WorldWideScience

Sample records for maturing loblolly pine

  1. Southern pine beetle in loblolly pine: simulating within stand interactions using the process model SPBLOBTHIN

    Science.gov (United States)

    Brian Strom; J. R. Meeker; J. Bishir; James Roberds; X. Wan

    2016-01-01

    Pine stand density is a key determinant of damage resulting from attacks by the southern pine beetle (SPB, Dendroctonus frontalis Zimm.). High-density stands of maturing loblolly pine (Pinus taeda L.) are at high risk for losses to SPB, and reducing stand density is the primary tool available to forest managers for preventing and mitigating damage. Field studies are...

  2. The health of loblolly pine stands at Fort Benning, GA

    Science.gov (United States)

    Soung-Ryoul Ryu; G. Geoff Wang; Joan L. Walker

    2013-01-01

    Approximately two-thirds of the red-cockaded woodpecker (Picoides borealis) (RCW) groups at Fort Benning, GA, depend on loblolly pine (Pinus taeda) stands for nesting or foraging. However, loblolly pine stands are suspected to decline. Forest managers want to replace loblolly pine with longleaf pine (P. palustris...

  3. Cone and Seed Maturation of Southern Pines

    Science.gov (United States)

    James P. Barnett

    1976-01-01

    If slightly reduced yields and viability are acceptable, loblolly and slash cone collections can begin 2 to 3 weeks before maturity if the cones are stored before processing. Longleaf(P. palestris Mill.) pine cones should be collected only when mature, as storage decreased germination of seeds from immature cones. Biochemical analyses to determine reducing sugar...

  4. Hurricane Katrina winds damaged longleaf pine less than loblolly pine

    Science.gov (United States)

    Kurt H. Johnsen; John R. Butnor; John S. Kush; Ronald C. Schmidtling; C. Dana. Nelson

    2009-01-01

    Some evidence suggests that longleaf pine might be more tolerant of high winds than either slash pine (Pinus elliotii Englem.) or loblolly pine (Pinus taeda L.). We studied wind damage to these three pine species in a common garden experiment in southeast Mississippi following Hurricane Katrina,...

  5. Microsatellite DNA in genomic survey sequences and UniGenes of loblolly pine

    Science.gov (United States)

    Craig S Echt; Surya Saha; Dennis L Deemer; C Dana Nelson

    2011-01-01

    Genomic DNA sequence databases are a potential and growing resource for simple sequence repeat (SSR) marker development in loblolly pine (Pinus taeda L.). Loblolly pine also has many expressed sequence tags (ESTs) available for microsatellite (SSR) marker development. We compared loblolly pine SSR densities in genome survey sequences (GSSs) to those in non-redundant...

  6. The effects of irrigation and fertilization on specific gravity of loblolly pine

    Science.gov (United States)

    K. R. Love-Myers; Alexander Clark; L. R. Schimleck; P. M. Dougherty; R. F. Daniels

    2010-01-01

    The effects of two treatments, irrigation and fertilization, were examined on specific gravity (SG)-related wood properties of loblolly pine trees (Pinus taeda L.) grown in Scotland County, North Carolina. The effects on the core as a whole, on the juvenile core, on the mature core, and from year to year were all analyzed. The results indicate that fertilization...

  7. Growth following pruning of young loblolly pine trees: some early results

    Science.gov (United States)

    Ralph L. Amateis; Harold E. Burkhart

    2006-01-01

    In the spring of 2000, a designed experiment was established to study the effects of pruning on juvenile loblolly pine (Pinus taeda L.) tree growth and the subsequent formation of mature wood. Trees were planted at a 3 m x 3 m square spacing in plots of 6 rows with 6 trees per row, with the inner 16 trees constituting the measurement plot. Among the...

  8. Heterogeneity of interflavanoid bond Location in loblolly pine bark procyanidins

    Science.gov (United States)

    Richard W. Hemingway; Joseph J. Karchesy; Gerald W. McGraw; Richard A. Wielesek

    1983-01-01

    Procyanidins B-1, B-3 and B-7 were obtained from Pinus taeda phloem in yields of 0.076, 0.021 and 0.034% of unextracted dry wt. Procyanidins B-1 and B-7 were produced in relative yields of 2.4:1 by biosynthetically patterned synthesis from catechin and loblolly pine tannins. Partial acid-catalysed thiolytic cleavage of loblolly pine phloem tannins...

  9. Carbon Sequestration in loblolly pine plantations: Methods, limitations, and research needs for estimating storage pools

    Science.gov (United States)

    Kurt Johnsen; Bob Teskey; Lisa Samuelson; John Butnor; David Sampson; Felipe Sanchez; Chris Maier; Steve McKeand

    2004-01-01

    Globally, the species most widely used for plantation forestry is loblolly pine (Pinus taeda L.). Because loblolly pine plantations are so extensive and grow so rapidly, they provide a great potential for sequestering atmospheric carbon (C). Because loblolly pine plantations are relatively simple ecosystems and because such a great volume of...

  10. Inheritance of RFLP loci in a loblolly pine three-generation pedigree

    Science.gov (United States)

    M.D. Devey; K.D. Jermstad; C.G. Tauer; D.B. Neale

    1991-01-01

    A high-density restriction fragment length polymorphism (RFLP) linkage map is being constructed for loblolly pine (Pinus taeda L.). Loblolly pine cDNA and genomic DNA clones were used as probes in hybridizations to genomic DNAs prepared from grandparents, parents, and progeny of a three-generation outbred pedigree. Approximately 200 probes were...

  11. Nantucket Pine Tip Moth Control and Loblolly Pine Growth in Intensive Pine Culture: Two-Year Results

    Science.gov (United States)

    David L. Kulhavy; Jimmie L. Yeiser; L. Allen Smith

    2004-01-01

    Twenty-two treatments replicated four times were applied to planted loblolly pine, Pinus taeda L. on bedded industrial forest land in east Texas for measurement of growth impact of Nantucket pine tip moth (NPTM), Rhyacionia frustrana (Comstock), and effects on pine growth over 2 years. Treatments were combinations of Velpar, Oust, and Arsenal...

  12. Assessment of Loblolly Pine Decline in Central Alabama

    Science.gov (United States)

    Nolan J. Hess; William J. Otrosina; Emily A. Carter; Jim R. Steinman; John P. Jones; Lori G. Eckhardt; Ann M. Weber; Charles H. Walkinshaw

    2002-01-01

    Loblolly pine (Pinus taeda L.) decline has been prevalent on upland sites of central Alabama since the 1960's. The purpose of this study was to compare Forest Health Monitoring (FHM) standards and protocols with root health evaluations relative to crown, stem, and site measurements. Thirty-nine 1/6 acre plots were established on loblolly decline...

  13. Silvicultural treatments for converting loblolly pine to longleaf pine dominance: Effects on planted longleaf pine seedlings

    Science.gov (United States)

    Huifeng Hu; G.Geoff Wang; Joan L. Walker; Benjamin O. Knapp

    2012-01-01

    A field study was installed to test silvicultural treatments for establishing longleaf pine (Pinus palustris Mill) in loblolly pine (P. taeda L.) stands. Harvesting was used to create seven canopy treatments, four with uniformly distributed canopies at different residual basal areas [Control (16.2 m2/ha),...

  14. Pathogenicity of Leptographium Species Associated with Loblolly Pine Decline

    Science.gov (United States)

    L. G. Eckhardt; J. P. Jones; Kier D. Klepzig

    2004-01-01

    Freshly lifted seedlings and 21-year-old trees of loblolly pine were wound-inoculated with Leptographium species recovered from the soil and/or roots of trees with loblolly decline symptoms in central Alabama. Seedlings inoculated with L. procerum in the greenhouse produced significantly fewer root initials and a smaller root mass than control...

  15. Tip moth control and loblolly pine growth in intensive pine culture: four year results

    Science.gov (United States)

    David L. Kulhavy; Jimmie L. Yeiser; L. Allen Smith

    2006-01-01

    Twenty-two treatments replicated four times were applied to planted loblolly pine, Pinus taeda L., on bedded industrial forest land in east Texas for measurement of growth impact of Nantucket pine tip moth (NPTM), Rhyacionia frustrana Comstock, and effects on pine growth over 2 years. Treatments were combinations of Velpar®,...

  16. Financial performance of loblolly and longleaf pine plantations

    Science.gov (United States)

    Steven D. Mills; Charles T. Stiff

    2013-01-01

    The financial performance of selected management regimes for loblolly (Pinus taeda L.) and longleaf pine (P. palustris Mill.) plantations were compared for four cases, each with low- and high-site productivity levels and each evaluated using 5 and 7 percent real discount rates. In all cases, longleaf pine was considered both with...

  17. Reassessment of Loblolly Pine Decline on the Oakmulgee Ranger District, Talladega National Forest, Alabama

    Science.gov (United States)

    Nolan J. Hess; William J. Otroana; John P. Jones; Arthur J. Goddard; Charles H. Walkinshaw

    1999-01-01

    Loblolly pine (Pinus taeda L.) decline has been a management concern on the Oakmulgee Ranger District since the 1960's. The symptoms include sparse crowns, reduced radial growth, deterioration of fine roots, decline, and mortality of loblolly pine by age 50.

  18. Electromagnetic treatment of loblolly pine seeds

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, J. P. [Southern Forest Experiment Station, New Orleans, LA (United States); Krugman, S. L.

    1989-11-15

    Loblolly pine (Pinus faeda L.) seeds were exposed to an electromagnetic radiation treatment (Energy Transfer Process@, marketed by the Energy Transfer Corporation), and the effects of the treatments on seed germination, seedling development, disease resistance, and field performance of seedlings were evaluated. None of the evaluated variables showed any improvement over untreated controls.

  19. Documentation and user guides for SPBLOB: a computer simulation model of the join population dynamics for loblolly pine and the southern pine beetle

    Science.gov (United States)

    John Bishir; James Roberds; Brian Strom; Xiaohai Wan

    2009-01-01

    SPLOB is a computer simulation model for the interaction between loblolly pine (Pinus taeda L.), the economically most important forest crop in the United States, and the southern pine beetle (SPB: Dendroctonus frontalis Zimm.), the major insect pest for this species. The model simulates loblolly pine stands from time of planting...

  20. Association genetics of growth and adaptive traits in loblolly pine (Pinus taeda L.) using whole-exome-discovered polymorphisms

    Science.gov (United States)

    Mengmeng Lu; Konstantin V. Krutovsky; C. Dana Nelson; Jason B. West; Nathalie A. Reilly; Carol A. Loopstra

    2017-01-01

    In the USA, forest genetics research began over 100 years ago and loblolly pine breeding programs were established in the 1950s. However, the genetics underlying complex traits of loblolly pine remains to be discovered. To address this, adaptive and growth traits were measured and analyzed in a clonally tested loblolly pine (Pinus taeda L.) population. Over 2.8 million...

  1. Herbaceous weed control in loblolly pine plantations using flazasulfuron

    Science.gov (United States)

    Andrew W. Ezell; Jimmie L. Yeiser

    2015-01-01

    A total of 13 treatments were applied at four sites (two in Mississippi and two in Texas) to evaluate the efficacy of flazasulfuron applied alone or in mixtures for providing control of herbaceous weeds. All sites were newly established loblolly pine (Pinus taeda L.) plantations. Plots were evaluated monthly until 180 days after treatment. No phytotoxicity on pine...

  2. Harvester Productivity for Row Thinning Loblolly Pine Plantations

    Science.gov (United States)

    James E. Granskog; Walter C. Anderson

    1980-01-01

    Tivo tree harvesters currently being used to thin southern pine plantations were evaluated to determine the effects of stand characteristics on machine productivity. Production rates for row thinning loblolly plantations are presented by stand age, site index, and stand density.

  3. Transgenic loblolly pine (Pinus taeda L.) plants expressing a modified delta-endotoxin gene of Bacillus thuringiensis with enhanced resistance to Dendrolimus punctatus Walker and Crypyothelea formosicola Staud.

    Science.gov (United States)

    Tang, Wei; Tian, Yingchuan

    2003-02-01

    A synthetic version of the CRY1Ac gene of Bacillus thuringiensis has been used for the transformation of loblolly pine (Pinus taeda L.) using particle bombardment. Mature zygotic embryos were used to be bombarded and to generate organogenic callus and transgenic regenerated plants. Expression vector pB48.215 DNA contained a synthetic Bacillus thuringiensis (B.t.) CRY1Ac coding sequence flanked by the double cauliflower mosaic virus (CaMV) 35S promoter and nopaline synthase (NOS) terminator sequences, and the neomycin phosphotransferase II (NPTII) gene controlled by the promoter of the nopaline synthase gene was introduced into loblolly pine tissues by particle bombardment. The transformed tissues were proliferated and selected on media with kanamycin. Shoot regeneration was induced from the kanamycin-resistant calli, and transgenic plantlets were then produced. More than 60 transformed plants from independent transformation events were obtained for each loblolly pine genotype tested. The integration and expression of the introduced genes in the transgenic loblolly pine plants was confirmed by polymerase chain reactions (PCR) analysis, by Southern hybridization, by Northern blot analysis, and by Western blot analysis. Effective resistance of transgenic plants against Dendrolimus punctatus Walker and Crypyothelea formosicola Staud was verified in feeding bioassays with the insects. The transgenic plants recovered could represent a good opportunity to analyse the impact of genetic engineering of pine for sustainable resistance to pests using a B. thuringiensis insecticidal protein. This protocol enabled the routine transformation of loblolly pine plants that were previously difficult to transform.

  4. Prescribed burning and mastication effects on surface fuels in southern pine beetle-killed loblolly pine plantations

    Science.gov (United States)

    Aaron D. Stottlemyer; Thomas A. Waldrop; G. Geoff Wang

    2015-01-01

    Surface fuels were characterized in loblolly pine (Pinus taeda L.) plantations severely impacted by southern pine beetle (Dendroctonus frontalis Ehrh.) (SPB) outbreaks in the upper South Carolina Piedmont. Prescribed burning and mastication were then tested as fuel reduction treatments in these areas. Prescribed burning reduced...

  5. Fertilizer responses of longleaf pine trees within a loblolly pine plantation: separating direct effects from competition effects

    Science.gov (United States)

    Peter H Anderson; Kurt H. Johnsen

    2009-01-01

    Evidence is mixed on how well longleaf pine (Pinus palustris Mill.) responds to increased soil nitrogen via fertilization. We examined growth and physiological responses of volunteer longleaf pine trees within an intensive loblolly pine (Pinus taeda L.) fertilization experiment. Fertilizer was applied annually following thinning at age 8 years (late 1992) at rates...

  6. Growth and wood properties of genetically improved loblolly pine: propagation type comparison and genetic parameters

    Science.gov (United States)

    Finto Antony; Laurence Schimleck; Lewis Jordan; Benjamin Hornsby; Joseph Dahlen; Richard Daniels; Alexander Clark; Luis Apiolaza; Dudley Huber

    2013-01-01

    The use of clonal varieties in forestry offers great potential to improve growth traits (quantity) and wood properties (quality) of loblolly pine (Pinus taeda L.). Loblolly pine trees established via somatic embryogenesis (clones), full-sib zygotic crosses, and half-sib zygotic open-pollinated families were sampled to identify variation in growth and wood properties...

  7. Long-term Root Growth Response to Thinning, Fertilization, and Water Deficit in Plantation Loblolly Pine

    Science.gov (United States)

    M.A. Sword-Sayer; Z. Tang

    2004-01-01

    High water deficits limit the new root growth of loblolly pine (Pinus taeda L.), potentially reducing soil resource availability and stand growth. We evaluated new root growth and stand production in response to thinning and fertilization in loblolly pine over a 6-year period that consisted of 3 years of low water deficit followed by 3 years of high...

  8. Water and Energy Balances of Loblolly Pine Plantation Forests during a Full Stand Rotation

    Science.gov (United States)

    Sun, G.; Mitra, B.; Domec, J. C.; Gavazi, M.; Yang, Y.; Tian, S.; Zietlow, D.; McNulty, S.; King, J.; Noormets, A.

    2017-12-01

    Loblolly pine (Pinus taeda) plantations in the southern U.S. are well recognized for their ecosystem services in supplying clean and stable water and mitigating climate change through carbon sequestration and solar energy partitioning. Since 2004, we have monitored energy, water, and carbon fluxes in a chronosequence of three drained loblolly pine plantations using integrated methods that include eddy covariance, sap flux, watershed hydrometeorology, remote sensing, and process-based simulation modeling. Study sites were located on the eastern North Carolina coastal plain, representing highly productive ecosystems with high groundwater table, and designated in the Ameriflux network as NC1 (0-10 year old), NC2 (12-25 year old) and NC3 (0-3 years old). The 13-year study spanned a wide range of annual precipitation (900-1600 mm/yr) including two exceptionally dry years during 2007-2008. We found that the mature stand (NC2) had higher net radiation (Rn) flux due to its lower albedo (α =0.11-12), compared with the young stands (NC1, NC3) (α=0.15-0.18). Annually about 75%-80% of net radiation was converted to latent heat in the pine plantations. In general, the mature stand had higher latent heat flux (LE) (i.e. evapotranspiration (ET)) rates than the young stands, but ET rates were similar during wet years when the groundwater table was at or near the soil surface. During a historic drought period (i.e., 2007-2008), total stand annual ET exceeded precipitation, but decreased about 30% at NC2 when compared to a normal year (e.g., 2006). Field measurements and remote sensing-based modeling suggested that annual ET rates increased linearly from planting age (about 800 mm) to age 15 (about 1050 mm) and then stabilized as stand leaf area index leveled-off. Over a full stand rotation, approximately 70% (young stand) to 90% (mature stand) of precipitation was returned to the atmosphere through ET. We conclude that both climatic variability and canopy structure controlled the

  9. Development and Validation of Marker-Aided Selection Methods for Wood Property Traits in Loblolly Pine and Hybrid Poplar

    Energy Technology Data Exchange (ETDEWEB)

    Tuskan, G.A.

    2001-06-20

    Wood properties influence pulp and paper quality. Certainly, overall pulp yields are directly related to the cellulose content, changes in hemicellulose content are associated with changes in pulp cohesiveness, and pulping efficiency is related to lignin content. Despite the importance of wood properties on product quality, little progress has been made in improving such traits because current methods of assessing wood and fiber characteristics are time-consuming, expensive, and often imprecise. Genetic improvement of wood and fiber properties has been further hampered by the large size of trees, delayed reproductive maturity and long harvest cycles. Recent developments in molecular genetics will help overcome the physical, economic and biological constraints in assessing and improving wood properties. Genetic maps consisting of numerous molecular markers are now available for loblolly pine and hybrid poplar. Such markers/maps may be used as part of a marker-aided selection and breeding effort or to expedite the isolation and characterization of genes and/or promoters that directly control wood properties. The objectives of this project are: (1) to apply new and rapid analytical techniques for assessing component wood properties to segregating F2 progeny populations of loblolly pine and hybrid poplar, (2) to map quantitative trait loci and identify molecular markers associated with wood properties in each of the above species and (3) to validate marker-aided selection methods for wood properties in loblolly pine and hybrid poplar.

  10. Pine growth and plant community response to chemical vs. mechanical site preparation for establishing loblolly and slash pine

    Science.gov (United States)

    James H. Miller; Zhijuan Qiu

    1995-01-01

    Chemical and mechanical site preparation methods were studied for establishing loblolly (Pinus taeda L) and slash (P. elliottii var. elliottii Engelm.) pine following both integrated fuelwood-pulpwood harvesting and conventional whole-tree harvesting of pines and hardwoods in southem Alabama's Middle Coastal...

  11. Switchgrass (Panicum virgatum Intercropping within Managed Loblolly Pine (Pinus taeda Does Not Affect Wild Bee Communities

    Directory of Open Access Journals (Sweden)

    Joshua W. Campbell

    2016-11-01

    Full Text Available Intensively-managed pine (Pinus spp. have been shown to support diverse vertebrate communities, but their ability to support invertebrate communities, such as wild bees, has not been well-studied. Recently, researchers have examined intercropping switchgrass (Panicum virgatum, a native perennial, within intensively managed loblolly pine (P. taeda plantations as a potential source for cellulosic biofuels. To better understand potential effects of intercropping on bee communities, we investigated visitation of bees within three replicates of four treatments of loblolly pine in Mississippi, U.S.A.: 3–4 year old pine plantations and 9–10 year old pine plantations with and without intercropped switchgrass. We used colored pan traps to capture bees during the growing seasons of 2013 and 2014. We captured 2507 bees comprised of 18 different genera during the two-year study, with Lasioglossum and Ceratina being the most common genera captured. Overall, bee abundances were dependent on plantation age and not presence of intercropping. Our data suggests that switchgrass does not negatively impact or promote bee communities within intensively-managed loblolly pine plantations.

  12. Switchgrass (Panicum virgatum) Intercropping within Managed Loblolly Pine (Pinus taeda) Does Not Affect Wild Bee Communities.

    Science.gov (United States)

    Campbell, Joshua W; Miller, Darren A; Martin, James A

    2016-11-04

    Intensively-managed pine ( Pinus spp.) have been shown to support diverse vertebrate communities, but their ability to support invertebrate communities, such as wild bees, has not been well-studied. Recently, researchers have examined intercropping switchgrass ( Panicum virgatum ), a native perennial, within intensively managed loblolly pine ( P. taeda ) plantations as a potential source for cellulosic biofuels. To better understand potential effects of intercropping on bee communities, we investigated visitation of bees within three replicates of four treatments of loblolly pine in Mississippi, U.S.A.: 3-4 year old pine plantations and 9-10 year old pine plantations with and without intercropped switchgrass. We used colored pan traps to capture bees during the growing seasons of 2013 and 2014. We captured 2507 bees comprised of 18 different genera during the two-year study, with Lasioglossum and Ceratina being the most common genera captured. Overall, bee abundances were dependent on plantation age and not presence of intercropping. Our data suggests that switchgrass does not negatively impact or promote bee communities within intensively-managed loblolly pine plantations.

  13. Influence of establishment timing and planting stock on early rotational growth of loblolly pine plantations in Texas

    Science.gov (United States)

    M. A. Blazier; E. L. Taylor; A. G. Holley

    2010-01-01

    Planting container seedlings, which have relatively fully formed root systems encased in a soil-filled plug, may improve loblolly pine plantation productivity by increasing early survival and growth relative to that of conventionally planted bareroot seedlings. Planting seedlings in fall may also confer productivity increases to loblolly pine plantations by giving...

  14. Determination of Fertility Rating (FR in the 3-PG Model for Loblolly Pine Plantations in the Southeastern United States Based on Site Index

    Directory of Open Access Journals (Sweden)

    Santosh Subedi

    2015-08-01

    Full Text Available Soil fertility is an important component of forest ecosystems, yet evaluating soil fertility remains one of the least understood aspects of forest science. We hypothesized that the fertility rating (FR used in the model 3-PG could be predicted from site index (SI for loblolly pine in the southeastern US and then developed a method to predict FR from SI to test this hypothesis. Our results indicate that FR values derived from SI when used in 3-PG explain 89% of the variation in loblolly pine yield. The USDA SSURGO dataset contains SI values for loblolly pine for the major soil series in most of the counties in the southeastern US. The potential of using SI from SSURGO data to predict regional productivity of loblolly pine was assessed by comparing SI values from SSURGO with field inventory data in the study sites. When the 3-PG model was used with FR values derived using SI values from SSURGO database to predict loblolly pine productivity across the broader regions, the model provided realistic outputs of loblolly pine productivity. The results of this study show that FR values can be estimated from SI and used in 3-PG to predict loblolly pine productivity in the southeastern US.

  15. Tolerance of Loblolly Pines to Fusiform Rust

    Science.gov (United States)

    Charles H. Walkinshaw; James P. Barnett

    1995-01-01

    Loblolly pines (Pinus taeda L.) that were 8 to 17 yr old tolerated one to three fusiform rust (Cronartium quercuum [Berk.] Miyabe ex Shirai f. sp. fusiforme) galls in their stems.Families with four or more galls in their stems lost 2.5% or more of the trees by age 17.In living trees with less than four stem galls, diameter growth was comparable to...

  16. Biomass Production and Nitrogen Recovery after Fertilization of Young Loblolly Pines

    Science.gov (United States)

    J. B. Baker; G. L. Switzer; L. E. Nelson

    1974-01-01

    Ammonium nitrate applied at rates of 112 and 224 kg of N/ha in successive years to different areas of a young loblolly pine (Pinus taeda L.) plantation increased aboveground biomass by 25% and N accumulation by 30%. Fertilization at plantation age 3 resulted in significantly greater biomass and N accumulations in the pine; fertilization at age 4...

  17. Development and Validation of Marker-Aided Selection Methods for Wood Property Traits in Loblolly Pine and Hybrid Poplar; FINAL

    International Nuclear Information System (INIS)

    Tuskan, G.A.

    2001-01-01

    Wood properties influence pulp and paper quality. Certainly, overall pulp yields are directly related to the cellulose content, changes in hemicellulose content are associated with changes in pulp cohesiveness, and pulping efficiency is related to lignin content. Despite the importance of wood properties on product quality, little progress has been made in improving such traits because current methods of assessing wood and fiber characteristics are time-consuming, expensive, and often imprecise. Genetic improvement of wood and fiber properties has been further hampered by the large size of trees, delayed reproductive maturity and long harvest cycles. Recent developments in molecular genetics will help overcome the physical, economic and biological constraints in assessing and improving wood properties. Genetic maps consisting of numerous molecular markers are now available for loblolly pine and hybrid poplar. Such markers/maps may be used as part of a marker-aided selection and breeding effort or to expedite the isolation and characterization of genes and/or promoters that directly control wood properties. The objectives of this project are: (1) to apply new and rapid analytical techniques for assessing component wood properties to segregating F(sub 2) progeny populations of loblolly pine and hybrid poplar, (2) to map quantitative trait loci and identify molecular markers associated with wood properties in each of the above species and (3) to validate marker-aided selection methods for wood properties in loblolly pine and hybrid poplar

  18. Management intensity and genetics affect loblolly pine seedling performance

    Science.gov (United States)

    Scott D. Roberts; Randall J. Rousseau; B. Landis Herrin

    2012-01-01

    Capturing potential genetic gains from tree improvement programs requires selection of the appropriate genetic stock and application of appropriate silvicultural management techniques. Limited information is available on how specific loblolly pine varietal genotypes perform under differing growing environments and management approaches. This study was established in...

  19. Silvicultural treatments for converting loblolly pine to longleaf pine dominance: Effects on resource availability and their relationships with planted longleaf pine seedlings

    Science.gov (United States)

    Huifeng Hu; G.Geoff Wang; Joan L. Walker; Benjamin O. Knapp

    2012-01-01

    Throughout the southeastern United States, land managers are currently interested in converting loblolly pine (Pinus taeda L.) plantations to species rich longleaf pine (Pinus palustris Mill.) ecosystems. In a 3-year study on moderately well- to well-drained soils of the Lower Coastal Plain in North Carolina, we examined the...

  20. Allozyme diversity of selected and natural loblolly pine populations

    Science.gov (United States)

    Ronald C. Schmidtling; E. Carroll; T. LaFarge

    1999-01-01

    Loblolly pine (Pinus taeda L.) megagametophytes and embryos were examined electrophoretically to compare the extent and distribution of genetic variability in allozymes of selected and wild populations. Range-wide collections of three different types were investigated in this study. These consisted of seed sampled from (1) a provenance test...

  1. Timber, Browse, and Herbage on Selected Loblolly-Shortleaf Pine-Hardwood Forest Stands

    Science.gov (United States)

    Gale L. Wolters; Alton Martin; Warren P. Clary

    1977-01-01

    A thorough vegetation inventory was made on loblolly-shortleaf pine-hardwood stands scheduled by forest industry for clearcutting, site preparation, and planting to pine in north central Louisiana and southern Arkansas. Overstory timber, on the average, contained about equal proportions of softwood and hardwood basal area. Browse plants ranged from 5,500 to over 70,...

  2. Longleaf and loblolly pine seedlings respond differently to soil compaction, water content, and fertilization

    Science.gov (United States)

    D. Andrew Scott; James A. Burger

    2014-01-01

    Aims Longleaf pine (Pinus palustris Mill.) is being restored across the U.S. South for a multitude of ecological and economic reasons, but our understanding of longleaf pine’s response to soil physical conditions is poor. On the contrary, our understanding of loblolly pine (Pinus taeda L.) root and...

  3. Effects of the silvicultural intensity on the 4-years growth and leaf-level physiology of loblolly pine varieties

    Science.gov (United States)

    Marco Yanez; John Seiler; Thomas Fox

    2015-01-01

    The role that genetic improvement plays in the increase of productivity in loblolly pine (Pinus taeda L.) in the South has been recognized (McKeand and others 2003). Varietal forestry has the potential to improve the productivity and quality of loblolly pine stands, and higher genetic gains can be achieved in volume and stand uniformity (Zobel and Talbert 1984).

  4. A survey of cavity-nesting bees and wasps in loblolly pine stands of the Savannah River Site, Aiken County, South Carolina.

    Energy Technology Data Exchange (ETDEWEB)

    Horn, S.; Hanula, J., L.

    2004-03-10

    Horn, Scott, and James L. Hanula. 2004. A survey of cavity-nesting bees and wasps in loblolly pine stands of the Savannah River Site, Aiken County, South Carolina. 39(3): 464-469. Abstract: In recent years concern over widespread losses in biodiversity has grown to include a possible decline of many native pollinators, primarily bees. Factors such as habitat fragmentation, agricultural practices, use of pesticides, the introduction of invasive species, or changes in land use may negatively impact these vital organisims. Most reported studies show that human impacts on pollinators are overwhelmingly negative. Reductions in pollinator populations may profoundly impact plant population dynamics and ecosystem function. Little baseline data exists on the diversity and relative abundance of bees and wasps in southern forests. The objective of this study was to develop a simple, effective method of surveying cavity-nesting bees and wasps and to determine species diversity in mature forests of loblolly pine, the most widely planted tree species in the southern United States.

  5. Carbon allocation to young loblolly pine roots and stems

    Science.gov (United States)

    Paul P. Kormanik; Shi-Jean S. Sung; Clanton C. Black; Stanley J. Zarnoch

    1995-01-01

    This study of root biomass with loblolly pine was designed with the following objectives: (1) to measure the root biomass for a range of individual trees between the ages of 3 and 10 years on different artificial and natural forest sites and (2) to relate the root biomass to aboveground biomass components.

  6. Impact of Early Pruning and Thinning on Lumber Grade Yield From Loblolly Pine

    Science.gov (United States)

    Alexander Clark; Mike Strub; Larry R. Anderson; H. Gwynne Lloyd; Richard F. Daniels; James H. Scarborough

    2004-01-01

    The Sudden Sawlog Study was established in 1954 near Crossett, AR, in a 9-year-old loblolly pine plantation to test the hypothesis that loblolly plantations can produce sawtimber in 30 years. To stimulate diameter and height growth and clear wood production, study plots were heavily thinned, trees pruned to 33 feet by age 24 years, under-story mowed, and growth of...

  7. Specific gravity responses of slash and loblolly pine following mid-rotation fertilization

    Science.gov (United States)

    Kimberly R. Love-Myers; Alexander Clark III; Laurence R. Schimleck; Eric J. Jokela; Richard F. Daniels

    2009-01-01

    Wood quality attributes were examined in six stands of slash pine (Pinus elliottii Engelm. var. elliottii) and loblolly pine (P. taeda L.) in the lower Coastal Plain of Georgia and Florida. Several plots comprised each stand, and each plot was divided so that it received three fertilizer treatments: a control treatment with herbaceous weed control at planting...

  8. Risk Analysis of Loblolly Pine Controlled Mass Pollination Program

    Science.gov (United States)

    T.D. Byram; F.E. Bridgwater

    1999-01-01

    The economic success of controlled mass pollination (CMP) depends both upon the value of the genetic gain obtained and the cost per seed. Crossing the best six loblolly pine (Pinus taeda) parents currently available in each deployment region of the Western Gulf Forest Tree Improvement Program will produce seed with an average additional gain in mean...

  9. Simulated Summer Rainfall Variability Effects on Loblolly Pine (Pinus taeda Seedling Physiology and Susceptibility to Root-Infecting Ophiostomatoid Fungi

    Directory of Open Access Journals (Sweden)

    Jeff Chieppa

    2017-03-01

    Full Text Available Seedlings from four families of loblolly pine (Pinus taeda L. were grown in capped open-top chambers and exposed to three different weekly moisture regimes for 13 weeks. Moisture regimes varied in intensity and frequency of simulated rainfall (irrigation events; however, the total amounts were comparable. These simulated treatments were chosen to simulate expected changes in rainfall variability associated with climate change. Seedlings were inoculated with two root-infecting ophiostomatoid fungi associated with Southern Pine Decline. We found susceptibility of loblolly pine was not affected by water stress; however, one family that was most sensitive to inoculation was also most sensitive to changes in moisture availability. Many studies have examined the effects of drought (well-watered vs. dry conditions on pine physiology and host-pathogen interactions but little is known about variability in moisture supply. This study aimed to elucidate the effects of variability in water availability, pathogen inoculation and their interaction on physiology of loblolly pine seedlings.

  10. Bulked fusiform rust inocula and Fr gene interactions in loblolly pine

    Science.gov (United States)

    Fikret Isik; Henry Amerson; Saul Garcia; Ross Whetten; Steve. McKeand

    2012-01-01

    Fusiform rust disease in loblolly (Pinus taeda L.) and slash (Pinus elliottii Engelm. var elliottii) pine plantations in the southern United States causes multi-million dollar annual losses. The disease is endemic to the region. The fusiform rust fungus (Cronartium quercuum sp.

  11. Identification of a new retrotransposable element in loblolly pine

    Science.gov (United States)

    M.N. Islam-Faridi; A.M. Morse; K.E. Smith; J.M. Davis; S. Garcia; H.V. Amerson; M.A. Majid; T.L. Kubisiak; C.D. Nelson

    2005-01-01

    We initiated a project to locate the genomic position of fusiform rust resistance gene 1 (Fr1) in loblolly pine using fluorescent in situ hybridization (FISH). Four random amplified polymorphic DNA (RAPD) markers previously found to be tightly linked to Fr1 were cloned and sequenced, providing a total coverage of about 2 Kb. In order to obtain discernible signal of...

  12. A Range-Wide Experiment to Investigate Nutrient and Soil Moisture Interactions in Loblolly Pine Plantations

    Directory of Open Access Journals (Sweden)

    Rodney E. Will

    2015-06-01

    Full Text Available The future climate of the southeastern USA is predicted to be warmer, drier and more variable in rainfall, which may increase drought frequency and intensity. Loblolly pine (Pinus taeda is the most important commercial tree species in the world and is planted on ~11 million ha within its native range in the southeastern USA. A regional study was installed to evaluate effects of decreased rainfall and nutrient additions on loblolly pine plantation productivity and physiology. Four locations were established to capture the range-wide variability of soil and climate. Treatments were initiated in 2012 and consisted of a factorial combination of throughfall reduction (approximate 30% reduction and fertilization (complete suite of nutrients. Tree and stand growth were measured at each site. Results after two growing seasons indicate a positive but variable response of fertilization on stand volume increment at all four sites and a negative effect of throughfall reduction at two sites. Data will be used to produce robust process model parameterizations useful for simulating loblolly pine growth and function under future, novel climate and management scenarios. The resulting improved models will provide support for developing management strategies to increase pine plantation productivity and carbon sequestration under a changing climate.

  13. Status of fusiform rust incidence in slash and loblolly pine plantations in the southeastern United States

    Science.gov (United States)

    KaDonna C. Randolph

    2016-01-01

    Southern pine tree improvement programs have been in operation in the southeastern United States since the 1950s. Their goal has been to improve volume growth, tree form, disease resistance, and wood quality in southern pines, particularly slash pine (Pinus elliottii) and loblolly pine (P. taeda). The disease of focus has been...

  14. Post-fertilization physiology and growth performance of loblolly pine clones

    Science.gov (United States)

    N.T. King; J.R. Seiler; T.R. Fox; KurtH. Johnsen

    2008-01-01

    The physiological processes leading to enhanced growth of loblolly pine (Pinus taeda L.) following fertilization are not clearly understood. Part of the debate revolves around the temporal response of net photosynthetic rate (An) to fertilization and whether the An response is always positive. We measured light-saturated photosynthetic rate (Asat), dark respiration...

  15. Loblolly pine grown under elevated CO2 affects early instar pine sawfly performance.

    Science.gov (United States)

    Williams, R S; Lincoln, D E; Thomas, R B

    1994-06-01

    Seedlings of loblolly pine Pinus taeda (L.), were grown in open-topped field chambers under three CO 2 regimes: ambient, 150 μl l -1 CO 2 above ambient, and 300 μl l -1 CO 2 above ambient. A fourth, non-chambered ambient treatment was included to assess chamber effects. Needles were used in 96 h feeding trials to determine the performance of young, second instar larvae of loblolly pine's principal leaf herbivore, red-headed pine sawfly, Neodiprion lecontei (Fitch). The relative consumption rate of larvae significantly increased on plants grown under elevated CO 2 , and needles grown in the highest CO 2 regime were consumed 21% more rapidly than needles grown in ambient CO 2 . Both the significant decline in leaf nitrogen content and the substantial increase in leaf starch content contributed to a significant increase in the starch:nitrogen ratio in plants grown in elevated CO 2 . Insect consumption rate was negatively related to leaf nitrogen content and positively related to the starch:nitrogen ratio. Of the four volatile leaf monoterpenes measured, only β-pinene exhibited a significant CO 2 effect and declined in plants grown in elevated CO 2 . Although consumption changed, the relative growth rates of larvae were not different among CO 2 treatments. Despite lower nitrogen consumption rates by larvae feeding on the plants grown in elevated CO 2 , nitrogen accumulation rates were the same for all treatments due to a significant increase in nitrogen utilization efficiency. The ability of this insect to respond at an early, potentially susceptible larval stage to poorer food quality and declining levels of a leaf monoterpene suggest that changes in needle quality within pines in future elevated-CO 2 atmospheres may not especially affect young insects and that tree-feeding sawflies may respond in a manner similar to herb-feeding lepidopterans.

  16. A Southwide Rate Test of Azinphosmethyl (Guthion®) for Cone and Seed Insect Control In Loblolly Pine Seed Orchards

    Science.gov (United States)

    A.C. Mangini; L.R. Barber; R.S. Cameron; G.L. DeBarr; G.R. Hodge; J.B. Jett; W.L. Lowe; J.L. McConnell; J. Nord; J.W. Taylor

    1998-01-01

    A southwide efficiency test of reduced rates of azinphosmethyl (Guthion®) for control of seed and cone insects in loblolly pine seed orchards was conducted in 1992. In each of nine loblolly pine (Pinus taeda L.) seed orchards, an untreated (no protection) check and two of five possible rates of Guthion® (1.0, 1.5, 2.0, 2.5, or 3.0 lb ai/ac/...

  17. Eleventh-year results of fertilization, herbaceous, and woody plant control in a loblolly pine plantation

    Science.gov (United States)

    James D. Haywood; Allan E. Tiarks

    1990-01-01

    Through 11 years, fertilization at planting significantly increased the stemwood volume (outside bark) per loblolly pine (Pinus taeda L.) on an intensively prepared moderately well-drained fine sandy loam site in northern Louisiana. Four years of herbaceous plant control significantly increased pine survival, and because herbaceous plant control...

  18. Ice damage in loblolly pine: understanding the factors that influence susceptibility

    Science.gov (United States)

    Doug P. Aubrey; Mark D. Coleman; David R. Coyle

    2007-01-01

    Winter ice storms frequently occur in the southeastern United States and can severely damage softwood plantations. In January 2004, a severe storm deposited approximately 2 cm of ice on an intensively managed 4-year-old loblolly pine (Pinus taeda L.) plantation in South Carolina. Existing irrigation and fertilization treatments presented an...

  19. Enzymatic hydrolysis of loblolly pine: effects of cellulose crystallinity and delignification

    Science.gov (United States)

    Umesh P. Agarwal; J.Y. Zhu; Sally A. Ralph

    2013-01-01

    Hydrolysis experiments with commercial cellulases have been performed to understand the effects of cell wall crystallinity and lignin on the process. In the focus of the paper are loblolly pine wood samples, which were systematically delignified and partly ball-milled, and, for comparison, Whatman CC31 cellulose samples with different crystallinities. In pure cellulose...

  20. Planting nonlocal seed sources of loblolly pine - managing benefits and risks

    Science.gov (United States)

    Clem Lambeth; Steve Mckeand; Randy Rousseau; Ron Schmidtling

    2005-01-01

    Seed source testing of loblolly pine (Pinus taeda), which began in the 1920s, has allowed large realized genetic gains from using nonlocal seed sources in operational plantations. Seed source testing continues, and deployment guidlines are being refined. some general effects of seed source movement can be described, but there are still gaps in (1)...

  1. Thirteen Year Loblolly Pine Growth Following Machine Application of Cut-Stump Treament Herbicides For Hardwood Stump-Sprout Control

    Science.gov (United States)

    Clyde G. Vidrine; John C. Adams

    2002-01-01

    Thirteen year growth results of 1-0 out-planted loblolly pine seedlings on nonintensively prepared up-land mixed pine-hardwood sites receiving machine applied cut-stump treatment (CST) herbicides onto hardwood stumps at the time of harvesting is presented. Plantation pine growth shows significantly higher growth for pine in the CST treated plots compared to non-CST...

  2. Modeling corewood-outerwood transition in loblolly pine using wood specific gravity

    Science.gov (United States)

    Christian R. Mora; H. Lee Allen; Richard F. Daniels; Alexander Clark

    2007-01-01

    A modified logistic function was used for modeling specific-gravity profiles obtained from X-ray densitometry analysis in 675 loblolly pine (Pinus taeda L.) trees in four regeneration trials. Trees were 21 or 22 years old at the time of the study. The function was used for demarcating corewood, transitional, and outerwood zones. Site and silvicultural effects were...

  3. Relationships between stem CO2 efflux, substrate supply, and growth in young loblolly pine trees

    Science.gov (United States)

    Chris A. Maier; Kurt H. Johnsen; Barton D. Clinton; Kim H. Ludovici

    2009-01-01

    We examined the relationships between stem CO2 efflux (Es), diametergrowth, and nonstructural carbohydrate concentration in loblolly pine trees. Carbohydratesupply was altered via stem girdling during rapid stem growth in the

  4. Comparison of four harvesting systems in a loblolly pine plantation

    Science.gov (United States)

    J. Klepac; Dana Mitchell

    2016-01-01

    Felling and skidding operations were monitored while clearcut harvesting a 12-acre area of a 14-year old loblolly pine (Pinus taeda) plantation. The study area contained 465 trees per acre for trees 2.0 inches Diameter at Breast Height (DBH) and larger with a Quadratic Mean Diameter (QMD) of 7.26 inches. Two feller-bunchers (tracked and rubber-tired) and two skidders (...

  5. Soil CO2 efflux in loblolly pine (Pinus taeda L.) plantations on the virginia Piedmond and South Carolina coastal plain over a rotation-length chronosequence

    Science.gov (United States)

    Christopher M. Gough; John R. Seiler; P. Eric Wiseman; Christopher A. Maier

    2005-01-01

    We measured soil surface CO2 efflux (Fx) in loblolly pine stands (Pinus taeda L.) located on the Virginia Piedmont (VA) and South Carolina Coastal Plain (SC) in efforts to assess the impact climate, productivity, and cultural practices have on Fs in the managed loblolly pine...

  6. Search for major genes with progeny test data to accelerate the development of genetically superior loblolly pine

    Energy Technology Data Exchange (ETDEWEB)

    NCSU

    2003-12-30

    This research project is to develop a novel approach that fully utilized the current breeding materials and genetic test information available from the NCSU-Industry Cooperative Tree Improvement Program to identify major genes that are segregating for growth and disease resistance in loblolly pine. If major genes can be identified in the existing breeding population, they can be utilized directly in the conventional loblolly pine breeding program. With the putative genotypes of parents identified, tree breeders can make effective decisions on management of breeding populations and operational deployment of genetically superior trees. Forest productivity will be significantly enhanced if genetically superior genotypes with major genes for economically important traits could be deployed in an operational plantation program. The overall objective of the project is to develop genetic model and analytical methods for major gene detection with progeny test data and accelerate the development of genetically superior loblolly pine. Specifically, there are three main tasks: (1) Develop genetic models for major gene detection and implement statistical methods and develop computer software for screening progeny test data; (2) Confirm major gene segregation with molecular markers; and (3) Develop strategies for using major genes for tree breeding.

  7. Guying to prevent wind sway influences loblolly pine growth and wood properties

    Science.gov (United States)

    James D. Burton; Diana M. Smith

    1972-01-01

    Restraining young loblolly pine (Pinus taeda L.) trees from normal swaying in the wind markedly reduced radial growth in the immobilized portion of the bole and accelerated it in the upper, free-swaying portion. Guying also reduced specific gravity, number of earlywood and latewood tracheids, latewood tracheid diameter, and amount of compression wood...

  8. Irrigation, fertilization and initial substrate quality effects on decomposing Loblolly pine litter chemistry

    Science.gov (United States)

    Felipe G. Sanchez

    2004-01-01

    Changes in carbon chemistry (i.e., carbon compound classes such as aromatics, phenolics, etc.) of loblolly pine (Pinus taeda L.) litter were examined during three years of decomposition under factorial combinations of irrigation and fertilization treatments. Cross polarization magic angle spinning 13C nuclear magnetic resonance...

  9. Harvest intensity and competition control impacts on loblolly pine fusiform rust incidence

    Science.gov (United States)

    Robert J. Eaton; Paula Spaine; Felipe G. Sanchez

    2006-01-01

    The Long Term Soil Productivity experiment tests the effects of soil compaction, surface organic matter removal, and understory control on net primary productivity. An unintended consequence of these treatments may be an effect on the incidence of fusiform rust [Cronartium quercuum (Berk.) Miy. ex Shirai f. sp. fusiforme Burdsall et Snow]. Loblolly pine (Pinus...

  10. Effect of midrotation fertilization on growth and specific gravity of loblolly pine

    Science.gov (United States)

    Finto Antony; Lewis Jordan; Richard F. Daniels; Laurence R. Schimleck; Alexander Clark III; Daniel B. Hall

    2009-01-01

    Wood properties and growth were measured on breast-height cores and on disks collected at different heights from a thinned and fertilized midrotation loblolly pine (Pinus taeda L.) plantation in the lower Coastal Plain of North Carolina. The study was laid out in a randomized complete-block design receiving four levels of nitrogen (N) fertilizer: unfertilized...

  11. Microarray analysis and scale-free gene networks identify candidate regulators in drought-stressed roots of loblolly pine (P. taeda L.

    Directory of Open Access Journals (Sweden)

    Bordeaux John M

    2011-05-01

    Full Text Available Abstract Background Global transcriptional analysis of loblolly pine (Pinus taeda L. is challenging due to limited molecular tools. PtGen2, a 26,496 feature cDNA microarray, was fabricated and used to assess drought-induced gene expression in loblolly pine propagule roots. Statistical analysis of differential expression and weighted gene correlation network analysis were used to identify drought-responsive genes and further characterize the molecular basis of drought tolerance in loblolly pine. Results Microarrays were used to interrogate root cDNA populations obtained from 12 genotype × treatment combinations (four genotypes, three watering regimes. Comparison of drought-stressed roots with roots from the control treatment identified 2445 genes displaying at least a 1.5-fold expression difference (false discovery rate = 0.01. Genes commonly associated with drought response in pine and other plant species, as well as a number of abiotic and biotic stress-related genes, were up-regulated in drought-stressed roots. Only 76 genes were identified as differentially expressed in drought-recovered roots, indicating that the transcript population can return to the pre-drought state within 48 hours. Gene correlation analysis predicts a scale-free network topology and identifies eleven co-expression modules that ranged in size from 34 to 938 members. Network topological parameters identified a number of central nodes (hubs including those with significant homology (E-values ≤ 2 × 10-30 to 9-cis-epoxycarotenoid dioxygenase, zeatin O-glucosyltransferase, and ABA-responsive protein. Identified hubs also include genes that have been associated previously with osmotic stress, phytohormones, enzymes that detoxify reactive oxygen species, and several genes of unknown function. Conclusion PtGen2 was used to evaluate transcriptome responses in loblolly pine and was leveraged to identify 2445 differentially expressed genes responding to severe drought stress in

  12. Microarray analysis and scale-free gene networks identify candidate regulators in drought-stressed roots of loblolly pine (P. taeda L.)

    Science.gov (United States)

    2011-01-01

    Background Global transcriptional analysis of loblolly pine (Pinus taeda L.) is challenging due to limited molecular tools. PtGen2, a 26,496 feature cDNA microarray, was fabricated and used to assess drought-induced gene expression in loblolly pine propagule roots. Statistical analysis of differential expression and weighted gene correlation network analysis were used to identify drought-responsive genes and further characterize the molecular basis of drought tolerance in loblolly pine. Results Microarrays were used to interrogate root cDNA populations obtained from 12 genotype × treatment combinations (four genotypes, three watering regimes). Comparison of drought-stressed roots with roots from the control treatment identified 2445 genes displaying at least a 1.5-fold expression difference (false discovery rate = 0.01). Genes commonly associated with drought response in pine and other plant species, as well as a number of abiotic and biotic stress-related genes, were up-regulated in drought-stressed roots. Only 76 genes were identified as differentially expressed in drought-recovered roots, indicating that the transcript population can return to the pre-drought state within 48 hours. Gene correlation analysis predicts a scale-free network topology and identifies eleven co-expression modules that ranged in size from 34 to 938 members. Network topological parameters identified a number of central nodes (hubs) including those with significant homology (E-values ≤ 2 × 10-30) to 9-cis-epoxycarotenoid dioxygenase, zeatin O-glucosyltransferase, and ABA-responsive protein. Identified hubs also include genes that have been associated previously with osmotic stress, phytohormones, enzymes that detoxify reactive oxygen species, and several genes of unknown function. Conclusion PtGen2 was used to evaluate transcriptome responses in loblolly pine and was leveraged to identify 2445 differentially expressed genes responding to severe drought stress in roots. Many of the

  13. From loblolly to longleaf: fifth-year results of a longleaf pine restoration study at two ecologically distinct sites

    Science.gov (United States)

    Benjamin O. Knapp; G. Geoff Wang; Joan L. Walker; Huifeng Hu

    2015-01-01

    Historical land-use and management practices in the southeastern United States have resulted in the widespread conversion of many upland sites from dominance of longleaf pine (Pinus palustris Mill.) to loblolly pine (P. taeda L.) in the time following European settlement. Given the ecological, economic, and cultural...

  14. Soil Co2 Efflux and Soil Carbon Content as Influenced by Thinning in Loblolly Pine Plantations on the Piedmont of Virginia

    OpenAIRE

    Selig, Marcus Franklin

    2003-01-01

    The thinning of loblolly pine plantations has a great potential to influence the fluxes and storage of carbon within managed stands. This study looked at the effects of thinning on aboveground carbon and mineral soil carbon storage, 14-years after the thinning of an 8-year-old loblolly pine plantation on the piedmont of Virginia. The study also examined soil respiration for one year following the second thinning of the same stand at age twenty-two. The study was conducted using three repli...

  15. Compacting coastal plain soils changes midrotation loblolly pine allometry by reducing root biomass

    Science.gov (United States)

    Kim H. Ludovici

    2008-01-01

    Factorial combinations of soil compaction and organic matter removal were replicated at the Long Term Site Productivity study in the Croatan National Forest, near New Bern, North Carolina, USA. Ten years after planting, 18 preselected loblolly pine (Pinus taeda L.) trees were destructively harvested to quantify treatment effects on total above- and...

  16. Reapplication of Silvicultural Treatments Impacts Phenology and Photosynthetic Gas Exchange of Loblolly Pine

    Science.gov (United States)

    Zhenmin Tang; Jim L. Chambers; Mary A. Sword; Shufang Yu; James P. Barnett

    2004-01-01

    A loblolly pine (Pinus taeda L.) plantation, established in 1981, was thinned and fertilized in 1988. Thinning and fertilization treatments were applied again in early 1995. The morphology of current flushes and needles were measured between March and October in 1995 through 1997. Physiological responses were monitored in the upper and lower crowns....

  17. The influence of nutrient and water availability on carbohydrate storage in loblolly pine

    Science.gov (United States)

    K.H. Ludovici; H.L. Allen; T.J. Albaugh; P.M. Dougherty

    2002-01-01

    We quantified the effects of nutrient and water availability on monthly whole-tree carbohydrate budgets and determined allocation patterns of storage carbohydrates in loblolly pine (Pinus taeda) to test site resource impacts on internal carbon (C) storage. A factorial combination of two nutrient and two irrigation treatments were imposed on a 7-year...

  18. Whole-tree bark and wood properties of loblolly pine from intensively managed plantations

    Science.gov (United States)

    Finto Antony; Laurence R. Schimleck; Richard F. Daniels; Alexander Clark; Bruce E. Borders; Michael B. Kane; Harold E. Burkhart

    2015-01-01

    A study was conducted to identify geographical variation in loblolly pine bark and wood properties at the whole-tree level and to quantify the responses in whole-tree bark and wood properties following contrasting silvicultural practices that included planting density, weed control, and fertilization. Trees were destructively sampled from both conventionally managed...

  19. Diameter Growth of Loblolly Pine Trees as Affected by Soil-Moisture Availibility

    Science.gov (United States)

    John R. Bassett

    1964-01-01

    In a 30-year-old even-aged stand of loblolly pine on a site 90 loessial soil in southeast Arkansas during foul growing seasons, most trees on plots thinned to 125 square feet of basal area per acre increased in basal area continuously when, under the crown canopy, available water in the surface foot remained above 65 percent. Measurable diameter growth ceased when...

  20. Selecting a sampling method to aid in vegetation management decisions in loblolly pine plantations

    Science.gov (United States)

    David R. Weise; Glenn R. Glover

    1993-01-01

    Objective methods to evaluate hardwood competition in young loblolly pine (Pinustaeda L.) plantations are not widely used in the southeastern United States. Ability of common sampling rules to accurately estimate hardwood rootstock attributes at low sampling intensities and across varying rootstock spatial distributions is unknown. Fixed area plot...

  1. Mapping fusiform rust resistance genes within a complex mating design of loblolly pine

    Science.gov (United States)

    Tania Quesada; Marcio F.R. Resende Jr.; Patricio Munoz; Jill L. Wegrzyn; David B. Neale; Matias Kirst; Gary F. Peter; Salvador A. Gezan; C.Dana Nelson; John M. Davis

    2014-01-01

    Fusiform rust resistance can involve gene-for-gene interactions where resistance (Fr) genes in the host interact with corresponding avirulence genes in the pathogen, Cronartium quercuum f.sp. fusiforme (Cqf). Here, we identify trees with Fr genes in a loblolly pine population derived from a complex mating design challenged with two Cqf inocula (one gall and 10 gall...

  2. Regional calibration models for predicting loblolly pine tracheid properties using near-infrared spectroscopy

    Science.gov (United States)

    Mohamad Nabavi; Joseph Dahlen; Laurence Schimleck; Thomas L. Eberhardt; Cristian Montes

    2018-01-01

    This study developed regional calibration models for the prediction of loblolly pine (Pinus taeda) tracheid properties using near-infrared (NIR) spectroscopy. A total of 1842 pith-to-bark radial strips, aged 19–31 years, were acquired from 268 trees from 109 stands across the southeastern USA. Diffuse reflectance NIR spectra were collected at 10-mm...

  3. Water availability and genetic effects on wood properties of loblolly pine (Pinus taeda)

    Science.gov (United States)

    C. A. Gonzalez-Benecke; T. A. Martin; Alexander Clark; G. F. Peter

    2010-01-01

    We studied the effect of water availability on basal area growth and wood properties of 11-year-old loblolly pine (Pinus taeda L.) trees from contrasting Florida (FL) (a mix of half-sib families) and South Carolina coastal plain (SC) (a single, half-sib family) genetic material. Increasing soil water availability via irrigation increased average wholecore specific...

  4. An annotated genetic map of loblolly pine based on microsatellite and cDNA markers

    Science.gov (United States)

    Previous loblolly pine (Pinus taeda L.) genetic linkage maps have been based on a variety of DNA polymorphisms, such as AFLPs, RAPDs, RFLPs, and ESTPs, but only a few SSRs (simple sequence repeats), also known as simple tandem repeats or microsatellites, have been mapped in P. taeda. The objective o...

  5. Inoculation of Loblolly Pine Seedlings at Planting with Basidiospores of Ectomycorrhizal Fungi in Chip Form

    Science.gov (United States)

    Peter R. Beckjord; Marla S. McIntosh; Edward Hacskaylo; John H. Jr. Melhuish; John H. Jr. Melhuish

    1984-01-01

    Basidiospores of the ectomycorrhizae-forming fungi Pisolithus tinctorius and Scleroderma auranteum incorporated into an organic hydrocolloid can be used successfully in field inoculation. Containerized loblolly pine seedlings were inoculated during outplanting by this method. This study showed that basidiospore chips were effective inocula in this investigation.

  6. Ice Damage in a Georgia Planting of Loblolly Pine from Different Seed Sources

    Science.gov (United States)

    Earle P. Jones; Osborn O. Wells

    1969-01-01

    After a severe ice storm in south-central Georgia, the degree of ice damage in a provenance test planting of 11-year-old loblolly pines varied considerably among the nine widely seperated seed sources represented. Damage was less among tress from the colder, more inland locations than among tress from coastal areas where the climate is more moderate. In terms of...

  7. Assessment of loblolly pine decline and site conditions on Fort Benning Military Reservation, GA

    Science.gov (United States)

    Roger D. Menard; Lori G. Eckhardt; Nolan J. Hess

    2010-01-01

    A decline of loblolly pine (Pinus taeda L.), characterized by expanding areas of declining and dead trees, has become prevalent at Fort Benning, GA. A 3-year study was conducted to determine the kinds of fungi, insects, and site disturbances associated with this problem. The insects Dendroctonus terebrans, Hylastes salebrosus, H. tenuis, Pachylobius picivorus...

  8. Impact of initial spacing on yield per acre and wood quality of unthinned loblolly pine at age 21

    Science.gov (United States)

    Alexander, III Clark; Richard F. Daniels; Lewis Jordan; Laurie Schimleck

    2010-01-01

    The market for southern pine first thinnings is soft. Thus, forest managers are planting at wider spacings, and using weed control and fertilization to grow chipping-saw and sawtimber trees in shorter rotations. A 21-year-old unthinned spacing study was sampled to determine the effect of initial spacing on wood quality and yield per acre of planted loblolly pine (

  9. Modeling loblolly pine aboveground live biomass in a mature pine-hardwood stand: a cautionary tale

    Science.gov (United States)

    D. C. Bragg

    2011-01-01

    Carbon sequestration in forests is a growing area of interest for researchers and land managers. Calculating the quantity of carbon stored in forest biomass seems to be a straightforward task, but it is highly dependent on the function(s) used to construct the stand. For instance, there are a number of possible equations to predict aboveground live biomass for loblolly...

  10. Crown characteristics of juvenile loblolly pine 6 years after application of thinning and fertilization

    Science.gov (United States)

    Shufang Yu; Jim L. Chambers; Zhenmin Tang; James P. Barnett

    2003-01-01

    Total foliage dry mass and leaf area at the canopy hierarchical level of needle, shoot, branch and crown were measured in 48 trees harvested from a 14-year-old loblolly pine (Pinus taeda L.) plantation, six growing seasons after thinning and fertilization treatments. In the unthinned treatment, upper crown needles were heavier and had more leaf area...

  11. Risk assessment with current deployment strategies for fusiform rust-resistant loblolly and slash pines

    Science.gov (United States)

    Floyd Bridgwater; Tom Kubisiak; Tom Byram; Steve Mckeand

    2004-01-01

    In the southeastern USA, fusiform rust resistant loblolly and slash pines may be deployed as 1) ulked seed orchard mixes. 2) half-sibling (sib) family mixtures. 3) single half-sib families. 4) full-sib cross seeds or as 6) clones of individual genotypes. These deployment types are respectively greater genetic gains from higher selection intensity. Currently, bulked...

  12. Disking and Prescribed Burning: Sixth-Year Residual Effects on Loblolly Pine and Competing Vegetation

    Science.gov (United States)

    Kenneth E. Trousdell

    1970-01-01

    In the Virginia Coastal Plain, the effects of disking and of three series of prescribed burns on crown coverage and height of regenerating loblolly pine (Pinus taeda L.) and competing hardwoods and shrubs were compared after 6 years. One winter burn followed by three annual summer burns just before harvesting was the site preparation most effective...

  13. Mid-rotation silviculture timing influences nitrogen mineralization of loblolly pine plantations in the mid-south USA

    Science.gov (United States)

    Michael A. Blazier; D. Andrew Scott; Ryan Coleman

    2015-01-01

    Intensively managed loblolly pine (Pinus taeda L.) plantations often develop nutrient deficiencies near mid-rotation. Common silvicultural treatments for improving stand nutrition at this stage include thinning, fertilization, and vegetation control. It is important to better understand the influence of timing fertilization and vegetation control...

  14. Nitrogen availability alters macrofungal basidiomycete Blackwell Publishing, Ltd. community structure in optimally fertilized loblolly pine forests

    Science.gov (United States)

    Ivan P. Edwards; Jennifer L. Cripliver; Andrew R. Gillespie; Kurt H. Johnsen; M. Scholler; Ronald F. Turco

    2004-01-01

    We investigated the effect of an optimal nutrition strategy designed to maximize loblolly pine (Pinus taeda) growth on the rank abundance structure and diversity of associated basidiomycete communities.We conducted both small- and large-scale below-ground surveys 10 years after the initiation of optimal...

  15. Examination of water phase transitions in Loblolly pine and cell wall components by differential scanning calorimetry

    Science.gov (United States)

    Samuel L. Zelinka; Michael J. Lambrecht; Samuel V. Glass; Alex C. Wiedenhoeft; Daniel J. Yelle

    2012-01-01

    This paper examines phase transformations of water in wood and isolated wood cell wall components using differential scanning calorimetry with the purpose of better understanding "Type II water" or "freezable bound water" that has been reported for cellulose and other hydrophilic polymers. Solid loblolly pine (Pinus taeda...

  16. Screening Pinus taeda (loblolly pine) families for physical and mechanical properties using vibrational spectroscopy

    Science.gov (United States)

    Gifty E. Acquah; Brian K. Via; Lori G. Eckhardt

    2016-01-01

    In a bid to control the loblolly pine decline complex, stakeholders are using the selection and deployment of genetically superior families that are disease tolerant. It is vital that we do not compromise other important properties while breeding for disease tolerance. In this preliminary study, near infrared spectroscopy was utilized in conjunction with data collected...

  17. Exploiting Genetic Variation of Fiber Components and Morphology in Juvenile Loblolly Pine

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Hou-Min; Kadia, John F.; Li, Bailian; Sederoff, Ron

    2005-06-30

    In order to ensure the global competitiveness of the Pulp and Paper Industry in the Southeastern U.S., more wood with targeted characteristics have to be produced more efficiently on less land. The objective of the research project is to provide a molecular genetic basis for tree breeding of desirable traits in juvenile loblolly pine, using a multidisciplinary research approach. We developed micro analytical methods for determine the cellulose and lignin content, average fiber length, and coarseness of a single ring in a 12 mm increment core. These methods allow rapid determination of these traits in micro scale. Genetic variation and genotype by environment interaction (GxE) were studied in several juvenile wood traits of loblolly pine (Pinus taeda L.). Over 1000 wood samples of 12 mm increment cores were collected from 14 full-sib families generated by a 6-parent half-diallel mating design (11-year-old) in four progeny tests. Juvenile (ring 3) and transition (ring 8) for each increment core were analyzed for cellulose and lignin content, average fiber length, and coarseness. Transition wood had higher cellulose content, longer fiber and higher coarseness, but lower lignin than juvenile wood. General combining ability variance for the traits in juvenile wood explained 3 to 10% of the total variance, whereas the specific combining ability variance was negligible or zero. There were noticeable full-sib family rank changes between sites for all the traits. This was reflected in very high specific combining ability by site interaction variances, which explained from 5% (fiber length) to 37% (lignin) of the total variance. Weak individual-tree heritabilities were found for cellulose, lignin content and fiber length at the juvenile and transition wood, except for lignin at the transition wood (0.23). Coarseness had moderately high individual-tree heritabilities at both the juvenile (0.39) and transition wood (0.30). Favorable genetic correlations of volume and stem

  18. Rehabilitation of Understocked Loblolly-Shortleaf Pine Stands - II. Development of Intermediate and Suppressed Trees Following Release in Natural Stands

    Science.gov (United States)

    James B. Baker; Michael G. Shelton

    1998-01-01

    Development of 86 intermediate and suppressed loblolly pine (Pinus taeda L.) trees, that had been recently released from overtopping pines and hardwoods, was monitored over a 15 year period. The trees were growing in natural stands on good sites (site index = 90 ft at 50 years) that had been recently cut to stocking levels ranging from 10 to 50 percent. At time of...

  19. Cogongrass ( Imperata cylindrica ) affects above- and belowground processes in commercial loblolly pine ( Pinus taeda ) stands

    Science.gov (United States)

    Adam N. Trautwig; Lori G. Eckhardt; Nancy J. Loewenstein; Jason D. Hoeksema; Emily A. Carter; Ryan L. Nadel

    2017-01-01

    Cogongrass (Imperata cylindrica), an invasive grass species native to Asia, has been shown to reduce tree vigor in loblolly pine (Pinus taeda) plantations, which comprise more than 50% of growing stock in commercial forests of the United States. I. cylindrica produces exudates with possible allelopathic effects that may influence abundance of P. taeda symbionts, such...

  20. Loblolly pine seedling growth after inoculation with plant growth-promoting rhizobacteria and ozone exposure

    Energy Technology Data Exchange (ETDEWEB)

    Estes, B.L.; Enebak, S.A.; Chappelka, A.H. [Auburn Univ., Auburn, AL (United States). School of Forestry and Wildlife Sciences

    2004-07-01

    The conifer tree species with the greatest economic importance in south eastern United States plantations is Loblolly pine. Plantations require intensive fertilization, pesticide application, and irrigation. In these cases growth-promoting rhizobacteria are useful in pest control. While it was once thought that ozone in the troposphere was limited to urban areas, it is now known that it is transported far from its place of origin. Ozone is known to impact plant growth negatively. There have been no previous studies on whether growth-promoting rhizobacteria can decrease the negative effects of ozone. In this study seedlings of Loblolly pine were inoculated with either Bacillus subtilis (Ehrenberg) Cohn or Paenibacillus macerans (Schardinger) Ash. These were exposed to controlled amounts of ozone for 8-12 weeks. All plants showed decreased biomass and increased foliar damage compared to plants that were not exposed to ozone. B. subtilis inoculated plants showed less foliar damage than un-inoculated ones and root dimensions were increased. The use of growth-promoting rhizobacteria is not ready for large-scale commercial application in forestry, but this demonstration of the possible beneficial effects on ozone exposure warrants further investigation. 44 refs., 3 tabs., 2 figs.

  1. Effects of fertilization and three years of throughfall reduction on leaf physiology of loblolly pine

    Science.gov (United States)

    Charles J. Pell; Lisa J. Samuelson

    2016-01-01

    Climate models project decreased soil water availability in the southeastern United States, which may impact loblolly pine (Pinus taeda L.) productivity. In conjunction with an interdisciplinary project known as PINEMAP, the objective of this study was to investigate the interactive effects of fertilization and a 30 percent reduction in throughfall on physiological...

  2. Relationship of Aboveground Biomass Production Site Index and Soil Characteristics in a Loblolly Pine Stand

    Science.gov (United States)

    Minyi Zhou; Thomas J. Dean

    2004-01-01

    As a part of the continuing studies of the Cooperative Research in Sustainable Silviculture and Soil Productivity (CRiSSSP), 24 experimental plots in a loblolly pine (Pinus taeda L.) stand have recently been installed near Natchitoches, LA. The plots were uniformly assigned to 3 blocks based on topography (i.e., up slope, midslope, and down slope)....

  3. A Strategy for the Third Breeding Cycle of Loblolly Pine in the Southeastern U.S.

    Science.gov (United States)

    S.E. McKeand; F.E. Bridgwater

    1998-01-01

    A strategy for the North Carolina State University - Industry Cooperative Tree Improvement Program's third-cycle breeding for loblolly pine (Pinus taeda L.) was developed to provide genetic gain in the short-term as well as to maintain genetic diversity so that long-term genetic gains will also be possible. Our strategy will be to manage a...

  4. Loblolly pine needle decomposition and nutrient dynamics as affected by irrigation, fertilization, and substrate quality

    Science.gov (United States)

    Felipe G. Sanchez

    2001-01-01

    This study examined the effects of initial litter quality and irrigation and fertilization treatments on litter decomposition rates and nutrient dynamics (N, Ca, K, Mg, and P) of loblolly (Pinus taeda L.) pine needles in the North Carolina Sand Hills over 3 years. Litter quality was based on the initial C/N ratios, with the high-quality litter having...

  5. Litter Decomposition and Soil Respiration Responses to Fuel-Reduction Treatments in Piedmond Loblolly Pine Forests

    Science.gov (United States)

    Mac A. Callaham; Peter H. Anderson; Thomas A. Waldrop; Darren J. Lione; Victor B. Shelburne

    2004-01-01

    As part of the National Fire and Fire Surrogate Study, we measured the short-term effects of different fuel-management practices on leaf litter decomposition and soil respiration in loblolly pine stands on the upper Piedmont of South Carolina. These stands had been subjected to a factorial arrangement of experimental fuel-management treatments that included prescribed...

  6. Tandem selection for fusiform rust sisease resistance to develop a clonal elite breeding population of loblolly pine

    Science.gov (United States)

    Steve McKeand; Saul Garcia; Josh Steiger; Jim Grissom; Ross Whetten; Fikret. Isik

    2012-01-01

    The elite breeding populations of loblolly pine (Pinus taeda L.) in the North Carolina State University Cooperative Tree Improvement Program are intensively managed for short-term genetic gain. Fusiform rust disease, caused by the fungus Cronartium quercuum f. sp. fusiforme, is the most economically...

  7. Visual Basic Growth-and-Yield Models With A Merchandising Optimizer For Planted Slash and Loblolly Pine in the West Gulf Region

    Science.gov (United States)

    R.L. Busby; S.J. Chang; P.R. Pasala; J.C.G. Goelz

    2004-01-01

    We developed two growth-and-yield models for thinned and unthinned plantations of slash pine (Pinus elliottii Engelm. var elliottii) and loblolly pine (P. taeda L.). The models, VB Merch-Slash and VB Merch-Lob, can be used to forecast product volumes and stand values for stands partitioned into 1-inch diameter-at...

  8. The effect of pile size on moisture content of loblolly pine while field drying

    Science.gov (United States)

    John Klepac; Dana Mitchell; Jason. and Thompson

    2014-01-01

    A 14-year old loblolly pine (Pinus taeda) plantation approximately 5 acres in size was cut during August 2013 with a tracked feller-buncher. A grapple skidder transported trees from one-half of the tract to a landing where they were piled whole-tree. Remaining trees were left whole-tree in skidder bundles (small piles) in the stand. All trees were left on-site and...

  9. An annotated genetic map of loblolly pine based on microsatellite and cDNA markers

    Science.gov (United States)

    Craig S. Echt; Surya Saha; Konstantin V. Krutovsky; Kokulapalan Wimalanathan; John E. Erpelding; Chun Liang; C Dana Nelson

    2011-01-01

    Previous loblolly pine (Pinus taeda L.) genetic linkage maps have been based on a variety of DNA polymorphisms, such as AFLPs, RAPDs, RFLPs, and ESTPs, but only a few SSRs (simple sequence repeats), also known as simple tandem repeats or microsatellites, have been mapped in P. taeda. The objective of this study was to integrate a large set of SSR markers from a variety...

  10. Effects of a Commercial Chitosan Formulation on Bark Beetle (Coleoptera: Curculionidae) Resistance Parameters in Loblolly Pine

    Science.gov (United States)

    K. D. Klepzig; B. L. Strom

    2011-01-01

    A commercially available chitosan product, Beyond™, was evaluated for its effects on loblolly pine, Pinus taeda L., responses believed related to bark beetle resistance. Treatments were applied 4 times at approx. 6-wk intervals between May and November 2008. Five treatments were evaluated: ground application (soil drench), foliar application, ground...

  11. Seasonal photosynthesis and water relations of juvenile loblolly pine relative to stand density and canopy position

    Science.gov (United States)

    Zhenmin Tang; Jim L. Chambers; Mary A. Sword Sayer; James P. Barnett

    2003-01-01

    To assess the effects of stand density and canopy environment on tree physiology, we measured gas exchange responses of the same needle age class of 16-year-old loblolly pines (Pinus taeda L.) in thinned (512 trees ha-1) and non-thinned treatment plots (2,863 trees ha-1) in central Louisiana....

  12. Soil organic matter fractions in loblolly pine forests of Coastal North Carolina managed for bioenergy production

    Science.gov (United States)

    Kevan J. Minick; Brian D. Strahm; Thomas R. Fox; Eric B. Surce; Zakiya H. Leggett

    2015-01-01

    Dependence on foreign oil continues to increase, and concern over rising atmospheric CO2 and other greenhouse gases has intensified research into sustainable biofuel production. Intercropping switchgrass (Panicum virgatum L.) between planted rows of loblolly pine (Pinus taeda L.) offers an opportunity to utilize inter-row space that typically contains herbaceous and...

  13. The effects of decreased water availability on loblolly pine (Pinus taeda L.) productivity and the interaction between fertilizer and drought

    Science.gov (United States)

    Adam O. Maggard; Rodney E. Will; Duncan S. Wilson; Cassandra R. Meek

    2016-01-01

    As part of the regional PINEMAP (Pine Integrated Network: Education, Mitigation, and Adaptation project) funded by the NIFA - USDA, we established a factorial study in McCurtain County, OK near Broken Bow. This study examined the effects of fertilization and ~30 percent reduction in throughfall on an seven-yearold loblolly pine (Pinus taeda L.) plantation. The...

  14. Effects of first thinning on growth of loblolly pine plantations in the West Coastal Plain

    Science.gov (United States)

    Dean W. Coble; Jason B. Grogan

    2016-01-01

    The purpose of this research is to analyze thinning response in basal area and height growth of residual loblolly pine trees growing in plantations located in the West Gulf Coastal Plain. Thinning is a well-known silvicultural practice that increases the growing space available to desirable trees by removing competing trees.

  15. Morphological characteristics of loblolly pine wood as related to specific gravity, growth rate and distance from pith

    Science.gov (United States)

    Charles W. McMillin

    1968-01-01

    Earlywood and latewood tracheid length and transverse cellular dimensions of wood removed from stems of loblolly pine (Pinus taeda L.) and factorially aegregated by specific gravity, rings from the pith, and growth rate were determined from sample chips. The independent relationships of each factor with fiber morphology are described.

  16. Identification of quantitative trait loci influencing wood specific gravity in an outbred pedigree of loblolly pine

    Science.gov (United States)

    A. Groover; M. Devey; T. Fiddler; J. Lee; R. Megraw; T. Mitchel-Olds; B. Sherman; S. Vujcic; C. Williams; D. Neale

    1994-01-01

    We report the identification of quantitative trait loci (QTL) influencing wood specific gravity (WSG) in an outbred pedigree of loblolly pine (Pinus taeda L.) . QTL mapping in an outcrossing species is complicated by the presence of multiple alleles (>2) at QTL and marker loci. Multiple alleles at QTL allow the examination of interaction among...

  17. Maximum growth potential in loblolly pine: results from a 47-year-old spacing study in Hawaii

    Science.gov (United States)

    Lisa J. Samuelson; Thomas L. Eberhardt; John R. Butnor; Tom A. Stokes; Kurt H. Johnsen

    2010-01-01

    Growth, allocation to woody root biomass, wood properties, leaf physiology, and shoot morphology were examined in a 47-year-old loblolly pine (Pinus taeda L.) density trial located in Maui, Hawaii, to determine if stands continued to carry the high density, basal area, and volume reported at younger ages and to identify potential factors controlling...

  18. Responses of two genetically superior loblolly pine clonal ideotypes to a severe ice storm

    Science.gov (United States)

    Lauren S. Pile; Christopher A. Maier; G. Geoff Wang; Dapao Yu; Tim M. Shearman

    2016-01-01

    An increase in the frequency and magnitude of extreme weather events, such as major ice storms, can have severe impacts on southern forests. We investigated the damage inflicted by a severe ice storm that occurred in February 2014 on two loblolly pine (Pinus taeda L.) ideotypes in Cross, South Carolina located in the southeastern coastal plain. The ‘‘narrow crown”...

  19. Accelerated Stem Growth Rates and Improved Fiber Properties of Loblolly Pine: Functional Analysis Of CyclinD from Pinus taeda

    Energy Technology Data Exchange (ETDEWEB)

    Dr. John Cairney, School of Biology and Institute of Paper Science and Technology @ Georgia Tech, Georgia Institute of Technology; Dr. Gary Peter, University of Florida; Dr. Ulrika Egertsdotter, Dept. of Forestry, Virgina Tech; Dr. Armin Wagner, New Zealand Forest Research Institute Ltd. (Scion Research.)

    2005-11-30

    A sustained supply of low-cost, high quality raw materials is essential for the future success of the U.S. forest products industry. To maximize stem (trunk) growth, a fundamental understanding of the molecular mechanisms that regulate cell divisions within the cambial meristem is essential. We hypothesize that auxin levels within the cambial meristem regulate cyclin gene expression and this in turn controls cell cycle progression as occurs in all eukaryotic cells. Work with model plant species has shown that ectopic overexpression of cyclins promotes cell division thereby increasing root growth > five times. We intended to test whether ectopic overexpression of cambial cyclins in the cambial zone of loblolly pine also promotes cell division rates that enhance stem growth rates. Results generated in model annual angiosperm systems cannot be reliably extrapolated to perennial gymnosperms, thus while the generation and development of transgenic pine is time consuming, this is the necessary approach for meaningful data. We succeeded in isolating a cyclin D gene and Clustal analysis to the Arabidopsis cyclin D gene family indicates that it is more closely related to cyclin D2 than D1 or D3 Using this gene as a probe we observed a small stimulation of cyclin D expression in somatic embryo culture upon addition of auxin. We hypothesized that trees with more cells in the vascular cambial and expansion zones will have higher cyclin mRNA levels. We demonstrated that in trees under compressive stress where the rates of cambial divisions are increased on the underside of the stem relative to the top or opposite side, there was a 20 fold increase in the level of PtcyclinD1 mRNA on the compressed side of the stem relative to the opposite. This suggests that higher secondary growth rates correlate with PtcyclinD1 expression. We showed that larger diameter trees show more growth during each year and that the increased growth in loblolly pine trees correlates with more cell

  20. Whole-canopy gas exchange among four elite loblolly pine seed sources planted in the western gulf region

    Science.gov (United States)

    Bradley S. Osbon; Michael A. Blazier; Michael C. Tyree; Mary Anne Sword-Sayer

    2012-01-01

    Planting of artificially selected, improved seedlings has led to large increases in productivity of intensively managed loblolly pine (Pinus taeda L.) forests in the southeastern United States. However, more data are needed to give a deeper understanding of how physiology and crown architecture affect productivity of diverse genotypes. The objective...

  1. The effects of planting density and cultural intensity on loblolly pine crown characteristics at age twelve

    Science.gov (United States)

    Madison Akers; Michael Kane; Robert Teskey; Richard Daniels; Dehai Zhao; Santosh Subedi

    2012-01-01

    Twelve-year old loblolly pine (Pinus taeda L.) stands were analyzed for the effects of planting density and cultural intensity on tree and crown attributes. Four study installations were located in the Piedmont and Upper Coastal Plain regions of the U.S. South. The treatments included six planting densities (740, 1480, 2220, 2960, 3700, 4440 trees...

  2. Variability of sun-induced chlorophyll fluorescence according to stand age-related processes in a managed loblolly pine forest.

    Science.gov (United States)

    Colombo, Roberto; Celesti, Marco; Bianchi, Remo; Campbell, Petya K E; Cogliati, Sergio; Cook, Bruce D; Corp, Lawrence A; Damm, Alexander; Domec, Jean-Christophe; Guanter, Luis; Julitta, Tommaso; Middleton, Elizabeth M; Noormets, Asko; Panigada, Cinzia; Pinto, Francisco; Rascher, Uwe; Rossini, Micol; Schickling, Anke

    2018-02-20

    Leaf fluorescence can be used to track plant development and stress, and is considered the most direct measurement of photosynthetic activity available from remote sensing techniques. Red and far-red sun-induced chlorophyll fluorescence (SIF) maps were generated from high spatial resolution images collected with the HyPlant airborne spectrometer over even-aged loblolly pine plantations in North Carolina (United States). Canopy fluorescence yield (i.e., the fluorescence flux normalized by the light absorbed) in the red and far-red peaks was computed. This quantifies the fluorescence emission efficiencies that are more directly linked to canopy function compared to SIF radiances. Fluorescence fluxes and yields were investigated in relation to tree age to infer new insights on the potential of those measurements in better describing ecosystem processes. The results showed that red fluorescence yield varies with stand age. Young stands exhibited a nearly twofold higher red fluorescence yield than mature forest plantations, while the far-red fluorescence yield remained constant. We interpreted this finding in a context of photosynthetic stomatal limitation in aging loblolly pine stands. Current and future satellite missions provide global datasets of SIF at coarse spatial resolution, resulting in intrapixel mixture effects, which could be a confounding factor for fluorescence signal interpretation. To mitigate this effect, we propose a surrogate of the fluorescence yield, namely the Canopy Cover Fluorescence Index (CCFI) that accounts for the spatial variability in canopy structure by exploiting the vegetation fractional cover. It was found that spatial aggregation tended to mask the effective relationships, while the CCFI was still able to maintain this link. This study is a first attempt in interpreting the fluorescence variability in aging forest stands and it may open new perspectives in understanding long-term forest dynamics in response to future climatic

  3. Foliar leaching, translocation, and biogenic emission of 35S in radiolabeled loblolly pines

    International Nuclear Information System (INIS)

    Garten, C.T. Jr.

    1990-01-01

    Foliar leaching, basipetal (downward) translocation, and biogenic emission of sulfur (S), as traced by 35 S, were examined in a field study of loblolly pines. Four trees were radiolabeled by injection with amounts of 35 S in the 6-8 MBq range, and concentrations in needle fall, stemflow, throughfall, and aboveground biomass were measured over a period of 15-20 wk after injection. The contribution of dry deposition to sulfate-sulfur (SO 4 2- -S) concentrations in net throughfall (throughfall SO 4 2- -S concentration minus that in incident precipitation) beneath all four trees was > 90%. Calculations indicated that about half of the summertime SO 2 dry deposition flux to the loblolly pines was fixed in the canopy and not subsequently leached by rainfall. Based on mass balance calculations, 35 S losses through biogenic emissions from girdled trees were inferred to be 25-28% of the amount injected. Estimates based on chamber methods and mass balance calculations indicated a range in daily biogenic S emission of 0.1-10 μg/g dry needles. Translocation of 35 S to roots in nongirdled trees was estimated to be between 14 and 25% of the injection. It is hypothesized that biogenic emission and basipetal translocation of S (and not foliar leaching) are important mechanisms by which forest trees physiologically adapt to excess S in the environment

  4. Influence of hardwood midstory and pine species on pine bole arthropods

    Science.gov (United States)

    Christopher S. Collins; Richard N. Conner; Daniel Saenz

    2002-01-01

    Arthropod density on the boles of loblolly pines (Pinus taeda) was compared between a stand with and stand without hardwood midstory and between a stand of loblolly and shortleaf pines (P. echinata) in the Stephen E Austin Experimental Forest, Nacogdoches Co., Texas, USA from September 1993 through July 1994. Arthropod density was...

  5. Identification of nine pathotype-specific genes conferring resistance to fusiform rust in loblolly pine (Pinus taeda L.)

    Science.gov (United States)

    Henry Amerson; C. Dana Nelson; Thomas L. Kubisiak; E.George Kuhlman; Saul Garcia

    2015-01-01

    Nearly two decades of research on the host-pathogen interaction in fusiform rust of loblolly pine is detailed. Results clearly indicate that pathotype-specific genes in the host interacting with pathogen avirulence cause resistance as defined by the non-gall phenotype under favorable environmental conditions for disease development. In particular, nine fusiform rust...

  6. Response of loblolly pine to complete woody and herbaceous control: projected yields and economic outcomes - the COMProject

    Science.gov (United States)

    James H. Miller; R.L. Busby; B.R. Zutter; S.M. Zedaker; M.B. Edwards; R.A. Newbold

    1995-01-01

    Abstract.Age-8 and -9 data from the 13 study plantations of the Competition Omission Monitoring Project (COMP) were used to project yields and derive economic outcomes for loblolly pine (Pinus taeda L.). COMP treatments were chop-burn, complete woody plant control, complete herbaceous plant control for 4 years, and complete woody...

  7. Yield and financial performance estimates of four elite loblolly pine seed sources planted in the Western Gulf Region

    Science.gov (United States)

    Michael A. Blazier; A. Gordon Holley

    2015-01-01

    Eastern seed sources of loblolly pine (Pinus taeda L.) have been planted in the Western Gulf region for nearly three decades because they often have higher growth rates than local seed sources. However, productivity gains for eastern families are sometimes offset by poorer survival rates relative to local families.

  8. A novel multifunctional O-methyltransferase implicated in a dual methylation pathway associated with lignin biosynthesis in loblolly pine.

    Science.gov (United States)

    Li, L; Popko, J L; Zhang, X H; Osakabe, K; Tsai, C J; Joshi, C P; Chiang, V L

    1997-05-13

    S-adenosyl-L-methionine (SAM)-dependent O-methyltransferases (OMTs) catalyze the methylation of hydroxycinnamic acid derivatives for the synthesis of methylated plant polyphenolics, including lignin. The distinction in the extent of methylation of lignins in angiosperms and gymnosperms, mediated by substrate-specific OMTs, represents one of the fundamental differences in lignin biosynthesis between these two classes of plants. In angiosperms, two types of structurally and functionally distinct lignin pathway OMTs, caffeic acid 3-O-methyltransferases (CAOMTs) and caffeoyl CoA 3-O-methyltransferases (CCoAOMTs), have been reported and extensively studied. However, little is known about lignin pathway OMTs in gymnosperms. We report here the first cloning of a loblolly pine (Pinus taeda) xylem cDNA encoding a multifunctional enzyme, SAM:hydroxycinnamic Acids/hydroxycinnamoyl CoA Esters OMT (AEOMT). The deduced protein sequence of AEOMT is partially similar to, but clearly distinguishable from, that of CAOMTs and does not exhibit any significant similarity with CCoAOMT protein sequences. However, functionally, yeast-expressed AEOMT enzyme catalyzed the methylation of CAOMT substrates, caffeic and 5-hydroxyferulic acids, as well as CCoAOMT substrates, caffeoyl CoA and 5-hydroxyferuloyl CoA esters, with similar specific activities and was completely inactive with substrates associated with flavonoid synthesis. The lignin-related substrates were also efficiently methylated in crude extracts of loblolly pine secondary xylem. Our results support the notion that, in the context of amino acid sequence and biochemical function, AEOMT represents a novel SAM-dependent OMT, with both CAOMT and CCoAOMT activities and thus the potential to mediate a dual methylation pathway in lignin biosynthesis in loblolly pine xylem.

  9. Regulation of two loblolly pine (Pinus taeda L.) isocitrate lyase genes in megagametophytes of mature and stratified seeds and during postgerminative growth.

    Science.gov (United States)

    Mullen, R T; Gifford, D J

    1997-03-01

    Two full-length cDNAs encoding the glyoxysomal enzyme isocitrate lyase (ICL) were isolated from a lambda ZAP cDNA library prepared from megagametophyte mRNAs extracted from seeds imbibed at 30 degrees C for 8 days. The cDNAs, designated Ptbs ICL 8 and Ptbs ICL 12, have open reading frames of 1740 and 1719 bp, with deduced amino acid sequences of 580 and 573 residues, respectively. The predicted amino acid sequences of Ptbs ICL 8 and Ptbs ICL 12 exhibit a 79% identity with each other, and have a greater than 75% identity with ICLs from various angiosperm species. The C-termini of Ptbs ICL 8 and Ptbs ICL 12 terminate with the tripeptide Ser-Arg-Met and Ala-Arg-Met, respectively, both being conserved variants of the type 1 peroxisomal targeting signal. RNA blot and slot analysis revealed that Ptbs ICL 8 and Ptbs ICL 12 mRNAs were present at low levels in the megagametophyte of the mature and stratified seeds, and that the level of both transcripts increased markedly upon seed germination. Protein blot analysis indicated that the steady-state level of ICL was low in the mature and stratified seed, then increased rapidly upon seed germination, peaking at around 8-10 days after imbibition (DAI). Changes in the level of ICL activity in cell-free extracts was similar to the steady-state protein content with the exception that ICL activity was not detected in megagametophyte extracts of mature or stratified seeds. From 10-12 DAI when the megagametophyte tissue senesced, ICL activity decreased rapidly to near undetectable levels. In contrast, steady-state levels of ICL protein and mRNA remained relatively constant during megagametophyte senescence. In vivo synthesis of ICL protein was measured to shed light on these differences. ICL immunoselected from [(35)S]-methionine labelled proteins indicated that ICL was synthesized at very low levels during megagametophyte senescence. Together, the results show that loblolly pine ICL gene expression is complex. While temporal

  10. Snag characteristics and dynamics following natural and artificially induced mortality in a managed loblolly pine forest

    Energy Technology Data Exchange (ETDEWEB)

    Zarnoch, Stanley J.; Vukovich, Mark A.; Kilgo, John C.; Blake, John I.

    2013-09-01

    A 14-year study of snag characteristics was established in 41- to 44-year old loblolly pine (Pinus taeda L.) stands in southeastern USA. During the initial 5.5 years, no stand manipulation or unusually high-mortality events occurred. Afterwards, three treatments were applied consisting of trees thinned and removed, trees felled and not removed, and artificial creation of snags produced by girdling and herbicide injection. The thinned treatments were designed to maintain the same live canopy density as the snag-created treatment, disregarding snags that remained standing.We monitored snag height, diameter, density, volume, and bark percentage; the number of cavities was monitored in natural snags only. During the first 5.5 years, recruitment and loss rates were stable, resulting in a stable snag population. Large snags (≥25 cm diameter) were common, but subcanopy small snags (10 to <25 cm diameter) dominated numerically. Large natural snags survived (90% quantile) significantly longer (6.0–9.4 years) than smaller snags (4.4–6.9 years). Large artificial snags persisted the longest (11.8 years). Cavities in natural snags developed within 3 years following tree death. The mean number of cavities per snag was five times greater in large versus small snags and large snags were more likely to have multiple cavities, emphasizing the importance of mature pine stands for cavity-dependent wildlife species.

  11. Effects of canopy treatments on early growth of planted longleaf pine seedlings and ground vegetation in North Carolina: a preliminary study

    Science.gov (United States)

    Huifeng Hu; Benjamin O. Knapp; G. Geoff Wang; Joan L. Walker

    2013-01-01

    We installed a field experiment to support the development of protocols to restore longleaf pine (Pinus palustris Mill.) to existing mature loblolly pine (P. taeda L.) stands at Camp Lejeune, NC. Seven canopy treatments included four uniform and three gap treatments. The four uniform treatments were defined by target residual basal...

  12. Elevated CO{sub 2} in a prototype free-air CO{sub 2} enrichment facility affects photosynthetic nitrogen relations in a maturing pine forest

    Energy Technology Data Exchange (ETDEWEB)

    Ellsworth, D.S.; LaRoche, J.; Hendrey, G.R.

    1998-03-01

    A maturing loblolly pine (Pinus taeda L.) forest was exposed to elevated CO{sub 2} in the natural environment in a perturbation study conducted over three seasons using the free-air CO{sub 2} enrichment (FACE) technique. At the time measurements were begun in this study, the pine canopy was comprised entirely of foliage which had developed under elevated CO{sub 2} conditions (atmospheric CO{sub 2} {approx} 550 {micro}mol/mol{sup {minus}1}). Measurements of leaf photosynthetic responses to CO{sub 2} were taken to examine the effects of elevated CO{sub 2} on photosynthetic N nutrition in a pine canopy under elevated CO{sub 2}. Photosynthetic CO{sub 2} response curves (A-c{sub i} curves) were similar in FACE trees under elevated CO{sub 2} compared with counterpart trees in ambient plots for the first foliage cohort produced in the second season of CO{sub 2} exposure, with changes in curve form detected in the foliage cohorts subsequently produced under elevated CO{sub 2}. Differences in the functional relationship between carboxylation rate and N{sub a} suggest that for a given N{sub a} allocated among successive cohorts of foliage in the upper canopy, V{sub c max} was 17% lower in FACE versus Ambient trees. The authors also found that foliar Rubisco content per unit total protein derived from Western blot analysis was lower in late-season foliage in FACE foliage compared with ambient-grown foliage. The results illustrate a potentially important mode of physiological adjustment to growth conditions that may operate in forest canopies. Findings suggest that mature loblolly pine trees growing in the field may have the capacity for shifts in intrinsic nitrogen utilization for photosynthesis under elevated CO{sub 2} that are not dependent on changes in leaf N. Findings suggest a need for continued examination of internal feedbacks at the whole-tree and ecosystem level in forests that may influence long-term photosynthetic responses to elevated CO{sub 2}.

  13. Relative Fusiform Rust Resistance of Loblolly and Slash Pine Sources and Families in Georgia and South Carolina

    Science.gov (United States)

    E. George Kuhlman; Harry R. Powers; William D. Pepper

    1995-01-01

    Loblolly and slash pine seedlings from the fusiform rust resistant orchards developed cooperatively by the USDA Forest Service and the Georgia Forestry Commission had significantly less rust 7 to 8 years after planting on four of five sites in the Southeastern United States than seedlings of the same species from orchard sources developed primarily for silvicultural...

  14. Determination of loblolly pine response to cultural treatments based on soil class, base productivity, and competition level

    Science.gov (United States)

    David Garrett; Michael Kane; Daniel Markewitz; Dehai Zhao

    2015-01-01

    The objective of this research is to better understand what factors drive loblolly pine (Pinus taeda L.) growth response to intensive culture in the University of Georgia Plantation Management Research Cooperative’s Culture x Density study in the Piedmont and Upper Coastal Plain. Twenty study sites were established ranging from southern Alabama to South Carolina in...

  15. Genetic Analysis of earl field growth of loblolly pine clones and seedlings from the same full-sib families

    Science.gov (United States)

    Brian Baltunis; Dudley Huber; Tim Wite

    2006-01-01

    The Forest Biology Research Cooperative recently established a series of loblolly pine clonal trials known as CCLONES (Comparing Clonal Lines on Experimental Sites). There are three primary levels of genetic structure in this study (parental, full-sib family, clone) that strengthen the power of CCLONES for examining genetic mechanisms and interactions with cultural...

  16. Irrigation and fertilization effects on foliar and soil carbon and nitrogen isotope ratios in a loblolly pine stand

    Science.gov (United States)

    Woo-Jung Choi; Scott X. Chang; H. Lee Allen; Daniel L. Kelting; Hee-Myong Ro

    2005-01-01

    We examined 813C and 815N in needle (current and 1-year-old) and soil samples collected on two occasions (July and September 1999) from a 15-year-old loblolly pine (Pinus taeda L.) stand in an irrigation and fertilization experiment to investigate whether these treatments leave specific isotope signals in...

  17. Degree-day model for timing insecticide applications to control Dioryctria amatella (Lepidoptera: Pyralidae) in loblolly pine seed orchards

    Science.gov (United States)

    James L. Hanula; Gary L. DeBarr; Julie C. Weatherby; Larry R. Barber; C. Wayne Berisford

    2002-01-01

    Because Dioryctria amatella (Hulst) is a key pest in loblolly pine, Pinus taeda L. (Pinaceac), seed orchards in the southeastern United States, improved timing of insecticide applications would be valuable for its control. To time two fenvalerate (Pydrin® 2.4 EC) applications we tested four variations of a degree day model that...

  18. The Fractionation of Loblolly Pine Woodchips Into Pulp For Making Paper Products

    Energy Technology Data Exchange (ETDEWEB)

    Kiran Kadam, PhD

    2006-11-30

    The overall goal of the project was to test the PureVision biomass fractionation technology for making pulp from loblolly pine. A specific goal was to produce a pulp product that is comparable to pulp produced from the kraft process, while reducing the environmental effects of the kraft process, known to be a highly pollutant process. The overall goal of the project was met by using the biomass fractionation concept for making pulp product. This proof-of-concept study, done with Southern pine pinchips as feedstock, evaluated NaOH concentration and residence time as variables in single-stage cocurrent pulping process. It can be concluded that 1% NaOH is adequate for effective delignification using the PureVision process; this is about 1/3 of that used in the kraft process. Also, the PureVision process does not use sulfur-based chemicals such as N2S and hence, is environmentally more benign.

  19. Remote estimation of a managed pine forest evapotranspiration with geospatial technology

    Science.gov (United States)

    S. Panda; D.M. Amatya; G Sun; A. Bowman

    2016-01-01

    Remote sensing has increasingly been used to estimate evapotranspiration (ET) and its supporting parameters in a rapid, accurate, and cost-effective manner. The goal of this study was to develop remote sensing-based models for estimating ET and the biophysical parameters canopy conductance (gc), upper-canopy temperature, and soil moisture for a mature loblolly pine...

  20. Value of Tree Measurements Made at Age 5 Years for Predicting the Height and Diameter Growth at Age 25 Years in Loblolly Pine Plantations

    Science.gov (United States)

    Allan E. Tiarks; Calvin E. Meier; V. Clark Baldwin; James D. Haywood

    1998-01-01

    Early growth measurements Of pine plantations are often used to predict the productivity of the stand later in the rotation when assessing the effect Of management on productivity. A loblolly pine (Pinus taeda L.) study established at 35 locations (2 to 3 plots/location) was used to test the relationship between height measurements at age 5 years...

  1. Soil incorporation of logging residue affects fine-root and mycorrhizal root-tip dynamics of young loblolly pine clones

    Science.gov (United States)

    Seth G. Pritchard; Chris A. Maier; Kurt H. Johnsen; Andrea J. Grabman; Anne P. Chalmers

    2010-01-01

    Loblolly pine (Pinus taeda L.) plantations cover a large geographic area of the southeastern USA and supply a large proportion of the nation’s wood products. Research on management strategies designed to maximize wood production while also optimizing nutrient use efficiency and soil C sequestration is needed. We used minirhizotrons to quantify the effects of...

  2. Leaf-level gas-exchange uniformity and photosynthetic capacity among loblolly pine (Pinus taeda L.) genotypes of contrasting inherent genetic variation

    Science.gov (United States)

    Michael J. Aspinwall; John S. King; Steven E. McKeand; Jean-Christophe Domec

    2011-01-01

    Variation in leaf-level gas exchange among widely planted genetically improved loblolly pine (Pinus taeda L.) genotypes could impact stand-level water use, carbon assimilation, biomass production, C allocation, ecosystem sustainability and biogeochemical cycling under changing environmental conditions. We examined uniformity in leaf-level light-saturated photosynthesis...

  3. Loblolly pine growth following operational vegetation management treatments compares favorably to that achieved in complete vegetation control research trials

    Science.gov (United States)

    Dwight K. Lauer; Harold E. Quicke

    2010-01-01

    Different combinations of chemical site prep and post-plant herbaceous weed control installed at three Upper Coastal Plain locations were compared in terms of year 3 loblolly (Pinus taeda L.) pine response to determine the better vegetation management regimes. Site prep treatments were different herbicide rates applied in either July or October. Site...

  4. The Effect of Large Applications of Nutrients From Organic Waste on Biomass Allocation and Allometric Relations in Loblolly Pine

    Science.gov (United States)

    Scott D. Roberts; Patrick D. Gerard

    2004-01-01

    We applied broiler litter to an 8-year-old precommercially thinned loblolly pine (Pinus taeda L.) stand at 0, 5.6, and 23 Mg ha-1 , supplying 0, 200, and 800 kg N ha-1. A destructive harvest was implemented two growing seasons following litter application to evaluate treatment impacts on patterns of...

  5. Importance of Coarse Woody Debris to Avian Communities in Loblolly Pine Forests

    Energy Technology Data Exchange (ETDEWEB)

    Lohr, S.M.; Gauthreaux, S.A.; Kilgo, J.C.

    2001-06-14

    Investigates the importance of standing and down coarse woody debris to bird communities in loblolly pine forests, researchers compared breeding and nonbreeding responses of birds among two coarse woody debris removal and control treatments. Quantification of vegetation layers to determine their effects on the experimental outcome coarse woody debris removal had no effect on the nonbreeding bird community. Most breeding and nonbreeding species used habitats with sparse midstory and well-developed understory, where as sparse canopy cover and dense midstory were important to some nonbreeding species. Snag and down coarse woody debris practices that maintain a dense understory, sparse midstory and canopy will create favorable breeding habitat.

  6. Purification, Characterization, and Cloning of Cinnamyl Alcohol Dehydrogenase in Loblolly Pine (Pinus taeda L.).

    Science.gov (United States)

    O'malley, D M; Porter, S; Sederoff, R R

    1992-04-01

    Cinnamyl alcohol dehydrogenase (CAD, EC 1.1.1. 195) has been purified to homogeneity from differentiating xylem tissue and developing seeds of loblolly pine (Pinus taeda L.). The enzyme is a dimer with a native molecular weight of 82,000 and a subunit molecular weight of 44,000, and is the only form of CAD involved in lignification in differentiating xylem. High levels of loblolly pine CAD enzyme were found in nonlignifying seed tissue. Characterization of the enzyme from both seeds and xylem demonstrated that the enzyme is the same in both tissues. The enzyme has a high affinity for coniferaldehyde (K(m) = 1.7 micromolar) compared with sinapaldehyde (K(m) in excess of 100 micromolar). Kinetic data strongly suggest that coniferin is a noncompetitive inhibitor of CAD enzyme activity. Protein sequences were obtained for the N-terminus (28 amino acids) and for two other peptides. Degenerate oligonucleotide primers based on the protein sequences were used to amplify by polymerase chain reaction a 1050 base pair DNA fragment from xylem cDNA. Nucleotide sequence from the cloned DNA fragment coded for the N-terminal protein sequence and an internal peptide of CAD. The N-terminal protein sequence has little similarity with the lambdaCAD4 clone isolated from bean (MH Walter, J Grima-Pettenati, C Grand, AM Boudet, CJ Lamb [1988] Proc Natl Acad Sci USA 86:5546-5550), which has homology with malic enzyme.

  7. Effect of seedling stock on the early stand development and physiology of improved loblolly pine (Pinus taeda L.) seedlings

    Science.gov (United States)

    Shakuntala Sharma; Joshua P. Adams; Jamie L. Schuler; Robert L. Ficklin; Don C. Bragg

    2016-01-01

    This study assessed the effects of spacing and genotype on the growth and physiology of improved loblolly pine (Pinus taeda L.) seedlings from three distinct genotypes planted in Drew County, Arkansas (USA). Genotype had a significant effect on survival and height. Clone CF Var 1 showed greater height and survival compared to other seedlings....

  8. Modeling the longitudinal variation in wood specific gravity of planted loblolly pine (Pinus taeda) in the United States

    Science.gov (United States)

    F. Antony; L. R. Schimleck; R. F. Daniels; Alexander Clark; D. B. Hall

    2010-01-01

    Loblolly pine (Pinus taeda L.) is a major plantation species grown in the southern United States, producing wood having a multitude of uses including pulp and lumber production. Specific gravity (SG) is an important property used to measure the quality of wood produced, and it varies regionally and within the tree with height and radius. SG at different height levels...

  9. Planting density and silvicultural intensity impacts on loblolly pine stand development in the western gulf coastal plain through age 8

    Science.gov (United States)

    Michael B. Kane; Dehai Zhao; John W. Rheney; Michael G. Messina; Mohd S. Rahman; Nicholas Chappell

    2012-01-01

    Commercial plantation growers need to know how planting density and cultural regime intensity affect loblolly pine plantation productivity, development and value to make sound management decisions. This knowledge is especially important given the diversity of traditional products, such as pulpwood, chip-n-saw, and sawtimber, and potential products, such as bioenergy...

  10. Applying 3-PG, a simple process-based model designed to produce practical results, to data from loblolly pine experiments

    Science.gov (United States)

    Joe J. Landsberg; Kurt H. Johnsen; Timothy J. Albaugh; H. Lee Allen; Steven E. McKeand

    2001-01-01

    3-PG is a simple process-based model that requires few parameter values and only readily available input data. We tested the structure of the model by calibrating it against loblolly pine data from the control treatment of the SETRES experiment in Scotland County, NC, then altered the fertility rating to simulate the effects of fertilization. There was excellent...

  11. Hydrological Components of a Young Loblolly Pine Plantation on a Sandy Soil with Estimates of Water Use and Loss

    Science.gov (United States)

    Deborah A. Abrahamson; Phillip M. Dougherty; Stanley J. Zarnoch

    1998-01-01

    Fertilizer and irrigation treatments were applied in a 7- to l0-year-old loblolly pine (Pinus taeda L.) plantation on a sandy soil near Laurinburg, North Carolina. Rainfall, throughfall, stemflow, and soil water content were measured throughout the study period. Monthly interception losses ranged from 4 to 15% of rainfall. Stemflow ranged from 0.2...

  12. Development of an integrated approach for α-pinene recovery and sugar production from loblolly pine using ionic liquids

    DEFF Research Database (Denmark)

    Papa, Gabriella; Kirby, James; Murthy Konda, N. V. S. N.

    2017-01-01

    perspective for the production of advanced cellulosic biofuels. To date, there have been very few examples where a single conversion process has enabled recovery of both terpenes and fermentable sugars in an integrated fashion. We have used the ionic liquid (IL), 1-ethyl-3-methylimidazolium acetate [C2C1Im......][OAc] at 120 °C and 160 °C in conjunction with analytical protocols using GC-MS, to extract α-pinene and simultaneously pretreat the pine to generate high yields of fermentable sugars after saccharification. Compared to solvent extraction, the IL process enabled higher recovery rates for α-pinene, from three...... tissues type of loblolly pine, i.e. pine chips from forest residues (FC), stems from young pine (YW) and lighter wood (LW), while also generating high yields of fermentable sugars following saccharification. We propose that this combined terpene extraction/lignocellulose pretreatment approach may provide...

  13. Soil CO2 Efflux Trends Following the Thinning of a 22-Year-Old Loblolly Pine Plantation on the Piedmont of Virginia

    Science.gov (United States)

    M.F. Selig; J.R. Seiler

    2004-01-01

    Due to the growing concern over increasing atmospheric CO2 concentrations, it has become increasingly important to understand the influence forest practices have on the global carbon cycle. The thinning of loblolly pine (Pinus taeda) plantations in the Southeastern United States is a common silvicultural practice and has great...

  14. Purification, Characterization, and Cloning of Cinnamyl Alcohol Dehydrogenase in Loblolly Pine (Pinus taeda L.) 1

    Science.gov (United States)

    O'Malley, David M.; Porter, Stephanie; Sederoff, Ronald R.

    1992-01-01

    Cinnamyl alcohol dehydrogenase (CAD, EC 1.1.1. 195) has been purified to homogeneity from differentiating xylem tissue and developing seeds of loblolly pine (Pinus taeda L.). The enzyme is a dimer with a native molecular weight of 82,000 and a subunit molecular weight of 44,000, and is the only form of CAD involved in lignification in differentiating xylem. High levels of loblolly pine CAD enzyme were found in nonlignifying seed tissue. Characterization of the enzyme from both seeds and xylem demonstrated that the enzyme is the same in both tissues. The enzyme has a high affinity for coniferaldehyde (Km = 1.7 micromolar) compared with sinapaldehyde (Km in excess of 100 micromolar). Kinetic data strongly suggest that coniferin is a noncompetitive inhibitor of CAD enzyme activity. Protein sequences were obtained for the N-terminus (28 amino acids) and for two other peptides. Degenerate oligonucleotide primers based on the protein sequences were used to amplify by polymerase chain reaction a 1050 base pair DNA fragment from xylem cDNA. Nucleotide sequence from the cloned DNA fragment coded for the N-terminal protein sequence and an internal peptide of CAD. The N-terminal protein sequence has little similarity with the λCAD4 clone isolated from bean (MH Walter, J Grima-Pettenati, C Grand, AM Boudet, CJ Lamb [1988] Proc Natl Acad Sci USA 86:5546-5550), which has homology with malic enzyme. ImagesFigure 2Figure 3 PMID:16668801

  15. Long-term simulations of forest management impacts on carbon storage from loblolly pine plantations in the Southern U.S.

    Science.gov (United States)

    Huei-Jin Wang; Philip J. Radtke; Stephen P. Prisley

    2012-01-01

    Accounting for forest components in carbon accounting systems may be insufficient when substantial amounts of sequestered carbon are harvested and converted to wood products in use and in landfill. The potential of forest offset – in-woods aboveground carbon storage, carbon stored in harvested wood, and energy offset by burning harvested wood – from loblolly pine...

  16. Seasonal sucrose metabolism in individual first-order lateral roots of nine-year-old loblolly pine (Pinus taeda L.) trees

    Science.gov (United States)

    Shi-Jean S. Sung; Paul P. Kormanik; C.C. Black

    1995-01-01

    Loblolly pine seedlings have distinctive temporal and spatial patterns of sucrose metabolism and growth with stems and roots as the major sucrose sinks, respectively, from spring to mid-fall and from mid-fall to early winter. Both nursery-grown and outplanted seedlings up to the age of 3 years followed this pattern. However, there have been no reports on the seasonal...

  17. Eleventh-year response of loblolly pine and competing vegetation to woody and herbaceous plant control on a Georgia flatwoods site

    Science.gov (United States)

    Bruce R. Zutter; James H. Miller

    1998-01-01

    Through 11 growing seasons, growth of loblolly pine (Pinus taeda L.) increased after control of herbaceous, woody, or both herbaceous and woody vegetation (total control) for the first 3 years after planting on a bedded site in the Georgia coastal flatwoods. Gains in stand volume index from controlling either herbaceous or woody vegetation alone were approximately two-...

  18. Growth and physiology of loblolly pine in response to long-term resource management: defining growth potential in the southern United States

    Science.gov (United States)

    Lisa J. Samuelson; John Butnor; Chris Maier; Tom A. Stokes; Kurt Johnsen; Michael Kane

    2008-01-01

    Leaf physiology and stem growth were assessed in loblolly pine (Pinus taeda L.) in response to 10 to 11 years of treatment with weed control (W), weed control plus irrigation (WI), weed control plus irrigation and fertigation (WIF), or weed control plus irrigation, fertigation, and pest control (WIFP) to determine whether increased resource...

  19. Alternative Parameterization of the 3-PG Model for Loblolly Pine: A Regional Validation and Climate Change Assessment on Stand Productivity

    Science.gov (United States)

    Yang, J.; Gonzalez-Benecke, C. A.; Teskey, R. O.; Martin, T.; Jokela, E. J.

    2015-12-01

    Loblolly pine (Pinus taeda L.) is one of the fastest growing pine species. It has been planted on more than 10 million ha in the southeastern U.S., and also been introduced into many countries. Using data from the literature and long-term productivity studies, we re-parameterized the 3-PG model for loblolly pine stands. We developed new functions for estimating NPP allocation dynamics, canopy cover and needlefall dynamics, effects of frost on production, density-independent and density-dependent tree mortality, biomass pools at variable starting ages, and the fertility rating. New functions to estimate merchantable volume partitioning were also included, allowing for economic analyses. The fertility rating was determined as a function of site index (mean height of dominant trees at age=25 years). We used the largest and most geographically extensive validation dataset for this species ever used (91 pots in 12 states in U.S. and 10 plots in Uruguay). Comparison of modeled to measured data showed robust agreement across the natural range in the U.S., as well as in Uruguay, where the species is grown as an exotic. Using the new set of functions and parameters with downscaled projections from twenty different climate models, the model was applied to assess the impact of future climate change scenarios on stand productivity in the southeastern U.S.

  20. Detection of severe storm signatures in loblolly pine using seven-year periodic standardized averages and standard deviations

    Science.gov (United States)

    Stevenson Douglas; Thomas Hennessey; Thomas Lynch; Giulia Caterina; Rodolfo Mota; Robert Heineman; Randal Holeman; Dennis Wilson; Keith Anderson

    2016-01-01

    A loblolly pine plantation near Eagletown, Oklahoma was used to test standardized tree ring widths in detecting snow and ice storms. Widths of two rings immediately following suspected storms were standardized against widths of seven rings following the storm (Stan1 and Stan2). Values of Stan1 less than -0.900 predict a severe (usually ice) storm when Stan 2 is less...

  1. Energy and water balance of two contrasting loblolly pine plantations on the lower coastal plain of North Carolina, USA

    Science.gov (United States)

    G. Sun; A. Noormets; M.J. Gavazzi; S.G. McNulty; J. Chen; J.-C. King Domec; D.M. Amatya; R.W. Skaggs

    2010-01-01

    During 2005–2007, we used the eddy covariance and associated hydrometric methods to construct energy and water budgets along a chronosequence of loblolly pine (Pinus taeda) plantations that included a mid-rotation stand (LP) (i.e., 13–15 years old) and a recently established stand on a clearcut site (CC) (i.e., 4–6 years old) in Eastern...

  2. Differential soil water sourcing of managed Loblolly Pine and Sweet Gum revealed by stable isotopes in the Upper Coastal Plain, USA

    Science.gov (United States)

    Brockman, L. E.; Younger, S. E.; Jackson, C. R.; McDonnell, J.; Janzen, K. F.

    2017-12-01

    Stable isotope signatures of stem water can illuminate where in the soil profile different types of trees are accessing soil water and thereby contribute to our understanding of water movement through the soil plant atmosphere continuum. The objective of this study was to use 2H and 18O isotopes to characterize water sources of fourteen-year-old intensively managed Loblolly Pine and Sweet Gum stands in replicated (n=3) paired plots. In order to differentiate the isotopic signatures of tree and soil water, both species and five soil depths were sampled monthly for one year. Tree sap and soil water were extracted cryogenically and their isotopic signatures were determined. Although plant water uptake is generally considered a non-fractionating process, our dataset suggests a source of fractionation in 2H signatures in both species and during most of the thirteen sampling events. As a result, only the 18O isotopic data were used to determine the vertical distribution of soil water contributions to stem water. Statistically, we grouped the five soil sampling depths into three isotopic horizons. Shallow, intermediate and deep soil represent sampling depths of 0-10cm, 30-70cm and 100-125cm, respectively. These isotopic horizons were used in a direct inference approach and Bayesian mixing model analysis to determine the origin of stem water. In this study, Loblolly Pine used more water from intermediate and deep soil while Sweet Gum used more water from shallow and intermediate soil. In the winter months, January through March, Loblolly Pine transpired primarily deep soil where as Sweet Gum mainly utilized shallow soil for transpiration. These results indicate that both species have opportunistic water use patterns with seasonal variation.

  3. Diet of southern toads (Bufo terrestris) in loblolly pine (Pinus taeda) stands subject to coarse woody debris manipulations.

    Energy Technology Data Exchange (ETDEWEB)

    Moseley, Kurtis R.; Steven B. Castleberry; James L. Hanula; Mark Ford.

    2005-04-01

    ABSTRACT In the southeastern United States, coarse woody debris (CWD) typically harbors high densities of invertebrates. However, its importance as a foraging substrate for southeastern amphibians is relatively unknown. We examined effects of CWD manipulations on diet composition of southern toads (Bufo terrestris) in upland loblolly pine (Pinus taeda) stands in the Coastal Plain of South Carolina. Twelve 9.3-ha plots were assigned one of the following treatments: removal- all CWD _10 cm in diameter and _60 cm long removed; downed- five-fold increase in volume of down CWD; and unmanipulated control stands. We collected southern toads _4 cm snout-vent length (SVL) during 14 d sampling periods in June and October 2002, June 2003 and during a 28 d sampling period in April 2003. We collected 80, 36 and 35 southern toads in control, downed and removal treatments, respectively. We found no difference in relative abundance or frequency of invertebrate groups consumed among treatments (P.0.05). Average body weight (g), SVL (cm) and stomach content weight (g wet) of individuals also were similar among treatments (P . 0.05). The role of CWD as a foraging substrate for southern toads in loblolly pine stands of the southeastern Coastal Plain may be negligible, at least in the early stages of decay.

  4. VB merch-lob: A growth-and-yield prediction system with a merchandising optimizer for planted loblolly pine in the west Gulf region

    Science.gov (United States)

    S.J. Chang; Rodney L. Busby; P.R. Pasala; Daniel J. Leduc

    2005-01-01

    A Visual Basic computer model that can be used to estimate the harvestvalue of loblolly pine plantations in the west gulf region is presented. Themodel uses a dynamic programming algorithm to convert stand tablespredicted by COMPUTE_P-LOB into a listing of seven products thatmaximizes the harvested value of the stand.

  5. Bird Diversity and Composition in Even-Aged Loblolly Pine Stands Relative to Emergence of 13-year Periodical Cicadas and Vegetation Structure

    Science.gov (United States)

    Jennifer L. Hestir; Michael D. Cain

    1999-01-01

    In southern Arkansas, l3-year periodical cicadas (Magicicada spp.) were expected to emerge in late April and early May of 1998. Presence of a superabundant food source, such as periodical cicadas, may attract greater numbers of birds and more species of birds than is usually present in a particular area. Three even-aged loblolly pine (Pinus...

  6. Initial mortality rates and extent of damage to loblolly and longleaf pine plantations affected by an ice storm in South Carolina

    Science.gov (United States)

    Don C. Bragg

    2016-01-01

    A major ice storm struck Georgia and the Carolinas in February of 2014, damaging or destroying hundreds of thousands of hectares of timber worth hundreds of millions of dollars. Losses were particularly severe in pine plantations in west-central South Carolina, including many on the Savannah River Site (SRS). An array of paired, mid-rotation loblolly (Pinus...

  7. Branch growth and gas exchange in 13-year-old loblolly pine (Pinus taeda) trees in response to elevated carbon dioxide concentration and fertilization

    Science.gov (United States)

    Chris A. Maier; Kurt H. Johnsen; John Butnor; Lance W. Kress; Peter H. Anderson

    2002-01-01

    Summary We used whole-tree, open-top chambers to expose 13-year-old loblolly pine (Pinus taeda L.) trees, growing in soil with high or low nutrient availability, to either ambient or elevated (ambient + 200 µmol mol-1 ) carbon dioxide concentration ([CO2]) for 28 months. Branch growth...

  8. Simulating the effects of site index variation within loblolly pine plantations using an individual tree growth and yield model

    Science.gov (United States)

    Ralph L. Amateis; Harold E. Burkhart

    2016-01-01

    Site index is the most common metric of site productivity in loblolly pine plantations. Generally applied as a constant for a particular stand, it provides an overall measure of a site’s ability to grow trees. It is well known, however, that even the most uniform stands can have considerable variation in site index due to soil factors that influence microsite,...

  9. ELEVATED CO{sub 2} IN A PROTOTYPE FREE-AIR CO{sub 2} ENRICHMENT FACILITY AFFECTS PHOTOSYNTHETIC NITROGEN RELATIONS IN A MATURING PINE FOREST

    Energy Technology Data Exchange (ETDEWEB)

    ELLSWORTH,D.S.; LA ROCHE,J.; HENDREY,G.R.

    1998-03-01

    A maturing loblolly pine (Pinus taeda L.) forest was exposed to elevated CO{sub 2} in the natural environment in a perturbation study conducted over three seasons using the free-air CO{sub 2} enrichment (FACE) technique. At the time measurements were begun in this study, the pine canopy was comprised entirely of foliage which had developed under elevated CO{sub 2} conditions (atmospheric [CO{sub 2}] {approx} 550 {micro}mol mol{sup {minus}1}). Measurements of leaf photosynthetic responses to CO{sub 2} were taken to examine the effects of elevated CO{sub 2} on photosynthetic N nutrition in a pine canopy under elevated CO{sub 2}. Photosynthetic CO{sub 2} response curves (A-c{sub i} curves) were similar in FACE trees under elevated CO{sub 2} compared with counterpart trees in ambient plots for the first foliage cohort produced in the second season of CO{sub 2} exposure, with changes in curve form detected in the foliage cohorts subsequently produced under elevated CO{sub 2}. Differences in the functional relationship between carboxylation rate and N{sub a} suggest that for a given N{sub a} allocated among successive cohorts of foliage in the upper canopy, V{sub c max} was 17% lower in FACE versus Ambient trees. The authors also found that foliar Rubisco content per unit total protein derived from Western blot analysis was lower in late-season foliage in FACE foliage compared with ambient-grown foliage. The results illustrate a potentially important mode of physiological adjustment to growth conditions that may operate in forest canopies. Their findings suggest that mature loblolly pine trees growing in the field may have the capacity for shifts in intrinsic nitrogen utilization for photosynthesis under elevated CO{sub 2} that are not dependent on changes in leaf N. While carboxylation efficiency per unit N apparently decreased under elevated CO{sub 2}, photosynthetic rates in trees at elevated CO{sub 2} concentrations {approx} 550 pmol mol{sub {minus}1} are still

  10. Evapotranspiration of a Mid-Rotation Loblolly Pine Plantation and a Recently Harvested Stands on the Coastal Plain of North Carolina, U.S.A.

    Science.gov (United States)

    W. Cao; Ge Sun; Steve G. McNulty; J. Chen; A. Noormets; R. W. Skaggs; Devendra M. Amatya

    2006-01-01

    Evapotranspiration (ET) is the primary component of the forest hydrologic cycle, which includes plant transpiration, canopy rainfall interception, and soil evaporation. Quantifying ET processes and potential biophysical regulations is needed for assessing forest water management options. Loblolly pines are widely planted in the coastal plain of the Southeastern US, but...

  11. Financial Performance of Mixed-Age Naturally Regenerated Loblolly-Hardwood Stands in the South Central United States

    Science.gov (United States)

    Ronald Raunikar; Joseph Buongiorno; Jeffrey P. Prestemon; Karen Lee Abt

    2000-01-01

    To estimate the financial performance of a natural mixed species and mixed-age management in the loblolly-pine forest type, we examined 991 FIA plots in the south central states. The plots were of the loblolly pine forest type, mixed-age, and had been regenerated naturally. We gauged the financial performance of each plot from the equivalent annual income (EAI)...

  12. Delineating pMDI model reactions with loblolly pine via solution-state NMR spectroscopy. Part 1, Catalyzed reactions with wood models and wood polymers

    Science.gov (United States)

    Daniel J. Yelle; John Ralph; Charles R. Frihart

    2011-01-01

    To better understand adhesive interactions with wood, reactions between model compounds of wood and a model compound of polymeric methylene diphenyl diisocyanate (pMDI) were characterized by solution-state NMR spectroscopy. For comparison, finely ground loblolly pine sapwood, milled-wood lignin and holocellulose from the same wood were isolated and derivatized with...

  13. Seasonal trends of light-saturated net photosynthesis and stomatal conductance of loblolly pine trees grown in contrasting environments of nutrition, water and carbon dioxide

    Science.gov (United States)

    Ramesh Murthy; Stanley J. Zarnoch; P.M. Dougherty

    1997-01-01

    Repeated measures analysis was used to evaluate the effect of long-term CO2 enhancement on seasonal trends of light-saturated rates of net photosynthesis (Asat) and stomatal conductance to water vapour (gsat) of 9-year-old loblolly pine (Pinus taeda L.; trees grown in a 2x2...

  14. A multivariate mixed model system for wood specific gravity and moisture content of planted loblolly pine stands in the southern United States

    Science.gov (United States)

    Finto Antony; Laurence R. Schimleck; Alex Clark; Richard F. Daniels

    2012-01-01

    Specific gravity (SG) and moisture content (MC) both have a strong influence on the quantity and quality of wood fiber. We proposed a multivariate mixed model system to model the two properties simultaneously. Disk SG and MC at different height levels were measured from 3 trees in 135 stands across the natural range of loblolly pine and the stand level values were used...

  15. Decoupling the influence of leaf and root hydraulic conductances on stomatal conductance and its sensitivity to vapour pressure deficit as soil dries in a drained loblolly pine plantation

    Science.gov (United States)

    J.-C. Domec; A. Noormets; Ge Sun; J. King; Steven McNulty; Michael Gavazzi; Johnny Boggs; Emrys Treasure

    2009-01-01

    The study examined the relationships between whole tree hydraulic conductance (Ktree) and the conductance in roots (Kroot) and leaves (Kleaf) in loblolly pine trees. In addition, the role of seasonal variations in Kroot and Kleaf in mediating stomatal...

  16. Surfing the Koehler Curve: revisiting a method for the identification of longleaf pine stumps and logs

    Science.gov (United States)

    Thomas L. Eberhardt; Philip M. Sheridan; Karen G. Reed

    2009-01-01

    Measurements of pith and second growth ring diameters were used by Koehler in 1932 to separate longleaf pine (Pinus palustris Mill.) timbers from those of several southern pines (e.g., loblolly, shortleaf). In the current study, measurements were taken from plantation-grown longleaf, loblolly and shortleaf pine trees, as well as old growth longleaf pine, lightwood, and...

  17. Long-Term Trends In Loblolly Pine Productivity And Stand Characteristics In Response To Stand Density And Fertilization In The Western Gulf Region

    Science.gov (United States)

    M.A. Sword; J. L. Chambers; Z. Tang; T. J. Dean; J. C. Goelz

    2002-01-01

    Two levels each of fertilization and stand density were established to create four environments in a 7-year-old loblolly pine plantation on a N and P deficient western Gulf Coastal Plain site in Louisiana. Levels of fertilization were no fertilization and application of 120 lb N and 134 lb P/ac. Levels of stand density were the original stocking (1,210 trees/ac), and...

  18. Southern Pine Beetle Information System (SPBIS)

    Science.gov (United States)

    Valli Peacher

    2011-01-01

    The southern pine beetle (SPB) is the most destructive forest insect in the South. The SPB attacks all species of southern pine, but loblolly and shortleaf are most susceptible. The Southern Pine Beetle Information System (SPBIS) is the computerized database used by the national forests in the Southern Region for tracking individual southern pine beetle infestations....

  19. Determination of fertility rating (FR) in the 3-PG model for loblolly pine (Pinus taeda L.) plantations in the southeastern United States

    OpenAIRE

    Subedi, Santosh

    2015-01-01

    Soil fertility is an important component of forest ecosystem, yet evaluating soil fertility remains one of the least understood aspects of forest science. Phytocentric and geocenctric approaches were used to assess soil fertility in loblolly pine plantations throughout their geographic range in the United States. The model to assess soil fertility using a phytocentric approach was constructed using the relationship between site index and aboveground productivity. Geocentric models used physic...

  20. Hybridization Leads to Loss of Genetic Integrity in Shortleaf Pine: Unexpected Consequences of Pine Management and Fire Suppression

    Science.gov (United States)

    Charles G. Tauer; John F. Stewart; Rodney E. Will; Curtis J. Lilly; James M. Guldin; C. Dana Nelson

    2012-01-01

    Hybridization between shortleaf pine and loblolly pine is causing loss of genetic integrity (the tendency of a population to maintain its genotypes over generations) in shortleaf pine, a species already exhibiting dramatic declines due to land-use changes. Recent findings indicate hybridization has increased in shortleaf pine stands from 3% during the 1950s to 45% for...

  1. Are we over-managing longleaf pine?

    Science.gov (United States)

    John S. Kush; Rebecca J. Barlow; John C. Gilbert

    2012-01-01

    Longleaf pine (Pinus palustris Mill.) is not loblolly (Pinus taeda L.) or slash pine (Pinus elliottii L.). There is the need for a paradigmatic shift in our thinking about longleaf pine. All too often we think of longleaf as an intolerant species, slow-grower, difficult to regenerate, and yet it dominated the pre...

  2. Vegetation composition and structure of southern coastal plain pine forests: An ecological comparison

    Science.gov (United States)

    Hedman, C.W.; Grace, S.L.; King, S.E.

    2000-01-01

    Longleaf pine (Pinus palustris) ecosystems are characterized by a diverse community of native groundcover species. Critics of plantation forestry claim that loblolly (Pinus taeda) and slash pine (Pinus elliottii) forests are devoid of native groundcover due to associated management practices. As a result of these practices, some believe that ecosystem functions characteristic of longleaf pine are lost under loblolly and slash pine plantation management. Our objective was to quantify and compare vegetation composition and structure of longleaf, loblolly, and slash pine forests of differing ages, management strategies, and land-use histories. Information from this study will further our understanding and lead to inferences about functional differences among pine cover types. Vegetation and environmental data were collected in 49 overstory plots across Southlands Experiment Forest in Bainbridge, GA. Nested plots, i.e. midstory, understory, and herbaceous, were replicated four times within each overstory plot. Over 400 species were identified. Herbaceous species richness was variable for all three pine cover types. Herbaceous richness for longleaf, slash, and loblolly pine averaged 15, 13, and 12 species per m2, respectively. Longleaf pine plots had significantly more (p < 0.029) herbaceous species and greater herbaceous cover (p < 0.001) than loblolly or slash pine plots. Longleaf and slash pine plots were otherwise similar in species richness and stand structure, both having lower overstory density, midstory density, and midstory cover than loblolly pine plots. Multivariate analyses provided additional perspectives on vegetation patterns. Ordination and classification procedures consistently placed herbaceous plots into two groups which we refer to as longleaf pine benchmark (34 plots) and non-benchmark (15 plots). Benchmark plots typically contained numerous herbaceous species characteristic of relic longleaf pine/wiregrass communities found in the area. Conversely

  3. Response of Mid-Rotation Loblolly Pine (Pinus taeda L. Physiology and Productivity to Sustained, Moderate Drought on the Western Edge of the Range

    Directory of Open Access Journals (Sweden)

    Adam Maggard

    2016-09-01

    Full Text Available The productivity of the approximately 11 million ha of loblolly pine plantations in the southeastern USA could be threatened by decreased water availability in a future climate. To determine the effects of sustained drought on leaf gas exchange, whole-tree water use, and individual tree growth, we examined the response of loblolly pine trees to 100% throughfall exclusion cumulatively spanning the sixth and seventh growing seasons of a plantation in southeastern Oklahoma. Throughfall exclusion reduced volumetric soil water content for 0–12 cm soil depth from 10.8% to 4.8% and for 12–45 cm soil depth from 24.2% to 15.6%. Compared to ambient throughfall trees, leaf water potential of the throughfall exclusion trees became more negative, −0.9 MPa vs. −1.3 MPa for predawn measurements and −1.5 MPa vs. −1.9 MPa for midday measurements. Throughfall exclusion did not significantly reduce leaf gas exchange or tree water use. However, throughfall exclusion significantly reduced leaf biomass by 21% and stem volume growth by 23%. These results indicate that sustained drought may cause downward shifts in leaf quantity to conserve water rather than reducing leaf-level water use.

  4. State of pine decline in the southeastern United States

    Science.gov (United States)

    Lori Eckhardt; Mary Anne Sword Sayer; Don Imm

    2010-01-01

    Pine decline is an emerging forest health issue in the southeastern United States. Observations suggest pine decline is caused by environmental stress arising from competition, weather, insects and fungi, anthropogenic disturbances, and previous management. The problem is most severe for loblolly pine on sites that historically supported longleaf pine, are highly...

  5. Acclimation of leaf hydraulic conductance and stomatal conductance of Pinus taeda (loblolly pine) to long-term growth in elevated CO2 (free-air CO2 enrichment) and N-fertilizationpce

    Science.gov (United States)

    Jean-Christophe Domec; Sari Palmroth; Eric Ward; Chris Maier; M. Therezien; Ram Oren

    2009-01-01

    We investigated how leaf hydraulic conductance (Kleaf) of loblolly pine trees is influenced by soil nitrogen amendment (N) in stands subjected to ambient or elevated CO2 concentrations CO2 a and CO2 e, respectively). We also examined how Kleaf varies with changes in reference leaf water potential (...

  6. Effect of culture and density on aboveground biomass allocation of 12 years old loblolly pine trees in the upper coastal plain and piedmont of Georgia and Alabama

    Science.gov (United States)

    Santosh Subedi; Dr. Michael Kane; Dr. Dehai Zhao; Dr. Bruce Borders; Dr. Dale Greene

    2012-01-01

    We destructively sampled a total of 192 12-year-old loblolly pine trees from four installations established by the Plantation Management Research Cooperative (PMRC) to analyze the effects of planting density and cultural intensity on tree level biomass allocation in the Piedmont and Upper Coastal Plain of Georgia and Alabama. Each installation had 12 plots, each plot...

  7. Effects of cultural intensity and density regime treatment on post-thinning loblolly pine individual tree DBH increment in the lower coastal plain of the southeastern United States

    Science.gov (United States)

    John T. Perren; Michael Kane; Dehai Zhao; Richard Daniels

    2016-01-01

    Thinning is a well understood concept used to manage density dependent factors at the stand level. This study evaluates the effect of planting density, cultural intensity, and thinning treatment on loblolly pine post-thinning individual tree development. The Lower Coastal Plain Culture/Density Study, has four initial densities, in combination with two cultural...

  8. Rotation-length effects of diverse levels of competition control and pre-commercial thinning on stand development and financial performance of loblolly pine in central Louisiana

    Science.gov (United States)

    Michael A. Blazier; A. Gordon Holley; Shaun M. Tanger; Terry R. Clason; Eric L. Taylor

    2016-01-01

    Long-term productivity of loblolly pine (Pinus taeda L.) plantations can be increased by early suppression of herbaceous and woody competing vegetation (Zutter and others 1986, Haywood 1994, Miller and others 2003a). The USDA Forest Service’s Competition Omission Monitoring Project (COMP) was designed to isolate influences of two major competition...

  9. Nitrogen uptake and assimilation by two families of loblolly pine under simulated field conditions in the greenhouse

    International Nuclear Information System (INIS)

    White, T.A.

    1989-01-01

    While significant success has been achieved in pine tree improvement, comparatively little is known about the physiological strategies employed by superior genotypes. The central hypothesis of this research was that dissimilarities of two families of loblolly pine (Pinus taeda L.) in absorption, use, and allocation of N and C during and after periods of N stress explain differences in productivity. One group of trees was exposed to NH 4 + -N (100:0 experiment) for 84 d while a second group was grown with a 70% NH 4 + : 30% NO 3 - -N solution (70:30 experiment). Ammonium-N was labelled with 15 N. Half of the seedlings had restricted N supplies from 28 d to 70 d. Results were compared to the unstressed half of each group. Nitrogen stress resulted in significantly lower biomass production and N uptake in both families in the 70:30 experiment. The superior family recovered these losses 14 d after the N stress was removed. No difference in biomass existed in either family following N stress in the 100:0 experiment

  10. Survey of microsatellite DNA in pine

    Science.gov (United States)

    Craig S. Echt; P. May-Marquardt

    1997-01-01

    A large insert genomic library from eastern white pine (Pinus strobus) was probed for the microsatellite motifs (AC)n and (AG)n, all 10 trinucleotide motifs, and 22 of the 33 possible tetranucleotide motifs. For comparison with a species from a different subgenus, a loblolly pine (Pinus taeda) genomic...

  11. Red-cockaded woodpecker nestling provisioning and reproduction in two different pine habitats

    Science.gov (United States)

    Richard R. Schaefer; Richard N. Conner; D. Craig Rudolph; Daniel Saenz

    2004-01-01

    We obtained nestling provisioning and rcpntductive data from 24 Red-cockaded Woodpecker (Picoides borealis) groups occupying two different pine habitats-longleaf pine (Pinus palustris) and a mixture of loblolly (P. taeda) and shortleaf pine (P. echinata)--in eastern Texas during 1990 and 1901....

  12. Mapped DNA probes from Ioblolly pine can be used for restriction fragment length polymorphism mapping in other conifers

    Science.gov (United States)

    M.R. Ahuja; M.E. Devey; A.T. Groover; K.D. Jermstad; D.B Neale

    1994-01-01

    A high-density genetic map based on restriction fragment length polymorphisms (RFLPs) is being constructed for loblolly pine (Pinus taeda L.). Consequently, a large number of DNA probes from loblolly pine are potentially available for use in other species. We have used some of these DNA probes to detect RFLPs in 12 conifers and an angiosperm....

  13. Relationship of coarse woody debris to arthropod Availability for Red-Cockaded Woodpeckers and other bark-foraging birds on loblolly pine boles.

    Energy Technology Data Exchange (ETDEWEB)

    Horn, Scott; Hanula, James, L.

    2008-04-01

    Abstract This study determined if short-term removal of coarse woody debris would reduce prey available to red-cockaded woodpeckers (Picoides borealis Vieillot) and other bark-foraging birds at the Savannah River Site in Aiken and Barnwell counties, SC. All coarse woody debris was removed from four 9-ha plots of mature loblolly pine (Pinus taeda L.) in 1997 and again in 1998. We sampled arthropods in coarse woody debris removal and control stands using crawl traps that captured arthropods crawling up tree boles, burlap bands wrapped around trees, and cardboard panels placed on the ground. We captured 27 orders and 172 families of arthropods in crawl traps whereas 20 arthropod orders were observed under burlap bands and cardboard panels. The most abundant insects collected from crawl traps were aphids (Homoptera: Aphididae) and ants (Hymenoptera: Forrnicidae). The greatest biomass was in the wood cockroaches (Blattaria: Blattellidae), caterpillars (Lepidoptera) in the Family Noctuidae, and adult weevils (Coleoptera: Curculionidae). The most common group observed underneath cardboard panels was lsoptera (termites), and the most common taxon under burlap bands was wood cockroaches. Overall, arthropod abundance and biomass captured in crawl traps was similar in control and removal plots. In contrast, we observed more arthropods under burlap bands (mean & SE; 3,021.5 k 348.6, P= 0.03) and cardboard panels (3,537.25 k 432.4, P= 0.04) in plots with coarse woody debris compared with burlap bands (2325 + 171.3) and cardboard panels (2439.75 + 288.9) in plots where coarse woody debris was removed. Regression analyses showed that abundance beneath cardboard panels was positively correlated with abundance beneath burlap bands demonstrating the link between abundance on the ground with that on trees. Our results demonstrate that short-term removal of coarse woody debris from pine forests reduced overall arthropod availability to bark-foraging birds.

  14. Establishing Pine Monocultures and Mixed Pine-Hardwood Stands on Reclaimed Surface Mined Land in Eastern Kentucky: Implications for Forest Resilience in a Changing Climate

    Directory of Open Access Journals (Sweden)

    Geoffrey Bell

    2017-10-01

    Full Text Available Surface mining and mine reclamation practices have caused significant forest loss and forest fragmentation in Appalachia. Shortleaf pine (Pinus echinata is threatened by a variety of stresses, including diseases, pests, poor management, altered fire regimes, and climate change, and the species is the subject of a widescale restoration effort. Surface mines may present opportunity for shortleaf pine restoration; however, the survival and growth of shortleaf pine on these harsh sites has not been critically evaluated. This paper presents first-year survival and growth of native shortleaf pine planted on a reclaimed surface mine, compared to non-native loblolly pine (Pinus taeda, which has been highly successful in previous mined land reclamation plantings. Pine monoculture plots are also compared to pine-hardwood polyculture plots to evaluate effects of planting mix on tree growth and survival, as well as soil health. Initial survival of shortleaf pine is low (42%, but height growth is similar to that of loblolly pine. No differences in survival or growth were observed between monoculture and polyculture treatments. Additional surveys in coming years will address longer-term growth and survival patterns of these species, as well as changes to relevant soil health endpoints, such as soil carbon.

  15. An annotated genetic map of loblolly pine based on microsatellite and cDNA markers

    Directory of Open Access Journals (Sweden)

    Wimalanathan Kokulapalan

    2011-01-01

    Full Text Available Abstract Background Previous loblolly pine (Pinus taeda L. genetic linkage maps have been based on a variety of DNA polymorphisms, such as AFLPs, RAPDs, RFLPs, and ESTPs, but only a few SSRs (simple sequence repeats, also known as simple tandem repeats or microsatellites, have been mapped in P. taeda. The objective of this study was to integrate a large set of SSR markers from a variety of sources and published cDNA markers into a composite P. taeda genetic map constructed from two reference mapping pedigrees. A dense genetic map that incorporates SSR loci will benefit complete pine genome sequencing, pine population genetics studies, and pine breeding programs. Careful marker annotation using a variety of references further enhances the utility of the integrated SSR map. Results The updated P. taeda genetic map, with an estimated genome coverage of 1,515 cM(Kosambi across 12 linkage groups, incorporated 170 new SSR markers and 290 previously reported SSR, RFLP, and ESTP markers. The average marker interval was 3.1 cM. Of 233 mapped SSR loci, 84 were from cDNA-derived sequences (EST-SSRs and 149 were from non-transcribed genomic sequences (genomic-SSRs. Of all 311 mapped cDNA-derived markers, 77% were associated with NCBI Pta UniGene clusters, 67% with RefSeq proteins, and 62% with functional Gene Ontology (GO terms. Duplicate (i.e., redundant accessory and paralogous markers were tentatively identified by evaluating marker sequences by their UniGene cluster IDs, clone IDs, and relative map positions. The average gene diversity, He, among polymorphic SSR loci, including those that were not mapped, was 0.43 for 94 EST-SSRs and 0.72 for 83 genomic-SSRs. The genetic map can be viewed and queried at http://www.conifergdb.org/pinemap. Conclusions Many polymorphic and genetically mapped SSR markers are now available for use in P. taeda population genetics, studies of adaptive traits, and various germplasm management applications. Annotating mapped

  16. Repeated Raking of Pine Plantations Alters Soil Arthropod Communities

    Directory of Open Access Journals (Sweden)

    Holly K. Ober

    2014-04-01

    Full Text Available Terrestrial arthropods in forests are engaged in vital ecosystem functions that ultimately help maintain soil productivity. Repeated disturbance can cause abrupt and irreversible changes in arthropod community composition and thereby alter trophic interactions among soil fauna. An increasingly popular means of generating income from pine plantations in the Southeastern U.S. is annual raking to collect pine litter. We raked litter once per year for three consecutive years in the pine plantations of three different species (loblolly, Pinus taeda; longleaf, P. palustris; and slash, P. elliottii. We sampled arthropods quarterly for three years in raked and un-raked pine stands to assess temporal shifts in abundance among dominant orders of arthropods. Effects varied greatly among orders of arthropods, among timber types, and among years. Distinct trends over time were apparent among orders that occupied both high trophic positions (predators and low trophic positions (fungivores, detritivores. Multivariate analyses demonstrated that raking caused stronger shifts in arthropod community composition in longleaf and loblolly than slash pine stands. Results highlight the role of pine litter in shaping terrestrial arthropod communities, and imply that repeated removal of pine straw during consecutive years is likely to have unintended consequences on arthropod communities that exacerbate over time.

  17. Control of Growth Efficiency in Young Plantation Loblolly Pine and Sweetgum through Irrigation and Fertigation Enhancement of Leaf Carbon Gain; FINAL

    International Nuclear Information System (INIS)

    L. Samuelson

    1999-01-01

    The overall objective of this study was to determine if growth efficiency of young plantation loblolly pine and sweetgum can be maintained by intensive forest management and whether increased carbon gain is the mechanism controlling growth efficiency response to resource augmentation. Key leaf physiological processes were examined over two growing seasons in response to irrigation, fertigation (irrigation with a fertilizer solution), and fertigation plus pest control (pine only). Although irrigation improved leaf net photosynthesis in pine and decreased stomatal sensitivity to vapor pressure deficit in sweetgum, no consistent physiological responses to fertigation were detected in either species. After 4 years of treatment, a 3-fold increase in woody net primary productivity was observed in both species in response to fertigation. Trees supplemented with fertigation and fertigation plus pest control exhibited the largest increases in growth and biomass. Furthermore, growth efficiency was maintained by fertigation and fertigation plus pest control, despite large increases in crown development and self-shading. Greater growth in response to intensive culture was facilitated by significant gains in leaf mass and whole tree carbon gain rather than detectable increases in leaf level processes. Growth efficiency was not maintained by significant increases in leaf level carbon gain but was possibly influenced by changes in carbon allocation to root versus shoot processes

  18. Growth responses of mature loblolly pine to dead wood.manipulations.

    Energy Technology Data Exchange (ETDEWEB)

    Ulyshen, Michael D.; Horn, Scott; Hanula, James L.

    2012-04-01

    Large-scale manipulations of dead wood in mature Pinus taeda L. stands in the southeastern United States included a major one-time input of logs (fivefold increase in log volume) created by felling trees onsite, annual removals of all dead wood above >10 cm in diameter and >60 cm in length, and a reference in which no manipulations took place. We returned over a decade later to determine how these treatments affected tree growth using increment cores. There were no significant differences in tree density, basal area or tree diameters among treatments at the time of sampling. Although tree growth was consistently higher in the log-input plots and lower in the removal plots, this was true even during the 5 year period before the experiment began. When growth data from this initial period were included in the model as a covariate, no differences in post-treatment tree growth were detected. It is possible that treatment effects will become apparent after more time has passed, however.

  19. Establishing Longleaf Pine Seedlings Under a Loblolly Pine Canopy (User’s Guide)

    Science.gov (United States)

    2017-02-01

    longleaf pine forests (Figure 1) for the diverse values they provide. These forests afford abundant recreational opportunities like hiking , bird...combined herbicide-fertilizer treatments that might benefit planted longleaf pine seedlings after planting. In addition to measuring longleaf pine

  20. Contrasting responses to drought of forest floor CO2 efflux in a loblolly pine plantation and a nearby Oak-Hickory forest

    Science.gov (United States)

    S. Palmroth; Chris A. Maier; Heather R. McCarthy; A. C. Oishi; H. S. Kim; Kurt H. Johnsen; Gabrial G. Katul; Ram Oren

    2005-01-01

    Forest floor C02 efflux (Fff) depends on vegetation type, climate, and soil physical properties. We assessed the effects of biological factors on Fff by comparing a maturing pine plantation (PP) and a nearby mature Oak-Hickory-type hardwood forest (HW). Fff was measured...

  1. Impact of weed control and fertilization on growth of four species of pine in the Virginia Piedmont

    Science.gov (United States)

    Dzhamal Y. Amishev; Thomas R. Fox

    2006-01-01

    During 1999, a mixed stand of Virginia pine and hardwoods in the Piedmont of Virginia was clearcut and site prepared by burning. Three replications, containing strips of loblolly pine, shortleaf pine, Virginia pine, and Eastern white pine, were planted at a 3 m x 1.5 m spacing during February to June, 2000. The strips were subsequently split to accommodate four...

  2. Effects of anaerobic growth conditions on biomass accumulation, root morphology, and efficiencies of nutrient uptake and utilization in seedlings of some southern coastal plain pine species

    International Nuclear Information System (INIS)

    Topa, M.A.

    1984-01-01

    Seedlings of pond (Pinus serotina (Michx.)), sand (P. clausa (Engelm.) Sarg.), and loblolly pines (P. taeda L., drought-hardy and wet site seed sources) were grown in a non-circulating, continuously-flowing solution culture under anaerobic or aerobic conditions to determine the effects of anaerobics on overall growth, root morphology and efficiencies of nutrient uptake and utilization. Although shoot growth of the 11-week old loblolly and pond pines was not affected by anaerobic treatment, it did significantly reduce root biomass. Sand pine suffered the largest biomass reduction. Flooding tolerance was positively correlated with specific morphological changes which enhanced root internal aeration. Oxygen transport from shoot to the root in anaerobically-grown loblolly and pond pine seedlings was demonstrated via rhizosphere oxidation experiments. Tissue elemental analyses showed that anaerobic conditions interfered with nutrient absorption and utilization. Short-term 32 p uptake experiments with intact seedlings indicated that net absorption decreased because of the reduction in root biomass, since H 2 PO 4 - influx in the anaerobically-grown seedlings was more than twice that of their aerobic counterparts. Sand pine possessed the physiological but not morphological capacity to increase P uptake under anaerobic growth conditions. Pond and wet-site loblolly pine seedlings maintained root growth, perhaps through enhanced internal root aeration - an advantage in field conditions where the phosphorus supply may be limited or highly localized

  3. Susceptibility of parent and interspecific Fl hybrid pine trees to tip moth damage in a coastal North Carolina planting

    Science.gov (United States)

    Maxine T. Highsmith; John Frampton; David 0' Malley; James Richmond; Martesa Webb

    2001-01-01

    Tip moth damage arnong families of parent pine species and their interspecific F1 hybrids was quantitatively assessed in a coastal planting in North Carolina. Three slash pine (Pinus elliotti var. elliotti Engelm.), two loblolly pine (Pinus taeda L.), and four interspecific F1 hybrid pine families were used. The...

  4. High-efficiency Agrobacterium-mediated transformation of Norway spruce (Picea abies) and loblolly pine (Pinus taeda)

    Science.gov (United States)

    Wenck, A. R.; Quinn, M.; Whetten, R. W.; Pullman, G.; Sederoff, R.; Brown, C. S. (Principal Investigator)

    1999-01-01

    Agrobacterium-mediated gene transfer is the method of choice for many plant biotechnology laboratories; however, large-scale use of this organism in conifer transformation has been limited by difficult propagation of explant material, selection efficiencies and low transformation frequency. We have analyzed co-cultivation conditions and different disarmed strains of Agrobacterium to improve transformation. Additional copies of virulence genes were added to three common disarmed strains. These extra virulence genes included either a constitutively active virG or extra copies of virG and virB, both from pTiBo542. In experiments with Norway spruce, we increased transformation efficiencies 1000-fold from initial experiments where little or no transient expression was detected. Over 100 transformed lines expressing the marker gene beta-glucuronidase (GUS) were generated from rapidly dividing embryogenic suspension-cultured cells co-cultivated with Agrobacterium. GUS activity was used to monitor transient expression and to further test lines selected on kanamycin-containing medium. In loblolly pine, transient expression increased 10-fold utilizing modified Agrobacterium strains. Agrobacterium-mediated gene transfer is a useful technique for large-scale generation of transgenic Norway spruce and may prove useful for other conifer species.

  5. Culture and Density Effects on Tree Quality in Midrotation Non-Thinned Loblolly Pine Plantations

    Directory of Open Access Journals (Sweden)

    P. Corey Green

    2018-02-01

    Full Text Available Six non-thinned loblolly pine (Pinus taeda L. culture × density study sites in the Piedmont and Upper Coastal Plain of the Southeast U.S. were used to examine the effects of two cultural intensities and three planting densities on solid wood potential as well as the proportion and position of product-defining defects (forks, crooks, broken tops. A tree quality index (TQI was used to grade stems for solid wood potential. The results show that an operational management regime exhibited a higher proportion of trees with solid wood product potential than did a very intensive management regime. Trees subject to operational management exhibited product-defining defects higher on the stem; however, the proportion of stems with defects was not significantly different from the intensive management. Planting densities of 741, 1482, and 2223 trees per hectare (TPH exhibited a relatively narrow range of the proportion of trees with solid wood product potential that were not significantly different. Density did not have a significant effect on the heights of the product-defining defects. These results show that management intensity and less so planting density, affect the solid wood product potential indicators evaluated and should be considered when making management decisions.

  6. Repeated fire effects on soil physical properties in two young longleaf pine stands on the west gulf coastal plain

    Science.gov (United States)

    Mary Anne Sword Sayer

    2007-01-01

    Repeated prescribed fire is a valuable tool for the management of longleaf and loblolly pine. When applied every two to ten years, for example, prescribed fire perpetuates existing longleaf pine ecosystems (Outcalt 1997). Furthermore, the acceptance of fire as a management tool, together with recent improvements in longleaf pine...

  7. Physiological girdling of pine trees via phloem chilling: proof of concept

    Science.gov (United States)

    Kurt Johnsen; Chris Maier; Felipe Sanchez; Peter Anderson; John Butnor; Richard Waring; Sune Linder

    2007-01-01

    Quantifying below-ground carbon (C) allocation is particularly difficult as methods usually disturb the root– mycorrhizal–soil continuum. We reduced C allocation below ground of loblolly pine trees by: (1) physically girdling trees and (2) physiologically girdling pine trees by chilling the phloem. Chilling reduced cambium temperatures by approximately 18 °C. Both...

  8. Estimating long-term carbon sequestration patterns in even- and uneven-aged southern pine stands

    Science.gov (United States)

    Don C. Bragg; James M. Guldin

    2010-01-01

    Carbon (C) sequestration has become an increasingly important consideration for forest management in North America, and has particular potential in pine-dominated forests of the southern United States. Using existing literature on plantations and long-term studies of naturally regenerated loblolly (Pinus taeda) and shortleaf (Pinus echinata) pine-dominated stands on...

  9. Hybrid pine for tough sites

    International Nuclear Information System (INIS)

    Davidson, W.H.

    1994-01-01

    A test planting of 30 first- and second-generation pitch x loblolly pine (pinus rigida x P. taeda) hybrids was established on a West Virginia minesoil in 1985. The site was considered orphaned because earlier attempts at revegetation were unsuccessful. The soil was acid (pH 4.6), lacking in nutrients, and compacted. Vegetation present at the time of planting consisted of a sparse cover of tall fescue (Festuca arundinacea) and poverty grass (Danthonia spicata) and a few sourwood (Oxydendrum arboreum) and mountain laurel (Kalmia latifolia) seedlings. In the planting trial, 30 different hybrids were set out in 4 tree linear plots replicated 5 times. The seedlings had been grown in containers for 1 yr before outplanting. Evaluations made after 6 growing seasons showed overall plantation survival was 93%; six hybrids and one open-pollinated cross survived 100%. Individual tree heights ranged from 50 to 425 cm with a plantation average of 235 cm (7.7 ft). Eleven of the hybrids had average heights that exceeded the plantation average. Another test planting of tree and shrub species on this site has very poor survival. Therefore, pitch x loblolly hybrid pine can be recommended for reclaiming this and similar sites

  10. History, distribution, damage, and life cycle of a pine shoot gali sawfly, Xyela gallicaulis (Hymenoptera: Xyelidae). J. Entomol. Sci. 44(3):276-283

    Science.gov (United States)

    Harry O. Yates; David R. Smith

    2009-01-01

    Larvae of Xyela gallicaulis Smith cause shoot stem galls in young pines. Loblolly pine, Pinus taeda L., is the most seriously damaged, but galls have been observed on slash pine, P. elliottii var. elliottii Engelm., and shortleaf pine, P. echinata Mill. Studies in Virginia and Georgia confirm a 2-year life cycle. Larval development takes...

  11. Phenotypic analysis of first-year traits in a pseudo-backcross {(slash x loblolly) x slash} and the ope-pollinated families of the pure-species progenitors

    Science.gov (United States)

    Patricio R. Munoz Del Valle; Dudley A. Huber; John R. Butnor

    2011-01-01

    A single test, including one pseudo-backcross (Pinus elliottii x Pinus taeda) x P. elliottii and openpollinated families of the pure species progenitors, was established in North Central Florida in December 2007 to study the transfer of the fast-growing characteristics from a P. taeda L. (loblolly pine) parent into the P. elliottii Engelm. (slash pine) background....

  12. Cultural intensity and planting density effects on individual tree stem growth, stand and crown attributes, and stand dynamics in thinned loblolly pine plantations during the age 12- to age 15- year period in the Upper Coastal Plain and Piedmont of the Southeastern United States

    Science.gov (United States)

    Evan Johnson; Michael Kane; Dehai Zhao; Robert Teskey

    2015-01-01

    Three existing loblolly pine (Pinus taeda L.) installations in the Plantation Management Research Cooperative's Upper Coastal Plain/Piedmont Culture Density Study were used to examine the effects of two cultural intensities, four initial planting densities, and their interactions on stem growth at the individual tree level from age 12 to 15 years and at the stand...

  13. Long-Term Prescribed Burning Regime Has Little Effect on Springtails in Pine Stands of Southern Arkansas

    Science.gov (United States)

    Michele L. Renschin; Lynne C. Thompson; Michael G. Shelton

    2004-01-01

    Concerns regarding the impacts of prescribed fires on faunal communities in pine stands have led to numerous studies. One soil/litter insect that may be influenced by fire is springtails, an important member of the forest floor community. A study was conducted in burned and unburned loblolly/shortleaf pine stands in southeastern Arkansas to examine whether springtail...

  14. Plentern mit Kiefern--Ergebnisse aus den USA [Plentering with pines--results from the United States

    Science.gov (United States)

    James M. Guldin; Don C. Bragg; Andreas Zingg

    2017-01-01

    Until now, scientifically reliable data on plentering of light-demanding tree species in Europe have been lacking. This gap is filled with long-term trials from the USA, among others with southern yellow pines. In the southern state of Arkansas, two plots of 16 hectares were installed in 1936, in the context of a large-scale trial of mixed loblolly pine (...

  15. Reproducing pine stands on the eastern shore of Maryland using a seed-tree cutting and preparing seedbeds with machinery and summer fires

    Science.gov (United States)

    S. Little; J. J. Mohr

    1954-01-01

    Pure pine stands are the most profitable forest crop on upland sites of the Eastern Shore of Maryland. The stands have been common in the past, because loblolly pine and pond pine usually made up most of the first forest growth on abandoned farmland. And apparently nearly all upland sites have been tilled at one time or another.

  16. Pine Gene Discovery Project - Final Report - 08/31/1997 - 02/28/2001; FINAL

    International Nuclear Information System (INIS)

    Whetten, R. W.; Sederoff, R. R.; Kinlaw, C.; Retzel, E.

    2001-01-01

    Integration of pines into the large scope of plant biology research depends on study of pines in parallel with study of annual plants, and on availability of research materials from pine to plant biologists interested in comparing pine with annual plant systems. The objectives of the Pine Gene Discovery Project were to obtain 10,000 partial DNA sequences of genes expressed in loblolly pine, to determine which of those pine genes were similar to known genes from other organisms, and to make the DNA sequences and isolated pine genes available to plant researchers to stimulate integration of pines into the wider scope of plant biology research. Those objectives have been completed, and the results are available to the public. Requests for pine genes have been received from a number of laboratories that would otherwise not have included pine in their research, indicating that progress is being made toward the goal of integrating pine research into the larger molecular biology research community

  17. Assessing the Significance of Above- and Belowground Carbon Allocation of Fast- and Slow-Growing Families of Loblolly Pine - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Topa, M. A.; Weinstein, D. A.; Retzlaff, W. A.

    2001-03-01

    During this project we experimentally evaluated the below-ground biomass and carbon allocation and partitioning of four different fast- and slow-growing families of loblolly pine located in Scotland County, NC, in an effort to increase the long-term performance of the crop. The trees were subjected to optimal nutrition and control since planting in 1993. Destructive harvests in 1998 and 2000 were used for whole?plant biomass estimates and to identify possible family differences in carbon acquisition (photosynthesis) and water use efficiency. At regular intervals throughout each year we sampled tissues for carbohydrate analyses to assess differences in whole-tree carbon storage. Mini rhizotron observation tubes were installed to monitor root system production and turnover. Stable isotope analysis was used to examine possible functional differences in water and nutrient acquisition of root systems between the various families. A genetic dissection of root ontogenic and architectural traits, including biomass partitioning, was conducted using molecular markers to better understand the functional implications of these traits on resource acquisition and whole-plant carbon allocation.

  18. Overstory tree status following thinning and burning treatments in mixed pine-hardwood stands on the William B. Bankhead National Forest, Alabama

    Science.gov (United States)

    Callie Jo Schweitzer; Yong Wang

    2013-01-01

    Prescribed burning and thinning are intermediate stand treatments whose consequences when applied in mixed pine-hardwood stands are unknown. The William B. Bankhead National Forest in northcentral Alabama has undertaken these two options to move unmanaged, 20- to 50-year-old loblolly pine (Pinus taeda L.) plantations towards upland hardwood-dominated...

  19. Whole canopy gas exchange among elite loblolly pine families subjected to drought stress

    Science.gov (United States)

    Wilson G. Hood; Michael C. Tyree; Dylan N. Dillaway; Michael A. Blazier; Mary Anne Sword Sayer

    2012-01-01

    Future climate change simulations predict that the southeastern United States will experience hydrologic patterns similar to that currently found in the Western Gulf Region, meaning, that planted elite loblolly families may be subject to drier, hotter summers (Ruosteenoja et al. 2003, Field et al. 2007). Currently, there is little research on how these fast-growing...

  20. The effects of drought and disturbance on the growth and developmental instability of loblolly pine (Pinus taeda L.)

    Science.gov (United States)

    Graham, John H.; Duda, Jeffrey J.; Brown, Michelle L.; Kitchen, Stanley G.; Emlen, John M.; Malol, Jagadish; Bankstahl, Elizabeth; Krzysik, Anthony J.; Balbach, Harold E.; Freeman, D. Carl

    2012-01-01

    Ecological indicators provide early warning of adverse environmental change, helping land managers adaptively manage their resources while minimizing costly remediation. In 1999 and 2000, we studied two such indicators, growth and developmental instability, of loblolly pine (Pinus taeda L.) influenced by mechanized infantry training at Fort Benning, Georgia. Disturbed areas were used for military training; tracked and wheeled vehicles damaged vegetation and soils. Highly disturbed sites had fewer trees, diminished ground cover, warmer soils in the summer, and more compacted soils with a shallower A-horizon. We hypothesized that disturbance would decrease the growth of needles, branches, and tree rings, increase the complexity of tree rings, and increase the developmental instability of needles. Contrary to our expectations, however, disturbance enhanced growth in the first year of the study, possibly by reducing competition. In the second year, a drought reduced growth of branches and needles, eliminating the stimulatory effect of disturbance. Growth-ring widths increased with growing-season precipitation, and decreased with growing-season temperature over the last 40 years. Disturbance had no effect on tree-ring complexity, as measured by the Hurst exponent. Within-fascicle variation of current-year needle length, a measure of developmental instability, differed among the study populations, but appeared unrelated to mechanical disturbance or drought.

  1. Biological and Economic Productivity of Mixed-Aged Loblolly Pine Stands in the South

    Science.gov (United States)

    Ronald Raunikar; Joseph Buongiorno; Jeffrey P. Prestemon; Karen Lee-Abt

    1999-01-01

    The financial performance of the 991 sample plots of uneven-aged loblolly-hardwood stands in the Central South FIA database examined in this report depend crucially on real price trends. Equivalent annual income (EAI) is the measure of economic performance. The regional market stumpage price data are from the Timber Mart-South database. For this set of prices, a...

  2. Competition-Induced Reductions in Soil Water Availability Reduced Pine Root Extension Rates

    Science.gov (United States)

    K.H. Ludovici; L.A. Morris

    1997-01-01

    The relationship between soil water availability, root extension, and shoot growth of loblolly pine seedlings (Pinus taeda L.) was evaluated in a rhizotron sand mixture in the absence and presence of crabgrass (Digitaria spp.) competition. Heights and diameters of seedlings grown with crabgrass were reduced 33 and SO%, respectively, compared with...

  3. Hybridization in naturally regenerated shortleaf pine as affected by the distance to nearby artificially regenerated stands of loblolly pine

    Science.gov (United States)

    John F. Stewart; Charles G. Tauer; James M. Guldin; C. Dana Nelson

    2013-01-01

    The natural range of shortleaf pine encompasses 22 states from New York to Texas, second only to eastern white pine in the eastern United States. It is a species of minor and varying occurrence in most of these states usually found in association with other pines, but it is the only naturally occurring pine in the northwestern part of its range in Oklahoma, Arkansas,...

  4. Restoring old-growth southern pine ecosystems: strategic lessons from long-term silvicultural research

    Science.gov (United States)

    Don C. Bragg; Michael G. Shelton; James M. Guldin

    2008-01-01

    The successful restoration of old-growth-like loblolly (Pinus taeda) and shortleaf (Pinus echinata) pine-dominated forests requires the integration of ecological information with long-term silvicultural research from places such as the Crossett Experimental Forest (CEF). Conventional management practices such as timber harvesting or competition control have supplied...

  5. Small mammal distributions relative to corridor edges within intensively managed southern pine plantations.

    Science.gov (United States)

    Nicole L. Constantine; Tyler A. Campbell; William M. Baughman; Timothy B. Harrington; Brian R. Chapman; Karl V. Miller

    2005-01-01

    We characterized small mammal communities in three loblolly pine (Pinus taeda) stands in the Lower Coastal Plain of South Carolina during June 1998-Aug. 2000 to investigate influence of corridor edges on small mammal distribution. We live-trapped small mammals in three regenerating stands following clearcutting. Harvested stands were bisected by...

  6. Economic Impact of Net Carbon Payments and Bioenergy Production in Fertilized and Non-Fertilized Loblolly Pine Plantations

    Directory of Open Access Journals (Sweden)

    Prativa Shrestha

    2015-08-01

    Full Text Available Sequestering carbon in forest stands and using woody bioenergy are two potential ways to utilize forests in mitigating emissions of greenhouse gases (GHGs. Such forestry related strategies are, however, greatly influenced by carbon and bioenergy markets. This study investigates the impact of both carbon and woody bioenergy markets on land expectation value (LEV and rotation age of loblolly pine (Pinus taeda L. forests in the southeastern United States for two scenarios—one with thinning and no fertilization and the other with thinning and fertilization. Economic analysis was conducted using a modified Hartman model. The amount of carbon dioxide (CO2 emitted during various activities such as management of stands, harvesting, and product decay was included in the model. Sensitivity analysis was conducted with a range of carbon offset, wood for bioenergy, and forest product prices. The results showed that LEV increased in both management scenarios as the price of carbon and wood for bioenergy increased. However, the results indicated that the management scenario without fertilizer was optimal at low carbon prices and the management scenario with fertilizer was optimal at higher carbon prices for medium and low forest product prices. Carbon payments had a greater impact on LEV than prices for wood utilized for bioenergy. Also, increase in the carbon price increased the optimal rotation age, whereas, wood prices for bioenergy had little impact. The management scenario without fertilizer was found to have longer optimal rotation ages.

  7. Effects of Nantucket pine tip moth insecticide spray schedules on loblolly pine seedlings

    Science.gov (United States)

    Christopher J. Fettig; Kenneth W. McCravy; C. Wayne Berisford

    2000-01-01

    Frequent and prolonged insecticide applications to control the Nantucket pine tip moth, Rhyacionia frustrana (Comstock) (Lepidoptera:Torticidae) (NPTM), although effective, may be impractical and uneconomica1, for commercial timber production. Timed insecticide sprays of permethrin (Polmce 3.2® EC) were applied to all possible combinations of spray...

  8. Impacts of pine species, stump removal, cultivation, and fertilization on soil properties half a century after planting

    Science.gov (United States)

    John R. Butnor; Kurt H. Johnsen; Felipe G Sanchez; C. Dana Nelson

    2012-01-01

    To better understand the long-term effects of species selection and forest management practices on soil quality and soil C retention, we analyzed soil samples from an experimental planting of loblolly (Pinus taeda L.), longleaf ((Pinus palustris Mill.), and slash ((Pinus elliottii Engelm.) pines under...

  9. Seasonal nutrient yield and digestibility of deer forage from a young pine plantation

    Science.gov (United States)

    Robert M. Blair; Henry L. Short; E.A. Epps

    1977-01-01

    Six classes of current herbaceous and woody forage were collected seasonally from a 5-year-old mixed loblolly (Pinus taeda)-shortleaf pine (Pinus echinata) plantation (in Texas) and subjected to nutrient analyses and nylon bag dry-matter digestion trials. Forages were most nutritious and digestible in the spring when tissues were succulent and growing rapidly. Browse...

  10. Performance of mixed pine-hardwood stands 16 years after fell-and-burn treatments

    Science.gov (United States)

    Elizabeth M. Blizzard; David H. van Lear; G. Geoff Wang; Thomas A. Waldrop

    2006-01-01

    Four variations of the fell-and-burn technique were compared for height and volume production on dry Piedmont sites. A two-factorial randomized complete block design of winter versus spring felling, with and without a summer burn, was implemented, followed by planting of loblolly pine (Pinus taeda L.) at 15 x 15 foot spacing. After 16 growing seasons...

  11. Hydrothermal carbonization (HTC) of loblolly pine using a continuous, reactive twin-screw extruder

    International Nuclear Information System (INIS)

    Hoekman, S. Kent; Broch, Amber; Felix, Larry; Farthing, William

    2017-01-01

    Highlights: • Hydrothermal carbonization (HTC) of biomass was conducted continuously in a TSE-based reactor system. • The fast HTC (FHTC) reactor system produces hydrochar in higher yields than a batch reactor system. • Severity factor (SF) is a useful metric for characterizing reaction conditions in different reactor systems. - Abstract: Hydrothermal carbonization (HTC) has become an accepted means of converting a wide variety of lignocellulosic feedstocks into solid hydrochars, which have improved physical and chemical properties compared to raw biomass. To date, HTC applications have involved batch or semi-continuous process systems, which has limited their economic viability. The work presented here describes a fully-continuous HTC process, made possible by use of a specially modified twin-screw extruder (TSE). The reaction time within this fast HTC (FHTC) reactor system is very short (20–30 sec) as compared to a typical batch reactor. Therefore, the concept of reaction ‘severity factor’ is used when comparing the FHTC products with those produced in other reactor systems. While solid hydrochar produced in the FHTC system has different physical properties than hydrochar from batch reactor systems, these materials exhibit similar energy densification and pelletization behavior, when produced under comparable severity conditions. However, total hydrochar yields are considerably higher from the FHTC reactor compared to batch reactor systems. This is a consequence of the de-pressurization process in the FHTC system, whereby most water-soluble organic products are retained in the hydrochar, rather than exiting the process in a separate aqueous product stream. FHTC treatment of loblolly pine at a severity factor of 5.3 (290 °C) produced a hydrochar yield of nearly 85% (based on dry feedstock mass). Condensation of the flashed vapor products provided a relatively clean water stream, containing only 1.2% organics – primarily furfural and acetic acid

  12. Biochemical Assay Detects Feeding Damage to Loblolly Pine Seeds Caused by the Leaffooted Pine Seed Bug (Hemiptera: Coreidae)

    Science.gov (United States)

    Cameron G. Lait; Daniel R. Miller; Sarah L. Bates; John H. Borden; Allison R. Kermode

    2003-01-01

    A large number of proteins in salivary gland extracts of the leaffooted pine seed bug, Leptoglossus corculus Say, were strongly recognized by a polyclonal antibody-based assay developed for detecting saliva of the western conifer seed bug, Lepfoglossus occidentalis Heidemann, in lodgepole pine, Pinus contorta var...

  13. Short-term effects of fertilization on photosynthesis and leaf morphology of field-grown loblolly pine following long-term exposure to elevated CO2 concentration

    International Nuclear Information System (INIS)

    Maier, C.A.; Palmroth, S.; Ward, E.

    2008-01-01

    This study examined the effects of an initial nitrogen (N) fertilizer application on the upper-canopy needle morphology and gas exchange of a loblolly pine tree exposed to elevated carbon dioxide (CO 2 ) concentrations over a period of 9 years. Plots in the study were split, and one half of each plot was fertilized with 112 kg ha -1 of elemental N. Measurements included needle length, mass per unit area, N concentrations on a mass and area basis, light-saturated net photosynthesis per unit leaf area, and per unit mass and leaf conductance. Results of the study showed that fertilization had little impact on needle length, mass per unit area, or leaf conductance. Results suggested that although both needle age classes accumulated N following fertilization, current-year foliage incorporated N into its photosynthetic machinery, while 1-year old foliage stored N. No significant interactions were observed between elevated CO 2 and light-saturated net photosynthesis per unit leaf area. The study found few fertilization and CO 2 interaction effects on leaf physiology and morphology. 54 refs., 3 tabs., 3 figs

  14. Understanding the Fate of Applied Nitrogen in Pine Plantations of the Southeastern United States Using 15N Enriched Fertilizers

    Directory of Open Access Journals (Sweden)

    Jay E. Raymond

    2016-11-01

    Full Text Available This study was conducted to determine the efficacy of using enhanced efficiency fertilizer (EEFs products compared to urea to improve fertilizer nitrogen use efficiency (FNUE in forest plantations. All fertilizer treatments were labeled with 15N (0.5 atom percent and applied to 100 m2 circular plots at 12 loblolly pine stands (Pinus taeda L. across the southeastern United States. Total fertilizer N recovery for fertilizer treatments was determined by sampling all primary ecosystem components and using a mass balance calculation. Significantly more fertilizer N was recovered for all EEFs compared to urea, but there were generally no differences among EEFs. The total fertilizer N ecosystem recovery ranged from 81.9% to 84.2% for EEFs compared to 65.2% for urea. The largest amount of fertilizer N recovered for all treatments was in the loblolly pine trees (EEFs: 38.5%–49.9%, urea: 34.8% and soil (EEFs: 30.6%–38.8%, urea: 28.4%. This research indicates that a greater ecosystem fertilizer N recovery for EEFs compared to urea in southeastern pine plantations can potentially lead to increased FNUE in these systems.

  15. Carryover effects of acid rain and ozone on the physiology of multiple flushes of loblolly pine seedlings

    International Nuclear Information System (INIS)

    Sasek, T.W.; Richardson, C.J.; Fendick, E.A.; Bevington, S.R.; Kress, L.W.

    1991-01-01

    The effects of acid rain and ozone exposure on loblolly pine (Pinus taeda L.) seedlings in the Piedmont of North Carolina were assessed over two exposure seasons (1987-1988). Direct effects and carryover effects of long-term exposure on the photosynthetic potential and photopigment concentrations of different needle age-classes were studied. Three half-sib families were grown in open-top field chambers and exposed two acid rain treatments and five ozone exposures delivered in proportion to ambient concentrations in a complete factorial design. Ozone significantly affected photosynthesis but there were no statistically significant effects of acid rain nor any ozone x acid rain interactions. In 1987, photosynthesis of the 1987 first-flush progressively diverged among the ozone treatments except between charcoal-filtered and nonfiltered air (NF). At the end of the first season, photosynthesis was reduced 24% at 1.5x compared to CF and more than 80% at 2.25x and 3.0x. Chlorophyll and carotenoid concentrations were similarly reduced at elevated ozone exposures. In 1988, photosynthesis of the 1987 first-flush in the elevated ozone treatments remained lower. Early in the second season, the 1988 first-flush had a 25% to 50% lower photosynthetic potential at 2.25x and 3.0x compared to CF. This carryover effect on the photosynthetic potential before significant cumulative exposure was progressively smaller in the later 1988 flushes. In the late season flushes in the highest ozone treatments, photosynthesis was significantly higher than in the lower ozone treatments

  16. Rapid Turnover and Minimal Accretion of Mineral Soil Carbon During 60-Years of Pine Forest Growth on Previously Cultivated Land

    Science.gov (United States)

    Richter, D., Jr.; Mobley, M. L.; Billings, S. A.; Markewitz, D.

    2016-12-01

    At the Calhoun Long-Term Soil-Ecosystem field experiment (1957-present), reforestation of previously cultivated land over fifty years nearly doubled soil organic carbon (SOC) in surface soils (0 to 7.5-cm) but these gains were offset by significant SOC losses in subsoils (35 to 60-cm). Nearly all of the accretions in surface soils amounted to gains in light fraction SOC, whereas losses at depth were associated with silt and clay-sized particles. These changes are documented in the Calhoun Long-Term Soil-Ecosystem (LTSE) study that resampled soil from 16 plots about every five years and archived all soil samples from four soil layers within the upper 60-cm of mineral soil. We combined soil bulk density, density fractionation, stable isotopes, and radioisotopes to explore changes in SOC and soil organic nitrogen (SON) associated with five decades of the growth of a loblolly pine secondary forest. Isotopic signatures showed relatively large accumulations of contemporary forest-derived carbon in surface soils, and no accumulation of forest-derived carbon in subsoils. We interpret results to indicate that land-use change from cotton fields to secondary pine forests drove soil biogeochemical and hydrological changes that enhanced root and microbial activity and SOM decomposition in subsoils. As pine stands matured and are now transitioning to mixed pines and hardwoods, demands on soil organic matter for nutrients to support aboveground growth has eased due to pine mortality, and bulk SOM and SON and their isotopes in subsoils have stabilized. We anticipate major changes in the next fifty years as 1957 pine trees transition to hardwoods. This study emphasizes the importance of long-term experiments and deep soil measurements when characterizing SOC and SON responses to land use change. There is a remarkable paucity of E long-term soil data deeper than 30 cm.

  17. A novel multifunctional O-methyltransferase implicated in a dual methylation pathway associated with lignin biosynthesis in loblolly pine

    Science.gov (United States)

    Li, Laigeng; Popko, Jacqueline L.; Zhang, Xing-Hai; Osakabe, Keishi; Tsai, Chung-Jui; Joshi, Chandrashekhar P.; Chiang, Vincent L.

    1997-01-01

    S-adenosyl-l-methionine (SAM)-dependent O-methyltransferases (OMTs) catalyze the methylation of hydroxycinnamic acid derivatives for the synthesis of methylated plant polyphenolics, including lignin. The distinction in the extent of methylation of lignins in angiosperms and gymnosperms, mediated by substrate-specific OMTs, represents one of the fundamental differences in lignin biosynthesis between these two classes of plants. In angiosperms, two types of structurally and functionally distinct lignin pathway OMTs, caffeic acid 3-O-methyltransferases (CAOMTs) and caffeoyl CoA 3-O-methyltransferases (CCoAOMTs), have been reported and extensively studied. However, little is known about lignin pathway OMTs in gymnosperms. We report here the first cloning of a loblolly pine (Pinus taeda) xylem cDNA encoding a multifunctional enzyme, SAM:hydroxycinnamic Acids/hydroxycinnamoyl CoA Esters OMT (AEOMT). The deduced protein sequence of AEOMT is partially similar to, but clearly distinguishable from, that of CAOMTs and does not exhibit any significant similarity with CCoAOMT protein sequences. However, functionally, yeast-expressed AEOMT enzyme catalyzed the methylation of CAOMT substrates, caffeic and 5-hydroxyferulic acids, as well as CCoAOMT substrates, caffeoyl CoA and 5-hydroxyferuloyl CoA esters, with similar specific activities and was completely inactive with substrates associated with flavonoid synthesis. The lignin-related substrates were also efficiently methylated in crude extracts of loblolly pine secondary xylem. Our results support the notion that, in the context of amino acid sequence and biochemical function, AEOMT represents a novel SAM-dependent OMT, with both CAOMT and CCoAOMT activities and thus the potential to mediate a dual methylation pathway in lignin biosynthesis in loblolly pine xylem. PMID:9144260

  18. Dose-dependent pheromone responses of mountain pine beetle in stands of lodgepole pine

    Science.gov (United States)

    Daniel R. Miller; B. Staffan Lindgren; John H. Borden

    2005-01-01

    We conducted seven behavioral choice tests with Lindgren multiple-funnel traps in stands of mature lodgepole pine in British Columbia, from 1988 to 1994, to determine the dosedependent responses of the mountain pine beetle, Dendroctonus ponderosae Hopkins, to its pheromones. Amultifunctional dose-dependent response was exhibited by D. ...

  19. Chopper GEN2 + Glyphosate efficacy for height classes of hardwood sprouts recolonizing six clearcut pine sites

    Science.gov (United States)

    Jimmie Yeiser; Andrew Ezell

    2015-01-01

    The purpose of this study was to assess sprout size as a determinant of subsequent control by a standard, single rate of imazapyr +glyphosate applied during site preparation. All study sites were in the hilly upper coastal plain of Mississippi (Winston or Oktibbeha Counties) or Louisiana (Sabine or Winn Parishes) and supported loblolly pine (Pinus taeda L.) plantations...

  20. Effect of thermo-mechanical refining pressure on the properties of wood fibers as measured by nanoindentation and atomic force microscopy

    Science.gov (United States)

    Cheng Xing; Siqun Wang; George M. Pharr; Leslie H. Groom

    2008-01-01

    Refined wood fibers of a 54-year-old loblolly pine (Pinus taeda L.) mature wood were investigated by nanoindentation and atomic force microscopy (AFM). The effect of steam pressure, in the range of 2?18 bar, during thermomechanical refining was investigated and the nanomechanical properties and nano- or micro-level damages of the cell wall were...

  1. Carbon and Water Fluxes in a Drained Coastal Clearcut and a Pine Plantation in Eastern North Carolina

    Science.gov (United States)

    J. L. Deforest; Ge Sun; A. Noormets; J. Chen; Steve McNulty; M. Gavazzi; Devendra M. Amatya; R. W. Skaggs

    2006-01-01

    The effects of clear-cutting and cultivating for timber on ecosystem carbon and water fluxes were evaluated by comparative measurements of two drained coastal wetland systems in the North Carolina coastal plain. Measurements were conducted from January through September, 2005 in a recent clearcut (CC) of native hardwoods and a loblolly pine (Pinus tacda...

  2. Stunt nematode (Tylenchorhynchus claytoni) impact on southern pine seedlings and response to a field test of cover crops

    Science.gov (United States)

    Michelle M. Cram; Stephen W. Fraedrich

    2009-01-01

    The stunt nematode, Tylenchorhynchus claytoni, was found to cause a reduction in root volume (cm3) of loblolly pine at population densities equivalent of 125 nematodes/100 cm3 (6 in3) soil and greater. The results of a host range test conducted in containers under controlled conditions determined that buckwheat cultivar (Fagopryum esculentum...

  3. Plume dispersion in four pine thinning scenarios: development of a simple pheromone dispersion model

    Science.gov (United States)

    Holly Peterson; Harold Thistle; Brian Lamb; Gene Allwine; Steve Edburg; Brian Strom

    2010-01-01

    A unique field campaign was conducted in 2004 to examine how changes in stand density may affect dispersion of insect pheromones in forest canopies. Over a l4-day period, 126 tracer tests were performed, and conditions ranged from an unthinned loblolly pine (Pinus taeda) canopy through a series of thinning scenarios with basal areas of32.l, 23.0, and 16.1 m2ha-l.ln...

  4. The effects of ultraviolet-B radiation on loblolly pine. 1: Growth, photosynthesis and pigment production in greenhouse-grown seedlings

    International Nuclear Information System (INIS)

    Sullivan, J.H.; Teramura, A.H.

    1989-01-01

    One-year old loblolly pine (Pinus taeda L.) seedlings were grown in an unshaded greenhouse for 7 months under 4 levels of ultraviolet-B (UV-B) radiation simulating stratospheric ozone reductions of 16, 25 and 40% and included a control with no UV-B radiation. Periodic measurements were made of growth and gas exchange characteristics and needle chlorophyll and UV-B-absorbing-compound concentrations. The effectiveness of UV-B radiation on seedling growth and physiology varied with the UV-B irradiance level. Seedlings receiving the lowest supplemental UV-B irradiance showed reductions in growth and photosynthetic capacity after only 1 month of irradiation. These reductions persisted and resulted in lower biomass production, while no increases in UV-B-absorbing compounds in needles were observed. Seedlings receiving UV-B radiation which simulated a 25% stratospheric ozone reduction showed an increase in UV-B-absorbing-compound concentrations after 6 months, which paralleled a recovery in photosynthesis and growth after an initial decrease in these characteristics. The seedlings grown at the highest UV-B irradiance (40% stratospheric ozone reduction) showed a more rapid increase in the concentration of UV-B-absorbing compounds and no effects of UV-B radiation on growth or photosynthetic capacity until after 4 months at this irradiance. Changes in photosynthetic capacity were probably the result of direct effects on light-dependent processes, since no effects were observed on either needle chlorophyll concentrations or stomatal conductance. Further studies are necessary to determine whether these responses persist and accumulate over subsequent years. (author)

  5. Soil-plant-atmosphere conditions regulating convective cloud formation above southeastern US pine plantations.

    Science.gov (United States)

    Manoli, Gabriele; Domec, Jean-Christophe; Novick, Kimberly; Oishi, Andrew Christopher; Noormets, Asko; Marani, Marco; Katul, Gabriel

    2016-06-01

    Loblolly pine trees (Pinus taeda L.) occupy more than 20% of the forested area in the southern United States, represent more than 50% of the standing pine volume in this region, and remove from the atmosphere about 500 g C m-2 per year through net ecosystem exchange. Hence, their significance as a major regional carbon sink can hardly be disputed. What is disputed is whether the proliferation of young plantations replacing old forest in the southern United States will alter key aspects of the hydrologic cycle, including convective rainfall, which is the focus of the present work. Ecosystem fluxes of sensible (Hs) and latent heat (LE) and large-scale, slowly evolving free atmospheric temperature and water vapor content are known to be first-order controls on the formation of convective clouds in the atmospheric boundary layer. These controlling processes are here described by a zero-order analytical model aimed at assessing how plantations of different ages may regulate the persistence and transition of the atmospheric system between cloudy and cloudless conditions. Using the analytical model together with field observations, the roles of ecosystem Hs and LE on convective cloud formation are explored relative to the entrainment of heat and moisture from the free atmosphere. Our results demonstrate that cloudy-cloudless regimes at the land surface are regulated by a nonlinear relation between the Bowen ratio Bo=Hs/LE and root-zone soil water content, suggesting that young/mature pines ecosystems have the ability to recirculate available water (through rainfall predisposition mechanisms). Such nonlinearity was not detected in a much older pine stand, suggesting a higher tolerance to drought but a limited control on boundary layer dynamics. These results enable the generation of hypotheses about the impacts on convective cloud formation driven by afforestation/deforestation and groundwater depletion projected to increase following increased human population in the

  6. Impacts of water and nutrient availability on loblolly pine function

    Science.gov (United States)

    Maxwell Wightman; Timothy Martin; Eric Jokela; Carlos Gonzalez-Benecke

    2015-01-01

    The impact of climate change on temperature and precipitation patterns in the southeastern United States are likely to have important effects on southern pine systems. A 2009 summary from the U.S. Global Change Research Program indicated that the southeastern U.S. will experience an increase in average temperature of 2.5 to 5 °C by the 2080s.

  7. Soil Profile Characteristics of a 25-Year-Old Windrowed Loblolly Pine Plantation in Louisiana

    Science.gov (United States)

    William B. Patterson; John C. Adams; Spencer E. Loe; R. Jarod Patterson

    2002-01-01

    Windrowing site preparation, the raking and piling of long rows of logging debris, has been reported to displace surface soil, redistribute nutrients, and reduce volume growth of southern pine forests. Many of these studies have reported short-term results, and there are few long-term studies of the effects of windrowing on soil properties and pine growth. A 16.2...

  8. Effects of overstory retention, herbicides, and fertilization on sub-canopy vegetation structure and functional group composition in loblolly pine forests restored to longleaf pine

    Science.gov (United States)

    Benjamin O. Knapp; Joan L. Walker; G. Geoff Wang; Huifeng Hu; Robert N.  Addington

    2014-01-01

    The desirable structure of longleaf pine forests, which generally includes a relatively open canopy of pines, very few woody stems in the mid-story, and a well-developed, herbaceous ground layer, provides critical habitat for flora and fauna and contributes to ecosystem function. Current efforts to restore longleaf pine to upland sites dominated by second-growth...

  9. Effects of dwarf mistletoe on stand structure of lodgepole pine forests 21-28 years post-mountain pine beetle epidemic in central Oregon

    Science.gov (United States)

    Michelle C. Agne; David C. Shaw; Travis J. Woolley; Mónica E. Queijeiro-Bolaños; Mai-He. Li

    2014-01-01

    Lodgepole pine (Pinus contorta) forests are widely distributed throughout North America and are subject to mountain pine beetle (Dendroctonus ponderosae) epidemics, which have caused mortality over millions of hectares of mature trees in recent decades. Mountain pine beetle is known to influence stand structure, and has the ability to impact many forest processes....

  10. Determination of Terpenoid Content in Pine by Organic Solvent Extraction and Fast-GC Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Harman-Ware, Anne E., E-mail: anne.ware@nrel.gov; Sykes, Robert [National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO (United States); Peter, Gary F. [School of Forest Resources and Conservation, University of Florida, Gainesville, FL (United States); Davis, Mark [National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO (United States)

    2016-01-25

    Terpenoids, naturally occurring compounds derived from isoprene units present in pine oleoresin, are a valuable source of chemicals used in solvents, fragrances, flavors, and have shown potential use as a biofuel. This paper describes a method to extract and analyze the terpenoids present in loblolly pine saplings and pine lighter wood. Various extraction solvents were tested over different times and temperatures. Samples were analyzed by pyrolysis-molecular beam mass spectrometry before and after extractions to monitor the extraction efficiency. The pyrolysis studies indicated that the optimal extraction method used a 1:1 hexane/acetone solvent system at 22°C for 1 h. Extracts from the hexane/acetone experiments were analyzed using a low thermal mass modular accelerated column heater for fast-GC/FID analysis. The most abundant terpenoids from the pine samples were quantified, using standard curves, and included the monoterpenes, α- and β-pinene, camphene, and δ-carene. Sesquiterpenes analyzed included caryophyllene, humulene, and α-bisabolene. Diterpenoid resin acids were quantified in derivatized extractions, including pimaric, isopimaric, levopimaric, palustric, dehydroabietic, abietic, and neoabietic acids.

  11. Determination of Terpenoid Content in Pine by Organic Solvent Extraction and Fast-GC Analysis

    International Nuclear Information System (INIS)

    Harman-Ware, Anne E.; Sykes, Robert; Peter, Gary F.; Davis, Mark

    2016-01-01

    Terpenoids, naturally occurring compounds derived from isoprene units present in pine oleoresin, are a valuable source of chemicals used in solvents, fragrances, flavors, and have shown potential use as a biofuel. This paper describes a method to extract and analyze the terpenoids present in loblolly pine saplings and pine lighter wood. Various extraction solvents were tested over different times and temperatures. Samples were analyzed by pyrolysis-molecular beam mass spectrometry before and after extractions to monitor the extraction efficiency. The pyrolysis studies indicated that the optimal extraction method used a 1:1 hexane/acetone solvent system at 22°C for 1 h. Extracts from the hexane/acetone experiments were analyzed using a low thermal mass modular accelerated column heater for fast-GC/FID analysis. The most abundant terpenoids from the pine samples were quantified, using standard curves, and included the monoterpenes, α- and β-pinene, camphene, and δ-carene. Sesquiterpenes analyzed included caryophyllene, humulene, and α-bisabolene. Diterpenoid resin acids were quantified in derivatized extractions, including pimaric, isopimaric, levopimaric, palustric, dehydroabietic, abietic, and neoabietic acids.

  12. Initial Response of Pine Seedlings and Weeds to Dried Sewage Sludge in Rehabilitation of an Eroded Forest Site

    Science.gov (United States)

    Charles R. Berry

    1977-01-01

    Dried sewage sludge was applied at rates of 0, 17, 34, and 69 metric tons/ha on a badly eroded forest site in the Piedmont region of northeast Georgia. Production of weed bio mass varied directly with amount of sludge applied. Heigh growth for both shortleafand loblolly pine seedlings appeared to be greater on plots receiving 17 metric tons of sludge/ha, bu differences...

  13. Long-term patterns of fruit production in five forest types of the South Carolina upper coastal plain

    International Nuclear Information System (INIS)

    Greenberg, Cathryn H.; Levey, Douglas J.; Kwit, Charles; Mccarty, John P.; Pearson, Scott F.

    2012-01-01

    Fleshy fruit is a key food resource for many vertebrates and may be particularly important energy source to birds during fall migration and winter. Hence, land managers should know how fruit availability varies among forest types, seasons, and years. We quantified fleshy fruit abundance monthly for 9 years (1995–2003) in 56 0.1-ha plots in 5 forest types of South Carolina's upper Coastal Plain, USA. Forest types were mature upland hardwood and bottomland hardwood forest, mature closed-canopy loblolly (Pinus taeda) and longleaf pine (P. palustris) plantation, and recent clearcut regeneration harvests planted with longleaf pine seedlings. Mean annual number of fruits and dry fruit pulp mass were highest in regeneration harvests (264,592 ± 37,444 fruits; 12,009 ± 2,392 g/ha), upland hardwoods (60,769 ± 7,667 fruits; 5,079 ± 529 g/ha), and bottomland hardwoods (65,614 ± 8,351 fruits; 4,621 ± 677 g/ha), and lowest in longleaf pine (44,104 ± 8,301 fruits; 4,102 ± 877 g/ha) and loblolly (39,532 ± 5,034 fruits; 3,261 ± 492 g/ha) plantations. Fruit production was initially high in regeneration harvests and declined with stand development and canopy closure (1995–2003). Fruit availability was highest June–September and lowest in April. More species of fruit-producing plants occurred in upland hardwoods, bottomland hardwoods, and regeneration harvests than in loblolly and longleaf pine plantations. Several species produced fruit only in 1 or 2 forest types. In sum, fruit availability varied temporally and spatially because of differences in species composition among forest types and age classes, patchy distributions of fruiting plants both within and among forest types, fruiting phenology, high inter-annual variation in fruit crop size by some dominant fruit-producing species, and the dynamic process of disturbance-adapted species colonization and decline, or recovery in recently harvested stands. As a result, land managers could enhance fruit

  14. Growing Season Definition and Use in Wetland Delineation: A Literature Review

    Science.gov (United States)

    2010-08-01

    obvious bud set) unreliable indicators of the end of the growing season. For example, drought can induce premature leaf abscission, and woody plant...as well as privet (Ligustrum japonicum), loblolly pine ( Pinus taeda), and yellow poplar (Liriodendron tulipifera). The lack of water uptake was...the effects of four flooding/drying regimes on shortleaf pine ( Pinus echinata), loblolly pine, and pond pine ( Pinus serotina). The expected result

  15. Seasonal response of photosynthetic electron transport and energy dissipation in the eighth year of exposure to elevated atmospheric CO2 (FACE) in Pinus taeda (loblolly pine)

    International Nuclear Information System (INIS)

    Logan, B.A.; Combs, A.; Kent, R.; Stanley, L.; Myers, K.; Tissue, D.T.; Western Sydney Univ., Richmond, NSW

    2009-01-01

    This study investigated the biological adaptation of loblolly pine following long-term seasonal exposure to elevated carbon dioxide (CO 2 ) partial pressures (pCO 2 ). Exposure to elevated atmospheric CO 2 (pCO 2 ) usually results in significant stimulation in light-saturated rates of photosynthetic CO 2 assimilation. Plants are protected against photoinhibition by biochemical processes known as photoprotection, including energy dissipation, which converts excess absorbed light energy into heat. This study was conducted in the eighth year of exposure to elevated pCO 2 at the Duke FACE site. The effect of elevated pCO 2 on electron transport and energy dissipation in the pine trees was examined by coupling the analyses of the capacity for photosynthetic oxygen (O 2 ) evolution, chlorophyll fluorescence emission and photosynthetic pigment composition with measurements of net photosynthetic CO 2 assimilation (Asat). During the summer growing season, Asat was 50 per cent higher in current-year needles and 24 per cent higher in year-old needles in elevated pCO 2 in comparison with needles of the same age cohort in ambient pCO 2 . Thus, older needles exhibited greater photosynthetic down-regulation than younger needles in elevated pCO 2 . In the winter, Asat was not significantly affected by growth pCO 2 . Asat was lower in winter than in summer. Growth at elevated pCO 2 had no significant effect on the capacity for photosynthetic oxygen evolution, photosystem 2 efficiencies, chlorophyll content or the size and conversion state of the xanthophyll cycle, regardless of season or needle age. There was no evidence that photosynthetic electron transport or photoprotective energy dissipation responded to compensate for the effects of elevated pCO 2 on Calvin cycle activity. 73 refs., 4 figs

  16. Progress in the chemistry of shortleaf and loblolly pine bark flavonoids

    Science.gov (United States)

    R.W. Hemingway

    1976-01-01

    The forest products industries of the southern United States harvest approximately 7 million dry tons of pine bark each year. This resource receives little utilization other than recovery of fuel values. approximately 2 million dry tons (30-40% of bark dry weight) of potentially valuable polyflavonoids are burned annually. Conifer bark flavonoids have potential...

  17. The Effect of Water Limitation on Volatile Emission, Tree Defense Response, and Brood Success of Dendroctonus ponderosae in Two Pine Hosts, Lodgepole, and Jack Pine

    OpenAIRE

    Lusebrink, Inka; Erbilgin, Nadir; Evenden, Maya L.

    2016-01-01

    The mountain pine beetle (MPB; Dendroctonus ponderosae) has recently expanded its range from lodgepole pine forest into the lodgepole × jack pine hybrid zone in central Alberta, within which it has attacked pure jack pine. This study tested the effects of water limitation on tree defense response of mature lodgepole and jack pine (Pinus contorta and Pinus banksiana) trees in the field. Tree defense response was initiated by inoculation of trees with the MPB-associated fungus Grosmannia clavig...

  18. Interactive effects of nocturnal transpiration and climate change on the root hydraulic redistribution and carbon and water budgets of southern United States pine plantations

    Science.gov (United States)

    Jean-Christophe Domec; Jérôme Ogée; Asko Noormets; Julien Jouangy; Michael Gavazzi; Emrys Treasure; Ge Sun; Steve G. McNulty; John S. King

    2012-01-01

    Deep root water uptake and hydraulic redistribution (HR) have been shown to play a major role in forest ecosystems during drought, but little is known about the impact of climate change, fertilization and soil characteristics on HR and its consequences on water and carbon fluxes. Using data from three mid-rotation loblolly pine plantations, and simulations with the...

  19. Plasticity in gas-exchange physiology of mature Scots pine and European larch drive short- and long-term adjustments to changes in water availability.

    Science.gov (United States)

    Feichtinger, Linda M; Siegwolf, Rolf T W; Gessler, Arthur; Buchmann, Nina; Lévesque, Mathieu; Rigling, Andreas

    2017-09-01

    Adjustment mechanisms of trees to changes in soil-water availability over long periods are poorly understood, but crucial to improve estimates of forest development in a changing climate. We compared mature trees of Scots pine (Pinus sylvestris) and European larch (Larix decidua) growing along water-permeable channels (irrigated) and under natural conditions (control) at three sites in inner-Alpine dry valleys. At two sites, the irrigation had been stopped in the 1980s. We combined measurements of basal area increment (BAI), tree height and gas-exchange physiology (Δ 13 C) for the period 1970-2009. At one site, the Δ 13 C of irrigated pine trees was higher than that of the control in all years, while at the other sites, it differed in pine and larch only in years with dry climatic conditions. During the first decade after the sudden change in water availability, the BAI and Δ 13 C of originally irrigated pine and larch trees decreased instantly, but subsequently reached higher levels than those of the control by 2009 (15 years afterwards). We found a high plasticity in the gas-exchange physiology of pine and larch and site-specific responses to changes in water availability. Our study highlights the ability of trees to adjust to new conditions, thus showing high resilience. © 2017 John Wiley & Sons Ltd.

  20. Effects of drought and irrigation on ecosystem functioning in a mature Scots pine forest

    Science.gov (United States)

    Dobbertin, Matthias; Brunner, Ivano; Egli, Simon; Eilmann, Britta; Graf Pannatier, Eisabeth; Schleppi, Patrick; Zingg, Andreas; Rigling, Andreas

    2010-05-01

    Climate change is expected to increase temperature and reduce summer precipitation in Switzerland. To study the expected effects of increased drought in mature forests two different approaches are in general possible: water can be partially or completely removed from the ecosystems via above- or below-canopy roofs or water can be added to already drought-prone ecosystems. Both methods have advantages and disadvantages. In our study water was added to a mature 90-year old Scots pine (Pinus sylvestris L.) forest with a few singe pubescent oaks (Quercus pubescens Willd.), located in the valley bottom of the driest region of Switzerland (Valais). In Valais, Scots pines are declining, usually with increased mortality rates following drought years. It was therefore of special interest to study here how water addition is changing forest ecosystem functioning. The irrigation experiment started in the summer of 2003. Out of eight 0.1 ha experimental plots, four were randomly selected for irrigation, the other four left as a control. Irrigation occurred during rainless nights between April and October, doubling the annual rainfall amount from 650 to 1300 mm. Irrigation water, taken from a near-by irrigation channel, added some nutrients to the plots, but nutrients which were deficient on the site, e.g. nitrogen and phosphorus, were not altered. Tree diameter, tree height and crown width were assessed before the start of the irrigation in winter 2002/2003 and after 7 years of the experiment in 2009/2010. Tree crown transparency (lack of foliage) and leaf area index (LAI) were annually assessed. Additionally, tree mortality was annually evaluated. Mycorrhizal fruit bodies were identified and counted at weekly intervals from 2003 until 2007. Root samples were taken in 2004 and 2005. In 2004 and 2005 wood formation of thirteen trees was analysed in weekly or biweekly intervals using the pinning method. These trees were felled in 2006 for stem, shoot and needle growth analysis

  1. Point of no return: experimental determination of the lethal hydraulic threshold during drought for loblolly pine (Pinus taeda)

    Science.gov (United States)

    Hammond, W.; Yu, K.; Wilson, L. A.; Will, R.; Anderegg, W.; Adams, H. D.

    2017-12-01

    The strength of the terrestrial carbon sink—dominated by forests—remains one of the greatest uncertainties in climate change modelling. How forests will respond to increased variability in temperature and precipitation is poorly understood, and experimental study to better inform global vegetation models in this area is needed. Necessary for achieving­­­­ this goal is an understanding of how increased temperatures and drought will affect landscape level distributions of plant species. Quantifying physiological thresholds representing a point of no return from drought stress, including thresholds in hydraulic function, is critical to this end. Recent theoretical, observational, and modelling research has converged upon a threshold of 60 percent loss of hydraulic conductivity at mortality (PLClethal). However, direct experimental determination of lethal points in conductivity and cavitation during drought is lacking. We quantified thresholds in hydraulic function in Loblolly pine, Pinus taeda, a commercially important timber species. In a greenhouse experiment, we exposed saplings (n = 96 total) to drought and rewatered treatment groups at variable levels of increasing water stress determined by pre-selected targets in pre-dawn water potential. Treatments also included a watered control with no drought, and drought with no rewatering. We measured physiological responses to water stress, including hydraulic conductivity, native PLC, water potential, foliar color, canopy die-back, and dark-adapted chlorophyll fluorescence. Following the rewatering treatment, we observed saplings for at least two months to determine which survived and which died. Using these data we calculated lethal physiological thresholds in water potential, directly measured PLC, and PLC inferred from water potential using a hydraulic vulnerability curve. We found that PLClethal inferred from water potential agreed with the 60% threshold suggested by previous research. However, directly

  2. Population densities and tree diameter effects associated with verbenone treatments to reduce mountain pine beetle-caused mortality of lodgepole pine.

    Science.gov (United States)

    Progar, R A; Blackford, D C; Cluck, D R; Costello, S; Dunning, L B; Eager, T; Jorgensen, C L; Munson, A S; Steed, B; Rinella, M J

    2013-02-01

    Mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae: Scolytinae), is among the primary causes of mature lodgepole pine, Pinus contorta variety latifolia mortality. Verbenone is the only antiaggregant semiochemical commercially available for reducing mountain pine beetle infestation of lodgepole pine. The success of verbenone treatments has varied greatly in previous studies because of differences in study duration, beetle population size, tree size, or other factors. To determine the ability of verbenone to protect lodgepole pine over long-term mountain pine beetle outbreaks, we applied verbenone treatments annually for 3 to 7 yr at five western United States sites. At one site, an outbreak did not develop; at two sites, verbenone reduced lodgepole pine mortality in medium and large diameter at breast height trees, and at the remaining two sites verbenone was ineffective at reducing beetle infestation. Verbenone reduced mountain pine beetle infestation of lodgepole pine trees in treated areas when populations built gradually or when outbreaks in surrounding untreated forests were of moderate severity. Verbenone did not protect trees when mountain pine beetle populations rapidly increase.

  3. Site Index Curves for Direct-Seeded Loblolly and Longleaf Pines in Louisiana

    Science.gov (United States)

    Quang V. Cao; V. Clark Baldwin; Richard E. Lohrey

    1995-01-01

    Site index equations were developed for direct-seeded loblollypine (Pinus taeda L.) and longleaf pine (Pinus palustris Mill.) based on data from 148 and 75 permanent plots, respectively. These plots varied from 0.053 to 0.119 ac in size, and were established in broadcast, row, and spot seeded stands throughout Louisiana. The Bailey and Clutter (1974) model was...

  4. Analysis of xylem formation in pine by cDNA sequencing

    Science.gov (United States)

    Allona, I.; Quinn, M.; Shoop, E.; Swope, K.; St Cyr, S.; Carlis, J.; Riedl, J.; Retzel, E.; Campbell, M. M.; Sederoff, R.; hide

    1998-01-01

    Secondary xylem (wood) formation is likely to involve some genes expressed rarely or not at all in herbaceous plants. Moreover, environmental and developmental stimuli influence secondary xylem differentiation, producing morphological and chemical changes in wood. To increase our understanding of xylem formation, and to provide material for comparative analysis of gymnosperm and angiosperm sequences, ESTs were obtained from immature xylem of loblolly pine (Pinus taeda L.). A total of 1,097 single-pass sequences were obtained from 5' ends of cDNAs made from gravistimulated tissue from bent trees. Cluster analysis detected 107 groups of similar sequences, ranging in size from 2 to 20 sequences. A total of 361 sequences fell into these groups, whereas 736 sequences were unique. About 55% of the pine EST sequences show similarity to previously described sequences in public databases. About 10% of the recognized genes encode factors involved in cell wall formation. Sequences similar to cell wall proteins, most known lignin biosynthetic enzymes, and several enzymes of carbohydrate metabolism were found. A number of putative regulatory proteins also are represented. Expression patterns of several of these genes were studied in various tissues and organs of pine. Sequencing novel genes expressed during xylem formation will provide a powerful means of identifying mechanisms controlling this important differentiation pathway.

  5. Comparison of arthropod prey of red-cockaded woodpeckers on the boles of long-leaf and loblolly pines

    Science.gov (United States)

    Scott Horn; James L. Hanula

    2002-01-01

    Red-cockaded woodpeckers (Picoides borealis) forage on the boles of most southern pines. Woodpeckers may select trees based on arthropod availability, yet no published studies have evaluated differences in arthropod abundance on different species of pines. We used knockdown insecticides to sample arthropods on longleaf (Pinus palustris...

  6. Stomata open at night in pole-sized and mature ponderosa pine: implications for O{sub 3} exposure metrics

    Energy Technology Data Exchange (ETDEWEB)

    Grulke, N. E.; Alonso, R.; Nguyen, T.; Dobrowolski, W. [USDA Forest Service, Pacific Southwest Station, Riverside, CA (United States); Cascio, C. [University of Florence, Firenze (Italy)

    2004-09-01

    Nighttime stomatal behaviour in two tree size stands of ponderosa pine are described. Ponderosa pine is one of the most ozone-sensitive conifers in western North America. The study involved measurement of time required to reach equilibrium in response to small increases in low irradiances at sites differing in environmental stressors. The contribution of nighttime ozone uptake to total daily ozone uptake in early and later summer was also investigated. Nighttime stomata conductance ranged between one tenth and one fifth that of maximum day-time values. Pole-size trees (i.e. less than 40 years old) showed greater ozone conductance than mature trees (i.e. over 250 years old). In June, nighttime ozone uptake accounted for 9, 5, and 3 per cent of the total daily ozone uptake of pole-sized trees. In late summer, ozone uptake at night was less than two percent of daily uptake at all sites. It is suspected that nighttime uptake of oxidants may have harmful physiological effects, such as contributing to the declining health of forest trees, owing to the fact that oxidants absorbed at night are not detoxified as well during the day. 67 refs.,1 tab., 8 figs.

  7. Use of near infared spectroscopy to measure the chemical and mechanical properties of solid wood

    Science.gov (United States)

    Stephen S. Kelley; Timothy G. Rials; Rebecca Snell; Leslie H. Groom; Amie Sluiter

    2004-01-01

    Near infrared (NIR) spectroscopy (500 nm-2400 nm), coupled with multivariate analytic (MVA) statistical techniques, have been used to predict the chemical and mechanical properties of solid loblolly pine wood. The samples were selected from different radial locations and heights of three loblolly pine trees grown in Arkansas. The chemical composition and mechanical...

  8. Use of near infrared spectroscopy to measure the chemical and mechanical properties of solid wood

    Science.gov (United States)

    Stephen S. Kelley; Timothy G. Rials; Rebecca Snell; Leslie H. Groom; Amie Sluiter

    2004-01-01

    Near infrared (NIR) spectroscopy (500 nm-2400 nm), coupled with multivariate analytic (MVA) statistical techniques, have been used to predict the chemical and mechanical properties of solid loblolly pine wood. The samples were selected from different radial locations and heights of three loblolly pine trees grown in Arkansas. The chemical composition and mechanical...

  9. Quantifying Trade-Offs Between Economic and Ecological Objectives in Uneven-Aged Mixed- Species Forests in the Southern United States

    Science.gov (United States)

    Joseph Buongiorno; Benedict Schulte; Kenneth E. Skog

    2004-01-01

    This paper summarizes research on the management of uneven-aged loblolly pine-hardwood stands in the southern United States. This research was composed of three elements: (1) modeling of biological growth of uneven-aged stands of mixed loblolly pine and hardwood trees, (2) optimization to discover sustainable regimes that would best meet economic and ecological...

  10. Kraft pulping of industrial wood waste

    Science.gov (United States)

    Aziz. Ahmed; Masood. Akhtar; Gary C. Myers; Gary M. Scott

    1998-01-01

    Most of the approximately 25 to 30 million tons of industrial wood waste generated in the United States per year is burned for energy and/or landfilled. In this study, kraft pulp from industrial wood waste was evaluated and compared with softwood (loblolly pine, Douglas-fir) and hardwood (aspen) pulp. Pulp bleachability was also evaluated. Compared to loblolly pine...

  11. Nutrient dynamics and tree growth of silvopastoral systems: impact of poultry litter.

    Science.gov (United States)

    Blazier, Michael A; Gaston, Lewis A; Clason, Terry R; Farrish, Kenneth W; Oswald, Brian P; Evans, Hayden A

    2008-01-01

    Fertilizing pastures with poultry litter has led to an increased incidence of nutrient-saturated soils, particularly on highly fertilized, well drained soils. Applying litter to silvopastures, in which loblolly pine (Pinus taeda L.) and bahiagrass (Paspalum notatum) production are integrated, may be an ecologically desirable alternative for upland soils of the southeastern USA. Integrating subterranean clover (Trifolium subterraneum) into silvopastures may enhance nutrient retention potential. This study evaluated soil nutrient dynamics, loblolly pine nutrient composition, and loblolly pine growth of an annually fertilized silvopasture on a well drained soil in response to fertilizer type, litter application rate, and subterranean clover. Three fertilizer treatments were applied annually for 4 yr: (i) 5 Mg litter ha(-1) (5LIT), (ii) 10 Mg litter ha(-1) (10LIT), and (iii) an inorganic N, P, K pasture blend (INO). Litter stimulated loblolly pine growth, and neither litter treatment produced soil test P concentrations above runoff potential threshold ranges. However, both litter treatments led to accumulation of several nutrients (notably P) in upper soil horizons relative to INO and unfertilized control treatments. The 10LIT treatment may have increased N and P leaching potential. Subterranean clover kept more P sequestered in the upper soil horizon and conferred some growth benefits to loblolly pine. Thus, although these silvopasture systems had a relatively high capacity for nutrient use and retention at this site, litter should be applied less frequently than in this study to reduce environmental risks.

  12. Perspectives on site productivity of loblolly pine plantations in the southern United States

    Science.gov (United States)

    Eric D. Vance; Felipe G. Sanchez

    2006-01-01

    Pine plantations in the U.S. South include some of the most intensively managed and productive forests in the world. Studies have been established in recent decades to answer questions about whether the productivity of these plantations is sustainable. While intensive management practices greatly enhance tree growth, their effects on factors controlling growth...

  13. Performance and value of CAD-deficient pine- Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Bailian Li; Houmin Chang; Hasan Jameel

    2007-02-28

    The southern US produces 58% of the nation's timber, much of it grown in intensively managed plantations of genetically improved loblolly pine. One of the fastest-growing loblolly pine selections made by the NCSU-Industry Cooperative Tree Improvement Program, whose progeny are widely planted, is also the only known natural carrier of a rare gene, cadn1. This allele codes for deficiency in an enzyme, cinnamyl alcohol dehydrogenase, which catalyzes the last step in the biosynthesis of lignin precursors. This study is to characterize this candidate gene for marker-assisted selection and deployment in the breeding program. This research will enhance the sustainability of forest production in the South, where land-use pressures will limit the total area available in the future for intensively managed plantations. Furthermore, this research will provide information to establish higher-value plantation forests with more desirable wood/fiber quality traits. A rare mutant allele (cad-n1) of the cad gene in loblolly pine (Pinus taeda L.) causes a deficiency in the production of cinnamyl alcohol dehydrogenase (CAD). The effects of this allele were examined by comparing wood density and growth traits of cad-n1 heterozygous trees with those of wild-type trees in a 10-year-old open-pollinated family trial growing under two levels of fertilization in Scotland County, North Carolina. In all, 200 trees were sampled with 100 trees for each treatment. Wood density measurements were collected from wood cores at breast height using x-ray densitometry. We found that the substitution of cad-n1 for a wild-type allele (Cad) was associated with a significant effect on wood density. The cad-n1 heterozygotes had a significantly higher wood density (+2.6%) compared to wild-type trees. The higher density was apparently due to the higher percentage of latewood in the heterozygotes. The fertilization effect was highly significant for both growth and wood density traits. While no cad genotype

  14. Investigating the reactivity of pMDI with wood cell walls using high-resolution solution-state NMR spectroscopy

    Science.gov (United States)

    Daniel J. Yelle; John Ralph; Charles R. Frihart

    2009-01-01

    The objectives of this study are the following: (1) Use solution-state NMR to assign contours in HSQC spectra of the reaction products between pMDI model compounds and: (a) lignin model compounds, (b) milled-wood lignin, (c) ball-milled wood, (d) microtomed loblolly pine; (2) Determine where and to what degree urethane formation occurs with loblolly pine cell wall...

  15. Measuring Transpiration to Regulate Winter Irrigation Rates

    Energy Technology Data Exchange (ETDEWEB)

    Samuelson, Lisa [Auburn University

    2006-11-08

    Periodic transpiration (monthly sums) in a young loblolly pine plantation between ages 3 and 6 was measured using thermal dissipation probes. Fertilization and fertilization with irrigation were better than irrigation alone in increasing transpiration of young loblolly pines during winter months, apparently because of increased leaf area in fertilized trees. Irrigation alone did not significantly increase transpiration compared with the non-fertilized and non-irrigated control plots.

  16. Field guide to old ponderosa pines in the Colorado Front Range

    Science.gov (United States)

    Laurie Stroh Huckaby; Merrill R. Kaufmann; Paula J. Fornwalt; Jason M. Stoker; Chuck Dennis

    2003-01-01

    We describe the distinguishing physical characteristics of old ponderosa pine trees in the Front Range of Colorado and the ecological processes that tend to preserve them. Photographs illustrate identifying features of old ponderosa pines and show how to differentiate them from mature and young trees. The publication includes a photographic gallery of old ponderosa...

  17. Long-Term Studies of Prescribed Burning in Loblolly Pine Forests of the Southeastern Coastal Plain

    Science.gov (United States)

    Thomas A. Waldrop; David H. van Lear; F. Thomas Lloyd; William R. Harms

    1987-01-01

    Prescribed fire provides many benefits in southern pine A study begun in 1946 provides a unique opportunity stands. to observe long-term changes in understory vegetation, soil properties, and overstory tree growth caused by repeated burning.

  18. Comparative mapping in Pinus: sugar pine (Pinus lambertiana Dougl.) and loblolly pine (Pinus taeda L.).Tree Genet Genomes 7:457-468

    Science.gov (United States)

    Kathleen D. Jermstad; Andrew J. Eckert; Jill L. Wegrzyn; Annette Delfino-Mix; Dean A Davis; Deems C. Burton; David B. Neale

    2011-01-01

    The majority of genomic research in conifers has been conducted in the Pinus subgenus Pinus mostly due to the high economic importance of the species within this taxon. Genetic maps have been constructed for several of these pines and comparative mapping analyses have consistently revealed notable synteny. In contrast,...

  19. Analytical Modelling of Canopy Interception Loss from a Juvenile Lodgepole Pine (Pinus contorta var. latifolia) Stand

    Science.gov (United States)

    Carlyle-Moses, D. E.; Lishman, C. E.

    2015-12-01

    In the central interior of British Columbia (BC), Canada, the mountain pine beetle (Dendroctonus ponderosae Hopkins) (MPB) has severely affected the majority of pine species in the region, especially lodgepole pine (Pinus contorta Douglas ex Louden var. latifolia Engelm. ex S. Watson). The loss of mature lodgepole pine stands, including those lost to salvage logging, has resulted in an increase in the number of juvenile pine stands in the interior of BC through planting and natural regrowth. With this change from mature forests to juvenile forests at such a large spatial scale, the water balance of impacted areas may be altered, although the magnitude of such change is uncertain. Previous studies of rainfall partitioning by lodgepole pine and lodgepole pine dominated canopies have focused on mature stands. Thus, rainfall, throughfall and stemflow were measured and canopy interception loss was derived during the growing season of 2010 in a juvenile lodgepole pine dominated stand located approximately 60 km NNW of Kamloops, BC at 51°12'49" N 120°23'43" W, 1290 m above mean sea level. Scaling up from measurements for nine trees, throughfall, stemflow and canopy interception loss accounted for 87.7, 1.8 and 10.5 percent of the 252.9 mm of rain that fell over 38 events during the study period, respectively. The reformulated versions of the Gash and Liu analytical interception loss models estimated cumulative canopy interception loss at 24.7 and 24.6 mm, respectively, compared with the observed 26.5 mm; an underestimate of 1.8 and 1.9 mm or 6.8 and 7.2% of the observed value, respectively. Our results suggest that canopy interception loss is reduced in juvenile stands compared to their mature counterparts and that this reduction is due to the decreased storage capacity offered by these younger canopies. Evaporation during rainfall from juvenile canopies is still appreciable and may be a consequence of the increased proportion of the canopy exposed to wind during events.

  20. From lifting to planting: Root dip treatments affect survival of loblolly pine (Pinus taeda)

    Science.gov (United States)

    Tom E. Starkey; David B. South

    2009-01-01

    Hydrogels and clay slurries are the materials most commonly applied to roots of pines in the southern United States. Most nursery managers believe such applications offer a form of "insurance" against excessive exposure during planting. The objective of this study was to examine the ability of root dip treatments to: (1) support fungal growth; and (2) protect...

  1. Mechanisms of piñon pine mortality after severe drought: a retrospective study of mature trees.

    Science.gov (United States)

    Gaylord, Monica L; Kolb, Thomas E; McDowell, Nate G

    2015-08-01

    Conifers have incurred high mortality during recent global-change-type drought(s) in the western USA. Mechanisms of drought-related tree mortality need to be resolved to support predictions of the impacts of future increases in aridity on vegetation. Hydraulic failure, carbon starvation and lethal biotic agents are three potentially interrelated mechanisms of tree mortality during drought. Our study compared a suite of measurements related to these mechanisms between 49 mature piñon pine (Pinus edulis Engelm.) trees that survived severe drought in 2002 (live trees) and 49 trees that died during the drought (dead trees) over three sites in Arizona and New Mexico. Results were consistent over all sites indicating common mortality mechanisms over a wide region rather than site-specific mechanisms. We found evidence for an interactive role of hydraulic failure, carbon starvation and biotic agents in tree death. For the decade prior to the mortality event, dead trees had twofold greater sapwood cavitation based on frequency of aspirated tracheid pits observed with scanning electron microscopy (SEM), smaller inter-tracheid pit diameter measured by SEM, greater diffusional constraints to photosynthesis based on higher wood δ(13)C, smaller xylem resin ducts, lower radial growth and more bark beetle (Coleoptera: Curculionidae) attacks than live trees. Results suggest that sapwood cavitation, low carbon assimilation and low resin defense predispose piñon pine trees to bark beetle attacks and mortality during severe drought. Our novel approach is an important step forward to yield new insights into how trees die via retrospective analysis. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. The lodgepole × jack pine hybrid zone in Alberta, Canada: a stepping stone for the mountain pine beetle on its journey East across the boreal forest?

    Science.gov (United States)

    Lusebrink, Inka; Erbilgin, Nadir; Evenden, Maya L

    2013-09-01

    Historical data show that outbreaks of the tree killing mountain pine beetle are often preceded by periods of drought. Global climate change impacts drought frequency and severity and is implicated in the range expansion of the mountain pine beetle into formerly unsuitable habitats. Its expanded range has recently reached the lodgepole × jack pine hybrid zone in central Alberta, Canada, which could act as a transition from its historical lodgepole pine host to a jack pine host present in the boreal forest. This field study tested the effects of water limitation on chemical defenses of mature trees against mountain pine beetle-associated microorganisms and on beetle brood success in lodgepole × jack pine hybrid trees. Tree chemical defenses as measured by monoterpene emission from tree boles and monoterpene concentration in needles were greater in trees that experienced water deficit compared to well-watered trees. Myrcene was identified as specific defensive compound, since it significantly increased upon inoculation with dead mountain pine beetles. Beetles reared in bolts from trees that experienced water deficit emerged with a higher fat content, demonstrating for the first time experimentally that drought conditions benefit mountain pine beetles. Further, our study demonstrated that volatile chemical emission from tree boles and phloem chemistry place the hybrid tree chemotype in-between lodgepole pine and jack pine, which might facilitate the host shift from lodgepole pine to jack pine.

  3. Differential effects of plant ontogeny and damage type on phloem and foliage monoterpenes in jack pine (Pinus banksiana).

    Science.gov (United States)

    Erbilgin, Nadir; Colgan, L Jessie

    2012-08-01

    Coniferous trees have both constitutive and inducible defences that deter or kill herbivores and pathogens. We investigated constitutive and induced monoterpene responses of jack pine (Pinus banksiana Lamb.) to a number of damage types: a fungal associate of the mountain pine beetle (Dendroctonus ponderosae Hopkins), Grosmannia clavigera (Robinson-Jeffrey & R.W. Davidson); two phytohormones, methyl jasmonate (MJ) and methyl salicylate (MS); simulated herbivory; and mechanical wounding. We only included the fungal, MJ and mechanical wounding treatments in the field experiments while all treatments were part of the greenhouse studies. We focused on both constitutive and induced responses between juvenile and mature jack pine trees and differences in defences between phloem and needles. We found that phytohormone applications and fungal inoculation resulted in the greatest increase in monoterpenes in both juvenile and mature trees. Additionally, damage types differentially affected the proportions of individual monoterpenes: MJ-treated mature trees had higher myrcene and β-pinene than fungal-inoculated mature trees, while needles of juveniles inoculated with the fungus contained higher limonene than MJ- or MS-treated juveniles. Although the constitutive monoterpenes were higher in the phloem of juveniles than mature jack pine trees, the phloem of mature trees had a much higher magnitude of induction. Further, induced monoterpene concentrations in juveniles were higher in phloem than in needles. There was no difference in monoterpene concentration between phytohormone applications and G. clavigera inoculation in mature trees, while in juvenile trees MJ was different from both G. clavigera and simulated herbivory in needle monoterpenes, but there was no difference between phytohormone applications and simulated herbivory in the phloem.

  4. Phenotypic plasticity of fine root growth increases plant productivity in pine seedlings

    Directory of Open Access Journals (Sweden)

    Grissom James E

    2004-09-01

    Full Text Available Abstract Background The plastic response of fine roots to a changing environment is suggested to affect the growth and form of a plant. Here we show that the plasticity of fine root growth may increase plant productivity based on an experiment using young seedlings (14-week old of loblolly pine. We use two contrasting pine ecotypes, "mesic" and "xeric", to investigate the adaptive significance of such a plastic response. Results The partitioning of biomass to fine roots is observed to reduce with increased nutrient availability. For the "mesic" ecotype, increased stem biomass as a consequence of more nutrients may be primarily due to reduced fine-root biomass partitioning. For the "xeric" ecotype, the favorable influence of the plasticity of fine root growth on stem growth results from increased allocation of biomass to foliage and decreased allocation to fine roots. An evolutionary genetic analysis indicates that the plasticity of fine root growth is inducible, whereas the plasticity of foliage is constitutive. Conclusions Results promise to enhance a fundamental understanding of evolutionary changes of tree architecture under domestication and to design sound silvicultural and breeding measures for improving plant productivity.

  5. Differential gene expression in loblolly pine (Pinus taeda L.) challenged with the fusiform rust fungus, Cronartium quercuum f.sp. fusiforme

    Science.gov (United States)

    Henrietta Myburg; Alison M. Morse; Henry V. Amerson; Thomas L. Kubisiak; Dudley Huber; Jason A. Osborne; Saul A. Garcia; C. Dana Nelson; John M. Davis; Sarah F. Covert; Leonel M. van Zyle

    2006-01-01

    Cronartium quercuum f.sp. fusiforme is the pathogen that incites fusiform rust disease of southern pine species. To date, a number of host resistance genes have been mapped. Although genomic mapping studies have provided valuable information on the genetic basis of disease interactions in this pine-rust pathosystem, the interaction...

  6. Bottlenecks in bog pine multiplication by somatic embryogenesis and their visualization with the environmental scanning electron microscope.

    Science.gov (United States)

    Vlašínová, Helena; Neděla, Vilem; Đorđević, Biljana; Havel, Ladislav

    2017-07-01

    Somatic embryogenesis (SE) is an important biotechnological technique used for the propagation of many pine species in vitro. However, in bog pine, one of the most endangered tree species in the Czech Republic, limitations were observed, which negatively influenced the development and further germination of somatic embryos. Although initiation frequency was very low-0.95 %, all obtained cell lines were subjected to maturation. The best responding cell line (BC1) was used and subjected to six different variants of the maturation media. The media on which the highest number of early-precotyledonary/cotyledonary somatic embryos was formed was supplemented with 121 μM abscisic acid (ABA) and with 6 % maltose. In the end of maturation experiments, different abnormalities in formation of somatic embryos were observed. For visualization and identification of abnormalities in meristem development during proliferation and maturation processes, the environmental scanning electron microscope was used. In comparison to the classical light microscope, the non-commercial environmental scanning electron microscope AQUASEM II has been found as a very useful tool for the quick recognition of apical meristem disruption and abnormal development. To our knowledge, this is the first report discussing somatic embryogenesis in bog pine. Based on this observation, the cultivation procedure could be enhanced and the method for SE of bog pine optimized.

  7. Anatomical characteristics of southern pine stemwood

    Science.gov (United States)

    Elaine T. Howard; Floyd G. Manwiller

    1968-01-01

    To obtain a definitive description of the wood and anatomy of all 10 species of southern pine, juvenile, intermediate, and mature wood was sampled at three heights in one tree of each species and examined under a light microscope. Photographs and three-dimensional drawings were made to illustrate the morphology. No significant anatomical differences were found...

  8. Irrigation and fertilization effects on Nantucket Pine Tip Moth (Lepidoptera: Tortricidae) Damage levels and pupal weight in an intensively-managed pine plantation.

    Energy Technology Data Exchange (ETDEWEB)

    Coyle, David, R.; Nowak, John, T.; Fettig, Christopher, J.

    2003-10-01

    The widespread application of intensive forest management practices throughout the southeastern U.S. has increased loblolly pine, Pinus taeda L., yields and shortened conventional rotation lengths. Fluctuations in Nantucket pine tip moth, Rhyacionia frustrana (Comstock), population density and subsequent damage levels have been linked to variations in management intensity. We examined the effects of two practices, irrigation and fertilization, on R. frustrana damage levels and pupal weights in an intensively-managed P. taeda plantation in South Carolina. Trees received intensive weed control and one of the following treatments; irrigation only. fertilization only, irrigation + fertilization, or control. Mean whole-tree tip moth damage levels ranged from <1 to 48% during this study. Damage levels differed significantly among treatments in two tip moth generations in 2001, but not 2000. Pupal weight was significantly heavier in fertilization compared to the irrigation treatment in 2000, but no significant differences were observed in 2001. Tree diameter. height. and aboveground volume were significantly greater in the irrigation + fertilization than in the irrigation treatment after two growing seasons. Our data suggest that intensive management practices that include irrigation and fertilization do not consistently increase R. frustrana damage levels and pupal weights as is commonly believed. However, tip moth suppression efforts in areas adjacent to our study may have partially reduced the potential impacts of R. frustrana on this experiment.

  9. Characterization of products from hydrothermal carbonization of pine.

    Science.gov (United States)

    Wu, Qiong; Yu, Shitao; Hao, Naijia; Wells, Tyrone; Meng, Xianzhi; Li, Mi; Pu, Yunqiao; Liu, Shouxin; Ragauskas, Arthur J

    2017-11-01

    This study aims to reveal the structural features and reaction pathways for solid-liquid products from hydrothermal carbonization of Loblolly pine, where the solid products can be used as catalysts, adsorbents and electrode materials while liquid products can be treated yielding fuels and platform chemicals. Results revealed when treated at 240°C, cellulose and hemicellulose were degraded, in part, to 5-hydroxy-methyl furfural and furfural which were further transformed to aromatic structures via ring opening and Diels Alder reactions. Lignin degradation and formation of carbon-carbon bonds, forming aromatic motifs in the presence of furanic compounds connected via aliphatic bridges, ether or condensation reactions. After hydrothermal treatment, condensed aromatic carbon materials with methoxy groups were recovered with high fixed carbon content and HHV. The recovered liquid products are lignin-like value-added chemicals consisting of furfural and polyaromatic structure with alkanes and carboxyl, their total hydroxyl group content decreased when increasing reaction time. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. The proactive strategy for sustaining five-needle pine populations: An example of its implementation in the southern Rocky Mountains

    Science.gov (United States)

    A. W. Schoettle; B. A. Goodrich; J. G. Klutsch; K. S. Burns; S. Costello; R. A. Sniezko

    2011-01-01

    The imminent invasion of the non-native fungus, Cronartium ribicola J.C. Fisch., that causes white pine blister rust (WPBR) and the current mountain pine beetle (Dendroctonus ponderosae Hopkins, MPB) epidemic in northern Colorado limber pine forests will severely affect the forest regeneration cycle necessary for functioning ecosystems. The slow growth and maturity of...

  11. Effect of High-Intensity Wildfire and Silvicultural Treatments on Reptile Communities in Sand-Pine Scrub

    Science.gov (United States)

    Cathryn H. Greenberg; Daniel G. Neary; Larry D. Harris

    1994-01-01

    We tested whether the herpetofuunal response to clearcutting followed by site preparation was similar to high-intensity wildfire foIlowed by salvage logging in sand- pine scrub. Herpetofaunal communities were compared in three replicated 5- to 7-yearpost-disturbance treatments and mature sand-pine forest. The three disturbance treatments were (1) high-intensity...

  12. Spatial patterns of longleaf pine (Pinus palustris) seedling eastablishment on the croatan national forest, North Carolina

    Science.gov (United States)

    Chadwick R. Avery; Susan Cohen; Kathleen C. Parker; John S. Kush

    2004-01-01

    Ecological research aimed at determining optimal conditions for longleaf pine regeneration has become increasingly important in efforts @ restore the longleaf pine ecosystem. Numerous authors have concluded that a negative relationship exists between the occurrence of seedlings and the occurrence of mature trees; however, observed field conditions in several North...

  13. Assessing the effect of marginal water use efficiency on water use of loblolly pine and sweetgum in ambient and elevated CO2 conditions

    Science.gov (United States)

    Kim, D.; Medvigy, D.; Xu, X.; Oren, R.; Ward, E. J.

    2017-12-01

    Stomata are the common pathways through which diffusion of CO2 and water vapor take place in a plant. Therefore, the responses of stomatal conductance to environmental conditions are important to quantify carbon assimilation and water use of plants. In stomatal optimality theory, plants may adjust the stomatal conductance to maximize carbon assimilation for a given water availability. The carbon cost for unit water loss, marginal water use efficiency (λ), depends on changes in atmospheric CO2 concentration and pre-dawn leaf water potential. The relationship can be described by λ with no water stress (λ0) and the sensitivity of λ to pre-dawn leaf water potential (β0), which may vary by plant functional type. Assessment of sensitivity of tree and canopy water use to those parameters and the estimation of the parameters for individual plant functional type or species are needed. We modeled tree water use of loblolly pine (Pinus taeda) and sweetgum (Liquidambar styraciflua) in ambient and elevated CO2 (+200 µmol mol-1) at the Duke Forest free-air CO2 enrichment (FACE) site with Ecosystem Demography model 2 (ED2), a demographic terrestrial biosphere model that scales up individual-level competition for light, water and nutrients to the ecosystem-level. Simulated sap flux density for different tree size classes and species was compared to observations. The sensitivity analysis with respect to the model's hydraulic parameters was performed. The initial results showed that the impacts of λ on tree water use were greater than other hydraulic traits in the model, such as vertical hydraulic conductivity and leaf and stem capacitance. With 10% increase in λ, modeled water flow from root to leaf decreased by 2.5 and 1.6% for P. taeda and by 7.9 and 5.1% for L. styraciflua in ambient and elevated CO2 conditions, respectively. Values of hydraulic traits (λ0 and β0) for P. taeda and L. styraciflua in ambient an elevated CO2 conditions were also suggested.

  14. The effect of water limitation on volatile emission, tree defense response, and brood success of Dendroctonus ponderosae in two pine hosts, lodgepole and jack pine

    Directory of Open Access Journals (Sweden)

    Inka eLusebrink

    2016-02-01

    Full Text Available The mountain pine beetle (MPB; Dendroctonus ponderosae has recently expanded its range from lodgepole pine forest into the lodgepole × jack pine hybrid zone in central Alberta, within which it has attacked pure jack pine. This study tested the effects of water limitation on tree defense response of mature lodgepole and jack pine (Pinus contorta and Pinus banksiana trees in the field. Tree defense response was initiated by inoculation of trees with the MPB-associated fungus Grosmannia clavigera and measured through monoterpene emission from tree boles and concentration of defensive compounds in phloem, needles, and necrotic tissues. Lodgepole pine generally emitted higher amounts of monoterpenes than jack pine; particularly from fungal-inoculated trees. Compared to non-inoculated trees, fungal inoculation increased monoterpene emission in both species, whereas water treatment had no effect on monoterpene emission. The phloem of both pine species contains (--α-pinene, the precursor of the beetle’s aggregation pheromone, however lodgepole pine contains two times as much as jack pine. The concentration of defensive compounds was 70-fold greater in the lesion tissue in jack pine, but only 10-fold in lodgepole pine compared to healthy phloem tissue in each species, respectively. Water-deficit treatment inhibited an increase of L-limonene as response to fungal inoculation in lodgepole pine phloem. The amount of myrcene in jack pine phloem was higher in water-deficit trees compared to ambient trees. Beetles reared in jack pine were not affected by either water or biological treatment, whereas beetles reared in lodgepole pine benefited from fungal inoculation by producing larger and heavier female offspring. Female beetles that emerged from jack pine bolts contained more fat than those that emerged from lodgepole pine, even though lodgepole pine phloem had a higher nitrogen content than jack pine phloem. These results suggest that jack pine chemistry

  15. Effects of salvage logging on fire risks after bark beetle outbreaks in Colorado lodgepole pine forests

    Science.gov (United States)

    Bryon J. Collins; Chuck C. Rhoades; Michael A. Battaglia; Robert M. Hubbard

    2012-01-01

    Most mature lodgepole pine (Pinus contorta var. latifolia Engelm. ex Wats.) forests in the central and southern Rocky Mountains originated after stand-replacing wildfires or logging (Brown 1975, Lotan and Perry 1983, Romme 1982). In recent years, mountain pine beetle (Dendroctonus ponderosae Hopkins) outbreaks have created a widespread, synchronous disturbance (i.e.,...

  16. 75 FR 10457 - Andrew Pickens Ranger District; South Carolina; AP Loblolly Pine Removal and Restoration Project

    Science.gov (United States)

    2010-03-08

    ... relatively low tree densities of 25-60% forest cover with understories that are dominated by native grasses... trees exist in the overstory of most of these stands and hardwood sprouts and saplings abound in the... in pine plantations. Other stands are sparse due to poor planting success or to past logging that did...

  17. Seasonality and Management Affect Land Surface Temperature Differences Between Loblolly Pine and Switchgrass Ecosystems in Central Virginia

    Science.gov (United States)

    Ahlswede, B.; Thomas, R. Q.; O'Halloran, T. L.; Rady, J.; LeMoine, J.

    2017-12-01

    Changes in land-use and land management can have biogeochemical and biophysical effects on local and global climate. While managed ecosystems provide known food and fiber benefits, their influence on climate is less well quantified. In the southeastern United States, there are numerous types of intensely managed ecosystems but pine plantations and switchgrass fields represent two biogeochemical and biophysical extremes; a tall, low albedo forest with trees harvested after multiple decades vs. a short, higher albedo C4 grass field that is harvested annually. Despite the wide spread use of these ecosystems for timber and bioenergy, a quantitative, empirical evaluation of the net influence of these ecosystems on climate is lacking because it requires measuring both the greenhouse gas and energy balance of the ecosystems while controlling for the background weather and soil environment. To address this need, we established a pair of eddy flux towers in these ecosystems that are co-located (1.5 km apart) in Central Virginia and measured the radiative energy, non-radiative energy and carbon fluxes, along with associated biometeorology variables; the paired site has run since April 2016. During the first 1.5 years (two growing seasons), we found strong seasonality in the difference in surface temperature between the two ecosystems. In the growing seasons, both sites had similar surface temperature despite higher net radiation in pine. Following harvest of the switchgrass in September, the switchgrass temperatures increased relative to pine. In the winter, the pine ecosystem was warmer. We evaluate the drivers of these intra-annual dynamics and compare the climate influence of these biophysical differences to the differences in carbon fluxes between the sites using a suite of established climate regulation services metrics. Overall, our results show tradeoffs exist between the biogeochemical and biophysical climate services in managed ecosystems in the southeastern United

  18. Greenhouse gas fluxes and root productivity in a switchgrass and loblolly pine intercropping system for bioenergy production

    Science.gov (United States)

    Paliza Shrestha; John R. Seiler; Brian D. Strahm; Eric B. Sucre; Zakiya H. Leggett

    2015-01-01

    This study is part of a larger collaborative effort to determine the overall environmental sustainability of intercropping pine (Pinus taeda L.) and switchgrass (Panicum virgatum L.), both of which are promising feedstock for bioenergy production in the Lower Coastal Plain in North Carolina.

  19. Stand Dynamics and Plant Associates of Loblolly Pine Plantations to Midrotation after Early Intensive Vegetation Management-A Southeastern United States Regional Study

    Science.gov (United States)

    James H. Miller; Bruce R. Zutter; Ray A. Newbold; M. Boyd Edwards; Shepard M. Zedaker

    2003-01-01

    Increasingly, pine plantations worldwide are grown using early control of woodv and/or herbaceous vegetation. Assuredsustainablepractices require long-term data on pine plantation development detailing patterns and processes to understand both crop-competition dynamics and the role of stand participants in providing multiple attributes such as biodiversity conservation...

  20. Effectiveness of North Carolina phosphate rock and fertilizer tablets in reclaiming disturbed land in Copper Basin, Tennessee, USA

    International Nuclear Information System (INIS)

    Sikora, F.J.; Soileau, J.M.; Maddox, J.J.; Kelsoe, J.J.

    2002-01-01

    Open smelting of copper ore about 100 years ago resulted in approximately 9,300 ha of disturbed land with severely eroded acidic soils at Copper Basin, Tennessee, USA. A field study was initiated in 1992 to compare revegetation from surface application of North Carolina phosphate rock (PR) and triple superphosphate (TSP) at 20, 59, and 295 kg P ha -1 , and determine benefits of fertilizer tablets. Measurements included survival and growth of transplanted pine seedlings, ground cover from an aerially seeded grass/legume mixture, and soil acidity. Tree survival was greater than 87% with no difference among treatments. When fertilizer tablets were not used, tree height and diameter increased with increasing soil P rates with growth maximized at 59 kg P ha -1 . After 96 and 240 d, there was no difference between PR and TSP with respect to growth of loblolly pine. After 960 days, PR caused greater tree growth compared to TSP. Weeping love grass provided the most ground cover, and its growth was stimulated with fertilizer tablets and P application. Fescue, lespedeza, and black locust trees responded more to PR than to TSP. Soil pH increased, and 0.01-M SrCl 2 extractable Al decreased, with increasing rate of PR. The molar ratios of Ca:Al in 0.01-M SrCl 2 soil extracts were also greater with PR compared to TSP. Decreased soil acidity, increased growth of loblolly pines, and increased diversity of ground cover vegetation from PR application makes PR a suitable material for reclaiming extremely acidic soils. Fertilizer tablets had an effect of improving loblolly pine growth when no P was surface applied. However, with surface P application of 59 kg ha -1 as PR, fertilizer tablets did not add any additional benefit to loblolly pine growth. Some improvement in tree growth was observed using fertilizer tablets with P applied as TSP at 59 kg ha -1 . Fertilizer tablets did greatly improve ground coverage of weeping love grass. Use of fertilizer tablets in reclamation efforts in

  1. Modeling of SAR returns from a red pine stand

    Science.gov (United States)

    Lang, R. H.; Kilic, O.; Chauhan, N. S.; Ranson, J.

    1992-01-01

    Bright P-band radar returns from red pine forests have been observed on synthetic aperture radar (SAR) images in Bangor, Maine. A plot of red pine trees was selected for the characterization and modeling to understand the cause of the high P-band returns. The red pine stand under study consisted of mature trees. Diameter at breast height (DBH) measurements were made to determine stand density as a function of tree diameter. Soil moisture and bulk density measurements were taken along with ground rough surface profiles. Detailed biomass measurements of the needles, shoots, branches, and trunks were also taken. These site statistics have been used in a distorted Born approximation model of the forest. Computations indicate that the direct-reflected or the double-bounce contributions from the ground are responsible for the high observed P-band returns for HH polarization.

  2. Ectomycorrhizal Community Structure and Soil Characteristics of Mature Lodgepole Pine (Pinus Contorta) and Adjacent Stands of Old Growth Mixed Conifer in Yellowstone National Park, Wyoming USA

    Science.gov (United States)

    Douglas, Robert B.; Parker, V. Thomas; Cullings, Kenneth W.; Sun, Sidney (Technical Monitor)

    2003-01-01

    Forest development patterns following disturbance are known to influence the physical and chemical attributes of soils at different points in time. Changes in soil resources are thought to have a corresponding effect on ectomycorrhizal (ECM) community structure. We used molecular methods to compare below-ground ECM species richness, composition, and abundance between adjacent stands of homogenous lodgepole pine and old growth mixed conifer in Yellowstone National Park (YNP). In each stand-type we collected soil cores to both identify mycorrhizae and assess soil chemistry. Although no statistical difference was observed in the mean number of ECM root tips per core between stand types, the total number of species identified (85 versus 35) and the mean number of species per core (8.8 +/- 0.6 versus 2.5 +/- 0.3) were significantly higher in lodgepole pine. Differences between the actual and estimated species richness levels indicated that these forest types support a high number of ECM species and that undersampling was severe. Species compositions were widely disparate between stands where only four species were shared out of a total of 116. Soil analysis also revealed that mixed conifer was significantly lower in pH, but higher in organic matter, potassium, phosphorus, and ammonium when compared to lodgepole pine stands. Species richness per core was correlated with these chemical data, however, analysis of covariance indicated that stand type was the only statistically significant factor in the observed difference in species richness. Our data suggest that ECM fungal richness increases as homogenous lodgepole pine stands grow and mature, but declines after Engelmann spruce and subalpine fir colonize. Despite difficulties linking species composition with soil chemistry, there are a variety of physical and chemical factors that could be influencing ECM community structure. Future field experiments are necessary to test some of the mechanisms potentially operating

  3. Spatial variability of turbulent fluxes in the roughness sublayer of an even-aged pine forest

    Science.gov (United States)

    Katul, G.; Hsieh, C.-I.; Bowling, D.; Clark, K.; Shurpali, N.; Turnipseed, A.; Albertson, J.; Tu, K.; Hollinger, D.; Evans, B. M.; Offerle, B.; Anderson, D.; Ellsworth, D.; Vogel, C.; Oren, R.

    1999-01-01

    The spatial variability of turbulent flow statistics in the roughness sublayer (RSL) of a uniform even-aged 14 m (= h) tall loblolly pine forest was investigated experimentally. Using seven existing walkup towers at this stand, high frequency velocity, temperature, water vapour and carbon dioxide concentrations were measured at 15.5 m above the ground surface from October 6 to 10 in 1997. These seven towers were separated by at least 100 m from each other. The objective of this study was to examine whether single tower turbulence statistics measurements represent the flow properties of RSL turbulence above a uniform even-aged managed loblolly pine forest as a best-case scenario for natural forested ecosystems. From the intensive space-time series measurements, it was demonstrated that standard deviations of longitudinal and vertical velocities (??(u), ??(w)) and temperature (??(T)) are more planar homogeneous than their vertical flux of momentum (u(*)2) and sensible heat (H) counterparts. Also, the measured H is more horizontally homogeneous when compared to fluxes of other scalar entities such as CO2 and water vapour. While the spatial variability in fluxes was significant (> 15%), this unique data set confirmed that single tower measurements represent the 'canonical' structure of single-point RSL turbulence statistics, especially flux-variance relationships. Implications to extending the 'moving-equilibrium' hypothesis for RSL flows are discussed. The spatial variability in all RSL flow variables was not constant in time and varied strongly with spatially averaged friction velocity u(*), especially when u(*) was small. It is shown that flow properties derived from two-point temporal statistics such as correlation functions are more sensitive to local variability in leaf area density when compared to single point flow statistics. Specifically, that the local relationship between the reciprocal of the vertical velocity integral time scale (I(w)) and the arrival

  4. Scrub-Successional Bird Community Dynamics in Young and Mature Pine-Wiregrass Savannahs

    International Nuclear Information System (INIS)

    Krementz, D.G.; Christie, J.S.

    2001-01-01

    We investigated how management for habitat conditions to support the endangered red-cockaded woodpecker effects the biodiversity of the breeding bird community associated with those habitats. Habitat is created by thinning, burning and mid-story control of hardwoods in mature longleaf stands. In addition, similar habitat structurally can be found in recently harvested areas. We tested the hypothesis that diversity and abundance, as well as survival and reproduction would be greater in mature stands. However, mature stands used for recruitment always had fewer species (36/31) than recently harvested areas (54/55). All species that occurred in recruitment stands also occurred in mature stands. No differences in survival rates were found between mature and recent cuts for Bachman's sparrow and indigo bunting

  5. Increased needle nitrogen contents did not improve shoot photosynthetic performance of mature nitrogen-poor Scots pine trees

    Directory of Open Access Journals (Sweden)

    Lasse Tarvainen

    2016-07-01

    Full Text Available Numerous studies have shown that temperate and boreal forests are limited by nitrogen (N availability. However, few studies have provided a detailed account of how carbon (C acquisition of such forests reacts to increasing N supply. We combined measurements of needle-scale biochemical photosynthetic capacities and continuous observations of shoot-scale photosynthetic performance from several canopy positions with simple mechanistic modelling to evaluate the photosynthetic responses of mature N-poor boreal Pinus sylvestris to N fertilization. The measurements were carried out in August 2013 on 90-year-old pine trees growing at Rosinedalsheden research site in northern Sweden. In spite of a nearly doubling of needle N content in response to the fertilization, no effect on the long-term shoot-scale C uptake was recorded. This lack of N-effect was due to strong light limitation of photosynthesis in all investigated canopy positions. The effect of greater N availability on needle photosynthetic capacities was also constrained by development of foliar P deficiency following N addition. Thus, P deficiency and accumulation of N in arginine appeared to contribute towards lower shoot-scale nitrogen-use efficiency in the fertilized trees, thereby additionally constraining tree-scale responses to increasing N availability. On the whole our study suggests that the C uptake response of the studied N-poor boreal P. sylvestris stand to enhanced N availability is constrained by the efficiency with which the additional N is utilized. This efficiency, in turn, depends on the ability of the trees to use the greater N availability for additional light capture. For stands that have not reached canopy closure, increase in leaf area following N fertilization would be the most effective way for improving light capture and C uptake while for mature stands an increased leaf area may have a rather limited effect on light capture owing to increased self-shading. This raises

  6. Increased Needle Nitrogen Contents Did Not Improve Shoot Photosynthetic Performance of Mature Nitrogen-Poor Scots Pine Trees.

    Science.gov (United States)

    Tarvainen, Lasse; Lutz, Martina; Räntfors, Mats; Näsholm, Torgny; Wallin, Göran

    2016-01-01

    Numerous studies have shown that temperate and boreal forests are limited by nitrogen (N) availability. However, few studies have provided a detailed account of how carbon (C) acquisition of such forests reacts to increasing N supply. We combined measurements of needle-scale biochemical photosynthetic capacities and continuous observations of shoot-scale photosynthetic performance from several canopy positions with simple mechanistic modeling to evaluate the photosynthetic responses of mature N-poor boreal Pinus sylvestris to N fertilization. The measurements were carried out in August 2013 on 90-year-old pine trees growing at Rosinedalsheden research site in northern Sweden. In spite of a nearly doubling of needle N content in response to the fertilization, no effect on the long-term shoot-scale C uptake was recorded. This lack of N-effect was due to strong light limitation of photosynthesis in all investigated canopy positions. The effect of greater N availability on needle photosynthetic capacities was also constrained by development of foliar phosphorus (P) deficiency following N addition. Thus, P deficiency and accumulation of N in arginine appeared to contribute toward lower shoot-scale nitrogen-use efficiency in the fertilized trees, thereby additionally constraining tree-scale responses to increasing N availability. On the whole our study suggests that the C uptake response of the studied N-poor boreal P. sylvestris stand to enhanced N availability is constrained by the efficiency with which the additional N is utilized. This efficiency, in turn, depends on the ability of the trees to use the greater N availability for additional light capture. For stands that have not reached canopy closure, increase in leaf area following N fertilization would be the most effective way for improving light capture and C uptake while for mature stands an increased leaf area may have a rather limited effect on light capture owing to increased self-shading. This raises the

  7. Influence of water deficit on the molecular responses of Pinus contorta × Pinus banksiana mature trees to infection by the mountain pine beetle fungal associate, Grosmannia clavigera.

    Science.gov (United States)

    Arango-Velez, Adriana; González, Leonardo M Galindo; Meents, Miranda J; El Kayal, Walid; Cooke, Barry J; Linsky, Jean; Lusebrink, Inka; Cooke, Janice E K

    2014-11-01

    Conifers exhibit a number of constitutive and induced mechanisms to defend against attack by pests and pathogens such as mountain pine beetle (Dendroctonus ponderosae Hopkins) and their fungal associates. Ecological studies have demonstrated that stressed trees are more susceptible to attack by mountain pine beetle than their healthy counterparts. In this study, we tested the hypothesis that water deficit affects constitutive and induced responses of mature lodgepole pine × jack pine hybrids (Pinus contorta Dougl. ex Loud. var. latifolia Engelm. ex S. Wats. × Pinus banksiana Lamb.) to inoculation with the mountain pine beetle fungal associate Grosmannia clavigera (Robinson-Jeffrey and Davidson) Zipfel, de Beer and Wingfield. The degree of stress induced by the imposed water-deficit treatment was sufficient to reduce photosynthesis. Grosmannia clavigera-induced lesions exhibited significantly reduced dimensions in water-deficit trees relative to well-watered trees at 5 weeks after inoculation. Treatment-associated cellular-level changes in secondary phloem were also observed. Quantitative RT-PCR was used to analyze transcript abundance profiles of 18 genes belonging to four families classically associated with biotic and abiotic stress responses: aquaporins (AQPs), dehydration-responsive element binding (DREB), terpene synthases (TPSs) and chitinases (CHIs). Transcript abundance profiles of a TIP2 AQP and a TINY-like DREB decreased significantly in fungus-inoculated trees, but not in response to water deficit. One TPS, Pcb(+)-3-carene synthase, and the Class II CHIs PcbCHI2.1 and PcbCHI2.2 showed increased expression under water-deficit conditions in the absence of fungal inoculation, while another TPS, Pcb(E)-β-farnesene synthase-like, and two CHIs, PcbCHI1.1 and PcbCHI4.1, showed attenuated expression under water-deficit conditions in the presence of fungal inoculation. The effects were observed both locally and systemically. These results demonstrate

  8. Effects of dwarf mistletoe on stand structure of lodgepole pine forests 21-28 years post-mountain pine beetle epidemic in central Oregon.

    Directory of Open Access Journals (Sweden)

    Michelle C Agne

    Full Text Available Lodgepole pine (Pinus contorta forests are widely distributed throughout North America and are subject to mountain pine beetle (Dendroctonus ponderosae epidemics, which have caused mortality over millions of hectares of mature trees in recent decades. Mountain pine beetle is known to influence stand structure, and has the ability to impact many forest processes. Dwarf mistletoe (Arceuthobium americanum also influences stand structure and occurs frequently in post-mountain pine beetle epidemic lodgepole pine forests. Few studies have incorporated both disturbances simultaneously although they co-occur frequently on the landscape. The aim of this study is to investigate the stand structure of lodgepole pine forests 21-28 years after a mountain pine beetle epidemic with varying levels of dwarf mistletoe infection in the Deschutes National Forest in central Oregon. We compared stand density, stand basal area, canopy volume, proportion of the stand in dominant/codominant, intermediate, and suppressed cohorts, average height and average diameter of each cohort, across the range of dwarf mistletoe ratings to address differences in stand structure. We found strong evidence of a decrease in canopy volume, suppressed cohort height, and dominant/codominant cohort diameter with increasing stand-level dwarf mistletoe rating. There was strong evidence that as dwarf mistletoe rating increases, proportion of the stand in the dominant/codominant cohort decreases while proportion of the stand in the suppressed cohort increases. Structural differences associated with variable dwarf mistletoe severity create heterogeneity in this forest type and may have a significant influence on stand productivity and the resistance and resilience of these stands to future biotic and abiotic disturbances. Our findings show that it is imperative to incorporate dwarf mistletoe when studying stand productivity and ecosystem recovery processes in lodgepole pine forests because of its

  9. Effects of dwarf mistletoe on stand structure of lodgepole pine forests 21-28 years post-mountain pine beetle epidemic in central Oregon.

    Science.gov (United States)

    Agne, Michelle C; Shaw, David C; Woolley, Travis J; Queijeiro-Bolaños, Mónica E

    2014-01-01

    Lodgepole pine (Pinus contorta) forests are widely distributed throughout North America and are subject to mountain pine beetle (Dendroctonus ponderosae) epidemics, which have caused mortality over millions of hectares of mature trees in recent decades. Mountain pine beetle is known to influence stand structure, and has the ability to impact many forest processes. Dwarf mistletoe (Arceuthobium americanum) also influences stand structure and occurs frequently in post-mountain pine beetle epidemic lodgepole pine forests. Few studies have incorporated both disturbances simultaneously although they co-occur frequently on the landscape. The aim of this study is to investigate the stand structure of lodgepole pine forests 21-28 years after a mountain pine beetle epidemic with varying levels of dwarf mistletoe infection in the Deschutes National Forest in central Oregon. We compared stand density, stand basal area, canopy volume, proportion of the stand in dominant/codominant, intermediate, and suppressed cohorts, average height and average diameter of each cohort, across the range of dwarf mistletoe ratings to address differences in stand structure. We found strong evidence of a decrease in canopy volume, suppressed cohort height, and dominant/codominant cohort diameter with increasing stand-level dwarf mistletoe rating. There was strong evidence that as dwarf mistletoe rating increases, proportion of the stand in the dominant/codominant cohort decreases while proportion of the stand in the suppressed cohort increases. Structural differences associated with variable dwarf mistletoe severity create heterogeneity in this forest type and may have a significant influence on stand productivity and the resistance and resilience of these stands to future biotic and abiotic disturbances. Our findings show that it is imperative to incorporate dwarf mistletoe when studying stand productivity and ecosystem recovery processes in lodgepole pine forests because of its potential to

  10. A consensus genetic map for Pinus taeda and Pinus elliottii and extent of linkage disequilibrium in two genotype-phenotype discovery populations of Pinua taeda

    Science.gov (United States)

    Jared W. Westbrook; Vikram E. Chhatre; Le-Shin Wu; Srikar Chamala; Leandro Gomide Neves; Patricio Munoz; Pedro J. Martinez-Garcia; David B. Neale; Matias Kirst; Keithanne Mockaitis; C. Dana Nelson; Gary F. Peter; John M. Davis; Craig S. Echt

    2015-01-01

    A consensus genetic map for Pinus taeda (loblolly pine) and Pinus elliottii (slash pine) was constructed by merging three previously published P. taeda maps with a map from a pseudo-backcross between P. elliottii and P. taeda. The consensus map positioned 3856 markers via...

  11. Cone and seed yields in white spruce seed production areas

    Science.gov (United States)

    John A. Pitcher

    1966-01-01

    The source of seed is an important consideration in the reforestation program on the National Forests in the North Central Region. Thirty-five seed production areas have been set up in the Region, along the lines proposed by the North Central Forest Experiment Station, to provide control of seed source. Red pine, white pine, shortleaf and loblolly pine, and white...

  12. Simulation of the biomass dynamics of Masson pine forest under different management

    Institute of Scientific and Technical Information of China (English)

    ZHANG Gui-lian; WANG Kai-yun; LIU Xin-wei; PENG Shao-lin

    2006-01-01

    TREE submodel affiliated with TREEDYN was used to simulate biomass dynamics of Masson pine (Pinus massoniana) forest under different managements (including thinning, clear cutting, combining thinning with clear cutting). The purpose was to represent biomass dynamics involved in its development, which can provide scientific arguments for management of Masson pine forest. The results showed the scenario that 10% or 20% of biomass of the previous year was thinned every five years from 15 to 40 years made total biomass of pine forest increase slowly and it took more time to reach a mature community; If clear cutting and thinning were combined, the case C (clear cutting at 20 years of forest age, thinning 50% of remaining biomass at 30 years of forest age, and thinning 50% of remaining biomass again at 40 years of forest age) was the best scenario which can accelerate speed of development of Masson pine forest and gained better economic values.

  13. Responses of Ips pini (Say), Pityogenes knechteli Swaine and Associated Beetles (Coleoptera) to Host Monoterpenes in Stands of Lodgepole Pine

    Science.gov (United States)

    Daniel R. Miller; John H. Borden

    2003-01-01

    We conducted seven experiments in stands of mature lodgepole pine in southern British Columbia to elucidate the role of host volatiles in the semiochemical ecology of the pine engraver, Ips pini (Say) (Coleoptera: Scolytidae), with particular reference to the behavioral responses of predators and competing species of bark beetles. Our results demonstrated that the...

  14. Baseline element concentrations in soils and plants, Bull Island, Cape Romain National Wildlife Refuge, South Carolina, U.S.A.

    Science.gov (United States)

    Gough, L.P.; Severson, R.C.; Jackson, L.L.

    1994-01-01

    Baseline element concentrations are given for Spanish moss (Tillandsia usneoides), loblolly pine (Pinus taeda), and associated soils. Baseline and variability data for ash, Al, Ba, C, Ca, Cd, Ce, Co, Cr, Cu, Fe, K, La, Li, Mg, Mn, Na, Nb, Nd, Ni, P, Pb, S, Sc, Sr, Th, Ti, V, Y, and Zn are reported; however, not all variables are reported for all media because, in some media, certain elements were below the analytical detection limit. Spatial variation in element concentration among and within 0.5 km grid cells are given for each of the media. In general, only a few elements in Spanish moss showed statistically significant landscape patterns, whereas several elements in loblolly pine and in soils exhibited differences among sampling grids. Significant differences in the concentration of three elements in Spanish moss and eight elements (including total S) in loblolly pine were observed between two sampling dates (November and June); however, the absolute amount of these differences was small. Except for perhaps Ni and Pb concentrations in Spanish moss, element levels in all sample media exhibited ranges that indicate natural rather than anthropogenic additions of trace elements.

  15. Whitebark pine mortality related to white pine blister rust, mountain pine beetle outbreak, and water availability

    Science.gov (United States)

    Shanahan, Erin; Irvine, Kathryn M.; Thoma, David P.; Wilmoth, Siri K.; Ray, Andrew; Legg, Kristin; Shovic, Henry

    2016-01-01

    Whitebark pine (Pinus albicaulis) forests in the western United States have been adversely affected by an exotic pathogen (Cronartium ribicola, causal agent of white pine blister rust), insect outbreaks (Dendroctonus ponderosae, mountain pine beetle), and drought. We monitored individual trees from 2004 to 2013 and characterized stand-level biophysical conditions through a mountain pine beetle epidemic in the Greater Yellowstone Ecosystem. Specifically, we investigated associations between tree-level variables (duration and location of white pine blister rust infection, presence of mountain pine beetle, tree size, and potential interactions) with observations of individual whitebark pine tree mortality. Climate summaries indicated that cumulative growing degree days in years 2006–2008 likely contributed to a regionwide outbreak of mountain pine beetle prior to the observed peak in whitebark mortality in 2009. We show that larger whitebark pine trees were preferentially attacked and killed by mountain pine beetle and resulted in a regionwide shift to smaller size class trees. In addition, we found evidence that smaller size class trees with white pine blister rust infection experienced higher mortality than larger trees. This latter finding suggests that in the coming decades white pine blister rust may become the most probable cause of whitebark pine mortality. Our findings offered no evidence of an interactive effect of mountain pine beetle and white pine blister rust infection on whitebark pine mortality in the Greater Yellowstone Ecosystem. Interestingly, the probability of mortality was lower for larger trees attacked by mountain pine beetle in stands with higher evapotranspiration. Because evapotranspiration varies with climate and topoedaphic conditions across the region, we discuss the potential to use this improved understanding of biophysical influences on mortality to identify microrefugia that might contribute to successful whitebark pine conservation

  16. Mountain Pine Beetle Fecundity and Offspring Size Differ Among Lodgepole Pine and Whitebark Pine Hosts

    OpenAIRE

    Gross, Donovan

    2008-01-01

    Whitebark pine (Pinus albicaulis Engelmann) is a treeline species in the central Rocky Mountains. Its occupation of high elevations previously protected whitebark pine from long-term mountain pine beetle outbreaks. The mountain pine beetle, however, is currently reaching outbreaks of record magnitude in high-elevation whitebark pine. We used a factorial laboratory experiment to compare mountain pine beetle (Dendroctonus ponderosae Hopkins) life history characteristics between a typical host, ...

  17. Field measurements of trace gases emitted by prescribed fires in southeastern US pine forests using an open-path FTIR system

    Science.gov (United States)

    S. K. Akagi; I. R. Burling; A. Mendoza; T. J. Johnson; M. Cameron; D. W. T. Griffith; C. Paton-Walsh; D. R. Weise; J. Reardon; R. J. Yokelson

    2013-01-01

    We report trace-gas emission factors from three pine-understory prescribed fires in South Carolina, US measured during the fall of 2011. The fires were more intense than many prescribed burns because the fuels included mature pine stands not subjected to prescribed fire in decades that were lit following an extended drought. The emission factors were measured...

  18. Ecological, political and social challenges of prescribed fire restoration in east Texas pineywoods ecosystems: a case study

    Science.gov (United States)

    Sandra Rideout; Brian P. Oswald; Michael H. Legg

    2003-01-01

    The effectiveness of prescribed fire restoration of forested sites in three state parks in east Texas, USA was studied. Two sites consisted of mixed shortleaf (Pinus echinata Mill.) or loblolly pine (Pinus taeda L.) and broadleaf overstoreys. The third site was a longleaf pine (Pinus palustris Mill.)/little...

  19. Integrating invasive grasses into carbon cycle projections: Cogongrass spread in southern pine forests

    Science.gov (United States)

    McCabe, T. D.; Flory, S. L.; Wiesner, S.; Dietze, M.

    2017-12-01

    Forested ecosystems are currently being disrupted by invasive species. One example is the invasive grass Imperata cylindrica (cogongrass), which is widespread in southeastern US pine forests. Pines forests dominate the forest cover of the southeast, and contribute to making the Southeast the United States' largest carbon sink. Cogongrass decreases the colonization of loblolly pine fine roots. If cogongrass continues to invade,this sink could be jeopardized. However, the effects of cogongrass invasion on carbon sequestration are largely unknown. We have projected the effects of elevated CO2 and changing climate on future cogongrass invasion. To test how pine stands are affected by cogongrass, cogongrass invasions were modeled using the Ecosystem Demography 2 (ED2) model, and parameterized using the Predictive Ecosystem Analyzer (PEcAn). ED2 takes into account local meteorological data, stand populations and succession, disturbance, and geochemical pools. PEcAn is a workflow that uses Bayesian sensitivity analyses and variance decomposition to quantify the uncertainty that each parameter contributes to overall model uncertainty. ED2 was run for four NEON and Ameriflux sites in the Southeast from the earliest available census of the site into 2010. These model results were compared to site measures to test for model accuracy and bias. To project the effect of elevated CO2 on cogongrass invasions, ED was run from 2006-2100 at four sites under four separate scenarios: 1) RPC4.5 CO2 and climate, 2) RPC4.5 climate only, with constant CO2 concentrations, 3) RPC4.5 Elevated CO2 only, with climate randomly selected from 2006-2026, 4) Present Day, made from randomly selected measures of CO2 and radiation from 2006-2026. Each scenario was run three times; once with cogongrass absent, once with a low cogongrass abundance, and once with a high cogongrass abundance. Model results suggest that many relevant parameters have high uncertainty due to lack of measurement. Further field

  20. Determining Nutrient Requirements For Intensively Managed Loblolly Pine Stands Using the SSAND (Soil Supply and Nutrient Demand) Model

    Science.gov (United States)

    Hector G. Adegbidi; Nicholas B. Comerford; Hua Li; Eric J. Jokela; Nairam F. Barros

    2002-01-01

    Nutrient management represents a central component of intensive silvicultural systems that are designed to increase forest productivity in southern pine stands. Forest soils throughout the South are generally infertile, and fertilizers may be applied one or more times over the course of a rotation. Diagnostic techniques, such as foliar analysis and soil testing are...

  1. Influences of vegetation structure and elevation on CO2 uptake in a mature jack pine forest in Saskatchewan, Canada

    International Nuclear Information System (INIS)

    Chasmer, L.; McCaughey, H.; Treitz, P.

    2008-01-01

    Eddy covariance (EC) is often used to measure the movement and direction of energy and trace gas concentrations in ecosystems. Data from EC networks are often combined with remote sensing data and ecosystem models in order to assess the spatial and temporal variability of carbon dioxide (CO 2 ) exchanges within specific areas of interest. This study presented a new method of determining changes in the structural characteristics of biomass and elevation. Lidar was used within the contours of half-hourly flux footprint areas to characterize vegetation structure and elevation. The influences of vegetation structure and elevation on CO 2 concentrations were measured by EC and Lidar measurements for 3 mature growing periods at a mature jack pine site in Saskatchewan. Mensuration data were collected over 2 periods. Meteorological, CO 2 , and H2O flux measurements were collected for 30 minute periods each day. Statistical analyses were conducted to determine the influence of meteorological variables on vegetation structure. Footprint contour lines were then layered onto the canopy height models derived by the lidar data. Multiple regression equations were used to determine net ecosystem productivity (NEP) and gross ecosystem productivity (GEP) using meteorological variables, canopy fractional cover; and elevation, as well as the results obtained from a Landsberg equation. The study showed that differences in NEP variability were influenced by differences in canopy and ground surface characteristics within the site. EC measurements underestimated gross CO 2 fluxes by 5 per cent as the biomass was lower within the immediate vicinity of the EC network. It was concluded that canopy structures and elevation are important factors for determining annual carbon balances. 36 refs., 8 tabs., 9 figs

  2. Environment-dependent microevolution in a Mediterranean pine (Pinus pinaster Aiton).

    Science.gov (United States)

    Alía, Ricardo; Chambel, Regina; Notivol, Eduardo; Climent, José; González-Martínez, Santiago C

    2014-09-23

    A central question for understanding the evolutionary responses of plant species to rapidly changing environments is the assessment of their potential for short-term (in one or a few generations) genetic change. In our study, we consider the case of Pinus pinaster Aiton (maritime pine), a widespread Mediterranean tree, and (i) test, under different experimental conditions (growth chamber and semi-natural), whether higher recruitment in the wild from the most successful mothers is due to better performance of their offspring; and (ii) evaluate genetic change in quantitative traits across generations at two different life stages (mature trees and seedlings) that are known to be under strong selection pressure in forest trees. Genetic control was high for most traits (h2 = 0.137-0.876) under the milder conditions of the growth chamber, but only for ontogenetic change (0.276), total height (0.415) and survival (0.719) under the more stressful semi-natural conditions. Significant phenotypic selection gradients were found in mature trees for traits related to seed quality (germination rate and number of empty seeds). Moreover, female relative reproductive success was significantly correlated with offspring performance for specific leaf area (SLA) in the growth chamber experiment, and stem mass fraction (SMF) in the experiment under semi-natural conditions, two adaptive traits related to abiotic stress-response in pines. Selection gradients based on genetic covariance of seedling traits and responses to selection at this stage involved traits related to biomass allocation (SMF) and growth (as decomposed by a Gompertz model) or delayed ontogenetic change, depending also on the testing environment. Despite the evidence of microevolutionary change in adaptive traits in maritime pine, directional or disruptive changes are difficult to predict due to variable selection at different life stages and environments. At mature-tree stages, higher female effective reproductive

  3. Tip moth parasitoids and pesticides: Are they compatible?

    Science.gov (United States)

    Kenneth W. McCravy; Mark J. Dalusky; C. Wayne Berisford

    1999-01-01

    Effects of herbicide and insecticide applications on parasitism of the Nantucket pine tip moth, Rhyacionia frustrana (Comstock) were examined in 2-yr-old loblolly pine (Pinus taeda L.) plantations in Georgia. Total parasitism rates varied significantly among tip moth generations, but there were no differences in parasitism rates between herbicide-treated and untreated...

  4. Plant community responses to soil disturbance and herbicide treatments over 10 years on the Texas LTSP study

    Science.gov (United States)

    D. Andrew Scott; Richard H. Stagg

    2013-01-01

    Determining how anthropogenic disturbances affect site productivity through bioassays requires a complete understanding of both overstory and understory vegetation. This study was installed in 1997 to determine how soil compaction and intensive harvesting affected the inherent site productivity of pine stands on the western boundary of loblolly pine’s (Pinus...

  5. Dimensional stability of wood-plastic composites reinforced with potassium methyl siliconate modified fiber and sawdust made from beetle-killed trees

    Science.gov (United States)

    Cheng Piao; Zhiyong Cai; Nicole M. Stark; Charles J. Montezun

    2014-01-01

    Wood fromtwovarieties of beetle-killed trees was used to fabricate wood–plastic composites. Loblolly pine and lodgepole pine beetle-killed trees were defibrated mechanically and thermomechanically, respectively, into fiber. Fiber and sawdust produced from the trees were modified with potassium methyl siliconate (PMS) and injection-molded into fiber/sawdust reinforced...

  6. Long-term changes in fusiform rust incidence in the southeastern United States

    Science.gov (United States)

    KaDonna C. Randolph; Ellis B. Cowling; Dale A. Starkey

    2015-01-01

    Fusiform rust is the most devastating disease of slash pine (Pinus elliottii) and loblolly pine (Pinus taeda) in the southeastern United States. Since the 1970s, the USDA Forest Service Forest Inventory and Analysis (FIA) Program has assessed fusiform rust incidence on its network of ground plots in 13 states across the...

  7. Science You Can Use Bulletin: From death comes life: Recovery and revolution in the wake of epidemic outbreaks of mountain pine beetle

    Science.gov (United States)

    Karl Malcolm; Chuck Rhoades; Michael Battaglia; Paula Fornwalt; Rob Hubbard; Kelly Elder; Byron Collins

    2012-01-01

    Changing climatic conditions and an abundance of dense, mature pine forests have helped to spur an epidemic of mountain pine beetles larger than any in recorded history. Millions of forested acres have been heavily impacted and have experienced extreme rates of tree mortality. This has raised concerns among many people that the death, desiccation, and decomposition of...

  8. Analysis, pretreatment and enzymatic saccharification of different fractions of Scots pine

    Science.gov (United States)

    2014-01-01

    Background Forestry residues consisting of softwood are a major lignocellulosic resource for production of liquid biofuels. Scots pine, a commercially important forest tree, was fractionated into seven fractions of chips: juvenile heartwood, mature heartwood, juvenile sapwood, mature sapwood, bark, top parts, and knotwood. The different fractions were characterized analytically with regard to chemical composition and susceptibility to dilute-acid pretreatment and enzymatic saccharification. Results All fractions were characterized by a high glucan content (38-43%) and a high content of other carbohydrates (11-14% mannan, 2-4% galactan) that generate easily convertible hexose sugars, and by a low content of inorganic material (0.2-0.9% ash). The lignin content was relatively uniform (27-32%) and the syringyl-guaiacyl ratio of the different fractions were within the range 0.021-0.025. The knotwood had a high content of extractives (9%) compared to the other fractions. The effects of pretreatment and enzymatic saccharification were relatively similar, but without pretreatment the bark fraction was considerably more susceptible to enzymatic saccharification. Conclusions Since sawn timber is a main product from softwood species such as Scots pine, it is an important issue whether different parts of the tree are equally suitable for bioconversion processes. The investigation shows that bioconversion of Scots pine is facilitated by that most of the different fractions exhibit relatively similar properties with regard to chemical composition and susceptibility to techniques used for bioconversion of woody biomass. PMID:24641769

  9. Pine weevil (Hylobius abietis) antifeedants from lodgepole pine (Pinus contorta).

    Science.gov (United States)

    Bratt, K; Sunnerheim, K; Nordenhem, H; Nordlander, G; Langström, B

    2001-11-01

    Pine weevils (Hylobius abietis) fed less on bark of lodgepole pine (Pinus contorta) than on bark of Scots pine (P. sylvestris). Two pine weevil antifeedants, ethyl trans-cinnamate and ethyl 2,3-dibromo-3-phenyl-propanoate, were isolated from bark of lodgepole pine. These two compounds significantly reduced pine weevil feeding in a laboratory bioassay. In field assays, the second compound significantly decreased pine weevil damage on planted seedlings. Ethyl 2,3-dibromo-3-phenylpropanoate has not previously been reported as a natural product.

  10. Soil carbon, after 3 years, under short-rotation woody crops grown under varying nutrient and water availability

    Science.gov (United States)

    Felipe G. Sanchez; Mark Coleman; Charles T. Garten; Robert J. Luxmoore; John A. Stanturf; Carl Trettin; Stan D. Wullschleger

    2007-01-01

    Soil carbon contents were measured on a short-rotation woody crop study located on the US Department of Energy's Savannah River Site outside Aiken, SC. This study included fertilization and irrigation treatments on five tree genotypes (sweetgum, loblolly pine, sycamore and two eastern cottonwood clones). Prior to study installation, the previous pine stand was...

  11. Behavior and sensitivity of an optimal tree diameter growth model under data uncertainty

    Science.gov (United States)

    Don C. Bragg

    2005-01-01

    Using loblolly pine, shortleaf pine, white oak, and northern red oak as examples, this paper considers the behavior of potential relative increment (PRI) models of optimal tree diameter growth under data uncertainity. Recommendations on intial sample size and the PRI iteractive curve fitting process are provided. Combining different state inventories prior to PRI model...

  12. Biogeochemical hotspots following a simulated tree mortality event of southern pine beetle

    Science.gov (United States)

    Siegert, C. M.; Renninger, H. J.; Karunarathna, S.; Hornslein, N.; Riggins, J. J.; Clay, N. A.; Tang, J. D.; Chaney, B.; Drotar, N.

    2017-12-01

    Disturbances in forest ecosystems can alter functions like productivity, respiration, and nutrient cycling through the creation of biogeochemical hotspots. These events occur sporadically across the landscape, leading to uncertainty in terrestrial biosphere carbon models, which have yet to capture the full complexity of biotic and abiotic factors driving ecological processes in the terrestrial environment. Given the widespread impact of southern pine beetle on forest ecosystems throughout the southeastern United States, it is critical to management and planning activities to understand the role of these disturbances. As such, we hypothesize that bark beetle killed trees create biogeochemical hotspots in the soils surrounding their trunk as they undergo mortality due to (1) increased soil moisture from reductions in plant water uptake and increased stemflow production, (2) enhanced canopy-derived inputs of carbon and nitrogen, and (3) increased microbial activity and root mortality. In 2015, a field experiment to mimic a southern pine beetle attack was established by girdling loblolly pine trees. Subsequent measurements of throughfall and stemflow for water quantity and quality, transpiration, stem respiration, soil respiration, and soil chemistry were used to quantify the extent of spatial and temporal impacts of tree mortality on carbon budgets. Compared to control trees, girdled trees exhibited reduced water uptake within the first 6 months of the study and succumbed to mortality within 18 months. Over two years, the girdled trees generated 33% more stemflow than control trees (7836 vs. 5882 L m-2). Preliminary analysis of carbon and nitrogen concentrations and dissolved organic matter quality are still pending. In the surrounding soils, C:N ratios were greater under control trees (12.8) than under girdled trees (12.1), which was driven by an increase in carbon around control trees (+0.13 mg C mg-1 soil) and not a decrease around girdled trees (-0.01 mg C mg-1

  13. Biochemistry and physiology of overwintering in the mature larva of the pine needle gall midge, Thecodiplosis japonensis (Diptera: cecidomyiidae) in Korea.

    Science.gov (United States)

    Li, Y; Gong, H; Park, H

    2000-01-01

    The pine needle gall midge, Thecodiplosis japonensis, overwinters in the soil as a third instar mature larva. The metabolic and physiological compensations and adjustments during its overwintering and acclimation were studied. Field-sampled larvae in 1997/98 winter showed a significant increase in whole-body trehalose by January (5.71 +/- 0.09 vs. 9.41 +/- 0.42 mg/g wet weight) along with a more significant decrease in whole-body glycogen (16.25 +/- 0.18 vs. 5.65 +/- 0.45 mg/g wet weight). Afterwards, there was a partial reconversion of trehalose to glycogen. Moreover, trace amounts of glycerol and steady content of glucose as potential cryoprotectants were found during the overwintering period. Temperature acclimation of field-sampled larvae affects interconversion between trehalose and glycogen. Trehalose accumulation does not affect the larval supercooling capacity. The mean supercooling point of the larvae remained nearly constant at about -20 degree he winter and was unchanged after temperature acclimation. Low temperature survival experiment suggested that the larvae adopt a freeze-avoiding strategy for overwintering.

  14. Development and implementation of a highly-multiplexed SNP array for genetic mapping in maritime pine and comparative mapping with loblolly pine

    Directory of Open Access Journals (Sweden)

    Garnier-Géré Pauline

    2011-07-01

    Full Text Available Abstract Background Single nucleotide polymorphisms (SNPs are the most abundant source of genetic variation among individuals of a species. New genotyping technologies allow examining hundreds to thousands of SNPs in a single reaction for a wide range of applications such as genetic diversity analysis, linkage mapping, fine QTL mapping, association studies, marker-assisted or genome-wide selection. In this paper, we evaluated the potential of highly-multiplexed SNP genotyping for genetic mapping in maritime pine (Pinus pinaster Ait., the main conifer used for commercial plantation in southwestern Europe. Results We designed a custom GoldenGate assay for 1,536 SNPs detected through the resequencing of gene fragments (707 in vitro SNPs/Indels and from Sanger-derived Expressed Sequenced Tags assembled into a unigene set (829 in silico SNPs/Indels. Offspring from three-generation outbred (G2 and inbred (F2 pedigrees were genotyped. The success rate of the assay was 63.6% and 74.8% for in silico and in vitro SNPs, respectively. A genotyping error rate of 0.4% was further estimated from segregating data of SNPs belonging to the same gene. Overall, 394 SNPs were available for mapping. A total of 287 SNPs were integrated with previously mapped markers in the G2 parental maps, while 179 SNPs were localized on the map generated from the analysis of the F2 progeny. Based on 98 markers segregating in both pedigrees, we were able to generate a consensus map comprising 357 SNPs from 292 different loci. Finally, the analysis of sequence homology between mapped markers and their orthologs in a Pinus taeda linkage map, made it possible to align the 12 linkage groups of both species. Conclusions Our results show that the GoldenGate assay can be used successfully for high-throughput SNP genotyping in maritime pine, a conifer species that has a genome seven times the size of the human genome. This SNP-array will be extended thanks to recent sequencing effort using

  15. Installation Restoration Program. Phase I. Records Search Columbus Air force Base, Mississippi.

    Science.gov (United States)

    1985-04-01

    with the river flood plains and pine plantations on drier upland areas. Loblolly pine ( Pinus taeda) is the dominant planted pine and is used for pulp...Maintenance MCL maximum contaminant level Methyl ethyl ketone A solvent used in paint thinner, stripper, and a (MEK) wide variety of industrial...l milligrams per liter A-3 Methyl isobutyl A solvent used in paint stripper, thinner, and a - ketone (MIBK) wide variety of industrial applications

  16. Effects of elevated tropospheric ozone and fluctuating moisture supply on loblolly pine seedlings inoculated with root infecting ophiostomatoid fungi

    Science.gov (United States)

    Jeff Chieppa; Lori Eckhardt; Art Chappelka

    2016-01-01

    Southern Pine Decline is a cause of premature mortality of Pinus species in the Southeastern United States. While the pathogenicity of ophiostomatoid fungi, associated with declining Pinus species, has been observed both in the laboratory and the field the driving mechanisms for success of fungal infection, as well as the bark-...

  17. Impacts of intensive forestry on early rotation trends in site carbon pools in the southeastern US

    Science.gov (United States)

    Raija Laiho; Felipe Sanchez; Allan Tiarks; Phillip M. Dougherty; Carl C. Trettin

    2003-01-01

    The effects of different silvicultural practices on site, especially soil, carbon (C) pools are still poorly known. We studied changes in site C pools during the first 5 years following harvesting and conversion of two extensively managed pine-hardwood stands to intensively managed loblolly pine plantations. One study site was located on the lower Atlantic Coastal...

  18. Characterization of Three L-Asparaginases from Maritime Pine (Pinus pinaster Ait.).

    Science.gov (United States)

    Van Kerckhoven, Sonia H; de la Torre, Fernando N; Cañas, Rafael A; Avila, Concepción; Cantón, Francisco R; Cánovas, Francisco M

    2017-01-01

    Asparaginases (ASPG, EC 3.5.1.1) catalyze the hydrolysis of the amide group of L-asparagine producing L-aspartate and ammonium. Three ASPG, PpASPG1, PpASPG2, and PpASPG3, have been identified in the transcriptome of maritime pine ( Pinus pinaster Ait.) that were transiently expressed in Nicotiana benthamiana by agroinfection. The three recombinant proteins were processed in planta to active enzymes and it was found that all mature forms exhibited double activity asparaginase/isoaspartyl dipeptidase but only PpASPG1 was able to catalyze efficiently L-asparagine hydrolysis. PpASPG1 contains a variable region of 77 amino acids that is critical for proteolytic processing of the precursor and is retained in the mature enzyme. Furthermore, the functional analysis of deletion mutants demonstrated that this protein fragment is required for specific recognition of the substrate and favors enzyme stability. Potassium has a limited effect on the activation of maritime pine ASPG what is consistent with the lack of a critical residue essential for interaction of cation. Taken together, the results presented here highlight the specific features of ASPG from conifers when compared to the enzymes from angiosperms.

  19. Characterization of Three L-Asparaginases from Maritime Pine (Pinus pinaster Ait.

    Directory of Open Access Journals (Sweden)

    Sonia H. Van Kerckhoven

    2017-06-01

    Full Text Available Asparaginases (ASPG, EC 3.5.1.1 catalyze the hydrolysis of the amide group of L-asparagine producing L-aspartate and ammonium. Three ASPG, PpASPG1, PpASPG2, and PpASPG3, have been identified in the transcriptome of maritime pine (Pinus pinaster Ait. that were transiently expressed in Nicotiana benthamiana by agroinfection. The three recombinant proteins were processed in planta to active enzymes and it was found that all mature forms exhibited double activity asparaginase/isoaspartyl dipeptidase but only PpASPG1 was able to catalyze efficiently L-asparagine hydrolysis. PpASPG1 contains a variable region of 77 amino acids that is critical for proteolytic processing of the precursor and is retained in the mature enzyme. Furthermore, the functional analysis of deletion mutants demonstrated that this protein fragment is required for specific recognition of the substrate and favors enzyme stability. Potassium has a limited effect on the activation of maritime pine ASPG what is consistent with the lack of a critical residue essential for interaction of cation. Taken together, the results presented here highlight the specific features of ASPG from conifers when compared to the enzymes from angiosperms.

  20. Loblolly pine bark flavanoids

    Science.gov (United States)

    J.J. Karchesy; R.W. Hemingway

    1980-01-01

    The inner bark of Pinus taeda L. contains (+)-catechin, the procyanidin 8.1 (a C-4 to C-8 linked (-)-epicatechin to (+)-catechin dimer), and three polymeric procyanidins that have distinctly different solubility and chromatographic properties. An ethyl acetate soluble polymer (0.20% of bark, Mn = 1200) was purified by chromatography on LH-20 Sephadex. A water-soluble...

  1. Tree-Roost Characteristics of Subadult and Female Adult Bats (Nyctieius humeralis) in the Upper Coastal Plain of South Carolina.

    Energy Technology Data Exchange (ETDEWEB)

    Menzel, M.A.; Carter, T.C.; Ford, W.M.; Chapman, B.R.

    2000-02-07

    Tree-roost of evening bats were identified by radio tracking of 14 individuals at the SRS. Bats roosted in longleaf pine cavities under exfoliating bark in snags near beaver ponds. The roosting occurred in open park like stands. No evening bats roosted in the more dense bottomland hardwood stands or mixed pine hardwood stands. None were observed in loblolly stands.

  2. Environmental Impact Research Program. Eastern Gray Squirrel (Sciurus carolinensis). Section 4.7.1, US Army Corps of Engineers Wildlife Resources Management Manual.

    Science.gov (United States)

    1986-07-01

    Palmetto Sabal spp. Pawpaw Asimina triloba Pecan Carya illinoensis Persimmon Diospyros virginiana Pine Pinus app. Loblolly pine P. taeda Red mulberry...grandifotia Bitter pecan Carya aquatica Blackberry Rubus app. Black cherry Prunus serotina Blackgum Nyssa sylvatica Black walnut Jugtans nigra Blueberry...americana Hickory Carya Spp. Bitternut hickory C. cordiformis Shagbark hickory C. ovata Shellbark hickory C. Zaciniosa Hophornbeam Ostrya virginiana

  3. Effects of Small-Scale Dead Wood Additions on Beetles in Southeastern U.S. Pine Forests

    Directory of Open Access Journals (Sweden)

    Chris E. Carlton

    2012-08-01

    Full Text Available Pitfall traps were used to sample beetles (Coleoptera in plots with or without inputs of dead loblolly pine (Pinus taeda L. wood at four locations (Louisiana, Mississippi, North Carolina and Texas on the coastal plain of the southeastern United States. The plots were established in 1998 and sampling took place in 1998, 1999, and 2002 (only 1998 for North Carolina. Overall, beetles were more species rich, abundant and diverse in dead wood addition plots than in reference plots. While these differences were greatest in 1998 and lessened thereafter, they were not found to be significant in 1998 due largely to interactions between location and treatment. Specifically, the results from North Carolina were inconsistent with those from the other three locations. When these data were excluded from the analyses, the differences in overall beetle richness for 1998 became statistically significant. Beetle diversity was significantly higher in the dead wood plots in 1999 but by 2002 there were no differences between dead wood added and control plots. The positive influence of dead wood additions on the beetle community can be largely attributed to the saproxylic fauna (species dependent on dead wood, which, when analyzed separately, were significantly more species rich and diverse in dead wood plots in 1998 and 1999. Ground beetles (Carabidae and other species, by contrast, were not significantly affected. These results suggest manipulations of dead wood in pine forests have variable effects on beetles according to life history characteristics.

  4. Seasonal changes in above- and belowground carbohydrate concentrations of ponderosa pine along a pollution gradient

    Science.gov (United States)

    Nancy E. Grulke; Chris P. Andersen; William E. Hogsett

    2001-01-01

    Seasonal patterns of carbohydrate concentration in coarse and fine roots, stem or bole, and foliage of ponderosa pine (Pinus ponderosa Laws) were described across five treeage classes from seedlings to mature trees at an atmospherically clean site. Relative to all other tree-age classes, seedlings exhibited greater tissue carbohydrate concentration...

  5. Imagining Future Forests: What Models Can Learn from Field Data.

    Science.gov (United States)

    Ward, E. J.; Domec, J. C.; Laviner, M. A.; Fox, T. D.; Sun, G.; McNulty, S. G.; King, J.; Noormets, A.

    2014-12-01

    General circulation models predict that future forests in the U.S. Southeast will experience higher temperatures and more variable precipitation in the future, resulting in a moderate decrease in water availability (precipitation minus evapotranspiration), though considerable uncertainty in and disagreement between projections remain. The Pine Integrated Network: Education, Mitigation, and Adaptation Project (PINEMAP) represents an effort to understand the future of 20 million acres of planted pine forests managed by private landowners in the Atlantic and Gulf coastal states. Decades of productivity research on loblolly pine (Pinus taeda) has led to a widespread practice of mid-rotation fertilization of loblolly plantations, supplying additional nutrients as stands approach canopy closure. It remains an open question what the effects of fertilization of pine forests in this region will be in the face of periodic or persistent droughts, in terms of forest water use and its implications to other water uses downstream. Therefore, we will review key results from past ecophysiological research on the responses of loblolly pine to fertilization, elevated CO2 and water availability, as well as a recent PINEMAP field trial of fertilization and drought imposed through rainfall displacement over two growing seasons. Despite high rainfall in 2013 (1224 mm compared an average 1120 mm) and a lack of leaf area response, transpiration decreased in response to fertilization and through rainfall displacement. Treatment differences were greatest in the growing season of 2013, when transpiration was on average 13.6, 20.2 and 28.7% lower in the rainfall displacement, fertilization and combined treatment than the control (46 mm/month), respectively. We will conclude by reviewing the important lessons from this research for regional models of future forests in this region in terms of LAI, transpiration, growth and water use efficiency.

  6. Scientific designs of pine seeds and pine cones for species conservation

    Science.gov (United States)

    Song, Kahye; Yeom, Eunseop; Kim, Hyejeong; Lee, Sang Joon

    2015-11-01

    Reproduction and propagation of species are the most important missions of every living organism. For effective species propagation, pine cones fold their scales under wet condition to prevent seeds from short-distance dispersal. They open and release their embedded seeds on dry and windy days. In this study, the micro-/macro-scale structural characteristics of pine cones and pine seeds are studied using various imaging modalities. Since the scales of pine cones consist of dead cells, the folding motion is deeply related to structural changes. The scales of pine cones consist of three layers. Among them, bract scales are only involved in collecting water. This makes pine cones reduce the amount of water and minimize the time spent on structural changes. These systems also involve in drying and recovery of pine cones. In addition, pine cones and pine seeds have advantageous structures for long-distance dispersal and response to natural disaster. Owing to these structural features, pine seeds can be released safely and efficiently, and these types of structural advantages could be mimicked for practical applications. This research was financially supported by the Creative Research Initiative of the Ministry of Science, ICT and Future Planning (MSIP) and the National Research Foundation (NRF) of Korea (Contract grant number: 2008-0061991).

  7. Climate Change Altered Disturbance Regimes in High Elevation Pine Ecosystems

    Science.gov (United States)

    Logan, J. A.

    2004-12-01

    Insects in aggregate are the greatest cause of forest disturbance. Outbreaks of both native and exotic insects can be spectacular events in both their intensity and spatial extent. In the case of native species, forest ecosystems have co-evolved (or at least co-adapted) in ways that incorporate these disturbances into the normal cycle of forest maturation and renewal. The time frame of response to changing climate, however, is much shorter for insects (typically one year) than for their host forests (decades or longer). As a result, outbreaks of forest insects, particularly bark beetles, are occurring at unprecedented levels throughout western North America, resulting in the loss of biodiversity and potentially entire ecosystems. In this talk, I will describe one such ecosystem, the whitebark pine association at high elevations in the north-central Rocky Mountains of the United States. White bark pines are keystone species, which in consort with Clark's nutcracker, build entire ecosystems at high elevations. These ecosystems provide valuable ecological services, including the distribution and abundance of water resources. I will briefly describe the keystone nature of whitebark pine and the historic role of mountain pine beetle disturbance in these ecosystems. The mountain pine beetle is the most important outbreak insect in forests of the western United States. Although capable of spectacular outbreak events, in historic climate regimes, outbreak populations were largely restricted to lower elevation pines; for example, lodgepole and ponderosa pines. The recent series of unusually warm years, however, has allowed this insect to expand its range into high elevation, whitebark pine ecosystems with devastating consequences. The aspects of mountain pine beetle thermal ecology that has allowed it to capitalize so effectively on a warming climate will be discussed. A model that incorporates critical thermal attributes of the mountain pine beetle's life cycle was

  8. Effect of Removal of Woody Biomass after Clearcutting and Intercropping Switchgrass (Panicum virgatum with Loblolly Pine (Pinus taeda on Rodent Diversity and Populations

    Directory of Open Access Journals (Sweden)

    Matthew M. Marshall

    2012-01-01

    Full Text Available Plant-based feedstocks have long been considered viable, potential sources for biofuels. However, concerns regarding production effects may outweigh gains like carbon savings. Additional information is needed to understand environmental effects of growing feedstocks, including effects on wildlife communities and populations. We used a randomized and replicated experimental design to examine initial effects of biofuel feedstock treatment options, including removal of woody biomass after clearcutting and intercropping switchgrass (Panicum virgatum, on rodents to 2 years post-treatment in regenerating pine plantations in North Carolina, USA. Rodent community composition did not change with switchgrass production or residual biomass removal treatments. Further, residual biomass removal had no influence on rodent population abundances. However, Peromyscus leucopus was found in the greatest abundance and had the greatest survival in treatments without switchgrass. In contrast, abundance of invasive Mus musculus was greatest in switchgrass treatments. Other native species, such as Sigmodon hispidus, were not influenced by the presence of switchgrass. Our results suggest that planting of switchgrass, but not biomass removal, had species-specific effects on rodents at least 2 years post-planting in an intensively managed southern pine system. Determining ecological mechanisms underlying our observed species associations with switchgrass will be integral for understanding long-term sustainability of biofuels production in southern pine forest.

  9. Monoterpene emissions from a Ponderosa Pine forest. Does age matter?

    Science.gov (United States)

    Madronich, M. B.; Guenther, A. B.; Wessman, C. A.

    2011-12-01

    Determining the emissions rate of biogenic volatile organic carbon (BVOC) from plants is a challenge. Biological variability makes it difficult to assess accurately those emissions rates. It is known that photosynthetic active radiation (PAR), temperature, nutrients as well as the biology of the plant affect emissions. However, less is known about the variability of the emissions with respect to the life cycle of the plants. This study is focusing on the difference of monoterpene emission rates from mature Ponderosa Pine trees and saplings in the field. Preliminary calculations show that there is a significant difference between total monoterpene emissions in mature trees (0.24±0.04 μgC/gdwh) and saplings (0.37±0.02 μgC/gdwh).

  10. Okadaic acid and trifluoperazine enhance Agrobacterium-mediated transformation in eastern white pine.

    Science.gov (United States)

    Tang, Wei; Lin, Jinxing; Newton, Ronald J

    2007-05-01

    Mature zygotic embryos of recalcitrant Christmas tree species eastern white pine (Pinus strobus L.) were used as explants for Agrobacterium tumefaciens strain GV3101-mediated transformation using the uidA (beta-Glucuronidase) gene as a reporter. Influence of the time of sonication and the concentrations of protein phosphatase inhibitor (okadaic acid) and kinase inhibitor (trifluoperazine) on Agrobacterium-mediated transformation have been evaluated. A high transformation frequency was obtained after embryos were sonicated for 45-50 s, or treated with 1.5-2.0 microM okadaic acid or treated with 100-200 microM trifluoperazine, respectively. Protein phosphatase and kinase inhibitors enhance Agrobacterium-mediated transformation in eastern white pine. A 2-3.5-fold higher rate of hygromycin-resistant callus was obtained with an addition of 2 microM okadaic acid or 150 microM trifluoperazine or sonicated embryos for 45 s. Stable integration of the uidA gene in the plant genome of eastern white pine was confirmed by polymerase chain reaction (PCR), Southern and northern blot analyses. These results demonstrated that a stable and enhanced transformation system has been established in eastern white pine and this system would provide an opportunity to transfer economically important genes into this Christmas tree species.

  11. Mountain pine beetle infestation of lodgepole pine in areas of water diversion.

    Science.gov (United States)

    Smolinski, Sharon L; Anthamatten, Peter J; Bruederle, Leo P; Barbour, Jon M; Chambers, Frederick B

    2014-06-15

    The Rocky Mountains have experienced extensive infestations from the mountain pine beetle (Dendroctonus ponderosae Hopkins), affecting numerous pine tree species including lodgepole pine (Pinus contorta Dougl. var. latifolia). Water diversions throughout the Rocky Mountains transport large volumes of water out of the basins of origin, resulting in hydrologic modifications to downstream areas. This study examines the hypothesis that lodgepole pine located below water diversions exhibit an increased incidence of mountain pine beetle infestation and mortality. A ground survey verified diversion structures in a portion of Grand County, Colorado, and sampling plots were established around two types of diversion structures, canals and dams. Field studies assessed mountain pine beetle infestation. Lodgepole pines below diversions show 45.1% higher attack and 38.5% higher mortality than lodgepole pines above diversions. These findings suggest that water diversions are associated with increased infestation and mortality of lodgepole pines in the basins of extraction, with implications for forest and water allocation management. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Long-Term Trends in Loblolly Pine Site Productivity and Stand Characteristics Observed at the Impac Research Site in Alachua County, Florida

    Science.gov (United States)

    Timothy A. Martin; Eric J. Jokela

    2002-01-01

    While nutrient availability is a dominant factor controlling leaf area development and pine productivity in the southeastern USA, few studies have explored the long-term interactions among nutrient inputs, canopy foliage production, and aboveground biomass production. In order to address these questions, the Intensive Management Practices Assessment Center (IMPAC)...

  13. Should ponderosa pine be planted on lodgepole pine sites?

    Science.gov (United States)

    P.H. Cochran

    1984-01-01

    Repeated radiation frosts caused no apparent harm to the majority of lodgepole pine (Pinus contorta Dougl.) seedlings planted on a pumice flat in south-central Oregon. For most but not all of the ponderosa pine (Pinus ponderosa Dougl.) seedlings planted with the lodgepole pine, however, damage from radiation frost resulted in...

  14. Role of bark and wood destroying insect pests in drying off of spruce and pines in planting weakened by smoke

    Energy Technology Data Exchange (ETDEWEB)

    Kudela, M; Wolf, R

    1963-01-01

    This paper describes a detailed study made in 1958-62, indicating the part played by smoke and the various groups and individual species of insects, in the mortality in middle-aged and mature Pine and Spruce stands.

  15. Mountain pine beetles and emerging issues in the management of woodland caribou in Westcentral British Columbia

    Directory of Open Access Journals (Sweden)

    Deborah Cichowski

    2005-05-01

    Full Text Available The Tweedsmuir—Entiako caribou (Rangifer tarandus caribou herd summers in mountainous terrain in the North Tweedsmuir Park area and winters mainly in low elevation forests in the Entiako area of Westcentral British Columbia. During winter, caribou select mature lodgepole pine (Pinus contorta forests on poor sites and forage primarily by cratering through snow to obtain terrestrial lichens. These forests are subject to frequent large-scale natural disturbance by fire and forest insects. Fire suppression has been effective in reducing large-scale fires in the Entiako area for the last 40—50 years, resulting in a landscape consisting primarily of older lodgepole pine forests, which are susceptible to mountain pine beetle (Dendroctonus ponderosae attack. In 1994, mountain pine beetles were detected in northern Tweedsmuir Park and adjacent managed forests. To date, mountain pine beetles have attacked several hundred thousand hectares of caribou summer and winter range in the vicinity of Tweedsmuir Park, and Entiako Park and Protected Area. Because an attack of this scale is unprecedented on woodland caribou ranges, there is no information available on the effects of mountain pine beetles on caribou movements, habitat use or terrestrial forage lichen abundance. Implications of the mountain pine beetle epidemic to the Tweedsmuir—Entiako woodland caribou population include effects on terrestrial lichen abundance, effects on caribou movement (reduced snow interception, blowdown, and increased forest harvesting outside protected areas for mountain pine beetle salvage. In 2001 we initiated a study to investigate the effects of mountain pine beetles and forest harvesting on terrestrial caribou forage lichens. Preliminary results suggest that the abundance of Cladina spp. has decreased with a corresponding increase in kinnikinnick (Arctostaphylos uva-ursi and other herbaceous plants. Additional studies are required to determine caribou movement and

  16. Rapid Increases in forest understory diversity and productivity following a mountain pine beetle (Dendroctonus ponderosae) outbreak in pine forests.

    Science.gov (United States)

    Pec, Gregory J; Karst, Justine; Sywenky, Alexandra N; Cigan, Paul W; Erbilgin, Nadir; Simard, Suzanne W; Cahill, James F

    2015-01-01

    The current unprecedented outbreak of mountain pine beetle (Dendroctonus ponderosae) in lodgepole pine (Pinus contorta) forests of western Canada has resulted in a landscape consisting of a mosaic of forest stands at different stages of mortality. Within forest stands, understory communities are the reservoir of the majority of plant species diversity and influence the composition of future forests in response to disturbance. Although changes to stand composition following beetle outbreaks are well documented, information on immediate responses of forest understory plant communities is limited. The objective of this study was to examine the effects of D. ponderosae-induced tree mortality on initial changes in diversity and productivity of understory plant communities. We established a total of 110 1-m2 plots across eleven mature lodgepole pine forests to measure changes in understory diversity and productivity as a function of tree mortality and below ground resource availability across multiple years. Overall, understory community diversity and productivity increased across the gradient of increased tree mortality. Richness of herbaceous perennials increased with tree mortality as well as soil moisture and nutrient levels. In contrast, the diversity of woody perennials did not change across the gradient of tree mortality. Understory vegetation, namely herbaceous perennials, showed an immediate response to improved growing conditions caused by increases in tree mortality. How this increased pulse in understory richness and productivity affects future forest trajectories in a novel system is unknown.

  17. Rapid Increases in forest understory diversity and productivity following a mountain pine beetle (Dendroctonus ponderosae outbreak in pine forests.

    Directory of Open Access Journals (Sweden)

    Gregory J Pec

    Full Text Available The current unprecedented outbreak of mountain pine beetle (Dendroctonus ponderosae in lodgepole pine (Pinus contorta forests of western Canada has resulted in a landscape consisting of a mosaic of forest stands at different stages of mortality. Within forest stands, understory communities are the reservoir of the majority of plant species diversity and influence the composition of future forests in response to disturbance. Although changes to stand composition following beetle outbreaks are well documented, information on immediate responses of forest understory plant communities is limited. The objective of this study was to examine the effects of D. ponderosae-induced tree mortality on initial changes in diversity and productivity of understory plant communities. We established a total of 110 1-m2 plots across eleven mature lodgepole pine forests to measure changes in understory diversity and productivity as a function of tree mortality and below ground resource availability across multiple years. Overall, understory community diversity and productivity increased across the gradient of increased tree mortality. Richness of herbaceous perennials increased with tree mortality as well as soil moisture and nutrient levels. In contrast, the diversity of woody perennials did not change across the gradient of tree mortality. Understory vegetation, namely herbaceous perennials, showed an immediate response to improved growing conditions caused by increases in tree mortality. How this increased pulse in understory richness and productivity affects future forest trajectories in a novel system is unknown.

  18. MODULUS OF ELASTICITY AND HARDNESS OF COMPRESSION AND OPPOSITE WOOD CELL WALLS OF MASSON PINE

    Directory of Open Access Journals (Sweden)

    Yanhui Huang,

    2012-05-01

    Full Text Available Compression wood is commonly found in Masson pine. To evaluate the mechanical properties of the cell wall of Masson pine compression and opposite wood, nanoindentation was used. The results showed that the average values of hardness and cell wall modulus of elasticity of opposite wood were slightly higher than those of compression wood. With increasing age of the annual ring, the modulus of elasticity showed a negative correlation with microfibril angle, but a weak correlation was observed for hardness. In opposite and compression wood from the same annual ring, the differences in average values of modulus of elasticity and hardness were small. These slight differences were explained by the change of microfibril angle (MFA, the press-in mode of nanoindentation, and the special structure of compression wood. The mechanical properties were almost the same for early, transition, and late wood in a mature annual ring of opposite wood. It can therefore be inferred that the average modulus of elasticity (MOE and hardness of the cell walls in a mature annual ring were not being affected by cell wall thickness.

  19. The Effect of Restoration Treatments on the Spatial Variability of Soil Processes under Longleaf Pine Trees

    Directory of Open Access Journals (Sweden)

    John K. Hiers

    2012-08-01

    Full Text Available The objectives of this study were to (1 characterize tree-based spatial patterning of soil properties and understory vegetation in frequently burned (“reference state” and fire-suppressed longleaf pine forests; and (2 determine how restoration treatments affected patterning. To attain these objectives, we used an experimental manipulation of management types implemented 15 years ago in Florida. We randomly located six mature longleaf pine trees in one reference and four restoration treatments (i.e., burn, control, herbicide, and mechanical, for a total of 36 trees. In addition to the original treatments and as part of a monitoring program, all plots were subjected to several prescribed fires during these 15 years. Under each tree, we sampled mineral soil and understory vegetation at 1 m, 2 m, 3 m and 4 m (vegetation only away from the tree. At these sites, soil carbon and nitrogen were higher near the trunk while graminoids, forbs and saw palmetto covers showed an opposite trend. Our results confirmed that longleaf pine trees affect the spatial patterning of soil and understory vegetation, and this patterning was mostly limited to the restoration sites. We suggest frequent burning as a probable cause for a lack of spatial structure in the “reference state”. We attribute the presence of spatial patterning in the restoration sites to accumulation of organic materials near the base of mature trees.

  20. Department of Anima

    African Journals Online (AJOL)

    USER

    2014-10-11

    Oct 11, 2014 ... Dust, odours and bio-aerosols (e.g. microbes ... period. The samples were subjected to four different treatments each replicated five times using the ..... Loblolly Pine Forests: Growth and. Nutrient ... Madison, WI. Raymond ...

  1. Exploration of the Pine Ridge Uranium Deposits, Powder River Basin, Wyoming

    International Nuclear Information System (INIS)

    Doelger, Mark J.; Sundell, Kent A.

    2014-01-01

    Summary of Exploration in Pine Ridge District: • Use of outcrop mapping integrated with oil and gas subsurface data and available well logs resulted in a geologic model for this previously unexplored area. • Proprietary drilling by Stakeholder over the past two years has confirmed the geologic model of large mineralized alteration cells in staked fluvial sandstone sequences. • The target-rich area of potential extends over nine contiguous townships where Stakeholder has leased over 70,000 acres. • Adjacent mature in-situ projects provide strong analogs and demonstrate amenability for the ore bodies at shallow, intermediate, and deep depths. • These project attributes, with discoveries by Stakeholder are expected to result in future yellow cake production with partner or successor to Stakeholder, and warrants naming this the Pine Ridge District. • Potential resource is an estimated 66 to 72 million pounds

  2. Temporal variations of Cs-137 in Sots Pine

    International Nuclear Information System (INIS)

    Nylen, T.; Plamboeck, A.H.; Boson, J.

    2008-01-01

    In this study the temporal changes in 137 Cs distribution in a Scots pine (Pinus Sylvestris L.) stand was studied during 1986 to 2006 in Northern Sweden. The Chernobyl fallout provided an excellent possibility to study the uptake and retention in conifer trees of 137 Cs, since the deposition lasted for only a few days. The average deposition of 137 Cs in the region that originates from the Chernobyl accident in 1986 was 20 ± 9 kBq M -2 . Also 137 Cs from the atmospheric nuclear weapons tests was present in the area and was only 3 ±2 kBq m -2 . Studies show that the redistribution of radioactive caesium still contribute to high activity concentrations in some compartments of the ecosystem. It has been known that certain fungi continue to produce fruit bodies with high amounts of 137 Cs. The current study adds another aspect to consider: The high activity concentration in branches and current needles during 2006 indicates an uptake of 137 Cs from the soil which could lead to concentrations in Scots Pine that has to be considered in forestry and other kind of utilization of forest products. There are for instance a few game birds such as the capercaillie (Tetrao urogallus) that feed on pine shoots. Another possible effect is on the use of pine branches in the bio fuel industry. Given an activity concentration of 1200 Bq/kg (d.w.) and a concentration factor of 10 during combustion the concentration in ashes would be 12000 bq/kg. According to the recommendations from SSI (the Swedish Radiation Protection Authority) ashes that have concentrations higher than 10 kBq/kg must be stored in special deposits. It would be of interest to investigate the uptake in stands of different ages since the pine stand that was studied was about 30 years old in 1986 and do not represent neither a mature nor a newly established stand (tk)

  3. Effectiveness of litter removal to prevent cambial kill-caused mortality in northern Arizona ponderosa pine

    Science.gov (United States)

    James F. Fowler; Carolyn Hull Sieg; Linda L. Wadleigh

    2010-01-01

    Removal of deep litter and duff from the base of mature southwestern ponderosa pine (Pinus ponderosa Laws.) is commonly recommended to reduce mortality after prescribed burns, but experimental studies that quantify the effectiveness of such practices in reducing mortality are lacking. After a pilot study on each of four sites in northern Arizona, we monitored 15-16...

  4. Final Environmental Assessment of Military Housing Privatization Barksdale Air Force Base, Louisiana

    Science.gov (United States)

    2006-01-01

    loblolly pine (Pinus taeda), pecan ( Carya illinoensis ), sweetgum (Liquidambar styraciflua), water oak (Quercus nigra), red oak (Quercus sp...blackjack oak (Q. marilandica), mockernut hickory ( Carya tomentosa), pignut hickory (C. glabra), blackgum (Nyssa sylvatica), winged elm (Ulmus alata

  5. An examination of factors influencing the spatial distribution of foraging bats in pine stands in the southeastern United States.

    Energy Technology Data Exchange (ETDEWEB)

    Menzel, Michael, A., Jr.

    2003-01-01

    Menzel, M.A. 2003. An examination of factors influencing the spatial distribution of foraging bats in pine stands in the Southeastern United States. Ph.D Dissertation. Davis College of Agriculture, Forestry and Consumer Sciences at West Virginia University, Morgantown, West Virginia. 336 pp. The general objective of this dissertation was to determine the effect of changes in forest structure on bat activity patterns in southern pine stands. Four sub studies are included in the dissertation: (1) An examination of the homerange size, habitat use and diet of four reproductively active male Rafinesque's big eared bats (Corynorhimus rafinesquii); (2) An examination of the diet of 5 reproductively active male Rafinesque's big eared bats; (3) A comparison of bat activity levels in the Coastal Plain of South Carolina among 5 vegetational community types: forested riparian areas, clearcuts, young pine plantations, mature plantations, and pine savannahs; (4) A summarization of information concerning the natural history of all bat species common in the SPR.

  6. Regional Guidebook for Applying the Hydrogeomorphic Approach to Assessing the Functions of Headwater Slope Wetlands on the South Carolina Coastal Plain

    Science.gov (United States)

    2011-09-01

    i.e., swamp bay) ( Persea borbonia) in the overstory or midstory ERDC/EL TR-11-11 20 (Monk 1966, Nelson 1986, Wharton et al. 1977, USACE 1988). In...biflora swamp tupelo Persea borbonia redbay Pinus glabra spruce pine Pinus taeda loblolly pine Quercus laurifolia laurel oak Quercus michauxii swamp... American elm Group 22 Carpinus caroliniana American hornbeam 0.66 Celtis laevigata sugarberry Cornus foemina stiff dogwood Diospyros virginiana

  7. Seasonal variations in monoterpene profiles and ecophysiological traits in Mediterranean pine species of group halepensis

    Directory of Open Access Journals (Sweden)

    Michelozzi M

    2004-01-01

    Full Text Available Foliar and cortical terpene profile, and needle gas exchange and water potential of P. halepensis, P. brutia and P. eldarica were compared over three consecutive seasons (1996-1998 in an experimental plantation nearby Firenze (Italy. Terpene percentages in mature tissue (cortex and needle did not change in response to water stress during summer period and remained stable through seasons and years. Terpene profiles were not affected by seasonal drought, and are thus valuable to characterize Mediterranean pine species of the group “halepensis”. There was a threshold-type response of maximum daily gas exchange to decreasing predawn water potential in all pines. Net photosynthesis and needle conductance were linearly related, regardless of the species.

  8. Net ecosystem productivity and its environmental controls in a mature Scots pine stand in north-western Poland

    Czech Academy of Sciences Publication Activity Database

    Ziemblinska, K.; Urbaniak, M.; Chojnicki, B. H.; Black, T. A.; Niu, S.; Olejnik, Janusz

    2016-01-01

    Roč. 228, nov (2016), s. 60-72 ISSN 0168-1923 Institutional support: RVO:67179843 Keywords : Scots pine * eddy covariance * environmental controls * net ecosystem productivity * southern Finland Subject RIV: EH - Ecology, Behaviour Impact factor: 3.887, year: 2016

  9. Why are young pines not attacked by Bupalus piniarius: preference, performance or predation ?

    Energy Technology Data Exchange (ETDEWEB)

    Zonneveld, P.

    1997-12-31

    Only large mature Scots pine trees are defoliated by the pine looper moth Bupalus piniarius. Small, young pine trees remain seemingly undefoliated. Possible explanations behind this observation include, that eggs or larvae are heavily predated on young trees or that the quality of young trees as food for larvae is very poor. Another possibility is that one or both of these are true and that the female moth has evolved a behaviour not to oviposit on young trees and/or that oviposition may be related to mating behaviour. In a field laboratory, first instar B. piniarius larvae were reared on shoots from both young and old pine trees until pupation. Survival and development were monitored weekly. Larvae reared on young pine shoots achieved a lower weight as pupae than those reared on shoots from old pines. This indication of an effect of food quality on performance could not be detected for survival or development time. In the field, the role of ants for larval survival was studied by placing of B. piniarius larvae on pairs of comparable trees with ants and where ants were excluded. Formica spp. were more efficient larval predators than Lasius niger. Observational studies of predating behaviour of ants in contact with B. piniarius larvae supported these differences in predating efficiency between the two ant genera. My data suggest that it would be profitable for B. piniarius females to oviposit on large trees because it may reduce the risk for the offspring to be attacked by ants and increase the weight and probably the fecundity of the offspring Examination paper in entomology 1997:5. 14 refs, 5 figs, 1 tab

  10. Naturally Occurring Compound Can Protect Pines from the Southern Pine Beetle

    Science.gov (United States)

    B.L. Strom; R.A. Goyer; J.L. Hayes

    1995-01-01

    The southern pine beetle (SPB), Dendroctonus frontalis, is the most destructive insect pest of southern pine forests. This tiny insect, smaller than a grain of rice, is responsible for killing pine timber worth millions of dollars on a periodic basis in Louisiana.

  11. Optimum Vegetation Conditions for Successful Establishment of Planted Eastern White Pine (Pinus strobus L.

    Directory of Open Access Journals (Sweden)

    Douglas G. Pitt

    2016-08-01

    Full Text Available The 10th-growing season performance of planted eastern white pine (Pinus strobus L. seedlings was evaluated in response to herbaceous and woody vegetation control treatments within a clearcut and two variants of the uniform shelterwood regeneration system (single vs. multiple future removal cuts. Herbaceous vegetation control involved the suppression of grasses, forbs, ferns and low shrubs for the first 2 or 4 growing seasons after planting. Deciduous woody vegetation control treatments, conducted in combination with the herbaceous treatments within a response-surface design, involved the permanent removal of all tall shrubs and deciduous trees at the time of planting, at the end of the 2nd or 5th growing seasons, or not at all. In general, the average size of planted pine was related positively to the duration of herbaceous vegetation control and negatively to delays in woody control. White pine weevil (Pissodes strobi Peck altered these trends, reducing the height of pine on plots with little or no overtopping deciduous woody vegetation or mature tree cover. Where natural pine regeneration occurred on these plots, growth was similar but subordinate to the planted pine. Data from the three sites indicate that at least 60% of planted pine may be expected to reach an age-10 height target of 2.5 m when overtopping cover (residual overstory + regenerating deciduous is managed at approximately 65% ± 10%, and total herbaceous cover is suppressed to levels not exceeding 50% in the first five years. On productive sites, this combination may be difficult to achieve in a clearcut, and requires fairly rigorous vegetation management in shelterwood regeneration systems. Currently, synthetic herbicides offer the only affordable and effective means of achieving such vegetation control.

  12. Effect of moisture, charge size, and chlorine concentration on PCDD/F emissions from simulated open burning of forest biomass

    Science.gov (United States)

    Loblolly pine (Pinus taeda) was combusted at different charge sizes, fuel moisture, and chlorine content to determine the effect on emissions of polychlorinated dibenzo-p-dioxins and polychlorinated diberizofurans (PCDDslFs) as well as co-pollutants CO, PM, and total hydrocarbons...

  13. Transcriptome resources and functional characterization of monoterpene synthases for two host species of the mountain pine beetle, lodgepole pine (Pinus contorta) and jack pine (Pinus banksiana)

    Science.gov (United States)

    2013-01-01

    Background The mountain pine beetle (MPB, Dendroctonus ponderosae) epidemic has affected lodgepole pine (Pinus contorta) across an area of more than 18 million hectares of pine forests in western Canada, and is a threat to the boreal jack pine (Pinus banksiana) forest. Defence of pines against MPB and associated fungal pathogens, as well as other pests, involves oleoresin monoterpenes, which are biosynthesized by families of terpene synthases (TPSs). Volatile monoterpenes also serve as host recognition cues for MPB and as precursors for MPB pheromones. The genes responsible for terpene biosynthesis in jack pine and lodgepole pine were previously unknown. Results We report the generation and quality assessment of assembled transcriptome resources for lodgepole pine and jack pine using Sanger, Roche 454, and Illumina sequencing technologies. Assemblies revealed transcripts for approximately 20,000 - 30,000 genes from each species and assembly analyses led to the identification of candidate full-length prenyl transferase, TPS, and P450 genes of oleoresin biosynthesis. We cloned and functionally characterized, via expression of recombinant proteins in E. coli, nine different jack pine and eight different lodgepole pine mono-TPSs. The newly identified lodgepole pine and jack pine mono-TPSs include (+)-α-pinene synthases, (-)-α-pinene synthases, (-)-β-pinene synthases, (+)-3-carene synthases, and (-)-β-phellandrene synthases from each of the two species. Conclusion In the absence of genome sequences, transcriptome assemblies are important for defence gene discovery in lodgepole pine and jack pine, as demonstrated here for the terpenoid pathway genes. The product profiles of the functionally annotated mono-TPSs described here can account for the major monoterpene metabolites identified in lodgepole pine and jack pine. PMID:23679205

  14. Transcriptome resources and functional characterization of monoterpene synthases for two host species of the mountain pine beetle, lodgepole pine (Pinus contorta) and jack pine (Pinus banksiana).

    Science.gov (United States)

    Hall, Dawn E; Yuen, Macaire M S; Jancsik, Sharon; Quesada, Alfonso Lara; Dullat, Harpreet K; Li, Maria; Henderson, Hannah; Arango-Velez, Adriana; Liao, Nancy Y; Docking, Roderick T; Chan, Simon K; Cooke, Janice Ek; Breuil, Colette; Jones, Steven Jm; Keeling, Christopher I; Bohlmann, Jörg

    2013-05-16

    The mountain pine beetle (MPB, Dendroctonus ponderosae) epidemic has affected lodgepole pine (Pinus contorta) across an area of more than 18 million hectares of pine forests in western Canada, and is a threat to the boreal jack pine (Pinus banksiana) forest. Defence of pines against MPB and associated fungal pathogens, as well as other pests, involves oleoresin monoterpenes, which are biosynthesized by families of terpene synthases (TPSs). Volatile monoterpenes also serve as host recognition cues for MPB and as precursors for MPB pheromones. The genes responsible for terpene biosynthesis in jack pine and lodgepole pine were previously unknown. We report the generation and quality assessment of assembled transcriptome resources for lodgepole pine and jack pine using Sanger, Roche 454, and Illumina sequencing technologies. Assemblies revealed transcripts for approximately 20,000 - 30,000 genes from each species and assembly analyses led to the identification of candidate full-length prenyl transferase, TPS, and P450 genes of oleoresin biosynthesis. We cloned and functionally characterized, via expression of recombinant proteins in E. coli, nine different jack pine and eight different lodgepole pine mono-TPSs. The newly identified lodgepole pine and jack pine mono-TPSs include (+)-α-pinene synthases, (-)-α-pinene synthases, (-)-β-pinene synthases, (+)-3-carene synthases, and (-)-β-phellandrene synthases from each of the two species. In the absence of genome sequences, transcriptome assemblies are important for defence gene discovery in lodgepole pine and jack pine, as demonstrated here for the terpenoid pathway genes. The product profiles of the functionally annotated mono-TPSs described here can account for the major monoterpene metabolites identified in lodgepole pine and jack pine.

  15. Mountain pine beetle selectivity in old-growth ponderosa pine forests, Montana, USA.

    Science.gov (United States)

    Knapp, Paul A; Soulé, Peter T; Maxwell, Justin T

    2013-05-01

    A historically unprecedented mountain pine beetle (MPB) outbreak affected western Montana during the past decade. We examined radial growth rates (AD 1860-2007/8) of co-occurring mature healthy and MPB-infected ponderosa pine trees collected at two sites (Cabin Gulch and Kitchen Gulch) in western Montana and: (1) compared basal area increment (BAI) values within populations and between sites; (2) used carbon isotope analysis to calculate intrinsic water-use efficiency (iWUE) at Cabin Gulch; and (3) compared climate-growth responses using a suite of monthly climatic variables. BAI values within populations and between sites were similar until the last 20-30 years, at which point the visually healthy populations had consistently higher BAI values (22-34%) than the MPB-infected trees. These results suggest that growth rates two-three decades prior to the current outbreak diverged between our selected populations, with the slower-growing trees being more vulnerable to beetle infestation. Both samples from Cabin Gulch experienced upward trends in iWUE, with significant regime shifts toward higher iWUE beginning in 1955-59 for the visually healthy trees and 1960-64 for the MPB-infected trees. Drought tolerance also varied between the two populations with the visually healthy trees having higher growth rates than MPB-infected trees prior to infection during a multi-decadal period of drying summertime conditions. Intrinsic water-use efficiency significantly increased for both populations during the past 150 years, but there were no significant differences between the visually healthy and MPB-infected chronologies.

  16. Field Tests of Pine Oil as a Repellent for Southern Pine Bark Beetles

    Science.gov (United States)

    J.C. Nod; F.L. Hastings; A.S. Jones

    1990-01-01

    An experimental mixture of terpene hydrocarbons derived from wood pulping, BBR-2, sprayed on the lower 6 m of widely separated southern pine trees did not protect nearby trees from southern pine beetle attacks. Whether treated trees were protected from southern pine beetle was inconclusive. The pine oil mixture did not repellpsfrom treated trees or nearby untreated...

  17. Effects of soil copper and nickel on survival and growth of Scots pine.

    Science.gov (United States)

    Nieminen, Tiina Maileena

    2004-11-01

    The contribution of soil Cu and Ni pollution to the poor vitality and growth rate of Scots pine growing in the vicinity of a Cu-Ni smelter was investigated in two manipulation experiments. In the first manipulation, Cu-Ni smelter-polluted soil cores were transported from a smelter-pollution gradient to unpolluted greenhouse conditions. A 4-year-old pine seedling was planted in each core and cultivated for a 17-month period. In the second manipulation, pine seedlings from the same lot were cultivated for the same 17-month period in a quartz sand medium containing increasing doses of copper sulfate, nickel sulfate, and a combination of both. The variation in the biomass growth of the seedlings grown in the smelter-polluted soil cores was very similar to that of mature pine stands growing along the same smelter-pollution gradient in the field. In addition, the rate of Cu and Ni exposure explained a high proportion of the biomass growth variation, and had an effect on the Ca, K, and Mg status of the seedlings. According to the lethal threshold values determined on the basis of the metal sulfate exposure experiments, both the Cu and Ni content of the 0.5 km smelter-polluted soil cores were high enough to cause the death of most of the seedlings. The presence of Cu seemed to increase Ni toxicity.

  18. Responses of arthropods to large-scale manipulations of dead wood in loblolly pine stands of the southeastern United States.

    Science.gov (United States)

    Ulyshen, Michael D; Hanula, James L

    2009-08-01

    Large-scale experimental manipulations of dead wood are needed to better understand its importance to animal communities in managed forests. In this experiment, we compared the abundance, species richness, diversity, and composition of arthropods in 9.3-ha plots in which either (1) all coarse woody debris was removed, (2) a large number of logs were added, (3) a large number of snags were added, or (4) no coarse woody debris was added or removed. The target taxa were ground-dwelling arthropods, sampled by pitfall traps, and saproxylic beetles (i.e., dependent on dead wood), sampled by flight intercept traps and emergence traps. There were no differences in total ground-dwelling arthropod abundance, richness, diversity, or composition among treatments. Only the results for ground beetles (Carabidae), which were more species rich and diverse in log input plots, supported our prediction that ground-dwelling arthropods would benefit from additions of dead wood. There were also no differences in saproxylic beetle abundance, richness, diversity, or composition among treatments. The findings from this study are encouraging in that arthropods seem less sensitive than expected to manipulations of dead wood in managed pine forests of the southeastern United States. Based on our results, we cannot recommend inputting large amounts of dead wood for conservation purposes, given the expense of such measures. However, the persistence of saproxylic beetles requires that an adequate amount of dead wood is available in the landscape, and we recommend that dead wood be retained whenever possible in managed pine forests.

  19. Investigation of Growth and Survival of Transplanted Plane and Pine Trees According to IBA Application, Tree Age, Transplanting Time and Method

    Directory of Open Access Journals (Sweden)

    N. Etemadi

    2015-03-01

    Full Text Available The major problems in transplanting the landscape trees are high level of mortality and low establishment rate of transplanted trees, especially in the first year. In order to achieve the best condition for successful transplanting of pine and plane trees in Isfahan landscape, the present study was carried out based on a completely randomized block design with four replicates and three treatments including transplanting method (balled and burlapped and bare root, tree age (immature and mature and IBA application (0 and 150 mg/L. Trees were transplanted during 2009 and 2010 in three times (dormant season, early and late growing season. Survival rate and Relative Growth Rate index based on tree height (RGRH and trunk diameter (RGRD were measured during the first and second years. Trees transplanted early in the growing season showed the most survival percentage during the two years, as compared to other transplanting dates. Survival of Balled and burlapped and immature transplanted trees was significantly greater than bare root or mature trees. The significant effect of age treatment was continued in the second year. IBA treatment had no effect on survival rate of the studied species. Balled and burlapped and immature transplanted pine trees also had higher RGRH and RGRD compared to bare root or mature trees. According to the results of this study, early growing season is the best time for transplanting pine and plane trees. Also, transplanting of immature trees using balled and burlapped method is recommended to increase the survival and establishment rate.

  20. Climate influences on whitebark pine mortality from mountain pine beetle in the Greater Yellowstone Ecosystem

    Science.gov (United States)

    Polly C. Buotte; Jeffrey A. Hicke; Haiganoush K. Preisler; John T. Abatzoglou; Kenneth F. Raffa; Jesse A. Logan

    2016-01-01

    Extensive mortality of whitebark pine, beginning in the early to mid-2000s, occurred in the Greater Yellowstone Ecosystem (GYE) of the western USA, primarily from mountain pine beetle but also from other threats such as white pine blister rust. The climatic drivers of this recent mortality and the potential for future whitebark pine mortality from mountain pine beetle...

  1. Piedmont community tree guide: benefits, costs, and strategic planting

    Science.gov (United States)

    E. Gregory McPherson; James R. Simpson; Paula J. Peper; Shelley L. Gardner; Kelaine E. Vargas; Scott E. Maco; Qingfu Xiao

    2006-01-01

    This report quantifies benefits and costs for small, medium, and large broadleaf trees and one coniferous tree in the Piedmont region: the species chosen as representative are dogwood (Cornus florida), Southern magnolia (Magnolia grandiflora), red maple (Acer rubrum), and loblolly pine (Pinus taeda...

  2. Ponderosa pine ecosystems

    Science.gov (United States)

    Russell T. Graham; Theresa B. Jain

    2005-01-01

    Ponderosa pine is a wide-ranging conifer occurring throughout the United States, southern Canada, and northern Mexico. Since the 1800s, ponderosa pine forests have fueled the economies of the West. In western North America, ponderosa pine grows predominantly in the moist and dry forests. In the Black Hills of South Dakota and the southern portion of its range, the...

  3. A ponderosa pine-lodgepole pine spacing study in central Oregon: results after 20 years.

    Science.gov (United States)

    K.W. Seidel

    1989-01-01

    The growth response after 20 years from an initial spacing study established in a ponderosa pine (Pinus ponderosa Dougl. ex Laws.) and lodgepole pine (Pinus contorta Dougl. ex Loud.) plantation was measured in central Oregon. The study was designed to compare the growth rates of pure ponderosa pine, pure lodgepole pine, and a...

  4. Pine invasions in treeless environments: dispersal overruns microsite heterogeneity.

    Science.gov (United States)

    Pauchard, Aníbal; Escudero, Adrián; García, Rafael A; de la Cruz, Marcelino; Langdon, Bárbara; Cavieres, Lohengrin A; Esquivel, Jocelyn

    2016-01-01

    Understanding biological invasions patterns and mechanisms is highly needed for forecasting and managing these processes and their negative impacts. At small scales, ecological processes driving plant invasions are expected to produce a spatially explicit pattern driven by propagule pressure and local ground heterogeneity. Our aim was to determine the interplay between the intensity of seed rain, using distance to a mature plantation as a proxy, and microsite heterogeneity in the spreading of Pinus contorta in the treeless Patagonian steppe. Three one-hectare plots were located under different degrees of P. contorta invasion (Coyhaique Alto, 45° 30'S and 71° 42'W). We fitted three types of inhomogeneous Poisson models to each pine plot in an attempt for describing the observed pattern as accurately as possible: the "dispersal" models, "local ground heterogeneity" models, and "combined" models, using both types of covariates. To include the temporal axis in the invasion process, we analyzed both the pattern of young and old recruits and also of all recruits together. As hypothesized, the spatial patterns of recruited pines showed coarse scale heterogeneity. Early pine invasion spatial patterns in our Patagonian steppe site is not different from expectations of inhomogeneous Poisson processes taking into consideration a linear and negative dependency of pine recruit intensity on the distance to afforestations. Models including ground-cover predictors were able to describe the point pattern process only in a couple of cases but never better than dispersal models. This finding concurs with the idea that early invasions depend more on seed pressure than on the biotic and abiotic relationships seed and seedlings establish at the microsite scale. Our results show that without a timely and active management, P. contorta will invade the Patagonian steppe independently of the local ground-cover conditions.

  5. Modeling the effects of fire and climate change on carbon and nitrogen storage in lodgepole pine (Pinus contorta) stands

    Science.gov (United States)

    E. A. H. Smithwick; M. G. Ryan; D. M. Kashian; W. H. Romme; D. B. Tinker; M. G. Turner

    2009-01-01

    The interaction between disturbance and climate change and resultant effects on ecosystem carbon (C) and nitrogen (N) fluxes are poorly understood. Here, we model (using CENTURY version 4.5) how climate change may affect C and N fluxes among mature and regenerating lodgepole pine (Pinus contorta var. latifolia Engelm. ex S.Wats.)...

  6. Temperature and light acclimation of photosynthetic capacity in seedlings and mature trees of Pinus ponderosa

    Directory of Open Access Journals (Sweden)

    Bahram Momen

    2014-03-01

    Full Text Available A preliminary step to understand the impact of possible rise in temperature on carbon dynamics of forests is to examine the temperature elasticity of key processes involved in carbon fixation in forest trees. For seedling and mature ponderosa pines of three genotypes, we used a response-surface methodology and ANOVA to evaluate changes in maximum net photosynthesis (An max, and corresponding light (LAn max and temperature (TAn max to diurnal and seasonal changes in ambient temperature during summer and autumn. As seasonal ambient temperature decreased: (1 An max did not change in seedlings or mature trees, (2 LAn max did not change in mature trees, but it decreased for current-yr foliage of seedlings from 964 to 872 µmol photons m-2 s-1, and (3 TAn max did not change in seedlings but it decreased in mature trees for both current- and one-yr-old foliage, from 26.8 to 22.2, and 24.6 to 21.7 C, respectively.

  7. Switchgrass growth and pine–switchgrass interactions in established intercropping systems

    Czech Academy of Sciences Publication Activity Database

    Tian, S.; Cacho, J. F.; Youssef, M. A.; Chescheir, G. M.; Fischer, Milan; Nettles, J. E.; King, J. S.

    2017-01-01

    Roč. 9, č. 5 (2017), s. 845-857 ISSN 1757-1693 Institutional support: RVO:67179843 Keywords : agroforestry * competition * grass growth * interspecific interactions * loblolly pine * switchgrass Subject RIV: GC - Agronomy OBOR OECD: Agronomy, plant breeding and plant protection Impact factor: 4.655, year: 2016

  8. Observation and Analysis of Particle Nucleation at a Forest Site in Southeastern US

    Science.gov (United States)

    This study examines the characteristics of new particle formation at a forest site in the Southeast U.S. Particle size distributions above a Loblolly pine plantation were measured between November, 2005 and September, 2007 and analyzed by event type and frequency as well as relat...

  9. Polymeric proanthocyanidins: Interflavanoid linkage isomerism in (epicatechin-4)-(epicatechin-4)-catechin procyanidins

    Science.gov (United States)

    Richard W. Hemingway; L. Yeap Foo; L. J. Porter

    1981-01-01

    Procyanidin trimers have been isolated from a variety of plants,1-3 but their structures remain unresolved. We have now isolated three configurational isomers of (epicatechin-4)-(epicatechin-4)-catechin from Pinus taeda L. (loblolly pine) phloem which exhibit isomerism of the interflavanoid linkages.

  10. Height growth and site index curves for western white pine in the Cascade Range of Washington and Oregon.

    Science.gov (United States)

    Robert O. Curtis; Nancy M. Diaz; Gary W. Clendenen

    1990-01-01

    Height growth and site index curves were constructed from stem analyses of mature western white pine (Pinus monticola Dougl. ex D. Don) growing in high-elevation forests of the Cascade Range in the Mount Hood and Gifford Pinchot National Forests of Oregon and Washington, respectively. Alternate systems using reference ages for site index of 50 and...

  11. Sugar pine and its hybrids

    Science.gov (United States)

    W. B. Critchfield; B. B. Kinloch

    1986-01-01

    Unlike most white pines, sugar pine (Pinus lambertiana) is severely restricted in its ability to hybridize with other species. It has not been successfully crossed with any other North American white pine, nor with those Eurasian white pines it most closely resembles. Crosses with the dissimilar P. koraiensis and P....

  12. Internal and external control of net photosynthesis and stomatal conductance of mature eastern white pine (Pinus strobus)

    Science.gov (United States)

    Chris A. Maier; R.O. Teskey

    1992-01-01

    Leaf gas exchange and water relations were monitored in the upper canopy of two 25 m tall eastern white pine (Pinus strobus L.) trees over two consecutive growing seasons (1986 and 1987). Examination of the seasonal and diurnal patterns of net photosynthesis and leaf conductance showed that both internal and external (environmental) factors were...

  13. Limited growth recovery after drought-induced forest dieback in very defoliated trees of two pine species

    Directory of Open Access Journals (Sweden)

    Guillermo eGuada

    2016-04-01

    Full Text Available Mediterranean pine forests display high resilience after extreme climatic events such as severe droughts. However, recent dry spells causing growth decline and triggering forest dieback challenge the capacity of some forests to recover following major disturbances. To describe how resilient the responses of forests to drought can be, we quantified growth dynamics in plantations of two pine species (Scots pine, black pine located in south-eastern Spain and showing drought-triggered dieback. Radial growth was characterized at inter- (tree-ring width and intra-annual (xylogenesis scales in three defoliation levels. It was assumed that the higher defoliation the more negative the impact of drought on tree growth. Tree-ring width chronologies were built and xylogenesis was characterized three years after the last severe drought occurred. Annual growth data and the number of tracheids produced in different stages of xylem formation were related to climate data at several time scales. Drought negatively impacted growth of the most defoliated trees in both pine species. In Scots pine, xylem formation started earlier in the non-defoliated than in the most defoliated trees. Defoliated trees presented the shortest duration of the radial-enlargement phase in both species. On average the most defoliated trees formed 60% of the number of mature tracheids formed by the non-defoliated trees in both species. Since radial enlargement is the xylogenesis phase most tightly related to final growth, this explains why the most defoliated trees grew the least due to their altered xylogenesis phases. Our findings indicate a very limited resilience capacity of drought-defoliated Scots and black pines. Moreover, droughts produce legacy effects on xylogenesis of highly defoliated trees which could not recover previous growth rates and are thus more prone to die.

  14. Increased resin flow in mature pine trees growing under elevated CO2 and moderate soil fertility

    Science.gov (United States)

    K.A. Novick; G.G. Katul; H.R. McCarthy; R. Oren

    2012-01-01

    Warmer climates induced by elevated atmospheric CO2 (eCO2) are expected to increase damaging bark beetle activity in pine forests, yet the effect of eCO2 on resin production—the tree’s primary defense against beetle attack—remains largely unknown. Following growth-differentiation balance theory, if extra carbohydrates produced under eCO2 are not consumed by respiration...

  15. Termites and flooding affect microbial communities in decomposing wood

    Science.gov (United States)

    Michael D. Ulyshen; Susan V. Diehl; Dragica Jeremic

    2016-01-01

    Wood properties and microbial community characteristics were compared between loblolly pine (Pinus taeda L.) logs protected or unprotected from termites (Blattodea: Rhinotermitidae: Reticulitermes spp.) and other arthropods for two years in seasonally flooded and unflooded forests in the southeastern United States. Significant compositional differences were observed...

  16. Using Google SketchUp to simulate tree row azimuth effects on alley shading

    Science.gov (United States)

    Effect of row azimuth on alley crop illumination is difficult to determine empirically. Our objective was to determine if Google SketchUp (Trimble Inc., Sunnyvale, CA) could be used to simulate effect of azimuth orientation on illumination of loblolly pine (Pinus taeda L.) alleys. Simulations were...

  17. Effect of body condition on consumption of pine needles (Pinus ponderosa) by beef cows.

    Science.gov (United States)

    Pfister, J A; Panter, K E; Gardner, D R; Cook, D; Welch, K D

    2008-12-01

    We determined whether cows in low (LBC) or high body condition (HBC) would consume different amounts of green pine needles (Pinus ponderosa). Cows (mature; open Hereford and Hereford x Angus) were fed a maintenance basal diet (alfalfa pellets) for Exp. 1 and 2; during Exp. 3 and 4, cows were fed high-protein and high-energy diets, respectively. Experiment 5 was a grazing study on rangeland during winter in South Dakota; diets were determined by using bite counts. Mean BCS (1 = emaciated, 9 = obese) was 7.5 for HBC cows and <4.0 for LBC cows during the experiments. During Exp. 1, LBC cows consumed more (P = 0.001) pine needles than did HBC cows (5.5 +/- 0.25 vs. 1.0 +/- 0.14 g/kg of BW daily, respectively). During Exp. 2, there was a day x treatment interaction (P = 0.001) as LBC cows consumed variable, but greater, amounts of pine needles than did HBC cows (3.7 +/- 0.19 vs. 1.3 +/- 0.12 g/kg of BW daily, respectively). When fed a high-protein/low-energy diet, LBC cows ate more (P = 0.04) pine needles than did HBC cows. When fed a low-protein/high-energy diet, there was a day x treatment interaction (P = 0.001) because LBC cows consumed more pine needles than did HBC cows for the first 3 d of the study, and then consumption by LBC animals decreased during the last 4 d. These experiments suggest that the protein:energy ratio may be an important factor in the ability of cows to tolerate terpenes, and that cows were not able to sustain an increased quantity of needle consumption on a low-protein diet. During the 25-d grazing study, there was a day x treatment interaction (P = 0.001) as LBC animals selected more pine needles (up to 25% of daily bites) on some days compared with HBC cows. Weather influenced pine needle consumption because pine needle bites by LBC cows were related (r(2) = 0.60; P = 0.001) to days of greater snow depth and lower minimum daily temperatures. Both LBC and HBC cows increased selection of pine needles from trees during cold, snowy weather, but

  18. Strategies for managing whitebark pine in the presence of white pine blister rust [Chapter 17

    Science.gov (United States)

    Raymond J. Hoff; Dennis E. Ferguson; Geral I. McDonald; Robert E. Keane

    2001-01-01

    Whitebark pine (Pinus albicaulis) is one of many North American white pine species (Pinus subgenus Strobus) susceptible to the fungal disease white pine blister rust (Cronartium ribicola). Blister rust has caused severe mortality (often reaching nearly 100 percent) in many stands of white bark pine north of 45° latitude in western North America. The rust is slowly...

  19. Low offspring survival in mountain pine beetle infesting the resistant Great Basin bristlecone pine supports the preference-performance hypothesis.

    Directory of Open Access Journals (Sweden)

    Erika L Eidson

    Full Text Available The preference-performance hypothesis states that ovipositing phytophagous insects will select host plants that are well-suited for their offspring and avoid host plants that do not support offspring performance (survival, development and fitness. The mountain pine beetle (Dendroctonus ponderosae, a native insect herbivore in western North America, can successfully attack and reproduce in most species of Pinus throughout its native range. However, mountain pine beetles avoid attacking Great Basin bristlecone pine (Pinus longaeva, despite recent climate-driven increases in mountain pine beetle populations at the high elevations where Great Basin bristlecone pine grows. Low preference for a potential host plant species may not persist if the plant supports favorable insect offspring performance, and Great Basin bristlecone pine suitability for mountain pine beetle offspring performance is unclear. We infested cut bolts of Great Basin bristlecone pine and two susceptible host tree species, limber (P. flexilis and lodgepole (P. contorta pines with adult mountain pine beetles and compared offspring performance. To investigate the potential for variation in offspring performance among mountain pine beetles from different areas, we tested beetles from geographically-separated populations within and outside the current range of Great Basin bristlecone pine. Although mountain pine beetles constructed galleries and laid viable eggs in all three tree species, extremely few offspring emerged from Great Basin bristlecone pine, regardless of the beetle population. Our observed low offspring performance in Great Basin bristlecone pine corresponds with previously documented low mountain pine beetle attack preference. A low preference-low performance relationship suggests that Great Basin bristlecone pine resistance to mountain pine beetle is likely to be retained through climate-driven high-elevation mountain pine beetle outbreaks.

  20. Landscape variation in tree regeneration and snag fall drive fuel loads in 24-year old post-fire lodgepole pine forests.

    Science.gov (United States)

    Nelson, Kellen N; Turner, Monica G; Romme, William H; Tinker, Daniel B

    2016-12-01

    Escalating wildfire in subalpine forests with stand-replacing fire regimes is increasing the extent of early-seral forests throughout the western USA. Post-fire succession generates the fuel for future fires, but little is known about fuel loads and their variability in young post-fire stands. We sampled fuel profiles in 24-year-old post-fire lodgepole pine (Pinus contorta var. latifolia) stands (n = 82) that regenerated from the 1988 Yellowstone Fires to answer three questions. (1) How do canopy and surface fuel loads vary within and among young lodgepole pine stands? (2) How do canopy and surface fuels vary with pre- and post-fire lodgepole pine stand structure and environmental conditions? (3) How have surface fuels changed between eight and 24 years post-fire? Fuel complexes varied tremendously across the landscape despite having regenerated from the same fires. Available canopy fuel loads and canopy bulk density averaged 8.5 Mg/ha (range 0.0-46.6) and 0.24 kg/m 3 (range: 0.0-2.3), respectively, meeting or exceeding levels in mature lodgepole pine forests. Total surface-fuel loads averaged 123 Mg/ha (range: 43-207), and 88% was in the 1,000-h fuel class. Litter, 1-h, and 10-h surface fuel loads were lower than reported for mature lodgepole pine forests, and 1,000-h fuel loads were similar or greater. Among-plot variation was greater in canopy fuels than surface fuels, and within-plot variation was greater than among-plot variation for nearly all fuels. Post-fire lodgepole pine density was the strongest positive predictor of canopy and fine surface fuel loads. Pre-fire successional stage was the best predictor of 100-h and 1,000-h fuel loads in the post-fire stands and strongly influenced the size and proportion of sound logs (greater when late successional stands had burned) and rotten logs (greater when early successional stands had burned). Our data suggest that 76% of the young post-fire lodgepole pine forests have 1,000-h fuel loads that exceed levels

  1. Evaluation of Drought Impact on Evapotranspiration (ET) over a Forested Landscape in North Carolina, USA using daily Landsat-scale ET

    Science.gov (United States)

    Yang, Yun; Anderson, Martha; Gao, Feng; Hain, Christopher; Kustas, William; Noormets, Asko; Sun, Ge; Wynne, Randolph; Thomas, Valerie

    2017-04-01

    There are 14 million hectares of loblolly pine plantations in the southern US, constituting almost one-half of the area of the world's industrial forest plantation. Hence, improved understanding of the impact of drought on pine plantations is extremely important. Using Thermal Infrared (TIR) imagery acquired from satellites to investigate forest conditions and study impacts of stand management on water yield has recently started to become accepted in forest research community. As a key factor monitoring forest health and regional water use, ET can be estimated based on the TIR imagery using energy balance model. One challenge in using TIR remote sensing is the need for both high spatial and temporal resolution imagery. While Landsat TIR data can provide high spatial resolution, the long revisiting time limits the frequency of ET estimation. This limitation can be addressed by using the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) to fuse ET retrieval from Landsat and MODIS. In this study, we applied an energy balance based multi-sensor data fusion method to fuse ET retrieved from Landsat and MODIS to get daily Landsat-scale ET estimation over a forested landscape ( 900km2) on the humid lower coastal plains in North Carolina, USA. The simulation period was from 2006 to 2012, with 2007 and 2008 considered years having severe drought. The simulated long-term ET datacube was evaluated at two separate AmeriFlux sites dominated by a mature and a recently clearcut plantation, showing good agreement with observed fluxes. The ET datacube was mined to investigate changes in water use patterns in response to land cover type, forest stand age, and climatic forcings. Analyses show differential response to extreme drought events, with young plantations and short vegetation showing larger impacts than mature pine plantations with significantly deeper rooting systems.

  2. Lodgepole Pine Dwarf Mistletoe

    Science.gov (United States)

    Frank G. Hawksworth; Oscar J. Dooling

    1984-01-01

    Lodgepole pine dwarf mistletoe (Arceuthobium americanum Nutt. ex Engelm.) is a native, parasitic, seed plant that occurs essentially throughout the range of lodgepole pine in North America. It is the most damaging disease agent in lodgepole pine, causing severe growth loss and increased tree mortality. Surveys in the Rocky Mountains show that the parasite is found in...

  3. Ten-Year Performance of Eastern White Pine - under a Crop Tree Release Regime on an Outwash Site

    Science.gov (United States)

    Kenneth M. Desmarais; William B. Leak; William B. Leak

    2005-01-01

    A young stand of eastern white pine aged 38-40 years received a crop tree release cutting reducing stocking to 100 tree/ac. This stocking level reflects the number of sterms per acre that would be contained in a well stocked mature stand at final harvest (20-in. quadratic mean stand diameter). The stand then was monitored for growth and value change. Stems that grew...

  4. Who knew? First Myotis sodalis (Indiana Bat) maternity colony in the coastal plain of Virginia

    Science.gov (United States)

    St. Germain, Michael J.; Kniowski, Andrew B.; Silvis, Alexander; Ford, W. Mark

    2017-01-01

    We report the first confirmed Myotis sodalis (Indiana Bat) maternity colony in Virginia, discovered at Fort A.P. Hill Military Reservation in Caroline County along the Piedmont-Coastal Plain Fall Line. Acoustic surveys conducted in 2014 indicated likely presence of Indiana Bats on the installation. Subsequent focal mist-netting during May–June 2015 resulted in capture of 4 lactating females that we subsequently radio tracked to a maternity colony site containing at least 20 individuals. The core roosting-area was comprised of Pinus taeda (Loblolly Pine) snags with abundant exfoliating bark and high solar exposure. This forest patch was adjacent to a large emergentshrub wetland and within a larger matrix of mature, mid-Atlantic hardwood forests. The site where we found the colony location is 140 km east of the nearest known hibernaculum and is outside of the previously documented extent of this species' occurrence.

  5. Limber pine forests on the leading edge of white pine blister rust distribution in Northern Colorado

    Science.gov (United States)

    Jennifer G. Klutsch; Betsy A. Goodrich; Anna W. Schoettle

    2011-01-01

    The combined threats of the current mountain pine beetle (Dendroctonus ponderosae, MPB) epidemic with the imminent invasion of white pine blister rust (caused by the non-native fungus Cronartium ribicola, WPBR) in limber pine (Pinus flexilis) forests in northern Colorado threatens the limber pine's regeneration cycle and ecosystem function. Over one million...

  6. A financial evaluation of two contrasting silvicultural systems ...

    African Journals Online (AJOL)

    The Loblolly pine (Pinus taeda L.) plantation area in north-east Uruguay was 108 000 ha in 2008. Recent industrial capacity developments have resulted in major structural changes. Silvicultural system selection depends on site productivity, costs, timber prices and public policies. This study aimed to assess economic ...

  7. Mechanical pulping with a sequential velocity refiner- a new concept

    Science.gov (United States)

    C.W. McMillin

    1978-01-01

    In previous research with refiner mechanical pulps, a theoretical stress analysis indicated that longitudinal tracheids of Pinus taeda L. fail while under torsional stress and unwind into ribbonlike elements that provide the coherence necessary for strength development. When macerated tracheids of loblolly pine were individually stressed in torsion...

  8. Lignin fate and characterization during ionic liquid biomass pretreatment for renewable chemicals and fuels production

    Science.gov (United States)

    The fate of lignin from wheat straw, Miscanthus, and Loblolly pine after pretreatment by a non-toxic and recyclable ionic liquid (IL), [C2mim][OAc], followed by enzymatic hydrolysis was investigated. The lignin partitioned into six process streams, each of which was quantified and analyzed by a comb...

  9. Mountain pine beetle infestations in relation to lodgepole pine diameters

    Science.gov (United States)

    Walter E. Cole; Gene D. Amman

    1969-01-01

    Tree losses resulting from infestation by the mountain pine beetle (Dendroctonus ponderosae Hopkins) were measured in two stands of lodgepole pine (Pinus contorta Dougl.) where the beetle population had previously been epidemic. Measurement data showed that larger diameter trees were infested and killed first. Tree losses...

  10. Assessing longleaf pine (Pinus palustris) restoration after southern pine beetle kill using a compact experimental design

    Science.gov (United States)

    J.-P. Berrill; C.M. Dagley

    2010-01-01

    A compact experimental design and analysis is presented of longleaf pine (Pinus palustris) survival and growth in a restoration project in the Piedmont region of Georgia, USA. Longleaf pine seedlings were planted after salvage logging and broadcast burning in areas of catastrophic southern pine beetle (Dendroctonus frontalis) attacks on even-aged mixed pine-hardwood...

  11. Whole-tree and forest floor removal from a loblolly pine plantation have no effect on forest floor CO2 efflux 10 years after harvest

    Science.gov (United States)

    John R. Butnor; Kurt H. Johnsen; Felipe G. Sanchez

    2006-01-01

    Intensive management of southern pine plantations has yielded multifold increases in productivity over the last half century. The process of harvesting merchantable material and preparing a site for planting can lead to a considerable loss of organic matter. Intensively managed stands may experience more frequent disturbance as rotations decrease in length, exposing...

  12. Separating Trends in Whitebark Pine Radial Growth Related to Climate and Mountain Pine Beetle Outbreaks in the Northern Rocky Mountains, USA

    Directory of Open Access Journals (Sweden)

    Saskia L. van de Gevel

    2017-06-01

    Full Text Available Drought and mountain pine beetle (Dendroctonus ponderosae Hopkins outbreaks have affected millions of hectares of high-elevation conifer forests in the Northern Rocky Mountains during the past century. Little research has examined the distinction between mountain pine beetle outbreaks and climatic influence on radial growth in endangered whitebark pine (Pinus albicaulis Engelm. ecosystems. We used a new method to explore divergent periods in whitebark pine radial growth after mountain pine beetle outbreaks across six sites in western Montana. We examined a 100-year history of mountain pine beetle outbreaks and climate relationships in whitebark pine radial growth to distinguish whether monthly climate variables or mountain pine outbreaks were the dominant influence on whitebark pine growth during the 20th century. High mortality of whitebark pines was caused by the overlapping effects of previous and current mountain pine beetle outbreaks and white pine blister rust infection. Wet conditions from precipitation and snowpack melt in the previous summer, current spring, and current summer benefit whitebark pine radial growth during the following growing season. Whitebark pine radial growth and climate relationships were strongest in sites less affected by the mountain pine beetle outbreaks or anthropogenic disturbances. Whitebark pine population resiliency should continue to be monitored as more common periods of drought will make whitebark pines more susceptible to mountain pine beetle attack and to white pine blister rust infection.

  13. Non-Ribes alternate hosts of white pine blister rust: What this discovery means to whitebark pine

    Science.gov (United States)

    Paul J. Zambino; Bryce A. Richardson; Geral I. McDonald; Ned B. Klopfenstein; Mee-Sook. Kim

    2006-01-01

    From early to present-day outbreaks, white pine blister rust caused by the fungus Cronartium ribicola, in combination with mountain pine beetle outbreaks and fire exclusion has caused ecosystem-wide effects for all five-needled pines (McDonald and Hoff 2001). To be successful, efforts to restore whitebark pine will require sound management decisions that incorporate an...

  14. The Austrian x red pine hybrid

    Science.gov (United States)

    W. B. Critchfield

    1963-01-01

    The genetic improvement of red pine (Pinus resinosa Ait.) presents tree breeders with one of their most difficult problems. Not only is this valuable species remarkably uniform, but until 1955 it resisted all attempts to cross it with other pines. In that year red pine and Austrian pine (P. nigra var. austriaca [...

  15. Soil erosion from harvested sites versus streamside management zone sediment deposition in the Piedmont of Virginia

    Science.gov (United States)

    William A. Lakel; W. Michael Aust; C. Andrew Dolloff; Amy W. Easterbrook

    2006-01-01

    Forestry best management practices were primarily developed to address two major issues related to soil erosion: water quality and site productivity. Sixteen watersheds managed as loblolly pine plantations in the piedmont region were monitored for soil erosion and water quality prior to treatment. Subsequently, all watersheds were harvested with clearcutting, ground-...

  16. Mountain Pine Beetle Dynamics and Reproductive Success in Post-Fire Lodgepole and Ponderosa Pine Forests in Northeastern Utah.

    Directory of Open Access Journals (Sweden)

    Andrew P Lerch

    Full Text Available Fire injury can increase tree susceptibility to some bark beetles (Curculionidae, Scolytinae, but whether wildfires can trigger outbreaks of species such as mountain pine beetle (Dendroctonus ponderosae Hopkins is not well understood. We monitored 1173 lodgepole (Pinus contorta var. latifolia Doug. and 599 ponderosa (Pinus ponderosa Doug. ex Law pines for three years post-wildfire in the Uinta Mountains of northeastern Utah in an area with locally endemic mountain pine beetle. We examined how the degree and type of fire injury influenced beetle attacks, brood production, and subsequent tree mortality, and related these to beetle population changes over time. Mountain pine beetle population levels were high the first two post-fire years in lodgepole pine, and then declined. In ponderosa pine, populations declined each year after initial post-fire sampling. Compared to trees with strip or failed attacks, mass attacks occurred on trees with greater fire injury, in both species. Overall, a higher degree of damage to crowns and boles was associated with higher attack rates in ponderosa pines, but additional injury was more likely to decrease attack rates in lodgepole pines. In lodgepole pine, attacks were initially concentrated on fire-injured trees, but during subsequent years beetles attacked substantial numbers of uninjured trees. In ponderosa pine, attacks were primarily on injured trees each year, although these stands were more heavily burned and had few uninjured trees. In total, 46% of all lodgepole and 56% of ponderosa pines underwent some degree of attack. Adult brood emergence within caged bole sections decreased with increasing bole char in lodgepole pine but increased in ponderosa pine, however these relationships did not scale to whole trees. Mountain pine beetle populations in both tree species four years post-fire were substantially lower than the year after fire, and wildfire did not result in population outbreaks.

  17. Mountain Pine Beetle Dynamics and Reproductive Success in Post-Fire Lodgepole and Ponderosa Pine Forests in Northeastern Utah.

    Science.gov (United States)

    Lerch, Andrew P; Pfammatter, Jesse A; Bentz, Barbara J; Raffa, Kenneth F

    2016-01-01

    Fire injury can increase tree susceptibility to some bark beetles (Curculionidae, Scolytinae), but whether wildfires can trigger outbreaks of species such as mountain pine beetle (Dendroctonus ponderosae Hopkins) is not well understood. We monitored 1173 lodgepole (Pinus contorta var. latifolia Doug.) and 599 ponderosa (Pinus ponderosa Doug. ex Law) pines for three years post-wildfire in the Uinta Mountains of northeastern Utah in an area with locally endemic mountain pine beetle. We examined how the degree and type of fire injury influenced beetle attacks, brood production, and subsequent tree mortality, and related these to beetle population changes over time. Mountain pine beetle population levels were high the first two post-fire years in lodgepole pine, and then declined. In ponderosa pine, populations declined each year after initial post-fire sampling. Compared to trees with strip or failed attacks, mass attacks occurred on trees with greater fire injury, in both species. Overall, a higher degree of damage to crowns and boles was associated with higher attack rates in ponderosa pines, but additional injury was more likely to decrease attack rates in lodgepole pines. In lodgepole pine, attacks were initially concentrated on fire-injured trees, but during subsequent years beetles attacked substantial numbers of uninjured trees. In ponderosa pine, attacks were primarily on injured trees each year, although these stands were more heavily burned and had few uninjured trees. In total, 46% of all lodgepole and 56% of ponderosa pines underwent some degree of attack. Adult brood emergence within caged bole sections decreased with increasing bole char in lodgepole pine but increased in ponderosa pine, however these relationships did not scale to whole trees. Mountain pine beetle populations in both tree species four years post-fire were substantially lower than the year after fire, and wildfire did not result in population outbreaks.

  18. Mountain pine beetle in lodgepole pine: mortality and fire implications (Project INT-F-07-03)

    Science.gov (United States)

    Jennifer G. Klutsch; Daniel R. West; Mike A Battaglia; Sheryl L. Costello; José F. Negrón; Charles C. Rhoades; John Popp; Rick Caissie

    2013-01-01

    Mountain pine beetle (Dendroctonus ponderosae Hopkins) has infested over 2 million acres of lodgepole pine (Pinus contorta Dougl. ex Loud.) forest since an outbreak began approximately in 2000 in north central Colorado. The tree mortality from mountain pine beetle outbreaks has the potential to alter stand composition and stand...

  19. Soil and Nutrient Loss Following Site Preparation Burning

    Science.gov (United States)

    J.P. Field; E.A. Carter

    2000-01-01

    Sediment loss and nutrient cpncentrations in runoff were evaluated to determine the effects of site preparation burning on a recently harvested loblolly pine (Pinus taeda L.) site in east Texas. Sediment and nutrient losses prior to treatment were approximately the same from control plots and pretreatment burn plots. Nutrient analysis of runoff...

  20. Response of Soil Bulk Density and Mineral Nitrogen to Harvesting and Cultural Treatments

    Science.gov (United States)

    Minyi Zhou; Mason C. Carter; Thomas J. Dean

    1998-01-01

    The interactive effects of harvest intensity, site preparation, and fertilization on soil compaction and nitrogen mineralization were examined in a loblolly pine (Pinus taeda L.) stand growing on a sandy, well-drained soil in eastern Texas. The experimental design was 2 by 2 by 2 factorial, consisting of two harvesting treatments (mechanical whole-...

  1. Weighted linear regression using D2H and D2 as the independent variables

    Science.gov (United States)

    Hans T. Schreuder; Michael S. Williams

    1998-01-01

    Several error structures for weighted regression equations used for predicting volume were examined for 2 large data sets of felled and standing loblolly pine trees (Pinus taeda L.). The generally accepted model with variance of error proportional to the value of the covariate squared ( D2H = diameter squared times height or D...

  2. Conversion of natural forest to managed forest plantations decreases tree resistance to prolonged droughts

    Science.gov (United States)

    Jean-Christophe Domec; John S. King; Eric Ward; A. Christopher Oishi; Sari Palmroth; Andrew Radecki; Dave M. Bell; Guofang Miao; Michael Gavazzi; Daniel M. Johnson; Steve G. McNulty; Ge Sun; Asko. Noormets

    2015-01-01

    Throughout the southern US, past forest management practices have replaced large areas of native forests with loblolly pine plantations and have resulted in changes in forest response to extreme weather conditions. However, uncertainty remains about the response of planted versus natural species to drought across the geographical range of these forests. Taking...

  3. Effect of Decay on Ultrasonic Velocity and Attenuation Measurements in Wood

    Science.gov (United States)

    Megan McGovern; Adam Senalik; George Chen; Frank C. Beall; Henrique Reis

    2013-01-01

    The percentage mass loss of loblolly pine (pinus taeda) wood cube specimens exposed to Gloeophyllum fungus (Gloeophyllum trabeum) for increasing periods of time ranging from 1 to 12 weeks was recorded after being subjected to controlled decay following ASTM International standard ASTM D 1423-99. The specimens’ corresponding volume...

  4. Resilience of ponderosa and lodgepole pine forests to mountain pine beetle disturbance and limited regeneration

    Science.gov (United States)

    Briggs, Jenny S.; Hawbaker, Todd J.; Vandendriesche, Don

    2015-01-01

    After causing widespread mortality in lodgepole pine forests in North America, the mountain pine beetle (MPB) has recently also affected ponderosa pine, an alternate host species that may have different levels of resilience to this disturbance. We collected field data in ponderosa pine- and lodgepole pine-dominated forests attacked by MPB in Colorado and then simulated stand growth over 200 years using the Forest Vegetation Simulator. We compared scenarios of no disturbance with scenarios of MPB-caused mortality, both with and without regeneration. Results indicated that basal area and tree density recovered to predisturbance levels relatively rapidly (within 1‐8 decades) in both forest types. However, convergence of the disturbed conditions with simulated undisturbed conditions took longer (12‐20+ decades) and was delayed by the absence of regeneration. In MPB-affected ponderosa pine forests without regeneration, basal area did not converge with undisturbed conditions within 200 years, implying lower resilience in this ecosystem. Surface fuels accumulated rapidly in both forest types after MPB-induced mortality, remaining high for 3‐6 decades in simulations. Our results suggest that future patterns of succession, regeneration, fuel loading, climate, and disturbance interactions over long time periods should be considered in management strategies addressing MPB effects in either forest type, but particularly in ponderosa pine.

  5. Detection of changes in fuel quality during storage of sawdust from pine and spruce by using gas chromatography - Mass spectrometry (GC-MS) and VIS-NIR-spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Arshadi, Mehrdad; Nilsson, David; Geladi, Paul (Unit of Biomass Technology and Chemistry, Swedish Univ. of Agricultural Sciences, SE-904 03 Umeaa (Sweden)). e-mail: mehrdad.arshadi@btk.slu.se

    2008-10-15

    Fuel pellets made of sawdust represent a renewable energy source for heat production. The raw material comes from sawmills and sawdust is used in the pellet mills and for reasons of logistics there is a need for storage of large quantities of the raw material. Long-term storage induces changes in the sawdust and therefore processing parameters for pellets production have to be adapted. This makes knowledge of storage time or maturity necessary. Two examples of experimental studies are presented: An industrial storage of pine and spruce sawdust was carried out over a period of 16 weeks in order to monitor the changes in the quality of sawdust during storage. Samples were taken out every week and all samples were analysed by VIS-NIR spectroscopy while some samples were analysed by GC-MS for their composition of fatty- and resin acids. The resulting data were subjected to multivariate data analysis. GC-MS data showed the difference between pine and spruce sawdust and the influence of maturity. This maturity effect could be associated with the decrease in fatty- and resin acids due to auto oxidative reactions. Multivariate analysis of the VIS-NIR data showed a major effect due to maturity associated with a colour change and also weaker effects of fatty- and resin acids differences. PLS regression was used to predict the storage time with RMSEP values between 10 and 15 days. However, since weather conditions, precipitation and seasonal variation have high influence on the speed of maturing of sawdust it will be necessary to continuously determine the degree of maturity. A second similar study is used as a complementary way of corroborating the results of the first one

  6. Insect biodiversity reduction of pine woods in southern Greece caused by the pine scale (Marchalina hellenica)

    Energy Technology Data Exchange (ETDEWEB)

    Petrakis, P. V.; Spanos, K.; Feest, A.

    2011-07-01

    This paper deals with the impact of the pine scale (Marchalina hellenica Gennadius, Hemiptera, Sternorrhyncha, Margarodidae) on the insect biodiversity of pinewoods in Attica, Greece. The comparison of biodiversities was done by estimating the biodiversity by the Ewens-Caswells V statistic in a set of nine sites each containing two linetransects. Transects pairs went through free and infested pine woods from the pine scale and each one had several tenth hectare plots on both sides. The ecosystem temperature (= disorder) of the sites was computed and found high, together with the idiosyncratic temperatures (= susceptibility to extinction) of the 158 species in order to detect local extinctions. The indicator values of insect species were computed on the basis of the relative cover of each plant species. The main findings of this study are (1) the reduction of insect species biodiversity because of the introduction of the pine scale, (2) the moderate increase of disorder in pine scale infested sites,(3) many insect species can characterize site groups but none of them can distinguish infested from pine scale free sites. The introduction of pine scale in pine woods disturbs their insect fauna before its influence to the floristic composition and the associated vegetation structure appears. The causes behind this reduction of biodiversity and the anthropogenic influences are discussed. (Author) 64 refs.

  7. Southern Pine Based on Biorefinery Center

    Energy Technology Data Exchange (ETDEWEB)

    Ragauskas, Arthur J. [Georgia Inst. of Technology, Atlanta, GA (United States); Singh, Preet [Georgia Inst. of Technology, Atlanta, GA (United States)

    2013-12-20

    This program seeks to develop an integrated southern pine wood to biofuels/biomaterials processing facility on the Recipient’s campus, that will test advanced integrated wood processing technologies at the laboratory scale, including: The generation of the bioethanol from pines residues and hemicelluloses extracted from pine woodchips; The conversion of extracted woodchips to linerboard and bleach grade pulps; and the efficient conversion of pine residues, bark and kraft cooking liquor into a useful pyrolysis oil.

  8. Ratio equations for loblolly pine trees

    Science.gov (United States)

    Dehai Zhao; Michael Kane; Daniel Markewitz; Robert. Teskey

    2015-01-01

    The conversion factors (CFs) or expansion factors (EFs) are often used to convert volume to green or dry weight, or from one component biomass to estimate total biomass or other component biomass. These factors might be inferred from the previously developed biomass and volume equations with or without destructive sampling data. However, how the factors are related to...

  9. Hydraulic redistribution of soil water by roots affects whole-stand evapotranspiration and net ecosystem carbon exchange

    Science.gov (United States)

    J.-C. Domec; J.S. King; A. Noormets; E. Treasure; M.J. Gavazzi; G. Sun; S.G. McNulty

    2010-01-01

    Hydraulic redistribution (HR) of water via roots from moist to drier portions of the soil occurs in many ecosystems, potentially influencing both water use and carbon assimilation. By measuring soil water content, sap flow and eddy covariance, we investigated the temporal variability of HR in a loblolly pine (Pinus taeda) plantation during months of...

  10. Sediment and Runoff Losses following Harvesting/Site Prep Operations on a Piedmont Soil in Alabama

    Science.gov (United States)

    Johnny M. III Grace; Emily A. Carter

    2001-01-01

    Impacts of soil erosion on water quality from forest harvesting and site preparation have received increased concern in recent years. The study presented here was performed in Lee County, Alabama to investigate the impact of harvesting and site preparation on a 20-year-old loblolly pine (Pinus taeda L.) plantation on sediment and runoff yield....

  11. Soil an-d nutrient loss following site preparation burning

    Science.gov (United States)

    E.A. Carter; J.P. Field; K.W. Farrish

    2000-01-01

    Sediment loss and nutrient cpncentrations in runoff were evaluated to determine the effects of site preparation burning on a recently harvested loblolly pine (Pinur taeda L.) site in east Texas. Sediment and nutrient losses prior to treatment were approximately the same from control plots and pretreatment burn plots. Nutrient analysis of runoff samples indicated that...

  12. 1H Nuclear Magnetic Resonance of Lodgepole Pine Wood Chips Affected by the Mountain Pine Beetle

    OpenAIRE

    Todoruk, Tara M.; Hartley, Ian D.; Teymoori, Roshanak; Liang, Jianzhen; Peemoeller, Hartwig

    2010-01-01

    In this study, wood-water interactions of mountain pine beetle affected lodgepole pine were found to vary with time since death. Based on an analysis of magnetization components and spin-spin relaxation times from 1H NMR, it was determined that the mountain pine beetle attack does not affect the crystalline structure of the wood. Both the amorphous structure and the water components vary with time since death, which could be due to the fungi present after a mountain pine beetle attack, as wel...

  13. Strong partial resistance to white pine blister rust in sugar pine

    Science.gov (United States)

    Bohun B. Kinloch, Jr.; Deems Burton; Dean A. Davis; Robert D. Westfall; Joan Dunlap; Detlev Vogler

    2012-01-01

    Quantitative resistance to white pine blister rust in 128 controlled- and open-pollinated sugar pine families was evaluated in a “disease garden”, where alternate host Ribes bushes were interplanted among test progenies. Overall infection was severe (88%), but with great variation among and within families: a 30-fold range in numbers of infections...

  14. Ponderosa pine mortality resulting from a mountain pine beetle outbreak

    Science.gov (United States)

    William F. McCambridge; Frank G. Hawksworth; Carleton B. Edminster; John G. Laut

    1982-01-01

    From 1965 to 1978, mountain pine beetles killed 25% of the pines taller than 4.5 feet in a study area in north-central Colorado. Average basal area was reduced from 92 to 58 square feet per acre. Mortality increased with tree diameter up to about 9 inches d.b.h. Larger trees appeared to be killed at random. Mortality was directly related to number of trees per acre and...

  15. Selection for resistance to white pine blister rust affects the abiotic stress tolerances of limber pine

    Science.gov (United States)

    Patrick J. Vogan; Anna W. Schoettle

    2015-01-01

    Limber pine (Pinus flexilis) mortality is increasing across the West as a result of the combined stresses of white pine blister rust (Cronartium ribicola; WPBR), mountain pine beetle (Dendroctonus ponderosae), and dwarf mistletoe (Arceuthobium cyanocarpum) in a changing climate. With the continued spread of WPBR, extensive mortality will continue with strong selection...

  16. Mountain pine beetle attack associated with low levels of 4-allylanisole in ponderosa pine.

    Science.gov (United States)

    Emerick, Jay J; Snyder, Aaron I; Bower, Nathan W; Snyder, Marc A

    2008-08-01

    Mountain pine beetle (Dendroctonus ponderosae) is the most important insect pest in southern Rocky Mountain ponderosa pine (Pinus ponderosa) forests. Tree mortality is hastened by the various fungal pathogens that are symbiotic with the beetles. The phenylpropanoid 4-allylanisole is an antifungal and semiochemical for some pine beetle species. We analyzed 4-allylanisole and monoterpene profiles in the xylem oleoresin from a total of 107 trees at six sites from two chemotypes of ponderosa pine found in Colorado and New Mexico using gas chromatography-mass spectroscopy (GC-MS). Although monoterpene profiles were essentially the same in attacked and nonattacked trees, significantly lower levels of 4-allylanisole were found in attacked trees compared with trees that showed no evidence of attack for both chemotypes.

  17. Nitrogen release, tree uptake, and ecosystem retention in a mid-rotation loblolly pine plantation following fertilization with 15N-enriched enhanced efficiency fertilizers.

    OpenAIRE

    Werner, Amy

    2013-01-01

    Nitrogen is the most frequently limiting nutrient in southern pine plantations.  Previous studies found that only 10 to 25% of applied urea fertilizer N is taken up by trees.  Enhanced efficiency fertilizers could increase tree uptake efficiency by controlling the release of N and/or stabilize N.  Three enhanced efficiency fertilizers were selected as a representation of fertilizers that could be used in forestry: 1) NBPT treated urea (NBPT urea), 2) polymer coated urea (PC urea), and 3) mono...

  18. Regeneration of Rocky Mountain bristlecone pine (Pinus aristata) and limber pine (Pinus flexilis) three decades after stand-replacing fires

    Science.gov (United States)

    Jonathan D. Coop; Anna W. Schoettle

    2009-01-01

    Rocky Mountain bristlecone pine (Pinus aristata) and limber pine (Pinus flexilis) are important highelevation pines of the southern Rockies that are forecast to decline due to the recent spread of white pine blister rust (Cronartium ribicola) into this region. Proactive management strategies to promote the evolution of rust resistance and maintain ecosystem function...

  19. Monitoring white pine blister rust infection and mortality in whitebark pine in the Greater Yellowstone ecosystem

    Science.gov (United States)

    Cathie Jean; Erin Shanahan; Rob Daley; Gregg DeNitto; Dan Reinhart; Chuck Schwartz

    2011-01-01

    There is a critical need for information on the status and trend of whitebark pine (Pinus albicaulis) in the Greater Yellowstone Ecosystem (GYE). Concerns over the combined effects of white pine blister rust (WPBR, Cronartium ribicola), mountain pine beetle (MPB, Dendroctonus ponderosae), and climate change prompted an interagency working group to design and implement...

  20. Carbon sequestration and natural longleaf pine ecosystems

    Science.gov (United States)

    Ralph S. Meldahl; John S. Kush

    2006-01-01

    A fire-maintained longleaf pine (Pinus palustris Mill.) ecosystem may offer the best option for carbon (C) sequestration among the southern pines. Longleaf is the longest living of the southern pines, and products from longleaf pine will sequester C longer than most since they are likely to be solid wood products such as structural lumber and poles....

  1. Status of white pine blister rust and seed collections in california's high-elevation white pine species

    Science.gov (United States)

    J. Dunlap

    2011-01-01

    White pine blister rust (caused by the non-native pathogen Cronartium ribicola) reached northern California about 80 years ago. Over the years its spread southward had been primarily recorded on sugar pine. However, observations on its occurrence had also been reported in several of the higher elevation five-needled white pine species in California. Since the late...

  2. Multilevel nonlinear mixed-effects models for the modeling of earlywood and latewood microfibril angle

    Science.gov (United States)

    Lewis Jordon; Richard F. Daniels; Alexander Clark; Rechun He

    2005-01-01

    Earlywood and latewood microfibril angle (MFA) was determined at I-millimeter intervals from disks at 1.4 meters, then at 3-meter intervals to a height of 13.7 meters, from 18 loblolly pine (Pinus taeda L.) trees grown in southeastern Texas. A modified three-parameter logistic function with mixed effects is used for modeling earlywood and latewood...

  3. Interacting effects of insects and flooding on wood decomposition.

    Science.gov (United States)

    Michael Ulyshen

    2014-01-01

    Saproxylic arthropods are thought to play an important role in wood decomposition but very few efforts have been made to quantify their contributions to the process and the factors controlling their activities are not well understood. In the current study, mesh exclusion bags were used to quantify how arthropods affect loblolly pine (Pinus taeda L.) decomposition rates...

  4. Microbial biomass and bacterial functional diversity in forest soils: effects of organic matter removal, compaction, and vegetation control

    Science.gov (United States)

    Qingchao Li; H. Lee Allen; Arthur G. Wollum

    2004-01-01

    The effects of organic matter removal, soil compaction, and vegetation control on soil microbial biomass carbon, nitrogen, C-to-N ratio, and functional diversity were examined in a 6-year loblolly pine plantation on a Coastal Plain site in eastern North Carolina, USA. This experimental plantation was established as part of the US Forest Service's Long Term Soil...

  5. Quantitative and qualitative measures of decomposition: is there a link?

    Science.gov (United States)

    Robert J. Eaton; Felipe G. Sanchez

    2009-01-01

    Decomposition rates of loblolly pine coarse woody debris (CWD) were determined by mass loss and wood density changes for trees that differed in source of mortality (natural, girdle-poison, and felling). Specifically, three treatments were examined: (1) control (CON): natural mortality; (2) CD: 5-fold increase in CWD compared with the CON; and (3) CS: 12-fold increase...

  6. Quantifying and mapping spatial variability in simulated forest plots

    Science.gov (United States)

    Gavin R. Corral; Harold E. Burkhart

    2016-01-01

    We used computer simulations to test the efficacy of multivariate statistical methods to detect, quantify, and map spatial variability of forest stands. Simulated stands were developed of regularly-spaced plantations of loblolly pine (Pinus taeda L.). We assumed no affects of competition or mortality, but random variability was added to individual tree characteristics...

  7. Plant-based torsional actuator with memory

    Science.gov (United States)

    Nayomi Plaza; Samuel L. Zelinka; Don S. Stone; Joseph E. Jakes

    2013-01-01

    A bundle of a few loblolly pine (Pinus taeda) cells are moisture-activated torsional actuators that twist multiple revolutions per cm length in direct proportion to moisture content. The bundles generate 10 N m kg􀀀1 specific torque during both twisting and untwisting, which is higher than an electric motor. Additionally, the bundles exhibit a moisture-...

  8. Western gulf culture-density study-early results

    Science.gov (United States)

    Mohd S. Rahman; Michael G. Messina; Richard F. Fisher; Alan B. Wilson; Nick Chappell; Conner Fristoe; Larry Anderson

    2006-01-01

    The Western Gulf Culture-Density Study is a collaborative research effort between Texas A&M University and five forest products companies to examine the effects of early silvicultural treatment intensity and a wide range of both densities and soil types on performance of loblolly pine. The study tests 2 silvicultural intensities, 5 planting densities (200 to 1,200...

  9. Afforestation in Serbia in the period 1961-2007 with special reference to Austrian pine and Scots pine

    Directory of Open Access Journals (Sweden)

    Ranković Nenad

    2009-01-01

    Full Text Available The significance of afforestation in Serbia is high because only in this way the forest area can be increased and brought to the level which corresponds to the demands of the population. This is also indicated by the content of some documents, such as 'Professional base for the design of the National Forest Action Programme', which emphasises this problem from the very beginning. Special significance is assigned to afforestation with Austrian pine and Scots pine, which are most frequently applied in the afforestation of the most unfavourable terrains. This study analyses the scope of afforestation over the period 1961-2007, the percentage of Austrian pine and Scots pine and the relationship of the afforested areas, and generates the forecasts of the changes in the future period. In this way, the socialeconomic significance of afforestation can be assessed from the aspect of satisfying the objectives of forest policy, and particularly of afforestation with Austrian pine and Scots pine, as the specific tree species.

  10. Population structure of a lodgepole pine (Pinus contorta) and jack pine (P. banksiana) complex as revealed by random amplified polymorphic DNA.

    Science.gov (United States)

    Ye, Terrance Z; Yang, Rong-Cai; Yeh, Francis C

    2002-06-01

    We studied the population structure of a lodgepole (Pinus contorta Dougl.) and jack pine (Pinus banksiana Lamb.) complex in west central Alberta and neighboring areas by assessing random amplified polymorphic DNA (RAPD) variability in 23 lodgepole pine, 9 jack pine, and 8 putative hybrid populations. Of 200 random primers screened, 10 that amplified 39 sharp and reproducible RAPDs were chosen for the study. None of the 39 RAPDs were unique to the parental species. RAPD diversity ranged from 0.085 to 0.190 among populations and averaged 0.143 for lodgepole pine, 0.156 for jack pine, 0.152 for hybrids, and 0.148 for all 40 populations. The estimated population differentiation based on G(ST) was 0.168 for hybrids, 0.162 for lodgepole pine, 0.155 for jack pine, and 0.247 across all 40 populations. Cluster analysis of genetic distances generally separated jack pine from lodgepole pine and hybrids, but no division could be identified that further separated lodgepole pine from hybrids. The observed weak to mild trend of "introgression by distance" in the complex and neighbouring areas was consistent with the view that introgressive hybridization between lodgepole and jack pines within and outside the hybrid zone may have been through secondary contact and primary intergradation, respectively.

  11. Diagnosis & Correction of Soil Nutrient Limitations in Intensively managed southern pine forests

    Energy Technology Data Exchange (ETDEWEB)

    University of Florida

    2002-10-25

    Forest productivity is one manner to sequester carbon and it is a renewable energy source. Likewise, efficient use of fertilization can be a significant energy savings. To date, site-specific use of fertilization for the purpose of maximizing forest productivity has not been well developed. Site evaluation of nutrient deficiencies is primarily based on empirical approaches to soil testing and plot fertilizer tests with little consideration for soil water regimes and contributing site factors. This project uses mass flow diffusion theory in a modeling context, combined with process level knowledge of soil chemistry, to evaluate nutrient bioavailability to fast-growing juvenile forest stands growing on coastal plain Spodosols of the southeastern U.S. The model is not soil or site specific and should be useful for a wide range of soil management/nutrient management conditions. In order to use the model, field data of fast-growing southern pine needed to be measured and used in the validation of the model. The field aspect of the study was mainly to provide data that could be used to verify the model. However, we learned much about the growth and development of fast growing loblolly. Carbon allocation patterns, root shoot relationships and leaf area root relationships proved to be new, important information. The Project Objectives were to: (1) Develop a mechanistic nutrient management model based on the COMP8 uptake model. (2) Collect field data that could be used to verify and test the model. (3) Model testing.

  12. Guidelines for whitebark pine planting prescriptions

    Science.gov (United States)

    Glenda L. Scott; Ward W. McCaughey; Kay Izlar

    2011-01-01

    Whitebark pine (Pinus albicaulis) is a keystone species in high-elevation ecosystems of the western United States. Unfortunately many fragile subalpine ecosystems are losing whitebark pine as a functional community component due to the combined effects of an introduced disease, insects and succession. Planting whitebark pine is one part of a multifaceted restoration...

  13. Effect of experience with pine (Pituophis melanoleucus) and king (Lampropeltis getulus) snake odors on Y-maze behavior of pine snake hatchlings.

    Science.gov (United States)

    Burger, J; Boarman, W; Kurzava, L; Gochfeld, M

    1991-01-01

    The abilities of hatchling pine snakes (Pituophis melanoleucus) and king snakes (Lampropeltis getulus) to discriminate the chemical trails of pine and king snakes was investigated inY-maze experiments. Pine snakes were housed for 17 days either with shavings impregnated with pine snake odor, king snake odor, or no odor to test for the effect of experience on choice. Both pine and king snake hatchlings entered the arm with the pine snake odor and did not enter the arm with the king snake odor. The data support the hypothesis that hatchlings of both species can distinguish conspecific odors from other odors and that our manipulation of previous experience was without effect for pine snake hatchlings.

  14. Whitebark pine planting guidelines

    Science.gov (United States)

    Ward McCaughey; Glenda L. Scott; Kay L. Izlar

    2009-01-01

    This article incorporates new information into previous whitebark pine guidelines for planting prescriptions. Earlier 2006 guidelines were developed based on review of general literature, research studies, field observations, and standard US Forest Service survival surveys of high-elevation whitebark pine plantations. A recent study of biotic and abiotic factors...

  15. Comparison of lodgepole and jack pine resin chemistry: implications for range expansion by the mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Curculionidae

    Directory of Open Access Journals (Sweden)

    Erin L. Clark

    2014-02-01

    Full Text Available The mountain pine beetle, Dendroctonus ponderosae, is a significant pest of lodgepole pine in British Columbia (BC, where it has recently reached an unprecedented outbreak level. Although it is native to western North America, the beetle can now be viewed as a native invasive because for the first time in recorded history it has begun to reproduce in native jack pine stands within the North American boreal forest. The ability of jack pine trees to defend themselves against mass attack and their suitability for brood success will play a major role in the success of this insect in a putatively new geographic range and host. Lodgepole and jack pine were sampled along a transect extending from the beetle’s historic range (central BC to the newly invaded area east of the Rocky Mountains in north-central Alberta (AB in Canada for constitutive phloem resin terpene levels. In addition, two populations of lodgepole pine (BC and one population of jack pine (AB were sampled for levels of induced phloem terpenes. Phloem resin terpenes were identified and quantified using gas chromatography. Significant differences were found in constitutive levels of terpenes between the two species of pine. Constitutive α-pinene levels – a precursor in the biosynthesis of components of the aggregation and antiaggregation pheromones of mountain pine beetle – were significantly higher in jack pine. However, lower constitutive levels of compounds known to be toxic to bark beetles, e.g., 3-carene, in jack pine suggests that this species could be poorly defended. Differences in wounding-induced responses for phloem accumulation of five major terpenes were found between the two populations of lodgepole pine and between lodgepole and jack pine. The mountain pine beetle will face a different constitutive and induced phloem resin terpene environment when locating and colonizing jack pine in its new geographic range, and this may play a significant role in the ability of the

  16. Comparison of lodgepole and jack pine resin chemistry: implications for range expansion by the mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Curculionidae).

    Science.gov (United States)

    Clark, Erin L; Pitt, Caitlin; Carroll, Allan L; Lindgren, B Staffan; Huber, Dezene P W

    2014-01-01

    The mountain pine beetle, Dendroctonus ponderosae, is a significant pest of lodgepole pine in British Columbia (BC), where it has recently reached an unprecedented outbreak level. Although it is native to western North America, the beetle can now be viewed as a native invasive because for the first time in recorded history it has begun to reproduce in native jack pine stands within the North American boreal forest. The ability of jack pine trees to defend themselves against mass attack and their suitability for brood success will play a major role in the success of this insect in a putatively new geographic range and host. Lodgepole and jack pine were sampled along a transect extending from the beetle's historic range (central BC) to the newly invaded area east of the Rocky Mountains in north-central Alberta (AB) in Canada for constitutive phloem resin terpene levels. In addition, two populations of lodgepole pine (BC) and one population of jack pine (AB) were sampled for levels of induced phloem terpenes. Phloem resin terpenes were identified and quantified using gas chromatography. Significant differences were found in constitutive levels of terpenes between the two species of pine. Constitutive α-pinene levels - a precursor in the biosynthesis of components of the aggregation and antiaggregation pheromones of mountain pine beetle - were significantly higher in jack pine. However, lower constitutive levels of compounds known to be toxic to bark beetles, e.g., 3-carene, in jack pine suggests that this species could be poorly defended. Differences in wounding-induced responses for phloem accumulation of five major terpenes were found between the two populations of lodgepole pine and between lodgepole and jack pine. The mountain pine beetle will face a different constitutive and induced phloem resin terpene environment when locating and colonizing jack pine in its new geographic range, and this may play a significant role in the ability of the insect to persist in

  17. Damage by pathogens and insects to Scots pine and lodgepole pine 25 years after reciprocal plantings in Canada and Sweden

    OpenAIRE

    Fries, Anders

    2017-01-01

    A combined species - provenance - family experiment with Scots pine and lodgepole pine was planted in Canada and Sweden. One aim of the experiment was to evaluate the two species' sensitivities to pathogens and insects 25 years after establishment in their non-native continents. In Canada, Scots pine had better average survival than lodgepole pine, but survival rates among trees from the best seed-lots were equal. In Canada only western gall rust infected Scots pine to some extent, and mounta...

  18. 1H Nuclear Magnetic Resonance of Lodgepole Pine Wood Chips Affected by the Mountain Pine Beetle

    Directory of Open Access Journals (Sweden)

    Hartwig Peemoeller

    2010-12-01

    Full Text Available In this study, wood-water interactions of mountain pine beetle affected lodgepole pine were found to vary with time since death. Based on an analysis of magnetization components and spin-spin relaxation times from 1H NMR, it was determined that the mountain pine beetle attack does not affect the crystalline structure of the wood. Both the amorphous structure and the water components vary with time since death, which could be due to the fungi present after a mountain pine beetle attack, as well as the fact that wood from the grey-stage of attack cycles seasonally through adsorption and desorption in the stand.

  19. ¹H Nuclear Magnetic Resonance of Lodgepole Pine Wood Chips Affected by the Mountain Pine Beetle.

    Science.gov (United States)

    Todoruk, Tara M; Hartley, Ian D; Teymoori, Roshanak; Liang, Jianzhen; Peemoeller, Hartwig

    2010-12-31

    In this study, wood-water interactions of mountain pine beetle affected lodgepole pine were found to vary with time since death. Based on an analysis of magnetization components and spin-spin relaxation times from 1H NMR, it was determined that the mountain pine beetle attack does not affect the crystalline structure of the wood. Both the amorphous structure and the water components vary with time since death, which could be due to the fungi present after a mountain pine beetle attack, as well as the fact that wood from the grey-stage of attack cycles seasonally through adsorption and desorption in the stand.

  20. Pine needle abortion biomarker detected in bovine fetal fluids

    Science.gov (United States)

    Pine needle abortion is a naturally occurring condition in free-range cattle caused by the consumption of pine needles from select species of cypress, juniper, pine, and spruce trees. Confirmatory diagnosis of pine needle abortion has previously relied on a combined case history of pine needle cons...

  1. Mountain pine beetle-killed lodgepole pine for the production of submicron lignocellulose fibrils

    Science.gov (United States)

    Ingrid Hoeger; Rolland Gleisner; Jose Negron; Orlando J. Rojas; J. Y. Zhu

    2014-01-01

    The elevated levels of tree mortality attributed to mountain pine beetle (MPB) (Dendroctonus ponderosae Hopkins) in western North American forests create forest management challenges. This investigation introduces the production of submicron or nanometer lignocellulose fibrils for value-added materials from the widely available resource represented by dead pines after...

  2. Pine weevil feeding in Scots pine and Norway spruce regenerations

    OpenAIRE

    Wallertz, Kristina

    2009-01-01

    Damage caused by the pine weevil, Hylobius abietis (L) feeding on conifer seedlings is a major problem in reforested areas in many parts of Europe. The adult weevil feeds on the stem-bark of young seedlings, frequently killing a large proportion of newly planted seedlings. The aims of the studies underlying this thesis were to investigate whether additional food supplies could decrease the damage caused by pine weevil to seedlings, and to determine whether access to extra food might explain w...

  3. Regeneration of different plant functional types in a Masson pine forest following pine wilt disease.

    Science.gov (United States)

    Hu, Guang; Xu, Xuehong; Wang, Yuling; Lu, Gao; Feeley, Kenneth J; Yu, Mingjian

    2012-01-01

    Pine wilt disease is a severe threat to the native pine forests in East Asia. Understanding the natural regeneration of the forests disturbed by pine wilt disease is thus critical for the conservation of biodiversity in this realm. We studied the dynamics of composition and structure within different plant functional types (PFTs) in Masson pine forests affected by pine wilt disease (PWD). Based on plant traits, all species were assigned to four PFTs: evergreen woody species (PFT1), deciduous woody species (PFT2), herbs (PFT3), and ferns (PFT4). We analyzed the changes in these PFTs during the initial disturbance period and during post-disturbance regeneration. The species richness, abundance and basal area, as well as life-stage structure of the PFTs changed differently after pine wilt disease. The direction of plant community regeneration depended on the differential response of the PFTs. PFT1, which has a higher tolerance to disturbances, became dominant during the post-disturbance regeneration, and a young evergreen-broad-leaved forest developed quickly after PWD. Results also indicated that the impacts of PWD were dampened by the feedbacks between PFTs and the microclimate, in which PFT4 played an important ecological role. In conclusion, we propose management at the functional type level instead of at the population level as a promising approach in ecological restoration and biodiversity conservation.

  4. The push–pull tactic for mitigation of mountain pine beetle (Coleoptera: Curculionidae) damage in lodgepole and whitebark pines

    Science.gov (United States)

    Nancy E. Gillette; Constance J. Mehmel; Sylvia R. Mori; Jeffrey N. Webster; David L. Wood; Nadir Erbilgin; Donald R. Owen

    2012-01-01

    In an attempt to improve semiochemical-based treatments for protecting forest stands from bark beetle attack, we compared push-pull versus push-only tactics for protecting lodgepole pine (Pinus contorta Douglas ex Loudon) and whitebark pine (Pinus albicaulis Engelm.) stands from attack by mountain pine beetle (...

  5. Predictions of fire behavior and resistance to control: for use with photo series for the ponderosa pine type, ponderosa pine and associated species type, and lodgepole pine type.

    Science.gov (United States)

    Franklin R. Ward; David V. Sandberg

    1981-01-01

    This publication presents tables on the behavior of fire and the resistance of fuels to control. The information is to be used with the publication, "Photo Series for Quantifying Forest Residues in the Ponderosa Pine Type, Ponderosa Pine and Associated Species Type, Lodgepole Pine Type" (Maxwell, Wayne G.; Ward, Franklin R. 1976. Gen. Tech. Rep. PNW-GTR-052....

  6. Analysis of Landsat-4 Thematic Mapper data for classification of forest stands in Baldwin County, Alabama

    Science.gov (United States)

    Hill, C. L.

    1984-01-01

    A computer-implemented classification has been derived from Landsat-4 Thematic Mapper data acquired over Baldwin County, Alabama on January 15, 1983. One set of spectral signatures was developed from the data by utilizing a 3x3 pixel sliding window approach. An analysis of the classification produced from this technique identified forested areas. Additional information regarding only the forested areas. Additional information regarding only the forested areas was extracted by employing a pixel-by-pixel signature development program which derived spectral statistics only for pixels within the forested land covers. The spectral statistics from both approaches were integrated and the data classified. This classification was evaluated by comparing the spectral classes produced from the data against corresponding ground verification polygons. This iterative data analysis technique resulted in an overall classification accuracy of 88.4 percent correct for slash pine, young pine, loblolly pine, natural pine, and mixed hardwood-pine. An accuracy assessment matrix has been produced for the classification.

  7. Bio-composites made from pine straw

    Science.gov (United States)

    Cheng Piao; Todd F. Shupe; Chung Y. Hse; Jamie Tang

    2004-01-01

    Pine straw is renewable natural resource that is under-utilized. The objective of this study was to evaluate the physical and mechanical performances of pine straw composites. Three panel density levels (0.8, 0.9, 1.0 g/cm2) and two resin content levels (1% pMDI + 4% UF, 2% pMDI + 4% UF) were selected as treatments. For the pine-straw-bamboo-...

  8. Cotyledonary somatic embryos of Pinus pinaster Ait. most closely resemble fresh, maturing cotyledonary zygotic embryos: biological, carbohydrate and proteomic analyses.

    Science.gov (United States)

    Morel, Alexandre; Trontin, Jean-François; Corbineau, Françoise; Lomenech, Anne-Marie; Beaufour, Martine; Reymond, Isabelle; Le Metté, Claire; Ader, Kevin; Harvengt, Luc; Cadene, Martine; Label, Philippe; Teyssier, Caroline; Lelu-Walter, Marie-Anne

    2014-11-01

    Cotyledonary somatic embryos (SEs) of maritime pine are routinely matured for 12 weeks before being germinated and converted to plantlets. Although regeneration success is highly dependent on SEs quality, the date of harvesting is currently determined mainly on the basis of morphological features. This empirical method does not provide any accurate information about embryo quality with respect to storage compounds (proteins, carbohydrates). We first analyzed SEs matured for 10, 12 and 14 weeks by carrying out biological (dry weight, water content) and biochemical measurements (total protein and carbohydrate contents). No difference could be found between collection dates, suggesting that harvesting SEs after 12 weeks is appropriate. Cotyledonary SEs were then compared to various stages, from fresh to fully desiccated, in the development of cotyledonary zygotic embryos (ZEs). We identified profiles that were similar using hierarchical ascendant cluster analysis (HCA). Fresh and dehydrated ZEs could be distinguished, and SEs clustered with fresh ZEs. Both types of embryo exhibited similar carbohydrate and protein contents and signatures. This high level of similarity (94.5 %) was further supported by proteome profiling. Highly expressed proteins included storage, stress-related, late embryogenesis abundant and energy metabolism proteins. By comparing overexpressed proteins in developing and cotyledonary SEs or ZEs, some (23 proteins) could be identified as candidate biomarkers for the late, cotyledonary stage. This is the first report of useful generic protein markers for monitoring embryo development in maritime pine. Our results also suggest that improvements of SEs quality may be achieved if the current maturation conditions are refined.

  9. Mountain pine beetle attack alters the chemistry and flammability of lodgepole pine foliage

    Science.gov (United States)

    Wesley G. Page; Michael J. Jenkins; Justin B. Runyon

    2012-01-01

    During periods with epidemic mountain pine beetle (Dendroctonus ponderosae Hopkins) populations in lodgepole pine (Pinus contorta Dougl. ex Loud. var. latifolia Engelm.) forests, large amounts of tree foliage are thought to undergo changes in moisture content and chemistry brought about by tree decline and death. However, many of the presumed changes have yet to be...

  10. White pine blister rust resistance in limber pine: Evidence for a major gene

    Science.gov (United States)

    A. W. Schoettle; R. A. Sniezko; A. Kegley; K. S. Burns

    2014-01-01

    Limber pine (Pinus flexilis) is being threatened by the lethal disease white pine blister rust caused by the non-native pathogen Cronartium ribicola. The types and frequencies of genetic resistance to the rust will likely determine the potential success of restoration or proactive measures. These first extensive inoculation trials using individual tree seed collections...

  11. Maryland's Forests 2008

    Science.gov (United States)

    T.W. Lister; J.L Perdue; C.J. Barnett; B.J. Butler; S.J. Crocker; G.M. Domke; D. Griffith; M.A. Hatfield; C.M. Kurtz; A.J. Lister; R.S. Morin; W.K. Moser; M.D. Nelson; C.H. Perry; R.J. Piva; R. Riemann; R. Widmann; C.W. Woodall

    2011-01-01

    The first full annual inventory of Maryland's forests reports approximately 2.5 million acres of forest land, which covers 40 percent of the State's land area and with a total volume of more than 2,100 cubic feet per acre. Nineteen percent of the growing-stock volume is yellow-poplar, followed by red maple (13 percent) and loblolly pine (10 percent). All...

  12. Lignin fate and characterization during ionic liquid biomass pretreatment for renewable chemicals and fuels production

    Science.gov (United States)

    Noppadon Sathitsuksanoh; Kevin M. Holtman; Daniel J. Yelle; Trevor Morgan; Vitalie Stavila; Jeffrey Pelton; Harvey Blanch; Blake A. Simmons; Anthe George

    2014-01-01

    The fate of lignin from wheat straw, Miscanthus, and Loblolly pine after pretreatment by a non-toxic and recyclable ionic liquid (IL), [C2mim][OAc], followed by enzymatic hydrolysis was investigated. The lignin partitioned into six process streams, each of which was quantified and analyzed by a combination of a novel solution-state two-dimensional (2D) nuclear magnetic...

  13. Split-season herbaceous weed control for full-season seedling performance

    Science.gov (United States)

    Jimmie L. Yeiser; Andrew W. Ezell

    2010-01-01

    Results from four loblolly pine (Pinus taeda L.) sites, one in each of MS and TX in 2001 and again in 2002, are presented. Twelve herbicide treatments and an untreated check were tested. Herbicide treatments were applied early (mid-March), late (mid-May), both timings, or not at all to achieve, early- late-, full-season, or no weed control. When...

  14. Ups and Downs Associated with Implementing Shift Schedules on a Southern Harvesting Operation

    Science.gov (United States)

    D. Mitchell

    2012-01-01

    Extended working hours can increase the number of hours that equipment is available to perform work, but how effective are workers during those additional evening/night hours? A study was conducted in Alabama to compare daytime and nighttime production rates of a feller-buncher. The study was installed in a first thinning of a single-aged loblolly pine (Pinus taeda)...

  15. Tree mortality estimates and species distribution probabilities in southeastern United States forests

    Science.gov (United States)

    Martin A. Spetich; Zhaofei Fan; Zhen Sui; Michael Crosby; Hong S. He; Stephen R. Shifley; Theodor D. Leininger; W. Keith Moser

    2017-01-01

    Stresses to trees under a changing climate can lead to changes in forest tree survival, mortality and distribution.  For instance, a study examining the effects of human-induced climate change on forest biodiversity by Hansen and others (2001) predicted a 32% reduction in loblolly–shortleaf pine habitat across the eastern United States.  However, they also...

  16. Development and assessment of 30-meter pine density maps for landscape-level modeling of mountain pine beetle dynamics

    Science.gov (United States)

    Benjamin A. Crabb; James A. Powell; Barbara J. Bentz

    2012-01-01

    Forecasting spatial patterns of mountain pine beetle (MPB) population success requires spatially explicit information on host pine distribution. We developed a means of producing spatially explicit datasets of pine density at 30-m resolution using existing geospatial datasets of vegetation composition and structure. Because our ultimate goal is to model MPB population...

  17. Seedling regeneration on decayed pine logs after the deforestation events caused by pine wilt disease

    Directory of Open Access Journals (Sweden)

    Y. Fukasawa

    2016-12-01

    Full Text Available Coarse woody debris (CWD forms an important habitat suitable for tree seedling establishment, and the CWD decay process influences tree seedling community. In Japan, a severe dieback of Pinus densiflora Sieb. & Zucc. caused by pine wilt disease (PWD damaged huge areas of pine stands but creates huge mass of pine CWD. It is important to know the factors influencing seedling colonization on pine CWD and their variations among geographical gradient in Japan to expect forest regeneration in post-PWD stands. I conducted field surveys on the effects of latitude, climates, light condition, decay type of pine logs, and log diameter on tree seedling colonization at ten geographically distinct sites in Japan. In total, 59 tree taxa were recorded as seedlings on pine logs. Among them, 13 species were recorded from more than five sites as adult trees or seedlings and were used for the analyses. A generalized linear model showed that seedling colonization of Pinus densiflora was negatively associated with brown rot in sapwood, while that of Rhus trichocarpa was positively associated with brown rot in heartwood. Regeneration of Ilex macropoda had no relationships with wood decay type but negatively associated with latitude and MAT, while positively with log diameter. These results suggested that wood decay type is a strong determinant of seedling establishment for certain tree species, even at a wide geographical scale; however, the effect is tree species specific.

  18. Preparation of Fe-cored carbon nanomaterials from mountain pine beetle-killed pine wood

    Science.gov (United States)

    Sung Phil Mun; Zhiyong Cai; Jilei Zhang

    2015-01-01

    The mountain pine beetle-killed lodgepole pine (Pinus contorta) wood treated with iron (III) nitrate solution was used for the preparation of Fe-cored carbon nanomaterials (Fe-CNs) under various carbonization temperatures. The carbonization yield of Fe-treated sample (5% as Fe) was always 1–3% higher (after ash compensation) than that of the non-...

  19. Threats, status & management options for bristlecone pines and limber pines in Southern Rockies

    Science.gov (United States)

    A. W. Schoettle; K. S. Burns; F. Freeman; R. A. Sniezko

    2006-01-01

    High-elevation white pines define the most remote alpine-forest ecotones in western North America yet they are not beyond the reach of a lethal non-native pathogen. The pathogen (Cronartium ribicola), a native to Asia, causes the disease white pine blister rust (WPBR) and was introduced into western Canada in 1910. Whitebark (Pinus albicaulis) and...

  20. Growth, aboveground biomass, and nutrient concentration of young Scots pine and lodgepole pine in oil shale post-mining landscapes in Estonia.

    Science.gov (United States)

    Kuznetsova, Tatjana; Tilk, Mari; Pärn, Henn; Lukjanova, Aljona; Mandre, Malle

    2011-12-01

    The investigation was carried out in 8-year-old Scots pine (Pinus sylvestris L.) and lodgepole pine (Pinus contorta var. latifolia Engelm.) plantations on post-mining area, Northeast Estonia. The aim of the study was to assess the suitability of lodgepole pine for restoration of degraded lands by comparing the growth, biomass, and nutrient concentration of studied species. The height growth of trees was greater in the Scots pine stand, but the tree aboveground biomass was slightly larger in the lodgepole pine stand. The aboveground biomass allocation to the compartments did not differ significantly between species. The vertical distribution of compartments showed that 43.2% of the Scots pine needles were located in the middle layer of the crown, while 58.5% of the lodgepole pine needles were in the lowest layer of the crown. The largest share of the shoots and stem of both species was allocated to the lowest layer of the crown. For both species, the highest NPK concentrations were found in the needles and the lowest in the stems. On the basis of the present study results, it can be concluded that the early growth of Scots pine and lodgepole pine on oil shale post-mining landscapes is similar.

  1. Impact of a Mountain Pine Beetle Outbreak on Young Lodgepole Pine Stands in Central British Columbia

    OpenAIRE

    Dhar, Amalesh; Balliet, Nicole; Runzer, Kyle; Hawkins, Christopher

    2015-01-01

    The current mountain pine beetle (MPB) (Dendroctonous ponderosae Hopkins) epidemic has severely affected pine forests of Western Canada and killed millions of hectares of lodgepole pine (Pinus contorta Dougl. ex Loud. var. latifolia Engelm.) forest. Generally, MPB attack larger and older (diameter > 20 cm or >60 years of age) trees, but the current epidemic extends this limit with attacks on even younger and smaller trees. The study’s aim was to investigate the extent of MPB attack in y...

  2. Probability of infestation and extent of mortality models for mountain pine beetle in lodgepole pine forests in Colorado

    Science.gov (United States)

    Jose F. Negron; Jennifer G. Klutsch

    2017-01-01

    The mountain pine beetle, Dendroctonus ponderosae Hopkins, is a significant agent of tree mortality in lodgepole pine (Pinus contorta Dougl. ex Loud.) forests throughout western North America. A large outbreak of mountain pine beetle caused extensive tree mortality in north-central Colorado beginning in the late 1990s. We use data from a network of plots established in...

  3. Characterizing the physical and genetic structure of the lodgepole pine × jack pine hybrid zone: mosaic structure and differential introgression.

    Science.gov (United States)

    Cullingham, Catherine I; James, Patrick M A; Cooke, Janice E K; Coltman, David W

    2012-12-01

    Understanding the physical and genetic structure of hybrid zones can illuminate factors affecting their formation and stability. In north-central Alberta, lodgepole pine (Pinus contorta Dougl. ex Loud. var. latifolia) and jack pine (Pinus banksiana Lamb) form a complex and poorly defined hybrid zone. Better knowledge of this zone is relevant, given the recent host expansion of mountain pine beetle into jack pine. We characterized the zone by genotyping 1998 lodgepole, jack pine, and hybrids from British Columbia, Alberta, Saskatchewan, Ontario, and Minnesota at 11 microsatellites. Using Bayesian algorithms, we calculated genetic ancestry and used this to model the relationship between species occurrence and environment. In addition, we analyzed the ancestry of hybrids to calculate the genetic contribution of lodgepole and jack pine. Finally, we measured the amount of gene flow between the pure species. We found the distribution of the pine classes is explained by environmental variables, and these distributions differ from classic distribution maps. Hybrid ancestry was biased toward lodgepole pine; however, gene flow between the two species was equal. The results of this study suggest that the hybrid zone is complex and influenced by environmental constraints. As a result of this analysis, range limits should be redefined.

  4. Mountain pine beetle-killed trees as snags in Black Hills ponderosa pine stands

    Science.gov (United States)

    J. M. Schmid; S. A. Mata; W. C. Schaupp

    2009-01-01

    Mountain pine beetle-killed ponderosa pine trees in three stands of different stocking levels near Bear Mountain in the Black Hills National Forest were surveyed over a 5-year period to determine how long they persisted as unbroken snags. Rate of breakage varied during the first 5 years after MPB infestation: only one tree broke during the first 2 years in the three...

  5. QUANTITATIVE CHANGES OF IRON, MANGANESE, ZINC AND COPPER IN PINE BARK COMPOSTED WITH PLANT MASS AND EFFECTIVE MICROORGANISMS

    Directory of Open Access Journals (Sweden)

    Jacek Czekała

    2014-10-01

    Full Text Available The objective of the investigation was to ascertain changes in the total contents, as well as water-soluble forms of iron, manganese, zinc and copper during the process of composting of pine bark with plant material (PM, with or without the addition of effective microorganisms (EM. Experiments were carried out at a forest nursery area and comprised the following treatments: pile 1. pine bark, pile 2. pine bark + PM, pile 3. pine bark + PM + EM. Compost piles were formed from pine bark (4 m3 and as described above, 2 Mg of plant material were added to pile 2 and to pile 3 – plant material and effective microorganisms in the amount of 3 dm3·m-3 bark. All compost files were also supplemented with 0.3 kg P2O5·m-3 (in the form of superphosphate 20% P2O5 and 0,1 kg K2O·m-3 (in the form of potassium salt 60%. The plant material comprised a mixture of buckwheat, field pea, serradella and vetch harvested before flowering. Piles were mixed and formed with the tractor aerator. At defined dates, using the method of atomic spectrophotometry, total contents of iron, manganese, zinc and copper, as well as their water-soluble forms were determined. It was found that all the examined elements underwent changes, albeit with different dynamics. This was particularly apparent in the case of water-soluble forms. This solubility was, in general, high during the initial days of the process and declined with the passage of time. No significant impact of effective microorganisms on the solubility of the examined chemical elements was determined, especially in mature composts.

  6. White pine blister rust resistance of 12 western white pine families at three field sites in the Pacific Northwest

    Science.gov (United States)

    Richard A. Sniezko; Robert Danchok; Jim Hamlin; Angelia Kegley; Sally Long; James Mayo

    2012-01-01

    Western white pine (Pinus monticola Douglas ex D. Don) is highly susceptible to the non-native, invasive pathogen Cronartium ribicola, the causative agent of white pine blister rust. The susceptibility of western white pine to blister rust has limited its use in restoration and reforestation throughout much of western North...

  7. Impact of pine needle leachates from a mountain pine beetle infested watershed on groundwater geochemistry

    Science.gov (United States)

    Pryhoda, M.; Sitchler, A.; Dickenson, E.

    2013-12-01

    The mountain pine beetle (MPB) epidemic in the northwestern United States is a recent indicator of climate change; having an impact on the lodgepole pine forest ecosystem productivity. Pine needle color can be used to predict the stage of a MPB infestation, as they change color from a healthy green, to red, to gray as the tree dies. Physical processes including precipitation and snowfall can cause leaching of pine needles in all infestation stages. Understanding the evolution of leachate chemistry through the stages of MPB infestation will allow for better prediction of the impact of MPBs on groundwater geochemistry, including a potential increase in soil metal mobilization and potential increases in disinfection byproduct precursor compounds. This study uses batch experiments to determine the leachate chemistry of pine needles from trees in four stages of MPB infestation from Summit County, CO, a watershed currently experiencing the MPB epidemic. Each stage of pine needles undergoes four subsequent leach periods in temperature-controlled DI water. The subsequent leaching method adds to the experiment by determining how leachate chemistry of each stage changes in relation to contact time with water. The leachate is analyzed for total organic carbon. Individual organic compounds present in the leachate are analyzed by UV absorption spectra, fluorescence spectrometry, high-pressure liquid chromatography for organic acid analysis, and size exclusion chromatography. Leachate chemistry results will be used to create a numerical model simulating reactions of the leachate with soil as it flows through to groundwater during precipitation and snowfall events.

  8. Response of Nitrogen Leaching to Nitrogen Deposition in Disturbed and Mature Forests of Southern China

    Institute of Scientific and Technical Information of China (English)

    FANG Yun-Ting; M. YOH; MO Jiang-Ming; P. GUNDERSEN; ZHOU Guo-Yi

    2009-01-01

    Current nitrogen (N) leaching losses and their responses to monthly N additions were investigated under a disturbed pine (Pinus massoniana) forest and a mature monsoon broadleaf forest in southern China. N leaching losses from both disturbed and mature forests were quite high (14.6 and 29.2 kg N ha-1 year-1, respectively), accounting for 57% and 80% of their corresponding atmospheric N inputs. N leaching losses were substantially increased following the first 1.5 years of N applications in both forests. The average increases induced by the addition of 50 and 100 kg N ha-1 year-1 were 36.5 and 24.9 kg N ha-1 year-1, respectively, in the mature forest, accounting for 73.0% and 24.9% of the annual amount of N added, and 14.2 and 16.8 kg N ha-1 year-1 in the disturbed forest, accounting for 28.4% and 16.8% of the added N. Great N leaching and a fast N leaching response to N additions in the mature forest might result from long-term N accumulation and high ambient N deposition load (greater than 30 kg N ha-1 year-1 over the past 15 years), whereas in the disturbed forest, it might result from the human disturbance and high ambient N deposition load. These results suggest that both disturbed and mature forests in the study region may be sensitive to increasing N deposition.

  9. Whitebark pine vulnerability to climate-driven mountain pine beetle disturbance in the Greater Yellowstone Ecosystem.

    Science.gov (United States)

    Logan, Jesse A; MacFarlane, William W; Willcox, Louisa

    2010-06-01

    Widespread outbreaks of mountain pine beetles (MPB) are occurring throughout the range of this native insect. Episodic outbreaks are a common occurrence in the beetles' primary host, lodgepole pine. Current outbreaks, however, are occurring in habitats where outbreaks either did not previously occur or were limited in scale. Herein, we address widespread, ongoing outbreaks in high-elevation, whitebark pine forests of the Greater Yellowstone Ecosystem, where, due to an inhospitable climate, past outbreaks were infrequent and short lived. We address the basic question: are these outbreaks truly unprecedented and a threat to ecosystem continuity? In order to evaluate this question we (1) present evidence that the current outbreak is outside the historic range of variability; (2) examine system resiliency to MPB disturbance based on adaptation to disturbance and host defenses to MPB attack; and (3) investigate the potential domain of attraction to large-scale MPB disturbance based on thermal developmental thresholds, spatial structure of forest types, and the confounding influence of an introduced pathogen. We conclude that the loss of dominant whitebark pine forests, and the ecological services they provide, is likely under continuing climate warming and that new research and strategies are needed to respond to the crisis facing whitebark pine.

  10. Evolutionary relationships of Slash Pine ( Pinus elliottii ) with its ...

    African Journals Online (AJOL)

    llozymes in bud tissue and monoterpene contents in xylem oleoresin of slash pine (Pinus elliottii) were analyzed from populations across the natural distribution, as well as those from other species in the AUSTRALES pines. Allozyme diversity measures of slash pine were similar to those found in other southern pines.

  11. Evaluating potential fire behavior in lodgepole pine-dominated forests after a mountain pine beetle epidemic in north-central Colorado

    Science.gov (United States)

    Jennifer G. Klutsch; Mike A. Battaglia; Daniel R. West; Sheryl L. Costello; Jose F. Negron

    2011-01-01

    A mountain pine beetle outbreak in Colorado lodgepole pine forests has altered stand and fuel characteristics that affect potential fire behavior. Using the Fire and Fuels Extension to the Forest Vegetation Simulator, potential fire behavior was modeled for uninfested and mountain pine beetle-affected plots 7 years after outbreak initiation and 10 and 80% projected...

  12. Sapwood Stored Resources Decline in Whitebark and Lodgepole Pines Attacked by Mountain Pine Beetles (Coleoptera: Curculionidae).

    Science.gov (United States)

    Lahr, Eleanor C; Sala, Anna

    2016-12-01

    Recent outbreaks of forest insects have been directly linked to climate change-induced warming and drought, but effects of tree stored resources on insects have received less attention. We asked whether tree stored resources changed following mountain pine beetle (Dendroctonus ponderosae Hopkins) attack and whether they affected beetle development. We compared initial concentrations of stored resources in the sapwood of whitebark pine (Pinus albicaulis Engelmann) and lodgepole pine (Pinus contorta Douglas ex. Louden) with resource concentrations one year later, in trees that were naturally attacked by beetles and trees that remained unattacked. Beetles did not select host trees based on sapwood resources-there were no consistent a priori differences between attacked versus unattacked trees-but concentrations of nonstructural carbohydrate (NSC), lipids, and phosphorus declined in attacked trees, relative to initial concentrations and unattacked trees. Whitebark pine experienced greater resource declines than lodgepole pine; however, sapwood resources were not correlated with beetle success in either species. Experimental manipulation confirmed that the negative effect of beetles on sapwood and phloem NSC was not due to girdling. Instead, changes in sapwood resources were related to the percentage of sapwood with fungal blue-stain. Overall, mountain pine beetle attack affected sapwood resources, but sapwood resources did not contribute directly to beetle success; instead, sapwood resources may support colonization by beetle-vectored fungi that potentially accelerate tree mortality. Closer attention to stored resource dynamics will improve our understanding of the interaction between mountain pine beetles, fungi, and host trees, an issue that is relevant to our understanding of insect range expansion under climate change. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions

  13. Histology of white pine blister rust in needles of resistant and susceptible eastern white pine

    Science.gov (United States)

    Joel A. Jurgens; Robert A. Blanchette; Paul J. Zambino; Andrew David

    2003-01-01

    White pine blister rust, Cronartium ribicola, has plagued the forests of North America for almost a century. Over past decades, eastern white pine (Pinus strobus) that appear to tolerate the disease have been selected and incorporated into breeding programs. Seeds from P. strobus with putative resistance were...

  14. Revivification of a method for identifying longleaf pine timber and its application to southern pine relicts in southeastern Virginia

    Science.gov (United States)

    Thomas L. Eberhardt; Philip M. Sheridan; Arvind A.R. Bhuta

    2011-01-01

    Abstract: Longleaf pine (Pinus palustris Mill.) cannot be distinguished from the other southern pines based on wood anatomy alone. A method that involves measuring pith and second annual ring diameters, reported by Arthur Koehler in 1932 (The Southern Lumberman, 145: 36–37), was revisited as an option for identifying longleaf pine timbers and stumps. Cross-section...

  15. Large-scale thinning, ponderosa pine, and mountain pine beetle in the Black Hills, USA

    Science.gov (United States)

    Jose F. Negron; Kurt K. Allen; Angie Ambourn; Blaine Cook; Kenneth Marchand

    2017-01-01

    Mountain pine beetle (Dendroctonus ponderosae Hopkins) (MPB), can cause extensive ponderosa pine (Pinus ponderosa Dougl. ex Laws.) mortality in the Black Hills of South Dakota and Wyoming, USA. Lower tree densities have been associated with reduced MPB-caused tree mortality, but few studies have reported on large-scale thinning and most data come from small plots that...

  16. Silvicultural Considerations in Managing Southern Pine Stands in the Context of Southern Pine Beetle

    Science.gov (United States)

    James M. Guldin

    2011-01-01

    Roughly 30 percent of the 200 million acres of forest land in the South supports stands dominated by southern pines. These are among the most productive forests in the nation. Adapted to disturbance, southern pines are relatively easy to manage with even-aged methods such as clearcutting and planting, or the seed tree and shelterwood methods with natural regeneration....

  17. Quality and yield of seven forages grown under partial shading of a simulated silvopastoral system in east Texas

    Science.gov (United States)

    J. Hill; K. Farrish; B. Oswald; L. Young; A. Shadow

    2016-01-01

    The goal of this project is to evaluate the growth and nutritional characteristics of seven forages, including various warm season native grasses, grown under simulated partial shading (50 percent typical of a loblolly pine silvopastoral system in east Texas. The results are from year two of a three year study. In order to meet the overall objective, individual,...

  18. Delaware's Forests 2008

    Science.gov (United States)

    Tonya W. Lister; Glenn Gladders; Charles J. Barnett; Gary J. Brand; Brett J. Butler; Susan J. Crocker; Grant M. Domke; Douglas M. Griffith; Mark A. Hatfield; Cassandra M. Kurtz; Andrew J. Lister; Randall S. Morin; W. Keith Moser; Mark D. Nelson; Charles H. Perry; Ronald J. Piva; Rachel Riemann; Christopher W. Woodall

    2012-01-01

    The fifth full inventory of Delaware's forests reports an 8 percent decrease in the area of forest land to 352,000 acres, which cover 28 percent of the State's land area and has a volume of approximately 2,352 cubic feet per acre. Twenty-one percent of the growing-stock volume is red maple, followed by sweetgum (13 percent), and loblolly pine (12 percent)....

  19. Conditioning a segmented stem profile model for two diameter measurements

    Science.gov (United States)

    Raymond L. Czaplewski; Joe P. Mcclure

    1988-01-01

    The stem profile model of Max and Burkhart (1976) is conditioned for dbh and a second upper stem measurement. This model was applied to a loblolly pine data set using diameter outside bark at 5.3m (i.e., height of 17.3 foot Girard form class) as the second upper stem measurement, and then compared to the original, unconditioned model. Variance of residuals was reduced...

  20. Occurrence and Impact of Insects in Maximum Growth Plantations

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, J.T.; Berisford, C.W.

    2001-01-01

    Investigation of the relationships between intensive management practices and insect infestation using maximum growth potential studies of loblolly pine constructed over five years using a hierarchy of cultural treatments-monitoring differences in growth and insect infestation levels related to the increasing management intensities. This study shows that tree fertilization can increase coneworm infestation and demonstrated that tip moth management tree growth, at least initially.