of European regulatory and tariff experience with the sale of heat and electricity from combined heat and power plants

    International Nuclear Information System (INIS)

    Dyrelund, A.

    1991-12-01

    The Prince Edward Island Energy Corporation, Edmonton Power, Energy, Mines and Resources Canada and the Canadian Electrical Association commissioned a study to understand how electrical power and district heat from combined heat and power (CHP) plants is priced in Europe. Four northern European countries were investigated, Denmark, Germany, Sweden and Finland. These countries produce 45.8 TWh of power from combined heat and power plants, 7.1% of their annual consumption. In the case of Denmark, CHP accounts for 37.5% of its total power production. The energy situation in each country is reviewed using published statistics, and in particular the rapidly changing situation with regard to environmental and fuel taxes is examined. In order to obtain practical insights with regard to tariffs used by the various utilities, a series of generic examples were examined, supported by specific case studies. Technologies reviewed included: CHP from coal-fuelled extraction plant, CHP from coal-fuelled back pressure plant, waste heat from a municipal waste plant, and gas turbine with waste heat recovery. The benefits and risks associated with different tariff designs are discussed in detail including tariff formulae. This should enable interested parties to develop appropriate tariffs for combined heat and power plants in the context of current electrical utility policies. As a complement to the tariffs for combined heat and power plants, the design of district heating tariffs is also addressed. The typical concepts used in different countries are presented and discussed. 23 tabs

  1. Projections of cost and on-site manual-labor requirements for constructing electric-generating plants, 1980-1990

    International Nuclear Information System (INIS)

    1982-02-01

    This report represents part of a continuing effort by the Federal Government to forecast the capital and labor required for constructing electric generating capacity additions necessary to accommodate projected economic and population growth in the US and its regions. Information is included on anticipated additions to electric generating capacity, labor requirements for these additions, capital cost requirements, and forecasting models. Coal-fired, nuclear, hydro, and pumped storage power plants are considered in these forecasts

  2. Dynamis - a step towards the first HYPOGEN plant, producing hydrogen and electricity with near zero emissions

    Energy Technology Data Exchange (ETDEWEB)

    Petter E. Roekke; Nils A. Roekke; Jens Hetland; Peter Radgen; Clemens Cremer; Tore A. Torp [SINTEF Energy Research, Trondheim (Norway)

    2006-07-01

    This paper refers to the Dynamis project, which represents the second phase of the route towards the HYPOGEN initiative of the European Commission, building on results and experience from the HYPOGEN pre-feasibility study. The paper will describe the European policy of enabling hydrogen as a more significant energy carrier in Europe, through processing of fossil fuels to hydrogen and electricity with CO{sub 2} capture and storage. The paper will address the two first phases of the endeavor; the HYPOGEN pre-feasibility study was completed in 2005, and Dynamis was started early 2006. Both relate to the technical, economic and societal pre-requisites of each dimension to early decisions in order for a HYPOGEN plant to go on stream by 2012. 9 refs., 2 figs.

  3. New decisions on the nonpayment of electric power from nuclear power plants

    International Nuclear Information System (INIS)

    Gross, W.

    1981-01-01

    The author documents some decisions on the nonpayment of electricity from nuclear power plants that are difficult to be found out elsewhere, and discusses their tendencies. There are decisions of the Amtsgericht (District Court) Gelsenkirchen-Buer of the 30th of March, 1981-7C758/80, the Landgericht (Provincial Court) Stuttgart of the 18th of December, 1980-100164/80, the Amtsgericht Hamburg of the 14th of November, 1979-9C774/79, the Amtsgericht Marburg of the 27th of June, 1980-10C197/80 and the Landgericht Koeln of the 2nd of April, 1981-1S32/81. (HSCH) [de

  4. Participation of the Nuclear Power Plants in the New Brazilian Electric Energy Market

    International Nuclear Information System (INIS)

    Mathias, S.G.

    2004-01-01

    A new regulation framework has been established for the Brazilian electric energy market by a law put into effect on March 15,2004. The main overall goals of this new regulation are: to allow the lowest possible tariffs for end users, while providing the necessary economic incentives for the operation of present installations (generating plants, transmission lines, distribution networks) and the expansion of the system; long-term planning of the extension of the installations required to meet the demand growth; separation of the generation, transmission and distribution activities by allocating them into different companies; new contracts between generating and distribution companies must result from bidding processes based on lowest-tariff criteria; and energy from new generating units required to meet the demand growth must be contracted by all distributing companies integrated to the National Interconnected Grid, in individual amounts proportional to their respective markets

  5. Fish protection at steam-electric power plants: alternative screening devices

    International Nuclear Information System (INIS)

    Cannon, J.B.

    1978-01-01

    Since the enactment of the Federal Water Pollution Control Act Amendments of 1972, very few innovations have surfaced that advance the state of intake technology for fish protection at steam-electric power plants. After careful examination of basic hydrology, hydraulics, and ecology of the source water body is completed and after a suitable location for the intake is established, the design process reduces to the development of proper screening techniques and to the provision of a means of preventing resident and migratory species from entering the intake structure. As a result of this design process, three basic fish protection concepts have evolved: fish deterrence, fish collection and removal, and fish diversion. Intake screening devices that protect fish are discussed

  6. Efforts to improve safety and reliability of nuclear power plants in Kyushu Electric Power

    International Nuclear Information System (INIS)

    Yamamoto, Satoshi

    2014-01-01

    After the Fukushima accident, Kyushu Electric Power Co. took emergency safety measures requested by government to ensure power supply, coolant supply pumps and cooling water so as to keep cooling fuels in the reactor and spent fuel storage pool in case of losses of ordinary cooling capability caused by earthquake and tsunami. In order to improve safety and reliability of nuclear power plants, further efforts based on lessons learned from the Fukushima accident had been made to diversify corresponding equipment of safety measures in terms of prevention of core damage, prevention of containment failure, mitigation of radioactive materials release, cooling of spent fuel pit and ensurance of power supply, and to enhance emergency response capability so as to make operational management more complete. Additional safety measures applicable to new regulatory requirements against severe accidents were in progress. This article introduced details of such activities. (T. Tanaka)

  7. Seismic design criteria used for electrical raceway systems in commercial nuclear power plants

    International Nuclear Information System (INIS)

    Summers, P.B.; Manrique, M.A.; Nelson, T.A.

    1991-01-01

    This paper summarizes some of the seismic design approaches, relevant technical issues and criteria used over the years for design of electrical raceway systems at commercial nuclear power plant facilities. The approaches used for design and endorsed by the NRC can be seen to be quite varied. In recent years, considerably more rigor has been required for raceway design, as well as for the level of design basis documentation produced. However, there has also been a willingness by the NRC to accept rational approaches based on testing, analytical results or experience data, provided proper justification is given. Such rational approaches can simplify the significant task of analysis, design and construction of miles of raceways and thousands of raceway supports. Summarizing past practice and identifying relevant technical issues are an important first step in formalizing up-to-date criteria for new raceway designs

  8. Selection of power plant elements for future reactor space electric power systems

    International Nuclear Information System (INIS)

    Buden, D.; Bennett, G.A.; Copper, K.

    1979-09-01

    Various types of reactor designs, electric power conversion equipment, and reject-heat systems to be used in nuclear reactor power plants for future space missions were studied. The designs included gas-cooled, liquid-cooled, and heat-pipe reactors. For the power converters, passive types such as thermoelectric and thermionic converters and dynamic types such as Brayton, potassium Rankine, and Stirling cycles were considered. For the radiators, heat pipes for transfer and radiating surface, pumped fluid for heat transfer with fins as the radiating surface, and pumped fluid for heat transfer with heat pipes as the radiating surface were considered. After careful consideration of weights, sizes, reliabilities, safety, and development cost and time, a heat-pipe reactor design, thermoelectric converters, and a heat-pipe radiator for an experimental program were selected

  9. The effects of regional insolation differences upon advanced solar thermal electric power plant performance and energy costs

    Science.gov (United States)

    Latta, A. F.; Bowyer, J. M.; Fujita, T.

    1979-01-01

    This paper presents the performance and cost of four 10-MWe advanced solar thermal electric power plants sited in various regions of the continental United States. Each region has different insolation characteristics which result in varying collector field areas, plant performance, capital costs, and energy costs. The paraboloidal dish, central receiver, cylindrical parabolic trough, and compound parabolic concentrator (CPC) comprise the advanced concepts studied. This paper contains a discussion of the regional insolation data base, a description of the solar systems' performances and costs, and a presentation of a range for the forecast cost of conventional electricity by region and nationally over the next several decades.

  10. Study on condition monitoring techniques for low voltage electrical cables in nuclear power plants

    International Nuclear Information System (INIS)

    Hirao, Hideo; Sakai, Takeshi; Kajimura, Yuusaku

    2017-01-01

    Low voltage electrical cables installed in nuclear power plants are required to maintain its function in a design basis accident environment and they are qualified to that environment. The cables degrade also in normal operating conditions due to ageing and they must maintain integrity until the end of their qualified life. Demands for the condition monitoring technique for low voltage electrical cables have therefore been increasing as nuclear power plants operate longer. A single perfect method for this purpose is not available yet, but the possibility to use two different types of methods which can complement with each other has been examined. The combination of Fourier Transform Infrared Spectroscopy (FT-IR) and Indenter Modulus (IM) method was found highly effective. FT-IR is a method that determines chemical properties (changes in molecular bindings) of cables by using infrared rays, while IM is a method that determines mechanical properties (changes in hardness) of cables by indenters. Both methods are non-destructive and can be applied in-situ to the same material. Reliability of the evaluation can be assured by applying two different types of measurement principles that complement with each other. In this study, various cable samples with different kinds of insulation material (cross-linked polyethylene, ethylene propylene rubber, silicone rubber etc.) were aged with a special accelerated ageing technique which applies simultaneous thermal and radiation ageing to simulate ageing phenomena in a more realistic manner, and the degree of ageing was evaluated with FT-IR and IM. The evaluation result shows good correlation with ageing time and other ageing properties for most material types and the effectiveness of these methods were demonstrated. (author)

  11. Aging and condition monitoring of electric cables in nuclear power plants

    International Nuclear Information System (INIS)

    Lofaro, R.J.; Grove, E.; Soo, P.

    1998-05-01

    There are a variety of environmental stressors in nuclear power plants that can influence the aging rate of components; these include elevated temperatures, high radiation fields, and humid conditions. Exposure to these stressors over long periods of time can cause degradation of components that may go undetected unless the aging mechanisms are identified and monitored. In some cases the degradation may be mitigated by maintenance or replacement. However, some components receive neither and are thus more susceptible to aging degradation, which might lead to failure. One class of components that falls in this category is electric cables. Cables are very often overlooked in aging analyses since they are passive components that require no maintenance. However, they are very important components since they provide power to safety related equipment and transmit signals to and from instruments and controls. This paper will look at the various aging mechanisms and failure modes associated with electric cables. Condition monitoring techniques that may be useful for monitoring degradation of cables will also be discussed

  12. Computerized optimum distribution of loads among the turbogenerators of fossil-fuel electric power plants

    Energy Technology Data Exchange (ETDEWEB)

    Foshko, L S; Zusmanovich, L B; Flos, S L; Pal' chik, V A; Konevskii, B I

    1979-04-01

    The problem of determining the optimum distribution of loads among turbogenerators in a fossil-fuel power plant is considered based on satisfying the following requirements: distribution of electrical and thermal loads to minimize the heat expended on the turbine unit; calculation based on turbogenerator characteristics that most completely describe operating conditions; no constraints on the configuration of turbogenerator performance characteristics; calculation of load distribution based on net characteristics including the internal needs of the turbogenerators; consideration of all operational limitations in turbogenerator working conditions; results should be applicable to any predetermined differential of the load change. A flowchart is given showing the organization of the Optim-76 program complex for solution of this problem. An example is given showing application of the Optim-76 program implemented by a Minsk-32 computer in the case of a heat and electric power station with three turbogenerators. The results show that a dynamic programming method has considerable advantages for this applicaton on third-generation computers.

  13. Base-Load and Peak Electricity from a Combined Nuclear Heat and Fossil Combined-Cycle Plant

    International Nuclear Information System (INIS)

    Conklin, Jim; Forsberg, Charles W.

    2007-01-01

    A combined-cycle power plant is proposed that uses heat from a high-temperature reactor and fossil fuel to meet base-load and peak electrical demands. The high-temperature gas turbine produces shaft power to turn an electric generator. The hot exhaust is then fed to a heat recovery steam generator (HRSG) that provides steam to a steam turbine for added electrical power production. A simplified computational model of the thermal power conversion system was developed in order to parametrically investigate two different steady-state operation conditions: base load nuclear heat only from an Advanced High Temperature Reactor (AHTR), and combined nuclear heat with fossil heat to increase the turbine inlet temperature. These two cases bracket the expected range of power levels, where any intermediate power level can result during electrical load following. The computed results indicate that combined nuclear-fossil systems have the potential to offer both low-cost base-load electricity and lower-cost peak power relative to the existing combination of base-load nuclear plants and separate fossil-fired peak-electricity production units. In addition, electric grid stability, reduced greenhouse gases, and operational flexibility can also result with using the conventional technology presented here for the thermal power conversion system coupled with the AHTR

  14. Design of reactor protection systems for HTR plants generating electric power and process heat problems and solutions

    International Nuclear Information System (INIS)

    Craemer, B.; Dahm, H.; Spillekothen, H.G.

    1982-06-01

    The design basis of the reactor protection system (RPS) for HTR plants generating process heat and electric power is briefly described and some particularities of process heat plants are indicated. Some particularly important or exacting technical measuring positions for the RPS of a process heat HTR with 500 MWsub(th) power (PNP 500) are described and current R + D work explained. It is demonstrated that a particularly simple RPS can be realized in an HTR with modular design. (author)

  15. Bulk Electrical Cable Non-Destructive Examination Methods for Nuclear Power Plant Cable Aging Management Programs

    Energy Technology Data Exchange (ETDEWEB)

    Glass, Samuel W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jones, Anthony M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fifield, Leonard S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hartman, Trenton S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-01

    This Pacific Northwest National Laboratory milestone report describes progress to date on the investigation of nondestructive test methods focusing particularly on bulk electrical test methods that provide key indicators of cable aging and damage. The work includes a review of relevant literature as well as hands-on experimental verification of inspection capabilities. As nuclear power plants consider applying for second, or subsequent, license renewal to extend their operating period from 60 years to 80 years, it is important to understand how the materials installed in plant systems and components will age during that time and develop aging management programs to assure continued safe operation under normal and design basis events (DBE). Normal component and system tests typically confirm the cables can perform their normal operational function. The focus of the cable test program, however, is directed toward the more demanding challenge of assuring the cable function under accident or DBE. The industry has adopted 50% elongation at break (EAB) relative to the un-aged cable condition as the acceptability standard. All tests are benchmarked against the cable EAB test. EAB, however, is a destructive test so the test programs must apply an array of other nondestructive examination (NDE) tests to assure or infer the overall set of cable’s system integrity. Assessment of cable integrity is further complicated in many cases by vendor’s use of dissimilar material for jacket and insulation. Frequently the jacket will degrade more rapidly than the underlying insulation. Although this can serve as an early alert to cable damage, direct test of the cable insulation without violating the protective jacket becomes problematic. This report addresses the range of bulk electrical NDE cable tests that are or could be practically implemented in a field-test situation with a particular focus on frequency domain reflectometry (FDR). The FDR test method offers numerous advantages

  16. Development project HTR-electricity-generating plant, concept design of an advanced high-temperature reactor steam cycle plant with spherical fuel elements (HTR-K)

    International Nuclear Information System (INIS)

    1978-07-01

    The report gives a survey of the principal work which was necessary to define the design criteria, to determine the main design data, and to design the principal reactor components for a large steam cycle plant. It is the objective of the development project to establish a concept design of an edvanced steam cycle plant with a pebble bed reactor to permit a comparison with the direct-cycle-plant and to reach a decision on the concept of a future high-temperature nuclear power plant. It is tried to establish a largerly uniform basic concept of the nuclear heat-generating systems for the electricity-generating and the process heat plant. (orig.) [de

  17. System-Level Value of a Gas Engine Power Plant in Electricity and Reserve Production

    Directory of Open Access Journals (Sweden)

    Antti Alahäivälä

    2017-07-01

    Full Text Available Power systems require a certain amount of flexibility to meet varying demand and to be able to cope with unexpected events, and this requirement is expected to increase with the emergence of variable power generation. In this paper, we focus on gas engine power plant technology and the beneficial influence its flexible operation can have on a power system. The study introduces the concept of a combined-cycle gas engine power plant (CCGE, which comprises a combination of several gas-fired combustion engines and a steam turbine. The operation of CCGE is then comprehensively analyzed in electricity and reserve production in the South African power system and compared with combined-cycle gas turbine (CCGT technology. Even though CCGE is a form of technology that has already been commercialized, it is rarely considered as a source of flexibility in the academic research. That is the notion providing the motivation for this study. Our core contribution is to show that the flexibility of CCGE can be valuable in power systems. The methodology is based on the unit-level model of the studied system and the solving of a day-ahead unit commitment problem for each day of the simulated 11-year period. The simulation studies reveal how a CCGE is able to offer system flexibility to follow hourly load variations and capacity to provide reserve power effectively.

  18. Electric Power Plants and Generation Stations, Power Plants - is a seperate layer, however, we have them included in local building layer as well, Published in 2010, 1:2400 (1in=200ft) scale, Effingham County Government.

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — Electric Power Plants and Generation Stations dataset current as of 2010. Power Plants - is a seperate layer, however, we have them included in local building layer...

  19. Increased electrical efficiency in biofueled CHP plants by biomass drying; Oekat elutbyte i biobraensleeldade kraftvaermeanlaeggningar med hjaelp av foertorkning

    Energy Technology Data Exchange (ETDEWEB)

    Berntsson, Mikael; Thorson, Ola; Wennberg, Olle

    2010-09-15

    In this report, integrated biofuel drying has been studied for two cases. One is the existing CHP plant at ENA Energi AB in Enkoeping and the other is a theoretical case. The thought plant is assumed to have a steam generating performance that is probable for a future CHP plant optimised for power production. The CHP plant at ENA Energi with its integrated bed drying system has been used as a model in this study. The plant has a grate fired boiler with the capacity to co-produce 24 MW electricity and 55 MW heat. It is designed to use biofuel with moisture content between 40 and 55 %. However, the boiler is able to manage even dryer fuels with the moisture content of about 35 % without complications. Since the boiler operates on part load during most of the season, there are free capacity which can be used for delivering heat to the drying system. The increased power production is a result of mainly two factors: Increased demand of heat as the dryer uses district heating and thus improved possibility to produce steam; and, The season of operation can be extended, since the point where the minimum load of the boiler occurs can be pushed forward as a result of increased demand of heat. For future CHP plants, an optimised plant has been used as a model. The steam data is assumed to be 170 bar and 540 deg C with reheating. For this plant, both on-site and offsite drying have been studied. The case study comprises a whole season of operation and the fuel is assumed to be dried from 50 to 10 %. The size of the optimised plant is as to fit the dimension of a main production unit in a district heating net equal to the tenth largest in Sweden. Heat delivery is assumed to be 896 GWh/year and the maximum heat delivery of district heating is 250 MW. The sizing of the boiler is made to maximise the production of electricity, and thus dependent of the drying strategy used. Flue gas condensation is assumed to be used as much as possible. It decreases the basis for power production

  20. Impact of drought on U.S. steam electric power plant cooling water intakes and related water resource management issues.

    Energy Technology Data Exchange (ETDEWEB)

    Kimmell, T. A.; Veil, J. A.; Environmental Science Division

    2009-04-03

    This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements their overall research effort by evaluating water availability at power plants under drought conditions. While there are a number of competing demands on water uses, particularly during drought conditions, this report focuses solely on impacts to the U.S. steam electric power plant fleet. Included are both fossil-fuel and nuclear power plants. One plant examined also uses biomass as a fuel. The purpose of this project is to estimate the impact on generation capacity of a drop in water level at U.S. steam electric power plants due to climatic or other conditions. While, as indicated above, the temperature of the water can impact decisions to halt or curtail power plant operations, this report specifically examines impacts as a result of a drop in water levels below power plant submerged cooling water intakes. Impacts due to the combined effects of excessive temperatures of the returned cooling water and elevated temperatures of receiving waters (due to high ambient temperatures associated with drought) may be examined in a subsequent study. For this study, the sources of cooling water used by the U.S. steam electric power plant fleet were examined. This effort entailed development of a database of power plants and cooling water intake locations and depths for those plants that use surface water as a source of cooling water. Development of the database and its general characteristics are described in Chapter 2 of this report. Examination of the database gives an indication of how low water levels can drop before cooling water intakes cease to function. Water level drops are evaluated against a number of different power plant characteristics, such as the nature of the water source (river vs. lake or reservoir

  1. The effects of aging on electrical and I ampersand C components: Results of US Nuclear Plant Aging Research

    International Nuclear Information System (INIS)

    Aggarwal, S.K.; Gunther, W.E.

    1993-01-01

    The US NRC's hardware oriented engineering research program for plant aging and degradation monitoring has achieved results in the area of electrical, control, and instrumentation (ECI) components used in nuclear power plants (NPPs). The principal goals of the program, known as the Nuclear Power Plant Aging Research (NPAR) Program, are to understand the effects of age-related degradation in NPPs and how to manage and mitigate them effectively. This paper describes how these goals have been achieved for key ECI components used in the safety systems of NPPs. The status of relevant on-going and planned research projects is also provided

  2. The effects of aging on electrical and I ampersand C components: Results of US nuclear plant aging research

    International Nuclear Information System (INIS)

    Aggarwal, S.K.; Gunther, W.E.

    1991-01-01

    The US NRC's hardware oriented engineering research program for plant aging and degradation monitoring has achieved results in the area of electrical, control, and instrumentation (ECI) components used in nuclear power plants (NPPs). The principal goals of the program, known as the Nuclear Power Plant Aging Research (NPAR) Program, are to understand the effects of age-related degradation in NPPs and how to manage and mitigate them effectively. This paper describes how these goals have been achieved for key ECI components used in the safety systems of NPPs. The status of relevant on-going and planned research projects is also provided

  3. 76 FR 388 - Southern Nuclear Operating Company; Vogtle Electric Generating Plant, Unit Nos. 1 and 2; Notice...

    Science.gov (United States)

    2011-01-04

    ... Operating Company; Vogtle Electric Generating Plant, Unit Nos. 1 and 2; Notice of Consideration of Issuance... Web site http://www.regulations.gov . Because your comments will not be edited to remove any... will not edit their comments to remove any identifying or contact information, and therefore, they...

  4. 76 FR 30206 - Southern Nuclear Operating Company, Inc., Vogtle Electric Generating Plant, Unit 1 and 2; Notice...

    Science.gov (United States)

    2011-05-24

    ... Operating Company, Inc., Vogtle Electric Generating Plant, Unit 1 and 2; Notice of Consideration of Issuance..., http://www.regulations.gov . Because your comments will not be edited to remove any identifying or... received from other persons for submission to the NRC inform those persons that the NRC will not edit their...

  5. Renewable energies: the choice of invitation to tender candidates for the electric power plants supplied by biomass or biogas

    International Nuclear Information System (INIS)

    2005-01-01

    To contribute to the french objectives of renewable energies development, the Ministry of Industry proposed an invitation to tender for the realization at the first of january 2007 of electric power plants (more than 12 MW) from biomass and biogas. This document presents the selected projects. (A.L.B.)

  6. 75 FR 75704 - Pacific Gas and Electric Company (Diablo Canyon Nuclear Power Plant, Units 1 And 2); Notice of...

    Science.gov (United States)

    2010-12-06

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-275-LR; 50-323-LR] Pacific Gas and Electric Company (Diablo Canyon Nuclear Power Plant, Units 1 And 2); Notice of Appointment of Adjudicatory Employee... Seismologist, Office of Nuclear Material Safety and Safeguards, has been appointed as a Commission adjudicatory...

  7. A multistage coordinative optimization for sitting and sizing P2G plants in an integrated electricity and natural gas system

    DEFF Research Database (Denmark)

    Zeng, Q.; Fang, J.; Chen, Z.

    2016-01-01

    Power-to-Gas (P2G) allows for the large scale energy storage which provides a big potential to accommodate the rapid growth of the renewables. In this paper, a long-term optimization model for the co-planning of the electricity and natural gas systems is presented. The P2G Plants are optimally...

  8. 76 FR 66333 - Carolina Power & Light Company, H.B. Robinson Steam Electric Plant, Unit No. 2; Environmental...

    Science.gov (United States)

    2011-10-26

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-261; NRC-2011-0247] Carolina Power & Light Company, H.B. Robinson Steam Electric Plant, Unit No. 2; Environmental Assessment and Finding of No Significant... Facility Operating License No. DPR-23, issued to Carolina Power & Light Company (the licensee), for...

  9. 75 FR 11918 - General Electric Kentucky Glass Plant, Lighting, LLC, Including On-Site Leased Workers From the...

    Science.gov (United States)

    2010-03-12

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-72,011] General Electric Kentucky Glass Plant, Lighting, LLC, Including On-Site Leased Workers From the Patty Tipton Company, Aetna Building Maintenance, and Concentra, Lexington, KY; Amended Certification Regarding Eligibility To Apply for Worker Adjustment Assistance In accordanc...

  10. The capital investment and electricity cost of 2 x 600 MW PWR nuclear power plant in China

    International Nuclear Information System (INIS)

    Li Zhihua; Xing Leiming

    1990-01-01

    The capital investment and electricity cost of 2 x 600 MW PWR nuclear power plant in China are studied. If the rate of interest R 1 and of escalation R 2 are 7.2% and 10.0% respectively for RMB and the rate of interest R 1 and of escalation R 2 are 6.5% and 2.0% respectively for MK, the total investment is 9270 M RMB Yuan, the Specific investment is 7320 RMB Yuan/kW, the average selling electricity cost is 0.16 RMB Yuan/(kW·h). If the selling electricity price is 0.24 RMB Yuan/(kW·h), the rate of inner return is 7.7%, the dynamic return period is 13 years, the national income is 15800 M RMB Yuan, the profit of nuclear power plant after taxation is 6800 M RMB Yuan

  11. Concept of electric power output control system for atomic power generation plant utilizing cool energy of stored snow

    International Nuclear Information System (INIS)

    Kamimura, Seiji; Toita, Takayuki

    2003-01-01

    A concept of the SEAGUL system (Snow Enhancing Atomic-power Generation UtiLity) is proposed in this paper. Lowering the temperature of sea water for cooling of atomic-power plant will make a efficiency of power generation better and bring several ten MW additional electric power for 1356 MW class plant. The system concept stands an idea to use huge amount of seasonal storage snow for cooling water temperature control. In a case study for the Kashiwazaki-Kariwa Nuclear Power Station, it is estimated to cool down the sea water of 29degC to 20degC by 80 kt snow for 3 hours in a day would brought 60 MWh electric power per a day. Annually 38.4 Mt of stored snow will bring 1800 MWh electric power. (author)

  12. The impact of the new investments in combined cycle gas turbine power plants on the Italian electricity price

    International Nuclear Information System (INIS)

    Fontini, Fulvio; Paloscia, Lorenzo

    2007-01-01

    The paper measures the variation of the electricity price in Italy within the next 10 years due to the recent investment flow in combined cycle gas turbine (CCGT) power plants. It starts by investigating the possibility of decoupling gas and oil prices on the basis of hypotheses about the amount of existing resources and plausible technical substitutability assumptions of the latter with the former. In particular, it is supposed that, in the Italian market, natural gas will play a crucial role which oil has had in power generation. The price of electricity stemming from natural gas is then calculated taking into account the role of the power mix restructuring that derives from the CCGT power plants investments. Under reasonable assumptions, it is shown that a net reduction of at least 17% on the electric price is likely to be expected. (author)

  13. Electricity generation in Germany under the conditions of climate policy and liberalized electricity market. Valuation of power plant investments with Bayesian influence diagrams

    International Nuclear Information System (INIS)

    Oetsch, Rainald

    2012-03-01

    Power plant investors face large uncertainties due to ongoing liberalization, climate policy, and long investment horizons. This study provides a probabilistic appraisal of power plant investments within the framework of Bayesian decision theory. A Bayesian influence diagram is used for setting up a discounted cash flow model and analysing the profitability of power plants. As the study explicitly models merit order pricing, the pass-through of random fuel and carbon costs may be analysed. The study derives probabilistic statements about net present values of single investments and company portfolios and explores the sensitivity of profits to variations of select input variables. In the majority of cases, an increase in the price of emission allowances also increases the net present value of existing power plant portfolios. A substantially increased carbon prices also is the prerequisite to diversify power plant portfolios by gas and CCS plants. For the currently prevailing German electricity market, we argue that investors may lack incentives for new investments in fossil generation, a finding that holds true also with implementation of CCS. Our estimates are conservative, as profitability will further deteriorate with the build-up of renewables.

  14. Changes of the soil environment affected by fly ash dumping site of the electric power plant

    Science.gov (United States)

    Weber, Jerzy; Gwizdz, Marta; Jamroz, Elzbieta; Debicka, Magdalena; Kocowicz, Andrzej

    2014-05-01

    In this study the effect of fly ash dumping site of the electric power plant on the surrounding soil environment was investigated. The fly ash dumping site collect wastes form brown coal combustion of Belchatow electric power station, central Poland. The dumping site is surrounding by forest, where pine trees overgrow Podzols derived from loose quartz sands. The soil profiles under study were located at a distance of 50, 100, 400 and 500 m from the dumping site, while control profiles were located 8 km away from the landfill. In all horizons of soil profiles the mpain hysico-chemical and chemical properties were determined. The humic substances were extracted from ectohumus horizons by Shnitzer's method, purified using XAD resin and freeze-dried. The fulvic acids were passed through a cation exchange column and freeze-dried. Optical density, elemental composition and atomic ratios were determined in the humic and fulvic acids. Organic carbon by KMnO4 oxidation was also determined in the organic soil horizons. The fly ash from the landfill characterized by high salinity and strong alkaline reaction (pH=10), which contributed significantly to the changes of the pH values in soils horizons. The alkalization of soils adjacent to the landfill was found, which manifested in increasing of pH values in the upper soil horizons. The impact of the landfill was also noted in the changes of the soil morphology of Podzols analysed. As a result of the alkalization, Bhs horizons have been converted into a Bs horizons. Leaching of low molecular humus fraction - typical for podzolization - has been minimized as a result of pH changes caused by the impact of the landfill, and originally occurring humic substances in the Bhs horizon (present in the control profiles) have been probably transported out of the soil profile and then into the groundwater.

  15. Recovery Act: Brea California Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas

    Energy Technology Data Exchange (ETDEWEB)

    Galowitz, Stephen

    2012-12-31

    The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Olinda Landfill near Brea, California. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting Project reflected a cost effective balance of the following specific sub-objectives: • Meeting the environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas • Utilizing proven and reliable technology and equipment • Maximizing electrical efficiency • Maximizing electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Olinda Landfill • Maximizing equipment uptime • Minimizing water consumption • Minimizing post-combustion emissions • The Project produced and will produce a myriad of beneficial impacts. o The Project created 360 FTE construction and manufacturing jobs and 15 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. o By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). o The Project will annually produce 280,320 MWh’s of clean energy o By destroying the methane in the landfill gas, the Project will generate CO2 equivalent reductions of 164,938 tons annually. The completed facility produces 27.4 MWnet and operates 24 hours a day, seven days a week.

  16. CNE (Embalse nuclear power plant): probabilistic safety study. Electric power supply. Events sequence

    International Nuclear Information System (INIS)

    Figueroa, N.

    1987-01-01

    The plant response to the occurrence of the starting event 'total loss of electric power supply to class IV and class III' is analyzed. This involves the study of automatical actions of safety and process systems as well as the operator actions. The probabilistic evaluation of starting event frequency is performed through fault-tree techniques. The frequency of occurrence 'loss of electric power supply to class IV (λIV = 0.56/year) and the probability of failure to demand of 'reserve' generating groups (Pd III 6.79 x 10 -3 ) contribute to the mentioned frequency. As soon as the starting event occurs, the reactor power must be reduced to 0%, the fuel must be cooled through the thermo siphon and decay heat has to be removed. The events sequence analysis leads to the conclusion that the non shutting down of the reactor with any of the shutdown systems is 'incredible' (10 -6 /year). In all cases the fuel is cooled by building the thermo siphon except when a substantial inventory loss exist due to a closure failure of some valve of pressure and inventory control system. The order of magnitude of the failure of decay heat removal through the steam generators is 4 x 10 -4 . This removal would be assured by the emergency water system. Therefore, the frequency of the sequence of possible core meltdown, when the reactor does not shut down is: λ = 5 x 10 -9 /year and for the failure of heat removal: λ = 2 x 10 -6 /year. (Author)

  17. The PBMR electric power generation plant; La planta de generacion de energia electrica PBMR

    Energy Technology Data Exchange (ETDEWEB)

    Perez S, G.; Santacruz I, I.; Martin del Campo M, C. [FI-UNAM, 04500 Mexico D.F. (Mexico)] e-mail: gabriela_perez@engineer.com

    2003-07-01

    This work has as purpose to diffuse in a general way the technology of the one modulate reactor of pebble bed. Because our country is in developing ways, the electric power demand goes in increase with that which it is presented the great challenge of satisfying this necessity, not only being in charge of the one fact per se, but also involving the environmental aspect and of security. Both factors are covered by the PBMR technology, which we approach in their basic aspects with the purpose that the public opinion knows it and was familiarized with this type of reactors that well could represent a solution for our growing electricity demand. We will treat this reactor visualizing it like part of a generation plant defining in first place to the itself reactor. We will see because that the system PBMR consists of 2 main sections: the reactor and the unit of energy conversion, highlighting that the principle of the PBMR reactor operation is based on the thermodynamic Brayton cycle cooled by helium and that, in turn, it transmits the energy in form of heat toward a gas turbine. In what concerns to the fuel, it peculiar design due to its spherical geometry is described, aspect that make to this reactor different from the traditional ones that use fuel rods. In fact in the fuel spheres of the PBMR it is where it resides great part of it inherent security since each particle of fuel, consistent in uranium dioxide, is lined one with coal and silicon carbide those which form an impenetrable barrier containing to the fuel and those radioactive products that result of the nuclear reactions. Such particles are encapsulated in graphite to form the sphere or 'pebble', of here born the name of this innovative technology. (Author)

  18. Carbon Capture and Water Emissions Treatment System (CCWESTRS) at Fossil-Fueled Electric Generating Plants

    Energy Technology Data Exchange (ETDEWEB)

    P. Alan Mays; Bert R. Bock; Gregory A. Brodie; L. Suzanne Fisher; J. Devereux Joslin; Donald L. Kachelman; Jimmy J. Maddox; N. S. Nicholas; Larry E. Shelton; Nick Taylor; Mark H. Wolfe; Dennis H. Yankee; John Goodrich-Mahoney

    2005-08-30

    The Tennessee Valley Authority (TVA), the Electric Power Research Institute (EPRI), and the Department of Energy-National Energy Technologies Laboratory (DOE-NETL) are evaluating and demonstrating integration of terrestrial carbon sequestration techniques at a coal-fired electric power plant through the use of Flue Gas Desulfurization (FGD) system gypsum as a soil amendment and mulch, and coal fly ash pond process water for periodic irrigation. From January to March 2002, the Project Team initiated the construction of a 40 ha Carbon Capture and Water Emissions Treatment System (CCWESTRS) near TVA's Paradise Fossil Plant on marginally reclaimed surface coal mine lands in Kentucky. The CCWESTRS is growing commercial grade trees and cover crops and is expected to sequester 1.5-2.0 MT/ha carbon per year over a 20-year period. The concept could be used to meet a portion of the timber industry's needs while simultaneously sequestering carbon in lands which would otherwise remain non-productive. The CCWESTRS includes a constructed wetland to enhance the ability to sequester carbon and to remove any nutrients and metals present in the coal fly ash process water runoff. The CCWESTRS project is a cooperative effort between TVA, EPRI, and DOE-NETL, with a total budget of $1,574,000. The proposed demonstration project began in October 2000 and has continued through December 2005. Additional funding is being sought in order to extend the project. The primary goal of the project is to determine if integrating power plant processes with carbon sequestration techniques will enhance carbon sequestration cost-effectively. This goal is consistent with DOE objectives to provide economically competitive and environmentally safe options to offset projected growth in U.S. baseline emissions of greenhouse gases after 2010, achieve the long-term goal of $10/ton of avoided net costs for carbon sequestration, and provide half of the required reductions in global greenhouse gases by

  19. Achievement report on the development of solar thermal electric power plant technologies. Annex; Taiyonetsu hatsuden plant gijutsu kaihatsu seika hokokusho. Fuzoku shiryo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1985-07-01

    The two solar thermal electric power pilot plants are of the tower concentration type and the flat/curved surface concentration type. For the first time in the world, they succeeded in operating at a rated output of 1,000kW in August and September, 1981, respectively. Sunshine was inputted at an unstable rate, and the plants were operated under various load patterns. Studies were conducted and an optimum operating technique is established. Since designing, construction, and operation were carried for two types of pilot plants, quantities of useful data were collected through a variety of experiences. Valuable hints and design data were provided for use in the construction of full-scale power plants in the future. Element units developed for the plants were high-reflectance mirrors, high-precision tracking mechanisms, solar heat collectors of the cavity type and paraboloidal type, and molten salt heat accumulators. The tower concentration type plant exhibits a power generation efficiency of 16-17% and an overall plant efficiency of 3.1-4.4%. The maximum overall efficiency a month is 3.9% with the flat/curved surface concentration type plant. (NEDO)

  20. The problem of ensuring the seismic stability of atomic electric power plant equipment and ways of solving it

    International Nuclear Information System (INIS)

    Kaznovskii; Filippov, G.A.

    1983-01-01

    By seismic stability the authors mean the ability of the equipment and buildings to retain certain properties when subjected to seismic loads: leakproofness, strength, the absence of any residual changes of shape, which interfere with normal operation, ability to be repaired, nuclear and radiation safety. The latter requirement is the main thing which differentiates atomic electric power plants from other constructions, including other power-generation plants. Whereas, for example, an accident in the event of an earthquake in a thermal electric power plant can be regarded as a local accident, and the measures to ensure seismic stability are determined by economic factors and safety requirements for the operating staff, to ensure the seismic stability of an AES it is essential to take account in the first instance of the possibility of dangerous radiation effects both in the AES and in the vast area around it

  1. Study on thermal electric conversion system for FBR plant. Investigation for effective EVST waste heat recovery system

    International Nuclear Information System (INIS)

    Maekawa, Isamu; Kurata, Chikatoshi

    2004-02-01

    Recently, it has been important to reuse discharged heat energy from present nuclear plant, especially from sodium cooled FBR, which are typical high temperature system, in the view of reduction of environmental burden and improvement of heat efficiency for plant. The thermal electric conversion system can work only the temperature difference and has been applied to the limited fields such as space or military, however, that results show good merits for reliability, maintenance free, and so on. Recently, the development of new thermal electric conversion elements has made remarkable progress. In this study, for the effective utilization of waste heat from Monju', the prototype plant of FBR, we made an investigation of electric power generating system maintaining the cooling faculty by applying the thermal electric conversion system to sodium cooling line of EVST. Using the new type iron based thermal electric conversion elements, which are plentiful, economical and good for environmental harmonization, we have calculated the amount of heat exchange and power generation from sodium cooling line of EVST, and have investigated the module sizing, cost and subject to be settled. The results were , (1)The amount of power generation from sodium cooling line of EVST is smaller about one figure than motive power of sodium cooler fan. However, if Seebeck coefficient and heat conductivity of iron based thermal electric conversion elements shall be improved, power from sodium cooling line shall be able to cover the motive power. (2) The amount of heat released from sodium cooling line after the installation of thermal electric conversion module covers the necessity to maintain the sodium cooling faculty. (3) In case of the installation of module to the sodium cooler, it should be reconstructed because of tube arrangement modification. In case of the installation of module to the sodium connecting line, air ventilation system is needed to suppress the room temperature. (4) As

  2. 76 FR 77022 - In the Matter of Carolina Power & Light Company, H.B. Robinson Steam Electric Plant, Unit No. 2...

    Science.gov (United States)

    2011-12-09

    ... and 72-3] In the Matter of Carolina Power & Light Company, H.B. Robinson Steam Electric Plant, Unit No. 2, H. B. Robinson Steam Electric Plant, Unit 2, Independent Spent Fuel Storage Installation; Order Approving Indirect Transfer of Control of Licenses I. Carolina Power & Light Company (CP&L, the licensee) is...

  3. Report on countermeasure to plant life management of the nuclear power plants at three electric power companies

    International Nuclear Information System (INIS)

    1999-01-01

    Three nuclear power reactors of the Fukushima-1 nuclear power plant, the Mihama-1 power plant and the Tsuruga-1 power plant were investigated according to the estimation plan shown in the Fundamental Concept on Plant Life Management of Agency of Natural Resources and Energy, Ministry of International Trade and Industry on April, 1996. Their reports contained the technical evaluation against, the responsive items to and the future examinations of the plant life management. In special, in the responsive items, some items to be added to the present maintenance process and some technical developmental problems are described in details and concretely. (G.K.)

  4. On the evolution of the regulatory guidance for seismic qualification of electric and active mechanical equipment for nuclear power plants

    International Nuclear Information System (INIS)

    Ng, Ching Hang; Chen, Pei-Ying

    2009-01-01

    All electric and active mechanical equipment important to safety for nuclear power plants must be seismically qualified by testing, analysis, or combined analysis and testing. The general requirements for seismic qualification of electric and active mechanical equipment in nuclear power plants are delineated in Appendix S, 'Earthquake Engineering Criteria for Nuclear Power Plants,' to Title 10, Part 50, 'Domestic Licensing of Production and Utilization Facilities,' of the Code of Federal Regulations (10 CFR Part 50), item 52.47(20) of 10 CFR 52.47, 'Contents of Applications; Technical Information,' and Appendix A, 'Seismic and Geologic Siting Criteria for Nuclear Power Plants,' to 10 CFR Part 100, 'Reactor Site Criteria.' The United States Nuclear Regulatory Commission (NRC) issued Revision 2 of Regulatory Guide (RG) 1.100, 'Seismic Qualification of Electric and Mechanical for Nuclear Power Plants' in 1988, which endorsed, with restrictions, exceptions, and clarifications, Institute of Electrical and Electronics Engineers (IEEE) Standard 344-1987 'IEEE Recommended Practice for Seismic Qualification of Class 1E Equipment for Nuclear Power Generating Stations,' for use in seismic qualification of both electric and mechanical equipment. In 2008, the staff at the NRC drafted Revision 3 of RG 1.100 to endorse, with restrictions, exceptions, and clarifications, the IEEE Std 344-2004 and the American Society of Mechanical Engineers (ASME) QME-1-2007 'Qualification of Active Mechanical Equipment Used in Nuclear Power Plants.' IEEE Std 344-2004 was an update of Std 344-1987 and ASME QME-1-2007 was an update of QME-1-2002. The major changes in IEEE Std 344-2004 and ASME QME-1-2007 include the update and expansion of criteria and procedures describing the use of experience data as a method for seismic qualification of Class 1E electric equipment (including I and C components) as well as active mechanical equipment. In this paper, the staff will compare the draft Revision 3 to

  5. The long term plan for the integration of nuclear power plants into the Turkish Electrical Power System

    International Nuclear Information System (INIS)

    Kutukcuoglu, A.

    1974-03-01

    The report covers in detail the study of the expansion of the Turkish Electric Power System for the period 1980-1987. Load forecast is done by sectors and regions and inter-regions power balances gave the basis for the high voltage network configurations. Expansion alternatives are defined giving priority to hydroelectric projects, to local resources and nuclear power plants concurrently with conventional plants (lignite and oil). Several reactor strategies are analysed with LWR, HWR, FBR and HTGR power plants. Present worth value method is used for comparison of alternatives and sensitivity analysis is done for those ranked in the first places. Load flow, transient stability and frequency deviation studies of the power system are studied carefully by means of A.C. calculator and digital computer codes in order to see the influence of the introduction of large-sized power plants (600-750MW(e)) and their location in the power system. A 600MW(e) nuclear plant in 1983 and a second one of 750MW(e) in 1987 should, it is found, be commissioned into the system. The economic optimization was done with two computer programmes developed by KFA (Juelich): IACO for fuelling nuclear plant and RESTRAPO for power system with high hydroelectric component. The report is bound in three volumes: Volume I: Summary and Conclusions; Volume II: System Planning; Volume III: Electrical Survey

  6. Interaction among competitive producers in the electricity market: An iterative market model for the strategic management of thermal power plants

    International Nuclear Information System (INIS)

    Carraretto, Cristian; Zigante, Andrea

    2006-01-01

    The liberalization of the electricity sector requires utilities to develop sound operation strategies for their power plants. In this paper, attention is focused on the problem of optimizing the management of the thermal power plants belonging to a strategic producer that competes with other strategic companies and a set of smaller non-strategic ones in the day-ahead market. The market model suggested here determines an equilibrium condition over the selected period of analysis, in which no producer can increase profits by changing its supply offers given all rivals' bids. Power plants technical and operating constraints are considered. An iterative procedure, based on the dynamic programming, is used to find the optimum production plans of each producer. Some combinations of power plants and number of producers are analyzed, to simulate for instance the decommissioning of old expensive power plants, the installation of new more efficient capacity, the severance of large dominant producers into smaller utilities, the access of new producers to the market. Their effect on power plants management, market equilibrium, electricity quantities traded and prices is discussed. (author)

  7. OPTIMIZING TECHNOLOGY TO REDUCE MERCURY AND ACID GAS EMISSIONS FROM ELECTRIC POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey C. Quick; David E. Tabet; Sharon Wakefield; Roger L. Bon

    2005-10-01

    Maps showing potential mercury, sulfur, chlorine, and moisture emissions for U.S. coal by county of origin were made from publicly available data (plates 1, 2, 3, and 4). Published equations that predict mercury capture by emission control technologies used at U.S. coal-fired utilities were applied to average coal quality values for 169 U.S. counties. The results were used to create five maps that show the influence of coal origin on mercury emissions from utility units with: (1) hot-side electrostatic precipitator (hESP), (2) cold-side electrostatic precipitator (cESP), (3) hot-side electrostatic precipitator with wet flue gas desulfurization (hESP/FGD), (4) cold-side electrostatic precipitator with wet flue gas desulfurization (cESP/FGD), and (5) spray-dry adsorption with fabric filter (SDA/FF) emission controls (plates 5, 6, 7, 8, and 9). Net (lower) coal heating values were calculated from measured coal Btu values, and estimated coal moisture and hydrogen values; the net heating values were used to derive mercury emission rates on an electric output basis (plate 10). Results indicate that selection of low-mercury coal is a good mercury control option for plants having hESP, cESP, or hESP/FGD emission controls. Chlorine content is more important for plants having cESP/FGD or SDA/FF controls; optimum mercury capture is indicated where chlorine is between 500 and 1000 ppm. Selection of low-sulfur coal should improve mercury capture where carbon in fly ash is used to reduce mercury emissions. Comparison of in-ground coal quality with the quality of commercially mined coal indicates that existing coal mining and coal washing practice results in a 25% reduction of mercury in U.S. coal before it is delivered to the power plant. Further pre-combustion mercury reductions may be possible, especially for coal from Texas, Ohio, parts of Pennsylvania and much of the western U.S.

  8. Health and environmental effects of coal-fired electric power plants

    International Nuclear Information System (INIS)

    Morris, S.C.; Hamilton, L.D.

    1984-05-01

    This paper describes health and environmental impacts of coal-fired electric power plants. Effects on man, agriculture, and natural ecosystems are considered. These effects may result from direct impacts or exposures via air, water, and food chains. The paper is organized by geographical extent of effect. Occupational health impacts and local environmental effects such as noise and solid waste leachate are treated first. Then, regional effects of air pollution, including acid rain, are analyzed. Finally, potential global impacts are examined. Occupational health concerns considered include exposure to noise, dust, asbestos, mercury, and combustion products, and resulting injury and disease. Local effects considered include noise; air and water emissions of coal storage piles, solid waste operations, and cooling systems. Air pollution, once an acute local problem, is now a regional concern. Acute and chronic direct health effects are considered. Special attention is given to potential effects of radionuclides in coal and of acid rain. Finally, potential global impacts associated with carbon dioxide emissions are considered. 88 references, 9 tables

  9. Biomass analysis at palm oil factory as an electric power plant

    Science.gov (United States)

    Yusniati; Parinduri, Luthfi; Krianto Sulaiman, Oris

    2018-04-01

    Biomassa found in palm oil mill industryis a by-product such as palm shell, fiber, empty fruit bunches and pome. The material can be used as an alternative fuel for fossil fuel. On PTPN IVpalm oil millDolokSinumbah with a capacity of 30 tons tbs/hour of palm fruit fiber and palm shells has been utilized as boiler fuel to produce steam to supplyboilers power plant. With this utilization, the use of generators that using fossil fuel can be reduced, this would provide added value for the company. From the analysis, the fiber and shell materials were sufficient to supply 18 tons/hoursteam for the boiler. Shell material even excess as much as 441,5 tons per month. By utilizing the 2 types of biomass that is available alone, the electricity needs of the factory of 734 Kwh can be met. While other materials such as empty bunches and pome can be utilized to increase the added value and profitability for the palm oil mill.

  10. Teaching of severe accident of Fukushima Daiichi Nuclear Power Plants of Tokyo Electric Power

    International Nuclear Information System (INIS)

    Saito, Shinzo

    2011-01-01

    The Great East Japan Earthquake and accompanied tsunami brought about the severe accident at Fukushima Daiichi Nuclear Power Plants of Tokyo Electric Power Co., Inc. For 'No more Fukushima', twelve teaching of the accident was pointed out as follows: 1) natural disasters and external events shall be taken into consideration, 2) severe accident shall be included into safety regulation, 3) all possibility of hydrogen explosion shall be excluded, 4) diversity of safety important component and equipment shall be added with sufficient period of outage, 5) siting of multiple units at the same site shall be avoided at quake-prone country like Japan, 6) accident response environment for operators shall be improved, 7) accident convergence termination system shall be established so as to concentrate technical experience and knowledge, 8) off-site center shall be improved, 9) resident evacuation, consumption limit of food, radiation exposure and soil contamination limit shall be decided openly, 10) nuclear regulation and prevention of disaster shall be conducted by unitary organization to gain public trust, 11) fostering of safety culture among relevant enterprises shall be more encouraged and 12) nuclear industry shall develop reactor such as with no core meltdown or no evacuation and environmental contamination even if reactor core would be meltdown. (T. Tanaka)

  11. Dispersion of pollutants, environmental externalities due to a pulverized coal power plant and their effect on the cost of electricity

    International Nuclear Information System (INIS)

    Czarnowska, Lucyna; Frangopoulos, Christos A.

    2012-01-01

    Energy conversion systems generate pollution that causes damages to the environment and the society. The objective of this work is to study the dispersion of pollutants and assess the environmental and social cost due to pollution from such a system. For this purpose, a pulverized coal power plant is selected. Using thermodynamic principles combined with empirical techniques, the quantities of pollutants emitted by the plant are estimated. Then, using the EcoSenseWeb software, which is based on the results of the ExternE project, the external environmental cost (externalities) of pollution is assessed. The plant is considered as located in four different cities in Poland and the externalities are calculated for each city separately. It is shown that the external environmental cost has a strong influence on the unit cost of electricity. In addition, the dispersion of pollutants is presented for the plant located in Olsztyn city. Furthermore, the plant is considered as located near the capitals of European countries and the environmental externalities are calculated for each city. The neighboring countries that are strongly affected by the plant in each particular city are identified. The sensitivity of the unit cost of electricity to certain important parameters is investigated. -- Highlights: ► The external cost of pollution has a significant impact on the cost of electricity. ► The results depend on the particular plant, location and level (local-global). ► Externalities make the installation of abatement equipment economical. ► The source location of emissions has a significant effect on the external cost. ► The transboundary pollution has a strong effect on the environmental cost.

  12. The effects of electric power industry restructuring on the safety of nuclear power plants in the United States

    Science.gov (United States)

    Butler, Thomas S.

    Throughout the United States the electric utility industry is restructuring in response to federal legislation mandating deregulation. The electric utility industry has embarked upon an extraordinary experiment by restructuring in response to deregulation that has been advocated on the premise of improving economic efficiency by encouraging competition in as many sectors of the industry as possible. However, unlike the telephone, trucking, and airline industries, the potential effects of electric deregulation reach far beyond simple energy economics. This dissertation presents the potential safety risks involved with the deregulation of the electric power industry in the United States and abroad. The pressures of a competitive environment on utilities with nuclear power plants in their portfolio to lower operation and maintenance costs could squeeze them to resort to some risky cost-cutting measures. These include deferring maintenance, reducing training, downsizing staff, excessive reductions in refueling down time, and increasing the use of on-line maintenance. The results of this study indicate statistically significant differences at the .01 level between the safety of pressurized water reactor nuclear power plants and boiling water reactor nuclear power plants. Boiling water reactors exhibited significantly more problems than did pressurized water reactors.

  13. Plant operator selection system for evaluating employment candidates' potential for success in electric power plant operations positions

    International Nuclear Information System (INIS)

    Dunnette, M.D.

    1982-01-01

    The Plant Operator Selection System is a battery of tests and questionnaires that can be administered to job candidates in less than three hours. Various components of the battery measure what a job candidate has accomplished in previous educational and work situations, how well a candidate compares with others on a number of important aptitudes or abilities, and whether or not a candidate possesses the kind of personal stability required in power plant operations positions. A job candidate's answers to the tests and questionnaires of the Plant Operator Selection System are scored and converted to an OVERALL POTENTIAL INDEX. Values of the OVERALL POTENTIAL INDEX [OPI] range between 0 and 15. Candidates with high OPI values are much more likely to become effective and successful plant operators than candidates with low OPI values. It is possible to estimate the financial advantages to a company of using the Plant Operator Selection System in evaluating candidates for plant operations jobs

  14. Field report-Iidate village and Minamisoma city in Fukushima prefecture and Onagawa Nuclear Power Plants of Tohoku Electric Power

    International Nuclear Information System (INIS)

    Nakamura, Etsuji

    2011-01-01

    Although the accident of Fukushima Daiichi Nuclear Power Plants of Tokyo Electric Power Co., Inc. was foreseen to be an end with bringing the reactor a stable cooling condition and mitigating the release of radioactive materials, there would be various uncertainties and risks. The public was turned to 'nuclear power phase-out ' or 'nuclear power reduced' and Fukushima prefecture launched a restoration vision not dependent on nuclear power. In July editors joined the visit on Iidate village and Minamisoma city in Fukushima prefecture and Onagawa Nuclear Power Plants of Tohoku Electric Power Co., Inc., which was organized by Energy and Environmental Email Forum. This feature consisted of six articles based on interviews with respective mayor and discussion meeting of participants. Nuclear world would be responsible for the cooperation and support of Fukushima moving toward restoration with the same stance. Development of renewable energy utilizing damaged fields might be promoted. Respective district was tried to restore based on the trademark of 'Iidate-village in the world' or introduction of central facilities of decommission technology or medical care against radiation hazards. Onagawa Nuclear Power Plants of Tohoku Electric Power Co., Inc., which was 14.8 m above sea level, was not damaged so much by the tsunami of 13 m high and after the disaster many residents in a neighboring area came to the nuclear power plant office for the refuge. (T. Tanaka)

  15. The French Electricity Company (EDF) and GEC ALSTHOM have signed the agreement for Chinese Laibin B electric power plant

    International Nuclear Information System (INIS)

    1997-01-01

    EDF and GEC ALSTHOM together with the government of Chinese Province Guangxi have organized in Pekin on 3 september 1997 a ceremony for signing a BOOT (Build, Own, Operate, Transfer) contract for the Coal Power Plant (2 x 360 MW) at Laibin B. This is the first Chinese BOOT contract in the power domain entirely financed by foreign capital. The two western companies which were retained for this project, following an international call for offers, invest USD 150 million of its own founds in this USD 600 million project. They will hold 60% and 40% of the capital of the company created for this project, respectively. The construction power plant is planned to be completed at the end of 1999 - beginning of 2000. After 15 years of industrial operation the power plant will be transferred to the autonomous government of the Province Guangxi. The communique contains the following 8 files: 1. The Laibin B power plant; 2. Build, Own, Operate, Transfer; 3. The autonomous Guangxi Province; 4. An outline of EDF in China; 5. Profile/activities of GEC ALSTHOM in China; 6. The 'Credit Agricole Indosuez' in China; 7. BZW Barclays PLC; 8. HSBC Investment Banking in China

  16. Manual on quality assurance for installation and commissioning of instrumentation, control and electrical equipment in nuclear power plants

    International Nuclear Information System (INIS)

    1989-01-01

    The present Manual on Quality Assurance (QA) for Installation and Commissioning of Instrumentation, Control and Electrical (ICE) Equipment of Nuclear Power Plants contains supporting material and illustrative examples for implementing basic requirements of the quality assurance programme in procurement, receiving, installation and commissioning of this equipment. The Manual on Quality Assurance for Installation and Commissioning of ICE Equipment is designed to supplement and be consistent with the Guidebook as well as with the IAEA Code and Safety Guides on Quality Assurance. It is intended for the use of managerial staff and QA personnel of nuclear power plant owners or the organizations respectively responsible for the legal, technical, administrative and financial aspects of a nuclear power plant. The information provided in the Manual will also be useful to the inspection staff of the regulatory organization in the planning and performance of regulatory inspections at nuclear power plants

  17. Electrical Structure of Future Off-shore Wind Power Plant with a High Voltage Direct Current Power Transmission

    DEFF Research Database (Denmark)

    Sharma, Ranjan

    The increasing demand of electric power and the growing consciousness towards the changing climate has led to a rapid development of renewable energy in the recent years. Among all, wind energy has been the fastest growing energy source in the last decade. But the growing size of wind power plants......, better wind conditions at off-shore and the general demand to put them out of sight have all contributed to the installation of large wind power plants in off-shore condition. However, moving wind power plants far out in the off-shore comes with many associated problems. One of the main challenges...... is the transmission of power over long distance. Historically, the power transmission from off-shore wind power plants has been done via HVAC submarine cables. This provides a simple solution, but AC cables cannot be arbitrarily long. It is shown in the report that major issues with HVAC cable transmission system...

  18. Contaminación acústica por grupos electrógenos // Acoustic contamination by diesel driven electric plant.

    Directory of Open Access Journals (Sweden)

    Yanexy Cepero-Aguilera

    2009-05-01

    Full Text Available El trabajo tiene como tema el impacto ambiental por ruido de grupos electrógenos (GE. Semuestran diferentes definiciones y conceptos referidos a la explotación de los GE y lasconsecuencias que puede provocar a las personas que permanezcan cerca de ellos durante sufuncionamiento. Los grupos electrógenos son además de generadores de energía, generadores deruido y por tanto contribuyen a la contaminación acústica del lugar donde estén situados. En eldocumento se aborda la importancia del correcto uso y selección de los protectores auditivos paraaquellas personas que trabajen directamente en las baterías de grupos electrógenos, así comoalgunas formas de atenuar el ruido. También se caracteriza la emisión sonora de estos a partir deestudios realizados.Palabras claves: ruido, nivel sonoro, sonido.________________________________________________________________________AbstractThis paper concerns with the environmental damage due to noise emission introduced by EngineGenerator Sets. Definitions and concepts about Engine Generator operation are shown as well asthe consequences over the personnel who stand near the Engine Generators during theiroperation. Obviously, such kind of machines generates energy but they also generate noise whichcontaminates the environment around them. The paper states how important are the rightselection and use of noise protection devices for those whose main job is to operate enginegenerator sets. Some methods for noise damping are also shown. Finally, some case studies arepresented in order to describe the noise emission registered in the real world.Key words: noise, sound level, sound.

  19. Trend of collective dose and dose reduction measures of Mitsubishi Electric Corporation workers in nuclear power plants

    International Nuclear Information System (INIS)

    Yamato, I.; Nakayama, T.; Shimokawa, F.; Yamamoto, T.

    1996-01-01

    MELCO has supplied the reactor instrumentation control system, reactor coolant pump motors, turbine generator and central control system for the pressurized water type nuclear power plant. For the legal periodical inspection and repair work, MELCO has also received orders for the periodical inspection for 23 power plants (including 4 plants under construction) of 5 electric power companies, and executed the inspection work from the view point of preventive maintenance. The annual dose for MELCO's workers is liable to be decreased in spite of increased number of plants. The dose for new plant in particular is 50, or less as compared with that for conventional plant. This is because the measures taken for the conventional plant against the dose reduction is reflected upon the new plant. The dose reduction measures are taken for each system for which order was received. Such measures are mainly intended to improve the work procedures and equipment for reduction of work time in the radioactive area and to arrange the working process, so as to perform the work in such period when the dose level at the working environment is low. To enhance the workers' consciousness for reduction of dose, MELCO provided the workers with dose predictive training, and let them aware of such items known at the tool box briefing (TBX), which could realize the dose reduction for workers. MELCO has been positively promoting the activity to arrange the desirable work environment for extermination of 3Ks (giken, gitsui, titanai) or 3Ds (dangerous, difficult, dirty) including protection against radiation in corporation with electric power companies. (author)

  20. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 6: Closed-cycle gas turbine systems. [energy conversion efficiency in electric power plants

    Science.gov (United States)

    Amos, D. J.; Fentress, W. K.; Stahl, W. F.

    1976-01-01

    Both recuperated and bottomed closed cycle gas turbine systems in electric power plants were studied. All systems used a pressurizing gas turbine coupled with a pressurized furnace to heat the helium for the closed cycle gas turbine. Steam and organic vapors are used as Rankine bottoming fluids. Although plant efficiencies of over 40% are calculated for some plants, the resultant cost of electricity was found to be 8.75 mills/MJ (31.5 mills/kWh). These plants do not appear practical for coal or oil fired plants.

  1. Portland General Electric Company report on the operating and startup experience with control and instrumentation and electrical systems at the Trojan Nuclear Plant

    International Nuclear Information System (INIS)

    Zimmerman, G.A.

    1977-01-01

    The Trojan Nuclear Plant is an 1178 MWe nuclear plant located on the Columbia River 40 miles northwest of Portland, Oregon. The Nuclear Stream Supply System vendor is Westinghouse with a General Electric turbine generator. The reactor is rated and licensed for 3423 MWt (1178 MWe) and the turbine generator is designed for 3570 MWt(1219 MWe). The startup phase testing of Trojan commenced on November 21, 1975, upon receipt of our NRC Operating License. The startup testing program was completed on May 22, 1976, following 100 hours of full-power operation, at which time a scheduled summer maintenance outage began. Some of the highlights and milestones of the startup testing program are described

  2. Mirror Advanced Reactor Study (MARS). Final report. Volume 1-B. Commercial fusion electric plant

    International Nuclear Information System (INIS)

    Donohue, M.L.; Price, M.E.

    1984-07-01

    Volume 1-B contains the following chapters: (1) blanket and reflector; (2) central cell shield; (3) central cell structure; (4) heat transport and energy conversion; (5) tritium systems; (6) cryogenics; (7) maintenance; (8) safety; (9) radioactivity, activation, and waste disposal; (10) instrumentation and control; (11) balance of plant; (12) plant startup and operation; (13) plant availability; (14) plant construction; and (15) economic analysis

  3. Mirror Advanced Reactor Study (MARS). Final report. Volume 1-B. Commercial fusion electric plant

    Energy Technology Data Exchange (ETDEWEB)

    Donohue, M.L.; Price, M.E. (eds.)

    1984-07-01

    Volume 1-B contains the following chapters: (1) blanket and reflector; (2) central cell shield; (3) central cell structure; (4) heat transport and energy conversion; (5) tritium systems; (6) cryogenics; (7) maintenance; (8) safety; (9) radioactivity, activation, and waste disposal; (10) instrumentation and control; (11) balance of plant; (12) plant startup and operation; (13) plant availability; (14) plant construction; and (15) economic analysis.

  4. Exergy-based method for analyzing the composition of the electricity cost generated in gas-fired combined cycle plants

    Energy Technology Data Exchange (ETDEWEB)

    Sarraf Borelli, Samuel Jose [Promon Engenharia Ltda., Av. Presidente Juscelino Kubitschek, 1830, Itaim, CEP:04543-900 Sao Paulo/SP (Brazil)], E-mail: sborelli@terra.com.br; Oliveira Junior, Silvio de [Environmental and Thermal Engineering Laboratory, Polytechnic School, University of Sao Paulo, Av. Prof. Luciano Gualberto, 1289, Cidade Universitaria, CEP:05508-900 Sao Paulo/SP (Brazil)], E-mail: silvio.oliveira@poli.usp.br

    2008-02-15

    The proposed method to analyze the composition of the cost of electricity is based on the energy conversion processes and the destruction of the exergy through the several thermodynamic processes that comprise a combined cycle power plant. The method uses thermoeconomics to evaluate and allocate the cost of exergy throughout the processes, considering costs related to inputs and investment in equipment. Although the concept may be applied to any combined cycle or cogeneration plant, this work develops only the mathematical modeling for three-pressure heat recovery steam generator (HRSG) configurations and total condensation of the produced steam. It is possible to study any nx1 plant configuration (n sets of gas turbine and HRSGs associated to one steam turbine generator and condenser) with the developed model, assuming that every train operates identically and in steady state. The presented model was conceived from a complex configuration of a real power plant, over which variations may be applied in order to adapt it to a defined configuration under study [Borelli SJS. Method for the analysis of the composition of electricity costs in combined cycle thermoelectric power plants. Master in Energy Dissertation, Interdisciplinary Program of Energy, Institute of Eletro-technical and Energy, University of Sao Paulo, Sao Paulo, Brazil, 2005 (in Portuguese)]. The variations and adaptations include, for instance, use of reheat, supplementary firing and partial load operation. It is also possible to undertake sensitivity analysis on geometrical equipment parameters.

  5. Exergy-based method for analyzing the composition of the electricity cost generated in gas-fired combined cycle plants

    Energy Technology Data Exchange (ETDEWEB)

    Borelli, Samuel Jose Sarraf [Promon Engenharia Ltda., Av. Presidente Juscelino Kubitschek, 1830, Itaim, CEP:04543-900 Sao Paulo/SP (Brazil); De Oliveira Junior, Silvio [Environmental and Thermal Engineering Laboratory, Polytechnic School, University of Sao Paulo, Av. Prof. Luciano Gualberto, 1289, Cidade Universitaria, CEP:05508-900 Sao Paulo/SP (Brazil)

    2008-02-15

    The proposed method to analyze the composition of the cost of electricity is based on the energy conversion processes and the destruction of the exergy through the several thermodynamic processes that comprise a combined cycle power plant. The method uses thermoeconomics to evaluate and allocate the cost of exergy throughout the processes, considering costs related to inputs and investment in equipment. Although the concept may be applied to any combined cycle or cogeneration plant, this work develops only the mathematical modeling for three-pressure heat recovery steam generator (HRSG) configurations and total condensation of the produced steam. It is possible to study any n x 1 plant configuration (n sets of gas turbine and HRSGs associated to one steam turbine generator and condenser) with the developed model, assuming that every train operates identically and in steady state. The presented model was conceived from a complex configuration of a real power plant, over which variations may be applied in order to adapt it to a defined configuration under study [Borelli SJS. Method for the analysis of the composition of electricity costs in combined cycle thermoelectric power plants. Master in Energy Dissertation, Interdisciplinary Program of Energy, Institute of Eletro-technical and Energy, University of Sao Paulo, Sao Paulo, Brazil, 2005 (in Portuguese)]. The variations and adaptations include, for instance, use of reheat, supplementary firing and partial load operation. It is also possible to undertake sensitivity analysis on geometrical equipment parameters. (author)

  6. Exergy-based method for analyzing the composition of the electricity cost generated in gas-fired combined cycle plants

    International Nuclear Information System (INIS)

    Sarraf Borelli, Samuel Jose; Oliveira Junior, Silvio de

    2008-01-01

    The proposed method to analyze the composition of the cost of electricity is based on the energy conversion processes and the destruction of the exergy through the several thermodynamic processes that comprise a combined cycle power plant. The method uses thermoeconomics to evaluate and allocate the cost of exergy throughout the processes, considering costs related to inputs and investment in equipment. Although the concept may be applied to any combined cycle or cogeneration plant, this work develops only the mathematical modeling for three-pressure heat recovery steam generator (HRSG) configurations and total condensation of the produced steam. It is possible to study any nx1 plant configuration (n sets of gas turbine and HRSGs associated to one steam turbine generator and condenser) with the developed model, assuming that every train operates identically and in steady state. The presented model was conceived from a complex configuration of a real power plant, over which variations may be applied in order to adapt it to a defined configuration under study [Borelli SJS. Method for the analysis of the composition of electricity costs in combined cycle thermoelectric power plants. Master in Energy Dissertation, Interdisciplinary Program of Energy, Institute of Eletro-technical and Energy, University of Sao Paulo, Sao Paulo, Brazil, 2005 (in Portuguese)]. The variations and adaptations include, for instance, use of reheat, supplementary firing and partial load operation. It is also possible to undertake sensitivity analysis on geometrical equipment parameters

  7. A Three-Part Electricity Price Mechanism for Photovoltaic-Battery Energy Storage Power Plants Considering the Power Quality and Ancillary Service

    Directory of Open Access Journals (Sweden)

    Yajing Gao

    2017-08-01

    Full Text Available To solve the problem of solar abandoning, which is accompanied by the rapid development of photovoltaic (PV power generation, a demonstration of a photovoltaic-battery energy storage system (PV-BESS power plant has been constructed in Qinghai province in China. However, it is difficult for the PV-BESS power plant to survive and develop with the current electricity price mechanism and subsidy policy. In this paper, a three-part electricity price mechanism is proposed based on a deep analysis of the construction and operation costs and economic income. The on-grid electricity price is divided into three parts: the capacity price, graded electricity price, and ancillary service price. First, to ensure that the investment of the PV-BESS power plant would achieve the industry benchmark income, the capacity price and benchmark electricity price are calculated using the discounted cash flow method. Then, the graded electricity price is calculated according to the grade of the quality of grid-connected power. Finally, the ancillary service price is calculated based on the graded electricity price and ancillary service compensation. The case studies verify the validity of the three-part electricity price mechanism. The verification shows that the three-part electricity price mechanism can help PV-BESS power plants to obtain good economic returns, which can promote the development of PV-BESS power plants.

  8. Sulfur recirculation for increased electricity production in Waste-to-Energy plants.

    Science.gov (United States)

    Andersson, Sven; Blomqvist, Evalena W; Bäfver, Linda; Jones, Frida; Davidsson, Kent; Froitzheim, Jan; Karlsson, Martin; Larsson, Erik; Liske, Jesper

    2014-01-01

    Sulfur recirculation is a new technology for reducing boiler corrosion and dioxin formation. It was demonstrated in full-scale tests at a Waste to Energy plant in Göteborg (Sweden) during nearly two months of operation. Sulfur was recirculated as sulfuric acid from the flue gas cleaning back to the boiler, thus creating a sulfur loop. The new technology was evaluated by extensive measurement campaigns during operation under normal conditions (reference case) and operation with sulfur recirculation. The chlorine content of both fly ash and boiler ash decreased and the sulfur content increased during the sulfur recirculation tests. The deposit growth and the particle concentration decreased with sulfur recirculation and the dioxin concentration (I-TEQ) of the flue gas was reduced by approximately 25%. Sulfuric acid dew point measurements showed that the sulfuric acid dosage did not lead to elevated SO3 concentrations, which may otherwise induce low temperature corrosion. In the sulfur recirculation corrosion probe exposures, the corrosion rate decreased for all tested materials (16Mo3, Sanicro 28 and Inconel 625) and material temperatures (450 °C and 525 °C) compared to the reference exposure. The corrosion rates were reduced by 60-90%. Sulfur recirculation prevented the formation of transition metal chlorides at the metal/oxide interface, formation of chromate and reduced the presence of zinc in the corrosion products. Furthermore, measured corrosion rates at 525 °C with sulfur recirculation in operation were similar or lower compared to those measured at 450 °C material temperature in reference conditions, which corresponds to normal operation at normal steam temperatures. This implies that sulfur recirculation allows for higher steam data and electricity production without increasing corrosion. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Steady-state analysis of a conceptual offshore wind turbine driven electricity and thermocline energy extraction plant

    OpenAIRE

    Buhagiar, Daniel; Sant, Tonio

    2014-01-01

    A system for using offshore wind energy to generate electricity and simultaneously extract thermal energy is proposed. This concept is based on an offshore wind turbine driven hydraulic pump supplying deep seawater under high pressure to a land based plant consisting of a hydroelectric power generation unit and heat exchanger. A steady-state system model is developed using empirical formulae. The mathematical model comprises the fundamental system sub-models that are categoris...

  10. Estimation of requirements of eolic energy equivalent to the electric generation of the Laguna Verde nuclear power plant

    International Nuclear Information System (INIS)

    Garcia V, M.A.; Hernandez M, I.A.; Martin del Campo M, C.

    2004-01-01

    The advantages are presented that have the nuclear and eolic energy as for their low environmental impact and to the human health. An exercise is presented in the one that is supposed that the electric power generated by the Laguna Verde Nuclear Power plant (CNLV), with capacity of 1365 M W, it should be produced by eolic energy when in the years 2020 and 2025 the units 1 and 2 of the CNLV reach its useful life and be moved away. It is calculated the number of aero generators that would produce the electric power average yearly of the CNLV, that which is equal to install eolic parks with capacity of 2758 M W, without considering that it will also be invested in systems of back generation to produce electricity when the aero generators stops for lack of wind. (Author)

  11. Atmospheric dispersion modeling of primary pollutants from electric power plants: Application to a coal-fired power plant

    International Nuclear Information System (INIS)

    McIlvaine, C.M.

    1994-01-01

    The normal operation of a power plant generally releases pollutants to the atmosphere. The objective of this paper is to describe a modeling method to estimate the changes in air pollutant concentrations that result from these emissions. This modeling approach is applicable to coal, biomass, oil, and natural gas technologies. As an example, this paper uses a hypothetical 500 megawatt (MW) coal-fired power plant, located at a Southeast Reference site in the U.S. and at a Southwest Reference Site. The pollutants resulting from the operation of the power plant may be classified as primary (emitted directly from the plant) or secondary (formed in the atmosphere from primary pollutants). The primary pollutants of interest in this paper are nitrogen oxides (NO x , sulfur dioxide SO 2 , particulate matter and metals

  12. Mathematical modelling of heat transfer in dedusting plants and comparison to off-gas measurements at electric arc furnaces

    International Nuclear Information System (INIS)

    Kirschen, Marcus; Velikorodov, Viktor; Pfeifer, Herbert

    2006-01-01

    A mathematical simulation tool is presented in order to model enthalpy flow rates of off-gas and heat transfer of cooling systems at dedusting plants in electric steel making sites. The flexibility of the simulation tool is based on a user-defined series of modular units that describe elementary units of industrial dedusting systems, e.g. water-cooled hot gas duct, air injector, drop-out box, mixing chamber, post-combustion chamber, filter, etc. Results of simulation were checked with measurements at industrial electric steel making plants in order to validate the models for turbulence, heat transfer and chemical reaction kinetics. Comparison between computed and measured gas temperature and composition yield excellent agreement. The simulation tool is used to calculate off-gas temperature and volume flow rate, where off-gas measurements are very difficult to apply due to high gas temperatures and high dust load. Heat transfer from the off-gas to the cooling system was calculated in detail for a pressurised hot water EAF cooling system in order to investigate the impact of the cooling system and the dedusting plant operation on the energy sinks of the electric arc furnace. It is shown that optimum efficiency of post-combustion of EAF off-gas in the water-cooled hot gas duct requires continuous off-gas analysis. Common operation parameters of EAF dedusting systems do not consider the non-steady-state of the EAF off-gas emission efficiently

  13. Mathematical modelling of heat transfer in dedusting plants and comparison to off-gas measurements at electric arc furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Kirschen, Marcus [Institute for Industrial Furnaces and Heat Engineering, RWTH Aachen, Kopernikusstrasse 16, 52074 Aachen (Germany)]. E-mail: kirschen@iob.rwth-aachen.de; Velikorodov, Viktor [Institute for Industrial Furnaces and Heat Engineering, RWTH Aachen, Kopernikusstrasse 16, 52074 Aachen (Germany); Pfeifer, Herbert [Institute for Industrial Furnaces and Heat Engineering, RWTH Aachen, Kopernikusstrasse 16, 52074 Aachen (Germany)

    2006-11-15

    A mathematical simulation tool is presented in order to model enthalpy flow rates of off-gas and heat transfer of cooling systems at dedusting plants in electric steel making sites. The flexibility of the simulation tool is based on a user-defined series of modular units that describe elementary units of industrial dedusting systems, e.g. water-cooled hot gas duct, air injector, drop-out box, mixing chamber, post-combustion chamber, filter, etc. Results of simulation were checked with measurements at industrial electric steel making plants in order to validate the models for turbulence, heat transfer and chemical reaction kinetics. Comparison between computed and measured gas temperature and composition yield excellent agreement. The simulation tool is used to calculate off-gas temperature and volume flow rate, where off-gas measurements are very difficult to apply due to high gas temperatures and high dust load. Heat transfer from the off-gas to the cooling system was calculated in detail for a pressurised hot water EAF cooling system in order to investigate the impact of the cooling system and the dedusting plant operation on the energy sinks of the electric arc furnace. It is shown that optimum efficiency of post-combustion of EAF off-gas in the water-cooled hot gas duct requires continuous off-gas analysis. Common operation parameters of EAF dedusting systems do not consider the non-steady-state of the EAF off-gas emission efficiently.

  14. Estimation of the Levelised Electricity Generation Cost for a PWR-Power Plant and Preliminary Evaluation of National Participation

    International Nuclear Information System (INIS)

    Saba, G; Hainoun, A

    2008-01-01

    This work deals with the detailed economic evaluation of the Levelised discounted electricity generation costs (LDEGC) for a nuclear power plant with pressurized water reactor (PWR). The total generation costs are splited in base construction costs, supplementary costs, owner's costs, financial costs, fuel cycle costs and operation and maintenance costs. The evaluation covers also the sensitivity of the estimated energy unit cost to various factors (real annual discount rate, escalation rate, interest rate, load factor, ..) including the role of national participation, that depends upon the development of national infrastructure. For performing this study the IAEA's program package for economic bid evaluation (Bideval-3) has been employed. The program is designed to assist the user in the economic evaluation of bids for nuclear power plant (NPP). It follows the recommended method of determining the present worth value of all costs components for generated electricity unit. The performed study aims at developing national expertise in the field of bid evaluation for electric power plants with main emphasis on NPP. Additional goal is to convoying the technical and economic development of NPP technology that can help in supporting the decision maker with adequate information related to the future development of energy supply system and measures required for ensuring national energy supply security. (author)

  15. Model Thermoelectric Generator TEG Small Modular As Micro Electricity Plant At Indonesia Part 1 Design And Material

    Directory of Open Access Journals (Sweden)

    Kisman M. Mahmud

    2015-08-01

    Full Text Available Thermoelectrically Generator TEG can generate electricity from the temperature difference between hot and cold at the junction thermoelectric module with two different semiconductor materials there will be a flow of current through the junction so as to produce a voltage. This principle uses the Seebeck effect thermoelectric generator as a base. By using these principles this study was conducted to determine the potential of the electric energy of the two Peltier modules which would be an alternative source for micro electricity plant using heat from methylated. The focus of this research is to design a model TEG Thermoelectric Generator Small Modular to produce the kind of material that is optimum for a TEG on the simulation Computer Aided Design CAD with a variety of four different materials that Bi2Te3 Bismuth Telluride PbTe-BiTe CMO-32 -62S Cascade and CMO-32-62S Calcium Manganese Oxide to its cold side using the heat sink fan and simulating heat aluminum plate attached to the hot side of the TEG modules with heat source of methylated. Model simulation results on TEG Small Modular micro electrical plant material obtained CMO-32-62S Cascade thermal material that has a value greater than 3 other material.

  16. Improved electrical efficiency and bottom ash quality on waste combustion plants. Appendix A11 to A14

    Energy Technology Data Exchange (ETDEWEB)

    Hedegaard Madsen, O.; Boejer, M.; Jensen, Peter A.; Dam-Johansen, K.; Lundtorp, K. (Technical Univ. of Denmark, Kgs. Lyngby (Denmark)); Mogensen, Erhardt (Babcock and Wilcox Voelund A/S, Glostrup (Denmark))

    2010-07-01

    Investigations making it possible to evaluate and further develop concepts to improve electrical efficiency in a waste combustion plant were performed. Furthermore, one objective of the study was to investigate the possibilities of improving waste bottom ash leaching properties by use of a rotary kiln treatment. The project work included construction of a bench-scale rotary kiln, performing ash rotary kiln treatment experiments, conducting gas suction probe measurements on a waste incineration plant and making some concept evaluations. The influence of the rotary kiln thermal treatment on the leaching of Ca, Al, Si, Mg, Ba, Sr, Cl, Cu, Pb, Zn, Cr, Mo, sulfate, DOC and carbonate was determined. As a result of these tests, the rotary kiln thermal treatment of bottom ashes can be recommended for reducing the leaching of Cu, Pb, Cl, Zn and DOC; however, an increased leaching of Cr and Mo should be expected. The combustion conditions above the grate of a waste incineration plant were investigated and the release and concentration of volatile ash species in the flue gas such as Cl, Na, K, Ca, Pb, Zn and S were measured. The conducted measurements show that flue gas from grate sections 3 and 4 can produce a sufficiently hot flue gas that contains only low concentrations of corrosive species, and therefore can be used to increase superheater temperatures. Implementation of the so-called flue gas split concept together with other steam circle modifications on a waste combustion plant, and using a reasonable increase in final steam temperature from 400 to 500 deg. C, have the potential to increase electrical efficiency from 24 to 30% (with respect to lower fuel heating value) in a waste combustion plant. The appendices deal with electrical efficiency by dividing the combustion products; release of potentially corrosive constituents from the grate; CFD modeling of grate with and without vertical divider. (Author)

  17. NRC review of Electric Power Research Institute's Advanced Light Water Reactor Utility Requirements Document - Evolutionary plant designs, Chapter 1, Project No. 669

    International Nuclear Information System (INIS)

    1992-08-01

    The staff of the US Nuclear Regulatory Commission has prepared Volume 2 (Parts 1 and 2) of a safety evaluation report (SER), ''NRC Review of Electric Power Research Institute's Advanced Light Water Reactor Utility Requirements Document -- Evolutionary Plant Designs,'' to document the results of its review of the Electric Power Research Institute's ''Advanced Light Water Reactor Utility Requirements Document.'' This SER gives the results of the staff's review of Volume II of the Requirements Document for evolutionary plant designs, which consists of 13 chapters and contains utility design requirements for an evolutionary nuclear power plant (approximately 1300 megawatts-electric)

  18. NRC review of Electric Power Research Institute's Advanced Light Water Reactor Utility Requirements Document - Evolutionary plant designs, Chapters 2--13, Project No. 669

    International Nuclear Information System (INIS)

    1992-08-01

    The staff of the US Nuclear Regulatory Commission has prepared Volume 2 (Parts 1 and 2) of a safety evaluation report (SER), ''NRC Review of Electric Power Research Institute's Advanced Light Water Reactor Utility Requirements Document -- Evolutionary Plant Designs,'' to document the results of its review of the Electric Power Research Institute's ''Advanced Light Water Reactor Utility Requirements Document.'' This SER gives the results of the staff's review of Volume II of the Requirements Document for evolutionary plant designs, which consists of 13 chapters and contains utility design requirements for an evolutionary nuclear power plant (approximately 1300 megawatts-electric)

  19. Epipremnum aureum and Dracaena braunii as indoor plants for enhanced bio-electricity generation in a plant microbial fuel cell with electrochemically modified carbon fiber brush anode.

    Science.gov (United States)

    Sarma, Pranab Jyoti; Mohanty, Kaustubha

    2018-04-13

    In this study, two different unexploited indoor plants, Epipremnum aureum and Dracaena braunii were used to produce clean and sustainable bio-electricity in a plant microbial fuel cell (PMFC). Acid modified carbon fiber brush electrodes as well as bare electrodes were used in both the PMFCs. A bentonite based clay membrane was successfully integrated in the PMFCs. Maximum performance of E. aureum was 620 mV which was 188 mV higher potential than D. braunii. The bio-electricity generation using modified electrode was 154 mV higher than the bare carbon fiber, probably due to the effective bacterial attachment to the carbon fiber owing to hydrogen bonding. Maximum power output of 15.38 mW/m 2 was obtained by E. aureum with an internal resistance of 200 Ω. Higher biomass yield was also obtained in case of E. aureum during 60 days of experiment, which may correlate with the higher bio-electricity generation than D. braunii. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. Analysis of constraints to the introduction of LNG plants in the Brazilian electric sector; Analise dos condicionantes para a introducao de plantas a GNL no setor eletrico brasileiro

    Energy Technology Data Exchange (ETDEWEB)

    Cortes, Tatiane Moraes Pestana

    2010-03-15

    This work aims analyze the constraints to the introduction of LNG in the Brazilian energy matrix. Therefore, considers the current regulatory framework and the investments recently made by PETROBRAS to acquire LNG in the international market in order to supply power plants in the country. In order to assess the current status of the LNG plants in the electricity sector, factors are analyzed in terms of the natural gas industry and electric power industry, such as: storage, LNG contracts, operating dispatch, LNG plants pricing and operational flexibility. Despite the increase in LNG international trade and the prospect of using this product in Brazil, there are some challenges for the effective use of LNG plants by Brazilian electric sector. Some of the challenges are the need to review the methodology of calculating the cost benefit of LNG power plants. Another important challenge is to examine the use of underground storage and its influence in the operating dispatch of LNG plants. (author)

  1. Capital cost: pressurized water reactor plant. Commerical electric power cost studies

    International Nuclear Information System (INIS)

    1977-06-01

    The investment cost study for the 1139-MW(e) pressurized water reactor (PWR) central station power plant consists of two volumes. This volume includes in addition to the foreword and summary, the plant description and the detailed cost estimate

  2. Electric Energy Consumption of the Full Scale Research Biogas Plant “Unterer Lindenhof”: Results of Longterm and Full Detail Measurements

    Directory of Open Access Journals (Sweden)

    Thomas Jungbluth

    2012-12-01

    Full Text Available This work thoroughly evaluates the electric power consumption of a full scale, 3 × 923 m3 complete stirred tank reactor (CSTR research biogas plant with a production capacity of 186 kW of electric power. The plant was fed with a mixture of livestock manure and renewable energy crops and was operated under mesophilic conditions. This paper will provide an insight into precise electric energy consumption measurements of a full scale biogas plant over a period of two years. The results showed that a percentage of 8.5% (in 2010 and 8.7% (in 2011 of the produced electric energy was consumed by the combined heat and power unit (CHP, which was required to operate the biogas plant. The consumer unit agitators with 4.3% (in 2010 and 4.0% (in 2011 and CHP unit with 2.5% (in 2010 and 2011 accounted for the highest electrical power demand, in relation to the electric energy produced by the CHP unit. Calculations show that 51% (in 2010 and 46% (in 2011 of the total electric energy demand was due to the agitators. The results finally showed the need for permanent measurements to identify and quantify the electric energy saving potentials of full scale biogas plants.

  3. Impact of high-intensity pulsed electric fields on bioactive compounds in Mediterranean plant-based foods.

    Science.gov (United States)

    Elez-Martínez, Pedro; Soliva-Fortuny, Robert; Martín-Belloso, Olga

    2009-05-01

    Novel non-thermal processing technologies such as high-intensity pulsed electric field (HIPEF) treatments may be applied to pasteurize plant-based liquid foods as an alternative to conventional heat treatments. In recent years, there has been an increasing interest in HIPEF as a way of preserving and extending the shelf-life of liquid products without the quality damage caused by heat treatments. However, less attention has been paid to the effects of HIPEF on minor constituents of these products, namely bioactive compounds. This review is a state-of-the-art update on the effects of HIPEF treatments on health-related compounds in plants of the Mediterranean diet such as fruit juices, and Spanish gazpacho. The relevance of HIPEF-processing parameters on retaining plant-based bioactive compounds will be discussed.

  4. Optimal bidding in Turkey day ahead electricity market for wind energy and pumped storage hydro power plant

    Directory of Open Access Journals (Sweden)

    Ceyhun Yıldız

    2016-10-01

    Full Text Available In electrical grid; when the demand power increases energy prices increase, when the demand decreases energy prices decrease. For this reason; to increase the total daily income, it is required to shift generations to the hours that high demand power values occurred. Wind Power Plants (WPP have unstable and uncontrollable generation characteristic. For this reason, energy storage systems are needed to shift the generations of WPPs in time scale. In this study, four wind power plants (WPP which are tied to the Turkish interconnected grid and a pumped hydro storage power plant (PSPP that meets the energy storage requirement of these power plants are investigated in Turkey day ahead energy market. An optimization algorithm is developed using linear programming technique to maximize the day ahead market bids of these plants which are going to generate power together. When incomes and generations of the plants that are operated with optimization strategy is analyzed, it is seen that annual income increased by 2.737% compared with WPPs ‘s alone operation and generations are substantially shifted to the high demand power occurred hours.

  5. Grid connection rules for electric cars integrated as virtual power plant in smart grids

    DEFF Research Database (Denmark)

    Leban, Krisztina Monika; Ritchie, Ewen; Thøgersen, Paul Bach

    2013-01-01

    This paper reviews the situation of V2G and proposes a solution involving a consolidating fleet manager, and a decision making process for the individual V2G electric car owner. A grid connection routine for electric vehicles is proposed. The algorithm dealing with decisions to be taken in foreseen...

  6. AMERICAN ELECTRIC POWER'S CONESVILLE POWER PLANT UNIT NO.5 CO2 CAPTURE RETROFIT STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Carl R. Bozzuto; Nsakala ya Nsakala; Gregory N. Liljedahl; Mark Palkes; John L. Marion

    2001-06-30

    ALSTOM Power Inc.'s Power Plant Laboratories (ALSTOM) has teamed with American Electric Power (AEP), ABB Lummus Global Inc. (ABB), the US Department of Energy National Energy Technology Laboratory (DOE NETL), and the Ohio Coal Development Office (OCDO) to conduct a comprehensive study evaluating the technical feasibility and economics of alternate CO{sub 2} capture and sequestration technologies applied to an existing US coal-fired electric generation power plant. The motivation for this study was to provide input to potential US electric utility actions concerning GHG emissions reduction. If the US decides to reduce CO{sub 2} emissions, action would need to be taken to address existing power plants. Although fuel switching from coal to natural gas may be one scenario, it will not necessarily be a sufficient measure and some form of CO{sub 2} capture for use or disposal may also be required. The output of this CO{sub 2} capture study will enhance the public's understanding of control options and influence decisions and actions by government, regulators, and power plant owners in considering the costs of reducing greenhouse gas CO{sub 2} emissions. The total work breakdown structure is encompassed within three major reports, namely: (1) Literature Survey, (2) AEP's Conesville Unit No.5 Retrofit Study, and (3) Bench-Scale Testing and CFD Evaluation. The report on the literature survey results was issued earlier by Bozzuto, et al. (2000). Reports entitled ''AEP's Conesville Unit No.5 Retrofit Study'' and ''Bench-Scale Testing and CFD Evaluation'' are provided as companion volumes, denoted Volumes I and II, respectively, of the final report. The work performed, results obtained, and conclusions and recommendations derived therefrom are summarized.

  7. Technical specifications, Vogtle Electric Generating Plant, Unit No. 1 (Docket No. 50-424): Appendix ''A'' to license No. NPF-61

    International Nuclear Information System (INIS)

    1987-01-01

    This technical specifications report presents information concerning the Vogtle Electric Generating Plant in the following areas: safety limits and limiting safety system settings; limiting conditions for operation and surveillance requirements; design features; and administrative controls

  8. Valence of wind power, photovoltaic and peak-load power plants as a part of the entire electricity system

    International Nuclear Information System (INIS)

    Schüppel, A.

    2014-01-01

    The transition to a higher share of renewable energy sources in the electricity sector leads to a multitude of challenges for the current electricity system. Within this thesis, the development of wind power and photovoltaics generation capacities in Germany is analysed based on the evaluation of technical and economic criteria. In order to derive those criteria, different scenarios with a separated and combined increase of wind and photovoltaics capacity are simulated using the model ATLANTIS. The results are compared to a reference scenario without additional wind and PV capacities. Furthermore, the value and functionality of the energy only market based on economic methods, as well as the value of peak load power plants based on opportunity costs are determined. The results of this thesis show, that the current market system is able to gain an additional annual welfare of four to six billion Euro at the best. This result shows that the task of optimising the power plant dispatch is well fulfilled by the current market design. However, the effects, e.g. fuel costs, which may influence this margin. The value of wind power and photovoltaics within the overall electricity system can be derived from the effort which is necessary to integrate these generation technologies into the existing system, and the changes in total costs of electricity generation. Based on the evaluation of time dependencies (seasonality of energy yield from wind and PV) as well as the development of total generation costs, the conclusion can be drawn that wind power is the more suitable RES generation technology for Germany. However, when it comes to grid integration measures, PV shows better results due to a higher generation potential in Southern Germany, which leads to a higher degree of utilisation. Therefore, there is no need to transport electricity from Northern to Southern Germany as it is the case with wind power. A common expansion of wind power and photovoltaics even shows slight

  9. Large-scale integration of off-shore wind power and regulation strategies of cogeneration plants in the Danish electricity system

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg

    2005-01-01

    The article analyses how the amount of a small-scale CHP plants and heat pumps and the regulation strategies of these affect the quantity of off-shore wind power that may be integrated into Danish electricity supply......The article analyses how the amount of a small-scale CHP plants and heat pumps and the regulation strategies of these affect the quantity of off-shore wind power that may be integrated into Danish electricity supply...

  10. Modeling generator power plant portfolios and pollution taxes in electric power supply chain networks: a transportation network equilibrium transformation

    International Nuclear Information System (INIS)

    Kai Wu; Nagurney, A.; University of Massachusetts, Amherst, MA; Zugang Liu; Stranlund, J.K.

    2006-01-01

    Global climate change and fuel security risks have encouraged international and regional adoption of pollution/carbon taxes. A major portion of such policy interventions is directed at the electric power industry with taxes applied according to the type of fuel used by the power generators in their power plants. This paper proposes an electric power supply chain network model that captures the behavior of power generators faced with a portfolio of power plant options and subject to pollution taxes. We demonstrate that this general model can be reformulated as a transportation network equilibrium model with elastic demands and qualitatively analyzed and solved as such. The connections between these two different modeling schemas is done through finite-dimensional variational inequality theory. The numerical examples illustrate how changes in the pollution/carbon taxes affect the equilibrium electric power supply chain network production outputs, the transactions between the various decision-makers the demand market prices, as well as the total amount of carbon emissions generated. (author)

  11. Electrical equipment performance under severe accident conditions (BWR/Mark 1 plant analysis): Summary report

    International Nuclear Information System (INIS)

    Bennett, P.R.; Kolaczkowski, A.M.; Medford, G.T.

    1986-09-01

    The purpose of the Performance Evaluation of Electrical Equipment during Severe Accident States Program is to determine the performance of electrical equipment, important to safety, under severe accident conditions. In FY85, a method was devised to identify important electrical equipment and the severe accident environments in which the equipment was likely to fail. This method was used to evaluate the equipment and severe accident environments for Browns Ferry Unit 1, a BWR/Mark I. Following this work, a test plan was written in FY86 to experimentally determine the performance of one selected component to two severe accident environments

  12. Multipurpose plant for simultaneous electricity and drinking water generation on the basis of nuclear fuel

    International Nuclear Information System (INIS)

    Kuenstle, K.

    1978-01-01

    After listing the available technologies for sea water desalination, the author discusses a) the problem of multi-stage distillation, b) the coupling of a thermal power plant and a sea water distillation plant and c) the dual-purpose plant with nuclear steam generation. He points out that the radiological considerations and regulations can be applied without modification to a nuclear interconnected system. The additional pathway for theoretical activity release is under sufficient control. Also discussed are the circuiting of the IRAN I and II plants, optimisation problems in dual-purpose plants, and chemically self-sufficient plants for simultaneous production of drinking water and raw materials from sea water. (GG) [de

  13. Topical problems of preparation of electric power engineers for nuclear power plants

    International Nuclear Information System (INIS)

    Marko, S.; Darula, I.; Simunek, P.

    1981-01-01

    The principles are discussed of university-level education of future specialists for nuclear power plants. It is based on the unity of practice-oriented education and research. The individual jobs in a nuclear power plant are viewed as a complex man-technology system in which ergonomy as science of the human factor in homotechnical systems is maximally employed. The importance is emphasized of cooperation of universities and colleges with nuclear power plants. (author)

  14. Nuclear power and heating plants in the electric power system. Part I

    International Nuclear Information System (INIS)

    Kalincik, L.

    1975-01-01

    Procedures used and results obtained in the following works are described: Incorporation of the nuclear power plants in the power system in the long term perspective; physical limitations on the WWER 440 reactor power changes during fuel campaigns; evaluation of the consumption and start-up characteristics of WWER type nuclear power plants (2x440 MWe); evaluation of refuelling campaigns distribution of nuclear power plant units with regard to comprehensive control properties of nuclear power plants; the possibilities are investigated of the utilization of the WWER type reactor for heat supply in Czechoslovakia. (author)

  15. Improved electrical efficiency and bottom ash quality on waste combustion plants. Appendix A1 to A3

    Energy Technology Data Exchange (ETDEWEB)

    Nesterov, I.; Jensen, Peter A.; Dam-Johansen, K.; Kloeft, H.; Boejer, M. (Technical Univ. of Denmark, Kgs. Lyngby (Denmark)); Mogensen, Erhardt (Babcock and Wilcox Voelund A/S, Esbjerg (Denmark))

    2010-07-01

    Investigations making it possible to evaluate and further develop concepts to improve electrical efficiency in a waste combustion plant were performed. Furthermore, one objective of the study was to investigate the possibilities of improving waste bottom ash leaching properties by use of a rotary kiln treatment. The project work included construction of a bench-scale rotary kiln, performing ash rotary kiln treatment experiments, conducting gas suction probe measurements on a waste incineration plant and making some concept evaluations. The influence of the rotary kiln thermal treatment on the leaching of Ca, Al, Si, Mg, Ba, Sr, Cl, Cu, Pb, Zn, Cr, Mo, sulfate, DOC and carbonate was determined. As a result of these tests, the rotary kiln thermal treatment of bottom ashes can be recommended for reducing the leaching of Cu, Pb, Cl, Zn and DOC; however, an increased leaching of Cr and Mo should be expected. The combustion conditions above the grate of a waste incineration plant were investigated and the release and concentration of volatile ash species in the flue gas such as Cl, Na, K, Ca, Pb, Zn and S were measured. The conducted measurements show that flue gas from grate sections 3 and 4 can produce a sufficiently hot flue gas that contains only low concentrations of corrosive species, and therefore can be used to increase superheater temperatures. Implementation of the so-called flue gas split concept together with other steam circle modifications on a waste combustion plant, and using a reasonable increase in final steam temperature from 400 to 500 deg. C, have the potential to increase electrical efficiency from 24 to 30% (with respect to lower fuel heating value) in a waste combustion plant. The appendices deal with incineration bottom ash leaching properties; design and construction of rotary kiln facility; manual to rotary kiln experiments. (Author)

  16. Improved electrical efficiency and bottom ash quality on waste combustion plants. Appendix A7 to A10

    Energy Technology Data Exchange (ETDEWEB)

    Hyks, J.; Astrup, T.; Jensen, Peter A.; Nesterov, I.; Boejer, M.; Frandsen, F.; Dam-Johansen, K.; Hedegaard Madsen, O.; Lundtorp, K. (Technical Univ. of Denmark, Kgs. Lyngby (Denmark)); Mogensen, Erhardt (Babcock and Wilcox Voelund A/S, Glostrup (Denmark))

    2010-07-01

    Investigations making it possible to evaluate and further develop concepts to improve electrical efficiency in a waste combustion plant were performed. Furthermore, one objective of the study was to investigate the possibilities of improving waste bottom ash leaching properties by use of a rotary kiln treatment. The project work included construction of a bench-scale rotary kiln, performing ash rotary kiln treatment experiments, conducting gas suction probe measurements on a waste incineration plant and making some concept evaluations. The influence of the rotary kiln thermal treatment on the leaching of Ca, Al, Si, Mg, Ba, Sr, Cl, Cu, Pb, Zn, Cr, Mo, sulfate, DOC and carbonate was determined. As a result of these tests, the rotary kiln thermal treatment of bottom ashes can be recommended for reducing the leaching of Cu, Pb, Cl, Zn and DOC; however, an increased leaching of Cr and Mo should be expected. The combustion conditions above the grate of a waste incineration plant were investigated and the release and concentration of volatile ash species in the flue gas such as Cl, Na, K, Ca, Pb, Zn and S were measured. The conducted measurements show that flue gas from grate sections 3 and 4 can produce a sufficiently hot flue gas that contains only low concentrations of corrosive species, and therefore can be used to increase superheater temperatures. Implementation of the so-called flue gas split concept together with other steam circle modifications on a waste combustion plant, and using a reasonable increase in final steam temperature from 400 to 500 deg. C, have the potential to increase electrical efficiency from 24 to 30% (with respect to lower fuel heating value) in a waste combustion plant. The appendices deal with the influence of kiln treatment on incineration bottom ash leaching; the influence of kiln treatment on corrosive species in deposits; operational strategy for rotary kiln; alkali/chloride release during refuse incineration on a grate. (Author)

  17. Improved electrical efficiency and bottom ash quality on waste combustion plants. Appendix A4 to A6

    Energy Technology Data Exchange (ETDEWEB)

    Kloeft, H.; Jensen, Peter A.; Nesterov, I.; Hyks, J.; Astrup, T. (Technical Univ. of Denmark, Kgs. Lyngby (Denmark)); Mogensen, Erhardt (Babcock and Wilcox Voelund A/S, Glostrup (Denmark))

    2010-07-01

    Investigations making it possible to evaluate and further develop concepts to improve electrical efficiency in a waste combustion plant were performed. Furthermore, one objective of the study was to investigate the possibilities of improving waste bottom ash leaching properties by use of a rotary kiln treatment. The project work included construction of a bench-scale rotary kiln, performing ash rotary kiln treatment experiments, conducting gas suction probe measurements on a waste incineration plant and making some concept evaluations. The influence of the rotary kiln thermal treatment on the leaching of Ca, Al, Si, Mg, Ba, Sr, Cl, Cu, Pb, Zn, Cr, Mo, sulfate, DOC and carbonate was determined. As a result of these tests, the rotary kiln thermal treatment of bottom ashes can be recommended for reducing the leaching of Cu, Pb, Cl, Zn and DOC; however, an increased leaching of Cr and Mo should be expected. The combustion conditions above the grate of a waste incineration plant were investigated and the release and concentration of volatile ash species in the flue gas such as Cl, Na, K, Ca, Pb, Zn and S were measured. The conducted measurements show that flue gas from grate sections 3 and 4 can produce a sufficiently hot flue gas that contains only low concentrations of corrosive species, and therefore can be used to increase superheater temperatures. Implementation of the so-called flue gas split concept together with other steam circle modifications on a waste combustion plant, and using a reasonable increase in final steam temperature from 400 to 500 deg. C, have the potential to increase electrical efficiency from 24 to 30% (with respect to lower fuel heating value) in a waste combustion plant. The appendices deal with collection of slags for the rotary kiln experiments; overview of the thermal treatment experiments - phase 1; a journal paper with the title ''Quantification of leaching from waste incineration bottom ash treated in a rotary kiln

  18. Results of evaluation of periodic safety review for No. 1 plant in Mihama Power Station, Kansai Electric Power Co., Inc

    International Nuclear Information System (INIS)

    1994-01-01

    No. 1 plant in Mihama Power Station started the commercial power generation in November, 1970, and has continued the operation for more than 23 years. During this period, the counter measures to troubles, periodic inspections and the maintenance by the electric power company have been carried out. These states of No. 1 plant in Mihama Power Station for more than 23 years are to be recollected from the view-points of the comprehensive evaluation of operation experiences and the reflection of latest technological knowledge, and the safety and reliability are to be further improved in the periodic safety review. Agency of Natural Resources and Energy evaluated the report of the periodic safety review for No. 1 plant in Mihama Power Station made by Kansai Electric Power Co., and summarized the results. The course of the evaluation of the report is shown. The facility utilization factor is 43.3% on the average of about 23 years, but in the last 10 years, it was improved to 69.4%. In the last five years, the rate of occurrence of unexpected shutoff was 0.6 times/year. These are the results of preventive maintenance and the improvement of the facilities and operation management. Operation management, maintenance management, fuel management, radiation control, and radioactive waste management have been carried out properly. The work plan for preventing disasters was established, and the experience of troubles and the latest technological knowledge were well reflected to improve the safety. (K.I.)

  19. How to manage flexible nuclear power plants in a deregulated electricity market from the point of view of social welfare?

    International Nuclear Information System (INIS)

    Lykidi, Maria; Gourdel, Pascal

    2015-01-01

    Flexible nuclear power plants can adjust their electricity production to the predicted evolution of demand. Under certain conditions, flexible operation is necessary to ensure the stability of the electricity system. However, despite the potential advantages of nuclear energy including the flexibility of nuclear reactors, the social acceptance of nuclear has reduced after the Fukushima accident, leading some countries to reduce or even phase out nuclear (e.g. Germany). So, a question that arises is how flexible nuclear power plants have to be operated in order to maximize social welfare. The French nuclear fleet gives an illustration of flexible management while social acceptance of nuclear is questioned; this was reflected in the new French Energy Transition law. Theoretically and numerically, we found that the production behavior that maximizes social welfare is characterized by a constant thermal production and a totally flexible nuclear production given sufficient nuclear capacity. - Highlights: • We determine the management of flexible nuclear plants to maximize social welfare. • We model the nuclear fuel stock as a “reservoir” of energy. • Social optimum is given by a totally flexible management of the nuclear production. • The level of thermal production of the optimal solution is always constant. • We need to invest in nuclear energy to ensure social optimum within our model

  20. Power plant site evaluation, electric energy demand forecasts - Douglas Point Site. Volume 3. Final report

    International Nuclear Information System (INIS)

    Wilson, J.W.

    1975-07-01

    This is part of a series of reports containing an evaluation of the proposed Douglas Point nuclear generating station site located on the Potomac River in Maryland 30 miles south of Washington, D.C. This report contains chapters on the Potomac Electric Power Company's market, forecasting future demand, modelling, a residential demand model, a nonresidential demand model, the Southern Maryland Electric Cooperative Model, short term predictive accuracy, and total system requirements

  1. Enhancement of electricity production by graphene oxide in soil microbial fuel cells and plant microbial fuel cells

    Directory of Open Access Journals (Sweden)

    Yuko eGoto

    2015-04-01

    Full Text Available The effects of graphene oxide (GO on electricity generation in soil microbial fuel cells (SMFCs and plant microbial fuel cell (PMFCs were investigated. GO at concentrations ranging from 0 to 1.9 g•kg-1 was added to soil and reduced for 10 days under anaerobic incubation. All SMFCs (GO-SMFCs utilizing the soils incubated with GO produced electricity at a greater rate and in higher quantities than the SMFCs which did not contain GO. In fed-batch operations, the overall average electricity generation in GO-SMFCs containing 1.0 g•kg-1 of GO was 40 ± 19 mW•m-2, which was significantly higher than the value of 6.6 ± 8.9 mW•m-2 generated from GO-free SMFCs (p -2 of electricity after 27 days of operation. Collectively, this study demonstrates that GO added to soil can be microbially reduced in soil, and facilitates electron transfer to the anode in both SMFCs and PMFCs.

  2. Environmental evaluation of the electric and cogenerative configurations for the energy recovery of the Turin municipal solid waste incineration plant.

    Science.gov (United States)

    Panepinto, Deborah; Genon, Giuseppe

    2014-07-01

    Given the desirability of reducing fossil fuel consumption, together with the increasing production of combustible solid wastes, there is clearly a need for waste treatment systems that achieve both volume reduction and energy recovery. Direct incineration method is one such system. The aim of this work was to analyze the municipal solid waste incineration plant currently under construction in the province of Turin (Piedmont, North Italy), especially the potential for energy recovery, and the consequent environmental effects. We analyzed two kinds of energy recovery: electric energy (electrical configuration) only, and both electric and thermal energy (cogenerative configuration), in this case with a different connection hypothesis to the district heating network. After we had evaluated the potential of the incinerator and considered local demographic, energy and urban planning effects, we assumed different possible connections to the district heating network. We computed the local and global environmental balances based on the characteristics of the flue gas emitted from the stack, taking into consideration the emissions avoided by the substituted sources. The global-scale results provided relevant information on the carbon dioxide emissions parameter. The results on the local scale were used as reference values for the implementation of a Gaussian model (Aermod) that allows evaluation of the actual concentration of the pollutants released into the atmosphere. The main results obtained highlight the high energy efficiency of the combined production of heat and electricity, and the opportunity to minimize the environmental impact by including cogeneration in a district heating scheme. © The Author(s) 2014.

  3. Comparison and assessment of electricity generation capacity for different types of PV solar plants of 1MW in Soko banja, Serbia

    Directory of Open Access Journals (Sweden)

    Pavlović Tomislav M.

    2011-01-01

    Full Text Available This paper gives the results of the electricity generated by the fixed, one-axis and dual-axis tracking PV solar plant of 1 MW with flat PV panels made of monocrystalline silicon which is to be built in the area of Soko banja (spa in Serbia. Further on follows a description of the functioning of the fixed and one-axis and dual-axis tracking PV solar plant. For the calculation of the electricity generated by these plants PVGIS program from the Internet was used. Calculations have shown that fixed PV solar plant power of 1 MW, solar modules of monocrystalline silicon yield 1130000 kWh power output, one-axis tracking PV solar plant yields 1420000 kWh, and dual-axis tracking PV solar plant yields 1450000 kWh of electricity. Electricity generated by the fixed PV solar plant could satisfy 86% of the annual needs for the electricity of the „Zdravljak“ hotel and the special „Novi stacionar“ hospital in Soko banja.

  4. Digital protection in power plants. Electrical unit and line protection. Digital protection systems for NPP

    International Nuclear Information System (INIS)

    Kaczmarek, A.

    2000-01-01

    In this presentation author deals with the digital protection systems for nuclear power plants. The evolution of protection devices, protection concept for power plants, concept of functional redundancy, references for digital protection, benefits for the customer well as concept fault recorder are presented. (author)

  5. Electricity generation costs of concentrated solar power technologies in China based on operational plants

    DEFF Research Database (Denmark)

    Zhu, Zhao; Zhang, Da; Mischke, Peggy

    2015-01-01

    plants, and favorable renewable energy policies are expected to result in a large-scale CSP deployment in the next years. Detailed CSP studies for China are however hardly available. To fill this knowledge gap, this study collects plant-specific data in a national CSP database in collaboration with local...

  6. Capabilities for managing high-volume production of electric engineering equipment at the Electrochemical Production Plant

    Energy Technology Data Exchange (ETDEWEB)

    Podlednev, V.M.

    1996-04-01

    The Electromechanical Production Plant is essentially a research center with experimental facilities and power full testing base. Major products of the plant today include heat pipes and devices of their basis of different functions and power from high temperature ranges to cryogenics. This report describes work on porous titanium and carbon-graphite current collectors, electrocatalyst synthesis, and electrocatalyst applications.

  7. Potential of Electric Power Production from Microbial Fuel Cell (MFC) in Evapotranspiration Reactor for Leachate Treatment Using Alocasia macrorrhiza Plant and Eleusine indica Grass

    Science.gov (United States)

    Zaman, Badrus; Wardhana, Irawan Wisnu

    2018-02-01

    Microbial fuel cell is one of attractive electric power generator from nature bacterial activity. While, Evapotranspiration is one of the waste water treatment system which developed to eliminate biological weakness that utilize the natural evaporation process and bacterial activity on plant roots and plant media. This study aims to determine the potential of electrical energy from leachate treatment using evapotranspiration reactor. The study was conducted using local plant, namely Alocasia macrorrhiza and local grass, namely Eleusine Indica. The system was using horizontal MFC by placing the cathodes and anodes at different chamber (i.e. in the leachate reactor and reactor with plant media). Carbon plates was used for chatode-anodes material with size of 40 cm x 10 cm x1 cm. Electrical power production was measure by a digital multimeter for 30 days reactor operation. The result shows electric power production was fluctuated during reactor operation from all reactors. The electric power generated from each reactor was fluctuated, but from the reactor using Alocasia macrorrhiza plant reach to 70 μwatt average. From the reactor using Eleusine Indica grass was reached 60 μwatt average. Electric power production fluctuation is related to the bacterial growth pattern in the soil media and on the plant roots which undergo the adaptation process until the middle of the operational period and then in stable growth condition until the end of the reactor operation. The results indicate that the evapotranspiration reactor using Alocasia macrorrhiza plant was 60-95% higher electric power potential than using Eleusine Indica grass in short-term (30-day) operation. Although, MFC system in evapotranspiration reactor system was one of potential system for renewable electric power generation.

  8. Potential of Electric Power Production from Microbial Fuel Cell (MFC in Evapotranspiration Reactor for Leachate Treatment Using Alocasia macrorrhiza Plant and Eleusine indica Grass

    Directory of Open Access Journals (Sweden)

    Zaman Badrus

    2018-01-01

    Full Text Available Microbial fuel cell is one of attractive electric power generator from nature bacterial activity. While, Evapotranspiration is one of the waste water treatment system which developed to eliminate biological weakness that utilize the natural evaporation process and bacterial activity on plant roots and plant media. This study aims to determine the potential of electrical energy from leachate treatment using evapotranspiration reactor. The study was conducted using local plant, namely Alocasia macrorrhiza and local grass, namely Eleusine Indica. The system was using horizontal MFC by placing the cathodes and anodes at different chamber (i.e. in the leachate reactor and reactor with plant media. Carbon plates was used for chatode-anodes material with size of 40 cm x 10 cm x1 cm. Electrical power production was measure by a digital multimeter for 30 days reactor operation. The result shows electric power production was fluctuated during reactor operation from all reactors. The electric power generated from each reactor was fluctuated, but from the reactor using Alocasia macrorrhiza plant reach to 70 μwatt average. From the reactor using Eleusine Indica grass was reached 60 μwatt average. Electric power production fluctuation is related to the bacterial growth pattern in the soil media and on the plant roots which undergo the adaptation process until the middle of the operational period and then in stable growth condition until the end of the reactor operation. The results indicate that the evapotranspiration reactor using Alocasia macrorrhiza plant was 60-95% higher electric power potential than using Eleusine Indica grass in short-term (30-day operation. Although, MFC system in evapotranspiration reactor system was one of potential system for renewable electric power generation.

  9. Maintenance Tools applied to Electric Generators to Improve Energy Efficiency and Power Quality of Thermoelectric Power Plants

    Directory of Open Access Journals (Sweden)

    Milton Fonseca Junior

    2017-07-01

    Full Text Available This paper presents a specific method to improve the reliability of the equipment and the quality of power supplied to the electrical systems with the frequency and voltage control of a thermoelectric plant, to guarantee a more stable system. The method has the novelty of combining Total Productive Maintenance (TPM using only four pillars, with Electrical Predictive Maintenance based in failure analysis and diagnostic. It prevents voltage drops caused by excessive reactive consumption, thus guaranteeing the company a perfect functioning of its equipment and providing a longer life of them. The Maintenance Management Program (MMP seeks to prevent failures from causing the equipment to be shut down from the electrical system, which means large financial losses, either by reducing billing or by paying fines to the regulatory agency, in addition to prejudice the reliability of the system. Using management tools, but applying only four TPM pillars, it was possible to achieve innovation in power plants with internal combustion engines. This study aims to provide maintenance with a more reliable process, through the implantation of measurement, control and diagnostic devices, thus allowing the management to reduce breakdown of plant equipment. Some results have been achieved after the implementation, such as reduction of annual maintenance cost, reduction of corrective maintenance, increase of MTBF (Mean Time between Failures and reduction of MTTR (Mean Time to Repair in all areas. Probabilistic models able to describe real processes in a more realistic way, and facilitate the optimization at maximum reliability or minimum costs are presented. Such results are reflected in more reliable and continual power generation.

  10. State of technology assessment for life extension of electrical and I and C equipment in nuclear power plants

    International Nuclear Information System (INIS)

    DuCharme, A.R.; Boger, R.M.; Meyer, L.C.; Beament, P.R.

    1988-01-01

    As part of the IEEE Working Group 3.4 on Nuclear Plant Life Extension, an assessment is made of the current state of technology for the life extension of certain classes of electrical and IandC equipment. The classes investigated include motors, cables, emergency diesel generators, penetrations, inverters/chargers, switchgear, and reactor protection systems. The work is focussed on assessment of current or recently completed RandD efforts to resolve issues affecting life extension of the equipment. Aspects discussed include the degree of resolution of these issues, potentially affected standards, and technical aspects requiring further research. 15 refs., 2 tabs

  11. State of technology assessment for life extension of electrical and I and C equipment in nuclear power plants

    International Nuclear Information System (INIS)

    Du Charme, A.R.; Boger, R.M.; Meyer, L.C.; Beament, P.R.

    1988-01-01

    As part of the IEEE Working Group 3.4 on Nuclear Plant Life Extension, an assessment is made of the current state of technology for the life extension of certain classes of electrical and I and C equipment. The classes investigated include motors, cables, emergency diesel generators, penetrations, inverters/charges, switchgear, and reactor protection systems. The work is focussed on assessment of current or recently completed R and D efforts to resolve issues affecting life extension of the equipment. Aspects discussed include the degree of resolution of these issues, potentially affected standards, and technical aspects requiring further research

  12. Trade-offs Between Electricity Production from Small Hydropower Plants and Ecosystem Services in Alpine River Basins

    Science.gov (United States)

    Meier, Philipp; Schwemmle, Robin; Viviroli, Daniel

    2015-04-01

    The need for a reduction in greenhouse gas emissions and the decision to phase out nuclear power plants in Switzerland and Germany increases pressure to develop the remaining hydropower potential in Alpine catchments. Since most of the potential for large reservoirs is already exploited, future development focusses on small run-of-the-river hydropower plants (SHP). Being considered a relatively environment-friendly electricity source, investment in SHP is promoted through subsidies. However, SHP can have a significant impact on riverine ecosystems, especially in the Alpine region where residual flow reaches tend to be long. An increase in hydropower exploitation will therefore increase pressure on ecosystems. While a number of studies assessed the potential for hydropower development in the Alps, two main factors were so far not assessed in detail: (i) ecological impacts within a whole river network, and (ii) economic conditions under which electricity is sold. We present a framework that establishes trade-offs between multiple objectives regarding environmental impacts, electricity production and economic evaluation. While it is inevitable that some ecosystems are compromised by hydropower plants, the context of these impacts within a river network should be considered when selecting suitable sites for SHP. From an ecological point of view, the diversity of habitats, and therefore the diversity of species, should be maintained within a river basin. This asks for objectives that go beyond lumped parameters of hydrological alteration, but also consider habitat diversity and the spatial configuration. Energy production in run-of-the-river power plants depends on available discharge, which can have large fluctuations. In a deregulated electricity market with strong price variations, an economic valuation should therefore be based on the expected market value of energy produced. Trade-off curves between different objectives can help decision makers to define policies

  13. Study of the European market for industrial nuclear power plants for the mixed production of electricity and steam

    International Nuclear Information System (INIS)

    1975-01-01

    The opportunity of developing the mixed production of electricity and steam from nuclear power plants in the nine countries of the European Community is studied. Both public distribution and autonomous production are envisaged. An attempt is made to estimate the potentiel market for district heating and for chemical, agricultural and alimentary, textile, paper, car manufacture and wood industries. The reactors considered are LWR reactors of at least 1000MWth. Suggestions are given to overcome the difficulties and constraints that stand in the way of a nuclear solution [fr

  14. Efficiency of Electrical Stunning by Electronarcosis: Current Situation and Perspective of Improvement in a Medium-Size Processing Plant

    Directory of Open Access Journals (Sweden)

    RL Barbosa

    Full Text Available ABSTRACT The objective of this study was to evaluate the efficiency of electrical stunning by electronarcosis in a medium-size poultry processing plant located in southern Brazil. The current measurement of this type of stunning is presented, and then improvements to this method are proposed. Data were collected for 90 days. A quality indicator was proposed: the Stunning Severity Index (SSI, which includes elements of Statistical Process Control (SPC using a p-chart (proportion chart and measures. This index comprises the variables "wing-flapping," "arched head," and "rhythmic breathing." Using the proposed index, 5% of the birds, on average, presented inefficient stunning symptoms.

  15. Mediation of rapid electrical, metabolic, transpirational, and photosynthetic changes by factors released from wounds. I. variation potentials and putative action potentials in intact plants

    Science.gov (United States)

    S.J. Barres; T.J.Sambeek Perry; Barbara G. Pickard

    1976-01-01

    Damaging representative plants from five angiosperm families by heating or crushing a small portion of a single leaf results in an electrical change which may spread throughout the shoot. In Mimosa similar changes have previously been identified as variation potentials.Except in one of the five plants, a variation...

  16. Plant for the production of activated carbon and electric power from the gases originated in gasification processes

    International Nuclear Information System (INIS)

    Ganan, J.; Turegano, J.P.; Calama, G.; Roman, S.; Al-Kassir, A.

    2006-01-01

    The development of the countries involves a high energy demand; however, the energetic resources used by the moment are not renewable. Events like the energetic crisis of 1973, the continuous geopolitic clashes in energetic resource-rich areas, and the global environmental deterioration as a consequence of the industrial activity taking place in last century, make obvious the need of searching new sources of energy [1]. One of these sources is the obtainment of energy from biomass exploitation. The use of this raw material involves advantages in the emission of low quantities of contaminants to the atmosphere and its renewable character. Until now, the main drawback of this source is its lack of viability when trying to obtain electric power from biomass, due to the use of systems composed of a boiler and a steam turbine (which offer low operative flexibility), which are not rentable in such a competitive market as it is, currently, the energetic one. Nowadays, the use of internal combustion engines, combined with biomass gasifiers, allows rapid connection-disconnection of the plant (aproximately of five minutes), which confers a big flexibility to the system and, as a consequence, a better exploitation of the plant in maximum energetic consumption hours. It also has the advantage of establishing a co-generation system since the gases are generated at a high temperature, 800 o C [2]. With this view, the aim of this work has focused in the re-design of a gasification plant for the production of activated carbons, from biomassic residues, for the energetic exploitation of the combustible gases produced during the pyrolytic process (H 2 , CO, CH 4 , C 2 H 2 , C 2 H 4 , C 2 H 6 ), since these gases are currently burnt in a torch in the plant. The idea of designing the activated carbon production plant arose from the need of managing the biomass residues (olive wastes) generated by the firm Euroliva-Azeites e Oleos Alimentares SA, located in Alto Alentejo, in the city

  17. Plant for the production of activated carbon and electric power from the gases originated in gasification processes

    Energy Technology Data Exchange (ETDEWEB)

    Ganan, J.; Turegano, J.P.; Calama, G. [Area de Engenharia. Escola Superior de Tecnologia e Gestao. Instituto Politecnico de Portalegre, Lugar da Abadesa, Apartado 148, 7301 Portalegre Codex (Portugal); Roman, S.; Al-Kassir, A. [Departamento de Ingenieria Quimica y Energetica, Universidad de Extremadura, Badajoz, 06071 (Spain)

    2006-01-15

    The development of the countries involves a high energy demand; however, the energetic resources used by the moment are not renewable. Events like the energetic crisis of 1973, the continuous geopolitic clashes in energetic resource-rich areas, and the global environmental deterioration as a consequence of the industrial activity taking place in last century, make obvious the need of searching new sources of energy [1]. One of these sources is the obtainment of energy from biomass exploitation. The use of this raw material involves advantages in the emission of low quantities of contaminants to the atmosphere and its renewable character. Until now, the main drawback of this source is its lack of viability when trying to obtain electric power from biomass, due to the use of systems composed of a boiler and a steam turbine (which offer low operative flexibility), which are not rentable in such a competitive market as it is, currently, the energetic one. Nowadays, the use of internal combustion engines, combined with biomass gasifiers, allows rapid connection-disconnection of the plant (aproximately of five minutes), which confers a big flexibility to the system and, as a consequence, a better exploitation of the plant in maximum energetic consumption hours. It also has the advantage of establishing a co-generation system since the gases are generated at a high temperature, 800 {sup o}C [2]. With this view, the aim of this work has focused in the re-design of a gasification plant for the production of activated carbons, from biomassic residues, for the energetic exploitation of the combustible gases produced during the pyrolytic process (H{sub 2}, CO, CH{sub 4}, C{sub 2}H{sub 2}, C{sub 2}H{sub 4}, C{sub 2}H{sub 6}), since these gases are currently burnt in a torch in the plant. The idea of designing the activated carbon production plant arose from the need of managing the biomass residues (olive wastes) generated by the firm Euroliva-Azeites e Oleos Alimentares SA

  18. Dynamic simulation of combined cycle power plant cycling in the electricity market

    International Nuclear Information System (INIS)

    Benato, A.; Bracco, S.; Stoppato, A.; Mirandola, A.

    2016-01-01

    Highlights: • The flexibility of traditional power plants have become of primary importance. • Three dynamic models of the same single pressure HRSG are built. • The plant dynamic behaviour is predicted. • A lifetime calculation procedure is proposed and tested. • The drum lifetime reduction is estimated. - Abstract: The energy markets deregulation coupled with the rapid spread of unpredictable energy sources power units are stressing the necessity of improving traditional power plants flexibility. Cyclic operation guarantees high profits in the short term but, in the medium-long time, cause a lifetime reduction due to thermo-mechanical fatigue, creep and corrosion. In this context, Combined Cycle Power Plants are the most concerned in flexible operation problems. For this reason, two research groups from two Italian universities have developed a procedure to estimate the devices lifetime reduction with a particular focus on steam drums and superheaters/reheaters. To assess the lifetime reduction, it is essential to predict the thermodynamic variables trend in order to describe the plant behaviour. Therefore, the core of the procedure is the power plant dynamic model. At this purpose, in this paper, three different dynamic models of the same single pressure Combined Cycle Gas Turbine are presented. The models have been built using three different approaches and are used to simulate plant behaviour under real operating conditions. Despite these differences, the thermodynamic parameters time profiles are in good accordance as presented in the paper. At last, an evaluation of the drum lifetime reduction is performed.

  19. The positioning of Iberdrola Ingenieria y Construccion in the market for new electric power plants

    International Nuclear Information System (INIS)

    Garnica, E.; Cubain, B.; Chimeno, M. A.; Ortego, A.

    2009-01-01

    IBERDROLA Ingeneria y Contruccion carrying out a wide plant of activities oriented to position the company in the emerging marketplace of new nuclear power plants whose expectation for the next years is highly promising. Obviously, the plan is focused in their technicians, which include people that are very knowledgeable and others younger, both strongly committed with the managerial project. During the las years, the gained experience in nuclear projects, together with other successfully generation projects (combined cycles gas turbine and renewable) allow warranty the success in the challenge of building new nuclear power plants for the next years. (Author)

  20. Requirements for low-cost electricity and hydrogen fuel production from multiunit inertial fusion energy plants with a shared driver and target factory

    International Nuclear Information System (INIS)

    Logan, G.B.; Moir, R.W.; Hoffmman, M.A.

    1995-01-01

    The economy of scale for multiunit inertial fusion energy (IFE) power plants is explored based on the molten salt HYLIFE-II fusion chamber concept, for the purpose of producing lower cost electricity and hydrogen fuel. The cost of electricity (CoE) is minimized with a new IFE systems code IFEFUEL5 for a matrix of plant cases with one to eight fusion chambers of 250 to 2000-MW (electric) net output each, sharing a common heavy-ion driver and target factory. Improvements to previous HYLIFE-II models include a recirculating induction linac driver optimized as a function of driver energy and rep-rate (average driver power), inclusion of beam switchyard costs, a fusion chamber cost scaling dependence on both thermal power and fusion yield, and a more accurate bypass pump power scaling with chamber rep-rate. A CoE less than 3 cents/kW(electric)-h is found for plant outputs greater than 2 GW(electric), allowing hydrogen fuel production by wafer electrolysis to provide lower fuel cost per mile for higher efficiency hydrogen engines compared with gasoline engines. These multiunit, multi-GW(electric) IFE plants allow staged utility plant deployment, lower optimum chamber rep-rates, less sensitivity to driver and target fabrication costs, and a CoE possibly lower than future fission, fossil, and solar competitors. 37 refs., 12 figs., 4 tabs

  1. Scenarios for the hierarchical evaluation of the global sustainability of electric generator plants

    International Nuclear Information System (INIS)

    Roldan A, M.C.; Martinez F, M.

    2007-01-01

    The AHP multi criteria method was applied (Analytic Hierarchy Process-Analytic process of Hierarchization) to evaluate the sustainability in the whole life cycle of the electricity generation technologies (hydroelectric, carboelectric, thermoelectric natural fuel oil, natural gas thermoelectric, geothermal, nucleo electric, wind electric, photo thermic and photovoltaic) with the purpose of offering an useful method in the taking of decisions to impel the sustainable development. Eight scenarios are analyzed. The results in most of the scenarios reflect the benefit of the renewable energy: the hydroelectric energy, photo thermic and wind driven its are those more sustainable. To reach the sustainable development in Mexico, the energy politicians should be more near to the use of the renewable energy. (Author)

  2. Birth to death analysis of the energy payback ratio and CO2 gas emission rates from coal, fission, wind, and DT-fusion electrical power plants

    International Nuclear Information System (INIS)

    White, Scott W.; Kulcinski, Gerald L.

    2000-01-01

    The amount of electrical energy produced over the lifetime of coal, LWR fission, UP fusion, and wind power plants is compared to the total amount of energy required to procure the fuel, build, operate, and decommission the power plants. The energy payback ratio varies from a low of 11 for coal plants to a high of 27 for DT-fusion plants. The magnitude of the energy investment and the source of the various energy inputs determine the CO 2 emission factor. This number varies from a low of 9 to a high of 974 tonnes of CO 2 per GW e h for DT-fusion and coal plants, respectively

  3. Alternative forms of energy transmission from OTEC plants. [Chemical and electrical

    Energy Technology Data Exchange (ETDEWEB)

    Konopka, A.; Biederman, N.; Talib, A.; Yudow, B.

    1977-01-01

    The transmission of OTEC-derived chemical and electrical energy is compared. The chemical energy-carriers considered are the following: gaseous and liquid hydrogen, liquid ammonia, methanol, gasoline, hydrazine hydrate, anhydrous hydrazine, unsymmetrical dimethylhydrazine (UDMH), 1,7-Octadiyne, and tetrahydrodicyclopentadiene. The assessment assumes that each of the above energy carriers were transported by barge and/or pipeline. The delivered costs were then compared with transmission of electricity by submarine cables. Because chemical and electrical energy are not equivalent, however, their comparison can only be done after the outputs are converted to a common form. Thus, in addition to presenting the delivered cost and overall energy efficiency of the chemical energy-carriers, we have provided a discussion of the equipment, costs, and efficiencies of converting the hydrogen and ammonia delivered into electricity, and the electricity delivered into hydrogen and ammonia. A concise technical assessment and economic analysis of components associated with the conversion, storage, transportation, and shore-based receiving facilities for the conversion of OTEC mechanical energy to chemical energy is provided and compared to the conversion and transmission of electrical power. Results concerning the hydrogen and ammonia analysis were determined as part of the OTEC program at IGT from May 1975 through May 1976 under Contract No. NSF-C1008 (AER-75-00033) with the National Science Foundation and ERDA. Information concerning carbonaceous fuels and high-energy fuels production was developed as part of the current IGT OTEC program under Contract No. E(49-18)-2426 with ERDA.

  4. Standard Technical Specifications General Electric plants, BWR/4:Bases (Sections 3.4-3.10). Volume 3, Revision 1

    International Nuclear Information System (INIS)

    1995-04-01

    This report documents the results of the combined effort of the NRC and the industry to produce improved Standard Technical Specifications (STS), Revision 1 for General Electric BWR/4 Plants. The changes reflected in Revision 1 resulted from the experience gained from license amendment applications to convert to these improved STS or to adopt partial improvements to existing technical specifications. This NUREG is the result of extensive public technical meetings and discussions between the Nuclear Regulatory Commission (NRC) staff and various nuclear power plant licensees, Nuclear Steam Supply System (NSSS) Owners Groups, NSSS vendors, and the Nuclear Energy Institute (NEI). The improved STS were developed based on the criteria in the Final Commission Policy Statement on Technical Specifications Improvements for Nuclear Power Reactors, dated July 22, 1993. The improved STS will be used as the basis for individual nuclear power plant licensees to develop improved plant-specific technical specifications. This report contains three volumes. Volume 1 contains the specifications for all chapters and sections of the improved STS. Volume 2 contains he Bases for Chapters 2.0 and 3.0, and Sections 3.1-3.3 of the improved STS. This document, Volume 3, contains the Bases for Sections 3.4-3.10 of the improved STS

  5. Standard Technical Specifications General Electric plants, BWR/4: Bases (Sections 2.0-3.3). Volume 2, Revision 1

    International Nuclear Information System (INIS)

    1995-04-01

    This report documents the results of the combined effort of the NRC and the industry produce improved Standard Technical Specifications (STS), Revision 1 for General Electric BWR/4 Plants. The changes reflected in Revision 1 resulted from the experience gained from license amendment applications to convert to these improved ST or to adopt partial improvements to existing technical specifications. This NUREG is the result of extensive public technical meetings and discussions between the Nuclear Regulatory Commission (NRC) staff and various nuclear power plant licensees, Nuclear Steam Supply System (NSSS) Owners Groups, NSSS vendors, and the Nuclear Energy Institute (NEI). The improved STS were developed based on the criteria in the Final Commission Policy Statement on Technical Specifications Improvements for Nuclear Power Reactors, dated July 22, 1993. The improved STS will be used as the basis for individual nuclear power plant licensees to develop improved plant-specific technical specifications. This report contains three volumes. Volume I contains the Specifications for all chapters and sections of the improved STS. This document, Volume 2, contains the Bases for Chapters 2.0 and 3.0, and Sections 3.1-3.3 of the improved STS. Volume 3 contains the Bases for Sections 3.4-3.10 of the improved STS

  6. Comparison and assessment of electricity generation capacity for different types of PV solar plants of 1MW in Soko banja, Serbia

    OpenAIRE

    Pavlović Tomislav M.; Milosavljević Dragana D.; Radivojević Aleksandar R.; Pavlović Mila A.

    2011-01-01

    This paper gives the results of the electricity generated by the fixed, one-axis and dual-axis tracking PV solar plant of 1 MW with flat PV panels made of monocrystalline silicon which is to be built in the area of Soko banja (spa in Serbia). Further on follows a description of the functioning of the fixed and one-axis and dual-axis tracking PV solar plant. For the calculation of the electricity generated by these plants PVGIS program from the Internet was used. Calculations have shown ...

  7. 2013 Pacific Gas and Electric Diablo Canyon Power Plant (DCPP): San Simeon, CA Central Coast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Diablo Canyon Power Plant (DCPP) LiDAR and Imagery datasets are comprised of three separate LiDAR surveys: Diablo Canyon (2010), Los Osos (2011), and San Simeon...

  8. 78 FR 38411 - Vogtle Electric Generating Plant, Unit 4; Inspections, Tests, Analyses, and Acceptance Criteria

    Science.gov (United States)

    2013-06-26

    ... Plant, Unit 4; Inspections, Tests, Analyses, and Acceptance Criteria AGENCY: Nuclear Regulatory Commission. ACTION: Determination of inspections, tests, analyses, and acceptance criteria completion. SUMMARY: The U.S. Nuclear Regulatory Commission (NRC) staff has determined that the inspections, tests...

  9. 2011 Pacific Gas and Electric Diablo Canyon Power Plant (DCPP): Los Osos, CA Central Coast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Diablo Canyon Power Plant (DCPP) LiDAR and Imagery datasets are comprised of three separate LiDAR surveys: Diablo Canyon (2010), Los Osos (2011), and San Simeon...

  10. Capital cost: pressurized water reactor plant. Commercial electric power cost studies

    Energy Technology Data Exchange (ETDEWEB)

    1977-06-01

    The investment cost study for the 1139 MW(e) pressurized water reactor (PWR) central station power plant consists of two volumes. This volume contains the drawings, equipment list and site description.

  11. 2010 Pacific Gas and Electric Diablo Canyon Power Plant (DCPP): Diablo Canyon, CA Central Coast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Diablo Canyon Power Plant (DCPP) LiDAR and Imagery datasets are comprised of three separate LiDAR surveys: Diablo Canyon (2010), Diablo Canyon (2010), and San...

  12. 75 FR 8152 - Pacific Gas and Electric Company; Diablo Canyon Power Plant Environmental Assessment and Finding...

    Science.gov (United States)

    2010-02-23

    ... exposures to plant workers and members of the public. Therefore, no changes or different types of... impacts to historical and cultural resources. There would be no impact to socioeconomic resources...

  13. Capital cost: pressurized water reactor plant. Commercial electric power cost studies

    International Nuclear Information System (INIS)

    1977-06-01

    The investment cost study for the 1139 MW(e) pressurized water reactor (PWR) central station power plant consists of two volumes. This volume contains the drawings, equipment list and site description

  14. Optimal designs of small CHP plants in a market with fluctuating electricity prices

    DEFF Research Database (Denmark)

    Lund, Henrik; Andersen, A.N.

    2005-01-01

    The paper presents the Danish experince with methodologies and software tools, which have been used to design investment and operation strategies for almost all small CHP plants in Denmark during the decade of the triple tariff.......The paper presents the Danish experince with methodologies and software tools, which have been used to design investment and operation strategies for almost all small CHP plants in Denmark during the decade of the triple tariff....

  15. Effect of Aquatic Plants on Phosphorus Removal and Electrical Conductivity Decrease in Municipal Effluent

    OpenAIRE

    Sara Samimi Loghmani; Ali Abbaspour

    2014-01-01

    Phosphorus (P) is one of essential elements for living organisms, though its critical concentration in surface and ground waters impose a serious problem such as eutrophication. So treatment of polluted waters is required before discharging to water resources. One of effective ways to decrease water pollution is using aquatic plants. An experiment was conducted in pilots with a closed flowing system on two plants, elodea (egria densa) and duck weed (lemna minor) with four treatments and three...

  16. Brunswick Steam Electric Plant, Units 1 and 2. Annual operating report for 1976

    International Nuclear Information System (INIS)

    1977-01-01

    Net electrical energy generated by Unit 1 was 30,399 MWH with the generator on line 334.5 hrs. Unit 2 generated 2,481,014 MWH with the generator on line 4,915.53 hrs. Information is presented concerning operations, shutdowns and power reductions, maintenance, power generation, modifications, changes to operational procedures, radiation exposures, and leak rate testing

  17. Central receiver solar thermal power system, Phase 1. CDRL item 2. Pilot plant preliminary design report. Volume VI. Electrical power generation and master control subsystems and balance of plant

    Energy Technology Data Exchange (ETDEWEB)

    Hallet, Jr., R. W.; Gervais, R. L.

    1977-10-01

    The requirements, performance, and subsystem configuration for both the Commercial and Pilot Plant electrical power generation subsystems (EPGS) and balance of plants are presented. The EPGS for both the Commercial Plant and Pilot Plant make use of conventional, proven equipment consistent with good power plant design practices in order to minimize risk and maximize reliability. The basic EPGS cycle selected is a regenerative cycle that uses a single automatic admission, condensing, tandem-compound double-flow turbine. Specifications, performance data, drawings, and schematics are included. (WHK)

  18. Evaluation of Synthetic Gypsum Recovered via Wet Flue-Gas Desulfurization from Electric Power Plants for Use in Foundries

    Directory of Open Access Journals (Sweden)

    R. Biernacki

    2012-09-01

    Full Text Available This article investigates possible use of waste gypsum (synthetic, recovered via flue-gas desulfurization from coal-fired electric powerplants, in foundries. Energy sector, which in Eastern Europe is mostly composed from coal-fired electric power plants, is one of the largestproducers of sulfur dioxide (SO2.In order to protect the environment and reduce the amount of pollution flue-gas desulfurization (FGD is used to remove SO2 fromexhaust flue gases of fossil-fuel power plants. As a result of this process gypsum waste is produced that can be used in practicalapplications.Strength and permeability tests have been made and also in-depth analysis of energy consumption of production process to investigateways of preparing the synthetic gypsum for casting moulds application. This paper also assesses the chemical composition, strength andpermeability of moulds made with synthetic gypsum, in comparison with moulds made with traditional GoldStar XL gypsum and withceramic molds. Moreover examination of structure of synthetic gypsum, the investigations on derivatograph and calculations of energyconsumption during production process of synthetic gypsum in wet flue-gas desulfurization were made.After analysis of gathered data it’s possible to conclude that synthetic gypsum can be used as a material for casting mould. There is nosignificant decrease in key properties, and on the other hand there is many additional benefits including low energy consumption,decreased cost, and decreased environmental impact.

  19. Modification of reactor installation in the Genkai nuclear power plant No. 1 of Kyushu Electric Power Company, Inc

    International Nuclear Information System (INIS)

    1979-01-01

    The Nuclear Safety Commission recognized the adequacy concerning the inquiry which was offered from the Minister of International Trade and Industry on July 25, 1979, following the safety evaluation in the Ministry of International Trade and Industry, and decided to submit a report to the Minister of International Trade and Industry on July 26, 1979, about the modification of reactor installation in the Genkai nuclear power plant No. 1 of the Kyushu Electric Power Company, Inc. This is concerned to the application which was made from the president of the Kyushu Electric Power Company, Inc., to the Minister of International Trade and Industry on July 24, 1979. The content of the modification is to add a control circuit which is actuated by the signal of abnormal low pressure in a reactor to the circuit of actuating the emergency core cooling system of the plant. The influences on the safety protection system by the addition of the circuit transmitting safety injection signal and by the additions of an interlock circuit preventing the misoperation of pressurizer spray and of a block circuit of safety injection signal in case of the abnormal low pressure in a reactor were evaluated. The effects on the function and characteristics of the emergency core cooling system due to the addition of the control circuit were investigated, and it was recognized by the analysis that there is no effect in the pipe ruptures of both small and large scales. (Nakai, Y.)

  20. Decision support system for the optimal location of electrical and electronic waste treatment plants: A case study in Greece

    International Nuclear Information System (INIS)

    Achillas, Ch.; Vlachokostas, Ch.; Moussiopoulos, N.; Banias, G.

    2010-01-01

    Environmentally sound end-of-life management of Electrical and Electronic Equipment has been realised as a top priority issue internationally, both due to the waste stream's continuously increasing quantities, as well as its content in valuable and also hazardous materials. In an effort to manage Waste Electrical and Electronic Equipment (WEEE), adequate infrastructure in treatment and recycling facilities is considered a prerequisite. A critical number of such plants are mandatory to be installed in order: (i) to accommodate legislative needs, (ii) decrease transportation cost, and (iii) expand reverse logistics network and cover more areas. However, WEEE recycling infrastructures require high expenditures and therefore the decision maker need to be most precautious. In this context, special care should be given on the viability of infrastructure which is heavily dependent on facilities' location. To this end, a methodology aiming towards optimal location of Units of Treatment and Recycling is developed, taking into consideration economical together with social criteria, in an effort to interlace local acceptance and financial viability. For the decision support system's needs, ELECTRE III is adopted as a multicriteria analysis technique. The methodology's applicability is demonstrated with a real-world case study in Greece.

  1. On the value of electrical resistivity tomography for monitoring leachate injection in solid state anaerobic digestion plants at farm scale.

    Science.gov (United States)

    Degueurce, Axelle; Clément, Rémi; Moreau, Sylvain; Peu, Pascal

    2016-10-01

    Agricultural waste is a valuable resource for solid state anaerobic digestion (SSAD) thanks to its high solid content (>15%). Batch mode SSAD with leachate recirculation is particularly appropriate for such substrates. However, for successful degradation, the leachate must be evenly distributed through the substrate to improve its moisture content. To study the distribution of leachate in agricultural waste, electrical resistivity tomography (ERT) was performed. First, laboratory-scale experiments were conducted to check the reliability of this method to monitor infiltration of the leachate throughout the solid. Two representative mixtures of agricultural wastes were prepared: a "winter" mixture, with cattle manure, and a "summer" mixture, with cattle manure, wheat straw and hay. The influence of density and water content on electrical resistivity variations was assessed in the two mixtures. An increase in density was found to lead to a decrease in electrical resistivity: at the initial water content, resistivity decreased from 109.7 to 19.5Ω·m in the summer mixture and from 9.8 to 2.7Ω·m in the "winter" mixture with a respective increased in density of 0.134-0.269, and 0.311-0.577. Similarly, resistivity decreased with an increase in water content: for low densities, resistivity dropped from 109.7 to 7.1Ω·m and 9.8 to 4.0Ω·m with an increase in water content from 64 to 90w% and 74 to 93w% for "summer" and "winter" mixtures respectively. Second, a time-lapse ERT was performed in a farm-scale SSAD plant to monitor leachate infiltration. Results revealed very heterogeneous distribution of the leachate in the waste, with two particularly moist areas around the leachate injection holes. However, ERT was successfully applied in the SSAD plant, and produced a reliable 3D map of leachate infiltration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Consideration of severe accident issues for the General Electric BWR standard plant: Chapter 10

    International Nuclear Information System (INIS)

    Holtzclaw, K.W.

    1983-01-01

    In early 1982, the U.S. Nuclear Regulatory Commission (NRC) proposed a policy to address severe accident rulemaking on future plants by utilizing standard plant licensing documentation. GE provided appendices to the licensing documentation of its standard plant design, GESSAR II, which address severe accidents for the GE BWR/6 Mark III 238 nuclear island design. The GE submittals discuss the features of the design that prevent severe accidents from leading to core damage or that mitigate the effects of severe accidents should core damage occur. The quantification of the accident prevention and mitigation features, including those incorporated in the design since the accident at Three Mile Island (TMI), is provided by means of a comprehensive probabilistic risk assessment, which provides an analysis of the probability and consequences of postulated severe accidents

  3. Classification of micro-, mini- and small wind electric power plants applying wind fluid drives

    International Nuclear Information System (INIS)

    Sabev, S.; Kollen, H.; Sabeva, A.

    2006-01-01

    Wind power plants have various design features and efficiency ranges from 30 to 42%. In Bulgaria the first attempts in the field were made in the early 70-tees of the last century. At the moment Rexroth of the Bosch Group turns out a range of high-tech solutions. The generator gear unit with power output of 2.0 MW is a planetary type and the first gear drive is a helical one for noise reduction purposes. The azimuth gear unit rotates the cabin and is also a planetary one. The pitch Gear unit is also planetary and provides for the pitch of the rotor blades. Power plants have highly automated control systems. Essential care is paid to the reliability of the system to meet requirements for long term operation. Building of wind power plants is related to the wind energy potential of the specific site, and to that purpose the wind energy potential map of Bulgaria is used

  4. Model development to acceptability-assessment of large scale power plants for electricity generation

    International Nuclear Information System (INIS)

    Schubert, Katharina

    2013-01-01

    An approach to specific assessment of large power plants is presented. This approach is intended to provide the decision which kind of nuclear, fossil and renewable installation operation minimizes unacceptable consequences for the environment, economy, and society. The tool ACCEPPT, which is currently under development for this purpose, allows a comprehensible and quantitative assessment of the reasonableness of unintended side-effects of different power plant types. The flexible design of the tool elements frame conditions and system technology supports a dynamic acceptability assessment under consideration of the particular context and plant configuration. Thus, current conditions can be used for evaluation as well as development scenarios. Finally the comprehensible acceptability results are intended to contribute overcoming of acceptance problems in the society. (orig.)

  5. Reliability centered maintenance as an optimization tool for electrical power plants

    International Nuclear Information System (INIS)

    Jacquot, J.P.; Bryla, P.; Martin-Mattei, C.; Meuwisse, C.

    1997-08-01

    Seven years ago, Electricite de France launched a Reliability Centered Maintenance (RCM) pilot project to optimize preventive maintenance for its nuclear power plants. After a feasibility study, a RCM method was standardized. It is now applied on a large scale to the 50 EDF nuclear units. A RCM workstation based on this standardized method has been developed and is now used in each plant. In the next step, it is considered whether a Risk based Approach can be included in this RCM process in order to analyze critical passive components such as pipes and supports. Considering the potential advantages of these optimization techniques, a dedicated process has been also developed for maintenance of future plants, gas turbines, or nuclear units. A survey of these different developments of methods and tools is presented. (author)

  6. Consideration of severe accident issues for the general electric BWR standard plant a status report

    International Nuclear Information System (INIS)

    Holtzclaw, K.W.

    1983-01-01

    In early 1982 the U.S. NRC proposed a policy to address severe accident rulemaking on future plants by utilizing standard plant licensing documentation. This paper, GE's submission, discusses the features of the design that prevent severe accidents from leading to core damage or that mitigate the effects of severe accidents should core damage occur. The quantification of the accident prevention and mitigation features, including those incorporated in the design since the accident at TMI, is provided by means of a comprehensive probabilistic risk assessment, which provides an analysis of the probability and consequences of postulated severe accidents

  7. Economic benefits of broadened local area networks for electric power plants

    International Nuclear Information System (INIS)

    Holmes, T.

    1988-01-01

    The paper discusses economic benefits which influenced the choice of a broadband local area network for a power plant instead of an alternative multi-cable communication network. Broadband communication networks can offer significant economies over alternative technologies. One-time, cost avoidance savings and recurring annual savings are estimated to total $5.1 million in the first year. The cost/benefit analysis presented here can be used as a guide by other utilities to analyze communication networking alternatives. The paper also includes a discussion of local area network attributes relevant to the power plant installation

  8. High-temperature nuclear reactor power plant cycle for hydrogen and electricity production – numerical analysis

    Directory of Open Access Journals (Sweden)

    Dudek Michał

    2016-01-01

    Full Text Available High temperature gas-cooled nuclear reactor (called HTR or HTGR for both electricity generation and hydrogen production is analysed. The HTR reactor because of the relatively high temperature of coolant could be combined with a steam or gas turbine, as well as with the system for heat delivery for high-temperature hydrogen production. However, the current development of HTR’s allows us to consider achievable working temperature up to 750°C. Due to this fact, industrial-scale hydrogen production using copper-chlorine (Cu-Cl thermochemical cycle is considered and compared with high-temperature electrolysis. Presented calculations show and confirm the potential of HTR’s as a future solution for hydrogen production without CO2 emission. Furthermore, integration of a hightemperature nuclear reactor with a combined cycle for electricity and hydrogen production may reach very high efficiency and could possibly lead to a significant decrease of hydrogen production costs.

  9. The comparative costs of nuclear and fossil fuelled power plants in an American electricity utility

    International Nuclear Information System (INIS)

    Corey, G.R.

    1984-01-01

    This chapter compares the current and historic operating performances of twelve large nuclear and coal-fired units now operated by Commonwealth Edison Company, and provides specific comparison of bus-bar costs of electricity generated by those units in recent years. It also provides cost comparisons for future nuclear and coal-fired units and attempts to deal realistically with the effect of future inflation upon these comparisons. The chapter attempts to deal responsibly with the problem of uncertainty - how present-day comparisons may be affected by future developments and how my own published comparisons have varied over the past four or five years. The conclusion is reached that, given the uncertain world in which we live, no electric power supplier can afford to put all its eggs in one basket. Utility managers have a strong incentive to diversify their sources of power generation, and society as a whole would do well to encourage such diversification. (author)

  10. Electrical supply and controls for induced-draft cooling towers at Browns Ferry Nuclear Plant

    International Nuclear Information System (INIS)

    Mock, C.H.; Boehms, J.H.

    1975-01-01

    Design considerations are given for selection of electrical features as required for addition of mechanical-draft-type cooling towers at an existing multiunit nuclear generating station. Environmental and nuclear safety problems were solved economically by use of enclosed 161-kV power connections, oil-filled transformers, supervisory-type control, and unique schemes for redundancy to minimize need for Class 1E construction

  11. Implementing China's national energy conservation policies at state-owned electric power generation plants

    International Nuclear Information System (INIS)

    Zhao Xiaofan; Ortolano, Leonard

    2010-01-01

    China's 11th Five-Year Guideline identified energy conservation as one of the country's fundamental policies and established a mandatory target: 20% reduction in national average energy intensity by 2010. Despite the various policies, laws, and administrative reforms to support energy conservation, China fell behind schedule for meeting its conservation targets in 2006 and 2007. Using a combination of available literature and an interview-based case study, this paper examines the implementation of energy conservation and investigates impediments to achieving China's conservation goal in the electric power generation sector. Three key impediments are detailed: (1) municipal governments' incentives to overlook conservation-related central directives primarily because of budget pressures linked to financial decentralization, (2) procedural obstacles in the form of time required to obtain project approvals for high-efficiency power generation units, and (3) financial obstacles making it difficult for power generation enterprises to raise capital for energy conservation projects. An interview-based case study of a state-owned coal-fired electric power generation company demonstrates the influence of the aforementioned obstacles. While procedural obstacles are notable, they can be managed. However, electricity pricing reforms and/or stronger subsidy programs will be needed to address the financial obstacles facing Chinese power generation companies.

  12. Effects of nuclear power plant shutdowns on electricity consumption and greenhouse gas emissions after the Tohoku Earthquake

    International Nuclear Information System (INIS)

    Cho, Seong-Hoon; Tanaka, Katsuya; Wu, Junjie; Robert, Roland K.; Kim, Taeyoung

    2016-01-01

    This study analyzes how the substitution of fossil fuels for nuclear power due to the shutdown of nuclear power plants after the Tohoku Earthquake affects electricity consumption and greenhouse gas emissions in Japan. Results indicate that Japan generated 4.3 million metric tons (or 0.3%, with a 95% confidence interval) of additional CO_2 emissions in 2011 following the earthquake. The increase in CO_2 emissions stemmed from the combined effects of decreased electricity consumption due to energy conservation efforts and the substitution of fossil fuels for nuclear power following the Tohoku Earthquake. Results also show considerable spatial variation in the impacts of the earthquake on net CO_2 emissions. A majority of the prefectures (40 of 47 prefectures, or 85%) were predicted to experience higher CO_2 emissions after the Tohoku Earthquake while the remaining (7 prefectures) were predicted to experience lower CO_2 emissions. Our findings suggest that Japan and countries under similar risks may want to reformulate energy policy by emphasizing utilization of diverse power and energy sources, including more renewable energy production and electricity conservation. The policy reform should also consider spatial variation in the combined effects of reduced reliance on nuclear power and increased CO_2 conversion factors. - Highlights: • Analyzed effects of Tohoku Earthquake on greenhouse gas emissions in Japan. • Estimated effects on reduced electricity consumption and increased fossil fuel use. • Generated 4.3 million metric tons (or 0.3%) of additional CO_2 emissions in 2011. • Showed spatial variation in the impacts of the earthquake on CO_2 emissions.

  13. Statistical annual report 2003 of Furnas - Electrical Power plants and Co., RJ, Brazil. Calendar year 2003

    International Nuclear Information System (INIS)

    2003-01-01

    This document presents the statistical annual report of Furnas Power Plants and Co, reporting the results obtained during the calendar year of 2003 and the evolution in the last five years, allowing a general and comparative views of the company performance focusing the power generation and transmission, economic and financial results

  14. 78 FR 69367 - Golden Valley Electric Association: Healy Power Plant Unit #2 Restart

    Science.gov (United States)

    2013-11-19

    ... of Decision. SUMMARY: The Rural Utilities Service (RUS) has issued a Record of Decision (ROD) for the... financing from RUS to facilitate the restart of Unit 2 and for improvements to the Healy Plant, which... DOE and AIDEA. The decision documented in RUS's ROD is that RUS agrees to consider, subject to...

  15. Inertial-confinement fusion central-station electric-power-generating plant. Final report, March 1, 1979-September 30, 1980

    International Nuclear Information System (INIS)

    Sucov, E.W.

    1981-01-01

    This report contains a complete description of the subsystems of the power plant including driver, driver power supply, pellet fabrication, pellet injection and aiming, data handling and control, evacuation, tritium and radwaste handling, first wall protection, first wall and structure, heat removal, tritium breeding and neutron shielding, maintenance and repair and balance of plant. In addition, it contains analytic support for the conceptual designs developed for each subsystem. The emphasis of the effort was on designing a viable reactor cavity and on solving the problems of interfacing the driver systems with the reactor cavity. The reactors generate 3500 MWt by irradiating a pellet whose gain is 175 from two opposite sides with a total of 2 MJ driver energy at a 10 Hz repetition rate. Because the nominal laser driver efficiency is 10% and that for the heavy ion driver is 30%, the net electric power outputs are 1207 MWe and 1346 MWe; the net plant conversion efficiencies are 28.1% and 31.3%; and the recirculating fractions are 22.9% and 14.0% respectively. The increased power output is, however, only one of the factors considered by utilities in performing a cost minimization analysis of competing power sources for system expansion. These other factors include: capital costs, cost of construction time, operating costs, environmental and licensing costs and reliability cost

  16. Application of multi-model control with fuzzy switching to a micro hydro-electrical power plant

    Energy Technology Data Exchange (ETDEWEB)

    Salhi, Issam; Doubabi, Said [Laboratory of Electric Systems and Telecommunications (LEST), Faculty of Sciences and Technologies of Marrakesh, Cadi Ayyad University, BP 549, Av Abdelkarim Elkhattabi, Gueliz, Marrakesh (Morocco); Essounbouli, Najib; Hamzaoui, Abdelaziz [CReSTIC, Reims University, 9, rue de Quebec B.P. 396, F-10026 Troyes cedex (France)

    2010-09-15

    Modelling hydraulic turbine generating systems is not an easy task because they are non-linear and uncertain where the operating points are time varying. One way to overcome this problem is to use Takagi-Sugeno (TS) models, which offer the possibility to apply some tools from linear control theory, whereas those models are composed of linear models connected by a fuzzy activation function. This paper presents an approach to model and control a micro hydro power plant considered as a non-linear system using TS fuzzy systems. A TS fuzzy system with local models is used to obtain a global model of the studied plant. Then, to combine efficiency and simplicity of design, PI controllers are synthesised for each considered operating point to be used as conclusion of an electrical load TS Fuzzy controller. The latter ensures the global stability and desired performance despite the change of operating point. The proposed approach (model and controller) is tested on a laboratory prototype, where the obtained results show their efficiency and their capability to ensure good performance despite the non-linear nature of the plant. (author)

  17. Inertial-confinement fusion central-station electric-power-generating plant. Final report, March 1, 1979-September 30, 1980

    International Nuclear Information System (INIS)

    Sucov, E.W.

    1981-01-01

    This report contains a complete description of the subsystems of the power plant including driver, driver power supply, pellet fabrication, pellet injection and aiming, data handling and control, evacuation, tritium and radwaste handling, first wall protection, first wall and structure, heat removal, tritium breeding and neutron shielding, maintenance and repair and balance of plant. In addition, it contains analytic support for the conceptual designs developed for each subsystem. The emphasis of the effort was on designing a viable reactor cavity and on solving the problems of interfacing the driver systems with the reactor cavity. The reactors generate 3500 NWt by irradiating a pellet whose gain is 175 from two opposite sides with a total of 2 MJ driver energy at a 10 Hz repetition rate. Because the nominal laser driver efficiency is 10% and that for the heavy ion driver is 30%, the net electric power outputs are 1207 MWe and 1346 MWe; the net plant conversion efficiencies are 28.1% and 31.3%; and the recirculating fractions are 22.9% and 14.0% respectively. The increased power output is, however, only one of the factors considered by utilities in performing a cost minimization analysis of competing power sources for system expansion. These other factors include: capital costs, cost of construction time, operating costs, environmental and licensing costs and reliability cost

  18. Trouble found in regular inspection of No.1 plant in Ikata Power Station, Shikoku Electric Power Co., Inc

    International Nuclear Information System (INIS)

    1989-01-01

    Since May 2, 1989, the regular inspection of No.1 plant which is a PWR plant with the rated output of 566 MW in Ikata Power Station, Shikoku Electric Power Co., Inc. has been carried out, and eddy current flaw detection inspection was conducted on the total 6585 heating tubes of steam generators except already plugged tubes. As the result, significant indication was observed in 12 heating tubes at the expanded part of the high temperature side tube plates. As to the cause, similarly to those observed in the same plant in the past, it is considered that the residual stress caused by expanding at the time of the manufacture and the internal pressure stress during the operation were superposed, and stress corrosion cracking occurred. It was decided that these 12 defective tubes are plugged. State of plugging in steam generators. Number of total heating tubes: 6776=3388 tubes x 2 steam generators. Number of plugged tubes: 203 including the increase of 12 this time. Ratio of plugging: 3.0 %. Heating tubes: Inconel 600 tubes of φ22.7 mm x 1.27 mm thickness. (K.I.)

  19. Global freshwater thermal emissions from steam-electric power plants with once-through cooling systems

    International Nuclear Information System (INIS)

    Raptis, Catherine E.; Pfister, Stephan

    2016-01-01

    Large quantities of heat are rejected into freshwater bodies from power plants employing once-through cooling systems, often leading to temperature increases that disturb aquatic ecosystems. The objective of this work was to produce a high resolution global picture of power-related freshwater thermal emissions and to analyse the technological, geographical and chronological patterns behind them. The Rankine cycle was systematically solved for ∼2400 generating units with once-through cooling systems, distinguishing between simple and cogenerative cycles, giving the rejected heat as a direct output. With large unit sizes, low efficiencies, and high capacity factors, nuclear power plants reject 3.7 GW heat into freshwater on average, contrasting with 480 MW rejected from coal and gas power plants. Together, nuclear and coal-fuelled power plants from the 1970s and 1980s account for almost 50% of the rejected heat worldwide, offering motivation for their phasing out in the future. Globally, 56% of the emissions are rejected into rivers, pointing to potential areas of high thermal pollution, with the rest entering lakes and reservoirs. The outcome of this work can be used to further investigate the identified thermal emission hotspots, and to calculate regionalized water temperature increase and related impacts in environmental, energy-water nexus studies and beyond. - Highlights: • The thermodynamic cycles of ∼2400 power units with once-through cooling were solved. • Global freshwater heat emissions depend on technology, geography & chronology. • Half the global emissions come from nuclear and coal plants from the 70s & 80s. • Hotspots of freshwater thermal emissions were identified globally. • Global georeferenced emissions are available for use in water temperature models.

  20. Cutting the electric power consumption of biogas plants. The impact of new technologies; Eigenstromverbrauch an Biogasanlagen senken. Der Einfluss neuer Techniken

    Energy Technology Data Exchange (ETDEWEB)

    Frey, Julian; Gruessing, Fabian; Naegele, Hans-Joachim; Oechsner, Hans [Hohenheim Univ., Stuttgart (Germany). Landesanstalt fuer Agrartechnik und Bioenergie Baden-Wuerttemberg

    2013-03-01

    Due to permanently rising energy costs, the assessment of electric energy consumption for particular aggregates of a biogas plant proves to be a significant factor for the economic and technical efficiency calculation of biogas plants. At the University of Hohenheim, students of the Biobased Products and Bioenergy course have analyzed the energy consumption of biogas plants (BGP) in a project work at the State Institute of Agricultural Engineering and Bioenergy (Landesanstalt fuer Agrartechnik und Bioenergie). Detailed measurements at two operational plants show the effects of different facilities on the energy consumption. Furthermore, saving potentials and a possible efficient energy use via an exhaust gas power generator (ORC unit) are identified. (orig.)

  1. A study on the water-proof of structures in electric power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kown, Ki Ju [Korea Electric Power Corp. (KEPCO), Taejon (Korea, Republic of). Research Center

    1996-12-31

    As some of the currently used waterproofing systems are found to be un properly applied for each building type or environmental condition, adequate methods or systems are required to determine the proper materials effectiveness of waterproofing. Performance tests were conducted in order to examine the applicability and effectiveness of previously studied waterproofing systems and to propose the improvement directions of the waterproofing systems. Waterproofing systems and methods were systematized in order to be applied adequately considering the structure parts, structural and environmental conditions. -Analysis of waterproof methods and materials -Characteristics related with waterproofing of power plants structures -Site investigation of waterproofing of power plant structures -Determination of optimal waterproofing material, system and construction method -Waterproofing performance tests (author). 96 refs., 223 figs.

  2. From power plant to people at the light speed: electrical wires and development

    Directory of Open Access Journals (Sweden)

    Gildo Magalhães dos Santos Filho

    2015-03-01

    Full Text Available The Electromemory Project focuses on the history of electrification of São Paulo state from 1890 to 2005. Its first phase ran between 2007-10, studying the power plants, the archives, and the material culture of the following corporations: CESP (rivers Paraná, Grande, Paraíba do Sul, AES-Tietê (Tietê river, Duke Energy (Paranapanema river, as well as the substations belonging to ISA-CTEEP in the state and to AES-Eletropaulo in the Greater São Paulo area. The second phase started in 2013, and encompasses the power plants owned by EMAE, CPFL, and a number of small concessionaries, built between 1890 and 1960. The author also presents the research areas of the Project – history of technology, industrial heritage, museology, geography, archivology, and library science – and then sketches a brief overview of the process.

  3. A study on the water-proof of structures in electric power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kown, Ki Ju [Korea Electric Power Corp. (KEPCO), Taejon (Korea, Republic of). Research Center

    1995-12-31

    As some of the currently used waterproofing systems are found to be un properly applied for each building type or environmental condition, adequate methods or systems are required to determine the proper materials effectiveness of waterproofing. Performance tests were conducted in order to examine the applicability and effectiveness of previously studied waterproofing systems and to propose the improvement directions of the waterproofing systems. Waterproofing systems and methods were systematized in order to be applied adequately considering the structure parts, structural and environmental conditions. -Analysis of waterproof methods and materials -Characteristics related with waterproofing of power plants structures -Site investigation of waterproofing of power plant structures -Determination of optimal waterproofing material, system and construction method -Waterproofing performance tests (author). 96 refs., 223 figs.

  4. Fuel cycle management by the electric enterprises and spanish nuclear Power plants

    International Nuclear Information System (INIS)

    Celma, E. M.; Gonzalez, C.; Lopez, J. V.; Melara, J.; Lopez, L.; Martinez, J. C.; Culbras, F.; Blanco, J.; Francia, L.

    2015-01-01

    The Nuclear Fuel Group reports to the Technology Committee of the UNESA Nuclear Energy Committee, and is constituted by representatives of both the Spanish Utilities and the Nuclear Power Plants. The Group addresses the nuclear plant common issues in relation to the operation and management of the nuclear fuel in their different stages of the Fuel Cycle. The article reviews the activities developed by the Group in the Front-End, mainly in the monitoring of international programs that define criteria to improve the Fuel Reliability and in the establishment of common bases for the implementation of changes in the regulation applying the nuclear fuel. Concerning the Back-End the Group focuses on those activities of coordination with third parties related to the management of used fuel. (Author)

  5. Annual report 2003 of Furnas - Electrical Power Plants and Co., RJ, Brazil

    International Nuclear Information System (INIS)

    2003-01-01

    This document presents the annual report of Furnas Power Plants and Co, highlighting the main enterprise achievements during the year of 2003, describing the company economic and financial important aspects and reporting the energy buying and sales, the infrastructure modernization, the activities of research and development, the social, cultural and environmental actions, the relationships with the company human resources. The report uses performance indexes for managerial description of the company activities

  6. Ideal Operation of a Photovoltaic Power Plant Equipped with an Energy Storage System on Electricity Market

    OpenAIRE

    Markku Järvelä; Seppo Valkealahti

    2017-01-01

    There is no natural inertia in a photovoltaic (PV) generator and changes in irradiation can be seen immediately at the output power. Moving cloud shadows are the dominant reason for fast PV power fluctuations taking place typically within a minute between 20 to 100% of the clear sky value roughly 100 times a day, on average. Therefore, operating a utility scale grid connected PV power plant is challenging. Currently, in many regions, renewable energy sources such as solar and wind receive fee...

  7. Efficient production of electricity and water in cogeneration systems. [Desalination plant

    Energy Technology Data Exchange (ETDEWEB)

    Tadros, S.K.

    1981-11-01

    This paper discusses two topping cycle steam turbine cogeneration systems. The water desalination plant selected is the multistage flash evaporator cycle which uses brine recirculation and high temperature additives for scale protection and 233F maximum brine temperature. The paper mentions briefly the impact of future fuel prices on design and factors which would further improve thermal efficiency. The fuel chargeable to power is determined. 6 refs.

  8. A computerized total-radiation management system for Shikoku Electric Power's Ikata nuclear-power plant

    International Nuclear Information System (INIS)

    Hirao, Toshiyuki; Sakakihara, Tetsuro; Tanabe, Shozo; Kano, Mamoru; Hoshi, Jun-ichi.

    1985-01-01

    This system allows on-line, real-time radiation management at nuclear-power plants. It increases management precision, decreases management workloads, and saves labor in operations that previously required specialized technicians to expend great amounts of time and effort on radiation management at facilities and their environments, environmental radiation evaluation, and control of radioactive waste. The article outlines the already installed system. (author)

  9. Techno-economic analysis of concentrated solar power plants in terms of levelized cost of electricity

    Science.gov (United States)

    Musi, Richard; Grange, Benjamin; Sgouridis, Sgouris; Guedez, Rafael; Armstrong, Peter; Slocum, Alexander; Calvet, Nicolas

    2017-06-01

    Levelized Cost of Electricity (LCOE) is an important metric which provides one way to compare the economic competitiveness of different electricity generation systems, calculated simply by dividing lifetime costs by lifetime production. Hidden behind the simplicity of this formula are various assumptions which may significantly alter results. Different LCOE studies exist in the literature, although their assumptions are rarely explicitly stated. This analysis gives all formulas and assumptions which allow for inter-study comparisons. The results of this analysis indicate that CSP LCOE is reducing markedly over time and that given the right location and market conditions, the SunShot 6¢/kWh 2020 target can be reached. Increased industrial cooperation is needed to advance the CSP market and continue to drive down LCOE. The results also indicate that there exist a country and technology level learning effect, either when installing an existing CSP technology in a new country or when using a new technology in an existing CSP country, which seems to impact market progress.

  10. Biomass production and control of nutrient leaching of willows using different planting methods with special emphasis on an appraisal of the electrical impedance for roots

    Energy Technology Data Exchange (ETDEWEB)

    Yang Cao

    2011-07-01

    Willow reproduction can be achieved through vertically or horizontally planted cuttings. Conventionally, plantations are established by inserting cuttings vertically into the soil. There is, however, a lack of information about the biomass production and nutrient leaching of plantations established through horizontally planted cuttings. A greenhouse experiment and a field trial were carried out to investigate whether horizontally planted Salix schwerinii cuttings have a positive effect on stem yield, root distribution and nutrient leaching in comparison with vertically planted cuttings with different planting densities. The shoots' height of horizontally planted cuttings was significantly smaller than that of vertically planted cuttings during the first two weeks after planting in the pot experiment. Thereafter, no significant effect of planting orientation on the stem biomass was observed in the two conducted experiments. In both experiments the total stem biomass increased with the planting density. It was also found that the fine root biomass and the specific root length were not affected by the planting orientation or density, while the fine root surface area and the absorbing root surface area (ARSA) were affected only by the planting density. The planting orientation did not affect the nutrient concentrations in the soil leachate, apart from SO{sub 4}-S and PO{sub 4}-P in the pot experiment. The ARSA in the pot experiment was assessed by using the earth impedance method. The applicability of this method was evaluated in a hydroponic study of willow cuttings where root and stem were measured independently. Electrical resistance had a good correlation with the contact area of the roots with the solution. However, the resistance depended strongly on the contact area of the stem with the solution, which caused a bias in the evaluation of root surface area. A similar experimental set-up with electrical impedance spectroscopy was employed to study the

  11. Testing of ground fault relay response during the energisation of megawatt range electric boilers in thermal power plants

    DEFF Research Database (Denmark)

    Silva, Filipe Miguel Faria da; Bak, Claus Leth; Davidsen, Troels

    2015-01-01

    , with the advantage that the warmed water can be reused in a thermal power plant or at regional heating, thus, minimising the overall losses. However, one problem was raised by those purchasing the boilers, mainly the possibility of an unwanted triggering of the protections relays, especially ground fault protection...... for the testing of two ground fault protection relays, in order to assure that they are not triggered by the energisation of the boiler. The test is performed via an OMICRON CMC 256 with Advanced TransPlay SW, which generates the signals that would be present at the secondary of the instrumentation transformers......, during the energisation of a boiler. A special case for concern was the presence of an electric arc between the electrodes of the boiler and the water in the boiler during approximately 2s at the energisation, which can in theory be seen as a ground fault by the relay. The voltage and current transient...

  12. Solar thermal power plants for heat and electricity generation; Presentacion de plantas termosolares para generacion de calor y energia electrica

    Energy Technology Data Exchange (ETDEWEB)

    Estrada Cajigal, V [Solartronic S. A. de C. V., Cuernavaca (Mexico); Manzini, F; Sanchez, A [Laboratorio de Energia Solar (IIM-UNAM), Temixco (Mexico)

    1993-12-31

    Solar thermal technology is presented for concentration into a point for the production of heat and energy in small and large scale, emphasis is made on the capacity for the combination with current technologies using fossil fuels for electricity generation and process steam, increasing the global efficiency of the power plants and notably reducing the pollutants emission to the air during the insolation hours. It is successfully compared with other solar-thermal technologies. [Espanol] Se presenta la tecnologia termosolar de concentracion puntual para produccion de calor y de energia en pequena y gran escala, se enfatiza su capacidad de combinacion con las tecnologias actuales que utilizan combustibles fosiles para produccion de electricidad y vapor de proceso, aumentando la eficiencia global de las plantas y reduciendo notablemente sus emisiones contaminantes a la atmosfera durante las horas de insolacion. Se le compara exitosamente con otras tecnologias termosolares.

  13. Improved HYLIFE-II heat transport system and steam power plant: Impact on performance and cost of electricity

    International Nuclear Information System (INIS)

    Hoffman, M.A.; Lee, Ying T.

    1992-12-01

    The HYLIFE-II conceptual design has evolved and improved continually over the past four years to its present form. This paper describes the latest FY92 versions, Reference Case H1 (nominally 1 GWe net output) and the Enhanced Case HE (nominally 2 GWe net output), which take advantage of improvements in the tritium management system to eliminate the intermediate loop and the intermediate heat exchangers (IHX's). The improvements in the heat transport system and the steam power plant are described and the resulting cost reductions are evaluated. The new estimated cost of electricity (in 1990 dollars) is 6.6 cents/kWh for Reference Case H1 and 4.7 cents/kWh for the Enhanced Case

  14. Solar thermal power plants for heat and electricity generation; Presentacion de plantas termosolares para generacion de calor y energia electrica

    Energy Technology Data Exchange (ETDEWEB)

    Estrada Cajigal, V. [Solartronic S. A. de C. V., Cuernavaca (Mexico); Manzini, F.; Sanchez, A. [Laboratorio de Energia Solar (IIM-UNAM), Temixco (Mexico)

    1992-12-31

    Solar thermal technology is presented for concentration into a point for the production of heat and energy in small and large scale, emphasis is made on the capacity for the combination with current technologies using fossil fuels for electricity generation and process steam, increasing the global efficiency of the power plants and notably reducing the pollutants emission to the air during the insolation hours. It is successfully compared with other solar-thermal technologies. [Espanol] Se presenta la tecnologia termosolar de concentracion puntual para produccion de calor y de energia en pequena y gran escala, se enfatiza su capacidad de combinacion con las tecnologias actuales que utilizan combustibles fosiles para produccion de electricidad y vapor de proceso, aumentando la eficiencia global de las plantas y reduciendo notablemente sus emisiones contaminantes a la atmosfera durante las horas de insolacion. Se le compara exitosamente con otras tecnologias termosolares.

  15. Resolution 148/012. It authorize the 'Central Libertador / SA aeolian generation' company to generate an aeolian electricity source by an electric power generating plant located in Lavalleja town 1 AA catastral section and in Maldonado town 4 AA Catastral section, and the 'Sistema inerconectado Nacional' connection

    International Nuclear Information System (INIS)

    2012-01-01

    This decree authorizes the generation of electricity using aeolian energy as the primary electricity source. This project was presented by the 'Libertador / S.A' aeolian generation company with the proposal to instal an electrical plant in Lavalleja town. This authorization is according to the Electric Wholesale Market regulation

  16. Instrumentation and control engineering at ENACE (Argentine Nuclear Enterprise of Electric Power Plants S.A.)

    International Nuclear Information System (INIS)

    Roca, J.L.; Garzon, D.

    1987-01-01

    This paper describes the techniques used in the project of instrumentation and control for the Atucha II nuclear power plant, from the original flow diagram of the system whose instrumentation and control is requested to the functional binary diagrams and control loops, through measurement sheets and other documentation. An account of the organization and handling of this mass of information is given, using an electronic processing system of data file for the project. A brief description of the task implied in the completing and updating of these files defines the scheme in which all the documentation development associated with a given process is included. (Author)

  17. Electric power plants in cogeneration: a promising potential even in France

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Implantation of cogeneration power plants has increased in France since two years but stays below other countries such as northern Europe. Technical, economical, legal and financial aspects of cogeneration have been debated during the ''Euroforum'' seminar (June 14-16, 1995). The european association Cogen Europe, created in 1993 with the financial support of the SAVE european program, has analysed the barriers that restrain cogeneration development and their solutions. Advantages of cogeneration are undeniable at any scale (from small engines to huge industrial systems) if efficiency of energy used reaches 85%. Opinions of representatives from different industries implied in cogeneration technology are reported. (J.S.). 1 photo

  18. Medical countermeasure for Tokyo Electric Power Co. Fukushima Nuclear Power Plant accident

    International Nuclear Information System (INIS)

    Kondo, Hisayoshi

    2013-01-01

    DMAT (Disaster Medical Assistance Team) is a group of professional medical personnel organized to provide rapid-response medical care at the emergent stage of disasters. At the accident of Fukushima Daiichi Nuclear Power Plant, medical response was difficult because many infrastructures were destroyed. Under this situation, emergent medical treatment for heavy irradiation or contamination, cares for habitants and transportation of patients were conducted. Through these activities, it is suggested that rapid response for the radiation exposure should be definitely include in the medical system for usual disasters. (J.P.N.)

  19. A study on electric power management for power producer-suppliers utilizing output of megawatt-solar power plants

    Directory of Open Access Journals (Sweden)

    Hirotaka Takano

    2016-01-01

    Full Text Available The growth in penetration of photovoltaic generation units (PVs has brought new power management ideas, which achieve more profitable operation, to Power Producer-Suppliers (PPSs. The expected profit for the PPSs will improve if they appropriately operate their controllable generators and sell the generated electricity to contracted customers and Power Exchanges together with the output of Megawatt-Solar Power Plants (MSPPs. Moreover, we can expect that the profitable cooperation between the PPSs and the MSPPs decreases difficulties in the supply-demand balancing operation for the main power grids. However, it is necessary that the PPSs treat the uncertainty in output prediction of PVs carefully. This is because there is a risk for them to pay a heavy imbalance penalty. This paper presents a problem framework and its solution to make the optimal power management plan for the PPSs in consideration with the electricity procurement from the MSPPs. The validity of the authors’ proposal is verified through numerical simulations and discussions of their results.

  20. Employment benefits of electricity generation. A comparative assessment of lignite and natural gas power plants in Greece

    International Nuclear Information System (INIS)

    Tourkolias, C.; Damigos, D.; Diakoulaki, D.; Mirasgedis, S.

    2009-01-01

    This paper aims at developing an integrated approach for estimating the employment benefits associated with power-generation technologies. The proposed approach exploits the input-output methodology for estimating the direct, indirect and induced employment effects associated with the energy project in question, as well as two different valuation techniques, namely the 'opportunity cost of labour' approach and the 'public expenditures' approach, for expressing these effects in monetary terms. This framework has been implemented to estimate the employment benefits resulting from the development of a lignite-fired and a natural gas-fired power plant in Greece, taking into account all the stages of the corresponding fuel cycles that are undertaken domestically. The results of the analysis clearly show that lignite-fired electricity generation results in significant employment benefits amounting to 2.9-3.5 EUR/MWh in the basic scenario. On the other hand, the employment benefits associated with the examined natural gas unit were estimated at 0.4-0.6 EUR/MWh in the basic scenario. It is also worth mentioning that the significant environmental externalities of the lignite-fired electricity in Greece that have been presented in a number of studies can only be partially compensated by the estimated employment benefits. (author)

  1. Participation of nuclear power plants in variable operation regimes under conditions of combined electric power and heat generation

    International Nuclear Information System (INIS)

    Rydzi, S.

    1988-01-01

    The incorporation of nuclear power units in the control of the output of an electric power system is affected by technical and economic factors as well as by the manner of heat take-off from the nuclear power unit for heating purposes. The effect was therefore studied of the technological solution of converting the heat output of WWER-440 units to operating parameters of turbines in nonrated regimes of operation. Some results of the study are graphically represented. An analysis was also made of limitations preventing WWER-440 units from supplying heat with regard to their incorporation in the electric power transmission system. The results show that using nuclear power units for district heating will in the future strictly determine the seasonal shut-down of nuclear units for fuel exchange and overhauls. This could interfere with the considered concept of the 1.5 year duty time of WWER-440 reactors. With regard to the economy of operation of the nuclear power system and reduced demands on weekend unloading it will be necessary to incorporate in the power system pumped-storage power plants with one-week pumped-storage systems. (Z.M.). 5 figs., 2 tabs., 6 refs

  2. Generation of Electricity Using Spartina Patens with Stainless Steel Current Collectors in a Plant-Microbial Fuel Cell

    Science.gov (United States)

    Narula, Deep

    At present, the global energy infrastructure is highly dependent on (i) non-renewable fossil fuels with significant emissions of greenhouse gasses (ii) green fuels such as bioethanol and biodiesel with impact on current agricultural practices competing with food production for arable lands, fertilizers, also requiring additional energy input. Plant-based microbial fuel cell (PMFC) technology can be found as a promising alternative to produce electricity without any side effects with an advantage of using sunlight as an energy source. In the present study, we developed PMFCs using Spartina patens, a marshland grass, abundantly available in the coastal regions of the USA. Figure 1 is a schematic for a PMFC with the anode and cathode compartments where others have used carbon-based electrodes for current collection. In contrast, we attempted to utilize stainless steel wires with more surface area to enhance the current collection in the anode compartment as well as to increase the rate of reduction in the cathode chamber and thereby increase the amount of electricity produced. The study will give results on the periodic use of Spartina patens in PMFC along with the porous stainless steel electrodes which have never been employed in PMFCs before.

  3. 15 years of production of electric energy of the Laguna Verde power plant, its plans and future

    International Nuclear Information System (INIS)

    Rivera C, A.

    2005-01-01

    In the year 2005 Laguna Verde power plant reaches 15 years of producing electric power in Mexico arriving to but of 100 million Megawatts-hour from their beginning of commercial activities. The Unit 1 that entered at July 29, 1990 and the Unit 2 at April 10, 1995, obtaining the Disposability Factors from their origin is: 84.63% in Unit 1 and 83.67% in Unit 2. The march of the X XI century gives big challenges of competition to the Laguna Verde Central, with the possible opening of the electric market to private investment, for their Goals and Objectives of a world class company, taking the evaluation system and qualification of the World Association of Nuclear Operators (WANO) that promotes the Excellence in the operation of the nuclear power stations in all their partners. This Association supports the development of programs that allow the monitoring of the behavior in Safety Culture, Human fulfilment, Equipment reliability, Industrial Safety, Planning, Programming and Control, Personalized Systematic Training, and the use of the Operational experience in the daily tasks. The present work tries to explain the system of evaluation/qualification of WANO, the definition of Goals and Objectives to reach the excellence and of the programs, it will present the Program of the Reliability of Equipment with its main actions the productivity. (Author)

  4. Concept of a utility scale dispatch able solar thermal electricity plant with an indirect particle receiver in a single tower layout

    Science.gov (United States)

    Schwaiger, Karl; Haider, Markus; Haemmerle, Martin; Steiner, Peter; Obermaier, Michael-Dario

    2016-05-01

    Flexible dispatch able solar thermal electricity plants applying state of the art power cycles have the potential of playing a vital role in modern electricity systems and even participating in the ancillary market. By replacing molten salt via particles, operation temperatures can be increased and plant efficiencies of over 45 % can be reached. In this work the concept for a utility scale plant using corundum as storage/heat transfer material is thermodynamically modeled and its key performance data are cited. A novel indirect fluidized bed particle receiver concept is presented, profiting from a near black body behavior being able to heat up large particle flows by realizing temperature cycles over 500°C. Specialized fluidized bed steam-generators are applied with negligible auxiliary power demand. The performance of the key components is discussed and a rough sketch of the plant is provided.

  5. How to improve the design of the electrical system in future wind power plants

    DEFF Research Database (Denmark)

    Arana Aristi, Iván; Holbøll, Joachim; Bak, C. L.

    2009-01-01

    This paper presents three topics which are important for better performance of future wind farms. The topics are investigated in three coordinated Ph.D. projects ongoing at the Technical University of Denmark (DTU), Aalborg University (AAU) and DONG Energy. The objective of all projects is to imp...... and wind farm transformers, and to develop a methodology on how to select appropriate equipment for the power system, control system and protection system....... is to improve the understanding of the main electrical components in wind farms, based on available information, measurement data and simulation tools. The aim of these projects is to obtain validated models of wind turbine (WT) generators, WT converters, WT transformers, submarine cables, circuit breakers...

  6. Safety Evaluation Report related to the operation of Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos. 50-424 and 50-425)

    International Nuclear Information System (INIS)

    1987-03-01

    In June 1985, the staff of the Nuclear Regulatory Commission issued its Safety Evaluation Report (NUREG-1137) regarding the application of Georgia Power Company, Municipal Electric Authority of Georgia, Oglethorpe Power Corporation, and the City of Dalton, Georgia, for licenses to operate the Vogtle Electric Generating Plant, Units 1 and 2 (Docket Nos. 50-424 and 50-425). This sixth supplement of NUREG-1137 provides recent information regarding resolution of some of the open and confirmatory items that remained unresolved at the time the Safety Evaluation Report was issued. These areas are performance testing, reactor cooling hydraulics, loose parts monitoring, and electric power systems

  7. Energy intensities, EROIs (energy returned on invested), and energy payback times of electricity generating power plants

    International Nuclear Information System (INIS)

    Weißbach, D.; Ruprecht, G.; Huke, A.; Czerski, K.; Gottlieb, S.; Hussein, A.

    2013-01-01

    The energy returned on invested, EROI, has been evaluated for typical power plants representing wind energy, photovoltaics, solar thermal, hydro, natural gas, biogas, coal and nuclear power. The strict exergy concept with no “primary energy weighting”, updated material databases, and updated technical procedures make it possible to directly compare the overall efficiency of those power plants on a uniform mathematical and physical basis. Pump storage systems, needed for solar and wind energy, have been included in the EROI so that the efficiency can be compared with an “unbuffered” scenario. The results show that nuclear, hydro, coal, and natural gas power systems (in this order) are one order of magnitude more effective than photovoltaics and wind power. - Highlights: ► Nuclear, “renewable” and fossil energy are comparable on a uniform physical basis. ► Energy storage is considered for the calculation, reducing the ERoEI remarkably. ► All power systems generate more energy than they consume. ► Photovoltaics, biomass and wind (buffered) are below the economical threshold

  8. Life extension for fossil power plants: The EPRI [Electric Power Research Institute] strategy

    International Nuclear Information System (INIS)

    Byron, J.; Dooley, B.

    1988-01-01

    Fossil fuel-fired generating plants have traditionally been built under the assumption of an economic life of 20-30 years. Due to low load growth, escalating interest rates and costs of construction, and increasing regulation, great interest is expressed in retaining these units in service for 50-60 years or longer. Life extension activities are part of an ongoing process that continues throughout the extended lives of a utility's units. The process begins with an initial evaluation of life extension as a generation alternative, resulting in a ranking of units for life extension and a prioritization of components for evaluation. As the process continues, more detailed inspection data are created by a three-level approach, as well as a means for collecting, organizing and scheduling the information. This is implemented through the Integrated Life Extension Management (ILEM) model. This model provides information needed for management decision making such as component performance on unit power rating, availability of components on unit availability, component performance on unit availability and overall costs of the life extension tasks. Risks involved in life extension include the initial unavailability of capacity credits, uncertainty as to the level of availability that can be achieved by the life-extended plant, and uncertainties in environmental compliance. 8 refs., 1 fig., 2 tabs

  9. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 10: Liquid-metal MHD systems. [energy conversion efficiency of electric power plants using liquid metal magnetohydrodynamics

    Science.gov (United States)

    Holman, R. R.; Lippert, T. E.

    1976-01-01

    Electric Power Plant costs and efficiencies are presented for two basic liquid-metal cycles corresponding to 922 and 1089 K (1200 and 1500 F) for a commercial applications using direct coal firing. Sixteen plant designs are considered for which major component equipment were sized and costed. The design basis for each major component is discussed. Also described is the overall systems computer model that was developed to analyze the thermodynamics of the various cycle configurations that were considered.

  10. Energy: Solar electricity gaining second wind. - The sun as a power plant. Energie: Sonnen-Strom im Aufwind. - Das Kraftwerk Sonne

    Energy Technology Data Exchange (ETDEWEB)

    Frisch, F; Kippenhahn, R

    1990-03-01

    The blue cells that convert sunlight directly into electricity are becoming more and more efficient: the dream of cheap solar energy may soon become true. The competitors are more expensive than is often thought, for in the case of the conventional energies the costs of 'side effects' are often forgotten - for example, damage to the environment by power plants and cars. The radiation of the 'Sun Power Plant', on the other hand, creates no fumes and is inexhaustible. (orig.).

  11. Analysis of technical-economic requirements for the construction of a solar power plant on the roof of the business building of the Electrical Engineering Institute 'Nikola Tesla'

    OpenAIRE

    Grbić, Maja; Antić, Radoslav; Ponoćko, Jelena; Mikulović, Jovan; Đurišić, Željko

    2014-01-01

    This paper presents an analysis of the technical-economic requirements for the construction of a solar power plant on the roof of the business building of the Electrical Engineering Institute 'Nikola Tesla' in Belgrade. Calculation of solar irradiation is performed and the conceptual design of the disposition of solar panels on the roof of the building is shown as well as their connections to the inverters. Conditions for connecting the plant to the distribution network are checked and an eco...

  12. Integrated Plant Safety Assessment: Systematic Evaluation Program. Yankee Nuclear Power Station, Yankee Atomic Electric Company, Docket No. 50-29. Final report

    International Nuclear Information System (INIS)

    1983-06-01

    The Systematic Evaluation program was initiated in February 1977 by the US Nuclear Regulatory Commission to review the designs of older operating nuclear reactor plants to confirm and document their safety. The review provides: (1) an assessment of how these plants compare with current licensing safety requirements relating to selected issues, (2) a basis for deciding on how these differences should be resolved in an integrated plant review, and (3) a documented evaluation of plant safety. This report documents the review of Yankee Nuclear Power Station, operated by Yankee Atomic Electric Company. The Yankee plant is one of 10 plants reviewed under Phase II of this program. This report indicates how 137 topics selected for review under Phase I of the program were addressed. Equipment and procedural changes have been identified as a result of the review

  13. Integrated Plant Safety Assessment, Systematic Evaluation Program. Yankee Nuclear Power Station, Yankee Atomic Electric Company, Docket No. 50-29. Draft report

    International Nuclear Information System (INIS)

    1983-02-01

    The Systematic Evaluation Program was initiated in February 1977 by the US Nuclear Regulatory Commission to review the designs of older operating nuclear reactor plants to confirm and document their safety. The review provides (1) an assessment of how these plants compare with current licensing safety requirements relating to selected issues, (2) a basis for deciding on how these differences should be resolved in an integrated plant review, and (3) a documented evaluation of plant safety. This report documents the review of Yankee Nuclear Power Station, operated by Yankee Atomic Electric Company. The Yankee plant is one of 10 plants reviewed under Phase II of this program. This report indicates how 137 topics selected for review under Phase I of the program were addressed. Equipment and procedural changes have been identified as a result of the review

  14. Nuclear plants in the expansion of the Mexican electrical system;Plantas nucleares en la expansion del sistema electrico mexicano

    Energy Technology Data Exchange (ETDEWEB)

    Estrada S, G. J.; Martin del Campo M, C., E-mail: gestradas@yahoo.co [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Ciudad Universitaria, 04510 Mexico D. F. (Mexico)

    2009-10-15

    In this work the results of four studies appear that were realized to analyze plans of long term expansion of Mexican electrical system of generation for the study period 2005-2025. The objective is to identify between the two third generation reactors with greater maturity at present which is it is that it can be integrated better in the expansion of the Mexican electrical system of generation. It was analyzed which of the four cases represents the best expansion plan in terms of two only parameters that are: 1) total cost of generation and, 2) the diversity of generated energy in all the period. In all studies candidates three different units of combined cycle were considered (802, 583 and 291 MW), a turbo gas unit of 267 MW, units of 700 MW with coal base and integrated de sulphur, geo thermo electrical units of 26.95 MW and two different types of nuclear units. In both first studies the Advanced Boiling Water Reactor (A BWR) for the nuclear units is considered, considering that is technology with more maturity of all the third generation reactors. In the following two studies were considered the European Pressurized Reactor (EPR), also of third generation, that uses in essence technology more spread to world-wide level. For this task was used the uni nodal planning model WASP-IV, developed by the IAEA to find the expansion configuration with less generation cost for each study. Considering the present situation of the generation system, the capacity additions begin starting from the year 2012 for the four studies. It is not considered the installation of nuclear plants before 2016 considering that its planning period takes 3 years, and the construction period requires at least of 5 years. In order to evaluate the diversity of each study it was used the Stirling Index or of Shannon-Weiner. In order to classify the studies in cost terms and diversity it was used like decision tool the Savage criterion, called also of minimal repentance. With this data, taking

  15. Proposal for Managing Eco-efficient Operations Plant Dedicated to Waste Handling at Costa Rican Institute of Electricity

    Directory of Open Access Journals (Sweden)

    Annie Chinchilla

    2015-06-01

    Full Text Available In the present study, different eco-efficient specifications were established considered by Ingeniería y Construcciónor IC (Engineering and Construction, a business of the Costa Rican Institute of Electricity (ICE, in Spanish, at the time of developing an operational plant devoted to the handling of waste, in order to make rational use of resources and generate the lowest environmental impact. Initially a general diagnosis was conducted to learn about the current process of waste management in IC, as well as the identification and assessment of its aspects and environmental impacts. An ecoefficiency proposal program was subsequently prepared to be implemented once the ordinary, special and hazardous waste plant is operating. As part of this investigation, eco-efficient measures and technologies were also identified; this can be adopted by IC or any organization to improve its waste management. Finally, it is necessary that the Eco-efficient Management Program (PGE, in Spanish is organized, planned and systematized over time; in addition, the need to have an Ecoefficiency Management Committee arises, which will allow to implement it and measure it through a series of indicators.

  16. Application of electrical capacitance measurement for in situ monitoring of competitive interactions between maize and weed plants

    Energy Technology Data Exchange (ETDEWEB)

    Cseresnyés, I.; Takács, T.; Füzy, A.; Végh, K.R.; Lehoczky, E.

    2016-11-01

    Applicability of root electrical capacitance (EC) measurement for monitoring of crop–weed competition was studied in a pot experiment. Maize (Zea mays L.) was grown both alone and with Echinochloa crus-galli or Abutilon theophrasti in different densities with regular measurement of root EC. Plants were harvested 42 days after planting to determine above- and belowground biomass. Depending on weed density, E. crus-galli-A. theophrasti interaction reduced the root EC of maize by 22–66% and 3–57%, respectively. Competitive effect of crop on weeds and intraspecific competition among weeds could also be detected by EC values: E. crus-galli was less sensitive both to the presence of maize and to intraspecific competition than A. theophrasti. Strong linear correlations between root dry mass and root EC for crop and weeds (with R2 from 0.901 to 0.956) were obtained by regression analyses at the end of the experiment. EC monitoring informed us on the emergence time of competition: E. crus-galli interfered with maize root growth a week earlier then A. theophrasti, and increasing weed densities accelerated the emergence of competition. In conclusion, the simple, non-destructive EC method should be considered a potential in situ technique for pot studies on crop–weed competition, which may partially substitute the intrusive techniques commonly used in agricultural researches. (Author)

  17. Effect of Nutrition Solution pH and Electrical Conductivity on Fusarium Wilt on Strawberry Plants in Hydroponic Culture

    Directory of Open Access Journals (Sweden)

    Myeong Hyeon Nam

    2018-03-01

    Full Text Available Fusarium wilt on strawberry plants caused by Fusarium oxysporum f. sp. fragariae (Fof is a major disease in Korea. The prevalence of this disease is increasing, especially in hydroponic cultivation in strawberry field. This study assessed the effect of nutrition solution pH and electrical conductivity (EC on Fusarium wilt in vitro and in field trials. pH levels of 5.0, 5.5, 6.0, 6.5, 7.0, and 7.5 were assayed in vitro and in field trials. EC levels at 0, 0.5, 0.8, 1.0, and 1.5 dS∙m⁻¹ were assayed in field trials. Mycelial growth of Fof increased with increasing pH and was highest at 25°C pH 7 and lowest at 20°C, pH 5.0 in vitro. The incidence of Fusarium wilt was lowest in the pH 6.5 treatment and highest in the pH 5 treatment in field trials. At higher pH levels, the EC decreased in the drain solution and the potassium content of strawberry leaves increased. In the EC assay, the severity of Fusarium wilt and nitrogen content of leaves increased as the EC increased. These results indicate that Fusarium wilt is related to pH and EC in hydroponic culture of strawberry plants.

  18. Geothermal power plants around the world. A sourcebook on the production of electricity from geothermal energy, draft of Chapter 10

    Energy Technology Data Exchange (ETDEWEB)

    DiPippo, R.

    1979-02-01

    This report constitutes a consolidation and a condensation of several individual topical reports dealing with the geothermal electric power stations around the world. An introduction is given to various types of energy conversion systems for use with geothermal resouces. Power plant performance and operating factors are defined and discussed. Existing geothermal plants in the following countries are covered: China, El Salvador, Iceland, Italy, Japan, Mexico, New Zealand, the Philippines, Turkey, the Union of Soviet Socialist Republics, and the United States. In each case, the geological setting is outlined, the geothermal fluid characteristics are given, the gathering system, energy conversion system, and fluid disposal method are described, and the environmental impact is discussed. In some cases the economics of power generation are also presented. Plans for future usage of geothermal energy are described for the above-mentioned countries and the following additional ones: the Azores (Portugal), Chile, Costa Rica, Guatemala, Honduras, Indonesia, Kenya, Nicaragua, and Panama. Technical data is presented in twenty-two tables; forty-one figures, including eleven photographs, are also included to illustrate the text. A comprehensive list of references is provided for the reader who wishes to make an in-depth study of any of the topics mentioned.

  19. Trouble found during regular inspection of No.1 plant in Takahama Power Station, Kansai Electric Power Co., Inc

    International Nuclear Information System (INIS)

    1990-01-01

    No.1 plant in Takahama Power Station, Kansai Electric Power Co., Inc. is a PWR plant with the rated output of 826 MWe. Its regular inspection has been carried out since August 10, 1989, and eddy current flaw detection inspection was performed on the total number of steam generator heating tubes (9619 tubes except already plugged tubes). As the result, significant indication was observed in 6 tubes in the U-bend part, in 6 tubes in the tube-supporting plate part, in 4 tubes in the crevice part in the tube plate, in 9 tubes in the expanded part in the tube plate and in 11 tubes at the boundary of the expanded part, in total in 36 heating tubes, all of them on high temperature side. Consequently, it was decided to plug these 36 defective heating tubes. The heating tubes are those made of Inconel 600, having 22.2 mm outside diameter and 1.27 mm wall thickness. (K.I.)

  20. Troubles detected during regular inspection of No.1 plant in Oi Power Station, Kansai Electric Power Co., Inc

    International Nuclear Information System (INIS)

    1990-01-01

    No. 1 plant in Oi Power Station, Kansai Electric Power Co., Inc. is a PWR plant with rated output of 1175 MW, and its regular inspection is carried out since August 14, 1989. When eddy current flaw detection inspection was carried out on the total number (11426 except already plugged tubes) of the heating tubes of steam generators, significant indication was observed in tube supporting plate part of 279 tubes, at the boundary of tube plate expanded part of 34 tubes, and in the tube plate expanded part of 99 tubes, 411 heating tubes in total (all on high temperature side). Consequently, it was decided to repair 367 tubes using sleeves, and to plug other 44 tubes. Besides, among the heating tubes plugged in the past, it was decided to remove plugs from 161 tubes, and by repairing them with sleeves, to use them again. Total number of heating tubes 13552 (3388 tubes x 4 steam generators), Number of plugged tubes 2009 (decrease by 117 this time), Ratio of plugging 14.8%. (K.I.)

  1. Trouble found during regular inspection of No.3 plant in Mihama Power Station, Kansai Electric Power Co., Inc

    International Nuclear Information System (INIS)

    1990-01-01

    No.3 plant in Mihama Power Station, Kansai Electric Power Co., Inc. is a PWR type plant with the rated output of 826 MWe. Its regular inspection has been carried out since September 11, 1989, and eddy current flaw detection inspection was carried out on the total number of steam generator heating tubes (9997 tubes except already plugged tubes). As the result, significant indication was observed in 24 tubes in the expanded parts in tube plates, and in 36 tubes at the boundary of the expanded parts (all on high temperature side), in total in 60 tubes. Consequently, it was decided to plug these 60 defective heating tubes. The heating tubes are those made of Inconel 600, having 22.2 mm outside diameter and 1.27 mm wall thickness. The total number of heating tubes in 10164 (3388 tubes x 3 steam generators), the number of plugged tubes is 227, and the ratio of plugging is 2.2 %. (K.I.)

  2. Multi-objective stochastic scheduling optimization model for connecting a virtual power plant to wind-photovoltaic-electric vehicles considering uncertainties and demand response

    International Nuclear Information System (INIS)

    Ju, Liwei; Li, Huanhuan; Zhao, Junwei; Chen, Kangting; Tan, Qingkun; Tan, Zhongfu

    2016-01-01

    Highlights: • Our research focuses on virtual power plant. • Electric vehicle group and demand response are integrated into virtual power plant. • Stochastic chance constraint planning is applied to overcome uncertainties. • A multi-objective stochastic scheduling model is proposed for virtual power plant. • A three-stage hybrid intelligent solution algorithm is proposed for solving the model. - Abstract: A stochastic chance-constrained planning method is applied to build a multi-objective optimization model for virtual power plant scheduling. Firstly, the implementation cost of demand response is calculated using the system income difference. Secondly, a wind power plant, photovoltaic power, an electric vehicle group and a conventional power plant are aggregated into a virtual power plant. A stochastic scheduling model is proposed for the virtual power plant, considering uncertainties under three objective functions. Thirdly, a three-stage hybrid intelligent solution algorithm is proposed, featuring the particle swarm optimization algorithm, the entropy weight method and the fuzzy satisfaction theory. Finally, the Yunnan distributed power demonstration project in China is utilized for example analysis. Simulation results demonstrate that when considering uncertainties, the system will reduce the grid connection of the wind power plant and photovoltaic power to decrease the power shortage punishment cost. The average reduction of the system power shortage punishment cost and the operation revenue of virtual power plant are 61.5% and 1.76%, respectively, while the average increase of the system abandoned energy cost is 40.4%. The output of the virtual power plant exhibits a reverse distribution with the confidence degree of the uncertainty variable. The proposed algorithm rapidly calculates a global optimal set. The electric vehicle group could provide spinning reserve to ensure stability of the output of the virtual power plant. Demand response could

  3. Risk-informed decision-making analysis for the electrical raceway fire barrier systems on a BWR-4 plant

    International Nuclear Information System (INIS)

    Wu, Ching-Hui; Lin, Tsu-Jen; Kao, Tsu-Mu; Chen, Chyn-Rong

    2003-01-01

    This paper describes a risk-informed decision-making approach used to resolve the fire barrier issue in a BWR-4 nuclear plant where Appendix R separation requirements cannot be met without installing additional fire protection features such as electrical raceway fire barrier system. The related risk measures in CDF (core damage frequency) and LERF (large early release frequency) of the fire barrier issue can be determined by calculating the difference in plant risks between various alternative cases and that met the requirement of the Appendix R. In some alternative cases, additional early-detection and fast-response fire suppression systems are suggested. In some other cases, cable re-routing of some improper layout of non-safety related cables are required. Sets of fire scenarios are re-evaluated more detailed by reviewing the cable damage impact for the BWR-4 plant. The fire hazard model, COMPBRM III-e, is used in this study and the dominant results in risk measures are benchmarked with the CFD code, FDS 2.0, to ensure that the risk impact of fire barrier is estimated accurately in the risk-informed decision making. The traditional deterministic qualitative methods, such as defense-in-depth, safety margin and post-fire safety shutdown capability are also proceeded. The value-impact analysis for proposed alternatives of fire wrapping required by Appendix R has been completed for technical basis of the exemption on Appendix R application. The outcome of the above analysis should be in compliance with the regulatory guidelines (RG) 1.174 and 1.189 for the applications in the risk-informed decision-making of the fire wrapping issues. (author)

  4. Elimination of the containment spray additive for Vogtle electric generating plant

    International Nuclear Information System (INIS)

    Lowery, K.G.

    1995-01-01

    This paper discusses the details for elimination of the spray additive portion of the containment spray system (CSS) in a pressurized water reactor (PWR) power plant. A particular emphasis is placed on nuclear power plant design associated with operation and maintenance (O and M), cost control strategies, and reliability initiatives. The CSS is an engineered safeguard system that functions to reduce reactor containment building pressure and temperature and the quantity of airborne fission products in the containment atmosphere subsequent to a loss-of-coolant accident (LOCA). Pressure and temperature reduction is accomplished by spraying water into the containment building atmosphere. Sodium hydroxide (NaOH) is added to the containment spray water to increase its pH. Results of recent studies on the behavior of fission products in the post-LOCA containment environment have demonstrated that the iodine removal can be effectively performed by boric acid sprays without the NaOH additive and by deposition on the internal surfaces of the containment building. Thus, the NaOH, the SAT, the chemical injection system (eductor) which delivers the additive to the spray system, and the related testing and maintenance required by the Technical Specifications can be eliminated. The NaOH will be replaced by TSP in baskets in the containment sump area. The TSP is needed for pH control during the recirculation phase following a LOCA. The deletion of the requirement for the SAT will result in a reduction of regulatory requirements in that the level of surveillance will be reduced. The safety analysis acceptance limits will still be met

  5. Combining plasma gasification and solid oxide cell technologies in advanced power plants for waste to energy and electric energy storage applications.

    Science.gov (United States)

    Perna, Alessandra; Minutillo, Mariagiovanna; Lubrano Lavadera, Antonio; Jannelli, Elio

    2018-03-01

    The waste to energy (WtE) facilities and the renewable energy storage systems have a strategic role in the promotion of the "eco-innovation", an emerging priority in the European Union. This paper aims to propose advanced plant configurations in which waste to energy plants and electric energy storage systems from intermittent renewable sources are combined for obtaining more efficient and clean energy solutions in accordance with the "eco-innovation" approach. The advanced plant configurations consist of an electric energy storage (EES) section based on a solid oxide electrolyzer (SOEC), a waste gasification section based on the plasma technology and a power generation section based on a solid oxide fuel cell (SOFC). The plant configurations differ for the utilization of electrolytic hydrogen and oxygen in the plasma gasification section and in the power generation section. In the first plant configuration IAPGFC (Integrated Air Plasma Gasification Fuel Cell), the renewable oxygen enriches the air stream, that is used as plasma gas in the gasification section, and the renewable hydrogen is used to enrich the anodic stream of the SOFC in the power generation section. In the second plant configuration IHPGFC (Integrated Hydrogen Plasma Gasification Fuel Cell) the renewable hydrogen is used as plasma gas in the plasma gasification section, and the renewable oxygen is used to enrich the cathodic stream of the SOFC in the power generation section. The analysis has been carried out by using numerical models for predicting and comparing the systems performances in terms of electric efficiency and capability in realizing the waste to energy and the electric energy storage of renewable sources. Results have highlighted that the electric efficiency is very high for all configurations (35-45%) and, thanks to the combination with the waste to energy technology, the storage efficiencies are very attractive (in the range 72-92%). Copyright © 2017 Elsevier Ltd. All rights

  6. Fire extinguishing of electrical equipment under voltage at nuclear power plants

    International Nuclear Information System (INIS)

    Capek, Josef

    2009-01-01

    Fire extinguishing on equipment that is under voltage is always hazardous. Conventional fire fighting equipment applicable to this task includes powder and gas extinguishers, which, however, have some drawbacks. Therefore, attention has been increasingly devoted to high-pressure fire extinguishing, whose assets include better heat removal as compared to a full water flow where the majority of the water runs off without any cooling effect. This article describes the testing of some types and combinations of extinguishing techniques and their interpretation based on earth-leakage current measurement and determination of a safe distance for fire extinguishing. Methodology described in CSN IEC 60-1:1994 and CSN EN 3-7:2004 was applied. To meet the criterion, none of the tests was to exhibit an earth-leakage current higher than 0.5 mA. In the accredited laboratory test room setup, 3 extinguishing equipment arrangements proved to extinguish fire on electrical equipment under voltage at a safe distance of 1 m (or 3 m). (orig.)

  7. Qualification of Electrical Equipment in Nuclear Power Plants - Management of ageing

    International Nuclear Information System (INIS)

    Spaang, Kjell; Staahl, Gunnar

    2013-02-01

    The purpose of this report is to describe programs and tools for assessment of accomplished and documented qualification with respect to ageing of electrical equipment and for development of complimentary ageing management programs. In addition to description of complete programs for management of ageing, tools for validation of the status with regard to ageing of installed ('old') equipment and, where needed, for complementation of their qualification are also included. The report is restricted to safety related equipment containing ageing sensitive parts, mainly organic materials. To this category belong cables and cable joints and a number of equipment containing oils, seals (o-rings), etc. For equipment located in the containment, the possibilities of continuous supervision are limited. The accessibility for regular inspections is also limited in many cases. The main part of this report deals with the qualification of such equipment. Some safety related equipment outside the containment can be located in areas where they are subjected to high temperature and other excessive environmental stresses during normal operation and in areas affected by an accident. Therefore, some material is given also on qualification of equipment located outside containment with better possibilities for frequent inspection and supervision. Part 1 of the report is an executive summary with a general review of the methodologies and their application. The more detailed description of the programs and underlying material, useful data, etc. is given in Part 2

  8. The impact of the year 2000 issue on electricity grid performance and nuclear power plant operation in Bulgaria, the Russian Federation and Slovakia

    International Nuclear Information System (INIS)

    1999-07-01

    The Y2K date conversion is a potential source of problems to the operation of nuclear power plants through external events and interfaces with electrical power systems, telecommunication systems, and other supporting infrastructures, even if diagnostic and corrective actions within the plant itself, both planned or implemented, are successful. At the end of 1998 there were 425 nuclear power plants in operation in 31 Member States. Most countries and regions are conducting intensive diagnostic and corrective activities to 'find and fix' Y2K software (including embedded software) and equipment problems in their nuclear power plants. These efforts are supplemented by contingency plans. Other countries and regions have not been making comparable efforts and are relying mainly on contingency planning and preparedness. Results of diagnostic and corrective activities can be of benefit to all Member States. Activities on 'find and fix' Y2K problems in electricity grid control systems and computer related technology in national and regional dispatch centers could be of considerable benefit due to the widespread use of the same components, equipment, and software. Consistent with the objectives of the International Atomic Energy Agency's Y2K program, an experts meeting was convened to collect information on Y2K activities related to grid operation in countries that operate nuclear power plants and also to identify specific actions to be taken and issues to be addressed in connection with expected grid disturbances. The countries of eastern Europe and the Russian Federation were considered to be a very important region due to delays in taking Y2K corrective actions but also due to the similarity of their electricity grid systems both in components and design but also in mode of operation. Most of these countries either operate their own nuclear power plants or are linked through their electricity grid interconnections to a neighboring country that operates nuclear power

  9. The narrow-gap TIG welding concerns the electric power plants manufacturers

    International Nuclear Information System (INIS)

    Anon.

    2009-01-01

    Polysoude, France, played host to an expert forum on narrow gap welding from 5-7 November 2008. The successful event welcomed around one hundred experts.The power plant construction sector is currently booming worldwide. For plant construction this means using more pressure-resistant, thick-walled pipes made from high temperature steels. The key quality features of this new steel grade are the values for high creep rupture strength that also apply without restriction as the benchmark for every weld seam on these pipes. In particular, the forum on narrow gap welding addressed this area of automated welding technology. During the forum, Mr Hans-Peter Mariner (Polysoude's CEO), has offered an in-depth insight into the latest developments in narrow gap welding. This presentation highlighted that with wall thicknesses of over 60 mm, welding time is shortened by a factor of five to ten in comparison to conventional TIG processes with a traditional V seam. The welding characteristics of the parent material are the decisive factor in the application of the narrow gap process. Technical advances in equipment technology such as automatic centring, HF-free ignition, seam preparation and optimised gas protection further increase the application limits. The geometry and gap width of the weld groove are based on the mechanical properties of the materials being joined, with the shrinkage characteristics of the seam being particularly important. Another key part of the programme was a presentation on the three different narrow gap-welding techniques. The first involves a single pass weld per layer and torch or work-piece revolution. The second is dual pass welding next to one another, when the seam preparation or positioning exceed the required narrow tolerances of a few tenths of a millimetre for one stringer bead per layer. TIG narrow gap welding with a shuttle-motion electrode is ideal with very large wall thicknesses of 150-200 mm. This is particularly the case if the

  10. Performance of Generating Plant: Managing the Changes. Supporting paper: The evolution of the electricity sector and renewable sources in Italy: opportunities and problems for wind power integration

    Energy Technology Data Exchange (ETDEWEB)

    Salvaderi, Luigi [IEEE Fellow (Italy)

    2008-05-15

    The WEC Committee on the Performance of Generating Plant (PGP) has been collecting and analysing power plant performance statistics worldwide for more than 30 years and has produced regular reports, which include examples of advanced techniques and methods for improving power plant performance through benchmarking. A series of reports from the various working groups was issued in 2008. This document serves as a supporting paper. Sections include: features of Italian energy and electricity; the evolution of liberalisation; support mechanism for renewables; connection to wind farm transmission network; wind source integration into power system; and, final comments.

  11. Modernization of electric power systems of the Laguna Verde Nuclear Power Plant; Modernizacion de los sistemas electricos de potencia de la Central Nuclear de Laguna Verde

    Energy Technology Data Exchange (ETDEWEB)

    Gabaldon, M. A.; Gonzalez, J. J.; Prieto, I.

    2011-07-01

    The Power Increase Project of Laguna Verde Nuclear Plant has entailed the replacement, in one unique outage, of the main power electrical systems of the Plant (Isolated Phase Bars, Generator Circuit Breaker and Main Transformer) as well as the replacement of the Turbo-group. The simultaneous substitution of these entire system has never been done by any other Plant in the world, representing an engineering challenge that embraced the design of the new equipment up to the planning, coordination and management of the construction and commissioning works, which were successfully carried out by Iberdrola within the established outage period /47 days) for both units. (Author)

  12. The role of nuclear power plants in the wholesale electricity market; El papel de las centrales nucleares en el mercado mayorista de electricidad

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, J c; Alonso, J; Gonzalez, A; Gonzalez, R

    2009-07-01

    The Spanish electricity market has been running foe eleven years and its rules and procedures have proven compatible with a safe and stable operation of the nuclear power plants, helped by a wide portfolio of technologies in the Spanish system. In the near future, two issues emerge as a potential threat: the increase in renewable (mainly wind) production and its volatility and the development of new network infrastructure around the plants owned by third parties. Stricter rules on network development and operation and greater respect to the plants operational needs have to be pushed forward by the industry to succeed in life extension programs. (Author)

  13. Technical evaluation of the electrical, instrumentation, and control design aspects of the low temperature overpressure protection system for the Maine Yankee nuclear power plant

    International Nuclear Information System (INIS)

    Latorre, V.R.; Mayn, B.G.

    1979-08-01

    This report documents the technical evaluation of the electrical, instrumentation, and control design aspects for the low temperature overpressure protection system of the Maine Yankee nuclear power plant. Design basis criteria used to evaluate the acceptability of the system included operator action, system testability, single failure criterion, and seismic Category I and IEEE Std-279-1971 criteria

  14. Motor Assembly Plant Saves$85,000 with Compressed Air System Improvements (Bodine Electric's Chicago Facility): Office of Industrial Technologies (OIT) BestPractices Technical Case Study

    International Nuclear Information System (INIS)

    Wogsland, J.

    2001-01-01

    This case study is one in a series on industrial firms who are implementing energy efficient technologies and system improvements into their manufacturing processes. This case study documents the activities, savings, and lessons learned on the Bodine Electric motor assembly plant project

  15. DETERMINATION OF SULFUR DIOXIDE, NITROGEN OXIDES, AND CARBON DIOXIDE IN EMISSIONS FROM ELECTRIC UTILITY PLANTS BY ALKALINE PERMANGANATE SAMPLING AND ION CHROMATOGRAPHY

    Science.gov (United States)

    A manual 24-h integrated method for determining SO2, NOx, and CO2 in emissions from electric utility plants was developed and field tested downstream from an SO2 control system. Samples were collected in alkaline potassium permanganate solution contained in restricted-orifice imp...

  16. Technical evaluation of the electrical, instrumentation, and control design aspects of the low temperature overpressure protection system for the Yankee Rowe nuclear power plant

    International Nuclear Information System (INIS)

    Latorre, V.R.; Mayn, B.G.

    1979-08-01

    This report documents the technical evaluation of the electrical, instrumentation, and control design aspects for the low temperature overpressure protection system of the Yankee Rowe nuclear power plant. Design basis criteria used to evaluate the acceptability of the system included operator action, system testability, single failure criterion, and seismic Category I and IEEE Std-279-1971 criteria

  17. Technical evaluation of the electrical, instrumentation, and control design aspects of the low temperature overpressure protection system for the Salem nuclear power plant, Unit 1

    International Nuclear Information System (INIS)

    Laudenbach, D.H.

    1979-03-01

    The technical evaluation is presented for the electrical, instrumentation, and control design aspects of the low temperature overpressure protection system for the Salem nuclear power plant, Unit 1. Design basis criteria used to evaluate the acceptability of the system include operator action, system testability, single failure criterion, and seismic Category I and IEEE Std-279-1971 criteria

  18. Marketing opportunities for CHP electricity in a virtual power plant. Direct and indirect marketing of flexibility; Vermarktungschancen fuer KWK-Strom im virtuellen Kraftwerk. Direkte und indirekte Flexibilitaetsvermarktung

    Energy Technology Data Exchange (ETDEWEB)

    Otto, Achim; Baumgart, Bastian [Trianel GmbH, Aachen (Germany). Abt. Virtuelle Kraftwerke

    2013-07-15

    The increasingly fluctuating feed-in of electricity by means of a rapid expansion of renewable energies results in an increasing demand for flexible performance for the regulation of production and consumption. An important part of the necessary flexibility could be provided by CHP plants. Their potential of flexibility is not always fully exploited.

  19. Fuel cell electric vehicle as a power plant and SOFC as a natural gas reformer : An exergy analysis of different system designs

    NARCIS (Netherlands)

    Fernandes, A.A.; Woudstra, T.; van Wijk, A.J.M.; Verhoef, L.A.; Purushothaman Vellayani, A.

    2016-01-01

    Delft University of Technology, under its "Green Village" programme, has an initiative to build a power plant (car parking lot) based on the fuel cells used in vehicles for motive power. It is a trigeneration system capable of producing electricity, heat, and hydrogen. It comprises three main

  20. Apparatus for servicing an eleongated suspended pump motor in an electric power plant with limited access

    International Nuclear Information System (INIS)

    Chavez, R.; Johnson, F.T.; Ekeroth, D.E.; Matusz, J.M.

    1994-01-01

    Elongated coolant pump motors suspended under steam generators within containment in a power plant with limited access space, are removed and replaced by an upright elongated maintenance cart with an elongated opening along one side in which the motor is received. Rollers support the cart for conveying the elongated motor in an upright position out from under the steam generator and onto an elevator. The elevator is lowered to transfer support of the cart and motor through trunnions to saddles straddling the elevator for rotation of the cart to a generally horizontal position. The elevator then raises the horizontally disposed cart carrying the motor to a higher floor where it is rolled off the elevator on rollers and out through the auxiliary equipment hatch. The cart includes a top V-shaped collar for supporting the motor, and a further lower support cradle operative when the cart is horizontal. Jacks support the motor during unbolting from the pump casing and lower it onto the cart. (Author)